NASA Astrophysics Data System (ADS)
Chen, C. T. A.
2015-12-01
It has been known that Kuroshio subsurface waters are the major source of nutrients to the East China Sea continental shelf, a major fishing ground. It has also been known that subsurface waters that upwell onto the shelf are heavily affected by the South China Sea (SCS) Tropical Water and the SCS Intermediate Water which contain more nutrients than the tropical (Smax) and intermediate (Smin) waters from the West Philippine Sea (WPS). A front has been found to separate the tropical and intermediate waters from the SCS and WPS. The reported front in the Okinawa Trough, however, was identified based only on one-time data from a single cross-section in the central Okinawa Trough. Here historical hydrographic data between Mar. 1950 and Dec. 2011 in the Okinawa Trough and its neighborhood are analyzed. A vertical front tilted toward the west is found in all seasons in all years across the World Ocean Circulation Repeated Lines PR 18 and 19 as well as at the PN cross-section in the central Okinawa Trough. The front at the Smax level (sigma theta=24.6-24.9) shows large seasonal and interannual variations. In winter during normal and La Niña periods the presence of the SCS Tropical Water is the most prominent. It is the weakest in autumn during normal periods and in spring during La Nina periods. Yet during El Niño periods the SCS Tropical Water is the most prominent in spring and it becomes the weakest in winter. As for intermediate waters (Smin at sigma theta= 26.7-26.9) the WPS Intermediate Water and SCS Intermediate Water show much weaker seasonality compared with tropical waters although during normal periods in winter the WPS Intermediate Water contribution is slightly larger than during other times. During El Niño periods the WPS Intermediate Water contribution is the smallest but in spring it is much strengthened. On the other hand, the WPS Intermediate Water contribution is the smallest in spring, and the largest in winter during La Niña periods.
Arctic intermediate water in the Norwegian sea
NASA Astrophysics Data System (ADS)
Blindheim, Johan
1990-09-01
At least two types of intermediate water propagate into the Norwegian Sea from the Iceland and Greenland seas. North Icelandic Winter Water flows along the slope of the Faroe-Iceland Ridge towards the Faroes. The distribution of this intermediate water is limited to the southern Norwegian Sea. The second type intrudes between the bottom water and the Atlantic Water, and can be traced as a slight salinity minimum of the entire area of the Norwegian Sea. There seems to be along-isopycnal advection of this water type along the Arctic Front from both the Iceland and Greenland Seas. Although the salinity minimum is less distinct along the slope of the continental shelf than in the western Norwegian Sea, this intermediate water separates the deep water and the Atlantic Water, and prohibits direct mixing of these two water masses.
The path of the Levantine intermediate water to the Alboran sea
NASA Astrophysics Data System (ADS)
Font, Jordi
1987-10-01
The Levantine Intermediate Water (LIW) traditionally has been assumed to reach the Alboran Sea as a counter-current along the North African coast. Here data are presented that confirm the LIW flow through the sill that separates the Balearic Islands from the mainland, after contouring cyclonically the western Mediterranean along the continental slope. This seems to be a seasonal phenomenon related to the process of deep water formation in the northwestern Mediterranean and to fluctuations in the Ligurian Current. In winter the LIW can circulate across the Catalan Sea without remarkable dilution, while in summer the intermediate outflow has almost lost the LIW water mass characteristics.
Hasler, C T; Suski, C D; Hanson, K C; Cooke, S J; Tufts, B L
2009-01-01
In this study, field biotelemetry and laboratory physiology approaches were coupled to allow understanding of the behavioral and physiological responses of fish to winter hypoxia. The biotelemetry study compared dissolved oxygen levels measured throughout the winter period with continually tracked locations of nine adult largemouth bass obtained from a whole-lake submerged telemetry array. Fish habitat usage was compared with habitat availability to assess whether fish were selecting for specific dissolved oxygen concentrations. The laboratory study examined behavioral and physiological responses to progressive hypoxia in juvenile largemouth bass acclimated to winter temperatures. Results from the dissolved oxygen measurements made during the biotelemetry study showed high variance in under-ice dissolved oxygen levels. Avoidance of water with dissolved oxygen <2.0 mg/L by telemetered fish was demonstrated, but significant use of water with intermediate dissolved oxygen levels was also found. Results from the lab experiments showed marked changes in behavior (i.e., yawning and vertical movement) at <2.0 mg/L of dissolved oxygen but no change in tissue lactate, an indicator of anaerobic metabolism. Combined results of the biotelemetry and laboratory studies demonstrate that a dissolved oxygen content of 2.0 mg/L may be a critical threshold that induces behavioral responses by largemouth bass during the winter. In addition, the use by fish of areas with intermediate levels of dissolved oxygen suggests that there are multiple environmental factors influencing winter behavior.
NASA Astrophysics Data System (ADS)
Juza, Mélanie; Renault, Lionel; Ruiz, Simon; Heslop, Emma; Tintoré, Joaquin
2013-04-01
The Winter Intermediate Water (WIW) plays a crucial role in the water exchanges through the Balearic channels and in the Western Mediterranean Sea general circulation. Its formation occurs in the North-Western of the basin under severe winter conditions. Observational datasets (in situ temperature and salinity profiles collected during CTD and glider transects) reveal the presence of WIW in the Gulf of Lion and in the Ibiza Channel during the winter-spring 2011. However, the inhomogeneous spatial and temporal coverage of the observational array makes the monitoring of WIW through the basin difficult. In this study, as a complement to the observations, a ROMS 1/40° regional oceanic simulation implemented over the Western Mediterranean Sea is used to determine the origin, evolution and pathways of the WIW in the basin. The simulation outputs are first collocated at the observation positions. Their comparison against the observations shows the ability of the simulation to reproduce the observed WIW in the Gulf of Lion in March 2011 and in the Ibiza channel in winter-spring 2011. Then, the fully-sampled simulation outputs are used to study the spatial and temporal variability of the WIW in the Western Mediterranean Sea during the winter 2011. Investigating the T/S diagrams and transports in key sections over the basin and calculating lagrangian trajectories, the main pathways of WIW in winter-spring 2011 emerge. We show that, in good agreement with the literature, the simulated WIW are formed along the continental shelves of the Gulf of Lion and Catalan Sea, and then circulate souththward in the Balearic Sea reaching 100-200m depth. One branch (mainly formed in the Ebro estuary) goes through the Ibiza Channel, while the second main branch (coming from both the Gulf of Lion and the Ebro estuary) splits to the East joining the Balearic Current.
NASA Astrophysics Data System (ADS)
Nam, S.; Yoon, S.; Park, J. H.; Kim, Y. H.; Chang, K. I.
2016-02-01
The intermediate water known as `East Sea Intermediate Water' and its coastal mode `North Korea Cold Water' found south of the Subpolar Front (SF) is formed in the northern East (Japan) Sea, and its physical properties are known to be determined by wintertime air-sea interaction north of the SF. Hydrographic data collected off the coast bi-monthly from 1994 to 2011 show significant decadal oscillations in spiciness following isopycnals of intermediate water (27.1-27.2 sigma-theta typically corresponding to 150 m depth), which are explained by the Arctic Oscillation (AO) and consequent cold-air outbreaks. During positive AO phases over the decades, the cold-air outbreak and water formation are more active and the intermediate water having the same spiciness reaches higher density (higher spiciness following the same isopycnals). At interannual timescale, however, the spiciness variability is well beyond the relationship with the AO. Especially, significantly lower spiciness (or both less saline and lower temperature) intermediate water was observed in spring of 2010 than 2001 under the similar AO condition (negative peaks). Strong cooling with common negative peaks in surface net-heat flux (with different patterns) and common negative peaks in the AO index are prominent in winter of the two years over past two decades. Such contrasting characteristics of intermediate water between 2001 and 2010 are consistent with the HYCOM reanalysis results which, along with the satellite altimetry-derived sea surface height maps, indicates widespread extension of low (high) spiciness intermediate water in the southwestern East Sea in 2010 (2001). A clear contrast in circulation pattern, along with net-heat flux pattern, is suggested to derive the observational results in the distinctly different characteristics of the intermediate water.
NASA Astrophysics Data System (ADS)
Juza, Mélanie; Renault, Lionel; Ruiz, Simon; Tintoré, Joaquin
2013-12-01
The study of water masses worldwide (their formation, spreading, mixing, and impact on general circulation) is essential for a better understanding of the ocean circulation and variability. In this paper, the formation and main pathways of Winter Intermediate Water (WIW) in the Northwestern Mediterranean Sea (NWMED) are investigated during the winter-spring 2011 using observations and numerical simulation. The main results show that the WIW, formed along the continental shelves of the Gulf of Lion and Balearic Sea, circulates southward following five preferential pathways depending on the WIW formation site location and the oceanic conditions. WIW joins the northeastern part of the Balearic Sea, or flows along the continental shelves until joining the Balearic Current (maximum of 0.33 Sv in early-April) or further south until the Ibiza Channel entrance. Two additional trajectories, contributing to water mass exchanges with the southern part of the Western Mediterranean Sea, bring the WIW through the Ibiza and Mallorca Channels (maxima of 0.26 Sv in late-March and 0.1 Sv in early-April, respectively). The circulation of WIW over the NWMED at 50-200 m depth, its mixing and spreading over the Western Mediterranean Sea (reaching the south of the Balearic Islands, the Algero-Provencal basin, the Ligurian and the Alboran Seas) suggest that the WIW may have an impact on the ocean circulation by eddy blocking effect, exchange of water masses between north and south subbasins of Western Mediterranean Sea through the Ibiza Channel or modification of the ocean stratification.
NASA Astrophysics Data System (ADS)
Bosse, Anthony; Testor, Pierre; Mortier, Laurent; Beguery, Laurent; Bernardet, Karim; Taillandier, Vincent; d'Ortenzio, Fabrizio; Prieur, Louis; Coppola, Laurent; Bourrin, François
2013-04-01
In the last 5 years, an unprecedented effort in the sampling of the Northern Current (NC) has been carried out using gliders which collected more than 50 000 profiles down to 1000m maximum along a few repeated sections perpendicular to the French coast. Based on this dataset, this study presents a very first quantitative picture of the NC on 0-1000m depth. We show its mean structure of temperature and salinity characterized by the different Water Masses of the basin (Atlantic Water, Winter Intermediate Water, Levantine Intermediate Water and Western Mediterranean Deep Water) for each season and at different location. Geostrophic currents are derived from the integration of the thermal-wind balance using the mean glider-estimate of the current during each dive as a reference. Estimates of the heat, salt, and volume transport are then computed in order to draw an heat and salt budget of the NC. The results show a strong seasonal variability due to the intense surface buoyancy loss in winter resulting in a vertical mixing offshore that makes the mixed layer depth reaching several hundreds of meters in the whole basin and in a very particular area down to the bottom of the sea-floor (deep convection area). The horizontal density gradient intensifies in winter leading to geostrophic currents that are more intense and more confined to the continental slope, and thus to the enhancement of the mesoscale activity (meandering, formation of eddies through baroclinic instability...). The mean transport estimates of the NC is found to be about 2-3Sv greater than previous spurious estimates. The heat budget of the NC also provides an estimate of the mean across shore heat/salt flux directly impacting the region in the Gulf of Lion where deep ocean convection, a key process in the thermohaline circulation of the Mediterranean Sea, can occur in Winter.
Dense Winter Water Mass Formation In The Northwestern Pacific Marginal Seas:
NASA Astrophysics Data System (ADS)
Talley, L.; Lobanov, V.; Tishchenko, P.; Shcherbina, A.; Rudnick, D.; Salyuk, A.; Sagalaev, S.; Ponomarev, V.; Zhabin, I.
Two separate winter water mass formation experiments were carried out in the north- western Pacific. The Japan/East Sea (JES) is well-ventilated to the bottom (3500 m depth), and is much better ventilated than the adjacent North Pacific at the same depth and density. Winter data from 1999 and 2000 show that the JES is one of the few sites in the world with deep winter convection, and that convection in the JES has many similarities to convection in the Mediterranean. It was shown previously that deep oxygen in the JES has been declining over many decades, suggesting that ventilation was more vigorous early in the 20th century than in recent decades. Nevertheless, the presence of significant oxygen and chlorofluorocarbons to the JES bottom suggests ongoing ventilation. In winter, 1999, a first late-winter survey of the northern JES included one hydrographic station with evidence of open-ocean convection to about 1100 meters in the cold air outbreak region south of Vladivostok, and weak evidence of brine rejection under ice formation in Peter the Great Bay (shelf near Vladivos- tok). Topography and the presence of a semi-permanent anticyclonic eddy and the subpolar front delineate the convection region, which is in the path of strong northerly winter winds. Persistently colder conditions in winter 2000, including Vladivostok air temperatures colder than any other year since 1976 and SST -2C below normal in the northern Japan Sea, showed widespread convection. Significant bottom water was created through brine rejection in Peter the Great Bay and was found the base of the continental slope south of Vladivostok. Ventilation of North Pacific Intermediate Water occurs in the Okhotsk Sea, through brine rejection during sea ice formation, in polynyas on the northwest shelf. Moored observations on the shelf during winter 1999-2000 showed the creation of dense shelf water at 26.95 sigma_theta and clear evidence of brine rejection through the winter. The 1999 deployment hydrographic survey shows cold, dense water from the shelf at 26.95 sigma_theta. The lower density shelf water in June 2000 compared with Septem- ber 1999 is consistent with the reduced severity of winter 2000. Outflow of the densest cold water of shelf origin in both the 1999 and 2000 CTD surveys was located slightly inshore of the axis of the deepest channel between Sakhalin and Kashevarov Bank.
Hydrodynamically-driven distribution of lanternfish larvae in the Southeast Brazilian Bight
NASA Astrophysics Data System (ADS)
Namiki, Cláudia; Katsuragawa, Mario; Napolitano, Dante Campagnoli; Zani-Teixeira, Maria de Lourdes; Mattos, Rafael Augusto de; Silveira, Ilson Carlos Almeida da
2017-06-01
This study analyzes the influence of the Brazil Current and Ekman transport on the distribution of lanternfish larvae in the Southeast Brazilian Bight during summer and winter. Larvae of 19 taxa of lanternfish were identified, and Diaphus spp. and M. affine were the most abundant. Three water masses were present in the area: Coastal Water, Tropical Water and South Atlantic Central Water. Lanternfish larvae were associated with the Tropical Water in both seasons. During summer, species of Lampanyctinae were associated with the shallowest layers and Myctophinae in the deepest layers. In winter most species of both subfamilies were associated with intermediate depths, probably because greater mixing of water masses occurred at the surface and 100 m depth, limiting their distribution. During both cruises, the presence of lanternfish larvae in the continental shelf was related to the pattern of Tropical Water intrusion, which was mostly driven by the mesoscale activity of the Brazil Current and its interaction with the continental shelf.
USDA-ARS?s Scientific Manuscript database
The winter wheat (Triticum aestivum L.) summer fallow rotation typically practiced in the intermediate precipitation zone [300-450 mm (12-18 in)] of the inland Pacific Northwest has proven to be economically stable for producers in this region. However multiple tillage operations are used to control...
Interannual variability of Dissolved Oxygen values around the Balearic Islands
NASA Astrophysics Data System (ADS)
Balbín, R.; Aparicio, A.; López-Jurado, J. L.; Flexas, M. M.
2012-04-01
Periodic movements of the trawl fishing fleet at Mallorca Island suggest a seasonal variability of the demersal resources, associated with hydrodynamic variability. The area where these commercial fisheries operate extends from the north to the southeast of Mallorca channel, between Mallorca and Ibiza Islands. It is thus affected by the different hydrodynamic conditions of the two sub-basins of the western Mediterranean (the Balearic and the Algerian sub-basins), with different geomorphologic and hydrodynamic characteristics. To characterize this hydrodynamic variability, hydrographic data collected around the Balearic Islands since 2001 with CTDs were analized [1]. Hydrographic parameters were processed according to the standard protocols. Dissolved oxygen (DO) was calibrated onboard using the winkler method. Temperature and salinity were used to characterize the different water masses. At the Western Mediterranean, the maximum values of DO in the water column are observed in the sur- face waters during winter (> 6.0 ml /l), when these water in contact with the atmosphere absorb large amount of oxygen, favored by low winter temperatures and notable turbulence. Later in the spring, the gradual increase of temperature, and the beginning of stratification and biological activity, lead to a decrease of oxygen concentration mainly in surface waters. During summer, these values continue to reduce in the surface mixed layer. Below it, and due to the biological activity, an increase is observed, giving rise to the absolute maximum of this parameter (> 6.5 ml /l). During autumn, the atmospheric forcing breaks the stratification producing a homogenization of surface water. At this moment, DO shows intermediate values. Below the surface waters, about 200 m, a relative maximum corresponding to the seasonal Winter Intermediate Waters (WIW) can be observed. Intermediate waters, between 400 and 600 m, reveal an oxygen minimum (4.0 ml /l) associated to the Levantine Intermediate Waters (LIW) and underneath, the Western Mediterranean Deep Waters (WMDW) show a slight increase of these values (> 4.5 ml /l). Interannual variability of DO at the Balearic and the Algerian sub-basins and in the different water masses will be presented. A systematic difference (> 0.10 ml/l) is observed at intermediate and deep waters between the oxygen con- tent in the Balearic and Algerian sub-basins. This could be explained in terms of the longer path these water masses have to cover around the Mallorca and Menorca Islands, which implies a longer residence time and consumption as a result of respiration and decay of organic matter. During some campaigns minimum DO values (≈ 3.8 ml/l) were found in this area which are smaller that the values usually reported for the Mediterranean [2, 3, 4]. Different possible causes as the influence of the Easter Mediterranean Transient, the reported increase of surface temperature or just the interannual variability, will be discussed. [1] J. L. López-Jurado, J. M. García-Lafuente, L. Cano, et al., Oceanologica acta, vol. 18, no. 2, 1995. [2] T. Packard, H. Minas, B. Coste, R. Martinez, M. Bonin, J. Gostan, P. Garfield, J. Christensen, Q. Dortch, M. Minas, et al., Deep Sea Research Part A. Oceanographic Research Papers, vol. 35, no. 7, 1988. [3] B. Manca, M. Burca, A. Giorgetti, C. Coatanoan, M. Garcia,and A. Iona, Journal of marine systems, vol. 48, no. 1-4, 2004. [4] A. Miller, "Mediterranean sea atlas of temperature, salinity, and oxygen. profiles and data from cruises of RV Atlantis and RV Chain," tech. rep., Woods Hole Oceanographic Institution, Massachusetts, 1970.
NASA Astrophysics Data System (ADS)
Wahr, John; Smeed, David; Leuliette, Eric; Swenson, Sean
2014-05-01
Seasonal variability of sea surface height and mass within the Red Sea, occurs mostly through the exchange of heat with the atmosphere and wind-driven inflow and outflow of water through the strait of Bab el Mandab that opens into the Gulf of Aden to the south. The seasonal effects of precipitation and evaporation, of water exchange through the Suez Canal to the north, and of runoff from the adjacent land, are all small. The flow through the Bab el Mandab involves a net mass transfer into the Red Sea during the winter and a net transfer out during the summer. But that flow has a multi-layer pattern, so that in the summer there is actually an influx of cool water at intermediate (~100 m) depths. Thus, summer water in the southern Red Sea is warmer near the surface due to higher air temperatures, but cooler at intermediate depths (especially in the far south). Summer water in the northern Red Sea experiences warming by air-sea exchange only. The temperature profile affects the water density, which impacts the sea surface height but has no effect on vertically integrated mass. Here, we study this seasonal cycle by combining GRACE time-variable mass estimates, altimeter (Jason-1, Jason-2, and Envisat) measurements of sea surface height, and steric sea surface height contributions derived from depth-dependent, climatological values of temperature and salinity obtained from the World Ocean Atlas. We find good consistency, particularly in the northern Red Sea, between these three data types. Among the general characteristics of our results are: (1) the mass contributions to seasonal SSHT variations are much larger than the steric contributions; (2) the mass signal is largest in winter, consistent with winds pushing water into the Red Sea through the Strait of Bab el Mandab in winter, and out during the summer; and (3) the steric signal is largest in summer, consistent with summer sea surface warming.
NASA Astrophysics Data System (ADS)
Coppola, Laurent; Legendre, Louis; Lefevre, Dominique; Prieur, Louis; Taillandier, Vincent; Diamond Riquier, Emilie
2018-03-01
Dissolved oxygen (O2) is a relevant tracer to interpret variations of both water mass properties in the open ocean and biological production in the surface layer of both coastal and open waters. Deep-water formation is very active in the northwestern Mediterranean Sea, where it influences intermediate and deep waters properties, nutrients replenishment and biological production. This study analyses, for the first time, the 20-year time series of monthly O2 concentrations at the DYFAMED long-term sampling site in the Ligurian Sea. Until the winters of 2005 and 2006, a thick and strong oxygen minimum layer was present between 200 and 1300 m because dense water formation was then local, episodic and of low intensity. In 2005-2006, intense and rapid deep convection injected 24 mol O2 m-2 between 350 and 2000 m from December 2005 to March 2006. Since this event, the deep layer has been mostly ventilated during winter time by newly formed deep water spreading from the Gulf of Lion 250 km to the west and by some local deep mixing in early 2010, 2012 and 2013. In the context of climate change, it is predicted that the intensity of deep convection will become weaker in the Mediterranean, which could potentially lead to hypoxia in intermediate and deep layers with substantial impact on marine ecosystems. With the exception of winters 2005 and 2006, the O2 changes in surface waters followed a seasonal trend that reflected the balance between air-sea O2 exchanges, changes in the depth of the mixed layer and phytoplankton net photosynthesis. We used the 20-year O2 time series to estimate monthly and annual net community production. The latter was 7.1 mol C m-2 yr-1, consistent with C-14 primary production determinations and sediment-trap carbon export fluxes at DYFAMED.
46 CFR Appendix A to Part 45 - Load Line Certificate Form
Code of Federal Regulations, 2010 CFR
2010-10-01
... Midsummer MS Summer S Intermediate I Winter W load line above S Upper edge of line through center of diamond below S below S Increase for salt water for all freeboards __ inches. The upper edge of the deck line... so endorsed. notes (1) In accordance with the Great Lakes Load Line Regulations the diamond and lines...
46 CFR Appendix A to Part 45 - Load Line Certificate Form
Code of Federal Regulations, 2011 CFR
2011-10-01
... registry Type of Ship: TYPE “A” TYPE “B” TYPE “B” with increased freeboard freeboard from deck line Midsummer MS Summer S Intermediate I Winter W load line above S Upper edge of line through center of diamond... salt water of the St. Lawrence River west of a straight line from Cap de Rosiers to West Point...
Redhead duck behavior on lower Laguna Madre and adjacent ponds of southern Texas
Mitchell, C.A.; Custer, T.W.; Zwank, P.J.
1992-01-01
Behavior of redheads (Aythya americana) during winter was studied on the hypersaline lower Laguna Madre and adjacent freshwater to brackish water ponds of southern Texas. On Laguna Madre, feeding (46%) and sleeping (37%) were the most common behaviors. Redheads fed more during early morning (64%) than during the rest of the day (40%); feeding activity was negatively correlated with temperature. Redheads fed more often by dipping (58%) than by tipping (25%), diving (16%), or gleaning (0.1%). Water depth was least where they fed by dipping (16 cm), greatest where diving (75 cm), and intermediate where tipping (26 cm). Feeding sequences averaged 5.3 s for dipping, 8.1 s for tipping, and 19.2 s for diving. Redheads usually were present on freshwater to brackish water ponds adjacent to Laguna Madre only during daylight hours, and use of those areas declined as winter progressed. Sleeping (75%) was the most frequent behavior at ponds, followed by preening (10%), swimming (10%), and feeding (0.4%). Because redheads fed almost exclusively on shoalgrass while dipping and tipping in shallow water and shoalgrass meadows have declined in the lower Laguna Madre, proper management of the remaining shoalgrass habitat is necessary to ensure that this area remains the major wintering area for redheads.
NASA Technical Reports Server (NTRS)
Downes, Stephanie M.; Farneti, Riccardo; Uotila, Petteri; Griffies, Stephen M.; Marsland, Simon J.; Bailey, David; Behrens, Erik; Bentsen, Mats; Bi, Daohua; Biastoch, Arne;
2015-01-01
We characterise the representation of the Southern Ocean water mass structure and sea ice within a suite of 15 global ocean-ice models run with the Coordinated Ocean-ice Reference Experiment Phase II (CORE-II) protocol. The main focus is the representation of the present (1988-2007) mode and intermediate waters, thus framing an analysis of winter and summer mixed layer depths; temperature, salinity, and potential vorticity structure; and temporal variability of sea ice distributions. We also consider the interannual variability over the same 20 year period. Comparisons are made between models as well as to observation-based analyses where available. The CORE-II models exhibit several biases relative to Southern Ocean observations, including an underestimation of the model mean mixed layer depths of mode and intermediate water masses in March (associated with greater ocean surface heat gain), and an overestimation in September (associated with greater high latitude ocean heat loss and a more northward winter sea-ice extent). In addition, the models have cold and fresh/warm and salty water column biases centred near 50 deg S. Over the 1988-2007 period, the CORE-II models consistently simulate spatially variable trends in sea-ice concentration, surface freshwater fluxes, mixed layer depths, and 200-700 m ocean heat content. In particular, sea-ice coverage around most of the Antarctic continental shelf is reduced, leading to a cooling and freshening of the near surface waters. The shoaling of the mixed layer is associated with increased surface buoyancy gain, except in the Pacific where sea ice is also influential. The models are in disagreement, despite the common CORE-II atmospheric state, in their spatial pattern of the 20-year trends in the mixed layer depth and sea-ice.
Nine years of mass transport data in the eastern boundary of the North Atlantic Subtropical Gyre
NASA Astrophysics Data System (ADS)
Fraile-Nuez, Eugenio; MachíN, Francisco; VéLez-Belchí, Pedro; López-Laatzen, Federico; Borges, Rafael; BeníTez-Barrios, Verónica; HernáNdez-Guerra, Alonso
2010-09-01
One of the longest current meter time series in the Lanzarote Passage in the eastern boundary of the North Atlantic Subtropical Gyre has been used to determine and quantify the 9-year mean transport, the inter-annual and seasonal mass transport variability for the three water masses present in the area. Results show North Atlantic Central Water (NACW) flowing southward in the upper levels with a mean mass transport of -0.81 ± 1.48 Sv, Antarctic Intermediate Water (AAIW) flowing northward at intermediate levels with a mean transport of +0.09 ± 0.57 Sv and Mediterranean Water (MW) flowing southward in the deep part of the passage with a mean transport of -0.05 ± 0.17 Sv. Harmonic and wavelet analysis show the presence of a seasonal pattern in the passage for the three water masses. A maximum southward transport in winter and spring has been observed for the NACW followed by a minimum in summer and fall. Near zero values during winter and spring are found for AAIW, with a maximum northward value in summer and a negative value in fall, when this water mass reverses its flow. MW has a similar seasonal pattern to NACW. The vertical structure in the Lanzarote Passage can be approximated by four significant oscillatory modes which cumulatively explain 86.4% of the variance. The strong transport fluctuation found at the seasonal and inter-annual timescales demonstrates that the Eastern Boundary Current transport has a strong impact on meridional overturning estimates, thus indicating that to understand Meridional Overturning Circulation variability, these transport estimates at the eastern Atlantic margin are necessary.
Jagucki, Martha L.; Bexfield, Laura M.; Heywood, Charles E.; Eberts, Sandra M.
2012-01-01
This fact sheet highlights findings from the vulnerability study of a public-supply well in Albuquerque, New Mexico (hereafter referred to as “the study well”). The study well produces about 3,000 gallons of water per minute from the Rio Grande aquifer system. Water samples were collected at the study well, at two other nearby public-supply wells, and at monitoring wells installed in or near the simulated zone of contribution to the study well. Untreated water samples from the study well contained arsenic at concentrations exceeding the Maximum Contaminant Level (MCL) of 10 micrograms per liter (µg/L) established by the U.S. Environmental Protection Agency for drinking water. Volatile organic compounds (VOCs) and nitrate also were detected, although at concentrations at least an order of magnitude less than established drinking-water standards, where such standards exist. Overall, study findings point to four primary influences on the movement and (or) fate of contaminants and the vulnerability of the public-supply well in Albuquerque: (1) groundwater age (how long ago water entered, or recharged, the aquifer), (2) groundwater development (introduction of manmade recharge and discharge sources), (3) natural geochemical conditions of the aquifer, and (4) seasonal pumping stresses. Concentrations of the isotope carbon-14 indicate that groundwater from most sampled wells in the local study area is predominantly water that entered, or recharged, the aquifer more than 6,000 years ago. However, the additional presence of the age tracer tritium in several groundwater samples at concentrations above 0.3 tritium units indicates that young (post-1950) recharge is reaching the aquifer across broad areas beneath Albuquerque. This young recharge is mixing with the thousands-of-years-old water, is migrating to depths as great as 245 feet below the water table, and is traveling to some (but not all) of the public-supply wells sampled. Most groundwater samples containing a fraction of young water also contain manmade VOCs, including chloroform (a byproduct of drinking-water chlorination), which indicates that the source of young recharge is, at least in part, infiltration of chlorinated municipal-supply water from leaking waterlines and sewerlines or from turf watering. Other likely manmade, urban recharge sources are seepage from constructed ponds and unlined portions of a stormwater diversion channel. A regional-scale computer-model simulation of groundwater flow and transport to the public-supply well shows that manmade sources of recharge and discharge that were added after about 1930 have greatly altered directions of groundwater flow near Albuquerque and have caused water levels to decline by as much as 120 feet. Local-scale simulations show that seasonal changes in the pumping schedule of the study well affect the age and quality of water produced by the well. Increased pumping during the summer causes significant volumes of water to flow downward from the shallow to the intermediate zones of the aquifer, causing a higher fraction of young water to be produced by the well in the summer than in the winter months and a corresponding increase in VOC detections in the summer relative to the winter. During the winter when the study-well pump is idle for several hours each day, old, high-arsenic water from the deep zone of the aquifer travels up the wellbore and exits into the intermediate zone of the aquifer. When the pump is activated in the winter (for a relatively short time each day), some of the leaked, high-arsenic water is recaptured by the well. This results in a higher arsenic concentration (commonly more than 12 µg/L) in water produced in the winter than in the summer, and a smaller fraction of young water being produced by the well in the winter than in the summer (6 percent in the winter, compared to 11 percent in the summer). Knowledge of the vertical flow direction (both natural and pumping-enhanced) in the vicinity of a long-screened well, coupled with understanding of variations in contaminant concentrations with depth in the aquifer, can help water managers predict the positive or negative effect that wellbore flow will have on water quality and can lead to development of strategies to mitigate contamination (such as changes in pumping schedules or development of devices to inhibit wellbore flow when the pump is off).
A multi-proxy analysis of Late Quaternary ocean and climate variability for the Maldives, Inner Sea
NASA Astrophysics Data System (ADS)
Bunzel, Dorothea; Schmiedl, Gerhard; Lindhorst, Sebastian; Mackensen, Andreas; Reolid, Jesús; Romahn, Sarah; Betzler, Christian
2017-12-01
As a natural sediment trap, the marine sediments of the sheltered central part of the Maldives Inner Sea represent an exceptional archive for paleoenvironmental and climate changes in the equatorial Indian Ocean. To evaluate the complex interplay between high-latitude and monsoonal climate variability, related dust fluxes, and regional oceanographic responses, we focused on Fe / Al, Ti / Al and Si / Ca ratios as proxies for terrigenous sediment delivery and total organic carbon (TOC) and Br XRF counts as proxies for marine productivity. Benthic foraminiferal fauna distributions, grain size and stable δ18O and δ13C data were used for evaluating changes in the benthic ecosystem and changes in the intermediate water circulation, bottom water current velocity and oxygenation. Our multi-proxy data record reveals an enhanced dust supply during the glacial intervals, causing elevated Fe / Al and Si / Ca ratios, an overall coarsening of the sediment and an increasing amount of agglutinated benthic foraminifera. The enhanced dust fluxes can be attributed to higher dust availability in the Asian desert and loess areas and its transport by intensified winter monsoon winds during glacial conditions. These combined effects of wind-induced mixing of surface waters and dust fertilization during the cold phases resulted in an increased surface water productivity and related organic carbon fluxes. Thus, the development of highly diverse benthic foraminiferal faunas with certain detritus and suspension feeders was fostered. The difference in the δ13C signal between epifaunal and deep infaunal benthic foraminifera reveals intermediate water oxygen concentrations between approximately 40 and 100 µmol kg-1 during this time. The precessional fluctuation pattern of oxygen changes resembles that from the deep Arabian Sea, suggesting an expansion of the oxygen minimum zone (OMZ) from the Arabian Sea into the tropical Indian Ocean with a probable regional signal of strengthened winter-monsoon-induced organic matter fluxes and oxygen consumption further controlled by the varying inflow intensity of the Antarctic Intermediate Water (AAIW). In addition, the bottom water oxygenation pattern of the Maldives Inner Sea reveals a long phase of reduced ventilation during the last glacial period. This process is likely linked to the combined effects of generally enhanced oxygen consumption rates during high-productivity phases, reduced AAIW production and the restriction of upper bathyal environments in the Inner Sea during sea-level lowstands. Thus, our multi-proxy record reflects a close linkage between the Indian monsoon oscillation, intermediate water circulation, productivity and sea-level changes on orbital timescale.
NASA Astrophysics Data System (ADS)
Wu, Peili; Haines, Keith
1996-03-01
This paper demonstrates the importance of Levantine Intermediate Water (LIW) in the deep water formation process in the Mediterranean using the modular ocean general circulation model at 0.25° resolution, 19 vertical levels, over the entire Mediterranean with an open Gibraltar strait. LIW formation is strongly prescribed in the Rhodes Gyre region by Haney [1971] relaxation, while in other regions, surface salinity relaxation is much reduced by applying the `mixed' thermohaline surface boundary conditions. Isopycnal diagnostics are used to trace water mass movements, and volume fluxes are monitored at straits. Low viscosity and diffusion are used to permit baroclinic eddies to play a role in water mass dispersal. The overall water budget is measured by an average flux at Gibraltar of 0.8 Sv, of which 0.7 Sv is exchanged with the eastern basin at Sicily. LIW (density around 28.95) spreads rapidly after formation throughout the entire Levantine due to baroclinic eddies. Toward the west, LIW accumulates in the northern and central Ionian, with some entering the Adriatic through Otranto and some mixing southward in eddies and exiting to the western Mediterranean through Sicily. LIW is converted to deep water in the south Adriatic at an average rate of 0.4 Sv. Water exchange through the Otranto strait appears to be buoyancy driven, with a strong bias to the end of winter (March-April), while at Sicily the exchange has a strong symmetric seasonal cycle, with maximum transport of 1.1 Sv in December indicating the effects of wind driving. LIW pathways in the west are complex and variable. In the Tyrrhenian, intermediate water becomes uniform on isopycnal surfaces due to eddy stirring. West of Sardinia, two LIW boundary currents are formed in the Balearic basin; one flows northward up the west coast of Sardinia and Corsica, and one westward along the northern African coast. The northward current is consistent with observations, while the westward current is intermittent for the first 10 years, often breaking up into eddies which enter the basin interior. Some observations of high-salinity waters near the African coast may support this interpretation. LIW retains a subsurface salinity maximum of 38.4-38.5 practical salinity units (psu) when reaching the northwestern Mediterranean, contrasting with surface waters fresher than 38.0 psu. West Mediterranean deep water is formed below 1500 m depth with climatological characteristics, when it is mixed and cooled during winter convection in Lions Gyre.
NASA Astrophysics Data System (ADS)
Brockman, L. E.; Younger, S. E.; Jackson, C. R.; McDonnell, J.; Janzen, K. F.
2017-12-01
Stable isotope signatures of stem water can illuminate where in the soil profile different types of trees are accessing soil water and thereby contribute to our understanding of water movement through the soil plant atmosphere continuum. The objective of this study was to use 2H and 18O isotopes to characterize water sources of fourteen-year-old intensively managed Loblolly Pine and Sweet Gum stands in replicated (n=3) paired plots. In order to differentiate the isotopic signatures of tree and soil water, both species and five soil depths were sampled monthly for one year. Tree sap and soil water were extracted cryogenically and their isotopic signatures were determined. Although plant water uptake is generally considered a non-fractionating process, our dataset suggests a source of fractionation in 2H signatures in both species and during most of the thirteen sampling events. As a result, only the 18O isotopic data were used to determine the vertical distribution of soil water contributions to stem water. Statistically, we grouped the five soil sampling depths into three isotopic horizons. Shallow, intermediate and deep soil represent sampling depths of 0-10cm, 30-70cm and 100-125cm, respectively. These isotopic horizons were used in a direct inference approach and Bayesian mixing model analysis to determine the origin of stem water. In this study, Loblolly Pine used more water from intermediate and deep soil while Sweet Gum used more water from shallow and intermediate soil. In the winter months, January through March, Loblolly Pine transpired primarily deep soil where as Sweet Gum mainly utilized shallow soil for transpiration. These results indicate that both species have opportunistic water use patterns with seasonal variation.
The Red Sea outflow regulated by the Indian monsoon
NASA Astrophysics Data System (ADS)
Aiki, Hidenori; Takahashi, Keiko; Yamagata, Toshio
2006-08-01
To investigate why the Red Sea water overflows less in summer and more in winter, we have developed a locally high-resolution global OGCM with transposed poles in the Arabian peninsula and India. Based on a series of sensitivity experiments with different sets of idealized atmospheric forcing, the present study shows that the summer cessation of the strait outflow is remotely induced by the monsoonal wind over the Indian Ocean, in particular that over the western Arabian Sea. During the southwest monsoon (May-September), thermocline in the Gulf of Aden shoals as a result of coastal Ekman upwelling induced by the predominantly northeastward wind in the Gulf of Aden and the Arabian Sea. Because this shoaling is maximum during the southwest summer monsoon, the Red Sea water is blocked at the Bab el Mandeb Strait by upwelling of the intermediate water of the Gulf of Aden in late summer. The simulation also shows the three-dimensional evolution of the Red Sea water tongue at the mid-depths in the Gulf of Aden. While the tongue meanders, the discharged Red Sea outflow water (RSOW) (incoming Indian Ocean intermediate water (IOIW)) is always characterized by anticyclonic (cyclonic) vorticity, as suggested from the potential vorticity difference.
NASA Astrophysics Data System (ADS)
Wahr, John; Smeed, David A.; Leuliette, Eric; Swenson, Sean
2014-08-01
Seasonal variations of sea surface height (SSH) and mass within the Red Sea are caused mostly by exchange of heat with the atmosphere and by flow through the strait opening into the Gulf of Aden to the south. That flow involves a net mass transfer into the Red Sea during fall and out during spring, though in summer there is an influx of cool water at intermediate depths. Thus, summer water in the south is warmer near the surface due to higher air temperatures, but cooler at intermediate depths. Summer water in the north experiences warming by air-sea exchange only. The temperature affects water density, which impacts SSH but has no effect on mass. We study this seasonal cycle by combining GRACE mass estimates, altimeter SSH measurements, and steric contributions derived from the World Ocean Atlas temperature climatology. Among our conclusions are: mass contributions are much larger than steric contributions; the mass is largest in winter, consistent with winds pushing water into the Red Sea in fall and out during spring; the steric signal is largest in summer, consistent with surface warming; and the cool, intermediate-depth water flowing into the Red Sea in spring has little impact on the steric signal, because contributions from the lowered temperature are offset by effects of decreased salinity. The results suggest that the combined use of altimeter and GRACE measurements can provide a useful alternative to in situ data for monitoring the steric signal.
NASA Astrophysics Data System (ADS)
Heslop, E. E.; Mourre, B.; Juza, M.; Troupin, C.; Escudier, R.; Torner, M.; Tintore, J.
2016-02-01
Quasi-continuous glider observations over 5 years have uniquely characterised a high frequency variability in the circulation through the Ibiza Channel, an important `choke' point in the Western Mediterranean Sea. This `choke' point governs the basin/sub-basin scale circulation and the north/south exchanges of different water masses. The resulting multi-scale variability impacts the regional shelf and open ocean ecosystems, including the spawning grounds of Atlantic bluefin tuna. Through the unique glider record we show the relevance of the weekly/mesoscale variability, which is of same order as the previously established seasonal and inter-annual variability. To understand the drivers of this variability we combine the glider data with numerical simulations (WMOP) and altimetry. Two key drivers are identified; extreme winter events, which cause the formation of a cold winter mode water (Winter Intermediate Water) in the shelf areas to the north of the Ibiza Channel, and mesoscale activity, which to the north produce channel `blocking' eddies and to the south intermittent and vigorous flows of fresher `Atlantic' waters through the Ibiza Channel. Results from the 2 km resolution WMOP are compared with the high-resolution (2 - 3 km.) glider data, giving insight into model validation across different scales, for both circulation and water masses. There is an emerging consensus that gliders can uniquely access critical time and length scales and in this study gliders complement existing satellite measurements and models, while opening up new capabilities for multidisciplinary, autonomous and high-resolution ocean observation.
Physical and biological characteristics of the winter-summer transition in the Central Red Sea
NASA Astrophysics Data System (ADS)
Zarokanellos, Nikolaos D.; Papadopoulos, Vassilis P.; Sofianos, Sarantis. S.; Jones, Burton H.
2017-08-01
The Central Red Sea (CRS) lies between two distinct hydrographic and atmospheric regimes. In the southern Red Sea, seasonal monsoon reversal regulates the exchange of water between the Red Sea and the Indian Ocean. In the northern Red Sea, intermediate and occasionally deep water are formed during winter to sustain the basin's overturning circulation. Highly variable mesoscale eddies and the northward flowing eastern boundary current (EBC) determine the physical and biogeochemical characteristics of the CRS. Ship-based and glider observations in the CRS between March and June 2013 capture key features of the transition from winter to summer and depict the impact of the eddy activity on the EBC flow. Less saline and relatively warmer water of Indian Ocean origin reaches the CRS via the EBC. Initially, an anticyclonic eddy with diameter of 140 km penetrating to 150m depth with maximum velocities up to 30-35 cm s-1 prevails in the CRS. This anticyclonic eddy appears to block or at least redirect the northward flow of the EBC. Dissipation of the eddy permits the near-coastal, northward flow of the EBC and gives place to a smaller cyclonic eddy with a diameter of about 50 km penetrating to 200 m depth. By the end of May, as the northerly winds become stronger and persistent throughout the basin, characteristic of the summer southwest monsoon wind regime, the EBC, and its associated lower salinity water became less evident, replaced by the saltier surface water that characterizes the onset of the summer stratification in the CRS.
A new perspective on origin of the East Sea Intermediate Water: Observations of Argo floats
NASA Astrophysics Data System (ADS)
Park, JongJin; Lim, Byunghwan
2018-01-01
The East Sea Intermediate Water (ESIW), defined as the salinity minimum in the East Sea (hereafter ES) (Sea of Japan), is examined with respect to its overall characteristics and its low salinity origin using historical Argo float data from 1999 to 2015. Our findings suggest that the ESIW is formed in the western Japan Basin (40-42°N, 130-133°E), especially west of the North Korean front in North Korean waters, where strong negative surface wind stress curl resides in wintertime. The core ESIW near the formation site has temperatures of 3-4 °C and less than 33.98 psu salinity, warmer and fresher than that in the southern part of the ES. In order to trace the origin of the warmer and fresher water at the sea surface in winter, we analyzed the data in three different ways: (1) spatial distribution of surface water properties using monthly climatology from the Argo float data, (2) seasonal variation of heat and salt contents at the formation site, and (3) backtracking of surface drifter trajectories. Based on these analyses, it is likely that the warmer and fresher surface water properties found in the ESIW formation site are attributed to the low-salinity surface water advected from the southern part of the ES in autumn.
NASA Astrophysics Data System (ADS)
Hillaire-Marcel, C.; de Vernal, A.
A multi-proxy approach was developed to document secular to millenial changes of potential density in surface, mesopelagic, and bottom waters of the Labrador Sea, thus allowing to reconstruct situations when winter convection with intermediate or deep water formation occurred in the basin. This approach relies on dinocyst-transfer functions providing estimates of sea-surface temperature and salinity that are used to calibrate past-relationships between oxygen 18 contents in calcite and potential density gradients. The oxygen isotope compositions of epipelagic (Globigerina bul- loides), deeper-dwelling (Neogloboquadrina pachyderma, left coiling), and benthic (Uvigerina peregrina and Cibicides wuellerstorfi) foraminifera, then allow to extrap- olate density gradients between the corresponding water layers. This approach has been tested in surface sediments in reference to modern hydrographic conditions at several sites from the NW North Atlantic, then used to reconstruct past conditions from high resolution studies of cores raised from the southern Greenland Rise (off Cape Farewell). Results indicate that the modern-like regime established during the early Holocene and full developed after 7 ka only. It is marked by weak density gradi- ents between the surface and intermediate water masses, allowing winter convection down to a lower pycnocline between intermediate and deep-water masses, thus the formation of intermediate Labrador Sea Water (LSW). Contrasting with the middle to late Holocene situation, since the last interglacial and throughout the last climatic cycle, a single and dense water mass seems to have occupied the water column below a generally low-density surface water layer, thus preventing deep convection. There- fore, the production of LSW seems to be feature specific to the present interglacial interval that could soon cease to exist, due to global warming, as suggested by recent ocean model experiments and by the fact that it never occurred during the last inter- glacial. We think that the mechanism for the eventual shut-down in LSW formation involves an enhanced freshwater export from the Arctic into the Labrador Sea, as a consequence of both an enhanced hydrological cycle in a warmer mean climate, and a lesser sea-ice extend in the Canadian Arctic Archipelago. Both the last interglacial and the Holocene depict large amplitude millenial oscillations in surface water conditions and in density gradients with the underlying water mass. During the last 11 ka, six 1 of these oscillations are recorded, and those that occurred since ca. 7 ka BP probably resulted in large amplitude changes in LSW-production rate. These oscillations pos- sibly correspond to the Holocene "pervasive millennial cycle" observed by Bond and others in a few North Atlantic records. We hypothesize that they are related to sea ice conditions in the Arctic Ocean and to the relative routing of outflowing freshwaters through either the Canadian Arctic Archipelago or Fram Strait, into the North Atlantic. These oscillations would probably maintain after an eventual collapse of LSW forma- tion, as suggested by the last interglacial reconstructions, but their impact on future thermohaline circulation in the North Atlantic is unclear. 2
Greater role for Atlantic inflows on sea-ice loss in the Eurasian Basin of the Arctic Ocean
NASA Astrophysics Data System (ADS)
Polyakov, Igor V.; Pnyushkov, Andrey V.; Alkire, Matthew B.; Ashik, Igor M.; Baumann, Till M.; Carmack, Eddy C.; Goszczko, Ilona; Guthrie, John; Ivanov, Vladimir V.; Kanzow, Torsten; Krishfield, Richard; Kwok, Ronald; Sundfjord, Arild; Morison, James; Rember, Robert; Yulin, Alexander
2017-04-01
Arctic sea-ice loss is a leading indicator of climate change and can be attributed, in large part, to atmospheric forcing. Here, we show that recent ice reductions, weakening of the halocline, and shoaling of the intermediate-depth Atlantic Water layer in the eastern Eurasian Basin have increased winter ventilation in the ocean interior, making this region structurally similar to that of the western Eurasian Basin. The associated enhanced release of oceanic heat has reduced winter sea-ice formation at a rate now comparable to losses from atmospheric thermodynamic forcing, thus explaining the recent reduction in sea-ice cover in the eastern Eurasian Basin. This encroaching “atlantification” of the Eurasian Basin represents an essential step toward a new Arctic climate state, with a substantially greater role for Atlantic inflows.
NASA Astrophysics Data System (ADS)
Dai, Minhan; Meng, Feifei; Tang, Tiantian; Kao, Shu-Ji; Lin, Jianrong; Chen, Junhui; Huang-Chuan, Jr.; Tian, Jiwei; Gan, Jianping; Yang, Shuang
2009-12-01
Depth profiles of total organic carbon (TOC) were measured in spring (2005) and winter (2006) in the South China Sea (SCS), the largest marginal sea adjacent to the North Western Pacific (NWP). Compared to TOC profiles in the NWP, excess TOC (3.2 ± 1.1 μmol kg-1) was revealed in the intermediate layer of the SCS at σθ ˜ 27.2-27.6 (˜1000-1500 m). Below the depth of 2000 m, TOC concentrations were identical between the SCS and the NWP. Based on a one-dimensional steady state diffusion advection model constrained by potential temperature, we estimated a net TOC production rate of 0.12 ± 0.04 μmol kg-1 yr-1 to maintain this excess. A positive relationship between TOC and apparent oxygen utilization in the SCS deep water lent support to such a model-derived TOC production. This excess TOC in the out-flowing intermediate water may carry 3.1 ± 2.1 Tg C yr-1 of organic carbon out from the SCS and potentially into the deep open ocean. In light of the short residence time of the SCS deep water, the exported TOC was likely from the recently fixed organic carbon within the SCS. The export of such organic carbon, thereby less likely to return to the atmosphere may therefore contribute significantly to the carbon sequestration in the SCS.
Observations of seasonal exchange in the Celtic Sea slope region from underwater gilders
NASA Astrophysics Data System (ADS)
Porter, Marie; Inall, Mark; Smeed, David; Palmer, Matthew; Dumont, Estelle; Aleynik, Dmitry
2015-04-01
Between June 2012 and January 2013, four underwater gliders, profiling to a maximum depth of 1000m, occupied a transect between 47.6°N, 10.3°W and 48.4°N, 9.3°W, perpendicular to the Celtic Sea continental slope. Due to the significant and well-documented internal tide activity in this region and the relatively slow through-water speed of gliders it is first demonstrated that the chosen sampling methodology minimised aliasing of the internal tide. Gliders were flown along a repeat transect and care was taken to ensure that each location was sampled at a different phase of the tide on repeat occupations. Through monthly averaging of the transect data, the effects of the internal tide are minimised and the lower frequency processes made visible. In this presentation we highlight the importance of the lower frequency variability in contributing to cross-slope exchange. Analysis of monthly averaged glider transect data suggests two distinct regimes; 1) Summer, June - October, when the surface water was temperature stratified and, 2) Winter, from October to January, when the seasonal thermocline was mixed down to below the depth of the shelf break (200 m). During the stratified summer months a well-defined shelf break salinity front limits the exchange of water between the ocean and the shelf, preventing the spread of the more saline, sub-surface ocean water (centred at ~150m) onto the shelf. Nevertheless, some cross-slope flow is identified during these months: an intermediate depth salinity minimum (centred at ~600m) is observed to upwell (from 600m to 200-300m) up the slope, sometimes continuing onto the shelf. As the stratification is eroded during the winter months, subsurface upwelling switches to downwelling, and the intermediate depth salinity minimum (~600m) retreats away from the slope region removing it as a potential source of oceanic water on the shelf. Downwelling near to the slope does however allow for an intrusion of the shallower high salinity water onto the shelf reducing the control of the shelf break salinity front, although it has not been ascertained whether this extends further onto the shelf than the shelf break region.
33 CFR 100.109 - Winter Harbor Lobster Boat Race, Winter Harbor, ME.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Winter Harbor Lobster Boat Race, Winter Harbor, ME. 100.109 Section 100.109 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF... Lobster Boat Race, Winter Harbor, ME. (a) Regulated area. The regulated area includes all waters of Winter...
A ternary age-mixing model to explain contaminant occurrence in a deep supply well
Jurgens, Bryant; Bexfield, Laura M.; Eberts, Sandra
2014-01-01
The age distribution of water from a public-supply well in a deep alluvial aquifer was estimated and used to help explain arsenic variability in the water. The age distribution was computed using a ternary mixing model that combines three lumped parameter models of advection-dispersion transport of environmental tracers, which represent relatively recent recharge (post- 1950s) containing volatile organic compounds (VOCs), old intermediate depth groundwater (about 6500 years) that was free of drinking-water contaminants, and very old, deep groundwater (more than 21,000 years) containing arsenic above the USEPA maximum contaminant level of 10 µg/L. The ternary mixing model was calibrated to tritium, chloroflorocarbon-113, and carbon-14 (14C) concentrations that were measured in water samples collected on multiple occasions. Variability in atmospheric 14C over the past 50,000 years was accounted for in the interpretation of 14C as a tracer. Calibrated ternary models indicate the fraction of deep, very old groundwater entering the well varies substantially throughout the year and was highest following long periods of nonoperation or infrequent operation, which occured during the winter season when water demand was low. The fraction of young water entering the well was about 11% during the summer when pumping peaked to meet water demand and about 3% to 6% during the winter months. This paper demonstrates how collection of multiple tracers can be used in combination with simplified models of fluid flow to estimate the age distribution and thus fraction of contaminated groundwater reaching a supply well under different pumping conditions.
A Ternary Age-Mixing Model to Explain Contaminant Occurrence in a Deep Supply Well
Jurgens, Bryant C; Bexfield, Laura M; Eberts, Sandra M
2014-01-01
The age distribution of water from a public-supply well in a deep alluvial aquifer was estimated and used to help explain arsenic variability in the water. The age distribution was computed using a ternary mixing model that combines three lumped parameter models of advection-dispersion transport of environmental tracers, which represent relatively recent recharge (post-1950s) containing volatile organic compounds (VOCs), old intermediate depth groundwater (about 6500 years) that was free of drinking-water contaminants, and very old, deep groundwater (more than 21,000 years) containing arsenic above the USEPA maximum contaminant level of 10 µg/L. The ternary mixing model was calibrated to tritium, chloroflorocarbon-113, and carbon-14 (14C) concentrations that were measured in water samples collected on multiple occasions. Variability in atmospheric 14C over the past 50,000 years was accounted for in the interpretation of 14C as a tracer. Calibrated ternary models indicate the fraction of deep, very old groundwater entering the well varies substantially throughout the year and was highest following long periods of nonoperation or infrequent operation, which occured during the winter season when water demand was low. The fraction of young water entering the well was about 11% during the summer when pumping peaked to meet water demand and about 3% to 6% during the winter months. This paper demonstrates how collection of multiple tracers can be used in combination with simplified models of fluid flow to estimate the age distribution and thus fraction of contaminated groundwater reaching a supply well under different pumping conditions. PMID:24597520
Whitlock, C.; Dean, W.; Rosenbaum, J.; Stevens, L.; Fritz, S.; Bracht, B.; Power, M.
2008-01-01
Geochemical, stable-isotope, pollen, charcoal, and diatom records were analyzed at high-resolution in cores obtained from Crevice Lake, a varved-sediment lake in northern Yellowstone National Park. The objective was to reconstruct the ecohydrologic, vegetation, and fire history of the watershed for the last 2650 years to better understand past climate variations at the forest-steppe transition. The data suggest a period of limited bottom-water anoxia, relatively wet winters, and cool springs and summers from 2650 to 2100 cal yr BP (700-150 BC). Dry warm conditions occurred between 2100 and 850-800 cal yr BP (150 BC and AD 1100-1150), when the lake was anoxic, winter precipitation was low, and summer stratification was protracted. The data are consistent with overall warmer/drier conditions during the Medieval Climate Anomaly, although they suggest a shift towards wetter winters within that period. The period from 850 to 800 cal yr BP (AD 1100-1150) to 250 cal yr BP (AD 1700) was characterized by greater water-column mixing and cooler spring/summer conditions than before. In addition, fire activity shifted towards infrequent large events and pollen production was low. From 250 to 150 cal yr BP (AD 1700-1800), winter precipitation was moderate compared to previous conditions, and the lake was again stratified, suggesting warm summers. Between 150 and 42 cal yr BP (AD 1800-1908), winter precipitation increased and spring and summer conditions became moderate. Metal pollution, probably from regional mining operations, is evident in the 1870s. Large fires occurred between ca. 1800-1880, but in general the forests were more closed than before. The Crevice Lake record suggests that the last 150 years of Yellowstone's environmental history were characterized by intermediate conditions when compared with the previous 2500 years. ?? 2007 Elsevier Ltd and INQUA.
Criegee intermediates and their impacts on the troposphere
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khan, M. A. H.; Percival, C. J.; Caravan, R. L.
We report Criegee intermediates (CIs), carbonyl oxides formed in ozonolysis of alkenes, play key roles in the troposphere. The decomposition of CIs can be a significant source of OH to the tropospheric oxidation cycle especially during nighttime and winter months. A variety of model-measurement studies have estimated surface-level stabilized Criegee intermediate (sCI) concentrations on the order of 1 × 10 4 cm -3 to 1 × 10 5 cm -3, which makes a non-negligible contribution to the oxidising capacity in the terrestrial boundary layer. The reactions of sCI with the water monomer and the water dimer have been found tomore » be the most important bimolecular reactions to the tropospheric sCI loss rate, at least for the smallest carbonyl oxides; the products from these reactions (e.g. hydroxymethyl hydroperoxide, HMHP) are also of importance to the atmospheric oxidation cycle. The sCI can oxidise SO 2 to form SO 3, which can go on to form a significant amount of H 2SO 4 which is a key atmospheric nucleation species and therefore vital to the formation of clouds. Lastly, the sCI can also react with carboxylic acids, carbonyl compounds, alcohols, peroxy radicals and hydroperoxides, and the products of these reactions are likely to be highly oxygenated species, with low vapour pressures, that can lead to nucleation and SOA formation over terrestrial regions.« less
Criegee intermediates and their impacts on the troposphere
Khan, M. A. H.; Percival, C. J.; Caravan, R. L.; ...
2018-02-15
We report Criegee intermediates (CIs), carbonyl oxides formed in ozonolysis of alkenes, play key roles in the troposphere. The decomposition of CIs can be a significant source of OH to the tropospheric oxidation cycle especially during nighttime and winter months. A variety of model-measurement studies have estimated surface-level stabilized Criegee intermediate (sCI) concentrations on the order of 1 × 10 4 cm -3 to 1 × 10 5 cm -3, which makes a non-negligible contribution to the oxidising capacity in the terrestrial boundary layer. The reactions of sCI with the water monomer and the water dimer have been found tomore » be the most important bimolecular reactions to the tropospheric sCI loss rate, at least for the smallest carbonyl oxides; the products from these reactions (e.g. hydroxymethyl hydroperoxide, HMHP) are also of importance to the atmospheric oxidation cycle. The sCI can oxidise SO 2 to form SO 3, which can go on to form a significant amount of H 2SO 4 which is a key atmospheric nucleation species and therefore vital to the formation of clouds. Lastly, the sCI can also react with carboxylic acids, carbonyl compounds, alcohols, peroxy radicals and hydroperoxides, and the products of these reactions are likely to be highly oxygenated species, with low vapour pressures, that can lead to nucleation and SOA formation over terrestrial regions.« less
Classroom Ideas-Winter 1982. Intermediate Edition. Volume 5.
ERIC Educational Resources Information Center
Kern County Superintendent of Schools, Bakersfield, Ca. Div. of Instructional Services.
One of a series of activity guides designed to aid teachers in developing the thinking skills of intermediate grade students, this publication offers a variety of learning activities and resource materials. The activities and resources include: a calendar which lists important days and birthdays in December, January, and February; poems; word…
Classroom Ideas-Winter 1981. Intermediate Edition. Volume 2.
ERIC Educational Resources Information Center
Kern County Superintendent of Schools, Bakersfield, Ca. Div. of Instructional Services.
One of a series of activity guides designed to aid teachers in developing the thinking skills of intermediate grade students, this publication offers a variety of learning activities and resource materials. The activities and resources include: a calendar which lists important days and birthdays in December, January, and February; poems; word…
Warming trend in the western Mediterranean deep water
NASA Astrophysics Data System (ADS)
Bethoux, J. P.; Gentili, B.; Raunet, J.; Tailliez, D.
1990-10-01
THE western Mediterranean Sea comprises three water masses: a surface layer (from 0 to ~150 m depth), an intermediate layer (~150-400 m) issuing from the eastern basin, and a deep water mass at depths below 400 m. The deep water is homogeneous and has maintained a more or less constant temperature and salinity from the start of the century until recently1. Here we report measurements from the Medatlante cruises of December 1988 and August 1989, which show the deep layer to be 0.12 °C warmer and ~0.03 p.s.u. more saline than in 1959. Taking these data together with those from earlier cruises, we find a trend of continuously increasing temperatures over the past three decades. These deep-water records reflect the averaged evolution of climate conditions at the surface during the winter, when the deep water is formed. Consideration of the heat budget and water flux in the Mediterranean2,3 leads to the possibility that the deep-water temperature trend may be the result of greenhouse-gas-induced local warming.
Argo float observations of basin-scale deep convection in the Irminger Sea during winter 2011-2012
NASA Astrophysics Data System (ADS)
Thierry, V.; Piron, A.; Mercier, H.; Caniaux, G.
2016-02-01
An analysis of Argo data during the 2011-2012 winter revealed the presence of an exceptionally large number of profiles over the Irminger Basin with mixed layer depths (MLD) exceeding 700 m, which was deep enough to reach the pool of the intermediate Labrador Sea Water located in the Irminger Sea. Among them, 4 profiles exhibited an MLD of 1000 m, which was the maximum value observed this winter. Owing to the exceptional Argo sampling in the Irminger Sea during that winter the different phases of the mixed layer deepening down to 1000 m and their spatial extents were observed for the first time in the Irminger Sea. Two intense convective periods occurred in late January south of Cape Farewell and in late February-early March east of Greenland. A final deepening period was observed in mid-March during which the deepest mixed layers were observed. This long deepening period occurred in large regional areas and was followed by a rapid restratification phase. A mixed layer heat budget along the trajectories of the 4 floats that sampled the deepest mixed layers showed that heat loss at the air-sea interface was mainly responsible for heat content variations in the mixed layer. Greenland Tip Jets were of primary importance for the development of deep convection in the Irminger Sea in the 2011-2012 winter. They enhanced the winter heat loss and two long (more than 24 hours), intense and close in time late events boosted the mixed layer deepening down to 1000m. Net air-sea fluxes, the number of Greenland Tip Jets, the stratification of the water column, the NAO index and Ekman-induced heat flux are pertinent indicators to assess the favorable conditions for the development of deep convection in the Irminger Sea. When considering each of those indicators, we concluded that the 2011-2012 event was not significantly different compared to the three other documented occurrences of deep convection in the Irminger Sea.This work is a contribution to the NAOS project.
Multiscale habitat selection of wetland birds in the northern Gulf Coast
Pickens, Bradley A.; King, Sammy L.
2014-01-01
The spatial scale of habitat selection has become a prominent concept in ecology, but has received less attention in coastal ecology. In coastal marshes, broad-scale marsh types are defined by vegetation composition over thousands of hectares, water-level management is applied over hundreds of hectares, and fine-scale habitat is depicted by tens of meters. Individually, these scales are known to affect wetland fauna, but studies have not examined all three spatial scales simultaneously. We investigated wetland bird habitat selection at the three scales and compared single- and multiscale models. From 2009 to 2011, we surveyed marsh birds (i.e., Rallidae, bitterns, grebes), shorebirds, and wading birds in fresh and intermediate (oligohaline) coastal marsh in Louisiana and Texas, USA. Within each year, six repeated surveys of wintering, resident, and migratory breeding birds were conducted at > 100 points (n = 304). The results revealed fine-scale factors, primarily water depth, were consistently better predictors than marsh type or management. However, 10 of 11 species had improved models with the three scales combined. Birds with a linear association with water depth were, correspondingly, most abundant with deeper fresh marsh and permanently impounded water. Conversely, intermediate marsh had a greater abundance of shallow water species, such as king rail Rallus elegans, least bittern Ixobrychus exilis, and sora Porzana carolina. These birds had quadratic relationships with water depth or no relationship. Overall, coastal birds were influenced by multiple scales corresponding with hydrological characteristics. The effects suggest the timing of drawdowns and interannual variability in spring water levels can greatly affect wetland bird abundance.
Classroom Ideas-Winter 1983. Focus on Geology: Rocks, Sand and Crystals. Intermediate Edition.
ERIC Educational Resources Information Center
Kern County Superintendent of Schools, Bakersfield, Ca. Div. of Instructional Services.
One of a series of activity guides, this publication offers a variety of learning activities and resource materials for intermediate grade students. The activities and resources include: science activities and facts (especially dealing with soil and rocks); mathematics activities; arts and crafts activities (including making a pinata and tree…
Modeling Postconvective Submesoscale Coherent Vortices in the Northwestern Mediterranean Sea
NASA Astrophysics Data System (ADS)
Damien, P.; Bosse, A.; Testor, P.; Marsaleix, P.; Estournel, C.
2017-12-01
For the first time, the formation of submesoscale coherent vortices (SCVs) during intermediate and deep convection events is documented in a realistic high-resolution (1 km) numerical simulation of the oceanic circulation in the northwestern Mediterranean Sea. Winter intermediate and deep convection leads to the formation of anticyclonic and cyclonic eddies with lifetimes exceeding 1 year. By focusing on three typical eddies, the main characteristics of such vortices are discussed. The anticyclonic eddies are typical of SCVs observed in deep convection areas so far. They are characterized by a small radius (˜6.5 km) and orbital peak velocities of about 7 cm/s located at great depth (˜1500 m) or intermediate depth (˜500 m). The cyclonic vortices show very similar characteristics, such as a high Rossby number (˜0.4), but with surface-intensified structures. The long lifetimes of both anticyclonic and cyclonic eddies reflect very slow diffusive processes between their core and their surroundings and a strong resistance to external perturbations. These long-lived eddies are found to participate in the spreading of a significant portion (from 15 to 35%) of the convected waters in the Gulf of Lions and contribute to the ventilation of the deep basin.
NASA Astrophysics Data System (ADS)
Rivera Villarreyes, C. A.; Baroni, G.; Oswald, S. E.
2012-04-01
Soil water content at the plot or hill-slope scale is an important link between local vadose zone hydrology and catchment hydrology. However, so far only few methods are on the way to close this gap between point measurements and remote sensing. One new measurement methodology for integral quantifications of mean areal soil water content at the intermediate catchment scale is the aboveground sensing of cosmic-ray neutrons, more precisely ground albedo neutron sensing (GANS). Ground albedo natural neutrons, are generated by collisions of secondary cosmic rays with land surface materials (soil, water, biomass, snow, etc). Neutrons measured at the air/ground interface correlate with soil moisture contained in a footprint of ca. 600 m diameter and a depth ranging down to a few decimeters. This correlation is based on the crucial role of hydrogen as neutron moderator compared to others landscape materials. The present study performed ground albedo neutron sensing in different locations in Germany under different vegetative situations (cropped and bare field) and different seasonal conditions (summer, autumn and winter). Ground albedo neutrons were measured at (i) a farmland close to Potsdam (Brandenburg, Germany) cropped with corn in 2010 and sunflowers in 2011, and (ii) a mountainous farmland catchment (Schaefertal, Harz Mountains, Germany) in 2011. In order to test this method, classical soil moisture devices and meteorological data were used for comparison. Moreover, calibration approach, and transferability of calibration parameters to different times and locations are also evaluated. Our observations suggest that GANS can overcome the lack of data for hydrological processes at the intermediate scale. Soil water content from GANS compared quantitatively with mean water content values derived from a network of classical devices (RMSE = 0.02 m3/m3 and r2 = 0.98) in three calibration periods with cropped-field conditions. Then, same calibration parameters corresponded well under different field conditions. Moreover, GANS approach responded well to precipitation events in both experimental sites through summer and autumn, and soil water content estimations were affected by water stored in snow.
Seasonal Overturning Circulation in the Red Sea
NASA Astrophysics Data System (ADS)
Yao, F.; Hoteit, I.; Koehl, A.
2010-12-01
The Red Sea exhibits a distinct seasonal overturning circulation. In winter, a typical two-layer exchange structure, with a fresher inflow from the Gulf of Aden on top of an outflow from the Red Sea, is established. In summer months (June to September) this circulation pattern is changed to a three-layer structure: a surface outflow from the Red Sea on top of a subsurface intrusion of the Gulf of Aden Intermediate Water and a weakened deep outflow. This seasonal variability is studied using a general circulation model, MITgcm, with 6 hourly NCEP atmospheric forcing. The model is able to reproduce the observed seasonal variability very well. The forcing mechanisms of the seasonal variability related to seasonal surface wind stress and buoyancy flux, and water mass transformation processes associated with the seasonal overturning circulation are analyzed and presented.
Peters, N.E.; Murdoch, Peter S.; Dalton, F.N.
1987-01-01
Hydrologic data were collected from three forested headwater lake watersheds in Herkimer and Hamilton Counties from October 1977 through early January 1982 as part of the Integrated Lake-Watersheds Acidification Study (ILWAS). ILWAS was established in 1977 to determine why these lakes differ in pH when all receive equal amounts of acidic atmospheric deposition. Woods Lake is acidic (pH ranges from 4 to 5), Panther Lake is neutral (pH ranges from 5 to 7.5), and Sagamore Lake is intermediate (pH ranges from 5 to 6). The data tabulated herein include discharge at the three lake outlets and in a tributary to each lake; lake-water stage at each lake; chemical quality of lake water, including total concentrations of zinc, iron, manganese, and lead, at each lake outlet and at Lost Brook (a tributary to Sagamore Lake); groundwater stage from 29 wells; major ion concentrations of groundwater from 22 of these wells; temperature of soil from three depths at one site in each watershed; soil-moisture tension at three depths at eight sites - four in the neutral-lake basin, three in the acidic-lake basin , and one in the intermediate-lake basin; and average snowpack depths and water equivalents at approximately 20 snow-course sites in each basin for three sampling periods during the 1979-80 winter. (USGS)
ERIC Educational Resources Information Center
Heins, Ethel L.; And Others
1983-01-01
Annotates recent materials for younger, intermediate, and older readers. Includes picture books, fiction, nonfiction, paperbacks, poetry, and children's books of special interest to adults. Also annotates one film. (FL)
Wintering ecology of adult North American ospreys
Washburn, Brian E.; Martell, Mark S.; Bierregaard, Richard O.; Henny, Charles J.; Dorr, Brian S.; Olexa, Thomas J.
2014-01-01
North American Ospreys (Pandion haliaetus) typically migrate long distances to their wintering grounds in the tropics. Beyond the general distribution of their wintering range (i.e., the Caribbean, South America, and Central America), very little is known about the wintering ecology of these birds. We used satellite telemetry to determine the duration of wintering period, to examine the characteristics of wintering areas used by Ospreys, and to quantify space use and activity patterns of wintering Ospreys. Adult Ospreys migrated to wintering sites and exhibited high wintering site fidelity among years. Overall, Ospreys wintered on river systems (50.6%) more than on lakes (19.0%), and use of coastal areas was (30.4%) intermediate. Ospreys remained on their wintering grounds for an average of 154 d for males and 167 d for females. Locations of wintering Ospreys obtained via GPS-capable satellite telemetry suggest these birds move infrequently and their movements are very localized (i.e., 2 and 1.4 km2, respectively. Overall, our findings suggest wintering adult North American Ospreys are very sedentary, demonstrating a pattern of limited daily movements and high fidelity to a few select locations (presumably roosts). We suggest this wintering strategy might be effective for reducing the risk of mortality and maximizing energy conservation.
Seismic Oceanography in the Tyrrhenian Sea: Thermohaline Staircases, Eddies, and Internal Waves
NASA Astrophysics Data System (ADS)
Buffett, G. G.; Krahmann, G.; Klaeschen, D.; Schroeder, K.; Sallarès, V.; Papenberg, C.; Ranero, C. R.; Zitellini, N.
2017-11-01
We use seismic oceanography to document and analyze oceanic thermohaline fine structure across the Tyrrhenian Sea. Multichannel seismic (MCS) reflection data were acquired during the MEDiterranean OCcidental survey in April-May 2010. We deployed along-track expendable bathythermograph probes simultaneous with MCS acquisition. At nearby locations we gathered conductivity-temperature-depth data. An autonomous glider survey added in situ measurements of oceanic properties. The seismic reflectivity clearly delineates thermohaline fine structure in the upper 2,000 m of the water column, indicating the interfaces between Atlantic Water/Winter Intermediate Water, Levantine Intermediate Water, and Tyrrhenian Deep Water. We observe the Northern Tyrrhenian Anticyclone, a near-surface mesoscale eddy, plus laterally and vertically extensive thermohaline staircases. Using MCS, we are able to fully image the anticyclone to a depth of 800 m and to confirm the horizontal continuity of the thermohaline staircases of more than 200 km. The staircases show the clearest step-like gradients in the center of the basin while they become more diffuse toward the periphery and bottom, where impedance gradients become too small to be detected by MCS. We quantify the internal wave field and find it to be weak in the region of the eddy and in the center of the staircases, while it is stronger near the coastlines. Our results indicate this is because of the influence of the boundary currents, which disrupt the formation of staircases by preventing diffusive convection. In the interior of the basin, the staircases are clearer and the internal wave field weaker, suggesting that other mixing processes such as double diffusion prevail.
Hydrographic observations by instrumented marine mammals in the Sea of Okhotsk
NASA Astrophysics Data System (ADS)
Nakanowatari, Takuya; Ohshima, Kay I.; Mensah, Vigan; Mitani, Yoko; Hattori, Kaoru; Kobayashi, Mari; Roquet, Fabien; Sakurai, Yasunori; Mitsudera, Humio; Wakatsuchi, Masaaki
2017-09-01
The Sea of Okhotsk is a challenging environment for obtaining in situ data and satellite observation in winter due to sea ice cover. In this study, we evaluated the validity of hydrographic observations by marine mammals (e.g., seals and sea lions) equipped with oceanographic conductivity-temperature-depth (CTD) sensors. During 4-yr operations from 2011 to 2014, we obtained total of 997 temperature-salinity profiles in and around the Soya Strait, Iony Island, and Urup Strait. The hydrographic data were mainly obtained from May to August and the maximum profile depth in shelf regions almost reaches to the seafloor, while valuable hydrographic data under sea ice cover were also obtained. In strong thermoclines, the seal-derived data sometimes showed positive biases in salinity with spike-like signal. For these salinity biases, we applied a new thermal mass inertia correction scheme, effectively reducing spurious salinity biases in the seasonal thermocline. In the Soya Strait and the adjacent region, the detailed structure of the Soya Warm Current including the cold-water belt was well identified. Dense water up to 27.0σθ, which can be a potential source of Okhotsk Sea Intermediate Water, has flowed from the Soya Strait into the Sea of Okhotsk in mid-winter (February). In summer, around the Iony Island and Urup Strait, remarkable cold and saline waters are localized in the surface layers. These regions are also characterized by weak stratification, suggesting the occurrence of tidally induced vertical mixing. Thus, CTD-tag observations have a great potential in monitoring data-sparse regions in the Sea of Okhotsk.
Malisova, O; Bountziouka, V; Panagiotakos, D Β; Zampelas, A; Kapsokefalou, M
2013-07-01
Water balance is achieved when water intake from solid and fluid foods and drinking water meets water losses, mainly in sweat, urine and faeces. Seasonality, particularly in Mediterranean countries that have a hot summer, may affect water loss and consequently water balance. Water balance has not been estimated before on a population level and the effect of seasonality has not been evaluated. The present study aimed to compare water balance, intake and loss in summer and winter in a sample of the general population in Greece. The Water Balance Questionnaire (WBQ) was used to evaluate water balance, estimating water intake and loss in summer (n = 480) and in winter (n = 412) on a stratified sample of the general population in Athens, Greece. In winter, mean (SD) water balance was -63 (1478) mL/day(-1) , mean (SD)water intake was 2892 (987) mL/day(-1) and mean (quartile range) water loss was 2637 (1810-3922) mL/day(-1) . In summer, mean (SD) water balance was -58 (2150) mL/day(-1) , mean (SD) water intake was 3875 (1373) mL/day(-1) and mean (quartile range) water loss was 3635 (2365-5258) mL/day(-1) . Water balance did not differ between summer and winter (P = 0.96); however, the data distribution was different; in summer, approximately 8% more participants were falling in the low and high water balance categories. Differences in water intake from different sources were identified (P < 0.05). Water balance in summer and winter was not different. However, water intake and loss were approximately 40% higher in summer than in winter. More people were falling in the low and high water balance categories in summer when comparing the distribution on water balance in winter. © 2013 The Authors Journal of Human Nutrition and Dietetics © 2013 The British Dietetic Association Ltd.
Investigating the Interannual Variability of the Circulation and Water Mass Formation in the Red Sea
NASA Astrophysics Data System (ADS)
Sofianos, S. S.; Papadopoulos, V. P.; Denaxa, D.; Abualnaja, Y.
2014-12-01
The interannual variability of the circulation and water mass formation in the Red Sea is investigated with the use of a numerical model and the combination of satellite and in-situ observations. The response of Red Sea to the large-scale variability of atmospheric forcing is studied through a 30-years simulation experiment, using MICOM model. The modeling results demonstrate significant trends and variability that are mainly located in the central and northern parts of the basin. On the other hand, the exchange pattern between the Red Sea and the Indian Ocean at the strait of Bab el Mandeb presents very weak interannual variability. The results verify the regularity of the water mass formation processes in the northern Red Sea but also show significant variability of the circulation and thermohaline conditions in the areas of formation. Enhanced water mass formation conditions are observed during specific years of the simulation (approximately five years apart). Analysis of recent warm and cold events in the northernmost part of the basin, based on a combination of atmospheric reanalysis results and oceanic satellite and in-situ observations, shows the importance of the cyclonic gyre that is prevailing in this part of the basin. This gyre can effectively influence the sea surface temperature (SST) and intensify or mitigate the winter effect of the atmospheric forcing. Upwelling induced by persistent periods of the gyre functioning drops the SST over the northernmost part of the Red Sea and can produce colder than normal winter SST even without extreme atmospheric forcing. These mechanisms are crucial for the formation of intermediate and deep water masses in the Red Sea and the strength of the subsequent thermohaline cells.
Wang, Yunqi; Zhang, Yinghua; Zhang, Rui; Li, Jinpeng; Zhang, Meng; Zhou, Shunli; Wang, Zhimin
2018-03-15
The groundwater table has fallen sharply over the last 30years on the North China Plain, resulting in a shortage of water for winter wheat irrigation. Reducing irrigation may be an important strategy to maintain agricultural sustainability in the region; however, few studies have evaluated the transition from conventional irrigation management practices to reduced irrigation management practices in the winter wheat-summer maize rotation system. Here, we compare the yield, water consumption, and water use efficiency of winter wheat-summer maize rotation under conventional irrigation and reduced irrigation on the North China Plain from 2012 to 2015. Reducing irrigation decreased the yield but increased the water use efficiency and significantly advanced the harvest date of winter wheat. As a result, the summer maize sowing date advanced significantly, and the flowering date subsequently advanced 2-8days, thus extending the summer maize grain-filling stage. Therefore, the yield and water use efficiency of summer maize were higher under reduced irrigation than conventional irrigation, which compensated for the winter wheat yield loss under reduced irrigation. In addition, under reduced irrigation from 2012 to 2015, the yield and water use efficiency advantage of the winter wheat-summer maize rotation ranged from 0.0 to 9.7% and from 4.1 to 14.7%, respectively, and water consumption and irrigated water decreased by 20-61mm and 150mm, respectively, compared to conventional irrigation. Overall, the reduced irrigation management practice involving no irrigation after sowing winter wheat, and sowing summer maize on June 7 produced the most favorable grain yield with superb water use efficiency in the winter wheat-summer maize rotation. This study indicates that reducing irrigation could be an efficient means to cope with water resource shortages while maintaining crop production sustainability on the North China Plain. Copyright © 2017. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Gowda, Divyavani; Kawamura, Kimitaka
2018-05-01
Concentrations of homologous hydroxy-dicarboxylic acids (diacids) (hC3-hC6) and keto-diacid (oxaloacetic acid) were measured in the atmospheric aerosols collected at Chichijima Island (27.04° N, 142.13° E) in the western North Pacific from December 2010 to November 2011. The monthly averaged concentrations of hydroxy-diacids and oxaloacetic acid were significantly higher in spring followed by winter and autumn. Molecular distributions of hydroxy-diacids demonstrated that malic acid was the most abundant species in all four seasons, followed by tartronic acid in winter and spring and 3- and 2-hydroxyglutaric acids in summer and autumn. Hydroxy-diacids and keto-diacid maximized in spring and winter when air masses originated from the Asian continent with westerly winds. The concentrations of total hydroxy-diacids and oxaloacetic acid ranged from 0.1 to 27.3 ng m-3 and <0.005 to 2 ng m-3, respectively. The enhanced concentrations of diacids and their intermediates in winter and spring are associated with a long-range atmospheric transport of pollutants from East Asia to remote Chichijima Island followed by photochemical processing of organic aerosols. Seasonal molecular distribution of hydroxy-diacids and oxaloacetic acid was found to be dependent on the source strengths and plausible photochemical processing to form smaller diacids. Moderate to strong correlations among hydroxy-diacids, oxaloacetic acid and low molecular weight (LMW) diacids suggest that hydroxy-diacids and oxaloacetic acid are the intermediates in the photochemical oxidation of LMW diacid. Hence, photochemical formation of the most abundant LMW diacids, i.e., oxalic acid, could be produced from hydroxy- and keto-diacid as intermediates.
Stottlemyer, R.; Toczydlowski, D.
1999-01-01
We have studied weekly precipitation, snowpack, snowmelt, soil water and streamwater chemistry throughout winter for over a decade in a small (176 ha) northern Michigan watershed with high snowfall and vegetated by 60 to 80 year-old northern hardwoods. In this paper, we examine physical, chemical, and biological processes responsible for observed seasonal change in streamwater chemistry based upon intensive study during winter 1996-1997. The objective was to define the contributions made to winter and spring streamwater chemical concentration and flux by processes as snowmelt, over-winter forest floor and surface soil mineralization, immobilization, and exchange, and subsurface flowpath. The forest floor and soil were unfrozen beneath the snowpack which permitted most snowmelt to enter. Over-winter soil mineralization and other biological processes maintain shallow subsurface ion and dissolved organic carbon (DOC) reservoirs. Small, but steady, snowmelt throughout winter removed readily mobilized soil NO3- which resulted in high over-winter streamwater concentrations but little flux. Winter soil water levels and flowpaths were generally deep which increased soil water and streamwater base cation (C(B)), HCO3-, and Si concentrations. Spring snowmelt increased soil water levels and removal of ions and DOC from the biologically active forest floor and shallow soils. The snowpack solute content was a minor component in determining streamwater ion concentration or flux during and following peak snowmelt. Exchangeable ions, weakly adsorbed anions, and DOC in the forest floor and surface soils dominated the chemical concentration and flux in soil water and streamwater. Following peak snowmelt, soil microbial immobilization and rapidly increased plant uptake of limiting nutrients removed nearly all available nitrogen from soil water and streamwater. During the growing season high evapotranspiration increased subsurface flowpath depth which in turn removed weathering products, especially C(B), HCO3-, and Si, from deeper soils. Soil water was a major component in the hydrologic and chemical budgets.We have studied weekly precipitation, snowpack, snowmelt, soil water and streamwater chemistry throughout winter for over a decade in a small (176 ha) northern Michigan watershed with high snowfall and vegetated by 60 to 80 year-old northern hardwoods. In this paper, we examine physical, chemical, and biological processes responsible for observed seasonal change in streamwater chemistry based upon intensive study during winter 1996-1997. The objective was to define the contributions made to winter and spring streamwater chemical concentration and flux by processes as snowmelt, over-winter forest floor and surface soil mineralization, immobilization, and exchange, and subsurface flowpath. The forest floor and soils were unfrozen beneath the snowpack which permitted most snowmelt to enter. Over-winter soil mineralization and other biological processes maintain shallow subsurface ion and dissolved organic carbon (DOC) reservoirs. Small, but steady, snowmelt throughout winter removed readily mobilized soil NO3- which resulted in high over-winter streamwater concentrations but little flux. Winter soil water levels and flowpaths were generally deep which increased soil water and streamwater base cation (CB), HCO3-, and Si concentrations. Spring snowmelt increased soil water levels and removal of ions and DOC from the biologically active forest floor and shallow soils. The snowpack solute content was a minor component in determining streamwater ion concentration or flux during and following peak snowmelt. Exchangeable ions, weakly adsorbed anions, and DOC in the forest floor and surface soils dominated the chemical concentration and flux in soil water and streamwater. Following peak snowmelt, soil microbial immobilization and rapidly increased plant uptake of limiting nutrients removed nearly all available nitrogen from soil water and streamwater. D
Drought and Winter Drying (Pest Alert)
USDA Forest Service
Drought and winter drying have periodically caused major damage to trees. Drought reduces the amount of water available in the soil. In the case of winter drying, the water may be in the soil, but freezing of the soil makes the water unavailable to the tree. In both cases, more water is lost through transpiration than is available to the plant. Symptoms of drought and...
Technical Note: Seasonality in alpine water resources management - a regional assessment
NASA Astrophysics Data System (ADS)
Vanham, D.; Fleischhacker, E.; Rauch, W.
2008-01-01
Alpine regions are particularly affected by seasonal variations in water demand and water availability. Especially the winter period is critical from an operational point of view, as being characterised by high water demands due to tourism and low water availability due to the temporal storage of precipitation as snow and ice. The clear definition of summer and winter periods is thus an essential prerequisite for water resource management in alpine regions. This paper presents a GIS-based multi criteria method to determine the winter season. A snow cover duration dataset serves as basis for this analysis. Different water demand stakeholders, the alpine hydrology and the present day water supply infrastructure are taken into account. Technical snow-making and (winter) tourism were identified as the two major seasonal water demand stakeholders in the study area, which is the Kitzbueheler region in the Austrian Alps. Based upon different geographical datasets winter was defined as the period from December to March, and summer as the period from April to November. By determining potential regional water balance deficits or surpluses in the present day situation and in future, important management decisions such as water storage and allocation can be made and transposed to the local level.
NASA Astrophysics Data System (ADS)
Balbín, R.; López-Jurado, J. L.; Flexas, M. M.; Reglero, P.; Vélez-Velchí, P.; González-Pola, C.; Rodríguez, J. M.; García, A.; Alemany, F.
2014-10-01
Six summer surveys conducted from 2001 to 2005 and in 2012 by the Spanish Institute of Oceanography (IEO) reveal that the hydrographic early summer scenarios around the Balearic Islands are related to the winter atmospheric forcing in the northwestern Mediterranean Sea. The Balearic Islands (western Mediterranean Sea) lie at the transition between the southern, fresher, newly arrived Atlantic Waters (AWs) and the northern, saltier, resident AW. The meridional position of the salinity driven oceanic density front separating the new from the resident AW is determined by the presence/absence of Western Intermediate Water (WIW) in the Mallorca and Ibiza channels. When WIW is present in the channels, the oceanic density front is found either at the south of the islands, or along the Emile Baudot escarpment. In contrast, when WIW is absent, new AW progresses northwards crossing the Ibiza channel and/or the Mallorca channel. In this later scenario, the oceanic density front is closer to the Balearic Islands. A good correspondence exists between standardized winter air temperature anomaly in the Gulf of Lions and the presence of WIW in the channels. We discuss the use of a regional climatic index based on these parameters to forecast in a first-order approach the position of the oceanic front, as it is expected to have high impact on the regional marine ecosystem.
Winter Thaws Can Raise Ground Water Levels in Driftless Area
Richard S. Sartz
1967-01-01
Springflow and ground water levels both rose with winter thaws, even when the ground was frozen. A high soil water content suggests that water moved to the water table through a continuous column of soil water rather than as a wetting front
Assessing winter cover crop nutrient uptake efficiency using a water quality simulation model
NASA Astrophysics Data System (ADS)
Yeo, I.-Y.; Lee, S.; Sadeghi, A. M.; Beeson, P. C.; Hively, W. D.; McCarty, G. W.; Lang, M. W.
2013-11-01
Winter cover crops are an effective conservation management practice with potential to improve water quality. Throughout the Chesapeake Bay Watershed (CBW), which is located in the Mid-Atlantic US, winter cover crop use has been emphasized and federal and state cost-share programs are available to farmers to subsidize the cost of winter cover crop establishment. The objective of this study was to assess the long-term effect of planting winter cover crops at the watershed scale and to identify critical source areas of high nitrate export. A physically-based watershed simulation model, Soil and Water Assessment Tool (SWAT), was calibrated and validated using water quality monitoring data and satellite-based estimates of winter cover crop species performance to simulate hydrological processes and nutrient cycling over the period of 1991-2000. Multiple scenarios were developed to obtain baseline information on nitrate loading without winter cover crops planted and to investigate how nitrate loading could change with different winter cover crop planting scenarios, including different species, planting times, and implementation areas. The results indicate that winter cover crops had a negligible impact on water budget, but significantly reduced nitrate leaching to groundwater and delivery to the waterways. Without winter cover crops, annual nitrate loading was approximately 14 kg ha-1, but it decreased to 4.6-10.1 kg ha-1 with winter cover crops resulting in a reduction rate of 27-67% at the watershed scale. Rye was most effective, with a potential to reduce nitrate leaching by up to 93% with early planting at the field scale. Early planting of winter cover crops (~30 days of additional growing days) was crucial, as it lowered nitrate export by an additional ~2 kg ha-1 when compared to late planting scenarios. The effectiveness of cover cropping increased with increasing extent of winter cover crop implementation. Agricultural fields with well-drained soils and those that were more frequently used to grow corn had a higher potential for nitrate leaching and export to the waterways. This study supports the effective implement of winter cover crop programs, in part by helping to target critical pollution source areas for winter cover crop implementation.
Physical and Chemical Implications of Mid-Winter Pumping of Trunda Lakes - North Slope, Alaska
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hinzman, Larry D.; Lilly, Michael R.; Kane, Douglas L.
2005-09-30
Tundra lakes on the North Slope, Alaska, are an important resource for energy development and petroleum field operations. A majority of exploration activities, pipeline maintenance, and restoration activities take place on winter ice roads that depend on water availability at key times of the winter operating season. These same lakes provide important fisheries and ecosystem functions. In particular, overwintering habitat for fish is one important management concern. This study focused on the evaluation of winter water use in the current field operating areas to provide a better understanding of the current water use practices. It found that under the currentmore » water use practices, there were no measurable negative effects of winter pumping on the lakes studied and current water use management practices were appropriately conservative. The study did find many areas where improvements in the understanding of tundra lake hydrology and water usage would benefit industry, management agencies, and the protection of fisheries and ecosystems.« less
Li, Bao; Wang, Zhi-Qi; Wang, Qian-Suo; Cuan, Jing-Bo
2013-06-01
By using cylindrical sediment sampler and Peeper' s interstitial water sampler, the intact sediment and interstitial water were collected from different zones of Nansi Lake in Shandong Province in summer and winter. The distribution characteristics of the sediment phosphorus forms and of the phosphate (PO4(3-)-P) in interstitial water were analyzed, and their correlations were discussed. In the sediments of Nansi Lake, phosphorus was richer, and had a significant spatial differentiation, with an overall decreasing trend from north to south, which was related to the seriously polluted Northern Nansi Lake near Jining City. Among the phosphorous forms, inorganic phosphorus (IP) had the highest concentration, accounting for 52.3%-87.2% and 60.6%-88.3% of the total phosphorus (TP) in summer and winter, respectively. The TP concentrations in 5 cm surface sediment of four sub-lakes were all higher in summer than in winter, which could be related to the human activities such as exuberant aquaculture, more chemical fertilizers application around lake, and frequent tourism activities, etc. in summer. In vertical direction, the PO4(3-)-P concentration in interstitial water decreased after an initial increase in summer and winter, and was obviously higher in summer than in winter, suggesting that the phosphorous in sediment had a higher potential to release to the overlying water in summer. The organic phosphorus (OP) and IP in sediment had a significant correlation in summer but less correlation in winter, indicating that the transformation between sediment IP and OP was more active in summer than in winter. The iron and aluminum bound phosphorus (Fe/Al-P) and IP in sediment were significantly positively correlated with the PO4(3-)-P in interstitial water. In summer and winter, the average PO4(3-)-P concentration in interstitial water collected by Peeper' s interstitial water sampler was about 20%-50% higher than that collected by the conventional centrifugal method, suggesting that using Peeper' s interstitial water sampler could be more precise.
Size distribution of absorbing and fluorescing DOM in Beaufort Sea, Canada Basin
NASA Astrophysics Data System (ADS)
Gao, Zhiyuan; Guéguen, Céline
2017-03-01
The molecular weight (MW) of dissolved organic matter (DOM) is considered as an important factor affecting the bioavailability of organic matter and associated chemical species. Colored DOM (CDOM) MW distribution was determined, for the first time, in the Beaufort Sea (Canada Basin) by asymmetrical flow field-flow fractionation (AF4) coupled with online diode array ultra violet-visible photometer and offline fluorescence detectors. The apparent MW ranged from 1.07 to 1.45 kDa, congruent with previous studies using high performance size exclusion chromatography and tangential flow filtration. Interestingly, a minimum in MW was associated with the Pacific Summer Waters (PSW), while higher MW was associated with the Pacific Winter Waters (PWW). The Arctic Intermediate Waters (AIW) did not show any significant change in MW and fluorescence intensities distribution between stations, suggesting homogeneous DOM composition in deep waters. Three fluorescence components including two humic-like components and one protein-like component were PARAFAC-validated. With the increase of MW, protein-like fluorescence component became more dominant while the majority remained as marine/microbially derived humic-like components. Overall, it is concluded that water mass origin influenced DOM MW distribution in the Arctic Ocean.
Stith, B.M.; Slone, D.H.; de Wit, M.; Edwards, H.H.; Langtimm, C.A.; Swain, E.D.; Soderqvist, L.E.; Reid, J.P.
2012-01-01
Haloclines induced by freshwater inflow over tidal water have been identified as an important mechanism for maintaining warm water in passive thermal refugia (PTR) used by Florida manatees Trichechus manatus latirostris during winter in extreme southwestern Florida. Record-setting cold during winter 2009–2010 resulted in an unprecedented number of manatee deaths, adding to concerns that PTR may provide inadequate thermal protection during severe cold periods. Hydrological data from 2009–2010 indicate that 2 canal systems in the Ten Thousand Islands (TTI) region acted as PTR and maintained warm bottom-water temperatures, even during severe and prolonged cold periods. Aerial survey counts of live and dead manatees in TTI during the winter of 2009–2010 suggest that these PTR were effective at preventing mass mortality from hypothermia, in contrast to the nearby Everglades region, which lacks similar artificial PTR and showed high manatee carcass counts. Hydrological data from winter 2008–2009 confirmed earlier findings that without haloclines these artificial PTR may become ineffective as warm-water sites. Tidal pumping of groundwater appears to provide additional heat to bottom water during low tide cycles, but the associated thermal inversion is not observed unless salinity stratification is present. The finding that halocline-driven PTR can maintain warm water even under extreme winter conditions suggests that they may have significant potential as warm-water sites. However, availability and conflicting uses of freshwater and other management issues may make halocline-driven PTR unreliable or difficult to manage during winter.
NASA Astrophysics Data System (ADS)
Hays, J. D.
2009-12-01
Shallow (0-200m) and deep (200 to1000m) living radiolarian flux is used to measure past production from within discrete intervals of the ocean’s water column. Deep-living faunas can also be used as proxies for export production, for they remineralize it and respond geographically and temporally to varying export. Few members of the mesopelagic community leave a fossil record, but of those that do, radiolarians are the most abundant and diverse group. In northwest Pacific late Pleistocene (glacial) sediments, deep-living radiolarian flux dominates over shallow-living flux, but the reverse is true in Holocene sediments, with the dramatic dominance change occurring across the Pleistocene-Holocene boundary. Changing primary productivity can’t cause these flux changes, for shallow-living faunas have access to the same carbon flux as do deep-living faunas, but rather they signal a major reorganization of the radiolarian fauna within the water column and suggest greater glacial than Holocene carbon export. In the Holocene world-ocean, the only region where deep-living radiolarian flux dominates over shallow-living flux is in the Sea of Okhotsk, suggesting environmental similarities between this sea and the northwest Pacific. In winter, cold Siberian air chills the upper hundred meters of the Sea of Okhotsk, promoting the spread of vast sea ice fields. High productivity in a thin (10-15m) summer mixed layer depletes nutrients Between 15 and about 150m exists a layer of cold (-1 to 0 degrees C.) intermediate water, within which radiolarian concentrations are low, but these concentrations increase between 200 and 500m in warmer intermediate water (Nimmergut and Abelmann, 2002). This radiolarian stratification results in greater deep- than shallow-living radiolarian flux to the sea floor. A similar water structure in the glacial northwest Pacific is the probable cause of similar flux patterns between the glacial northwest Pacific and Holocene Sea of Okhotsk. If so then cold glacial northwest Pacific intermediate water promoted the southward spread of sea ice. This inference is supported by the near coincidence of the southern limit of deep-living species dominated glacial sediments and extensive ice rafting. It also explains nutrient depleted glacial northwest Pacific surface waters inferred from isotopic data.
Importance of the Gulf of Aqaba for the formation of bottom water in the Red Sea
NASA Astrophysics Data System (ADS)
Plähn, Olaf; Baschek, Burkard; Badewien, Thomas H.; Walter, Maren; Rhein, Monika
2002-08-01
Conductivity-temperature-depth tracer and direct current measurements collected in the northern Red Sea in February and March 1999 are used to study the formation of deep and bottom water in that region. Historical data showed that open ocean convection in the Red Sea can contribute to the renewal of intermediate or deep water but cannot ventilate the bottom water. The observations in 1999 showed no evidence for open ocean convection in the Red Sea during the winter 1998/1999. The overflow water from the Gulf of Aqaba was found to be the densest water mass in the northern Red Sea. An anomaly of the chlorofluorocarbon component CFC-12 observed in the Gulf of Aqaba and at the bottom of the Red Sea suggests a strong contribution of this water mass to the renewal of bottom water in the Red Sea. The CFC data obtained during this cruise are the first available for this region. Because of the new signal, it is possible for the first time to subdivide the deep water column into deep and bottom water in the northern Red Sea. The available data set also shows that the outflow water from the Gulf of Suez is not dense enough to reach down to the bottom of the Red Sea but was found about 250 m above the bottom.
NASA Astrophysics Data System (ADS)
Aubry, Aurelie; de Vernal, Anne; Hillaire-Marcel, Claude
2014-05-01
We have documented the paleoceanography of marine isotope stage (MIS) 31 (ca. 1.07 Ma) at IODP Site 1305 off southwest Greenland in the Labrador Sea, based on dinocyst and foraminifer populations in addition to isotopic measurements in planktonic foraminiferal shells. The planktonic foraminifer assemblages are dominated by the mesopelagic species Neogloboquadrina pachyderma sinistral (Nps). Current interpretations of Nps dominance would thus point to a polar type environment. However, dinocyst assemblages are dominated by Operculodinium centrocarpum, Nematosphaeropsis labyrinthus and Bitectatodinium tepikiense, which rather indicate temperate-subpolar environnement conditions in the photic zone. Assuming that Nps ecological requirements were unchanged, reconciling the two observations lead to hypothesize a strong stratification of the surface water layer over a subsurface water mass, with Nps ocupying the pycnocline in between. We tentatively applied the modern analogue technique (MAT) to reconstruct surface water conditions from the dinocyst assemblages. Good analogues are found in the modern dinocyst database (n=1492), notably along the southeast Canadian margins and northwest European margins. They indicate a low salinity in the surface waters (32-34.5), a large seasonal amplitude of temperatures with cool winters (3-6° C) and mild summer (10-15° C). Stable isotope measurements in Nps point to δ18O ranging 1.5-2.2o throughout most of the interval, thus significantly lower than those measured during the Holocene (>2.2o at this very site. Benthic isotopic values (~3.2o are in accordance with the global stack of Lisiecki and Raymo (Paleoceanography, 2005). This suggests the presence of relatively warm water intermediate mass in between the bottom and surface water masses. The isotopic, micropaleontological and dinocyst results together show that conditions were unfavorable for convection and intermediate or deep water formation in the Labrador Sea during this interval.
Rasmussen, Kristin; Palacios, Daniel M; Calambokidis, John; Saborío, Marco T; Dalla Rosa, Luciano; Secchi, Eduardo R; Steiger, Gretchen H; Allen, Judith M; Stone, Gregory S
2007-06-22
We report on a wintering area off the Pacific coast of Central America for humpback whales (Megaptera novaeangliae) migrating from feeding areas off Antarctica. We document seven individuals, including a mother/calf pair, that made this migration (approx. 8300km), the longest movement undertaken by any mammal. Whales were observed as far north as 11 degrees N off Costa Rica, in an area also used by a boreal population during the opposite winter season, resulting in unique spatial overlap between Northern and Southern Hemisphere populations. The occurrence of such a northerly wintering area is coincident with the development of an equatorial tongue of cold water in the eastern South Pacific, a pattern that is repeated in the eastern South Atlantic. A survey of location and water temperature at the wintering areas worldwide indicates that they are found in warm waters (21.1-28.3 degrees C), irrespective of latitude. We contend that while availability of suitable reproductive habitat in the wintering areas is important at the fine scale, water temperature influences whale distribution at the basin scale. Calf development in warm water may lead to larger adult size and increased reproductive success, a strategy that supports the energy conservation hypothesis as a reason for migration.
Assessing winter cover crop nutrient uptake efficiency using a water quality simulation model
Yeo, In-Young; Lee, Sangchui; Sadeghi, Ali M.; Beeson, Peter C.; Hively, W. Dean; McCarty, Greg W.; Lang, Megan W.
2013-01-01
Winter cover crops are an effective conservation management practice with potential to improve water quality. Throughout the Chesapeake Bay Watershed (CBW), which is located in the Mid-Atlantic US, winter cover crop use has been emphasized and federal and state cost-share programs are available to farmers to subsidize the cost of winter cover crop establishment. The objective of this study was to assess the long-term effect of planting winter cover crops at the watershed scale and to identify critical source areas of high nitrate export. A physically-based watershed simulation model, Soil and Water Assessment Tool (SWAT), was calibrated and validated using water quality monitoring data and satellite-based estimates of winter cover crop species performance to simulate hydrological processes and nutrient cycling over the period of 1991–2000. Multiple scenarios were developed to obtain baseline information on nitrate loading without winter cover crops planted and to investigate how nitrate loading could change with different winter cover crop planting scenarios, including different species, planting times, and implementation areas. The results indicate that winter cover crops had a negligible impact on water budget, but significantly reduced nitrate leaching to groundwater and delivery to the waterways. Without winter cover crops, annual nitrate loading was approximately 14 kg ha−1, but it decreased to 4.6–10.1 kg ha−1 with winter cover crops resulting in a reduction rate of 27–67% at the watershed scale. Rye was most effective, with a potential to reduce nitrate leaching by up to 93% with early planting at the field scale. Early planting of winter cover crops (~30 days of additional growing days) was crucial, as it lowered nitrate export by an additional ~2 kg ha−1 when compared to late planting scenarios. The effectiveness of cover cropping increased with increasing extent of winter cover crop implementation. Agricultural fields with well-drained soils and those that were more frequently used to grow corn had a higher potential for nitrate leaching and export to the waterways. This study supports the effective implement of winter cover crop programs, in part by helping to target critical pollution source areas for winter cover crop implementation.
Behavior of beaver in lakes with varying water levels in Northern Minnesota
NASA Astrophysics Data System (ADS)
Smith, Douglas W.; Peterson, Rolf O.
1991-05-01
We studied the effects of winter water drawdowns (2.3 m) on beavers in Voyageurs National Park, Minnesota, USA. Our study was designed to sample areas within the park that differed in water drawdown regime. Lodges were counted and beavers were livetrapped and radio-implanted to study behavior, movements, and mortality. Active beaver lodge density, determined by aerial survey in 1984 and 1986, was greatest along the shoreline of the drawdown reservoir. In winter beavers living on the drawdown reservoir spent less time inside their lodges than did beavers from stable water environments, foraged more above ice, and they were unable to fully use stored food. Only one case of starvation in the drawdown reservoir was documented, but beavers in reservoirs that were drawn down survived winter in poorer condition than did beavers living in areas in which water levels remained high. In spite of an increasing population and lack of widespread mortality, winter water drawdowns did alter beaver behavior. To reduce these impacts, total annual water fluctuation should not exceed 1.5 m, and winter drawdown should not exceed 0.7 m. Possible management alternatives and costs are discussed.
Fingerprinting Northeast Atlantic water masses using neodymium isotopes
NASA Astrophysics Data System (ADS)
Dubois-Dauphin, Quentin; Colin, Christophe; Bonneau, Lucile; Montagna, Paolo; Wu, Qiong; Van Rooij, David; Reverdin, Gilles; Douville, Eric; Thil, François; Waldner, Astrid; Frank, Norbert
2017-08-01
Dissolved neodymium (Nd) isotopic composition (expressed as εNd) has been analysed for 82 seawater samples collected from 13 stations stretching from the Alboran Sea to the Iceland Basin. The distribution of the εNd values of water masses was thus investigated for the first time along the western European margin in order to explore whether the water masses flowing in the eastern subpolar and subtropical Atlantic reveal distinct isotopic patterns. The Modified Atlantic Water (MAW) in the Alboran Sea displays εNd values (between -9.2 ± 0.2 and -8.9 ± 0.2) that are significantly more radiogenic than those reported in previous studies (-10.8 ± 0.2 to -9.7 ± 0.2), suggesting temporal variations in the Nd isotopic composition of the water that enters the Mediterranean Sea from the Strait of Gibraltar. The εNd value of the underlying modified Winter Intermediate Water (WIW) has been established for the first time (-9.8 ± 0.3) and is compatible with a Nd signature acquired from the sinking of MAW in the northwestern Mediterranean Sea. Within the Gulf of Cádiz, southern Mediterranean Sea Water (MSW) (-10.6 ± 0.2) differs slightly from the northern MSW (-9.9 ± 0.4) owing to a significant contribution of modified East Antarctic Intermediate Water (EAAIW) (-10.9 ± 0.2). In the northeast Atlantic, the North Atlantic Current surface water located in the inter-gyre region (north of 46°N) displays εNd values of between -14.0 ± 0.3 and -15.1 ± 0.3, reflecting the subpolar gyre signature. Along the western European margin, εNd values of surface water decrease toward the north (from -10.4 ± 1.6 to -13.7 ± 1.0) in agreement with the gradual mixing between subtropical and subpolar water. At intermediate depth, εNd values decrease from -9.9 ± 0.4 within the Gulf of Cádiz to -12.1 ± 0.2 within the Porcupine Seabight, indicating a strong dilution of the MSW with subpolar water. Within the Rockall Trough and the Iceland Basin, the more negative εNd values at mid-depth (<-13.5 ± 0.3) indicate that the MSW has no influence, even during periods of low NAO index. Water masses deeper than 1200 m in the northeast Atlantic are clearly influenced by the less radiogenic Labrador Sea Water (LSW) (εNd between -13.4 ± 0.3 and -14.0 ± 0.3) that mixes locally in the Iceland basin with the Iceland-Scotland Overflow Water (ISOW) (between -10.3 ± 0.2 and -11.3 ± 0.3).
Waterfowl density on agricultural fields managed to retain water in winter
Twedt, D.J.; Nelms, C.O.
1999-01-01
Managed water on private and public land provides habitat for wintering waterfowl in the Mississippi Valley, where flood control projects have reduced the area of natural flooding. We compared waterfowl densities on rice, soybean, and moist-soil fields under cooperative agreements to retain water from 1 November through 28 February in Arkansas and Mississippi and assessed temporal changes in waterfowl density during winter in 1991-1992 and 1992-1993. Fields flooded earlier in Arkansas, but retained water later in Mississippi. Over winter, waterfowl densities decreased in Arkansas and increased in Mississippi. Densities of waterfowl, including mallard (Anas platyrhynchos), the most abundant species observed, were greatest on moist-soil fields. However, soybean fields had the greatest densities of northern shoveler (Spatula clypeata).
Range Cattle Winter Water Consumption in Northern Great Plains
USDA-ARS?s Scientific Manuscript database
Water consumption and DMI has been found to be positively correlated and may interact to alter range cow productivity. Environmental conditions can have a significant influence on water consumption during the winter. The objective of this study was to determine influences of water and air temperatur...
Observations of the Winter Thermal Structure of Lake Superior
NASA Astrophysics Data System (ADS)
Titze, Daniel James
Moored thermistor strings that span the water column have been deployed at up to seven locations throughout Lake Superior from 2005 through present, producing a unique year-round record of the thermal structure of a large lake. This extensive temperature record reveals significant interannual and spatial variability in Lake Superior's winter heat content, thermocline depth, and phenology. Of particular mention is a stark contrast in thermal structure between the cold, icy winter of 2009 and the much warmer winter of 2012, during which especially strong and weak negative stratification was observed, respectively. Significant interannual and spatial variability was also observed in Lake Superior ice cover, as shown through data extracted from Ice Mapping System satellite imagery (NOAA/NESDIS 2004). When water column heat content was estimated from temperature data and analyzed in concert with lake ice-cover data, it was found that ice cover can inhibit heat flux between the lake and the atmosphere, and that spatial variability in ice cover can translate into spatial variability in end-of-winter heat content. Such variability in end-of-winter heat content is found to be preserved through the spring warming season, and is strongly correlated with variability in the timing of the onset of summer stratification, with regions that have warmer end-of-winter water columns stratifying earlier than regions with colder end-of-winter water-columns.
Distribution of Different Biogeographical Tintinnids in Yellow Sea and Bohai Sea
NASA Astrophysics Data System (ADS)
Chen, Xue; Li, Haibo; Zhao, Yuan; Zhao, Li; Dong, Yi; Zhang, Wuchang; Xiao, Tian
2018-04-01
There were different biogeographical tintinnids in the oceans. Knowledge of their distribution pattern and mixing was important to the understanding of ecosystem functions. Yellow Sea (YS) and Bohai Sea (BS) were semi-enclosed seas influenced by warm water intrusion and YS cold bottom water. The occurrence of tintinnids in YS and BS during two cruises (summer and winter) were investigated to find out: i) whether warm-water tintinnids appeared in YS and BS; ii) whether boreal tintinnids appeared in high summer; iii) the core area of neritic tintinnids and iv) how these different biogeographical tintinnids mixed. Our results showed that tintinnid community was dominated by neritic tintinnid. We confirmed the occurrence of warm-water tintinnids in summer and winter. In summer, they intruded into BS and mainly distributed in the upper 20 m where Yellow Sea Surface Warm Water (YSSWW) developed. In winter, they were limited in the surface water of central deep region (bottom depth >50 m) of YS where were affected by Yellow Sea Warm Water (YSWW). Boreal tintinnids occurred in YS in high summer (August) and in winter, while they were not observed in BS. In summer, the highest abundance of boreal tintinnids occurred in Yellow Sea Bottom Cold Water, indicating the presence of an oversummering stock. In winter, they were concentrated in the north of YSWW. Vertically, neritic tintinnids abundance was high in the bottom layers. Horizontally, high neritic tintinnids abundance in bottom layers occurred along the 50 m isobath coinciding with the position of front systems. Front systems were the core distribution area of neritic tintinnids. High abundance areas of warm-water and boreal tintinnids were clearly separated vertically in summer, and horizontally in winter. High abundance of neritic tintinnids rarely overlapped with that of warm-water or boreal tintinnids.
Carbonate system biogeochemistry in a subterranean estuary - Waquoit Bay, USA
NASA Astrophysics Data System (ADS)
Liu, Qian; Charette, Matthew A.; Breier, Crystaline F.; Henderson, Paul B.; McCorkle, Daniel C.; Martin, William; Dai, Minhan
2017-04-01
Quantifying carbon fluxes associated with submarine groundwater discharge (SGD) remains challenging due to the complex biogeochemistry of the carbonate system in the subterranean estuary (STE). Here we conducted time series measurements of total alkalinity (TAlk) and dissolved inorganic carbon (DIC) in a well-studied coastal aquifer (Waquoit Bay, Massachusetts, USA). Groundwater samples were collected monthly from May 2009 to June 2010 across the freshwater-saltwater mixing zone of the Waquoit Bay (WB) STE. The concentrations of both TAlk and DIC in zero-salinity groundwater were variable, but were lower than those in the bay water (S ∼ 28). DIC underwent slightly non-conservative mixing between low and intermediate salinities while there was an apparent additional DIC source at high salinity (>20) in all seasons. TAlk concentrations exhibited even stronger variations, with evidence of both production and consumption in high salinity zones, and consistent TAlk consumption at intermediate salinity in summer and fall (June-December, 2009). The increases in DIC and TAlk at high salinity were attributed to aerobic respiration and denitrification in WB sediments during bay water recharge of the STE. We infer that the loss of TAlk at intermediate salinity reflects H+ production as reduced compounds (e.g. Fe2+) are oxidized within the STE. In terms of impacts on surface water inorganic carbon budgets, the SGD-derived DIC flux was mainly controlled by seasonal changes in SGD while a combination of TAlk concentration variability and SGD drove the TAlk flux. SGD-derived DIC, aqueous CO2, and H+ fluxes to the bay were ∼40-50% higher in summer vs. in winter, a result of enhanced marine groundwater flux and significant TAlk removal (proton addition) during periods of high seawater intrusion. Furthermore, the SGD-derived DIC flux was consistently greater than TAlk flux regardless of season, indicating that SGD serves to reduce the CO2 buffering capacity of surface water. Our results highlight the importance of seasonality and subsurface biogeochemical processes on the subterranean estuary carbonate system and the resulting impact on SGD-derived TAlk, DIC, aqueous CO2, and H+ fluxes to the coastal ocean.
Warmed Winter Water Temperatures Alter Reproduction in Two Fish Species
NASA Astrophysics Data System (ADS)
Firkus, Tyler; Rahel, Frank J.; Bergman, Harold L.; Cherrington, Brian D.
2018-02-01
We examined the spawning success of Fathead Minnows ( Pimephales promelas) and Johnny Darters ( Etheostoma nigrum) exposed to elevated winter water temperatures typical of streams characterized by anthropogenic thermal inputs. When Fathead Minnows were exposed to temperature treatments of 12, 16, or 20 °C during the winter, spawning occurred at 16 and 20 °C but not 12 °C. Eggs were deposited over 9 weeks before winter spawning ceased. Fathead Minnows from the three winter temperature treatments were then exposed to a simulated spring transition. Spawning occurred at all three temperature treatments during the spring, but fish from the 16° and 20 °C treatment had delayed egg production indicating a latent effect of warm winter temperatures on spring spawning. mRNA analysis of the egg yolk protein vitellogenin showed elevated expression in female Fathead Minnows at 16 and 20 °C during winter spawning that decreased after winter spawning ceased, whereas Fathead Minnows at 12 °C maintained comparatively low expression during winter. Johnny Darters were exposed to 4 °C to represent winter temperatures in the absence of thermal inputs, and 12, 16, and 20 °C to represent varying degrees of winter thermal pollution. Johnny Darters spawned during winter at 12, 16, and 20 °C but not at 4 °C. Johnny Darters at 4 °C subsequently spawned following a simulated spring period while those at 12, 16, and 20 °C did not. Our results indicate elevated winter water temperatures common in effluent-dominated streams can promote out-of-season spawning and that vitellogenin expression is a useful indicator of spawning readiness for fish exposed to elevated winter temperatures.
Warmed Winter Water Temperatures Alter Reproduction in Two Fish Species.
Firkus, Tyler; Rahel, Frank J; Bergman, Harold L; Cherrington, Brian D
2018-02-01
We examined the spawning success of Fathead Minnows (Pimephales promelas) and Johnny Darters (Etheostoma nigrum) exposed to elevated winter water temperatures typical of streams characterized by anthropogenic thermal inputs. When Fathead Minnows were exposed to temperature treatments of 12, 16, or 20 °C during the winter, spawning occurred at 16 and 20 °C but not 12 °C. Eggs were deposited over 9 weeks before winter spawning ceased. Fathead Minnows from the three winter temperature treatments were then exposed to a simulated spring transition. Spawning occurred at all three temperature treatments during the spring, but fish from the 16° and 20 °C treatment had delayed egg production indicating a latent effect of warm winter temperatures on spring spawning. mRNA analysis of the egg yolk protein vitellogenin showed elevated expression in female Fathead Minnows at 16 and 20 °C during winter spawning that decreased after winter spawning ceased, whereas Fathead Minnows at 12 °C maintained comparatively low expression during winter. Johnny Darters were exposed to 4 °C to represent winter temperatures in the absence of thermal inputs, and 12, 16, and 20 °C to represent varying degrees of winter thermal pollution. Johnny Darters spawned during winter at 12, 16, and 20 °C but not at 4 °C. Johnny Darters at 4 °C subsequently spawned following a simulated spring period while those at 12, 16, and 20 °C did not. Our results indicate elevated winter water temperatures common in effluent-dominated streams can promote out-of-season spawning and that vitellogenin expression is a useful indicator of spawning readiness for fish exposed to elevated winter temperatures.
NASA Astrophysics Data System (ADS)
Jia, Rusheng; Bai, Yulin; Yang, Jie
2018-02-01
In the beaker experiments that the disposal of low turbidity water, we observed the influence of some factors, such as the dosage of poly-aluminum chloride coagulant, the pH value of raw water, in disposing the high natural organic matters of low turbidity water in winter and summer. we discussed the removal of residual aluminum and UV254 in summer. The experimental results show that when the turbidity is less than 10 NTU, the optimum dosage are 14.4 mg.L-1 and 8.2 mg.L-1 respectively in winter and summer. No matter in winter or summer, the effect of pH value on coagulation treatment is very significant, the best pH value is about 8.1. In summer, with the increase of dosage of poly-aluminum chloride, residual aluminum increased slowly after decrease, turbidity and UV254 after precipitation is similar removal trend. Finally, according to the current market price of poly-aluminum chloride economic analysis, daily differences in pharmaceutical costs about 1600 yuan in summer and winter in the second water plant in Lu’an.
Germino, Matthew J.; Reinhardt, Keith
2013-01-01
1. Ecohydrological niches are important for understanding plant community responses to climate shifts, particularly in dry lands. According to the two-layer hypothesis, selective use of deep-soil water increases growth or persistence of woody species during warm and dry summer periods and thereby contributes to their coexistence with shallow-rooted herbs in dry ecosystems. The resource-pool hypothesis further suggests that shallow-soil water benefits growth of all plants while deep-soil water primarily enhances physiological maintenance and survival of woody species. Few studies have directly tested these by manipulating deep-soil water availability and observing the long-term outcomes. 2. We predicted that factors promoting infiltration and storage of water in deep soils, specifically greater winter precipitation and soil depth, would enhance Artemisia tridentata (big sagebrush) in cold, winter-wet/summer-dry desert. Sagebrush responses to 20 years of winter irrigation were compared to summer- or no irrigation, on plots having relatively deep or shallow soils (2 m vs. 1 m depths). 3. Winter irrigation increased sagebrush cover, and crown and canopy volumes, but not density (individuals/plot) compared to summer or no irrigation, on deep-soil plots. On shallow-soil plots, winter irrigation surprisingly decreased shrub cover and size, and summer irrigation had no effect. Furthermore, multiple regression suggested that the variations in growth were related (i) firstly to water in shallow soils (0-0.2 m) and secondly to deeper soils (> 1 m deep) and (ii) more by springtime than by midsummer soil water. Water-use efficiency increased considerably on shallow soils without irrigation and was lowest with winter irrigation. 4. Synthesis. Sagebrush was more responsive to the seasonal timing of precipitation than to total annual precipitation. Factors that enhanced deep-water storage (deeper soils plus more winter precipitation) led to increases in Artemisia tridentata that were consistent with the two-layer hypothesis, and the contribution of shallow water to growth on these plots was consistent with the resource-pool hypothesis. However, shallow-soil water also had negative effects on sagebrush, suggesting an ecohydrological trade-off not considered in these or related theories. The interaction between precipitation timing and soil depth indicates that increased winter precipitation could lead to a mosaic of increases and decreases in A. tridentata across landscapes having variable soil depth.
46 CFR Appendix A to Part 45 - Load Line Certificate Form
Code of Federal Regulations, 2014 CFR
2014-10-01
... Midsummer MS Summer S Intermediate I Winter W load line above S Upper edge of line through center of diamond... so endorsed. notes (1) In accordance with the Great Lakes Load Line Regulations the diamond and lines...
46 CFR Appendix A to Part 45 - Load Line Certificate Form
Code of Federal Regulations, 2012 CFR
2012-10-01
... Midsummer MS Summer S Intermediate I Winter W load line above S Upper edge of line through center of diamond... so endorsed. notes (1) In accordance with the Great Lakes Load Line Regulations the diamond and lines...
46 CFR Appendix A to Part 45 - Load Line Certificate Form
Code of Federal Regulations, 2013 CFR
2013-10-01
... Midsummer MS Summer S Intermediate I Winter W load line above S Upper edge of line through center of diamond... so endorsed. notes (1) In accordance with the Great Lakes Load Line Regulations the diamond and lines...
Winter Streams: The Web of Life Goes On.
ERIC Educational Resources Information Center
Pokora, Daniel L.
1981-01-01
Describes scope and significance of a high school water monitoring project and discusses problems and solutions related to water testing in general and winter water testing in particular. Discussions of stream velocity, stream flow, biotic index, and coliform bacteria tests are included. (DC)
Distribution of oxygen isotopes in the water masses of Drake Passage and the South Atlantic
NASA Astrophysics Data System (ADS)
Meredith, Michael P.; Grose, Katie E.; McDonagh, Elaine L.; Heywood, Karen J.; Frew, Russell D.; Dennis, Paul F.
1999-09-01
Measurements of the ratio of stable isotopes of oxygen (18O and 16O) from samples collected on World Ocean Circulation Experiment sections SR1b (eastern Drake Passage) and A11 (Punta Arenas to Cape Town) are used, together with hydrographic data, to deduce information about the formation and variability of South Atlantic and Southern Ocean water masses. The Drake Passage surface waters south of the Polar Front (PF) are isotopically light (δ18O around -0.4‰) owing to the influence of meteoric waters. The salinity and δ18O of the A11 surface waters yield an apparent freshwater end-member which is much isotopically lighter than the local precipitation, thus advection of these waters from farther south dominates over local effects in determining the surface water properties. The Drake Passage section shows unusual proximity of the two main fronts of the Antarctic Circumpolar Current (the PF and Subantarctic Front (SAF)), and we observe cold, fresh, and isotopically light water derived from the temperature-minimum Winter Water at the SAF. This water is of the correct density to freshen the intermediate water north of the SAF and thus play a role in the formation of the comparatively fresh Antarctic Intermediate Water (AAIW) of the South Atlantic. This confirms the role of Antarctic water in forming the South Atlantic variety of AAIW. Across the A11 section the oxygen isotope and salinity data at the AAIW core show very similar traces, with waters in the Malvinas Current loop showing lowest values of both. At the eastern boundary of the South Atlantic, the input of Red Sea Water from east of South Africa is observed via the presence of anomalously isotopically heavy AAIW. We deduce potentially significant temporal variability in the isotopic composition of Weddell Sea Deep Water (WSDW) by comparing the Drake Passage data to earlier data covering the outflow of the Weddell Sea. The A11 data show WSDW consistent with such variability, indicating that its effects could persist in the waters as they flow north into the western South Atlantic. We speculate that such variability could be due to small changes in the amount of glacial ice melt in WSDW.
NASA Astrophysics Data System (ADS)
Kovačević, Vedrana; Ursella, Laura; Gačić, Miroslav; Notarstefano, Giulio; Menna, Milena; Bensi, Manuel; Civitarese, Giuseppe; Poulain, Pierre-Marie
2015-04-01
The Adriatic Sea is the northernmost basin of the Eastern Mediterranean Sea (EMed). At its southern end, the basin communicates with the adjacent Ionian Sea through the 80 km wide and 850 m deep Strait of Otranto. Due to the river discharge in the north and due to the strong winter cooling, the Adriatic is both a dilution basin and the dense water formation region. The basin-wide circulation is cyclonic. The circulation is however, energetic also at smaller spatial and temporal scales, and several circulation cells and mesoscale features are regularly observed equally along the littoral and in the open sea. The North Adriatic Dense Water (NAdDW) formed during winter is the densest water of the whole Mediterranean Sea (up to 1060 kg/m3). It flows as a density driven bottom current from the northern shelf toward south, filling the deep layers of the middle and southern Adriatic pits. The deep open-sea area of the South Adriatic Pit (SAP, 1200 m) feels the influence of a water mass exchange through the Strait of Otranto. Specifically, it receives salty and warm surface and Levantine Intermediate Waters from the Ionian Sea. Through the open-sea winter convection that homogenizes and ventilates 400-800 m thick upper water column, this salty water contributes to the formation of the Adriatic Deep Water (AdDW, 1029.17-1029.20 kg/m3), which is not as dense as the NAdDW. Both dense waters eventually mix and spill across the sill ventilating the deep and bottom layers of the Ionian Sea, and driving the deep thermohaline cell of the EMed. Thermohaline properties of the Adriatic Sea vary at wide spatial and temporal scales, and this in turn affects the properties of its dense waters. The long-term scales are of a particular interest, as they are often associated with the biogeochemical and biotic variability such as intrusion of alien species into the Adriatic Sea and interconnection with the adjacent Ionian basin. Due to the extremely variable meteo- and climatic conditions, the signal of the Adriatic dense waters can be fairly irregular and impulsive. Sporadic in-situ surveys by research vessels are not always sufficient to capture this irregularity and its consequences on the circulation. The Lagrangian platforms are disseminated within the whole Mediterranean through the international Argo program. They are a useful tool to assess some of the spatial and temporal variability in the two basins. Combining the information from the floats and in-situ CTD profiles from oceanographic campaigns, we picture the inter-annual variability of the thermohaline properties in general during 2010-2014. In addition, the peculiarities of the very dense water overflow that during 2012 spilled out form the Strait of Otranto into the Northern Ionian is evidenced. Also, by the remotely sensed sea surface topography, we depict the most prominent circulation features of the upper layer.
Winter water relations at the upper elevational limits of hemlock on Mt. Ascutney, Vermont
Chandra B. Vostral; Richard L. Boyce
2000-01-01
Winter water relations have been monitored in hemlock (Tsuga canadensis (L.) Carr.) at their upper elevational limits for three winters, 1997, 1998, and 1999, on Mt. Ascutney, Vermont. Hemlock and white pine trees (Pinus strobus L.) reach their elevational limit on Mt. Ascutney at 640 m (2100?), while the summit has an elevation of...
NASA Astrophysics Data System (ADS)
Wang, Bin; Hirose, Naoki; Yuan, Dongliang; Moon, Jae-Hong; Pan, Xishan
2017-07-01
Offshore extension of the fresh Subei coast water is identified in winter based on in site salinity observation data in this and previous studies. A high-resolution regional ocean circulation model is used to investigate the cross-isobath movement of low salinity-water over the Yellow and East China Seas, and it has reproduced the salinity distribution observed in the winter of 2014-2015 successfully. The model suggests that the low-salinity water is basically degenerated back to the eastern coast of China in winter because of strong northeasterly wind. However, a part of the low-salinity water extends offshore in the southeast direction across the 20-50 m isobaths over the Yangtze Bank, which cannot be explained by either the northerly winter monsoon or the Changjiang discharge. Numerical experiments suggest that the cross-isobath transport of the soluble substances is highly attributed to the tidal residual current, flowing southeastward across 20-50 m isobaths over the whole Yangtze Bank. The results of controlled experiments also indicate that the bottom shear of the tidal current, rather than the tidal mixing, plays a significant role in the cross-isobath current during winter.
NASA Astrophysics Data System (ADS)
Steinmetz, Zacharias; Kurtz, Markus; Peikert, Benjamin; Zipori, Isaac; Dag, Arnon; Schaumann, Gabriele E.
2014-05-01
During olive oil production in Mediterranean countries, large amounts of olive mill wastewater (OMW) are generated within a short period of time. OMW has a high nutrient content and could serve as fertilizer when applied on land. However, its fatty and phenolic constituents have adverse effects on hydrological and biological soil properties. It is still unknown how seasonal fluctuations in temperature and precipitation influence the fate and effect of OMW components on soil in a long-term perspective. An appropriate application season could mitigate negative consequences of OMW while preserving its beneficial effects. In order to investigate this, 14 L OMW m-2 were applied to different plots of an olive orchard in Gilat, Israel, in winter, spring, and summer, respectively. Hydrological soil properties (water drop penetration time, hydraulic conductivity, dynamic contact angle), physicochemical parameters (pH, EC, soluble ions, phenolic compounds, organic matter), and biological degradation (bait-lamina test) were measured to assess the soil state after OMW application. After one rainy season following OMW application, the soil quality of summer treatments significantly decreased compared to the control. This was particularly apparent in a ten-fold higher soil water repellency, a three-times lower biodegradation performance, and a four-fold higher content of phenolic compounds. 1.5 years after the last OMW application, the soil properties of winter treatments were comparable to the control, which suggests a certain recovery potential of the soil. Spring treatments resulted in an intermediate response compared to summer and winter treatments, but without any precipitation following OMW application. Strongest OMW effects were found in the top soil layers. Further research is needed to quantify the effect of spring treatments as well as to gain further insight into leaching effects, the composition of organic OMW constituents, and the kinetics of their degradation in relation to climatic conditions.
NASA Astrophysics Data System (ADS)
Kiro, Y.; Goldstein, S. L.; Kushnir, Y.; Lazar, B.; Stein, M.
2017-12-01
Marine Isotope Stage (MIS) 5e was a warm interglacial with where with significantly varying insolation and hence varied significantly throughout this time suggesting highly variable climate. The ICDP Dead Sea Deep Drilling Project recovered a 460m record of the past 220ka, reflecting the variable climate along MIS 5e. This time interval is reflected by alternating halite and detritus sequences, including 20m of halite-free detritus during the peak insolation at 125 ka. The Dead Sea salt budget indicates that the Levant climate was extremely arid when halite formed, reaching 20% of the present runoff. The halite-free detritus layer reflects increased precipitation to levels similar to present day, assuming similar spatial and temporal rainfall patterns. However, the 234U/238U activity ratio in the lake, reflected by authigenic minerals (aragonite, gypsum and halite), shifts from values of 1.5 (reflecting the Jordan River, the present main water source) down to 1.3 at 125-122ka during the MIS5e insolation peak and 1.0 at 118-116ka. The low 234U/238U reflects increased flash floods and eastern water sources (234U/238U 1.05-1.2) from the drier part of the watershed in the desert belt. The intermediate 234U/238U of 1.3 suggests that the Jordan River, fed from Mediterranean-sourced storm tracks, continued to flow along with an increase in southern and eastern water sources. NCAR CCSM3 climate model runs for 125ka indicate increases in both Summer and Winter precipitation. The drastic decrease to 234U/238U 1.0 occurs during the driest period, indicating a near shutdown of Jordan River flow, and water input only through flash floods and southern and eastern sources. The 120ka climate model runs shows a decrease in Winter and increase in Fall precipitation as a result of an increased precipitation in the tropics. The extreme aridity, associated with increased flooding is similar to patterns expected due to future warming. The increase in aridity is the result of expansion of the desert-belt and increases in southern precipitation and indicates an important link between the tropical and mid-latitude climate.
NASA Astrophysics Data System (ADS)
Linders, Johanna; Pickart, Robert. S.; Björk, Göran; Moore, G. W. K.
2017-12-01
Hydrographic and velocity data from three high-resolution shipboard surveys of Herald Canyon in the northwest Chukchi Sea, in 2004, 2008, and 2009, are used to investigate the water masses in the canyon and their possible source regions. Both summer and winter Pacific waters were observed in varying amounts in the different years, although in general the summer waters resided on the eastern side of the canyon while the winter waters were located on the western flank. The predominant summer water was Bering summer water, although some Alaskan coastal water resided in the canyon in the two later years likely due to wind forcing. Both newly ventilated and remnant winter waters were found in the canyon, but the amount lessened in each successive survey. Using mooring data from Bering Strait it is shown that a large amount of Bering summer water in the western channel of the strait follows a relatively direct route into Herald Canyon during the summer months, with an estimated advective speed of 10-20 cm/s. However, while the winter water observed in 2004 was consistent with a Bering Strait source (with a slower advective speed of 5-8 cm/s), the dense water in the canyon during 2008 and 2009 was more in line with a northern source. This is consistent with sections to the west of the canyon and with previously reported measurements implying winter water formation on the East Siberian shelf. Large-scale wind patterns and polynya activity on the shelf are also investigated. It was found that the former appears to impact more strongly the presence of dense water in Herald Canyon.
Wang, Shiyu; Liu, Fei; Wu, Wenyong; Hu, Yaqi; Liao, Renkuan; Chen, Gaoting; Wang, Jiulong; Li, Jialin
2018-04-12
Reclaimed water reuse has become an important means of alleviating agricultural water shortage worldwide. However, the presence of endocrine disrupters has roused up considerable attention. Barrel test in farmland was conducted to investigate the migration of nonylphenol (NP) and bisphenol A (BPA) in soil-winter wheat system simulating reclaimed water irrigation. Additionally, the health risks on humans were assessed based on US EPA risk assessment model. The migration of NP and BPA decreased from the soil to the winter wheat; the biological concentration factors (BCFs) of NP and BPA in roots, stems, leaves, and grains all decreased with their added concentrations in soils. The BCFs of NP and BPA in roots were greatest (0.60-5.80 and 0.063-1.45, respectively). The average BCFs of NP and BPA in winter wheat showed negative exponential relations to their concentrations in soil. The amounts of NP and BPA in soil-winter wheat system accounted for 8.99-28.24% and 2.35-4.95%, respectively, of the initial amounts added into the soils. The hazard quotient (HQ) for children and adults ranged between 10 -6 and 1, so carcinogenic risks could be induced by ingesting winter wheat grains under long-term reclaimed water irrigation. Copyright © 2018 Elsevier Inc. All rights reserved.
Seasonal cycling of sulfur and iron in porewaters of a Delaware salt marsh
NASA Technical Reports Server (NTRS)
Luther, George W., III; Church, Thomas M.
1987-01-01
An extensive pore water data set has been gathered in the Great Marsh, Delaware over various seasons, salinities, and tides. The data all point to a complimentary redox cycle for sulfur and iron which operates seasonally and tidally. Surface oxidizing conditions prevail in summer, with more reducing conditions at depth during the winter. During the spring tides which flood the marsh, pyrite oxidation occurs releasing excess dissolved iron (II) and sulfate to the porewaters, and precipitating authigenic solid iron phases. The redox conditions in the porewaters of the upper zone during the summer is poised between mildly oxidizing and mildly reducing conditions as shown by pE calculations. This redox environment and intermediate iron-sulfur redox species may be important for the stimulation of plant growth (photosynthesis) and sustenance of a viable microbial community (heterotrophy and chemoautropy).
Use of habitats by female mallards wintering in Southwestern Louisiana
Link, Paul T.; Afton, A.D.; Cox, R.R.; Davis, B.E.
2011-01-01
Habitat use by wintering Mallards (Anas platyrhychos) on the Gulf Coast Chenier Plain (GCCP) has received little study and quantitative data is needed for management of GCCP waterfowl. Radio-telemetry techniques were used to record habitats used by 135 female Mallards during winters 2004-2005 and 2005-2006 in south-western Louisiana. Habitat use was quantitatively estimated for areas open and closed to hunting, by general habitat types (i.e., marsh, rice, idle, pasture, or other), and for specific marsh types (i.e., freshwater, intermediate, brackish, or salt). Variation in these estimates was subsequently examined in relation to individual female, female age (adult or immature), winter (2004-2005 or 2005-2006), and hunt periods within winter (second hunting season [SHUNT] or post hunting season [POST]). Diurnal use of areas closed to hunting was greater during hunted time periods in winter 2005-2006 than in winter 2004-2005. Nocturnal use of areas closed to hunting was 3.1 times greater during SHUNT than during POST, and immatures used areas closed to hunting more than adults. Diurnal use of marsh was 3.3 times greater than that of any other habitat during both winters. Nocturnal use of marsh, rice, idle, and pasture were similar during both winters. Females used freshwater marsh habitats extensively (64.699.8% proportional use), whereas brackish and salt marsh combined was used less frequently (035.8% proportional use). These results suggest that freshwater marsh is important to Mallards and a high priority for restoration and management efforts.
Water availability change in central Belgium for the late 21st century
NASA Astrophysics Data System (ADS)
Tabari, Hossein; Taye, Meron Teferi; Willems, Patrick
2015-08-01
We investigate the potential impact of climate change on water availability in central Belgium. Two water balance components being precipitation and potential evapotranspiration are initially projected for the late 21st century (2071-2100) based on 30 Coupled Models Intercomparison Project phase 5 (CMIP5) models relative to a baseline period of 1961-1990, assuming forcing by four representative concentration pathway emission scenarios (RCP2.6, RCP4.5, RCP6.0, RCP8.5). The future available water is then estimated as the difference between precipitation and potential evapotranspiration projections. The number of wet days and mean monthly precipitation for summer season is projected to decrease in most of the scenarios, while the projections show an increase in those variables for the winter months. Potential evapotranspiration is expected to increase during both winter and summer seasons. The results show a decrease in water availability for summer and an increase for winter, suggesting drier summers and wetter winters for the late 21st century in central Belgium.
Dong, Hao; Chen, Yu-Hai; Zhou, Xun-Bo
2013-07-01
Taking high-yield winter wheat cultivar 'Jimai 22' as test material, a field experiment was conducted in 2008-2010 to study the effects of different irrigation and planting modes on the water consumption characteristics and dry matter accumulation and distribution of winter wheat. Three planting patterns (uniform row, wide-narrow row, and furrow) and four irrigation schedules (no irrigation, W0; irrigation at jointing stage, W1; irrigation at jointing and anthesis stages, W2; and irrigation at jointing, anthesis, and milking stages, W3; with 60 mm per irrigation) were installed. With increasing amount of irrigation, the total water consumption and the ratio of irrigation water to total water consumption under different planting patterns all increased, while the soil water consumption and its ratio to total water consumption decreased significantly. As compared with W0, the other three irrigation schedules had a higher dry matter accumulation after anthesis and a higher grain yield, but a lower water use efficiency (WUE). Under the same irrigation schedules, furrow pattern had higher water consumption ratio, grain yield, and WUE. Taking the grain yield and WUE into consideration, furrow pattern combined with irrigation at jointing and anthesis stages would be the optimal water-saving and planting modes for the winter wheat production in North China Plain.
Code of Federal Regulations, 2014 CFR
2014-01-01
..., moisture, humidity, severe storms, thunderstorms, ground saturation or standing water, hail, winter storms, ice storms, snow, blizzard, hurricane, typhoons, tropical storms, and cold wet weather. A disaster..., moisture, humidity, severe storms, thunderstorms, ground saturation or standing water, hail, winter storms...
Code of Federal Regulations, 2011 CFR
2011-01-01
..., moisture, humidity, severe storms, thunderstorms, ground saturation or standing water, hail, winter storms, ice storms, snow, blizzard, hurricane, typhoons, tropical storms, and cold wet weather. A disaster..., moisture, humidity, severe storms, thunderstorms, ground saturation or standing water, hail, winter storms...
Code of Federal Regulations, 2012 CFR
2012-01-01
..., moisture, humidity, severe storms, thunderstorms, ground saturation or standing water, hail, winter storms, ice storms, snow, blizzard, hurricane, typhoons, tropical storms, and cold wet weather. A disaster..., moisture, humidity, severe storms, thunderstorms, ground saturation or standing water, hail, winter storms...
Code of Federal Regulations, 2013 CFR
2013-01-01
..., moisture, humidity, severe storms, thunderstorms, ground saturation or standing water, hail, winter storms, ice storms, snow, blizzard, hurricane, typhoons, tropical storms, and cold wet weather. A disaster..., moisture, humidity, severe storms, thunderstorms, ground saturation or standing water, hail, winter storms...
Hou, F; Ma, J; Liu, X; Wang, Y; Liu, X N; Zhang, F C
2010-01-01
Desert beetle Microdera punctipennis (Coleoptera: Tenebriondae) is a special species in Gurbantonggut Desert in Central Asia. To investigate the possible strategy it employs for cold survival, seasonal changes in supercooling point (SCP), body water content, haemolymph osmolality and antifreeze protein gene (Mpafp) expression were measured over 13 months. Our results show SCPs in M. punctipennis adults changed from -8.0°C in summer to -18.7°C in winter. During winter, adults endured modest water loss; total water decreased from 65.4 percent in summer to 55.9% in winter. Mpafp mRNAs level increased by 13.1 fold from summer to early winter, and haemolymph osmolality increased accordingly from 550 mOsm to 1486 mOsm. Correlation coefficient of Mpafp mRNAs level and SCP indicates that Mpafp mRNA explained 65.3 percent of the variation in SCPs. The correlation between Mpafp mRNA level and total water reflected an indirect influence of antifreeze protein on water content via reducing SCP.
Madani, Nima; Kimball, John S.; Nazeri, Mona; Kumar, Lalit; Affleck, David L. R.
2016-01-01
Species distribution modeling has been widely used in studying habitat relationships and for conservation purposes. However, neglecting ecological knowledge about species, e.g. their seasonal movements, and ignoring the proper environmental factors that can explain key elements for species survival (shelter, food and water) increase model uncertainty. This study exemplifies how these ecological gaps in species distribution modeling can be addressed by modeling the distribution of the emu (Dromaius novaehollandiae) in Australia. Emus cover a large area during the austral winter. However, their habitat shrinks during the summer months. We show evidence of emu summer habitat shrinkage due to higher fire frequency, and low water and food availability in northern regions. Our findings indicate that emus prefer areas with higher vegetation productivity and low fire recurrence, while their distribution is linked to an optimal intermediate (~0.12 m3 m-3) soil moisture range. We propose that the application of three geospatial data products derived from satellite remote sensing, namely fire frequency, ecosystem productivity, and soil water content, provides an effective representation of emu general habitat requirements, and substantially improves species distribution modeling and representation of the species’ ecological habitat niche across Australia. PMID:26799732
Madani, Nima; Kimball, John S; Nazeri, Mona; Kumar, Lalit; Affleck, David L R
2016-01-01
Species distribution modeling has been widely used in studying habitat relationships and for conservation purposes. However, neglecting ecological knowledge about species, e.g. their seasonal movements, and ignoring the proper environmental factors that can explain key elements for species survival (shelter, food and water) increase model uncertainty. This study exemplifies how these ecological gaps in species distribution modeling can be addressed by modeling the distribution of the emu (Dromaius novaehollandiae) in Australia. Emus cover a large area during the austral winter. However, their habitat shrinks during the summer months. We show evidence of emu summer habitat shrinkage due to higher fire frequency, and low water and food availability in northern regions. Our findings indicate that emus prefer areas with higher vegetation productivity and low fire recurrence, while their distribution is linked to an optimal intermediate (~0.12 m3 m(-3)) soil moisture range. We propose that the application of three geospatial data products derived from satellite remote sensing, namely fire frequency, ecosystem productivity, and soil water content, provides an effective representation of emu general habitat requirements, and substantially improves species distribution modeling and representation of the species' ecological habitat niche across Australia.
Evaluation of aerial transects for counting winter mallards
Reinecke, K.J.; Brown, M.W.; Nassar, J.R.
1992-01-01
Winter waterfowl surveys rarely use sampling methods, and little is known about the precision and biases of their population estimates. Consequently, we developed aerial transect surveys (n=5) in 4 strata comprising 16 substrata in the lower Mississippi Alluvial Valley during winters 1987-88 through 1989-90 to estimate mallard (Anas platyrhynchos) population indices and determine regional patterns of habitat use. Mallard population indices ranged from 1,147,628 (SE=192,341) in December 1988 to 1,790,708 (SE=179,406) in January 1988. Coefficients of variation (CV's) for early winter surveys averaged 0.15 and those for late winter surveys averaged 0.10. During early winter, 59-69% of mallards were on wetlands with water regimes managed for waterfowl; whereas in late winter, 52-79% used wetlands with unmanaged water regimes. Late winter was wet during 1987-88 and 1988-89, and most mallards (62-68%) were on naturally flooded croplands. Use of forested wetlands (3-11%) and moist-soil habitats (3-29%) varied among surveys but was not correlated with water conditions. The number of mallards using naturally flooded croplands (e.g., >1,100,000 in Jan 1988) illustrated the extent of habitat use on private lands. We recommend transect surveys (e.g., 5-yr intervals) for evaluating responses of mallard populations to management programs and as a sampling framework for integrating regional waterfowl research and management data.
Blanchfield, P.J.; Tate, L.S.; Plumb, J.M.; Acolas, M.-L.; Beaty, K.G.
2009-01-01
The need for cold, well-oxygenated waters significantly reduces the habitat available for lake trout (Salvelinus namaycush) during stratification of small temperate lakes. We examined the spatial and pelagic distribution of lake trout over two consecutive summers and winters and tested whether winter increased habitat availability and access to littoral regions in a boreal shield lake in which pelagic prey fish are absent. In winter, lake trout had a narrowly defined pelagic distribution that was skewed to the upper 3 m of the water column and spatially situated in the central region of the lake. Individual core areas of use (50% Kernel utilization distributions) in winter were much reduced (75%) and spatially non-overlapping compared to summer areas, but activity levels were similar between seasons. Winter habitat selection is in contrast to observations from the stratified season, when lake trout were consistently located in much deeper waters (>6 m) and widely distributed throughout the lake. Winter distribution of lake trout appeared to be strongly influenced by ambient light levels; snow depth and day length accounted for up to 69% of the variation in daily median fish depth. More restricted habitat use during winter than summer was in contrast to our original prediction and illustrates that a different suite of factors influence lake trout distribution between these seasons. ?? Springer Science+Business Media B.V. 2009.
Cheng, Li Ping; Liu, Wen Zhao
2017-07-18
Soil water and stem water were collected in jointing and heading stages of the rainfed winter wheat in the Changwu Loess tableland, and the stable isotopic compositions of hydrogen and oxygen in water samples were measured to analyze the contribution of soil water at various depths to water consumption of winter wheat. The results showed that the isotopes were enriched in soil and wheat stem water in comparison with that in precipitation. Under the condition of no dry layer in soil profile, the contributions to wheat water consumption in jointing and heading stages were 5.4% and 2.6% from soil water at 0-30 cm depth, 73.4% and 67.3% at 60-90 cm depth (the main water source for winter wheat), and 7.9% and 13.5% below 120 cm depth, respectively. With the wheat growth, the contribution of soil water below the depth of 90 cm increased. It was concluded that soil evaporation mainly consumed soil water in 0-30 cm depth and wheat transpiration mainly consumed soil water below 60 cm depth in the experimental period. In the production practice, it is necessary to increase rainwater storage ratio during the summer fallow period, and apply reasonable combination of nitrogen and phosphorus fertilizers in order to increase soil moisture before wheat sowing, promote the wheat root developing deep downwards and raise the deep soil water utilization ratio.
Development of a model system to identify differences in spring and winter oat.
Chawade, Aakash; Lindén, Pernilla; Bräutigam, Marcus; Jonsson, Rickard; Jonsson, Anders; Moritz, Thomas; Olsson, Olof
2012-01-01
Our long-term goal is to develop a Swedish winter oat (Avena sativa). To identify molecular differences that correlate with winter hardiness, a winter oat model comprising of both non-hardy spring lines and winter hardy lines is needed. To achieve this, we selected 294 oat breeding lines, originating from various Russian, German, and American winter oat breeding programs and tested them in the field in south- and western Sweden. By assaying for winter survival and agricultural properties during four consecutive seasons, we identified 14 breeding lines of different origins that not only survived the winter but also were agronomically better than the rest. Laboratory tests including electrolytic leakage, controlled crown freezing assay, expression analysis of the AsVrn1 gene and monitoring of flowering time suggested that the American lines had the highest freezing tolerance, although the German lines performed better in the field. Finally, six lines constituting the two most freezing tolerant lines, two intermediate lines and two spring cultivars were chosen to build a winter oat model system. Metabolic profiling of non-acclimated and cold acclimated leaf tissue samples isolated from the six selected lines revealed differential expression patterns of 245 metabolites including several sugars, amino acids, organic acids and 181 hitherto unknown metabolites. The expression patterns of 107 metabolites showed significant interactions with either a cultivar or a time-point. Further identification, characterisation and validation of these metabolites will lead to an increased understanding of the cold acclimation process in oats. Furthermore, by using the winter oat model system, differential sequencing of crown mRNA populations would lead to identification of various biomarkers to facilitate winter oat breeding.
Potentiometric surfaces of the intermediate aquifer system, west-central Florida, September 2000
Duerr, A.D.
2001-01-01
The intermediate aquifer system underlies a 5,000-square-mile area within the Southwest Florida Water Management District including De Soto, Sarasota, Hardee, Manatee, and parts of Charlotte, Hillsborough, Highlands, Polk, and Lee Counties. The intermediate aquifer system is overlain by the surficial aquifer system and is underlain by the Floridan aquifer system. The intermediate aquifer system consists of layers of sand, shell, clay, calcareous clay, limestone, and dolomite of the Tamiami Formation and Hawthorn Group of Oligocene to Pleistocene age (Wingard and others, 1995). The intermediate aquifer system contains one or more water-bearing units separated by discontinuous confining units. The intermediate aquifer system is the principal source of potable water in the southwestern part of the study area and is widely used as a source of water where wells are open to the intermediate aquifer system or to both the intermediate and Floridan aquifer systems. Yields of individual wells open to the intermediate aquifer system vary from a few gallons to several hundred gallons per minute. The volume of water withdrawn from the intermediate aquifer system is considerably less than that withdrawn from the Floridan aquifer system in the study area (Duerr and others, 1988).
NASA Astrophysics Data System (ADS)
Dissanayake, Awantha; Galloway, Tamara S.; Jones, Malcolm B.
2011-07-01
This study reports the seasonal variability in aspects of the physiology of the shore crab Carcinus maenas from three estuaries in South-west England, each with varying anthropogenic inputs: Avon Estuary ('relatively low' impact), Yealm Estuary ('intermediate' impact) and Plym Estuary ('relatively high' impact). Crabs collected over 12 months from the Avon had a significantly 'lower' physiological condition in winter and spring compared to summer and autumn; in particular, haemocyte phagocytic capability (a general indicator of immune function) was significantly higher in winter and spring compared to summer and autumn, and total haemolymph antioxidant status (an indicator of oxidative stress) was significantly lower in winter compared to the remainder of the year. Potentially, shore crabs may be more susceptible to the effects of contaminant exposure, such as increased immunotoxicity (thus, reduction of immune function) and/or oxyradicals (or reactive oxygen species) exposure) especially in seasons of increased susceptibility i.e. summer/autumn (lower phagocytic capability) and winter (lowest antioxidant function). As the Avon was taken to represent the 'reference' site, this pattern is considered to reflect the 'normal' seasonal variability in shore crab physiology. Shore crab physiological condition from the 'relatively high' impact estuary (Plym) revealed increased cellular viability and antioxidant status in autumn and winter compared with that of the 'standard' pattern (Avon) However, crabs from the intermediate impact estuary (Yealm) only demonstrated significant physiological differences in summer as shown by a lower cellular viability. All crabs had been exposed to PAHs (confirmed by the presence of PAH metabolites in their urine) which may account for the observed differences in shore crab physiology. In conclusion, to aid understanding of the potential contaminant impacts on biota it is imperative that the 'normal' seasonal variability of physiological condition be established. Biological effects-based monitoring studies should therefore be employed seasonally to potentially highlight 'windows of sensitivity' to contaminant impact.
Lehr, M.A.; Botzler, R.G.; Samuel, M.D.; Shadduck, D.J.
2005-01-01
We studied patterns in avian cholera mortality, the presence of Pasteurella multocida in the water or sediment, and water chemistry characteristics in 10 wetlands at the Sacramento National Wildlife Refuge Complex (California, USA), an area of recurrent avian cholera epizootics, during the winters of 1997 and 1998. Avian cholera outbreaks (a?Y50 dead birds) occurred on two wetlands during the winter of 1997, but no P. multocida were recovered from 390 water and 390 sediment samples from any of the 10 wetlands. No mortality events were observed on study wetlands during the winter of 1998; however, P. multocida was recovered from water and sediment samples in six of the 10 study wetlands. The pH levels were higher for wetlands experiencing outbreaks during the winter of 1997 than for nonoutbreak wetlands, and aluminum concentrations were higher in wetlands from which P. multocida were recovered during the winter of 1998. Water chemistry parameters (calcium, magnesium, sodium, and dissolved protein) previously linked with P. multocida and avian cholera mortality were not associated with the occurrence of avian cholera outbreaks or the presence of P. multocida in our study wetlands. Overall, we found no evidence to support the hypothesis that wetland characteristics facilitate the presence of P. multocida and, thereby, allow some wetlands to serve as long-term sources (reservoirs) for P. multocida.
Long Island Sound Thamesville Tidal-Flood Management Water Resources Study, Norwich, Connecticut.
1981-02-01
waters are used for feeding and as spawning and nursery grounds for a variety of species, such as bluefish , Atlantic tomcod, striped bass, winter...fisheries for bluefish , ’ Atlantic tomcod, striped bass, winter flounder, American eel and alewife. r The Thames supports a heavily utilized sport fishery...for winter flounder, striped bass, white perch, American smelt, bluefish and Atlantic tomcod. Mummichog and Atlantic menhaden are the most common
Yager, Richard M.; Heywood, Charles E.
2014-01-01
Public-supply wells with long screens in alluvial aquifers can produce waters of differing quality from different depths. Seasonal changes in quality are linked to seasonal changes in pumping rates that influence the distribution of flow into the well screens under pumping conditions and the magnitude and direction of intraborehole flow within the wells under ambient conditions. Groundwater flow and transport simulations with MODFLOW and MT3DMS were developed to quantify the effects of changes in average seasonal pumping rates on intraborehole flow and water quality at two long-screened, public-supply wells, in Albuquerque, New Mexico and Modesto, California, where widespread pumping has altered groundwater flow patterns. Simulation results indicate that both wells produce water requiring additional treatment to maintain potable quality in winter when groundwater withdrawals are reduced because less water is derived from parts of the aquifer that contain water requiring less treatment. Simulation results indicate that the water quality at both wells could be improved by increasing average winter-pumping rates to induce more lateral flow from parts of the aquifer that contain better quality water. Arsenic-bearing water produced by the Albuquerque well could be reduced from 55% to 45% by doubling average winter-pumping rate, while nitrate- and uranium-bearing water produced by the Modesto well could be reduced from 95% to 65% by nearly tripling the average winter-pumping rate. Higher average winter-pumping rates would also reduce the volume of intraborehole flow within both wells and prevent the exchange of poor quality water between shallow and deep parts of both aquifers.
Patterns of Diel Variation in Nitrate Concentrations in the Potomac River
NASA Astrophysics Data System (ADS)
Burns, D. A.; Miller, M. P.; Pellerin, B. A.; Capel, P. D.
2015-12-01
The Potomac River is the second largest source of nitrogen to Chesapeake Bay, where reducing nutrient loads has been a focus of efforts to improve estuarine trophic status. Two years of high frequency sensor measurements of nitrate (NO3-) concentrations in the Upper Potomac River at the Little Falls gage were analyzed to quantify seasonal variation in the magnitude and timing of the apparent loss of NO3- from the water column that results from diel-driven processes. In addition to broad seasonal and flow-driven variation in NO3- concentrations, clear diel patterns were evident in the river, especially during low flow conditions that follow stormflow by several days. Diel variation was about 0.01 mg N/L in winter and 0.02 to 0.03 mg N/L in summer with intermediate values during spring and fall. This variation was equivalent to <1% of the mean daily NO3- concentration in winter and about 4% in summer; however, variation >10% occurred during some summer days. Maximum diel concentrations occurred during mid- to late-morning in most seasons, with the most repeatable patterns in summer and wider variation in timing during fall and winter. Diel NO3- loss diminished loads by about 0.6% in winter and 1.3% in summer, and diel-driven processes were minor compared to estimates of total in-stream NO3- loss that averaged about one-third of the inferred groundwater NO3- contribution to the river network. The magnitude of diel NO3- variation was more strongly related to metrics based on water temperature and discharge than to metrics based on photosynthetically active radiation. Despite the fairly low diminishment of NO3- loads attributable to diel variation, estimates of diel NO3- uptake were fairly high compared to published values from smaller streams and rivers. The diel NO3- patterns observed in the Potomac River are consistent with photosynthesis of periphyton as a principal driver which may be linked to denitrification through the release of labile carbon. The extent to which these diel patterns are related to measures of aquatic metabolism are unknown as is the role of dispersion in obscuring diel patterns. Improvements to these diel estimates will require additional measures such as dissolved oxygen and ammonium, and the use of a second upstream measurement station to better constrain NO3- uptake values.
Ji, Xing-jie; Cheng, Lin; Fang, Wen-song
2015-09-01
Based on the analysis of water requirement and water deficit during development stage of winter wheat in recent 30 years (1981-2010) in Henan Province, the effective precipitation was calculated using the U.S. Department of Agriculture Soil Conservation method, the water requirement (ETC) was estimated by using FAO Penman-Monteith equation and crop coefficient method recommended by FAO, combined with the climate change scenario A2 (concentration on the economic envelopment) and B2 ( concentration on the sustainable development) of Special Report on Emissions Scenarios (SRES) , the spatial and temporal characteristics of impacts of future climate change on effective precipitation, water requirement and water deficit of winter wheat were estimated. The climatic impact factors of ETc and WD also were analyzed. The results showed that under A2 and B2 scenarios, there would be a significant increase in anomaly percentage of effective precipitation, water requirement and water deficit of winter wheat during the whole growing period compared with the average value from 1981 to 2010. Effective precipitation increased the most in 2030s under A2 and B2 scenarios by 33.5% and 39.2%, respectively. Water requirement increased the most in 2010s under A2 and B2 scenarios by 22.5% and 17.5%, respectively, and showed a significant downward trend with time. Water deficit increased the most under A2 scenario in 2010s by 23.6% and under B2 scenario in 2020s by 13.0%. Partial correlation analysis indicated that solar radiation was the main cause for the variation of ETc and WD in future under A2 and B2 scenarios. The spatial distributions of effective precipitation, water requirement and water deficit of winter wheat during the whole growing period were spatially heterogeneous because of the difference in geographical and climatic environments. A possible tendency of water resource deficiency may exist in Henan Province in the future.
Hybrid songbirds employ intermediate routes in a migratory divide.
Delmore, Kira E; Irwin, Darren E
2014-10-01
Migratory divides are contact zones between populations that use different routes to navigate around unsuitable areas on seasonal migration. Hybrids in divides have been predicted to employ intermediate and potentially inferior routes. We provide the first direct test of this hypothesis, using light-level geolocators to track birds breeding in a hybrid zone between Swainson's thrushes in western Canada. Compared to parental forms, hybrids exhibited increased variability in their migratory routes, with some using intermediate routes that crossed arid and mountainous regions, and some using the same routes as one parental group on fall migration and the other on spring migration. Hybrids also tended to use geographically intermediate wintering sites. Analysis of genetic variation across the hybrid zone suggests moderately strong selection against hybrids. These results indicate that seasonal migratory behaviour might be a source of selection against hybrids, supporting a possible role for migration in speciation. © 2014 John Wiley & Sons Ltd/CNRS.
Seasonal thermoregulatory responses in mammals.
Lovegrove, Barry G
2005-05-01
This study examined the proportional seasonal winter adjustments of total and mass-specific basal power (watts and watts g-1, respectively), thermal conductance (watts g-1 degrees C-1), non-shivering thermogenesis capacity (ratio of NST/basal power), body temperature ( degrees C), and body mass (g) of mammals. The responses are best summarized for three different body size classes; small mammals (<100 g), intermediate-sized mammals (0.1-10 kg), and large mammals (>10 kg). The principal adjustments of the small mammals center on energy conservation, especially the Dehnel Effect, the winter reduction in body size of as much as 50%, accompanied by reductions in mass-specific basal power. On average, these reductions reduce the total basal power approximately in direct proportion to the mass reductions. Reductions in mass-specific basal power are matched by concomitant reductions in conductance to maintain the setpoint body temperature during winter. The overall thermoregulatory adjustments in small mammals serve to (a) lower overall winter power consumption, (b) maintain the setpoint body temperature, and (c) lower the lower critical limit of thermoneutrality and hence thermoregulatory costs. In intermediate-size mammals, the seasonal response is centered more on increasing thermogenic capacity by increasing basal power and NST capacity, accompanied by predictable and large reductions in conductance. The Dehnel effect is negligible. Very large mammals undergo the largest reductions in total and mass-specific basal power and conductance. However, there are too few data to resolve whether the reductions in total basal power can be attributed to the Dehnel effect, because the moderate decreases in body mass may also be caused by nutritional stress. Apart from the seasonal changes in basal power, these observations are consistent with the predictions of Heldmaier's seasonal acclimatization model.
NASA Astrophysics Data System (ADS)
Bemal, Suchandan; Anil, Arga Chandrashekar; Shankar, D.; Remya, R.; Roy, Rajdeep
2018-04-01
The deepening of mixed layer and ensuing changes in optical and physicochemical properties of euphotic zone can influence phytoplankton community dynamics in the northeastern Arabian Sea during winter monsoon. The response of picophytoplankton community to such changes during winter convective mixing is not well understood. Herein, we have compared variations in the picophytoplankton community structure during early (November-December 2012), peak (end-January 2014) and late (mid-February 2015) winter monsoon from three separate cruises in the southern northeastern Arabian Sea. The higher Synechococcus abundance owing to entrainment of nutrients in mixed layer was observed during peak winter monsoon, while the concomitant changes in nitrate concentration, light and oxygen environment restricted Prochlorococcus growth resulting in lower abundance during the same period. This highlights the diverse responses of picophytoplankton groups to physicochemical changes of water column during winter convective mixing. The divinyl chlorophyll b/a ratio (marker for Prochlorococcus ecotypes) indicated prevalence of one low-light adapted ecotype (sensitive to light shock) in sub-surface water, one high-light adapted ecotype in surface water during early winter monsoon and both disappeared during intense mixing period in peak winter monsoon. Subsequently, a distinct low-light adapted ecotype, capable to tolerate light shock, was noticed during late winter monsoon and we argue that this ecotype is introduced to southern northeastern Arabian Sea through advection from north by sub-surface circulation. The total picophytoplankton biomass available to microbial loop is restored during late winter monsoon, when stratification begins, with a higher abundance of Synechococcus and the re-occurrence of Prochlorococcus population in the region. These inferences indicate that variability in picophytoplankton community structure and their contribution to the microbial loop are driven by convective mixing and advection, which in turn influence ecosystem functioning and trophodynamics of the southern northeastern Arabian Sea.
Assessing winter cover crop nutrient uptake efficiency using a water quality simulation model
NASA Astrophysics Data System (ADS)
Yeo, I.-Y.; Lee, S.; Sadeghi, A. M.; Beeson, P. C.; Hively, W. D.; McCarty, G. W.; Lang, M. W.
2014-12-01
Winter cover crops are an effective conservation management practice with potential to improve water quality. Throughout the Chesapeake Bay watershed (CBW), which is located in the mid-Atlantic US, winter cover crop use has been emphasized, and federal and state cost-share programs are available to farmers to subsidize the cost of cover crop establishment. The objective of this study was to assess the long-term effect of planting winter cover crops to improve water quality at the watershed scale (~ 50 km2) and to identify critical source areas of high nitrate export. A physically based watershed simulation model, Soil and Water Assessment Tool (SWAT), was calibrated and validated using water quality monitoring data to simulate hydrological processes and agricultural nutrient cycling over the period of 1990-2000. To accurately simulate winter cover crop biomass in relation to growing conditions, a new approach was developed to further calibrate plant growth parameters that control the leaf area development curve using multitemporal satellite-based measurements of species-specific winter cover crop performance. Multiple SWAT scenarios were developed to obtain baseline information on nitrate loading without winter cover crops and to investigate how nitrate loading could change under different winter cover crop planting scenarios, including different species, planting dates, and implementation areas. The simulation results indicate that winter cover crops have a negligible impact on the water budget but significantly reduce nitrate leaching to groundwater and delivery to the waterways. Without winter cover crops, annual nitrate loading from agricultural lands was approximately 14 kg ha-1, but decreased to 4.6-10.1 kg ha-1 with cover crops resulting in a reduction rate of 27-67% at the watershed scale. Rye was the most effective species, with a potential to reduce nitrate leaching by up to 93% with early planting at the field scale. Early planting of cover crops (~ 30 days of additional growing days) was crucial, as it lowered nitrate export by an additional ~ 2 kg ha-1 when compared to late planting scenarios. The effectiveness of cover cropping increased with increasing extent of cover crop implementation. Agricultural fields with well-drained soils and those that were more frequently used to grow corn had a higher potential for nitrate leaching and export to the waterways. This study supports the effective implementation of cover crop programs, in part by helping to target critical pollution source areas for cover crop implementation.
Climate-driven diversity change in annual grasslands: Drought plus deluge does not equal normal.
Harrison, Susan P; LaForgia, Marina L; Latimer, Andrew M
2018-04-01
Climate forecasts agree that increased variability and extremes will tend to reduce the availability of water in many terrestrial ecosystems. Increasingly severe droughts may be exacerbated both by warmer temperatures and by the relative unavailability of water that arrives in more sporadic and intense rainfall events. Using long-term data and an experimental water manipulation, we examined the resilience of a heterogeneous annual grassland community to a prolonged series of dry winters that led to a decline in plant species richness (2000-2014), followed by a near-record wet winter (2016-2017), a climatic sequence that broadly resembles the predicted future in its high variability. In our 80, 5-m 2 observational plots, species richness did not recover in response to the wet winter, and the positive relationship of richness to annual winter rainfall thus showed a significant weakening trend over the 18-year time period. In experiments on 100, 1-m 2 plots, wintertime water supplementation increased and drought shelters decreased the seedling survival and final individual biomass of native annual forbs, the main functional group contributing to the observed long-term decline in richness. Water supplementation also increased the total cover of native annual forbs, but only increased richness within nested subplots to which seeds were also added. We conclude that prolonged dry winters, by increasing seedling mortality and reducing growth of native forbs, may have diminished the seedbank and thus the recovery potential of diversity in this community. However, the wet winter and the watering treatment did cause recovery of the community mean values of a key functional trait (specific leaf area, an indicator of drought intolerance), suggesting that some aggregate community properties may be stabilized by functional redundancy among species. © 2017 John Wiley & Sons Ltd.
Deep and intermediate mediterranean water in the western Alboran Sea
NASA Astrophysics Data System (ADS)
Parrilla, Gregorio; Kinder, Thomas H.; Preller, Ruth H.
1986-01-01
Hydrographic and current meter data, obtained during June to October 1982, and numerical model experiments are used to study the distribution and flow of Mediterranean waters in the western Alboran Sea. The Intermediate Water is more pronounced in the northern three-fourths of the sea, but its distribution is patchy as manifested by variability of the temperature and salinity maxima at scales ≤10 km. Current meters in the lower Intermediate Water showed mean flow toward the Strait at 2 cm s -1. A reversal of this flow lasted about 2 weeks. A rough estimate of the mean westward Intermediate Water transport was 0.4 × 10 6 m 3 s -1, about one-third of the total outflow, so that the best estimates of the contributions of traditionally defined Intermediate Water and Deep Water account for only about one-half of the total outflow. The Deep Water was uplifted against the southern continental slope from Alboran Island (3°W) to the Strait. There was also a similar but much weaker banking against the Spanish slope, but a deep current record showed that the eastward recirculation implied by this banking is probably intermittent. Two-layer numerical model experiments simulated the Intermediate Water flow with a flat bottom and the Deep Water with realistic bottom topography. Both experiments replicated the major circulation features, and the Intermediate Water flow was concentrated in the north because of rotation and the Deep Water flow in the south because of topographic control.
NASA Astrophysics Data System (ADS)
Estournel, Claude; Testor, Pierre; Damien, Pierre; D'Ortenzio, Fabrizio; Marsaleix, Patrick; Conan, Pascal; Kessouri, Faycal; Durrieu de Madron, Xavier; Coppola, Laurent; Lellouche, Jean-Michel; Belamari, Sophie; Mortier, Laurent; Ulses, Caroline; Bouin, Marie-Noelle; Prieur, Louis
2016-07-01
The evolution of the stratification of the north-western Mediterranean between summer 2012 and the end of winter 2013 was simulated and compared with different sets of observations. A summer cruise and profiler observations were used to improve the initial conditions of the simulation. This improvement was crucial to simulate winter convection. Variations of some parameters involved in air - sea exchanges (wind, coefficient of transfer used in the latent heat flux formulation, and constant additive heat flux) showed that the characteristics of water masses and the volume of dense water formed during convection cannot be simply related to the time-integrated buoyancy budget over the autumn - winter period. The volume of dense water formed in winter was estimated to be about 50,000 km3 with a density anomaly larger than 29.113 kg m-3. The effect of advection and air/sea fluxes on the heat and salt budget of the convection zone was quantified during the preconditioning phase and the mixing period. Destratification of the surface layer in autumn occurs through an interaction of surface and Ekman buoyancy fluxes associated with displacements of the North Balearic front bounding the convection zone to the south. During winter convection, advection stratifies the convection zone: from December to March, the absolute value of advection represents 58 % of the effect of surface buoyancy fluxes.
Ecological impacts of winter water level drawdowns on lake littoral zones: A review
Roy, Allison
2017-01-01
Freshwater littoral zones harbor diverse ecological communities and serve numerous ecosystem functions that are controlled, in part, by natural water level fluctuations. However, human alteration of lake hydrologic regimes beyond natural fluctuations threaten littoral zone ecological integrity. One type of hydrologic alteration in lakes is winter water level drawdowns, which are frequently employed for hydropower, flood control, and macrophyte control, among other purposes. Here, we synthesize the abiotic and biotic responses to annual and novel winter water level drawdowns in littoral zones of lakes and reservoirs. The dewatering, freezing, and increased erosion of exposed lakebeds drive changes in the littoral zone. Shoreline-specific physicochemical conditions such as littoral slope and shoreline exposure further induce modifications. Loss of fine sediment decreases nutrient availability over time, but desiccation may promote a temporary nutrient pulse upon re-inundation. Annual winter drawdowns can decrease taxonomic richness of macrophytes and benthic invertebrates and shift assemblage composition to favor taxa with r-selected life history strategies and with functional traits resistant to direct and indirect drawdown effects. Fish assemblages, though less directly affected by winter drawdowns (except where there is critically low dissolved oxygen), experience negative effects via indirect pathways like decreased food resources and spawning habitat. We identify eight general research gaps to guide future research that could improve our understanding about the complex effects of winter drawdowns on littoral zone ecology.
Yi, Li-Pan; Yu, Zhen-Wen; Zhang, Yong-Li; Wang, Dong; Shi, Yu; Zhao, Jun-Ye
2013-05-01
In 2010-2011, a field experiment with high-yielding winter wheat cultivar Jimai 22 was conducted to study the effects of supplemental irrigation based on the measurement of moisture content in different soil layers on the water consumption characteristics and grain yield of winter wheat. Four soil layers (0-20 cm, W1; 0-40 cm, W2; 0-60 cm, W3; and 0-140 cm, W4) were designed to make the supplemental irrigation at wintering stage (target soil relative moisture content = 75%), jointing stage (target soil relative moisture content = 70%), and anthesis stage (target soil relative moisture content = 70%), taking no irrigation (W0) during the whole growth season as the control. At the wintering, jointing, and anthesis stages, the required irrigation amount followed the order of W3 > W2 > W1. Treatment W4 required smaller irrigation amount at wintering and jointing stages, but significantly higher one at anthesis stage than the other treatments. The proportion of the irrigation amount relative to the total water consumption over the entire growth season followed the sequence of W4, W3 > W2 > W1. By contrast, the proportion of soil water consumption relative to the total water consumption followed the trend of W1 > W2 > W3 > W4. With the increase of the test soil depths, the soil water utilization ratio decreased. The water consumption in 80-140 cm and 160-200 cm soil layers was significantly higher in W2 than in W3 and W4. The required total irrigation amount was in the order of W3 > W4 > W2 > W1, the grain yield was in the order of W2, W3, W4 > W1 > W0, and the water use efficiency followed the order of W2, W4 > W0, W1 > W3. To consider the irrigation amount, grain yield, and water use efficiency comprehensively, treatment W2 under our experimental condition could be the optimal treatment, i. e., the required amount of supplemental irrigation based on the measurement of the moisture content in 0-40 cm soil layer should be feasible for the local winter wheat production.
Projected climate change impacts on winter recreation in the ...
A physically-based water and energy balance model is used to simulate natural snow accumulation at 247 winter recreation locations across the continental United States. We combine this model with projections of snowmaking conditions to determine downhill skiing, cross-country skiing, and snowmobiling season lengths under baseline and future climates, using data from five climate models and two emissions scenarios. The present-day simulations from the snow model without snowmaking are validated with observations of snow-water-equivalent from snow monitoring sites. Projected season lengths are combined with baseline estimates of winter recreation activity to monetize impacts to the selected winter recreation activity categories for the years 2050 and 2090. Estimate the physical and economic impact of climate change on winter recreation in the contiguous U.S.
USDA-ARS?s Scientific Manuscript database
Continuous N fertilization to dryland winter wheat (Triticum aestivum L.) for a long period may have detrimental effect on grain yield due to high water consumption and soil acidity development. We evaluated the effect of five N fertilization rates (0, 45, 90, 135, and 180 kg N ha-1) on soil water b...
NASA Astrophysics Data System (ADS)
Allen, S. T.; Kirchner, J. W.; Braun, S.; Siegwolf, R. T.; Goldsmith, G. R.
2017-12-01
Xylem water isotopic composition can reveal how water moves through soil and is subsequently taken up by plants. By examining how xylem water isotopes vary across distinct climates and soils, we test how these site characteristics control critical-zone water movement and tree uptake. Xylem water was collected from over 900 trees at 191 sites across Switzerland during a 10-day period in mid-summer 2015. Sites contained oak, beech and/or spruce trees and ranged in elevation from 260 to 1870 m asl with mean annual precipitation from 700 to 2060 mm. Xylem water samples were analyzed for 2H and 18O using isotope ratio mass spectrometry. Patterns in the temporal origin of xylem water showed regional differences. For example, trees in the southern and alpine regions had xylem water isotopic signatures that more closely resembled summer precipitation. The isotopic spatial range observed for mid-summer xylem waters was similar to the seasonal range of precipitation; that is, mid-summer xylem water at some sites resembled summer precipitation, and at other sites resembled winter precipitation. Xylem water from spruces, oaks, and beeches at the same sites did not differ from each other, despite these species having different rooting habits. Across all sites and species, precipitation amount correlated positively with xylem δ18O. In higher-precipitation areas, summer rain apparently displaces or mixes with older (winter) stored waters, thus reducing the winter-water isotopic signal in xylem water. Alternatively, in areas with limited precipitation, xylem water more closely matched winter water, indicating greater use of older stored water. We conclude that regional variations in precipitation deficits determine variations in the turnover rate of plant-available soil water and storage.
NASA Astrophysics Data System (ADS)
Zhao, Zhuzi; Cao, Junji; Zhang, Ting; Shen, Zhenxing; Ni, Haiyan; Tian, Jie; Wang, Qiyuan; Liu, Suixin; Zhou, Jiamao; Gu, Jian; Shen, Ganzhou
2018-07-01
Stable carbon isotopes provide information on aerosol sources, but no extensive long-term studies of these isotopes have been conducted in China, and they have mainly been used for qualitative rather than quantitative purposes. Here, 24 h PM2.5 samples (n = 58) were collected from July 2008 to June 2009 at Xi'an, China. The concentrations of organic and elemental carbon (OC and EC), water-soluble OC, and the stable carbon isotope abundances of OC and EC were determined. In spring, summer, autumn and winter, the mean stable carbon isotope in OC (δ13COC) were -26.4 ± 0.6, -25.8 ± 0.7, -25.0 ± 0.6 and -24.4 ± 0.8‰, respectively, and the corresponding δ13CEC values were -25.5 ± 0.4, -25.5 ± 0.8, -25.2 ± 0.7 and -23.7 ± 0.6‰. Large δ13CEC and δ13COC values in winter can be linked to the burning coal for residential heating. Less biomass is burned during spring and summer than winter or fall (manifested in the levels of levoglucosan, i.e., 178, 85, 370, 935 ng m-3 in spring, summer, autumn, and winter), and the more negative δ13COC in the warmer months can be explained by the formation of secondary organic aerosols. A levoglucosan tracer method combined with an isotope mass balance analysis indicated that biomass burning accounted for 1.6-29.0% of the EC, and the mean value in winter (14.9 ± 7.5%) was 7 times higher than summer (2.1 ± 0.4%), with intermediate values of 6.1 ± 5.6 and 4.5 ± 2.4% in autumn and spring. Coal combustion accounted for 45.9 ± 23.1% of the EC overall, and the percentages were 63.0, 37.2, 36.7, and 33.7% in winter, autumn, summer and spring respectively. Motor vehicles accounted for 46.6 ± 26.5% of the annual EC, and these contributed over half (56.7-61.8%) of the EC in all seasons except winter. Correlations between motor vehicle-EC and coal combustion-EC with established source indicators (B(ghi)P and As) support the source apportionment results. This paper describes a simple and accurate method for apportioning the sources of EC, and the results may be beneficial for developing model simulations as well as controlling strategies in future.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-29
... 1625-AA08 Special Local Regulation; Tavares Winter Thunder Vintage Race Boat Regatta, Lake Dora... Tavares Winter Thunder Vintage Race Regatta, a series of high-speed boat races. The event is scheduled for... navigable waters of the United States during the Tavares Winter Thunder Vintage Race Boat Regatta. C...
USDA-ARS?s Scientific Manuscript database
Winter fish losses are routinely reported by Arkansas sportfish producers in the spring. Juvenile centrarchid species (less than 7.6 cm) are quite susceptible to harsh winter conditions. While some of these winter fish losses can be attributed to predation by fish eating birds and water quality fact...
Matter-Walstra, Klazien; Widmer, Marcel; Busato, André
2006-03-03
Climate- or holiday-related seasonality in hospital admission rates is well known for many diseases. However, little research has addressed the impact of tourism on seasonality in admission rates. We therefore investigated the influence of tourism on emergency admission rates in Switzerland, where winter and summer leisure sport activities in large mountain regions can generate orthopedic injuries. Using small area analysis, orthopedic hospital service areas (HSAo) were evaluated for seasonality in emergency admission rates. Winter sport areas were defined using guest bed accommodation rate patterns of guest houses and hotels located above 1000 meters altitude that show clear winter and summer peak seasons. Emergency admissions (years 2000-2002, n = 135'460) of local and nonlocal HSAo residents were evaluated. HSAo were grouped according to their area type (regular or winter sport area) and monthly analyses of admission rates were performed. Of HSAo within the defined winter sport areas 70.8% show a seasonal, summer-winter peak hospital admission rate pattern and only 1 HSAo outside the defined winter sport areas shows such a pattern. Seasonal hospital admission rates in HSAo in winter sport areas can be up to 4 times higher in winter than the intermediate seasons, and they are almost entirely due to admissions of nonlocal residents. These nonlocal residents are in general -and especially in winter- younger than local residents, and nonlocal residents have a shorter length of stay in winter sport than in regular areas. The overall geographic distribution of nonlocal residents admitted for emergencies shows highest rates during the winter as well as the summer in the winter sport areas. Small area analysis using orthopedic hospital service areas is a reliable method for the evaluation of seasonality in hospital admission rates. In Switzerland, HSAo defined as winter sport areas show a clear seasonal fluctuation in admission rates of only nonlocal residents, whereas HSAo defined as regular, non-winter sport areas do not show such seasonality. We conclude that leisure sport, and especially ski/snowboard tourism demands great flexibility in hospital beds, staff and resource planning in these areas.
Matter-Walstra, Klazien; Widmer, Marcel; Busato, André
2006-01-01
Background Climate- or holiday-related seasonality in hospital admission rates is well known for many diseases. However, little research has addressed the impact of tourism on seasonality in admission rates. We therefore investigated the influence of tourism on emergency admission rates in Switzerland, where winter and summer leisure sport activities in large mountain regions can generate orthopedic injuries. Methods Using small area analysis, orthopedic hospital service areas (HSAo) were evaluated for seasonality in emergency admission rates. Winter sport areas were defined using guest bed accommodation rate patterns of guest houses and hotels located above 1000 meters altitude that show clear winter and summer peak seasons. Emergency admissions (years 2000–2002, n = 135'460) of local and nonlocal HSAo residents were evaluated. HSAo were grouped according to their area type (regular or winter sport area) and monthly analyses of admission rates were performed. Results Of HSAo within the defined winter sport areas 70.8% show a seasonal, summer-winter peak hospital admission rate pattern and only 1 HSAo outside the defined winter sport areas shows such a pattern. Seasonal hospital admission rates in HSAo in winter sport areas can be up to 4 times higher in winter than the intermediate seasons, and they are almost entirely due to admissions of nonlocal residents. These nonlocal residents are in general -and especially in winter- younger than local residents, and nonlocal residents have a shorter length of stay in winter sport than in regular areas. The overall geographic distribution of nonlocal residents admitted for emergencies shows highest rates during the winter as well as the summer in the winter sport areas. Conclusion Small area analysis using orthopedic hospital service areas is a reliable method for the evaluation of seasonality in hospital admission rates. In Switzerland, HSAo defined as winter sport areas show a clear seasonal fluctuation in admission rates of only nonlocal residents, whereas HSAo defined as regular, non-winter sport areas do not show such seasonality. We conclude that leisure sport, and especially ski/snowboard tourism demands great flexibility in hospital beds, staff and resource planning in these areas. PMID:16512923
Effects of soil water availability on water fluxes in winter wheat
NASA Astrophysics Data System (ADS)
Cai, G.; Vanderborght, J.; Langensiepen, M.; Vereecken, H.
2014-12-01
Quantifying soil water availability in water-limited ecosystems on plant water use continues to be a practical problem in agronomy. Transpiration which represents plant water demand is closely in relation to root water uptake in the root zone and sap flow in plant stems. However, few studies have been concentrated on influences of soil moisture on root water uptake and sap flow in crops. This study was undertaken to investigate (i) whether root water uptake and sap flow correlate with the transpiration estimated by the Penman-Monteith model for winter wheat(Triticum aestivum), and (ii) for which soil water potentials in the root zone, the root water uptake and sap flow rates in crop stems would be reduced. Therefore, we measured sap flow velocities by an improved heat-balance approach (Langensiepen et al., 2014), calculated crop transpiration by Penman-Monteith model, and simulated root water uptake by HYDRUS-1D on an hourly scale for different soil water status in winter wheat. In order to assess the effects of soil water potential on root water uptake and sap flow, an average soil water potential was calculated by weighting the soil water potential at a certain depth with the root length density. The temporal evolution of root length density was measured using horizontal rhizotubes that were installed at different depths.The results showed that root water uptake and sap flow matched well with the computed transpiration by Penman-Monteith model in winter wheat when the soil water potential was not limiting root water uptake. However, low soil water content restrained root water uptake, especially when soil water potential was lower than -90 kPa in the top soil. Sap flow in wheat was not affected by the observed soil water conditions, suggesting that stomatal conductance was not sensitive to soil water potentials. The effect of drought stress on root water uptake and sap flow in winter wheat was only investigated in a short time (after anthesis). Further research could focus on a long time (e.g. from vegetation to maturity) effect under different soil water conditions, such as irrigated, sheltered and normal status. Langensiepen, M., Kupisch, M., Graf, A., Schmidt, M. and Ewert, F., 2014. Improving the stem heat balance method for determining sap-flow in wheat. Agricultural and Forest Meteorology, 186: 34-42.
Li, Gang; Liu, Jiaxing; Diao, Zenghui; Jiang, Xin; Li, Jiajun; Ke, Zhixin; Shen, Pingping; Ren, Lijuan; Huang, Liangmin; Tan, Yehui
2018-01-01
Estuarine oxygen depletion is one of the worldwide problems, which is caused by the freshwater-input-derived severe stratification and high nutrients loading. In this study we presented the horizontal and vertical distributions of dissolved oxygen (DO) in the Pearl River estuary, together with temperature, salinity, chlorophyll a concentration and heterotrophic bacteria abundance obtained from two cruises during the summer (wet) and winter (dry) periods of 2015. In surface water, the DO level in the summer period was lower and varied greater, as compared to the winter period. The DO remained unsaturated in the summer period if salinity is <12 and saturated if salinity is >12; while in the winter period it remained saturated throughout the estuary. In subsurface (>5m) water, the DO level varied from 0.71 to 6.65mgL -1 and from 6.58 to 8.20mgL -1 in the summer and winter periods, respectively. Particularly, we observed an area of ~1500km 2 low DO zone in the subsurface water with a threshold of 4mgDOL -1 during this summer period, that located at the fresh- and saline-water intersection where is characterized with severe stratification and high heterotrophic bacteria abundance. In addition, our results indicate that spatial DO variability in surface water was contributed differently by biological and physio-chemical variables in the summer and winter periods, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.
Miranda, L.E.; Pugh, L.L.
1997-01-01
Juvenile largemouth bass Micropterus salmoides were collected by electrofishing during October through March 1992-1994 from coves (???25 ha) covered with aquatic macrophytes over 1-65% of their area. Mean total length of juvenile largemouth bass was highest in coves with the least vegetated cover, but increase in mean length between October and March was highest in coves having near 20% vegetation coverage. Catch per unit effort decreased between October and March; decreases were least at vegetation coverages near 10-20%, highest at coverages of 5% or less, and intermediate at coverages of 30-65%. By March, these disparate decreases contributed to the formation of a dome-like relationship between vegetation coverage and catch per unit effort. Consumption of fish foods was highest when vegetation coverage was low, but decreased asymptotically as coverage increased; consumption of invertebrate foods increased at low coverage, peaked near 20-30% coverage, and decreased at higher coverage. We suggest that greater length increases and greater abundance at 10-25% vegetation coverage were stimulated by a favorable blend of food availability and cover. Our results support reports that maximum recruitment of largemouth bass occurs at intermediate levels of vegetation coverage, and we further suggests that such increased production is reinforced during winter, when survival, invertebrate consumption, and length increases are highest at intermediate levels of vegetation coverage.
NASA Astrophysics Data System (ADS)
Zhu, Y.; Ren, L.; Lü, H.
2017-12-01
On the Huaibei Plain of Anhui Province, China, winter wheat (WW) is the most prominent crop. The study area belongs to transitional climate, with shallow water table. The original climate change is complex, in addition, global warming make the climate change more complex. The winter wheat growth period is from October to June, just during the rainless season, the WW growth always depends on part of irrigation water. Under such complex climate change, the rainfall varies during the growing seasons, and water table elevations also vary. Thus, water tables supply variable moisture change between soil water and groundwater, which impact the irrigation and discharge scheme for plant growth and yield. In Huaibei plain, the environmental pollution is very serious because of agricultural use of chemical fertilizer, pesticide, herbicide and etc. In order to protect river water and groundwater from pollution, the irrigation and discharge scheme should be estimated accurately. Therefore, determining the irrigation and discharge scheme for winter wheat under climate change is important for the plant growth management decision-making. Based on field observations and local weather data of 2004-2005 and 2005-2006, the numerical model HYDRUS-1D was validated and calibrated by comparing simulated and measured root-zone soil water contents. The validated model was used to estimate the irrigation and discharge scheme in 2010-2090 under the scenarios described by HadCM3 (1970 to 2000 climate states are taken as baselines) with winter wheat growth in an optimum state indicated by growth height and LAI.
Contrasting Secondary Organic Aerosol Formation in Aerosol Liquid Water During Summer and Winter
NASA Astrophysics Data System (ADS)
El-Sayed, M.; Hennigan, C. J.
2017-12-01
In this study, we characterize the formation of aqueous secondary organic aerosols (aqSOA) in the eastern United States during summer and winter. The aim was to identify the main factors affecting the reversible and irreversible uptake of water-soluble organic gases to aerosol liquid water under variable influence from biogenic and anthropogenic sources. The reversible and irreversible uptake of water-soluble organic gases to aerosol water was measured in Baltimore, MD using a recently developed on-line method. The formation of aqSOA was observed during the summer and the winter; however, the amount of aqSOA varied significantly between the two seasons, as did the reversible and irreversible nature of the uptake. While the availability of aerosol liquid water (ALW) predominantly controlled aqSOA formation in the summer, wintertime aqSOA formation was limited by precursor VOCs as well. During the summer, aqSOA formation was tightly linked with isoprene oxidation, while the aqSOA formed in the winter was associated with biomass burning. Irreversible aqSOA was formed in both seasons; however, reversible aqSOA was only observed in the summer. Overall, these results demonstrate the importance of multi-phase chemistry in aerosol formation and underscore the significance of soluble organic gases partitioning to aerosol water both reversibly and irreversibly.
NASA Astrophysics Data System (ADS)
Zhuo, La; Mekonnen, Mesfin M.; Hoekstra, Arjen Y.
2016-11-01
Meeting growing food demands while simultaneously shrinking the water footprint (WF) of agricultural production is one of the greatest societal challenges. Benchmarks for the WF of crop production can serve as a reference and be helpful in setting WF reduction targets. The consumptive WF of crops, the consumption of rainwater stored in the soil (green WF), and the consumption of irrigation water (blue WF) over the crop growing period varies spatially and temporally depending on environmental factors like climate and soil. The study explores which environmental factors should be distinguished when determining benchmark levels for the consumptive WF of crops. Hereto we determine benchmark levels for the consumptive WF of winter wheat production in China for all separate years in the period 1961-2008, for rain-fed vs. irrigated croplands, for wet vs. dry years, for warm vs. cold years, for four different soil classes, and for two different climate zones. We simulate consumptive WFs of winter wheat production with the crop water productivity model AquaCrop at a 5 by 5 arcmin resolution, accounting for water stress only. The results show that (i) benchmark levels determined for individual years for the country as a whole remain within a range of ±20 % around long-term mean levels over 1961-2008, (ii) the WF benchmarks for irrigated winter wheat are 8-10 % larger than those for rain-fed winter wheat, (iii) WF benchmarks for wet years are 1-3 % smaller than for dry years, (iv) WF benchmarks for warm years are 7-8 % smaller than for cold years, (v) WF benchmarks differ by about 10-12 % across different soil texture classes, and (vi) WF benchmarks for the humid zone are 26-31 % smaller than for the arid zone, which has relatively higher reference evapotranspiration in general and lower yields in rain-fed fields. We conclude that when determining benchmark levels for the consumptive WF of a crop, it is useful to primarily distinguish between different climate zones. If actual consumptive WFs of winter wheat throughout China were reduced to the benchmark levels set by the best 25 % of Chinese winter wheat production (1224 m3 t-1 for arid areas and 841 m3 t-1 for humid areas), the water saving in an average year would be 53 % of the current water consumption at winter wheat fields in China. The majority of the yield increase and associated improvement in water productivity can be achieved in southern China.
Potentiometric surface of the intermediate aquifer system, west- central Florida, May 1987
Lewelling, B.R.
1988-01-01
The intermediate aquifer system within the Southwest Florida Water Management District underlies a 5,000 sq mi area of De Soto, Sarasota, Hardee, Manatee, and parts of Charlotte, Hillsborough, Highlands, and Polk Counties. The intermediate aquifer system occurs between the overlying surficial aquifer system and the underlying Floridan aquifer system, and consists of layers of sand, shell, clay, marl, limestone, and dolom of the Tamiami, Hawthorn, and Tampa Formations of late Tertiary age. The intermediate aquifer system contains one or more water-bearing units separated by discontinuous confining units. This aquifer system is the principal source of potable water in the southwestern part of the study area and is widely used as a source of water in other parts where wells are open to the intermediate aquifer system or to both the intermediate and Floridan aquifer systems. Yields of individual wells open to the intermediate aquifer system range from a few gallons to several hundred gallons per minute. The volume of water withdrawn from the intermediate aquifer system is considerably less than that withdrawn from the Floridan aquifer system in the study area. The surface was mapped by determining the altitude of water levels in a network of wells and is represented on maps by contours that connect points of equal altitude. The compos potentiometric surface of all water-bearing units within the intermediate aquifer system is shown. In areas where multiple aquifers exist, wells open to all aquifers were selected for water level measurements whenever possible. In the southwestern and lower coastal region of the study area, two aquifers and confining units are described for the intermediate aquifer system: the Tamiami-upper Hawthorn aquifer and the underlying lower Hawthorn-upper Tampa aquifer. The potentiometric surface of the Tamiami-upper Hawthorn aquifer is also shown. Water levels are from wells drilled and open exclusively to that aquifer. The exact boundary for the Tamiami-upper Hawthorn aquifer is undetermined because of limd geohydrologic data available from wells. (Lantz-PTT)
NASA Astrophysics Data System (ADS)
Bensi, Manuel; Velaoras, Dimitris; Cardin, Vanessa; Perivoliotis, Leonidas; Pethiakis, George
2015-04-01
Long-term variations of temperature and salinity observed in the Adriatic and Aegean Seas seem to be regulated by larger-scale circulation modes of the Eastern Mediterranean (EMed) Sea, such as the recently discovered feedback mechanisms, namely the BiOS (Bimodal Oscillating System) and the internal thermohaline pump theories. These theories are the results of interpretation of many years' observations, highlighting possible interactions between two key regions of the EMed. Although repeated oceanographic cruises carried out in the past or planned for the future are a very useful tool for understanding the interaction between the two basins (e.g. alternating dense water formation, salt ingressions), recent long time-series of high frequency (up to 1h) sampling have added valuable information to the interpretation of internal mechanisms for both areas (i.e. mesoscale eddies, evolution of fast internal processes, etc.). During the last 10 years, three deep observatories were deployed and maintained in the Adriatic, Ionian, and Aegean Seas: they are respectively, the E2-M3A, the Pylos, and the E1-M3A. All are part of the largest European network of Fixed Point Open Ocean Observatories (FixO3, http://www.fixo3.eu/). Herein, from the analysis of temperature and salinity, and potential density time series collected at the three sites from the surface down to the intermediate and deep layers, we will discuss the almost perfect anti-correlated behavior between the Adriatic and the Aegean Seas. Our data, collected almost continuously since 2006, reveal that these observatories well represent the thermohaline variability of their own areas. Interestingly, temperature and salinity in the intermediate layer suddenly increased in the South Adriatic from the end of 2011, exactly when they started decreasing in the Aegean Sea. Moreover, Pylos data used together with additional ones (e.g. Absolute dynamic topography, temperature and salinity data from other platforms) collected along the typical pathway of the Levantine/Cretan intermediate waters towards the Adriatic Sea, reveal variability of the subsurface/intermediate layers (100-400m depth), which could possibly be attributed to seasonal variability or influences from dynamical features such as the Pelops Gyre. References Bensi, M., V. Cardin, A. Rubino, G. Notarstefano, and P. M. Poulain (2013), Effects of winter convection on the deep layer of the Southern Adriatic Sea in 2012, J. Geophys. Res. Oceans, 118, doi:10.1002/2013JC009432. Velaoras, D., G. Krokos, K. Nittis, and A. Theocharis (2014), Dense intermediate water outflow from the Cretan Sea: A salinity driven, recurrent phenomenon, connected to thermohaline circulation changes, J. Geophys. Res. Oceans, 119, doi:10.1002/2014JC009937.
Matchett, Elliott L.; Fleskes, Joseph
2018-01-01
California's Central Valley provides critical, but threatened habitat and food resources for migrating and wintering waterfowl, shorebirds, and other waterbirds. The Central Valley is comprised of nine basins that were defined by the Central Valley Joint Venture (CVJV) to assist in conservation planning. Basins vary in composition and extent of habitats, which primarily include croplands and wetlands that rely on water supplies shared with other competing human and environmental uses. Changes in climate, urban development, and water supply management are uncertain and could reduce future availability of water supplies supporting waterbird habitats and limit effectiveness of wetland restoration planned by the CVJV to support wintering waterbirds. We modeled 17 plausible scenarios including combinations of three climate projections, three urbanization rates, and five water supply management options to promote agricultural and urban water uses, with and without wetland restoration. Our research examines the reduction in quantity and quality of habitats during the fall migration-wintering period by basin under each scenario, and the efficacy of planned wetland restoration to compensate reductions in flooded areas of wetland habitats. Scenario combinations of projected climate, urbanization, and water supply management options reduced availability of flooded cropland and wetland habitats during fall-winter and degraded the quality of seasonal wetlands (i.e., summer-irrigation for improved forage production), though the extent and frequency of impacts varied by basin. Planned wetland restoration may substantially compensate for scenario-related effects on wetland habitats in each basin. However, results indicate that Colusa, Butte, Sutter, San Joaquin, and Tulare Basins may require additional conservation to support summer-irrigation of seasonal wetlands and winter-flooding of cropland habitats. Still further conservation may be required to provide sufficient areas of flooded seasonal and semi-permanent wetlands in San Joaquin and Tulare Basins during fall-winter. The main objective of this research is to provide decision-support for achieving waterbird conservation goals in the valley and to inform CVJV's regional conservation planning.
Yang, Xiaolin; Chen, Yuanquan; Pacenka, Steven; Gao, Wangsheng; Zhang, Min; Sui, Peng; Steenhuis, Tammo S.
2015-01-01
Water tables are dropping by approximately one meter annually throughout the North China Plain mainly due to water withdrawals for irrigating winter wheat year after year. In order to examine whether the drawdown can be reduced we calculate the net water use for an 11 year field experiment from 2003 to 2013 where six irrigated crops (winter wheat, summer maize, cotton, peanuts, sweet potato, ryegrass) were grown in different crop rotations in the North China Plain. As part of this experiment moisture contents were measured each at 20 cm intervals in the top 1.8 m. Recharge and net water use were calculated based on these moisture measurement. Results showed that winter wheat and ryegrass had the least recharge with an average of 27 mm/year and 39 mm/year, respectively; cotton had the most recharge with an average of 211 mm/year) followed by peanuts with 118 mm/year, sweet potato with 76 mm/year, and summer maize with 44 mm/year. Recharge depended on the amount of irrigation water pumped from the aquifer and was therefore a poor indicator of future groundwater decline. Instead net water use (recharge minus irrigation) was found to be a good indicator for the decline of the water table. The smallest amount of net (ground water) used was cotton with an average of 14 mm/year, followed by peanut with 32 mm/year, summer maize with 71 mm/year, sweet potato with 74 mm/year. Winter wheat and ryegrass had the greatest net water use with the average of 198 mm/year and 111 mm/year, respectively. Our calculations showed that any single crop would use less water than the prevalent winter wheat summer maize rotation. This growing one crop instead of two will reduce the decline of groundwater and in some rain rich years increase the ground water level, but will result in less income for the farmers. PMID:25625765
Soil Water Improvements with the Long Term Use of a Winter Rye Cover Crop
NASA Astrophysics Data System (ADS)
Basche, A.; Kaspar, T.; Archontoulis, S.; Jaynes, D. B.; Sauer, T. J.; Parkin, T.; Miguez, F.
2015-12-01
The Midwestern United States, a region that produces one-third of maize and one-quarter of soybeans globally, is projected to experience increasing rainfall variability with future climate change. One approach to mitigate climate impacts is to utilize crop and soil management practices that enhance soil water storage, reducing the risks of flooding and runoff as well as drought-induced crop water stress. While some research indicates that a winter cover crop in a maize-soybean rotation increases soil water, producers continue to be concerned that water use by cover crops will reduce water for a following cash crop. We analyzed continuous in-field soil moisture measurements over from 2008-2014 at a Central Iowa research site that has included a winter rye cover crop in a maize-soybean rotation for thirteen years. This period of study included years in the top third of wettest years on record (2008, 2010, 2014) as well as years in the bottom third of driest years (2012, 2013). We found the cover crop treatment to have significantly higher soil water storage from 2012-2014 when compared to the no cover crop treatment and in most years greater soil water content later in the growing season when a cover crop was present. We further found that the winter rye cover crop significantly increased the field capacity water content and plant available water compared to the no cover crop treatment. Finally, in 2012 and 2013, we measured maize and soybean biomass every 2-3 weeks and did not see treatment differences in crop growth, leaf area or nitrogen uptake. Final crop yields were not statistically different between the cover and no cover crop treatment in any of the years of this analysis. This research indicates that the long-term use of a winter rye cover crop can improve soil water dynamics without sacrificing cash crop growth.
NASA Astrophysics Data System (ADS)
Magnier, E.; Reynard, E.
2012-04-01
The practice of artificial snowmaking is recent (1990s), and may use large volumes of water. In the French Alps, the total consumption is on average 20 Mm3 per year (Miquel, 2003), which corresponds to the annual consumption of drinking water for a city of more than 300,000 inhabitants such as Nice (France). Moreover, snowmaking does not represent the only use of water in winter sport resorts. The available water resource is used for drinking water, artificial snowmaking and leisure activities (swimming pools, golf spas). One can speak in this context of a multifunctionality of the resource. Of particular concern is the winter season when streams reach their lowest level (from December to April). These activities require that water is drawn from resources created at other times of the year. Water for snowmaking production is pumped from drinking water reservoirs, rivers, groundwater tables, artificial hydropower reservoirs, as well as from hill water reservoirs, specifically built for storing water for snow production, themselves supplied from surface water capture. In Avoriaz (Haute-Savoie, France) the risk of shortages is important. The reason is that the resort is supplied by a unique lake or hillside reservoir (Lake 1730), which satisfies two particularly high-consuming water uses (the water supply for production of snow and drinking water). On a finer scale, namely that of a single day in January 2011, considerable volumes are drawn off in the space of a few hours (10,114 m3 on 24 January), while pumping for drinking water spreads out over several months. Intensity of use for the production of snow can trigger water scarcity and water conflicts with other uses such as drinking water. Good management of the resource is, therefore, especially important. However, no legislation specific to artificial snowmaking has been established. Even if, at present, there is no situation involving shortages and conflicting uses at Avoriaz, the situation needs to be monitored. During winter 2010-2011, insufficient snowfall resulted in large-scale production of artificial snow, thereby considerably weakening the water resource. The poor contribution made by precipitation at the end of the winter and during summer did not enable these reserves to be refilled. In November 2011, reserves were insufficient to start snowmaking production. The lake level was very low and was disturbing the drinking water supply. Without precipitation at the beginning of winter the situation would have been catastrophic for the winter season. In conclusion, this study shows that resource sharing is a risky situation and can cause water deficits punctually. Reference Miquel, G. 2003. Rapport sur la qualité de l'eau et de l'assainissement en France. Office parlementaire d'évaluation des choix scientifiques et technologiques, Paris, 195 p.
Deep Undercooling of Tissue Water and Winter Hardiness Limitations in Timberline Flora 1
Becwar, Michael R.; Rajashekar, Channa; Bristow, Katherine J. Hansen; Burke, Michael J.
1981-01-01
Deep undercooled tissue water, which froze near −40 C, was found in winter collected stem and leaf tissue of the dominant timberline tree species of the Colorado Rocky Mountains, Engelmann spruce (Picea engelmannii (Parry) Engelm.) and subalpine fir (Abies lasiocarpa (Hook.) Nutt.), and in numerous other woody species in and below the subalpine vegetation zone. Previous work on numerous woody plants indicates that deep undercooling in xylem makes probable a −40 C winter hardiness limit in stem tissue. Visual injury determinations and electrolyte loss measurements on stem tissue revealed injury near −40 C associated with the freezing of the deep undercooled stem tissue water. These results suggest that the winter hardiness limit of this woody flora is near −40 C. The relevance of deep undercooling in relation to timberline, the upper elevational limit of the subalpine forest, is discussed. PMID:16661852
Carballo, M C; Cremonte, F; Navone, G T; Timi, J T
2012-01-01
The aims of this study were to determine the existence of migratory movements and to identify ecological stocks of the silverside Odontesthes smitti along its distribution in the Southern Atlantic Ocean, using metazoan parasites as biological tags. Samples were obtained from San José Gulf (SJ) (42° 25' S; 64° 07' W) and Nuevo Gulf (NG) (42° 47' S; 65° 02' W) in north Patagonia during winter and summer and in waters off Mar del Plata (MDP) (38° 03' S; 57° 32' W), Bonaerense region, during winter. Fifteen parasite species were collected. Multivariate statistical procedures on parasite community data showed strong effect of host size on the structure of parasite assemblages. Taking into account the variations among samples due to host size, the differential structure of parasite communities between SJ and NG suggests that fish inhabiting these localities could belong to different ecological stocks. Fish from MDP and SJ caught in summer showed similar composition in their parasite assemblages, which is congruent with a migratory cycle that implies that fish caught in MDP during winter inhabit SJ during summer. Further evidence of the Patagonian origin of MDP O. smitti is the presence of the digenean Proctotrema bartolii in fish from both regions. Proctotrema bartolii is acquired by O. smitti only in the Magellanic province, where its intermediate host, Darina solenoides, is distributed. The analyses suggest that O. smitti inhabiting north Patagonian gulfs could belong to different ecological stocks and that O. smitti caught in MDP could have come from SJ. © 2011 The Authors. Journal of Fish Biology © 2011 The Fisheries Society of the British Isles.
NASA Astrophysics Data System (ADS)
Lu, Y.
2017-12-01
Winter wheat is a staple crop for global food security, and is the dominant vegetation cover for a significant fraction of earth's croplands. As such, it plays an important role in soil carbon balance, and land-atmosphere interactions in these key regions. Accurate simulation of winter wheat growth is not only crucial for future yield prediction under changing climate, but also for understanding the energy and water cycles for winter wheat dominated regions. A winter wheat growth model has been developed in the Community Land Model 4.5 (CLM4.5), but its responses to irrigation and nitrogen fertilization have not been validated. In this study, I will validate winter wheat growth response to irrigation and nitrogen fertilization at five winter wheat field sites (TXLU, KSMA, NESA, NDMA, and ABLE) in North America, which were originally designed to understand winter wheat response to nitrogen fertilization and water treatments (4 nitrogen levels and 3 irrigation regimes). I also plan to further update the linkages between winter wheat yield and cold hazards. The previous cold damage function only indirectly affects yield through reduction on leaf area index (LAI) and hence photosynthesis, such approach could sometimes produce an unwanted higher yield when the reduced LAI saved more nutrient in the grain fill stage.
Sex-specific differences in winter distribution patterns of canvasbacks
Nichols, J.D.; Haramis, G.M.
1980-01-01
Winter band recovery distributions of North American Canvasbacks (Aythya valisineria) suggested that males and females exhibit comparable degrees of fidelity to general wintering areas. Of birds banded during the winter, the proportion of males was found to be higher in northern than in southern areas. Winter band recovery distributions of birds banded in particular areas during the summer were found to differ significantly between sexes, with females being recovered farther south. Factors that may have affected the evolution of sex-specific wintering distributions include: (1) possible reproductive benefits derived by males who winter in the north and thus reach northerly breeding areas early; (2) sexual dimorphism in body size, which may render the smaller females especially susceptible to periods of inclement weather and food shortages; and (3) interactions between sexes in which males may control food supply when food is scarce. Two lines of evidence from field data on Canvasbacks in the Chesapeake Bay suggest the existence of competition between males and females. First, Canvasbacks trapped during winter in smaller bodies of water tended to have higher proportions of females and weigh less than birds trapped in large open bodies of water. Second, analysis of aerial photographs of wintering rafts of Canvasbacks showed patterns of intersexual segregation, with females being found more frequently on peripheral areas of rafts.
Dissolved oxygen in the Tualatin River, Oregon, during winter flow conditions, 1991 and 1992
Kelly, V.J.
1996-01-01
Throughout the winter period, November through April, wastewater treatment plants in the Tualatin River Basin discharge from 10,000 to 15,000 pounds per day of biochemical oxygen demand to the river. These loads often increase substantially during storms when streamflow is high. During the early winter season, when streamflow is frequently less than the average winter flow, the treatment plants discharge about 2,000 pounds per day of ammonia. This study focused on the capacity of the Tualatin River to assimilat oxygen-demanding loads under winter streamflow conditions during the 1992 water year, with an emphasis on peak-flow conditions in the river, and winter-base-flow conditions during November 1992. Concentrations of dissolved oxygen throughout the main stem of the river during the winter remained generally high relative to the State standard for Oregon of 6 milligrams per liter. The most important factors controlling oxygen consumption during winter-low-flow conditions were carbonaceous biochemical oxygen demand and input of oxygen-depleted waters from tributaries. During peak-flow conditions, reduced travel time and increased dilution associated with the increased streamflow minimized the effect of increased oxygen-demanding loads. During the base-flow period in November 1992, concentrations of dissolved oxygen were consistently below 6 milligrams per liter. A hydrodynamic water-quality model was used to identify the processes depleting dissolved oxygen, including sediment oxygen demand, nitrification, and carbonaceous biochemical oxygen demand. Sediment oxygen demand was the most significant factor; nitrification was also important. Hypothetical scenarios were posed to evaluate the effect of different wastewater treatment plant loads during winter-base-flow conditions. Streamflow and temperature were significant factors governing concentrations of dissolved oxygen in the main-stem river.
2004-01-08
KENNEDY SPACE CENTER, FLA. -- A group of white pelicans spend a few moments relaxing in the water near the Vehicle Assembly Building at Kennedy Space Center. Found from British Columbia south to western Ontario, California and the Texas coast, white pelicans winter from Florida south to Panama. They prefer marshy lakes and coastal regions, and winter chiefly in coastal lagoons. White pelicans are one of 310 species of birds that inhabit the Merritt Island National Wildlife Refuge, which shares a boundary with KSC. The marshes and open water of the refuge also provide wintering areas for 23 species of migratory waterfowl, as well as a year-round home for great blue herons, great egrets, wood storks, cormorants, brown pelicans and other species of marsh and shore birds.
Physiological processes during winter dormancy and their ecological significance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Havranek, W.M.; Tranquillini, W.
1995-07-01
Lengthy and severe winters require that trees in the forests of boreal and mountain zones undergo winter dormancy. Physiologically, a high resistance to subfreezing temperatures and concomitant dehydration are necessary. To accomplish this dormancy, both physiological and structural changes are needed at the cellular level that require induction by endogenous and photoperiodic control early in autumn. Endogenous rhythmicity promotes cold hardening in early autumn and the persistence of hardiness throughout the winter. Numerous physiological functions are maintained at a reduced level, or become completely inhibited during true winter dormancy. Winter hardiness also includes the capability to minimize water loss effectivelymore » when water uptake is severely impeded or impossible. Anatomical features such as tracheids act to minimize xylem embolism during frequent freeze-thaw cycles, and {open_quotes}crown{close_quotes} tissues enable buds to stay in a dehydrated and, thus, more resistant state during winter. Both these structural features are adaptations that contribute to the dominance of conifers in cold climates. Interestingly, deciduous tree species rather than evergreen conifers dominate in the most severe winter climates, although it is not clear whether limitations during winter, during the summer growth period, or during both are most limiting to conifer tree ecology. Additional work that evaluates the importance of winter and summer growth restriction, and their interaction, is needed before a comprehensive understanding of conifer tree ecophysiology will be possible.« less
Changing Coastal oceanography of the Black Sea. I: Northwestern Shelf
NASA Astrophysics Data System (ADS)
Tolmazin, D.
This article describes the hydrography of the Northwestern Shelf (NWS), of the Black Sea emphasizing the changes induced by water management in the Dniejer and Dniester river basins. The existing literature and previously unpublished data have been reviewed and synthesized to describe water property fields and transport mechanisms of the NWS and the Dnieper and Dniester estuaries before the early 1960s, or the so-called precontrol period, when the effect of artificial river flow control upon the coastal waters was insignificant. After the hydroenergy complexes and water withdrawal and disposal systems on rivers became fully operational in the early 1970s (the so-called postcontrol period), the annual river discharge from the Dnieper and Dniester had noticeably decreased and seasonal river flow patterns had been artificially modified. Instead of a powerful and short early spring flood, typical for the natural conditions in the Dnieper river, the hydrographs in the postcontrol period exhibit two smaller peaks of river discharge of much longer period. One of them (winter-early spring) is caused by intense hydroenergy generation and weir discharges through the cascade of storage reservoirs. Another is associated with spring flood, modified by intense water consumption and storage in this period. High average river discharge in late May-early June strengthened the summer pycnocline which inhibits vertical mixing in the estuaries and coastal waters. Owing to a slow summer circulation, the rate of natural purification of the entire coastal system has been reduced. This coupled with the increased nutrient, organic and pollutant transport, decreased the dissolved-oxygen concentration and led to anoxic events and mass mortalities of marine organisms in the previously productive regions. These effects have primarily plagued the benthic communities along the entire western coast of the NWS since 1973. Winter convective overturn in the Black Sea reaches its maximum depth at the southern boundary of the NWS. Thus, the NWS waters descend beneath the seasonal and main thermoclines in the open sea and are spread by the prevailing currents across the entire sea in the cold intermediate layer (CIL). By this dynamic mechanism the projected man-made modifications in the riverine-estuarine systems of the NWS will affect and change the large-scale thermohaline structure and marine life of the Black Sea.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Throckmorton, Heather M.; Newman, Brent D.; Heikoop, Jeffrey M.
Climate change and thawing permafrost in the Arctic will significantly alter landscape hydro-geomorphology and the distribution of soil moisture, which will have cascading effects on climate feedbacks (CO 2 and CH 4) and plant and microbial communities. Fundamental processes critical to predicting active layer hydrology are not well understood. This study applied water stable isotope techniques (δ 2H and δ 18O) to infer sources and mixing of active layer waters in a polygonal tundra landscape in Barrow, Alaska (USA), in August and September of 2012. Results suggested that winter precipitation did not contribute substantially to surface waters or subsurface activemore » layer pore waters measured in August and September. Summer rain was the main source of water to the active layer, with seasonal ice melt contributing to deeper pore waters later in the season. Surface water evaporation was evident in August from a characteristic isotopic fractionation slope (δ 2H vs δ 18O). Freeze-out isotopic fractionation effects in frozen active layer samples and textural permafrost were indistinguishable from evaporation fractionation, emphasizing the importance of considering the most likely processes in water isotope studies, in systems where both evaporation and freeze-out occur in close proximity. The fractionation observed in frozen active layer ice was not observed in liquid active layer pore waters. Such a discrepancy between frozen and liquid active layer samples suggests mixing of meltwater, likely due to slow melting of seasonal ice. In conclusion, this research provides insight into fundamental processes relating to sources and mixing of active layer waters, which should be considered in process-based fine-scale and intermediate-scale hydrologic models.« less
Throckmorton, Heather M.; Newman, Brent D.; Heikoop, Jeffrey M.; ...
2016-04-16
Climate change and thawing permafrost in the Arctic will significantly alter landscape hydro-geomorphology and the distribution of soil moisture, which will have cascading effects on climate feedbacks (CO 2 and CH 4) and plant and microbial communities. Fundamental processes critical to predicting active layer hydrology are not well understood. This study applied water stable isotope techniques (δ 2H and δ 18O) to infer sources and mixing of active layer waters in a polygonal tundra landscape in Barrow, Alaska (USA), in August and September of 2012. Results suggested that winter precipitation did not contribute substantially to surface waters or subsurface activemore » layer pore waters measured in August and September. Summer rain was the main source of water to the active layer, with seasonal ice melt contributing to deeper pore waters later in the season. Surface water evaporation was evident in August from a characteristic isotopic fractionation slope (δ 2H vs δ 18O). Freeze-out isotopic fractionation effects in frozen active layer samples and textural permafrost were indistinguishable from evaporation fractionation, emphasizing the importance of considering the most likely processes in water isotope studies, in systems where both evaporation and freeze-out occur in close proximity. The fractionation observed in frozen active layer ice was not observed in liquid active layer pore waters. Such a discrepancy between frozen and liquid active layer samples suggests mixing of meltwater, likely due to slow melting of seasonal ice. In conclusion, this research provides insight into fundamental processes relating to sources and mixing of active layer waters, which should be considered in process-based fine-scale and intermediate-scale hydrologic models.« less
Performance evaluation of Ormat unit at Wabuska, Nevada. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Culver, G.
1986-07-01
Three nominal 24 hour tests under summer, winter and spring weather conditions, were run on an Ormat geothermal binary power generation machine. The machine, located at TAD's Enterprises in Wabuska, Nevada is supplied with approximately 830 gpm of geothermal water at 221/sup 0/F and has two spray cooling ponds. During the tests, temperature, pressure, and flows of geothermal water, freon, cooling water and instantaneous electrical production were recorded hourly. At least once during each test, energy consumption of the well pump, freon feed pump and cooling water pumps were made. Power output of the machine is limited by spray pondmore » capacity. Net output ranged from 410.2 kW during summer conditions when cooling water was 65/sup 0/F to 610.4 kW during winter conditions when cooling water was 55/sup 0/F. Net resource utilization ranged from 1.005 Whr/lb during the summer test to 1.55 Whr/lb during the winter test. Spray pond performance averaged 63% for the fall and winter tests. Availability of the Ormat unit itself during the eight month test period was generally good, averaging 95.5%. Overall system availability, including well pumps, cooling system and electric grid was somewhat less - averaging 83%.« less
NASA Astrophysics Data System (ADS)
Sproles, Eric A.; Roth, Travis R.; Nolin, Anne W.
2017-02-01
In the Pacific Northwest, USA, the extraordinarily low snowpacks of winters 2013-2014 and 2014-2015 stressed regional water resources and the social-environmental system. We introduce two new approaches to better understand how seasonal snow water storage during these two winters would compare to snow water storage under warmer climate conditions. The first approach calculates a spatial-probabilistic metric representing the likelihood that the snow water storage of 2013-2014 and 2014-2015 would occur under +2 °C perturbed climate conditions. We computed snow water storage (basin-wide and across elevations) and the ratio of snow water equivalent to cumulative precipitation (across elevations) for the McKenzie River basin (3041 km2), a major tributary to the Willamette River in Oregon, USA. We applied these computations to calculate the occurrence probability for similarly low snow water storage under climate warming. Results suggest that, relative to +2 °C conditions, basin-wide snow water storage during winter 2013-2014 would be above average, while that of winter 2014-2015 would be far below average. Snow water storage on 1 April corresponds to a 42 % (2013-2014) and 92 % (2014-2015) probability of being met or exceeded in any given year. The second approach introduces the concept of snow analogs to improve the anticipatory capacity of climate change impacts on snow-derived water resources. The use of a spatial-probabilistic approach and snow analogs provide new methods of assessing basin-wide snow water storage in a non-stationary climate and are readily applicable in other snow-dominated watersheds.
Jones, Benjamin M; Arp, Christopher D; Hinkel, Kenneth M; Beck, Richard A; Schmutz, Joel A; Winston, Barry
2009-06-01
Lakes are dominant landforms in the National Petroleum Reserve Alaska (NPRA) as well as important social and ecological resources. Of recent importance is the management of these freshwater ecosystems because lakes deeper than maximum ice thickness provide an important and often sole source of liquid water for aquatic biota, villages, and industry during winter. To better understand seasonal and annual hydrodynamics in the context of lake morphometry, we analyzed lakes in two adjacent areas where winter water use is expected to increase in the near future because of industrial expansion. Landsat Thematic Mapper and Enhanced Thematic Mapper Plus imagery acquired between 1985 and 2007 were analyzed and compared with climate data to understand interannual variability. Measured changes in lake area extent varied by 0.6% and were significantly correlated to total precipitation in the preceding 12 months (p < 0.05). Using this relation, the modeled lake area extent from 1985 to 2007 showed no long-term trends. In addition, high-resolution aerial photography, bathymetric surveys, water-level monitoring, and lake-ice thickness measurements and growth models were used to better understand seasonal hydrodynamics, surface area-to-volume relations, winter water availability, and more permanent changes related to geomorphic change. Together, these results describe how lakes vary seasonally and annually in two critical areas of the NPRA and provide simple models to help better predict variation in lake-water supply. Our findings suggest that both overestimation and underestimation of actual available winter water volume may occur regularly, and this understanding may help better inform management strategies as future resource use expands in the NPRA.
Jones, Benjamin M.; Arp, C.D.; Hinkel, Kenneth M.; Beck, R.A.; Schmutz, J.A.; Winston, B.
2009-01-01
Lakes are dominant landforms in the National Petroleum Reserve Alaska (NPRA) as well as important social and ecological resources. Of recent importance is the management of these freshwater ecosystems because lakes deeper than maximum ice thickness provide an important and often sole source of liquid water for aquatic biota, villages, and industry during winter. To better understand seasonal and annual hydrodynamics in the context of lake morphometry, we analyzed lakes in two adjacent areas where winter water use is expected to increase in the near future because of industrial expansion. Landsat Thematic Mapper and Enhanced Thematic Mapper Plus imagery acquired between 1985 and 2007 were analyzed and compared with climate data to understand interannual variability. Measured changes in lake area extent varied by 0.6% and were significantly correlated to total precipitation in the preceding 12 months (p < 0.05). Using this relation, the modeled lake area extent from 1985 to 2007 showed no long-term trends. In addition, high-resolution aerial photography, bathymetric surveys, water-level monitoring, and lake-ice thickness measurements and growth models were used to better understand seasonal hydrodynamics, surface area-to-volume relations, winter water availability, and more permanent changes related to geomorphic change. Together, these results describe how lakes vary seasonally and annually in two critical areas of the NPRA and provide simple models to help better predict variation in lake-water supply. Our findings suggest that both overestimation and underestimation of actual available winter water volume may occur regularly, and this understanding may help better inform management strategies as future resource use expands in the NPRA. ?? 2008 Springer Science+Business Media, LLC.
High resolution paleoceanography of the central Gulf of California during the past 15,000 years
NASA Astrophysics Data System (ADS)
Barron, J. A.; Bukry, D.; Dean, W. E.
2004-12-01
A high resolution paleoceanographic history of the central Gulf of California during the past 15,000 years has been assembled using microfossil (diatom and silicoflagellate) and geochemical proxy data from a composite section of gravity core GGC55 and giant piston core JPC56 in the western Guaymas Basin (27.5 deg. N, 112.1 deg. W, water depth 818 m) and from DSDP Site 480 (27.9 deg. N, 111.7 deg. W, 655 m water depth) in the eastern Guaymas Basin. These data argue for abrupt, basin-wide changes during the Bolling-Allerod, Younger Dryas, and earliest part of the Holocene that mirror changes documented in cores from the Pacific margins of both Baja and Alta California. Between about 10 ka and 6 ka, these central Gulf of California records became more regionally distinctive, as surface and intermediate waters resembling those of the modern-day northern Gulf became dominant and virtually no calcium carbonate or tropical microfossils were preserved in the underlying sediments. Beginning at about 6 ka, tropical microfossils returned to the central Gulf, possibly signaling enhanced El Nino-like conditions. Proxy data suggest that late winter-early spring coastal upwelling was abruptly strengthened on the mainland (eastern) side at about 5.4 ka and again at about 3.0 ka, whereas sediments from the western side of the central Gulf became increasingly diatom poor and calcium carbonate rich. An intensification of northwest winds during the late winter to early spring likely occurred in the central Gulf at about 5.4 ka. Interestingly, this proposed wind shift in the Gulf of California coincides with an abrupt 5.4 ka change to drier conditions in the Cariaco Basin off Venezuela that has been proposed to reflect a southward shift in the mean position of the Intertropical Convergence Zone in response to increasing El Nino-like conditions.
NASA Astrophysics Data System (ADS)
Kawamura, Kimitaka; Bikkina, Srinivas
2016-03-01
This review aims to update our understanding on molecular distributions of water-soluble dicarboxylic acids and related compounds in atmospheric aerosols with a focus on their geographical variability, size distribution, sources and formation pathways. In general, molecular distributions of diacids in aerosols from the continental sites and over the open ocean waters are often characterized by the predominance of oxalic acid (C2) followed by malonic acid (C3) and/or succinic acid (C4), while those sampled over the polar regions often follow the order of C4 ≥ C2 and C3. The most abundant and ubiquitous diacid is oxalic acid, which is principally formed via atmospheric oxidation of its higher homologues of long chain diacids and other pollution-derived organic precursors (e.g., olefins and aromatic hydrocarbons). However, its occurrence in marine aerosols is mainly due to the transport from continental outflows (e.g., East Asian outflow during winter/spring to the North Pacific) and/or governed by photochemical/aqueous phase oxidation of biogenic unsaturated fatty acids (e.g., oleic acid) and isoprene emitted from the productive open ocean waters. The long-range atmospheric transport of pollutants from mid latitudes to the Arctic in dark winter facilitates to accumulate the reactants prior to their intense photochemical oxidation during springtime polar sunrise. Furthermore, the relative abundances of C2 in total diacid mass showed similar temporal trends with downward solar irradiation and ambient temperatures, suggesting the significance of atmospheric photochemical oxidation processing. Compound-specific isotopic analyses of oxalic acid showed the highest δ13C among diacids whereas azelaic acid showed the lowest value, corroborating the significance of atmospheric aging of oxalic acid. On the other hand, other diacids gave intermediate values between these two diacids, suggesting that aging of oxalic acid is associated with 13C enrichment.
Errera, R.M.; Roelke, D.L.; Kiesling, R.L.; Brooks, B.W.; Grover, J.P.; Schwierzke, L.; Urena-Boeck, F.; Baker, J.W.; Pinckney, J.L.
2008-01-01
Prymnesium parvum, a haptophyte species, forms harmful blooms, including those that have caused severe fish kills in Texas, USA, over the past 6 yr. We studied P. parvum dynamics using in situ microcosm experiments at Lake Possum Kingdom, Texas, during 3 seasons (fall 2004, winter and spring 2005). Experimental treatments included full and partial nutrient enrichment (encompassing nitrogen [N] and phosphorus [P] deficient treatments), P. parvum immigration and combinations of these factors. In the control and N and P deficient treatments, P. parvum populations dominated the community, but only in the N deficient treatments did P. parvum experience a significant growth in the population. In contrast, when nutrients were not limiting, P. parvum tended to lose its competitive edge to other taxa such as chlorophytes, euglenophytes and diatoms, which then dominated the community. Population growth of P. parvum was also stimulated through immigration, but only during the winter experiment, a period of the year when bloom initiation is common. This finding suggests that movement into the water column may be an important process leading to P. parvum bloom initiation. Toxicity of P. parvum to fish was also affected by the nutrient changes: during conditions of no nutrient addition P. parvum was most toxic; intermediate toxicity was observed under N and P deficient conditions, and full nutrient enrichments resulted in nearly non-toxic conditions. ?? Inter-Research 2008.
NASA Astrophysics Data System (ADS)
Brisson, Cathy; Boucher, Marie-Amélie; Latraverse, Marco
2014-05-01
This research focuses on the improvement of streamflow forecasts for two subcatchments in the Lac-St-Jean area, a northern part of the province of Quebec in Canada. Those two subcatchments, named Manouane and Passes-Dangereuses, are part of a bigger system, which comprises many reservoirs and six hydropower plants. This system is managed by Rio Tinto Alcan, an aluminium producer who needs this energy for its processes. Optimal management of the hydropower plants highly depends on the reliability of the inflow forecasts to the reservoirs and also on the reliability of observed streamflow. The latter are not directly measured, but rather deduced from the computation of a water balance. This water balance includes streamflow computation based on rating curves for river sections and upstream reservoirs and a modelling process using CEQUEAU hydrological model (Morin et al., 1981). In addition, mostly during the winter, the model has to account for a transfer of water from Lac Manouane reservoir to Passes-Dangereuses through Bonnard channel. Winter flow though Bonnard channel is controlled by a spillway, and represented in CEQUEAU by a transfer function and a fixed time delay (2 days). However, it is suspected that the evacuation function, as it is currently computed, is inaccurate. The main objective of this work is to reduce predictive uncertainty for Lac Manouane and Passes-Dangereuses catchment, for the one-day ahead horizon. This objective is twofold. First, the uncertainty related to the parameterization of the hydrological model had never been evaluated. It was to be investigated whether it is better to spatialize the calibration of the hydrological model. In its actual form, the calibration of the hydrological model CEQUEAU (Morin et al., 1981) is based exclusively on the downstream outflow. There is, however, intermediate streamflow measurements data available for an intermediate location. Our study shows that calibrating the model using streamflows for both locations (intermediate location and downstream) leads to improved forecasts, as measured by the Nash-Sutcliffe efficiency criterion. The parameter sets thus determined best represent the phenomena of exchange and runoff in the watershed. Second, this study aims at reducing the uncertainty associated to the evacuation function for the Bonnard channel as well as the time delay related to this transfer. Instead of using a fixed 2-day time delay for the transfer, it was attempted to represent the channel in the hydrological model CEQUEAU and compute the time delay from this model. The results show that hydrological modelling does not improve the results and that the 2-day time delay is adequate, especially for first days of opening and few days after closure of the gate. In addition, this research shows that the evacuation function of Bonnard spillway is inexact for large streamflows. It is considered the main source of uncertainty for the prediction of inflows to the reservoirs. We also show that the evacuated streamflows can be successfully corrected by hydrological modelling. This case study shows that a careful revision of the inflow forecasting process for those important watersheds can help reduce predictive uncertainty. Although the application is specific to the Lac-St-Jean area, we believe that our experience could serve other users and water managers with similar issues regarding inflow uncertainty. Reference Morin, G., J.-P. Fortin, J.-P. Lardeau, W. Sochanska and S. Paquette. 1981. Modèle CEQUEAU : Manuel d'utilisation. Rapport de recherche no R-93, INRS-Eau, Sainte-Foy
Retention time generates short-term phytoplankton blooms in a shallow microtidal subtropical estuary
NASA Astrophysics Data System (ADS)
Odebrecht, Clarisse; Abreu, Paulo C.; Carstensen, Jacob
2015-09-01
In this study it was hypothesised that increasing water retention time promotes phytoplankton blooms in the shallow microtidal Patos Lagoon estuary (PLE). This hypothesis was tested using salinity variation as a proxy of water retention time and chlorophyll a for phytoplankton biomass. Submersible sensors fixed at 5 m depth near the mouth of PLE continuously measured water temperature, salinity and pigments fluorescence (calibrated to chlorophyll a) between March 2010 and 12th of December 2011, with some gaps. Salinity variations were used to separate alternating patterns of outflow of lagoon water (salinity <8; 46% of the time) and inflow of marine water (salinity >24; 35% of the time). The two transition phases represented a rapid change from lagoon water outflow to marine water inflow and a more gradually declining salinity between the dominating inflow and outflow conditions. During the latter of these, a significant chlorophyll a increase relative to that expected from a linear mixing relationship was observed at intermediate salinities (10-20). The increase in chlorophyll a was positively related to the duration of the prior coastal water inflow in the PLE. Moreover, chlorophyll a increase was significantly higher during austral spring-summer than autumn-winter, probably due to higher light and nutrient availability in the former. Moreover, the retention time process operating on time scales of days influences the long-term phytoplankton variability in this ecosystem. Comparing these results with monthly data from a nearby long-term water quality monitoring station (1993-2011) support the hypothesis that chlorophyll a accumulations occur after marine inflow events, whereas phytoplankton does not accumulate during high water outflow, when the water residence time is short. These results suggest that changing hydrological pattern is the most important mechanism underlying phytoplankton blooms in the PLE.
Selenium and boron in aquatic birds from central California
Paveglio, F.L.; Bunck, C.M.; Heinz, G.H.
1992-01-01
Subsurface agricultural drainwater used for marsh management has resulted in trace element contamination of aquatic bird food chains in central California. Consequently, we collected breeding and wintering aquatic birds from the Grassland Water District (GWD) of California during 1985-88 to measure selenium (Se) and boron (B) contamination resulting from use of such drainage water for wetland management. During the breeding and wintering periods, livers of birds from the North and South areas of the Grasslands contained concentrations of Se and B that have been associated with reproductive impairment. Birds from the South Grasslands, which had received more undiluted drainage water, were more contaminated than those from the North Grasslands. Birds had higher (P < 0.001) levels of Se and B at the end of the 1985-86 wintering period than at the beginning, indicating that the Grasslands was the major source of contamination. Concentrations of Se decreased from 1985 through 1988, after freshwater was substituted for irrigation drainage water during autumn 1985. B concentrations in wintering birds, except for American coots (Fulica americana), declined to background levels, while concentrations in breeding birds remained slightly elevated. However, after 3 years of freshwater management of the Grasslands, liver Se levels in some breeding and wintering birds still were above concentrations associated with impaired reproduction in laboratory and field studies. In areas with high potential for leaching of Se and B from agricultural land, irrigation drainage water should not be used for wetland management.
Uptake of water via branches helps timberline conifers refill embolized xylem in late winter.
Mayr, Stefan; Schmid, Peter; Laur, Joan; Rosner, Sabine; Charra-Vaskou, Katline; Dämon, Birgit; Hacke, Uwe G
2014-04-01
Xylem embolism is a limiting factor for woody species worldwide. Conifers at the alpine timberline are exposed to drought and freeze-thaw stress during winter, which induce potentially lethal embolism. Previous studies indicated that timberline trees survive by xylem refilling. In this study on Picea abies, refilling was monitored during winter and spring seasons and analyzed in the laboratory and in situ experiments, based on hydraulic, anatomical, and histochemical methods. Refilling started in late winter, when the soil was frozen and soil water not available for the trees. Xylem embolism caused up to 86.2% ± 3.1% loss of conductivity and was correlated with the ratio of closed pits. Refilling of xylem as well as recovery in shoot conductance started in February and corresponded with starch accumulation in secondary phloem and in the mesophyll of needles, where we also observed increasing aquaporin densities in the phloem and endodermis. This indicates that active, cellular processes play a role for refilling even under winter conditions. As demonstrated by our experiments, water for refilling was thereby taken up via the branches, likely by foliar water uptake. Our results suggest that refilling is based on water shifts to embolized tracheids via intact xylem, phloem, and parenchyma, whereby aquaporins reduce resistances along the symplastic pathway and aspirated pits facilitate isolation of refilling tracheids. Refilling must be taken into account as a key process in plant hydraulics and in estimating future effects of climate change on forests and alpine tree ecosystems.
Direct visual observations of nanoparticles in the Celtic Sea
NASA Astrophysics Data System (ADS)
Rusiecka, D.; Gledhill, M.; Achterberg, E. P.; Elgy, C.; Connelly, D.
2016-02-01
Shelf seas are a substantial source of dissolved iron and other biologically essential dissolved trace metals (dTM) to the open ocean. The concentration of dTM in seawater is strongly influenced by their physico-chemical forms. The role of submicron colloids on the stabilization and transport of dTM in the soil porewaters has already been recognized. However, the influence of nanoparticles (NP) on dTM stabilization in marine systems and consequently on their long range off-shelf transport is still very poorly constrained. The characterization of marine NP is fundamental to understand their chemical behaviour. Here, we report the first direct visual investigation into the formation, water column size distribution and seasonal variation of NP in the Celtic Sea with supportive examination of particle morphology. Samples were collected from surface (depth range), intermediate (depth range) and deep (depth range) waters in December 2014, April 2015 and July 2015. Nanoparticles (>3 KDa) were concentrated by stirred cell ultrafiltration and imaged using Atomic Force Microscopy and Transmission Electron Microscopy. NP size distributions from the spring cruise showed that they mainly existed in the smallest 0.4-1 nm fraction in surface- and bottom-waters, whereas the summer season was dominated by 0.4-1 nm fraction at all depths. In winter NP in bottom-waters were found predominantly in bigger 1-2 nm fraction.
NASA Astrophysics Data System (ADS)
Fellows, A.; Flerchinger, G. N.; Lohse, K. A.; Seyfried, M. S.
2017-12-01
Predicting winter CO2 efflux across the rain-to-snow transition zone is challenging in the cold semiarid northern Great Basin, USA, complicated by steep environmental gradients and marked heterogeneity in ecosystem properties. We therefore examined winter CO2 efflux over 9 site-years using 4 eddy covariance towers located in the Reynolds Creek Critical Zone Observatory. The sites were sagebrush shrublands located at 1425, 1680, 2098, and 2111 m, and spanned a large part of the rain-to-snow transition zone. We focused on two objectives. First, we quantified winter CO2 efflux at the sites, and considered how these varied with elevation. Second, we used a within-site and cross-site analysis to examine the biological and physical factors that impact winter CO2 efflux. Winter conditions were identified using temperature, snow depth, and CO2 exchange measurements and included 12,922 observations. The duration of winter conditions increased from 90 to 180 days with elevation. Peak snow depth increased from < 30 to > 100 cm with elevation. Cumulative winter CO2 efflux accounted for > 10% of the total annual CO2 efflux, increased with elevation, and was a key component of net ecosystem production at some sites in some years. The importance of winter CO2 efflux was accentuated by the region's long winters and also dry summers that decreased water availability and decomposition during non-winter periods. Preliminary regressions examining air temperature, soil temperature, wind speed, snow depth, and gross carbon uptake indicated some of these factors control the rate of winter CO2 efflux and require consideration, but that additional work is needed to disentangle co-linearity and assess the importance of these factors within and between sites. These findings suggest a consideration of winter CO2 efflux is warranted in cold winter-wet semiarid ecosystems, particularly where winters are long and non-winter CO2 efflux is strongly limited by water availability.
Özkundakci, Deniz; Gsell, Alena S; Hintze, Thomas; Täuscher, Helgard; Adrian, Rita
2016-01-01
How climate change will affect the community dynamics and functionality of lake ecosystems during winter is still little understood. This is also true for phytoplankton in seasonally ice-covered temperate lakes which are particularly vulnerable to the presence or absence of ice. We examined changes in pelagic phytoplankton winter community structure in a north temperate lake (Müggelsee, Germany), covering 18 winters between 1995 and 2013. We tested how phytoplankton taxa composition varied along a winter-severity gradient and to what extent winter severity shaped the functional trait composition of overwintering phytoplankton communities using multivariate statistical analyses and a functional trait-based approach. We hypothesized that overwintering phytoplankton communities are dominated by taxa with trait combinations corresponding to the prevailing winter water column conditions, using ice thickness measurements as a winter-severity indicator. Winter severity had little effect on univariate diversity indicators (taxon richness and evenness), but a strong relationship was found between the phytoplankton community structure and winter severity when taxon trait identity was taken into account. Species responses to winter severity were mediated by the key functional traits: motility, nutritional mode, and the ability to form resting stages. Accordingly, one or the other of two functional groups dominated the phytoplankton biomass during mild winters (i.e., thin or no ice cover; phototrophic taxa) or severe winters (i.e., thick ice cover; exclusively motile taxa). Based on predicted milder winters for temperate regions and a reduction in ice-cover durations, phytoplankton communities during winter can be expected to comprise taxa that have a relative advantage when the water column is well mixed (i.e., need not be motile) and light is less limiting (i.e., need not be mixotrophic). A potential implication of this result is that winter severity promotes different communities at the vernal equinox, which may have different nutritional quality for the next trophic level and ecosystem-scale effects. © 2015 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Herguera, J. C.; Herbert, T.; Kashgarian, M.; Charles, C.
2010-05-01
Intermediate ocean circulation changes during the last Glacial Maximum (LGM) in the North Pacific have been linked with Northern Hemisphere climate through air-sea interactions, although the extent and the source of the variability of the processes forcing these changes are still not well resolved. The ventilated volumes and ages in the upper wind driven layer are related to the wind stress curl and surface buoyancy fluxes at mid to high latitudes in the North Pacific. In contrast, the deeper thermohaline layers are more effectively ventilated by direct atmosphere-sea exchange during convective formation of Subantarctic Mode Waters (SAMW) and Antarctic Intermediate Waters (AAIW) in the Southern Ocean, the precursors of Pacific Intermediate Waters (PIW) in the North Pacific. Results reported here show a fundamental change in the carbon isotopic gradient between intermediate and deep waters during the LGM in the eastern North Pacific indicating a deepening of nutrient and carbon rich waters. These observations suggest changes in the source and nature of intermediate waters of Southern Ocean origin that feed PIW and enhanced ventilation processes in the North Pacific, further affecting paleoproductivity and export patters in this basin. Furthermore, oxygen isotopic results indicate these changes may have been accomplished in part by changes in circulation affecting the intermediate depths during the LGM.
Winter movements of four fish species near a thermal plume in northern Minnesota
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ross, M.J.; Winter, J.D.
1981-01-01
Four fish species were studied during the winter of 1975 to compare their winter movements near the thermal plume of a power plant. Seventeen yellow perch (Perca flavescens), six northern pike (Esox lucius), three walleyes (Stizostedion vitreum), and two largemouth bass (Micropterus salmoides) were equipped with radio frequency transmitters. The spatial distributions differed among species. Only the largemouth bass confined their movements to heated water areas. The yellow perch, which was of particular interest, do not seem to be attracted to warm winter waters, and thus locate themselves in the peripheral areas of the discharge bay and fail to reproduce.more » This finding is contrary to those of previous studies.« less
Relationships between solar activity and climate change. [sunspot cycle effects on lower atmosphere
NASA Technical Reports Server (NTRS)
Roberts, W. O.
1974-01-01
Recurrent droughts are related to the double sunspot cycle. It is suggested that high solar activity generally increases meridional circulations and blocking patterns at high and intermediate latitudes, especially in winter. This effect is related to the sudden formation of cirrus clouds during strong geomagnetic activity that originates in the solar corpuscular emission.
A review of regulations and guidelines related to winter manure application
USDA-ARS?s Scientific Manuscript database
Application of animal manure to frozen and snow-covered soils can increase the risk of nutrient losses and impairment of water quality in regions with hardy winters. In conjunction with global distributions of animal densities, we reviewed world-wide regulatory and voluntary guidelines on winter man...
Wang, Chuan; Shi, Honglan; Adams, Craig D; Gamagedara, Sanjeewa; Stayton, Isaac; Timmons, Terry; Ma, Yinfa
2011-02-01
A comprehensive method has been developed and validated in two different water matrices for the analysis of 16 pharmaceutical compounds using solid phase extraction (SPE) of water samples, followed by liquid chromatography coupled with tandem mass spectrometry. These 16 compounds include antibiotics, hormones, analgesics, stimulants, antiepileptics, and X-ray contrast media. Method detection limits (MDLs) that were determined in both reagent water and municipal tap water ranged from 0.1 to 9.9 ng/L. Recoveries for most of the compounds were comparable to those obtained using U.S. EPA methods. Treated and untreated water samples were collected from 31 different water treatment facilities across Missouri, in both winter and summer seasons, and analyzed to assess the 16 pharmaceutical compounds. The results showed that the highest pharmaceutical concentrations in untreated water were caffeine, ibuprofen, and acetaminophen, at concentrations of 224, 77.2, and 70 ng/L, respectively. Concentrations of pharmaceuticals were generally higher during the winter months, as compared to those in the summer due, presumably, to smaller water quantities in the winter, even though pharmaceutical loadings into the receiving waters were similar for both seasons. © 2010 Elsevier Ltd. All rights reserved.
Guan, Lei; Wen, Li; Feng, Duoduo; Zhang, Hong; Lei, Guangchun
2014-12-01
Carex meadows are critical habitat for wintering geese in the floodplains of the middle and lower reaches of Yangtze River, China. These meadows follow a growth cycle closely tied to the seasonal hydrological fluctuation: as water levels recede in the fall, exposed mudflats provide habitat for Carex spp. growth. The seasonal growth of Carex overlaps the arrival of wintering geese and provides an important food source for the migrants. Recent alterations to the Yangtze's hydrology, however, have disrupted the synchronous relationship between water levels, Carex growth and wintering geese at Dongting Lake. In October 2012, we carried out an outdoor mesocosm experiment to investigate potential impacts of delayed water recession on the germination and growth of Carex heterolepis, the dominant Carex species at Dongting Lake, to understand how changes in hydrology might impact wintering goose habitat. Results showed that the delayed flood recession exerted significant impact on the first growth cycle of Carex growth. Prolonged inundation significantly lowered the intrinsic growth rate (P = 0.03) and maximum growth rates (P = 0.02). It also took significantly longer time to reach the peak growth rate (P = 0.04 and 0.05 for number of shoot and biomass, respectively). As a result, biomass accumulation was reduced by 45, 62 and 90 % for 10-day, 20-day and 30-day inundation treatments, respectively. These results indicate a severe risk of food shortage for wintering geese when water recession delayed. This potential risk should be taken into consideration when operating any hydrological control structures that alter the flood regimes in Dongting Lake.
NASA Astrophysics Data System (ADS)
Xia, Lu; Gao, Zongjun; Zheng, Xilai; Wei, Jiuchuan
2018-04-01
To investigate the effect of recharge water temperature on bioclogging processes and mechanisms during seasonal managed aquifer recharge (MAR), two groups of laboratory percolation experiments were conducted: a winter test and a summer test. The temperatures were controlled at 5±2 and 15±3 °C, and the tests involved bacterial inoculums acquired from well water during March 2014 and August 2015, for the winter and summer tests, respectively. The results indicated that the sand columns clogged 10 times faster in the summer test due to a 10-fold larger bacterial growth rate. The maximum concentrations of total extracellular polymeric substances (EPS) in the winter test were approximately twice those in the summer test, primarily caused by a 200 μg/g sand increase of both loosely bound EPS (LB-EPS) and tightly bound EPS (TB-EPS). In the first half of the experimental period, the accumulation of bacteria cells and EPS production induced rapid bioclogging in both the winter and summer tests. Afterward, increasing bacterial growth dominated the bioclogging in the summer test, while the accumulation of LB-EPS led to further bioclogging in the winter test. The biological analysis determined that the dominant bacteria in experiments for both seasons were different and the bacterial community diversity was 50% higher in the winter test than that for summer. The seasonal inoculums could lead to differences in the bacterial community structure and diversity, while recharge water temperature was considered to be a major factor influencing the bacterial growth rate and metabolism behavior during the seasonal bioclogging process.
Seasonal perspective of dietary arsenic consumption and urine arsenic in an endemic population.
Biswas, Anirban; Deb, Debasree; Ghose, Aloke; Santra, Subhas Chandra; Guha Mazumder, Debendra Nath
2014-07-01
Exposure to arsenic in arsenic endemic areas is most remarkable environmental health challenges. Although effects of arsenic contamination are well established, reports are unavailable on probable seasonal variation due to changes of food habit depending on winter and summer seasons, especially for endemic regions of Nadia district, West Bengal. Complete 24-h diets, drinking-cooking water, first morning voided urine samples, and diet history were analyzed on 25 volunteers in arsenic endemic Chakdah block of Nadia district, once in summer followed by once in winter from the same participants. Results depicted no seasonal variation of body weight and body mass index. Arsenic concentration of source drinking and cooking water decreased (p = 0.04) from 26 μg L(-1) in summer to 6 μg L(-1) in winter season. We recorded a seasonal decrease of water intake in male (3.8 and 2.5 L day (-1)) and female (2.6 and 1.2 L day(-1)) participants from summer to winter. Arsenic intake through drinking water decreased (p = 0.04) in winter (29 μg day(-1)) than in summer (100 μg day(-1)), and urinary arsenic concentration decreased (p = 0.018) in winter (41 μg L(-1)) than in summer (69 μg L(-1)). Dietary arsenic intake remained unchanged (p = 0.24) over the seasons. Hence, we can infer that human health risk assessment from arsenic needs an insight over temporal scale.
Winter feeding, growth and condition of brown trout Salmo trutta in a groundwater-dominated stream
French, William E.; Vondracek, Bruce C.; Ferrington, Leonard C.; Finlay, Jacques C.; Dieterman, Douglas J.
2014-01-01
Winter can be a stressful period for stream-dwelling salmonid populations, often resulting in reduced growth and survival. Stream water temperatures have been identified as a primary mechanism driving reductions in fitness during winter. However, groundwater inputs can moderate water temperature and may reduce winter severity. Additionally, seasonal reductions in prey availability may contribute to decreased growth and survival, although few studies have examined food webs supporting salmonids under winter conditions. This study employed diet, stable isotope, and mark-recapture techniques to examine winter (November through March) feeding, growth, and condition of brown troutSalmo trutta in a groundwater-dominated stream (Badger Creek, Minnesota, USA). Growth was greater for fish ≤ 150 mm (mean = 4.1 mg g−1 day−1) than for those 151–276 mm (mean = 1.0 mg g−1 day−1) during the winter season. Overall condition from early winter to late winter did not vary for fish ≤150 mm (mean relative weight (Wr) = 89.5) and increased for those 151–276 mm (mean Wr = 85.8 early and 89.4 late). Although composition varied both temporally and by individual, brown trout diets were dominated by aquatic invertebrates, primarily Amphipods, Dipterans, and Trichopterans. Stable isotope analysis supported the observations of the dominant prey taxa in stomach contents and indicated the winter food web was supported by a combination of allochthonous inputs and aquatic macrophytes. Brown trout in Badger Creek likely benefited from the thermal regime and increased prey abundance present in this groundwater-dominated stream during winter.
Extreme mid-winter drought weakens tree hydraulic-carbohydrate systems and slows growth.
Earles, J Mason; Stevens, Jens T; Sperling, Or; Orozco, Jessica; North, Malcolm P; Zwieniecki, Maciej A
2018-07-01
Rising temperatures and extended periods of drought compromise tree hydraulic and carbohydrate systems, threatening forest health globally. Despite winter's biological significance to many forests, the effects of warmer and dryer winters on tree hydraulic and carbohydrate status have largely been overlooked. Here we report a sharp and previously unknown decline in stem water content of three conifer species during California's anomalous 2015 mid-winter drought that was followed by dampened spring starch accumulation. Recent precipitation and seasonal vapor pressure deficit (VPD) anomaly, not absolute VPD, best predicted the hydraulic patterns observed. By linking relative water content and hydraulic conductivity (K h ), we estimated that stand-level K h declined by 52% during California's 2015 mid-winter drought, followed by a 50% reduction in spring starch accumulation. Further examination of tree increment records indicated a concurrent decline of growth with rising mid-winter, but not summer, VPD anomaly. Thus, our findings suggest a seasonality to tree hydraulic and carbohydrate declines, with consequences for annual growth rates, raising novel physiological and ecological questions about how rising winter temperatures will affect forest vitality as climate changes. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.
NASA Astrophysics Data System (ADS)
Tamimi, Nesreen; Marei Sawalha, Amer; Schaumann, Gabriele E.
2014-05-01
Olive mill wastewater (OMW) is generated seasonally in large amounts during the olive oil production in Palestine, and it is often disposal of in uncontrolled manner into the open environment. OMW has a high amount of phototoxic compounds, high salinity and acidity and therefore is challenging when disposed on soil. The objective of this study was to study the persistence and degree of water repellency during different season of OMW application in soil samples (0-5 cm deep), and to elucidate how extent this phenomenon is associated with soil acidity, to analyze the relationships between soil water repellency and environmental factors including, temperature and moisture and to describe the seasonal variation in the phenol concentration of the soil. In order to understand how climatic conditions at the time of OMW disposal affect the development of soil water repelleny in field, soil acidity and phenol content in soil, we conducted a field study in Bait Reema village in the West Bank - Palestine. The study site is characterized by 1.5 m thick brown rendzina and has an annual average rainfall of 550 mm. On an extensively used olive orchard field, we implemented 16 plots (2.5 x 3.5 m). OMW application (14 L / m2) was conducted either in winter, spring or summer on two replicate plots distributed randomly among the 16 plots. To test the effect of soil moisture on the persistence of OMW effects, we implemented an OMW application in summer on two additional plots, but kept those plots moist before and after OMW application until start of the rain season. For each of the treatment variants, we implemented two control plots which were treated in the same way as their counterparts, but with tap water. Soil samples (0-5 cm) were collected after 2 days, 3 weeks, 6 weeks, 3 months, 6 months , 9 months, 12 months , and 18 months. pH was determined and analyzed in aqueous soil extracts (1:5), the total phenol content was determined by using Folin-Ciocalteu's reagent, soil water repellency was measured in the field by using the water drop penetration time (WDPT) for control and treated plots. Persistence and intensity of water repellency varied between different times of OMW application. While all control plots remained wettable during the whole year, OMW induced water repellency in all treatments. A high initial WDPT on the (wet) field following OMW winter application rather indicates limitation in hydraulic conductivity than water repellency, but repellency developed gradually during the hot summer time following OMW application (spring and summer plots) and the extent of hydrophobization was strongest in the dry summer application plots, intermediate in the spring application plots and weakest in the moist summer application. Water repellency in all treatements disappeared during the first rain season following OMW. pH was s reduced by OMW application and resulted in significant soil acidification. Soil pH was initially reduced by up to 0.5 pH units. In addition, we found the high initial phenol concentration on the (wet) field following OMW winter application indicates limitation in infiltration rate, while it was higher in summer OMW application when compared to spring OMW application. Keywords: Olive mill wastewater, Tap water, Water drop penetration time, Acidity, Total phenol.
Generalized thickness and configuration of the top of the intermediate aquifer, west-central Florida
Corral, Miguel A.; Wolansky, Richard M.
1984-01-01
Generalized map show the thickness and top of the intermediate aquifer in west-central Florida within the boundaries of the Southwest Florida Water Management District. The intermediate aquifer consists of a series of water-bearing units and confining beds between the surficial aquifer (water table) and the Floridan aquifer. This aquifer contains from one to several water-bearing units in west-central Florida. The aquifer and confining beds consist of the Tamiami and Hawthorn Formations of late and middle Miocene age and parts of the Tampa Limestone of early Miocene age. The top of the intermediate aquifer is about 100 feet above sea level in the north and slopes to about 100 feet below sea level in the south. The thickness ranges from zero in the north to more than 600 feet in the south. Despite the high mineral content of the water in some areas, the intermediate aquifer offers the best source of ground water to the coastal and southern areas of west-central Florida. (USGS)
Individual and colony-specific wintering areas of Pacific northern fulmars (Fulmarus glacialis)
Hatch, Shyla A.; Gill, V.A.; Mulcahy, D.M.
2010-01-01
Seabird mortality associated with longline fishing in the eastern Bering Sea occurs mainly from September to May, with northern fulmars (Fulmarus glacialis) comprising the majority (60%) of the bycatch. Along the west coast of North America, winter dieoffs of fulmars may be increasing in frequency and magnitude, the most severe on record being a wreck that peaked in October-November 2003. We deployed satellite transmitters on fulmars from the four main Alaska colonies and tracked individuals for up to 2 years. Fulmars from Hall Island (northern Bering Sea) moved to Russian coastal waters after breeding, while Pribilof Island fulmars (southeastern Bering Sea) remained relatively sedentary yearround. Birds from Chagulak Island (eastern Aleutians) preferred passes between the Aleutian Islands in winter or foraged widely over deep waters of the central Bering Sea and North Pacific. Fulmars from the Semidi Islands (western Gulf of Alaska) migrated directly to waters of the California Current. Individuals from St. George Island (Pribilofs) and Chagulak were consistent in the places that they visited in two successive winters. The Pribilof Islands population is most affected by winter longlining for groundfish, whereas the Semidi Islands colony sustains most of the natural mortality that occurs off Washington, Oregon, and California.
NASA Astrophysics Data System (ADS)
Ljubimir, Stijepo; Jasprica, Nenad; Čalić, Marijeta; Hrustić, Enis; Dupčić Radić, Iris; Car, Ana; Batistić, Mirna
2017-07-01
The South Adriatic (SA) is an entry point for water masses originating from the Ionian Sea (IS) and a place of dense water formation for the eastern Mediterranean deep circulation cell. Water masses, entering the SA in larger amount during the winter, show decadal variability explained by different circulating regimes (cyclonic and anticyclonic) in the IS, referred to as "Bimodal Oscillating System" (BiOS). Sampling station was situated in the South Adriatic Pit (SAP) with depth of 1200 m. Micro- and nano-phytoplankton abundances, community structure, chlorophyll a concentrations, physical and chemical properties are presented in the winter and spring months for five consecutive years (2009-2013) during different circulating regimes of BiOS. Vertical convective mixing was regularly observed in winter except in 2011 which had effect on nutrient availability and consequently on biomass of primary producers. Effect of strong vertical mixing in February 2012 resulted with exceptionally high phytoplankton abundance and chlorophyll a concentrations in March of 2012. Strong convective mixing resulted in higher diatom abundances, comparing to winter when mixing did not occur. No such bloom was observed during investigated spring.
Recent changes (2004-2016) of temperature and salinity in the Mediterranean outflow
NASA Astrophysics Data System (ADS)
Naranjo, Cristina; García-Lafuente, Jesús; Sammartino, Simone; Sánchez-Garrido, José C.; Sánchez-Leal, Ricardo; Jesús Bellanco, M.
2017-06-01
Temperature and salinity series near the seafloor at Espartel Sill (Strait of Gibraltar) have been used to analyze the thermohaline variability of the Mediterranean outflow. The series shows temperature drops by the end of most winters/early springs, which are the remote response to Western Mediterranean Deep Water (WMDW) formation events in the Gulf of Lion that uplift old WMDW nearby the strait. This process distorts the seasonal cycle of colder/warmer water flowing out in summer/winter likely linked to the seasonality of the Western Alborán Gyre. The series shows positive trends in agreement with previous values, which are largely increased after 2013. It is tentatively interpreted as the Western Mediterranean Transition (WMT) signature that started with the very cold winters of 2005 and 2006. It was only after the large new WMDW production of 2012 and 2013 harsh winters that WMT waters were made available to flow out of the Mediterranean Sea.
Tryland, Ingun; Eregno, Fasil Ejigu; Braathen, Henrik; Khalaf, Goran; Sjølander, Ingrid; Fossum, Marie
2015-02-04
The fully automated Colifast ALARM™ has been used for two years for daily monitoring of the presence/absence of Escherichia coli in 100 mL raw water at Oset drinking water treatment plant in Oslo, Norway. The raw water is extracted from 35 m depth from the Lake Maridalsvannet. E. coli was detected in 18% of the daily samples. In general, most samples positive for E. coli were observed during the autumn turnover periods, but even in some samples taken during warm and dry days in July, with stable temperature stratification in the lake, E. coli was detected. The daily samples gave useful additional information compared with the weekly routine samples about the hygienic raw water quality and the hygienic barrier efficiency of the lake under different weather conditions and seasons. The winter 2013/2014 was much warmer than the winter 2012/2013. The monitoring supported the hypothesis that warmer winters with shorter periods with ice cover on lakes, which may be a consequence of climate changes, may reduce the hygienic barrier efficiency in deep lakes used as drinking water sources.
Dong, Hao; Bi, Jun; Xia, Guang-Li; Zhou, Xun-Bo; Chen, Yu-Hai
2014-08-01
High-yield winter wheat cultivar Jimai 22 was used to study effects of irrigation and planting patterns on water consumption characteristics and photosynthetic characteristics of winter wheat in field from 2009 to 2011. Three different planting patterns (uniform row, wide-narrow row and furrow) and four irrigation schedules (W0, no irrigation; W1, irrigation at jointing stage; W2, irrigations at jointing and anthesis stages; W3, irrigation at jointing, anthesis and milking stages. Each irrigation rate was 60 mm) were designed in the experiment. Results showed that, with the increasing of irrigation amount, flag leaf area, net photosynthesis rate, maximum photochemical efficiency and actual light transformation efficiency at late growth stages of winter wheat increased. Compared with W0 treatment, the other irrigation treatments had higher grain yields, but lower water use efficiencies. Under the same irrigation condition, the flag leaf net photosynthesis, maximum photochemical efficiency and actual light transformation efficiency were much higher in furrow pattern. Grain yields of winter wheat under furrow pattern and W2 treatment were significantly higher than that of the other treatments. Taking grain yield and WUE into consideration, furrow pattern combined with irrigation at jointing and anthesis stages might be the optimal water-saving and planting mode for the winter wheat production in North China Plain.
Ice duration drives winter nitrate accumulation in north temperate lakes
Powers, Steven M; Labou, Stephanie G.; Baulch, Helen M.; Hunt, Randall J.; Lottig, Noah R.; Hampton, Stephanie E.; Stanley, Emily H.
2017-01-01
The duration of winter ice cover on lakes varies substantially with climate variability, and has decreased over the last several decades in many temperate lakes. However, little is known of how changes in seasonal ice cover may affect biogeochemical processes under ice. We examined winter nitrogen (N) dynamics under ice using a 30+ yr dataset from five oligotrophic/mesotrophic north temperate lakes to determine how changes in inorganic N species varied with ice duration. Nitrate accumulated during winter and was strongly related to the number of days since ice-on. Exogenous inputs accounted for less than 3% of nitrate accumulation in four of the five lakes, suggesting a paramount role of nitrification in regulating N transformation and the timing of chemical conditions under ice. Winter nitrate accumulation rates ranged from 0.15 μg N L−1 d−1 to 2.7 μg N L−1 d−1 (0.011–0.19 μM d−1), and the mean for intermediate depths was 0.94 μg N L−1 d−1(0.067 μM d−1). Given that winters with shorter ice duration (< 120 d) have become more frequent in these lakes since the late 1990s, peak winter nitrate concentrations and cumulative nitrate production under ice may be declining. As ice extent and duration change, the physical and chemical conditions supporting life will shift. This research suggests we may expect changes in the form and amount of inorganic N, and altered dissolved nitrogen : phosphorus ratios, in lakes during winters with shorter ice duration.
NASA Astrophysics Data System (ADS)
Guijarro, Beatriz; Massutí, Enric; Moranta, Joan; Díaz, Paz
2008-06-01
The red shrimp Aristeus antennatus is one of the target species of the bottom trawl fishery of the Balearic Islands. The objective of the present paper is to study the short spatial and temporal differences of this important economic resource between two different locations off Mallorca (Cabrera: CA; Sóller: SO), where a fleet mobility pattern has been detected, and to study the influence of environmental conditions on this species. Six simultaneous bottom-trawl and oceanographic surveys were carried out at these two locations in order to collect data from the demersal species, hydrography (temperature and salinity), trophic resources and sediment characteristics. The commercial fleet from both locations was monitored by monthly on-board sampling, log-books and daily landings obtained from sales slips. Additional data was obtained from other fishing surveys. Short spatial and temporal differences have been detected between both locations. The population at CA was more demographically homogeneous, while that at SO showed important variations, like high abundance of juveniles recruiting to fishing grounds in autumn-winter and high abundance of large females during summer. Several differences have also been found in the biology of the species between locations, such as males were more abundant in SO than in CA. Also, the reproductive period started sooner in SO than in CA, and the condition of pre-spawning females was better in SO. The percentage of total lipids in the hepatopancreas was minimal during the spawning period, showing their importance as a reserve of energy for the ovary ripening. Water masses could play an important role in these differences, the characteristics of water masses being more stable in CA than in SO. Red shrimp adult females seemed to be more correlated with the warmer and more saline Levantine Intermediate Waters, while juveniles (males and females) and adult males were more correlated with the colder Western Mediterranean Deep Waters, detected only in SO during autumn-winter. Two different hypothesis of mobility patterns for the species are discussed in relation to these observed differences.
NASA Astrophysics Data System (ADS)
Wilner, J.; Smith, B.; Moore, T.; Campbell, S. W.; Slavin, B. V.; Hollander, J.; Wolf, J.
2015-12-01
The redistribution of winter accumulation from surface melt into firn or deeper layers (i.e. internal accumulation) remains a poorly understood component of glacier mass balance. Winter accumulation is usually quantified prior to summer melt, however the time window between accumulation and the onset of melt is minimal so this is not always possible. Studies which are initiated following the onset of summer melt either neglect sources of internal accumulation or attempt to estimate melt (and therefore winter accumulation uncertainty) through a variety of modeling methods. Here, we used ground-penetrating radar (GPR) repeat common midpoint (CMP) surveys with supporting common offset surveys, mass balance snow pits, and probing to estimate temporal changes in water content within the winter accumulation and firn layers of the southern Juneau Icefield, Alaska. In temperate glaciers, radio-wave velocity is primarily dependent on water content and snow or firn density. We assume density changes are temporally slow relative to water flow through the snow and firn pack, and therefore infer that changing radio-wave velocities measured by successive CMP surveys result from flux in surface melt through deeper layers. Preliminary CMP data yield radio-wave velocities of 0.15 to 0.2 m/ns in snowpack densities averaging 0.56 g cm-3, indicating partially to fully saturated snowpack (4-9% water content). Further spatial-temporal analysis of CMP surveys is being conducted. We recommend that repeat CMP surveys be conducted over a longer time frame to estimate stratigraphic water redistribution between the end of winter accumulation and maximum melt season. This information could be incorporated into surface energy balance models to further understanding of the influence of internal accumulation on glacier mass balance.
Circulation and water properties in the landfast ice zone of the Alaskan Beaufort Sea
NASA Astrophysics Data System (ADS)
Weingartner, Thomas J.; Danielson, Seth L.; Potter, Rachel A.; Trefry, John H.; Mahoney, Andy; Savoie, Mark; Irvine, Cayman; Sousa, Leandra
2017-09-01
Moorings, hydrography, satellite-tracked drifters, and high-frequency radar data describe the annual cycle in circulation and water properties in the landfast ice zone (LIZ) of the Alaskan Beaufort Sea. Three seasons, whose duration and characteristics are controlled by landfast ice formation and ablation, define the LIZ: ;winter;, ;break-up;, and ;open-water;. Winter begins in October with ice formation and ends in June when rivers commence discharging. Winter LIZ ice velocities are zero, under-ice currents are weak ( 5 cm s-1), and poorly correlated with winds and local sea level. The along-shore momentum balance is between along-shore pressure gradients and bottom and ice-ocean friction. Currents at the landfast ice-edge are swift ( 35 cm s-1), wind-driven, with large horizontal shears, and potentially unstable. Weak cross-shore velocities ( 1 cm s-1) imply limited exchanges between the LIZ and the outer shelf in winter. The month-long break-up season (June) begins with the spring freshet and concludes when landfast ice detaches from the bottom. Cross-shore currents increase, and the LIZ hosts shallow ( 2 m), strongly-stratified, buoyant and sediment-laden, under-ice river plumes that overlie a sharp, 1 m thick, pycnocline across which salinity increases by 30. The plume salt balance is between entrainment and cross-shore advection. Break-up is followed by the 3-month long open-water season when currents are swift (≥20 cm s-1) and predominantly wind-driven. Winter water properties are initialized by fall advection and evolve slowly due to salt rejection from ice. Fall waters and ice within the LIZ derive from local rivers, the Mackenzie and/or Chukchi shelves, and the Arctic basin.
USDA-ARS?s Scientific Manuscript database
Cover cropping is an expanding conservation practice that offers substantial benefits to soil protection, soil health, water quality, and potentially crop yields. Presently, winter cereals are the most widely used cover crops in the upper Midwest. However, winter cereal cover crops preceding corn, ...
NASA Astrophysics Data System (ADS)
Rella, Stephan F.; Tada, Ryuji; Nagashima, Kana; Ikehara, Minoru; Itaki, Takuya; Ohkushi, Ken'ichi; Sakamoto, Tatsuhiko; Harada, Naomi; Uchida, Masao
2012-09-01
Millennial-scale variability in the behavior of North Pacific Intermediate Water during the last glacial and deglacial period, and its association with Dansgaard-Oeschger (D-O) cycles and Heinrich events, are examined based on benthic foraminiferal oxygen and carbon isotopes (δ18Obf and δ13Cbf) and %CaCO3 using a sediment core recovered from the northeastern slope of the Bering Sea. A suite of positive δ18Obf excursions at intermediate depths of the Bering Sea, which seem at least in part associated with increases in the δ18Obf gradients between the Bering and Okhotsk Seas, suggest the Bering Sea as a proximate source of intermediate water during several severe stadial episodes in the last glacial and deglacial period. Absence of such δ18Obf gradients during periods of high surface productivity in the Bering and Okhotsk Seas, which we correlate to D-O interstadials, suggests a reduction in intermediate water production in the Bering Sea and subsequent introduction of nutrient-rich deep waters from the North Pacific into intermediate depths of the Bering Sea. We argue that a reorganization of atmospheric circulation in the high-latitude North Pacific during severe cold episodes in the last glacial and deglacial period created favorable conditions for brine rejection in the northeastern Bering Sea. The resulting salinity increase in the cold surface waters could have initiated intermediate (and deep) water formation that spread out to the North Pacific.
Deep Arctic Ocean warming during the last glacial cycle
Cronin, T. M.; Dwyer, G.S.; Farmer, J.; Bauch, H.A.; Spielhagen, R.F.; Jakobsson, M.; Nilsson, J.; Briggs, W.M.; Stepanova, A.
2012-01-01
In the Arctic Ocean, the cold and relatively fresh water beneath the sea ice is separated from the underlying warmer and saltier Atlantic Layer by a halocline. Ongoing sea ice loss and warming in the Arctic Ocean have demonstrated the instability of the halocline, with implications for further sea ice loss. The stability of the halocline through past climate variations is unclear. Here we estimate intermediate water temperatures over the past 50,000 years from the Mg/Ca and Sr/Ca values of ostracods from 31 Arctic sediment cores. From about 50 to 11 kyr ago, the central Arctic Basin from 1,000 to 2,500 m was occupied by a water mass we call Glacial Arctic Intermediate Water. This water mass was 1–2 °C warmer than modern Arctic Intermediate Water, with temperatures peaking during or just before millennial-scale Heinrich cold events and the Younger Dryas cold interval. We use numerical modelling to show that the intermediate depth warming could result from the expected decrease in the flux of fresh water to the Arctic Ocean during glacial conditions, which would cause the halocline to deepen and push the warm Atlantic Layer into intermediate depths. Although not modelled, the reduced formation of cold, deep waters due to the exposure of the Arctic continental shelf could also contribute to the intermediate depth warming.
Wintertime dynamics in the coastal northeastern Adriatic Sea: the NAdEx 2015 experiment
NASA Astrophysics Data System (ADS)
Vilibić, Ivica; Mihanović, Hrvoje; Janeković, Ivica; Denamiel, Cléa; Poulain, Pierre-Marie; Orlić, Mirko; Dunić, Natalija; Dadić, Vlado; Pasarić, Mira; Muslim, Stipe; Gerin, Riccardo; Matić, Frano; Šepić, Jadranka; Mauri, Elena; Kokkini, Zoi; Tudor, Martina; Kovač, Žarko; Džoić, Tomislav
2018-03-01
The paper investigates the wintertime dynamics of the coastal northeastern Adriatic Sea and is based on numerical modelling and in situ data collected through field campaigns executed during the winter and spring of 2015. The data were collected with a variety of instruments and platforms (acoustic Doppler current profilers, conductivity-temperature-depth probes, glider, profiling float) and are accompanied by the atmosphere-ocean ALADIN/ROMS modelling system. The research focused on the dense-water formation (DWF), thermal changes, circulation, and water exchange between the coastal and open Adriatic. According to both observations and modelling results, dense waters are formed in the northeastern coastal Adriatic during cold bora outbreaks. However, the dense water formed in this coastal region has lower densities than the dense water formed in the open Adriatic due to lower salinities. Since the coastal area is deeper than the open Adriatic, the observations indicate (i) balanced inward-outward exchange at the deep connecting channels of denser waters coming from the open Adriatic DWF site and less-dense waters coming from the coastal region and (ii) outward flow of less-dense waters dominating in the intermediate and surface layers. The latter phenomenon was confirmed by the model, even if it significantly underestimates the currents and transports in the connecting channels. The median residence time of the coastal area is estimated to be approximately 20 days, indicating that the coastal area may be renewed relatively quickly by the open Adriatic waters. The data that were obtained represent a comprehensive marine dataset that can be used to calibrate atmospheric and oceanic numerical models and point to several interesting phenomena to be investigated in the future.
Pramsohler, Manuel; Neuner, Gilbert
2013-08-01
In deciduous trees, measurement of stem water potential can be difficult during the leafless period in winter. By using thermocouple psychrometry, osmotic water potentials (Ψo; actual Ψo: Ψo(act); Ψo at full saturation: Ψo(sat)) of expressed sap of bark and bud tissue were measured in order to test if the severity of winter desiccation in apple stems could be sufficiently assessed with Ψo. Water potentials were related to frost resistance and freezing behaviour of buds. The determination of Ψo reliably allowed winter desiccation and osmotic adjustments in apple stem tissue to be assessed. In winter in bark tissue, a pronounced decrease in Ψo(act) and Ψo(sat) was found. Decreased Ψo(sat) indicates active osmotic adjustment in the bark as observed earlier in the leaves of evergreen woody plants. In terminal bud meristems, no significant osmotic adjustments occurred and dehydration during winter was much less. Osmotic water potentials, Ψo(act) and Ψo(sat), of bud tissue were always less negative than in the bark. To prevent water movement and dehydration of the bud tissue via this osmotic gradient, it must be compensated for either by a sufficiently high turgor pressure (Ψp) in bark tissue or by the isolation of the bud tissue from the bark during midwinter. During freezing of apple buds, freeze dehydration and extra-organ freezing could be demonstrated by significantly reduced Ψo(act) values of bud meristems that had been excised in the frozen state. Infrared video thermography was used to monitor freezing patterns in apple twigs. During extracellular freezing of intact and longitudinally dissected stems, infrared differential thermal analysis (IDTA) images showed that the bud meristem remains ice free. Even if cooled to temperatures below the frost-killing temperature, no freezing event could be detected in bud meristems during winter. In contrast, after bud break, terminal buds showed a second freezing at the frost-killing temperature that indicates deep supercooling. Our results demonstrate the applicability of thermocouple psychrometry for the assessment of winter desiccation in stem tissues of deciduous trees and corroborate the finding that dormant apple buds survive by extra-organ freezing and do not deep supercool. In addition, they indicate that significant changes of the frost-survival mechanism can occur during the apple bud development in spring.
Bigger is not always better for overwintering young-of-year steelhead
Connolly, P.J.; Petersen, J.H.
2003-01-01
Many fishes occur across broad ranges of latitude and elevation, where winter temperatures can vary from mild to harsh. We conducted a laboratory experiment with three sizes of age-0 steelhead Oncorhynchus mykiss to examine growth, condition, and energy reserves under low rations at three levels of water temperature typical of this species' distribution during winter. At the end of the 111-d experiment, all three starting sizes of age-0 steelhead (small, 2-3 g; medium, 3-4 g; large, 4-5 g) held in 3??C water had lower total lipid weight than those held in 6??C and 9??C water. Large fish had higher total lipid weight than small fish at the onset of the experiment and retained higher amounts at the end. However, large fish had either the lowest percentage increases or the highest percentage decreases in fork length, biomass, condition factor, total lipid weight, and percent lipids within all thermal treatments. The magnitude of the differences between small and large fish was highest in the warmest (9??C) water. We used bioenergetics simulations of juvenile steelhead growth to examine fish response to initial size, winter temperature, and food availability. Relatively warm water temperatures in winter, coupled with limited food availability, may present more of a physiological challenge to larger age-0 steelhead than to smaller fish. Our results suggest that achievement of large size before the start of a steelhead's first winter can have a cost under episodic conditions found across the wide ranges of latitude and elevation within this species' distribution.
Mayr, Stefan; Schmid, Peter; Laur, Joan; Rosner, Sabine; Charra-Vaskou, Katline; Dämon, Birgit; Hacke, Uwe G.
2014-01-01
Xylem embolism is a limiting factor for woody species worldwide. Conifers at the alpine timberline are exposed to drought and freeze-thaw stress during winter, which induce potentially lethal embolism. Previous studies indicated that timberline trees survive by xylem refilling. In this study on Picea abies, refilling was monitored during winter and spring seasons and analyzed in the laboratory and in situ experiments, based on hydraulic, anatomical, and histochemical methods. Refilling started in late winter, when the soil was frozen and soil water not available for the trees. Xylem embolism caused up to 86.2% ± 3.1% loss of conductivity and was correlated with the ratio of closed pits. Refilling of xylem as well as recovery in shoot conductance started in February and corresponded with starch accumulation in secondary phloem and in the mesophyll of needles, where we also observed increasing aquaporin densities in the phloem and endodermis. This indicates that active, cellular processes play a role for refilling even under winter conditions. As demonstrated by our experiments, water for refilling was thereby taken up via the branches, likely by foliar water uptake. Our results suggest that refilling is based on water shifts to embolized tracheids via intact xylem, phloem, and parenchyma, whereby aquaporins reduce resistances along the symplastic pathway and aspirated pits facilitate isolation of refilling tracheids. Refilling must be taken into account as a key process in plant hydraulics and in estimating future effects of climate change on forests and alpine tree ecosystems. PMID:24521876
Monitoring water phase dynamics in winter clouds
NASA Astrophysics Data System (ADS)
Campos, Edwin F.; Ware, Randolph; Joe, Paul; Hudak, David
2014-10-01
This work presents observations of water phase dynamics that demonstrate the theoretical Wegener-Bergeron-Findeisen concepts in mixed-phase winter storms. The work analyzes vertical profiles of air vapor pressure, and equilibrium vapor pressure over liquid water and ice. Based only on the magnitude ranking of these vapor pressures, we identified conditions where liquid droplets and ice particles grow or deplete simultaneously, as well as the conditions where droplets evaporate and ice particles grow by vapor diffusion. The method is applied to ground-based remote-sensing observations during two snowstorms, using two distinct microwave profiling radiometers operating in different climatic regions (North American Central High Plains and Great Lakes). The results are compared with independent microwave radiometer retrievals of vertically integrated liquid water, cloud-base estimates from a co-located ceilometer, reflectivity factor and Doppler velocity observations by nearby vertically pointing radars, and radiometer estimates of liquid water layers aloft. This work thus makes a positive contribution toward monitoring and nowcasting the evolution of supercooled droplets in winter clouds.
Knights, B.C.; Johnson, B.L.; Sandheinrich, M.B.
1995-01-01
We conducted a radiotelemetry study to examine the effects of dissolved oxygen (DO), water temperature, and current velocity on winter habitat selection by bluegills Lepomis macrochirus and black crappies Pomoxis nigromaculatus in the Finger Lakes backwater complex, Pool 5, on the upper Mississippi River. When DO was above 2 mg/L, both species selected areas with water temperature greater than 1 degree C and undetectable current. As dissolved oxygen concentrations fell below 2 mg/L, fish moved to areas with higher DO, despite water temperatures of 1 degree C and lower and current velocities of 1 cm/s. Areas with water temperature less than 1 degree C and current velocity greater than 1 cm/s were avoided. To incorporate the winter habitat requirements of bluegills and black crappies into habitat restoration projects, we recommend designs that allow the inflow of oxygenated water to maintain adequate DO without substantially decreasing temperature and increasing current velocity.
Turgut, Altan; Orr, Marshall; Pasewark, Bruce
2007-05-01
Waveguide invariant theory is used to describe the frequency shifts of constant acoustic intensity level curves in broadband signal spectrograms measured at the New Jersey Shelf during the winter of 2003. The broadband signals (270-330 Hz) were transmitted from a fixed source and received at three fixed receivers, located at 10, 20, and 30 km range along a cross-shelf propagation track. The constant acoustic intensity level curves of the received signals indicate regular frequency shifts that can be well predicted by the change in water depth observed through tens of tidal cycles. A second pattern of frequency shifts is observed at only 30 km range where significant variability of slope-water intrusion was measured. An excellent agreement between observed frequency shifts of the constant acoustic intensity levels and those predicted by the change in tide height and slope water elevations suggests the capability of long-term acoustic monitoring of tide and slope water intrusions in winter conditions.
Monitoring water phase dynamics in winter clouds
Campos, Edwin F.; Ware, Randolph; Joe, Paul; ...
2014-10-01
This work presents observations of water phase dynamics that demonstrate the theoretical Wegener–Bergeron–Findeisen concepts in mixed-phase winter storms. The work analyzes vertical profiles of air vapor pressure, and equilibrium vapor pressure over liquid water and ice. Based only on the magnitude ranking of these vapor pressures, we identified conditions where liquid droplets and ice particles grow or deplete simultaneously, as well as the conditions where droplets evaporate and ice particles grow by vapor diffusion. The method is applied to ground-based remote-sensing observations during two snowstorms, using two distinct microwave profiling radiometers operating in different climatic regions (North American Central Highmore » Plains and Great Lakes). The results are compared with independent microwave radiometer retrievals of vertically integrated liquid water, cloud-base estimates from a co-located ceilometer, reflectivity factor and Doppler velocity observations by nearby vertically pointing radars, and radiometer estimates of liquid water layers aloft. This work thus makes a positive contribution toward monitoring and now casting the evolution of supercooled droplets in winter clouds.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tyler, M.A.; Seliger, H.H.
1978-03-01
An annual, long range, subsurface transport of Prorocentrum mariae-lebouriae, from the mouth of the Chesapeake Bay to its bloom area in the upper bay, a distance of 240 km, is described and completely documented. Prorocentrum in surface outflowing waters at the mouth of the bay is recruited in late winter into more dense inflowing coastal waters. Strong stratification produced by late winter--early spring surface runoff results in the development of a stable pycnocline. Prorocentrum, now in northward-flowing bottom waters, is retained in these bottom waters. It accumulates in a subsurface concentration maximum below the pycnocline and is transported northward tomore » reach its bloom area in the Patapsco River and north of the Bay Bridge by late spring. The rapidly decreasing depth of the upper bay causes the pycnocline to rise, mixing the previously light-limited Prorocentrum and its nutrient-rich bottom waters to the surface, where rapid growth ensues. Once the dinoflagellate is in surface waters, positive phototaxis, combined with both wind- and tide-driven surface convergences, produce dense surface patches or red tides. Prorocentrum is effectively retained in the bay until late winter by sequential inoculation into the tributary estuaries on the western shore, which exchange relatively slowly with bay waters. By late winter the annual cycle is complete. Prorocentrum is again in surface waters at the mouth of the bay where it is reintroduced into northward-flowing bottom waters. The mechanisms described provide a key to understanding the origins of subsurface chlorophyll maxima and the delivery of toxic dinoflagellates to coastal bloom areas.« less
The release of water from forest snowpacks during winter
Harold F. Haupt
1972-01-01
In the northern Rocky Mountains, in Idaho, data collected during three winters demonstrate why there is always less snow beneath the canopy of a cedar-hemlock forest than in the adjacent small openings. The author presents as evidence the differential release of water, which originates in the canopy as throughfall-drip, thus accounting for part of the deficiency in...
1981-11-01
and idmntify by block nimbec) .. j Efficiency Structure Intermediate markets S20. ABSTRACT (Continue an tewwe aid. it necessary and identify by Weock...the Winter of 1980; and at the Mini-Conference on Strategy, Marketing , and Organi- zation held at the Graduate School of Management, UCLA, during the...deciding among various transaction goverance mechanisms, market mechanisms would always be chosen. As we argue below, however, market mechanisms often do
Koyama, Tadafumi
1994-01-01
A method for immobilizing waste chloride salts containing radionuclides such as cesium and strontium and hazardous materials such as barium. A sodalite intermediate is prepared by mixing appropriate amounts of silica, alumina and sodium hydroxide with respect to sodalite and heating the mixture to form the sodalite intermediate and water. Heating is continued to drive off the water to form a water-free intermediate. The water-free intermediate is mixed with either waste salt or waste salt which has been contacted with zeolite to concentrate the radionuclides and hazardous material. The waste salt-intermediate mixture is then compacted and heated under conditions of heat and pressure to form sodalite with the waste salt, radionuclides and hazardous material trapped within the sodalite cage structure. This provides a final product having excellent leach resistant capabilities.
Koyama, Tadafumi.
1994-08-23
A method is described for immobilizing waste chloride salts containing radionuclides such as cesium and strontium and hazardous materials such as barium. A sodalite intermediate is prepared by mixing appropriate amounts of silica, alumina and sodium hydroxide with respect to sodalite and heating the mixture to form the sodalite intermediate and water. Heating is continued to drive off the water to form a water-free intermediate. The water-free intermediate is mixed with either waste salt or waste salt which has been contacted with zeolite to concentrate the radionuclides and hazardous material. The waste salt-intermediate mixture is then compacted and heated under conditions of heat and pressure to form sodalite with the waste salt, radionuclides and hazardous material trapped within the sodalite cage structure. This provides a final product having excellent leach resistant capabilities.
Koyama, T.
1992-01-01
This report describes a method for immobilizing waste chloride salts containing radionuclides such as cesium and strontium and hazardous materials such as barium. A sodalite intermediate is prepared by mixing appropriate amounts of silica, alumina and sodium hydroxide with respect to sodalite and heating the mixture to form the sodalite intermediate and water. Heating is continued to drive off the water to form a water-free intermediate. The water-free intermediate is mixed with either waste salt or waste salt which has been contacted with zeolite to concentrate the radionuclides and hazardous material. The waste salt-intermediate mixture is then compacted and heated under conditions of heat and pressure to form sodalite with the waste salt, radionuclides and hazardous material trapped within the sodalite cage structure. This provides a final product having excellent leach resistant capabilities.
Snowpack, fire, and forest disturbance: interactions affect montane invasions by non-native shrubs.
Stevens, Jens T; Latimer, Andrew M
2015-06-01
Montane regions worldwide have experienced relatively low plant invasion rates, a trend attributed to increased climatic severity, low rates of disturbance, and reduced propagule pressure relative to lowlands. Manipulative experiments at elevations above the invasive range of non-native species can clarify the relative contributions of these mechanisms to montane invasion resistance, yet such experiments are rare. Furthermore, global climate change and land use changes are expected to cause decreases in snowpack and increases in disturbance by fire and forest thinning in montane forests. We examined the importance of these factors in limiting montane invasions using a field transplant experiment above the invasive range of two non-native lowland shrubs, Scotch broom (Cytisus scoparius) and Spanish broom (Spartium junceum), in the rain-snow transition zone of the Sierra Nevada of California. We tested the effects of canopy closure, prescribed fire, and winter snow depth on demographic transitions of each species. Establishment of both species was most likely at intermediate levels of canopy disturbance, but at this intermediate canopy level, snow depth had negative effects on winter survival of seedlings. We used matrix population models to show that an 86% reduction in winter snowfall would cause a 2.8-fold increase in population growth rates in Scotch broom and a 3.5-fold increase in Spanish broom. Fall prescribed fire increased germination rates, but decreased overall population growth rates by reducing plant survival. However, at longer fire return intervals, population recovery between fires is likely to keep growth rates high, especially under low snowpack conditions. Many treatment combinations had positive growth rates despite being above the current invasive range, indicating that propagule pressure, disturbance, and climate can all strongly affect plant invasions in montane regions. We conclude that projected reductions in winter snowpack and increases in forest disturbance are likely to increase the risk of invasion from lower elevations. © 2014 John Wiley & Sons Ltd.
Seasonal and distributional patterns of seabirds along the Aleutian Archipelago
Renner, M.; Hunt, G.L.; Piatt, John F.; Byrd, G.V.
2008-01-01
The Aleutian Archipelago is of global importance to seabirds during the northern summer, but little is known about seabird use of these waters during winter. We compare summer and winter abundances of seabirds around 3 islands: Buldir in the western, Kasatochi in the central, and Aiktak in the eastern Aleutians. The density of combined seabird biomass in nearshore marine waters was higher in summer than in winter at Buldir and Kasatochi, but was higher in winter at Aiktak, despite the departure of abundant migratory species. Comparing foraging guilds, we found that only piscivores increased at the western and central sites in winter, whereas at the eastern site several planktivorous species increased as well. The only planktivore remaining in winter at the central and western sites in densities comparable to summer densities was whiskered auklet Aethia pygmaea. Crested auklet Aethia cristatella and thick-billed murre Uria lomvia showed the greatest proportional winter increase at the eastern site. The seasonal patterns of the seabird communities suggest a winter breakdown of the copepod-based food web in the central and western parts of the archipelago, and a system that remains rich in euphausiids in the eastern Aleutians. We suggest that in winter crested auklets take the trophic role that short-tailed shearwaters Puffinus tenuirostris occupy during summer. We hypothesize that advection of euphausiids in the Aleutian North Slope Current is important for supporting the high biomass of planktivores that occupy the Unimak Pass region on a year-round basis. ?? Inter-Research 2008.
Conditions to generate Steam Fog Occurred around the Chungju Lake in the South Korea
NASA Astrophysics Data System (ADS)
Byungwoo, J.
2017-12-01
We have collected the field observation data of the steam fog occurred around the Chungju Lake in the South Korea for 3 years(2014 2016) and analyzed conditions in which the steam fog occurred. The Chungju Lake is an artificial lake made by the Chungju Dam with a water storage of 2.7 billion tons, which is the second largest in South Korea. The Chungju Dam have discharged water of the average 2.2 million tons downstream to produce electricity per day. The drainage water heats downstream of the Chungju dam and the air above water surface of downstream of that. When the warm, humid air above the downstream water mixed with cold air mass, it caused "steam fog" around the downstream of Chungju lake regardless of amount of the discharged water. The condition that promote the generation of steam fog in autumn and winter is as follows: (1) cloudless night with light winds below 1.5 m/s. (2) The differences between the temperature of discharged water from the Chungju Dam and the air temperature above the discharged water varied from 3° to 15° in autumn, from 15° to 20° in winter respectively. (3) When stream fog was generated, sensible heat flux ranged in autumn from 5 to 15 W/m2, in winter from 15 to 20 W/m2 respectively. Latent heat flux ranged in autumn from 15 to 20 W/m2, in winter from 10 to 15 W/m2 respectively.
NASA Astrophysics Data System (ADS)
Kim, Yongcheol; Lee, Bongju; Ha, Kucheol; Yoon, Yunyeol; Moon, Sangho; Cho, Suyoung; Kim, Seongyun
2013-04-01
Protected water curtain cultivation system is an energy saving technique for winter season by splashing groundwater on the inner roof of the green house. But the issue is that the method results in groundwater level deterioration because it disposes the used groundwater to nearby stream. Reuse of the groundwater for water curtain cultivation is important Groundwater level, steam level, and groundwater usage rate are investigated at the five green house concentrated areas such as Cheongwon, Namyangju, Choongju, Namwon, Jinju. Groundwater usage rate is estimated using a ultrasonic flowmeter for a specific well and using the combination of pressure sensor and propeller type velocity counting equipment at a water disposal channel from November to April which is water curtain cultivating season. Groundwater usage rate ranges from 46.9m3/d to 108.0m3/d for a 10a greenhouse. Groundwater level change is strongly influenced by seasonal variation of rainfall and concentrated pumping activities in winter but the level is lower than stream level all year long resulting in all year around losing stream at Cheongwon, Namyangju, Jinju. At Nanwon, the stream is converted from losing one in winter to gaining one in summer. Groundwater level deterioration at concentrated water curtain cultivation area is found to be severe for some area where circulating water curtain cultivation system is need to be applied for groundwater restoration and sustainable cultivation in winter. Circulating water curtain cultivation system can restore the groundwater level by recharging the used groundwater through injection well and then pumping out from pumping well.
Modeling winter hydrological processes under differing climatic conditions: Modifying WEPP
NASA Astrophysics Data System (ADS)
Dun, Shuhui
Water erosion is a serious and continuous environmental problem worldwide. In cold regions, soil freeze and thaw has great impacts on infiltration and erosion. Rain or snowmelt on a thawing soil can cause severe water erosion. Of equal importance is snow accumulation and snowmelt, which can be the predominant hydrological process in areas of mid- to high latitudes and forested watersheds. Modelers must properly simulate winter processes to adequately represent the overall hydrological outcome and sediment and chemical transport in these areas. Modeling winter hydrology is presently lacking in water erosion models. Most of these models are based on the functional Universal Soil Loss Equation (USLE) or its revised forms, e.g., Revised USLE (RUSLE). In RUSLE a seasonally variable soil erodibility factor (K) was used to account for the effects of frozen and thawing soil. Yet the use of this factor requires observation data for calibration, and such a simplified approach cannot represent the complicated transient freeze-thaw processes and their impacts on surface runoff and erosion. The Water Erosion Prediction Project (WEPP) watershed model, a physically-based erosion prediction software developed by the USDA-ARS, has seen numerous applications within and outside the US. WEPP simulates winter processes, including snow accumulation, snowmelt, and soil freeze-thaw, using an approach based on mass and energy conservation. However, previous studies showed the inadequacy of the winter routines in the WEPP model. Therefore, the objectives of this study were: (1) To adapt a modeling approach for winter hydrology based on mass and energy conservation, and to implement this approach into a physically-oriented hydrological model, such as WEPP; and (2) To assess this modeling approach through case applications to different geographic conditions. A new winter routine was developed and its performance was evaluated by incorporating it into WEPP (v2008.9) and then applying WEPP to four study sites at different spatial scales under different climatic conditions, including experimental plots in Pullman, WA and Morris, MN, two agricultural drainages in Pendleton, OR, and a forest watershed in Mica Creek, ID. The model applications showed promising results, indicating adequacy of the mass- and energy-balance-based approach for winter hydrology simulation.
Pintail ducks tread the waters of KSC
NASA Technical Reports Server (NTRS)
1999-01-01
Two female pintail ducks search for food in the winter waters of the Merritt Island National Wildlife Refuge at Kennedy Space Center. The pintails can be found in the marshes, prairie ponds and tundra of Alaska, Greenland and north and western United States; in the winter they range south and east to Central America and the West Indies, sometimes in salt marshes such as the refuge offers. The open water of the refuge provides wintering areas for 23 species of migratory waterfowl, as well as a year-round home for great blue herons, great egrets, wood storks, cormorants, brown pelicans and other species of marsh and shore birds. The 92,000-acre refuge is also habitat for more than 310 species of birds, 25 mammals, 117 fishes and 65 amphibians and reptiles.
Zooplankton research off Peru: A review
NASA Astrophysics Data System (ADS)
Ayón, Patricia; Criales-Hernandez, Maria I.; Schwamborn, Ralf; Hirche, Hans-Jürgen
2008-10-01
A review of zooplankton studies conducted in Peruvian marine waters is given. After a short history of the development of zooplankton research off Peru, we review zooplankton methodology, taxonomy, biodiversity, spatial distribution, seasonal and interannual variability, trophodynamics, secondary production, and modelling. We review studies on several micro-, meso-, macro-, and meroplankton groups, and give a species list from both published and unpublished reports. Three regional zooplankton groups have been identified: (1) a continental shelf group dominated by Acartia tonsa and Centropages brachiatus; (2) a continental slope group characterized by siphonophores, bivalves, foraminifera and radiolaria; (3) and a species-rich oceanic group. The highest zooplankton abundances and biomasses were often found between 4-6°S and 14-16°S, where continental shelves are narrow. Species composition changes with distance from the shore. Species composition and biomass also vary strongly on short time scales due to advection, peaks of larval production, trophic interactions, and community succession. The relation of zooplankton to climatic variability (ENSO and multi-decadal) and fish stocks is discussed in the context of ecological regime shifts. An intermediate upwelling hypothesis is proposed, based on the negative effects of low upwelling intensity in summer or extremely strong and enduring winter upwelling on zooplankton abundance off Peru. According to this hypothesis, intermediate upwelling creates an optimal environmental window for zooplankton communities. Finally, we highlight important knowledge gaps that warrant attention in future.
Cheng, Yuan; Engling, Guenter; He, Ke-bin; Duan, Feng-kui; Du, Zhen-yu; Ma, Yong-liang; Liang, Lin-lin; Lu, Zi-feng; Liu, Jiu-meng; Zheng, Mei; Weber, Rodney J
2014-02-01
The chemical composition of Beijing aerosol was measured during summer and winter. Two distinct episodes were identified. Water-soluble potassium (K(+)) increased significantly during the firework episode in winter with an episode to non-episode ratio of 4.97, whereas the biomass burning (BB) episode in summer was characterized by high episode to non-episode ratios of levoglucosan (6.38) and K(+) (6.90). The BB and firework episodes had only a minor influence on the water-soluble OC (organic carbon) to OC ratio. Based on separate investigations of episode and non-episode periods, it was found that: (i) sulfate correlated strongly with both relative humidity and nitrate during the typical winter period presumably indicating the importance of the aqueous-phase oxidation of sulfur dioxide by nitrogen dioxide, (ii) oxalate and WSOC during both winter and summer in Beijing were mainly due to secondary formation, and (iii) high humidity can significantly enhance the formation potential of WSOC in winter. Copyright © 2013 Elsevier Ltd. All rights reserved.
Barr, G.L.
1996-01-01
From 1991 to 1995, the hydrogeology of the surficial aquifer system and the major permeable zones and confining units of the intermediate aquifer system in southwest Florida was studied. The study area is a 1,400-square-mile area that includes Sarasota County and parts of Manatee, De Soto, Charlotte, and Lee Counties. Lithologic, geophysical, hydraulic property, and water-level data were used to correlate the hydrogeology and map the extent of the aquifer systems. Water chemistry was evaluated in southwest Sarasota County to determine salinity of the surficial and intermediate aquifer systems. The surficial aquifer is an unconfined aquifer system that overlies the intermediate aquifer system and ranges from a few feet to over 60 feet in thickness in the study area. Hydraulic properties of the surficial aquifer system determined from aquifer and laboratory tests, and model simulations vary considerably across the study area. The intermediate aquifer system, a confined aquifer system that lies between the surficial and the Upper Floridan aquifers, is composed of alternating confining units and permeable zones. The intermediate aquifer system has three major permeable zones that exhibit a wide range of hydraulic properties. Horizontal flow in the intermediate aquifer system is northeast to southwest. Most of the study area is in a discharge area of the intermediate aquifer system. Water ranges naturally from fresh in the surficial aquifer system and upper permeable zones of the intermediate aquifer system to moderately saline in the lower permeable zone. Water-quality data collected in coastal southwest Sarasota County indicate that ground-water withdrawals from major pumping centers have resulted in lateral seawater intrusion and upconing into the surficial and intermediate aquifer systems.
Patterns of diel variation in nitrate concentrations in the Potomac River
Burns, Douglas A.; Miller, Matthew P.; Pellerin, Brian; Capel, Paul D.
2016-01-01
The Potomac River is a large source of N to Chesapeake Bay, where reducing nutrient loads is a focus of efforts to improve trophic status. Better understanding of NO3– loss, reflected in part by diel variation in NO3– concentrations, may refine model predictions of N loads to the Bay. We analyzed 2 y of high-frequency NO3– sensor data in the Potomac to quantify seasonal variation in the magnitude and timing of diel NO3– loss. Diel patterns were evident, especially during low flow, despite broad seasonal and flow-driven variation in NO3– concentrations. Diel variation was ~0.01 mg N/L in winter and 0.02 to 0.03 mg N/L in summer with intermediate values in spring and autumn, equivalent to <1% of the daily mean NO3– concentration in winter and ~2 to 4% in summer. Maximum diel NO3– values generally occurred in mid- to late morning, with more repeatable patterns in summer and wider variation in autumn and winter. Diel NO3– loss reduced loads by 0.7% in winter and 3% in summer. These losses were less than estimates of total in-stream NO3– load loss across the basin that averaged 33% of the annual groundwater contribution to the river. Water temperature and discharge had stronger relationships to the daily magnitude of diel NO3– variation than did photosynthetically active radiation. Estimated diel areal NO3– loss rates were generally >1000 mg N m–2 d–1, greater than most published values because measurements in this large river integrate over a greater depth/unit stream bottom area than do those from smaller rivers. These diel NO3– patterns are consistent with the influence of photoautotrophic uptake and related denitrification, but we cannot attribute these patterns to assimilation alone because the magnitude and timing of diel dynamics were affected to an unknown extent by processes, such as evapotranspiration, transient storage, and hydrodynamic dispersion. Improvements to diel loss estimates will require additional high-frequency measures, such as dissolved O2, dissolved organic N, and NH4+, and deployment of 2 measurement stations.
Distribution of Dissolved Zinc in the Western and Central Subarctic North Pacific
NASA Astrophysics Data System (ADS)
Kim, Taejin; Obata, Hajime; Nishioka, Jun; Gamo, Toshitaka
2017-09-01
We investigated the biogeochemical cycling of dissolved zinc (Zn) in the western and central subarctic North Pacific during the GEOTRACES GP 02 cruise. The relationship between dissolved Zn and silicate in the subarctic North Pacific plotted as a concave curve. Values of Zn* were strongly positive in the intermediate waters (26.6-27.5 σθ) of both the western and the central subarctic North Pacific. There was a distinct kink in the relationship between dissolved Zn and soluble reactive phosphorus (SRP) at the transition from shallow to intermediate water, which is similar to what has been reported for other open oceans. The high Zn:SRP ratio and high Zn* in the intermediate water suggest that intermediate water masses play an important role in the decoupling of dissolved Zn and silicate in the subarctic North Pacific, which implies that the biogeochemical processes that control dissolved Zn and silicate in the intermediate water are different from those in other oceanic regions.
[The new method monitoring crop water content based on NIR-Red spectrum feature space].
Cheng, Xiao-juan; Xu, Xin-gang; Chen, Tian-en; Yang, Gui-jun; Li, Zhen-hai
2014-06-01
Moisture content is an important index of crop water stress condition, timely and effective monitoring of crop water content is of great significance for evaluating crop water deficit balance and guiding agriculture irrigation. The present paper was trying to build a new crop water index for winter wheat vegetation water content based on NIR-Red spectral space. Firstly, canopy spectrums of winter wheat with narrow-band were resampled according to relative spectral response function of HJ-CCD and ZY-3. Then, a new index (PWI) was set up to estimate vegetation water content of winter wheat by improveing PDI (perpendicular drought index) and PVI (perpendicular vegetation index) based on NIR-Red spectral feature space. The results showed that the relationship between PWI and VWC (vegetation water content) was stable based on simulation of wide-band multispectral data HJ-CCD and ZY-3 with R2 being 0.684 and 0.683, respectively. And then VWC was estimated by using PWI with the R2 and RMSE being 0.764 and 0.764, 3.837% and 3.840%, respectively. The results indicated that PWI has certain feasibility to estimate crop water content. At the same time, it provides a new method for monitoring crop water content using remote sensing data HJ-CCD and ZY-3.
NASA Astrophysics Data System (ADS)
Montaldo, Nicola; Sarigu, Alessio
2017-10-01
In the Mediterranean region, the reduction in precipitation and warmer temperatures is generating a desertification process, with dramatic consequences for both agriculture and the sustainability of water resources. On the island of Sardinia (Italy), the decrease in runoff impacts the management of water resources, resulting in water supply restrictions even for domestic consumption. In the 10 Sardinian basins with a longer database (at least 40 complete years of data, including data from the past 10 years), runoff decreased drastically over the 1975-2010 period, with mean yearly runoff reduced by more than 40% compared to the previous 1922-1974 period. Trends in yearly runoff are negative, with Mann-Kendall τ values ranging from -0.39 to -0.2. Decreasing winter precipitation over the 1975-2010 period everywhere on Sardinia island has led to these decreases in runoff, as most yearly runoff in the Sardinian basins (70% on average) is produced by winter precipitation due to the seasonality typical of the Mediterranean climate regime. The trend in winter precipitation is not homogenous; the negative trend is higher (around -0.25) on the west Sardinian coast, becoming lower across the island toward the east coast (around -0.14). Winter precipitation is highly correlated with the North Atlantic Oscillation (NAO), a weather phenomenon in the North Atlantic Ocean that controls the direction and strength of westerly winds and storm tracks into Europe. High negative correlations (up to -0.45) between winter NAO index and winter precipitation are estimated along the west coast. Meanwhile, these correlations decrease east across the island toward the high mountain in the center of Sardinia, reaching the lowest values along the east coast (about -0.25). The generally decreasing correlation between winter NAO index and winter precipitation in the longitudinal direction (from the North Atlantic dipole to the east) here accelerates due to local-scale orographic effects that overlap the large-scale NAO impact on the winter precipitation regime, thus softening the precipitation reduction due to the NAO. Such local topographic effects that may attenuate large-scale climate change effects must be considered in water resource planning and management alongside such climate change effects related to large-scale circulations, such as NAO.
NASA Astrophysics Data System (ADS)
Sarigu, A.; Montaldo, N.
2017-12-01
In the Mediterranean region, the reduction in precipitation and warmer temperatures is generating a desertification process, with dramatic consequences for both agriculture and the sustainability of water resources. On the island of Sardinia (Italy), the decrease in runoff impacts the management of water resources, resulting in water supply restrictions even for domestic consumption. In the 10 Sardinian basins with a longer database (at least 40 complete years of data, including data from the past 10 years), runoff decreased drastically over the 1975-2010 period, with mean yearly runoff reduced by more than 40% compared to the previous 1922-1974 period. Trends in yearly runoff are negative, with Mann-Kendall τ values ranging from -0.39 to -0.2. Decreasing winter precipitation over the 1975-2010 period everywhere on Sardinia island has led to these decreases in runoff, as most yearly runoff in the Sardinian basins (70% on average) is produced by winter precipitation due to the seasonality typical of the Mediterranean climate regime. The trend in winter precipitation is not homogenous; the negative trend is higher (around -0.25) on the west Sardinian coast, becoming lower across the island toward the east coast (around -0.14). Winter precipitation is highly correlated with the North Atlantic Oscillation (NAO), a weather phenomenon in the North Atlantic Ocean that controls the direction and strength of westerly winds and storm tracks into Europe. High negative correlations (up to -0.45) between winter NAO index and winter precipitation are estimated along the west coast. Meanwhile, these correlations decrease east across the island toward the high mountain in the center of Sardinia, reaching the lowest values along the east coast (about -0.25). The decreasing correlation between winter NAO index and winter precipitation in the longitudinal direction (from the North Atlantic dipole to the east) here accelerates due to local-scale orographic effects that overlap the large-scale NAO impact on the winter precipitation regime, thus softening the precipitation reduction due to the NAO. Such local topographic effects that may attenuate large-scale climate change effects must be considered in water resource planning and management alongside such climate change effects related to large-scale circulations, such as NAO.
Petrie, Mark J.; Fleskes, Joseph P.; Wolder, Mike A.; Isola, Craig R.; Yarris, Gregory S.; Skalos, Daniel A.
2016-01-01
We used the bioenergetics model TRUEMET to evaluate potential effects of California's recent drought on food supplies for waterfowl wintering in the Central Valley under a range of habitat and waterfowl population scenarios. In nondrought years in the current Central Valley landscape, food supplies are projected to be adequate for waterfowl from fall through early spring (except late March) even if waterfowl populations reach North American Waterfowl Management Plan goals. However, in all drought scenarios that we evaluated, food supplies were projected to be exhausted for ducks by mid- to late winter and by late winter or early spring for geese. For ducks, these results were strongly related to projected declines in winter-flooded rice fields that provide 45% of all the food energy available to ducks in the Central Valley in nondrought water years. Delayed flooding of some managed wetlands may help alleviate food shortages by providing wetland food resources better timed with waterfowl migration and abundance patterns in the Central Valley, as well as reducing the amount of water needed to manage these habitats. However, future research is needed to evaluate the impacts of delayed flooding on waterfowl hunting, and whether California's existing water delivery system would make delayed flooding feasible. Securing adequate water supplies for waterfowl and other wetland-dependent birds is among the greatest challenges facing resource managers in coming years, especially in the increasingly arid western United States.
Yang, Ming-da; Ma, Shou-chen; Yang, Shen-jiao; Zhang, Su-yu; Guan, Xiao-kang; Li, Xue-mei; Wang, Tong-chao; Li, Chun-xi
2015-11-01
A pot culture experiment was conducted to study the effects of postponing nitrogen (N) application on photosynthetic characteristics and grain yield of winter wheat subjected to water stress after heading stage. Equal in the total N rate in winter wheat growth season, N application was split before sowing, and/or at jointing and /or at anthesis at the ratio of 10:0:0 (N1), 6:4:0 (N2) and 4:3:3 (N3), combined with unfavorable water condition (either waterlogged or drought) with the sufficient water condition as control. The results showed that, under each of the water condition, both N2 and N3 treatments significantly improved the leaf photosynthetic rate and the SPAD value of flag leaf compared with N1 treatment during grain filling stage, and also the crop ear number, grain number per spike and above-ground biomass were increased. Although postponing nitrogen application increased water consumption, both grain yield and water use efficiency were increased. Compared with sufficient water supply, drought stress and waterlogging stress significantly reduced the photosynthetic rate of flag leaves at anthesis and grain filling stages, ear number, 1000-grain mass and yield under all of the N application patterns. The decline of photosynthetic rate under either drought stress or waterlogging stress was much less in N2 and N3 than in N1 treatments, just the same as the grain yield. The results indicated that postponing nitrogen application could regulate winter wheat yield as well as its components to alleviate the damages, caused by unfavorable water stress by increasing flag leaf SPAD and maintaining flag leaf photosynthetic rate after anthesis, and promoting above-ground dry matter accumulation.
40 CFR 142.65 - Variances and exemptions from the maximum contaminant levels for radionuclides.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Raw water quality range &considerations 1 1. Ion exchange (IE) (a) Intermediate All ground waters. 2...-filtration. 5. Lime softening (d) Advanced All waters. 6. Green sand filtration (e) Basic. 7. Co-precipitation with barium sulfate (f) Intermediate to Advanced Ground waters with suitable water quality. 8...
Piazza, Bryan P.; LaPeyre, Megan K.; Keim, B.D.
2010-01-01
Climate creates environmental constraints (filters) that affect the abundance and distribution of species. In estuaries, these constraints often result from variability in water flow properties and environmental conditions (i.e. water flow, salinity, water temperature) and can have significant effects on the abundance and distribution of commercially important nekton species. We investigated links between large-scale climate variability and juvenile brown shrimp Farfantepenaeus aztecus abundance in Breton Sound estuary, Louisiana (USA). Our goals were to (1) determine if a teleconnection exists between local juvenile brown shrimp abundance and the El Niño Southern Oscillation (ENSO) and (2) relate that linkage to environmental constraints that may affect juvenile brown shrimp recruitment to, and survival in, the estuary. Our results identified a teleconnection between winter ENSO conditions and juvenile brown shrimp abundance in Breton Sound estuary the following spring. The physical connection results from the impact of ENSO on winter weather conditions in Breton Sound (air pressure, temperature, and precipitation). Juvenile brown shrimp abundance effects lagged ENSO by 3 mo: lower than average abundances of juvenile brown shrimp were caught in springs following winter El Niño events, and higher than average abundances of brown shrimp were caught in springs following La Niña winters. Salinity was the dominant ENSO-forced environmental filter for juvenile brown shrimp. Spring salinity was cumulatively forced by winter river discharge, winter wind forcing, and spring precipitation. Thus, predicting brown shrimp abundance requires incorporating climate variability into models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fan, Jiwen; Leung, Lai-Yung R.; DeMott, Paul J.
2014-05-01
In the paper “Aerosol impacts on California winter clouds and precipitation during CalWater 2011: local pollution versus long-range transported dust” by J. Fan et al., wrong versions of Fig. 8 and Fig. 12 were published. Please find the correct figures below.
40 CFR 141.66 - Maximum contaminant levels for radionuclides.
Code of Federal Regulations, 2010 CFR
2010-07-01
... quality range andconsiderations. 1 1. Ion exchange (IE) (a) Intermediate All ground waters. 2. Point of.... Lime softening (d) Advanced All waters. 6. Green sand filtration (e) Basic. 7. Co-precipitation with Barium sulfate (f) Intermediate to Advanced Ground waters with suitable water quality. 8. Electrodialysis...
Downstream movement of fish in a tributary of southern Lake Superior
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manion, P.J.
1977-01-01
The influence of two environmental factors, stream flow and water temperature, on the downstream movement of four fish species in the Big Garlic River over a 12-yr period is described. Brook trout (Salvelinus fontinalis) migrated after floods had subsided in the spring and during rising water in the fall at temperatures of about 10/sup 0/C. Brook sticklebacks (Culaea inconstans) moved downstream chiefly in winter. Mottled sculpins (Cottus bairdi) moved primarily in the winter and during floods. Yellow perch (Perca flavescens) appeared to move generally in the fall as water levels increased and water temperatures decreased.
Arctic Intermediate Water in the Nordic Seas, 1991-2009
NASA Astrophysics Data System (ADS)
Jeansson, Emil; Olsen, Are; Jutterström, Sara
2017-10-01
The evolution of the different types of Arctic Intermediate Water (AIW) in the Nordic Seas is evaluated and compared utilising hydro-chemical data from 1991 to 2009. It has been suggested that these waters are important components of the Norwegian Sea Arctic Intermediate Water (NSAIW), and of the dense overflows to the North Atlantic. Thus, it is important to understand how their properties and distribution vary with time. The AIWs from the Greenland and Iceland Seas, show different degrees of variability during the studied period; however, only the Greenland Sea Arctic Intermediate Water (GSAIW) shows an increasing temperature and salinity throughout the 2000s, which considerably changed the properties of this water mass. Optimum multiparameter (OMP) analysis was conducted to assess the sources of the NSAIW. The analysis shows that the Iceland Sea Arctic Intermediate Water (ISAIW) and the GSAIW both contribute to NSAIW, at different densities corresponding to their respective density range. This illustrates that they flow largely isopycnally from their source regions to the Norwegian Sea. The main source of the NSAIW, however, is the upper Polar Deep Water, which explains the lower concentrations of oxygen and chlorofluorocarbons, and higher salinity and nutrient concentrations of the NSAIW layer compared with the ISAIW and GSAIW. This shows how vital it is to include chemical tracers in any water mass analysis to correctly assess the sources of the water mass being studied.
Growth and mortality of larval Myctophum affine (Myctophidae, Teleostei).
Namiki, C; Katsuragawa, M; Zani-Teixeira, M L
2015-04-01
The growth and mortality rates of Myctophum affine larvae were analysed based on samples collected during the austral summer and winter of 2002 from south-eastern Brazilian waters. The larvae ranged in size from 2·75 to 14·00 mm standard length (L(S)). Daily increment counts from 82 sagittal otoliths showed that the age of M. affine ranged from 2 to 28 days. Three models were applied to estimate the growth rate: linear regression, exponential model and Laird-Gompertz model. The exponential model best fitted the data, and L(0) values from exponential and Laird-Gompertz models were close to the smallest larva reported in the literature (c. 2·5 mm L(S)). The average growth rate (0·33 mm day(-1)) was intermediate among lanternfishes. The mortality rate (12%) during the larval period was below average compared with other marine fish species but similar to some epipelagic fishes that occur in the area. © 2015 The Fisheries Society of the British Isles.
Tryland, Ingun; Eregno, Fasil Ejigu; Braathen, Henrik; Khalaf, Goran; Sjølander, Ingrid; Fossum, Marie
2015-01-01
The fully automated Colifast ALARMTM has been used for two years for daily monitoring of the presence/absence of Escherichia coli in 100 mL raw water at Oset drinking water treatment plant in Oslo, Norway. The raw water is extracted from 35 m depth from the Lake Maridalsvannet. E. coli was detected in 18% of the daily samples. In general, most samples positive for E. coli were observed during the autumn turnover periods, but even in some samples taken during warm and dry days in July, with stable temperature stratification in the lake, E. coli was detected. The daily samples gave useful additional information compared with the weekly routine samples about the hygienic raw water quality and the hygienic barrier efficiency of the lake under different weather conditions and seasons. The winter 2013/2014 was much warmer than the winter 2012/2013. The monitoring supported the hypothesis that warmer winters with shorter periods with ice cover on lakes, which may be a consequence of climate changes, may reduce the hygienic barrier efficiency in deep lakes used as drinking water sources. PMID:25658685
Interannual variability of Indian Ocean subtropical mode water subduction rate
NASA Astrophysics Data System (ADS)
Ma, Jie; Lan, Jian
2017-06-01
The interannual variation of Indian Ocean subtropical mode water (IOSTMW) subduction rate in the Southwest Indian Ocean from 1980 to 2007 is investigated in this paper based on Simple Ocean Data Assimilation (SODA) outputs. Climatology of subduction rate exceeds 75 m/year in the IOSTMW formation area. The renewal time of permanent pycnocline water mass based on the subduction rate is calculated for each density class: 3-6 years for IOSTMW (25.8 < σ θ < 26.2 kg m-3). Subduction rate in the Southwest Indian Ocean subtropical gyre exhibits a great year-to-year variability. This interannual variations of the IOSTMW subduction rate is primarily dominated by the lateral induction term, associated with the interannual variations of strong meridional gradient of winter mixed layer depth (MLD). The slope of the mixed layer depth in the mode water is closely linked to the large variations of deep late winter MLD in the mid-latitudes and negligible variations of shallow winter MLD in lower latitudes. It is further identified that the interannual variation of late winter MLD in this area is largely controlled by the latent and sensible heat flux components. The water volume of the permanent pycnocline in the IOSTMW distribution area is also found to show a significant interannual variability, and it is well correlated with the interannual variation of subduction rate.
Hydrography and circulation west of Sardinia in June 2014
NASA Astrophysics Data System (ADS)
Knoll, Michaela; Borrione, Ines; Fiekas, Heinz-Volker; Funk, Andreas; Hemming, Michael P.; Kaiser, Jan; Onken, Reiner; Queste, Bastien; Russo, Aniello
2017-11-01
In the frame of the REP14-MED sea trial in June 2014, the hydrography and circulation west of Sardinia, observed by means of gliders, shipborne CTD (conductivity, temperature, depth) instruments, towed devices, and vessel-mounted ADCPs (acoustic doppler current profilers), are presented and compared with previous knowledge. So far, the circulation is not well-known in this area, and the hydrography is subject to long-term changes. Potential temperature, salinity, and potential density ranges as well as core values of the observed water masses were determined. Modified Atlantic Water (MAW), with potential density anomalies below 28.72 kg m-3, showed a salinity minimum of 37.93 at 50 dbar. Levantine Intermediate Water (LIW), with a salinity maximum of about 38.70 at 400 dbar, was observed within a range of 28.72<σΘ/(kg m-3) < 29.10. MAW and LIW showed slightly higher salinities than previous investigations. During the trial, LIW covered the whole area from the Sardinian shelf to 7°15' E. Only north of 40° N was it tied to the continental slope. Within the MAW, a cold and saline anticyclonic eddy was observed in the southern trial area. The strongest variability in temperature and salinity appeared around this eddy, and in the southwestern part of the domain, where unusually low saline surface water entered the area towards the end of the experiment. An anticyclonic eddy of Winter Intermediate Water was recorded moving northward at 0.014 m s-1. Geostrophic currents and water mass transports calculated across zonal and meridional transects showed a good agreement with vessel-mounted ADCP measurements. Within the MAW, northward currents were observed over the shelf and offshore, while a southward transport of about 1.5 Sv occurred over the slope. A net northward transport of 0.38 Sv across the southern transect decreased to zero in the north. Within the LIW, northward transports of 0.6 Sv across the southern transects were mainly observed offshore, and decreased to 0.3 Sv in the north where they were primarily located over the slope. This presentation of the REP14-MED observations helps to further understand the long-term evolution of hydrography and circulation in the Western Mediterranean, where considerable changes occurred after the Eastern Mediterranean Transient and the Western Mediterranean Transition.
Winter cold of eastern continental boundaries induced by warm ocean waters.
Kaspi, Yohai; Schneider, Tapio
2011-03-31
In winter, northeastern North America and northeastern Asia are both colder than other regions at similar latitudes. This has been attributed to the effects of stationary weather systems set by elevated terrain (orography), and to a lack of maritime influences from the prevailing westerly winds. However, the differences in extent and orography between the two continents suggest that further mechanisms are involved. Here we show that this anomalous winter cold can result in part from westward radiation of large-scale atmospheric waves--nearly stationary Rossby waves--generated by heating of the atmosphere over warm ocean waters. We demonstrate this mechanism using simulations with an idealized general circulation model, with which we show that the extent of the cold region is controlled by properties of Rossby waves, such as their group velocity and its dependence on the planetary rotation rate. Our results show that warm ocean waters contribute to the contrast in mid-latitude winter temperatures between eastern and western continental boundaries not only by warming western boundaries, but also by cooling eastern boundaries.
NASA Astrophysics Data System (ADS)
Najdek, M.; Paliaga, P.; Šilović, T.; Batistić, M.; Garić, R.; Supić, N.; Ivančić, I.; Ljubimir, S.; Korlević, M.; Jasprica, N.; Hrustić, E.; Dupčić-Radić, I.; Blažina, M.; Orlić, S.
2014-05-01
This paper documents the picoplankton community's response to changes in oceanographic conditions in the period between October 2011 and September 2012 at two stations belonging to the South Adriatic Pit (SAP). The recorded data include the community's abundance, composition, prokaryotic production rates and bacterial metabolic capacity. The sampling period included an intense sea cooling with formation of exceptional, record-breaking dense water. We documented an especially intense winter convection episode that completely diluted the core of Levantine intermediate waters (LIW) in a large area encompassing the SAP's center and its margin. During this convection event the whole picoplankton community had significantly higher abundances with a recorded picoeukaryotic peak at the SAP margin. In the post-convection phase in March, prokaryotic heterotrophic production strongly increased in the entire SAP area (up to 50 times; 456.8 nM C day-1). An autotrophic biomass increase (up to 5 times; 4.86 μg L-1) and a disruption of a close correspondence between prokaryotic heterotrophic biomass production and cell replication rates were observed only in the center of the SAP, which was not under the influence of LIW. At the SAP's margin such an effect was attenuated by LIW, since the waters affected by LIW were characterized by decreased concentrations of dissolved inorganic nitrogen, decreased autotrophic biomasses, and by increased bacterial biomass production balanced with cell replication rates as well as by the domination of Synechococcus among autotrophic picoplankton. The metabolic capacity was lowest in spring when autotrophic biomass largely increased, while the highest levels found in the pre-convection phase (October 2011) suggest that the system was more oligotrophic before than after the convection event. Furthermore, we showed that metabolic capacity is a trait of bacterial community independent of environmental conditions and tightly linked to cell replication and substrate availability. In contrast, the bacterial community composition appears to be strongly influenced by physico-chemical characteristics of waters (e.g., temperature and nutrients) and environmental forcing (e.g., convection and LIW). Our results showed that the two oceanographic phenomena of the Southern Adriatic, strongly relevant for the total production of the Adriatic Sea, winter convection and LIW intrusion, regulate the changes in picoplankton community structure and activities.
Climate Change and Dryland Wheat Systems in the US Pacific Northwest
NASA Astrophysics Data System (ADS)
Stockle, C.; Karimi, T.; Huggins, D. R.; Nelson, R.
2015-12-01
A regional assessment of historical and future yields, and components of the water, nitrogen, and carbon soil balance of dryland wheat-based cropping systems in the US Pacific Northwest is being conducted (Regional Approaches to Climate Change project funded by USDA-NIFA). All these elements intertwines and are important to understand the future of these systems in the region. A computer simulation methodology was used based on the CropSyst model and historic and projected daily weather data downscaled to a 4x4 km grid including 14 general circulation models (GCMs) and two representative concentration pathways of future atmospheric CO2 (RCP 4.5 and RCP 8.5). The study region was divided in 3 agro-ecological zones (AEZ) based on precipitation amount: low (<300 mm/year), intermediate (300-460 mm/year) and high (>460 mm/year), with a change from crop-fallow, to transition fallow (crop-crop-fallow) to annual cropping, respectively. Typical wheat-based rotations included winter wheat (WW)-Summer fallow (SF) for the low AEZ, WW-spring wheat (SW)-SF for the intermediate AEZ, and WW-SW-spring peas for the high AEZ, all under conventional and no tillage management. Alternative systems incorporating canola were also evaluated. Results suggest that, in most cases, these dryland systems may fare well in the future (31-year periods centered around 2030, 2050, and 2070), with potential gains in productivity. Also, a trend towards increased fallow in the intermediate AEZ appears possible for higher productivity, and the inclusion of less water demanding crops may help sustain cropping intensity. Uncertainties in these projections arise from large discrepancies among climate models regarding the warming rate, compounded by different possible future CO2 emission scenarios, the degree of change in frequency and severity of extreme events and associated potential damages to crop canopies due to cold weather and grain set reduction due to extreme heat events. Furthermore, there is little understanding of the impact of climate change on pests, diseases and weeds that could affect crop production and management costs. Finally, there is also uncertainty on the speed of technological innovation allowing producers to adapt to changing conditions.
NASA Astrophysics Data System (ADS)
Khim, Boo-Keun; Otosaka, Shigeyoshi; Park, Kyung-Ae; Noriki, Shinichiro
2018-03-01
Investigation of sediment-trap deployments in the East/Japan Sea (EJS) showed that distinct seasonal variations in particulate organic carbon (POC) fluxes of intermediate-water sediment-traps clearly corresponded to changes in chlorophyll a concentrations estimated from SeaWiFS data. The prominent high POC flux periods (e.g., March) were strongly correlated with the enhanced surface-water phytoplankton blooms. Deep-water sedimenttraps exhibited similar variation patterns to intermediate-water sediment-traps. However, their total flux and POC flux were higher than those of intermediate-water sediment-traps during some months (e.g., April and May), indicating the lateral delivery of some particles to the deep-water sediment-traps. Distinct seasonal δ13C and δ15N variations in settling particles of the intermediate-water sediment-traps were observed, strongly supporting the notion of seasonal primary production. Seasonal variations in δ13C and δ15N values from the deep-water sediment-traps were similar to those of the intermediate-water sediment-traps. However, the difference in δ13C and δ15N values between the intermediate-water and the deepwater sediment-traps may be attributed to degradation of organic matter as it sank through the water column. Comparison of fluxweighted δ13C and δ15N mean values between the deep-water sediment-traps and the core-top sediments showed that strong selective loss of organic matter components (lipids) depleted in 13C and 15N occurred during sediment burial. Nonetheless, the results of our study indicate that particles in the deep-water sediment-trap deposited as surface sediments on the seafloor preserve the record of surface-water conditions, highlighting the usefulness of sedimentary δ13C and δ15N values as a paleoceanographic application in the EJS.
Breaking the Ice--And Winter's Spell--At Twin Buttes.
ERIC Educational Resources Information Center
Keown, Duane
1979-01-01
During the month of February, eighth and ninth graders at a university school in Wyoming participate in a winter lake study. Descriptions are given of various measurement techniques related to water quality studies. (SA)
Online kinetic studies on intermediates of laccase-catalyzed reaction in reversed micelle.
Liu, Zhi-Hong; Shao, Mei; Cai, Ru-Xiu; Shen, Ping
2006-02-01
Using water/AOT/n-octane reversed micelle as the medium, the optical signal of the reactive intermediate of laccase-catalyzed oxidation of o-phenylenediamine, which was indetectable in aqueous solutions, was successfully captured. Thus online kinetic studies of the intermediate were accomplished. Two-way kinetic spectral data were acquired with stopped-flow technique. By resolving the data with global analysis software, both the kinetic curves and the absorption spectra of the components involved in the reaction process were simultaneously obtained. The whole reaction in the reversed micelle was proved to be composed of two successive steps, an enzymatic generation of the intermediate and a following nonenzymatic decay of the intermediate. A consecutive first-order kinetic model of the whole reaction was confirmed. The influences of microenvironmental factors of the medium (such as the pH value of the water pool and the water/AOT ratio) on the detection of the intermediate were also investigated.
NASA Astrophysics Data System (ADS)
Scholz, Patrick; Lohmann, Gerrit
2017-04-01
The sub-Arctic oceans like the Sea of Okhotsk, the Bering Sea, the Labrador Sea or the Greenland- Irminger-Norwegian (GIN) Sea react particularly sensitive to global climate changes and have the potential to reversely regulate climate change by CO2 uptake in the other areas of the world. So far, the natural processes in the Arctic and Subarctic system, especially over the Pacific realm, remain poorly understood in terms of numerical modeling. As such, in this study we focus on the North Pacific and its adjacent marginal seas (e.g. the Sea of Okhotsk, the Bering Sea and the Sea of Japan), which have nowadays a significant role in the climate system of the Northwest Pacific by influencing the atmospheric and oceanic circulation as well as the hydrology of the Pacific water masses. The Sea of Okhotsk, in particular, is characterized by a highly dynamical sea-ice coverage, where, in autumn and winter, due to massive sea ice formation and brine rejection, the Sea of Okhotsk Intermediate Water (SOIW) is formed which contributes to the mid-depth (500-1000m) water layer of the North Pacific known as newly formed North Pacific Intermediate Water (NPIW). By employing a Finite-Element Sea-Ice Ocean Model (FESOM), in a global configuration, but with high resolution over the marginal seas of the Northwest Pacific Ocean ( 7 km), we tested different meshes and forcing improvements to correct the general ocean circulation in the North Pacific realm towards a more realistic pattern. By using different forcing data (e.g. CORE2, ERA-40/interim, CCMP-correction), adapting the mesh resolutions in the tropical and subtropical North Pacific and changing the bathymetry over important inflow straits (e.g. Amukta Passage, Kruzenstern Strait), we show that the better results are obtained (when compared with observational data) via a combination of CCMP corrected COREv2 forcing with increased resolution in the pathway of the Kuroshio Extension Current and Northern Equatorial Current.
The importance of agricultural lands for Himalayan birds in winter.
Elsen, Paul R; Kalyanaraman, Ramnarayan; Ramesh, Krishnamurthy; Wilcove, David S
2017-04-01
The impacts of land-use change on biodiversity in the Himalayas are poorly known, notwithstanding widespread deforestation and agricultural intensification in this highly biodiverse region. Although intact primary forests harbor many Himalayan birds during breeding, a large number of bird species use agricultural lands during winter. We assessed how Himalayan bird species richness, abundance, and composition during winter are affected by forest loss stemming from agriculture and grazing. Bird surveys along 12 elevational transects within primary forest, low-intensity agriculture, mixed subsistence agriculture, and intensively grazed pastures in winter revealed that bird species richness and abundance were greatest in low-intensity and mixed agriculture, intermediate in grazed pastures, and lowest in primary forest at both local and landscape scales; over twice as many species and individuals were recorded in low-intensity agriculture than in primary forest. Bird communities in primary forests were distinct from those in all other land-use classes, but only 4 species were unique to primary forests. Low-, medium-, and high-intensity agriculture harbored 32 unique species. Of the species observed in primary forest, 80% had equal or greater abundance in low-intensity agricultural lands, underscoring the value of these lands in retaining diverse community assemblages at high densities in winter. Among disturbed landscapes, bird species richness and abundance declined as land-use intensity increased, especially in high-intensity pastures. Our results suggest that agricultural landscapes are important for most Himalayan bird species in winter. But agricultural intensification-especially increased grazing-will likely result in biodiversity losses. Given that forest reserves alone may inadequately conserve Himalayan birds in winter, comprehensive conservation strategies in the region must go beyond protecting intact primary forests and ensure that low-intensity agricultural lands are not extensively converted to high-intensity pastures. © 2016 Society for Conservation Biology.
Pintail ducks tread the waters of KSC
NASA Technical Reports Server (NTRS)
1999-01-01
A male pintail duck (left) and female pintail (right) look like bookends on a glass-topped table in the winter waters of the Merritt Island National Wildlife Refuge at Kennedy Space Center. The pintails can be found in the marshes, prairie ponds and tundra of Alaska, Greenland and north and western United States; in the winter they range south and east to Central America and the West Indies, sometimes in salt marshes such as the refuge offers. The open water of the refuge provides wintering areas for 23 species of migratory waterfowl, as well as a year-round home for great blue herons, great egrets, wood storks, cormorants, brown pelicans and other species of marsh and shore birds. The 92,000-acre refuge is also habitat for more than 310 species of birds, 25 mammals, 117 fishes and 65 amphibians and reptiles.
Nitrogen and Phosphorus Budgets in the Northwestern Mediterranean Deep Convection Region
NASA Astrophysics Data System (ADS)
Kessouri, Faycal; Ulses, Caroline; Estournel, Claude; Marsaleix, Patrick; Severin, Tatiana; Pujo-Pay, Mireille; Caparros, Jocelyne; Raimbault, Patrick; Pasqueron de Fommervault, Orens; D'Ortenzio, Fabrizio; Taillandier, Vincent; Testor, Pierre; Conan, Pascal
2017-12-01
The aim of this study is to understand the biogeochemical cycles of the northwestern Mediterranean Sea (NW Med), where a recurrent spring bloom related to dense water formation occurs. We used a coupled physical-biogeochemical model at high resolution to simulate realistic 1 year period and analyze the nitrogen (N) and phosphorus (P) cycles. First, the model was evaluated using cruises carried out in winter, spring, and summer and a Bio-Argo float deployed in spring. Then, the annual cycle of meteorological and hydrodynamical forcing and nutrients stocks in the upper layer were analyzed. Third, the effect of biogeochemical and physical processes on N and P was quantified. Fourth, we quantified the effects of the physical and biological processes on the seasonal changes of the molar NO3:PO4 ratio, particularly high compared to the global ocean. The deep convection reduced the NO3:PO4 ratio of upper waters, but consumption by phytoplankton increased it. Finally, N and P budgets were estimated. At the annual scale, this area constituted a sink of inorganic and a source of organic N and P for the peripheral area. NO3 and PO4 were horizontally advected from the peripheral regions into the intermediate waters (130-800 m) of the deep convection area, while organic matter was exported throughout the whole water column toward the surrounding areas. The annual budget suggests that the NW Med deep convection constitutes a major source of nutrients for the photic zone of the Mediterranean Sea.
Ba, Yong; Mao, Yougang; Galdino, Luiz; Günsen, Zorigoo
2013-01-01
The effects of a type I AFP on the bulk melting of frozen AFP solutions and frozen AFP+solute solutions were studied through an NMR microimaging experiment. The solutes studied include sodium chloride and glucose and the amino acids alanine, threonine, arginine, and aspartic acid. We found that the AFP is able to induce the bulk melting of the frozen AFP solutions at temperatures lower than 0 °C and can also keep the ice melted at higher temperatures in the AFP+solute solutions than those in the corresponding solute solutions. The latter shows that the ice phases were in super-heated states in the frozen AFP+solute solutions. We have tried to understand the first experimental phenomenon via the recent theoretical prediction that type I AFP can induce the local melting of ice upon adsorption to ice surfaces. The latter experimental phenomenon was explained with the hypothesis that the adsorption of AFP to ice surfaces introduces a less hydrophilic water-AFP-ice interfacial region, which repels the ionic/hydrophilic solutes. Thus, this interfacial region formed an intermediate chemical potential layer between the water phase and the ice phase, which prevented the transfer of water from the ice phase to the water phase. We have also attempted to understand the significance of the observed melting phenomena to the survival of organisms that express AFPs over cold winters.
Climate Change Threatens Coexistence within Communities of Mediterranean Forested Wetlands
Di Paola, Arianna; Valentini, Riccardo; Paparella, Francesco
2012-01-01
The Mediterranean region is one of the hot spots of climate change. This study aims at understanding what are the conditions sustaining tree diversity in Mediterranean wet forests under future scenarios of altered hydrological regimes. The core of the work is a quantitative, dynamic model describing the coexistence of different Mediterranean tree species, typical of arid or semi-arid wetlands. Two kind of species, i.e. Hygrophilous (drought sensitive, flood resistant) and Non-hygrophilous (drought resistant, flood sensitive), are broadly defined according to the distinct adaptive strategies of trees against water stress of summer drought and winter flooding. We argue that at intermediate levels of water supply the dual role of water (resource and stress) results in the coexistence of the two kind of species. A bifurcation analysis allows us to assess the effects of climate change on the coexistence of the two species in order to highlight the impacts of predicted climate scenarios on tree diversity. Specifically, the model has been applied to Mediterranean coastal swamp forests of Central Italy located at Castelporziano Estate and Circeo National Park. Our results show that there are distinct rainfall thresholds beyond which stable coexistence becomes impossible. Regional climatic projections show that the lower rainfall threshold may be approached or crossed during the XXI century, calling for an urgent adaptation and mitigation response to prevent biodiversity losses. PMID:23077484
NASA Astrophysics Data System (ADS)
Buongiorno Nardelli, B.; Guinehut, S.; Verbrugge, N.; Cotroneo, Y.; Zambianchi, E.; Iudicone, D.
2017-12-01
The depth of the upper ocean mixed layer provides fundamental information on the amount of seawater that directly interacts with the atmosphere. Its space-time variability modulates water mass formation and carbon sequestration processes related to both the physical and biological pumps. These processes are particularly relevant in the Southern Ocean, where surface mixed-layer depth estimates are generally obtained either as climatological fields derived from in situ observations or through numerical simulations. Here we demonstrate that weekly observation-based reconstructions can be used to describe the variations of the mixed-layer depth in the upper ocean over a range of space and time scales. We compare and validate four different products obtained by combining satellite measurements of the sea surface temperature, salinity, and dynamic topography and in situ Argo profiles. We also compute an ensemble mean and use the corresponding spread to estimate mixed-layer depth uncertainties and to identify the more reliable products. The analysis points out the advantage of synergistic approaches that include in input the sea surface salinity observations obtained through a multivariate optimal interpolation. Corresponding data allow to assess mixed-layer depth seasonal and interannual variability. Specifically, the maximum correlations between mixed-layer anomalies and the Southern Annular Mode are found at different time lags, related to distinct summer/winter responses in the Antarctic Intermediate Water and Sub-Antarctic Mode Waters main formation areas.
Translations on Environmental Quality, Number 156.
1978-01-06
Needed Now, Editorial EASTERN EUROPE EAST GERMANY Water Pollutants Investigated (Heinrich Langmaack, Werner Winter; BAUERN-ECHO, 12/13 Nov 77) 5... INVESTIGATED East Berlin BAUERN-ECHO in German 12/13 Nov 77 p 8 /Article by Heinrich Langmaack and Werner Winter, Institute for Water Management...the occupation of the area, which BASA (the Bank of Amazonia ) have financed in 2 years, a total expenditure of about 6 billion cruzeiros. Each
Abrupt changes of intermediate-water oxygen in the northwestern Pacific during the last 27 kyr
NASA Astrophysics Data System (ADS)
Ishizaki, Yui; Ohkushi, Ken'ichi; Ito, Takashi; Kawahata, Hodaka
2009-04-01
An oxygen minimum zone (OMZ) currently exists at intermediate water depths on the northern Japanese margin in the northwestern Pacific. The OMZ results largely from a combination of high surface-water productivity and poor ventilation of intermediate waters. We investigated the late Quaternary history (last 27 kyr) of the intensity of this OMZ using changes in benthic foraminiferal carbon isotopes and assemblages in a sediment core taken on the continental slope off Shimokita Peninsula, northern Japan, at a water depth of 975 m. The core was located well within the region of the present-day OMZ and high surface-water productivity. The benthic foraminiferal δ13C values, which indicate millennial-scale fluctuations of nutrient contents at the sediment-water interface, were 0.48‰ lower during the last glacial maximum (LGM) than during the late Holocene. These results do not indicate the formation of glacial intermediate waters of subarctic Pacific origin, but rather the large contribution of high-nutrient water masses such as the Antarctic Intermediate Water, implying that the regional circulation pattern during the LGM was similar to that of modern times. Benthic foraminiferal assemblages underwent major changes in response to changes in dissolved oxygen concentrations in ocean floor sediments. The lowest oxygen and highest nutrient conditions, marked by dysoxic taxa and negative values of benthic foraminiferal δ13C, occurred during the Bølling/Allerød (B/A) and Pre-Boreal warming events. Dysoxic conditions in this region during these intervals were possibly caused by high surface-water productivity at times of reduced intermediate-water ventilation in the northwestern Pacific. The benthic assemblages show dysoxic events on approx. 100- to 200-year cycles during the B/A, reflecting centennial-scale productivity changes related to freshwater cycles and surface-water circulation in the North Pacific.
Humidity plays an important role in the PM₂.₅ pollution in Beijing.
Cheng, Yuan; He, Ke-Bin; Du, Zhen-Yu; Zheng, Mei; Duan, Feng-Kui; Ma, Yong-Liang
2015-02-01
Heavily-polluted PM₂.₅ (fine particulate matter) episodes frequently impacting Beijing, especially during winter, have become a substantial concern. We found that during winter, the daily variation of PM2.5 in Beijing tracked the pattern of relative humidity (RH). With the increase of PM₂.₅ (or RH), water-soluble components (especially inorganic ions) became more abundant, and the water-soluble organic carbon to organic carbon ratios increased. The nitrate to sulfate ratios also exhibited dependence on RH, and were higher than those measured about a decade ago, consistent with the increasing trend of nitrogen oxides emissions. Surprisingly, the ratios of water-insoluble organic carbon to elemental carbon showed significant increase at high RH levels, presumably indicating the formation of secondary organic aerosol that is not soluble in water. In addition, humid winters were occasionally identified during 1996-2013 which are expected to be favorable for the formation of air pollution episodes with high PM₂.₅ concentrations. Copyright © 2014 Elsevier Ltd. All rights reserved.
Climatic Influences on Southern Makassar Strait Salinity Over the Past Century
NASA Astrophysics Data System (ADS)
Murty, S. A.; Goodkin, N. F.; Halide, H.; Natawidjaja, D.; Suwargadi, B.; Suprihanto, I.; Prayudi, D.; Switzer, A. D.; Gordon, A. L.
2017-12-01
The Indonesian Throughflow (ITF) is a globally important ocean current that fuels heat and buoyancy fluxes throughout the Indo-Pacific and is known to covary in strength with the El Niño Southern Oscillation at interannual time scales. A climate system with a less well-quantified impact on the ITF is the East Asian Winter Monsoon (EAWM), which drives less saline surface waters from the South China Sea (SCS) into the Makassar Strait, obstructing surface ITF flow. We present a subannually resolved record of sea surface salinity (SSS) from 1927 to 2011 based on coral δ18O from the Makassar Strait that reveals variability in the relative contributions of different source waters to the surface waters of the Makassar Strait during the boreal winter monsoon. We find that the EAWM (January-March) strongly influences interannual SSS variability during boreal winter over the twentieth century (r = 0.54, p << 0.0001), impacting surface water circulation in the SCS and Indonesian Seas.
Intermediate water recovery system
NASA Technical Reports Server (NTRS)
Deckman, G.; Anderson, A. R. (Editor)
1973-01-01
A water recovery system for collecting, storing, and processing urine, wash water, and humidity condensates from a crew of three aboard a spacecraft is described. The results of a 30-day test performed on a breadboard system are presented. The intermediate water recovery system produced clear, sterile, water with a 96.4 percent recovery rate from the processed urine. Recommendations for improving the system are included.
NASA Astrophysics Data System (ADS)
Moonshiram, Dooshaye; Pushkar, Yulia; Jurss, Jonah; Concepcion, Javier; Meyer, Thomas; Zakharova, Taisiya; Alperovich, Igor
2012-02-01
Utilization of sunlight requires solar capture, light-to-energy conversion and storage. One effective way to store energy is to convert it into chemical energy by fuel-forming reactions, such as water splitting into hydrogen and oxygen. Ruthenium complexes are among few molecular-defined catalysts capable of water splitting. Mechanistic insights about such catalysts can be acquired by spectroscopic analysis of short-lived intermediates of catalytic water oxidation. Use of techniques such as EPR and X-ray absorption spectroscopy (XAS) are used to determine electronic requirements of catalytic water oxidation. About 30 years ago Meyer and coworkers reported first ruthenium-based catalyst for water oxidation, the ``blue dimer''. We performed EPR studies and characterized structures and electronic configurations of intermediates of water oxidation by the ``blue dimer''. Intermediates were prepared chemically by oxidation of Ru-complexes with defined number of Ce (IV) equivalents and freeze-quenched at controlled times. Changes in oxidation state of Ru atom were detected by XANES at Ru K-edges. K-edges are sensitive to changes in Ru oxidation state for Blue Dimer [3,3]^4+, [3,4]^4+, [3,4]'^4+ and [4,5]^3+ allowing a clear assignment of Ru oxidation state in intermediates. EXAFS demonstrated structural changes.
NASA Astrophysics Data System (ADS)
Xie, Ruifang C.; Marcantonio, Franco; Schmidt, Matthew W.
2014-09-01
Decades of paleoceanographic studies have reconstructed a well-resolved water mass structure for the deep Atlantic Ocean during the Last Glacial Maximum (LGM). However, the variability of intermediate water circulation in the tropics over the LGM and deglacial abrupt climate events is still largely debated. This study aims to reconstruct intermediate northern- and southern-sourced water circulation in the tropical North Atlantic during the past 22 kyr and attempts to confine the boundary between Antarctic Intermediate Water (AAIW) and northern-sourced intermediate water (i.e., upper North Atlantic Deep Water (NADW) or Glacial North Atlantic Intermediate Water) in the past. High-resolution Nd isotopic compositions of fish debris and acid-reductive leachate of bulk sediment in core VM12-107 (1079 m depth) from the Southern Caribbean are not in agreement. We suggest that the leachate method does not reliably extract the Nd isotopic compositions of seawater at this location, and that it needs to be tested in more detail in various oceanic settings. The fish debris εNd values display a general decrease from the early deglaciation to the end of the Younger Dryas, followed by a greater drop toward less radiogenic values into the early Holocene. We propose a potentially more radiogenic glacial northern endmember water mass and interpret this pattern as recording a recovery of the upper NADW during the last deglaciation. Comparing our new fish debris Nd isotope data to authigenic Nd isotope studies in the Florida Straits (546 and 751 m depth), we propose that both glacial and deglacial AAIW do not penetrate beyond the lower depth limit of modern AAIW in the tropical Atlantic.
Jones, Benjamin M.; Gusmeroli, Alessio; Arp, Christopher D.; Strozzi, Tazio; Grosse, Guido; Gaglioti, Benjamin V.; Whitman, Matthew S.
2013-01-01
Arctic freshwater ecosystems have responded rapidly to climatic changes over the last half century. Lakes and rivers are experiencing a thinning of the seasonal ice cover, which may increase potential over-wintering freshwater habitat, winter water supply for industrial withdrawal, and permafrost degradation. Here, we combined the use of ground penetrating radar (GPR) and high-resolution (HR) spotlight TerraSAR-X (TSX) satellite data (1.25 m resolution) to identify and characterize floating ice and grounded ice conditions in lakes, ponds, beaded stream pools, and an alluvial river channel. Classified ice conditions from the GPR and the TSX data showed excellent agreement: 90.6% for a predominantly floating ice lake, 99.7% for a grounded ice lake, 79.0% for a beaded stream course, and 92.1% for the alluvial river channel. A GIS-based analysis of 890 surface water features larger than 0.01 ha showed that 42% of the total surface water area potentially provided over-wintering habitat during the 2012/2013 winter. Lakes accounted for 89% of this area, whereas the alluvial river channel accounted for 10% and ponds and beaded stream pools each accounted for <1%. Identification of smaller landscape features such as beaded stream pools may be important because of their distribution and role in connecting other water bodies on the landscape. These findings advance techniques for detecting and knowledge associated with potential winter habitat distribution for fish and invertebrates at the local scale in a region of the Arctic with increasing stressors related to climate and land use change.
Waterbirds foods in winter-managed ricefields in Mississippi
Manley, S.W.; Kaminski, R.M.; Reinecke, K.J.; Gerard, P.D.
2004-01-01
Ricefields are important foraging habitats for waterfowl and other waterbirds in primary North American wintering regions. We conducted a large-scale experiment to test effects of post-harvest ricefield treatment, winter water management, and temporal factors on availabilities of rice, moist-soil plant seeds, aquatic invertebrates, and green forage in the Mississippi Alluvial Valley (MAV), Mississippi, USA, fall-winter 1995-1997. Our results revealed that a large decrease in rice grain occurred between harvest and early winter (79-99%), which, if generally true throughout the MAV, would have critical implications on foraging carrying capacity of ricefields for migrating and wintering waterbirds. During the remainder of winter, food resources generally were similar among treatment combinations. An exception was biomass of aquatic invertebrates, which demonstrated potential to increase by late winter in ricefields that remained flooded. We offer revised calculations of foraging carrying capacity for waterfowl in MAV ricefields and recommend continuing research and management designed to increase availability of residual rice and aquatic invertebrates in winter.
Two manatees in the water at KSC
NASA Technical Reports Server (NTRS)
2000-01-01
Two manatees swim leisurely in waters on Kennedy Space Center. They gather in Florida's warm water rivers and inland springs during the winter. KSC shares a boundary with the Merritt Island National Wildlife Refuge, which encompasses 92,000 acres that are a habitat for more than 331 species of birds, 31 mammals, 117 fishes, and 65 amphibians and reptiles. The marshes and open water of the refuge provide wintering areas for 23 species of migratory waterfowl, as well as a year-round home for great blue herons, great egrets, wood storks, cormorants, brown pelicans and other species of marsh and shore birds, as well as a variety of insects.
Two manatees in the water at KSC
NASA Technical Reports Server (NTRS)
2000-01-01
In waters on Kennedy Space Center, two manatees are seen leisurely swimming. In winter they gather in Florida's warm water rivers and inland springs. KSC shares a boundary with the Merritt Island National Wildlife Refuge, which encompasses 92,000 acres that are a habitat for more than 331 species of birds, 31 mammals, 117 fishes, and 65 amphibians and reptiles. The marshes and open water of the refuge provide wintering areas for 23 species of migratory waterfowl, as well as a year-round home for great blue herons, great egrets, wood storks, cormorants, brown pelicans and other species of marsh and shore birds, as well as a variety of insects.
Shifting balance of thermokarst lake ice regimes across the Arctic Coastal Plain of northern Alaska
Arp, Christopher D.; Jones, Benjamin M.; Lu, Zong; Whitman, Matthew S.
2012-01-01
The balance of thermokarst lakes with bedfast- and floating-ice regimes across Arctic lowlands regulates heat storage, permafrost thaw, winter-water supply, and over-wintering aquatic habitat. Using a time-series of late-winter synthetic aperture radar (SAR) imagery to distinguish lake ice regimes in two regions of the Arctic Coastal Plain of northern Alaska from 2003–2011, we found that 18% of the lakes had intermittent ice regimes, varying between bedfast-ice and floating-ice conditions. Comparing this dataset with a radar-based lake classification from 1980 showed that 16% of the bedfast-ice lakes had shifted to floating-ice regimes. A simulated lake ice thinning trend of 1.5 cm/yr since 1978 is believed to be the primary factor driving this form of lake change. The most profound impacts of this regime shift in Arctic lakes may be an increase in the landscape-scale thermal offset created by additional lake heat storage and its role in talik development in otherwise continuous permafrost as well as increases in over-winter aquatic habitat and winter-water supply.
Transport and thermohaline variability in Barrow Canyon on the Northeastern Chukchi Sea Shelf
NASA Astrophysics Data System (ADS)
Weingartner, Thomas J.; Potter, Rachel A.; Stoudt, Chase A.; Dobbins, Elizabeth L.; Statscewich, Hank; Winsor, Peter R.; Mudge, Todd D.; Borg, Keath
2017-05-01
We used a 5 year time series of transport, temperature, and salinity from moorings at the head of Barrow Canyon to describe seasonal variations and construct a 37 year transport hindcast. The latter was developed from summer/winter regressions of transport against Bering-Chukchi winds. Seasonally, the regressions differ due to baroclinicity, stratification, spatial, and seasonal variations in winds and/or the surface drag coefficients. The climatological annual cycle consists of summer downcanyon (positive and toward the Arctic Ocean) transport of ˜0.45 Sv of warm, freshwaters; fall (October-December) upcanyon transport of ˜-0.1 Sv of cooler, saltier waters; and negligible net winter (January-April) mass transport when shelf waters are saline and near-freezing. Fall upcanyon transports may modulate shelf freezeup, and negligible winter transports could influence winter water properties. Transport variability is largest in fall and winter. Daily transport probability density functions are negatively skewed in all seasons and seasonal variations in kurtosis are a function of transport event durations. The latter may have consequences for shelf-basin exchanges. The climatology implies that the Chukchi shelf circulation reorganizes annually: in summer ˜40% of the summer Bering Strait inflow leaves the shelf via Barrow Canyon, but from fall through winter all of it exits via the western Chukchi or Central Channel. We estimate a mean transport of ˜0.2 Sv; ˜50% less than estimates at the mouth of the canyon. Transport discrepancies may be due to inflows from the Beaufort shelf and the Chukchi shelfbreak, with the latter entering the western side of the canyon.
NASA Astrophysics Data System (ADS)
Van Rampelbergh, M.; Verheyden, S.; Allan, M.; Quinif, Y.; Cheng, H.; Edwards, L.; Keppens, E.; Claeys, P.
2014-10-01
Speleothem δ18O and δ13C signals have already proven to enable climate reconstructions at high resolution. However, seasonally resolved speleothem records are still scarce and often difficult to interpret in terms of climate due to the multitude of factors that can affect the proxy signals. In this paper, a fast growing (up to 2 mm yr-1) seasonally laminated speleothem from the Han-sur-Lesse cave (Belgium) is analyzed for its δ18O and δ13C values, layer thickness and changes in calcite fabric. The studied part of the speleothem covers the most recent 500 years as indicated by layer counting and confirmed by 20 U/Th-ages. Epikarst recharge occurs mainly in winter and lesser during spring and fall. a good correlation can be established between lower winter temperatures and lower winter precipitation (DJF) based on the measured data by the Belgian meteorological institute since 1833 indicating that a dry winter is also a cold winter. Colder and dryer winters cause lower winter recharge and generally drier conditions in the cave. Lower winter recharge decreases the amount of isotopically light (δ18O) winter precipitation added to the epikarst in comparison to the heavier spring and fall waters, which leads to a net increase in δ18O value of the water in the epikarst. Increased δ18O values in the Proserpine are consequently interpreted to reflect colder and dryer winters. Higher δ13C signals are interpreted to reflect increased prior calcite precipitation (PCP) due to colder and dryer winters, when recharge is lower. Thinner layers and darker calcite relate to slower growth and occur when drip rates are low and when the drip water calcium ion concentration is low due to increased PCP, both caused by lower recharge during periods with colder and dryer winters. Exceptionally cold and dry winters cause the drip discharge to decrease under a certain threshold value inducing anomalies in the measured proxy records. Such anomalies occur from 1565 to 1610, from 1770 to 1800, from 1810 to 1860 and from 1880 to 1895 and correspond with exceptionally cold periods in proxy-based, historical and instrumental records and may relate to different factors such as negative winter NAO phases, lower solar irradiance and/or volcanic eruptions. When the discharge threshold is not reached, lower amplitude variations are observed such as between 1479 and 1565 and between 1730 and 1770 with two periods of relatively warmer and wetter winters. Between 1610 and 1730 a period of relatively cooler and dryer winters occurs and may relate to a decrease in solar irradiance during the Maunder Minimum (1640-1714). Seasonal δ18O variations indicate a 2.5 °C seasonality in cave air temperature during the two periods with warmer and wetter winters (1479-1565 and 1730-1770), and correspond to the cave air temperature seasonality observed today. a smaller 1.5 °C seasonality in cave air temperature occurs during the interval with colder and wetter winters between 1610 and 1730 and suggests colder summers. The δ13C seasonal changes suggest that the seasonality in discharge was lower than the one observed today with a short interval of increased seasonality between 1600 and 1660 reflecting stronger summer PCP-effects due to decreased winter recharge.
Seasonality of Groundwater Recharge in the Basin and Range Province, Western North America
NASA Astrophysics Data System (ADS)
Neff, K. L.; Meixner, T.; Ajami, H.; De La Cruz, L.
2015-12-01
For water-scarce communities in the western U.S., it is critical to understand groundwater recharge regimes and how those regimes might shift in the face of climate change and impact groundwater resources. Watersheds in the Basin and Range Geological Province are characterized by a variable precipitation regime of wet winters and variable summer precipitation. The relative contributions to groundwater recharge by summer and winter precipitation vary throughout the province, with winter precipitation recharge dominant in the northern parts of the region, and recharge from summer monsoonal precipitation playing a more significant role in the south, where the North American Monsoon (NAM) extends its influence. Stable water isotope data of groundwater and seasonal precipitation from sites in Sonora, Mexico and the U.S. states of California, Nevada, Utah, Arizona, Colorado, New Mexico, and Texas were examined to estimate and compare groundwater recharge seasonality throughout the region. Contributions of winter precipitation to annual recharge vary from 69% ± 41% in the southernmost Río San Miguel Basin in Sonora, Mexico, to 100% ± 36% in the westernmost Mojave Desert of California. The Normalized Seasonal Wetness Index (NSWI), a simple water budget method for estimating recharge seasonality from climatic data, was shown to approximate recharge seasonality well in several winter precipitation-dominated systems, but less well in basins with significant summer precipitation.
Cold truths: how winter drives responses of terrestrial organisms to climate change.
Williams, Caroline M; Henry, Hugh A L; Sinclair, Brent J
2015-02-01
Winter is a key driver of individual performance, community composition, and ecological interactions in terrestrial habitats. Although climate change research tends to focus on performance in the growing season, climate change is also modifying winter conditions rapidly. Changes to winter temperatures, the variability of winter conditions, and winter snow cover can interact to induce cold injury, alter energy and water balance, advance or retard phenology, and modify community interactions. Species vary in their susceptibility to these winter drivers, hampering efforts to predict biological responses to climate change. Existing frameworks for predicting the impacts of climate change do not incorporate the complexity of organismal responses to winter. Here, we synthesise organismal responses to winter climate change, and use this synthesis to build a framework to predict exposure and sensitivity to negative impacts. This framework can be used to estimate the vulnerability of species to winter climate change. We describe the importance of relationships between winter conditions and performance during the growing season in determining fitness, and demonstrate how summer and winter processes are linked. Incorporating winter into current models will require concerted effort from theoreticians and empiricists, and the expansion of current growing-season studies to incorporate winter. © 2014 The Authors. Biological Reviews © 2014 Cambridge Philosophical Society.
Deep-convection events foster carbonate ion reduction in deep coral reefs
NASA Astrophysics Data System (ADS)
Perez, Fiz F.; Fontela, Marcos; Garcia-Ibañez, Maribel I.; Lherminier, Pascale; Zunino, Patricia; de la Paz, Mercedes; Padín, Xose A.; Alonso-Pérez, Fernando; Velo, Anton; Guallart, Elisa F.; Mercier, Herle
2017-04-01
Since millennial times, water mass circulation and deep-convection events have been transforming warm upper waters at high latitudes into cold and well-oxygenated deep waters. These processes have filled the deep North Atlantic Ocean with waters moderately saturated in calcium carbonate, thus promoting the growth of stony corals, which are hotspots of biodiversity. During the Anthropocene, the meridional circulation has been conveying cumulative amounts of more acidified waters with lower calcium carbonate saturation levels due to the incorporation of anthropogenic carbon dioxide, with very harsh conditions for deep cold-water corals projected by 2100. We evaluate the diminution of calcium carbonate saturation levels (aragonite form) due to the increase in anthropogenic carbon dioxide during the last two decades (2002-2016). We observe a strong decrease in the aragonite saturation levels concomitant with the reduction in the volume transport of aragonite-saturated waters. We estimate a 30-35% reduction in the transport of ion carbonate excess over the saturation levels with respect to the natural carbon cycle for the period 2002-2016. This reduction is associated with an increase in the downward transport of hydrogen ions. We also observe a heaving of the aragonite saturation horizons during the last 25 years, which is estimated at 6 m year-1 for the deep waters and 12-14 m year-1 for the intermediated waters. The harsh winters of 2015 and 2016 have fostered the fast addition of more acidified water into the lower layers of the North Atlantic through deep-convection events. In the future scenario of 2oC warming, the anthropogenic carbon dioxide in the water column would be double than today and the associated transport of hydrogen ions towards the bottom water would reduce the aragonite saturation levels to 60-80% with respect to preindustrial levels. This reduction in the aragonite saturation levels would suppose a strong diminution of the North Atlantic habitats where stony corals will be able to inhabit.
Wang, Sikai; Jin, Binsong; Qin, Haiming; Sheng, Qiang; Wu, Jihua
2015-01-01
Benthic bivalves are important links between primary production and consumers, and are essential intermediates in the flow of energy through estuarine systems. However, information on the diet of filter feeding bivalves in estuarine ecosystems is uncertain, as estuarine waters contain particulate matter from a range of sources and as bivalves are opportunistic feeders. We surveyed bivalves at different distances from the creek mouth at the Yangtze estuarine marsh in winter and summer, and analyzed trophic dynamics using stable isotope (SI) and fatty acid (FA) techniques. Different bivalve species had different spatial distributions in the estuary. Glauconome chinensis mainly occurred in marshes near the creek mouth, while Sinonovacula constricta preferred the creek. Differences were found in the diets of different species. S. constricta consumed more diatoms and bacteria than G. chinensis, while G. chinensis assimilated more macrophyte material. FA markers showed that plants contributed the most (38.86 ± 4.25%) to particular organic matter (POM) in summer, while diatoms contributed the most (12.68 ± 1.17%) during winter. Diatoms made the largest contribution to the diet of S. constricta in both summer (24.73 ± 0.44%) and winter (25.51 ± 0.59%), and plants contributed no more than 4%. This inconsistency indicates seasonal changes in food availability and the active feeding habits of the bivalve. Similar FA profiles for S. constricta indicated that the bivalve had a similar diet composition at different sites, while different δ13C results suggested the diet was derived from different carbon sources (C4 plant Spartina alterniflora and C3 plant Phragmites australis and Scirpus mariqueter) at different sites. Species-specific and temporal and/or spatial variability in bivalve feeding may affect their ecological functions in intertidal marshes, which should be considered in the study of food webs and material flows in estuarine ecosystems. PMID:26261984
Deglacial Ocean Circulation Scheme at Intermediate Depths in the Tropical North Atlantic
NASA Astrophysics Data System (ADS)
Xie, R. C.; Marcantonio, F.; Schmidt, M. W.
2014-12-01
In the modern Atlantic Ocean, intermediate water circulation is largely governed by the southward flowing upper North Atlantic Deep Water (NADW) and the northward return flow Antarctic Intermediate Water (AAIW). During the last deglaciation, it is commonly accepted that the southward flow Glacial North Atlantic Intermediate Water, the glacial analogue of NADW, contributed significantly to past variations in intermediate water circulation. However, to date, there is no common consensus of the role AAIW played during the last deglaciation, especially across abrupt climate events such as the Heinrich 1 and the Younger Dryas. This study aims to reconstruct intermediate northern- and southern-sourced water circulation in the tropical North Atlantic during the past 22 kyr and attempts to confine the boundary between AAIW and northern-sourced intermediate waters in the past. High-resolution Nd isotopic compositions (ɛNd thereafter) of fish debris and bulk sediment acid-reductive leachate from the Southern Caribbean (VM12-107; 1079 m) are inconsistent, again casting concerns, as already raised by recent studies, on the reliability of the leachate method in extracting seawater ɛNd signature. This urges the need to carefully verify the seawater ɛNd integrity in sediment acid-reductive leachate in various oceanic settings. Fish debris Nd isotope record in our study displays a two-step decreasing trend from the early deglaciation to early Holocene. We interpret this as recording a two-step deglacial recovery of the upper NADW, given the assumption on a more radiogenic glacial northern-sourced water is valid. Comparing with authigenic ɛNd records in the Florida Straits [1] and the Demarara Rise [2], our new fish debris ɛNd results suggest that, in the tropical western North Atlantic, glacial and deglacial AAIW never penetrated beyond the lower depth limit of modern AAIW. [1] Xie et al., GCA (140) 2014; [2] Huang et al., EPSL (389) 2014
Seasonal Dynamics of Biogeochemical Processes in the Water Column of the Northeastern Black Sea
NASA Astrophysics Data System (ADS)
Rusanov, I. I.; Lein, A. Yu.; Makkaveev, P. N.; Klyuvitkin, A. A.; Kravchishina, M. D.; Ivanov, M. V.; Flint, M. V.
2018-01-01
Integrated studies on the hydrochemistry and water column rates of microbial processes in the eastern sector of the Black Sea along a standard 100-miles transect off Gelendzhik from the coast to the central part of the sea at water depths of 100-2170 m show that a series of warm winters and the absence of intense convective winter mixing resulted in a relatively low content of suspended particulate matter (SPM), particulate organic carbon (POC), and nutrients in the water column in March 2009. The relatively high SPM concentrations and the presence of isotopically light POC at the offshore station are indicative of the supply of terrigenous material from land and low contributions of phytoplanktonic organic matter to the composition of SPM. This may explain the low rates of biogeochemical processes in the water column near the coast. The surface layer at deep-water stations is dominated by isotopically heavy phytoplanktonic organic matter. This suggests that the supply of terrigenous material from land was insufficient in offshore deep-water areas. Therefore, warm winters and insufficient nutrient supply do not prevent photosynthesis in the photic layer of the deep-water zone, which generates organic substrates for heterotrophic aquatic communities. The results of isotopic analysis of POC, measurements of the rates biogeochemical processes, and the hydrochemical characteristics of the water column can be used to determine the nature and seasonal variability of the POC composition.
Winter habitat use by cutthroat trout in the Snake River near Jackson, Wyoming
Harper, D.D.; Farag, A.M.
2004-01-01
Winter habitat use by Yellowstone cutthroat trout Oncorhynchus clarki bouvieri was monitored with radiotelemetry during November-March 1998-2001 in channelized and unaltered sections of the Snake River near Jackson, Wyoming. The use of run and off-channel pool habitat was significantly correlated to water temperature; run use was most frequent when mean water temperature exceeded 1.0°C, and off-channel pool use was greatest when mean water temperature was below 1.0°C. Available habitat was surveyed during winter 1999-2000 and was compared with actual habitat use. This comparison indicated that cutthroat trout avoided riffle habitat, selected deep runs, and strongly selected off-channel pool habitat. Large, deep, off-channel pools with groundwater influence were uncommon in the study area but were frequently selected as over-wintering habitat in the channelized section during all three study years. During 2000-2001, mainstem water temperatures were significantly colder than in 1998-1999 or 1999-2000, and anchor ice was observed more frequently in 2000-2001 than in 1998-1999 or 1999-2000 (on 18 d versus 5 d and 3 d, respectively). Mean water temperatures in off-channel pools were not significantly different among years. Depth and shelf ice were most frequently identified as cover elements in the channelized section. Run habitat was more common and used more frequently upstream of the channelized section. Large woody debris was more common and selected more frequently as cover in the unaltered section than in the channelized section.
Relationships between solar activity and climate change
NASA Technical Reports Server (NTRS)
Roberts, W. O.
1975-01-01
The relationship between recurrent droughts in the High Plains of the United States and the double sunspot cycle is discussed in detail. It is suggested that high solar activity is generally related to an increase in meridional circulation and blocking patterns at high and intermediate latitudes, especially in winter, and the effect is related to the sudden formation of cirrus clouds during strong geomagnetic activity that originates in the solar corpuscular emission.
Intense Mixing and Recirculations of Intermediate and Deep Water in the Northwest Argentine Basin
NASA Astrophysics Data System (ADS)
Valla, D.; Piola, A. R.
2016-02-01
The sources of the South Atlantic upper and intermediate waters that form the upper layer flow needed to maintain mass balance due the export of North Atlantic Deep Water from the North Atlantic are still under debate. The "cold path" scheme postulates that intermediate waters are injected into the South Atlantic from the Pacific through the Drake Passage, advected north by the Malvinas Current up to the Brazil/Malvinas Confluence (BMC) and circulated around the basin following the path of the subtropical gyre. We report high-quality hydrographic observations collected in the South Atlantic western boundary at 34.5 °S during 7 hydrographic cruises as part of the SAMOC project. We focus on the flow and characteristics of Antarctic Intermediate Water (AAIW) and Upper Circumpolar Deep Water (UCDW). The water mass analysis indicates the presence of "young" (fresh and highly oxygenated) varieties of AAIW (S<34.2, O2>6 ml·l-1) which must be derived from south of the SAMOC array. This suggests an alternative pathway for intermediate waters that involves a short circuit beneath the BMC. Simultaneous full-depth velocity measurements using lowered acoustic Doppler current profilers confirm this hypothesis. The flow direction across the SAMOC array in the UCDW range inferred from dissolved oxygen measurements also indicate the presence of UCDW (O2<4.2 ml·l-1) derived from farther south. However, the wider range of oxygen concentrations suggests strong recirculations of both water masses within the northwestern Argentine Basin.
Over-wintering of Supraglacial Lakes on the Greenland Ice Sheet from Sentinel-1 and Landsat-8 Data
NASA Astrophysics Data System (ADS)
Benedek, C. L.; Tedesco, M.
2015-12-01
Supra-glacial lakes on the GrIS have become a focus of research relating to the contribution of the GrIS to sea level rise. Lakes have been observed to appear during the summer melt season. Though it appears that the quantity of water collected on the surface is small, it is thought that the fracture and drainage of these lakes delivers significant pulses of water to the ice sheet bed, influencing the dynamic movement of glaciers towards the sea. The pattern of this transport mechanism may be a central driver of its influence over dynamic losses, as the flow of the viscoelastic ice sheet will differ if the water is delivered in a short pulse or a slower constant supply. A number of studies have catalogued the traits of lakes with an aim to quantify lake areas, depths, and timing of formation and cessation using visible and near infrared remote sensing instruments mostly focused on the summer melt season. Little is known about the behaviour of the surface lakes over the winter. A recent examination of the over-wintering of surface lakes has been conducted by Koenig et al. [2015] using airborne radar. While the study is extensive in area covered, it is limited in its temporal resolution by the availability of Operation IceBridge data, typically at one pass per year. This study seeks to observe the development of lakes over the winter period. Sentinel-1A radar images are used to track the presence of surface lakes and their variation in three study sites on the Greenland ice sheet. The sites are as follows: upstream of Ryder glacier, upstream of Petermann glacier, and upstream of Jakobshavn glacier. Water masks are created based on summer Landsat-8 images following NDWIice and then compared to Sentinel images at monthly temporal resolution through the winter of 2014-2015. These radar images show persistence of liquid water through the winter in agreement with previous research as well as variation in the buried lake area over the span of the year studied.
Shrubland carbon sink depends upon winter water availability in the warm deserts of North America
Biederman, Joel A.; Scott, Russell L.; John A. Arnone,; Jasoni, Richard L.; Litvak, Marcy E.; Moreo, Michael T.; Papuga, Shirley A.; Ponce-Campos, Guillermo E.; Schreiner-McGraw, Adam P.; Vivoni, Enrique R.
2018-01-01
Global-scale studies suggest that dryland ecosystems dominate an increasing trend in the magnitude and interannual variability of the land CO2 sink. However, such model-based analyses are poorly constrained by measured CO2 exchange in open shrublands, which is the most common global land cover type, covering ∼14% of Earth’s surface. Here we evaluate how the amount and seasonal timing of water availability regulate CO2 exchange between shrublands and the atmosphere. We use eddy covariance data from six US sites across the three warm deserts of North America with observed ranges in annual precipitation of ∼100–400mm, annual temperatures of 13–18°C, and records of 2–8 years (33 site-years in total). The Chihuahuan, Sonoran and Mojave Deserts present gradients in both mean annual precipitation and its seasonal distribution between the wet-winter Mojave Desert and the wet-summer Chihuahuan Desert. We found that due to hydrologic losses during the wettest summers in the Sonoran and Chihuahuan Deserts, evapotranspiration (ET) was a better metric than precipitation of water available to drive dryland CO2 exchange. In contrast with recent synthesis studies across diverse dryland biomes, we found that NEP could not be directly predicted from ET due to wintertime decoupling of the relationship between ecosystem respiration (Reco) and gross ecosystem productivity (GEP). Ecosystem water use efficiency (WUE=GEP/ET) did not differ between winter and summer. Carbon use efficiency (CUE=NEP/GEP), however, was greater in winter because Reco returned a smaller fraction of carbon to the atmosphere (23% of GEP) than in summer (77%). Combining the water-carbon relations found here with historical precipitation since 1980, we estimate that lower average winter precipitation during the 21st century reduced the net carbon sink of the three deserts by an average of 6.8TgC yr1. Our results highlight that winter precipitation is critical to the annual carbon balance of these warm desert shrublands.
Exploratory Disposal and Reuse Feasibility Analysis of Winter Maintenance Wash Water.
Ullinger, Heather L; Kennedy, Marla J; Schneider, William H; Miller, Christopher M
2016-01-01
The Ohio Department of Transportation has more than 60 facilities without sewer access generating approximately 19 million gallons of winter maintenance wash water. Off-site disposal is costly, creating the need for sustainable management strategies. The objective of this study was to conduct an exploratory feasibility analysis to assess wash water disposal and potential reuse as brine. Based on a comprehensive literature review and relevant environmental chemistry, a sampling protocol consisting of 31 water quality constituents was utilized for monthly sampling at three geographically distinct Ohio Department of Transportation garages during the winter of 2012. Results were compared to local disposal and reuse guidance limits. Three constituents, including a maximum copper concentration of 858 ppb, exceeded disposal limits, and many constituents also failed to meet reuse limits. Some concentrations were orders of magnitude higher than reuse limits and suggest pre-treatment would be necessary if wash water were reused as brine. These water quality results, in conjunction with copper chemical equilibrium modeling, show pH and dissolved carbon both significantly impact the total dissolved copper concentration and should be measured to assess reuse potential. The sampling protocol and specific obstacles highlighted in this paper aid in the future development of sustainable wash water management strategies.
Bothner, Michael H.; Parmenter, Carol M.; Milliman, John D.
1981-01-01
Seston in waters of Georges Bank originates primarily from biological production and from resuspension of bottom sediments. The concentrations of suspended matter observed on the central shoals are more influenced by storms than by seasonal changes. Winter storms produce highest concentrations of non-combustible material throughout the water column, and summer storms appear to increase biological production by mixing additional nutrients into the photic zone. On the south-east flank of the bank, in water depths between 80 and 200 in, the concentrations of total suspended matter and non-combustible material show little variation compared with the central shoals, and storm effects are far less noticeable.Highest concentrations (>15 mg 1−1) of suspended matter occur in bottom waters south of Nantucket Island after winter storms and appear to be primarily resuspended bottom sediment. Resuspended sediment is also common in near-bottom waters of the south-western Gulf of Maine, and occasionally near the intersection of the shelf/slope water mass front and the bottom.Seasonal variations were observed in the distribution and species composition of phytoplankton. Coccoliths are predominant on the central bank during the winter, but during the spring and summer they are concentrated on the eastern flank at deeper depths.
Exploratory Disposal and Reuse Feasibility Analysis of Winter Maintenance Wash Water
2016-01-01
The Ohio Department of Transportation has more than 60 facilities without sewer access generating approximately 19 million gallons of winter maintenance wash water. Off-site disposal is costly, creating the need for sustainable management strategies. The objective of this study was to conduct an exploratory feasibility analysis to assess wash water disposal and potential reuse as brine. Based on a comprehensive literature review and relevant environmental chemistry, a sampling protocol consisting of 31 water quality constituents was utilized for monthly sampling at three geographically distinct Ohio Department of Transportation garages during the winter of 2012. Results were compared to local disposal and reuse guidance limits. Three constituents, including a maximum copper concentration of 858 ppb, exceeded disposal limits, and many constituents also failed to meet reuse limits. Some concentrations were orders of magnitude higher than reuse limits and suggest pre-treatment would be necessary if wash water were reused as brine. These water quality results, in conjunction with copper chemical equilibrium modeling, show pH and dissolved carbon both significantly impact the total dissolved copper concentration and should be measured to assess reuse potential. The sampling protocol and specific obstacles highlighted in this paper aid in the future development of sustainable wash water management strategies. PMID:26908148
Europe's mild winters, due to offshore wind-farms, shipping and fishery?
NASA Astrophysics Data System (ADS)
Bernaerts, A.
2016-02-01
The winter 2014/15 was no winter in Northern Europa. In Europe the mean average temperature during the last century has risen by 0.9°C. In the last 30 years the tendency of warming per decade with about 0.41°C was significantly higher than the global mean of +0.17°C. Warming in central and northern Europe was very strong and winter temperatures rose faster than summer temperatures, and water temperatures in the North Sea and Baltic increased more than in other oceans. Can anthropogene activities between the English Channel and the Gulf of Finland be made partly responsible? Presumably yes! Stirring hot coffee will cool it down. At the end of August the sea areas have gained their maximum potential of warmth. Many ship propellers are plowing through the sea stirring the surface layer to a depth of 15 meters and more. In the North Sea and Baltic, ten thousand and more motor ships are simultaneously at sea. Several thousand offshore facilities on the bottom of the sea or anchored offshore rigs divert currents at sea and influence tides and currents as a permanent resistance against the normal flow of huge amounts of ocean water. The result is like stirring hot liquids. Warm water will come to the surface and the heat will supply the atmosphere with warmth. The air will become warmer and the winters will be milder. The correlation is not to be overseen. It is not relevant to climate research and agencies allowing offshore structures and they are neglecting such evaluations. Summary: The facts are conclusive. "Global Climate Change" cannot cause a special rise in temperatures in Northern Europe, neither in the North Sea nor the Baltic or beyond. Any use of the oceans by mankind has an influence on thermo-haline structures within the water column from a few cm to 10m and more. Noticeable warmer winters in Europe are the logical consequence.
NASA Astrophysics Data System (ADS)
Yang, Xiaolin; Chen, Yuanquan; Pacenka, Steven; Gao, Wangsheng; Ma, Li; Wang, Guangya; Yan, Peng; Sui, Peng; Steenhuis, Tammo S.
2015-03-01
Water shortage is the major bottleneck that limits sustainable yield of agriculture in the North China Plain. Due to the over-exploitation of groundwater for irrigating the winter wheat-summer maize double cropping systems, a groundwater crisis is becoming increasingly serious. To help identify more efficient and sustainable utilization of the limited water resources, the water consumption and water use efficiency of five irrigated cropping systems were calculated and the effect of cropping systems on groundwater table changes was estimated based on a long term field experiment from 2003 to 2013 in the North China Plain interpreted using a soil-water-balance model. The five cropping systems included sweet potato → cotton → sweet potato → winter wheat-summer maize (SpCSpWS, 4-year cycle), ryegrass-cotton → peanuts → winter wheat-summer maize (RCPWS, 3-year cycle), peanuts → winter wheat-summer maize (PWS, 2-year cycle), winter wheat-summer maize (WS, 1-year cycle), and continuous cotton (Cont C). The five cropping systems had a wide range of annual average actual evapotranspiration (ETa): Cont C (533 mm/year) < SpCSpWS (556 mm/year) < PWS (615 mm/year) < RCPWS (650 mm/year) < WS rotation (734 mm/year). The sequence of the simulated annual average groundwater decline due to the five cropping systems was WS (1.1 m/year) > RCPWS (0.7 m/year) > PWS (0.6 m/year) > SPCSPWS and Cont C (0.4 m/year). The annual average economic output water use efficiency (WUEe) increased in the order SpCSpWS (11.6 yuan ¥ m-3) > RCPWS (9.0 ¥ m-3) > PWS (7.3 ¥ m-3) > WS (6.8 ¥ m-3) > Cont C (5.6 ¥ m-3) from 2003 to 2013. Results strongly suggest that diversifying crop rotations could play a critically important role in mitigating the over-exploitation of the groundwater, while ensuring the food security or boosting the income of farmers in the North China Plain.
Krimmel, Robert M.
2001-01-01
Winter snow accumulation and summer snow, firn, and ice melt were measured at South Cascade Glacier, Washington, to determine the winter and net balances for the 1999 balance year. The 1999 winter snow balance, averaged over the glacier, was 3.59 meters, and the net balance was 1.02 meters. Since the winter balance record began in 1959, only three winters have had a higher winter balance. Since the net balance record began in 1953, only 2 years have had a greater positive net balance than 1999. Runoff was measured from the glacier and an adjacent non-glacierized basin. Air temperature, precipitation, and humidity were measured nearby, and ice speed was measured. This report makes these data available to the glaciological and climatological community.
De La Cruz, Susan E. W.; Eadie, John M.; Miles, A. Keith; Yee, Julie; Spragens, Kyle A.; Palm, Eric C.; Takekawa, John Y.
2014-01-01
Wide-ranging marine birds rely on multiple habitats for wintering, breeding, and migrating, and their conservation may be dependent on protecting networks of key areas. Urbanized estuaries are critical wintering and stopover areas for many declining sea ducks in North America; however, conservation measures within estuaries are difficult to establish given lack of knowledge about habitat use by these species and the variety of competing human interests. We applied hierarchical modeling to evaluate resource selection of sea ducks (surf scoters, Melanitta perspicillata) wintering in San Francisco Bay, California, USA, a large and highly urbanized estuary. We also examined their distribution, home range, and movements with respect to key habitat features and regions within the estuary. Herring roe was the strongest predictor of bird locations; however, eelgrass, water depth and salinity were also highly-ranked, with sea ducks using deeper areas of higher salinity associated with herring roe and eelgrass presence during mid-winter. Sea ducks were also strongly associated with ferry routes, suggesting these areas may contain resources that are too important to avoid and emphasizing the need to better understand water traffic effects. Movements and home range size differed between males and females in early winter but became more similar in late winter. Birds traveled farther and used several sub-bays in early winter compared to mid-winter when herring roe availability peaked in the Central Bay. Our findings identified key environmental variables, highlighted core use areas, and documented critical periods for consideration when developing conservation plans for sea ducks in urbanized estuaries.
Migration strategy affects avian influenza dynamics in mallards (Anas platyrhynchos).
Takekawa, John Y.; Hill, Nichola J.; Ackerman, Joshua T.; Herring, Garth; Hobson, Keith; Cardona, Carol J.; Runstadler, Jonathan; Boyce, Walter M.
2012-01-01
Studies of pathogen transmission typically overlook that wildlife hosts can include both migrant and resident populations when attempting to model circulation. Through the application of stable isotopes in flight feathers, we estimated the migration strategy of mallards (Anas platyrhynchos) occurring on California wintering grounds. Our study demonstrates that mallards- a principal host of avian influenza virus (AIV) in nature, contribute differently to virus gene flow depending on migration strategy. No difference in AIV prevalence was detected between resident (9.6%), intermediate-distance (9.6%) and long-distance migrants (7.4%). Viral diversity among the three groups was also comparable, possibly owing to viral pool mixing when birds converge at wetlands during winter. However, migrants and residents contributed differently to the virus gene pool at wintering wetlands. Migrants introduced virus from northern breeding grounds (Alaska and the NW Pacific Rim) into the wintering population, facilitating gene flow at continental scales, but circulation of imported virus appeared to be limited. In contrast, resident mallards acted as AIV reservoirs facilitating year-round circulation of limited subtypes (i.e. H5N2) at lower latitudes. This study supports a model of virus exchange in temperate regions driven by the convergence of wild birds with separate geographic origins and exposure histories.
Baig, M N; Tranquillini, W
1980-01-01
The importance of high winter winds and plant temperatures as causes of winter desiccation damage at the alpine treeline were studied in the Austrian Alps. Samples of 1- and 2-year twigs of Picea abies and Pinus cembra were collected from the valley bottom (1,000 m a.s.l.), forestline (1,940 m a.s.l.), kampfzone (2.090 m a.s.l.), wind-protected treeline (2,140 m a.s.l.), and wind-exposed treeline (2,140 m a.s.l.). Cuticular transpiration was measured at three different levels of wind speed (4, 10, and 15 ms -1 ) and temperature (15°, 20°, and 25° C). At elevated wind speeds slight increases in water loss were observed, whereas at higher temperatures much greater increases occurred. Studies on winter water relations show a significant decline in the actual moisture content and osmotic potentials of twigs, especially in the kampfzone and at treeline. The roles of high winds and temperatures in depleting the winter water economy and causing desiccation damage in the alpine treeline environment are discussed.
Kinetics of a Criegee intermediate that would survive high humidity and may oxidize atmospheric SO2
Huang, Hao-Li; Chao, Wen; Lin, Jim Jr-Min
2015-01-01
Criegee intermediates are thought to play a role in atmospheric chemistry, in particular, the oxidation of SO2, which produces SO3 and subsequently H2SO4, an important constituent of aerosols and acid rain. However, the impact of such oxidation reactions is affected by the reactions of Criegee intermediates with water vapor, because of high water concentrations in the troposphere. In this work, the kinetics of the reactions of dimethyl substituted Criegee intermediate (CH3)2COO with water vapor and with SO2 were directly measured via UV absorption of (CH3)2COO under near-atmospheric conditions. The results indicate that (i) the water reaction with (CH3)2COO is not fast enough (kH2O < 1.5 × 10−16 cm3s−1) to consume atmospheric (CH3)2COO significantly and (ii) (CH3)2COO reacts with SO2 at a near–gas-kinetic-limit rate (kSO2 = 1.3 × 10−10 cm3s−1). These observations imply a significant fraction of atmospheric (CH3)2COO may survive under humid conditions and react with SO2, very different from the case of the simplest Criegee intermediate CH2OO, in which the reaction with water dimer predominates in the CH2OO decay under typical tropospheric conditions. In addition, a significant pressure dependence was observed for the reaction of (CH3)2COO with SO2, suggesting the use of low pressure rate may underestimate the impact of this reaction. This work demonstrates that the reactivity of a Criegee intermediate toward water vapor strongly depends on its structure, which will influence the main decay pathways and steady-state concentrations for various Criegee intermediates in the atmosphere. PMID:26283390
Kinetics of a Criegee intermediate that would survive high humidity and may oxidize atmospheric SO2.
Huang, Hao-Li; Chao, Wen; Lin, Jim Jr-Min
2015-09-01
Criegee intermediates are thought to play a role in atmospheric chemistry, in particular, the oxidation of SO2, which produces SO3 and subsequently H2SO4, an important constituent of aerosols and acid rain. However, the impact of such oxidation reactions is affected by the reactions of Criegee intermediates with water vapor, because of high water concentrations in the troposphere. In this work, the kinetics of the reactions of dimethyl substituted Criegee intermediate (CH3)2COO with water vapor and with SO2 were directly measured via UV absorption of (CH3)2COO under near-atmospheric conditions. The results indicate that (i) the water reaction with (CH3)2COO is not fast enough (kH2O < 1.5 × 10(-16) cm(3) s(-1)) to consume atmospheric (CH3)2COO significantly and (ii) (CH3)2COO reacts with SO2 at a near-gas-kinetic-limit rate (kSO2 = 1.3 × 10(-10) cm(3) s(-1)). These observations imply a significant fraction of atmospheric (CH3)2COO may survive under humid conditions and react with SO2, very different from the case of the simplest Criegee intermediate CH2OO, in which the reaction with water dimer predominates in the CH2OO decay under typical tropospheric conditions. In addition, a significant pressure dependence was observed for the reaction of (CH3)2COO with SO2, suggesting the use of low pressure rate may underestimate the impact of this reaction. This work demonstrates that the reactivity of a Criegee intermediate toward water vapor strongly depends on its structure, which will influence the main decay pathways and steady-state concentrations for various Criegee intermediates in the atmosphere.
Finnegan, Dennis P.; Simonson, Laura A.; Meyer, Michael T.
2010-01-01
The occurrence of antibiotics in surface water and groundwater in urban basins has become a topic of increasing interest in recent years. Little is known about the occurrence, fate, or transport of these compounds and the possible health effects in humans and aquatic life. The U.S. Geological Survey, in cooperation with the City of Columbus, Division of Power and Water, did a study to provide a synoptic view of the occurrence of antibiotics in source and finished waters in the upper Scioto River Basin. Water samples were collected seasonally-winter (December 2005), spring (May 2006), summer (August 2006) and fall (October 2006)-at five surface-water sites, one groundwater site, and three water-treatment plants (WTPs). Within the upper Scioto River Basin, sampling at each WTP involved two sampling sites: a source-water intake site and a finished-water site. One or more antibiotics were detected at 11 of the 12 sampling sites. Of the 49 targeted antibiotic compounds, 12 (24 percent) were detected at least one time for a total of 61 detections overall. These compounds were azithromycin, tylosin, erythromycin-H2O, erythromycin, roxithromycin, ciprofloxacin, ofloxacin, sulfamethazine, sulfamethoxazole, iso-chlorotetracycline, lincomycin, and trimethoprim. Detection results were at low levels, with an overall median of 0.014 (u or mu)g/L. Hap Cremean WTP had the fewest detections, with two source-water detections of sulfamethoxazole and azithromycin and no detections in the finished water. Of the total of 61 detections, 31 were in the winter sample run. Sulfamethoxazale and azithromycin detections represent 41 percent of all antibiotic detections. Azithromycin was detected only in the winter sample. Some antibiotics, such as those in the quinoline and tetracycline families, dissipate more quickly in warm water, which may explain why they were detected in the cool months (winter, spring, and fall) and not in the summer. Antibiotic data collected during this study were compared to antibiotic data collected in previous national, regional, and local studies. Many of the same antibiotic compounds detected in the upper Scioto River Basin also were detected in those investigations.
NASA Astrophysics Data System (ADS)
Morway, E. D.; Niswonger, R. G.; Triana, E.
2016-12-01
In irrigated agricultural regions supplied by both surface-water and groundwater, increased reliance on groundwater during sustained drought leads to long-term water table drawdown and subsequent surface-water losses. This, in turn, may threaten the sustainability of the irrigation project. To help offset groundwater resource losses and restore water supply reliability, an alternative management strategy commonly referred to as managed aquifer recharge (MAR) in agricultural regions helps mitigate long-term aquifer drawdown and provides additional water for subsequent withdraw. Sources of MAR in this investigation are limited to late winter runoff in years with above average precipitation (i.e., above average snowpack). However, where winter MAR results in an elevated water table, non-beneficial consumptive use may increase from evapotranspiration in adjacent and down-gradient fallow and naturally vegetated lands. To rigorously explore this trade-off, the recently published MODSIM-MODFLOW model was applied to quantify both the benefits and unintended consequences of MAR. MODSIM-MODFLOW is a generalized modeling tool capable of exploring the effects of altered river operations within an integrated groundwater and surface-water (GW-SW) model. Thus, the MODSIM-MODFLOW model provides a modeling platform capable of simulating MAR in amounts and duration consistent with other senior water rights in the river system (e.g., minimum in-stream flow requirements). Increases in non-beneficial consumptive use resulting from winter MAR are evaluated for a hypothetical model patterned after alluvial aquifers common in arid and semi-arid areas of the western United States. Study results highlight (1) the benefit of an implicitly-coupled river operations and hydrologic modeling tool, (2) the balance between winter MAR and the potential increase in non-beneficial consumptive use, and (3) conditions where MAR may or may not be an appropriate management option, such as the availability of surface-water storage.
Sprite Climatology in the Eastern Mediterranean Region
NASA Astrophysics Data System (ADS)
Yair, Yoav; Price, Colin; Katzenelson, Dor; Rosenthal, Neta; Rubanenko, Lior; Ben-Ami, Yuval; Arnone, Enrico
2015-04-01
We present statistical analysis of 436 sprites observed in 7 winter campaigns from 2006/7-2012/13. Results show a clear peak in the frequency of sprite detections, with maximum values (< 40% of events) between 00:30-02:15 LST (22:30-00:15 UT; LST=UT+2). The detection times of sprites are well-correlated with a relative increase in the fraction of +CG strokes, which exhibit maxima between 00:00-02:00 LST. The morphological distribution of 339 sprites, that we were able to clearly identify, is dominated by column sprites (49.3%), with angels (33.0%) and carrots (25.7%) being less frequent. This is similar to reports of winter sprites over the Sea of Japan and summer ones in central Europe. Other shapes such as trees, wishbones, etc. appear quite rarely. Single element events constitute 16.5% of observations, with 83.5% containing 2 elements or more. Clusters of homogeneous types are slightly more frequent than mixed ones (55%). Our observations suggest winter East Mediterranean thunderstorms to have a vertical structure that is an intermediate type between high tropical convective systems and the lower cloud-top cells in winter thunderstorms over the Sea of Japan. The climatology shows that the Eastern Mediterranean is a major sprite producer during Northern Hemisphere winter, and thus the existing and future optical observation infrastructure in Israel offers ground-based coverage for upcoming space missions that aim to map global sprite activity.
Sepúlveda, Nicasio
2002-01-01
A numerical model of the intermediate and Floridan aquifer systems in peninsular Florida was used to (1) test and refine the conceptual understanding of the regional ground-water flow system; (2) develop a data base to support subregional ground-water flow modeling; and (3) evaluate effects of projected 2020 ground-water withdrawals on ground-water levels. The four-layer model was based on the computer code MODFLOW-96, developed by the U.S. Geological Survey. The top layer consists of specified-head cells simulating the surficial aquifer system as a source-sink layer. The second layer simulates the intermediate aquifer system in southwest Florida and the intermediate confining unit where it is present. The third and fourth layers simulate the Upper and Lower Floridan aquifers, respectively. Steady-state ground-water flow conditions were approximated for time-averaged hydrologic conditions from August 1993 through July 1994 (1993-94). This period was selected based on data from Upper Floridan a quifer wells equipped with continuous water-level recorders. The grid used for the ground-water flow model was uniform and composed of square 5,000-foot cells, with 210 columns and 300 rows.
2004-01-08
KENNEDY SPACE CENTER, FLA. -- Three male and one female hooded mergansers swim in the quicksilver water of the Merritt Island National Wildlife Refuge, which shares a boundary with Kennedy Space Center. Usually found from Alaska and Canada south to Nebraska, Oregon and Tennessee, hooded mergansers winter south to Mexico and the Gulf Coast, including KSC. The open water of the refuge provides wintering areas for 23 species of migratory waterfowl, as well as a year-round home for great blue herons, great egrets, wood storks, cormorants, brown pelicans and other species of marsh and shore birds. The 92,000-acre refuge is also habitat for more than 310 species of birds, 25 mammals, 117 fishes and 65 amphibians and reptiles.
Ribic, Christine A.; Ainley, David G.; Ford, R. Glenn; Fraser, William R.; Tynan, Cynthia T.; Woehler, Eric J.
2015-01-01
Waters off the western Antarctic Peninsula (i.e., the eastern Bellingshausen Sea) are unusually complex owing to the convergence of several major fronts. Determining the relative influence of fronts on occurrence patterns of top-trophic species in that area, therefore, has been challenging. In one of the few ocean-wide seabird data syntheses, in this case for the Southern Ocean, we analyzed ample, previously collected cruise data, Antarctic-wide, to determine seabird species assemblages and quantitative relationships to fronts as a way to provide context to the long-term Palmer LTER and the winter Southern Ocean GLOBEC studies in the eastern Bellingshausen Sea. Fronts investigated during both winter (April–September) and summer (October–March) were the southern boundary of the Antarctic Circumpolar Current (ACC), which separates the High Antarctic from the Low Antarctic water mass, and within which are embedded the marginal ice zone and Antarctic Shelf Break Front; and the Antarctic Polar Front, which separates the Low Antarctic and the Subantarctic water masses. We used clustering to determine species' groupings with water masses, and generalized additive models to relate species' densities, biomass and diversity to distance to respective fronts. Antarctic-wide, in both periods, highest seabird densities and lowest species diversity were found in the High Antarctic water mass. In the eastern Bellingshausen, seabird density in the High Antarctic water mass was lower (as low as half that of winter) than found in other Antarctic regions. During winter, Antarctic-wide, two significant species groups were evident: one dominated by Adélie penguins (Pygoscelis adeliae) (High Antarctic water mass) and the other by petrels and prions (no differentiation among water masses); in eastern Bellingshausen waters during winter, the one significant species group was composed of species from both Antarctic-wide groups. In summer, Antarctic-wide, a High Antarctic group dominated by Adélie penguins, a Low Antarctic group dominated by petrels, and a Subantarctic group dominated by albatross were evident. In eastern Bellingshausen waters during summer, groups were inconsistent. With regard to frontal features, Antarctic-wide in winter, distance to the ice edge was an important explanatory factor for nine of 14 species, distance to the Antarctic Polar Front for six species and distance to the Shelf Break Front for six species; however, these Antarctic-wide models could not successfully predict spatial relationships of winter seabird density (individual species or total) and biomass in the eastern Bellingshausen. Antarctic-wide in summer, distance to land/Antarctic continent was important for 10 of 18 species, not a surprising result for these summer-time Antarctic breeders, as colonies are associated with ice-free areas of coastal land. Distance to the Shelf Break Front was important for 8 and distance to the southern boundary of the ACC was important for 7 species. These summer models were more successful in predicting eastern Bellingshausen species density and species diversity but failed to predict total seabird density or biomass. Antarctic seabirds appear to respond to fronts in a way similar to that observed along the well-studied upwelling front of the California Current. To understand fully the seabird patterns found in this synthesis, multi-disciplinary at-sea investigations, including a quantified prey field, are needed.
Modde, T.; Jeric, R.J.; Hubert, W.A.; Gipson, R.D.
1997-01-01
Flaming Gorge Reservoir, like many western North American reservoirs, is managed to release water during the winter months to allow for water storage associated with melting snow and rain during spring. Decreases in reservoir elevation during winter can cause mortalities of kokanee Oncorhynchus nerka spawned along the shoreline the previous fall. This study compared data on depth distribution of embryos and depth-adjusted survival to estimate the relative survival of emergent kokanee at different depths and the effect of winter drawdown on the proportion of deposited eggs that survive to emergence. Estimates of decreases in kokanee survival to emergence were 8.3% and 38.1% for reservoir elevation reductions of 1.0 m and 5.0 m, respectively.
Agricultural water requirements for commercial production of cranberries
USDA-ARS?s Scientific Manuscript database
Abundant water resources are essential for the commercial production of cranberries, which use irrigated water for frost protection, soil moisture management, and harvest and winter floods. Given water resource demands in southeastern Massachusetts, we sought to quantify the annual water requirement...
Sharma, R K; Shrestha, D G
2016-10-01
Sikkim, a tiny Himalayan state situated in the north-eastern region of India, records limited research on the climate change. Understanding the changes in climate based on the perceptions of local communities can provide important insights for the preparedness against the unprecedented consequences of climate change. A total of 228 households in 12 different villages of Sikkim, India, were interviewed using eight climate change indicators. The results from the public opinions showed a significant increase in temperature compared to a decade earlier, winters are getting warmer, water springs are drying up, change in concept of spring-water recharge (locally known as Mul Phutnu), changes in spring season, low crop yields, incidences of mosquitoes during winter, and decrease in rainfall in last 10 years. In addition, study also showed significant positive correlations of increase in temperature with other climate change indicators viz. spring-water recharge concept (R (2) = 0.893), warmer winter (R (2) = 0.839), drying up of water springs (R (2) = 0.76), changes in spring season (R (2) = 0.68), low crop yields (R (2) = 0.68), decrease in rainfall (R (2) = 0.63), and incidences of mosquitoes in winter (R (2) = 0.50). The air temperature for two meteorological stations of Sikkim indicated statistically significant increasing trend in mean minimum temperature and mean minimum winter temperature (DJF). The observed climate change is consistent with the people perceptions. This information can help in planning specific adaptation strategies to cope with the impacts of climate change by framing village-level action plan.
Huang, Wei; Yang, Ying-Jie; Hu, Hong; Zhang, Shi-Bao
2016-12-01
Low temperature associated with high light can induce photoinhibition of photosystem I (PSI) and photosystem II (PSII). However, the photosynthetic electron flow and specific photoprotective responses in alpine evergreen broad-leaf plants in winter is unclear. We analyzed seasonal changes in PSI and PSII activities, and energy quenching in PSI and PSII in three alpine broad-leaf tree species, Quercus guyavifolia (Fagaceae), Rhododendron decorum (Ericaceae), Euonymus tingens (Celastraceae). In winter, PSII activity remained stable in Q. guyavifolia but decreased significantly in R. decorum and E. tingens. Q. guyavifolia showed much higher capacities of cyclic electron flow (CEF), water-water cycle (WWC), non-photochemical quenching (NPQ) than R. decorum and E. tingens in winter. These results indicated that in alpine evergreen broad-leaf tree species the PSII activity in winter was closely related to these photoprotective mechanisms. Interestingly, unlike PSII, PSI activity was maintained stable in winter in the three species. Meanwhile, photosynthetic electron flow from PSII to PSI (ETRII) was much higher in Q. guyavifolia, suggesting that the mechanisms protecting PSI activity against photoinhibition in winter differed among the three species. A high level of CEF contributed the stability of PSI activity in Q. guyavifolia. By comparison, R. decorum and E. tingens prevented PSI photoinhibition through depression of electron transport to PSI. Taking together, CEF, WWC and NPQ played important roles in coping with excess light energy in winter for alpine evergreen broad-leaf tree species. Copyright © 2016 Elsevier B.V. All rights reserved.
Way, Danielle A; Katul, Gabriel G; Manzoni, Stefano; Vico, Giulia
2014-07-01
C4 photosynthesis evolved independently numerous times, probably in response to declining atmospheric CO2 concentrations, but also to high temperatures and aridity, which enhance water losses through transpiration. Here, the environmental factors controlling stomatal behaviour of leaf-level carbon and water exchange were examined across the evolutionary continuum from C3 to C4 photosynthesis at current (400 μmol mol(-1)) and low (280 μmol mol(-1)) atmospheric CO2 conditions. To this aim, a stomatal optimization model was further developed to describe the evolutionary continuum from C3 to C4 species within a unified framework. Data on C3, three categories of C3-C4 intermediates, and C4 Flaveria species were used to parameterize the stomatal model, including parameters for the marginal water use efficiency and the efficiency of the CO2-concentrating mechanism (or C4 pump); these two parameters are interpreted as traits reflecting the stomatal and photosynthetic adjustments during the C3 to C4 transformation. Neither the marginal water use efficiency nor the C4 pump strength changed significantly from C3 to early C3-C4 intermediate stages, but both traits significantly increased between early C3-C4 intermediates and the C4-like intermediates with an operational C4 cycle. At low CO2, net photosynthetic rates showed continuous increases from a C3 state, across the intermediates and towards C4 photosynthesis, but only C4-like intermediates and C4 species (with an operational C4 cycle) had higher water use efficiencies than C3 Flaveria. The results demonstrate that both the marginal water use efficiency and the C4 pump strength increase in C4 Flaveria to improve their photosynthesis and water use efficiency compared with C3 species. These findings emphasize that the advantage of the early intermediate stages is predominantly carbon based, not water related. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Range Cattle Winter Water Consumption in Northern Great Plains
USDA-ARS?s Scientific Manuscript database
Water consumption and DMI may interact to alter range cow productivity. Furthermore, environmental conditions and water temperature may influence water consumption. Therefore, the objective of this study was to determine influences of water and air temperature on quantity and pattern of water intake...
French, John R. P.; Schloesser, Don W.
1996-01-01
We studied the distribution and winter survival of the Asian clam, Corbicula fluminea, in the St. Clair River from the fall of 1988 to the spring of 1990. Between fall of 1988 and spring of 1989, distribution of Corbicula was extended from 5.5 to 11.5 km downstream from an electric power plant. However, total abundance of clams decreased during the winter. By fall of 1989, Corbicula was found 14.5 km from the power plant, and the mean density of clams was 27 individuals/m2. Between fall of 1989 and spring of 1990, distribution was reduced to 7.5 km from the power plant and abundance decreased 97%. During the winter of 1988-1989, we collected clams monthly from one station 2.2 km from the power plant, and we observed that clams survived the harsh winter for two months after the water temperature dropped about 1.5°C below the reported lethal level for Corbicula in midwinter. During the winer of 1989-1990, we held clams at the sediment-water interface in enclosures, and we observed that condition indices (dry body weight; dry shell weight) of clams remained stable (mean = 0.05 ± 0.01) in December and January and then declined significantly (p < 0.05) to 0.04 ± 0.01 in February. All clams perished by late March. The deteriorating physiological state of clams, as indicated by declining condition index, seemingly is a factor in late winter mortalities of Corbicula in the St. Clair River. In contrast to the rapid geographic spread and population increases in the southern United States, Corbicula likely will not spread rapidly throughout the Great Lakes beyond shoreline thermal refugia of heated-water discharge plumes from power plants.
Man, Jian-guo; Wang, Dong; Yu, Zhen-wen; Zhang, Yong-li; Shi, Yu
2013-08-01
Taking the high-yielding winter wheat variety Jimai 22 as test material, a field experiment was conducted in 2010-2012 to study the effects of irrigation with different length micro-sprinkling hoses on the soil water distribution in winter wheat growth period and the water consumption characteristics and grain yield of winter wheat. Three micro-sprinkling hose lengths were designed, i. e., 40 m (T40), 60 m (T60) and 80 m (T80). Under the micro-sprinkling irrigation at jointing and anthesis stages, the uniformity of the horizontal distribution of irrigation water in soil increased significantly with the decrease of hose length from 80 to 40 m. When irrigated at jointing stage, the water content of 0-200 cm soil layer in each space of wheat rows had no significant difference within the 0-40 m distanced from the border initial in treatments T40 and T60. When measured at the 38-40 m, 58-60 m, and 78-80 m distanced from the border initial in treatment T80 at jointing and anthesis stages, the water content in 0-200 cm soil layer had the same change pattern, i. e., decreased with the increasing distance from micro-sprinkling hose. The water consumption amounts in 40-60 cm soil layer from jointing to anthesis stages and in 20-80 cm soil layer from anthesis to maturing stages were higher in treatment T40 than in treatments T60 and T80. However, the soil water consumption amount, irrigation amount at anthesis stage, total irrigation amount, and total water consumption amount were significantly lower in treatment T40 than in treatments T60 and T80. The grain yield, yield water use efficiency increased with the hose length decreased from 80 to 40 m, but the flow decreased. Therefore, the effective irrigation area per unit time decreased with the same irrigation amounts. Considering the grain yield, water use efficiency, and the flow through micro-sprinkling hose, 40 and 60 m were considered to be the appropriate micro-sprinkling hose lengths under this experimental condition.
Sulak, K.J.; Randall, M.T.; Edwards, R.E.; Summers, T.M.; Luke, K.E.; Smith, W.T.; Norem, A.D.; Harden, William M.; Lukens, R.H.; Parauka, F.; Bolden, S.; Lehnert, R.
2009-01-01
Three automated listening post-telemetry studies were undertaken in the Suwannee and Apalachicola estuaries to gain knowledge of habitats use by juvenile Gulf Sturgeons (Acipenser oxyrinchus desotoi) on winter feeding grounds. A simple and reliable method for external attachment of small acoustic tags to the dorsal fin base was developed using shrink-tubing. Suspending receivers on masts below anchored buoys improved reception and facilitated downloading; a detection range of 500–2500 m was realized. In the Apalachicola estuary, juvenile GS stayed in shallow water (< 2 m) within the estuarine transition zone all winter in the vicinity of the Apalachicola River mouth. Juvenile GS high-use areas did not coincide with high density benthic macrofauna areas from the most recent (1999) benthos survey. In the Suwannee estuary, juveniles ranged widely and individually throughout oligohaline to mesohaline subareas of the estuary, preferentially using mesohaline subareas seaward of Suwannee Reef (52% of acoustic detections). The river mouth subarea was important only in early and late winter, during the times of adult Gulf Sturgeon migrations (41% of detections). Preferred winter feeding subareas coincided spatially with known areas of dense macrofaunal benthos concentrations. Following a dramatic drop in air and water temperatures, juvenile GS left the river mouth and estuary, subsequently being detected 8 km offshore in polyhaline open Gulf of Mexico waters, before returning to the estuary. Cold-event offshore excursions demonstrate that they can tolerate full-salinity polyhaline waters in the open Gulf of Mexico, for at least several days at a time. For juvenile sturgeons, the stress and metabolic cost of enduring high salinity (Jarvis et al., 2001; McKenzie et al., 2001; Singer and Ballantyne, 2002) for short periods in deep offshore waters seems adaptively advantageous relative to the risk of cold-event mortality in shallow inshore waters of lower salinity. Thus, while juveniles can tolerate high salinities for days to weeks to escape cold events, they appear to make only infrequent use of open polyhaline waters. Throughout the winter foraging period, juvenile GS stayed primarily within the core area of Suwannee River mouth influence, extending about 12 km north and south of the river mouth, and somewhat seaward of Suwannee Reef (< 5 km offshore). None were detected departing the core area past either of the northern or southern acoustic gates, located 66 and 52 km distant from the river mouth, respectively.
The association of Antarctic krill Euphausia superba with the under-ice habitat.
Flores, Hauke; van Franeker, Jan Andries; Siegel, Volker; Haraldsson, Matilda; Strass, Volker; Meesters, Erik Hubert; Bathmann, Ulrich; Wolff, Willem Jan
2012-01-01
The association of Antarctic krill Euphausia superba with the under-ice habitat was investigated in the Lazarev Sea (Southern Ocean) during austral summer, autumn and winter. Data were obtained using novel Surface and Under Ice Trawls (SUIT), which sampled the 0-2 m surface layer both under sea ice and in open water. Average surface layer densities ranged between 0.8 individuals m(-2) in summer and autumn, and 2.7 individuals m(-2) in winter. In summer, under-ice densities of Antarctic krill were significantly higher than in open waters. In autumn, the opposite pattern was observed. Under winter sea ice, densities were often low, but repeatedly far exceeded summer and autumn maxima. Statistical models showed that during summer high densities of Antarctic krill in the 0-2 m layer were associated with high ice coverage and shallow mixed layer depths, among other factors. In autumn and winter, density was related to hydrographical parameters. Average under-ice densities from the 0-2 m layer were higher than corresponding values from the 0-200 m layer collected with Rectangular Midwater Trawls (RMT) in summer. In winter, under-ice densities far surpassed maximum 0-200 m densities on several occasions. This indicates that the importance of the ice-water interface layer may be under-estimated by the pelagic nets and sonars commonly used to estimate the population size of Antarctic krill for management purposes, due to their limited ability to sample this habitat. Our results provide evidence for an almost year-round association of Antarctic krill with the under-ice habitat, hundreds of kilometres into the ice-covered area of the Lazarev Sea. Local concentrations of postlarval Antarctic krill under winter sea ice suggest that sea ice biota are important for their winter survival. These findings emphasise the susceptibility of an ecological key species to changing sea ice habitats, suggesting potential ramifications on Antarctic ecosystems induced by climate change.
The Association of Antarctic Krill Euphausia superba with the Under-Ice Habitat
Flores, Hauke; van Franeker, Jan Andries; Siegel, Volker; Haraldsson, Matilda; Strass, Volker; Meesters, Erik Hubert; Bathmann, Ulrich; Wolff, Willem Jan
2012-01-01
The association of Antarctic krill Euphausia superba with the under-ice habitat was investigated in the Lazarev Sea (Southern Ocean) during austral summer, autumn and winter. Data were obtained using novel Surface and Under Ice Trawls (SUIT), which sampled the 0–2 m surface layer both under sea ice and in open water. Average surface layer densities ranged between 0.8 individuals m−2 in summer and autumn, and 2.7 individuals m−2 in winter. In summer, under-ice densities of Antarctic krill were significantly higher than in open waters. In autumn, the opposite pattern was observed. Under winter sea ice, densities were often low, but repeatedly far exceeded summer and autumn maxima. Statistical models showed that during summer high densities of Antarctic krill in the 0–2 m layer were associated with high ice coverage and shallow mixed layer depths, among other factors. In autumn and winter, density was related to hydrographical parameters. Average under-ice densities from the 0–2 m layer were higher than corresponding values from the 0–200 m layer collected with Rectangular Midwater Trawls (RMT) in summer. In winter, under-ice densities far surpassed maximum 0–200 m densities on several occasions. This indicates that the importance of the ice-water interface layer may be under-estimated by the pelagic nets and sonars commonly used to estimate the population size of Antarctic krill for management purposes, due to their limited ability to sample this habitat. Our results provide evidence for an almost year-round association of Antarctic krill with the under-ice habitat, hundreds of kilometres into the ice-covered area of the Lazarev Sea. Local concentrations of postlarval Antarctic krill under winter sea ice suggest that sea ice biota are important for their winter survival. These findings emphasise the susceptibility of an ecological key species to changing sea ice habitats, suggesting potential ramifications on Antarctic ecosystems induced by climate change. PMID:22384073
Seasonal dependence of aerosol processing in urban Philadelphia
NASA Astrophysics Data System (ADS)
Avery, A. M.; Waring, M. S.; DeCarlo, P. F.
2017-12-01
Urban aerosols pose an important threat to human health due to the conflation of emissions and concentrated population exposed. Winter and summer aerosol and trace gas measurements were taken in downtown Philadelphia in 2016. Measurements included aerosol composition and size with an Aerodyne Aerosol Mass Spectrometer (AMS), particle size distributions with an SMPS, and an aethalometer. Trace gas measurements of O3, NO, CH4, CO, and CO2 were taken concurrently. Sampling in seasonal extremes provided contrast in aerosol and trace gas composition, aerosol processing, and emission factors. Inorganic aerosol components contributed approximately 60% of the submicron aerosol mass, while summertime aerosol composition was roughly 70% organic matter. Positive Matrix Factorization (PMF) on the organic aerosol (OA) matrix revealed three factors in common in each season, including an oxygenated organic aerosol (OOA) factor with different temporal behavior in each season. In summertime, OOA varied diurnally with ozone and daytime temperature, but in the wintertime, it was anti-correlated with ozone and temperature, and instead trended with calculated liquid water, indicating a seasonally-dependent processing of organic aerosol in Philadelphia's urban environment. Due to the inorganic dominant winter aerosol, liquid water much higher (2.65 μg/m3) in winter than in summer (1.54 μg/m3). Diurnally varying concentrations of background gas phase species (CH4, CO2) were higher in winter and varied less as a result of boundary layer conditions; ozone was also higher in background in winter than summer. Winter stagnation events with low windspeed showed large buildup of trace gases CH4, CO, CO2, and NO. Traffic related aerosol was also elevated with black carbon and hydrocarbon-like OA (HOA) plumes of each at 3-5 times higher than the winter the average value for each. Winter ratios of HOA to black carbon were significantly higher in the winter than the summer due to lower temperatures. Aerosol compositional differences in winter and summer indicate Philadelphia resident's aerosol exposures vary significantly with season.
Smith, G.I.; Friedman, I.; Veronda, G.; Johnson, C.A.
2002-01-01
Groundwater samples from wells and springs, scattered over most of the Great Basin province, were collected and analyzed for their isotopic makeup. They were augmented by previously published isotopic data on groundwaters from southeast California and by several hundred unpublished isotopic analyses. The ratio of 2H (deuterium, D) to 1H, in water samples from valleys in parts of California, Idaho, Nevada, Oregon, and Utah, are here compared with the winter, summer, and annual isotopic compositions of precipitation falling in or near the sampled areas. The main goal of this study was to identify basins where the groundwaters have isotopic compositions that are "lighter" (depleted in the heavier isotope, D) relative to modern winter precipitation. Where these basins do not adjoin substantially higher terrain, we consider those light groundwaters to be of Pleistocene age and thus more than 10,000 years old. Where the groundwater is 10 to 19??? lighter than local winter precipitation, we consider it to be possibly an indication of Pleistocene water; where the ??D makeup is >20??? lighter, we consider it to be probably Pleistocene water. More than 80 sites underlain by waters of possible or probable Pleistocene age were identified.
NASA Astrophysics Data System (ADS)
Fransson, Agneta; Chierici, Melissa; Skjelvan, Ingunn; Olsen, Are; Assmy, Philipp; Peterson, Algot K.; Spreen, Gunnar; Ward, Brian
2017-07-01
We performed measurements of carbon dioxide fugacity (fCO2) in the surface water under Arctic sea ice from January to June 2015 during the Norwegian young sea ICE (N-ICE2015) expedition. Over this period, the ship drifted with four different ice floes and covered the deep Nansen Basin, the slopes north of Svalbard, and the Yermak Plateau. This unique winter-to-spring data set includes the first winter-time under-ice water fCO2 observations in this region. The observed under-ice fCO2 ranged between 315 µatm in winter and 153 µatm in spring, hence was undersaturated relative to the atmospheric fCO2. Although the sea ice partly prevented direct CO2 exchange between ocean and atmosphere, frequently occurring leads and breakup of the ice sheet promoted sea-air CO2 fluxes. The CO2 sink varied between 0.3 and 86 mmol C m-2 d-1, depending strongly on the open-water fractions (OW) and storm events. The maximum sea-air CO2 fluxes occurred during storm events in February and June. In winter, the main drivers of the change in under-ice water fCO2 were dissolution of CaCO3 (ikaite) and vertical mixing. In June, in addition to these processes, primary production and sea-air CO2 fluxes were important. The cumulative loss due to CaCO3 dissolution of 0.7 mol C m-2 in the upper 10 m played a major role in sustaining the undersaturation of fCO2 during the entire study. The relative effects of the total fCO2 change due to CaCO3 dissolution was 38%, primary production 26%, vertical mixing 16%, sea-air CO2 fluxes 16%, and temperature and salinity insignificant.
Strati, Sara; Patiño, Sandra; Slidders, Caley; Cundall, Edward P; Mencuccini, Maurizio
2003-07-01
Silver birch (Betula pendula Roth) is increasingly used in the United Kingdom for reforestation. However, recent evidence indicates that, under some circumstances, planted birch can suffer serious and repeated mortality of the apical leaders and branches, with consequent loss of apical dominance and the formation of a contorted stem. Plants from 37 seed sources of silver birch from Scotland and northern England planted at two sites were compared for several characteristics related to hydraulic architecture, vulnerability to freeze-thaw cycle induced embolism and spring recovery from winter embolism during the period 2000-2002. Phenological rhythms were also monitored in late winter-early spring to document relationships between phenology and water relations parameters. Significant differences were found across seed sources in stage of bud flushing for four dates in spring. Early flushing seed sources differed by about 1 to 2 weeks from late-flushing seed sources across the two sites. Wintertime xylem embolism in stems reached a peak of about 50 to 70% loss of xylem hydraulic conductivity, depending on the size and position of the sample shoots in the canopy. Small apical shoots were significantly more embolized than large basal shoots. Development of winter embolism was coupled to the occurrence of frost events. As percent loss of hydraulic conductivity increased during the winter, wood relative water content declined. Embolism reversal occurred rapidly in spring at the time of development of positive root pressure. No significant differences in the degree of winter embolism in 2001 were found among the three seed sources examined. The investigation was expanded in the winter-spring of 2002 to include 10 seed sources across both sites. Significant differences were found in degree of winter embolism across sites, dates and seed sources. For each date, there was a significant relationship between flushing scores and wood relative water contents across the two sites and all seed sources, suggesting that differences in time of flushing across sites and seed sources were likely caused by differences in the time of occurrence of root pressure, a necessary precondition to flushing.
Crusius, John; Pedersen, Thomas F.; Kienast, Stephanie; Keigwin, Lloyd D.; Labeyrie, Laurent
2004-01-01
Elevated productivity in the northwest Pacific is suggested as a new possible control driving past intervals of low-O2 intermediate water along the western continental margin of North America. According to this mechanism, O2 consumption would occur near the site of formation of North Pacific Intermediate Water (NPIW), due to increased respiration of organic carbon in response to a high-productivity event. Evidence is provided for such a productivity increase during the Bølling-Ållerød interval (14.7–12.9 ka), a time when laminated sediments were deposited along the northern California margin. By this mechanism, low-O2 events in intermediate waters off the western North American margin could occur without significant changes in the rate of NPIW ventilation.
NASA Astrophysics Data System (ADS)
Darzi-Naftchali, Abdullah; Karandish, Fatemeh
2017-12-01
Sustainable utilization of blue water resources under climate change is of great significance especially for producing high water-consuming crops in water-scarce regions. Based on the virtual water concept, we carried out a comprehensive field-modeling research to find the optimal agricultural practices regarding rice blue water consumption under prospective climate change. The DSSAT-CERES-Rice model was used in combination with 20 GCMs under three Representative Concentration Pathways of low (RCP2.6), intermediate (RCP4.6), and very high (RCP8.5) greenhouse concentrations to predict rice yield and water requirement and related virtual water and economic return for the base and future periods. The crop model was calibrated and validated based on the 2-year field data obtained from consolidated paddy fields of the Sari Agricultural Sciences and Natural Resources University during 2011 and 2012 rice cropping cycles. Climate change imposes an increase of 0.02-0.04 °C in air temperature which consequently shifts rice growing seasons to winter season, and shorten the length of rice physiological maturity period by 2-15 days. While rice virtual water reduces by 0.1-20.6% during 2011-2070, reduced rice yield by 3.8-22.6% over the late twenty-first century results in a considerable increase in rice virtual water. By increasing the contribution of green water in supplying crop water requirement, earlier cropping could diminish blue water consumption for rice production in the region while cultivation postponement increases irrigation water requirement by 2-195 m3 ha-1. Forty days delay in rice cultivation in future will result in 29.9-40.6% yield reduction and 43.9-60% increase in rice virtual water under different scenarios. Earlier cropping during the 2011-2040 and 2041-2070 periods would increase water productivity, unit value of water, and economic value of blue water compared to the base period. Based on the results, management of rice cultivation calendar is a suitable strategy for sustainable blue water consumption for producing rice under future climate.
Voltas, Jordi; Camarero, Jesús Julio; Carulla, David; Aguilera, Mònica; Ortiz, Araceli; Ferrio, Juan Pedro
2013-08-01
Winter-drought induced forest diebacks in the low-latitude margins of species' distribution ranges can provide new insights into the mechanisms (carbon starvation, hydraulic failure) underlying contrasting tree reactions. We analysed a winter-drought induced dieback at the Scots pine's southern edge through a dual-isotope approach (Δ(13) C and δ(18) O in tree-ring cellulose). We hypothesized that a differential long-term performance, mediated by the interaction between CO(2) and climate, determined the fates of individuals during dieback. Declining trees showed a stronger coupling between climate, growth and intrinsic water-use efficiency (WUEi) than non-declining individuals that was noticeable for 25 years prior to dieback. The rising stomatal control of water losses with time in declining trees, indicated by negative Δ(13) C-δ(18) O relationships, was likely associated with their native aptitude to grow more and take up more water (suggested by larger tracheid lumen widths) than non-declining trees and, therefore, to exhibit a greater cavitation risk. Freeze-thaw episodes occurring in winter 2001 unveiled such physiological differences by triggering dieback in those trees more vulnerable to hydraulic failure. Thus, WUEi tightly modulated growth responses to long-term warming in declining trees, indicating that co-occurring individuals were differentially predisposed to winter-drought mortality. These different performances were unconnected to the depletion of stored carbohydrates. © 2013 John Wiley & Sons Ltd.
Zhang, Hui-Hui; Li, Zheng; Liu, Yu; Xinag, Ping; Cui, Xin-Yi; Ye, Hui; Hu, Bao-Lan; Lou, Li-Ping
With the increasing occurrence of haze during the summer, the physicochemical characteristics and toxicity differences in PM 2.5 in different seasons are of great concern. Hangzhou is located in an area that has a subtropical monsoon climate where the humidity is very high during both the summer and winter. However, there are limited studies on the seasonal differences in PM 2.5 in these weather conditions. In this test, PM 2.5 samples were collected in the winter and summer, the morphology and chemical composition of PM 2.5 were analyzed, the toxicity of PM 2.5 to human bronchial cells BEAS-2B was compared, and the correlation between PM 2.5 toxicity and the chemical composition was discussed. The results showed that during both the winter and summer, the main compounds in the PM 2.5 samples were water-soluble ions, particularly SO 4 2- , NO 3 - , and NH 4 + , followed by organic components, while heavy metals were present at lower levels. The higher the mass concentration of PM 2.5 , the greater its impact on cell viability and ROS levels. However, when the mass concentration of PM 2.5 was similar, the water extraction from the summer samples showed a greater impact on BEAS-2B than that from the winter samples. The cytotoxicity of PM 2.5 was closely associated with heavy metals and organic pollutants but less related to water-soluble ions.
NASA Astrophysics Data System (ADS)
Zhao, Erni; Xu, Lirong; Wang, Rongzhen
2018-01-01
Unreasonable application of irrigation and fertilizer will cause the waste of water and nitrogen and environmental pollution. In this paper, a series of soil-pit experiments were carried out to study the distribution and leaching loss of nitrogen in winter wheat’s soil. The results showed that NO3 - concentration at 20-80cm depth mainly responded to fertilizer application at the beginning of field experiment, but the amount of irrigation became the dominant factor with the growth of winter wheat. It is noteworthy that the distribution of NO3 - was mainly affected by the amount of fertilizer applied at the depth of 120-160cm in the whole period of growth of winter wheat. The accumulation position of NH4 + was deepened as the amount of irrigation increased, however, the maximum aggregation depth of ammonium nitrogen was no more than 80cm owing to its poor migration. It can be concluded that the influence of irrigation amount on the concentration of NH4 + in soil solution was more obvious than that of fertilizer. Compared with fertilizer, the amount of irrigation played a leading role in the utilization ratio of nitrogen and the yield of winter wheat. In summary, the best water and fertilizer treatment occurred in No.3 soil-pit, which meant that the middle amount of water and fertilizer could get higher wheat yield and less nitrogen leaching losses in the study area.
Jones, B.H.; Noble, M.A.; Dickey, T.D.
2002-01-01
Moorings and towyo mapping were used to study the temporal and spatial variability of physical processes and suspended particulate material over the continental shelf of the Palos Verdes Peninsula in southwestern Los Angeles, California during the late summer of 1992 and winter of 1992-93. Seasonal evolution of the hydrographic structure is related to seasonal atmospheric forcing. During summer, stratification results from heating of the upper layer. Summer insolation coupled with the stratification results in a slight salinity increase nearsurface due to evaporation. Winter cooling removes much of the upper layer stratification, but winter storms can introduce sufficient quantities of freshwater into the shelf water column again adding stratification through the buoyancy input. Vertical mixing of the low salinity surface water deeper into the water column decreases the sharp nearsurface stratification and reduces the overall salinity of the upper water column. Moored conductivity measurements indicate that the decreased salinity persisted for at least 2 months after a major storm with additional freshwater inputs through the period. Four particulate groups contributed to the suspended particulate load in the water column: phytoplankton, resuspended sediments, and particles in treated sewage effluent were observed in every towyo mapping cruise; terrigenous particles are introduced through runoff from winter rainstorms. Terrigenous suspended particulate material sinks from the water column in <9 days and phytoplankton respond to the stormwater input of buoyancy and nutrients within the same period. The suspended particles near the bottom have spatially patchy distributions, but are always present in hydrographic surveys of the shelf. Temporal variations in these particles do not show a significant tidal response, but they may be maintained in suspension by internal wave and tide processes impinging on the shelf. ?? 2002 Elsevier Science Ltd. All rights reserved.
Winter rye cover crops as a host for corn seedling pathogens
USDA-ARS?s Scientific Manuscript database
Cover cropping is a prevalent conservation practice that offers substantial benefits to soil protection, soil health and water quality. However, emerging implementations of cover cropping, such as winter cereals preceding corn, may dampen beneficial rotation effects by putting similar crop species i...
Influence of atmospheric energy transport on amplification of winter warming in the Arctic
NASA Astrophysics Data System (ADS)
Alekseev, Genrikh; Kuzmina, Svetlana; Urazgildeeva, Aleksandra; Bobylev, Leonid
2016-04-01
The study was performed on base reanalysis ERA/Interim to discover the link between amplified warming in the high Arctic and the atmospheric transport of heat and water vapor through the 70 ° N. The partitioning transports across the Atlantic and Pacific "gates" is established the link between variations of atmospheric flux through the "gates" and a larger part of the variability of the average surface air temperature, water vapor content and its trends in the winter 1980-2014. Influence of winter (December-February) atmospheric transport across the Atlantic "gate" at the 1000 hPa on variability of average for January-February surface air temperature to north 70° N is estimated correlation coefficient 0.75 and contribution to the temperature trend 40%. These results for the first time denote the leading role of increasing atmospheric transport on the amplification of winter warming in the high Arctic. The investigation is supported with RFBR project 15-05-03512.
Intermediate Temperature Water Heat Pipe Tests
NASA Technical Reports Server (NTRS)
Devarakonda, Angirasa; Xiong, Da-Xi; Beach, Duane E.
2005-01-01
Heat pipes are among the most promising technologies for space radiator systems. Water heat pipes are explored in the intermediate temperature range of 400 to above 500 K. The thermodynamic and thermo-physical properties of water are reviewed in this temperature range. Test data are reported for a copper-water heat pipe. The heat pipe was tested under different orientations. Water heat pipes show promise in this temperature range. Fabrication and testing issues are being addressed.
Hydrogeology of the surficial and intermediate aquifers of central Sarasota County, Florida
Duerr, A.D.; Wolansky, R.M.
1986-01-01
The geohydrologic units underlying a 300 sq mi area in central Sarasota County, Florida, consist of the surficial aquifer, intermediate aquifers (Tamiami-upper Hawthorn and lower Hawthorn-upper Tampa aquifers) and confining units, the Floridan aquifer system, and the sub-Floridan confining unit. The saturated thickness of the surficial aquifer ranges from about 40 to 75 ft and the water table is generally within 5 ft of land surface. The Tamiami-upper Hawthorn is the uppermost intermediate aquifer. The top of the aquifer ranges from about 50 ft to about 75 below sea level and has an average thickness of about 100 ft. The lower Hawthorne-upper Tampa aquifer is the lowermost intermediate aquifer. The top of the aquifer ranges from about 190 to about 220 ft below sea level and its thickness ranges from about 200 to 250 ft. The quality of water in the surficial and the two intermediate aquifers is acceptable for potable use except near the coast. Water from the Floridan aquifer system is used primarily for agricultural purposes because it is too mineralized for most other uses; therefore, the surficial and intermediate aquifers are developed for water supply. The artesian pressure of the various aquifers generally increases with depth. A more detailed geohydrologic description is presented for the Ringling-MacArthur Reserve, a 51 sq mi area in the central part of the county that may be used by Sarasota County as a future water supply. Average annual rainfall is 56 inches and evapotranspiration is about 42 in at the Reserve. The area has a high water table, many sloughs and swamps, and undeveloped land, making it an attractive site as a potential source of water. (Author 's abstract)
Seasonal Incidence of Bacterial Temperature Types in Louisiana Soil and Water
Larkin, John M.
1970-01-01
Psychrophilic bacteria were not detected in soil, mud, and water in the summer. In winter, they were present in water and mud and constituted a significant portion of the bacterial flora in lake water. PMID:4921063
Wang, Yufeng; Zhang, Jing; Fu, Qiang; Song, Yuehui; Di, Huige; Li, Bo; Hua, Dengxin
2017-10-01
A combination of more than two years of water vapor lidar data with back trajectory analysis using the hybrid single-particle Lagrangian integrated trajectory (HYSPLIT) model was used to study the long-range transport of air masses and the water vapor distribution characteristics and variations over Xi'an, China (34.233° N, 108.911° E), which is a typical city in Northwest China. High-quality profiles of the water vapor density were derived from a multifunction Raman lidar system built in Xi'an, and more than 2000 sets of profiles with >400 nighttime observations from October 2013 to July 2016 were collected and used for statistical and quantitative analyses. The vertical variations in the water vapor content were discussed. A mutation height of the water vapor exists at 2-4 km with a high occurrence rate of ∼60% during the autumn and winter seasons. This height reflects a distinct stratification in the water vapor content. Additionally, the atmospheric water vapor content was mainly concentrated in the lower troposphere, and the proportion of the water vapor content at 0.5-5 km accounted for 80%-90% of the total water vapor below 10 km. Obvious seasonal variations were observed, including large water vapor content during the spring and summer and small content during the autumn and winter. Combined with back trajectory analysis, the results showed that markedly different water vapor transport pathways contribute to seasonal variations in the water vapor content. South and southeast airflows dominated during the summer, with 30% of the 84 trajectories originating from these areas; however, the air masses during the winter originated from the north and local regions (64.3%) and from the northwest (27%). In addition, we discussed variations in the water vapor during fog and haze weather conditions during the winter. A considerable enhancement in the mean water vapor density at 0.5-3 km exhibited a clear positive correlation (correlation coefficient >0.8) with the PM2.5 and PM10 concentrations. The results indicate that local airflow trajectories mainly affect water vapor transport below the boundary layer, and that these flows are closely related to the formation of fog and haze events in the Xi'an area.
Suguiyama, Vanessa F.; Silva, Emerson A.; Meirelles, Sergio T.; Centeno, Danilo C.; Braga, Marcia R.
2014-01-01
Barbacenia purpurea is a resurrection species endemic to rock outcrops, in Rio de Janeiro, Brazil. It tolerates great temperature variations, which are associated to periods of up to 30 days without precipitation. Using a metabolomic approach, we analyzed, under winter and summer conditions, changes in the leaf metabolite profile (MP) of potted plants of B. purpurea submitted to daily watered and water deficit for at least 20 days and subsequent slow rehydration for 5 days. Leaves were collected at different time points and had their MP analyzed by GC/MS, HPAEC, and UHPLC techniques, allowing the identification of more than 60 different compounds, including organic and amino acids, sugars, and polyols, among others. In the winter experiment, results suggest the presence of two time-dependent responses in B. purpurea under water stress. The first one starts with the increase in the content of caffeoyl-quinic acids, substances with strong antioxidant activity, until the 16th day of water suppression. When RWC reached less than 80 and 70%, in winter and summer respectively, it was observed an increase in polyols and monosaccharides, followed by an increment in the content of RFO, suggesting osmotic adjustment. Amino acids, such as GABA and asparagine, also increased due to 16 days of water suppression. During rehydration, the levels of the mentioned compounds became similar to those found at the beginning of the experiment and when compared to daily watered plants. We conclude that the tolerance of B. purpurea to dehydration involves the perception of water deficit intensity, which seems to result in different strategies to overcome the gradient of water availability imposed along a certain period of stress mainly during winter. Data from summer experiment indicate that the metabolism of B. pupurea was already primed for drought stress. The accumulation of phenolics in summer seemed to be more temperature and irradiance-dependent than on the RWC. PMID:24672534
NASA Astrophysics Data System (ADS)
Al-Aboodi, Ali H.; Abbas, Sarmad A.; Ibrahim, Husham T.
2018-05-01
The main object of this research is to assess the water quality of Shatt Al-Arab River and its suitability for various purposes near power plants (Hartha and Najibia) through physical and chemical analysis [temperature, pH, EC, Cl-, Na+, K+, Ca+2, Mg+2, HCO3 -, NO3 -, SO 4 -2 , Fe+, total alkalinity, total hardness, biological oxygen demand (BOD5), NH4 +, and NO2 -] using water quality index (WQI), organic pollution index (OPI), sodium adsorption ratio (SAR), and percentage of sodium ion (Na%) during the dry season (August, 2016) and the wet season (January, 2017). WQI of Shatt Al-Arab falls under very poor quality during summer season, while it ranges from very poor quality to unsuitable for drinking purposes during winter season. There is a clear effect of power plants on water quality. Hartha and Najibia power plants contribute to the deterioration of water quality by increasing the percentage ratio of WQI near these plants by 13.22 and 9.69%, respectively, compared to the north sites of these plants during summer season. The percentage ratios of increased WQI near Hartha and Najibia power plants compared to the north sites of these plants are 17.93 and 15.92%, respectively, during winter season. Water quality of Shatt Al-Arab falls under a high level of organic pollution during the summer and winter seasons. There is a slight effect by the power plants on the OPI. Hartha and Najibia power plants contributed to the change of the OPI by 10% compared to the north site of Hartha power plant. According to the comparison between the SAR values which represent the suitability of water for serve irrigation purposes and SAR values of Shatt Al-Arab, all sites lie in the first class (excellent). According to Na+%, the type of surface water in the studied area lies in good class during winter season and permissible class during summer season.
do Amaral, Aline Monique Blank; de Lima Costa Gomes, Jeane; Weimer, Gustavo Henrique; Marins, Aline Teixeira; Loro, Vania Lucia; Zanella, Renato
2018-01-01
Cropping systems based on intensive land use and continuous application of agricultural chemicals inflict a threat to aquatic organisms since these substances will inevitably be carried in to water bodies where they can accumulate, particularly in lentic sites. Pesticides exposure in aquatic animals can cause changes that can be quantified through biomarkers. Thus, this study aimed to investigate the effects of season on oxidative stress and neurotoxicity biomarkers in Loricariichthys anus from a subtropical reservoir surrounded by agricultural areas in southern Brazil. Ten armored catfish were collected from six sites in February and August 2016. Pesticides present in the water, sediment and muscle were identified and quantified. No pesticides were detected either in sediment nor in muscle. During the winter, the water contained atrazine, imidacloprid, simazine, azoxystrobin, and propoxur; however, in summer, only atrazine was present in the water. In the winter, there was an increase in the hepatic GST activity and in GPx that kept lipid peroxidation (TBARS) constant and, in the summer, there was an increase in metallothioneins levels. In the gills, variables related to summer were possibly responsible for the elevation of GST, GPx and TBARS; during the winter, there was greater carbonylation of proteins. In the winter, the increased AChE activity in brain and muscle tissue was related to carbonylation of proteins in brain. Although the amount of pesticides detected in the water was low, chronic exposure in addition to environmental variations can cause direct and indirect effects on L. anus population. Copyright © 2017 Elsevier Ltd. All rights reserved.
Circulation in the Mediterranean Sea and consequences on the water quality
NASA Astrophysics Data System (ADS)
Millot, C.
2003-04-01
Atlantic Water (AW) flows into the Mediterranean Sea (about 10 super(6) m super(3)/s) to compensate for the deficit (about 10 super(5) m super(3)/s) created by evaporation larger than precipitation and river runoff there. Mainly due to the earth's rotation, the current is generally bent to the right, so that AW flows anticlockwise alongslope in both the western and the eastern basins. Meanwhile, it is continuously evaporated and thus made denser. In winter, dry and cold air masses transported by violent northerly winds induce large losses of latent and sensible heat. Hence, AW sinks in some specific regions located in the northern part of the various subbasins. The intermediate and deep waters that are formed in such a way then circulate, still bent to the right by the earth's rotation, before flowing through the various channels and, finally, out from the sea. The Mediterranean Sea is thus a machine that transforms surface oceanic water into saltier (by about 2 psu) cooler (by about 2 °C) and denser (by about 2 kg/m super(3)) waters that will flow and spread at intermediate depths (1000-1200 m) in most of the northern Atlantic. Due to the west-east elongated shape of both basins, and to the specific locations of their openings, AW first flows eastwards in the southern part of each basin. There, the current is markedly unstable and it generates, all year long and a few times per year, 100-200 km anticyclonic eddies that propagate downstream at a few km/day, extend possibly down to the bottom (about 3000 m), and have lifetimes up to 3 years at least. Especially in the eastern basin, similar eddies are induced in specific places by the Etesians, they can propagate then and survive for more than one year. All these eddies strongly interact, either with their parent current of with other eddies, and two eddies can merge. Natural barriers (islands and/or the bathymetry) prevent these eddies from reaching the eastern parts of the basins so that AW there flows northward in a relatively gentle way. In the northern parts of the basins, AW flows westwards, strongly interacting with the process of dense water formation and thus displaying a marked seasonal variability. At intermediate and greater depths, the circulation is less well specified, but it can display a marked variability at seasonal and meso- scales, and it can be much more intense than generally thought. On the whole, consequences on the water quality are that floating materials are transported all around the sea, eventually pushed southwards by the dominant winds, but still maintained within the sea. Conversely, all dissolved materials will, some time, be flushed out of the sea. At basin scale, sewage effluents released along the southern coasts will generally be entrained either alongslope (in one direction or the other) or seaward, before eventually coming back. Effluents from the eastern and northern coasts will generally be entrained alongslope downstream.
NASA Astrophysics Data System (ADS)
Rocca, D.; Bellanca, A.; Neri, R.; Russo, B.; Sgarrella, F.; Sprovieri, M.
2003-04-01
The marly sediments of the Blue Clay Formation in the upper part of the Middle Miocene Ras il-Pellegrin composite section (Malta island, central Mediterranean) have been investigated by integrated analysis of benthic microfauna and planktonic and benthic oxygen isotopes. The astronomical calibration of the whole section, obtained by using the astronomical solution of Laskar et al. (1993), indicates for deposition of the analysed sediments a time interval ranging between 13.75 and 12.32 Ma (Sprovieri et al., 2002). This time interval is useful to investigate the oceanographic evolution of the (paleo)Mediterranean after the interruption of communications between the Mediterranean and Indo-Pacific areas. This important paleogeographic event, estimated at about 16 Ma by Johnson (1985) and at about 14.5 Ma by Woodruff and Savin (1991), represented the first step of a progressive oceanographic evolution of the Tethys region water masses towards present Mediterranean conditions. A comparison of long-term planktonic and benthic d18O trends suggests that the intermediate outflowing Mediterranean water (proto-MIW), originated in the surface eastern zone of upper Langhian lower Serravallian (paleo)Mediterranean, had hydrographic and hydrodynamic features similar to those of the present Levantine Intermediate Water (LIW). Focusing our attention on benthic species which can be considered the best recorders of variation of proto-MIW production, we elaborated benthic data by Q-mode varimax principal factor analysis. Spectral analysis was carried out only on two factors which have a clear paleoecological significance: Factor 1 (loaded by Cibicidoides ungerianus and Siphonina reticulata) indicative of oxic bottom waters and Factor 2 (loaded by Bulimina elongata group) indicative of oxygen stressed conditions. Results of these analyses show that Factor 1 and Factor 2 curves are respectively in and out of phase with maxima of the eccentricity (100 and 400 kyr). Factor 1 is interpreted as a tracer of high production of proto-MIW, during periods of high eccentricity and, probably, precession minima, characterized by coldest winter seasons. These results point out a direct link between selected benthic species, long term astronomical forcing, and deep water response and provide an useful tool for astronomical calibration of geological time and paleoceanographic reconstructions. REFERENCES Johnson D. (1985). Abyssal teleconnections II. Initation of Antarctic Bottom Water flow in the southwestern Atlantic. In: Hsű K. And Weissert H. eds. - South Atlantic paleoceanography, 283-325, Cambridge (Cambridge University Press). Laskar J., Joutel F. &Boudin F. (1993). Orbital precession and insolation quantities for the Earth form 20 Myr to +10 Myr. Astron. Astrophys., 270: 522-533, Washinghon. Sprovieri M., Caruso A., Foresi L., Bellanca A., Neri R., Mazzola S. &Sprovieri R. (2002). Astronomical calibration of the upper Langhian/lower Serravallian record of Ras Il-Pellegrin section (Malta Island, central Mediterranean). In: Iaccarino S.M. (ed.) Integrated Stratigraphy and Paleoceanography of the Mediterranean Middle Miocene. Riv. It. Paleont. Strat., 108: 183-193, Milano. Woodruff F. &Savin S.M. (1991). Mid-Miocene isotope stratigraphy in the deep-sea: high resolution correlations, paleoclimatic cycles, and sediment preservation. Palaeoceanography, 6: 755-806, Washington.
Sustainability of winter tourism in a changing climate over Kashmir Himalaya.
Dar, Reyaz Ahmad; Rashid, Irfan; Romshoo, Shakil Ahmad; Marazi, Asif
2014-04-01
Mountain areas are sensitive to climate change. Implications of climate change can be seen in less snow, receding glaciers, increasing temperatures, and decreasing precipitation. Climate change is also a severe threat to snow-related winter sports such as skiing, snowboarding, and cross-country skiing. The change in climate will put further pressure on the sensitive environment of high mountains. Therefore, in this study, an attempt has been made to know the impact of climate change on the snow precipitation, water resources, and winter tourism in the two famous tourist resorts of the Kashmir Valley. Our findings show that winters are getting prolonged with little snow falls on account of climate change. The average minimum and maximum temperatures are showing statistically significant increasing trends for winter months. The precipitation is showing decreasing trends in both the regions. A considerable area in these regions remains under the snow and glacier cover throughout the year especially during the winter and spring seasons. However, time series analysis of LandSat MODIS images using Normalized Difference Snow Index shows a decreasing trend in snow cover in both the regions from past few years. Similarly, the stream discharge, comprising predominantly of snow- and glacier-melt, is showing a statistically significant declining trend despite the melting of these glaciers. The predicted futuristic trends of temperature from Predicting Regional Climates for Impact Studies regional climate model are showing an increase which may enhance snow-melting in the near future posing a serious threat to the sustainability of winter tourism in the region. Hence, it becomes essential to monitor the changes in temperature and snow cover depletion in these basins in order to evaluate their effect on the winter tourism and water resources in the region.
Michot, T.C.; Woodin, M.C.; Adair, S.E.; Moser, E.B.
2006-01-01
Diurnal time-activity budgets were determined for wintering redheads (Aythya americana) from estuarine seagrass beds in Louisiana (Chandeleur Sound) and Texas (Laguna Madre) and from ponds adjacent to the Laguna Madre. Activities differed (p<0.0001) by location, month, and diurnal time period. Resting and feeding were the most frequent activities of redheads at the two estuarine sites, whereas drinking was almost nonexistent. Birds on ponds in Texas engaged most frequently in resting and drinking, but feeding was very infrequent. Redheads from the Louisiana estuarine site rested less than birds in Texas at either the Laguna Madre or freshwater ponds. Redheads in Louisiana fed more than birds in Texas; this was partially because of weather differences (colder temperatures in Louisiana), but the location effect was still significant even when we adjusted the model for weather effects. Redheads in Louisiana showed increased resting and decreased feeding as winter progressed, but redheads in Texas did not exhibit a seasonal pattern in either resting or feeding. In Louisiana, birds maintained a high level of feeding activity during the early morning throughout the winter, whereas afternoon feeding tapered off in mid- to late-winter. Texas birds showed a shift from morning feeding in early winter to afternoon feeding in late winter. Males and females at both Chandeleur Sound and Laguna Madre showed differences in their activities, but because the absolute difference seldom exceeded 2%, biological significance is questionable. Diurnal time-activity budgets of redheads on the wintering grounds are influenced by water salinities and the use of dietary fresh water, as well as by weather conditions, tides, and perhaps vegetation differences between sites. The opportunity to osmoregulate via dietary freshwater, vs. via nasal salt glands, may have a significant effect on behavioral allocations. ?? Springer 2006.
NASA Astrophysics Data System (ADS)
Liu, Zhiyong; Zhang, Xin; Fang, Ruihong
2018-02-01
Understanding the potential connections between climate indices such as the El Niño-Southern Oscillation (ENSO) and Arctic Oscillation (AO) and drought variability will be beneficial for making reasonable predictions or assumptions about future regional droughts, and provide valuable information to improve water resources planning and design for specific regions of interest. This study is to examine the multi-scale relationships between winter drought variability over Shaanxi (North China) and both ENSO and AO during the period 1960-2009. To accomplish this, we first estimated winter dryness/wetness conditions over Shaanxi based on the self-calibrating Palmer drought severity index (PDSI). Then, we identified the spatiotemporal variability of winter dryness/wetness conditions in the study area by using the empirical orthogonal function (EOF). Two primary sub-regions of winter dryness/wetness conditions across Shaanxi were identified. We further examined the periodical oscillations of dryness/wetness conditions and the multi-scale relationships between dryness/wetness conditions and both ENSO and AO in winter using wavelet analysis. The results indicate that there are inverse multi-scale relations between winter dryness/wetness conditions and ENSO (according to the wavelet coherence) for most of the study area. Moreover, positive multi-scale relations between winter dryness/wetness conditions and AO are mainly observed. The results could be beneficial for making reasonable predictions or assumptions about future regional droughts and provide valuable information to improve water resources planning and design within this study area. In addition to the current study area, this study may also offer a useful reference for other regions worldwide with similar climate conditions.
Kim, Yumi; Seo, Jihoon; Kim, Jin Young; Lee, Ji Yi; Kim, Hwajin; Kim, Bong Mann
2018-02-01
The chemical and seasonal characteristics of fine particulates in Seoul, Korea, were investigated based on 24-h integrated PM 2.5 measurements made over four 1-month periods in each season between October 2012 and September 2013. The four-season average concentration of PM 2.5 was 37 μg m -3 , and the major chemical components were secondary inorganic aerosol (SIA) species of sulfate, nitrate, and ammonium (49%), followed by organic matter (34%). The mass concentration and most of the chemical components of PM 2.5 showed clear seasonal variation, with a winter-high and summer-low pattern. The winter-to-summer sulfate ratio and the winter organic carbon (OC)-to-elemental carbon (EC) ratio were unusually high compared with those in previous studies. Strong correlations of both the sulfate level and the sulfur oxidation ratio with relative humidity, and between water-soluble OC (WSOC) and SIA in winter, suggest the importance of aqueous phase chemistry for secondary aerosols. A strong correlation between non-sea salt sulfate and Na + levels, a high Cl - /Na + ratio, and an unusual positive correlation between the nitrogen oxidation ratio and temperature during the winter indicate the influence of transported secondary emission sources from upwind urban areas and from China across the Yellow Sea. Despite the absence of local forest fires and the regulation of wood burning, a high levoglucosan concentration and its correlations with OC and WSOC indicate that Seoul was affected by biomass burning sources in the winter. The unusually high water-insoluble OC (WIOC)-to-EC ratio in winter implies additional transported combustion sources of WIOC. The strong correlation between WIOC and levoglucosan suggests the likely influence of transported biomass burning sources on the high WIOC/EC ratio during the winter.
Food and water security in a changing arctic climate
NASA Astrophysics Data System (ADS)
White, Daniel M.; Gerlach, S. Craig; Loring, Philip; Tidwell, Amy C.; Chambers, Molly C.
2007-10-01
In the Arctic, permafrost extends up to 500 m below the ground surface, and it is generally just the top metre that thaws in summer. Lakes, rivers, and wetlands on the arctic landscape are normally not connected with groundwater in the same way that they are in temperate regions. When the surface is frozen in winter, only lakes deeper than 2 m and rivers with significant flow retain liquid water. Surface water is largely abundant in summer, when it serves as a breeding ground for fish, birds, and mammals. In winter, many mammals and birds are forced to migrate out of the Arctic. Fish must seek out lakes or rivers deep enough to provide good overwintering habitat. Humans in the Arctic rely on surface water in many ways. Surface water meets domestic needs such as drinking, cooking, and cleaning as well as subsistence and industrial demands. Indigenous communities depend on sea ice and waterways for transportation across the landscape and access to traditional country foods. The minerals, mining, and oil and gas industries also use large quantities of surface water during winter to build ice roads and maintain infrastructure. As demand for this limited, but heavily-relied-upon resource continues to increase, it is now more critical than ever to understand the impacts of climate change on food and water security in the Arctic.
Assessment of soil and wash water quality beneath salt-spreader racks.
DOT National Transportation Integrated Search
2008-01-01
The Virginia Department of Transportation's (VDOT) winter maintenance program hinges primarily on the use of granular NaCl for deicing. On average, VDOT applies more than 300,000 tons of NaCl each winter season. The majority of this salt is spread by...
NASA Astrophysics Data System (ADS)
Stoelzle, Michael; Weiler, Markus
2016-04-01
Alpine catchments are often considered as quickly responding systems where streamflow contributions from subsurface storages (groundwater) are mostly negligible due to the steep topography, low permeable bedrock and the absence of well-developed soils. Many studies in high altitude catchments have hence focused on water stored in snowpack and glaciers or on rainfall-runoff processes as the dominant streamflow contributions. Interestingly less effort has been devoted to winter streamflow analysis when melt- or rainfall-driven contributions are switched off due to the frozen state of the catchment. Considering projected changes in the alpine cryosphere (e.g. snow, glacier, permafrost) quantification of groundwater storage and contribution to streamflow is crucial to assess the social and ecological implications for downstream areas (e.g. water temperature, drought propagation). In this study we hypothesize that groundwater is the main streamflow contribution during winter and thus being responsible for the perennial regime of many alpine catchments. The hypothesis is investigated with well-known methods based on recession and breakpoint analysis of the streamflow regimes and temperature data to determine frozen periods. Analyzing nine catchments in Switzerland with mean elevation between 1000 and 2400 m asl, we found that above a mean elevation of 1800 m asl winter recessions are sufficient long and persistent enough to quantify groundwater contribution to streamflow and to characterize the properties of subsurface storage. The results show that groundwater in alpine catchment is the dominant streamflow contribution for nearly half a year and accountable for several hundred millimeter of annual streamflow. In sub-alpine catchments, driven by a mix of snowmelt and rainfall, a clear quantification of groundwater contributions is rather challenging due to discontinuous frozen periods in winter. We found that the inter-annual variability of different streamflow contributions is helpful to assess the water sustainability of alpine catchments functioning as water towers for downstream water basins. We outline how well-known hydrograph and recession analyses in alpine catchments can help to explore the role of catchment storage and to advance our understanding of (ground-)water management in alpine environments.
Bachand, Philip A.M.; Bachand, Sandra M.; Fleck, Jacob A.; Alpers, Charles N.; Stephenson, Mark; Windham-Myers, Lisamarie
2014-01-01
Concentration and mass balance analyses were used to quantify methylmercury (MeHg) loads from conventional (white) rice, wild rice, and fallowed fields in northern California's Yolo Bypass. These analyses were standardized against chloride to distinguish transport pathways and net ecosystem production (NEP). During summer, chloride loads were both exported with surface water and moved into the root zone at a 2:1 ratio. MeHg and dissolved organic carbon (DOC) behaved similarly with surface water and root zone exports at ~ 3:1 ratio. These trends reversed in winter with DOC, MeHg, and chloride moving from the root zone to surface waters at rates opposite and exceeding summertime root zone fluxes. These trends suggest that summer transpiration advectively moves constituents from surface water into the root zone, and winter diffusion, driven by concentration gradients, subsequently releases those constituents into surface waters. The results challenge a number of paradigms regarding MeHg. Specifically, biogeochemical conditions favoring microbial MeHg production do not necessarily translate to synchronous surface water exports; MeHg may be preserved in the soils allowing for release at a later time; and plants play a role in both biogeochemistry and transport. Our calculations show that NEP of MeHg occurred during both summer irrigation and winter flooding. Wild rice wet harvesting and winter flooding of white rice fields were specific practices that increased MeHg export, both presumably related to increased labile organic carbon and disturbance. Outflow management during these times could reduce MeHg exports. Standardizing MeHg outflow:inflow concentration ratios against natural tracers (e.g. chloride, EC) provides a simple tool to identify NEP periods. Summer MeHg exports averaged 0.2 to 1 μg m− 2 for the different agricultural wetland fields, depending upon flood duration. Average winter MeHg exports were estimated at 0.3 μg m− 2. These exports are within the range reported for other shallow aquatic systems.
Bachand, P A M; Bachand, S M; Fleck, J A; Alpers, C N; Stephenson, M; Windham-Myers, L
2014-02-15
Concentration and mass balance analyses were used to quantify methylmercury (MeHg) loads from conventional (white) rice, wild rice, and fallowed fields in northern California's Yolo Bypass. These analyses were standardized against chloride to distinguish transport pathways and net ecosystem production (NEP). During summer, chloride loads were both exported with surface water and moved into the root zone at a 2:1 ratio. MeHg and dissolved organic carbon (DOC) behaved similarly with surface water and root zone exports at ~3:1 ratio. These trends reversed in winter with DOC, MeHg, and chloride moving from the root zone to surface waters at rates opposite and exceeding summertime root zone fluxes. These trends suggest that summer transpiration advectively moves constituents from surface water into the root zone, and winter diffusion, driven by concentration gradients, subsequently releases those constituents into surface waters. The results challenge a number of paradigms regarding MeHg. Specifically, biogeochemical conditions favoring microbial MeHg production do not necessarily translate to synchronous surface water exports; MeHg may be preserved in the soils allowing for release at a later time; and plants play a role in both biogeochemistry and transport. Our calculations show that NEP of MeHg occurred during both summer irrigation and winter flooding. Wild rice wet harvesting and winter flooding of white rice fields were specific practices that increased MeHg export, both presumably related to increased labile organic carbon and disturbance. Outflow management during these times could reduce MeHg exports. Standardizing MeHg outflow:inflow concentration ratios against natural tracers (e.g. chloride, EC) provides a simple tool to identify NEP periods. Summer MeHg exports averaged 0.2 to 1 μg m(-2) for the different agricultural wetland fields, depending upon flood duration. Average winter MeHg exports were estimated at 0.3 μg m(-2). These exports are within the range reported for other shallow aquatic systems. Copyright © 2013 Elsevier B.V. All rights reserved.
2000-04-27
In waters on Kennedy Space Center, two manatees are seen leisurely swimming. In winter they gather in Florida's warm water rivers and inland springs. KSC shares a boundary with the Merritt Island National Wildlife Refuge, which encompasses 92,000 acres that are a habitat for more than 331 species of birds, 31 mammals, 117 fishes, and 65 amphibians and reptiles. The marshes and open water of the refuge provide wintering areas for 23 species of migratory waterfowl, as well as a year-round home for great blue herons, great egrets, wood storks, cormorants, brown pelicans and other species of marsh and shore birds, as well as a variety of insects
2000-04-27
In waters on Kennedy Space Center, two manatees are seen leisurely swimming. In winter they gather in Florida's warm water rivers and inland springs. KSC shares a boundary with the Merritt Island National Wildlife Refuge, which encompasses 92,000 acres that are a habitat for more than 331 species of birds, 31 mammals, 117 fishes, and 65 amphibians and reptiles. The marshes and open water of the refuge provide wintering areas for 23 species of migratory waterfowl, as well as a year-round home for great blue herons, great egrets, wood storks, cormorants, brown pelicans and other species of marsh and shore birds, as well as a variety of insects
2000-04-27
Two manatees swim leisurely in waters on Kennedy Space Center. They gather in Florida's warm water rivers and inland springs during the winter. KSC shares a boundary with the Merritt Island National Wildlife Refuge, which encompasses 92,000 acres that are a habitat for more than 331 species of birds, 31 mammals, 117 fishes, and 65 amphibians and reptiles. The marshes and open water of the refuge provide wintering areas for 23 species of migratory waterfowl, as well as a year-round home for great blue herons, great egrets, wood storks, cormorants, brown pelicans and other species of marsh and shore birds, as well as a variety of insects
2000-04-27
Two manatees swim leisurely in waters on Kennedy Space Center. They gather in Florida's warm water rivers and inland springs during the winter. KSC shares a boundary with the Merritt Island National Wildlife Refuge, which encompasses 92,000 acres that are a habitat for more than 331 species of birds, 31 mammals, 117 fishes, and 65 amphibians and reptiles. The marshes and open water of the refuge provide wintering areas for 23 species of migratory waterfowl, as well as a year-round home for great blue herons, great egrets, wood storks, cormorants, brown pelicans and other species of marsh and shore birds, as well as a variety of insects
1999-01-21
KENNEDY SPACE CENTER, FLA. -- Two female pintail ducks search for food in the winter waters of the Merritt Island National Wildlife Refuge at Kennedy Space Center. The pintails can be found in the marshes, prairie ponds and tundra of Alaska, Greenland and north and western United States; in the winter they range south and east to Central America and the West Indies, sometimes in salt marshes such as the refuge offers. The open water of the refuge provides wintering areas for 23 species of migratory waterfowl, as well as a year-round home for great blue herons, great egrets, wood storks, cormorants, brown pelicans and other species of marsh and shore birds. The 92,000-acre refuge is also habitat for more than 310 species of birds, 25 mammals, 117 fishes and 65 amphibians and reptiles
Salas, L; De Villalobos, C; Zanca, F
2011-09-01
A total of 687 adult nematomorphs of four species of Gordiida: Chordodes brasiliensis (393 specimens), Noteochorododes cymatium (47 specimens), N. talensis (162 specimens) and Pseudochordodes dugesi (85 specimens) were collected during a period of 1 year from El Simbolar stream, Argentina. Free-living worms were abundant during autumn and spring, but their number decreased during winter and summer. Males were shorter and significantly more abundant than females. The presence of N. cymatium, N. talensis and P. dugesi was correlated with water temperature and these species were most abundant in winter and spring. The presence of C. brasiliensis was correlated with flow rate and pH; this species was more abundant in autumn and winter. These four species are sympatric.
Volaire, F; Norton, M R; Norton, G M; Lelièvre, F
2005-05-01
Summer dormancy in perennial grasses has been studied inadequately, despite its potential to enhance plant survival and persistence in Mediterranean areas. The aim of the present work was to characterize summer dormancy and dehydration tolerance in two cultivars of Dactylis glomerata (dormant 'Kasbah', non-dormant 'Oasis') and their hybrid using physiological indicators associated with these traits. Dehydration tolerance was assessed in a glasshouse experiment, while seasonal metabolic changes which produce putative protectants for drought, such as carbohydrates and dehydrins that might be associated with summer dormancy, were analysed in the field. The genotypes differed in their ability to survive increasing soil water deficit: lethal soil water potential (Psi(s)) was -3.4 MPa for 'Kasbah' (although non-dormant), -1.3 MPa for 'Oasis', and -1.6 MPa for their hybrid. In contrast, lethal water content of apices was similar for all genotypes (approx. 0.45 g H(2)O g d. wt(-1)), and hence the greater survival of 'Kasbah' can be ascribed to better drought avoidance rather than dehydration tolerance. In autumn-sown plants, 'Kasbah' had greatest dormancy, the hybrid was intermediate and 'Oasis' had none. The more dormant the genotype, the lower the metabolic activity during summer, and the earlier the activity declined in spring. Decreased monosaccharide content was an early indicator of dormancy induction. Accumulation of dehydrins did not correlate with stress tolerance, but dehydrin content was a function of the water status of the tissues, irrespective of the soil moisture. A protein of approx. 55 kDa occurred in leaf bases of the most dormant cultivar even in winter. Drought avoidance and summer dormancy are correlated but can be independently expressed. These traits are heritable, allowing selection in breeding programmes.
Severin, Tatiana; Sauret, Caroline; Boutrif, Mehdi; Duhaut, Thomas; Kessouri, Fayçal; Oriol, Louise; Caparros, Jocelyne; Pujo-Pay, Mireille; Durrieu de Madron, Xavier; Garel, Marc; Tamburini, Christian; Conan, Pascal; Ghiglione, Jean-François
2016-12-01
Open-ocean convection is a fundamental process for thermohaline circulation and biogeochemical cycles that causes spectacular mixing of the water column. Here, we tested how much the depth-stratified prokaryotic communities were influenced by such an event, and also by the following re-stratification. The deep convection event (0-1500 m) that occurred in winter 2010-2011 in the NW Mediterranean Sea resulted in a homogenization of the prokaryotic communities over the entire convective cell, resulting in the predominance of typical surface Bacteria, such as Oceanospirillale and Flavobacteriales. Statistical analysis together with numerical simulation of vertical homogenization evidenced that physical turbulence only was not enough to explain the new distribution of the communities, but acted in synergy with other parameters such as exported particulate and dissolved organic matters. The convection also stimulated prokaryotic abundance (+21%) and heterotrophic production (+43%) over the 0-1500 m convective cell, and resulted in a decline of cell-specific extracellular enzymatic activities (-67%), thus suggesting an intensification of the labile organic matter turnover during the event. The rapid re-stratification of the prokaryotic diversity and activities in the intermediate layer 5 days after the intense mixing indicated a marked resilience of the communities, apart from the residual deep mixed water patch. © 2016 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Yamashita, Cintia; Mello e Sousa, Silvia Helena de; Vicente, Thaisa Marques; Martins, Maria Virgínia; Nagai, Renata Hanae; Frontalini, Fabrizio; Godoi, Sueli Susana; Napolitano, Dante; Burone, Letícia; Carreira, Renato; Figueira, Rubens Cesar Lopes; Taniguchi, Nancy Kazumi; Rezende, Carlos Eduardo de; Koutsoukos, Eduardo Apostolos Machado
2018-05-01
Living (stained) benthic foraminifera from deep-sea stations in the Campos Basin, southeastern Brazilian continental margin, were investigated to understand their distribution patterns and ecology, as well as the oceanographic processes that control foraminiferal distribution. Sediments were collected from 1050 m to 1950 m of water depth during the austral winter of 2003, below the Intermediate Western Boundary Current (IWBC) and the Deep Water Boundary Current (DWBC). Based on statistical analysis, vertical flux of particulate organic matter and the grain size of sediment seem to be the main factors controlling the spatial distribution of benthic foraminifera. The middle slope (1050 m deep) is characterized by relatively high foraminiferal density and a predominance of phytodetritus-feeding foraminifera such as Epistominella exigua and Globocassidulina subglobosa. The occurrence of these species seems to reflect the Brazil Current System (BCS). The above-mentioned currents are associated with the relatively high vertical flux of particulate organic matter and the prevalence of sandy sediments, respectively. The lower slope (between 1350 and 1950 m of water depth) is marked by low foraminiferal density and assemblages composed of Bolivina spp. and Brizalina spp., with low particulate organic matter flux values, muddy sediments, and more refractory organic matter. The distribution of this group seems to be related to episodic fluxes of food particles to the seafloor, which are influenced by the BCS at the surface and are deposited under low deep current activity (DWBC).
NASA Astrophysics Data System (ADS)
Cartes, Joan E.; Hidalgo, Manuel; Papiol, Vanesa; Massutí, Enric; Moranta, Joan
2009-03-01
Short spatio-temporal variations in the feeding intensity and the diet of the European hake, Merluccius merluccius, together with the abundance of their potential prey were studied between August 2003 and June 2004 at two locations, northwest (Sóller) and south (Cabrera), off the island of Mallorca (Balearic Islands, Western Mediterranean) at depths between 150 and 750 m. The two areas present different oceanographic conditions. Hake was mainly distributed along the shelf-slope break and the upper slope (between 166 and 350 m) where recruits (TL<18 cm) were dominant. The hake's diet varied as a function of size. Recruits fed mainly on micronektonic prey, and the diet was influenced primarily by seasonality, with two dietary patterns (identified by MDS analyses) corresponding to August-September 2003 (summer) and to November 2003/February-April 2004 (autumn-winter). The summer pattern was consistent with a thermally stratified water column, while November and April were consistent with homogenized temperature and salinity throughout all the water column. The main prey of recruits were the euphausiid Meganyctiphanes norvegica and the midwater fish Maurolicus muelleri in autumn-winter and myctophids (mainly Ceratoscopelus maderensis) in summer. In contrast to recruits, the geographic factor (NW vs. S) was the main factor influencing the diets of post-recruits (TL between 18 and 21.9 cm) and adults (TL⩾22 cm). Hake recruits (and to a lesser extent post-recruits) and their preferred prey occupied different depth ranges during daylight periods. Meganyctiphanes norvegica and Ceratoscopelus maderensis were, for instance, distributed as much as 500 m deeper than hake that had eaten them. All these trends were especially obvious at NW, an area with a more abrupt slope and with a greater influence by northern winter intermediate water (WIW) inflow in early spring than the S area. These factors probably enhanced micronekton aggregation in April, when feeding intensity (stomach fullness) increased among recruits and post-recruits only at NW. All these factors may have a crucial role in the diet, distribution and probably recruitment success of small hake. Biological factors were also important in trophic shifts in the diet and feeding of hake. Multi-linear regression models pointed to a trend of higher fullness with higher hepato-somatic index (HSI). Therefore greater food consumption by hake may enhance its metabolic condition. Within the framework of shelf-break and slope ecology, we show how the 'boundary' mesopelagic community inhabiting the middle slope sustains the trophic requirements of hake, a species distributed at shallower depths along the shelf-slope break. Mesopelagic euphausiids and myctophids are often found in the diets of shelf-break fish. Because the boundary mesopelagic community is distributed worldwide, the high levels of fish biomass often found at shelf-slope breaks could be sustained trophically by deeper, offshore mesopelagic communities, an inverse energy transfer from deep to shallow-water marine ecosystems.
Rosenberry, Donald O.; Melchior, Robert C.; Jones, Perry M.; Strietz, Andrew; Barr, Kelton D.; Lee, David R.; Piegat, James J.
2011-01-01
Tom Winter spent nearly 50 years conducting research in earth science, and he specialized in the exchange between groundwater and surface water. Tom's highly productive career began in Minnesota. This fi eld trip revisits many of the places where Tom conducted his early research and demonstrates the continuing relevance of that research. Stops and topics include the groundwater infl uence on the record low stage of White Bear Lake, the contribution of groundwater to continually rising water levels in an abandoned open-pit iron mine, hydrogeology of the Shingobee headwaters aquatic ecosystem research site, hydrogeology of Lake Sallie, geology associated with the Pillager water gap, and the hydrogeology of Little Rock Lake.
NASA Astrophysics Data System (ADS)
Dahlke, H. E.; Kocis, T. N.; Brown, A.
2016-12-01
Groundwater banking, the intentional recharge of groundwater from surface water for storage and recovery, is an important conjunctive use strategy for water management in California (CA). A largely unexplored approach to groundwater banking, agricultural groundwater banking (ag-GB), utilizes flood flows and agricultural lands (alfalfa/pasture) for recharging groundwater. Understanding soil suitability for ag-GB, crop health and flooding tolerance, leaching of soil nitrate and salts, the availability of surface water for recharge, and the economic costs and benefits of ag-GB is fundamental to assessing the feasibility of local-scale implementation of ag-GB. The study presented here considers both the availability of excess streamflow (e.g., the magnitude, frequency, timing, and duration of winter flood flow) for ag-GB and the risks and benefits associated with using alfalfa fields as spreading grounds for ag-GB. The availability of surface water for winter (Nov to Apr) ag-GB were estimated based on daily streamflow records for 93 stream gauges within the Central Valley, CA. Analysis focused on high-magnitude (>90thpercentile) flows because most lower flows are likely legally allocated in CA. Results based >50 years of data indicate that an average winter/spring (Nov. - Apr.) in the Sacramento River Basin could provide 7 million acre-feet (AF) (8.6 km3) of water for ag-GB from flows above the 90th percentile. These flows originate from few storm events (5-7 events) and occur on average for 25-30 days between November and April. Wintertime on-farm recharge experiments were conducted on a 9-yr old, 15-acre alfalfa field in the Scott Valley, CA, where 135 AF and 107 AF of water were recharged during the winters of 2015 and 2016, respectively. Biomass data collected indicates that pulsed application of 6-10 ft of water on dormant alfalfa results in minimal yield loss (0.5 ton/acre reduction), short-duration saturated conditions in the root-zone, and high recharge fractions (70-95%) of applied water. Together these results highlight the opportunity and potential benefits for growers and water districts to implement ag-GB as part of the sustainable groundwater management plans.
Modelling short-term variability in carbon and water exchange in a temperate Scots pine forest
NASA Astrophysics Data System (ADS)
Vermeulen, M. H.; Kruijt, B. J.; Hickler, T.; Kabat, P.
2015-02-01
Vegetation - atmosphere carbon and water exchange at one particular site can strongly vary from year to year, and understanding this interannual variability in carbon and water exchange (IAVcw) is a critical factor in projecting future ecosystem changes. However, the mechanisms driving this IAVcw are not well understood. We used data on carbon and water fluxes from a multi-year Eddy Covariance study (1997-2009) in a Dutch Scots pine forest and forced a process-based ecosystem model (LPJ-GUESS) with local data to, firstly, test whether the model can explain IAVcw and seasonal carbon and water exchange from direct environmental factors only. Initial model runs showed low correlations with estimated annual gross primary productivity (GPP) and annual actual evapotranspiration (AET), while monthly and daily fluxes showed high correlations. The model underestimated GPP and AET during winter and drought events. Secondly, we adapted the temperature inhibition function of photosynthesis to account for the observation that at this particular site, trees continue to assimilate at very low atmospheric temperatures (up to daily averages of -10 °C), resulting in a net carbon sink in winter. While we were able to improve daily and monthly simulations during winter by lowering the modelled minimum temperature threshold for photosynthesis, this did not increase explained IAVcw at the site. Thirdly, we implemented three alternative hypotheses concerning water uptake by plants in order to test which one best corresponds with the data. In particular, we analyse the effects during the 2003 heatwave. These simulations revealed a strong sensitivity of the modelled fluxes during dry and warm conditions, but no single formulation was consistently superior in reproducing the data for all time scales and the overall model-data match for IAVcw could not be improved. Most probably access to deep soil water leads to higher AET and GPP simulated during the heat wave of 2003. We conclude that photosynthesis at lower temperatures than assumed in most models can be important for winter carbon and water fluxes in pine forests. Furthermore, details of the model representations of water uptake, which are often overlooked, need further attention, and deep water access should be treated explicitly.
Modelling short-term variability in carbon and water exchange in a temperate Scots pine forest
NASA Astrophysics Data System (ADS)
Vermeulen, M. H.; Kruijt, B. J.; Hickler, T.; Kabat, P.
2015-07-01
The vegetation-atmosphere carbon and water exchange at one particular site can strongly vary from year to year, and understanding this interannual variability in carbon and water exchange (IAVcw) is a critical factor in projecting future ecosystem changes. However, the mechanisms driving this IAVcw are not well understood. We used data on carbon and water fluxes from a multi-year eddy covariance study (1997-2009) in a Dutch Scots pine forest and forced a process-based ecosystem model (Lund-Potsdam-Jena General Ecosystem Simulator; LPJ-GUESS) with local data to, firstly, test whether the model can explain IAVcw and seasonal carbon and water exchange from direct environmental factors only. Initial model runs showed low correlations with estimated annual gross primary productivity (GPP) and annual actual evapotranspiration (AET), while monthly and daily fluxes showed high correlations. The model underestimated GPP and AET during winter and drought events. Secondly, we adapted the temperature inhibition function of photosynthesis to account for the observation that at this particular site, trees continue to assimilate at very low atmospheric temperatures (up to daily averages of -10 °C), resulting in a net carbon sink in winter. While we were able to improve daily and monthly simulations during winter by lowering the modelled minimum temperature threshold for photosynthesis, this did not increase explained IAVcw at the site. Thirdly, we implemented three alternative hypotheses concerning water uptake by plants in order to test which one best corresponds with the data. In particular, we analyse the effects during the 2003 heatwave. These simulations revealed a strong sensitivity of the modelled fluxes during dry and warm conditions, but no single formulation was consistently superior in reproducing the data for all timescales and the overall model-data match for IAVcw could not be improved. Most probably access to deep soil water leads to higher AET and GPP simulated during the heatwave of 2003. We conclude that photosynthesis at lower temperatures than assumed in most models can be important for winter carbon and water fluxes in pine forests. Furthermore, details of the model representations of water uptake, which are often overlooked, need further attention, and deep water access should be treated explicitly.
Swancar, Amy; Lee, T.M.; O'Hare, T. M.
2000-01-01
Lake Starr, a 134-acre seepage lake of multiple-sinkhole origin on the Lake Wales Ridge of central Florida, was the subject of a detailed water-budget study from August 1996 through July 1998. The study monitored the effects of hydrogeologic setting, climate, and ground-water pumping on the water budget and lake stage. The hydrogeologic setting of the Lake Starr basin differs markedly on the two sides of the lake. Ground water from the surficial aquifer system flows into the lake from the northwest side of the basin, and lake water leaks out to the surficial aquifer system on the southeast side of the basin. Lake Starr and the surrounding surficial aquifer system recharge the underlying Upper Floridan aquifer. The rate of recharge to the Upper Floridan aquifer is determined by the integrity of the intermediate confining unit and by the downward head gradient between the two aquifers. On the inflow side of the lake, the intermediate confining unit is more continuous, allowing ground water from the surficial aquifer system to flow laterally into the lake. Beneath the lake and on the southeast side of the basin, breaches in the intermediate confining unit enhance downward flow to the Upper Floridan aquifer, so that water flows both downward and laterally away from the lake through the ground-water flow system in these areas. An accurate water budget, including evaporation measured by the energy-budget method, was used to calculate net ground-water flow to the lake, and to do a preliminary analysis of the relation of net ground-water fluxes to other variables. Water budgets constructed over different timeframes provided insight on processes that affect ground-water interactions with Lake Starr. Weekly estimates of net ground-water flow provided evidence for the occurrence of transient inflows from the nearshore basin, as well as the short-term effects of head in the Upper Floridan aquifer on ground-water exchange with the lake. Monthly water budgets showed the effects of wet and dry seasons, and provided evidence for ground-water inflow generated from the upper basin. Annual water budgets showed how differences in timing of rainfall and pumping stresses affected lake stage and lake ground-water interactions. Lake evaporation measurements made during the study suggest that, on average, annual lake evaporation exceeds annual precipitation in the basin. Rainfall was close to the long-term average of 51.99 inches per year for the 2 years of the study (50.68 and 54.04 inches, respectively). Lake evaporation was 57.08 and 55.88 inches per year for the same 2 years, making net precipitation (rainfall minus evaporation) negative during both years. If net precipitation to seepage lakes in this area is negative over the long-term, then the ability to generate net ground-water inflow from the surrounding basin plays an important role in sustaining lake levels. Evaporation exceeded rainfall by a similar amount for both years of the study, but net ground-water flow differed substantially between the 2 years. The basin contributed net ground-water inflow to the lake in both years, however, net ground-water inflow was not sufficient to make up for the negative net precipitation during the first year, and the lake fell 4.9 inches. During the second year, net ground-water inflow exceeded the difference between evaporation and rainfall and the lake rose by 12.7 inches. The additional net ground-water inflow in the second year was due to both an increase in the amount of gross ground-water inflow and a decrease in lake leakage (ground-water outflow). Ground-water inflow was greater during the second year because more rain fell during the winter, when evaporative losses were low, resulting in greater ground-water recharge. However, decreased lake leakage during this year was probably at least as important as increased ground-water inflow in explaining the difference in net ground-water flow to the lake between the 2 years. Estimates of lake leakage
Winter Refuge for Aedes aegypti and Ae. albopictus Mosquitoes in Hanoi during Winter
Tsunoda, Takashi; Cuong, Tran Chi; Dong, Tran Duc; Yen, Nguyen Thi; Le, Nguyen Hoang; Phong, Tran Vu; Minakawa, Noboru
2014-01-01
Dengue occurs throughout the year in Hanoi, Vietnam, despite winter low temperatures <10°C. During July 2010 to March 2012, we surveyed monthly for Aedes larvae and pupae in 120 houses in 8 Hanoi districts. Aedes albopictus preferred discarded containers in summer and pupal density drastically decreased in winter. Aedes aegypti preferred concrete tanks and this preference increased in winter. Even in winter, the lowest water temperature found in concrete tanks was >14°C, exceeding the developmental zero point of Ae. aegypti. Although jars, drums and concrete tanks were the dominant containers previously (1994–97) in Hanoi, currently the percentage of residences with concrete tanks was still high while jars and drums were quite low. Our study showed that concrete tanks with broken lids allowing mosquitoes access were important winter refuge for Ae. aegypti. We also indicate a concern about concrete tanks serving as foci for Ae. aegypti to expand their distribution in cooler regions. PMID:24752230
Modeling temperature inversion in southeastern Yellow Sea during winter 2016
NASA Astrophysics Data System (ADS)
Pang, Ig-Chan; Moon, Jae-Hong; Lee, Joon-Ho; Hong, Ji-Seok; Pang, Sung-Jun
2017-05-01
A significant temperature inversion with temperature differences larger than 3°C was observed in the southeastern Yellow Sea (YS) during February 2016. By analyzing in situ hydrographic profiles and results from a regional ocean model for the YS, this study examines the spatiotemporal evolution of the temperature inversion and its connection with wind-induced currents in winter. Observations reveal that in winter, when the northwesterly wind prevails over the YS, the temperature inversion occurs largely at the frontal zone southwest of Korea where warm/saline water of a Kuroshio origin meets cold/fresh coastal water. Our model successfully captures the temperature inversion observed in the winter of 2016 and suggests a close relation between northwesterly wind bursts and the occurrence of the large inversion. In this respect, the strong northwesterly wind drove cold coastal water southward in the upper layer via Ekman transport, which pushed the water mass southward and increased the sea level slope in the frontal zone in southeastern YS. The intensified sea level slope propagated northward away from the frontal zone as a shelf wave, causing a northward upwind flow response along the YS trough in the lower layer, thereby resulting in the large temperature inversion. Diagnostic analysis of the momentum balance shows that the westward pressure gradient, which developed with shelf wave propagation along the YS trough, was balanced with the Coriolis force in accordance with the northward upwind current in and around the inversion area.
Purdy, Charles W; Straus, David C; Clark, R Nolan
2004-01-01
To compare Salmonella isolates cultured from feedyard and nonfeedyard (control) playas (ie, temporary shallow lakes) of the Southern High Plains. Water and muck (sediment) samples were obtained from 7 feedyard playas and 3 nonfeedyard playas in the winter and summer. Each water and muck sample was enriched with sulfur-brilliant-green broth and incubated in a shaker at 37 degrees C for 24 hours. A sample (100 mL) of the incubated bacterial-enriched broth was then mixed with 100 mL of fresh sulfur-brilliant-green enrichment broth and incubated in a shaker at 37 degrees C for 24 hours. After the second incubation, a swab sample was streaked on differential media. Suspect Salmonella isolates were further identified by use of biochemical tests, and Salmonella isolates were confirmed and serovar determinations made. Salmonella isolates were not recovered from the 3 control playas. Seven Salmonella enterica serovars were isolated from 5 of 7 feedyard playas in the summer, and 13 S. enterica serovars were isolated from 7 of 7 feedyard playas in the winter. In the summer, 296 isolates were cultured, and 47 were Salmonella organisms. In the winter, 288 isolates were cultured, and 171 were Salmonella organisms. Results indicated that feedyard playas are frequently contaminated with many Salmonella serovars. These pathogens should be considered whenever feedyard managers contemplate the use of water from these playas. Water from feedyard playas should not be used to cool cattle in the summer or for dust abatement.
Notes on winter feeding behavior and molt in Wilson's phalaropes
Burger, J.; Howe, M.
1975-01-01
Wilson's Phalaropes, Steganopus tricolor, migrate in late summer from the prairie regions of North America to their wintering grounds in the highlands of Peru and the inland and coastal waters of Chile, Bolivia, Paraguay, Uruguay, and Argentina (Holmes 1939, Meyer de Schauensee 1970). Reports on these birds from their wintering habitat are few. This paper describes numbers, feeding behavior, and molt of Wilson's Phalaropes wintering in a freshwater marsh in central Argentina. Fieldwork in Argentina was conducted by the senior author. The junior author analyzed molt patterns of birds collected there and added data he collected in North Dakota in 1968 and 1969.
Carbon dioxide and water vapor fluxes of winter wheat and tallgrass prairie ecosystems
USDA-ARS?s Scientific Manuscript database
Winter wheat (Triticum aestivum L.) and tallgrass prairie are common land cover types in the Southern Plains of the United States. In recent years, agricultural expansion into native grasslands has been extensive, particularly either managed pasture or dryland crops such as wheat. In this study, we ...
Braaten, P.J.; Guy, C.S.
2004-01-01
We compared first-year growth and relative condition (Kn) of the 1997 and 1998 year-classes of freshwater drum Aplodinotus grunniens among three sites in a 235-km reach of the channelized Missouri River and tested for the occurrence of size-selective overwinter mortality during the first winter. Prewinter mean length was 15 mm greater, mean weight was 8 g greater, and mean Kn was 5% greater at the upstream site than at the downstream site. The prewinter mean length of age-0 freshwater drum was significantly greater in 1997 (115 mm) than in 1998 (109 mm), but Kn was significantly greater in 1998 (107) than in 1997 (102). There was no evidence that density-dependent interactions influenced prewinter growth and Kn. Size-selective overwinter mortality of the smallest size-classes of freshwater drum occurred at two of three sites during the 1997-1998 winter, and K n decreased 9-15%. Size-selective overwinter mortality of the 1998 cohort of freshwater drum did not occur during the 1998-1999 winter, and K n declined 0-10%. A prolonged growing season (through early December 1998), in conjunction with less severe winter water temperature conditions, apparently minimized the incidence of size-selective overwinter mortality for the 1998 cohort of freshwater drum. We conclude that size-selective overwinter mortality of age-0 freshwater drum occurs in the lower channelized Missouri River but depends on the length of the prewinter growing season, winter duration, and the severity of winter water temperatures.
Krimmel, Robert M.
2002-01-01
Winter snow accumulation and summer snow, firn, and ice melt were measured at South Cascade Glacier, Washington, to determine the winter and net balances for the 2000 and 2001 balance years. In 2000, the winter balance, averaged over the glacier, was 3.32 meters, and the net balance was 0.38 meters. The winter balance was the ninth highest since the record began in 1959. The net balance was greater than 33 of the 41 years since 1959. In 2001, the winter balance was 1.90 meters, and net balance was -1.57 meters. The winter balance was lower than all but 4 years since 1959, and the net balance was more negative than all but 5 other years. Runoff was measured from the glacier basin and an adjacent non-glacierized basin. Air temperature, precipitation, humidity, wind speed and solar radiation were measured nearby. Ice displacements were measured for the 1998-2001 period.
NASA Astrophysics Data System (ADS)
Muelbert, José H.; Acha, Marcelo; Mianzan, Hermes; Guerrero, Raúl; Reta, Raúl; Braga, Elisabete S.; Garcia, Virginia M. T.; Berasategui, Alejandro; Gomez-Erache, Mónica; Ramírez, Fernando
2008-07-01
The physical aspects of the Subtropical Shelf Front (STSF) for the Southwest Atlantic Continental Shelf were previously described. However, only scarce data on the biology of the front is available in the literature. The main goal of this paper is to describe the physical, chemical and biological properties of the STSF found in winter 2003 and summer 2004. A cross-section was established at the historically determined location of the STSF. Nine stations were sampled in winter and seven in summer. Each section included a series of conductivity-temperature-depth (CTD) stations where water samples from selected depths were filtered for nutrient determination. Surface samples were taken for chlorophyll a (Chl- a) determination and plankton net tows carried out above and below the pycnocline. Results revealed that winter was marked by an inner-shelf salinity front and that the STSF was located on the mid-shelf. The low salinity waters in the inner-shelf indicated a strong influence of freshwater, with high silicate (72 μM), suspended matter (45 mg l -1), phosphate (2.70 μM) and low nitrate (1.0 μM) levels. Total dissolved nitrogen was relatively high (22.98 μM), probably due to the elevated levels of organic compound contribution close to the continental margin. Surface Chl -a concentration decreased from coastal well-mixed waters, where values up to 8.0 mg m -3 were registered, to offshore waters. Towards the open ocean, high subsurface nutrients values were observed, probably associated to South Atlantic Central Waters (SACW). Zooplankton and ichthyoplankton abundance followed the same trend; three different groups associated to the inner-, mid- and outer-shelf region were identified. During summer, diluted waters extended over the shelf to join the STSF in the upper layer; the concentration of inorganic nutrients decreased in shallow waters; however, high values were observed between 40 and 60 m and in deep offshore waters. Surface Chl -a ranged 0.07-1.5 mg m -3; winter levels were higher. Three groups of zoo and ichthyoplankton, separated by the STSF, were also identified. Results of the study performed suggest that the influence of freshwater was stronger during winter and that abundance distribution of Chl -a, copepods and ichthyoplankton was related to the Plata Plume Waters (PPW), rather than to the presence of the STSF. During summer, when the presence of freshwater decreases, plankton interactions seem to take place in the STSF.
Decline of the marine ecosystem caused by a reduction in the Atlantic overturning circulation.
Schmittner, Andreas
2005-03-31
Reorganizations of the Atlantic meridional overturning circulation were associated with large and abrupt climatic changes in the North Atlantic region during the last glacial period. Projections with climate models suggest that similar reorganizations may also occur in response to anthropogenic global warming. Here I use ensemble simulations with a coupled climate-ecosystem model of intermediate complexity to investigate the possible consequences of such disturbances to the marine ecosystem. In the simulations, a disruption of the Atlantic meridional overturning circulation leads to a collapse of the North Atlantic plankton stocks to less than half of their initial biomass, owing to rapid shoaling of winter mixed layers and their associated separation from the deep ocean nutrient reservoir. Globally integrated export production declines by more than 20 per cent owing to reduced upwelling of nutrient-rich deep water and gradual depletion of upper ocean nutrient concentrations. These model results are consistent with the available high-resolution palaeorecord, and suggest that global ocean productivity is sensitive to changes in the Atlantic meridional overturning circulation.
Impact of sulfur dioxide oxidation by Stabilized Criegee Intermediate on sulfate
We revise the Carbon Bond chemical mechanism to explicitly represent three Stabilized Criegee Intermediates (SCIs) and their subsequent reactions with sulfur dioxide, water monomer, and water dimer, and incorporate the reactions into the Community Multiscale Air Quality model. Th...
Studies of ice sheet hydrology using SAR
NASA Technical Reports Server (NTRS)
Bindschadler, R. A.; Vornberger, P. L.
1989-01-01
Analysis of SAR data of the Greenland ice sheet in summer and winter suggest the use of SAR to monitor the temporal hydrology of ice sheets. Comparisons of each SAR data set with summer Landsat TM imagery show an areal-positive correlation with summer SAR data and a negative correlation with winter SAR data. It is proposed that the summer SAR data are most sensitive to the variable concentrations of free water in the surface snow and that the winter SAR data indicate variations in snow grain size.
Ericsson; DuPont; Mathewson
1995-03-01
Background: A previous study suggested that U.S. students who lived in Mexico for 1 year had a risk of diarrhea intermediate between the rate for newly arrived U.S. students and Mexican students; however, the study was not controlled for changes of risky behavior over time. Methods: An analysis of acute diarrhea occurring among U.S. and Mexican student groups living in Guadalajara, Mexico was conducted to explore the association of diarrhea developing during selected 28-day periods with length of residence, season, and risk factors such as locations of food consumption, consumption of tap water, unsafe ice, alcohol, and antibiotics. Results: Compared to U.S. and Mexican student groups, newly arrived U.S. college students in July had the highest rate of diarrhea (55%), highest enteropathogen isolation rate (46%), and most consumption of alcohol and antibiotics; they also ate most frequently at restaurants and in Mexican family homes. Compared to a 34% rate of diarrhea among newly arrived U.S. medical students in August, the rate was only 6% among established medical students in January. This drop in attack rate was attended by less tap water and unsafe ice consumption by established students in January compared to the habits of newly arrived students in January or August when risky behavior was otherwise similar among these groups. The role of tap water and unsafe ice in the acquisition of wintertime diarrhea is further supported by the relatively high 29% rate of diarrhea among U.S. medical students newly arrived in January, who also consumed more tap water and ice than established students in January. Enterotoxigenic E. coli disease was observed only during the summer months; whereas, Campylobacter jejuni disease and disease associated with no detected pathogen were more common in winter. Conclusions: These data imply that wintertime diarrhea in Guadalajara is more likely than summertime diarrhea to be waterborne and to be caused by agents such as viruses or previously unrecognized enteropathogens that were not assessed in this study. Among Mexican students who had the highest frequency of tap water consumption and eating from vendors, the low rates of diarrhea in summer (3%) and winter (5%) imply that they enjoy a substantial degree of immunity. Further study will be necessary to understand the role that immunity (or its loss during summer vacation back in the United States) might play in additionally accounting for observed differences in attack rates between newly arrived students and those who had lived for a period of time in Mexico. (J Travel Med 2:6-10, 1995)
Soltani, Amin; Gebauer, Denis; Duschek, Lennart; Fischer, Bernd M; Cölfen, Helmut; Koch, Martin
2017-10-12
Crystal formation is a highly debated problem. This report shows that the crystallization of l-(+)-tartaric acid from water follows a non-classical path involving intermediate hydrated states. Analytical ultracentrifugation indicates solution clusters of the initial stages aggregate to form an early intermediate. Terahertz spectroscopy performed during water evaporation highlights a transient increase in the absorption during nucleation; this indicates the recurrence of water molecules that are expelled from the intermediate phase. Besides, a transient resonance at 750 GHz, which can be assigned to a natural vibration of large hydrated aggregates, vanishes after the final crystal has formed. Furthermore, THz data reveal the vibration of nanosized clusters in the dilute solution indicated by analytical ultracentrifugation. Infrared spectroscopy and wide-angle X-ray scattering highlight that the intermediate is not a crystalline hydrate. These results demonstrate that nanoscopic intermediate units assemble to form the first solvent-free crystalline nuclei upon dehydration. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Nucleation via an unstable intermediate phase.
Sear, Richard P
2009-08-21
The pathway for crystallization from dilute vapors and solutions is often observed to take a detour via a liquid or concentrated-solution phase. For example, in moist subzero air, droplets of liquid water form, which then freeze. In this example and in many others, an intermediate phase (here liquid water) is dramatically accelerating the kinetics of a phase transition between two other phases (water vapor and ice). Here we study this phenomenon via exact computer simulations of a simple lattice model. Surprisingly, we find that the rate of nucleation of the new equilibrium phase is actually fastest when the intermediate phase is slightly unstable in the bulk, i.e., has a slightly higher free energy than the phase we start in. Nucleation occurs at a concave part of the surface and microscopic amounts of the intermediate phase can form there even before the phase is stable in the bulk. As the nucleus of the equilibrium phase is microscopic, this allows nucleation to occur effectively in the intermediate phase before it is stable in the bulk.
The role of horizontal exchanges on ventilation of the benthic boundary layer on the Black Sea shelf
NASA Astrophysics Data System (ADS)
Shapiro, Georgy; Wobus, Fred
2010-05-01
The state of the benthic component of the shelf ecosystem is strongly influenced by availability of dissolved oxygen. The chemical structure of the Black Sea waters is largely determined by the location and the strength of the pycnocline. Due to similarity in the mechanisms of vertical exchanges the oxycline and the chemocline occur at the same depth intervals as the halocline and pycnocline (Özsoy and Ünlüata, 1997). As the data for dissolved oxygen on the shelf is relatively sparse we assume that much abundant data on physical parameters (temperature and salinity) can be used as proxy in determining the location of the oxycline and hence the spatial extent of near-bottom waters depleted in oxygen. When the waters of the benthic boundary layers below the pycnocline are ‘locked' i.e. unable to mix vertically with surface then the biological pump and supply of oxygen are suppressed. However, the locked water can, in principle, move ‘horizontally', predominantly along the constant density levels and get ventilated via isopycnal exchanges. The isopycnals in the Black Sea have generally a dome-like structure, so that the isopycnal movements across the shelf break can ventilate bottom shelf waters with water masses from upper parts of the water column in the deep sea. We use the intra- and inter-annual variations in the near-bottom temperature as indicators for variability of physical conditions in the benthic boundary layer on the shelf. The physical reason for this is that interannual variations in the near-bottom temperature are directly related with the volume of cold waters (Ivanov et al., 2000) which are formed on the shelf and then exported into the deep sea, so that variations in temperature may indicate changes in the intensity of horizontal exchanges. In this paper we identified areas on the Black Sea margin where bottom waters can not be mixed vertically (‘locked' waters) during the winter months and locations to which the locked waters can move ‘horizontally'. The potential energy approach was used to identify the spatial and temporal variability of the areas and volumes occupied by the locked waters. This approach allows to assess a relative strength of the ability of locked waters to mix vertically with oxygen rich surface waters as compared to ‘horizontal' exchanges with the deep sea along isopycnic surfaces. Analysis of interannual variability of temperature showed that the period 1965-1983 was a warm period when the ‘summer' season ( May to November) temperatures of the benthic waters were higher than the average; to the contrary the period 1983-2001 (i.e. up to end of available data sets) was a cold period. Correlations between various time series of hydrographical and meteorological parameters were calculated to establish the relative importance of vertical versus horizontal exchanges in ventilation of the locked water masses. A low correlation (R=0.24) was obtained between the variation of the winter sea surface temperature on the shelf and the ‘summer' temperatures of locked waters. A higher correlation (R=0.56) was found between the summer temperatures of the Cold Intermediate Waters below the seasonal pycnocline in the deep sea (density range sigma-theta= 14.2-14.8) and the ‘summer' temperatures of the ‘locked' waters in the benthic boundary layer on the shelf. Analysis shows that the isopycnic exchanges with the deep sea are more important for ventilation of the benthic boundary layer on the shelf than winter convection on the shelf itself. This work was made possible via support from EU FP6 SESAME and EU FP7 MyOcean projects and NERC PhD studentship. References Özsoy, E. and Ünlüata, Ü., 1997. Oceanography of the Black Sea: a review of some recent results. Earth-Sci. Rev., 42(4): 231-272. Ivanov, L.I., Belokopytov, V.N., Özsoy, E. and Samodurov, A., 2000. Ventilation of the Black Sea pycnocline on seasonal and interannual time scales. Mediterr. Mar. Sci., 1/2: 61-74.
Joët, Thierry; Ourcival, Jean-Marc; Capelli, Mathilde; Dussert, Stéphane; Morin, Xavier
2016-01-01
Background and Aims Dominant tree species in northern temperate forests, for example oak and beech, produce desiccation-sensitive seeds. Despite the potentially major influence of this functional trait on the regeneration and distribution of species under climate change, little is currently known about the ecological determinants of the persistence of desiccation-sensitive seeds in transient soil seed banks. Knowing which key climatic and microsite factors favour seed survival will help define the regeneration niche for species whose seeds display extreme sensitivity to environmental stress Methods Using the Mediterranean Holm oak (Quercus ilex) forest as a model system, an in situ time-course monitoring of seed water status and viability was performed during the unfavourable winter season in two years with contrasting rainfall, at an instrumented site with detailed climate records. In parallel, the characteristics of the microhabitat and their influence on the post-winter water status and viability of seeds were investigated in a regional survey of 33 woodlands representative of the French distribution of the species. Key Results Time-course monitoring of seed water status in natural conditions confirmed that in situ desiccation is the main abiotic cause of mortality in winter. Critical water contents could be reached in a few days during drought spells. Seed dehydration rates were satisfactorily estimated using integrative climate proxies including vapour pressure deficit and potential evapotranspiration. Seed water status was therefore determined by the balance between water uptake after a rainfall event and water loss during dry periods. Structural equation modelling of microhabitat factors highlighted the major influence of canopy openness and resulting incident radiation on the ground. Conclusions This study provides part of the knowledge required to implement species distribution models which incorporate their regeneration niche. It is an important step forward in evaluating the ecological consequences of increasing winter drought and environmental filtering due to climate change on the regeneration of the most dominant Mediterranean tree species. PMID:26420203
Earth Tidal Controls on Basal Dynamics and Hydrology
NASA Astrophysics Data System (ADS)
Kulessa, B.; Hubbard, B. P.; Brown, G. H.; Becker, J.
2001-12-01
We appraise earth tidal forcing of coupled mechanical and hydrological processes beneath warm-based ice masses, which have to date been poorly documented but represent exciting phenomena that have important implications for future studies of glacier dynamics. Regular cycles in winter and early spring electrical self-potential (SP), water pressure (PW) and electrical conductivity (EC) were recorded at the bases of several boreholes drilled through Haut Glacier d'Arolla, Switzerland. Fourier power spectra of these data reflect the presence of diurnal and semi-diurnal cycles, and comparison with the earth tidal spectrum indicates that at least four components of the latter are visible in the borehole spectra: the luni-solar diurnal, the principal lunar diurnal, the principal solar semi-diurnal, and the principal lunar semi-diurnal. This correspondence suggests that earth tides exert a strong control over water flow at the bed of the glacier, at least during winter and early spring. We envisage a mechanism that involves earth-tide induced deformation of the bedrock and the unconsolidated sediments beneath the glacier, and to a certain extent probably also the overlying ice body. Basal water pockets, including those containing our sensors, located within these media are in turn also likely to be deformed periodically. We believe that PW gradients induced by such deformation may result in transient water flow and SPs in the pockets. Since PW and EC are typically out-of-phase, injection of waters of lower EC into the pockets during times of peak water flow is likely. Several lines of evidence suggest that such injection was caused by melting of the ice wall due to frictional heating, balancing creep closure which sustained some pockets through the winter. Further, the first annually-repeated post-winter reorganization event, termed the May event, may well be triggered by tidally-induced releases of waters from storage. This implies that the May event marks the opening of the subglacial drainage conditions at the start of the summer, and not the Spring event, as commonly assumed to date.
NASA Astrophysics Data System (ADS)
Shibahara, Akihiko; Ohkushi, Ken'ichi; Kennett, James P.; Ikehara, Ken
2007-09-01
A strong oxygen minimum zone (OMZ) currently exists at upper intermediate water depths on the northern Japanese margin, NW Pacific. The OMZ results largely from a combination of high surface water productivity and poor ventilation of upper intermediate waters. We investigated late Quaternary history (last 34 kyr) of ocean floor oxygenation and the OMZ using quantitative changes in benthic foraminiferal assemblages in three sediment cores taken from the continental slope off Shimokita Peninsula and Tokachi, northern Japan, at water depths between 975 and 1363 m. These cores are well located within the present-day OMZ, a region of high surface water productivity, and in close proximity to the source region of North Pacific Intermediate Water. Late Quaternary benthic foraminiferal assemblages experienced major changes in response to changes in dissolved oxygen concentration in ocean floor sediments. Foraminiferal assemblages are interpreted to represent three main groups representing oxic, suboxic, and dysoxic conditions. Assemblage changes in all three cores and hence in bottom water oxygenation coincided with late Quaternary climatic episodes, similar to that known for the southern California margin. These episodes, in turn, are correlated with orbital and millennial climate episodes in the Greenland ice core including the last glacial episode, Bølling-Ållerød (B/A), Younger Dryas, Preboreal (earliest Holocene), early Holocene, and late Holocene. The lowest oxygen conditions, marked by dysoxic taxa and laminated sediments in one core, occurred during the B/A and the Preboreal intervals. Suboxic taxa dominated mainly during the last glacial, the Younger Dryas, and most of the Holocene. Dysoxic conditions during the B/A and Preboreal intervals in this region were possibly caused by high surface water productivity at times of reduced intermediate ventilation in the northwestern Pacific. Remarkable similarities are evident in the late Quaternary sequence of benthic foraminiferal assemblage change between the two very distant continental margins of northern Japan and southern California. The oscillations in OMZ strength, reflected by these faunal changes, were widespread and apparently synchronous over wide areas of the North Pacific, reflecting broad changes in intermediate water ventilation and surface ocean productivity closely linked with late Quaternary climate change on millennial and orbital timescales.
Perry, M.C.; Kidwell, D.M.; Wells-Berlin, A. M.; Lohnes, E.J.R.; Olsen, Glenn H.; Osenton, P.C.
2005-01-01
Satellite radio telemetry was used to determine the movements and habitats of black scoters (Melanitta nigra) and surf scoters (Melanitta perspicillata) in eastern North America. A total of 21 surf scoters were instrumented during five years (2001-05) and 32 black scoters were instrumented during three years (2002-04) with implanted PTT 100 satellite transmitters (39 g) with external antenna. Nesting habitat of black scoters was more open than surf scoters (44% vs. 11%), whereas nesting habitat for surf scoters was located in more forested areas (66% vs. 20%). Locations of black scoters in breeding areas on average were at significantly higher latitude and lower elevations than sites used by surf scoters. Satellite telemetry determined that James Bay was the major molting area for male black and surf scoters, although some males molted along the coast of Labrador-Newfoundland. Black scoters instrumented on the Restigouche River, which is a major staging area, were widely distributed along the Atlantic Coast from Cape Cod to Georgia during winter. Major wintering areas for black scoters were Cape Cod (Martha's Vineyard and Nantucket Island), Long Island, and New Jersey. In these northern marine wintering areas, black scoters were located farther from shore (4.2 km) and in deeper water (8.3 m) than black scoters in more southern estuarine areas, where distance from shore was 3.1 km and water depth was 5.2 m. Surf scoters instrumented in Chesapeake Bay in late winter showed a strong tendency to return to the Bay the following winter after they had migrated to and from breeding areas. In Chesapeake Bay, black scoters and surf scoters were located mostly in mesohaline areas that had similar water depths (5.1 m vs. 7.5 m) and distances from shore (3.0 km vs. 2.9 km). Distance from shore and depth of water increased over time during the winter for both species. Updated information from the ARGOS Systems aboard the NOAA satellites on scoter movements was made accessible on the Patuxent Website.
Seasonal necrophagous insect community assembly during vertebrate carrion decomposition.
Benbow, M E; Lewis, A J; Tomberlin, J K; Pechal, J L
2013-03-01
Necrophagous invertebrates have been documented to be a predominant driver of vertebrate carrion decomposition; however, very little is understood about the assembly of these communities both within and among seasons. The objective of this study was to evaluate the seasonal differences in insect taxa composition, richness, and diversity on carrion over decomposition with the intention that such data will be useful for refining error estimates in forensic entomology. Sus scrofa (L.) carcasses (n = 3-6, depending on season) were placed in a forested habitat near Xenia, OH, during spring, summer, autumn, and winter. Taxon richness varied substantially among seasons but was generally lower (1-2 taxa) during early decomposition and increased (3-8 taxa) through intermediate stages of decomposition. Autumn and winter showed the highest richness during late decomposition. Overall, taxon richness was higher during active decay for all seasons. While invertebrate community composition was generally consistent among seasons, the relative abundance of five taxa significantly differed across seasons, demonstrating different source communities for colonization depending on the time of year. There were significantly distinct necrophagous insect communities for each stage of decomposition, and between summer and autumn and summer and winter, but the communities were similar between autumn and winter. Calliphoridae represented significant indicator taxa for summer and autumn but replaced by Coleoptera during winter. Here we demonstrated substantial variability in necrophagous communities and assembly on carrion over decomposition and among seasons. Recognizing this variation has important consequences for forensic entomology and future efforts to provide error rates for estimates of the postmortem interval using arthropod succession data as evidence during criminal investigations.
Hoenicka, Hans; Nowitzki, Olaf; Hanelt, Dieter; Fladung, Matthias
2008-04-01
MADS-box genes have been shown to be important to flower and vegetative tissue development, senescence and winter dormancy in many plant species. Heterologous overexpression of known MADS-box genes has also been used for unravelling gene regulation mechanisms in forest tree species. The constitutive expression of the BpMADS4 gene from birch in poplar, known to induce early flowering in birch and apple, induced broad changes in senescence and winter dormancy but no early flowering. Other analyses revealed that 35S::BpMADS4 poplars maintained photosynthetic activity, chlorophyll and proteins in leaves under winter conditions. BpMADS4 may be influencing transcription factors regulating the senescence and dormancy process due to homology with poplar proteins related to both traits. Little is known of the regulatory genes that co-ordinate senescence, dormancy, chlorophyll/protein degradation, and photosynthesis at the molecular level. Dissecting the molecular characteristics of senescence regulation will probably involve the understanding of multiple and novel regulatory pathways. The results presented here open new horizons for the identification of regulatory mechanisms related to dormancy and senescence in poplar and other temperate tree species. They confirm recent reports of common signalling intermediates between flowering time and growth cessation in trees (Böhlenius et al. in Science 312:1040-1043, 2006) and additionally indicate similar connections between flowering time signals and senescence.
Greater effect of increasing shrub height on winter versus summer soil temperature
NASA Astrophysics Data System (ADS)
Paradis, Mélissa; Lévesque, Esther; Boudreau, Stéphane
2016-08-01
Shrub expansion is increasingly observed in arctic and subarctic environments. The development of shrub structure may significantly impact the abiotic environment at the local scale. Our objective was to reconstruct the development of the vertical structure of Betula glandulosa Michx. and to evaluate its effects on winter and summer soil temperature and on snow depth. Stratified sampling of the shrub revealed that shrub biomass distribution followed a similar pattern in stands of contrasting heights. Woody biomass was maximal in the lower stratum and relatively stable in the intermediate strata, while the foliar biomass tracked the vertical development of the shrub structure. Dendrochronological analysis revealed that shrub stands are relatively young; most of the dominant stems started their development after 1990. Shrub height was positively associated with both the dominant stem age and its vertical growth rate. Temperature differences among sites were greater during winter (ca 10 °C) than during summer (ca 2 °C), while the sum of freezing degree-days varied from 680 °C to 2125 °C. Shrub height was the most plausible variable explaining snow depth, winter ground level temperature and the sum of freezing degree-days. However, woody biomass in the 30-40 cm strata best explained summer ground level temperature. Our results suggest that the development of a shrub structure will have far-reaching consequences on the abiotic environment of subarctic ecosystems.
Diverse patterns of stored water use among saplings in seasonally dry tropical forests.
Wolfe, Brett T; Kursar, Thomas A
2015-12-01
Tree species in seasonally dry tropical forests likely vary in their drought-survival mechanisms. Drought-deciduousness, which reduces water loss, and low wood density, which may permit dependence on stored water, are considered key traits. For saplings of six species at two distinct sites, we studied these and two associated traits: the seasonal amount of water released per stem volume ("water released") and the hydraulic capacitance of the stem (C). Two deciduous species with low stem density, Cavanillesia platanifolia and Bursera simaruba, had high C and high dry-season stem water potential (Ψ(stem)), but differed in dry-season water released. C. platanifolia did not use stored water during the dry season whereas B. simaruba, in a drier forest, released stored water. In both, water released was highest while flushing leaves, suggesting that stored water supports leaf flushing. In contrast, two deciduous species with intermediate stem density, Annona hayesii and Genipa americana, had intermediate C, low dry-season Ψ(stem), and high seasonal change in water released. Meanwhile, two evergreen species with intermediate stem density, Cojoba rufescens and Astronium graveolens, had relatively low C, low dry-season Ψ(stem), and intermediate seasonal change in water released. Thus, at least three, distinct stored-water-use strategies were observed. Additionally, bark relative water content (RWC) decreased along with Ψ(stem) during the dry season while xylem RWC did not change, suggesting that bark-stored water buffers Ψ(stem) seasonally. Together these results suggest that seasonal use of stored water and change in Ψ(stem) are associated with functional groups that are characterized by combinations of deciduousness and stem density.
Water demand for ski resort development in the Austrian Alps: an Overview
NASA Astrophysics Data System (ADS)
Breiling, M.; Sokratov, S.
2012-04-01
Austria has the highest national added value from winter tourism in Europe, as well as worldwide. 15.7 million arrivals were counted in Austrian accommodation establishments in the 2010/11 winter season. There were more than 62 million overnight stays and 51.2 million skier-days were consumed. 588 million transports were carried out by more than 3000 lifts (cable cars, chair lifts and T-bars). Including indirect and induced effects, this resulted in more than 10 billion euros in added value being generated. The lack of snow in many Austrian skiing areas during the 2006/2007 winter season demonstrated the extent to which meteorological conditions influence operations. Declines in the number of skiers transported and total skier days were the result. The cable-car operators also had to struggle with little snow in the 2010/2011 winter. The Austrian Cable Car Operators' Association stated that the opening of 70-80% of all skiing areas outside of the peak season could only be assured through the use of snowmaking equipment. The central criterion for winter sports enthusiasts to make a trip is the guarantee that they will find snow at their destination and Austria's cable-car operators invest more than 100 million euros in the erection and improvement of snowmaking complexes every year to satisfy this deand. In the 2010/2011 season, this provided for 17,800 jobs. Cable car operators set up snowmaking equipment to become independent from meteorological conditions and improve the capacity utilisation of their expensive investments in transport systems in the early winter. Austria has a skiing area of around 25,400 hectares - around 17,000 hectares at altitudes between 600m and 3200m are currently suitable for snowmaking. As much as 70% of the snow is produced immediately before the start of the season. This recent trend is responsible that the irrigation pattern of Austrian land use changed significantly in the last decade. Previously maize fields and low lands in summer were the most important irrigated land, now high altitude mountain areas and winter are the largest irrigated areas. We assume the production of 6000 cubic metres of artificial snow per hectare per season. This results in around 100 million cubic metres of artificial snow to cover a slope area of 17,000 hectares that would be produced using 57 million cubic metres of water (incluing losses). In winter, Austrian skiing areas use almost as much water as the capital city of Vienna during the same period. The water demand could again be reduced up to 30% by snow making with help of the dendrite generator, a recent innovation that has not entered the market yet. Water savings also affect the energy requirements where savings of up to 40% are predicted and leads to improved resoure use, greater ecological compatibility and an increase in profitability.
NASA Astrophysics Data System (ADS)
Liu, Y.; Tao, F.; Luo, Y.; Ma, J.
2013-12-01
Appropriate irrigation and nitrogen fertilization, along with suitable crop management strategies, are essential prerequisites for optimum yields in agricultural systems. This research attempts to provide a scientific basis for sustainable agricultural production management for the North China Plain and other semi-arid regions. Based on a series of 72 treatments over 2003-2008, an optimized water and nitrogen scheme for winter wheat/summer maize cropping system was developed. Integrated systems incorporating 120 mm of water with 80 kg N ha-1 N fertilizer were used to simulate winter wheat yields in Hebei and 120 mm of water with 120 kg N ha-1 were used to simulate winter wheat yields in Shandong and Henan provinces in 2000-2007. Similarly, integrated treatments of 40 kg N ha-1 N fertilizer were used to simulate summer maize yields in Hebei, and 80 kg N ha-1 was used to simulate summer maize yields in Shandong and Henan provinces in 2000-2007. Under the optimized scheme, 341.74 107 mm ha-1 of water and 575.79 104 Mg of urea fertilizer could be saved per year under the wheat/maize rotation system. Despite slight drops in the yields of wheat and maize in some areas, water and fertilizer saving has tremendous long-term eco-environmental benefits.
Stable isotopic variations of water vapor on the winter coastal area in Korea
NASA Astrophysics Data System (ADS)
Lee, Jeonghoon; Lee, Songyi; Han, Yeongcheol; Do Hur, Soon
2017-04-01
Studies of isotopic compositions of precipitation in Korea have been conducted for groundwater mixing and sources and residence time of water. Unravelling of water vapor isotopes will be very helpful in explaining the sources of moisture. In this work, we first present isotopic compositions of water vapor over western part of Korea in winter between December 2015 and February 2016. We collected the samples of water vapor isotopes by a cryogenic method with impingers and liquid nitrogen. We captured the water vapor for 4 to 6 hours, depending on humidity and collected 54 samples in total. The samples were analyzed by a Picarro L2130-i and the precisions were 0.06‰ and 0.7‰ for oxygen and hydrogen, respectively. The isotopic compositions of water vapor ranged from -34.04‰ to -15.27‰ for oxygen and from -221.9‰ to -100.2‰ for hydrogen. The deuterium excess (d=δD-8*δ18O) was between 17.4 and 44.0 in permil. Both air temperature (T, δ18O=0.57*T-25.5, R2=0.46) and relative humidity (RH, δ18O=0.18*RH-35.9, R2=0.38) were positively correlated with the water vapor isotopes. This is not consistent with the fact that precipitation isotopes are correlated with only temperate in winter Eastern Asia. We expect that the water vapor isotopes will be an important role to understand the origin and pathway of moistures over the Eastern Asia.
Emerson, Douglas G.
1994-01-01
A model that simulates heat and water transfer in soils during freezing and thawing periods was developed and incorporated into the U.S. Geological Survey's Precipitation-Runoff Modeling System. The model's transfer of heat is based on an equation developed from Fourier's equation for heat flux. The model's transfer of water within the soil profile is based on the concept of capillary forces. Field capacity and infiltration rate can vary throughout the freezing and thawing period, depending on soil conditions and rate and timing of snowmelt. The model can be used to determine the effects of seasonally frozen soils on ground-water recharge and surface-water runoff. Data collected for two winters, 1985-86 and 1986-87, on three runoff plots were used to calibrate and verify the model. The winter of 1985-86 was colder than normal, and snow cover was continuous throughout the winter. The winter of 1986-87 was warmer than normal, and snow accumulated for only short periods of several days. as the criteria for determining the degree of agreement between simulated and measured data. The model was calibrated using the 1985-86 data for plot 2. The calibration simulation agreed closely with the measured data. The verification simulations for plots 1 and 3 using the 1985-86 data and for plots 1 and 2 using the 1986-87 data agreed closely with the measured data. The verification simulation for plot 3 using the 1986-87 data did not agree closely. The recalibration simulations for plots 1 and 3 using the 1985-86 data indicated little improvement because the verification simulations for plots 1 and 3 already agreed closely with the measured data.
Emerson, Douglas G.
1991-01-01
A model that simulates heat and water transfer in soils during freezing and thawing periods was developed and incorporated into the U.S. Geological Survey's Precipitation-Runoff Modeling System. The transfer of heat 1s based on an equation developed from Fourier's equation for heat flux. Field capacity and infiltration rate can vary throughout the freezing and thawing period, depending on soil conditions and rate and timing of snowmelt. The transfer of water within the soil profile is based on the concept of capillary forces. The model can be used to determine the effects of seasonally frozen soils on ground-water recharge and surface-water runoff. Data collected for two winters, 1985-86 and 1986-87, on three runoff plots were used to calibrate and verify the model. The winter of 1985-86 was colder than normal and snow cover was continuous throughout the winter. The winter of 1986-87 was wanner than normal and snow accumulated for only short periods of several days.Runoff, snowmelt, and frost depths were used as the criteria for determining the degree of agreement between simulated and measured data. The model was calibrated using the 1985-86 data for plot 2. The calibration simulation agreed closely with the measured data. The verification simulations for plots 1 and 3 using the 1985-86 data and for plots 1 and 2 using the 1986-87 data agreed closely with the measured data. The verification simulation for plot 3 using the 1986-87 data did not agree closely. The recalibratlon simulations for plots 1 and 3 using the 1985-86 data Indicated small improvement because the verification simulations for plots 1 and 3 already agreed closely with the measured data.
Prolonged Soil Frost Affects Hydraulics and Phenology of Apple Trees
Beikircher, Barbara; Mittmann, Claudia; Mayr, Stefan
2016-01-01
Restoration of an adequate water supply in spring is a prerequisite for survival of angiosperm trees in temperate regions. Trees must re-establish access to soil water and recover xylem functionality. We thus hypothesized that prolonged soil frost impairs recovery and affects hydraulics and phenology of Malus domestica var. ‘Golden Delicious.’ To test this hypothesis, over two consecutive winters the soil around some trees was insulated to prolong soil frosting, From mid-winter to early summer, the level of native embolism, the water and starch contents of wood, bark and buds were quantified at regular intervals and findings correlated with various phenological parameters, xylogenesis and fine root growth. The findings confirm that prolonged soil frost affects tree hydraulics and phenology but the severity of the effect depends on the climatic conditions. In both study years, percentage loss of hydraulic conductivity (PLC) decreased from about 70% at the end of winter to about 10% in May. Thereby, xylem refilling strongly coincided with a decrease of starch in wood and bark. Also treated trees were able to restore their hydraulic system by May but, in the warm spring of 2012, xylem refilling, the increases in water content and starch depolymerization were delayed. In contrast, in the cold spring of 2013 only small differences between control and treated trees were observed. Prolongation of soil frost also led to a delay in phenology, xylogenesis, and fine root growth. We conclude that reduced water uptake from frozen or cold soils impairs refilling and thus negatively impacts tree hydraulics and growth of apple trees in spring. Under unfavorable circumstances, this may cause severe winter damage or even dieback. PMID:27379146
Prolonged Soil Frost Affects Hydraulics and Phenology of Apple Trees.
Beikircher, Barbara; Mittmann, Claudia; Mayr, Stefan
2016-01-01
Restoration of an adequate water supply in spring is a prerequisite for survival of angiosperm trees in temperate regions. Trees must re-establish access to soil water and recover xylem functionality. We thus hypothesized that prolonged soil frost impairs recovery and affects hydraulics and phenology of Malus domestica var. 'Golden Delicious.' To test this hypothesis, over two consecutive winters the soil around some trees was insulated to prolong soil frosting, From mid-winter to early summer, the level of native embolism, the water and starch contents of wood, bark and buds were quantified at regular intervals and findings correlated with various phenological parameters, xylogenesis and fine root growth. The findings confirm that prolonged soil frost affects tree hydraulics and phenology but the severity of the effect depends on the climatic conditions. In both study years, percentage loss of hydraulic conductivity (PLC) decreased from about 70% at the end of winter to about 10% in May. Thereby, xylem refilling strongly coincided with a decrease of starch in wood and bark. Also treated trees were able to restore their hydraulic system by May but, in the warm spring of 2012, xylem refilling, the increases in water content and starch depolymerization were delayed. In contrast, in the cold spring of 2013 only small differences between control and treated trees were observed. Prolongation of soil frost also led to a delay in phenology, xylogenesis, and fine root growth. We conclude that reduced water uptake from frozen or cold soils impairs refilling and thus negatively impacts tree hydraulics and growth of apple trees in spring. Under unfavorable circumstances, this may cause severe winter damage or even dieback.
NASA Astrophysics Data System (ADS)
Kubiszyn, A. M.; Wiktor, J. M.; Wiktor, J. M.; Griffiths, C.; Kristiansen, S.; Gabrielsen, T. M.
2017-05-01
We investigated the size and trophic structure of the annual planktonic protist community structure in the ice-free Adventfjorden in relation to environmental factors. Our high-resolution (weekly to monthly) study was conducted in 2012, when warm Atlantic water was advected into the fjord in winter and summer. We observed a distinct seasonality in the protist communities. The winter protist community was characterised by extremely low levels of protist abundance and biomass (primarily Dinophyceae, Ciliophora and Bacillariophyceae) in a homogenous water column. In the second half of April, the total protist abundance and biomass rapidly increased, thus initiating the spring bloom in a still well-mixed water column. The spring bloom was initially dominated by the prymnesiophyte Phaeocystis pouchetii and Bacillariophyceae (primarily from the genera Thalassiosira, Fragilariopsis and Chaetoceros) and was later strictly dominated by Phaeocystis colonies. When the bloom terminated in mid-June, the community shifted towards flagellates (Dinophyceae, Ciliophora, Cryptophyceae and nanoflagellates 3-7 μm in size) in a stratified, nutrient-depleted water column. Decreases in the light intensity decreased the protist abundance and biomass, and the fall community (Dinophyceae, Cryptophyceae and Bacillariophyceae) was followed by the winter community.
Hodgkins, Glenn A.; Dudley, Robert W.; Schalk, Luther F.
2012-01-01
A period of much below normal streamflow in southern New England during April 2012 raised concerns that a long-term period of drought could evolve through late spring and summer, leading to potential water availability issues. To understand better the relations between winter climatic variables and April streamflows, April streamflows from 31 streamflow gages in New England that drain relatively natural watersheds were tested for year-to-year correlation with winter precipitation and air temperature from nearby meteorological sites. Higher winter (December through March) precipitation is associated with higher April streamflows at many gages in northern and central New England. This implies that snowpack accumulation is an important mechanism for winter water storage and subsequently important for spring streamflows in this area. Higher March air temperatures are associated with lower April streamflows at many gages in central and southern New England, likely because the majority of snowmelt runoff occurs before April in warm years. A warm March 2012 contributed to early snowmelt runoff in New England and to much below normal April streamflows in southern New England. However, no strong relation was found between historical April streamflows and late-spring or summer streamflows in New England. The lack of a strong relation implies that summer precipitation, rather than spring conditions, controls summer streamflows.
NASA Astrophysics Data System (ADS)
Gaughan, D. J.; Fletcher, W. J.
1997-07-01
Plankton samples were collected using 500-μm nets in the surface waters (up to a depth of 70 m) of the continental shelf in three regions (Albany, Bremer Bay and Esperance) off southern Western Australia in July 1992 (winter) and January 1993 (summer). The carnivorous zooplankton of these samples were characterized by low species richness and high variability in abundance. Abundances of most of the major taxa collected differed significantly between seasons and many also differed between regions. Siphonophores and chaetognaths dominated the carnivorous plankton, with lower abundances of hydromedusae and raptorial copepods. The most abundant siphonophores were Chelophyes appendiculataand Eudoxoides spiralisin summer and winter, respectively. The most abundant chaetognaths were Sagitta minimain summer, with Pterosagitta dracoand Sagitta enflatadominant during winter. Overall, the numbers of species of both siphonophores and chaetognaths were highest during winter. At this time, there was also a trend for decreasing numbers of species in an easterly direction between Albany and Esperance, which was probably due to the presence of subtropical species entrained within the warm Leeuwin Current, which was flowing east along the continental shelf during winter. During summer, when the current was not present in this region, there was an even spread of fewer species along the coast.
NASA Astrophysics Data System (ADS)
Gaughan, D. J.; Fletcher, W. J.
1997-07-01
Plankton samples were collected using 500-μm nets in the surface waters (up to a depth of 70 m) of the continental shelf in three regions (Albany, Bremer Bay and Esperance) off southern Western Australia in July 1992 (winter) and January 1993 (summer). The carnivorous zooplankton of these samples were characterized by low species richness and high variability in abundance. Abundances of most of the major taxa collected differed significantly between seasons and many also differed between regions. Siphonophores and chaetognaths dominated the carnivorous plankton, with lower abundances of hydromedusae and raptorial copepods. The most abundant siphonophores wereChelophyes appendiculataandEudoxoides spiralisin summer and winter, respectively. The most abundant chaetognaths wereSagitta minimain summer, withPterosagitta dracoandSagitta enflatadominant during winter. Overall, the numbers of species of both siphonophores and chaetognaths were highest during winter. At this time, there was also a trend for decreasing numbers of species in an easterly direction between Albany and Esperance, which was probably due to the presence of subtropical species entrained within the warm Leeuwin Current, which was flowing east along the continental shelf during winter. During summer, when the current was not present in this region, there was an even spread of fewer species along the coast.
Ceseviciene, Jurgita; Slepetiene, Alvyra; Leistrumaite, Alge; Ruzgas, Vytautas; Slepetys, Jonas
2012-11-01
The current study aimed to estimate the effects of organic and conventional production systems and four winter wheat (Triticum aestivum L.) bread cultivars on the technological properties of grain, flour, dough and bread, to increase current knowledge regarding the interactions of the technological properties of winter wheat and assess the cultivars for their suitability for organic production systems. All the technological properties winter wheat which were investigated were significantly affected by the agricultural production system and cultivars, and some of them, mostly grain quality parameters, by the harvest year. Grain from organic winter wheat had significantly lower protein and gluten contents, lower sedimentation and flour water absorption values, shorter dough stability time and lower loaf volume, but higher values of starch content and stronger gluten, compared with grain from the conventional wheat. For both production systems significant positive correlations of protein content with gluten content, sedimentation value, dough stability time, loaf volume, farinograph water absorption, and negative with starch content, gluten index were determined. Statistically significant differences between agricultural production systems were found. The cultivars Ada and Alma had better technological properties that make them more suitable for the organic production system, compared to Širvinta 1 and Zentos. Copyright © 2012 Society of Chemical Industry.
Rizvi, Asim; Alam, Md Maroof; Parveen, Saltanat; Saleemuddin, M; Abidi, S M A
2012-04-01
The dramatic and spontaneous exodus of live Clinostomum complanatum progenetic metacercaria from the gill slits of the dying intermediate host, Trichogaster fasciatus is reported. Basic water parameter tests for dissolved oxygen, pH and temperature revealed slightly lower level of dissolved oxygen in tank water used for water change. To the best of our knowledge, it is the first report of a digenean metacercariae, en mass leaving their intermediate host, upon its death in search of an alternative host to support their survival and help in continuing their life cycle.
1999-01-21
KENNEDY SPACE CENTER, FLA. -- A male pintail duck (left) and female pintail (right) look like bookends on a glass-topped table in the winter waters of the Merritt Island National Wildlife Refuge at Kennedy Space Center. The pintails can be found in the marshes, prairie ponds and tundra of Alaska, Greenland and north and western United States; in the winter they range south and east to Central America and the West Indies, sometimes in salt marshes such as the refuge offers. The open water of the refuge provides wintering areas for 23 species of migratory waterfowl, as well as a year-round home for great blue herons, great egrets, wood storks, cormorants, brown pelicans and other species of marsh and shore birds. The 92,000-acre refuge is also habitat for more than 310 species of birds, 25 mammals, 117 fishes and 65 amphibians and reptiles
Replacing fallow with cover crops in a semiarid soil: effects on soil properties
USDA-ARS?s Scientific Manuscript database
Replacement of fallow in crop-fallow systems with cover crops (CCs) may improve soil properties. We assessed whether replacing fallow in no-till winter wheat (Triticum aestivum L.)-fallow with winter and spring CCs for five years reduced wind and water erosion, increased soil organic carbon (SOC), a...
Replacing fallow with cover crops in a semiarid soil:Effects on soil properties
USDA-ARS?s Scientific Manuscript database
Replacement of fallow in crop–fallow systems with cover crops (CCs) may improve soil properties. We assessed whether replacing fallow in no-till winter wheat (Triticum aestivum L.)–fallow with winter and spring CCs for 5 years reduced wind and water erosion, increased soil organic carbon (SOC), and ...
Size-resolved aerosol growth measurements (growth = moist particle diameter/dry particle diameter) and chemical composition monitoring were conducted during a 3 month period in the winter of 1990 at the South Rim of Grand Canyon National Park, AZ as part of the Navajo Generating ...
Soil CO2 response to organic and amino acids
USDA-ARS?s Scientific Manuscript database
Soil samples were obtained from under actively growing Austrian winter peas and from 2 m away in a plot that had no winter peas or other legumes growing in its cover crop mix. Soils were treated with 5 carbon compounds (oxalic, malic, citric, glycine and arginine) including a control (DI water) and...
Distribution and diurnal behavior of Steller's Eiders wintering on the Alaska Peninsula
Laubhan, M.K.; Metzner, K.A.
1999-01-01
We studied the distribution and activities of adult Steller's Eiders (Polysticta stelleri) during winter and spring on a deep-water embayment and a shallow lagoon along the Alaska Peninsula from September 1980 to May 1981. During the remigial molt, eiders were observed on Izembek Lagoon but not on Cold Bay. Following the flightless period, Izembek Lagoon continued to support 63-100% of eiders encountered during surveys. As ice cover on Izembek Lagoon increased, the number of birds decreased on Izembek Lagoon but increased on Cold Bay, suggesting that some eiders disperse to nearshore, deep-water habitats in close proximity to Izembek Lagoon during severe weather. Diurnal activity budgets indicated that the amount of time resting or engaged in aggression and alert activities was similar among locations, seasons, tidal stages, and sexes. In contrast, time spent foraging differed among seasons and locations but did not differ among tidal stages or sexes. Although time spent foraging was similar during winter and spring on Izembek Lagoon, eiders on Cold Bay foraged more during winter compared to spring. Synchronous diving was the dominant foraging strategy.
The behavior of dissolved inorganic selenium in the Changjiang Estuary
NASA Astrophysics Data System (ADS)
Chang, Yan; Zhang, Jing; Qu, Jianguo; Zhang, Guosen; Zhang, Anyu; Zhang, Ruifeng
2016-02-01
To investigate the behavior of inorganic selenium species in the Changjiang Estuary, samples were taken during summer (July 2011) and winter (March 2012). Dissolved inorganic selenium (DISe) concentrations averaged 1.79 nmol/L in summer and 1.24 nmol/L in winter; the average selenite [Se(IV)] to selenate [Se(VI)] ratio [Se(IV)/Se(VI)] was 0.42 in summer and 0.61 in winter. The data show that Se(IV) and Se(VI) concentrations in the estuary behaved strictly conservatively during winter but non-conservatively during summer due to adsorption by suspended particulate matter (SPM) and assimilation by phytoplankton. In addition, the Se concentration distributions in the Changjiang Estuary were controlled by three water masses, each with a specific Se(IV)/Se(VI) ratio "signature": the Changjiang Water input, the Taiwan Warm Current, and the Yellow Sea Coastal Current. The Se(IV) concentrations were related to the nitrate, silicate, and phosphate concentrations in the estuary. The DISe and Se(IV) concentrations were comparable to those found in other coastal regions and estuaries, which were considered to be natural levels.
Fall rice straw management and winter flooding treatment effects on a subsequent soybean crop
Anders, M.M.; Windham, T.E.; McNew, R.W.; Reinecke, K.J.
2005-01-01
The effects of fall rice (Oryza sativa L.) straw management and winter flooding on the yield and profitability of subsequent irrigated and dryland soybean [Glycine max (L.) Merr.] crops were studied for 3 years. Rice straw treatments consisted of disking, rolling, or standing stubble. Winter flooding treatments consisted of maintaining a minimum water depth of 10 cm by pumping water when necessary, impounding available rainfall, and draining fields to prevent flooding. The following soybean crop was managed as a conventional-tillage system or no-till system. Tillage system treatments were further divided into irrigated or dryland. Results indicated that there were no significant effects from either fall rice straw management or winter flooding treatments on soybean seed yields. Soybean seed yields for, the conventional tillage system were significantly greater than those for the no-till system for the first 2 yrs and not different in the third year. Irrigated soybean seed yields were significantly greater than those from dryland plots for all years. Net economic returns averaged over the 3 yrs were greatest ($390.00 ha-1) from the irrigated no-till system.
A merganser swims in the waters of KSC
NASA Technical Reports Server (NTRS)
1999-01-01
A female red-breasted merganser swims low in the water at the Merritt Island National Wildlife Refuge, which shares a boundary with Kennedy Space Center. Usually found from Alaska and Canada south to Nebraska, Oregon and Tennessee, hooded mergansers winter south to Mexico and the Gulf Coast, including KSC. The open water of the refuge provides wintering areas for 23 species of migratory waterfowl, as well as a year-round home for great blue herons, great egrets, wood storks, cormorants, brown pelicans and other species of marsh and shore birds. The 92,000-acre refuge is also habitat for more than 310 species of birds, 25 mammals, 117 fishes and 65 amphibians and reptiles.
A merganser swims in the waters of KSC
NASA Technical Reports Server (NTRS)
1999-01-01
A young female red-breasted merganser swims in the quicksilver water of the Merritt Island National Wildlife Refuge, which shares a boundary with Kennedy Space Center. Usually found from Alaska and Canada south to Nebraska, Oregon and Tennessee, hooded mergansers winter south to Mexico and the Gulf Coast, including KSC. The open water of the refuge provides wintering areas for 23 species of migratory waterfowl, as well as a year-round home for great blue herons, great egrets, wood storks, cormorants, brown pelicans and other species of marsh and shore birds. The 92,000- acre refuge is also habitat for more than 310 species of birds, 25 mammals, 117 fishes and 65 amphibians and reptiles.
Late developments in the field of heat recovery
NASA Astrophysics Data System (ADS)
McFarlan, A. I.
Developments to reduce the first cost and operating expense of large building air conditioning systems, with emphasis on heat transfer are described. The 3 pipe wide range coils dissipate part of the summer cooling load directly to the outside of the building without passing thru the water chillers. Tank circuits to automatically cycle water thru storage tanks can reduce the refrigeration load about 35% during the peak day period. Means to produce above 48.9 C hot water economically for winter heating and summer dissipation of internal heat are described. A heat balance is maintained automatically to remove only the excess winter heat beyond that which can be usefully recycled or stored.
1999-01-08
KENNEDY SPACE CENTER, FLA. -- Ducks take flight across the marshes of the Merritt Island National Wildlife Refuge at Kennedy Space Center. The duck at top-center is a pintail, which can be found in marshes, prairie ponds and tundra, and salt marshes in winter. They range from Alaska and Greenland south to Central America and the West Indies. The open waters of the Wildlife Refuge provide wintering areas for 23 species of migratory waterfowl as well as a year-round home for great blue herons, great egrets, wood storks, cormorants, brown pelicans and other species of marsh and shore birds. The refuge comprises 92,000 acres, ranging from fresh-water impoundments, salt-water estuaries and brackish marshes to hardwood hammocks and pine flatwoods
NASA Astrophysics Data System (ADS)
Balbín, R.; López-Jurado, J. L.; Aparicio-González, A.; Serra, M.
2014-10-01
Oceanographic data obtained between 2001 and 2011 by the Spanish Institute of Oceanography (IEO, Spain) have been used to characterise the spatial distribution and the temporal variability of the dissolved oxygen around the Balearic Islands (Mediterranean Sea). The study area includes most of the Western Mediterranean Sea, from the Alboran Sea to Cape Creus, at the border between France and Spain. Dissolved oxygen (DO) at the water surface is found to be in a state of equilibrium exchange with the atmosphere. In the spring and summer a subsurface oxygen supersaturation is observed due to the biological activity, above the subsurface fluorescence maximum. Minimum observed values of dissolved oxygen are related to the Levantine Intermediate Waters (LIW). An unusual minimum of dissolved oxygen concentrations was also recorded in the Alboran Sea Oxygen Minimum Zone. The Western Mediterranean Deep Waters (WMDW) and the Western Intermediate Waters (WIW) show higher values of dissolved oxygen than the Levantine Intermediate Waters due to their more recent formation. Using these dissolved oxygen concentrations it is possible to show that the Western Intermediate Waters move southwards across the Ibiza Channel and the deep water circulates around the Balearic Islands. It has also been possible to characterise the seasonal evolution of the different water masses and their dissolved oxygen content in a station in the Algerian sub-basin.
Lake Stability and Winter-Spring Transitions: Decoupled Ice Duration and Winter Stratification
NASA Astrophysics Data System (ADS)
Daly, J.; Dana, S.; Neal, B.
2016-12-01
Ice-out is an important historical record demonstrating the impact of warmer air temperatures on lake ice. To better understand regional differences in ice-out trends, to characterize the thermal dynamics of smaller mountain lakes, and to develop baseline data for Maine's high elevations landscapes, sub-hourly water temperatures have been collected in over a dozen of Maine's mountain lakes since 2010. Both surface water and hypolimnion temperature data are recorded year-round, facilitating the determination of ice-in, ice-out, and the duration of winter stratification. The multi-year record from sites across as 250 km transect allows us to compare spatial variability related to lake morphometry and location with inter-annual variability related to local weather. All of the study lakes are large enough to stratify during the summer and mix extensively during the fall. Most years, our data show that the onset of winter stratification is nearly synchronous across the study area and is associated with cold air temperatures. Winter stratification can begin days to weeks before ice-in; the timing of ice-in shows more variability, with both elevation and basin aspect influencing the timing. Ice-out shows both the anticipated spatial and interannual variability; some years there is strong coherence between locations while other years show high variability, possibly a function of differences in snowpack. Ice-out is not always immediately followed by the end of winter stratification, there is sometimes a lag of days to weeks before the lakes mix. If the warm temperatures that lead to ice-out are followed by calm days without significant wind, the surface of some lakes begins to warm quickly maintaining the density difference and prolonging winter stratification. The longer the lag time, the stronger the density difference becomes which may also result in a very brief period of mixing in the spring prior to set-up of summer stratification. This year's El Niño event resulted in very late ice-in, leading to an unusually short ice duration period at most sites. However, ice-out for these sites was within the range observed previous years and there may not be a significant impact on summer water temperatures.
Water temperature impacts water consumption by range cattle in winter
USDA-ARS?s Scientific Manuscript database
Water consumption and DMI have been found to be positively correlated, which may interact with ingestion of cold water or grazed frozen forage due to transitory reductions in temperature of ruminal contents. The hypothesis underpinning the study explores the potential that cows provided warm drinkin...
NASA Astrophysics Data System (ADS)
Montaldo, Nicola; Sarigu, Alessio
2017-04-01
Recently, climate change and human activities increased the desertification process in the Mediterranean regions, with dramatic consequences for agriculture and water resources. On the Sardinia island (Italy), runoff decreased significantly in the 1975-2010 period with a mean yearly runoff reduction of more than 50% compared to the previous 1922-1974 period. The decrease in runoff severely impacts the management of water resources on the Sardinia island, resulting in water supply restrictions even for domestic consumption. In the 10 Sardinian basins, with a longer database (at least 40 complete years of data, including data from the past 10 years), the trend of yearly runoff computed with the Mann-Kendall test is negative, with the Mann-Kendall τ values ranging from -0.39 to -0.2. The reason for the decrease in runoff is mainly the alarming decrease in the winter precipitation over the past few decades everywhere on the Sardinia island. Indeed, most of the yearly runoff of the Sardinian basins (on average, 70%) is produced by the winter precipitation due to the typical seasonality of the Mediterranean rainfall regime. Surprisingly, the winter precipitation trend is not homogenous; the negative trend is higher on the Sardinian west coast and becomes lower as one crosses the island toward the east coast. At the rain stations on the east coast, the τ Mann-Kendall values of the winter precipitation become almost half of the τ Mann-Kendall values on the west coast, which is exposed to the western European climate dynamics. In this sense, winter precipitation is highly correlated with the North Atlantic Oscillation (NAO), which is a weather phenomenon in the North Atlantic Ocean that controls the direction and strength of westerly winds and storm tracks into Europe. High negative correlations (up to -0.45) between winter NAO and winter precipitation are estimated along the west coast. Meanwhile, the correlations decrease as one crosses the island toward the east, encounters the high mountain in the center of Sardinia, and reaches the lowest values on the east coast (about -0.25). Hence, the general decreasing trend in the correlation between winter NAO and precipitation along the longitudinal direction (from the North Atlantic dipole to the east) is accelerating here due to local-scale topographic effects that overlap the large-scale NAO impact and affect the winter precipitation regime, thus softening the NAO impact on precipitation reduction.
2010-04-01
Water Kit (dry system) installed as standard Abyss second stage with integrated 30-inch braided intermediate pressure hose as standard No user...diaphragm system) installed as standard Abyss second stage with integrated 30-inch braided intermediate pressure hose as standard No user adjustments...1st Stage Regulator with Abyss 2nd Stage and Integrated Intermediate Pressure Hose ..………………………….. A-2 A3 Modified Mares Proton Ice Extreme V32
NASA Astrophysics Data System (ADS)
Pfister, L.; McDonnell, J.; Hissler, C.; Martínez-Carreras, N.; Klaus, J.
2015-12-01
With catchment water storage being only rarely determined, storage dynamics remain largely unknown to date. However, storage bears considerable potential for catchment inter-comparison exercises, as well as it is likely to have an important role in regulating catchment functions. Catchment comparisons across a wide range of environments and scales will help to increase our understanding of relationships between storage dynamics and catchment processes. With respect to the potential of catchment storage for bringing new momentum to catchment classification and catchment processes understanding we currently investigate spatial and temporal variability of dynamic storage in a nested catchment set-up (16 catchments) of the Alzette River basin (Luxembourg, Europe), covering a wide range of geological settings, catchment areas, contrasted landuse, and hydro-meteorological and tracer series. We define catchment storage as the total amount of water stored in a control volume, delimited by the catchment's topographical boundaries and depth of saturated and unsaturated zones. Complementary storage assessments (via input-output dynamics of natural tracers, geographical sounding, groundwater level measurements, soil moisture measurements, hydrometry) are carried out for comparison purposes. In our nested catchment set-up we have (1) assessed dependencies between geology, catchment permeability and winter runoff coefficients, (2) calculated water balance derived catchment storage and mixing potential and quantified how dynamic storage differs between catchments and scales, and (3) examined how stream baseflow dD (as a proxy for baseflow transit time) and integrated flow measures (like the flow duration curve) relate to bedrock geology. Catchments with higher bedrock permeability exhibited larger storage capacities and eventually lower average winter runoff coefficients. Over a time-span of 11 years, all catchments re-produced the same winter runoff coefficients year after year, regardless of their bedrock geology, permeability and winter season storage filling ratios. Ultimately, catchment organisation in our area of interest (i.e. geology, permeability, flowpath length) appeared to have a strong control on winter runoff coefficients, catchment storage and subsequently baseflow dD.
Torres, A.E.; Sacks, L.A.; Yobbi, D.K.; Knochenmus, L.A.; Katz, B.G.
2001-01-01
The hydrogeologic framework underlying the 600-square-mile study area in Charlotte, De Soto, and Sarasota Counties, Florida, consists of the surficial aquifer system, the intermediate aquifer system, and the Upper Floridan aquifer. The hydrogeologic framework and the geochemical processes controlling ground-water composition were evaluated for the study area. Particular emphasis was given to the analysis of hydrogeologic and geochemical data for the intermediate aquifer system. Flow regimes are not well understood in the intermediate aquifer system; therefore, hydrogeologic and geochemical information were used to evaluate connections between permeable zones within the intermediate aquifer system and between overlying and underlying aquifer systems. Knowledge of these connections will ultimately help to protect ground-water quality in the intermediate aquifer system. The hydrogeology was interpreted from lithologic and geophysical logs, water levels, hydraulic properties, and water quality from six separate well sites. Water-quality samples were collected from wells located along six ground-water flow paths and finished at different depth intervals. The selection of flow paths was based on current potentiometric-surface maps. Ground-water samples were analyzed for major ions; field parameters (temperature, pH, specific conductance, and alkalinity); stable isotopes (deuterium, oxygen-18, and carbon-13); and radioactive isotopes (tritium and carbon-14). The surficial aquifer system is the uppermost aquifer, is unconfined, relatively thin, and consists of unconsolidated sand, shell, and limestone. The intermediate aquifer system underlies the surficial aquifer system and is composed of clastic sediments interbedded with carbonate rocks. The intermediate aquifer system is divided into three permeable zones, the Tamiami/Peace River zone (PZ1), the Upper Arcadia zone (PZ2), and the Lower Arcadia zone (PZ3). The Tamiami/Peace River zone (PZ1) is the uppermost zone and is the thinnest and generally, the least productive zone in the intermediate aquifer system. The Upper Arcadia zone (PZ2) is the middle zone and productivity is generally higher than the overlying permeable zone. The Lower Arcadia zone (PZ3) is the lowermost permeable zone and is the most productive zone in the intermediate aquifer system. The intermediate aquifer system is underlain by the Upper Floridan aquifer, which consists of a thick, stratified sequence of limestone and dolomite. The Upper Floridan aquifer is the most productive aquifer in the study area; however, its use is generally restricted because of poor water quality. Interbedded clays and fine-grained clastics separate the aquifer systems and permeable zones. The hydraulic properties of the three aquifer systems are spatially variable. Estimated trans-missivity and horizontal hydraulic conductivity varies from 752 to 32,900 feet squared per day and from 33 to 1,490 feet per day, respectively, for the surficial aquifer system; from 47 to 5,420 feet squared per day and from 2 to 102 feet per day, respectively, for the Tamiami/Peace River zone (PZ1); from 258 to 24,633 feet squared per day and from 2 to 14 feet per day, respectively, for the Upper Arcadia zone (PZ2); from 766 to 44,900 feet squared per day and from 10 to 201 feet per day, respectively, for the Lower Arcadia zone (PZ3); and from 2,350 to 7,640 feet squared per day and from 10 to 41 feet per day, respectively, for the Upper Floridan aquifer. Confining units separating the aquifer systems have leakance coefficients estimated to range from 2.3 x 10-5 to 5.6 x 10-3 feet per day per foot. Strata composing the confining unit separating the Upper Floridan aquifer from the intermediate aquifer system are substantially more permeable than confining units separating the permeable zones in the intermediate aquifer system or separating the surficial aquifer and intermediate aquifer systems. In Charlotte, Sarasota, and western De Soto Counties, hydraulic
McCusker, J
1979-01-01
Children screened for lead poisoning in the Brownsville district of New York City in either summer or winter were followed with blood lead tests for approximately six months to one year from screening to measure longitudinal changes in blood lead level and to identify some determinants of the changes. Only minimal evidence was found of the hypothesized summer rise in blood lead level, while the predominant trend seemed to be for blood lead levels to display statistical regression to the mean. In children found to have low to intermediate blood lead levels (less than 55 microgram/100ml) at screening, variables which were found to predict a rise in blood lead level of 10 microgram/100ml or greater from winter to summer were under age three and/or exposure to paint or plaster. PMID:426160
Impacts of controlling biomass burning emissions on wintertime carbonaceous aerosol in Europe
NASA Astrophysics Data System (ADS)
Fountoukis, C.; Butler, T.; Lawrence, M. G.; Denier van der Gon, H. A. C.; Visschedijk, A. J. H.; Charalampidis, P.; Pilinis, C.; Pandis, S. N.
2014-04-01
We use a 3-D regional chemical transport model, with the latest advancements in the organic aerosol (OA) treatment, and an updated emission inventory for wood combustion to study the organic aerosol change in response to the replacement of current residential wood combustion technologies with pellet stoves. Simulations show a large decrease of fine organic aerosol (more than 60%) in urban and suburban areas during winter and decreases of 30-50% in elemental carbon levels in large parts of Europe. There is also a considerable decrease (around 40%) of oxidized OA, mostly in rural and remote regions. Total PM2.5 mass is predicted to decrease by 15-40% on average during the winter in continental Europe. Accurate representation of the intermediate volatility precursors of organic aerosol in the emission inventory is crucial in assessing the efficiency of such abatement strategies.
Hibernation in an antarctic fish: on ice for winter.
Campbell, Hamish A; Fraser, Keiron P P; Bishop, Charles M; Peck, Lloyd S; Egginton, Stuart
2008-03-05
Active metabolic suppression in anticipation of winter conditions has been demonstrated in species of mammals, birds, reptiles and amphibians, but not fish. This is because the reduction in metabolic rate in fish is directly proportional to the decrease in water temperature and they appear to be incapable of further suppressing their metabolic rate independently of temperature. However, the Antarctic fish (Notothenia coriiceps) is unusual because it undergoes winter metabolic suppression irrespective of water temperature. We assessed the seasonal ecological strategy by monitoring swimming activity, growth, feeding and heart rate (f(H)) in N. coriiceps as they free-ranged within sub-zero waters. The metabolic rate of wild fish was extrapolated from f(H )recordings, from oxygen consumption calibrations established in the laboratory prior to fish release. Throughout the summer months N. coriiceps spent a considerable proportion of its time foraging, resulting in a growth rate (G(w)) of 0.18 +/- 0.2% day(-1). In contrast, during winter much of the time was spent sedentary within a refuge and fish showed a net loss in G(w) (-0.05 +/- 0.05% day(-1)). Whilst inactive during winter, N. coriiceps displayed a very low f(H), reduced sensory and motor capabilities, and standard metabolic rate was one third lower than in summer. In a similar manner to other hibernating species, dormancy was interrupted with periodic arousals. These arousals, which lasted a few hours, occurred every 4-12 days. During arousal activity, f(H) and metabolism increased to summer levels. This endogenous suppression and activation of metabolic processes, independent of body temperature, demonstrates that N. coriiceps were effectively 'putting themselves on ice' during winter months until food resources improved. This study demonstrates that at least some fish species can enter a dormant state similar to hibernation that is not temperature driven and presumably provides seasonal energetic benefits.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Winter, T.G.; Alston, S.G.
The research program of Winter and Alston addresses the fundamental processes of electron transfer, ionization, and excitation in ion-atom, ion-ion, and ion-molecule collisions. Attention is focussed on one- and two-electron systems and, more recently, quasi-one-electron systems whose electron-target-core interaction can be accurately modeled by one-electron potentials. The basic computational approaches can then be taken with few, if any, approximations, and the underlying collisional mechanisms can be more clearly revealed. Winter has focussed on intermediate collision energies (e.g., proton energies for p-He{sup +} collisions on the order of 100 kilo-electron volts), in which many electron states are strongly coupled during themore » collision and a coupled-state approach, such as a coupled-Sturmian-pseudostate approach, is appropriate. Alston has concentrated on higher collision energies (million electron-volt energies), or asymmetric collision systems, for which the coupling of the projectile is weaker with, however, many more target states being coupled together so that high-order perturbation theory is essential. Several calculations by Winter and Alston are described, as set forth in the original proposal.« less
NASA Astrophysics Data System (ADS)
Montero, P.; Pérez-Santos, I.; Daneri, G.; Gutiérrez, M. H.; Igor, G.; Seguel, R.; Purdie, D.; Crawford, D. W.
2017-12-01
A dense winter bloom of the dinoflagellate Heterocapsa triquetra was observed at a fixed station (44°35.3‧S; 72°43.6‧W) in the Puyuhuapi Fjord in Chilean Patagonia during July 2015. H. triquetra dominated the phytoplankton community in the surface waters between 2 and 15 m (13-58 × 109 cell m-2), with abundances some 3 to 15 times higher than the total abundance of the diatom assemblage, which was dominated by Skeletonema spp. The high abundance of dinoflagellates was reflected in high rates of gross primary production (GPP; 0.6-1.6 g C m-2 d-1) and chlorophyll-a concentration (Chl-a; 70-199.2 mg m-2) that are comparable to levels reported in spring diatom blooms in similar Patagonian fjords. We identify the main forcing factors behind a pulse of organic matter production during the non-productive winter season, and test the hypothesis that low irradiance levels are a key factor limiting phytoplankton blooms and subsequent productivity during winter. Principal Component Analysis (PCA) indicated that GPP rates were significantly correlated (r = -0.8, p < 0.05) with a decrease in salinity/temperature and the presence of the Heterocapsa bloom. The bloom occurred under low surface irradiance levels characteristic of austral winter and was accompanied by strong northern winds, associated with the passage of a low-pressure system, and a water column dominated by double diffusive layering. To our knowledge, this is the first report of a dense dinoflagellate bloom during deep austral winter in a Patagonian fjord, and our data challenge the paradigm of light limitation as a factor controlling phytoplankton blooms in this region in winter.
Zhang, Chao; Liu, Jiangui; Shang, Jiali; Cai, Huanjie
2018-08-01
Winter wheat (Triticum aestivum L.) is a major crop in the Guanzhong Plain, China. Understanding its water status is important for irrigation planning. A few crop water indicators, such as the leaf equivalent water thickness (EWT: g cm -2 ), leaf water content (LWC: %) and canopy water content (CWC: kg m -2 ), have been estimated using remote sensing techniques for a wide range of crops, yet their suitability and utility for revealing winter wheat growth and soil moisture status have not been well studied. To bridge this knowledge gap, field-scale irrigation experiments were conducted over two consecutive years (2014 and 2015) to investigate relationships of crop water content with soil moisture and grain yield, and to assess the performance of four spectral process methods for retrieving these three crop water indicators. The result revealed that the water indicators were more sensitive to soil moisture variation before the jointing stage. All three water indicators were significantly correlated with soil moisture during the reviving stage, and the correlations were stronger for leaf water indicators than that of the canopy water indicator at the jointing stage. No correlation was observed after the heading stage. All three water indicators showed good capabilities of revealing grain yield variability in jointing stage, with R 2 up to 0.89. CWC had a consistent relationship with grain yield over different growing seasons, but the performances of EWT and LWC were growing-season specific. The partial least squares regression was the most accurate method for estimating LWC (R 2 =0.72; RMSE=3.6%) and comparable capability for EWT and CWC. Finally, the work highlights the usefulness of crop water indicators to assess crop growth, productivity, and soil water status and demonstrates the potential of various spectral processing methods for retrieving crop water contents from canopy reflectance spectrums. Copyright © 2018 Elsevier B.V. All rights reserved.
Old Growth Conifer Watersheds in the Western Cascades, Oregon: Sentinels of Climate Change
NASA Astrophysics Data System (ADS)
Miles, K. M.
2011-12-01
In the Pacific Northwest, where the majority of precipitation falls during the winter, mountain snowpacks provide an important source of streamflow during the dry summer months when water demands are frequently highest. Increasing temperatures associated with climate change are expected to result in a decline in winter snowpacks in western North America, earlier snowmelt, and subsequently a shift in the timing of streamflows, with an increasing fraction of streamflows occurring earlier in the water year and drier conditions during the summer. Long-term records from headwater watersheds in old growth conifer forest at the H. J. Andrews Experimental Forest (HJ Andrews), Oregon, provide the opportunity to examine changes in climate, vegetation, and streamflow. Continuous streamflow records have been collected since 1953, 1964, and 1969 from three small (8.5-60 ha) watersheds (WS2, WS8, and WS9). Over the 40- to 50-year period of study, late winter to early summer monthly average minimum temperatures have increased by 1-2°C, and spring snow water equivalent at a nearby Snotel site has declined, but monthly precipitation has remained unchanged. Spring runoff ratios have declined in by amounts equivalent to 0.59-2.45 mm day-1 at WS2, WS8, and WS9, which are comparable to estimated rates of stand-level transpiration from trees in these watersheds. However, winter runoff ratios have not changed significantly at either WS2 or WS9, and have actually decreased at WS8 by 2.43 mm day-1 over the period of record. Furthermore, summer runoff ratios have not changed significantly at either WS8 or WS9, and have increased at WS2 by 0.34 mm day-1 over the period of record. These findings suggest that warming temperatures have resulted in a reduction in spring snowpacks and an earlier onset of evapotranspiration in the spring when soil moisture is abundant, but physiological responses of these conifer forests to water stress and water surplus may mitigate or exceed the expression of a climate warming effect on winter or summer streamflow.
NASA Astrophysics Data System (ADS)
Chu, Yingmin; Shen, Yanjun; Yuan, Zaijian
2017-06-01
The North China Plain (NCP) has a serious shortage of freshwater resources, and crop production consumes approximately 75 % of the region's water. To estimate water consumption of different crops and crop structures in the NCP, the Hebei southern plain (HSP) was selected as a study area, as it is a typical region of groundwater overdraft in the NCP. In this study, the water footprint (WF) of crop production, comprised of green, blue and grey water footprints, and its annual variation were analyzed. The results demonstrated the following: (1) the WF from the production of main crops was 41.8 km3 in 2012. Winter wheat, summer maize and vegetables were the top water-consuming crops in the HSP. The water footprint intensity (WFI) of cotton was the largest, and for vegetables, it was the smallest; (2) the total WF, WFblue, WFgreen and WFgrey for 13 years (2000-2012) of crop production were 604.8, 288.5, 141.3 and 175.0 km3, respectively, with an annual downtrend from 2000 to 2012; (3) winter wheat, summer maize and vegetables consumed the most groundwater, and their blue water footprint (WFblue) accounted for 74.2 % of the total WFblue in the HSP; (4) the crop structure scenarios analysis indicated that, with approximately 20 % of arable land cultivated with winter wheat-summer maize in rotation, 38.99 % spring maize, 10 % vegetables and 10 % fruiters, a sustainable utilization of groundwater resources can be promoted, and a sufficient supply of food, including vegetables and fruits, can be ensured in the HSP.
NASA Astrophysics Data System (ADS)
Khim, B.; Ikehara, K.; Sagawa, T.; Shibahara, A.; Yamamoto, M.
2010-12-01
Laminated sediments during the last deglaciation in the subarctic North Pacific indicate significant depletion of dissolved oxygen concentration at intermediate water depths. Such a strong oxygen minimum zone results primarily from a combination of high surface water productivity and poor ventilation of intermediate waters. We investigated a variety of paleoclimatic proxies using about 8-m long piston core sediment (GH02-1030; 42o13.770N, 144o12.530E; water depth, 1212 m) obtained from the continental slope off Tokachi (eastern Hokkaido Island), which is the main path of the southwestward Oyashio Current in the subarctic Northwest Pacific. Laminated sediments were identified at the two horizons in the core GH02-1030; the upper one at 11.4-12.2 cal.kyr BP and the lower one at 14.1-14.7 cal.kyr BP, corresponding to Bølling-Allerød (B/A) and Preboreal (PB), respectively. Between these laminated layers, Younger Dryas occurred. Both laminated sediment layers are characterized by Bolivina tumida, B. pacifica, and Buliminella tenuata, indicating dysoxic bottom water conditions. Increased Mg/Ca-derived intermediate-water temperature and δ18OW values at B/A and PB periods suggest the poor ventilation of intermediate water because of the surface water freshening (i.e., decrease of surface-water salinity). UK'37-derived temperature record also supports the increase of surface-water temperature during B/A and PB intervals. During the last deglaciation, short-chain C14-C18 n-fatty acids, derived mainly from marine organisms, showed higher concentrations, indicating the increased surface-water production, and at the same time, abundant lignin reflected more contribution of terrigenous organic matter, supporting increased freshwater discharge. Variation of CaCO3 contents show remarkable double peaks, corresponding to B/A and PB periods, respectively, leading to the increase of TOC contents. Opal contents also follow similar pattern to CaCO3 contents, but are much less than the Holocene values. Interesting are the remarkable double peaks of δ15N values, also corresponding to B/A and PB intervals, respectively. Such increased δ15N values indicated the enhanced nitrate utilization through the promoted phytoplankton production. Otherwise, the high δ15N records could be indicative of water column denitrification in the source region. Thus, our study area possibly experienced high surface water productivity at times of reduced intermediate ventilation in the subarctic Northwest Pacific during the last deglaciation.
Differential use of fresh water environments by wintering waterfowl of coastal Texas
White, D.H.; James, D.
1978-01-01
A comparative study of the environmental relationships among 14 species of wintering waterfowl was conducted at the Welder Wildlife Foundation, San Patricia County, near Sinton, Texas during the fall and early winter of 1973. Measurements of 20 environmental factors (social, vegetational, physical, and chemical) were subjected to multivariate statistical methods to determine certain niche characteristics and environmental relationships of waterfowl wintering in the aquatic community.....Each waterfowl species occupied a unique realized niche by responding to distinct combinations of environmental factors identified by principal component analysis. One percent confidence ellipses circumscribing the mean scores plotted for the first and second principal components gave an indication of relative niche width for each species. The waterfowl environments were significantly different interspecifically and water depth at feeding site and % emergent vegetation were most important in the separation. This was shown by subjecting the transformed data to multivariate analysis of variance with an associated step-down procedure. The species were distributed along a community cline extending from shallow water with abundant emergent vegetation to open deep water with little emergent vegetation of any kind. Four waterfowl subgroups were significantly separated along the cline, as indicated by one-way analysis of variance with Duncan?s multiple range test. Clumping of the bird species toward the middle of the available habitat hyperspace was shown in a plot of the principal component scores for the random samples and individual species.....Naturally occurring relationships among waterfowl were clarified using principal comcomponent analysis and related multivariate procedures. These techniques may prove useful in wetland management for particular groups of waterfowl based on habitat preferences.
Soil and nutrient retention in winter-flooded ricefields with implications for watershed management
Manley, S.W.; Kaminski, R.M.; Rodrigue, P.B.; Dewey, J.C.; Schoenholtz, S.H.; Gerard, P.D.; Reinecke, K.J.
2009-01-01
The ability of water resources to support aquatic life and human needs depends, in part, on reducing nonpoint source pollution amid contemporary agricultural practices. Winter retention of shallow water on rice and other agricultural fields is an accepted management practice for wildlife conservation; however, soil and water conservation benefits are not well documented. We evaluated the ability of four post-harvest ricefield treatment combinations (stubble-flooded, stubble-open, disked-flooded and disked-open) to abate nonpoint source exports into watersheds of the Mississippi Alluvial Valley. Total suspended solid exports were 1,121 kg ha-1 (1,000 lb ac-1) from disked-open fields where rice stubble was disked after harvest and fields were allowed to drain, compared with 35 kg ha-1 (31 lb ac-1) from stubble-flooded fields where stubble was left standing after harvest and fields captured rainfall from November 1 to March 1. Estimates of total suspended solid exports from ricefields based on Landsat imagery and USDA crop data are 0.43 and 0.40 Mg km-2 day-1 in the Big Sunflower and L'Anguille watersheds, respectively. Estimated reductions in total suspended solid exports from ricefields into the Big Sunflower and L'Anguille water-sheds range from 26% to 64% under hypothetical scenarios in which 65% to 100% of the rice production area is managed to capture winter rainfall. Winter ricefield management reduced nonpoint source export by decreasing concentrations of solids and nutrients in, and reducing runoff volume from, ricefields in the Mississippi Alluvial Valley.
A montane Mediterranean climate supports year-round photosynthesis and high forest biomass.
Kelly, Anne E; Goulden, Michael L
2016-04-01
The mid-elevation forest of California's Sierra Nevada poses a bioclimatic paradox. Mid-elevation trees experience a montane Mediterranean climate, with near-freezing winter days and rain-free summers. The asynchrony between warmth and water input suggests low primary production, limited by photosynthetic dormancy in winter cold, and again in summer and early autumn with drought, yet this forest is characterized by tall trees and high biomass. We used eddy covariance in a mid-elevation Sierra stand to understand how winter cold and summer drought limit canopy photosynthesis and production. The trees exhibited canopy photosynthesis year-round. Trees avoided winter dormancy, and daytime CO2uptake continued despite a deep snowpack and near-freezing temperatures. Photosynthesis on sunny days continued at half of maximum rates when air temperature was 0 °C. Likewise, the vegetation avoided summer drought dormancy, and high rates of daytime CO2uptake and transpiration continued despite a 5-month period with only negligible water input. We attribute this drought avoidance to deep rooting and availability of deep soil water. Year-round photosynthesis helps explain the large biomass observed in the Sierra Nevada, and implies adaptive strategies that may contribute to the resiliency or vulnerability of Sierran vegetation to climate change. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Is Snow a sufficient Source of Water for Horses kept Outdoors in Winter? A Case Report
Mejdell, CM; Simensen, E; Bøe, KE
2005-01-01
Due to extreme weather conditions, a flock of outwintered Icelandic horses had to manage for several days on snow as the source of free water. They were fed grass silage ad lib, and any change in feed consumption was not observed. After nine days, blood samples were taken and analysed for plasma osmolality, they were subjected to a simple clinical examination, and offered drinking water. Osmolality levels were within normal limits and mean value did not differ significantly from samples which previously were taken of the same individuals. The general condition of the horses was normal, with no signs of clinical dehydration or disease. The horses showed very little interest for the offered drinking water. This suggests that in cold winter weather, horses being fed grass silage and adjusted to eat snow, can manage for several days with snow substituting liquid water without their physiology and welfare being challenged. PMID:16108209
Crop water production functions for grain sorghum and winter wheat
USDA-ARS?s Scientific Manuscript database
Productivity of water-limited cropping systems can be reduced by untimely distribution of water as well as cold and heat stress. The objective was to develop relationships among weather parameters, water use, and grain productivity to produce functions forecasting grain yields of grain sorghum and w...
Crop water production functions of grain sorghum and winter wheat in Kansas and Texas
USDA-ARS?s Scientific Manuscript database
Productivity of water-limited cropping systems can be reduced by untimely distribution of water as well as cold and heat stress. Our study objective was to develop relationships among weather variables, water use, and grain productivity to produce production functions for forecasting grain yields of...
Unexpected winter phytoplankton blooms in the North Atlantic subpolar gyre
NASA Astrophysics Data System (ADS)
Lacour, L.; Ardyna, M.; Stec, K. F.; Claustre, H.; Prieur, L.; Poteau, A.; D'Alcala, M. Ribera; Iudicone, D.
2017-11-01
In mid- and high-latitude oceans, winter surface cooling and strong winds drive turbulent mixing that carries phytoplankton to depths of several hundred metres, well below the sunlit layer. This downward mixing, in combination with low solar radiation, drastically limits phytoplankton growth during the winter, especially that of the diatoms and other species that are involved in seeding the spring bloom. Here we present observational evidence for widespread winter phytoplankton blooms in a large part of the North Atlantic subpolar gyre from autonomous profiling floats equipped with biogeochemical sensors. These blooms were triggered by intermittent restratification of the mixed layer when mixed-layer eddies led to a horizontal transport of lighter water over denser layers. Combining a bio-optical index with complementary chemotaxonomic and modelling approaches, we show that these restratification events increase phytoplankton residence time in the sunlight zone, resulting in greater light interception and the emergence of winter blooms. Restratification also caused a phytoplankton community shift from pico- and nanophytoplankton to phototrophic diatoms. We conclude that transient winter blooms can maintain active diatom populations throughout the winter months, directly seeding the spring bloom and potentially making a significant contribution to over-winter carbon export.
NASA Astrophysics Data System (ADS)
Redmond, M. D.; Kelsey, K.; Urza, A.; Barger, N. N.
2015-12-01
Forest and woodland ecosystems play a crucial role in the global carbon cycle and may be strongly affected by changing climate. Here we use an individual-based approach to model piñon pine (Pinus edulis) radial growth responses to climate across gradients of environmental stress. We sampled piñon pine trees at 24 sites across southwestern Colorado that varied in soil available water capacity, elevation, and latitude, obtaining a total of 552 pinon pine tree ring series. We used linear mixed effect models to assess piñon pine growth responses to climate and site-level environmental stress (mean annual climatic water deficit and soil available water capacity). Using a similar modeling approach, we also determined long-term growth trends across our gradients of environmental stress. Piñon pine growth was strongly positively associated with winter precipitation and strongly negatively associated with summer vapor pressure deficit. However, the strength of the relationship between winter precipitation and piñon pine growth was affected by site-level environmental stress. Trees at sites with greater climatic water deficit (i.e. hotter, drier sites) were more sensitive to winter precipitation. Interestingly, trees at sites with greater soil available water capacity were also more sensitive to winter precipitation, as these trees had much higher growth rates during years of high precipitation. We found weak evidence of long-term declines in piñon growth rates over the past century within our study area. Growth trends overtime did vary across our soil available water capacity gradient: trees growing at sites with higher soil available water capacity responded more positively to the cool, wet climate conditions of the 1910s and 1980s, whereas tree growth rates at sites with lower soil available water capacity declined more linearly over the last century. Our findings suggest that the sensitivity of woodland ecosystems to changing climate will vary across the landscape due to differences in edaphic and physiographic factors. These results support recent dendroecology studies that emphasize the need to use a more individual-based approach to enhance our understanding of tree growth responses to climate.
Historical Change of Equilibrium Water Temperature in Japan
NASA Astrophysics Data System (ADS)
Miyamoto, H.
2015-12-01
Changes in freshwater ecosystems due to a climate change have been great concern for sustainable river basin management both for water resources utilization and ecological conservation. However, their impact seems to be difficult to evaluate because of wide variety of basin characteristics along a river network both in nature and social environment. This presentation uses equilibrium water temperature as a simple criterion index for evaluating the long-term changes of stream thermal environment due to the historical climate change in Japan. It examines, at first, the relationship between the equilibrium water temperature and the stream temperature observed for 7 years at a lower reach in the Ibo River, Japan. It analyzes, then, the seasonal and regional trends of the equilibrium water temperature change for the last 50 years at 133 meteorological station sites throughout Japan, discussing their rising or falling characteristics. The correlation analysis at the local reach of the Ibo River shows that the equilibrium water temperature has similar trend of change as the stream temperature. However, its value tends to be higher than the stream temperature in summer, while lower in winter. The onset of the higher equilibrium water temperature fluctuates annually from mid February to early April. This onset fluctuation at each spring could be influenced by the different amount of snow at the antecedent winter. The rising or falling trends of the equilibrium water temperature are analyzed both annually and seasonally through the regression analysis of the 133 sites in Japan. Consequently, the trends of the temperature change could be categorized by 12 patterns. As for the seasonal analysis, the results shows that there are many sites indicating the falling trend in spring and summer, and rising trends in autumn and winter. In particular, winter has the strong rising tendency throughout Japan. As for the regional analysis, the result illustrates the precise rationality; e.g., northern parts of Japan show the temperature fall in spring and the temperature rise in autumn, while the urbanized regions along the Pacific coastline indicate the temperature rise in all the four seasons.
Bidlake, William R.; Josberger, Edward G.; Savoca, Mark E.
2007-01-01
Winter snow accumulation and summer snow and ice ablation were measured at South Cascade Glacier, Washington, to estimate glacier mass-balance quantities for balance years 2004 and 2005. The North Cascade Range in the vicinity of South Cascade Glacier accumulated smaller than normal winter snowpacks during water years 2004 and 2005. Correspondingly, the balance years 2004 and 2005 maximum winter snow balances of South Cascade Glacier, 2.08 and 1.97 meters water equivalent, respectively, were smaller than the average of such balances since 1959. The 2004 glacier summer balance (-3.73 meters water equivalent) was the eleventh most negative during 1959 to 2005 and the 2005 glacier summer balance (-4.42 meters water equivalent) was the third most negative. The relatively small winter snow balances and unusually negative summer balances of 2004 and 2005 led to an overall loss of glacier mass. The 2004 and 2005 glacier net balances, -1.65 and -2.45 meters water equivalent, respectively, were the seventh and second most negative during 1953 to 2005. For both balance years, the accumulation area ratio was less than 0.05 and the equilibrium line altitude was higher than the glacier. The unusually negative 2004 and 2005 glacier net balances, combined with a negative balance previously reported for 2003, resulted in a cumulative 3-year net balance of -6.20 meters water equivalent. No equal or greater 3-year mass loss has occurred previously during the more than 4 decades of U.S. Geological Survey mass-balance measurements at South Cascade Glacier. Accompanying the glacier mass losses were retreat of the terminus and reduction of total glacier area. The terminus retreated at a rate of about 17 meters per year during balance year 2004 and 15 meters per year during balance year 2005. Glacier area near the end of balance years 2004 and 2005 was 1.82 and 1.75 square kilometers, respectively. Runoff from the basin containing the glacier and from an adjacent nonglacierized basin was gaged during all or parts of water years 2004 and 2005. Air temperature, wind speed, precipitation, and incoming solar radiation were measured at selected locations on and near the glacier.
A method to harness global crowd-sourced data to understand travel behavior in avalanche terrain.
NASA Astrophysics Data System (ADS)
Hendrikx, J.; Johnson, J.
2015-12-01
To date, most studies of the human dimensions of decision making in avalanche terrain has focused on two areas - post-accident analysis using accident reports/interviews and, the development of tools as decision forcing aids. We present an alternate method using crowd-sourced citizen science, for understanding decision-making in avalanche terrain. Our project combines real-time GPS tracking via a smartphone application, with internet based surveys of winter backcountry users as a method to describe and quantify travel practices in concert with group decision-making dynamics, and demographic data of participants during excursions. Effectively, we use the recorded GPS track taken within the landscape as an expression of the decision making processes and terrain usage by the group. Preliminary data analysis shows that individual experience levels, gender, avalanche hazard, and group composition all influence the ways in which people travel in avalanche terrain. Our results provide the first analysis of coupled real-time GPS tracking of the crowd while moving in avalanche terrain combined with psychographic and demographic correlates. This research will lead to an improved understanding of real-time decision making in avalanche terrain. In this paper we will specifically focus on the presentation of the methods used to solicit, and then harness the crowd to obtain data in a unique and innovative application of citizen science where the movements within the terrain are the desired output data (Figure 1). Figure 1: Example GPS tracks sourced from backcountry winter users in the Teton Pass area (Wyoming), from the 2014-15 winter season, where tracks in red represent those recorded as self-assessed experts (as per our survey), and where tracks in blue represent those recorded as self-assessed intermediates. All tracks shown were obtained under similar avalanche conditions. Statistical analysis of terrain metrics showed that the experts used steeper terrain than the intermediate users under similar avalanche conditions, demonstrating different terrain choice and use as a function of experience rather than hazard level.
Rivett, Michael O; Cuthbert, Mark O; Gamble, Richard; Connon, Lucy E; Pearson, Andrew; Shepley, Martin G; Davis, John
2016-09-15
Dynamic impact to the water environment of deicing salt application at a major highway (motorway) interchange in the UK is quantitatively evaluated for two recent severe UK winters. The contaminant transport pathway studied allowed controls on dynamic highway runoff and storm-sewer discharge to a receiving stream and its subsequent leakage to an underlying sandstone aquifer, including possible contribution to long-term chloride increases in supply wells, to be evaluated. Logged stream electrical-conductivity (EC) to estimate chloride concentrations, stream flow, climate and motorway salt application data were used to assess salt fate. Stream loading was responsive to salt applications and climate variability influencing salt release. Chloride (via EC) was predicted to exceed the stream Environmental Quality Standard (250mg/l) for 33% and 18% of the two winters. Maximum stream concentrations (3500mg/l, 15% sea water salinity) were ascribed to salt-induced melting and drainage of highway snowfall without dilution from, still frozen, catchment water. Salt persistance on the highway under dry-cold conditions was inferred from stream observations of delayed salt removal. Streambed and stream-loss data demonstrated chloride infiltration could occur to the underlying aquifer with mild and severe winter stream leakage estimated to account for 21 to 54% respectively of the 70t of increased chloride (over baseline) annually abstracted by supply wells. Deicing salt infiltration lateral to the highway alongside other urban/natural sources were inferred to contribute the shortfall. Challenges in quantifying chloride mass/fluxes (flow gauge accuracy at high flows, salt loading from other roads, weaker chloride-EC correlation at low concentrations), may be largely overcome by modest investment in enhanced data acquisition or minor approach modification. The increased understanding of deicing salt dynamic loading to the water environment obtained is relevant to improved groundwater resource management, highway salt application practice, surface-water - ecosystem management, and decision making on highway drainage to ground. Copyright © 2016 Elsevier B.V. All rights reserved.
O'Gorman, Robert; Lantry, Brian F.; Schneider, Clifford P.
2004-01-01
The population of alewives Alosa pseudoharengus in Lake Ontario is of great concern to fishery managers because alewives are the principal prey of introduced salmonines and because alewives negatively influence many endemic fishes. We used spring bottom trawl catches of alewives to investigate the roles of stock size, climate, predation, and lake trophic status on recruitment of alewives to age 2 in Lake Ontario during 1978–2000. Climate was indexed from the temperature of water entering a south-shore municipal treatment plant, lake trophic status was indexed by the mean concentration of total phosphorus (TP) in surface water in spring, and predation was indexed by the product of the number of salmonines stocked and relative, first-year survival of Chinook salmonOncorhynchus tshawytscha. A Ricker-type parent–progeny model suggested that peak production of age-1 alewives could occur over a broad range of spawning stock sizes, and the fit of the model was improved most by the addition of terms for spring water temperature and winter duration. With the addition of the two climate terms, the Ricker model indicated that when water was relatively warm in spring and the winter was relatively short, peak potential production of young was nine times higher than when water temperature and winters were average, and 73 times higher than when water was cold in spring and winters were long. Relative survival from age 1 to recruitment at age 2 was best described by a multiple linear regression with terms for adult abundance, TP, and predation. Mean recruitment of age-2 fish in the 1978–1998 year-classes predicted by using the two models in sequence was only about 20% greater than the observed mean recruitment. Model estimates fit the measured data exceptionally well for all but the largest four year-classes, which suggests that the models will facilitate improvement in estimates of trophic transfer due to alewives.
Ozone, dust, smoke and humidity in nuclear winter
NASA Technical Reports Server (NTRS)
Turco, R. P.; Toon, O. B.; Ackerman, T. P.; Pollack, J. B.; Sagan, C.
1985-01-01
Recent correspondence on nuclear winter is commented on. Reasons are given for why the Tunguska meteor explosion may not be useful in calibrating the effects of a major nuclear exchange. The relationship between the optical depth of an aerosol cloud, the composition of the cloud, and its effect on sunlight intensity and climate are clarified. The significance of the Tambora eruption of 1815 and of historical fires for the nuclear winter theory are briefly discussed. The dispersion of smoke plumes from large fires is addressed, and water condensation and smoke scavenging are considered.
Shiff, C J; Coutts, W C; Yiannakis, C; Holmes, R W
1979-01-01
Surveys of snails occurring at water contact points used by rural people in Rhodesia show that transmission of Schistosoma haematobium is very high during the spring and early summer seasons. Although infected snails are found in all seasons, fewest occur in winter and during the heavy rains. It is suggested that the bionomics of this parasite depends on pre-rain transmission because destruction of infected snails during winter reduces the reservoir of infection in the area and also the level of parasitaemia in local schoolchildren.
1999-01-08
KENNEDY SPACE CENTER, FLA. -- A pintail duck is poised for landing, joining other ducks and coots on the waters of the Merritt Island National Wildlife Refuge at Kennedy Space Center. The refuge is winter home to hundreds of waterfowl such as these coots and pintail ducks. The smaller coot inhabits open ponds and marshes, wintering in saltwater bays and inlets. They range from southern Canada to northern South America. The pintail can be found in marshes, prairie ponds and tundra, and salt marshes in winter. They range from Alaska and Greenland south to Central America and the West Indies
Emissions Inventory for the Uinta Basin of Eastern Utah, Winter 2012
NASA Astrophysics Data System (ADS)
Moss, D.; Hall, C. F.; Mansfield, M. L.
2012-12-01
We report the results of an emissions inventory for the Uinta Basin, Duchesne and Uintah Counties, Utah, focusing on emissions categories that are poorly represented by existing inventories. We have also focused on wintertime emissions in general and on the winter season of 2012, in particular, in order to have an inventory that is relevant to winter ozone events in the basin. The inventory includes categories such as major and minor point sources, produced water evaporation ponds, wood stoves, mobile emissions, biogenic and agricultural emissions, land fills, etc.
Analysis of the mixing processes in the subtropical Advancetown Lake, Australia
NASA Astrophysics Data System (ADS)
Bertone, Edoardo; Stewart, Rodney A.; Zhang, Hong; O'Halloran, Kelvin
2015-03-01
This paper presents an extensive investigation of the mixing processes occurring in the subtropical monomictic Advancetown Lake, which is the main water body supplying the Gold Coast City in Australia. Meteorological, chemical and physical data were collected from weather stations, laboratory analysis of grab samples and an in-situ Vertical Profiling System (VPS), for the period 2008-2012. This comprehensive, high frequency dataset was utilised to develop a one-dimensional model of the vertical transport and mixing processes occurring along the water column. Multivariate analysis revealed that air temperature and rain forecasts enabled a reliable prediction of the strength of the lake stratification. Vertical diffusion is the main process driving vertical mixing, particularly during winter circulation. However, a high reservoir volume and warm winters can limit the degree of winter mixing, causing only partial circulation to occur, as was the case in 2013. This research study provides a comprehensive approach for understanding and predicting mixing processes for similar lakes, whenever high-frequency data are available from VPS or other autonomous water monitoring systems.
Patino, Reynaldo; Dawson, D.; VanLandeghem, Matthew M.
2014-01-01
Toxic blooms of golden alga (GA, Prymnesium parvum) in Texas typically occur in winter or early spring. In North America, they were first reported in Texas in the 1980s, and a marked range expansion occurred in 2001. Although there is concern about the influence of climate change on the future distribution of GA, factors responsible for past dispersals remain uncertain. To better understand the factors that influence toxic bloom dispersal in reservoirs, this study characterized reservoir water quality associated with toxic GA blooms since 2001, and examined trends in water quality during a 20-year period bracketing the 2001 expansion. Archived data were analyzed for six impacted and six nonimpacted reservoirs from two major Texas basins: Brazos River and Colorado River. Data were simplified for analysis by pooling spatially (across sampling stations) and temporally (winter, December-February) within reservoirs and generating depth-corrected (1 m) monthly values. Classification tree analysis [period of record (POR), 2001-2010] using salinity-associated variables (specific conductance, chloride, sulfate), dissolved oxygen (DO), pH, temperature, total hardness, potassium, nitrate+nitrite, and total phosphorus indicated that salinity best predicts the toxic bloom occurrence. Minimum estimated salinities for toxic bloom formation were 0.59 and 1.02 psu in Brazos and Colorado River reservoirs, respectively. Principal component analysis (POR, 2001-2010) indicated that GA habitat is best defined by higher salinity relative to nonimpacted reservoirs, with winter DO and pH also being slightly higher and winter temperature slightly lower in impacted reservoirs. Trend analysis, however, did not reveal monotonic changes in winter water quality of GA-impacted reservoirs during the 20-year period (1991-2010) bracketing the 2001 dispersal. Therefore, whereas minimum levels of salinity are required for GA establishment and toxic blooms in Texas reservoirs, the lack of trends in water quality suggests that conditions favorable for toxic blooms pre-date the 2001 expansion. These observations are consistent with a climate change-independent scenario of past GA dispersals in Texas reservoirs driven by novel introductions into pre-existing favorable habitat. Reports of latent GA populations in certain nonimpacted reservoirs, however, provide a plausible scenario of future dispersals characterized by prolonged periods between colonization and toxic bloom development and driven by changes in water quality, natural, or anthropogenic.
Koneff, M.D.; Royle, J. Andrew; Forsell, D.J.; Wortham, J.S.; Boomer, G.S.; Perry, M.C.
2005-01-01
Survey design for wintering scoters (Melanitta sp.) and other sea ducks that occur in offshore waters is challenging because these species have large ranges, are subject to distributional shifts among years and within a season, and can occur in aggregations. Interest in winter sea duck population abundance surveys has grown in recent years. This interest stems from concern over the population status of some sea ducks, limitations of extant breeding waterfowl survey programs in North America and logistical challenges and costs of conducting surveys in northern breeding regions, high winter area philopatry in some species and potential conservation implications, and increasing concern over offshore development and other threats to sea duck wintering habitats. The efficiency and practicality of statistically-rigorous monitoring strategies for mobile, aggregated wintering sea duck populations have not been sufficiently investigated. This study evaluated a 2-phase adaptive stratified strip transect sampling plan to estimate wintering population size of scoters, long-tailed ducks (Clangua hyemalis), and other sea ducks and provide information on distribution. The sampling plan results in an optimal allocation of a fixed sampling effort among offshore strata in the U.S. mid-Atlantic coast region. Phase I transect selection probabilities were based on historic distribution and abundance data, while Phase 2 selection probabilities were based on observations made during Phase 1 flights. Distance sampling methods were used to estimate detection rates. Environmental variables thought to affect detection rates were recorded during the survey and post-stratification and covariate modeling were investigated to reduce the effect of heterogeneity on detection estimation. We assessed cost-precision tradeoffs under a number of fixed-cost sampling scenarios using Monte Carlo simulation. We discuss advantages and limitations of this sampling design for estimating wintering sea duck abundance and mapping distribution and suggest improvements for future surveys.
Reduced oxygenation at intermediate depths of the southwest Pacific during the last glacial maximum
NASA Astrophysics Data System (ADS)
Durand, Axel; Chase, Zanna; Noble, Taryn L.; Bostock, Helen; Jaccard, Samuel L.; Townsend, Ashley T.; Bindoff, Nathaniel L.; Neil, Helen; Jacobsen, Geraldine
2018-06-01
To investigate changes in oxygenation at intermediate depths in the southwest Pacific between the Last Glacial Maximum (LGM) and the Holocene, redox sensitive elements uranium and rhenium were measured in 12 sediment cores located on the Campbell and Challenger plateaux offshore from New Zealand. The core sites are currently bathed by Subantarctic Mode Water (SAMW), Antarctic Intermediate Water (AAIW) and Upper Circumpolar Deep Water (UCDW). The sedimentary distributions of authigenic uranium and rhenium reveal reduced oxygen content at intermediate depths (800-1500 m) during the LGM compared to the Holocene. In contrast, data from deeper waters (≥1500 m) indicate higher oxygen content during the LGM compared to the Holocene. These data, together with variations in benthic foraminiferal δ13C, are consistent with a shallower AAIW-UCDW boundary over the Campbell Plateau during the LGM. Whilst AAIW continued to bathe the intermediate depths (≤1500 m) of the Challenger Plateau during the LGM, the data suggest that the AAIW at these core sites contained less oxygen compared to the Holocene. These results are at odds with the general notion that AAIW was better oxygenated and expanded deeper during the LGM due to stronger westerlies and colder temperatures. These findings may be explained by an important change in AAIW formation and circulation.
Mechanisms of deterioration of intermediate moisture food systems
NASA Technical Reports Server (NTRS)
Labuza, T. P.
1972-01-01
A study of shelf stability in intermediate moisture foods was made. Major efforts were made to control lipid oxidation and nonenzymatic browning. In order to determine means of preventing these reactions, model systems were developed having the same water activity content relationship of intermediate moisture foods. Models were based on a cellulose-lipid and protein-lipid system with glycerol added as the humectant. Experiments with both systems indicate that lipid oxidation is promoted significantly in the intermediate moisture range. The effect appeared to be related to increased mobility of either reactants or catalysts, since when the amount of water in the system reached a level where capillary condensation occurred and thus free water was present, the rates of oxidation increased. With added glycerol, which is water soluble and thus increases the amount of mobile phase, the increase in oxidation rate occurs at a lower relative humidity. The rates of oxidation were maximized at 61% RH and decreased again at 75% RH probably due to dilution. No significant non-enzymatic browning occurred in the protein-lipid systems. Prevention of oxidation by the use of metal chelating agents was enhanced in the cellulose system, whereas, with protein present, the lipid soluble chain terminating antioxidants (such as BHA) worked equally as well. Preliminary studies of foods adjusted to the intermediate moisture range bear out the results of oxidation in model systems. It can be concluded that for most fat containing intermediate moisture foods, rancidity will be the reaction most limiting stability.
Sherson, Lauren R.; Rice, Steven E.
2015-07-16
Changes in climate and increased groundwater and surface-water use are likely to affect the availability of water in the upper Rio Hondo Basin. Increased drought probably will increase the potential for wildfires, which can affect downstream water quality and increase flood potential. Climate-research predicted decreases in winter precipitation may have an adverse effect on the amount of groundwater recharge that occurs in the upper Rio Hondo Basin, given the predominance of winter precipitation recharge as indicated by the stable isotope results. Decreases in surface-water supplies because of persistent drought conditions and reductions in the quality of water because of the effects of wildfire may lead to a larger reliance on groundwater reserves in the upper Rio Hondo Basin. Decreasing water levels because of increasing groundwater withdrawal could reduce base flows in the Rio Bonito and Rio Ruidoso. Well organized and scientifically supported regional water-resources management will be necessary for dealing with the likely scenario of increases in demand coupled with decreases in supply in the upper Rio Hondo Basin.
Estiarte, Marc; Peñuelas, Josep
2015-03-01
Leaf senescence in winter deciduous species signals the transition from the active to the dormant stage. The purpose of leaf senescence is the recovery of nutrients before the leaves fall. Photoperiod and temperature are the main cues controlling leaf senescence in winter deciduous species, with water stress imposing an additional influence. Photoperiod exerts a strict control on leaf senescence at latitudes where winters are severe and temperature gains importance in the regulation as winters become less severe. On average, climatic warming will delay and drought will advance leaf senescence, but at varying degrees depending on the species. Warming and drought thus have opposite effects on the phenology of leaf senescence, and the impact of climate change will therefore depend on the relative importance of each factor in specific regions. Warming is not expected to have a strong impact on nutrient proficiency although a slower speed of leaf senescence induced by warming could facilitate a more efficient nutrient resorption. Nutrient resorption is less efficient when the leaves senesce prematurely as a consequence of water stress. The overall effects of climate change on nutrient resorption will depend on the contrasting effects of warming and drought. Changes in nutrient resorption and proficiency will impact production in the following year, at least in early spring, because the construction of new foliage relies almost exclusively on nutrients resorbed from foliage during the preceding leaf fall. Changes in the phenology of leaf senescence will thus impact carbon uptake, but also ecosystem nutrient cycling, especially if the changes are consequence of water stress. © 2014 John Wiley & Sons Ltd.
The impact of the 2009-10 El Niño Modoki on U.S. West Coast beaches
Barnard, Patrick L.; Allan, Jonathan; Hansen, Jeff E.; Kaminsky, George M.; Ruggiero, Peter; Doria, André
2011-01-01
High-resolution beach morphology data collected along much of the U.S. West Coast are synthesized to evaluate the coastal impacts of the 2009-10 El Nio. Coastal change observations were collected as part of five beach monitoring programs that span between 5 and 13 years in duration. In California, regional wave and water level data show that the environmental forcing during the 2009-10 winter was similar to the last significant El Nio of 1997-98, producing the largest seasonal shoreline retreat and/or most landward shoreline position since monitoring began. In contrast, the 2009-10 El Nio did not produce anomalously high mean winter-wave energy in the Pacific Northwest (Oregon and Washington), although the highest 5% of the winter wave-energy measurements were comparable to 1997-98 and two significant non-El Nio winters. The increase in extreme waves in the 2009-10 winter was coupled with elevated water levels and a more southerly wave approach than the long-term mean, resulting in greater shoreline retreat than during 1997-98, including anomalously high shoreline retreat immediately north of jetties, tidal inlets, and rocky headlands. The morphodynamic response observed throughout the U.S. West Coast during the 2009-10 El Nio is principally linked to the El Nio Modoki phenomena, where the warm sea surface temperature (SST) anomaly is focused in the central equatorial Pacific (as opposed to the eastern Pacific during a classic El Nio), featuring a more temporally persistent SST anomaly that results in longer periods of elevated wave energy but lower coastal water levels. ?? 2011 by the American Geophysical Union.
The impact of the 2009-10 El Niño Modoki on U.S. West Coast beaches
Barnard, Patrick L.; Allan, Jonathan; Hansen, Jeff E.; Kaminsky, George M.; Ruggiero, Peter; Doria, André
2011-01-01
High-resolution beach morphology data collected along much of the U.S. West Coast are synthesized to evaluate the coastal impacts of the 2009–10 El Niño. Coastal change observations were collected as part of five beach monitoring programs that span between 5 and 13 years in duration. In California, regional wave and water level data show that the environmental forcing during the 2009–10 winter was similar to the last significant El Niño of 1997–98, producing the largest seasonal shoreline retreat and/or most landward shoreline position since monitoring began. In contrast, the 2009–10 El Niño did not produce anomalously high mean winter-wave energy in the Pacific Northwest (Oregon and Washington), although the highest 5% of the winter wave-energy measurements were comparable to 1997–98 and two significant non-El Niño winters. The increase in extreme waves in the 2009–10 winter was coupled with elevated water levels and a more southerly wave approach than the long-term mean, resulting in greater shoreline retreat than during 1997–98, including anomalously high shoreline retreat immediately north of jetties, tidal inlets, and rocky headlands. The morphodynamic response observed throughout the U.S. West Coast during the 2009–10 El Niño is principally linked to the El Niño Modoki phenomena, where the warm sea surface temperature (SST) anomaly is focused in the central equatorial Pacific (as opposed to the eastern Pacific during a classic El Niño), featuring a more temporally persistent SST anomaly that results in longer periods of elevated wave energy but lower coastal water levels.
"Green tides" or blooms of ulvoid green algae are frequent in Yaquina Bay Estuary on the central Oregon coast, USA. Measurements of their biomass were made from late spring to early winter in 1999 at six intertidal sites in the estuary and were continued throughout the winter of...
Wintertime Emissions from Produced Water Ponds
NASA Astrophysics Data System (ADS)
Evans, J.; Lyman, S.; Mansfield, M. L.
2013-12-01
Every year oil and gas drilling in the U.S. generates billions of barrels of produced water (water brought to the surface during oil or gas production). Efficiently disposing of produced water presents a constant financial challenge for producers. The most noticeable disposal method in eastern Utah's Uintah Basin is the use of evaporation ponds. There are 427 acres of produced water ponds in the Uintah Basin, and these were used to evaporate more than 5 million barrels of produced water in 2012, 6% of all produced water in the Basin. Ozone concentrations exceeding EPA standards have been observed in the Uintah Basin during winter inversion conditions, with daily maximum 8 hour average concentrations at some research sites exceeding 150 parts per billion. Produced water contains ozone-forming volatile organic compounds (VOC) which escape into the atmosphere as the water is evaporated, potentially contributing to air quality problems. No peer-reviewed study of VOC emissions from produced water ponds has been reported, and filling this gap is essential for the development of accurate emissions inventories for the Uintah Basin and other air sheds with oil and gas production. Methane, carbon dioxide, and VOC emissions were measured at three separate pond facilities in the Uintah Basin in February and March of 2013 using a dynamic flux chamber. Pond emissions vary with meteorological conditions, so measurements of VOC emissions were collected during winter to obtain data relevant to periods of high ozone production. Much of the pond area at evaporation facilities was frozen during the study period, but areas that actively received water from trucks remained unfrozen. These areas accounted for 99.2% of total emissions but only 9.5% of the total pond area on average. Ice and snow on frozen ponds served as a cap, prohibiting VOC from being emitted into the atmosphere. Emissions of benzene, toluene, and other aromatic VOCs averaged over 150 mg m-2 h-1 from unfrozen pond surfaces. These compounds are highly reactive and, because of their relatively high water solubility, tend to concentrate in produced water. The average methanol emission rate from unfrozen pond surfaces was more than 100 mg m-2 h-1. Methanol, used as an antifreeze and anti-scaler in the oil and gas industry, is abundant during winter inversions in the Uintah Basin and may also be a significant precursor to ozone production. Total VOC and methanol emissions from produced water ponds during winter were estimated to be 178 and 83 tons month-1, respectively, for the entire Uintah Basin.
Potentiometric surfaces of the intermediate aquifer system, west-central Florida, May, 1993
Mularoni, R.A.
1994-01-01
The intermediate aquifer system underlies a 5000-sq-mi area including De Soto, Sarasota, Hardee, Manatee, and parts of Charlotte, Hillsborough, Highlands, and Polk Counties, Florida. It is overlain by the surf@cial aquifer system and underlain by the Floridan aquifer system. The potentiometric surface of the intermediate aquifer system was mapped by determining the altitude of water levels in a network of wells and represented on a map by contours that connect points of equal altitude. This map represents water-level conditions near the end of the spring dry season when ground- water withdrawals for agricultural use were high. The cumulative rainfall for the study area was 4.84 inches above normal for the period from June 1992 to May 1993. Hydrographs for selected wells indicated that the annual and seasonal fluctuations of the water levels were generally large (greater than 15 feet) in the central interior region where water demand for irrigation is high during the fall and spring. Seasonal fluctuations were smaller in the northern recharge area where water use is predominantly for public supply. Water levels measured in May 1993 for the composite intermediate aquifer potentiometric surface were lower than those measured in May or September 1992. A cone of depression exists in the potentiometric surface for the composite aquifer system at Warm Mineral Springs, which is a natural discharge point from this system.
NASA Astrophysics Data System (ADS)
Huang, K.; Oppo, D.; Curry, W. B.
2012-12-01
Reconstruction of changes in Antarctic Intermediate Water (AAIW) circulation across the last deglaciation is critical in constraining the links between AAIW and Atlantic Meridional Overturning Circulation (AMOC) and understanding how AAIW influences oceanic heat transport and carbon budget across abrupt climate events. Here we systematically establish in situ calibrations for carbonate saturation state (B/Ca), nutrient (Cd/Ca and δ13C) and watermass proxies (ɛNd) in foraminifera using multicore tops and ambient seawater samples collected from the Demerara Rise, western tropical Atlantic. Through the multi-proxy reconstructions, deglacial variability of intermediate water circulation in the western tropical Atlantic can be further constrained. The reconstructed seawater Cd record from the Demerara Rise sediment core (KNR197-3-46CDH, at 947 m water depth) over the last 21 kyrs suggests reduced presence of AAIW during the cold intervals (LGM, H1 and YD) when AMOC was reduced. Down-core B/Ca record shows elevated intermediate water Δ[CO32-] during these cold intervals, further indicating a weaker influence of AAIW in the western tropical Atlantic. The δ13C record exhibits a pronounced deglacial minimum and a clear decoupling between δ13C and Cd/Ca after the AMOC completely recovered at around 8 kyr BP. This could be due to the carbonate ion effect on benthic Cd/Ca or the influence of organic matter remineralization on benthic δ13C. A new ɛNd record for the last deglaciation will be provided to evaluate the relative proportions of southern and northern waters at this intermediate site in the western tropical Atlantic.
Foods of Spectacled Eiders Somateria fischeri in the Bering Sea, Alaska
Petersen, M.R.; Piatt, John F.; Trust, K.A.
1998-01-01
The winter diet of Spectacled Eiders living in marine habitats is known only from two individuals described by Cottam (1939). Here we examine marine diets from 36 stomachs collected near St. Lawrence Island, Bering Sea, Alaska, during May-June in 1987 and 1992. All Spectacled Eiders ate Mollusca, including Gastropoda (snails; frequency of occurrence 20.0%; sole taxon 0.0%) and Bivalvia (bivalves; 80.0%; 48.0%), and Crustacea (barnacles, amphipods and crabs; 30.6%; 0.0%). One bird ate a cod. The predominant species group eaten was Macoma Clams (72.0%; 36.0%). Prey species of Spectacled Eiders occur predominantly in waters 25-60 m deep in the Bering Sea. To obtain these prey, especially the bivalves, on the winter area Spectacled Eiders must forage in waters exceeding 40 m. We speculate that Spectacled Eiders regularly forage at depths of 45-70 m throughout winter.
Potential impacts of seasonal variation on atrazine and metolachlor persistence in andisol soil.
Jaikaew, Piyanuch; Boulange, Julien; Thuyet, Dang Quoc; Malhat, Farag; Ishihara, Satoru; Watanabe, Hirozumi
2015-12-01
To estimate the potential effect of seasonal variation on the fate of herbicides in andisol soil, atrazine and metolachlor residues were investigated through the summer and winter seasons during 2013 and 2014 under field condition. The computed half-lives of atrazine and metolachlor in soil changed significantly through the two seasons of the trial. The half-lives were shorter in summer season with 16.0 and 23.5 days for atrazine and metolachlor, respectively. In contrast, the half-lives were longer during the winter season with 32.7 and 51.8 days for atrazine and metolachlor, respectively. The analysis of soil water balance suggested that more pesticide was lost in deeper soil layers through infiltration in summer than in winter. In addition, during the summer season, metolachlor was more likely to leach into deeper soil layer than atrazine possibly due to high water solubility of metolachlor.
NASA Astrophysics Data System (ADS)
Kowalczuk, Piotr; Meler, Justyna; Kauko, Hanna M.; Pavlov, Alexey K.; Zabłocka, Monika; Peeken, Ilka; Dybwad, Christine; Castellani, Giulia; Granskog, Mats A.
2017-06-01
We have quantified absorption by CDOM, aCDOM(λ), particulate matter, ap(λ), algal pigments, aph(λ), and detrital material, aNAP(λ), coincident with chlorophyll a in sea ice and surface waters in winter and spring 2015 in the Arctic Ocean north of Svalbard. The aCDOM(λ) was low in contrast to other regions of the Arctic Ocean, while ap(λ) has the largest contribution to absorption variability in sea ice and surface waters. ap(443) was 1.4-2.8 times and 1.3-1.8 times higher than aCDOM(443) in surface water and sea ice, respectively. aph(λ) contributed 90% and 81% to ap(λ), in open leads and under-ice waters column, and much less (53%-74%) in sea ice, respectively. Both aCDOM(λ) and ap(λ) followed closely the vertical distribution of chlorophyll a in sea ice and the water column. We observed a tenfold increase of the chlorophyll a concentration and nearly twofold increase in absorption at 443 nm in sea ice from winter to spring. The aCDOM(λ) dominated the absorption budget in the UV both in sea ice and surface waters. In the visible range, absorption was dominated by aph(λ), which contributed more than 50% and aCDOM(λ), which contributed 43% to total absorption in water column. Detrital absorption contributed significantly (33%) only in surface ice layer. Algae dynamics explained more than 90% variability in ap(λ) and aph(λ) in water column, but less than 70% in the sea ice. This study presents detailed absorption budget that is relevant for modeling of radiative transfer and primary production.
Southwell, Colin; Emmerson, Louise; Lunn, Daniel
2018-01-01
Polar seabirds adopt different over-wintering strategies to survive and build condition during the critical winter period. Penguin species either reside at the colony during the winter months or migrate long distances. Tracking studies and survey methods have revealed differences in winter migration routes among penguin species and colonies, dependent on both biotic and abiotic factors present. However, scan sampling methods are rarely used to reveal non-breeding behaviors during winter and little is known about presence at the colony site over this period. Here we show that Adélie penguins on the Yalour Islands in the Western Antarctic Peninsula (WAP) are present year-round at the colony and undergo a mid-winter peak in abundance during winter. We found a negative relationship between daylight hours and penguin abundance when either open water or compact ice conditions were present, suggesting that penguins return to the breeding colony when visibility is lowest for at-sea foraging and when either extreme low or high levels of sea ice exist offshore. In contrast, Adélie penguins breeding in East Antarctica were not observed at the colonies during winter, suggesting that Adélie penguins undergo differential winter strategies in the marginal ice zone on the WAP compared to those in East Antarctica. These results demonstrate that cameras can successfully monitor wildlife year-round in areas that are largely inaccessible during winter. PMID:29561876
Chen, Mengbin; Chou, Wayne K W; Al-Lami, Naeemah; Faraldos, Juan A; Allemann, Rudolf K; Cane, David E; Christianson, David W
2016-05-24
Aristolochene synthase (ATAS) is a high-fidelity terpenoid cyclase that converts farnesyl diphosphate exclusively into the bicyclic hydrocarbon aristolochene. Previously determined crystal structures of ATAS complexes revealed trapped active site water molecules that could potentially interact with catalytic intermediates: water "w" hydrogen bonds with S303 and N299, water molecules "w1" and "w2" hydrogen bond with Q151, and a fourth water molecule coordinates to the Mg(2+)C ion. There is no obvious role for water in the ATAS mechanism because the enzyme exclusively generates a hydrocarbon product. Thus, these water molecules are tightly controlled so that they cannot react with carbocation intermediates. Steady-state kinetics and product distribution analyses of eight ATAS mutants designed to perturb interactions with active site water molecules (S303A, S303H, S303D, N299A, N299L, N299A/S303A, Q151H, and Q151E) indicate relatively modest effects on catalysis but significant effects on sesquiterpene product distributions. X-ray crystal structures of S303A, N299A, N299A/S303A, and Q151H mutants reveal minimal perturbation of active site solvent structure. Seven of the eight mutants generate farnesol and nerolidol, possibly resulting from addition of the Mg(2+)C-bound water molecule to the initially formed farnesyl cation, but no products are generated that would suggest enhanced reactivity of other active site water molecules. However, intermediate germacrene A tends to accumulate in these mutants. Thus, apart from the possible reactivity of Mg(2+)C-bound water, active site water molecules in ATAS are not directly involved in the chemistry of catalysis but instead contribute to the template that governs the conformation of the flexible substrate and carbocation intermediates.
Sasaki, Yosuke; Uematsu, Mizuho; Kitahara, Go; Osawa, Takeshi
2016-12-01
The Japanese Black is the most common breed of beef cattle in Japan. However, only limited data are available on the associations of season, parity, and herd size with reproductive performance in Japanese Black cattle. Therefore, the objective of the present study was to determine the associations of these factors with reproductive performance parameters, such as the calving to first service interval (CFSI) and first service conception rate in Japanese Black cattle. Data were collected from 34,763 calvings in 13,186 animals from 826 commercial cow-calf operations in the Miyazaki prefecture, which is located on the south eastern coast of Kyushu, Japan. This region has a temperate climate with warm humid summers and cold winters. All cattle were reared intensively, and the animals were housed in free stalls throughout their lives. The mean number of cows per farm was 18 (range, 1-454). All animals were bred by artificial insemination. Herds were classified into three groups based on size: small (≤10 cows), intermediate (11-50 cows), and large (≥51 cows). The mean (±SD) parity, CFSI, and the first service conception rate were 4.9 ± 2.9, 80.0 ± 46.2 days, and 53.5 ± 49.9%, respectively. Cows that calved in the spring (March to May) and winter (December to February) had the longest CFSI (P < 0.05). The CFSI in first-parity cows was shorter than in cows at parity 7 or higher (P < 0.05). Cows in large herds had an approximately 10 days shorter mean CFSI than those in small herds (P < 0.05). Cows inseminated in the winter or spring had an approximately 5% points lesser first-service conception rate (FSCR) than those inseminated during the summer (June to August) or autumn (September to November; P < 0.05). As parity increased from 1 to 9, FSCR decreased from 60.0% to 43.1% (P < 0.05). Cows in small herds had a lesser FSCR than those in intermediate and large herds (P < 0.05). In summary, decreased reproductive performance in intensively reared Japanese Black cattle was associated with calving and artificial insemination during the winter and spring, greater parity, and small herd size. Copyright © 2016 Elsevier Inc. All rights reserved.
White, Charlotte A.; Sylvester-Bradley, Roger; Berry, Peter M.
2015-01-01
Root length density (RLD) was measured to 1 m depth for 17 commercial crops of winter wheat (Triticum aestivum) and 40 crops of winter oilseed rape [Brassica napus; oilseed rape (OSR)] grown in the UK between 2004 and 2013. Taking the critical RLD (cRLD) for water capture as 1cm cm–3, RLDs appeared inadequate for full water capture on average below a depth of 0.32 m for winter wheat and below 0.45 m for OSR. These depths compare unfavourably (for wheat) with average depths of ‘full capture’ of 0.86 m and 0.48 m, respectively, determined for three wheat crops and one OSR crop studied in the 1970s and 1980s, and treated as references here. A simple model of water uptake and yield indicated that these shortfalls in wheat and OSR rooting compared with the reference data might be associated with shortfalls of up to 3.5 t ha–1 and 1.2 t ha–1, respectively, in grain yields under water-limited conditions, as increasingly occur through climate change. Coupled with decreased summer rainfall, poor rooting of modern arable crops could explain much of the yield stagnation that has been observed on UK farms since the 1990s. Methods of monitoring and improving rooting under commercial conditions are reviewed and discussed. PMID:25750427
Seasonal variation of the water exchange through the Bohai Strait
NASA Astrophysics Data System (ADS)
Zhang, Z.
2016-02-01
Seasonal variations of the Lubei coastal current off the northern Shandong Peninsula and water exchange between the Bohai and Yellow seas were analyzed, based on current and salinity data measured mainly in 2006, 2007 and 2012. In winter and autumn, the Lubei coastal current flows eastward through the Bohai Strait before ultimately heading southward into the waters off Chengshantou in the east of the Shandong Peninsula. In spring and summer, the Lubei coastal current disappears. There are three kinds of patterns of water exchange between the Bohai and Yellow seas. The first is the "inflow in the north and outflow in the south of the Bohai Strait" in winter and autumn, which is regarded as the permanent pattern during the whole year from literature. The second is "outflow in the surface layer and inflow in the underlying layer" in summer, where the outflow is significantly greater than the inflow related with increased runoff and precipitation. The third is "inflow together in the southern and northern channels of the Bohai Strait" in spring. The low mean sea level and N-S sea-level incline formed in winter in the Bohai Sea lose their dynamic balance because of the reversal of the northeast monsoon in spring. This forces the water from the northern Yellow Sea into the Bohai Sea via the southern and northern channels of the Bohai Strait, which constitutes the largest net inflow of the four seasons.
Rosales-Hoz, Leticia; Carranza-Edwards, Arturo; Martinez-Serrano, Raymundo G; Alatorre, Miguel Angel; Armstrong-Altrin, John S
2015-04-01
Two oceanographic cruises were taken during the winter (SAV I, November and December 2007) and summer (SAV II, July and August 2008) across the mouth of the Papaloapan River in the Gulf of Mexico. Surficial sediment samples were collected from shallow (16-30 m), intermediate (30 to 80 m), and deeper areas (≥300 m). Shallow water sediments are coarser, better-sorted, and primarily composed of sands during the winter, while those found in the summer are finer. At depths greater than 30 m, sediments are primarily fine-grained no matter the season. Major element analysis from shallow areas indicates higher SiO2 concentrations during the windy season with negative correlation against Al2O3 during both seasons, following the respective abundances of sand and muds. High organic carbon content was observed in shallow areas during the summer. Trace metals V, Ni, Cu, Zn, Pb, Li, Cr, Co, and Ba were evaluated. The first six metals showed higher average concentration in the deeper areas, although the highest values at some individual sampling sites for Cr, Co, Cu, and Ba were observed in the coastal area. Factor and cluster analysis were used to explain the sediment distribution pattern and the factors that determine the sediment characteristics within the study area. In shallow areas, four clusters were observed during the winter and five during the summer. The geochemical characteristics of the samples in each cluster suggest association with fluvial sediment input, textural characteristics, heavy minerals, and Cu and Ba concentration. To evaluate the variations in heavy metal concentration, metal enrichment factors (EFs) were calculated. Enrichment in V, Cr, Co, Zn, Ba, and Pb was detected at certain sites, whereas Cu behaved differently. The distribution of Cu enrichment suggests that it may be of natural origin, associated with the lithology of the volcanic continental area. The minor enrichment observed for other elements may be associated with river discharge. According to sediment quality guidelines, trace metal concentrations of Cu, Pb, and Zn present occasional risks to aquatic organisms.
Silva-Cancino, María Carolina; Esteban, Raquel; Artetxe, Unai; Plazaola, José Ignacio García
2012-03-01
High irradiance and relatively low temperature, which characterize Mediterranean winters, cause chilling stress in plants. Downregulation of photosynthetic efficiency is a mechanism that allows plants to survive these conditions. This study aims to address whether this process shows a regular spatial pattern across leaf surface or not. Three species (Buxus sempervirens, Cistus albidus and Arctostaphylos uva-ursi) with contrasting responses to winter stress were studied. During 7 days, macro and micro Fv/Fm spatial patterns were monitored by the use of chlorophyll fluorescence imaging techniques. In the field, the strongest photoinhibition was found in B. sempervirens, while there was almost no chronic photoinhibition in C. albidus. In leaves of the first species, Fv/Fm decreased from base to tip while in C. albidus it was uniform over the leaf lamina. An intermediate behavior is shown by A. uva-ursi leaves. Spatial heterogeneity distribution of Fv/Fm was found inside the leaves, resulting in greater Fv/Fm values in the inner layers than in the outer ones. Neither xanthophyll-linked downregulation of Fv/Fm nor protein remobilization were the reasons for such spatial patterns since pigment composition and nitrogen content did not reveal tip-base differences. During recovery from winter, photoinhibition changes occurred in Fv/Fm, pigments and chloroplast ultrastructure. This work shows for the first time that irrespective of physiological mechanisms responsible for development of winter photoinhibition, there is an acclimation response with strong spatio-temporal variability at leaf level in some species. This observation should be taken into account when modeling or scaling up photosynthetic responses. Copyright © Physiologia Plantarum 2011.
Khrimian, Ashot; Lance, David R; Mastro, Victor C; Elkinton, Joseph S
2010-02-10
The winter moth, Operophtera brumata (Lepidoptera: Geometridae), is an early-season defoliator that attacks a wide variety of hardwoods and, in some cases, conifers. The insect is native to Europe but has become established in at least three areas of North America including southeastern New England. The female-produced sex attractant pheromone of the winter moth was identified as (3Z,6Z,9Z)-1,3,6,9-nonadecatetraene (1), which also attracts a native congener, the Bruce spanworm, Operophtera bruceata . Dissection, or (for certainty) DNA molecular testing, is required to differentiate between males of the two species. Thus, a trapping method that is selective for winter moth would be desirable. A geometric isomer of the pheromone, (3E,6Z,9Z)-1,3,6,9-nonadecatetraene (2), can reportedly inhibit attraction of Bruce spanworm to traps without affecting winter moth catch, but use of the pheromone and inhibitor together has not been optimized, nor has the synthesis of the inhibitor. This paper presents two new syntheses of the inhibitor (3E,6Z,9Z)-1,3,6,9-nonadecatetraene based on the intermediate (3Z,6Z)-3,6-hexadecadien-1-ol (4), which has also been utilized in the synthesis of the pheromone. The syntheses combine traditional acetylenic chemistry and Wittig olefination reactions. In one approach, 2 was synthesized in 80% purity (20% being pheromone 1), and in the second, tetraene 2 of 96% purity (and free of 1) was produced in 25% overall yield from dienol 4. The last method benefitted from a refined TEMPO-mediated PhI(OAc)(2) oxidation of 4 and a two-carbon homologation of the corresponding aldehyde 7.
Processes Controlling Water Vapor in the Winter Arctic Tropopause Region
NASA Technical Reports Server (NTRS)
Pfister, Leonhard; Selkirk, Henry B.; Jensen, Eric J.; Podolske, James; Sachse, Glen; Avery, Melody; Schoeberl, Mark R.; Hipskino, R. Stephen (Technical Monitor)
2001-01-01
This work describes transport and thermodynamic processes that control water vapor near the tropopause during the SAGE Ozone Loss and Validation Experiment (SOLVE), held during the Arctic 1999-2000 winter season. Aircraft based water vapor, carbon monoxide, and ozone measurements are analyzed so as to establish how deeply tropospheric air mixes into the arctic lower-most stratosphere, and what the implications are for cloud formation and water vapor removal in this region of the atmosphere. There are three major findings. First, troposphere-to- stratosphere exchange extends into the arctic stratosphere to about 13 km. Penetration is to similar levels throughout the winter, however, because ozone increases idly in the early spring, tropospheric air mixes with the highest values of ozone in that season. The effect of this upward mixing is to elevate water vapor mixing ratios significantly above their prevailing stratospheric values of about 5 ppmv. Second, the potential for cloud formation in the stratosphere is highest during early spring, with about 20\\% of the parcels which have ozone values of 300-350ppbv experiencing ice saturation in a given 10 day period. Third, during early Spring temperatures at the tropopause are cold enough so that 5-10\\% of parcels experience relative humidities above 100\\%, even if the water content is as low as 5 ppmv. The implication is that during, this period the arctic tropopause can play an important role in maintaining a very dry upper troposphere during early Spring.
Processes Controlling Water Vapor in the Winter Arctic Tropopause Region
NASA Technical Reports Server (NTRS)
Pfister, Leonhard; Selkirk, Henry B.; Jensen, Eric J.; Padolske, James; Sachse, Glen; Avery, Melody; Schoeberl, Mark R.; Mahoney, Michael J.; Richard, Erik
2002-01-01
This work describes transport and thermodynamic processes that control water vapor near the tropopause during the SAGE III-Ozone Loss and Validation Experiment (SOLVE), held during the Arctic 1999/2000 winter season. Aircraft-based water vapor, carbon monoxide, and ozone measurements were analyzed so as to establish how deeply tropospheric air mixes into the Arctic lowermost stratosphere and what the implications are for cloud formation and water vapor removal in this region of the atmosphere. There are three major findings. First, troposphere-to-stratosphere exchange extends into the Arctic stratosphere to about 13 km. Penetration is to similar levels throughout the winter, however, because ozone increases with altitude most rapidly in the early spring, tropospheric air mixes with the highest values of ozone in that season. The effect of this upward mixing is to elevate water vapor mixing ratios significantly above their prevailing stratospheric values of above 5ppmv. Second, the potential for cloud formation in the stratosphere is highest during early spring, with about 20% of the parcels which have ozone values of 300-350 ppbv experiencing ice saturation in a given 10 day period. Third, during early spring, temperatures at the troposphere are cold enough so that 5-10% of parcels experience relative humidities above 100%, even if the water content is as low as 5 ppmv. The implication is that during this period, dynamical processes near the Arctic tropopause can dehydrate air and keep the Arctic tropopause region very dry during early spring.
Influences of herbivory and water on willow in elk winter range
Zeigenfuss, L.C.; Singer, F.J.; Williams, S.A.; Johnson, T.L.
2002-01-01
Elimination of large predators and reduced hunter harvest have led to concerns that an increasing elk (Cervus elaphus) population may be adversely affecting vegetation on the low-elevation elk winter range of Rocky Mountain National Park, Colorado, USA. Beaver (Castor canadensis) and their impoundments also have declined dramatically (94%) in the same area over the past 50 years coincident with a 20% decline in willow (Salix spp.) cover. From 1994 to 1998, we studied vegetation production responses of willow communities to elk herbivory and water availability. We estimated willow production by measuring current annual growth of shrubs in 9.3-m2 circular plots, and we measured herbaceous production by clipping vegetation within 0.25-m2 circular plots. Elk herbivory suppressed willow heights, leader lengths, annual production, and herbaceous productivity of willow communities. Water impoundment had a positive effect on herbaceous plant production, but little effect on shrubs, possibly because water tables were naturally high on the study sites even without beaver dams. Nevertheless, the winter range environment previously included more riparian willow habitat because of more stream area (47-69%) due to larger beaver populations. Elk herbivory appears to be the dominant force determining vegetation productivity in willow sites, but the effects may be exacerbated by lowered water tables. Fewer elk or protection from browsing, and water enhancement for <10 years along with management to encourage elk movement away from willow communities, could possibly work as strategies to reestablish sustainable willow communities.
Seasonal variations of thermocline circulation and ventilation in the Indian Ocean
NASA Astrophysics Data System (ADS)
You, Yuzhu
1997-05-01
Two seasonal hydrographic data sets, including temperature, salinity, dissolved oxygen, and nutrients, are used in a mixing model which combines cluster analysis with optimum multiparameter analysis to determine the spreading and mixing of the thermocline waters in the Indian Ocean. The mixing model comprises a system of four major source water masses, which were identified in the thermocline through cluster analysis. They are Indian Central Water (ICW), North Indian Central Water (NICW) interpreted as aged ICW, Australasian Mediterranean Water (AAMW), and Red Sea Water (RSW)/Persian Gulf Water (PGW). The mixing ratios of these water masses are quantified and mapped on four isopycnal surfaces which span the thermocline from 150 to 600 m in the northern Indian Ocean, on two meridional sections along 60°E and 90°E, and on two zonal sections along 10°S and 6°N. The mixing ratios and pathways of the thermocline water masses show large seasonal variations, particularly in the upper 400-500 m of the thermocline. The most prominent signal of seasonal variation occurs in the Somali Current, the western boundary current, which appears only during the SW (summer) monsoon. The northward spreading of ICW into the equatorial and northern Indian Ocean is by way of the Somali Current centered at 300-400 m on the σθ=26.7 isopycnal surface during the summer monsoon and of the Equatorial Countercurrent during the NE (winter) monsoon. More ICW carried into the northern Indian Ocean during the summer monsoon is seen clearly in the zonal section along 6°N. NICW spreads southward through the western Indian Ocean and is stronger during the winter monsoon. AAMW appears in both seasons but is slightly stronger during the summer in the upper thermocline. The westward flow of AAMW is by way of the South Equatorial Current and slightly bends to the north on the σθ=26.7 isopycnal surface during the summer monsoon, indicative of its contribution to the western boundary current. Outflow of RSW/PGW seems effectively blocked by the continuation of strong northward jet of the Somali Current along the western Arabian Sea during the summer, giving a rather small contribution of only up to 20% in the Arabian Sea. A schematic summer and winter thermocline circulation emerges from this study. Both hydrography and water - mass mixing ratios suggest that the contribution of the water from the South Indian Ocean and from the Indo-Pacific through flow controls the circulation and ventilation in the western boundary region during the summer. However, during the winter the water is carried into the eastern boundary by the Equatorial Countercurrent and leaks into the eastern Bay of Bengal, from where the water is advected into the northwestern Indian Ocean by the North Equatorial Current. The so-called East Madagascar Current as a southward flow occurs only during the summer, as is suggested by both hydrography and water-mass mixing patterns from this paper. During the winter (austral summer) the current seems reversal to a northward flow along east of Madagascar, somewhat symmetrical to the Somali Current in the north.
A female hooded merganser swims in the waters of KSC
NASA Technical Reports Server (NTRS)
1999-01-01
A female hooded merganser swims solo in the waters of the Merritt Island National Wildlife Refuge at Kennedy Space Center. The male is distinguished by a fan-shaped, black-bordered crest and striped breast. Usually found from Alaska and Canada south to Nebraska, Oregon and Tennessee, hooded mergansers winter south to Mexico and the Gulf Coast, including KSC. The open water of the refuge provides wintering areas for 23 species of migratory waterfowl, as well as a year-round home for great blue herons, great egrets, wood storks, cormorants, brown pelicans and other species of marsh and shore birds. The 92,000-acre refuge is also habitat for more than 310 species of birds, 25 mammals, 117 fishes and 65 amphibians and reptiles.
Hooded mergansers swim in the waters of KSC
NASA Technical Reports Server (NTRS)
1999-01-01
A male and two female hooded mergansers swim in the waters of the Merritt Island National Wildlife Refuge at Kennedy Space Center. The male displays its distinctive fan-shaped, black-bordered crest. Usually found from Alaska and Canada south to Nebraska, Oregon and Tennessee, hooded mergansers winter south to Mexico and the Gulf Coast, including KSC. The open water of the refuge provides wintering areas for 23 species of migratory waterfowl, as well as a year-round home for great blue herons, great egrets, wood storks, cormorants, brown pelicans and other species of marsh and shore birds. The 92,000-acre refuge is also habitat for more than 310 species of birds, 25 mammals, 117 fishes and 65 amphibians and reptiles.
A male hooded merganser swims in the waters of KSC
NASA Technical Reports Server (NTRS)
1999-01-01
The distinctive fan-shaped, black-bordered crest and striped breast identify this hooded merganser, swimming in the waters of the Merritt Island National Wildlife Refuge at Kennedy Space Center. Usually found from Alaska and Canada south to Nebraska, Oregon and Tennessee, hooded mergansers winter south to Mexico and the Gulf Coast, including KSC. The open water of the refuge provides wintering areas for 23 species of migratory waterfowl, as well as a year-round home for great blue herons, great egrets, wood storks, cormorants, brown pelicans and other species of marsh and shore birds. The 92,000-acre refuge is also habitat for more than 310 species of birds, 25 mammals, 117 fishes and 65 amphibians and reptiles.
Neiman, P.J.; Ralph, F.M.; Wick, G.A.; Lundquist, J.D.; Dettinger, M.D.
2008-01-01
The pre-cold-frontal low-level jet within oceanic extratropical cyclones represents the lower-tropospheric component of a deeper corridor of concentrated water vapor transport in the cyclone warm sector. These corridors are referred to as atmospheric rivers (ARs) because they are narrow relative to their length scale and are responsible for most of the poleward water vapor transport at midlatitudes. This paper investigates landfalling ARs along adjacent north- and south-coast regions of western North America. Special Sensor Microwave Imager (SSM/ I) satellite observations of long, narrow plumes of enhanced integrated water vapor (IWV) were used to detect ARs just offshore over the eastern Pacific from 1997 to 2005. The north coast experienced 301 AR days, while the south coast had only 115. Most ARs occurred during the warm season in the north and cool season in the south, despite the fact that the cool season is climatologically wettest for both regions. Composite SSM/I IWV analyses showed landfalling wintertime ARs extending northeastward from the tropical eastern Pacific, whereas the summertime composites were zonally oriented and, thus, did not originate from this region of the tropics. Companion SSM/I composites of daily rainfall showed significant orographic enhancement during the landfall of winter (but not summer) ARs. The NCEP-NCAR global reanalysis dataset and regional precipitation networks were used to assess composite synoptic characteristics and overland impacts of landfalling ARs. The ARs possess strong vertically integrated horizontal water vapor fluxes that, on average, impinge on the West Coast in the pre-cold-frontal environment in winter and post-cold-frontal environment in summer. Even though the IWV in the ARs is greater in summer, the vapor flux is stronger in winter due to much stronger flows associated with more intense storms. The landfall of ARs in winter and north-coast summer coincides with anomalous warmth, a trough offshore, and ridging over the Intermountain West, whereas the south-coast summer ARs coincide with relatively cold conditions and a near-coast trough. ARs have a much more profound impact on near-coast precipitation in winter than summer, because the terrain-normal vapor flux is stronger and the air more nearly saturated in winter. During winter, ARs produce roughly twice as much precipitation as all storms. In addition, wintertime ARs with the largest SSM/I IWV are tied to more intense storms with stronger flows and vapor fluxes, and more precipitation. ARs generally increase snow water equivalent (SWE) in autumn/winter and decrease SWE in spring. On average, wintertime SWE exhibits normal gains during north-coast AR storms and above-normal gains during the south-coast AR storms. The north-coast sites are mostly lower in altitude, where warmer-than-normal conditions more frequently yield rain. During those events when heavy rain from a warm AR storm falls on a preexisting snowpack, flooding is more likely to occur. ?? 2008 American Meteorological Society.
Winter distribution and survival of a high-desert breeding population of canvasbacks
Kruse, K.L.; Lovvorn, J.R.; Takekawa, John Y.; MacKay, J.
2003-01-01
The southernmost major breeding area of Canvasbacks (Aythya valisineria) is located at the Ruby Lake National Wildlife Refuge, Nevada, in the high desert of the western Great Basin. We determined winter distributions, recovery rates, and survival for Canvasbacks banded in Nevada from March to November, 1968–2000. Winter recovery distributions did not differ by sex or age, but differed between direct recoveries (same year as banding) and indirect recoveries (after year of banding), indicating variable site use between years. Of direct band returns (October–March), 92% were from the Pacific Flyway and 56% were from California alone. In California, recovery distributions shifted from southern California and the San Francisco Bay estuary in the 1970s to the Central Valley in the 1980s and 1990s. In the 1990s, there were no recoveries in San Francisco Bay, historically the major wintering area for Canvasbacks in the Pacific Flyway. Adult and juvenile survival decreased by 24% between the 1980s and 1990s. Ruby Lake Canvasbacks exhibited weaker fidelity to wintering sites than Canvasbacks wintering on the Atlantic and Gulf coasts. Moreover, no major concentrations occurred during fall migration, unlike patterns in eastern North America. Shifts in distribution and survival may correspond to effects of El Niño weather on habitat conditions in Nevada and San Francisco Bay, and to major improvements in water delivery and wetland restoration in the Central Valley. Canvasbacks that use widely distributed and variable habitats may be good indicators of the effects of changing climate and water-use practices on waterbirds throughout this arid region.
NASA Astrophysics Data System (ADS)
Leppi, Jason C.; Arp, Christopher D.; Whitman, Matthew S.
2016-02-01
Overwintering habitat for Arctic freshwater fish is essential, such that understanding the distribution of winter habitat quality at the landscape-scale is warranted. Adequate dissolved oxygen (DO) is a major factor limiting habitat quality in the Arctic region where ice cover can persist for 8 months each year. Here we use a mixed-effect model developed from 20 lakes across northern Alaska to assess which morphology and landscape attributes can be used to predict regional overwintering habitat quality. Across all lakes, we found that the majority of the variations in late winter DO can be explained by lake depth and littoral area. In shallow lakes (<4 m), we found evidence that additional variables such as elevation, lake area, ice cover duration, and snow depth were associated with DO regimes. Low DO regimes were most typical of shallow lakes with large littoral areas and lakes that had high DO regimes often were lakes with limited littoral areas and deeper water. Our analysis identifies metrics that relate to late winter DO regimes in Arctic lakes that can aid managers in understanding which lakes will likely provide optimum DO for overwintering habitat. Conversely, lakes which predicted to have marginal winter DO levels may be vulnerable to disturbances that could lower DO below critical thresholds to support sensitive fish. In regions where lakes are also used by humans for industrial winter water supply, such as ice-road construction for oil and gas development, these findings will be vital for the management of resources and protection of Arctic fish.
Leppi, Jason C; Arp, Christopher D; Whitman, Matthew S
2016-02-01
Overwintering habitat for Arctic freshwater fish is essential, such that understanding the distribution of winter habitat quality at the landscape-scale is warranted. Adequate dissolved oxygen (DO) is a major factor limiting habitat quality in the Arctic region where ice cover can persist for 8 months each year. Here we use a mixed-effect model developed from 20 lakes across northern Alaska to assess which morphology and landscape attributes can be used to predict regional overwintering habitat quality. Across all lakes, we found that the majority of the variations in late winter DO can be explained by lake depth and littoral area. In shallow lakes (<4 m), we found evidence that additional variables such as elevation, lake area, ice cover duration, and snow depth were associated with DO regimes. Low DO regimes were most typical of shallow lakes with large littoral areas and lakes that had high DO regimes often were lakes with limited littoral areas and deeper water. Our analysis identifies metrics that relate to late winter DO regimes in Arctic lakes that can aid managers in understanding which lakes will likely provide optimum DO for overwintering habitat. Conversely, lakes which predicted to have marginal winter DO levels may be vulnerable to disturbances that could lower DO below critical thresholds to support sensitive fish. In regions where lakes are also used by humans for industrial winter water supply, such as ice-road construction for oil and gas development, these findings will be vital for the management of resources and protection of Arctic fish.
Intermediate water circulation in the North Pacific subarctic and northern subtropical regions
NASA Astrophysics Data System (ADS)
Ueno, Hiromichi; Yasuda, Ichiro
2003-11-01
The intermediate water circulation in the North Pacific subarctic and northern subtropical regions is investigated through inverse analysis, focusing on the volume and heat transports from the subtropical to the subarctic regions. The inverse method we adopted is a hybrid method of β-spiral and box inverse methods which permits diapycnal flux. The isopycnal velocities estimated through the inverse analysis are mostly consistent with the oxygen distribution and support the hypothesis that warm and saline intermediate water is transported from the transition domain east of Japan to the northern Gulf of Alaska. The northward volume transport across 46°N between 158°E and 130°W is estimated to be -0.2 to 5.3 Sv in the density range of 26.7-27.2σθ. The upward diapycnal transports in the open subarctic North Pacific (region N) across 26.7 and 27.2σθ isopycnal surfaces are estimated to be 0.2 to 1.5 Sv and -0.2 to 0.9 Sv, respectively. Part of the water transported upward across 26.7σθ might outcrop and be carried to the subtropical region by the southward Ekman drift. Through the examination of heat balance of the intermediate layer in the subarctic region, it is suggested quantitatively that the intermediate heat transport from the south plays an essential role in maintaining the heat of the mesothermal waters in the subarctic region.
Important fossil source contribution to brown carbon in Beijing during winter
NASA Astrophysics Data System (ADS)
Yan, Caiqing; Zheng, Mei; Bosch, Carme; Andersson, August; Desyaterik, Yury; Sullivan, Amy P.; Collett, Jeffrey L.; Zhao, Bin; Wang, Shuxiao; He, Kebin; Gustafsson, Örjan
2017-03-01
Organic aerosol (OA) constitutes a substantial fraction of fine particles and affects both human health and climate. It is becoming clear that OA absorbs light substantially (hence termed Brown Carbon, BrC), adding uncertainties to global aerosol radiative forcing estimations. The few current radiative-transfer and chemical-transport models that include BrC primarily consider sources from biogenic and biomass combustion. However, radiocarbon fingerprinting here clearly indicates that light-absorbing organic carbon in winter Beijing, the capital of China, is mainly due to fossil sources, which contribute the largest part to organic carbon (OC, 67 ± 3%) and its sub-constituents (water-soluble OC, WSOC: 54 ± 4%, and water-insoluble OC, WIOC: 73 ± 3%). The dual-isotope (Δ14C/δ13C) signatures, organic molecular tracers and Beijing-tailored emission inventory identify that this fossil source is primarily from coal combustion activities in winter, especially from the residential sector. Source testing on Chinese residential coal combustion provides direct evidence that intensive coal combustion could contribute to increased light-absorptivity of ambient BrC in Beijing winter. Coal combustion is an important source to BrC in regions such as northern China, especially during the winter season. Future modeling of OA radiative forcing should consider the importance of both biomass and fossil sources.
Important fossil source contribution to brown carbon in Beijing during winter
Yan, Caiqing; Zheng, Mei; Bosch, Carme; Andersson, August; Desyaterik, Yury; Sullivan, Amy P.; Collett, Jeffrey L.; Zhao, Bin; Wang, Shuxiao; He, Kebin; Gustafsson, Örjan
2017-01-01
Organic aerosol (OA) constitutes a substantial fraction of fine particles and affects both human health and climate. It is becoming clear that OA absorbs light substantially (hence termed Brown Carbon, BrC), adding uncertainties to global aerosol radiative forcing estimations. The few current radiative-transfer and chemical-transport models that include BrC primarily consider sources from biogenic and biomass combustion. However, radiocarbon fingerprinting here clearly indicates that light-absorbing organic carbon in winter Beijing, the capital of China, is mainly due to fossil sources, which contribute the largest part to organic carbon (OC, 67 ± 3%) and its sub-constituents (water-soluble OC, WSOC: 54 ± 4%, and water-insoluble OC, WIOC: 73 ± 3%). The dual-isotope (Δ14C/δ13C) signatures, organic molecular tracers and Beijing-tailored emission inventory identify that this fossil source is primarily from coal combustion activities in winter, especially from the residential sector. Source testing on Chinese residential coal combustion provides direct evidence that intensive coal combustion could contribute to increased light-absorptivity of ambient BrC in Beijing winter. Coal combustion is an important source to BrC in regions such as northern China, especially during the winter season. Future modeling of OA radiative forcing should consider the importance of both biomass and fossil sources. PMID:28266611
Prudêncio, Maria Isabel; Valente, Teresa; Marques, Rosa; Sequeira Braga, Maria Amália; Pamplona, Jorge
2015-11-01
Rare earth elements (REE) were used to assess attenuation processes in a passive system for acid mine drainage treatment (Jales, Portugal). Hydrochemical parameters and REE contents in water, soils and sediments were obtained along the treatment system, after summer and winter. A decrease of REE contents in the water resulting from the interaction with limestone after summer occurs; in the wetlands REE are significantly released by the soil particles to the water. After winter, a higher water dynamics favors the AMD treatment effectiveness and performance since REE contents decrease along the system; La and Ce are preferentially sequestered by ochre sludge but released to the water in the wetlands, influencing the REE pattern of the creek water. Thus, REE fractionation occurs in the passive treatment systems and can be used as tracer to follow up and understand the geochemical processes that promote the remediation of AMD. Copyright © 2015 Elsevier Ltd. All rights reserved.
Han, Yu-San; Yambot, Apolinario V.; Zhang, Heng; Hung, Chia-Ling
2012-01-01
Anguilla japonica and Anguilla marmorata share overlapping spawning sites, similar drifting routes, and comparable larval durations. However, they exhibit allopatric geographical distributions in East Asia. To clarify this ecological discrepancy, glass eels from estuaries in Taiwan, the Philippines, Indonesia, and China were collected monthly, and the survival rate of A. marmorata under varying water salinities and temperatures was examined. The composition ratio of these 2 eel species showed a significant latitude cline, matching the 24°C sea surface temperature isotherm in winter. Both species had opposing temperature preferences for recruitment. A. marmorata prefer high water temperatures and die at low water temperatures. In contrast, A. japonica can endure low water temperatures, but their recruitment is inhibited by high water temperatures. Thus, A. japonica glass eels, which mainly spawn in summer, are preferably recruited to Taiwan, China, Korea, and Japan by the Kuroshio and its branch waters in winter. Meanwhile, A. marmorata glass eels, which spawn throughout the year, are mostly screened out in East Asia in areas with low-temperature coastal waters in winter. During summer, the strong northward currents from the South China Sea and Changjiang River discharge markedly block the Kuroshio invasion and thus restrict the approach of A. marmorata glass eels to the coasts of China and Korea. The differences in the preferences of the recruitment temperature for glass eels combined with the availability of oceanic currents shape the real geographic distribution of Anguilla japonica and Anguilla marmorata, making them “temperate” and “tropical” eels, respectively. PMID:22675481
Water levels shape fishing participation in flood-control reservoirs
Miranda, Leandro E.; Meals, K. O.
2013-01-01
We examined the relationship between fishing effort (hours fished) and average March–May water level in 3 flood control reservoirs in Mississippi. Fishing effort increased as water level rose, peaked at intermediate water levels, and decreased at high water levels. We suggest that the observed arched-shaped relationship is driven by the shifting influence of fishability (adequacy of the fishing circumstances from an angler's perspective) and catch rate along a water level continuum. Fishability reduces fishing effort during low water, despite the potential for higher catch rates. Conversely, reduced catch rates and fishability at high water also curtail effort. Thus, both high and low water levels seem to discourage fishing effort, whereas anglers seem to favor intermediate water levels. Our results have implications for water level management in reservoirs with large water level fluctuations.
Uejio, Christopher K; Yale, Steven H; Malecki, Kristen; Borchardt, Mark A; Anderson, Henry A; Patz, Jonathan A
2014-04-01
This study investigated if the type of drinking water source (treated municipal, untreated municipal, and private well water) modifies the effect of hydrology on childhood (aged < 5 years) gastrointestinal illness. We conducted a time series study to assess the relationship between hydrologic and weather conditions with childhood gastrointestinal illness from 1991 to 2010. The Central and Northern Wisconsin study area includes households using all 3 types of drinking water systems. Separate time series models were created for each system and half-year period (winter/spring, summer/fall). More precipitation (summer/fall) systematically increased childhood gastrointestinal illness in municipalities accessing untreated water. The relative risk of contracting gastrointestinal illness was 1.4 in weeks with 3 centimeters of precipitation and 2.4 in very wet weeks with 12 centimeters of precipitation. By contrast, gastrointestinal illness in private well and treated municipal areas was not influenced by hydrologic conditions, although warmer winter temperatures slightly increased incidence. Our study suggests that improved drinking water protection, treatment, and delivery infrastructure may improve public health by specifically identifying municipal water systems lacking water treatment that may transmit waterborne disease.
Data on corrosive water in the sources and distribution network of drinking water in north of Iran.
Alimoradi, Javad; Naghipour, Dariush; Kamani, Hossein; Asgari, Ghorban; Naimi-Joubani, Mohammad; Ashrafi, Seyed Davoud
2018-04-01
This study aimed to determine the parameters of scaling and corrosion potential of drinking water in sources and distribution networks of water supply in two cities of north of Iran. The results of Amlash water sampels analysis in winter revealed that the average values of Langelier, Ryznar, Aggressive, Pockorius, and Larson- skold indices was -1.31, 9.73, 11.5, 9.74 and 0.24, respectively, but, in summer they were -1.51, 10.71, 11.36, 10.72 and 0.25, respectively. For Rudsar, the results of water sampels analysis in winter illustrated that the average values of Langelier, Ryznar, Aggressive, Pockorius, and Larson was -1.12, 9.69, 11.33, 9.19 and 0.16, respectively, while, in summer they were -1.05, 10.04, 11.92, 10.18 and 0.19, respectively. The beneficial of this data is showing the clear image of drinking water quality and can be useful for preventing the economical and safety problems relating to corrosion and scaling of drinking water.
Yetinson, T; Shilo, M
1979-06-01
Luminous bacteria in the Mediterranean Sea and the Gulf of Aqaba-Elat have different distribution patterns. In the Mediterranean Sea, Beneckea harveyi is present all year round, with different subtypes alternating in summer and winter; Photobacterium fischeri was only present during the winter. In the Gulf of Elat, P. leiognathi is present throughout the water column in similar densities during the entire year. This constancy in distribution is presumably due to the near-constancy in water temperature. In summer, Photobacterium leiognathi is replaced by B. harveyi in coastal surface waters. In the hypersaline Bardawil lagoon, only B. harveyi types are present. P. fischeri, a major component of the Mediterranean Sea winter communities, is absent from the lagoon. Luminous Beneckea strains show a great diversity in properties, e.g. temperature range for growth, sensitivity to infection by phages, sensitivity to attack by Bdellovibrio strains, and differences in tolerance to high-salinity shock. Therefore, subdivision of the taxonomic cluster of B. harveyi into subtypes is indicated. The composition of the luminous bacteria communities may serve as indicators of different marine water bodies. The symbiotic luminous bacteria of the light organ of the common Gulf of Elat fish, Photoblepharon palbebratus steinitzi, is different from any of the types described.
Yetinson, T.; Shilo, M.
1979-01-01
Luminous bacteria in the Mediterranean Sea and the Gulf of Aqaba-Elat have different distribution patterns. In the Mediterranean Sea, Beneckea harveyi is present all year round, with different subtypes alternating in summer and winter; Photobacterium fischeri was only present during the winter. In the Gulf of Elat, P. leiognathi is present throughout the water column in similar densities during the entire year. This constancy in distribution is presumably due to the near-constancy in water temperature. In summer, Photobacterium leiognathi is replaced by B. harveyi in coastal surface waters. In the hypersaline Bardawil lagoon, only B. harveyi types are present. P. fischeri, a major component of the Mediterranean Sea winter communities, is absent from the lagoon. Luminous Beneckea strains show a great diversity in properties, e.g. temperature range for growth, sensitivity to infection by phages, sensitivity to attack by Bdellovibrio strains, and differences in tolerance to high-salinity shock. Therefore, subdivision of the taxonomic cluster of B. harveyi into subtypes is indicated. The composition of the luminous bacteria communities may serve as indicators of different marine water bodies. The symbiotic luminous bacteria of the light organ of the common Gulf of Elat fish, Photoblepharon palbebratus steinitzi, is different from any of the types described. Images PMID:16345404
Liu, Cong-Qiang; Li, Si-Liang; Lang, Yun-Chao; Xiao, Hua-Yun
2006-11-15
Nitrate pollution of the karstic groundwater is an increasingly serious problem with the development of Guiyang, the capital city of Guizhou Province, southwest China. The higher content of NO3- in groundwater compared to surface water during both summer and winter seasons indicates that the karstic groundwater system cannot easily recover once contaminated with nitrate. In order to assess the sources and conversion of nitrate in the groundwater of Guiyang, we analyzed the major ions, delta(15)N-NH4+, delta(15)N-NO3-, and delta(18)O-NO3- in surface and groundwater samples collected during both summer and winter seasons. The results show that nitrate is the major dominant species of nitrogen in most water samples and there is a big variation of nitrate sources in groundwater between winter and summer season, due to fast response of groundwater to rain or surface water in the karst area. Combined with information on NO3- /Cl-, the variations of the isotope values of nitrate in the groundwater show a mixing process of multiple sources of nitrate, especially in the summer season. Chemical fertilizer and nitrification of nitrogen-containing organic materials contribute nitrate to suburban groundwater, while the sewage effluents and denitrification mainly control the nitrate distribution in urban groundwater.
Nietch, C.T.; Morris, J.T.; Vroblesky, D.A.
1999-01-01
Wetland vegetation may be useful in the remediation of shallow contaminated aquifers. Mesocosm experiments were conducted to describe the regulatory mechanisms affecting trichloroethene (TCE) removal rates from groundwater by flood-adapted wetland trees at a contaminated site. TCE flux through baldcypress [Taxodium distichum (L) Rich] seedlings grown in glass- carboys decreased from day to night and from August to December. The diel fluctuation coincided with changes in leaf-level physiology, as the daytime flux was significantly correlated with net photosynthesis but not with respiration at night. A decrease in seedling water use from summer to winter explained the large seasonal difference in TCE flux. A simple model that simulates gas-phase diffusion through aerenchyma tested the importance of diffusion of TCE vapor from roots to the stem. The modeled diffusive flux was within 64% of the observed value during the winter but could only explain 8% of the summer flux. Seedling water use was a good estimator of flux during the summer. Hence, evapotranspiration (ET) in the summer may serve as a good predictor for the potential of TCE removal by baldcypress trees, while diffusive flux may better approximate potential contaminant loss in the winter.Wetland vegetation may be useful in the remediation of shallow contaminated aquifers. Mesocosm experiments were conducted to describe the regulatory mechanisms affecting trichloroethene (TCE) removal rates from groundwater by flood-adapted wetland trees at a contaminated site. TCE flux through baldcypress [Taxodium distichum (L) Rich] seedlings grown in glass-carboys decreased from day to night and from August to December. The diel fluctuation coincided with changes in leaf-level physiology, as the daytime flux was significantly correlated with net photosynthesis but not with respiration at night. A decrease in seedling water use from summer to winter explained the large seasonal difference in TCE flux. A simple model that simulates gas-phase diffusion through aerenchyma tested the importance of diffusion of TCE vapor from roots to the stem. The modeled diffusive flux was within 64% of the observed value during the winter but could only explain 8% of the summer flux. Seedling water use was a good estimator of flux during the summer. Hence, evapotranspiration (ET) in the summer may serve as a good predictor for the potential of TCE removal by baldcypress trees, while diffusive flux may better approximate potential contaminant loss in the winter.
Review of the circulation in the Beibu Gulf, South China Sea
NASA Astrophysics Data System (ADS)
Gao, Jingsong; Wu, Guidan; Ya, Hanzheng
2017-04-01
Although Beibu Gulf holds a significant geographical location and is rich in fishery resources, it has attracted only limited attention from researchers in recent decades. This study summarizes the conclusions based on the observations and model results regarding the circulation and cold water mass in the Beibu Gulf to provide a reference for further research. Affected by wind and density gradient, the spring circulation may be gulf-scale cyclonic and nested with an enclosed cyclonic gyre in the northern gulf and unclosed cyclonic gyre in the southern gulf. Meanwhile, the mechanisms of summer circulation remain controversial. Along with the results of a new numerical model, historical observations suggest that summer circulation is cyclonic and anticyclonic in the northern and southern gulfs, respectively. The northern and southern gulfs are mainly influenced by wind stress curl and South China Sea current, respectively. Similarly, although different views regarding the structure of winter circulation have been presented, a large amount of evidence supports the existence of two cyclonic gyres in the northern and southern gulfs. In addition, a southwestward current off the northwestern coast of Hainan Island is present. The circulation structure in the fall is similar to that in winter. However, the cyclonic gyre in the southern Gulf has a greater tendency to intrude northwards into the Beibu Gulf in fall than in winter, and the currents off the coast of Vietnam and the northwestern coast of Hainan Island are weaker in fall than those in winter. Most studies indicate that winter boreal circulation is driven by the monsoon wind. The most recent observations and model results suggest that the current in the Qiongzhou Strait (QS) is eastward on certain days in the boreal summer and is affected by the difference between the sea levels of the two ends of the QS and tidal rectification. Correspondingly, the volume transport is approximately -0.1 Sv (minus sign represents westward) in spring and from -0.1 to -0.4 Sv in boreal winter. By contrast, the volume transport in summer remains controversial. The cold water mass in the Beibu Gulf is generated locally in spring, matures in summer, and disappears in fall. Heat flux and wind dominate the formation of the cold water mass, and tidal mixing and topographic effects influence the variations in the cold water mass.
Starfish (Asteroidea, Echinodermata) from the Faroe Islands; spatial distribution and abundance
NASA Astrophysics Data System (ADS)
Ringvold, H.; Andersen, T.
2016-01-01
"Marine benthic fauna of the Faroe Islands" (BIOFAR) is a large programme with a focus on collecting invertebrate fauna from the Faroes (62°N and 7°W). Cruises were undertaken from 1987 to 1990, and starfish (Asteroidea, Echinodermata) collected during this time were analysed. Asteroidea were sampled at ~50% of all BIOFAR stations. A Detritus sledge and a Triangular dredge proved to be the most efficient equipment, collecting over 60% of the specimens. In total 2473 specimens were collected from 20 to 1500 m depth, including 41 species from 17 families and 31 genera. Henricia pertusa (O. F. Müller, 1776) group, Pontaster tenuispinus (Düben & Koren, 1846), and Leptychaster arcticus (M. Sars, 1851) showed highest relative abundance. Maximum species diversity was found at 500-700 m depth, which coincides with the transition zone of water masses (North Icelandic Winter Water and Arctic Intermediate Water (NI/AI)) at approximately 400-600 m depth. 63% of the species were recorded at an average-weighted depth above 600 m. Two different ordination methods (detrended correspondence analysis (DCA) and nonmetric multidimensional scaling (NMDS)) gave highly consistent representations of the community structure gradients. The first ordination axis scores did not show significant relationships with any environmental variable. Biological covariates like the presence of Lophelia corals were not significantly related to ordination scores on any axis. The second ordination axis scores were significantly correlated with depth. Temperature and salinity were highly correlated (r=0.90), and both negatively correlated with depth (r=-0.69 and r=-0.57, respectively).
Gremer, Jennifer R; Kimball, Sarah; Keck, Katie R; Huxman, Travis E; Angert, Amy L; Venable, D Lawrence
2013-10-01
A functional approach to investigating competitive interactions can provide a mechanistic understanding of processes driving population dynamics, community assembly, and the maintenance of biodiversity. In Sonoran Desert annual plants, a trade-off between relative growth rate (RGR) and water-use efficiency (WUE) contributes to species differences in population dynamics that promote long-term coexistence. Traits underlying this trade-off explain variation in demographic responses to precipitation as well as life history and phenological patterns. Here, we ask how these traits mediate competitive interactions. • We conducted competition trials for three species occupying different positions along the RGR-WUE trade-off axis and compared the effects of competition at high and low soil moisture. We compared competitive effect (ability to suppress neighbors) and competitive response (ability to withstand competition from neighbors) among species. • The RGR-WUE trade-off predicted shifts in competitive responses at different soil moistures. The high-RGR species was more resistant to competition in high water conditions, while the opposite was true for the high-WUE species. The intermediate RGR species tended to have the strongest impact on all neighbors, so competitive effects did not scale directly with differences in RGR and WUE among competitors. • Our results reveal mechanisms underlying long-term variation in fitness: high-RGR species perform better in years with large, frequent rain events and can better withstand competition under wetter conditions. The opposite is true for high-WUE species. Such resource-dependent responses strongly influence community dynamics and can promote coexistence in variable environments.
Yu, Ju-Hua; Zhong, Ji-Cheng; Zhang, Yin-Long; Fan, Cheng-Xin; He, Wei; Zhang, Lei; Tang, Zhen-Wu
2012-10-01
A simulated experiment was conducted to investigate the impacts of sediment dredging on sediment resuspension and phosphorus transfer in the summer and winter seasons under the common wind-wave disturbance, and the contaminated sediment used in this study was from Meiliang Bay, Taihu lake. The result showed that 20 cm dredging could effectively inhibit the sediment resuspension in study area, dredging in winter has a better effect than that in summer, and the higher values of the total suspended solid (TSS) in undredged and dredged water column during the process of wind wave disturbance were 7.0 and 2.2, 24.3 and 6.4 times higher than the initial value in summer and winter simulation respectively. The paired-samples t-test result demonstrated that total phosphorus (TP) and phosphate (PO4(3-)-P) loading positively correlated to TSS content in dredged (P<0.01) and undredged water column (P<0.05), which proved that internal phosphorus fulminating release induced by wind-wave disturbance would significantly increase the TP and PO4(3-)-P loading in the water column. The effect of dredging conducted in summer on the TP and PO4(3)-P loading in the water column was negative, but not for winter dredging (P<0.01). The pore water dissolved reactive phosphorus (DRP) profile at water-sediment interface in summer simulation was also investigated by diffusive gradients in thin films (DGT) technique. Diffusion layer of the DRP profile in undredged sediment was wider than that in dredged sediment. However, the DRP diffusion potential in dredged sediment was greater than that in undredged sediment, showing that dredging can effectively reduce the risk of the DRP potential release in dredged pore water, but also would induce the DRP fulminating release in the short time under hydrodynamic action. Generally, dredging was usually deployed during the summer and the autumn. Considering Taihu Lake is a large, shallow, eutrophic lake and the contaminant distribution is spatially heterogeneous, it is vital to determine the optimal time, depth and scope of dredging.
NASA Astrophysics Data System (ADS)
Monson, R. K.; Scott-Denton, L. E.; Lipson, D. A.; Weintrub, M. N.; Rosenstiel, T. N.; Schmidt, S. K.; Williams, M. W.; Burns, S. P.; Delany, A. E.; Turnipseed, A. A.
2005-12-01
Studies were conducted at the Niwot Ridge Ameriflux site to understand wintertime soil carbon cycling and its control over ecosystem respiration. Wintertime respiration in this ecosystem results in the loss of 60-90% of the carbon assimilated the previous growing season. Thus, an understanding of the controls over winter carbon cycling is required to understand controls over the annual carbon budget. Trees were girdled to prevent the transport of photosynthates to the rhizosphere. In plots with non-girdled trees a large mid-winter pulse of sucrose was observed to enter the soil. In plots with girdled trees, no sucrose pulse was observed. Trees of this ecosystem are not photosynthetically active during the winter, leading us to conclude that the sucrose pulse is due to the death of fine roots that had accumulated sucrose the previous autumn. The sucrose pulse is potentially utilized by a novel winter community of microbes. Using DNA fingerprinting we discovered that the dominant isolates from the winter soils were from Jathinobacter, whereas the summer isolates were from Burkholderia. The winter community was capable of high rates of respiration and exponential growth at low temperatures, whereas the summer community was not. Our winter observations also indicated high activity of N-acetyl-C-glucosaminidase, one of the principal enzymes involved in chitin degradation. The presence of such high chitinase activities implicates decomposing fungal biomass as a principle source of CO2 beneath the snow pack. Using a novel in situ, beneath-snow CO2 measurement system, we observed unprecedented Q10 values for winter respiration, being 98 and 8.44 x 104 for the soil next to tree boles or within the open spaces between trees, respectively. These high Q10 values are likely the result of fractional changes in the availability of liquid water below 0°C and responses of microbial biomass to changes in the liquid water fraction. Using six-years of eddy covariance data, we showed that interannual variation in winter ecosystem respiration is positively correlated to interannual variation in the spring snow depth. Years with a with a deeper spring snow pack exhibited higher soil temperatures, and concomitantly higher soil respiration rates. Given the recently reported decadal-scale trend in decreasing snow pack in the Western U.S., which is coupled to warm climate anomalies, our observations indicate the potential for higher wintertime soil carbon sequestration due to lower winter ecosystem respiration rates in subalpine forests. Our studies of processes beneath the winter snow pack demonstrate that contrary to previous assumptions, winter biogeochemical processing of soil organic matter is an important component of ecosystem carbon budgets. Despite low temperatures and an inactive plant rhizosphere, winter microbial communities and exoenzymes appear to be active, carbon substrates appear to be in relatively high abundance and soil respiration rates appear to be sensitive to seasonal and interannual winter climate variability.
NASA Astrophysics Data System (ADS)
Heslop, Emma; Aguiar, Eva; Mourre, Baptiste; Juza, Mélanie; Escudier, Romain; Tintoré, Joaquín
2017-04-01
The Ibiza Channel plays an important role in the circulation of the Western Mediterranean Sea, it governs the north/south exchange of different water masses that are known to affect regional ecosystems and is influenced by variability in the different drivers that affect sub-basins to the north (N) and south (S). A complex system. In this study we use a multi-platform approach to resolve the key drivers of this variability, and gain insight into the inter-connection between the N and S of the Western Mediterranean Sea through this choke point. The 6-year glider time series from the quasi-continuous glider endurance line monitoring of the Ibiza Channel, undertaken by SOCIB (Balearic Coastal Ocean observing and Forecasting System), is used as the base from which to identify key sub-seasonal to inter-annual patterns and shifts in water mass properties and transport volumes. The glider data indicates the following key components in the variability of the N/S flow of different water mass through the channel; regional winter mode water production, change in intermediate water mass properties, northward flows of a fresher water mass and the basin-scale circulation. To resolve the drivers of these components of variability, the strength of combining datasets from different sources, glider, modeling, altimetry and moorings, is harnessed. To the north atmospheric forcing in the Gulf of Lions is a dominant driver, while to the south the mesoscale circulation patterns of the Atlantic Jet and Alboran gyres dominate the variability but do not appear to influence the fresher inflows. Evidence of a connection between the northern and southern sub-basins is however indicated. The study highlights importance of sub-seasonal variability and the scale of rapid change possible in the Mediterranean, as well as the benefits of leveraging high resolution glider datasets within a multi-platform and modelling study.
USDA-ARS?s Scientific Manuscript database
Climate change is expected to exacerbate water quality degradation in the Chesapeake Bay watershed (CBW). Winter cover crops (WCCs) have been widely implemented in this region owing to their high effectiveness at reducing nitrate loads. However, little is known about climate change impacts on the ef...
USDA-ARS?s Scientific Manuscript database
Winter cover crops (WCCs) have been widely implemented in the Coastal Plain of the Chesapeake Bay watershed (CBW) due to their high effectiveness at reducing nitrate loads. However, future climate conditions (FCCs) are expected to exacerbate water quality degradation in the CBW by increasing nitrat...
Using waste oil to heat a greenhouse
Marla Schwartz
2009-01-01
During the winter of 1990, Northwoods Nursery (Elk River, ID) purchased a wood-burning system to heat the current greenhouses. This system burned slabs of wood to heat water that was then pumped into the greenhouses. The winter of 1990 was extremely harsh, requiring non-stop operation of the heating system. In order to keep seedlings in the greenhouse from freezing,...
ALBEDO MODELS FOR SNOW AND ICE ON A FRESHWATER LAKE. (R824801)
Snow and ice albedo measurements were taken over a freshwater lake in Minnesota for three months during the winter of 1996¯1997 for use in a winter lake water quality model. The mean albedo of new snow was measured as 0.83±0.028, while the...
Sustained winter streamflow from groundmelt
C. Anthony Federer
1965-01-01
The watersheds of the Hubbard Brook Experimental Forest in the White Mountains of New Hampshire are among the few small gaged watersheds for which continuous winter streamflow records are obtained while deep snow covers the area. Records show that a remarkably steady flow of between 0.006 and 0.025 area-inch of water per day leaves the watershed in spite of snow depths...
How Circulation of Water Affects Freezing in Ponds
ERIC Educational Resources Information Center
Moreau, Theresa; Lamontagne, Robert; Letzring, Daniel
2007-01-01
One means of preventing the top of a pond from freezing involves running a circulating pump near the bottom to agitate the surface and expose it to air throughout the winter months. This phenomenon is similar to that of the flowing of streams in subzero temperatures and to the running of taps to prevent pipe bursts in winter. All of these cases…
The Effect of Climate Change on Snow Pack at Sleepers River, Vermont, USA
NASA Astrophysics Data System (ADS)
Shanley, J. B.; Chalmers, A.; Denner, J.; Clark, S.
2017-12-01
Sleepers River Research Watershed, a U.S. Geological Survey Water, Energy, and Biogeochemical Budgets (WEBB) site in northeastern Vermont, has a 58-year record (since 1959) of snow depth and snow water equivalence (SWE), one of the longest continuous records in eastern North America. Snow measurements occur weekly during the winter at the watershed using an Adirondack type snow tube sampler. Sleepers River averages about 1100 mm of precipitation annually of which 20 to 30 percent falls as snow. Snow cover typically persists from December to April. Length of snow cover and snow depth vary with elevation, aspect, and cover type. Sites include open field, and hardwood and conifer stand clearings from 225 to 630 meters elevation. We evaluated changes in snow depth, snow cover duration, and SWE relative to elevation, soil frost depth, air temperature, total precipitation, and the El Niño - Southern Oscillation (ENSO) cycle. Overall, warmer winter temperatures have resulted in more midwinter thaws, more rain during the winter, and more variable soil frost depth. Trends in snowpack amount and duration were compared to winter-spring streamflow center-of-mass to evaluate if shifts in the snow pack regime were leading to earlier snowmelt.
Shellenbarger, G.G.; Athearn, N.D.; Takekawa, John Y.; Boehm, A.B.
2008-01-01
Throughout the world, coastal resource managers are encouraging the restoration of previously modified coastal habitats back into wetlands and managed ponds for their ecosystem value. Because many coastal wetlands are adjacent to urban centers and waters used for human recreation, it is important to understand how wildlife can affect water quality. We measured fecal indicator bacteria (FIB) concentrations, presence/absence of Salmonella, bird abundance, and physico-chemical parameters in two coastal, managed ponds and adjacent sloughs for 4 weeks during the summer and winter in 2006. We characterized the microbial water quality in these waters relative to state water-quality standards and examined the relationship between FIB, bird abundance, and physico-chemical parameters. A box model approach was utilized to determine the net source or sink of FIB in the ponds during the study periods. FIB concentrations often exceeded state standards, particularly in the summer, and microbial water quality in the sloughs was generally lower than in ponds during both seasons. Specifically, the inflow of water from the sloughs to the ponds during the summer, more so than waterfowl use, appeared to increase the FIB concentrations in the ponds. The box model results suggested that the ponds served as net wetland sources and sinks for FIB, and high bird abundances in the winter likely contributed to net winter source terms for two of the three FIB in both ponds. Eight serovars of the human pathogen Salmonella were isolated from slough and pond waters, although the source of the pathogen to these wetlands was not identified. Thus, it appeared that factors other than bird abundance were most important in modulating FIB concentrations in these ponds.
Processes regulating watershed chemical export during snowmelt, fraser experimental forest, Colorado
Stottlemyer, R.
2001-01-01
In the Central Rocky Mountains, snowfall dominates precipitation. Airborne contaminants retained in the snowpack can affect high elevation surface water chemistry during snowmelt. At the Fraser Experimental Forest (FEF), located west of the Continental Divide in Central Colorado, snowmelt dominates the annual hydrograph, and accounts for >95% of annual stream water discharge. During the winters of 1989-1993, we measured precipitation inputs, snowpack water equivalent (SWE) and ion content, and stream water chemistry every 7-10 days along a 3150-3500 m elevation gradient in the subalpine and alpine Lexen Creek watershed. The study objectives were to (1) quantify the distribution of SWE and snowpack chemical content with elevation and aspect, (2) quantify snowmelt rates, temperature of soil, snowpack, and air with elevation and aspect, and (3) use change in upstream-downstream water chemistry during snowmelt to better define alpine and subalpine flowpaths. The SWE increased with elevation (P - 3??C) temperatures throughout winter which resulted in significant snowpack ion loss. By snowpack PWE in mid May, the snowpack had lost almost half the cumulative precipitation H+, NH4+, and SO42- inputs and a third of the NO3- input. Windborne soil particulate inputs late in winter increased snowpack base cation content. Variation in subalpine SWE and snowpack ion content with elevation and aspect, and wind redistribution of snowfall in the alpine resulted in large year-to-year differences in the timing and magnitude of SWE, PWE, and snowpack ion content. The alpine stream water ion concentrations changed little during snowmelt indicating meltwater passed quickly through surface porous soils and was well mixed before entering the stream. Conversely, subalpine stream water chemistry was diluted during snowmelt suggesting much melt water moved to the stream as shallow subsurface lateral flow. Published by Elsevier Science B.V.
Xu, Jie; Ho, Alvin Y T; Yin, Kedong; Yuan, Xiangcheng; Anderson, Donald M; Lee, Joseph H W; Harrison, Paul J
2008-01-01
In 2001, the Hong Kong government implemented the Harbor Area Treatment Scheme (HATS) under which 70% of the sewage that had been formerly discharged into Victoria Harbor is now collected and sent to Stonecutters Island Sewage Works where it receives chemically enhanced primary treatment (CEPT), and is then discharged into waters west of the Harbor. The relocation of the sewage discharge will possibly change the nutrient dynamics and phytoplankton biomass in this area. Therefore, there is a need to examine the factors that regulate phytoplankton growth in Hong Kong waters in order to understand future impacts. Based on a historic nutrient data set (1986-2001), a comparison of ambient nutrient ratios with the Redfield ratio (N:P:Si=16:1:16) showed clear spatial variations in the factors that regulate phytoplankton biomass along a west (estuary) to east (coastal/oceanic) transect through Hong Kong waters. Algal biomass was constrained by a combination of low light conditions, a rapid change in salinity, and strong turbulent mixing in western waters throughout the year. Potential stoichiometric Si limitation (up to 94% of the cases in winter) occurred in Victoria Harbor due to the contribution of sewage effluent with high N and P enrichment all year, except for summer when the frequency of stoichiometric Si limitation (48%) was the same as P, owing to the influence of the high Si in the Pearl River discharge. In the eastern waters, potential N limitation and N and P co-limitation occurred in autumn and winter respectively, because of the dominance of coastal/oceanic water with low nutrients and low N:P ratios. In contrast, potential Si limitation occurred in spring and a switch to potential N, P and Si limitation occurred in eastern waters in summer. In southern waters, there was a shift from P limitation (80%) in summer due to the influence of the N-rich Pearl River discharge, to N limitation (68%) in autumn, and to N and P co-limitation in winter due to the dominance of N-poor oceanic water from the oligotrophic South China Sea. Our results show clear temporal and spatial variations in the nutrient stoichiometry which indicates potential regulation of phytoplankton biomass in HK waters due to the combination of the seasonal exchange of the Pearl River discharge and oceanic water, sewage effluent inputs, and strong hydrodynamic mixing from SW monsoon winds in summer and the NE monsoon winds in winter.
Xu, Jie; Ho, Alvin Y. T.; Yin, Kedong; Yuan, Xiangcheng; Anderson, Donald M.; Lee, Joseph H.W.; Harrison, Paul J.
2017-01-01
In 2001, the Hong Kong government implemented the Harbor Area Treatment Scheme (HATS) under which 70% of the sewage that had been formerly discharged into Victoria Harbor is now collected and sent to Stonecutters Island Sewage Works where it receives chemically enhanced primary treatment (CEPT), and is then discharged into waters west of the Harbor. The relocation of the sewage discharge will possibly change the nutrient dynamics and phytoplankton biomass in this area. Therefore, there is a need to examine the factors that regulate phytoplankton growth in Hong Kong waters in order to understand future impacts. Based on a historic nutrient data set (1986–2001), a comparison of ambient nutrient ratios with the Redfield ratio (N:P:Si=16:1:16) showed clear spatial variations in the factors that regulate phytoplankton biomass along a west (estuary) to east (coastal/oceanic) transect through Hong Kong waters. Algal biomass was constrained by a combination of low light conditions, a rapid change in salinity, and strong turbulent mixing in western waters throughout the year. Potential stoichiometric Si limitation (up to 94% of the cases in winter) occurred in Victoria Harbor due to the contribution of sewage effluent with high N and P enrichment all year, except for summer when the frequency of stoichiometric Si limitation (48%) was the same as P, owing to the influence of the high Si in the Pearl River discharge. In the eastern waters, potential N limitation and N and P co-limitation occurred in autumn and winter respectively, because of the dominance of coastal/oceanic water with low nutrients and low N:P ratios. In contrast, potential Si limitation occurred in spring and a switch to potential N, P and Si limitation occurred in eastern waters in summer. In southern waters, there was a shift from P limitation (80%) in summer due to the influence of the N-rich Pearl River discharge, to N limitation (68%) in autumn, and to N and P co-limitation in winter due to the dominance of N-poor oceanic water from the oligotrophic South China Sea. Our results show clear temporal and spatial variations in the nutrient stoichiometry which indicates potential regulation of phytoplankton biomass in HK waters due to the combination of the seasonal exchange of the Pearl River discharge and oceanic water, sewage effluent inputs, and strong hydrodynamic mixing from SW monsoon winds in summer and the NE monsoon winds in winter. PMID:18313698
Thermal Energy Exchange Model and Water Loss of a Barrel Cactus, Ferocactus acanthodes1
Lewis, Donald A.; Nobel, Park S.
1977-01-01
The influences of various diurnal stomatal opening patterns, spines, and ribs on the stem surface temperature and water economy of a CAM succulent, the barrel cactus Ferocactus acanthodes, were examined using an energy budget model. To incorporate energy exchanges by shortwave and longwave irradiation, latent heat, conduction, and convection as well as the heat storage in the massive stem, the plant was subdivided into over 100 internal and external regions in the model. This enabled the average surface temperature to be predicted within 1 C of the measured temperature for both winter and summer days. Reducing the stem water vapor conductance from the values observed in the field to zero caused the average daily stem surface temperature to increase only 0.7 C for a winter day and 0.3 C for a summer day. Thus, latent heat loss does not substantially reduce stem temperature. Although the surface temperatures averaged 18 C warmer for the summer day than for the winter day for a plant 41 cm tall, the temperature dependence of stomatal opening caused the simulated nighttime water loss rates to be about the same for the 2 days. Spines moderated the amplitude of the diurnal temperature changes of the stem surface, since the daily variation was 17 C for the winter day and 25 C for the summer day with spines compared with 23 C and 41 C, respectively, in their simulated absence. Ribs reduced the daytime temperature rise by providing 54% more area for convective heat loss than for a smooth circumscribing surface. In a simulation where both spines and ribs were eliminated, the daytime average surface temperature rose by 5 C. PMID:16660148
Wilber, William G.; Crawford, Charles G.; Peters, James G.
1979-01-01
A digital model calibrated to conditions in Sand Creek near Greensburg, Ind., was used to develop alternatives for future waste loadings that would be compatible with Indiana stream water-quality standards defined for two critical hydrologic conditions, summer and winter low flows. The only point-source waste load affecting Sand Creek in the vicinity of Greensburg is the Greensburg wastewater-treatment facility. Non-point, unrecorded waste loads seemed to be significant during three water-quality surveys done by the Indiana State Board of Health. Natural streamflow in Sand Creek during the summer and annual 7-day, 10-year low flow is zero so no benefit from dilution is provided. Effluent ammonia-nitrogen concentrations from the Greensburg wastewater-treatment facility will not meet Indiana water-quality standards during summer and winter low flows. To meet the water-quality standard the wastewater-effluent would be limited to a maximum total ammonia-nitrogen concentration of 2.5 mg/l for summer months (June through August) and 4.0 mg/l for winter months (November through March). Model simulations indicate that benthic-oxygen demand, nitrification, and the dissolved-oxygen concentration of the wastewater effluent are the most significant factors affecting the in-stream dissolved-oxygen concentration during summer low flows. The model predicts that with a benthic-oxygen demand of 1.5 grams per square meter per day at 20C the stream has no additional waste-load assimilative capacity. Present carbonaceous biochemical-oxygen demand loads from the Greensburg wastewater-treatment facility will not result in violations of the in-stream dissolved-oxygen standard (5 mg/l) during winter low flows. (Kosco-USGS)
Spawning habitat unsuitability: an impediment to cisco rehabilitation in Lake Michigan?
Madenjian, Charles P.; Rutherford, Edward S.; Blouin, Marc A.; Sederberg, Bryan J.; Elliott, Jeff R.
2011-01-01
The cisco Coregonus artedi was one of the most important native prey fishes in Lake Michigan and in the other four Laurentian Great Lakes. Most of the cisco spawning in Lake Michigan was believed to have occurred in Green Bay. The cisco population in Lake Michigan collapsed during the 1950s, and the collapse was attributed in part to habitat degradation within Green Bay. Winter water quality surveys of lower Green Bay during the 1950s and 1960s indicated that the bottom dissolved oxygen (DO) concentration was less than 2 mg/L throughout much of the lower bay, and most cisco eggs would not successfully hatch at such low DO concentrations. To determine present-day spawning habitat suitability in lower Green Bay, we compared cisco egg survival in lower Green Bay with survival at a reference site (St. Marys River, Michigan–Ontario) during 2009. We also conducted winter water quality surveys in lower Green Bay and the St. Marys River during 2009 and 2010. Cisco egg survival in lower Green Bay averaged 65.3%, which was remarkably similar to and not significantly different from the mean at the St. Marys River site (64.0%). Moreover, the lowest bottom DO concentrations recorded during the winter surveys were 11.2 mg/L in lower Green Bay and 12.7 mg/L in the St. Marys River. These relatively high DO concentrations would not be expected to have any negative effect on cisco egg survival. We conclude that winter water quality conditions in lower Green Bay were suitable for successful hatching of cisco eggs and that water quality during the egg incubation period did not represent an impediment to cisco rehabilitation in Lake Michigan. Our approach to determining spawning habitat suitability for coregonids would be applicable to other aquatic systems.
Zhang, Liu-xia; Wang, Shu-zhong; Sui, Xiao-lei; Zhang, Zhen-xian
2011-09-01
This paper studied the effects of alternative furrow irrigation and nitrogen (N) application rate (no N, optimal N, and conventional N) on the photosynthesis, growth characteristics, yield formation, and fruit quality of cucumber (Cucumis sativus) cultivar Jinyu No. 5 in a solar greenhouse in winter-spring growth season and autumn-winter season. Under alternative furrow irrigation, the net photosynthetic rate of upper, middle, eand lower leaves was appreciably lower and the transpiration rate decreased significantly, and the transient water use efficiency of upper and middle leaves improved, as compared with those under conventional irrigation. Stomatal factor was the limiting factor of photosynthesis under alternative furrow irrigation. The photosynthesis and transient water use efficiency of functional leaves under alternative furrow irrigation increased with increasing N application rate. Comparing with conventional irrigation, alternative furrow irrigation decreased leaf chlorophyll content and plant biomass, but increased root biomass, root/shoot ratio, and dry matter allocation in root and fruit. The economic output under alternative furrow irrigation was nearly the same as that under conventional irrigation, whereas the water use efficiency for economic yield increased significantly, suggesting the beneficial effects of alternative furrow irrigation on root development and fruit formation. With the increase of N application rate, the leaf chlorophyll content, chlorophyll a/b, specific leaf mass, plant biomass, economic yield, and fruit Vc and soluble sugar contents under alternative furrow irrigation increased, but no significant difference was observed between the treatments optimal N and conventional N. N application had little effects on the water use efficiency for economic yield. The economic yield and biomass production of the cucumber were significantly higher in winter-spring growth season than in autumn-winter growth season.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morishita, Hirotoshi; Kurita, Daisuke; Kataoka, Kunishige
2014-07-18
Highlights: • Proton transport pathway in bilirubin oxidase was mutated. • Two intermediates in the dioxygen reduction steps were trapped and characterized. • A specific glutamate for dioxygen reduction by multicopper oxidases was identified. - Abstract: The hydrogen bond network leading from bulk water to the trinuclear copper center in bilirubin oxidase is constructed with Glu463 and water molecules to transport protons for the four-electron reduction of dioxygen. Substitutions of Glu463 with Gln or Ala were attributed to virtually complete loss or significant reduction in enzymatic activities due to an inhibition of the proton transfer steps to dioxygen. The singlemore » turnover reaction of the Glu463Gln mutant afforded the highly magnetically interacted intermediate II (native intermediate) with a broad g = 1.96 electron paramagnetic resonance signal detectable at cryogenic temperatures. Reactions of the double mutants, Cys457Ser/Glu463Gln and Cys457Ser/Glu463Ala afforded the intermediate I (peroxide intermediate) because the type I copper center to donate the fourth electron to dioxygen was vacant in addition to the interference of proton transport due to the mutation at Glu463. The intermediate I gave no electron paramagnetic resonance signal, but the type II copper signal became detectable with the decay of the intermediate I. Structural and functional similarities between multicopper oxidases are discussed based on the present mutation at Glu463 in bilirubin oxidase.« less
NTTC Course 215: Intermediate Water Examination.
ERIC Educational Resources Information Center
Department of the Navy, Washington, DC.
This publication is the examination booklet used for a home study course in water treatment. This course is the intermediate part of a series produced by the Department of the Navy. This publication is designed to be used in conjunction with a textbook. Each of the two examinations contained in this document are referenced to a section of the…
A risk analysis of winter navigation in Finnish sea areas.
Valdez Banda, Osiris A; Goerlandt, Floris; Montewka, Jakub; Kujala, Pentti
2015-06-01
Winter navigation is a complex but common operation in north-European sea areas. In Finnish waters, the smooth flow of maritime traffic and safety of vessel navigation during the winter period are managed through the Finnish-Swedish winter navigation system (FSWNS). This article focuses on accident risks in winter navigation operations, beginning with a brief outline of the FSWNS. The study analyses a hazard identification model of winter navigation and reviews accident data extracted from four winter periods. These are adopted as a basis for visualizing the risks in winter navigation operations. The results reveal that experts consider ship independent navigation in ice conditions the most complex navigational operation, which is confirmed by accident data analysis showing that the operation constitutes the type of navigation with the highest number of accidents reported. The severity of the accidents during winter navigation is mainly categorized as less serious. Collision is the most typical accident in ice navigation and general cargo the type of vessel most frequently involved in these accidents. Consolidated ice, ice ridges and ice thickness between 15 and 40cm represent the most common ice conditions in which accidents occur. Thus, the analysis presented in this article establishes the key elements for identifying the operation types which would benefit most from further safety engineering and safety or risk management development. Copyright © 2015 Elsevier Ltd. All rights reserved.
[Ecological benefits of planting winter rapeseed in western China].
Wang, Xue-fang; Sun, Wan-cang; Li, Fang; Kang, Yan-li; Pu, Yuan-yuan; Liu, Hong-xia; Zeng, Chao-wu; Fan, Chong-xiu
2009-03-01
To evaluate the ecological benefits of popularizing winter rapeseed planting in western China, a wind tunnel simulation test was conducted with four kinds of farmland surface, i.e., winter rapeseed, winter wheat, wheat stubble, and bare field just after spring sowing, collected from west Gansu in April. The results showed that winter rapeseed surface had a roughness of 4.08 cm and a threshold wind velocity as high as 14 m x s(-1), being more effective in blown sand control than the other three surfaces. Under the same experimental conditions, the wind erosion modulus and sand transportation rate of winter rapeseed surface were only 4.1% and 485% of those of the bare field just after spring sowing, and the losses of soil organic matter, alkali-hydrolyzed N, available P and K, catalase, urease, alkaline phosphatase, invertase, and microbes of winter rapeseed surface due to wind erosion were only 1.4%, 5.1%, 1.6%, 2.7%, 9.7%, 3.6%, 6.3%, 6.7% and 1.5% of those of the bare field, respectively. It was suggested that popularizing winter rapeseed planting in west China could control wind erosion, retain soil water and nutrients, increase multicropping index, and improve economic benefits of farmland. In addition, it could benefit the regional desertification control and ecological environment improvement.
Ground and surface water in the Mesabi and Iron Range area, northeastern Minnesota
Cotter, R.D.; Young, H.L.; Petri, L.R.; Prior, C.H.
1965-01-01
Large uses of water in the area include: taconite processing (50 bgy), wash-ore processing (19 bgy), power plants (63 bgy), municipal water supplies (3 bgy) and paper processing (1 bgy). Optimum development of the water resources might be achieved by using streamflow in the spring and stunner and ground-water and surface-water storage in the fall and winter.
Circulation in the Hudson Shelf Valley: MESA Physical Oceanographic Studies in New York Bight, 1
NASA Astrophysics Data System (ADS)
Mayer, Dennis A.; Han, Gregory C.; Hansen, Donald V.
1982-11-01
Over 900 days of current velocity data were obtained at mainly two locations in the inner and outer Hudson Shelf Valley (HSV). The large cross-axis depth gradients in the HSV, together with the strong winter cyclones and the baroclinic density distribution over the shelf, are primarily responsible for the major circulation features observed in the valley. CSTD data from 12 cruises and meteorological data from JFK International Airport and an environmental buoy were collected concurrently with the current meter data. Although the mean cross-shelf pressure gradient is generally seaward in the Middle Atlantic Bight, it is shoreward in the HSV below the level of the adjacent continental shelf (shelf horizon), thus imposing a bias toward upvalley flow. The average velocity below the surrounding shelf horizon in the HSV is upvalley or shoreward (west-northwestward ≈ 290° T) in the range of 2-5 cm/s. The circulation in the HSV is seasonal and individual events can drastically alter the mean picture. The several day average upvalley flow can sometimes approach 20 cm/s when intense winter cyclones pass over the bight and can sometimes also be directed downvalley depending upon the path of the winter cyclone. A topographically controlled barotropic flow commonly opposes the dominant (southeast-ward) wind direction even near the surface in the winter. In the context of circulation on the open shelf, upvalley (downvalley) flow events generated by winter cyclones are associated with reduced (enhanced) southwestward flow or flow reversals that are northeastward in the lower half of the water column at LTM, a typical mid/shelf site (Mayer et al., 1979). Current meter data suggest that whether or not reversals occur on the open shelf depends upon the interannual variability of the winter wind regime. Upvalley flow events are not confined only to the winter (unstratified) season but are stronger in the winter and can last for several days and longer. During the summer (stratified) season the maximum horizontal KE in the upper part of the water column shifts from the meteorological forcing band, characteristic of winter, to diurnal inertial and semidiurnal frequencies. In the diurnal band there appears to be a strong relationship between the diurnal wind and currents near the surface in the HSV as well as on the open shelf (LTM). The structure of the semidiurnal motions in the inner valley where the depth gradients are larger than in the outer valley has a significant depth dependence unlike most regions on the shelf, i.e., during all times of the year the semidiurnal tidal ellipse is anticlockwise in the lower 20 m of the water column.
A review of water resources of the Umiat area, northern Alaska
Williams, John R.
1970-01-01
Surface-water supplies from the Colville River, small tributary creeks, and lakes are abundant in summer but limited in winter by low or zero flow in streams and thick ice cover on lakes. Fresh ground water occurs in unfrozen zones in alluvium and in the upper part of bedrock beneath the Colville River and beneath lakes that do not freeze to the bottom in winter. These unfrozen zones, forming depressions in the upper surface of permafrost, are maintained by flow of heat from bodies of surface water into subjacent alluvium and bedrock. Brackish or saline ground water occurs in bedrock beneath as much as 1,055 feet of permafrost in the Arctic foothills and beneath 750 to 800 feet of permafrost beneath low terraces of the Colville River valley. The foothill area is unfavorable for developing supplies of potable ground water because of the great depth to water, predominance of brackish or saline water, and low potential yield of the bedrock. In the Colville River valley, shallow unfrozen alluvium beneath the river and deep lakes will yield abundant year-round supplies of ground water, but the bedrock below permafrost yields less than 10 gpm (gallons per minute) of saline or brackish water.