Winter movement dynamics of Black Brant
Lindberg, Mark S.; Ward, David H.; Tibbitts, T. Lee; Roser, John
2007-01-01
Although North American geese are managed based on their breeding distributions, the dynamics of those breeding populations may be affected by events that occur during the winter. Birth rates of capital breeding geese may be influenced by wintering conditions, mortality may be influenced by timing of migration and wintering distribution, and immigration and emigration among breeding populations may depend on winter movement and timing of pair formation. We examined factors affecting movements of black brant (Branta bernicla nigricans) among their primary wintering sites in Mexico and southern California, USA, (Mar 1998-Mar 2000) using capture-recapture models. Although brant exhibited high probability (>0.85) of monthly and annual fidelity to the wintering sites we sampled, we observed movements among all wintering sites. Movement probabilities both within and among winters were negatively related to distance between sites. We observed a higher probability both of southward movement between winters (Mar to Dec) and northward movement between months within winters. Between-winter movements were probably most strongly affected by spatial and temporal variation in habitat quality as we saw movement patterns consistent with contrasting environmental conditions (e.g., La Niña and El Niño southern oscillation cycles). Month-to-month movements were related to migration patterns and may also have been affected by differences in habitat conditions among sites. Patterns of winter movements indicate that a network of wintering sites may be necessary for effective conservation of brant.
Winter movement dynamics of black brant
Lindberg, Mark S.; Ward, David H.; Tibbitts, T. Lee; Roser, John
2007-01-01
Although North American geese are managed based on their breeding distributions, the dynamics of those breeding populations may be affected by events that occur during the winter. Birth rates of capital breeding geese may be influenced by wintering conditions, mortality may be influenced by timing of migration and wintering distribution, and immigration and emigration among breeding populations may depend on winter movement and timing of pair formation. We examined factors affecting movements of black brant (Branta bernicla nigricans) among their primary wintering sites in Mexico and southern California, USA, (Mar 1998–Mar 2000) using capture–recapture models. Although brant exhibited high probability (>0.85) of monthly and annual fidelity to the wintering sites we sampled, we observed movements among all wintering sites. Movement probabilities both within and among winters were negatively related to distance between sites. We observed a higher probability both of southward movement between winters (Mar to Dec) and northward movement between months within winters. Between-winter movements were probably most strongly affected by spatial and temporal variation in habitat quality as we saw movement patterns consistent with contrasting environmental conditions (e.g., La Niña and El Niño southern oscillation cycles). Month-to-month movements were related to migration patterns and may also have been affected by differences in habitat conditions among sites. Patterns of winter movements indicate that a network of wintering sites may be necessary for effective conservation of brant.
New results on equatorial thermospheric winds and temperatures from Ethiopia, Africa
NASA Astrophysics Data System (ADS)
Tesema, Fasil; Mesquita, Rafael; Meriwether, John; Damtie, Baylie; Nigussie, Melessew; Makela, Jonathan; Fisher, Daniel; Harding, Brian; Yizengaw, Endawoke; Sanders, Samuel
2017-03-01
Measurements of equatorial thermospheric winds, temperatures, and 630 nm relative intensities were obtained using an imaging Fabry-Perot interferometer (FPI), which was recently deployed at Bahir Dar University in Ethiopia (11.6° N, 37.4° E, 3.7° N magnetic). The results obtained in this study cover 6 months (53 nights of useable data) between November 2015 and April 2016. The monthly-averaged values, which include local winter and equinox seasons, show the magnitude of the maximum monthly-averaged zonal wind is typically within the range of 70 to 90 ms-1 and is eastward between 19:00 and 21:00 LT. Compared to prior studies of the equatorial thermospheric wind for this local time period, the magnitude is considerably weaker as compared to the maximum zonal wind speed observed in the Peruvian sector but comparable to Brazilian FPI results. During the early evening, the meridional wind speeds are 30 to 50 ms-1 poleward during the winter months and 10 to 25 ms-1 equatorward in the equinox months. The direction of the poleward wind during the winter months is believed to be mainly caused by the existence of the interhemispheric wind flow from the summer to winter hemispheres. An equatorial wind surge is observed later in the evening and is shifted to later local times during the winter months and to earlier local times during the equinox months. Significant night-to-night variations are also observed in the maximum speed of both zonal and meridional winds. The temperature observations show the midnight temperature maximum (MTM) to be generally present between 00:30 and 02:00 LT. The amplitude of the MTM was ˜ 110 K in January 2016 with values smaller than this in the other months. The local time difference between the appearance of the MTM and a pre-midnight equatorial wind was generally 60 to 180 min. A meridional wind reversal was also observed after the appearance of the MTM (after 02:00 LT). Climatological models, HWM14 and MSIS-00, were compared to the observations and the HWM14 model generally predicted the zonal wind observations well with the exception of higher model values by 25 ms-1 in the winter months. The HWM14 model meridional wind showed generally good agreement with the observations. Finally, the MSIS-00 model overestimated the temperature by 50 to 75 K during the early evening hours of local winter months. Otherwise, the agreement was generally good, although, in line with prior studies, the model failed to reproduce the MTM peak for any of the 6 months compared with the FPI data.
NASA Astrophysics Data System (ADS)
Vermote, E.; Franch, B.; Becker-Reshef, I.; Claverie, M.; Huang, J.; Zhang, J.; Sobrino, J. A.
2014-12-01
Wheat is the most important cereal crop traded on international markets and winter wheat constitutes approximately 80% of global wheat production. Thus, accurate and timely forecasts of its production are critical for informing agricultural policies and investments, as well as increasing market efficiency and stability. Becker-Reshef et al. (2010) used an empirical generalized model for forecasting winter wheat production. Their approach combined BRDF-corrected daily surface reflectance from Moderate resolution Imaging Spectroradiometer (MODIS) Climate Modeling Grid (CMG) with detailed official crop statistics and crop type masks. It is based on the relationship between the Normalized Difference Vegetation Index (NDVI) at the peak of the growing season, percent wheat within the CMG pixel, and the final yields. This method predicts the yield approximately one month to six weeks prior to harvest. In this study, we include the Growing Degree Day (GDD) information extracted from NCEP/NCAR reanalysis data in order to improve the winter wheat production forecast by increasing the timeliness of the forecasts while conserving the accuracy of the original model. We apply this modified model to three major wheat-producing countries: United States of America, Ukraine and China from 2001 to 2012. We show that a reliable forecast can be made between one month to a month and a half prior to the peak NDVI (meaning two months to two and a half months prior to harvest) while conserving an accuracy of 10% in the production forecast.
Do American dippers obtain a survival benefit from altitudinal migration?
Green, David J; Whitehorne, Ivy B J; Middleton, Holly A; Morrissey, Christy A
2015-01-01
Studies of partial migrants provide an opportunity to assess the cost and benefits of migration. Previous work has demonstrated that sedentary American dippers (residents) have higher annual productivity than altitudinal migrants that move to higher elevations to breed. Here we use a ten-year (30 period) mark-recapture dataset to evaluate whether migrants offset their lower productivity with higher survival during the migration-breeding period when they occupy different habitat, or early and late-winter periods when they coexist with residents. Mark-recapture models provide no evidence that apparent monthly survival of migrants is higher than that of residents at any time of the year. The best-supported model suggests that monthly survival is higher in the migration-breeding period than winter periods. Another well-supported model suggested that residency conferred a survival benefit, and annual apparent survival (calculated from model weighted monthly apparent survival estimates using the Delta method) of residents (0.511 ± 0.038SE) was slightly higher than that of migrants (0.487 ± 0.032). Winter survival of American dippers was influenced by environmental conditions; monthly apparent survival increased as maximum daily flow rates increased and declined as winter temperatures became colder. However, we found no evidence that environmental conditions altered differences in winter survival of residents and migrants. Since migratory American dippers have lower productivity and slightly lower survival than residents our data suggests that partial migration is likely an outcome of competition for limited nest sites at low elevations, with less competitive individuals being forced to migrate to higher elevations in order to breed.
Incorporating Yearly Derived Winter Wheat Maps Into Winter Wheat Yield Forecasting Model
NASA Technical Reports Server (NTRS)
Skakun, S.; Franch, B.; Roger, J.-C.; Vermote, E.; Becker-Reshef, I.; Justice, C.; Santamaría-Artigas, A.
2016-01-01
Wheat is one of the most important cereal crops in the world. Timely and accurate forecast of wheat yield and production at global scale is vital in implementing food security policy. Becker-Reshef et al. (2010) developed a generalized empirical model for forecasting winter wheat production using remote sensing data and official statistics. This model was implemented using static wheat maps. In this paper, we analyze the impact of incorporating yearly wheat masks into the forecasting model. We propose a new approach of producing in season winter wheat maps exploiting satellite data and official statistics on crop area only. Validation on independent data showed that the proposed approach reached 6% to 23% of omission error and 10% to 16% of commission error when mapping winter wheat 2-3 months before harvest. In general, we found a limited impact of using yearly winter wheat masks over a static mask for the study regions.
Season of conception is associated with future survival, fertility, and milk yield of Holstein cows.
Pinedo, P J; De Vries, A
2017-08-01
Environmental influences during different stages of pregnancy can induce lifelong changes in the structure, physiology, and metabolism of the offspring. Our hypothesis was that season of conception (when the offspring was conceived), associated with heat stress conditions at conception and during the initial stages of embryonic development, affects the lifetime performance and survival of the female offspring after birth. The objective was to analyze the association between month of conception and subsequent survival, fertility, and milk yield in cows maintained on dairy farms in Florida, where the climate during the summer is hot and humid but winters are mild. Initial data consisted of 667,104 Dairy Herd Improvement lactation records from cows calving between 2000 and 2012 in 152 herds. Dates of conception were estimated as birth date minus 280 d. The magnitude of heat stress in each herd was quantified by comparing milk yield during summer and winter. Wood's lactation curves were fitted to adjust milk yields for effects of days in milk, and residuals were obtained for each calendar month. A sine function was fitted on the 12 residuals per farm. The difference between the highest and lowest points on the sine function was termed the seasonality index, a measure of the direct effect of heat stress on milk production. Herds were categorized in 3 levels of seasonality [low (seasonality index values less than the 25th percentile value; <2.84), medium (values within the interquartile range), and high (values greater than the 75th percentile value; >5.22)]. Cows were grouped by their month of conception: summer (July-September) and winter (December-February), and comparisons were performed by parity using logistic regression, ANOVA, and survival analysis. Two models were developed. Model A included the complete population of cows (n = 337,529 lactation records) conceived in winter or summer. Model B included cows (n = 228,257 lactation records) that had parent-average genetic information available to be able to correct for farmer's use of lower genetic merit of sires in summer. Other variables included in the models were month and year of calving, age at first calving, and herd. Models were run per parity group (1, 2, and ≥3). In both models, age at first calving was lower for cows conceived during winter versus summer. The odds (95% confidence interval) of survival to a second calving for cows conceived in winter were 1.21 and 1.15 times the odds of survival for cows conceived in summer for models A and B, respectively. Numbers of days from calving to first breeding and from calving to conception were consistently smaller for winter versus summer months of conception across all parity categories. Milk yields (305 d and by 70 d in milk) were greater for cows conceived in winter versus summer. In conclusion, cows that were conceived in the winter had better subsequent survival and performance than cows that were conceived in the summer. There is evidence that season of conception may have lifelong consequences for the offspring. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Interannual variability and climatic noise in satellite-observed outgoing longwave radiation
NASA Technical Reports Server (NTRS)
Short, D. A.; Cahalan, R. F.
1983-01-01
Upwelling-IR observations of the North Pacific by polar orbiters NOAA 3, 4, 5, and 6 and TIROS-N from 1974 to 1981 are analyzed statistically in terms of interannual variability (IAV) in monthly averages and climatic noise due to short-term weather fluctuations. It is found that although the daily variance in the observations is the same in summer and winter months, and although IAV in winter is smaller than that in summer, the climatic noise in winter is so much smaller that a greater fraction of winter anomalies are statistically significant. The smaller winter climatic noise level is shown to be due to shorter autocorrelation times. It is demonstrated that increasing averaging area does not reduce the climatic noise level, suggesting that continuing collection of high-resolution satellite IR data on a global basis is necessary if better models of short-term variability are to be constructed.
Water availability change in central Belgium for the late 21st century
NASA Astrophysics Data System (ADS)
Tabari, Hossein; Taye, Meron Teferi; Willems, Patrick
2015-08-01
We investigate the potential impact of climate change on water availability in central Belgium. Two water balance components being precipitation and potential evapotranspiration are initially projected for the late 21st century (2071-2100) based on 30 Coupled Models Intercomparison Project phase 5 (CMIP5) models relative to a baseline period of 1961-1990, assuming forcing by four representative concentration pathway emission scenarios (RCP2.6, RCP4.5, RCP6.0, RCP8.5). The future available water is then estimated as the difference between precipitation and potential evapotranspiration projections. The number of wet days and mean monthly precipitation for summer season is projected to decrease in most of the scenarios, while the projections show an increase in those variables for the winter months. Potential evapotranspiration is expected to increase during both winter and summer seasons. The results show a decrease in water availability for summer and an increase for winter, suggesting drier summers and wetter winters for the late 21st century in central Belgium.
ALBEDO MODELS FOR SNOW AND ICE ON A FRESHWATER LAKE. (R824801)
Snow and ice albedo measurements were taken over a freshwater lake in Minnesota for three months during the winter of 1996¯1997 for use in a winter lake water quality model. The mean albedo of new snow was measured as 0.83±0.028, while the...
Methods for estimating drought streamflow probabilities for Virginia streams
Austin, Samuel H.
2014-01-01
Maximum likelihood logistic regression model equations used to estimate drought flow probabilities for Virginia streams are presented for 259 hydrologic basins in Virginia. Winter streamflows were used to estimate the likelihood of streamflows during the subsequent drought-prone summer months. The maximum likelihood logistic regression models identify probable streamflows from 5 to 8 months in advance. More than 5 million streamflow daily values collected over the period of record (January 1, 1900 through May 16, 2012) were compiled and analyzed over a minimum 10-year (maximum 112-year) period of record. The analysis yielded the 46,704 equations with statistically significant fit statistics and parameter ranges published in two tables in this report. These model equations produce summer month (July, August, and September) drought flow threshold probabilities as a function of streamflows during the previous winter months (November, December, January, and February). Example calculations are provided, demonstrating how to use the equations to estimate probable streamflows as much as 8 months in advance.
NASA Technical Reports Server (NTRS)
Skakun, Sergii; Franch, Belen; Vermote, Eric; Roger, Jean-Claude; Becker-Reshef, Inbal; Justice, Christopher; Kussul, Nataliia
2017-01-01
Knowledge on geographical location and distribution of crops at global, national and regional scales is an extremely valuable source of information applications. Traditional approaches to crop mapping using remote sensing data rely heavily on reference or ground truth data in order to train/calibrate classification models. As a rule, such models are only applicable to a single vegetation season and should be recalibrated to be applicable for other seasons. This paper addresses the problem of early season large-area winter crop mapping using Moderate Resolution Imaging Spectroradiometer (MODIS) derived Normalized Difference Vegetation Index (NDVI) time-series and growing degree days (GDD) information derived from the Modern-Era Retrospective analysis for Research and Applications (MERRA-2) product. The model is based on the assumption that winter crops have developed biomass during early spring while other crops (spring and summer) have no biomass. As winter crop development is temporally and spatially non-uniform due to the presence of different agro-climatic zones, we use GDD to account for such discrepancies. A Gaussian mixture model (GMM) is applied to discriminate winter crops from other crops (spring and summer). The proposed method has the following advantages: low input data requirements, robustness, applicability to global scale application and can provide winter crop maps 1.5-2 months before harvest. The model is applied to two study regions, the State of Kansas in the US and Ukraine, and for multiple seasons (2001-2014). Validation using the US Department of Agriculture (USDA) Crop Data Layer (CDL) for Kansas and ground measurements for Ukraine shows that accuracies of greater than 90% can be achieved in mapping winter crops 1.5-2 months before harvest. Results also show good correspondence to official statistics with average coefficients of determination R(exp. 2) greater than 0.85.
The Yermak Pass Branch: A Major Pathway for the Atlantic Water North of Svalbard?
NASA Astrophysics Data System (ADS)
Koenig, Zoé; Provost, Christine; Sennéchael, Nathalie; Garric, Gilles; Gascard, Jean-Claude
2017-12-01
An upward-looking Acoustic Doppler Current Profiler deployed from July 2007 to September 2008 in the Yermak Pass, north of Svalbard, gathered velocity data from 570 m up to 90 m at a location covered by sea ice 10 months out of 12. Barotropic diurnal and semidiurnal tides are the dominant signals in the velocity (more than 70% of the velocity variance). In winter, baroclinic eddies at periods between 5 and 15 days and pulses of 1-2 month periodicity are observed in the Atlantic Water layer and are associated with a shoaling of the pycnocline. Mercator-Ocean global operational model with daily and 1/12° spatial resolution is shown to have skills in representing low-frequency velocity variations (>1 month) in the West Spitsbergen Current and in the Yermak Pass. Model outputs suggest that the Yermak Pass Branch has had a robust winter pattern over the last 10 years, carrying on average 31% of the Atlantic Water volume transport of the West Spitsbergen Current (36% in autumn/winter). However, those figures have to be considered with caution as the model neither simulates tides nor fully resolves eddies and ignores residual mean currents that could be significant.
Evidence of social deprivation on the spatial patterns of excess winter mortality.
Almendra, Ricardo; Santana, Paula; Vasconcelos, João
2017-11-01
The aims of this study are to identify the patterns of excess winter mortality (due to diseases of the circulatory system) and to analyse the association between the excess winter deaths (EWD) and socio-economic deprivation in Portugal. The number of EWD in 2002-2011 was estimated by comparing the number of deaths in winter months with the average number in non-winter months. The EWD ratio of each municipality was calculated by following the indirect standardization method and then compared with two deprivation indexes (socio-material and housing deprivation index) through ecological regression models. This study found that: (1) the EWD ratio showed considerable asymmetry in its geography; (2) there are significant positive associations between the EWD ratio and both deprivation indexes; and (3) at the higher level of deprivation, housing conditions have a stronger association with EWD than socio-material conditions. The significant association between two deprivation dimensions (socio-material and housing deprivation) and EWDs suggests that EWD geographical pattern is influenced by deprivation.
Mapping monthly rainfall erosivity in Europe.
Ballabio, Cristiano; Borrelli, Pasquale; Spinoni, Jonathan; Meusburger, Katrin; Michaelides, Silas; Beguería, Santiago; Klik, Andreas; Petan, Sašo; Janeček, Miloslav; Olsen, Preben; Aalto, Juha; Lakatos, Mónika; Rymszewicz, Anna; Dumitrescu, Alexandru; Tadić, Melita Perčec; Diodato, Nazzareno; Kostalova, Julia; Rousseva, Svetla; Banasik, Kazimierz; Alewell, Christine; Panagos, Panos
2017-02-01
Rainfall erosivity as a dynamic factor of soil loss by water erosion is modelled intra-annually for the first time at European scale. The development of Rainfall Erosivity Database at European Scale (REDES) and its 2015 update with the extension to monthly component allowed to develop monthly and seasonal R-factor maps and assess rainfall erosivity both spatially and temporally. During winter months, significant rainfall erosivity is present only in part of the Mediterranean countries. A sudden increase of erosivity occurs in major part of European Union (except Mediterranean basin, western part of Britain and Ireland) in May and the highest values are registered during summer months. Starting from September, R-factor has a decreasing trend. The mean rainfall erosivity in summer is almost 4 times higher (315MJmmha -1 h -1 ) compared to winter (87MJmmha -1 h -1 ). The Cubist model has been selected among various statistical models to perform the spatial interpolation due to its excellent performance, ability to model non-linearity and interpretability. The monthly prediction is an order more difficult than the annual one as it is limited by the number of covariates and, for consistency, the sum of all months has to be close to annual erosivity. The performance of the Cubist models proved to be generally high, resulting in R 2 values between 0.40 and 0.64 in cross-validation. The obtained months show an increasing trend of erosivity occurring from winter to summer starting from western to Eastern Europe. The maps also show a clear delineation of areas with different erosivity seasonal patterns, whose spatial outline was evidenced by cluster analysis. The monthly erosivity maps can be used to develop composite indicators that map both intra-annual variability and concentration of erosive events. Consequently, spatio-temporal mapping of rainfall erosivity permits to identify the months and the areas with highest risk of soil loss where conservation measures should be applied in different seasons of the year. Copyright © 2016 British Geological Survey, NERC. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Claverie, M.; Franch, B.; Vermote, E.; Becker-Reshef, I.; Justice, C. O.
2015-12-01
Wheat is one of the key cereals crop grown worldwide. Thus, accurate and timely forecasts of its production are critical for informing agricultural policies and investments, as well as increasing market efficiency and stability. Becker-Reshef et al. (2010) used an empirical generalized model for forecasting winter wheat production using combined BRDF-corrected daily surface reflectance from the Moderate resolution Imaging Spectroradiometer (MODIS) Climate Modeling Grid (CMG) with detailed official crop statistics and crop type masks. It is based on the relationship between the Normalized Difference Vegetation Index (NDVI) at the peak of the growing season, percent wheat within the CMG pixel, and the final yields. This method predicts the yield approximately one month to six weeks prior to harvest. Recently, Franch et al. (2015) included Growing Degree Day (GDD) information extracted from NCEP/NCAR reanalysis data in order to improve the winter wheat production forecast by increasing the timeliness of the forecasts between a month to a month and a half prior to the peak NDVI (i.e. 1-2.5 months prior to harvest), while conserving the accuracy of the original model. In this study, we apply these methods to historical data from the Advanced Very High Resolution Radiometer (AVHRR). We apply both the original and the modified model to United States of America from 1990 to 2014 and inter-compare the AVHRR results to MODIS from 2000 to 2014.
Statistical downscaling for winter streamflow in Douro River
NASA Astrophysics Data System (ADS)
Jesús Esteban Parra, María; Hidalgo Muñoz, José Manuel; García-Valdecasas-Ojeda, Matilde; Raquel Gámiz Fortis, Sonia; Castro Díez, Yolanda
2015-04-01
In this paper we have obtained climate change projections for winter flow of the Douro River in the period 2071-2100 by applying the technique of Partial Regression and various General Circulation Models of CMIP5. The streamflow data base used has been provided by the Center for Studies and Experimentation of Public Works, CEDEX. Series from gauing stations and reservoirs with less than 10% of missing data (filled by regression with well correlated neighboring stations) have been considered. The homogeneity of these series has been evaluated through the Pettit test and degree of human alteration by the Common Area Index. The application of these criteria led to the selection of 42 streamflow time series homogeneously distributed over the basin, covering the period 1951-2011. For these streamflow data, winter seasonal values were obtained by averaging the monthly values from January to March. Statistical downscaling models for the streamflow have been fitted using as predictors the main atmospheric modes of variability over the North Atlantic region. These modes have been obtained using winter sea level pressure data of the NCEP reanalysis, averaged for the months from December to February. Period 1951-1995 was used for calibration, while 1996-2011 period was used in validating the adjusted models. In general, these models are able to reproduce about 70% of the variability of the winter streamflow of the Douro River. Finally, the obtained statistical models have been applied to obtain projections for 2071-2100 period, using outputs from different CMIP5 models under the RPC8.5 scenario. The results for the end of the century show modest declines of winter streamflow in this river for most of the models. Keywords: Statistical downscaling, streamflow, Douro River, climate change. ACKNOWLEDGEMENTS This work has been financed by the projects P11-RNM-7941 (Junta de Andalucía-Spain) and CGL2013-48539-R (MINECO-Spain, FEDER).
Winter Season Mortality: Will Climate Warming Bring Benefits?
Kinney, Patrick L; Schwartz, Joel; Pascal, Mathilde; Petkova, Elisaveta; Tertre, Alain Le; Medina, Sylvia; Vautard, Robert
2015-06-01
Extreme heat events are associated with spikes in mortality, yet death rates are on average highest during the coldest months of the year. Under the assumption that most winter excess mortality is due to cold temperature, many previous studies have concluded that winter mortality will substantially decline in a warming climate. We analyzed whether and to what extent cold temperatures are associated with excess winter mortality across multiple cities and over multiple years within individual cities, using daily temperature and mortality data from 36 US cities (1985-2006) and 3 French cities (1971-2007). Comparing across cities, we found that excess winter mortality did not depend on seasonal temperature range, and was no lower in warmer vs. colder cities, suggesting that temperature is not a key driver of winter excess mortality. Using regression models within monthly strata, we found that variability in daily mortality within cities was not strongly influenced by winter temperature. Finally we found that inadequate control for seasonality in analyses of the effects of cold temperatures led to spuriously large assumed cold effects, and erroneous attribution of winter mortality to cold temperatures. Our findings suggest that reductions in cold-related mortality under warming climate may be much smaller than some have assumed. This should be of interest to researchers and policy makers concerned with projecting future health effects of climate change and developing relevant adaptation strategies.
Winter season mortality: will climate warming bring benefits?
NASA Astrophysics Data System (ADS)
Kinney, Patrick L.; Schwartz, Joel; Pascal, Mathilde; Petkova, Elisaveta; Le Tertre, Alain; Medina, Sylvia; Vautard, Robert
2015-06-01
Extreme heat events are associated with spikes in mortality, yet death rates are on average highest during the coldest months of the year. Under the assumption that most winter excess mortality is due to cold temperature, many previous studies have concluded that winter mortality will substantially decline in a warming climate. We analyzed whether and to what extent cold temperatures are associated with excess winter mortality across multiple cities and over multiple years within individual cities, using daily temperature and mortality data from 36 US cities (1985-2006) and 3 French cities (1971-2007). Comparing across cities, we found that excess winter mortality did not depend on seasonal temperature range, and was no lower in warmer vs. colder cities, suggesting that temperature is not a key driver of winter excess mortality. Using regression models within monthly strata, we found that variability in daily mortality within cities was not strongly influenced by winter temperature. Finally we found that inadequate control for seasonality in analyses of the effects of cold temperatures led to spuriously large assumed cold effects, and erroneous attribution of winter mortality to cold temperatures. Our findings suggest that reductions in cold-related mortality under warming climate may be much smaller than some have assumed. This should be of interest to researchers and policy makers concerned with projecting future health effects of climate change and developing relevant adaptation strategies.
Tangborn, Wendell V.; Rasmussen, Lowell A.
1976-01-01
On the basis of a linear relationship between winter (October-April) precipitation and annual runoff from a drainage basin (Rasmussen and Tangborn, 1976) a physically reasonable model for predicting summer (May-September) streamflow from drainages in the North Cascades region was developed. This hydrometeorological prediction method relates streamflow for a season beginning on the day of prediction to the storage (including snow, ice, soil moisture, and groundwater) on that day. The spring storage is inferred from an input-output relationship based on the principle of conservation of mass: spring storage equals winter precipitation on the basin less winter runoff from the basin and less winter evapotranspiration, which is presumed to be small. The method of prediction is based on data only from the years previous to the one for which the prediction is made, and the system is revised each year as data for the previous year become available. To improve the basin storage estimate made in late winter or early spring, a short-season runoff prediction is made. The errors resulting from this short-term prediction are used to revise the storage estimate and improve the later prediction. This considerably improves the accuracy of the later prediction, especially for periods early in the summer runoff season. The optimum length for the test period appears to be generally less than a month for east side basins and between 1 and 2 months for those on the west side of the Cascade Range. The time distribution of the total summer runoff can be predicted when this test season is used so that on May 1 monthly streamflow for the May-September season can be predicted. It was found that summer precipitation and the time of minimum storage are two error sources that were amenable to analysis. For streamflow predictions in seasons beginning in early spring the deviation of the subsequent summer precipitation from a long-period average will contribute up to 53% of the prediction error. This contribution decreases to nearly zero during the summer and then rises slightly for late summer predictions. The reason for the smaller than expected effect of summer precipitation is thought to be due to the compensating effect of increased evaporative losses and increased infiltration when precipitation is greater than normal during the summer months. The error caused by the beginning winter month (assumed to be October in this study) not coinciding with the time of minimum storage was examined; it appears that October may be the best average beginning winter month for most drainages but that a more detailed study is needed. The optimum beginning of the winter season appears to vary from August to October when individual years are examined. These results demonstrate that standard precipitation and runoff measurements in the North Cascades region are adequate for constructing a predictive hydrologic model. This model can be used to make streamflow predictions that compare favorably with current multiple regression methods based on mountain snow surveys. This method has the added advantages of predicting the space and time distributions of storage and summer runoff.
Fossils tell of mild winters in an ancient hothouse
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kerr, R.A.
Fossil evidence from the Eocene points to a warmer winter climate in the continental interior (e.g. North Dakota) than that predicted by computer models. Paleobotanists have been able to quantify approximate winter mean temperatures by using leaf characteristics. As one example, leaves from colder climates have toothed edges. Leaf structure was correlated with modern climate regimes, and these relations were then applied to Eocene fossils. They found cold-month mean temperatures of 1-8[degrees]C in Wyoming and Montana, well above model predictions. Climate models can be manipulated to reproduce these temperatures, but not without overheating the entire globe. The problem could bemore » that the Eocene atmospheric circulation was different from today, something not accounted for well by climate models.« less
Representing winter wheat in the Community Land Model (version 4.5)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Yaqiong; Williams, Ian N.; Bagley, Justin E.
Winter wheat is a staple crop for global food security, and is the dominant vegetation cover for a significant fraction of Earth's croplands. As such, it plays an important role in carbon cycling and land–atmosphere interactions in these key regions. Accurate simulation of winter wheat growth is not only crucial for future yield prediction under a changing climate, but also for accurately predicting the energy and water cycles for winter wheat dominated regions. We modified the winter wheat model in the Community Land Model (CLM) to better simulate winter wheat leaf area index, latent heat flux, net ecosystem exchange ofmore » CO 2, and grain yield. These included schemes to represent vernalization as well as frost tolerance and damage. We calibrated three key parameters (minimum planting temperature, maximum crop growth days, and initial value of leaf carbon allocation coefficient) and modified the grain carbon allocation algorithm for simulations at the US Southern Great Plains ARM site (US-ARM), and validated the model performance at eight additional sites across North America. We found that the new winter wheat model improved the prediction of monthly variation in leaf area index, reduced latent heat flux, and net ecosystem exchange root mean square error (RMSE) by 41 and 35 % during the spring growing season. The model accurately simulated the interannual variation in yield at the US-ARM site, but underestimated yield at sites and in regions (northwestern and southeastern US) with historically greater yields by 35 %.« less
Representing winter wheat in the Community Land Model (version 4.5)
NASA Astrophysics Data System (ADS)
Lu, Yaqiong; Williams, Ian N.; Bagley, Justin E.; Torn, Margaret S.; Kueppers, Lara M.
2017-05-01
Winter wheat is a staple crop for global food security, and is the dominant vegetation cover for a significant fraction of Earth's croplands. As such, it plays an important role in carbon cycling and land-atmosphere interactions in these key regions. Accurate simulation of winter wheat growth is not only crucial for future yield prediction under a changing climate, but also for accurately predicting the energy and water cycles for winter wheat dominated regions. We modified the winter wheat model in the Community Land Model (CLM) to better simulate winter wheat leaf area index, latent heat flux, net ecosystem exchange of CO2, and grain yield. These included schemes to represent vernalization as well as frost tolerance and damage. We calibrated three key parameters (minimum planting temperature, maximum crop growth days, and initial value of leaf carbon allocation coefficient) and modified the grain carbon allocation algorithm for simulations at the US Southern Great Plains ARM site (US-ARM), and validated the model performance at eight additional sites across North America. We found that the new winter wheat model improved the prediction of monthly variation in leaf area index, reduced latent heat flux, and net ecosystem exchange root mean square error (RMSE) by 41 and 35 % during the spring growing season. The model accurately simulated the interannual variation in yield at the US-ARM site, but underestimated yield at sites and in regions (northwestern and southeastern US) with historically greater yields by 35 %.
Representing winter wheat in the Community Land Model (version 4.5)
Lu, Yaqiong; Williams, Ian N.; Bagley, Justin E.; ...
2017-05-05
Winter wheat is a staple crop for global food security, and is the dominant vegetation cover for a significant fraction of Earth's croplands. As such, it plays an important role in carbon cycling and land–atmosphere interactions in these key regions. Accurate simulation of winter wheat growth is not only crucial for future yield prediction under a changing climate, but also for accurately predicting the energy and water cycles for winter wheat dominated regions. We modified the winter wheat model in the Community Land Model (CLM) to better simulate winter wheat leaf area index, latent heat flux, net ecosystem exchange ofmore » CO 2, and grain yield. These included schemes to represent vernalization as well as frost tolerance and damage. We calibrated three key parameters (minimum planting temperature, maximum crop growth days, and initial value of leaf carbon allocation coefficient) and modified the grain carbon allocation algorithm for simulations at the US Southern Great Plains ARM site (US-ARM), and validated the model performance at eight additional sites across North America. We found that the new winter wheat model improved the prediction of monthly variation in leaf area index, reduced latent heat flux, and net ecosystem exchange root mean square error (RMSE) by 41 and 35 % during the spring growing season. The model accurately simulated the interannual variation in yield at the US-ARM site, but underestimated yield at sites and in regions (northwestern and southeastern US) with historically greater yields by 35 %.« less
NASA Technical Reports Server (NTRS)
Parksinson, Claire; Vinnikov, Konstantin Y.; Cavalieri, Donald J.
2005-01-01
Comparison of polar sea ice results from 11 major global climate models and satellite-derived observations for 1979-2004 reveals that each of the models is simulating seasonal cycles that are phased at least approximately correctly in both hemispheres. Each is also simulating various key aspects of the observed ice cover distributions, such as winter ice not only throughout the central Arctic basin but also throughout Hudson Bay, despite its relatively low latitudes. However, some of the models simulate too much ice, others too little ice (in some cases varying depending on hemisphere and/or season), and some match the observations better in one season versus another. Several models do noticeably better in the Northern Hemisphere than in the Southern Hemisphere, and one does noticeably better in the Southern Hemisphere. In the Northern Hemisphere all simulate monthly average ice extents to within +/-5.1 x 10(exp 6)sq km of the observed ice extent throughout the year; and in the Southern Hemisphere all except one simulate the monthly averages to within +/-6.3 x 10(exp 6) sq km of the observed values. All the models properly simulate a lack of winter ice to the west of Norway; however, most do not obtain as much absence of ice immediately north of Norway as the observations show, suggesting an under simulation of the North Atlantic Current. The spread in monthly averaged ice extents amongst the 11 model simulations is greater in the Southern Hemisphere than in the Northern Hemisphere and greatest in the Southern Hemisphere winter and spring.
Dewsbury, Diana M A; Renter, David G; Shridhar, Pragathi B; Noll, Lance W; Shi, Xiaorong; Nagaraja, Tiruvoor G; Cernicchiaro, Natalia
2015-08-01
The United States Department of Agriculture Food Safety and Inspection Service has declared seven Shiga toxin-producing Escherichia coli (STEC) serogroups (O26, O45, O103, O111, O121, O145, and O157) as adulterants in raw, nonintact beef products. The objective of this study was to determine the prevalence of these seven serogroups and the associated virulence genes (Shiga toxin [stx1, stx2], and intimin [eae]) in cattle feces during summer (June-August 2013) and winter (January-March 2014) months. Twenty-four pen floor fecal samples were collected from each of 24 cattle pens, in both summer and winter months, at a commercial feedlot in the United States. Samples were subjected to culture-based detection methods that included enrichment, serogroup-specific immunomagnetic separation and plating on selective media, followed by a multiplex polymerase chain reaction for serogroup confirmation and virulence gene detection. A sample was considered STEC positive if a recovered isolate harbored an O gene, stx1, and/or stx2, and eae genes. All O serogroups of interest were detected in summer months, and model-adjusted prevalence estimates are as follows: O26 (17.8%), O45 (14.6%), O103 (59.9%), O111 (0.2%), O121 (2.0%), O145 (2.7%), and O157 (41.6%); however, most non-O157 isolates did not harbor virulence genes. The cumulative model-adjusted sample-level prevalence estimates of STEC O26, O103, O145, and O157 during summer (n=576) were 1.0, 1.6, 0.8, and 41.4%, respectively; STEC O45, O111, and O121 were not detected during summer months. In winter, serogroups O26 (0.9%), O45 (1.5%), O103 (40.2%), and O121 (0.2%) were isolated; however, no virulence genes were detected in isolates from cattle feces collected during winter (n=576). Statistically significant seasonal differences in prevalence were identified for STEC O103 and O157 (p<0.05), but data on other STEC were sparse. The results of this study indicate that although non-O157 serogroups were present, non-O157 STEC were rarely detected in feces from the feedlot cattle populations tested in summer and winter months.
NASA Technical Reports Server (NTRS)
Jeong, Hye-In; Lee, Doo Young; Karumuri, Ashok; Ahn, Joong-Bae; Lee, June-Yi; Luo, Jing-Jia; Schemm, Jae-Kyung E.; Hendon, Harry H.; Braganza, Karl; Ham, Yoo-Geun
2012-01-01
Forecast skill of the APEC Climate Center (APCC) Multi-Model Ensemble (MME) seasonal forecast system in predicting two main types of El Nino-Southern Oscillation (ENSO), namely canonical (or cold tongue) and Modoki ENSO, and their regional climate impacts is assessed for boreal winter. The APCC MME is constructed by simple composite of ensemble forecasts from five independent coupled ocean-atmosphere climate models. Based on a hindcast set targeting boreal winter prediction for the period 19822004, we show that the MME can predict and discern the important differences in the patterns of tropical Pacific sea surface temperature anomaly between the canonical and Modoki ENSO one and four month ahead. Importantly, the four month lead MME beats the persistent forecast. The MME reasonably predicts the distinct impacts of the canonical ENSO, including the strong winter monsoon rainfall over East Asia, the below normal rainfall and above normal temperature over Australia, the anomalously wet conditions across the south and cold conditions over the whole area of USA, and the anomalously dry conditions over South America. However, there are some limitations in capturing its regional impacts, especially, over Australasia and tropical South America at a lead time of one and four months. Nonetheless, forecast skills for rainfall and temperature over East Asia and North America during ENSO Modoki are comparable to or slightly higher than those during canonical ENSO events.
NASA Technical Reports Server (NTRS)
Geller, M. A.; Wu, M.-F.; Gelman, M. E.
1984-01-01
Individual monthly mean general circulation statistics for the Northern Hemisphere winters of 1978-79, 1979-80, 1980-81, and 1981-82 are examined for the altitude region from the earth's surface to 55 km. Substantial interannual variability is found in the mean zonal geostrophic wind; planetary waves with zonal wavenumber one and two; the heat and momentum fluxes; and the divergence of the Eliassen-Palm flux. These results are compared with previous studies by other workers. This variability in the monthly means is examined further by looking at both time-latitude sections at constant pressure levels and time-height sections at constant latitudes. The implications of this interannual variability for verifying models and interpreting observations are discussed.
Prediction of fog/visibility over India using NWP Model
NASA Astrophysics Data System (ADS)
Singh, Aditi; George, John P.; Iyengar, Gopal Raman
2018-03-01
Frequent occurrence of fog in different parts of northern India is common during the winter months of December and January. Low visibility conditions due to fog disrupt normal public life. Visibility conditions heavily affect both surface and air transport. A number of flights are either diverted or cancelled every year during the winter season due to low visibility conditions, experienced at different airports of north India. Thus, fog and visibility forecasts over plains of north India become very important during winter months. This study aims to understand the ability of a NWP model (NCMRWF, Unified Model, NCUM) with a diagnostic visibility scheme to forecast visibility over plains of north India. The present study verifies visibility forecasts obtained from NCUM against the INSAT-3D fog images and visibility observations from the METAR reports of different stations in the plains of north India. The study shows that the visibility forecast obtained from NCUM can provide reasonably good indication of the spatial extent of fog in advance of one day. The fog intensity is also predicted fairly well. The study also verifies the simple diagnostic model for fog which is driven by NWP model forecast of surface relative humidity and wind speed. The performance of NWP model forecast of visibility is found comparable to that from simple fog model driven by NWP forecast of relative humidity and wind speed.
Comparison of GPS TEC variations with Holt-Winter method and IRI-2012 over Langkawi, Malaysia
NASA Astrophysics Data System (ADS)
Elmunim, N. A.; Abdullah, M.; Hasbi, A. M.; Bahari, S. A.
2017-07-01
The Total Electron Content (TEC) is the ionospheric parameter that has the main effect on radio wave propagation. Therefore, it is crucial to evaluate the performance of the TEC models for the further improvement of the ionospheric modelling in equatorial regions. This work presents an analysis of the TEC, derived from the GPS Ionospheric Scintillation and TEC Monitor (GISTM) receiver at the Langkawi station, Malaysia, located at the geographic coordinates of 6.19°N, 99.51°E and the geomagnetic coordinates of 3.39°S, 172.42°E. The diurnal, monthly and seasonal variations in 2014 of the observed GPS-TEC were compared with the statistical Holt-Winter method and a recent version of the International Reference Ionosphere model (IRI-2012), using three different topside options of an electron density, which are the IRI-2001, IRI01-corr and NeQuick. The maximum peaks of the GPS-TEC were observed in the post-noon time and the minimum was observed during the early morning time. In addition, in monthly variations the Holt-Winter and the IRI-2012 topside options showed an underestimation that was in agreement with the GPS-TEC, except for the IRI-2001 model which showed an overestimation in June, July and August. Regarding the seasonal variation of the GPS-TEC, the lowest values were observed during summer and it reached its maximum value during the equinox season. The IRI-2001 showed the highest value of percentage deviation compared to the IRI01-corr, NeQuick and Holt-Winter method. Therefore, the accuracy of the models was found to be approximately 95% in the Holt-Winter method, 75% in the IRI01-corr, 73% in the NeQuick and 66% in the IRI-2001 model. Hence, it can be inferred that the Holt-Winter method showed a higher performance and better estimates of the TEC compared to the IRI01-corr and NeQuick, while the IRI-2001 showed a poor predictive performance in the equatorial region over Malaysia.
Antarctica as a Model for the Human Exploration of Mars
1987-07-19
that threaten the minds of men confined for several months with a small group of companions . Nevertheless, the strain exposed psychological weaknesses...continents. Winter temperatures average -60F and winds exceeding 150 miles per hour are not uncommon. Plant and animal life are largely confined to the... Immunoglobulin concentrations have also been found to undergo a significant decline during the Antarctic winter (Muchmore, Tatem, Worley, Shurley, and
NASA Astrophysics Data System (ADS)
Hu, J.; Zhang, H.; Ying, Q.; Chen, S.-H.; Vandenberghe, F.; Kleeman, M. J.
2014-08-01
For the first time, a decadal (9 years from 2000 to 2008) air quality model simulation with 4 km horizontal resolution and daily time resolution has been conducted in California to provide air quality data for health effects studies. Model predictions are compared to measurements to evaluate the accuracy of the simulation with an emphasis on spatial and temporal variations that could be used in epidemiology studies. Better model performance is found at longer averaging times, suggesting that model results with averaging times ≥ 1 month should be the first to be considered in epidemiological studies. The UCD/CIT model predicts spatial and temporal variations in the concentrations of O3, PM2.5, EC, OC, nitrate, and ammonium that meet standard modeling performance criteria when compared to monthly-averaged measurements. Predicted sulfate concentrations do not meet target performance metrics due to missing sulfur sources in the emissions. Predicted seasonal and annual variations of PM2.5, EC, OC, nitrate, and ammonium have mean fractional biases that meet the model performance criteria in 95%, 100%, 71%, 73%, and 92% of the simulated months, respectively. The base dataset provides an improvement for predicted population exposure to PM concentrations in California compared to exposures estimated by central site monitors operated one day out of every 3 days at a few urban locations. Uncertainties in the model predictions arise from several issues. Incomplete understanding of secondary organic aerosol formation mechanisms leads to OC bias in the model results in summertime but does not affect OC predictions in winter when concentrations are typically highest. The CO and NO (species dominated by mobile emissions) results reveal temporal and spatial uncertainties associated with the mobile emissions generated by the EMFAC 2007 model. The WRF model tends to over-predict wind speed during stagnation events, leading to under-predictions of high PM concentrations, usually in winter months. The WRF model also generally under-predicts relative humidity, resulting in less particulate nitrate formation especially during winter months. These issues will be improved in future studies. All model results included in the current manuscript can be downloaded free of charge at http://faculty.engineering.ucdavis.edu/kleeman/.
NASA Astrophysics Data System (ADS)
Hu, J.; Zhang, H.; Ying, Q.; Chen, S.-H.; Vandenberghe, F.; Kleeman, M. J.
2015-03-01
For the first time, a ~ decadal (9 years from 2000 to 2008) air quality model simulation with 4 km horizontal resolution over populated regions and daily time resolution has been conducted for California to provide air quality data for health effect studies. Model predictions are compared to measurements to evaluate the accuracy of the simulation with an emphasis on spatial and temporal variations that could be used in epidemiology studies. Better model performance is found at longer averaging times, suggesting that model results with averaging times ≥ 1 month should be the first to be considered in epidemiological studies. The UCD/CIT model predicts spatial and temporal variations in the concentrations of O3, PM2.5, elemental carbon (EC), organic carbon (OC), nitrate, and ammonium that meet standard modeling performance criteria when compared to monthly-averaged measurements. Predicted sulfate concentrations do not meet target performance metrics due to missing sulfur sources in the emissions. Predicted seasonal and annual variations of PM2.5, EC, OC, nitrate, and ammonium have mean fractional biases that meet the model performance criteria in 95, 100, 71, 73, and 92% of the simulated months, respectively. The base data set provides an improvement for predicted population exposure to PM concentrations in California compared to exposures estimated by central site monitors operated 1 day out of every 3 days at a few urban locations. Uncertainties in the model predictions arise from several issues. Incomplete understanding of secondary organic aerosol formation mechanisms leads to OC bias in the model results in summertime but does not affect OC predictions in winter when concentrations are typically highest. The CO and NO (species dominated by mobile emissions) results reveal temporal and spatial uncertainties associated with the mobile emissions generated by the EMFAC 2007 model. The WRF model tends to overpredict wind speed during stagnation events, leading to underpredictions of high PM concentrations, usually in winter months. The WRF model also generally underpredicts relative humidity, resulting in less particulate nitrate formation, especially during winter months. These limitations must be recognized when using data in health studies. All model results included in the current manuscript can be downloaded free of charge at http://faculty.engineering.ucdavis.edu/kleeman/ .
Seasonal variation of polycyclic aromatic hydrocarbons (PAHs) emissions in China.
Zhang, Yanxu; Tao, Shu
2008-12-01
A regression model based on the provincial energy consumption data was developed to calculate the monthly proportions of residential energy consumption compared to the total year volume. This model was also validated by comparing with some survey and statistical data. With this model, a PAHs emission inventory with seasonal variation was developed. The seasonal variations of different sources in different regions of China and the spatial distribution of the major sources in different seasons were also achieved. The PAHs emissions were larger in the winter than in the summer, with a difference of about 1.3-folds between the months with the largest and the smallest emissions. Residential solid fuel combustion dominated the pattern of seasonal variation with the winter-time emissions as much as 1.6 times as that in the summer, while the emissions from wild fires and open fire straw burning was mainly concentrated during the spring and summer.
Evaluation of rubblization project in Ohio : executive summary report.
DOT National Transportation Integrated Search
2011-03-01
Concrete pavements are highly susceptible to variations in temperature. During summer months, the concrete pavements expand and, contract during winter months. Such movements, particularly at the joints in concrete pavements during winter months, exe...
NASA Astrophysics Data System (ADS)
Liu, T.; Schmitt, R. W.; Li, L.
2017-12-01
Using 69 years of historical data from 1948-2017, we developed a method to globally search for sea surface salinity (SSS) and temperature (SST) predictors of regional terrestrial precipitation. We then applied this method to build an autumn (SON) SSS and SST-based 3-month lead predictive model of winter (DJF) precipitation in southwestern United States. We also find that SSS-only models perform better than SST-only models. We previously used an arbitrary correlation coefficient (r) threshold, |r| > 0.25, to define SSS and SST predictor polygons for best subset regression of southwestern US winter precipitation; from preliminary sensitivity tests, we find that |r| > 0.18 yields the best models. The observed below-average precipitation (0.69 mm/day) in winter 2015-2016 falls within the 95% confidence interval of the prediction model. However, the model underestimates the anomalous high precipitation (1.78 mm/day) in winter 2016-2017 by more than three-fold. Moisture transport mainly attributed to "pineapple express" atmospheric rivers (ARs) in winter 2016-2017 suggests that the model falls short on a sub-seasonal scale, in which case storms from ARs contribute a significant portion of seasonal terrestrial precipitation. Further, we identify a potential mechanism for long-range SSS and precipitation teleconnections: standing Rossby waves. The heat applied to the atmosphere from anomalous tropical rainfall can generate standing Rossby waves that propagate to higher latitudes. SSS anomalies may be indicative of anomalous tropical rainfall, and by extension, standing Rossby waves that provide the long-range teleconnections.
NASA Astrophysics Data System (ADS)
Förster, Kristian; Hanzer, Florian; Stoll, Elena; Scaife, Adam A.; MacLachlan, Craig; Schöber, Johannes; Huttenlau, Matthias; Achleitner, Stefan; Strasser, Ulrich
2018-02-01
This article presents analyses of retrospective seasonal forecasts of snow accumulation. Re-forecasts with 4 months' lead time from two coupled atmosphere-ocean general circulation models (NCEP CFSv2 and MetOffice GloSea5) drive the Alpine Water balance and Runoff Estimation model (AWARE) in order to predict mid-winter snow accumulation in the Inn headwaters. As snowpack is hydrological storage that evolves during the winter season, it is strongly dependent on precipitation totals of the previous months. Climate model (CM) predictions of precipitation totals integrated from November to February (NDJF) compare reasonably well with observations. Even though predictions for precipitation may not be significantly more skilful than for temperature, the predictive skill achieved for precipitation is retained in subsequent water balance simulations when snow water equivalent (SWE) in February is considered. Given the AWARE simulations driven by observed meteorological fields as a benchmark for SWE analyses, the correlation achieved using GloSea5-AWARE SWE predictions is r = 0.57. The tendency of SWE anomalies (i.e. the sign of anomalies) is correctly predicted in 11 of 13 years. For CFSv2-AWARE, the corresponding values are r = 0.28 and 7 of 13 years. The results suggest that some seasonal prediction of hydrological model storage tendencies in parts of Europe is possible.
Ixodes ricinus parasitism of birds increases at higher winter temperatures.
Furness, Robert W; Furness, Euan N
2018-06-01
Increasing winter temperatures are expected to cause seasonal activity of Ixodes ricinus ticks to extend further into the winter. We caught birds during winter months (November to February) at a site in the west of Scotland over a period of 24 years (1993-1994 to 2016-2017) to quantify numbers of attached I. ricinus and to relate these to monthly mean temperature. No adult ticks were found on any of the 21,731 bird captures, but 946 larvae and nymphs were found, with ticks present in all winter months, on 16 different species of bird hosts. All ticks identified to species were I. ricinus. I. ricinus are now active throughout the year in this area providing temperature permits. No I. ricinus were present in seven out of eight months when the mean temperature was below 3.5º C. Numbers of I. ricinus attached to birds increased rapidly with mean monthly temperatures above 7º C. Winter temperatures in Scotland have been above the long-term average in most years in the last two decades, and this is likely to increase risk of tick-borne disease. © 2018 The Society for Vector Ecology.
Zeng, Qing; Zhang, Yamian; Sun, Gongqi; Duo, Hairui; Wen, Li; Lei, Guangchun
2015-01-01
Scaly-sided Merganser is a globally endangered species restricted to eastern Asia. Estimating its population is difficult and considerable gap exists between populations at its breeding grounds and wintering sites. In this study, we built a species distribution model (SDM) using Maxent with presence-only data to predict the potential wintering habitat for Scaly-sided Merganser in China. Area under the receiver operating characteristic curve (AUC) method suggests high predictive power of the model (training and testing AUC were 0.97 and 0.96 respectively). The most significant environmental variables included annual mean temperature, mean temperature of coldest quarter, minimum temperature of coldest month and precipitation of driest quarter. Suitable conditions for Scaly-sided Merganser are predicted in the middle and lower reaches of the Yangtze River, especially in Jiangxi, Hunan and Hubei Provinces. The predicted suitable habitat embraces 6,984 km of river. Based on survey results from three consecutive winters (2010–2012) and previous studies, we estimated that the entire wintering population of Scaly-sided Merganser in China to be 3,561 ± 478 individuals, which is consistent with estimate in its breeding ground. PMID:25646969
Switanek, Matthew; Crailsheim, Karl; Truhetz, Heimo; Brodschneider, Robert
2017-02-01
Insect pollinators are essential to global food production. For this reason, it is alarming that honey bee (Apis mellifera) populations across the world have recently seen increased rates of mortality. These changes in colony mortality are often ascribed to one or more factors including parasites, diseases, pesticides, nutrition, habitat dynamics, weather and/or climate. However, the effect of climate on colony mortality has never been demonstrated. Therefore, in this study, we focus on longer-term weather conditions and/or climate's influence on honey bee winter mortality rates across Austria. Statistical correlations between monthly climate variables and winter mortality rates were investigated. Our results indicate that warmer and drier weather conditions in the preceding year were accompanied by increased winter mortality. We subsequently built a statistical model to predict colony mortality using temperature and precipitation data as predictors. Our model reduces the mean absolute error between predicted and observed colony mortalities by 9% and is statistically significant at the 99.9% confidence level. This is the first study to show clear evidence of a link between climate variability and honey bee winter mortality. Copyright © 2016 British Geological Survey, NERC. Published by Elsevier B.V. All rights reserved.
Developing a hydrological model in the absence of field data
NASA Astrophysics Data System (ADS)
Sproles, E. A.; Orrego Nelson, C.; Kerr, T.; Lopez Aspe, D.
2014-12-01
We present two runoff models that use remotely-sensed snow cover products from the Moderate Resolution Imaging Spectrometer (MODIS) as the first order hydrologic input. These simplistic models are the first step in developing an operational model for the Elqui River watershed located in northern Central Chile (30°S). In this semi-arid region, snow and glacier melt are the dominant hydrologic inputs where annual precipitation is limited to three or four winter events. Unfortunately winter access to the Andean Cordillera where snow accumulates is limited. While a monitoring network to measure snow where it accumulates in the upper elevations is under development, management decisions regarding water resources cannot wait. The two models we present differ in structure. The first applies a Monte Carlo approach to determine relationships between lagged changes in monthly snow cover frequency and monthly discharge. The second is a modified degree-day melt model, utilizing the MODIS snow cover product to determine where and when snow melt occurs. These models are not watershed specific and are applicable in other regions where snow dominates hydrologic inputs, but measurements are minimal.
Wilber, William G.; Crawford, Charles G.; Peters, J.G.; Girardi, F.P.
1979-01-01
A digital model calibrated to conditions in Clear Creek, Monroe County, IN, was used to develop alternatives for future waste loadings that would be compatible with Indiana stream water-quality standards defined for two critical hydrologic conditions, summer and winter low flows. The Winston Thomas wastewater-treatment facility is the only point-source waste load affecting the modeled reach of Clear Creek. A new waste-water-treatment facility under construction at Dillman Road (river mile 13.78) will replace the Winston Thomas wastewater-treatment facility (river mile 16.96) in 1980. Natural streamflow during the summer and annual 7-day, 10-year low flow is zero, so no benefit from dilution is provided. The model indicates that ammonia-nitrogen toxicity is the most significant factor affecting the stream water quality during summer and winter low flows. The ammonia-nitrogen concentration of the wastewater effluent exceeds the maximum total ammonia-nitrogen concentration of 2.5 milligrams per liter for summer months (June through August) and 4.0 milligrams per liter for winter months (November through March) required for Indiana streams. Nitrification, benthic-oxygen demand, and algal respiration were the most significant factors affecting the dissolved-oxygen concentration in Clear Creek during the model calibration. Nitrification should not significantly affect the dissolved-oxygen concentration in Clear Creek during summer low flows when the ammonia-nitrogen toxicity standards are met. (USGS)
A WRF sensitivity study for summer ozone and winter PM events in California
NASA Astrophysics Data System (ADS)
Zhao, Z.; Chen, J.; Mahmud, A.; Di, P.; Avise, J.; DaMassa, J.; Kaduwela, A. P.
2014-12-01
Elevated summer ozone and winter PM frequently occur in the San Joaquin Valley (SJV) and the South Coast Air Basin (SCAB) in California. Meteorological conditions, such as wind, temperature and planetary boundary layer height (PBLH) play crucial roles in these air pollution events. Therefore, accurate representation of these fields from a meteorological model is necessary to successfully reproduce these air pollution events in subsequent air quality model simulations. California's complex terrain and land-sea interface can make it challenging for meteorological models to replicate the atmospheric conditions over the SJV and SCAB during extreme pollution events. In this study, the performance of the Weather Research and Forecasting Model (WRF) over these two regions for a summer month (July 2012) and a winter month (January 2013) is evaluated with different model configurations and forcing. Different land surface schemes (Pleim-Xiu vs. hybrid scheme), the application of observational and soil nudging, two SST datasets (the Global Ocean Data Assimilation Experiment (GODAE) SST vs. the default SST from North American Regional Reanalysis (NARR) reanalysis), and two land use datasets (the National Land Cover Data (NLCD) 2006 40-category vs. USGS 24-category land use data) have been tested. Model evaluation will focus on both surface and vertical profiles for wind, temperature, relative humidity, as well as PBLH. Sensitivity of the Community Multi-scale Air Quality Model (CMAQ) results to different WRF configurations will also be presented and discussed.
Long-term variability in Northern Hemisphere snow cover and associations with warmer winters
McCabe, Gregory J.; Wolock, David M.
2010-01-01
A monthly snow accumulation and melt model is used with gridded monthly temperature and precipitation data for the Northern Hemisphere to generate time series of March snow-covered area (SCA) for the period 1905 through 2002. The time series of estimated SCA for March is verified by comparison with previously published time series of SCA for the Northern Hemisphere. The time series of estimated Northern Hemisphere March SCA shows a substantial decrease since about 1970, and this decrease corresponds to an increase in mean winter Northern Hemisphere temperature. The increase in winter temperature has caused a decrease in the fraction of precipitation that occurs as snow and an increase in snowmelt for some parts of the Northern Hemisphere, particularly the mid-latitudes, thus reducing snow packs and March SCA. In addition, the increase in winter temperature and the decreases in SCA appear to be associated with a contraction of the circumpolar vortex and a poleward movement of storm tracks, resulting in decreased precipitation (and snow) in the low- to mid-latitudes and an increase in precipitation (and snow) in high latitudes. If Northern Hemisphere winter temperatures continue to warm as they have since the 1970s, then March SCA will likely continue to decrease.
Long-term variability in Northern Hemisphere snow cover and associations with warmer winters
McCabe, G.J.; Wolock, D.M.
2010-01-01
A monthly snow accumulation and melt model is used with gridded monthly temperature and precipitation data for the Northern Hemisphere to generate time series of March snow-covered area (SCA) for the period 1905 through 2002. The time series of estimated SCA for March is verified by comparison with previously published time series of SCA for the Northern Hemisphere. The time series of estimated Northern Hemisphere March SCA shows a substantial decrease since about 1970, and this decrease corresponds to an increase in mean winter Northern Hemisphere temperature. The increase in winter temperature has caused a decrease in the fraction of precipitation that occurs as snow and an increase in snowmelt for some parts of the Northern Hemisphere, particularly the mid-latitudes, thus reducing snow packs and March SCA. In addition, the increase in winter temperature and the decreases in SCA appear to be associated with a contraction of the circumpolar vortex and a poleward movement of storm tracks, resulting in decreased precipitation (and snow) in the low- to mid-latitudes and an increase in precipitation (and snow) in high latitudes. If Northern Hemisphere winter temperatures continue to warm as they have since the 1970s, then March SCA will likely continue to decrease. ?? 2009 Springer Science+Business Media B.V.
NASA Astrophysics Data System (ADS)
von Storch, Hans; Zorita, Eduardo; Cubasch, Ulrich
1993-06-01
A statistical strategy to deduct regional-scale features from climate general circulation model (GCM) simulations has been designed and tested. The main idea is to interrelate the characteristic patterns of observed simultaneous variations of regional climate parameters and of large-scale atmospheric flow using the canonical correlation technique.The large-scale North Atlantic sea level pressure (SLP) is related to the regional, variable, winter (DJF) mean Iberian Peninsula rainfall. The skill of the resulting statistical model is shown by reproducing, to a good approximation, the winter mean Iberian rainfall from 1900 to present from the observed North Atlantic mean SLP distributions. It is shown that this observed relationship between these two variables is not well reproduced in the output of a general circulation model (GCM).The implications for Iberian rainfall changes as the response to increasing atmospheric greenhouse-gas concentrations simulated by two GCM experiments are examined with the proposed statistical model. In an instantaneous `2 C02' doubling experiment, using the simulated change of the mean North Atlantic SLP field to predict Iberian rainfall yields, there is an insignificant increase of area-averaged rainfall of 1 mm/month, with maximum values of 4 mm/month in the northwest of the peninsula. In contrast, for the four GCM grid points representing the Iberian Peninsula, the change is 10 mm/month, with a minimum of 19 mm/month in the southwest. In the second experiment, with the IPCC scenario A ("business as usual") increase Of C02, the statistical-model results partially differ from the directly simulated rainfall changes: in the experimental range of 100 years, the area-averaged rainfall decreases by 7 mm/month (statistical model), and by 9 mm/month (GCM); at the same time the amplitude of the interdecadal variability is quite different.
Assessment of inter-city transport of particulate matter in the Beijing-Tianjin-Hebei region
NASA Astrophysics Data System (ADS)
Chang, Xing; Wang, Shuxiao; Zhao, Bin; Cai, Siyi; Hao, Jiming
2018-04-01
The regional transport of particulate matter with diameter less than 2.5 µm (PM2.5) plays an important role in the air pollution of the Beijing-Tianjin-Hebei (BTH) region in China. However, previous studies on regional transport of PM2.5 mainly aim at province level, which is insufficient for the development of an optimal joint PM2.5 control strategy. In this study, we calculate PM2.5 inflows and outflows through the administrative boundaries of three major cities in the BTH region, i.e., Beijing, Tianjin and Shijiazhuang, using the WRF (Weather Research and Forecasting model)-CMAQ (Community Multiscale Air Quality) modeling system. The monthly average inflow fluxes indicate the major directions of PM2.5 transport. For Beijing, the PM2.5 inflow fluxes from Zhangjiakou (in the northwest) and Baoding (in the southwest) constitute 57 % of the total in winter, and Langfang (in the southeast) and Baoding constitute 73 % in summer. Based on the net PM2.5 fluxes and their vertical distributions, we find there are three major transport pathways in the BTH region: the northwest-southeast pathway in winter (at all levels below 1000 m), the northwest-southeast pathway in summer (at all levels below 1000 m), and the southwest-northeast pathway in both winter and in summer (mainly at 300-1000 m). In winter, even if surface wind speeds are low, the transport at above 300 m can still be strong. Among the three pathways, the southwest-northeast happens along with PM2.5 concentrations 30 and 55 % higher than the monthly average in winter and summer, respectively. Analysis of two heavy pollution episodes in January and July in Beijing show a much (8-16 times) stronger transport than the monthly average, emphasizing the joint air pollution control of the cities located on the transport pathways, especially during heavy pollution episodes.
Suvisaari, J M; Haukka, J K; Lönnqvist, J K
2001-05-01
The birth rate of patients with schizophrenia during the winter and spring months is 5%-8% higher worldwide than the birth rate of the general population in the winter and spring months. Seasonal variation of births among the unaffected siblings of patients with schizophrenia has not been studied with adequate sample sizes. The authors investigated the seasonal variation of births among siblings of patients with schizophrenia in a large, nationwide, representative patient and sibling population. Finnish patients with schizophrenia born from 1950 to 1969 (N=15,389) were identified from three nationwide health care registers. Unaffected siblings of these patients born in the same time period (N=37,819) were identified from the Finnish National Population REGISTER: The seasonal variation of births among patients and siblings were examined by using a log-linear model. Explanatory variables were sex, year of birth categorized into four 5-year groups, and seasonal variation, which was analyzed by fitting a short Fourier series to the monthly birth data. The odds for having been born during the winter-spring months were slightly higher among both siblings and patients in all birth-year groups. However, patients born from 1955 to 1959 showed prominent seasonal variation of births, but the magnitude of this variation remained unchanged among siblings. Seasonal variation of births among patients with schizophrenia may consist of two factors: 1) parental procreational habits causing a slight excess of births of both patients and unaffected siblings during the winter-spring months and 2) irregular environmental factors that considerably increase the magnitude of the seasonal variation of births among patients but not their siblings.
Sea-Ice Conditions in the Norwegian, Barents, and White Seas
1976-08-01
pack, aided by relatively warm water from the Murman coast current, would reduce the maximum ice thickness predicted by the equation used for...THICKNESS With the aid of the ice growth model in the appendix, it is pos- sible to relate the maximum ice thickness attained during a winter season to a...inserted merely to aid the reader in discerning differences between individual winter seasons. As was the case for the 12-month mean temperatures
Testing efficacy of monthly forecast application in agrometeorology: Winter wheat phenology dynamic
NASA Astrophysics Data System (ADS)
Lalic, B.; Jankovic, D.; Dekic, Lj; Eitzinger, J.; Firanj Sremac, A.
2017-02-01
Use of monthly weather forecast as input meteorological data for agrometeorological forecasting, crop modelling and plant protection can foster promising applications in agricultural production. Operational use of monthly or seasonal weather forecast can help farmers to optimize field operations (fertilizing, irrigation) and protection measures against plant diseases and pests by taking full advantage of monthly forecast information in predicting plant development, pest and disease risks and yield potentials few weeks in advance. It can help producers to obtain stable or higher yield with the same inputs and to minimise losses caused by weather. In Central and South-Eastern Europe ongoing climate change lead to shifts of crops phenology dynamics (i.e. in Serbia 4-8 weeks earlier in 2016 than in previous years) and brings this subject in the front of agronomy science and practice. Objective of this study is to test efficacy of monthly forecast in predicting phenology dynamics of different winter wheat varieties, using phenological model developed by Forecasting and Warning Service of Serbia in plant protection. For that purpose, historical monthly forecast for four months (March 1, 2005 - June 30, 2005) was assimilated from ECMWF MARS archive for 50 ensemble members and control run. Impact of different agroecological conditions is tested by using observed and forecasted data for two locations - Rimski Sancevi (Serbia) and Groß-Enzersdorf (Austria).
Guzman, Alvaro; Zebrak, Ryszard; Rohan, Kelly J; Sumar, Irshad A; Savchenko, Svetlana; Stiller, John W; Valadez-Meltzer, Adela; Olsen, Cara; Lapidus, Manana; Soriano, Joseph J; Postolache, Teodor T
2007-05-01
We conducted a prospective, longitudinal study of seasonality in a vulnerable population, i.e., African students who migrated to a temperate climate. Consistent with previous cross-sectional studies, we hypothesized lower mood and energy, and higher appetite and weight, in fall/winter than in spring/summer. Four cohorts of African students attending a year-long nursing school program without vacation in Washington, D.C., were assessed monthly for 1 year. Forty-three subjects (mean age = 33.46 +/- 6.25), consisting of predominantly females (76.7%), completed the study. The cohorts began their academic program in different seasons (one each in winter, spring, summer, and fall), inherently minimizing confounding influences on seasonality, such as academic and immigration stress, as well as allowing adjustment for an order effect. At each assessment, students completed three 100-mm visual analog scales for mood, energy, and appetite, and were weighed on a digital scale. For each standardized dependent variable, a repeated measure ANOVA was used and, if a significant effect of month was identified, averages for spring/summer and fall/winter were compared using paired t-tests. In addition, a mixed model for repeated measures was applied to raw (nonstandardized) data. Body weight was significantly higher in fall/winter than in spring/summer (p < 0.01). No seasonal differences in mood, energy, or appetite were found. Benefiting from certain unique features of our cohorts allowing adjustment for order effects, this is the first study to identify a seasonal variation in body weight with a peak in winter using longitudinal monthly measurements.
Weakening of the Stratospheric Polar Vortex by Arctic Sea-Ice Loss
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Baek-Min; Son, Seok-Woo; Min, Seung-Ki
2014-09-02
Successive cold winters of severely low temperatures in recent years have had critical social and economic impacts on the mid-latitude continents in the Northern Hemisphere. Although these cold winters are thought to be partly driven by dramatic losses of Arctic sea ice, the mechanism that links sea ice loss to cold winters remains a subject of debate. Here, by conducting observational analyses and model experiments, we show how Arctic sea ice loss and cold winters in extra-polar regions are dynamically connected through the polar stratosphere. We find that decreased sea ice cover during early winter months (November-December), especially over themore » Barents-Kara seas, enhance the upward propagation of planetary-scale waves with wavenumbers of 1 and 2, subsequently weakening the stratospheric polar vortex in mid-winter (January- February). The weakened polar vortex preferentially induces a negative phase of Arctic Oscillation at the surface, resulting in low temperatures in mid-latitudes.« less
NASA Technical Reports Server (NTRS)
Halem, M.; Shukla, J.; Mintz, Y.; Wu, M. L.; Godbole, R.; Herman, G.; Sud, Y.
1979-01-01
Results are presented from numerical simulations performed with the general circulation model (GCM) for winter and summer. The monthly mean simulated fields for each integration are compared with observed geographical distributions and zonal averages. In general, the simulated sea level pressure and upper level geopotential height field agree well with the observations. Well simulated features are the winter Aleutian and Icelandic lows, the summer southwestern U.S. low, the summer and winter oceanic subtropical highs in both hemispheres, and the summer upper level Tibetan high and Atlantic ridge. The surface and upper air wind fields in the low latitudes are in good agreement with the observations. The geographical distirbutions of the Earth-atmosphere radiation balance and of the precipitation rates over the oceans are well simulated, but not all of the intensities of these features are correct. Other comparisons are shown for precipitation along the ITCZ, rediation balance, zonally averaged temperatures and zonal winds, and poleward transports of momentum and sensible heat.
Jones, G R; Brandon, C; Gill, D P
2017-07-01
Winter weather conditions may negatively influence participation of older adults in daily physical activity (PA). Assess the influence of winter meteorological variables, day-time peak ambient temperature, windchill, humidity, and snow accumulation on the ground to accelerometer measured PA values in older adults. 50 community-dwelling older adults (77.4±4.7yrs; range 71-89; 12 females) living in Southwestern Ontario (Latitude 42.9°N Longitude 81.2° W) Canada, wore a waist-borne accelerometer during active waking hours (12h) for 7 consecutive days between February and April 2007. Hourly temperature, windchill, humidity, and snowfall accumulation were obtained from meteorological records and time locked to hourly accelerometer PA values. Regression analysis revealed significant relationships between time of day, ambient daytime high temperature and a humidity for participation in PA. Windchill temperature added no additional influence over PA acclamation already influenced by ambient day-time temperature and the observed variability in PA patterns relative to snow accumulation over the study period was too great to warrant its inclusion in the model. Most PA was completed in the morning hours and increased as the winter month's transitioned to spring (February through April). An equation was developed to adjust for winter weather conditions using temperature, humidity and time of day. Accurate PA assessment during the winter months must account for the ambient daytime high temperatures, humidity, and time of day. These older adults were more physically active during the morning hours and became more active as the winter season transitioned to spring. Copyright © 2017 Elsevier B.V. All rights reserved.
Effect of eczema on the association between season of birth and food allergy in Japanese children.
Kusunoki, Takashi; Morimoto, Takeshi; Sakuma, Mio; Mukaida, Kumiko; Yasumi, Takahiro; Nishikomori, Ryuta; Heike, Toshio
2013-02-01
Food allergy (FA) in childhood has been shown to be more prevalent in those born in autumn and winter. The mechanisms of this season-of-birth effect remain unclear, although shortage of vitamin D during infancy has been considered one possible mechanism. The purpose of this study was to investigate the effect of eczema on the season-of-birth effect on FA in infancy. A questionnaire survey on the prevalence of allergic diseases was completed by the parents of 14 669 Japanese schoolchildren, aged 7-15 years, in Kyoto City, Japan. Logistic regression models were constructed to compare the prevalence of FA in infancy according to season of birth. Those born in autumn and winter had a significantly higher prevalence of FA in infancy compared to those born in spring and summer in a multivariate model (4.8% vs 3.6%, P = 0.001). The difference, however, was no longer significant when eczema before 6 months was included as either an additional or only confounding factor. The difference among those with and without eczema before 6 months was further analyzed, and it was found that, in both groups, there was no difference between those born in spring and summer and those born in autumn and winter. The season-of-birth effect on FA in infancy was significantly affected by the existence of eczema before 6 months in Japanese children. Eczema before 6 months may be the factor directly related to the season-of-birth effect on FA in infancy. © 2012 The Authors. Pediatrics International © 2012 Japan Pediatric Society.
User's Guide for Monthly Vector Wind Profile Model
NASA Technical Reports Server (NTRS)
Adelfang, S. I.
1999-01-01
The background, theoretical concepts, and methodology for construction of vector wind profiles based on a statistical model are presented. The derived monthly vector wind profiles are to be applied by the launch vehicle design community for establishing realistic estimates of critical vehicle design parameter dispersions related to wind profile dispersions. During initial studies a number of months are used to establish the model profiles that produce the largest monthly dispersions of ascent vehicle aerodynamic load indicators. The largest monthly dispersions for wind, which occur during the winter high-wind months, are used for establishing the design reference dispersions for the aerodynamic load indicators. This document includes a description of the computational process for the vector wind model including specification of input data, parameter settings, and output data formats. Sample output data listings are provided to aid the user in the verification of test output.
The impact exploration of agricultural drought on winter wheat yield in the North China Plain
NASA Astrophysics Data System (ADS)
Yang, Jianhua; Wu, Jianjun; Han, Xinyi; Zhou, Hongkui
2017-04-01
Drought is one of the most serious agro-climatic disasters in the North China Plain, which has a great influence on winter wheat yield. Global warming exacerbates the drought trend of this region, so it is important to study the effect of drought on winter wheat yield. In order to assess the drought-induced winter wheat yield losses, SPEI (standardized precipitation evapotranspiration index), the widely used drought index, was selected to quantify the drought from 1981 to 2013. Additionally, the EPIC (Environmental Policy Integrated Climate) crop model was used to simulate winter wheat yield at 47 stations in this region from 1981 to 2013. We analyzed the relationship between winter wheat yield and the SPEI at different time scales in each month during the growing season. The trends of the SPEI and the trends of winter wheat yield at 47 stations over the past 32 years were compared with each other. To further quantify the effect of drought on winter wheat yield, we defined the year that SPEI varied from -0.5 to 0.5 as the normal year, and calculated the average winter wheat yield of the normal years as a reference yield, then calculated the reduction ratios of winter wheat based on the yields mentioned above in severe drought years. As a reference, we compared the results with the reduction ratios calculated from the statistical yield data. The results showed that the 9 to 12-month scales' SPEI in April, May and June had a high correlation with winter wheat yield. The trends of the SPEI and the trends of winter wheat yield over the past 32 years showed a positive correlation (p<0.01) and have similar spatial distributions. The proportion of the stations with the same change trend between the SPEI and winter wheat yield was 70%, indicating that drought was the main factor leading to a decline in winter wheat yield in this region. The reduction ratios based on the simulated yield and the reduction ratios calculated from the statistical yield data have a high positive correlation (p<0.01), which may provide a way to quantitatively evaluate the winter wheat yield losses caused by drought. Key words: drought, winter wheat yield, SPEI, EPIC, the North China Plain
Models for Train Passenger Forecasting of Java and Sumatra
NASA Astrophysics Data System (ADS)
Sartono
2017-04-01
People tend to take public transportation to avoid high traffic, especially in Java. In Jakarta, the number of railway passengers is over than the capacity of the train at peak time. This is an opportunity as well as a challenge. If it is managed well then the company can get high profit. Otherwise, it may lead to disaster. This article discusses models for the train passengers, hence, finding the reasonable models to make a prediction overtimes. The Box-Jenkins method is occupied to develop a basic model. Then, this model is compared to models obtained using exponential smoothing method and regression method. The result shows that Holt-Winters model is better to predict for one-month, three-month, and six-month ahead for the passenger in Java. In addition, SARIMA(1,1,0)(2,0,0) is more accurate for nine-month and twelve-month oversee. On the other hand, for Sumatra passenger forecasting, SARIMA(1,1,1)(0,0,2) gives a better approximation for one-month ahead, and ARIMA model is best for three-month ahead prediction. The rest, Trend Seasonal and Liner Model has the least of RMSE to forecast for six-month, nine-month, and twelve-month ahead.
Wilber, William G.; Crawford, Charles G.; Peters, James G.
1979-01-01
A digital model calibrated to conditions in Sand Creek near Greensburg, Ind., was used to develop alternatives for future waste loadings that would be compatible with Indiana stream water-quality standards defined for two critical hydrologic conditions, summer and winter low flows. The only point-source waste load affecting Sand Creek in the vicinity of Greensburg is the Greensburg wastewater-treatment facility. Non-point, unrecorded waste loads seemed to be significant during three water-quality surveys done by the Indiana State Board of Health. Natural streamflow in Sand Creek during the summer and annual 7-day, 10-year low flow is zero so no benefit from dilution is provided. Effluent ammonia-nitrogen concentrations from the Greensburg wastewater-treatment facility will not meet Indiana water-quality standards during summer and winter low flows. To meet the water-quality standard the wastewater-effluent would be limited to a maximum total ammonia-nitrogen concentration of 2.5 mg/l for summer months (June through August) and 4.0 mg/l for winter months (November through March). Model simulations indicate that benthic-oxygen demand, nitrification, and the dissolved-oxygen concentration of the wastewater effluent are the most significant factors affecting the in-stream dissolved-oxygen concentration during summer low flows. The model predicts that with a benthic-oxygen demand of 1.5 grams per square meter per day at 20C the stream has no additional waste-load assimilative capacity. Present carbonaceous biochemical-oxygen demand loads from the Greensburg wastewater-treatment facility will not result in violations of the in-stream dissolved-oxygen standard (5 mg/l) during winter low flows. (Kosco-USGS)
Aboagye-Sarfo, Patrick; Mai, Qun; Sanfilippo, Frank M; Preen, David B; Stewart, Louise M; Fatovich, Daniel M
2015-10-01
To develop multivariate vector-ARMA (VARMA) forecast models for predicting emergency department (ED) demand in Western Australia (WA) and compare them to the benchmark univariate autoregressive moving average (ARMA) and Winters' models. Seven-year monthly WA state-wide public hospital ED presentation data from 2006/07 to 2012/13 were modelled. Graphical and VARMA modelling methods were used for descriptive analysis and model fitting. The VARMA models were compared to the benchmark univariate ARMA and Winters' models to determine their accuracy to predict ED demand. The best models were evaluated by using error correction methods for accuracy. Descriptive analysis of all the dependent variables showed an increasing pattern of ED use with seasonal trends over time. The VARMA models provided a more precise and accurate forecast with smaller confidence intervals and better measures of accuracy in predicting ED demand in WA than the ARMA and Winters' method. VARMA models are a reliable forecasting method to predict ED demand for strategic planning and resource allocation. While the ARMA models are a closely competing alternative, they under-estimated future ED demand. Copyright © 2015 Elsevier Inc. All rights reserved.
Xu, Wei; Riley, Erin A; Austin, Elena; Sasakura, Miyoko; Schaal, Lanae; Gould, Timothy R; Hartin, Kris; Simpson, Christopher D; Sampson, Paul D; Yost, Michael G; Larson, Timothy V; Xiu, Guangli; Vedal, Sverre
2017-03-01
Air pollution exposure prediction models can make use of many types of air monitoring data. Fixed location passive samples typically measure concentrations averaged over several days to weeks. Mobile monitoring data can generate near continuous concentration measurements. It is not known whether mobile monitoring data are suitable for generating well-performing exposure prediction models or how they compare with other types of monitoring data in generating exposure models. Measurements from fixed site passive samplers and mobile monitoring platform were made over a 2-week period in Baltimore in the summer and winter months in 2012. Performance of exposure prediction models for long-term nitrogen oxides (NO X ) and ozone (O 3 ) concentrations were compared using a state-of-the-art approach for model development based on land use regression (LUR) and geostatistical smoothing. Model performance was evaluated using leave-one-out cross-validation (LOOCV). Models performed well using the mobile peak traffic monitoring data for both NO X and O 3 , with LOOCV R 2 s of 0.70 and 0.71, respectively, in the summer, and 0.90 and 0.58, respectively, in the winter. Models using 2-week passive samples for NO X had LOOCV R 2 s of 0.60 and 0.65 in the summer and winter months, respectively. The passive badge sampling data were not adequate for developing models for O 3 . Mobile air monitoring data can be used to successfully build well-performing LUR exposure prediction models for NO X and O 3 and are a better source of data for these models than 2-week passive badge data.
NASA Astrophysics Data System (ADS)
Stisen, S.; Højberg, A. L.; Troldborg, L.; Refsgaard, J. C.; Christensen, B. S. B.; Olsen, M.; Henriksen, H. J.
2012-11-01
Precipitation gauge catch correction is often given very little attention in hydrological modelling compared to model parameter calibration. This is critical because significant precipitation biases often make the calibration exercise pointless, especially when supposedly physically-based models are in play. This study addresses the general importance of appropriate precipitation catch correction through a detailed modelling exercise. An existing precipitation gauge catch correction method addressing solid and liquid precipitation is applied, both as national mean monthly correction factors based on a historic 30 yr record and as gridded daily correction factors based on local daily observations of wind speed and temperature. The two methods, named the historic mean monthly (HMM) and the time-space variable (TSV) correction, resulted in different winter precipitation rates for the period 1990-2010. The resulting precipitation datasets were evaluated through the comprehensive Danish National Water Resources model (DK-Model), revealing major differences in both model performance and optimised model parameter sets. Simulated stream discharge is improved significantly when introducing the TSV correction, whereas the simulated hydraulic heads and multi-annual water balances performed similarly due to recalibration adjusting model parameters to compensate for input biases. The resulting optimised model parameters are much more physically plausible for the model based on the TSV correction of precipitation. A proxy-basin test where calibrated DK-Model parameters were transferred to another region without site specific calibration showed better performance for parameter values based on the TSV correction. Similarly, the performances of the TSV correction method were superior when considering two single years with a much dryer and a much wetter winter, respectively, as compared to the winters in the calibration period (differential split-sample tests). We conclude that TSV precipitation correction should be carried out for studies requiring a sound dynamic description of hydrological processes, and it is of particular importance when using hydrological models to make predictions for future climates when the snow/rain composition will differ from the past climate. This conclusion is expected to be applicable for mid to high latitudes, especially in coastal climates where winter precipitation types (solid/liquid) fluctuate significantly, causing climatological mean correction factors to be inadequate.
Unexpected winter phytoplankton blooms in the North Atlantic subpolar gyre
NASA Astrophysics Data System (ADS)
Lacour, L.; Ardyna, M.; Stec, K. F.; Claustre, H.; Prieur, L.; Poteau, A.; D'Alcala, M. Ribera; Iudicone, D.
2017-11-01
In mid- and high-latitude oceans, winter surface cooling and strong winds drive turbulent mixing that carries phytoplankton to depths of several hundred metres, well below the sunlit layer. This downward mixing, in combination with low solar radiation, drastically limits phytoplankton growth during the winter, especially that of the diatoms and other species that are involved in seeding the spring bloom. Here we present observational evidence for widespread winter phytoplankton blooms in a large part of the North Atlantic subpolar gyre from autonomous profiling floats equipped with biogeochemical sensors. These blooms were triggered by intermittent restratification of the mixed layer when mixed-layer eddies led to a horizontal transport of lighter water over denser layers. Combining a bio-optical index with complementary chemotaxonomic and modelling approaches, we show that these restratification events increase phytoplankton residence time in the sunlight zone, resulting in greater light interception and the emergence of winter blooms. Restratification also caused a phytoplankton community shift from pico- and nanophytoplankton to phototrophic diatoms. We conclude that transient winter blooms can maintain active diatom populations throughout the winter months, directly seeding the spring bloom and potentially making a significant contribution to over-winter carbon export.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamankaradeniz, R.; Horuz, I.
In this study, the characteristics of solar assisted heat pump are investigated theoretically and experimentally for clear days during the seven months of the winter season in Istanbul/Turkey. A theoretical model was developed and a computer program was written on this basis. The characteristics such as: daily average collector efficiency and solar radiation, monthly average heat transfer at the condenser, monthly average cooling capacity, the mean COP and the mean COP for total system were examined. The theoretical results were found to be in good agreement with the experimental values.
Flock sizes and sex ratios of canvasbacks in Chesapeake Bay and North Carolina
Haramis, G.M.; Derleth, E.L.; Link, W.A.
1994-01-01
Knowledge of the distribution, size, and sex ratios of flocks of wintering canvasbacks (Aythya valisineria) is fundamental to understanding the species' winter ecology and providing guidelines for management. Consequently, in winter 1986-87, we conducted 4 monthly aerial photographic surveys to investigate temporal changes in distribution, size, and sex ratios of canvasback flocks in traditional wintering areas of Chesapeake Bay and coastal North Carolina. Surveys yielded 35mm imagery of 194,664 canvasbacks in 842 flocks. Models revealed monthly patterns of flock size in North Carolina and Virginia, but no pattern of change in Maryland. A stepwise analysis of flock size and sex ratio fit a common positive slope (increasing proportion male) for all state-month datasets, except for North Carolina in February where the slope was larger (P lt 0.001). State and month effects on intercepts were significant (P lt 0.001) and confirmed a previously identified latitudinal gradient in sex ratio in the survey region. There was no relationship between flock purity (% canvasbacks vs. other species) and flock size except in North Carolina in January, February, and March when flock purity was related to flock size. Contrasting characteristics in North Carolina with regard to flock size (larger flocks) and flock purity suggested that proximate factors were reinforcing flocking behavior and possibly species fidelity there. Of possible factors, the need to locate foraging sites within this large, open-water environment was hypothesized to be of primary importance. Comparison of January 1981 and 1987 sex ratios indicated no change in Maryland, but lower (P lt 0.05) canvasback sex ratios (proportion male) in Virginia and North Carolina.
Age and seasonal-dependent variations in the biochemical composition of boar semen.
Fraser, L; Strzeżek, J; Filipowicz, K; Mogielnicka-Brzozowska, M; Zasiadczyk, L
2016-08-01
This study investigated the effect of age- and seasonal-related variations in the composition of boar semen over a 3-year period. At the onset of 8 months of age, ejaculates were collected from four boars and allocated into three groups: 8 to 18, 19 to 30, and 31 to 42 months and were divided into two seasonal periods: autumn-winter and spring-summer. Boar variability had a significant effect on most of the analyzed semen parameters. Significantly, higher ejaculate volumes were observed in the boars older than 18 months of age during the autumn-winter period. Sperm concentration was higher in boars less than the age of 18 months of age, whereas the total sperm numbers were significantly higher during the autumn-winter period, regardless of the age group. Seasonal effects in sperm motility were more marked in boars at the age of 19 to 30 months, being significantly higher during the autumn-winter period. The proportions of spermatozoa with intact, normal apical ridge acrosome, and osmotically tolerant acrosomal membranes were markedly higher in boars at the age of 19 to 30 months during the autumn-winter period. Spermatozoa harvested during the spring-summer period were more susceptible to lipid peroxidation, irrespective of the age group. Significantly, higher levels of protein content and concentrations of nonthiol-containing antioxidant components of the seminal plasma (SP) were detected in boars less than 18 months of age during the autumn-winter period. Seasonal effects on the pH and proteinase inhibitory activity in the SP were more marked in boars less than 18 months of age, whereas alkaline phosphatase activity was greater in boars at the age of 19 to 30 months during the autumn-winter period. Substantial amounts of the thiol-containing antioxidants of the SP were detected in boars older than 18 months of age during the spring-summer period. Neither osmolality nor total antioxidant status was affected by differences in the seasonal periods or age groups. The findings of this study indicate that age- and seasonal-related variations affect the reproductive tract functions in the boar, resulting in marked changes in the biochemical composition of the semen. Copyright © 2016 Elsevier Inc. All rights reserved.
Modelling short-term variability in carbon and water exchange in a temperate Scots pine forest
NASA Astrophysics Data System (ADS)
Vermeulen, M. H.; Kruijt, B. J.; Hickler, T.; Kabat, P.
2015-02-01
Vegetation - atmosphere carbon and water exchange at one particular site can strongly vary from year to year, and understanding this interannual variability in carbon and water exchange (IAVcw) is a critical factor in projecting future ecosystem changes. However, the mechanisms driving this IAVcw are not well understood. We used data on carbon and water fluxes from a multi-year Eddy Covariance study (1997-2009) in a Dutch Scots pine forest and forced a process-based ecosystem model (LPJ-GUESS) with local data to, firstly, test whether the model can explain IAVcw and seasonal carbon and water exchange from direct environmental factors only. Initial model runs showed low correlations with estimated annual gross primary productivity (GPP) and annual actual evapotranspiration (AET), while monthly and daily fluxes showed high correlations. The model underestimated GPP and AET during winter and drought events. Secondly, we adapted the temperature inhibition function of photosynthesis to account for the observation that at this particular site, trees continue to assimilate at very low atmospheric temperatures (up to daily averages of -10 °C), resulting in a net carbon sink in winter. While we were able to improve daily and monthly simulations during winter by lowering the modelled minimum temperature threshold for photosynthesis, this did not increase explained IAVcw at the site. Thirdly, we implemented three alternative hypotheses concerning water uptake by plants in order to test which one best corresponds with the data. In particular, we analyse the effects during the 2003 heatwave. These simulations revealed a strong sensitivity of the modelled fluxes during dry and warm conditions, but no single formulation was consistently superior in reproducing the data for all time scales and the overall model-data match for IAVcw could not be improved. Most probably access to deep soil water leads to higher AET and GPP simulated during the heat wave of 2003. We conclude that photosynthesis at lower temperatures than assumed in most models can be important for winter carbon and water fluxes in pine forests. Furthermore, details of the model representations of water uptake, which are often overlooked, need further attention, and deep water access should be treated explicitly.
Modelling short-term variability in carbon and water exchange in a temperate Scots pine forest
NASA Astrophysics Data System (ADS)
Vermeulen, M. H.; Kruijt, B. J.; Hickler, T.; Kabat, P.
2015-07-01
The vegetation-atmosphere carbon and water exchange at one particular site can strongly vary from year to year, and understanding this interannual variability in carbon and water exchange (IAVcw) is a critical factor in projecting future ecosystem changes. However, the mechanisms driving this IAVcw are not well understood. We used data on carbon and water fluxes from a multi-year eddy covariance study (1997-2009) in a Dutch Scots pine forest and forced a process-based ecosystem model (Lund-Potsdam-Jena General Ecosystem Simulator; LPJ-GUESS) with local data to, firstly, test whether the model can explain IAVcw and seasonal carbon and water exchange from direct environmental factors only. Initial model runs showed low correlations with estimated annual gross primary productivity (GPP) and annual actual evapotranspiration (AET), while monthly and daily fluxes showed high correlations. The model underestimated GPP and AET during winter and drought events. Secondly, we adapted the temperature inhibition function of photosynthesis to account for the observation that at this particular site, trees continue to assimilate at very low atmospheric temperatures (up to daily averages of -10 °C), resulting in a net carbon sink in winter. While we were able to improve daily and monthly simulations during winter by lowering the modelled minimum temperature threshold for photosynthesis, this did not increase explained IAVcw at the site. Thirdly, we implemented three alternative hypotheses concerning water uptake by plants in order to test which one best corresponds with the data. In particular, we analyse the effects during the 2003 heatwave. These simulations revealed a strong sensitivity of the modelled fluxes during dry and warm conditions, but no single formulation was consistently superior in reproducing the data for all timescales and the overall model-data match for IAVcw could not be improved. Most probably access to deep soil water leads to higher AET and GPP simulated during the heatwave of 2003. We conclude that photosynthesis at lower temperatures than assumed in most models can be important for winter carbon and water fluxes in pine forests. Furthermore, details of the model representations of water uptake, which are often overlooked, need further attention, and deep water access should be treated explicitly.
DOE Office of Scientific and Technical Information (OSTI.GOV)
von Storch, H.; Zorita, E.; Cubasch, U.
A statistical strategy to deduct regional-scale features from climate general circulation model (GCM) simulations has been designed and tested. The main idea is to interrelate the characteristic patterns of observed simultaneous variations of regional climate parameters and of large-scale atmospheric flow using the canonical correlation technique. The large-scale North Atlantic sea level pressure (SLP) is related to the regional, variable, winter (DJF) mean Iberian Peninsula rainfall. The skill of the resulting statistical model is shown by reproducing, to a good approximation, the winter mean Iberian rainfall from 1900 to present from the observed North Atlantic mean SLP distributions. It ismore » shown that this observed relationship between these two variables is not well reproduced in the output of a general circulation model (GCM). The implications for Iberian rainfall changes as the response to increasing atmospheric greenhouse-gas concentrations simulated by two GCM experiments are examined with the proposed statistical model. In an instantaneous [open quotes]2 CO[sub 2][close quotes] doubling experiment, using the simulated change of the mean North Atlantic SLP field to predict Iberian rainfall yields, there is an insignificant increase of area-averaged rainfall of I mm/month, with maximum values of 4 mm/month in the northwest of the peninsula. In contrast, for the four GCM grid points representing the lberian Peninsula, the change is - 10 mm/month, with a minimum of - 19 mm/month in the southwest. In the second experiment, with the IPCC scenario A ([open quotes]business as usual[close quotes]) increase of CO[sub 2], the statistical-model results partially differ from the directly simulated rainfall changes: in the experimental range of 100 years, the area-averaged rainfall decreases by 7 mm/month (statistical model), and by 9 mm/month (GCM); at the same time the amplitude of the interdecadal variability is quite different. 17 refs., 10 figs.« less
NASA Technical Reports Server (NTRS)
Li, Zhao; Molod, Andrea; Schubert, Siegfried
2018-01-01
Reliable prediction of precipitation remains one of the most pivotal and complex challenges in seasonal forecasting. Previous studies show that various large-scale climate modes, such as ENSO, PNA and NAO play significant role in winter precipitation variability over the Northern America. The influences are most pronounced in years of strong indices of such climate modes. This study evaluates model bias, predictability and forecast skills of monthly winter precipitation in GEOS5-S2S 2.0 retrospective forecast from 1981 to 2016, with emphasis on the forecast skill of precipitation over North America during the extreme events of ENSO, PNA and NAO by applying EOF and composite analysis.
Bullock, Nicola; Gulbin, Jason P; Martin, David T; Ross, Angus; Holland, Terry; Marino, Frank
2009-02-15
The aims of this study were to talent transfer, rapidly develop, and qualify an Australian female athlete in the skeleton event at the 2006 Torino Winter Olympic Games and quantify the volume of skeleton-specific training and competition that would enable this to be achieved. Initially, 26 athletes were recruited through a talent identification programme based on their 30-m sprint time. After attending a selection camp, 10 athletes were invited to undertake an intensified skeleton training programme. Four of these athletes were then selected to compete for Australia on the World Cup circuit. All completed runs and simulated push starts were documented over a 14-month period. The athlete who eventually represented Australia at the Torino Winter Olympic Games did so following approximately 300 start simulations and about 220 training/competition runs over a period of 14 months. Using a deliberate programming model, these findings provide a guide to the minimum exposure required for a novice skeleton athlete to reach Olympic representative standard following intensified sport-specific training. The findings of this study are discussed in the context of the deliberate practice theory and offer the term "deliberate programming" as an alternative way of incorporating all aspects of expert development.
Crawford, Charles G.; Wilber, William G.; Peters, James G.
1979-01-01
The Indiana State Board of Health is developing a water-quality management plan that includes establishing limits for wastewater effluents discharged into Indiana streams. A digital model calibrated to conditions in Wildcat Creek was used to predict alternatives for future waste loadings that would be compatible with Indiana stream water-quality standards defined for two critical hydrologic conditions, summer and winter low flows. The model indicates that benthic-oxygen demand is the most significant factor affecting the dissolved-oxygen concentrations in Wildcat Creek during summer low flows. The Indiana stream dissolved-oxygen standard should not be violated if the Kokomo wastewater-treatment facility meets its current National Pollution Discharge Elimination System permit restrictions (average monthly 5-day biochemical-oxygen demand of 5 milligrams per liter and maximum weekly 5-day biochemical-oxygen demand of 7.5 milligrams per liter) and benthic-oxygen demand becomes negligible. Ammonia-nitrogen toxicity may also be a water-quality limitation in Wildcat Creek. Ammonia-nitrogen waste loads for the Kokomo wastewater-treatment facility, projected by the Indiana State Board of Health, will result in stream ammonia-nitrogen concentrations that exceed the State standard (2.5 milligrams per liter during summer months and 4.0 milligrams per liter during winter months). (Kosco-USGS)
Numerical simulation of a rare winter hailstorm event over Delhi, India on 17 January 2013
NASA Astrophysics Data System (ADS)
Chevuturi, A.; Dimri, A. P.; Gunturu, U. B.
2014-12-01
This study analyzes the cause of the rare occurrence of a winter hailstorm over New Delhi/NCR (National Capital Region), India. The absence of increased surface temperature or low level of moisture incursion during winter cannot generate the deep convection required for sustaining a hailstorm. Consequently, NCR shows very few cases of hailstorms in the months of December-January-February, making the winter hail formation a question of interest. For this study, a recent winter hailstorm event on 17 January 2013 (16:00-18:00 UTC) occurring over NCR is investigated. The storm is simulated using the Weather Research and Forecasting (WRF) model with the Goddard Cumulus Ensemble (GCE) microphysics scheme with two different options: hail and graupel. The aim of the study is to understand and describe the cause of hailstorm event during over NCR with a comparative analysis of the two options of GCE microphysics. Upon evaluating the model simulations, it is observed that the hail option shows a more similar precipitation intensity with the Tropical Rainfall Measuring Mission (TRMM) observation than the graupel option does, and it is able to simulate hail precipitation. Using the model-simulated output with the hail option; detailed investigation on understanding the dynamics of hailstorm is performed. The analysis based on a numerical simulation suggests that the deep instability in the atmospheric column led to the formation of hailstones as the cloud formation reached up to the glaciated zone promoting ice nucleation. In winters, such instability conditions rarely form due to low level available potential energy and moisture incursion along with upper level baroclinic instability due to the presence of a western disturbance (WD). Such rare positioning is found to be lowering the tropopause with increased temperature gradient, leading to winter hailstorm formation.
Numerical simulation of a winter hailstorm event over Delhi, India on 17 January 2013
NASA Astrophysics Data System (ADS)
Chevuturi, A.; Dimri, A. P.; Gunturu, U. B.
2014-09-01
This study analyzes the cause of rare occurrence of winter hailstorm over New Delhi/NCR (National Capital Region), India. The absence of increased surface temperature or low level of moisture incursion during winter cannot generate the deep convection required for sustaining a hailstorm. Consequently, NCR shows very few cases of hailstorms in the months of December-January-February, making the winter hail formation a question of interest. For this study, recent winter hailstorm event on 17 January 2013 (16:00-18:00 UTC) occurring over NCR is investigated. The storm is simulated using Weather Research and Forecasting (WRF) model with Goddard Cumulus Ensemble (GCE) microphysics scheme with two different options, hail or graupel. The aim of the study is to understand and describe the cause of hailstorm event during over NCR with comparative analysis of the two options of GCE microphysics. On evaluating the model simulations, it is observed that hail option shows similar precipitation intensity with TRMM observation than the graupel option and is able to simulate hail precipitation. Using the model simulated output with hail option; detailed investigation on understanding the dynamics of hailstorm is performed. The analysis based on numerical simulation suggests that the deep instability in the atmospheric column led to the formation of hailstones as the cloud formation reached upto the glaciated zone promoting ice nucleation. In winters, such instability conditions rarely form due to low level available potential energy and moisture incursion along with upper level baroclinic instability due to the presence of WD. Such rare positioning is found to be lowering the tropopause with increased temperature gradient, leading to winter hailstorm formation.
Source-sector contributions to European ozone and fine PM in 2010 using AQMEII modeling data
NASA Astrophysics Data System (ADS)
Karamchandani, Prakash; Long, Yoann; Pirovano, Guido; Balzarini, Alessandra; Yarwood, Greg
2017-05-01
Source apportionment modeling provides valuable information on the contributions of different source sectors and/or source regions to ozone (O3) or fine particulate matter (PM2.5) concentrations. This information can be useful in designing air quality management strategies and in understanding the potential benefits of reducing emissions from a particular source category. The Comprehensive Air quality Model with Extensions (CAMx) offers unique source attribution tools, called the Ozone and Particulate Source Apportionment Technology (OSAT/PSAT), which track source contributions. We present results from a CAMx source attribution modeling study for a summer month and a winter month using a recently evaluated European CAMx modeling database developed for Phase 3 of the Air Quality Model Evaluation International Initiative (AQMEII). The contributions of several source sectors (including model boundary conditions of chemical species representing transport of emissions from outside the modeling domain as well as initial conditions of these species) to O3 or PM2.5 concentrations in Europe were calculated using OSAT and PSAT, respectively. A 1-week spin-up period was used to reduce the influence of initial conditions. Evaluation focused on 16 major cities and on identifying source sectors that contributed above 5 %. Boundary conditions have a large impact on summer and winter ozone in Europe and on summer PM2.5, but they are only a minor contributor to winter PM2.5. Biogenic emissions are important for summer ozone and PM2.5. The important anthropogenic sectors for summer ozone are transportation (both on-road and non-road), energy production and conversion, and industry. In two of the 16 cities, solvent and product also contributed above 5 % to summertime ozone. For summertime PM2.5, the important anthropogenic source sectors are energy, transportation, industry, and agriculture. Residential wood combustion is an important anthropogenic sector in winter for PM2.5 over most of Europe, with larger contributions in central and eastern Europe and the Nordic cities. Other anthropogenic sectors with large contributions to wintertime PM2.5 include energy, transportation, and agriculture.
NASA Astrophysics Data System (ADS)
Jones, A. L.; Smart, P. L.
2005-08-01
Autoregressive modelling is used to investigate the internal structure of long-term (1935-1999) records of nitrate concentration for five karst springs in the Mendip Hills. There is a significant short term (1-2 months) positive autocorrelation at three of the five springs due to the availability of sufficient nitrate within the soil store to maintain concentrations in winter recharge for several months. The absence of short term (1-2 months) positive autocorrelation in the other two springs is due to the marked contrast in land use between the limestone and swallet parts of the catchment, rapid concentrated recharge from the latter causing short term switching in the dominant water source at the spring and thus fluctuating nitrate concentrations. Significant negative autocorrelation is evident at lags varying from 4 to 7 months through to 14-22 months for individual springs, with positive autocorrelation at 19-20 months at one site. This variable timing is explained by moderation of the exhaustion effect in the soil by groundwater storage, which gives longer residence times in large catchments and those with a dominance of diffuse flow. The lags derived from autoregressive modelling may therefore provide an indication of average groundwater residence times. Significant differences in the structure of the autocorrelation function for successive 10-year periods are evident at Cheddar Spring, and are explained by the effect the ploughing up of grasslands during the Second World War and increased fertiliser usage on available nitrogen in the soil store. This effect is moderated by the influence of summer temperatures on rates of mineralization, and of both summer and winter rainfall on the timing and magnitude of nitrate leaching. The pattern of nitrate leaching also appears to have been perturbed by the 1976 drought.
NASA Astrophysics Data System (ADS)
Min, Young-Mi; Kryjov, Vladimir N.; Oh, Sang Myeong; Lee, Hyun-Ju
2017-12-01
This paper assesses the real-time 1-month lead forecasts of 3-month (seasonal) mean temperature and precipitation on a monthly basis issued by the Asia-Pacific Economic Cooperation Climate Center (APCC) for 2008-2015 (8 years, 96 forecasts). It shows the current level of the APCC operational multi-model prediction system performance. The skill of the APCC forecasts strongly depends on seasons and regions that it is higher for the tropics and boreal winter than for the extratropics and boreal summer due to direct effects and remote teleconnections from boundary forcings. There is a negative relationship between the forecast skill and its interseasonal variability for both variables and the forecast skill for precipitation is more seasonally and regionally dependent than that for temperature. The APCC operational probabilistic forecasts during this period show a cold bias (underforecasting of above-normal temperature and overforecasting of below-normal temperature) underestimating a long-term warming trend. A wet bias is evident for precipitation, particularly in the extratropical regions. The skill of both temperature and precipitation forecasts strongly depends upon the ENSO strength. Particularly, the highest forecast skill noted in 2015/2016 boreal winter is associated with the strong forcing of an extreme El Nino event. Meanwhile, the relatively low skill is associated with the transition and/or continuous ENSO-neutral phases of 2012-2014. As a result the skill of real-time forecast for boreal winter season is higher than that of hindcast. However, on average, the level of forecast skill during the period 2008-2015 is similar to that of hindcast.
Adjustment of spatio-temporal precipitation patterns in a high Alpine environment
NASA Astrophysics Data System (ADS)
Herrnegger, Mathew; Senoner, Tobias; Nachtnebel, Hans-Peter
2018-01-01
This contribution presents a method for correcting the spatial and temporal distribution of precipitation fields in a mountainous environment. The approach is applied within a flood forecasting model in the Upper Enns catchment in the Central Austrian Alps. Precipitation exhibits a large spatio-temporal variability in Alpine areas. Additionally the density of the monitoring network is low and measurements are subjected to major errors. This can lead to significant deficits in water balance estimation and stream flow simulations, e.g. for flood forecasting models. Therefore precipitation correction factors are frequently applied. For the presented study a multiplicative, stepwise linear correction model is implemented in the rainfall-runoff model COSERO to adjust the precipitation pattern as a function of elevation. To account for the local meteorological conditions, the correction model is derived for two elevation zones: (1) Valley floors to 2000 m a.s.l. and (2) above 2000 m a.s.l. to mountain peaks. Measurement errors also depend on the precipitation type, with higher magnitudes in winter months during snow fall. Therefore, additionally, separate correction factors for winter and summer months are estimated. Significant improvements in the runoff simulations could be achieved, not only in the long-term water balance simulation and the overall model performance, but also in the simulation of flood peaks.
NASA Astrophysics Data System (ADS)
Fefer, M.; Dogan, M. S.; Herman, J. D.
2017-12-01
Long-term shifts in the timing and magnitude of reservoir inflows will potentially have significant impacts on water supply reliability in California, though projections remain uncertain. Here we assess the vulnerability of the statewide system to changes in total annual runoff (a function of precipitation) and the fraction of runoff occurring during the winter months (primarily a function of temperature). An ensemble of scenarios is sampled using a bottom-up approach and compared to the most recent available streamflow projections from the state's 4th Climate Assessment. We evaluate these scenarios using a new open-source version of the CALVIN model, a network flow optimization model encompassing roughly 90% of the urban and agricultural water demands in California, which is capable of running scenario ensembles on a high-performance computing cluster. The economic representation of water demand in the model yields several advantages for this type of analysis: optimized reservoir operating policies to minimize shortage cost and the marginal value of adaptation opportunities, defined by shadow prices on infrastructure and regulatory constraints. Results indicate a shift in optimal reservoir operations and high marginal value of additional reservoir storage in the winter months. The collaborative management of reservoirs in CALVIN yields increased storage in downstream reservoirs to store the increased winter runoff. This study contributes an ensemble evaluation of a large-scale network model to investigate uncertain climate projections, and an approach to interpret the results of economic optimization through the lens of long-term adaptation strategies.
ERIC Educational Resources Information Center
Birkeland, Karl W.; Halfpenny, James C.
1987-01-01
Discusses some of the ecological variables involved with plant and animal survival during the winter months. Addresses the effects of changing climatic conditions on habitats, foot-loading indexes, and the overall concept of adaptation. Provides some simple teaching activities dealing with winter survival. (TW)
Lin, Shao; Lawrence, Wayne R; Lin, Ziqiang; DiRienzo, Stephen; Lipton, Kevin; Dong, Guang-Hui; Leung, Ricky; Lauper, Ursula; Nasca, Philip; Stuart, Neil
2018-10-15
More extreme cold weather and larger weather variations have raised concerns regarding their effects on public health. Although prior studies assessed the effects of cold air temperature on health, especially mortality, limited studies evaluated wind chill temperatures on morbidity, and health effects under the current cold warning threshold. This study identified the thresholds, lag periods, and best indicators of extreme cold on cardiovascular disease (CVD) by comparing effects of wind chill temperatures and cold air temperatures on CVD emergency department (ED) visits in winter and winter transition months. Information was collected on 662,625 CVD ED visits from statewide hospital discharge dataset in New York State. Meteorological factors, including air temperature, wind speed, and barometric pressure were collected from National Oceanic and Atmospheric Administration. A case-crossover approach was used to assess the extreme cold-CVD relationship in winter (December-February) and transition months (November and March) after controlling for PM 2.5 . Conditional logistic regression models were employed to analyze the association between cold weather factors and CVD ED visits. We observed CVD effects occurred when wind chill temperatures were as high as -3.8 °C (25 °F), warmer than current wind chill warning standard (≤-28.8 °C or ≤-20 °F). Wind chill temperature was a more sensitive indicator of CVD ED visits during winter with temperatures ≤ -3.8 °C (25 °F) with delay effect (lag 6); however, air temperature was better during transition months for temperatures ≤ 7.2 °C (45 °F) at earlier lag days (1-3). Among all CVD subtypes, hypertension ED visit had the strongest negative association with both wind chill temperature and air temperature. This study recommends modifying the current cold warning temperature threshold given larger proportions of CVD cases are occurring at considerably higher temperatures than the current criteria. We also recommend issuing cold warnings in winter transitional months. Copyright © 2018 Elsevier B.V. All rights reserved.
Seasonal effects on seminal and endocrine traits in the captive snow leopard (Panthera uncia).
Johnston, L A; Armstrong, D L; Brown, J L
1994-09-01
The annual reproductive cycle of the male snow leopard (Panthera uncia) was characterized by evaluating seminal and endocrine traits monthly. Testicular volume was greatest (P < 0.05) during the winter months when the quality of ejaculate was optimal. Ejaculate volume, total sperm concentration ml-1, motile sperm concentration per ejaculate, sperm morphology and sperm motility index were lowest during the summer and autumn months compared with the winter and spring. Peripheral LH, FSH and testosterone concentrations were also lowest during the summer months, increasing during the autumn just before the increase in semen quality, and were maximal during the winter months. There was a direct relationship (P < 0.01) between: (1) testosterone and testicular volume, total sperm concentration ml-1, motile sperm concentration per ejaculate and ejaculate volume, and (2) LH and testicular volume and motile sperm concentration per ejaculate. In summary, although spermatozoa were recovered throughout the year, optimal gamete quality was observed during the winter and spring. Although previous studies in felids have demonstrated seasonal effects on either seminal or endocrine traits, this is the first study to demonstrate a distinct effect of season on both pituitary and testicular function.
Validation of High Frequency (HF) Propagation Prediction Models in the Arctic region
NASA Astrophysics Data System (ADS)
Athieno, R.; Jayachandran, P. T.
2014-12-01
Despite the emergence of modern techniques for long distance communication, Ionospheric communication in the high frequency (HF) band (3-30 MHz) remains significant to both civilian and military users. However, the efficient use of the ever-varying ionosphere as a propagation medium is dependent on the reliability of ionospheric and HF propagation prediction models. Most available models are empirical implying that data collection has to be sufficiently large to provide good intended results. The models we present were developed with little data from the high latitudes which necessitates their validation. This paper presents the validation of three long term High Frequency (HF) propagation prediction models over a path within the Arctic region. Measurements of the Maximum Usable Frequency for a 3000 km range (MUF (3000) F2) for Resolute, Canada (74.75° N, 265.00° E), are obtained from hand-scaled ionograms generated by the Canadian Advanced Digital Ionosonde (CADI). The observations have been compared with predictions obtained from the Ionospheric Communication Enhanced Profile Analysis Program (ICEPAC), Voice of America Coverage Analysis Program (VOACAP) and International Telecommunication Union Recommendation 533 (ITU-REC533) for 2009, 2011, 2012 and 2013. A statistical analysis shows that the monthly predictions seem to reproduce the general features of the observations throughout the year though it is more evident in the winter and equinox months. Both predictions and observations show a diurnal and seasonal variation. The analysed models did not show large differences in their performances. However, there are noticeable differences across seasons for the entire period analysed: REC533 gives a better performance in winter months while VOACAP has a better performance for both equinox and summer months. VOACAP gives a better performance in the daily predictions compared to ICEPAC though, in general, the monthly predictions seem to agree more with the observations compared to the daily predictions.
NASA Astrophysics Data System (ADS)
Salinas Solé, Celia; Peña Angulo, Dhais; Gonzalez Hidalgo, Jose Carlos; Brunetti, Michele
2017-04-01
In this poster we applied the moving window approach (see Poster I of this collection) to analyze trends of winter and its corresponding months (December, January, February) temperature mean values of maximum (Tmax) and minimum (Tmin) in Spanish mainland to detect the effects of length period and starting year. Monthly series belong to Monthly Temperature dataset of Spanish mainland (MOTEDAS). Database contains in its grid format of 5236 pixels of monthly series (10x10 km). The threshold used in spatial analyses considers 20% of land under significant trend (p<0.05). The most striking results are as follow: • Seasonal trend analyses of Tmax shows that global trend 1951-2010 was positive and significant mostly in central-western areas; from 1970 to 2010 there is less than 20% of land with significant trend. In the case of Tmin no relevant significant period is detected. • Monthly Tmax analyses show that December significant trend changed from positive (>20%) in between 1955-2010 until 1962-2010, to negative from 1976-2010. Meanwhile January does not show relevant period with significant trend; finally Tmax in February shows different periods with positive significant trend (>20% of land) 1951-2010 to 1954-2010 and 1962-2010 to 1968-2010. No significant trend is detected after this data. • Monthly Tmin trend analyses show that except exceptional period, no months present any significant trend. As conclusions, we have detected that for winter and winter-months, Tmax trends are not significant from 1970 across Spanish mainland. In the case of Tmin we conclude that no significant trend have been occurred in any temporal windows analyzed. Results differ from what traditionally has been assumed that the increase of the average annual temperature was due to the increase of trends in the winter season. And these analyses also show that seasonal trend values could hide monthly behavior. So extreme caution should be taken into account when seasonal values are offered.
Literak, Ivan; Kocianova, Elena; Dusbabek, Frantisek; Martinu, Jana; Podzemny, Petr; Sychra, Oldrich
2007-11-01
In winter months during 2003-2006, wild birds were captured and examined for ticks and chiggers at two sites near Brno, Czech Republic. In total, 1,362 birds, mostly passerines, were examined. The tick Ixodes arboricola Schulze et Schlottke, 1929 was found on 47 (3%) birds of six species. Ixodes ricinus Linnaeus, 1758 was found on 11 (1%) birds of five species. Larvae of chiggers Ascoschoengastia latyshevi (Schluger 1955) were found on 13 (1%) birds of six species. I. arboricola and A. latyshevi associated with hole-nesting birds can appear on birds rather frequently even during winter months. I. ricinus occurs on birds in winter sporadically.
NASA Astrophysics Data System (ADS)
Wu, Q.; Yao, Y.; Liu, S.
2017-12-01
The impact of the Eurasian snow cover extent (SCE) on the Northern Hemisphere (NH) circulation is first investigated by applying a lagged maximum covariance analysis (MCA) to monthly satellite-derived SCE and NCEP reanalysis data. Wintertime atmospheric signals significantly correlated with persistently autumn-early winter SCE anomalies are found in the leading two MCA modes. The first MCA mode indicates the effect of Eurasian snow cover anomalies on the Arctic Oscillation/North Atlantic Oscillation (AO/NAO). The second MCA mode links a persistent dipole of autumn and winter SCE anomalies over the Tibetan Plateau (TP) and Mongolia with winter Pacific-North America (PNA)-like atmospheric variations. A modeling study further investigates atmospheric responses to above TP and Mongolia snow forcings using multiple ensemble transient integrations of the CAM4 and CLM4.0 models. Model boundary conditions are based on climatological sea ice extent (SIE) and sea surface temperature (SST), and satellite observations of SCE and snow water equivalent (SWE) over the TP and Mongolia from October to March in 1997/98 (heavy TP and light Mongolia snow) and 1984/85 (light TP and heavy Mongolia snow), with model derived SCE and SWE elsewhere. In various forcing experiments, the ensemble-mean difference between simulations with these two extreme snow states identifies local, distant, concurrent, and delayed climatic responses. The main atmospheric responses to a dipole of high TP and low Mongolia SCE persisting from October to March (versus the opposite extreme) are strong TP surface cooling, warming in the surrounding China and Mongolia region, and a winter positive PNA-like response. The localized response is maintained by persistent diabatic cooling or heating, and the remote PNA response results mainly from the increased horizontal eastward propagation of stationary Rossby wave energy due to persistent TP snow forcing and also a winter transient eddy feedback mechanism. With a less persistent dipole anomaly in autumn or winter only, local responses are similar depending on the specific anomalies, but the winter PNA-like response is nearly absent or noticeably reduced.
Comparison of time series models for predicting campylobacteriosis risk in New Zealand.
Al-Sakkaf, A; Jones, G
2014-05-01
Predicting campylobacteriosis cases is a matter of considerable concern in New Zealand, after the number of the notified cases was the highest among the developed countries in 2006. Thus, there is a need to develop a model or a tool to predict accurately the number of campylobacteriosis cases as the Microbial Risk Assessment Model used to predict the number of campylobacteriosis cases failed to predict accurately the number of actual cases. We explore the appropriateness of classical time series modelling approaches for predicting campylobacteriosis. Finding the most appropriate time series model for New Zealand data has additional practical considerations given a possible structural change, that is, a specific and sudden change in response to the implemented interventions. A univariate methodological approach was used to predict monthly disease cases using New Zealand surveillance data of campylobacteriosis incidence from 1998 to 2009. The data from the years 1998 to 2008 were used to model the time series with the year 2009 held out of the data set for model validation. The best two models were then fitted to the full 1998-2009 data and used to predict for each month of 2010. The Holt-Winters (multiplicative) and ARIMA (additive) intervention models were considered the best models for predicting campylobacteriosis in New Zealand. It was noticed that the prediction by an additive ARIMA with intervention was slightly better than the prediction by a Holt-Winter multiplicative method for the annual total in year 2010, the former predicting only 23 cases less than the actual reported cases. It is confirmed that classical time series techniques such as ARIMA with intervention and Holt-Winters can provide a good prediction performance for campylobacteriosis risk in New Zealand. The results reported by this study are useful to the New Zealand Health and Safety Authority's efforts in addressing the problem of the campylobacteriosis epidemic. © 2013 Blackwell Verlag GmbH.
NASA Technical Reports Server (NTRS)
Welker, J.
1981-01-01
A histogram analysis of average monthly precipitation over 30 and 84 year periods for both Maryland and Kansas was made and the results compared. A second analysis, a statistical assessment of the effect of average monthly precipitation on Kansas winter wheat yield was made. The data sets covered the three periods of 1941-1970, 1887-1970, and 1887-1921. Analyses of the limited data sets used (only the average monthly precipitation and temperature were correlated against yield) indicated that fall precipitation values, especially those of September and October, were more important to winter wheat yield than were spring values, particularly for the period 1941-1970.
NASA Astrophysics Data System (ADS)
Srivastava, S. K., Sr.; Sharma, D. A.; Sachdeva, K.
2017-12-01
Indo-Gangetic plains of India experience severe fog conditions during the peak winter months of December and January every year. In this paper an attempt has been to analyze the spatial and temporal variability of winter fog over Indo-Gangetic plains. Further, an attempt has also been made to configure an efficient meso-scale numerical weather prediction model using different parameterization schemes and develop a forecasting tool for prediction of fog during winter months over Indo-Gangetic plains. The study revealed that an alarming increasing positive trend of fog frequency prevails over many locations of IGP. Hot spot and cluster analysis were conducted to identify the high fog prone zones using GIS and inferential statistical tools respectively. Hot spots on an average experiences fog on 68.27% days, it is followed by moderate and cold spots with 48.03% and 21.79% respectively. The study proposes a new FASP (Fog Analysis, sensitivity and prediction) Model for overall analysis and prediction of fog at a particular location and period over IGP. In the first phase of this model long term climatological fog data of a location is analyzed to determine its characteristics and prevailing trend using various advanced statistical techniques. During a second phase a sensitivity test is conducted with different combination of parameterization schemes to determine the most suitable combination for fog simulation over a particular location and period and in the third and final phase, first ARIMA model is used to predict the number of fog days in future . Thereafter, Numerical model is used to predict the various meteorological parameters favourable for fog forecast. Finally, Hybrid model is used for fog forecast over the study location. The results of the FASP model are validated with actual ground based fog data using statistical tools. Forecast Fog-gram generated using hybrid model during Jan 2017 shows highly encouraging results for fog occurrence/Non occurrence between 25 hrs to 72 hours forecast. The model predicted the fog occurrences/Non occurrence with more than 85 % accuracy over most of the locations across the study area. The minimum visibility departure is within 500 m on 90% occasions over the central IGP and within 1000m on more than 80 % occasions over most of the locations across Indo-Gangetic plains.
NASA Astrophysics Data System (ADS)
Nageswararao, M. M.; Mohanty, U. C.; Nair, Archana; Ramakrishna, S. S. V. S.
2016-06-01
The precipitation during winter (December through February) over India is highly variable in terms of time and space. Maximum precipitation occurs over the Himalaya region, which is important for water resources and agriculture sectors over the region and also for the economy of the country. Therefore, in the present global warming era, the realistic prediction of winter precipitation over India is important for planning and implementing agriculture and water management strategies. The National Centers for Environmental Prediction (NCEP) issued the operational prediction of climatic variables in monthly to seasonal scale since 2004 using their first version of fully coupled global climate model known as Climate Forecast System (CFSv1). In 2011, a new version of CFS (CFSv2) was introduced with the incorporation of significant changes in older version of CFS (CFSv1). The new version of CFS is required to compare in detail with the older version in the context of simulating the winter precipitation over India. Therefore, the current study presents a detailed analysis on the performance of CFSv2 as compared to CFSv1 for the winter precipitation over India. The hindcast runs of both CFS versions from 1982 to 2008 with November initial conditions are used and the model's precipitation is evaluated with that of India Meteorological Department (IMD). The models simulated wind and geopotential height against the National Center for Atmospheric Research (NCEP-NCAR) reanalysis-2 (NNRP2) and remote response patterns of SST against Extended Reconstructed Sea Surface Temperatures version 3b (ERSSTv3b) are examined for the same period. The analyses of winter precipitation revealed that both the models are able to replicate the patterns of observed climatology; interannual variability and coefficient of variation. However, the magnitude is lesser than IMD observation that can be attributed to the model's inability to simulate the observed remote response of sea surface temperatures to all India winter precipitation. Of the two, CFSv1 is appreciable in capturing year-to-year variations in observed winter precipitation while CFSv2 failed in simulating the same. CFSv1 has accounted for less mean bias and RMSE errors along with good correlations and index of agreements than CFSv2 for predicting winter precipitation over India. In addition, the CFSv1 is also having a high probability of detection in predicting different categories (normal, excess and deficit) of observed winter precipitation over India.
Tervo, Outi M; Parks, Susan E; Miller, Lee A
2009-09-01
Singing behavior has been described from bowhead whales in the Bering Sea during their annual spring migration and from Davis Strait during their spring feeding season. It has been suggested that this spring singing behavior is a remnant of the singing during the winter breeding season, though no winter recordings are available. In this study, the authors describe recordings made during the winter and spring months of bowhead whales in Disko Bay, Western-Greenland. A total of 7091 bowhead whale sounds were analyzed to describe the vocal repertoire, the singing behavior, and the changes in vocal behavior from February to May. The vocal signals could be divided into simple (frequency-modulated) calls (n=483), complex (amplitude-modulated) calls (n=635), and song notes (n=5973). Recordings from the end of February to middle of March were characterized by higher call rates with a greater diversity of call types than recordings made later in the season. This study is the first description of bowhead song from the stock in Western-Greenland during both the winter and spring months, and provides support for the hypothesis that song during the winter months contains more song notes than song from the spring making the winter song more variable.
Summer syncope syndrome redux.
Huang, Jennifer Juxiang; Desai, Chirag; Singh, Nirmal; Sharda, Natasha; Fernandes, Aaron; Riaz, Irbaz Bin; Alpert, Joseph S
2015-10-01
While antihypertensive therapy is known to reduce the risk for heart failure, myocardial infarction, and stroke, it can often cause orthostatic hypotension and syncope, especially in the setting of polypharmacy and possibly, a hot and dry climate. The objective of the present study was to investigate whether the results of our prior study involving continued use of antihypertensive drugs at the same dosage in the summer as in the winter months for patients living in the Sonoran desert resulted in an increase in syncopal episodes during the hot summer months. All hypertensive patients who were treated with medications and admitted with International Classification of Diseases, 9th Revision code diagnosis of syncope were included. This is a 3-year retrospective chart review study. They were defined as "cases" if they presented during the summer months (May to September) and "controls" if they presented during the winter months (November to March). The primary outcome measure was the presence of clinical dehydration. The statistical significance was determined using the 2-sided Fisher's exact test. A total of 834 patients with an International Classification of Diseases, 9th Revision code diagnosis of syncope were screened: 477 in the summer months and 357 in the winter months. In patients taking antihypertensive medications, there was a significantly higher number of cases of syncope secondary to dehydration during the summer months (40.5%) compared with the winter months (29%) (P = .04). No difference was observed in the type of antihypertensive medication used and syncope rate. The number of antihypertensives used did not increase the cases of syncope in either summer or winter. An increased number of syncope events was observed in the summer months among people who reside in a dry desert climate and who are taking antihypertensive medications. The data confirm our earlier observations that demonstrated a greater number of cases of syncope among people who reside in a dry desert climate who were taking antihypertensive medications during summer months. We recommend judicious reduction of antihypertensive therapy in patients residing in a hot and dry climate, particularly during the summer months. Copyright © 2015 Elsevier Inc. All rights reserved.
Holt-Winters Forecasting: A Study of Practical Applications for Healthcare Managers
2006-05-25
Winters Forecasting 5 List of Tables Table 1. Holt-Winters smoothing parameters and Mean Absolute Percentage Errors: Pseudoephedrine prescriptions Table 2...confidence intervals Holt-Winters Forecasting 6 List of Figures Figure 1. Line Plot of Pseudoephedrine Prescriptions forecast using smoothing parameters...The first represents monthly prescriptions of pseudoephedrine . Pseudoephedrine is a drug commonly prescribed to relieve nasal congestion and other
General-circulation-model simulations of future snowpack in the western United States
McCabe, G.J.; Wolock, D.M.
1999-01-01
April 1 snowpack accumulations measured at 311 snow courses in the western United States (U.S.) are grouped using a correlation-based cluster analysis. A conceptual snow accumulation and melt model and monthly temperature and precipitation for each cluster are used to estimate cluster-average April 1 snowpack. The conceptual snow model is subsequently used to estimate future snowpack by using changes in monthly temperature and precipitation simulated by the Canadian Centre for Climate Modeling and Analysis (CCC) and the Hadley Centre for Climate Prediction and Research (HADLEY) general circulation models (GCMs). Results for the CCC model indicate that although winter precipitation is estimated to increase in the future, increases in temperatures will result in large decreases in April 1 snowpack for the entire western US. Results for the HADLEY model also indicate large decreases in April 1 snowpack for most of the western US, but the decreases are not as severe as those estimated using the CCC simulations. Although snowpack conditions are estimated to decrease for most areas of the western US, both GCMs estimate a general increase in winter precipitation toward the latter half of the next century. Thus, water quantity may be increased in the western US; however, the timing of runoff will be altered because precipitation will more frequently occur as rain rather than as snow.
Direct evidence for impact winter following the Cretaceous-Paleogene bolide impact
NASA Astrophysics Data System (ADS)
Vellekoop, J.; Sluijs, A.; Smit, J.; Schouten, S.; Sinninghe Damsté, J. S.; Brinkhuis, H.
2012-12-01
The Cretaceous/Paleogene (K/Pg) boundary, ~65.5 Ma, marks a mass-extinction event related the impact of a large asteroid on the Yucatan peninsula, Mexico. Model scenarios predict that the explosive injection of dust and sulfate aerosols into the stratosphere blocked incoming solar radiation, resulting in a cooling pulse of months to several decades, a so-called 'impact winter', but thus far, proxy records lack sufficient resolution to evaluate this hypothesis. We report on a major, short-lived drop in sea surface temperatures (SSTs) recorded in an unusually well preserved and stratigraphically expanded K/Pg boundary site in Texas, USA, based on TEX86 paleothermometry. Critically, the cooling directly post-dates impact-related tsunami deposits, and coincides with the deposition of extraterrestrial iridium representing aerosol fall out, restricting the age of the cooling to the first months to decades after impact. We interpret this cooling to reflect the first direct evidence for the "impact winter" at the K/Pg boundary. The combination of darkness and cooling must have been a key contributory element in the extinctions of many biological clades, including the dinosaurs, flying reptiles and marine reptiles.
Clear-Sky Longwave Irradiance at the Earth's Surface--Evaluation of Climate Models.
NASA Astrophysics Data System (ADS)
Garratt, J. R.
2001-04-01
An evaluation of the clear-sky longwave irradiance at the earth's surface (LI) simulated in climate models and in satellite-based global datasets is presented. Algorithm-based estimates of LI, derived from global observations of column water vapor and surface (or screen air) temperature, serve as proxy `observations.' All datasets capture the broad zonal variation and seasonal behavior in LI, mainly because the behavior in column water vapor and temperature is reproduced well. Over oceans, the dependence of annual and monthly mean irradiance upon sea surface temperature (SST) closely resembles the observed behavior of column water with SST. In particular, the observed hemispheric difference in the summer minus winter column water dependence on SST is found in all models, though with varying seasonal amplitudes. The analogous behavior in the summer minus winter LI is seen in all datasets. Over land, all models have a more highly scattered dependence of LI upon surface temperature compared with the situation over the oceans. This is related to a much weaker dependence of model column water on the screen-air temperature at both monthly and annual timescales, as observed. The ability of climate models to simulate realistic LI fields depends as much on the quality of model water vapor and temperature fields as on the quality of the longwave radiation codes. In a comparison of models with observations, root-mean-square gridpoint differences in mean monthly column water and temperature are 4-6 mm (5-8 mm) and 0.5-2 K (3-4 K), respectively, over large regions of ocean (land), consistent with the intermodel differences in LI of 5-13 W m2 (15-28 W m2).
Fanian, Ferial; Mac-Mary, Sophie; Jeudy, Adeline; Lihoreau, Thomas; Messikh, Rafat; Ortonne, Jean-Paul; Sainthillier, Jean-Marie; Elkhyat, Ahmed; Guichard, Alexandre; Kenari, Kamran Hejazi; Humbert, Philippe
2013-01-01
Background Several studies have confirmed dramatic changes in skin surface parameters during the winter months. Although there are many studies supporting the positive effects of topical treatment, there are no published studies demonstrating the effects of oral supplementation in the prevention of negative skin changes during winter. The purpose of this study was to evaluate the efficacy of an oral micronutrient supplement in preventing the negative effects of winter weather on skin quality using noninvasive biometrologic instruments. Methods This study included 80 healthy female volunteers aged 35–55 years with phototype II–IV skin. Randomization was balanced. Two tablets of a micronutrient supplement (Perfectil® Platinum) or placebo were administered once daily for 4 months. The volunteers were examined at baseline, after 4 months, and 6 weeks after termination of treatment (month 5.5). The evaluation included skin microrelief by Visioscan® as the main outcome, and the secondary outcomes were results on standard macrophotography, skin tension by Reviscometer®, skin high-frequency ultrasound, and self-assessment. Results For all pseudoroughness and microrelief indicators, there was a significant increase from baseline to month 4 in the placebo group (P<0.05) but no change in the active group. Descriptive statistics for the mean minimum, mean maximum, and minimum to maximum ratio on the nonexposed study zone showed a significant and dramatic difference between baseline and month 4 and between baseline and month 5.5 (P<0.05) in the active group, indicating decreasing anisotropy of the skin. High-frequency ultrasound on the exposed study zone revealed that skin thickness was significantly decreased in the placebo group during winter but was stable in the treated group (P<0.01). The photography scaling and self-assessment questionnaire revealed no significant changes in either group. Conclusion These results indicate that the skin is prone to seasonal changes during winter, particularly in exposed areas. The data also indicate that oral supplementation can be a safe treatment, with no serious side effects, and may prevent or even eliminate the negative effects of winter on the skin. PMID:24255597
Fanian, Ferial; Mac-Mary, Sophie; Jeudy, Adeline; Lihoreau, Thomas; Messikh, Rafat; Ortonne, Jean-Paul; Sainthillier, Jean-Marie; Elkhyat, Ahmed; Guichard, Alexandre; Kenari, Kamran Hejazi; Humbert, Philippe
2013-01-01
Several studies have confirmed dramatic changes in skin surface parameters during the winter months. Although there are many studies supporting the positive effects of topical treatment, there are no published studies demonstrating the effects of oral supplementation in the prevention of negative skin changes during winter. The purpose of this study was to evaluate the efficacy of an oral micronutrient supplement in preventing the negative effects of winter weather on skin quality using noninvasive biometrologic instruments. This study included 80 healthy female volunteers aged 35-55 years with phototype II-IV skin. Randomization was balanced. Two tablets of a micronutrient supplement (Perfectil® Platinum) or placebo were administered once daily for 4 months. The volunteers were examined at baseline, after 4 months, and 6 weeks after termination of treatment (month 5.5). The evaluation included skin microrelief by Visioscan® as the main outcome, and the secondary outcomes were results on standard macrophotography, skin tension by Reviscometer®, skin high-frequency ultrasound, and self-assessment. For all pseudoroughness and microrelief indicators, there was a significant increase from baseline to month 4 in the placebo group (P<0.05) but no change in the active group. Descriptive statistics for the mean minimum, mean maximum, and minimum to maximum ratio on the nonexposed study zone showed a significant and dramatic difference between baseline and month 4 and between baseline and month 5.5 (P<0.05) in the active group, indicating decreasing anisotropy of the skin. High-frequency ultrasound on the exposed study zone revealed that skin thickness was significantly decreased in the placebo group during winter but was stable in the treated group (P<0.01). The photography scaling and self-assessment questionnaire revealed no significant changes in either group. These results indicate that the skin is prone to seasonal changes during winter, particularly in exposed areas. The data also indicate that oral supplementation can be a safe treatment, with no serious side effects, and may prevent or even eliminate the negative effects of winter on the skin.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-23
... ozone precursor gases during the winter and summer months, respectively. The revisions also allow for... dioxide, ozone, lead (Pb), particulate matter (PM), and sulfur dioxide (SO 2 ). A SIP is a set of air... supporting information such as emissions inventories, monitoring networks, and modeling demonstrations. Each...
USDA-ARS?s Scientific Manuscript database
South of Yellowstone National Park there are twenty-three sites where elk herds are provided supplementary feeding during the winter and spring months. Supplementary feeding of elk in the Greater Yellowstone Ecosystem (GYE) has been practiced since the early twentieth century, but the practice has b...
NASA Astrophysics Data System (ADS)
Dare, Patricia M.
1981-07-01
The winters of 1976-77 and 1977-78 were severe by virtually any standard. In this study, heating degree day (NDD) accumulations for these two winters as well as for the 1941-70 normals are examined at 31 National Weather Service stations in Indiana, Wisconsin, Michigan, Illinois, Ohio, and Kentucky. In addition, a modified heating degree day (MHDD) based on wind chill temperature is accumulated. In both cases, the winter is defined as consisting of the months of December, January, and February. Three-month and one-month accumulations are plotted and analyzed to gain a view of spatial and temporal distributions of both HDD and MUDD. Both parameters are shown to be influenced markedly by the presence of the Great Lakes, an influence that diminishes as an extensive ice cover forms on the lakes. The winter of 1976-77 is found to have greater accumulations of both HDD and MI4DD. A comparative ratio also is calculated in order to give an impression of the extent to which the wind's influence is felt. The ratio values show that for 1976-77 the inclusion of wind data gives the impression of a more intense winter than would be given by temperature data alone. However, the reverse is true for 1977-78; the inclusion of wind data gives the impression of a less intense winter.
Uncertainties in observations and climate projections for the North East India
NASA Astrophysics Data System (ADS)
Soraisam, Bidyabati; Karumuri, Ashok; D. S., Pai
2018-01-01
The Northeast-India has undergone many changes in climatic-vegetation related issues in the last few decades due to increased human activities. However, lack of observations makes it difficult to ascertain the climate change. The study involves the mean, seasonal cycle, trend and extreme-month analysis for summer-monsoon and winter seasons of observed climate data from Indian Meteorological Department (1° × 1°) and Aphrodite & CRU-reanalysis (both 0.5° × 0.5°), and five regional-climate-model simulations (LMDZ, MPI, GFDL, CNRM and ACCESS) data from AR5/CORDEX-South-Asia (0.5° × 0.5°). Long-term (1970-2005) observed, minimum and maximum monthly temperature and precipitation, and the corresponding CORDEX-South-Asia data for historical (1970-2005) and future-projections of RCP4.5 (2011-2060) have been analyzed for long-term trends. A large spread is found across the models in spatial distributions of various mean maximum/minimum climate statistics, though models capture a similar trend in the corresponding area-averaged seasonal cycles qualitatively. Our observational analysis broadly suggests that there is no significant trend in rainfall. Significant trends are observed in the area-averaged minimum temperature during winter. All the CORDEX-South-Asia simulations for the future project either a decreasing insignificant trend in seasonal precipitation, but increasing trend for both seasonal maximum and minimum temperature over the northeast India. The frequency of extreme monthly maximum and minimum temperature are projected to increase. It is not clear from future projections how the extreme rainfall months during JJAS may change. The results show the uncertainty exists in the CORDEX-South-Asia model projections over the region in spite of the relatively high resolution.
[Indoor air quality in school facilities in Cassino (Italy)].
Langiano, Elisa; Lanni, Liana; Atrei, Patrizia; Ferrara, Maria; La Torre, Giuseppe; Capelli, Giovanni; De Vito, Elisabetta
2008-01-01
This study evaluated the indoor air quality of 26 classrooms of secondary schools in the city of Cassino (Italy). Two types of school buildings were assessed: buildings specifically designed as schools, and former dwellings converted to schools. Measurements were taken in both winter and spring months, before students entered the classrooms and while the classrooms were occupied. Lower thermal comfort levels were observed during the winter months; in fact, during the winter, ideal temperature, humidity and air speed parameters were found in only a small percentage of classrooms and students were found to experience thermal discomfort as a result. Air velocity was often found to be inadequate both in winter and spring months and in both types of school buildings evaluated. Illumination levels measured during the winter months with both natural daylight and mixed illumination, were found to be below 200 lux, the minimum recommended level recommended by the ministerial decree 18.12.1975. Noise levels above the maximum level recommended by the ministerial decree 01.03.1991 were also frequently observed. The symptoms most frequently reported by students were headache, difficulties in concentrating, cough, and unusual tiredness. The various discomfort situations observed in both types of school buildings point toward a need for greater attention toward indoor air quality of schools as this can have affect students' attention, concentration, productivity and comfort.
Role of meteorology in seasonality of air pollution in megacity Delhi, India.
Guttikunda, Sarath K; Gurjar, Bhola R
2012-05-01
The winters in megacity Delhi are harsh, smoggy, foggy, and highly polluted. The pollution levels are approximately two to three times those monitored in the summer months, and the severity is felt not only in the health department but also in the transportation department, with regular delays at airport operations and series of minor and major accidents across the road corridors. The impacts felt across the city are both manmade (due to the fuel burning) and natural (due to the meteorological setting), and it is hard to distinguish their respective proportions. Over the last decade, the city has gained from timely interventions to control pollution, and yet, the pollution levels are as bad as the previous year, especially for the fine particulates, the most harmful of the criteria pollutants, with a daily 2009 average of 80 to 100 μg/m(3). In this paper, the role of meteorology is studied using a Lagrangian model called Atmospheric Transport Modeling System in tracer mode to better understand the seasonality of pollution in Delhi. A clear conclusion is that irrespective of constant emissions over each month, the estimated tracer concentrations are invariably 40% to 80% higher in the winter months (November, December, and January) and 10% to 60% lower in the summer months (May, June, and July), when compared to annual average for that year. Along with monitoring and source apportionment studies, this paper presents a way to communicate complex physical characteristics of atmospheric modeling in simplistic manner and to further elaborate linkages between local meteorology and pollution.
Winter diarrhoea and rotaviruses in Rhodesia.
Cruickshank, J G; Zilberg, G
1976-11-06
In the winter fewer bacterial pathogens are isolated from patients with gastro-enteritis than in the summer. The incidence of rotavirus infection is, however, at its greatest during the winter months and the virus is rarely found in cases of gastro-enteritis which occur during the warm season. The clinical pattern in winter diarrhoea is characteristically severe and acute but there has been no mortality or cross-infection.
SST-Forced Seasonal Simulation and Prediction Skill for Versions of the NCEP/MRF Model.
NASA Astrophysics Data System (ADS)
Livezey, Robert E.; Masutani, Michiko; Jil, Ming
1996-03-01
The feasibility of using a two-tier approach to provide guidance to operational long-lead seasonal prediction is explored. The approach includes first a forecast of global sea surface temperatures (SSTs) using a coupled general circulation model, followed by an atmospheric forecast using an atmospheric general circulation model (AGCM). For this exploration, ensembles of decade-long integrations of the AGCM driven by observed SSTs and ensembles of integrations of select cases driven by forecast SSTs have been conducted. The ability of the model in these sets of runs to reproduce observed atmospheric conditions has been evaluated with a multiparameter performance analysis.Results have identified performance and skill levels in the specified SST runs, for winters and springs over the Pacific/North America region, that are sufficient to impact operational seasonal predictions in years with major El Niño-Southern Oscillation (ENSO) episodes. Further, these levels were substantially reproduced in the forecast SST runs for 1-month leads and in many instances for up to one-season leads. In fact, overall the 0- and 1-month-lead forecasts of seasonal temperature over the United States for three falls and winters with major ENSO episodes were substantially better than corresponding official forecasts. Thus, there is considerable reason to develop a dynamical component for the official seasonal forecast process.
NASA Astrophysics Data System (ADS)
Darnault, C. J. G.; Daniel, T. J.; Billy, G.; Hopkins, I.; Guo, L.; Jin, Z.; Gall, H. E.; Lin, H.
2017-12-01
The permeability of the upper meter of soils in frozen conditions, commonly referred to as the active layer, can vary exponentially given the time of year. Variable moisture contents along with temperature, radiation, and slope angle of the soil surface can result in variable depths of frozen soils, which can cause the formation of low permeability ice lenses well into the spring thaw period. The wastewater irrigation site known as the "Living Filter" located in State College, PA has been in continuous operation since 1962. On average 5500 m3/day of wastewater is applied to the site annually, even in the winter months when average temperatures can dip as low as -7 °C during the month of January. The Living Filter is not permitted to discharge to surface water and is intended to recharge the Spring Creek basin that directly underlies the site, therefore runoff from the site is not permitted. We hypothesize that water infiltrates the upper meter of the subsurface during the winter in several different ways such as preferential pathways in the ice layer created by plant stems and weak patches of ice thawed by the warm wastewater. 2D conceptual models of the phase change between ice and water in the soil were created in order to predict soil permeability and its change in temperature. The 2D conceptual models can be correlated between observed soil moisture content and soil temperature data in order to validate the model given spray irrigation and weather patterns. By determining the permeability of the frozen soils, irrigation practices can be adjusted for the winter months so as to reduce the risk of any accidental wastewater runoff. The impact of this study will result in a better understanding of the multiphase dynamics of the active layer and their implication on soil hydrology at the Living Filter and other seasonally frozen sites.
Time and temperature interactions in freezing tolerance of winter wheat
USDA-ARS?s Scientific Manuscript database
In order to survive the temperature fluctuations that occur during the winter months, winter wheat (Triticum aestivum L.) plants must tolerate episodes of freezing to various temperatures for various lengths of time. In this study, the ability of six wheat cultivars to survive exposure to -13.5 to ...
NASA Astrophysics Data System (ADS)
Chen, Lei; Bian, Jianchun; Liu, Yi; Bai, Zhixuan; Qiao, Shuai
2018-02-01
To determine the morphology of inertial gravity wave (IGW) activity in the lower stratosphere (18-25 km) over Northern China and provide observational data constraints for IGW parameterization in atmospheric circulation models, the seasonal variation and longitudinal distribution of IGW parameters were analyzed statistically using 4 years (2010-2013) of radiosonde data from 20 sites distributed throughout Northern China (80.2°E-122.3°E). The results are as follows. (1) The seasonal variation in the monthly mean IGW energy (strong in winter and weak in summer) is consistent with the results for other regions in the Northern Hemisphere. However, the energy shows a significant longitudinal increase from west to east in winter and the opposite pattern in summer, which has rarely been reported. (2) The monthly mean intrinsic frequency exhibits clear seasonal variation (large in winter and small in summer). The annual average ratio with the Coriolis frequency is 2.47, while the degree of polarization exhibits the opposite seasonal variation, with an annual average of 0.71. The monthly mean vertical and horizontal wavelengths are 2.5 and 481.3 km in Northern China, respectively. (3) The annual mean magnitude of the intrinsic horizontal group speed (7.0 m/s) is much larger than that of the vertical group speed (0.08 m/s), and both have maxima in winter and minima in summer. The frequency of occurrence of the westward-propagated IGW is larger than that of the eastward-propagated IGW year round, and it is isotropic in the north-south direction. This phenomenon is related to the filtering effect of the tropospheric westerly jet. The annual mean fraction of upward propagation is 75.9%, with a minimum in winter. (4) The momentum flux exhibits a similar temporal and spatial distribution to energy, showing preferred propagation in the northwest direction. (5) The correlation of the monthly mean total energy of the IGW with the westerly jet and the dynamic instability were studied. The results suggest that the westerly jet near the tropopause has a strong influence on the IGWs activity in the lower stratosphere in Northern China and the height region of the westerly jet is a possible source region for IGWs, the maxima regions of the occurrence rates of dynamic instability at the upper and lower edges of the westerly jet in winter are also the possible source region for IGWs.
Dynamics of the exceptional warming events during the Arctic winters 2003/04, 2005/06 and 2008/09
NASA Astrophysics Data System (ADS)
Kuttippurath, Jayanarayanan; Godin-Beekmann, Sophie; Lefèvre, Franck; Nikulin, Grigory
2010-05-01
Sudden stratospheric warmings (SSW) are common features of the Arctic meteorology. During a major SSW, polar temperature rises and the zonal mean flow weakens dramatically over a short period of time. This situation causes displacement, distortion or split of the polar vortex. The Arctic winters 2003/04, 2005/06 and 2008/09 were characterized by major midwinter warming of different proportions. The major warming occurred in early January in 2003/04 and in mid-January in the other winters in the lower stratosphere. The winter 2003/04 was remarkable in that a stable vortex formed again in March 2004 after two months of severe disturbance. No vortex was evident in other winters after the mid-January major warming. The planetary waves 1 and 2 play a key role in warming events and in vortex distortions as they control the stratospheric circulation. The dominating presence and amplitude of these waves were also different in each winter. In this presentation, we characterize the winters 2003/04, 2005/06 and 2008/09 in terms of chemical and dynamical situation during the winters. In order to illustrate, we exploit the heat flux, zonal wind characteristics, Eliassen-Palm vectors and planetary wave analyzes for the winters in a comparative perspective. The dynamical parameters are derived from ECMWF analyzes and the chemical realm are discussed in terms of the measurements from MLS (Microwave Limb Sounder) and POAM (Polar Ozone and Aerosol Measurement) as well as simulations from the Mimosa-Chim global three-dimensional chemical transport model.
NASA Astrophysics Data System (ADS)
Gordiyenko, G. I.; Yakovets, A. F.
2017-07-01
The ionospheric F2 peak parameters recorded by a ground-based ionosonde at the midlatitude station Alma-Ata [43.25N, 76.92E] were compared with those obtained using the latest version of the IRI model (http://omniweb.gsfc.nasa.gov/vitmo/iri2012_vitmo.html). It was found that for the Alma-Ata (Kazakhstan) location, the IRI2012 model describes well the morphology of seasonal and diurnal variations of the ionospheric critical frequency (foF2) and peak density height (hmF2) monthly medians. The model errors in the median foF2 prediction (percentage deviations between the median foF2 values and their model predictions) were found to vary approximately in the range from about -20% to 34% and showed a stable overestimation in the median foF2 values for daytime in January and July and underestimation for day- and nighttime hours in the equinoctial months. The comparison between the ionosonde hmF2 and IRI results clearly showed that the IRI overestimates the nighttime hmF2 values for March and September months, and the difference is up to 30 km. The daytime Alma-Ata hmF2 data were found to be close to the IRI predictions (deviations are approximately ±10-15 km) in winter and equinoctial months, except in July when the observed hmF2 values were much more (from approximately 50-200 km). The comparison between the Alouette foF2 data and IRI predictions showed mixed results. In particular, the Alouette foF2 data showed a tendency to be overestimated for daytime in winter months similar to the ionosonde data; however, the overestimated foF2 values for nighttime in the autumn equinox were in disagreement with the ionosonde observations. There were large deviations between the observed hmF2 values and their model predictions. The largest deviations were found during winter and summer (up to -90 km). The comparison of the Alouette II electron density profiles with those predicted by the adapted IRI2012 model in the altitude range hmF2 of the satellite position showed a great difference in the shape of the Alouette-, NeQuick-, IRI02-coorr, and IRI2001-derived Ne profiles, with overestimated Ne values at some altitudes and underestimated Ne values at others. The results obtained in the study showed that the observation-model differences were significant especially for the real observed (not median) data. For practical application, it is clearly important for the IRI2012 model to be adapted to the observed F2-layer peak parameters. However, the model does not offer a simple solution to predict the shape of the vertical electron density profile in the topside ionosphere, because of the problem with the topside shape parameters.
Precipitation regime classification for the Mojave Desert: Implications for fire occurrence
Tagestad, Jerry; Brooks, Matthew L.; Cullinan, Valerie; Downs, Janelle; McKinley, Randy
2016-01-01
Long periods of drought or above-average precipitation affect Mojave Desert vegetation condition, biomass and susceptibility to fire. Changes in the seasonality of precipitation alter the likelihood of lightning, a key ignition source for fires. The objectives of this study were to characterize the relationship between recent, historic, and future precipitation patterns and fire. Classifying monthly precipitation data from 1971 to 2010 reveals four precipitation regimes: low winter/low summer, moderate winter/moderate summer, high winter/low summer and high winter/high summer. Two regimes with summer monsoonal precipitation covered only 40% of the Mojave Desert ecoregion but contain 88% of the area burned and 95% of the repeat burn area. Classifying historic precipitation for early-century (wet) and mid-century (drought) periods reveals distinct shifts in regime boundaries. Early-century results are similar to current, while the mid-century results show a sizeable reduction in area of regimes with a strong monsoonal component. Such a shift would suggest that fires during the mid-century period would be minimal and anecdotal records confirm this. Predicted precipitation patterns from downscaled global climate models indicate numerous epochs of high winter precipitation, inferring higher fire potential for many multi-decade periods during the next century.
Inter-annual and spatial variability of Hamon potential evapotranspiration model coefficients
McCabe, Gregory J.; Hay, Lauren E.; Bock, Andy; Markstrom, Steven L.; Atkinson, R. Dwight
2015-01-01
Monthly calibrated values of the Hamon PET coefficient (C) are determined for 109,951 hydrologic response units (HRUs) across the conterminous United States (U.S.). The calibrated coefficient values are determined by matching calculated mean monthly Hamon PET to mean monthly free-water surface evaporation. For most locations and months the calibrated coefficients are larger than the standard value reported by Hamon. The largest changes in the coefficients were for the late winter/early spring and fall months, whereas the smallest changes were for the summer months. Comparisons of PET computed using the standard value of C and computed using calibrated values of C indicate that for most of the conterminous U.S. PET is underestimated using the standard Hamon PET coefficient, except for the southeastern U.S.
The spatial and temporal relationships of winter snowpack and terrestrial water storage (TWS) in the Upper Snake River were analyzed for water years 2001–2010 at a monthly time step. We coupled a regionally validated snow model with gravimetric measurements of the Earth’s water...
Attribution of low precipitation in California during the winter of 2013-2014
NASA Astrophysics Data System (ADS)
Mera, R. J.; Ekwurzel, B.; Rupp, D. E.
2014-12-01
The record-setting drought in the state of California was further aggravated by extreme low precipitation in the winter of 2013-2014 and the associated low snow cover over the Sierra Nevada. Attribution work on the decline in Northern Hemisphere spring snow cover (Rupp et al. 2013) has shown that the decrease was likely the result of combined natural and anthropogenic forcing but not by natural forcing alone. Regional model superensemble simulations of snow water equivalent (SWE) with the Hadley Regional Climate Model (HadRM3P) shows the decline as a statistically-significant, linear trend for the Western US from 1961 to 2010. The present work focuses on attribution of these events by employing a superensemble of regional climate model simulations from the climateprediction.net (CPDN) experiment, which allows for robust statistical analysis of extreme events. Specifically, we compare the decade of the 2000s and the 1960s, which had different levels of heat-trapping gases and forcing from natural variability, among other factors. A linear regression of wet days and number of days with precipitation above 40 mm shows a strong drying pattern for the winter months of December, January, February, March (DJFM), especially for northern California and the Sierra Nevada. A strong warming pattern is also present during the winter months, with the minimum temperatures outpacing maximum temperatures for the Pacific Northwest. We will also investigate how simulations for DJFM 2013-2014, using only natural forcing provided CMIP5 HistoricalNat boundary conditions, compare against the model simulations using observations as boundary conditions. Results from this experiment also highlight the influence of increasing number of simulations on confidence intervals, which significantly reduces the uncertainty of both the change in magnitude of a given event and its corresponding return period.Rupp, David E., Philip W. Mote, Nathaniel L. Bindoff, Peter A. Stott, David A. Robinson, 2013: Detection and Attribution of Observed Changes in Northern Hemisphere Spring Snow Cover. J. Climate, 26, 6904-6914.doi: http://dx.doi.org/10.1175/JCLI-D-12-00563.1
NASA Astrophysics Data System (ADS)
Sarigu, Alessio; Cortis, Clorinda; Montaldo, Nicola
2014-05-01
In the last three decades, climate change and human activities increased desertification process in Mediterranean regions, with dramatic consequences for agriculture and water availability. For instance in the Flumendosa reservoir system in Sardinia the average annual runoff in the latter part of the 20th century was less than half the historic average rate, while the precipitation over the Flumendosa basin has decreased, but not at such a drastic rate as the discharge, suggesting a marked non-linear response of discharge to precipitation changes. With the objective of analyzing and looking for the reasons of the historical runoff decrease a new ecohydrological model is developed and tested for the main basin of the Sardinia island, the Flumendosa basin. The eco-hydrological model developed couples a distributed hydrological model and a vegetation dynamic model (VDM). The hydrological model estimates the soil water balance of each basin cell using the force-restore method and the Philips model for runoff estimate. Then it computes runoff propagation along the river network through a modified version of the Muskingum -Cunge method (Mancini et al., 2000; Montaldo et al., 2004). The VDM evaluates the changes in biomass over time from the difference between the rates of biomass production (photosynthesis) and loss (respiration and senescence), and provides LAI, which is then used by the hydrological model for evapotranspiration and rainfall interception estimates. Case study is the Flumendosa basin (Sardinia, basin area of about 1700 km2), which is characterized by a reservoir system that supplies water to the main city of Sardinia, Cagliari. Data are from 42 rain stations (1922-2008 period) over the entire basin and data of runoff are available for the same period. The model has been successfully calibrated for the 1922 - 2008 period for which rain, meteorological data and discharge data are available. We demonstrate that the hystorical strong decrease of runoff is due to a change of rainfall regime, with a decrease of rainfall during the winter months, and a little increase of rainfall during spring-summer months. Indeed, the higher Spring rainfall produced an increase of transpiration mainly, whithout any impact on runoff. Instead the decrease of rainfall in winter months produces a strong decrease of runoff. This trend impacts significantly on monthly runoff production, and, more important, on yearly runoff production, because most of the yearly runoff contribution comes from the winter months. Yearly runoff is more important in Sardinia water resources systems, because runoff is accumulated in dam reservoirs, and is the main water resources of the island. Hence, due to the change of rainfall regime in last decades we are observing a dramatic decrease of runoff, which is reaching to impact on the water availability of the Sardinian major city, Cagliari.
The eddy transport of nonconserved trace species derived from satellite data
NASA Technical Reports Server (NTRS)
Smith, Anne K.; Lyjak, Lawrence V.; Gille, John C.
1988-01-01
Using the approach of the Garcia and Solomon (1983) model and data obtained by the LIMS instrument on Nimbus 7, the chemical eddy transport matrix for planetary waves was calculated, and the chemical eddy contribution to the components of the matrix obtained from the LIMS satellite observations was computed using specified photochemical damping time scales. The dominant component of the transport matrices for several winter months were obtained for ozone, nitric acid, and quasi-geostrophic potential vorticity (PV), and the parameterized transports of these were compared with the 'exact' transports, computed directly from the eddy LIMS data. The results indicate that the chemical eddy effect can account for most of the observed ozone transport in early winter, decreasing to less than half in late winter. The agreement between the parameterized and observed nitric acid and PV was not as good. Reasons for this are discussed.
NASA Astrophysics Data System (ADS)
De Sales, Fernando; Xue, Yongkang; Okin, Gregory S.
2016-12-01
This study investigates the impact of burned areas on the surface energy balance and monthly precipitation in northern Africa as simulated by a state-of-the-art regional model. Mean burned area fraction derived from MODIS date of burning product was implemented in a set of 1-year long WRF-NMM/SSiB2 model simulations. Vegetation cover fraction and LAI were degraded daily based on mean burned area fraction and on the survival rate for each vegetation land cover type. Additionally, ground darkening associated with wildfire-induced ash and charcoal deposition was imposed through lower ground albedo for a period after burning. In general, wildfire-induced vegetation and ground condition deterioration increased mean surface albedo by exposing the brighter bare ground, which in turn caused a decrease in monthly surface net radiation. On average, the wildfire-season albedo increase was approximately 6.3 % over the Sahel. The associated decrease in surface available energy caused a drop in surface sensible heat flux to the atmosphere during the dry months of winter and early spring, which gradually transitioned to a more substantial decrease in surface evapotranspiration in April and May that lessened throughout the rainy season. Overall, post-fire land condition deterioration resulted in a decrease in precipitation over sub-Saharan Africa, associated with the weakening of the West African monsoon progression through the region. A decrease in atmospheric moisture flux convergence was observed in the burned area simulations, which played a dominant role in reducing precipitation in the area, especially in the months preceding the monsoon onset. The areas with the largest precipitation impact were those covered by savannas and rainforests, where annual precipitation decreased by 3.8 and 3.3 %, respectively. The resulting precipitation decrease and vegetation deterioration caused a drop in gross primary productivity in the region, which was strongest in late winter and early spring. This study suggests the cooling and drying of atmosphere induced by burned areas caused the strengthening of subsidence during pre-onset and weakening of upward atmospheric motion during onset and mature stages of the monsoon leading to a waning of convective instability and precipitation. Monthly mid-tropospheric vertical wind showed a strengthening of downward motion in winter and spring seasons, and weakening of upward movement during the rainy months. Furthermore, precipitation energy analysis revealed that most of precipitation decrease originated from convective events, which supports the hypothesis of reduced convective instability due to wildfires.
Almanaseer, Naser; Sankarasubramanian, A.; Bales, Jerad
2014-01-01
Recent studies have found a significant association between climatic variability and basin hydroclimatology, particularly groundwater levels, over the southeast United States. The research reported in this paper evaluates the potential in developing 6-month-ahead groundwater-level forecasts based on the precipitation forecasts from ECHAM 4.5 General Circulation Model Forced with Sea Surface Temperature forecasts. Ten groundwater wells and nine streamgauges from the USGS Groundwater Climate Response Network and Hydro-Climatic Data Network were selected to represent groundwater and surface water flows, respectively, having minimal anthropogenic influences within the Flint River Basin in Georgia, United States. The writers employ two low-dimensional models [principle component regression (PCR) and canonical correlation analysis (CCA)] for predicting groundwater and streamflow at both seasonal and monthly timescales. Three modeling schemes are considered at the beginning of January to predict winter (January, February, and March) and spring (April, May, and June) streamflow and groundwater for the selected sites within the Flint River Basin. The first scheme (model 1) is a null model and is developed using PCR for every streamflow and groundwater site using previous 3-month observations (October, November, and December) available at that particular site as predictors. Modeling schemes 2 and 3 are developed using PCR and CCA, respectively, to evaluate the role of precipitation forecasts in improving monthly and seasonal groundwater predictions. Modeling scheme 3, which employs a CCA approach, is developed for each site by considering observed groundwater levels from nearby sites as predictands. The performance of these three schemes is evaluated using two metrics (correlation coefficient and relative RMS error) by developing groundwater-level forecasts based on leave-five-out cross-validation. Results from the research reported in this paper show that using precipitation forecasts in climate models improves the ability to predict the interannual variability of winter and spring streamflow and groundwater levels over the basin. However, significant conditional bias exists in all the three modeling schemes, which indicates the need to consider improved modeling schemes as well as the availability of longer time-series of observed hydroclimatic information over the basin.
Winter home-range characteristics of American Marten (Martes americana) in Northern Wisconsin
Joseph B. Dumyahn; Patrick A. Zollner
2007-01-01
We estimated home-range size for American marten (Martes americana) in northern Wisconsin during the winter months of 2001-2004, and compared the proportion of cover-type selection categories (highly used, neutral and avoided) among home-ranges (95% fixed-kernel), core areas (50% fixed-kernel) and the study area. Average winter homerange size was 3....
Zaccari, Fernanda; Cabrera, María Cristina; Saadoun, Ali
2017-01-01
Glucose content and in vitro bioaccessibility were determined in raw and cooked pulp of Arapey, Cuabé, and Beauregard sweet potato varieties, as well as Maravilla del Mercado and Atlas winter squash, after zero, two, four, and six months of storage (14 °C, 80% relative humidity (RH)). The total glucose content in 100 g of raw pulp was, for Arapey, 17.7 g; Beauregard, 13.2 g; Cuabé, 12.6 g; Atlas, 4.0 g; and in Maravilla del Mercado, 4.1 g. These contents were reduced by cooking process and storage time, 1.1 to 1.5 times, respectively, depending on the sweet potato variety. In winter squash varieties, the total glucose content was not modified by cooking, while the storage increased glucose content 2.8 times in the second month. After in vitro digestion, the glucose content released was 7.0 times higher in sweet potato (6.4 g) than in winter squash (0.91 g) varieties. Glucose released by in vitro digestion for sweet potato stored for six months did not change, but in winter squashes, stored Atlas released glucose content increased 1.6 times. In conclusion, in sweet potato and winter squash, the glucose content and the released glucose during digestive simulation depends on the variety and the storage time. These factors strongly affect the supply of glucose for human nutrition and should be taken into account for adjusting a diet according to consumer needs. PMID:28665302
Zaccari, Fernanda; Cabrera, María Cristina; Saadoun, Ali
2017-06-30
Glucose content and in vitro bioaccessibility were determined in raw and cooked pulp of Arapey, Cuabé, and Beauregard sweet potato varieties, as well as Maravilla del Mercado and Atlas winter squash, after zero, two, four, and six months of storage (14 °C, 80% relative humidity (RH)). The total glucose content in 100 g of raw pulp was, for Arapey, 17.7 g; Beauregard, 13.2 g; Cuabé, 12.6 g; Atlas, 4.0 g; and in Maravilla del Mercado, 4.1 g. These contents were reduced by cooking process and storage time, 1.1 to 1.5 times, respectively, depending on the sweet potato variety. In winter squash varieties, the total glucose content was not modified by cooking, while the storage increased glucose content 2.8 times in the second month. After in vitro digestion, the glucose content released was 7.0 times higher in sweet potato (6.4 g) than in winter squash (0.91 g) varieties. Glucose released by in vitro digestion for sweet potato stored for six months did not change, but in winter squashes, stored Atlas released glucose content increased 1.6 times. In conclusion, in sweet potato and winter squash, the glucose content and the released glucose during digestive simulation depends on the variety and the storage time. These factors strongly affect the supply of glucose for human nutrition and should be taken into account for adjusting a diet according to consumer needs.
Dekar, Matthew P.; Magoulick, Daniel D.; Beringer, J.
2010-01-01
River otters (Lontra canadensis) are important predators in aquatic ecosystems, but few studies quantify their prey consumption. We trapped crayfish monthly as an index of availability and collected otter scat for diet analysis in the Ozark Mountains of northwestern Arkansas, USA. We measured otter daily energy expenditure (DEE) with the doubly labeled water method to develop a bioenergetics model for estimating monthly prey consumption. Meek's crayfish (Orconectes meeki) catch-per-unit-effort was positively related to stream temperature, indicating that crayfish were more available during warmer months. The percentage frequency of occurrence for crayfish in scat samples peaked at 85.0% in summer and was lowest (42.3%) in winter. In contrast, the percentage occurrence of fish was 13.3% in summer and 57.7% in winter. Estimates of DEE averaged 4738 kJ·day-1 for an otter with a body mass of 7842 g. Total biomass consumption ranged from 35 079 to 52 653 g·month-1 (wet mass), corresponding to a high proportion of fish and crayfish in the diet, respectively. Otter consumption represents a large fraction of prey production, indicating potentially strong effects of otters on trophic dynamics in stream ecosystems.
NASA Astrophysics Data System (ADS)
Saha, Provat K.; Khlystov, Andrey; Snyder, Michelle G.; Grieshop, Andrew P.
2018-03-01
We present field measurement data and modeling of multiple traffic-related air pollutants during two seasons at a site adjoining Interstate 40, near Durham, North Carolina. We analyze spatial-temporal and seasonal trends and fleet-average pollutant emission factors and use our data to evaluate a line source dispersion model. Month-long measurement campaigns were performed in summer 2015 and winter 2016. Data were collected at a fixed near-road site located within 10 m from the highway edge, an upwind background site and, under favorable meteorological conditions, along downwind perpendicular transects. Measurements included the size distribution, chemical composition, and volatility of submicron particles, black carbon (BC), nitrogen oxides (NOx), meteorological conditions and traffic activity data. Results show strong seasonal and diurnal differences in spatial distribution of traffic sourced pollutants. A strong signature of vehicle emissions was observed within 100-150 m from the highway edge with significantly higher concentrations during morning. Substantially higher concentrations and less-sharp near-road gradients were observed in winter for many species. Season-specific fleet-average fuel-based emission factors for NO, NOx, BC, and particle number (PN) were derived based on up- and down-wind roadside measurements. The campaign-average NOx and PN emission factors were 20% and 300% higher in winter than summer, respectively. These results suggest that the combined effect of higher emissions and their slower downwind dispersion in winter dictate the observed higher downwind concentrations and wider highway influence zone in winter for several species. Finally, measurements of traffic data, emission factors, and pollutant concentrations were integrated to evaluate a line source dispersion model (R-LINE). The dispersion model captured the general trends in the spatial and temporal patterns in near-road concentrations. However, there was a tendency for the model to under-predict concentrations near the road in the mornings and over-predict concentrations in the evenings.
Connectivity among straits of the northwest Pacific marginal seas
NASA Astrophysics Data System (ADS)
Cho, Yang-Ki; Seo, Gwang-Ho; Choi, Byoung-Ju; Kim, Sangil; Kim, Young-Gyu; Youn, Yong-Hoon; Dever, Edward P.
2009-06-01
The connectivity among straits of the northwest Pacific marginal seas is investigated with a primitive-equation ocean circulation model simulated for 10 years from 1994 to 2003. Over the simulation interval the temporal and spatial means and variations of the model sea surface temperature are comparable to those of the satellite sea surface temperature. The model transport through the straits shows good agreement with the available observations and a high seasonality in the Taiwan Strait, the Korea Strait, and the Soya Strait but relatively low seasonality in the Tsugaru Strait. The Kuroshio and Taiwan Warm Current (TWC) are two sources of water flowing through the Korea Strait. The volume transport in the Korea Strait is dominated by the Kuroshio in winter (83%) and by the TWC in summer (66%). Relative to the transport through the Korea Strait, the transport percentages of the Tsugaru Strait connecting to the northwest Pacific Ocean are 79% in winter and 65% in summer. The seasonality of the Korea Strait transport is positively correlated with the cross-strait wind stress. The drifter experiments show that it takes about 4 months for most of the drifters deployed in the Taiwan Strait to enter the Korea Strait and more than 2 months to travel from the Korea Strait to the Tsugaru and Soya straits.
Nuclear winter - Global consequences of multiple nuclear explosions
NASA Technical Reports Server (NTRS)
Turco, R. P.; Toon, O. B.; Ackerman, T. P.; Pollack, J. B.; Sagan, C.
1983-01-01
The results of a computerized simulation of the potential global environmental effects of dust and smoke clouds that would be generated by a nuclear war are presented. Short term effects of blast, fire, and radiation are neglected in the series of physical models that include a nuclear war scenario, a particle microphysics model, and a radiative convective model. Account is taken of the altitude-dependent dust, smoke, radioactivity, and NO(x) injections, the temporal evolution of dust and smoke clouds, land and ocean environments, and temperature contrasts. A nuclear exchange would produce thousands of individual smoke and dust clouds rising up to 30 km altitude in the midlatitudes. The smoke, dust, and radioactive debris would cover the entire midlatitudes within 1-2 weeks. The smoke would arise from conflagrations of forests, suburbs, and urban areas. Obscuration of sunlight would induce subfreezing temperatures for several months, disruption of the global circulation patterns, and the arrival of a nuclear winter, followed and accompanied by radioactive fallout, pyrogenic air pollution, and UV-B flux enhancements. It is estimated that a total of only 100 Mtons would be sufficient to plunge the Northern Hemisphere summer to subfreezing temperatures lasting months. Since the probable exchange in a nuclear war would exceed 5000 Mtons, it is expected that many species, including humans, may not survive the war.
Hoff, Michael H.
2004-01-01
Lake Superior lake herring (Coregonus artedi) recruitment to 13-14 months of age in the Wisconsin waters of Lake Superior varied by a factor of 5,233 during 1984-1998. Management agencies have sought models that accurately predict recruitment, but no satisfactory model had previously been developed. Lake herring recruitment was modeled to determine which factors most explained recruitment variability. The Ricker stock-recruitment model derived from only the paired stock and recruit data explained 35% of the variability in the recruitment data. The functional relationship that explained the greatest amount of recruitment variation (93%) included lake herring stock size, lake trout (Salvelinus namaycush) population size, slimy sculpin (Cottus cognatus) biomass, the interaction of mean daily wind speed in April (month of hatch) and lake herring stock size, and mean air temperature in April (when lake herring are 12-months old). Model results were interpreted to mean that lake herring recruitment was affected negatively by: slimy sculpin predation on lake herring ova; predation on age-0 lake herring by lake trout; and adult cannibalism on lake herring larvae, which was reduced by increased wind speed. April temperature was the variable that explained the least amount of variability in recruitment, but lake herring recruitment was positively affected by a warm April, which shortened winter and apparently reduced first-winter mortality. Stock size caused compensatory, density-dependent mortality on lake herring recruits. Management efforts appear best targeted at stock size protection, and empirical data implies that stock size in the Wisconsin waters of the lake should be maintained at 2.1-15.0 adults/ha in spring, bottom-trawl surveys.
Jones, Benjamin M; Arp, Christopher D; Hinkel, Kenneth M; Beck, Richard A; Schmutz, Joel A; Winston, Barry
2009-06-01
Lakes are dominant landforms in the National Petroleum Reserve Alaska (NPRA) as well as important social and ecological resources. Of recent importance is the management of these freshwater ecosystems because lakes deeper than maximum ice thickness provide an important and often sole source of liquid water for aquatic biota, villages, and industry during winter. To better understand seasonal and annual hydrodynamics in the context of lake morphometry, we analyzed lakes in two adjacent areas where winter water use is expected to increase in the near future because of industrial expansion. Landsat Thematic Mapper and Enhanced Thematic Mapper Plus imagery acquired between 1985 and 2007 were analyzed and compared with climate data to understand interannual variability. Measured changes in lake area extent varied by 0.6% and were significantly correlated to total precipitation in the preceding 12 months (p < 0.05). Using this relation, the modeled lake area extent from 1985 to 2007 showed no long-term trends. In addition, high-resolution aerial photography, bathymetric surveys, water-level monitoring, and lake-ice thickness measurements and growth models were used to better understand seasonal hydrodynamics, surface area-to-volume relations, winter water availability, and more permanent changes related to geomorphic change. Together, these results describe how lakes vary seasonally and annually in two critical areas of the NPRA and provide simple models to help better predict variation in lake-water supply. Our findings suggest that both overestimation and underestimation of actual available winter water volume may occur regularly, and this understanding may help better inform management strategies as future resource use expands in the NPRA.
Jones, Benjamin M.; Arp, C.D.; Hinkel, Kenneth M.; Beck, R.A.; Schmutz, J.A.; Winston, B.
2009-01-01
Lakes are dominant landforms in the National Petroleum Reserve Alaska (NPRA) as well as important social and ecological resources. Of recent importance is the management of these freshwater ecosystems because lakes deeper than maximum ice thickness provide an important and often sole source of liquid water for aquatic biota, villages, and industry during winter. To better understand seasonal and annual hydrodynamics in the context of lake morphometry, we analyzed lakes in two adjacent areas where winter water use is expected to increase in the near future because of industrial expansion. Landsat Thematic Mapper and Enhanced Thematic Mapper Plus imagery acquired between 1985 and 2007 were analyzed and compared with climate data to understand interannual variability. Measured changes in lake area extent varied by 0.6% and were significantly correlated to total precipitation in the preceding 12 months (p < 0.05). Using this relation, the modeled lake area extent from 1985 to 2007 showed no long-term trends. In addition, high-resolution aerial photography, bathymetric surveys, water-level monitoring, and lake-ice thickness measurements and growth models were used to better understand seasonal hydrodynamics, surface area-to-volume relations, winter water availability, and more permanent changes related to geomorphic change. Together, these results describe how lakes vary seasonally and annually in two critical areas of the NPRA and provide simple models to help better predict variation in lake-water supply. Our findings suggest that both overestimation and underestimation of actual available winter water volume may occur regularly, and this understanding may help better inform management strategies as future resource use expands in the NPRA. ?? 2008 Springer Science+Business Media, LLC.
Excess mortality in winter in Finnish intensive care.
Reinikainen, M; Uusaro, A; Ruokonen, E; Niskanen, M
2006-07-01
In the general population, mortality from acute myocardial infarctions, strokes and respiratory causes is increased in winter. The winter climate in Finland is harsh. The aim of this study was to find out whether there are seasonal variations in mortality rates in Finnish intensive care units (ICUs). We analysed data on 31,040 patients treated in 18 Finnish ICUs. We measured severity of illness with acute physiology and chronic health evaluation II (APACHE II) scores and intensity of care with therapeutic intervention scoring system (TISS) scores. We assessed mortality rates in different months and seasons and used logistic regression analysis to test the independent effect of various seasons on hospital mortality. We defined 'winter' as the period from December to February, inclusive. The crude hospital mortality rate was 17.9% in winter and 16.4% in non-winter, P = 0.003. Even after adjustment for case mix, winter season was an independent risk factor for increased hospital mortality (adjusted odds ratio 1.13, 95% confidence interval 1.04-1.22, P = 0.005). In particular, the risk of respiratory failure was increased in winter. Crude hospital mortality was increased during the main holiday season in July. However, the severity of illness-adjusted risk of death was not higher in July than in other months. An increase in the mean daily TISS score was an independent predictor of increased hospital mortality. Severity of illness-adjusted hospital mortality for Finnish ICU patients is higher in winter than in other seasons.
NASA Technical Reports Server (NTRS)
Weaver, Clark J.; Douglass, Anne R.; Rood, Richard B.
1995-01-01
A three-dimensional transport model, which uses winds from a stratospheric data assimilation system, is used to study the transport of supersonic aircraft exhaust in the lower stratosphere. A passive tracer is continuously injected into the transport model. The tracer source distribution is based on realistic scenarios for the daily emission rate of reactive nitrogen species for all forecasted flight routes. Winds are from northern hemisphere winter/spring months for 1979 and 1989; there are minimal differences between the tracer integrations for the 2 years. During the integration, peak tracer mixing ratios in the flight corridors are compared with the zonal mean and found to be greater by a factor of 2 or less. This implies that the zonal mean assumption used in two dimensional models is reasonable during winter and spring. There is a preference for pollutant buildup in the heavily traveled North Pacific and North Atlantic flight corridors. Pollutant concentration in the corridors depends on the position of the Aleutian anticyclone and the northern hemisphere polar vortex edge.
NASA Technical Reports Server (NTRS)
Shearer, W. T.; Lugg, D. J.; Rosenblatt, H. M.; Nickolls, P. M.; Sharp, R. M.; Reuben, J. M.; Ochs, H. D.
2001-01-01
BACKGROUND: It has been proposed that exposure to long-term spaceflight conditions (stress, isolation, sleep disruption, containment, microbial contamination, and solar radiation) or to ground-based models of spaceflight will alter human immune responses, but specific antibody responses have not been fully evaluated. OBJECTIVE: We sought to determine whether exposure to the 8-month Antarctic winter-over model of spaceflight would alter human antibody responses. METHODS: During the 1999 Australian National Antarctic Research Expeditions, 11 adult study subjects at Casey, Antarctica, and 7 control subjects at Macquarie Island, sub-Antarctica, received primary and secondary immunizations with the T cell-dependent neoantigen bacteriophage phi X-174. Periodic plasma samples were analyzed for specific antibody function. RESULTS: All of the subjects from Casey, Antarctica, cleared bacteriophage phi X-174 normally by 1 week after primary immunization, and all had normal primary and secondary antibody responses, including immunologic memory amplification and switch from IgM to IgG antibody production. One subject showed a high normal pattern, and one subject had a low normal pattern. The control subjects from Macquarie Island also had normal immune responses to bacteriophage phi X-174. CONCLUSIONS: These data do not support the hypothesis that de novo specific antibody responses of subjects become defective during the conditions of the Antarctic winter-over. Because the Antarctic winter-over model of spaceflight lacks the important factors of microgravity and solar radiation, caution must be used in interpreting these data to anticipate normal antibody responses in long-term spaceflight.
Assessment of Ground-Water Resources in the Seacoast Region of New Hampshire
Mack, Thomas J.
2009-01-01
Numerical ground-water-flow models were developed for a 160-square-mile area of coastal New Hampshire to provide insight into the recharge, discharge, and availability of ground water. Population growth and increasing water use prompted concern for the sustainability of the region's ground-water resources. Previously, the regional hydraulic characteristics of the fractured bedrock aquifer in the Seacoast region of New Hampshire were not well known. In the current study, the ground-water-flow system was assessed by using two different models developed and calibrated under steady-state seasonal low-flow and transient monthly conditions to ground-water heads and base-flow discharges. The models were, (1) a steady-state model representing current (2003-04) seasonal low-flow conditions used to simulate current and future projected water use during low-flow conditions; and (2) a transient model representing current average and estimated future monthly conditions over a 2-year period used to simulate current and future projected climate-change conditions. The analysis by the ground-water-flow models indicates that the Seacoast aquifer system is a transient flow system with seasonal variations in ground-water flow. A pseudosteady- state condition exists in the fall when the steady-state model was calibrated. The average annual recharge during the period analyzed, 2000-04, was approximately 51 percent of the annual precipitation. The average net monthly recharge rate between 2003 and 2004 varied from 5.5 inches per month in March, to zero in July, and to about 0.3 inches per month in August and September. Recharge normally increases to about 2 inches per month in late fall and early winter (November through December) and declines to about 1.5 inches per month in late winter (January and February). About 50 percent of the annual recharge coincides with snowmelt in the spring (March and April), and 20 percent occurs in the late fall and early winter (November through February). Net recharge, calculated as infiltration of precipitation minus evapotranspiration, can be negative during summer months (particularly July). Regional bulk hydraulic conductivities of the bedrock aquifer were estimated to be about 0.1 to 1.0 feet per day. Estimated hydraulic conductivities in model areas representing the Rye Complex and the Kittery Formation were higher (0.5 to 1 foot per day) than in areas representing the Eliot Formation, the Exeter Diorite, and the Newburyport Complex, which have estimated hydraulic conductivities of 0.1 to 0.2 foot per day. A northeast-southwest regional anisotropy of about 5:1 was estimated in some areas of the model; this pattern is parallel to the regional structural trend and predominant fracture orientation. In areas of the model with more observation data, the upper and lower 95-percent confidence intervals for the estimated bedrock hydraulic conductivity were about half an order of magnitude above and below the parameter, respectively, and the estimated confidence intervals for estimated specific storage were within an order of magnitude of the parameter. In areas of the model with few data points, or few stresses, confidence intervals were several orders of magnitude. Estimated model parameters and their confidence intervals are a function of the conceptual model design, observation data, and the weights placed on the data. The amount of recharge that enters the bedrock aquifer at a specific point depends on (1) the location of the point in the flow field; (2) the hydraulic conductivity of the bedrock (or the connectivity of fractures); and (3) the stresses within the bedrock aquifer. In addition, ground water stored in unconsolidated overburden sediments, including till and other fine-grained sediments, may constitute a large percentage of the water available from storage to the bedrock aquifer. Recharge into the bedrock aquifer at a point can range from zero to nearly all the recharge at the surface dependin
Potential Seasonal Predictability for Winter Storms over Europe
NASA Astrophysics Data System (ADS)
Wild, Simon; Befort, Daniel J.; Leckebusch, Gregor C.
2017-04-01
Reliable seasonal forecasts of strong extra-tropical cyclones and windstorms would have great social and economical benefits, as these events are the most costly natural hazards over Europe. In a previous study we have shown good agreement of spatial climatological distributions of extra-tropical cyclones and wind storms in state-of-the-art multi-member seasonal prediction systems with reanalysis. We also found significant seasonal prediction skill of extra-tropical cyclones and windstorms affecting numerous European countries. We continue this research by investigating the mechanisms and precursor conditions (primarily over the North Atlantic) on a seasonal time scale leading to enhanced extra-tropical cyclone activity and winter storm frequency over Europe. Our results regarding mechanisms show that an increased surface temperature gradient at the western edge of the North Atlantic can be related to enhanced winter storm frequency further downstream causing for example a greater number of storms over the British Isles, as observed in winter 2013-14.The so-called "Horseshoe Index", a SST tripole anomaly pattern over the North Atlantic in the summer months can also cause a higher number of winter storms over Europe in the subsequent winter. We will show results of AMIP-type sensitivity experiments using an AGCM (ECHAM5), supporting this hypothesis. Finally we will analyse whether existing seasonal forecast systems are able to capture these identified mechanisms and precursor conditions affecting the models' seasonal prediction skill.
NASA Astrophysics Data System (ADS)
Nageswararao, M. M.; Mohanty, U. C.; Dimri, A. P.; Osuri, Krishna K.
2018-05-01
Winter (December, January, and February (DJF)) precipitation over northwest India (NWI) is mainly associated with the eastward moving mid-latitude synoptic systems, western disturbances (WDs), embedded within the subtropical westerly jet (SWJ), and is crucial for Rabi (DJF) crops. In this study, the role of winter precipitation at seasonal and monthly scale over NWI and its nine meteorological subdivisions has been analyzed. High-resolution (0.25° × 0.25°) gridded precipitation data set of India Meteorological Department (IMD) for the period of 1901-2013 is used. Results indicated that the seasonal precipitation over NWI is below (above) the long-term mean in most of the years, when precipitation in any of the month (December/January/February) is in deficit (excess). The contribution of December precipitation (15-20%) to the seasonal (DJF) precipitation is lesser than January (35-40%) and February (35-50%) over all the subdivisions. December (0.60), January (0.57), and February (0.69) precipitation is in-phase (correlation) with the corresponding winter season precipitation. However, January precipitation is not in-phase with the corresponding December (0.083) and February (-0.03) precipitation, while December is in-phase with the February (0.21). When monthly precipitation (December or January or December-January or February) at subdivision level over NWI is excess (deficit); then, the probability of occurrence of seasonal excess (deficit) precipitation is high (almost nil). When antecedent-monthly precipitation is a deficit or excess, the probability of monthly (January or February or January + February) precipitation to be a normal category is >60% over all the subdivisions. This study concludes that the December precipitation is a good indicator to estimate the performance of January, February, January-February, and the seasonal (DJF) precipitation.
NASA Astrophysics Data System (ADS)
Amann, Benjamin; Lamoureux, Scott F.; Boreux, Maxime P.
2017-09-01
Advances in paleoclimatology from the Arctic have provided insights into long-term climate conditions. However, while past annual and summer temperature have received considerable research attention, comparatively little is known about winter paleoclimate. Arctic winter is of special interest as it is the season with the highest sensitivity to climate change, and because it differs substantially from summer and annual measures. Therefore, information about past changes in winter climate is key to improve our knowledge of past forced climate variability and to reduce uncertainty in climate projections. In this context, Arctic lakes with snowmelt-fed catchments are excellent potential winter climate archives. They respond strongly to snowmelt-induced runoff, and indirectly to winter temperature and snowfall conditions. To date, only a few well-calibrated lake sediment records exist, which appear to reflect site-specific responses with differing reconstructions. This limits the possibility to resolve large-scale winter climate change prior the instrumental period. Here, we present a well-calibrated quantitative temperature and snowfall record for the extended winter season (November through March; NDJFM) from Chevalier Bay (Melville Island, NWT, Canadian Arctic) back to CE 1670. The coastal embayment has a large catchment influenced by nival terrestrial processes, which leads to high sedimentation rates and annual sedimentary structures (varves). Using detailed microstratigraphic analysis from two sediment cores and supported by μ-XRF data, we separated the nival sedimentary units (spring snowmelt) from the rainfall units (summer) and identified subaqueous slumps. Statistical correlation analysis between the proxy data and monthly climate variables reveals that the thickness of the nival units can be used to predict winter temperature (r = 0.71, pc < 0.01, 5-yr filter) and snowfall (r = 0.65, pc < 0.01, 5-yr filter) for the western Canadian High Arctic over the last ca. 400 years. Results reveal a strong variability in winter temperature back to CE 1670 with the coldest decades reconstructed for the period CE 1800-1880, while the warmest decades and major trends are reconstructed for the period CE 1880-1930 (0.26°C/decade) and CE 1970-2010 (0.37°C/decade). Although the first aim of this study was to increase the paleoclimate data coverage for the winter season, the record from Chevalier Bay also holds great potential for more applied climate research such as data-model comparisons and proxy-data assimilation in climate model simulations.
Chan, Stephen C Y; Karczmarski, Leszek
2017-01-01
Indo-Pacific humpback dolphins (Sousa chinensis) inhabiting Hong Kong waters are thought to be among the world's most anthropogenically impacted coastal delphinids. We have conducted a 5-year (2010-2014) photo-ID study and performed the first in this region comprehensive mark-recapture analysis applying a suite of open population models and robust design models. Cormack-Jolly-Seber (CJS) models suggested a significant transient effect and seasonal variation in apparent survival probabilities as result of a fluid movement beyond the study area. Given the spatial restrictions of our study, limited by an administrative border, if emigration was to be considered negligible the estimated survival rate of adults was 0.980. Super-population estimates indicated that at least 368 dolphins used Hong Kong waters as part of their range. Closed robust design models suggested an influx of dolphins from winter to summer and increased site fidelity in summer; and outflux, although less prominent, during summer-winter intervals. Abundance estimates in summer (N = 144-231) were higher than that in winter (N = 87-111), corresponding to the availability of prey resources which in Hong Kong waters peaks during summer months. We point out that the current population monitoring strategy used by the Hong Kong authorities is ill-suited for a timely detection of a population change and should be revised.
2017-01-01
Indo-Pacific humpback dolphins (Sousa chinensis) inhabiting Hong Kong waters are thought to be among the world's most anthropogenically impacted coastal delphinids. We have conducted a 5-year (2010–2014) photo-ID study and performed the first in this region comprehensive mark-recapture analysis applying a suite of open population models and robust design models. Cormack-Jolly-Seber (CJS) models suggested a significant transient effect and seasonal variation in apparent survival probabilities as result of a fluid movement beyond the study area. Given the spatial restrictions of our study, limited by an administrative border, if emigration was to be considered negligible the estimated survival rate of adults was 0.980. Super-population estimates indicated that at least 368 dolphins used Hong Kong waters as part of their range. Closed robust design models suggested an influx of dolphins from winter to summer and increased site fidelity in summer; and outflux, although less prominent, during summer-winter intervals. Abundance estimates in summer (N = 144–231) were higher than that in winter (N = 87–111), corresponding to the availability of prey resources which in Hong Kong waters peaks during summer months. We point out that the current population monitoring strategy used by the Hong Kong authorities is ill-suited for a timely detection of a population change and should be revised. PMID:28355228
Breaking the Ice--And Winter's Spell--At Twin Buttes.
ERIC Educational Resources Information Center
Keown, Duane
1979-01-01
During the month of February, eighth and ninth graders at a university school in Wyoming participate in a winter lake study. Descriptions are given of various measurement techniques related to water quality studies. (SA)
Cold temperature increases winter fruit removal rate of a bird-dispersed shrub
Charles Kwit; Douglas J. Levey; Cathryn H. Greenberg; Scott F. Pearson; John P. McCarty; Sarah Sargent
2004-01-01
We tested the hypothesis that winter removal rates of fruits of wax myrtle, Myrica cerifera, are higher in colder winters. Over a 9-year period, we monitored M. cerifera fruit crops in 13 0.1-ha study plots in South Carolina, U.S.A. Peak ripeness occurred in November, whereas peak removal occurred in the coldest months, December...
Migration And wintering areas Of Glaucous-winged Gulls From south-central Alaska
Hatch, Scott A.; Gill, V.A.; Mulcahy, Daniel M.
2011-01-01
We used satellite telemetry to investigate the migration patterns and wintering areas of Glaucous-winged Gulls (Larus glaucescens) from Middleton Island, Alaska, where this species' population increased tenfold from the 1970s to the 1990s. Fall migration spanned 11 weeks, including numerous stopovers en route, apparently for feeding. Spring migration from wintering sites to Middleton Island was shorter (4 weeks) and more direct. One juvenile spent several months in southern Prince William Sound. An adult spent several months near Craig, southeast Alaska, while three others overwintered in southern British Columbia. For all four wintering adults use of refuse-disposal sites was evident or strongly suggested. Commensalism with humans may have contributed to the increase on Middleton, but a strong case can also be made for a competing explanation-regional recruitment of gulls to high-quality nesting habitat in Alaska created after the earthquake of 1964. An analysis of band returns reveals broad overlap in the wintering grounds of gulls from different Alaska colonies and of gulls banded on the west coast from British Columbia to California. The seasonal movement of many gulls from Alaska is decidedly migratory, whereas gulls from British Columbia, Washington, and Oregon disperse locally in winter.
NASA Astrophysics Data System (ADS)
Ono, Jun; Tatebe, Hiroaki; Komuro, Yoshiki; Nodzu, Masato I.; Ishii, Masayoshi
2018-02-01
To assess the skill of seasonal to inter-annual predictions of the detrended sea ice extent in the Arctic Ocean (SIEAO) and to clarify the underlying physical processes, we conducted ensemble hindcasts, started on 1 January, 1 April, 1 July and 1 October for each year from 1980 to 2011, for lead times up to three years, using the Model for Interdisciplinary Research on Climate (MIROC) version 5 initialised with the observed atmosphere and ocean anomalies and sea ice concentration. Significant skill is found for the winter months: the December SIEAO can be predicted up to 11 months ahead (anomaly correlation coefficient is 0.42). This skill might be attributed to the subsurface ocean heat content originating in the North Atlantic. A plausible mechanism is as follows: the subsurface water flows into the Barents Sea from spring to fall and emerges at the surface in winter by vertical mixing, and eventually affects the sea ice variability there. Meanwhile, the September SIEAO predictions are skillful for lead times of up to two months, due to the persistence of sea ice in the Beaufort, Chukchi, and East Siberian seas initialised in July, as suggested by previous studies.
Dudley, Robert W.; Hodgkins, Glenn A.
2005-01-01
The U.S. Geological Survey (USGS), in cooperation with the Maine Atlantic Salmon Commission (ASC), began a study in 2003 to examine the timing, magnitude, and duration of summer (June through October) and fall/early winter (September through January) seasonal streamflows of unregulated coastal river basins in Maine and to correlate them to meteorological variables and winter/spring (January through May) seasonal streamflows. This study overlapped the summer seasonal window with the fall/early winter seasonal window to completely bracket the low-streamflow period during July, August, and September between periods of high streamflows in June and October. The ASC is concerned with the impacts of potentially changing meteorological and hydrologic conditions on Atlantic salmon survival. Because winter/spring high streamflows appear to have trended toward earlier dates over the 20th century in coastal Maine, it was hypothesized that the spring/summer recession to low streamflows could have a similar trend toward earlier, and possibly lower, longer lasting, late summer/early fall low streamflows during the 20th century. There were few statistically significant trends in the timing, magnitude, or duration of summer low streamflows for coastal river basins in Maine during the 20th century. The hypothesis that earlier winter/spring high streamflows may result in earlier or lower low streamflows is not supported by the data. No statistically significant trends in the magnitude of total runoff volume during the low-streamflow months of August and September were observed. The magnitude and timing of summer low streamflows correlated with the timing of fall/winter high streamflows and the amount of summer precipitation. The magnitude and timing of summer low streamflows did not correlate with the timing of spring snowmelt runoff. There were few correlations between the magnitude and timing of summer low streamflows and monthly mean surface air temperatures. There were few statistically significant trends in the timing or duration of fall/winter high streamflows for coastal river basins in Maine during the 20th century. The timing of the bulk of fall/winter high streamflows correlated with seasonal precipitation. Earlier fall/winter center-of-volume dates correlated with higher September and October precipitation. In general, little evidence was observed of trends in the magnitude of seasonal runoff volume during fall/winter. The magnitude of fall/winter high streamflows positively correlated with November and December precipitation amounts. There were few correlations between the magnitude and timing of fall/winter high streamflows and monthly mean surface air temperatures.
Variability of the atmospheric energy flux across 70°N computed from the GFDL data set
NASA Astrophysics Data System (ADS)
Overland, James E.; Turet, Philip
The primary energy balance for the arctic atmosphere is through northward advection of moist static energy—sensible heat, potential energy, and latent heat—balanced by long wave radiation to space. Energy flux from sea ice and marginal seas contributes perhaps 20-30% of the outgoing radiation north of 70°N in winter and absorbs a nearly equal amount during summer. Thorndike's toy model shows that extreme climate states with no ice growth or melt can occur by changing the latitudinal energy flux by ±20-30% out of an annual mean flux of 100 W m-2. We extend the previous work on latitudinal energy flux by Nakamura and Oort (NO) to a 25-year record and investigate temporal variability. Our annual latitudinal energy flux was 103 W m-2 compared to the NO value of 98 W m-2 this difference was from greater fluxes during the winter. We found that mean winter (NDJFM) energy flux was 121 W m-2 with a standard deviation of 11 W m-2. There were no large outliers in any year. An analysis of variance showed that interannual variability does not contribute towards explaining monthly variability of northward energy transport for the winter, summer or annual periods. Transient eddy flux of sensible heat into the arctic basin was the largest component of the total energy flux and is concentrated near the longitudes of the Greenland Sea (˜10°W) and the Bering and Chukchi Seas (180°). There is a minimum in atmospheric heating north of Greenland, a known region of thick ice. While there was little interannual variability of energy flux across 70°N, there was considerable month-to-month variability and regional variability in poleward energy flux. Sea ice may playa role in storage and redistribution of energy in the arctic climate.
[Incidence of proximal femur fractures in relation to seasons of the year and weather].
Burget, F; Pleva, L; Kudrna, K; Kudrnová, Z
2012-01-01
The opinion that proximal femur fractures occur mainly in the winter season and are related to slippery surfaces prevails in both the lay and medical communities. The elucidation of this relationship would lead to a better understanding of the aetiology of these fractures and may help to prevent them in the elderly population. In a retrospective study conducted at two departments, the occurrence of proximal femur fractures in patients 60+ years old in relation to weather conditions (air temperature and its humidity, atmospheric pressure, rain and mist) between January 1, 2001 and December 31, 2005 was investigated. Patients with high-energy or pathological fractures were excluded. The results were evaluated by Statistika software. A total of 1720 patients were studied, of whom 1313 were women and 407 were men. The numbers of fractures did not differ significantly among either the seasons or months of the year. No correlation was found between the number of fractures and each of the weather characteristics (air temperature and its humidity, atmospheric pressure, wind speed and visibility). It is widely believed that hip fractures are connected with winter months and temperatures below zero. This is supported by several facts related to winter characteristics, such as slippery icy pavements, clumsiness due to warm bulky clothes, bodies affected by cold and thus predisposed to a fall and poorer visibility on shorter winter days. The effect of seasonal variation on hip fracture incidence has been investigated in 10 studies of which only one has taken the influence of daily temperature into consideration. All studies were conduced in the countries north of 40° latitude, i.e., in climatic conditions similar to our country, with temperatures falling below zero and ice-glazed pavements in winter months. Of them, six have found no relation between proximal femur fractures and weather conditions, two have reported an increased incidence of these fractures in winter months and two in summer months. Our study did not show any significant relationship between the incidence of proximal femur fractures and weather characteristics. Seasons of the year had no effect on the number of hip fractures or the length of hospital stay due to their treatment.
Arctic sea ice loss and recent extreme cold winter in Eurasia
NASA Astrophysics Data System (ADS)
Mori, Masato; Watanabe, Masahiro; Ishii, Masayoshi; Kimoto, Masahide
2014-05-01
Extreme cold winter over the Eurasia has occurred more frequently in recent years. Observational evidence in recent studies shows that the wintertime cold anomalies over the Eurasia are associated with decline of Arctic sea ice in preceding autumn to winter season. However, the tropical and/or mid-latitude sea surface temperature (SST) anomalies have great influence on the mid- and high-latitude atmospheric variability, it is difficult to isolate completely the impacts of sea ice change from observational data. In this study, we examine possible linkage between the Arctic sea ice loss and the extreme cold winter over the Eurasia using a state-of-the-art MIROC4 (T106L56) atmospheric general circulation model (AGCM) to assess the pure atmospheric responses to sea ice reduction. We perform two sets of experiments with different realistic sea ice boundary conditions calculated by composite of observed sea ice concentration; one is reduced sea ice extent case (referred to as LICE run) and another is enhanced case (HICE run). In both experiments, the model is integrated 6-month from September to February with 100-member ensemble under the climatological SST boundary condition. The difference in ensemble mean of each experiment (LICE minus HICE) shows cold anomalies over the Eurasia in winter and its spatial pattern is very similar to corresponding observation, though the magnitude is smaller than observation. This result indicates that a part of observed cold anomaly can be attributed to the Arctic sea ice loss. We would like to introduce more important results and mechanisms in detail in my presentation.
REDRAW-Based Evapotranspiration Estimation in Chongli, North China
NASA Astrophysics Data System (ADS)
Zhang, Z.; Wang, Z.
2017-12-01
Evapotranspiration (ET) is the key component of hydrological cycle and spatial estimates of ET are important elements of atmospheric circulation and hydrologic models. Quantifying the ET over large region is significant for water resources planning, hydrologic water balances, water rights management, and water division. In this study, Evapotranspiration (ET) was estimated using REDRAW model in the Chongli on 2014. REDRAW is a satellite-based balance algorithm with reference dry and wet limits model developed to estimate ET. Remote sensing data obtained from MODIS and meteorological data from China Meteorological Data Sharing Service System were used in ET model. In order to analyze the distribution and time variation of ET over the study region, daily, monthly and yearly ET were calculated for the study area, and ET of different land cover types were calculated. In terms of the monthly ET, the figure was low in winter and high in other seasons, and reaches the maximum value in August, showing a high monthly difference. The ET value of water body was the highest and that of barren or sparse vegetation were the lowest, which accorded with local actual condition. Evaluating spatial temporal distribution of actual ET could assist to understand the water consumption regularity in region and figure out the effect from different land cover, which helped to establish links between land use, water allocation, and water use planning in study region. Due to the groundwater recession in north China, the evaluation of regional total water resources become increasingly essential, and the result of this study can be used to plan the water use. As the Chongli will prepare the ski slopes for Winter Olympics on 2022, accuracy estimation of actual ET can efficiently resolve water conflict and relieve water scarcity.
Respiratory disease associated with community air pollution and a steel mill, Utah Valley.
Pope, C A
1989-01-01
This study assessed the association between hospital admissions and fine particulate pollution (PM10) in Utah Valley during the period April 1985-February 1988. This time period included the closure and reopening of the local steel mill, the primary source of PM10. An association between elevated PM10 levels and hospital admissions for pneumonia, pleurisy, bronchitis, and asthma was observed. During months when 24-hour PM10 levels exceeded 150 micrograms/m3, average admissions for children nearly tripled; in adults, the increase in admissions was 44 per cent. During months with mean PM10 levels greater than or equal to 50 micrograms/m3 average admissions for children and adults increased by 89 and 47 per cent, respectively. During the winter months when the steel mill was open, PM10 levels were nearly double the levels experienced during the winter months when the mill was closed. This occurred even though relatively stagnant air was experienced during the winter the mill was closed. Children's admissions were two to three times higher during the winters when the mill was open compared to when it was closed. Regression analysis also revealed that PM10 levels were strongly correlated with hospital admissions. They were more strongly correlated with children's admissions than with adult admissions and were more strongly correlated with admissions for bronchitis and asthma than with admissions for pneumonia and pleurisy. PMID:2495741
Sustainability of winter tourism in a changing climate over Kashmir Himalaya.
Dar, Reyaz Ahmad; Rashid, Irfan; Romshoo, Shakil Ahmad; Marazi, Asif
2014-04-01
Mountain areas are sensitive to climate change. Implications of climate change can be seen in less snow, receding glaciers, increasing temperatures, and decreasing precipitation. Climate change is also a severe threat to snow-related winter sports such as skiing, snowboarding, and cross-country skiing. The change in climate will put further pressure on the sensitive environment of high mountains. Therefore, in this study, an attempt has been made to know the impact of climate change on the snow precipitation, water resources, and winter tourism in the two famous tourist resorts of the Kashmir Valley. Our findings show that winters are getting prolonged with little snow falls on account of climate change. The average minimum and maximum temperatures are showing statistically significant increasing trends for winter months. The precipitation is showing decreasing trends in both the regions. A considerable area in these regions remains under the snow and glacier cover throughout the year especially during the winter and spring seasons. However, time series analysis of LandSat MODIS images using Normalized Difference Snow Index shows a decreasing trend in snow cover in both the regions from past few years. Similarly, the stream discharge, comprising predominantly of snow- and glacier-melt, is showing a statistically significant declining trend despite the melting of these glaciers. The predicted futuristic trends of temperature from Predicting Regional Climates for Impact Studies regional climate model are showing an increase which may enhance snow-melting in the near future posing a serious threat to the sustainability of winter tourism in the region. Hence, it becomes essential to monitor the changes in temperature and snow cover depletion in these basins in order to evaluate their effect on the winter tourism and water resources in the region.
Michot, T.C.; Woodin, M.C.; Adair, S.E.; Moser, E.B.
2006-01-01
Diurnal time-activity budgets were determined for wintering redheads (Aythya americana) from estuarine seagrass beds in Louisiana (Chandeleur Sound) and Texas (Laguna Madre) and from ponds adjacent to the Laguna Madre. Activities differed (p<0.0001) by location, month, and diurnal time period. Resting and feeding were the most frequent activities of redheads at the two estuarine sites, whereas drinking was almost nonexistent. Birds on ponds in Texas engaged most frequently in resting and drinking, but feeding was very infrequent. Redheads from the Louisiana estuarine site rested less than birds in Texas at either the Laguna Madre or freshwater ponds. Redheads in Louisiana fed more than birds in Texas; this was partially because of weather differences (colder temperatures in Louisiana), but the location effect was still significant even when we adjusted the model for weather effects. Redheads in Louisiana showed increased resting and decreased feeding as winter progressed, but redheads in Texas did not exhibit a seasonal pattern in either resting or feeding. In Louisiana, birds maintained a high level of feeding activity during the early morning throughout the winter, whereas afternoon feeding tapered off in mid- to late-winter. Texas birds showed a shift from morning feeding in early winter to afternoon feeding in late winter. Males and females at both Chandeleur Sound and Laguna Madre showed differences in their activities, but because the absolute difference seldom exceeded 2%, biological significance is questionable. Diurnal time-activity budgets of redheads on the wintering grounds are influenced by water salinities and the use of dietary fresh water, as well as by weather conditions, tides, and perhaps vegetation differences between sites. The opportunity to osmoregulate via dietary freshwater, vs. via nasal salt glands, may have a significant effect on behavioral allocations. ?? Springer 2006.
NASA Astrophysics Data System (ADS)
Sivavaraprasad, G.; Venkata Ratnam, D.
2017-07-01
Ionospheric delay is one of the major atmospheric effects on the performance of satellite-based radio navigation systems. It limits the accuracy and availability of Global Positioning System (GPS) measurements, related to critical societal and safety applications. The temporal and spatial gradients of ionospheric total electron content (TEC) are driven by several unknown priori geophysical conditions and solar-terrestrial phenomena. Thereby, the prediction of ionospheric delay is challenging especially over Indian sub-continent. Therefore, an appropriate short/long-term ionospheric delay forecasting model is necessary. Hence, the intent of this paper is to forecast ionospheric delays by considering day to day, monthly and seasonal ionospheric TEC variations. GPS-TEC data (January 2013-December 2013) is extracted from a multi frequency GPS receiver established at K L University, Vaddeswaram, Guntur station (geographic: 16.37°N, 80.37°E; geomagnetic: 7.44°N, 153.75°E), India. An evaluation, in terms of forecasting capabilities, of three ionospheric time delay models - an Auto Regressive Moving Average (ARMA) model, Auto Regressive Integrated Moving Average (ARIMA) model, and a Holt-Winter's model is presented. The performances of these models are evaluated through error measurement analysis during both geomagnetic quiet and disturbed days. It is found that, ARMA model is effectively forecasting the ionospheric delay with an accuracy of 82-94%, which is 10% more superior to ARIMA and Holt-Winter's models. Moreover, the modeled VTEC derived from International Reference Ionosphere, IRI (IRI-2012) model and new global TEC model, Neustrelitz TEC Model (NTCM-GL) have compared with forecasted VTEC values of ARMA, ARIMA and Holt-Winter's models during geomagnetic quiet days. The forecast results are indicating that ARMA model would be useful to set up an early warning system for ionospheric disturbances at low latitude regions.
Williams, Natalie C.; Bjorndal, Karen A.; Lamont, Margaret M.; Carthy, Raymond R.
2015-01-01
The foraging ecology and diet of the green turtle, Chelonia mydas, remain understudied, particularly in peripheral areas of its distribution. We assessed the diet of an aggregation of juvenile green turtles at the northern edge of its range during winter months using two approaches. Stomach content analyses provide a single time sample, and stable isotope analyses integrate diet over a several-month period. We evaluated diet consistency in prey choice over time by comparing the results of these two approaches. We examined stomach contents from 43 juvenile green turtles that died during cold stunning events in St. Joseph Bay, Florida, in 2008 and 2011. Stomach contents were evaluated for volume, dry mass, percent frequency of occurrence, and index of relative importance of individual diet items. Juvenile green turtles were omnivorous, feeding primarily on seagrasses and tunicates. Diet characterizations from stomach contents differed from those based on stable isotope analyses, indicating the turtles are not feeding consistently during winter months. Evaluation of diets during warm months is needed.
NASA Astrophysics Data System (ADS)
Mo, Ruping; Joe, Paul I.; Doyle, Chris; Whitfield, Paul H.
2014-01-01
A brief review of the anomalous weather conditions during the Vancouver 2010 Winter Olympic and Paralympic Games and the efforts to predict these anomalies based on some preceding El Niño-Southern Oscillation (ENSO) signals are presented. It is shown that the Olympic Games were held under extraordinarily warm conditions in February 2010, with monthly mean temperature anomalies of +2.2 °C in Vancouver and +2.8 °C in Whistler, ranking respectively as the highest and the second highest in the past 30 years (1981-2010). The warm conditions continued, but became less anomalous, in March 2010 for the Paralympic Games. While the precipitation amounts in the area remained near normal through this winter, the lack of snow due to warm conditions created numerous media headlines and practical problems for the alpine competitions. A statistical model was developed on the premise that February and March temperatures in the Vancouver area could be predicted using an ENSO signal with considerable lead time. This model successfully predicted the warmer-than-normal, lower-snowfall conditions for the Vancouver 2010 Winter Olympics and Paralympics.
Madden, Kenneth Michael
2017-12-13
Lack of physical activity and weight gain are two of the biggest drivers of health care costs in the United States. Healthy contemplations are required before any changes in behavior, and a recent study has shown that they have underlying periodicities. The aim of this study was to examine seasonal variations in state-by-state interest in both weight loss and increasing physical activity, and how these variations were associated with geographic latitude using Google Trends search data for the United States. Internet search query data were obtained from Google Trends (2004-2016). Time series analysis (every 2 weeks) was performed to determine search volume (normalized to overall search intensity). Seasonality was determined both by the difference in search volumes between winter (December, January, and February) and summer (June, July, and August) months and by the amplitude of cosinor analysis. Exercise-related searches were highest during the winter months, whereas weight loss contemplations showed a biphasic pattern (peaking in the summer and winter months). The magnitude of the seasonal difference increased with increasing latitude for both exercise (R 2 =.45, F 1,49 =40.09, beta=-.671, standard deviation [SD]=0.106, P<.001) and weight loss (R 2 =.24, F 1,49 =15.79, beta=-.494, SD=0.124, P<.001) searches. Healthy contemplations follow specific seasonal patterns, with the highest contemplations surrounding exercise during the winter months, and weight loss contemplations peaking during both winter and summer seasons. Knowledge of seasonal variations in passive contemplations may potentially allow for more efficient use of public health campaign resources. ©Kenneth Michael Madden. Originally published in JMIR Public Health and Surveillance (http://publichealth.jmir.org), 13.12.2017.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Edmund Kar-Man
The goals of the project are: 1) To develop and assess subseasonal to seasonal prediction products for storm track activity derived from NMME data; 2) Assess how much of the predictable signal can be associated with ENSO and other modes of large scale low frequency atmosphere-ocean variability; and 3) Further explore the link between storm track variations and extreme weather statistics. Significant findings of this project include the followings: 1) Our assessment of NMME reforecasts of storm track variability has demonstrated that NMME models have substantial skill in predicting storm track activity in the vicinity of North America - Subseasonalmore » skill is high only for leads of less than 1 month. However, seasonal (winter) prediction skill near North America is high even out to 4 to 5 months lead - Much of the skill for leads of 1 month or longer is related to the influence of ENSO - Nevertheless, lead 0 NMME predictions are significantly more skillful than those based on ENSO influence 2) Our results have demonstrated that storm track variations highly modulate the frequency of occurrence of weather extremes - Extreme cold, high wind, and extreme precipitation events in winter - Extreme heat events in summer - These results suggest that NMME storm track predictions can be developed to serve as a useful guidance to assist the formulation of monthly/seasonal outlooks« less
Seasonal trends in tinnitus symptomatology: evidence from Internet search engine query data.
Plante, David T; Ingram, David G
2015-10-01
The primary aim of this study was to test the hypothesis that the symptom of tinnitus demonstrates a seasonal pattern with worsening in the winter relative to the summer using Internet search engine query data. Normalized search volume for the term 'tinnitus' from January 2004 through December 2013 was retrieved from Google Trends. Seasonal effects were evaluated using cosinor regression models. Primary countries of interest were the United States and Australia. Secondary exploratory analyses were also performed using data from Germany, the United Kingdom, Canada, Sweden, and Switzerland. Significant seasonal effects for 'tinnitus' search queries were found in the United States and Australia (p < 0.00001 for both countries), with peaks in the winter and troughs in the summer. Secondary analyses demonstrated similarly significant seasonal effects for Germany (p < 0.00001), Canada (p < 0.00001), and Sweden (p = 0.0008), again with increased search volume in the winter relative to the summer. Our findings indicate that there are significant seasonal trends for Internet search queries for tinnitus, with a zenith in winter months. Further research is indicated to determine the biological mechanisms underlying these findings, as they may provide insights into the pathophysiology of this common and debilitating medical symptom.
A univariate model of river water nitrate time series
NASA Astrophysics Data System (ADS)
Worrall, F.; Burt, T. P.
1999-01-01
Four time series were taken from three catchments in the North and South of England. The sites chosen included two in predominantly agricultural catchments, one at the tidal limit and one downstream of a sewage treatment works. A time series model was constructed for each of these series as a means of decomposing the elements controlling river water nitrate concentrations and to assess whether this approach could provide a simple management tool for protecting water abstractions. Autoregressive (AR) modelling of the detrended and deseasoned time series showed a "memory effect". This memory effect expressed itself as an increase in the winter-summer difference in nitrate levels that was dependent upon the nitrate concentration 12 or 6 months previously. Autoregressive moving average (ARMA) modelling showed that one of the series contained seasonal, non-stationary elements that appeared as an increasing trend in the winter-summer difference. The ARMA model was used to predict nitrate levels and predictions were tested against data held back from the model construction process - predictions gave average percentage errors of less than 10%. Empirical modelling can therefore provide a simple, efficient method for constructing management models for downstream water abstraction.
Environmental Predictors of Seasonal Influenza Epidemics across Temperate and Tropical Climates
Tamerius, James D.; Shaman, Jeffrey; Alonso, Wladmir J.; Bloom-Feshbach, Kimberly; Uejio, Christopher K.; Comrie, Andrew; Viboud, Cécile
2013-01-01
Human influenza infections exhibit a strong seasonal cycle in temperate regions. Recent laboratory and epidemiological evidence suggests that low specific humidity conditions facilitate the airborne survival and transmission of the influenza virus in temperate regions, resulting in annual winter epidemics. However, this relationship is unlikely to account for the epidemiology of influenza in tropical and subtropical regions where epidemics often occur during the rainy season or transmit year-round without a well-defined season. We assessed the role of specific humidity and other local climatic variables on influenza virus seasonality by modeling epidemiological and climatic information from 78 study sites sampled globally. We substantiated that there are two types of environmental conditions associated with seasonal influenza epidemics: “cold-dry” and “humid-rainy”. For sites where monthly average specific humidity or temperature decreases below thresholds of approximately 11–12 g/kg and 18–21°C during the year, influenza activity peaks during the cold-dry season (i.e., winter) when specific humidity and temperature are at minimal levels. For sites where specific humidity and temperature do not decrease below these thresholds, seasonal influenza activity is more likely to peak in months when average precipitation totals are maximal and greater than 150 mm per month. These findings provide a simple climate-based model rooted in empirical data that accounts for the diversity of seasonal influenza patterns observed across temperate, subtropical and tropical climates. PMID:23505366
NASA Astrophysics Data System (ADS)
Gao, M.; Saide, P. E.; Xin, J.; Wang, Y.; Liu, Z.; Wang, Z.; Pagowski, M.; Guttikunda, S. K.; Carmichael, G. R.
2016-12-01
The Gridpoint Statistical Interpolation (GSI) Three-Dimensional Variational (3DVAR) data assimilation system is extended to treat the MOSAIC aerosol model in WRF-Chem, and to be capable of assimilating surface PM2.5 concentrations. The coupled GSI-WRF-Chem system is applied to reproduce aerosol levels over China during an extremely polluted winter month, January 2013. After assimilating surface PM2.5 concentrations, the correlation coefficients between observations and model results averaged over the assimilated sites are improved from 0.67 to 0.94. At non-assimilated sites, improvements are also found in PM2.5, PM10 and AOD predictions. Using the constrained aerosol fields, we estimate that the PM2.5 concentrations in January 2013 might cause 7550 premature deaths in Jing-Jin-Ji areas, and 113.9 million (92.1% of Jing-Jin-Ji population) people in Jing-Jin-Ji are exposed to unhealthy air (monthly averaged PM2.5 concentration over 75µg/m3). We also estimate that the daytime monthly mean anthropogenic aerosol radiative forcing (ARF) to be -29.9W/m2 at the surface, 27.0W/m2 inside the atmosphere, and -2.9W/m2 at the top of the atmosphere. Our estimates reduce the previously reported overestimations along Yangtze River region and underestimations in North China. This system will also be beneficial for more reliable air quality forecasts in China.
Migration and wintering areas of glaucous-winged Gulls from south-central Alaska
Hatch, Shyla A.; Gill, V.A.; Mulcahy, D.M.
2011-01-01
We used satellite telemetry to investigate the migration patterns and wintering areas of Glaucouswinged Gulls (Larus glaucescens) from Middleton Island, Alaska, where this species' population increased tenfold from the 1970s to the 1990s. Fall migration spanned 11 weeks, including numerous stopovers en route, apparently for feeding. Spring migration from wintering sites to Middleton Island was shorter (4 weeks) and more direct. One juvenile spent several months in southern Prince William Sound. An adult spent several months near Craig, southeast Alaska, while three others overwintered in southern British Columbia. For all four wintering adults use of refuse-disposal sites was evident or strongly suggested. Commensalism with humans may have contributed to the increase on Middleton, but a strong case can also be made for a competing explanation-regional recruitment of gulls to high-quality nesting habitat in Alaska created after the earthquake of 1964. An analysis of band returns reveals broad overlap in the wintering grounds of gulls from different Alaska colonies and of gulls banded on the west coast from British Columbia to California. The seasonal movement of many gulls from Alaska is decidedly migratory, whereas gulls from British Columbia, Washington, and Oregon disperse locally in winter. ?? The Cooper Ornithological Society 2011.
NASA Astrophysics Data System (ADS)
Chattopadhyay, Surajit; Chattopadhyay, Goutami
2012-10-01
In the work discussed in this paper we considered total ozone time series over Kolkata (22°34'10.92″N, 88°22'10.92″E), an urban area in eastern India. Using cloud cover, average temperature, and rainfall as the predictors, we developed an artificial neural network, in the form of a multilayer perceptron with sigmoid non-linearity, for prediction of monthly total ozone concentrations from values of the predictors in previous months. We also estimated total ozone from values of the predictors in the same month. Before development of the neural network model we removed multicollinearity by means of principal component analysis. On the basis of the variables extracted by principal component analysis, we developed three artificial neural network models. By rigorous statistical assessment it was found that cloud cover and rainfall can act as good predictors for monthly total ozone when they are considered as the set of input variables for the neural network model constructed in the form of a multilayer perceptron. In general, the artificial neural network has good potential for predicting and estimating monthly total ozone on the basis of the meteorological predictors. It was further observed that during pre-monsoon and winter seasons, the proposed models perform better than during and after the monsoon.
Multivariate Regression Analysis of Winter Ozone Events in the Uinta Basin of Eastern Utah, USA
NASA Astrophysics Data System (ADS)
Mansfield, M. L.
2012-12-01
I report on a regression analysis of a number of variables that are involved in the formation of winter ozone in the Uinta Basin of Eastern Utah. One goal of the analysis is to develop a mathematical model capable of predicting the daily maximum ozone concentration from values of a number of independent variables. The dependent variable is the daily maximum ozone concentration at a particular site in the basin. Independent variables are (1) daily lapse rate, (2) daily "basin temperature" (defined below), (3) snow cover, (4) midday solar zenith angle, (5) monthly oil production, (6) monthly gas production, and (7) the number of days since the beginning of a multi-day inversion event. Daily maximum temperature and daily snow cover data are available at ten or fifteen different sites throughout the basin. The daily lapse rate is defined operationally as the slope of the linear least-squares fit to the temperature-altitude plot, and the "basin temperature" is defined as the value assumed by the same least-squares line at an altitude of 1400 m. A multi-day inversion event is defined as a set of consecutive days for which the lapse rate remains positive. The standard deviation in the accuracy of the model is about 10 ppb. The model has been combined with historical climate and oil & gas production data to estimate historical ozone levels.
Predicting summer residential electricity demand across the U.S.A using climate information
NASA Astrophysics Data System (ADS)
Sun, X.; Wang, S.; Lall, U.
2017-12-01
We developed a Bayesian Hierarchical model to predict monthly residential per capita electricity consumption at the state level across the USA using climate information. The summer period was selected since cooling requirements may be directly associated with electricity use, while for winter a mix of energy sources may be used to meet heating needs. Historical monthly electricity consumption data from 1990 to 2013 were used to build a predictive model with a set of corresponding climate and non-climate covariates. A clustering analysis was performed first to identify groups of states that had similar temporal patterns for the cooling degree days of each state. Then, a partial pooling model was applied to each cluster to assess the sensitivity of monthly per capita residential electricity demand to each predictor (including cooling-degree-days, gross domestic product (GDP) per capita, per capita electricity demand of previous month and previous year, and the residential electricity price). The sensitivity of residential electricity to cooling-degree-days has an identifiable geographic distribution with higher values in northeastern United States.
Intra-Seasonal Monthly Oscillations in Stratospheric NCEP Data and Model Results
NASA Technical Reports Server (NTRS)
Mayr, H. G.; Mengel, J. G.; Huang, F. T.; Nash, E. R.
2009-01-01
Intra-seasonal oscillations (ISO) are observed in the zonal-mean of mesospheric wind and temperature measurements-and the numerical spectral model (NSM) generates such oscillations. Relatively large temperature ISO are evident also in stratospheric CPC (NCEP) data at high latitudes, where the NSM produces amplitudes around 3 K at 30 km. Analyzing the NCEP data for the years 1996-2006, we find in Fourier spectra signatures of oscillations with periods between 1.7 and 3 months. With statistical confidence levels exceeding 70%, the spectral features are induced by nonlinear interactions involving the annual and semi-annual variations. The synthesized data show for the 10-year average that the temperature ISO peak in winter, having amplitudes close to 4 K. The synthesized complete spectrum for periods around 2 months produces oscillations, varying from year to year, which can reach peak amplitudes of 15 and 5 K respectively at northern and southern polar latitudes.
A national-scale seasonal hydrological forecast system: development and evaluation over Britain
NASA Astrophysics Data System (ADS)
Bell, Victoria A.; Davies, Helen N.; Kay, Alison L.; Brookshaw, Anca; Scaife, Adam A.
2017-09-01
Skilful winter seasonal predictions for the North Atlantic circulation and northern Europe have now been demonstrated and the potential for seasonal hydrological forecasting in the UK is now being explored. One of the techniques being used combines seasonal rainfall forecasts provided by operational weather forecast systems with hydrological modelling tools to provide estimates of seasonal mean river flows up to a few months ahead. The work presented here shows how spatial information contained in a distributed hydrological model typically requiring high-resolution (daily or better) rainfall data can be used to provide an initial condition for a much simpler forecast model tailored to use low-resolution monthly rainfall forecasts. Rainfall forecasts (hindcasts
) from the GloSea5 model (1996 to 2009) are used to provide the first assessment of skill in these national-scale flow forecasts. The skill in the combined modelling system is assessed for different seasons and regions of Britain, and compared to what might be achieved using other approaches such as use of an ensemble of historical rainfall in a hydrological model, or a simple flow persistence forecast. The analysis indicates that only limited forecast skill is achievable for Spring and Summer seasonal hydrological forecasts; however, Autumn and Winter flows can be reasonably well forecast using (ensemble mean) rainfall forecasts based on either GloSea5 forecasts or historical rainfall (the preferred type of forecast depends on the region). Flow forecasts using ensemble mean GloSea5 rainfall perform most consistently well across Britain, and provide the most skilful forecasts overall at the 3-month lead time. Much of the skill (64 %) in the 1-month ahead seasonal flow forecasts can be attributed to the hydrological initial condition (particularly in regions with a significant groundwater contribution to flows), whereas for the 3-month ahead lead time, GloSea5 forecasts account for ˜ 70 % of the forecast skill (mostly in areas of high rainfall to the north and west) and only 30 % of the skill arises from hydrological memory (typically groundwater-dominated areas). Given the high spatial heterogeneity in typical patterns of UK rainfall and evaporation, future development of skilful spatially distributed seasonal forecasts could lead to substantial improvements in seasonal flow forecast capability, potentially benefitting practitioners interested in predicting hydrological extremes, not only in the UK but also across Europe.
Brabets, T.P.; Walvoord, Michelle Ann
2009-01-01
Streamflow characteristics in the Yukon River Basin of Alaska and Canada have changed from 1944 to 2005, and some of the change can be attributed to the two most recent modes of the Pacific Decadal Oscillation (PDO). Seasonal, monthly, and annual stream discharge data from 21 stations in the Yukon River Basin were analyzed for trends over the entire period of record, generally spanning 4-6 decades, and examined for differences between the two most recent modes of the PDO: cold-PDO (1944-1975) and warm-PDO (1976-2005) subsets. Between 1944 and 2005, average winter and April flow increased at 15 sites. Observed winter flow increases during the cold-PDO phase were generally limited to sites in the Upper Yukon River Basin. Positive trends in winter flow during the warm-PDO phase broadened to include stations in the Middle and Lower Yukon River drainage basins. Increases in winter streamflow most likely result from groundwater input enhanced by permafrost thawing that promotes infiltration and deeper subsurface flow paths. Increased April flow may be attributed to a combination of greater baseflow (from groundwater increases), earlier spring snowmelt and runoff, and increased winter precipitation, depending on location. Calculated deviations from long-term mean monthly discharges indicate below-average flow in the winter months during the cold PDO and above-average flow in the winter months during the warm PDO. Although not as strong a signal, results also support the reverse response during the summer months: above-average flow during the cold PDO and below-average flow during the warm PDO. Changes in the summer flows are likely an indirect consequence of the PDO, resulting from earlier spring snowmelt runoff and also perhaps increased summer infiltration and storage in a deeper active layer. Annual discharge has remained relatively unchanged in the Yukon River Basin, but a few glacier-fed rivers demonstrate positive trends, which can be attributed to enhanced glacier melting. A positive trend in annual flow during the warm PDO near the mouth of the Yukon River suggests that small increases in flow throughout the Yukon River Basin have resulted in an additive effect manifested in the downstream-most streamflow station. Many of the identified changes in streamflow patterns in the Yukon River Basin show a correlation to the PDO regime shift. This work highlights the importance of considering proximate climate forcings as well as global climate change when assessing hydrologic changes in the Arctic.
Global Distribution of Aerosols Over the Open Ocean as Derived from the Coastal Zone Color Scanner
NASA Technical Reports Server (NTRS)
Stegmann, P. M.; Tindale, N. W.
1999-01-01
Climatological maps of monthly mean aerosol radiance levels derived from the coastal zone color scanner (CZCS) were constructed for the world's ocean basins. This is the first study to use the 7.5.-year CZCS data set to examine the distribution and seasonality of aerosols over the open ocean on a global scale. Examination of our satellite images found the most prominent large-scale patch of elevated aerosol radiances in each month off the coast of northwest Africa. The well-known, large-scale plumes of elevated aerosol levels in the Arabian Sea, the northwest Pacific, and off the east coast of North America were also successfully captured. Radiance data were extracted from 13 major open-ocean zones, ranging from the subpolar to equatorial regions. Results from these extractions revealed the aerosol load in both subpolar and subtropical zones to be higher in the Northern Hemisphere than in the Southern Hemisphere. Aerosol radiances in the subtropics of both hemispheres were about 2 times higher in summer than in winter. In subpolar regions, aerosol radiances in late spring/early summer were almost 3 times that observed in winter. In general, the aerosol signal was higher during the warmer months and lower during the cooler months, irrespective of location. A comparison between our mean monthly aerosol radiance maps with mean monthly chlorophyll maps (also from CZCS) showed similar seasonality between aerosol and chlorophyll levels in the subpolar zones of both hemispheres, i.e., high levels in summer, low levels in winter. In the subtropics of both hemispheres, however, chlorophyll levels were higher in winter months which coincided with a depressed aerosol signal. Our results indicate that the near-IR channel on ocean color sensors can be used to successfully capture well-known, large-scale aerosol plumes on a global scale and that future ocean color sensors may provide a platform for long-term synoptic studies of combined aerosol-phytoplankton productivity interactions.
NASA Technical Reports Server (NTRS)
Labitzke, K.; Goretzki, B.
1982-01-01
The international variability of the middle stratosphere during the winter in the Northern Hemisphere is discussed. Monthly mean temperatures over the North Pole are presented along with charts of mean zonal wind velocities at 60 deg N.
Southern California Beaches during the El Niño Winter of 2009/2010
NASA Astrophysics Data System (ADS)
Doria, A.; Guza, R. T.; Yates, M. L.; O'Reilly, W.
2010-12-01
Storms during the El Niño winter 2009/2010 produced prolonged periods of energetic waves, and severely eroded southern California beaches. Sand elevations were measured at several beaches over alongshore spans of a few km, for up to 5 years, on cross-shore transects extending from the back beach to about 8 meters depth, and spaced every 100 meters alongshore. Wave conditions were estimated using the CDIP network of directional wave buoys. At the Torrey Pines Outer Buoy, the median significant wave height for January 2010 was the largest for any month in the past 10 year record. Anomalous changes in beach sand level, characterized as the excess volume displaced relative to average-winter profiles, were extreme in both the amount of shoreline erosion and the amount of offshore accretion. Anomalous shoreline erosion volumes were almost twice as large as the second-most severe winter, with vertical deviations as large as -2.3m. Anomalous offshore accretion, in depths between 4-8m and as large as 1.5m vertical, was also exceptional. Beach widths, based on the cross-shore location of the Mean Sea Level (MSL) contour, were narrower than measured in previous winters. The accuracy of shoreline (MSL) location, predicted using an existing shoreline change equilibrium model driven with the estimated waves, will be assessed. Beach recovery, based on ongoing surveys, will also be discussed.
Schoenmakers, Inez; Gousias, Petros; Jones, Kerry S; Prentice, Ann
2016-11-01
On a population basis, there is a gradual decline in vitamin D status (plasma 25(OH)D) throughout winter. We developed a mathematical model to predict the population winter plasma 25(OH)D concentration longitudinally, using age-specific values for 25(OH)D expenditure (25(OH)D 3 t 1/2 ), cross-sectional plasma 25(OH)D concentration and vitamin D intake (VDI) data from older (70+ years; n=492) and younger adults (18-69 years; n=448) participating in the UK National Diet and Nutrition Survey. From this model, the population VDI required to maintain the mean plasma 25(OH)D at a set concentration can be derived. As expected, both predicted and measured population 25(OH)D (mean (95%CI)) progressively declined from September to March (from 51 (40-61) to 38 (36-41)nmol/L (predicted) vs 38 (27-48)nmol/L (measured) in older people and from 59 (54-65) to 34 (31-37)nmol/L (predicted) vs 37 (31-44)nmol/L (measured) in younger people). The predicted and measured mean values closely matched. The predicted VDIs required to maintain mean winter plasma 25(OH)D at 50nmol/L at the population level were 10 (0-20) to 11 (9-14) and 11 (6-16) to 13(11-16)μg/d for older and younger adults, respectively dependent on the month. In conclusion, a prediction model accounting for 25(OH)D 3 t 1/2 , VDI and scaling factor for the 25(OH)D response to VDI, closely predicts measured population winter values. Refinements of this model may include specific scaling factors accounting for the 25(OH)D response at different VDIs and as influenced by body composition and specific values for 25(OH)D 3 t 1/2 dependent on host factors such as kidney function. This model may help to reduce the need for longitudinal measurements. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Influence of SST anomalies in low latitudes on atmospheric heat transport to the Arctic
NASA Astrophysics Data System (ADS)
Alekseev, Genrikh; Kuzmina, Svetlana; Glok, Natalia
2017-04-01
The purpose of the study is to assess the influence of SST anomalies in the low latitudes of the Atlantic, Indian and Pacific oceans to climatic change of the winter atmospheric meridional heat transport (MAHT) to the Arctic and to propose the mechanisms of this influence. Estimates of sensible and latent heat transport to the Arctic through the "Atlantic Gate" at 70 ° N in winter (December-February) 1980-2015 fulfilled on base ERA / Interim and monthly SST from HadISST were used. Multi-dimensional cross-correlation analysis was applied. The area and month in each ocean were found with maximal correlations between SST and winter MAHT. Mean SST in selected areas for each month of 1980-2015 were calculated and its correlations with MAHT were estimated. The correlation coefficients equal from 0.57 to 0.42, and after removing the noise increased up to 0.75 with MAHT lag from 27 to 30 months. The SST and MAHT series include together with positive trend the 5-7 years fluctuations. The mechanism of SST anomalies influence on winter MAHT to the Arctic includes the interaction of atmospheric (Hadley and Ferrel circulations, jet streams, NAO) and oceanic (Gulf Stream, the North Atlantic, the Norwegian currents) circulation patterns. To justify the proposed scheme the evaluation of the links between SST anomalies, the NAO index, the Atlantic water inflow to the Barents Sea, are investigated. The study is supported with RFBR project 15-05-03512.
Respiratory disease associated with community air pollution and a steel mill, Utah Valley
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pope, C.A. III
This study assessed the association between hospital admissions and fine particulate pollution (PM10) in Utah Valley during the period April 1985-February 1988. This time period included the closure and reopening of the local steel mill, the primary source of PM10. An association between elevated PM10 levels and hospital admissions for pneumonia, pleurisy, bronchitis, and asthma was observed. During months when 24-hour PM10 levels exceeded 150 micrograms/m3, average admissions for children nearly tripled; in adults, the increase in admissions was 44 per cent. During months with mean PM10 levels greater than or equal to 50 micrograms/m3 average admissions for children andmore » adults increased by 89 and 47 per cent, respectively. During the winter months when the steel mill was open, PM10 levels were nearly double the levels experienced during the winter months when the mill was closed. This occurred even though relatively stagnant air was experienced during the winter the mill was closed. Children's admissions were two to three times higher during the winters when the mill was open compared to when it was closed. Regression analysis also revealed that PM10 levels were strongly correlated with hospital admissions. They were more strongly correlated with children's admissions than with adult admissions and were more strongly correlated with admissions for bronchitis and asthma than with admissions for pneumonia and pleurisy.« less
Lubkowska, Anna; Dołęgowska, Barbara; Szyguła, Zbigniew; Bryczkowska, Iwona; Stańczyk-Dunaj, Małgorzata; Sałata, Daria; Budkowska, Marta
2013-01-01
The aim of our research was to examine whether winter-swimming for five consecutive months results in adaptational changes improving tolerance to stress induced by exposure to cryogenic temperatures during whole-body cryostimulation (WBC). The research involved 15 healthy men, with normal bodyweight, who had never been subjected to either WBC or cold water immersion. During the experiment, the participants were twice subjected to WBC (3 min/- 130°C), namely before the winter-swimming season and after the season. Blood was taken seven times: In the morning before each cryostimulation, 30 min after each cryostimulation and the next morning. Additionally, control blood was collected in the middle of the winter season, in February. Our analysis concerned changes in hematological parameters as well as in reduced glutathione and oxidized glutathione, total oxidant status, total antioxidant status and in components of the antioxidant system: Superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, glutathione S-transferase and 8-Isoprostanes as a sensitive indicator of oxidative stress. We found significant changes in hemoglobin concentration, the number of red blood cells, the hematocrit index and mean corpuscular volume of red blood cell and the percentage of monocytes and granulocytes after the winter swimming season. The response to cryogenic temperatures was milder after five months of winter-swimming. The obtained results may indicate positive adaptive changes in the antioxidant system of healthy winter-swimmers. These changes seem to increase the readiness of the human body to stress factors.
Marasco, Daniel E; Hunter, Betsy N; Culligan, Patricia J; Gaffin, Stuart R; McGillis, Wade R
2014-09-02
Quantifying green roof evapotranspiration (ET) in urban climates is important for assessing environmental benefits, including stormwater runoff attenuation and urban heat island mitigation. In this study, a dynamic chamber method was developed to quantify ET on two extensive green roofs located in New York City, NY. Hourly chamber measurements taken from July 2009 to December 2009 and April 2012 to October 2013 illustrate both diurnal and seasonal variations in ET. Observed monthly total ET depth ranged from 0.22 cm in winter to 15.36 cm in summer. Chamber results were compared to two predictive methods for estimating ET; namely the Penman-based ASCE Standardized Reference Evapotranspiration (ASCE RET) equation, and an energy balance model, both parametrized using on-site environmental conditions. Dynamic chamber ET results were similar to ASCE RET estimates; however, the ASCE RET equation overestimated bottommost ET values during the winter months, and underestimated peak ET values during the summer months. The energy balance method was shown to underestimate ET compared the ASCE RET equation. The work highlights the utility of the chamber method for quantifying green roof evapotranspiration and indicates green roof ET might be better estimated by Penman-based evapotranspiration equations than energy balance methods.
Human Adaptation to Isolated and Confined Environments
NASA Technical Reports Server (NTRS)
Evans, Gary W.; Stokols, Daniel; Carrere, Sybil
1987-01-01
A study was conducted over seven months in a winter Antarctic isolated and confined environment (ICE). Physiological and psychological data was collected several times a week. Information was collected on a monthly basis on behavior and the use of physical facilities. Adaptation and information indicated that there was a significant decrease in epinephrine and norepinephrine during the middle trimester of the winter. No vital changes were found for blood pressure. Self reports of hostility and anxiety show a linear increase. There were no significant changes in depression during ICE. The physiological and psychological data do not move in a synchronous fashion over time. The data also suggest that both ambient qualities of an ICE and discrete social environmental events, such as the arrival of the summer crew, have an impact on the outcome measures used. It may be most appropiate to develop a model for ICE's that incorporates not only global chronic stressors common to all ICE's but also the role of discrete environmental effects which can minimize or enhance the influence of more chronic stressors. Behavioral adjustment information highlight the importance of developing schedules which balance work and recreational activities.
Trace elements in canvasbacks (Aythya valisineria) wintering in Louisiana, USA, 1987-1988
Custer, Thomas W.; Hohman, William L.
1994-01-01
We determined trace element concentrations in livers of canvasbacks (Aythya valisineria) collected at Catahoula Lake and the Mississippi River Delta, Louisiana during, the winter of 1987–1988. Forty percent of canvasbacks wintering at Lake Catahoula had elevated concentrations of lead (>6·7 μg g−1 dry weight) in the liver; 33% had concentrations consistent with lead intoxication (>26·7 μg g−1). Based on the number of canvasbacks that winter at Lake Catahoula and the frequency of lead exposure there, more than 5% of the continental population of canvasbacks may be exposed to lead at Lake Catahoula alone. Lead concentrations in livers differed among months and were higher in males than females, but were not different in adults and immatures. Concentrations of selenium and mercury in livers of females differed among months but not by age or location. Cadmium concentrations in livers differed by age, location and month of collection, but not by sex. Frequencies and concentrations of trace elements not commonly associated with adverse effects on avian species (aluminum, arsenic, copper, iron, magnesium, manganese, nickel, silver, vanadium and zinc) are presented. Except for the elevated concentrations of lead at Catahoula Lake, all trace elements were at background concentrations.
Sleep and Mood During A Winter in Antarctica
NASA Technical Reports Server (NTRS)
Palinkas, Lawrence A.; Houseal, Matt; Miller, Christopher
2000-01-01
Seasonal variations in sleep characteristics and their association with changes in mood were examined in 91 American men and women also who spent the 1991 austral winter at three different research stations in Antarctica. Measures of total hours of sleep over a 24-hr period, duration of longest (i.e.,"nighttime") sleep event, number of sleep events, time of sleep onset, and quality of sleep remained unchanged over the course of the austral winter (March through October). However, exposure to total darkness based on station latitude was significantly associated with total hours of sleep, duration of are longest sleep event, time of sleep onset, and quality of sleep. Reported vigor the previous month was a significant independent predictor of changes in all five sleep measures; previous month's measures of all six POMS subscales were significant independent predictors of sleep quality. Sleep characteristics were significant independent predictors of vigor and confusion the following month; total sleep, longest sleep event, sleep onset and sleep quality were significant independent predictors of tension-anxiety and depression. Changes in mood during the austral winter are preceded by changes in sleep characteristics, but prolonged exposure to the photoperiodicity characteristic of the high latitudes appears to be associated with improved sleep. In turn, mood changes appear to affect certain sleep characteristics, especially sleep quality.
Skilful seasonal forecasts of streamflow over Europe?
NASA Astrophysics Data System (ADS)
Arnal, Louise; Cloke, Hannah L.; Stephens, Elisabeth; Wetterhall, Fredrik; Prudhomme, Christel; Neumann, Jessica; Krzeminski, Blazej; Pappenberger, Florian
2018-04-01
This paper considers whether there is any added value in using seasonal climate forecasts instead of historical meteorological observations for forecasting streamflow on seasonal timescales over Europe. A Europe-wide analysis of the skill of the newly operational EFAS (European Flood Awareness System) seasonal streamflow forecasts (produced by forcing the Lisflood model with the ECMWF System 4 seasonal climate forecasts), benchmarked against the ensemble streamflow prediction (ESP) forecasting approach (produced by forcing the Lisflood model with historical meteorological observations), is undertaken. The results suggest that, on average, the System 4 seasonal climate forecasts improve the streamflow predictability over historical meteorological observations for the first month of lead time only (in terms of hindcast accuracy, sharpness and overall performance). However, the predictability varies in space and time and is greater in winter and autumn. Parts of Europe additionally exhibit a longer predictability, up to 7 months of lead time, for certain months within a season. In terms of hindcast reliability, the EFAS seasonal streamflow hindcasts are on average less skilful than the ESP for all lead times. The results also highlight the potential usefulness of the EFAS seasonal streamflow forecasts for decision-making (measured in terms of the hindcast discrimination for the lower and upper terciles of the simulated streamflow). Although the ESP is the most potentially useful forecasting approach in Europe, the EFAS seasonal streamflow forecasts appear more potentially useful than the ESP in some regions and for certain seasons, especially in winter for almost 40 % of Europe. Patterns in the EFAS seasonal streamflow hindcast skill are however not mirrored in the System 4 seasonal climate hindcasts, hinting at the need for a better understanding of the link between hydrological and meteorological variables on seasonal timescales, with the aim of improving climate-model-based seasonal streamflow forecasting.
Carroll, E L; Fewster, R M; Childerhouse, S J; Patenaude, N J; Boren, L; Baker, C S
2016-01-01
Juvenile survival and recruitment can be more sensitive to environmental, ecological and anthropogenic factors than adult survival, influencing population-level processes like recruitment and growth rate in long-lived, iteroparous species such as southern right whales. Conventionally, Southern right whales are individually identified using callosity patterns, which do not stabilise until 6-12 months, by which time the whale has left its natal wintering grounds. Here we use DNA profiling of skin biopsy samples to identify individual Southern right whales from year of birth and document their return to the species' primary wintering ground in New Zealand waters, the Subantarctic Auckland Islands. We find evidence of natal fidelity to the New Zealand wintering ground by the recapture of 15 of 57 whales, first sampled in year of birth and available for subsequent recapture, during winter surveys to the Auckland Islands in 1995-1998 and 2006-2009. Four individuals were recaptured at the ages of 9 to 11, including two females first sampled as calves in 1998 and subsequently resampled as cows with calves in 2007. Using these capture-recapture records of known-age individuals, we estimate changes in survival with age using Cormack-Jolly-Seber models. Survival is modelled using discrete age classes and as a continuous function of age. Using a bootstrap method to account for uncertainty in model selection and fitting, we provide the first direct estimate of juvenile survival for this population. Our analyses indicate a high annual apparent survival for juveniles at between 0.87 (standard error (SE) 0.17, to age 1) and 0.95 (SE 0.05: ages 2-8). Individual identification by DNA profiling is an effective method for long-term demographic and genetic monitoring, particularly in animals that change identifiable features as they develop or experience tag loss over time.
Carroll, E. L.; Fewster, R. M.; Childerhouse, S. J.; Patenaude, N. J.; Boren, L.; Baker, C. S.
2016-01-01
Juvenile survival and recruitment can be more sensitive to environmental, ecological and anthropogenic factors than adult survival, influencing population-level processes like recruitment and growth rate in long-lived, iteroparous species such as southern right whales. Conventionally, Southern right whales are individually identified using callosity patterns, which do not stabilise until 6–12 months, by which time the whale has left its natal wintering grounds. Here we use DNA profiling of skin biopsy samples to identify individual Southern right whales from year of birth and document their return to the species’ primary wintering ground in New Zealand waters, the Subantarctic Auckland Islands. We find evidence of natal fidelity to the New Zealand wintering ground by the recapture of 15 of 57 whales, first sampled in year of birth and available for subsequent recapture, during winter surveys to the Auckland Islands in 1995–1998 and 2006–2009. Four individuals were recaptured at the ages of 9 to 11, including two females first sampled as calves in 1998 and subsequently resampled as cows with calves in 2007. Using these capture-recapture records of known-age individuals, we estimate changes in survival with age using Cormack-Jolly-Seber models. Survival is modelled using discrete age classes and as a continuous function of age. Using a bootstrap method to account for uncertainty in model selection and fitting, we provide the first direct estimate of juvenile survival for this population. Our analyses indicate a high annual apparent survival for juveniles at between 0.87 (standard error (SE) 0.17, to age 1) and 0.95 (SE 0.05: ages 2–8). Individual identification by DNA profiling is an effective method for long-term demographic and genetic monitoring, particularly in animals that change identifiable features as they develop or experience tag loss over time. PMID:26751689
NASA Astrophysics Data System (ADS)
Zazulie, Natalia; Rusticucci, Matilde; Raga, Graciela B.
2017-12-01
In Part I of our study (Zazulie et al. Clim Dyn, 2017, hereafter Z17) we analyzed the ability of a subset of fifteen high-resolution global climate models (GCMs) from the Coupled Model Intercomparison Project phase 5 to reproduce the past climate of the Subtropical Central Andes (SCA) of Argentina and Chile. A subset of only five GCMs was shown to reproduce well the past climate (1980-2005), for austral summer and winter. In this study we analyze future climate projections for the twenty-first century over this complex orography region using those five GCMs. We evaluate the projections under two of the representative concentration pathways considered as future scenarios: RCP4.5 and RCP8.5. Future projections indicate warming during the twenty-first century over the SCA region, especially pronounced over the mountains. Projections of warming at high elevations in the SCA depend on altitude, and are larger than the projected global mean warming. This phenomenon is expected to strengthen by the end of the century under the high-emission scenario. Increases in winter temperatures of up to 2.5 °C, relative to 1980-2005, are projected by 2040-2065, while a 5 °C warming is expected at the highest elevations by 2075-2100. Such a large monthly-mean warming during winter would most likely result in snowpack melting by late winter-early spring, with serious implication for water availability during summer, when precipitation is a minimum over the mountains. We also explore changes in the albedo, as a contributing factor affecting the net flux of energy at the surface and found a reduction in albedo of 20-60% at high elevations, related to the elevation dependent warming. Furthermore, a decrease in winter precipitation is projected in central Chile by the end of the century, independent of the scenario considered.
NASA Astrophysics Data System (ADS)
Juszczak, Radoslaw; Sakowska, Karolina; Ziemblinska, Klaudia; Uzdzicka, Bogna; Strozecki, Marcin; Polmanska, Daria; Chojnicki, Bogdan; Urbaniak, Marek; Augustin, Juergen; Necki, Jarek; Olejnik, Janusz
2014-05-01
Greenhouse gases fluxes were measured with chambers on the selected plots of the experimental arable station of Poznan University of Life Sciences in Brody (52o26'N, 16o18'E), Poland. This is a long term experiment, where the same crops are cultivated under the same fertilization treatment schemes (eleven combinations) since 1957. At the blocks of the full 7-year rotation, there are cultivated in permanent rotation: winter wheat ->winter rye -> potato ->spring barley -> triticale and alfalfa (till the second year). GHG fluxes have been measured on plots with the same fertilization level (Nmin-90kg, K2O-120 kg/ha, P2O5-60 kg/ha and Ca), which is very close to the average amount of mineral fertilization applied in western Poland. No catch crops were cultivated between the main crops. The soil was classified as Albic Luviosols according to FAO 2006 classification. CO2 fluxes have been measured monthly since March 2011, while N2O and CH4 fluxes since March 2012 (weekly) and measurements were continued till October 2013. CO2 fluxes were measured with dynamic chambers, while N2O and CH4 fluxes were measured with both static and dynamic chambers approaches (using LOSGATOS gas analyser). Carbon net ecosystem exchange (NEE) and ecosystem respiration (Reco) have been modelled for the entire period based on the measured fluxes (different management treatments were included in the model), while N2O and CH4 fluxes were linearly interpolated between campaigns. Taking into account the accumulation periods between 15th of October and 14th of October of the next year the cumulated NEE was negative only in case of alfalfa, winter rye and winter wheat, reaching in average -3.5 tCO2-C ha-1 for alfalfa and winter rye fields and around -0.4 tCO2-C ha-1 for winter wheat in seasons 2011-2012 and 2012-2013. While, cumulated NEE for spring crops (potato and spring barley) was positive for the same periods and reached in average 1.1 tCO2-C ha-1 and 2.5 tCO2-C ha-1 for spring barley and potatoes, respectively. The fields with spring crops have positive NEE, and hence negative climatic impact, because by more than half of the year the soil was bared and no catch crops were cultivated between main crops. For the entire 12-months period the highest N2O emission rates were recorded at plots of winter wheat and winter rye and reached 2.2 kgN2O-N ha-1 and 2.0 kgN2O-N ha-1, respectively. At plots of alfalfa and potatoes the emission rates were close to 1.5 kgN2O-N ha-1, while at spring barley plots the emission did not exceed 1.1 kgN2O-N ha-1. At the same time, the yearly CH4 uptake reached from -0.9 kgCH4-C ha-1 at plots of alfalfa, -1.5 kgCH4-C ha-1 at plots of winter wheat to around -1.7 kgCH4-C ha-1 at winter rye, potato and spring barley plots.
Snow cover and temperature relationships in North America and Eurasia
NASA Technical Reports Server (NTRS)
Foster, J.; Owe, M.; Rango, A.
1983-01-01
In this study the snow cover extent during the autumn months in both North America and Eurasia has been related to the ensuing winter temperature as measured at several locations near the center of each continent. The relationship between autumn snow cover and the ensuing winter temperatures was found to be much better for Eurasia than for North America. For Eurasia the average snow cover extent during the autumn explained as much as 52 percent of the variance in the winter (December-February) temperatures compared to only 12 percent for North America. However, when the average winter snow cover was correlated with the average winter temperature it was found that the relationship was better for North America than for Eurasia. As much as 46 percent of the variance in the winter temperature was explained by the winter snow cover in North America compared to only 12 percent in Eurasia.
Hindcasting and forecasting of climatology for Gilbert Bay, Labrador: A marine protected area
NASA Astrophysics Data System (ADS)
Best, Sara J.
Gilbert Bay is a marine protected area (MPA) on the southeastern coast of Labrador, Canada. The MPA was created to conserve a genetically distinctive population of Atlantic cod, Gadus morhua. Future climate change in the region is expected to have an impact on the coastal marine environment and local communities in the future. This thesis presents results from a hindcast and forecasts study of physical oceanographic conditions for Gilbert Bay. The first section of this thesis examines the interannual variability in atmospheric and physical oceanographic characteristics of Gilbert Bay over the period 1949-2006. The seasonal and interannual variability of the near surface atmospheric parameters are described. Seawater temperature, salinity and sea-ice thickness in winter are simulated with a physical ocean model, the General Ocean Turbulence Model (GOTM). The results of the hindcast model suggest that the atmospheric interannual variability of the Gilbert Bay region is linked to the North Atlantic Oscillation (NAO). A warming trend observed in the subpolar North Atlantic was influenced by the local climate of coastal Labrador during the recent decade of 1995-2005. The second section of this thesis presents a model forecast of the impact of climate change on the physical conditions within Gilbert Bay over the next century. Climate scenarios from the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment and the US Climate Change Science Program Project (US CCSP), specifically the Special Report on Emission Scenarios (SRES), were used. Atmospheric parameters and related changes in seawater temperature, salinity and sea-ice thickness in winter for three SRES are simulated with the GOTM, and are then compared to the hindcast study results. The results suggest that the water column during future winters will become warmer in the second half of the 21st century. In the summer the atmosphere will be warmer and more humid. Cloudiness and precipitation are expected to increase. This will have an impact on the vertical stratification of the water column. The surface mixed layer is expected to become warmer, fresher and much shallower than seen in the past. The stratification below the seasonal thermocline will weaken and vertical mixing will intensify. A significant change in surface sea-ice coverage is also suggested by the forecast. Continuing reduction in sea-ice formation during the winter months as highlighted by the hindcast study is expected to affect living conditions of the neighbouring coastal communities around the bay, specifically by increasing the danger of travelling across the bay. A warming Gilbert Bay ecosystem may be favourable for cod growth, but reduced sea-ice formation during the winter months increases the danger of travelling across the bay by snowmobile.
NASA Astrophysics Data System (ADS)
Ishizaki, N. N.; Dairaku, K.; Ueno, G.
2016-12-01
We have developed a statistical downscaling method for estimating probabilistic climate projection using CMIP5 multi general circulation models (GCMs). A regression model was established so that the combination of weights of GCMs reflects the characteristics of the variation of observations at each grid point. Cross validations were conducted to select GCMs and to evaluate the regression model to avoid multicollinearity. By using spatially high resolution observation system, we conducted statistically downscaled probabilistic climate projections with 20-km horizontal grid spacing. Root mean squared errors for monthly mean air surface temperature and precipitation estimated by the regression method were the smallest compared with the results derived from a simple ensemble mean of GCMs and a cumulative distribution function based bias correction method. Projected changes in the mean temperature and precipitation were basically similar to those of the simple ensemble mean of GCMs. Mean precipitation was generally projected to increase associated with increased temperature and consequent increased moisture content in the air. Weakening of the winter monsoon may affect precipitation decrease in some areas. Temperature increase in excess of 4 K was expected in most areas of Japan in the end of 21st century under RCP8.5 scenario. The estimated probability of monthly precipitation exceeding 300 mm would increase around the Pacific side during the summer and the Japan Sea side during the winter season. This probabilistic climate projection based on the statistical method can be expected to bring useful information to the impact studies and risk assessments.
Beyer, Marco; Junk, Jürgen; Eickermann, Michael; Clermont, Antoine; Kraus, François; Georges, Carlo; Reichart, Andreas; Hoffmann, Lucien
2018-06-01
Sets of treatments that were applied against varroa mites in the Luxembourgish beekeeper community were surveyed annually with a questionnaire between the winters 2010/11 and 2014/15. The average temperature and the precipitation sum of the month, when the respective varroa control method was applied were considered as co-variables when evaluating the efficacy of varroa control regimes. Success or failure of control regimes was evaluated based on the percentage of colonies lost per apiary in the winter following the treatment(s). Neither a positive nor a negative effect of formic acid (concentration 60%, w/v) on the colony losses could be found, irrespective of the weather conditions around the time of application. The higher concentration of 85% formic acid was linked with reduced colony losses when applications were done in August. Colony losses were reduced when Thymovar was applied in July or August, but applications in September were associated with increased losses compared with apiaries not treated with Thymovar during the same period. Apilife application in July as well as Apivar applications between July and September were associated with reduced colony losses. The removal of the drone brood and trickled oxalic acid application had beneficial effects when being done in April and December, respectively. Relatively warm (3.0±1.3°C) and wet (507.0±38.6mm/2months) conditions during the winter months December and January and relatively cool (17.2±1.4°C average monthly temperature) and wet (110.8±55.5mm/month) conditions in July were associated with elevated honey bee colony losses. Copyright © 2018 Elsevier Ltd. All rights reserved.
Aly, S M; Mohamed, M F
2010-10-01
The study was conducted to evaluate the efficiency of echinacea (E) and garlic (G) supplemented diets as immunostimulant for tilapia (Oreochromis niloticus). Seven treatments were designed including a control (C). Fish were fed on 35% protein diet at a rate of 3% body weight per day. Echinacea (1.0 ppt) and garlic (3%) were incorporated in the feed, which was administered for periods of 1, 2 and 3 months (summer season), followed by basal diet for 4 more months (winter season). Neutrophil adherence and haematocrit values increased in both supplemented groups with prolonging period of application. The neutrophils adherence was significantly increased in all treatments except group administered echinacea for 1 month. The lymphocytic counts were significantly (p < 0.004) elevated that resulted in a significant increase in the total leucocytic count in groups administered echinacea for 1 and 2 months when compared with the control and/or other treatments. The gain in the body weight and specific growth rate was significantly increased in all supplemented groups (p < 0.004) during summer, but remained without any significant increase after winter. The survival rate was significantly high (>85%) in all the supplemented groups. The percentage of protection, after challenge infection using pathogenic Aeromonas hydrophila was the highest in groups supplemented with echinacea and garlic for 3 months after summer and winter seasons. It could be concluded that echinacea and garlic improve the gain in body weight, survival rate and resistance against challenge infection. Both compounds showed extended effects after withdrawal and improved resistance to cold stress during the winter season. However, a full commercial cost benefit analysis is necessary before recommending their application in aquaculture. © 2010 Blackwell Verlag GmbH.
Park, Jae Hong; Peters, Thomas M.; Altmaier, Ralph; Jones, Samuel M.; Gassman, Richard; Anthony, T. Renée
2017-01-01
We have developed a time-dependent simulation model to estimate in-room concentrations of multiple contaminants [ammonia (NH3), carbon dioxide (CO2), carbon monoxide (CO) and dust] as a function of increased ventilation with filtered recirculation for swine farrowing facilities. Energy and mass balance equations were used to simulate the indoor air quality (IAQ) and operational cost for a variety of ventilation conditions over a 3-month winter period for a facility located in the Midwest U.S., using simplified and real-time production parameters, comparing results to field data. A revised model was improved by minimizing the sum of squared errors (SSE) between modeled and measured NH3 and CO2. After optimizing NH3 and CO2, other IAQ results from the simulation were compared to field measurements using linear regression. For NH3, the coefficient of determination (R2) for simulation results and field measurements improved from 0.02 with the original model to 0.37 with the new model. For CO2, the R2 for simulation results and field measurements was 0.49 with the new model. When the makeup air was matched to hallway air CO2 concentrations (1,500 ppm), simulation results showed the smallest SSE. With the new model, the R2 for other contaminants were 0.34 for inhalable dust, 0.36 for respirable dust, and 0.26 for CO. Operation of the air cleaner decreased inhalable dust by 35% and respirable dust concentrations by 33%, while having no effect on NH3, CO2, in agreement with field data, and increasing operational cost by $860 (58%) for the three-month period. PMID:28775911
An Assessment of the Skill of GEOS-5 Seasonal Forecasts
NASA Technical Reports Server (NTRS)
Ham, Yoo-Geun; Schubert, Siegfried D.; Rienecker, Michele M.
2013-01-01
The seasonal forecast skill of the NASA Global Modeling and Assimilation Office coupled global climate model (CGCM) is evaluated based on an ensemble of 9-month lead forecasts for the period 1993 to 2010. The results from the current version (V2) of the CGCM consisting of the GEOS-5 AGM coupled to the MOM4 ocean model are compared with those from an earlier version (V1) in which the AGCM (the NSIPP model) was coupled to the Poseidon Ocean Model. It was found that the correlation skill of the Sea Surface Temperature (SST) forecasts is generally better in V2, especially over the sub-tropical and tropical central and eastern Pacific, Atlantic, and Indian Ocean. Furthermore, the improvement in skill in V2 mainly comes from better forecasts of the developing phase of ENSO from boreal spring to summer. The skill of ENSO forecasts initiated during the boreal winter season, however, shows no improvement in terms of correlation skill, and is in fact slightly worse in terms of root mean square error (RMSE). The degradation of skill is found to be due to an excessive ENSO amplitude. For V1, the ENSO amplitude is too strong in forecasts starting in boreal spring and summer, which causes large RMSE in the forecast. For V2, the ENSO amplitude is slightly stronger than that in observations and V1 for forecasts starting in boreal winter season. An analysis of the terms in the SST tendency equation, shows that this is mainly due to an excessive zonal advective feedback. In addition, V2 forecasts that are initiated during boreal winter season, exhibit a slower phase transition of El Nino, which is consistent with larger amplitude of ENSO after the ENSO peak season. It is found that this is due to weak discharge of equatorial Warm Water Volume (WWV). In both observations and V1, the discharge of equatorial WWV leads the equatorial geostrophic easterly current so as to damp the El Nino starting in January. This process is delayed by about 2 months in V2 due to the slower phase transition of the equatorial zonal current from westerly to easterly.
Remote sensing of particle dynamics: a two-component unmixing model in a western UK shelf sea.
NASA Astrophysics Data System (ADS)
Mitchell, Catherine; Cunningham, Alex
2014-05-01
The relationship between the backscattering and absorption coefficients, in particular the backscattering to absorption ratio, is mediated by the type of particles present in the water column. By considering the optical signals to be driven by phytoplankton and suspended minerals, with a relatively constant influence from CDOM, radiative transfer modelling is used to propose a method for retrieving the optical contribution of phytoplankton and suspended minerals to the total absorption coefficient with mean percentage errors of below 5% for both components. These contributions can be converted to constituent concentrations if the appropriate specific inherent optical properties are known or can be determined from the maximum and minimum backscattering to absorption ratios of the data. Remotely sensed absorption and backscattering coefficients from eight years of MODIS data for the Irish Sea reveal maximum backscattering to absorption coefficient ratios over the winter (with an average for the region of 0.27), which then decrease to a minimum over the summer months (with an average of 0.06) before increasing again through to winter, indicating a change in the particles present in the water column. Application of the two-component unmixing model to this data showed seasonal cycles of both phytoplankton and suspended mineral concentrations which vary in both amplitude and periodicity depending on their location. For example, in the Bristol Channel the amplitude of the suspended mineral concentration throughout one cycle is approximately 75% greater than a yearly cycle in the eastern Irish Sea. These seasonal cycles give an insight into the complex dynamics of particles in the water column, indicating the suspension of sediment throughout the winter months and the loss of sediments from the surface layer over the summer during stratification. The relationship between the timing of the phytoplankton spring bloom and changes in the availability of light in the water column can be studied to gain an understanding into the phytoplankton phenology across the region.
Empirical Relationships from Regional Infrasound Signals
NASA Astrophysics Data System (ADS)
Negraru, P. T.; Golden, P.
2011-12-01
Two yearlong infrasound observations were collected at two arrays located within the so called "Zone of Silence" or "Shadow Zone" from well controlled explosive sources to investigate the long term atmospheric effects on signal propagation. The first array (FNIAR) is located north of Fallon NV, at 154 km from the munitions disposal facility outside of Hawthorne NV, while the second array (DNIAR) is located near Mercury NV, approximately 293 km south east of the detonation site. Based on celerity values, approximately 80% of the observed arrivals at FNIAR are considered stratospheric (celerities below 300 m/s), while 20% of them propagated as tropospheric waveguides with celerities of 330-345 m/s. Although there is considerable scatter in the celerity values, two seasonal effects were observed for both years; 1) a gradual decrease in celerity from summer to winter (July/January period) and 2) an increase in celerity values that starts in April. In the winter months celerity values can be extremely variable, and we have observed signals with celerities as low as 240 m/s. In contrast, at DNIAR we observe much stronger seasonal variations. In winter months we have observed tropospheric, stratospheric and thermospheric arrivals while in the summer mostly tropospheric and slower thermospheric arrivals dominate. This interpretation is consistent with the current seasonal variation of the stratospheric winds and was confirmed by ray tracing with G2S models. In addition we also discuss how the observed infrasound arrivals can be used to improve ground truth estimation methods (location, origin times and yield). For instance an empirical wind parameter derived from G2S models suggests that the differences in celerity values observed for both arrays can be explained by changes in the wind conditions. Currently we have started working on improving location algorithms that take into account empirical celerity models derived from celerity/wind plots.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rogers, J.C.
The primary mode of North Atlantic track variability is identified using rotated principal component analysis (RPCA) on monthly fields of root-mean-squares of daily high-pass filtered (2-8-day periods) sea level pressures (SLP) for winters (December-February) 1900-92. It is examined in terms of its association with (1) monthly mean SLP fields, (2) regional low-frequency teleconnections, and (3) the seesaw in winter temperatures between Greenland and northern Europe. 32 refs., 9 figs.
ERIC Educational Resources Information Center
Pla, Myrna; Toro, Leonor
Part of a series of monthly booklets designed as a teacher resource for teaching about Puerto Rican and U.S. culture, the booklet provides brief information on two December events: winter and Christmas. Brief information is provided on winter, Hanukkah, Christmas traditions in Connecticut and in Puerto Rico, and Christmas symbols (the tree,…
Alpine Skiing in the Classroom
ERIC Educational Resources Information Center
Mendez-Gimenez, Antonio; Fernandez-Rio, Javier
2012-01-01
Many students settle indoors in the winter. However, this does not mean that winter should be a period of time with no physical activity. Several snow activities could be practiced during those months, such as ice-skating, ice-hockey, snowshoeing, cross-country skiing, alpine skiing, or snowboarding. In order to counteract the tendency for…
Eventos de Diciembre (December Events).
ERIC Educational Resources Information Center
Pla, Myrna; Toro, Leonor
Written in Spanish, this booklet contains information on three events occurring in the month of December: winter, Christmas, and New Year's Eve. Winter is briefly discussed. The section on Christmas includes a short story ("La Nochebuena"); a poem about Christmas in Puerto Rico; a legend about the poinsettia; brief discussion of Santa…
NASA Astrophysics Data System (ADS)
Leppi, Jason C.; Arp, Christopher D.; Whitman, Matthew S.
2016-02-01
Overwintering habitat for Arctic freshwater fish is essential, such that understanding the distribution of winter habitat quality at the landscape-scale is warranted. Adequate dissolved oxygen (DO) is a major factor limiting habitat quality in the Arctic region where ice cover can persist for 8 months each year. Here we use a mixed-effect model developed from 20 lakes across northern Alaska to assess which morphology and landscape attributes can be used to predict regional overwintering habitat quality. Across all lakes, we found that the majority of the variations in late winter DO can be explained by lake depth and littoral area. In shallow lakes (<4 m), we found evidence that additional variables such as elevation, lake area, ice cover duration, and snow depth were associated with DO regimes. Low DO regimes were most typical of shallow lakes with large littoral areas and lakes that had high DO regimes often were lakes with limited littoral areas and deeper water. Our analysis identifies metrics that relate to late winter DO regimes in Arctic lakes that can aid managers in understanding which lakes will likely provide optimum DO for overwintering habitat. Conversely, lakes which predicted to have marginal winter DO levels may be vulnerable to disturbances that could lower DO below critical thresholds to support sensitive fish. In regions where lakes are also used by humans for industrial winter water supply, such as ice-road construction for oil and gas development, these findings will be vital for the management of resources and protection of Arctic fish.
Leppi, Jason C; Arp, Christopher D; Whitman, Matthew S
2016-02-01
Overwintering habitat for Arctic freshwater fish is essential, such that understanding the distribution of winter habitat quality at the landscape-scale is warranted. Adequate dissolved oxygen (DO) is a major factor limiting habitat quality in the Arctic region where ice cover can persist for 8 months each year. Here we use a mixed-effect model developed from 20 lakes across northern Alaska to assess which morphology and landscape attributes can be used to predict regional overwintering habitat quality. Across all lakes, we found that the majority of the variations in late winter DO can be explained by lake depth and littoral area. In shallow lakes (<4 m), we found evidence that additional variables such as elevation, lake area, ice cover duration, and snow depth were associated with DO regimes. Low DO regimes were most typical of shallow lakes with large littoral areas and lakes that had high DO regimes often were lakes with limited littoral areas and deeper water. Our analysis identifies metrics that relate to late winter DO regimes in Arctic lakes that can aid managers in understanding which lakes will likely provide optimum DO for overwintering habitat. Conversely, lakes which predicted to have marginal winter DO levels may be vulnerable to disturbances that could lower DO below critical thresholds to support sensitive fish. In regions where lakes are also used by humans for industrial winter water supply, such as ice-road construction for oil and gas development, these findings will be vital for the management of resources and protection of Arctic fish.
A Global Model of Meteoric Sodium
NASA Technical Reports Server (NTRS)
Marsh, Daniel R.; Janches, Diego; Feng, Wuhu; Plane, John M. C.
2013-01-01
A global model of sodium in the mesosphere and lower thermosphere has been developed within the framework of the National Center for Atmospheric Research's Whole Atmosphere Community Climate Model (WACCM). The standard fully interactive WACCM chemistry module has been augmented with a chemistry scheme that includes nine neutral and ionized sodium species. Meteoric ablation provides the source of sodium in the model and is represented as a combination of a meteoroid input function (MIF) and a parameterized ablation model. The MIF provides the seasonally and latitudinally varying meteoric flux which is modeled taking into consideration the astronomical origins of sporadic meteors and considers variations in particle entry angle, velocity, mass, and the differential ablation of the chemical constituents. WACCM simulations show large variations in the sodium constituents over time scales from days to months. Seasonality of sodium constituents is strongly affected by variations in the MIF and transport via the mean meridional wind. In particular, the summer to winter hemisphere flow leads to the highest sodium species concentrations and loss rates occurring over the winter pole. In the Northern Hemisphere, this winter maximum can be dramatically affected by stratospheric sudden warmings. Simulations of the January 2009 major warming event show that it caused a short-term decrease in the sodium column over the polar cap that was followed by a factor of 3 increase in the following weeks. Overall, the modeled distribution of atomic sodium in WACCM agrees well with both ground-based and satellite observations. Given the strong sensitivity of the sodium layer to dynamical motions, reproducing its variability provides a stringent test of global models and should help to constrain key atmospheric variables in this poorly sampled region of the atmosphere.
NASA Astrophysics Data System (ADS)
Yasunari, T. J.; Kim, K. M.; da Silva, A. M., Jr.
2017-12-01
We examined the intra- and inter-annual variations of PM2.5 in the Arctic region based on monthly mean aerosols (dust, sulfate, sea salt, and carbonaceous aerosols) and PM2.5 from NASA's latest reanalysis, MERRA2. We focus on the time period from January 2003 to the recent month (May 2017). The domain of the Arctic region was defined as North of 66.5N in this study. Although there are some exceptions, the largest contributions of dust, ammonium sulfate, sea salt, and carbonaceous aerosols (i.e., Black Carbon, BC, and Particulate Organic Matter, POM) to the fractions of PM2.5 were mainly seen in spring, spring, fall, and summer, respectively. During the focused time period, the fractions of dust, ammonium sulfate, sea salt, BC, and POM explains 2.7-42.5%, 9.5-37.5%, 16.7-73.1%, 0.5-2.8%, 1.5-58.0% of the Arctic PM2.5, respectively. If we picked up the top 10 high PM2.5 months during the period, those were separated into two seasons: summer (eight months) and winter (two months). For the composites of the summer months above, the areas with higher PM2.5 were Siberia, Far East, Alaska, and Canada and the regions where POM fractions were larger, implying the contributions from smokes due to active wildfires in summer seasons. For the winter months, the mixture of increased dust, ammonium sulfate, and sea salt was seen. However, the highest PM2.5 in the Arctic region was seen from the Kara Sea, Barents Sea, and Greenland Sea over which the contribution of sea salt was very large. This means the sea salt aerosols were the main contributor to the high PM2.5 winter months there. Based on our MERRA-2 analyses, continuous monitoring and development for better forecasting wildfire activities in summer and sea salt emissions in winter would be the keys for better understanding of the air quality in the Arctic region including mitigation and measures of it in the future.
Filling the white space on maps of European runoff trends: estimates from a multi-model ensemble
NASA Astrophysics Data System (ADS)
Stahl, K.; Tallaksen, L. M.; Hannaford, J.; van Lanen, H. A. J.
2012-07-01
An overall appraisal of runoff changes at the European scale has been hindered by "white space" on maps of observed trends due to a paucity of readily-available streamflow data. This study tested whether this white space can be filled using estimates of trends derived from model simulations of European runoff. The simulations stem from an ensemble of eight global hydrological models that were forced with the same climate input for the period 1963-2000. The derived trends were validated for 293 grid cells across the European domain with observation-based trend estimates. The ensemble mean overall provided the best representation of trends in the observations. Maps of trends in annual runoff based on the ensemble mean demonstrated a pronounced continental dipole pattern of positive trends in western and northern Europe and negative trends in southern and parts of eastern Europe, which has not previously been demonstrated and discussed in comparable detail. Overall, positive trends in annual streamflow appear to reflect the marked wetting trends of the winter months, whereas negative annual trends result primarily from a widespread decrease in streamflow in spring and summer months, consistent with a decrease in summer low flow in large parts of Europe. High flow appears to have increased in rain-dominated hydrological regimes, whereas an inconsistent or decreasing signal was found in snow-dominated regimes. The different models agreed on the predominant continental-scale pattern of trends, but in some areas disagreed on the magnitude and even the direction of trends, particularly in transition zones between regions with increasing and decreasing runoff trends, in complex terrain with a high spatial variability, and in snow-dominated regimes. Model estimates appeared most reliable in reproducing observed trends in annual runoff, winter runoff, and 7-day high flow. Modelled trends in runoff during the summer months, spring (for snow influenced regions) and autumn, and trends in summer low flow were more variable - both among models and in the spatial patterns of agreement between models and the observations. The use of models to display changes in these hydrological characteristics should therefore be viewed with caution due to higher uncertainty.
Feng, Mei-chen; Xiao, Lu-jie; Zhang, Mei-jun; Yang, Wu-de; Ding, Guang-wei
2014-01-01
In this study, relationships between normalized difference vegetation index (NDVI) and plant (winter wheat) nitrogen content (PNC) and between PNC and grain protein content (GPC) were investigated using multi-temporal moderate-resolution imaging spectroradiometer (MODIS) data at the different stages of winter wheat in Linfen (Shanxi, P. R. China). The anticipating model for GPC of winter wheat was also established by the approach of NDVI at the different stages of winter wheat. The results showed that the spectrum models of PNC passed F test. The NDVI4.14 regression effect of PNC model of irrigated winter wheat was the best, and that in dry land was NDVI4.30. The PNC of irrigated and dry land winter wheat were significantly (P<0.01) and positively correlated to GPC. Both of protein spectral anticipating model of irrigated and dry land winter wheat passed a significance test (P<0.01). Multiple anticipating models (MAM) were established by NDVI from two periods of irrigated and dry land winter wheat and PNC to link GPC anticipating model. The coefficient of determination R(2) (R) of MAM was greater than that of the other two single-factor models. The relative root mean square error (RRMSE) and relative error (RE) of MAM were lower than those of the other two single-factor models. Therefore, test effects of multiple proteins anticipating model were better than those of single-factor models. The application of multiple anticipating models for predication of protein content (PC) of irrigated and dry land winter wheat was more accurate and reliable. The regionalization analysis of GPC was performed using inverse distance weighted function of GIS, which is likely to provide the scientific basis for the reasonable winter wheat planting in Linfen city, China.
Feng, Mei-chen; Xiao, Lu-jie; Zhang, Mei-jun; Yang, Wu-de; Ding, Guang-wei
2014-01-01
In this study, relationships between normalized difference vegetation index (NDVI) and plant (winter wheat) nitrogen content (PNC) and between PNC and grain protein content (GPC) were investigated using multi-temporal moderate-resolution imaging spectroradiometer (MODIS) data at the different stages of winter wheat in Linfen (Shanxi, P. R. China). The anticipating model for GPC of winter wheat was also established by the approach of NDVI at the different stages of winter wheat. The results showed that the spectrum models of PNC passed F test. The NDVI4.14 regression effect of PNC model of irrigated winter wheat was the best, and that in dry land was NDVI4.30. The PNC of irrigated and dry land winter wheat were significantly (P<0.01) and positively correlated to GPC. Both of protein spectral anticipating model of irrigated and dry land winter wheat passed a significance test (P<0.01). Multiple anticipating models (MAM) were established by NDVI from two periods of irrigated and dry land winter wheat and PNC to link GPC anticipating model. The coefficient of determination R2 (R) of MAM was greater than that of the other two single-factor models. The relative root mean square error (RRMSE) and relative error (RE) of MAM were lower than those of the other two single-factor models. Therefore, test effects of multiple proteins anticipating model were better than those of single-factor models. The application of multiple anticipating models for predication of protein content (PC) of irrigated and dry land winter wheat was more accurate and reliable. The regionalization analysis of GPC was performed using inverse distance weighted function of GIS, which is likely to provide the scientific basis for the reasonable winter wheat planting in Linfen city, China. PMID:24404124
The new Met Office strategy for seasonal forecasts
NASA Astrophysics Data System (ADS)
Hewson, T. D.
2012-04-01
In October 2011 the Met Office began issuing a new-format UK seasonal forecast, called "The 3-month Outlook". Government interest in a UK-relevant product had been heightened by infrastructure issues arising during the severe cold of previous winters. At the same time there was evidence that the Met Office's "GLOSEA4" long range forecasting system exhibited some hindcast skill for the UK, that was comparable to its hindcast skill for the larger (and therefore less useful) 'northern Europe' region. Also, the NAO- and AO- signals prevailing in the previous two winters had been highlighted by the GLOSEA4 model well in advance. This presentation will initially give a brief overview of GLOSEA4, describing key features such as evolving sea-ice, a well-resolved stratosphere, and the perturbation strategy. Skill measures will be shown, along with forecasts for the last 3 winters. The new structure 3-month outlook will then be described and presented. Previously, our seasonal forecasts had been based on a tercile approach. The new format outlook aims to substantially improve upon this by illustrating graphically, and with text, the full range of possible outcomes, and by placing those outcomes in the context of climatology. In one key component the forecast pdfs (probability density functions) are displayed alongside climatological pdfs. To generate the forecast pdf we take the bias-corrected GLOSEA4 output (42 members), and then incorporate, via expert team, all other relevant information. Firstly model forecasts from other centres are examined. Then external 'forcing factors', such as solar, and the state of the land-ocean-ice system, are referenced, assessing how well the models represent their influence, and bringing in statistical relationships where appropriate. The expert team thereby decides upon any changes to the GLOSEA4 data, employing an interactive tool to shift, expand or contract the forecast pdfs accordingly. The full modification process will be illustrated during the presentation. Another key component of the 3-month outlook is the focus it places on potential hazards and impacts. To date specific references have been made to snow and ice disruption, to replenishment expectation for regions suffering water supply shortages, and to windstorm frequency. This aspect will be discussed, showing also some subjective verification. In future we hope to extend the 3-month outlook framework to other parts of the world, notably Africa, a region where the Met Office, with DfID support, is working collaboratively to improve real-time long range forecasts. Brief reference will also be made to such activities.
River catchment rainfall series analysis using additive Holt-Winters method
NASA Astrophysics Data System (ADS)
Puah, Yan Jun; Huang, Yuk Feng; Chua, Kuan Chin; Lee, Teang Shui
2016-03-01
Climate change is receiving more attention from researchers as the frequency of occurrence of severe natural disasters is getting higher. Tropical countries like Malaysia have no distinct four seasons; rainfall has become the popular parameter to assess climate change. Conventional ways that determine rainfall trends can only provide a general result in single direction for the whole study period. In this study, rainfall series were modelled using additive Holt-Winters method to examine the rainfall pattern in Langat River Basin, Malaysia. Nine homogeneous series of more than 25 years data and less than 10% missing data were selected. Goodness of fit of the forecasted models was measured. It was found that seasonal rainfall model forecasts are generally better than the monthly rainfall model forecasts. Three stations in the western region exhibited increasing trend. Rainfall in southern region showed fluctuation. Increasing trends were discovered at stations in the south-eastern region except the seasonal analysis at station 45253. Decreasing trend was found at station 2818110 in the east, while increasing trend was shown at station 44320 that represents the north-eastern region. The accuracies of both rainfall model forecasts were tested using the recorded data of years 2010-2012. Most of the forecasts are acceptable.
NASA Technical Reports Server (NTRS)
Epperson, David L.; Davis, Jerry M.; Bloomfield, Peter; Karl, Thomas R.; Mcnab, Alan L.; Gallo, Kevin P.
1995-01-01
Multiple regression techniques were used to predict surface shelter temperatures based on the time period 1986-89 using upper-air data from the European Centre for Medium-Range Weather Forecasts (ECMWF) to represent the background climate and site-specific data to represent the local landscape. Global monthly mean temperature models were developed using data from over 5000 stations available in the Global Historical Climate Network (GHCN). Monthly maximum, mean, and minimum temperature models for the United States were also developed using data from over 1000 stations available in the U.S. Cooperative (COOP) Network and comparative monthly mean temperature models were developed using over 1150 U.S. stations in the GHCN. Three-, six-, and full-variable models were developed for comparative purposes. Inferences about the variables selected for the various models were easier for the GHCN models, which displayed month-to-month consistency in which variables were selected, than for the COOP models, which were assigned a different list of variables for nearly every month. These and other results suggest that global calibration is preferred because data from the global spectrum of physical processes that control surface temperatures are incorporated in a global model. All of the models that were developed in this study validated relatively well, especially the global models. Recalibration of the models with validation data resulted in only slightly poorer regression statistics, indicating that the calibration list of variables was valid. Predictions using data from the validation dataset in the calibrated equation were better for the GHCN models, and the globally calibrated GHCN models generally provided better U.S. predictions than the U.S.-calibrated COOP models. Overall, the GHCN and COOP models explained approximately 64%-95% of the total variance of surface shelter temperatures, depending on the month and the number of model variables. In addition, root-mean-square errors (rmse's) were over 3 C for GHCN models and over 2 C for COOP models for winter months, and near 2 C for GHCN models and near 1.5 C for COOP models for summer months.
Seasonal Snow Extent and Snow Volume in South America Using SSM/I Passive Microwave Data
NASA Technical Reports Server (NTRS)
Foster, James L.; Chang, A. T. C.; Hall, D. K.; Kelly, R.; Houser, Paul (Technical Monitor)
2001-01-01
Seasonal snow cover in South America was examined in this study using passive microwave satellite data from the Special Sensor Microwave Imagers (SSM/I) on board Defense Meteorological Satellite Program (DMSP) satellites. For the period from 1992-1998, both snow cover extent and snow depth (snow mass) were investigated during the winter months (May-August) in the Patagonia region of Argentina. Since above normal temperatures in this region are typically above freezing, the coldest winter month was found to be not only the month having the most extensive snow cover but also the month having the deepest snows. For the seven-year period of this study, the average snow cover extent (May-August) was about 0.46 million sq km and the average monthly snow mass was about 1.18 x 10(exp 13) kg. July 1992 was the month having the greatest snow extent (nearly 0.8 million sq km) and snow mass (approximately 2.6 x 10(exp 13) kg).
Emmons, P.J.
1990-01-01
A digital model was developed to simulate groundwater flow in a complex glacial-aquifer system that includes the Elm, Middle James, and Deep James aquifers in South Dakota. The average thickness of the aquifers ranges from 16 to 32 ft and the average hydraulic conductivity ranges from 240 to 300 ft/day. The maximum steady-state recharge to the aquifer system was estimated to be 7.0 in./yr, and the maximum potential steady- state evapotranspiration was estimated to be 35.4 in/yr. Maximum monthly recharge for 1985 ranged from zero in the winter to 2.5 in in May. The potential monthly evapotranspiration for 1985 ranged from zero in the winter to 7.0 in in July. The average difference between the simulated and observed water levels from steady-state conditions (pre-1983) was 0. 78 ft and the average absolute difference was 4.59 ft for aquifer layer 1 (the Elm aquifer) from 22 observation wells and 3.49 ft and 5.10 ft, respectively, for aquifer layer 2 (the Middle James aquifer) from 13 observation wells. The average difference between the simulated and observed water levels from simulated monthly potentiometric heads for 1985 in aquifer layer 1 ranged from -2.54 ft in July to 0.59 ft in May and in aquifer layer 2 ranged from -1.22 ft in April to 4.98 ft in November. Sensitivity analysis of the steady-state model indicates that it is most sensitive to changes in recharge and least sensitive to changes in hydraulic conductivity. (USGS)
Climatic change projections for winter streamflow in Guadalquivir river
NASA Astrophysics Data System (ADS)
Jesús Esteban Parra, María; Hidalgo Muñoz, José Manuel; García-Valdecasas-Ojeda, Matilde; Raquel Gámiz Fortis, Sonia; Castro Díez, Yolanda
2015-04-01
In this work we have obtained climate change projections for winter streamflow of the Guadalquivir River in the period 2071-2100 using the Principal Component Regression (PCR) method. The streamflow data base used has been provided by the Center for Studies and Experimentation of Public Works, CEDEX. Series from gauging stations and reservoirs with less than 10% of missing data (filled by regression with well correlated neighboring stations) have been considered. The homogeneity of these series has been evaluated through the Pettit test and degree of human alteration by the Common Area Index. The application of these criteria led to the selection of 13 streamflow time series homogeneously distributed over the basin, covering the period 1952-2011. For this streamflow data, winter seasonal values were obtained by averaging the monthly values from January to March. The PCR method has been applied using the Principal Components of the mean anomalies of sea level pressure (SLP) in winter (December to February averaged) as predictors of streamflow for the development of a downscaled statistical model. The SLP database is the NCEP reanalysis covering the North Atlantic region, and the calibration and validation periods used for fitting and evaluating the ability of the model are 1952-1992 and 1993-2011, respectively. In general, using four Principal Components, regression models are able to explain up to 70% of the variance of the streamflow data. Finally, the statistical model obtained for the observational data was applied to the SLP data for the period 2071-2100, using the outputs of different GCMs of the CMIP5 under the RPC8.5 scenario. The results found for the end of the century show no significant changes or moderate decrease in the streamflow of this river for most GCMs in winter, but for some of them the decrease is very strong. Keywords: Statistical downscaling, streamflow, Guadalquivir River, climate change. ACKNOWLEDGEMENTS This work has been financed by the projects P11-RNM-7941 (Junta de Andalucía-Spain) and CGL2013-48539-R (MINECO-Spain, FEDER).
NASA Astrophysics Data System (ADS)
Tan, Le Minh; Thu, Nguyen Ngoc; Ha, Tran Quoc; Nguyen-Luong, Quang
2015-10-01
We present the observation of tweek atmospherics with harmonics m = 1-8 during the solar maximum year, 2013, at Tay Nguyen University, Vietnam (Geog. 12.65° N, 108.02° E). The analysis of 33,690 tweeks on ten international quiet days during 2 months each season, summer (May, August), winter (February, November), and equinox (March, September), shows that tweeks occur about 51 % during summer, 22 % during winter, and 27 % during equinox. The D-region ionosphere is more sharply bounded for harmonics m = 5-6 around an altitude of 85.5 km. The environment of the D-region is more inhomogeneous during winter and equinox seasons. The mean electron density varies from 28.4-225 cm -3, which corresponds to the harmonics m = 1-8 at the mean reflection height of 81.5-87.7 km. The results reveal that the lower reference height in our work as compared to other works is due to the higher level of solar activity. The equivalent electron density profile of the nighttime D-region ionosphere using tweek method during summer, equinox, and winter seasons shows lower values of electron density by 12-58 %, 3-67 %, and 24-76 % than those obtained using the International Reference Ionosphere (IRI-2012) model.
NASA Astrophysics Data System (ADS)
Lee, C.-C.; Liu, J.-Y.; Reinisch, B. W.; Chen, W.-S.; Chu, F.-D.
2005-03-01
We use a digisonde at Jicamarca and a chain of GPS receivers on the west side of South America to investigate the effects of the pre-reversal enhancement (PRE) in ExB drift, the asymmetry (Ia) of equatorial ionization anomaly (EIA), and the magnetic activity (Kp) on the generation of equatorial spread F (ESF). Results show that the ESF appears frequently in summer (November, December, January, and February) and equinoctial (March, April, September, and October) months, but rarely in winter (May, June, July, and August) months. The seasonal variation in the ESF is associated with those in the PRE ExB drift and Ia. The larger ExB drift (>20m/s) and smaller |Ia| (<0.3) in summer and equinoctial months provide a preferable condition to development the ESF. Conversely, the smaller ExB drift and larger |Ia| are responsible for the lower ESF occurrence in winter months. Regarding the effects of magnetic activity, the ESF occurrence decreases with increasing Kp in the equinoctial and winter months, but not in the summer months. Furthermore, the larger and smaller ExB drifts are presented under the quiet (Kp<3) and disturbed (Kp≥3) conditions, respectively. These results indicate that the suppression in ESF and the decrease in ExB drifts are mainly caused by the decrease in the eastward electric field.
Lestina, Jordan; Cook, Maxwell; Kumar, Sunil; Morisette, Jeffrey T.; Ode, Paul J.; Peirs, Frank
2016-01-01
Wheat stem sawfly (Cephus cinctus Norton, Hymenoptera: Cephidae) has long been a significant insect pest of spring, and more recently, winter wheat in the northern Great Plains. Wheat stem sawfly was first observed infesting winter wheat in Colorado in 2010 and, subsequently, has spread rapidly throughout wheat production regions of the state. Here, we used maximum entropy modeling (MaxEnt) to generate habitat suitability maps in order to predict the risk of crop damage as this species spreads throughout the winter wheat-growing regions of Colorado. We identified environmental variables that influence the current distribution of wheat stem sawfly in the state and evaluated whether remotely sensed variables improved model performance. We used presence localities of C. cinctus and climatic, topographic, soils, and normalized difference vegetation index and enhanced vegetation index data derived from Moderate Resolution Imaging Spectroradiometer (MODIS) imagery as environmental variables. All models had high performance in that they were successful in predicting suitable habitat for C. cinctus in its current distribution in eastern Colorado. The enhanced vegetation index for the month of April improved model performance and was identified as a top contributor to MaxEnt model. Soil clay percent at 0–5 cm, temperature seasonality, and precipitation seasonality were also associated with C. cinctus distribution in Colorado. The improved model performance resulting from integrating vegetation indices in our study demonstrates the ability of remote sensing technologies to enhance species distribution modeling. These risk maps generated can assist managers in planning control measures for current infestations and assess the future risk of C. cinctus establishment in currently uninfested regions.
Prediction of Hydrological Drought: What Can We Learn From Continental-Scale Offline Simulations?
NASA Technical Reports Server (NTRS)
Koster, Randal; Mahanama, Sarith; Livneh, Ben; Lettenmaier, Dennis; Reichle, Rolf
2011-01-01
Land surface model experiments are used to quantify, across the coterminous United States, the contributions (isolated and combined) of soil moisture and snowpack initialization to the skill of seasonal streamflow forecasts at multiple leads and for different start dates. Forecasted streamflows are compared to naturalized streamflow observations where available and to synthetic (model-generated) streamflow data elsewhere. We find that snow initialization has a major impact on skill in the mountainous western U.S. and in a portion of the northern Great Plains; a mid-winter (January 1) initialization of snow in these areas leads to significant skill in the spring melting season. Soil moisture initialization also contributes to skill, and although the maximum contributions are not as large as those seen for snow initialization, the soil moisture contributions extend across a much broader geographical area. Soil moisture initialization can contribute to skill at long leads (up to 5 or 6 months), particularly for forecasts issued during winter.
DeAnda, Abe; Grossi, Eugene A; Balsam, Leora B; Moon, Marc R; Barlow, Clifford W; Navia, Daniel O; Ursomanno, Patricia; Ziganshin, Bulat A; Rabinovich, Annette E; Elefteriades, John A; Smith, Julian A
2015-12-01
Seasonal variations of Stanford Type A dissections (STADs) have been previously described in the Northern Hemisphere (NH). This study sought to determine if these variation are mirrored in the Southern Hemisphere (SH). Data from patients treated surgically for STADs were retrospectively obtained from existing administrative and clinical databases from NH and SH sites. Data points of interest included age, sex, date of dissection, and 30-day mortality. The dates of dissections (independent of year) were then organized by season. A total of 1418 patients were identified (729 NH and 689 SH) with complete data available for 1415; 896 patients were male with a mean age was 61 ± 14 years, and the overall 30-day mortality was 17.3%. Comparison of NH and SH on a month-to-month basis demonstrated a 6-month phase shift and a significant difference by season, with STADs occurring predominantly in the winter and least in the summer. Decomposition of the monthly incidence using Fourier analysis revealed the phase shift of the primary harmonic to be -21.9 and 169.8 degrees (days), respectively, for NH and SH. The resultant 191.7 day difference did not exactly correspond to the anticipated 6-month difference but was compatible with the original hypothesis. Chronobiology plays a role in the occurrence of STADs with the highest occurrence in the winter months independent of the hemisphere. Season is not the predominant reason why aortas dissect, but for patients at risk, the increase in systemic vascular resistance during the winter months may account for the seasonal variations seen.
Reproduction and early-age survival of manatees at Blue Spring, Upper St. Johns River, Florida
O'Shea, Thomas J.; Hartley, W.C.; O'Shea, Thomas J.; Ackerman, B.B.; Percival, H. Franklin
1995-01-01
We summarize reproduction of adults and survival of calves and subadult Florida manatees (Trichechus manatus latirostris) that were identified in winter at Blue Spring on the upper St. Johns River in Florida. Some records span more than 20 years, but most are from 15-year continuous annual observations during winter 1978-79 through winter 1992-93. Fifty-seven, first-year calves were identified; 55 litter sizes were one, and one consisted oftwins (1.79% of all births). Sex ratios of first-year calves did notsignificantly differfrom 1:1. Based on 21 of35 sighted females (15 individuals) that appeared pregnant and returned with calves during the subsequent winter, we estimated an early (neonatal to about 6 months) calf survival of 0.600. Based on estimations with a minimum-number-known-alive method, calf survival from the first to the second winter was at least 0.822, and subadult survival was 0.903 to the third, 0.958 to the fourth, 1.00 to the fifth, and 1.00 to the sixth winters. Seven females were observed from year of birth to their first winter with a nursing calf; the mean age at parturition to the first calf that survived to the next winter was 5.4 + 0.98 (SD) years. The estimated ages at first conception ranged from 3 to 6 years. The proportion of adult pregnant females was 0.410/year. Weaning was not observed in winter. Intervals between births averaged 2.60 + 0.81 years. The pooled proportion of adult females nursing first-winter calves was 0.303; the proportion of adult females nursing calves of any age was 0.407. These values do not significantly differ from those ofmanatees from the Crystal River or Atlantic Coast study areas. Anecdotal accounts are provided that suggested the existence of a pseudo estrus, an 11 to 13-month gestation, suppression of parturition in winter, and giving birth in quiet backwaters and canals. A female from Blue Spring produced at least seven calves during the 22 years since first observed and died giving birth at an estimated age of 29 years.
The history of the U. S. Department of Agriculture, Agricultural Research Service in Nevada
USDA-ARS?s Scientific Manuscript database
The severe winter of 1889-1890 nearly wiped out the range livestock industry in Nevada and resulted in livestock operators understanding that they needed irrigated hay production to carry their stock through the winter months. Congress funded the construction of irrigation in Nevada in which was nam...
ERIC Educational Resources Information Center
Coy, Mary
2011-01-01
Listening to people complain about the hardships of winter and the dreariness of the nearly constant gray sky prompted the author to help her sixth graders recognize and appreciate the beauty that surrounds them for nearly five months of the year in western New York. The author opines that if students could see things more artistically, the winter…
Size-resolved aerosol growth measurements (growth = moist particle diameter/dry particle diameter) and chemical composition monitoring were conducted during a 3 month period in the winter of 1990 at the South Rim of Grand Canyon National Park, AZ as part of the Navajo Generating ...
NASA Astrophysics Data System (ADS)
Apel, Heiko; Abdykerimova, Zharkinay; Agalhanova, Marina; Baimaganbetov, Azamat; Gavrilenko, Nadejda; Gerlitz, Lars; Kalashnikova, Olga; Unger-Shayesteh, Katy; Vorogushyn, Sergiy; Gafurov, Abror
2018-04-01
The semi-arid regions of Central Asia crucially depend on the water resources supplied by the mountainous areas of the Tien Shan and Pamir and Altai mountains. During the summer months the snow-melt- and glacier-melt-dominated river discharge originating in the mountains provides the main water resource available for agricultural production, but also for storage in reservoirs for energy generation during the winter months. Thus a reliable seasonal forecast of the water resources is crucial for sustainable management and planning of water resources. In fact, seasonal forecasts are mandatory tasks of all national hydro-meteorological services in the region. In order to support the operational seasonal forecast procedures of hydro-meteorological services, this study aims to develop a generic tool for deriving statistical forecast models of seasonal river discharge based solely on observational records. The generic model structure is kept as simple as possible in order to be driven by meteorological and hydrological data readily available at the hydro-meteorological services, and to be applicable for all catchments in the region. As snow melt dominates summer runoff, the main meteorological predictors for the forecast models are monthly values of winter precipitation and temperature, satellite-based snow cover data, and antecedent discharge. This basic predictor set was further extended by multi-monthly means of the individual predictors, as well as composites of the predictors. Forecast models are derived based on these predictors as linear combinations of up to four predictors. A user-selectable number of the best models is extracted automatically by the developed model fitting algorithm, which includes a test for robustness by a leave-one-out cross-validation. Based on the cross-validation the predictive uncertainty was quantified for every prediction model. Forecasts of the mean seasonal discharge of the period April to September are derived every month from January until June. The application of the model for several catchments in Central Asia - ranging from small to the largest rivers (240 to 290 000 km2 catchment area) - for the period 2000-2015 provided skilful forecasts for most catchments already in January, with adjusted R2 values of the best model in the range of 0.6-0.8 for most of the catchments. The skill of the prediction increased every following month, i.e. with reduced lead time, with adjusted R2 values usually in the range 0.8-0.9 for the best and 0.7-0.8 on average for the set of models in April just before the prediction period. The later forecasts in May and June improve further due to the high predictive power of the discharge in the first 2 months of the snow melt period. The improved skill of the set of forecast models with decreasing lead time resulted in narrow predictive uncertainty bands at the beginning of the snow melt period. In summary, the proposed generic automatic forecast model development tool provides robust predictions for seasonal water availability in Central Asia, which will be tested against the official forecasts in the upcoming years, with the vision of operational implementation.
Variability simulations with a steady, linearized primitive equations model
NASA Technical Reports Server (NTRS)
Kinter, J. L., III; Nigam, S.
1985-01-01
Solutions of the steady, primitive equations on a sphere, linearized about a zonally symmetric basic state are computed for the purpose of simulating monthly mean variability in the troposphere. The basic states are observed, winter monthly mean, zonal means of zontal and meridional velocities, temperatures and surface pressures computed from the 15 year NMC time series. A least squares fit to a series of Legendre polynomials is used to compute the basic states between 20 H and the equator, and the hemispheres are assumed symmetric. The model is spectral in the zonal direction, and centered differences are employed in the meridional and vertical directions. Since the model is steady and linear, the solution is obtained by inversion of a block, pente-diagonal matrix. The model simulates the climatology of the GFDL nine level, spectral general circulation model quite closely, particularly in middle latitudes above the boundary layer. This experiment is an extension of that simulation to examine variability of the steady, linear solution.
Month of Birth and Children's Health in India
ERIC Educational Resources Information Center
Lokshin, Michael; Radyakin, Sergiy
2012-01-01
We use data from three waves of India National Family Health Survey to explore the relationship between the month of birth and the health outcomes of young children in India. We find that children born during the monsoon months have lower anthropometric scores compared to children born during the fall-winter months. We propose and test hypotheses…
NASA Astrophysics Data System (ADS)
Zhou, Xin; Li, Jianping; Xie, Fei; Chen, Quanliang; Ding, Ruiqiang; Zhang, Wenxia; Li, Yang
2018-03-01
A robust impact of El Niño on the Northern Hemisphere (NH) polar stratosphere has been demonstrated by previous studies, although whether this applies to extreme El Niño is uncertain. The time evolution of the response of the NH stratospheric vortex to extreme El Niño, compared with that to moderate eastern Pacific El Niño, is addressed by means of composite analysis using the National Centers for Environmental Prediction/Department of Energy reanalysis data set from 1980 to 2016. Lead-lag analysis indicates that the El Niño signal actually leads the stratospheric response by 2 months. Considering the time lag, the signal of December-January-February El Niño in the NH stratospheric vortex should mature in the February-March-April season (late winter/early spring). The patterns of circulation and temperature for late winter/early spring during extreme and moderate El Niño events are significant, exhibiting similar structure. The results are confirmed with the Whole Atmosphere Community Climate Model version 4 model, which is forced with observed SSTs of extreme and moderate El Niño in winter (December-January-February) to analyze the day-to-day propagation of their signals. Note that the magnitudes of the stratospheric responses are much larger in the case of extreme El Niño, as stronger upward propagation of planetary waves leads to a weaker northern polar vortex than during moderate El Niño events.
Winter Refuge for Aedes aegypti and Ae. albopictus Mosquitoes in Hanoi during Winter
Tsunoda, Takashi; Cuong, Tran Chi; Dong, Tran Duc; Yen, Nguyen Thi; Le, Nguyen Hoang; Phong, Tran Vu; Minakawa, Noboru
2014-01-01
Dengue occurs throughout the year in Hanoi, Vietnam, despite winter low temperatures <10°C. During July 2010 to March 2012, we surveyed monthly for Aedes larvae and pupae in 120 houses in 8 Hanoi districts. Aedes albopictus preferred discarded containers in summer and pupal density drastically decreased in winter. Aedes aegypti preferred concrete tanks and this preference increased in winter. Even in winter, the lowest water temperature found in concrete tanks was >14°C, exceeding the developmental zero point of Ae. aegypti. Although jars, drums and concrete tanks were the dominant containers previously (1994–97) in Hanoi, currently the percentage of residences with concrete tanks was still high while jars and drums were quite low. Our study showed that concrete tanks with broken lids allowing mosquitoes access were important winter refuge for Ae. aegypti. We also indicate a concern about concrete tanks serving as foci for Ae. aegypti to expand their distribution in cooler regions. PMID:24752230
NASA Astrophysics Data System (ADS)
Verma, S.; Reddy, D. Manigopal; Ghosh, S.; Kumar, D. Bharath; Chowdhury, A. Kundu
2017-10-01
We estimated the latest spatially and temporally resolved gridded constrained black carbon (BC) emissions over the Indian region using a strategic integrated modelling approach. This was done extracting information on initial bottom-up emissions and atmospheric BC concentration from a general circulation model (GCM) simulation in conjunction with the receptor modelling approach. Monthly BC emission (83-364 Gg) obtained from the present study exhibited a spatial and temporal variability with this being the highest (lowest) during February (July). Monthly BC emission flux was considerably high (> 100 kg km- 2) over the entire Indo-Gangetic plain (IGP), east and the west coast during winter months. This was relatively higher over the central and western India than over the IGP during summer months. Annual BC emission rate was 2534 Gg y- 1 with that over the IGP and central India respectively comprising 50% and 40% of the total annual BC emissions over India. A high relative increase was observed in modified BC emissions (more than five times the initial emissions) over the most part of the IGP, east coast, central/northwestern India. The relative predominance of monthly BC emission flux over a region (as depicted from z-score distribution maps) was inferred being consistent with the prevalence of region- and season-specific anthropogenic activity.
Austin, Samuel H.; Nelms, David L.
2017-01-01
Climate change raises concern that risks of hydrological drought may be increasing. We estimate hydrological drought probabilities for rivers and streams in the United States (U.S.) using maximum likelihood logistic regression (MLLR). Streamflow data from winter months are used to estimate the chance of hydrological drought during summer months. Daily streamflow data collected from 9,144 stream gages from January 1, 1884 through January 9, 2014 provide hydrological drought streamflow probabilities for July, August, and September as functions of streamflows during October, November, December, January, and February, estimating outcomes 5-11 months ahead of their occurrence. Few drought prediction methods exploit temporal links among streamflows. We find MLLR modeling of drought streamflow probabilities exploits the explanatory power of temporally linked water flows. MLLR models with strong correct classification rates were produced for streams throughout the U.S. One ad hoc test of correct prediction rates of September 2013 hydrological droughts exceeded 90% correct classification. Some of the best-performing models coincide with areas of high concern including the West, the Midwest, Texas, the Southeast, and the Mid-Atlantic. Using hydrological drought MLLR probability estimates in a water management context can inform understanding of drought streamflow conditions, provide warning of future drought conditions, and aid water management decision making.
Derivation of GPS TEC and receiver bias for Langkawi station in Malaysia
NASA Astrophysics Data System (ADS)
Teh, W. L.; Chen, W. S.; Abdullah, M.
2017-05-01
This paper presents the polynomial-type TEC model to derive total electron content (TEC) and receiver bias for Langkawi (LGKW) station in Malaysia at geographic latitude of 6.32° and longitude of 99.85°. The model uses a polynomial function of coordinates of the ionospheric piercing point to describe the TEC distribution in space. In the model, six polynomial coefficients and a receiver bias are unknown which can be solved by the least squares method. A reasonable agreement is achieved for the derivation of TEC and receiver bias for IENG station in Italy, as compared with that derived by the IGS analysis center, CODE. We process one year of LGKW data in 2010 and show the monthly receiver bias and the seasonal TEC variation. The monthly receiver bias varies between -48 and -24 TECu (1016 electrons/m2), with the mean value at -37 TECu. Large variations happen in the monthly receiver biases due to the low data coverage of high satellite elevation angle (60° < α ≤ 90°). Post-processing TEC approach is implemented which can resolve the wavy pattern of the monthly TEC baseline resulted from the large variation of the receiver bias. The seasonal TEC variation at LGKW exhibits a semi-annual variation, where the peak occurs during equinoctial months, and the trough during summer and winter months.
NASA Astrophysics Data System (ADS)
Srivastava, S. K., Sr.; Sharma, D. A.; Sachdeva, K.
2015-12-01
Long term ground observations (1971-2010) have been analyzed over Ghaziabad city, National Capital Region to understand the characteristics of fog phenomenon and its relevance during winter months. We observed mean maximum fog occurrence during December (~23 days) followed by January (~21 days), November (~20 days), February (~14 days) and October (~11 days) respectively. A remarkable increase has been noticed in fog occurrence during October-to-February in last four decades. During 1971-80 to 2001-2010 the mean frequency of fog occurrence had increased by 205.5% in October month and 50.2% in November month. Similarly, mean frequency of fog occurrence increased by 51%, 97% and 119% during December, January and February respectively over the same period. We observed statistically significant increasing trend in fog occurrence from October-to-February during the study period at 95% confidence level. The magnitude of trend is 0.50, 0.47, 0.30, 0.39 and 0.37 for October, November, December, January and February, respectively. The magnitude of trend is highest in October but the occurrence frequency is highest in December. The forecast values obtained from ARIMA model indicates that the number of fog days is going to increase further during October-to-February in the forthcoming years. The data combined with knowledge of meteorology and topography suggested significant conclusions about increase in the fog events in the near future.
NASA Astrophysics Data System (ADS)
Bugała, Artur; Bednarek, Karol; Kasprzyk, Leszek; Tomczewski, Andrzej
2017-10-01
The paper presents the most representative - from the three-year measurement time period - characteristics of daily and monthly electricity production from a photovoltaic conversion using modules installed in a fixed and 2-axis tracking construction. Results are presented for selected summer, autumn, spring and winter days. Analyzed measuring stand is located on the roof of the Faculty of Electrical Engineering Poznan University of Technology building. The basic parameters of the statistical analysis like mean value, standard deviation, skewness, kurtosis, median, range, or coefficient of variation were used. It was found that the asymmetry factor can be useful in the analysis of the daily electricity production from a photovoltaic conversion. In order to determine the repeatability of monthly electricity production, occurring between the summer, and summer and winter months, a non-parametric Mann-Whitney U test was used as a statistical solution. In order to analyze the repeatability of daily peak hours, describing the largest value of the hourly electricity production, a non-parametric Kruskal-Wallis test was applied as an extension of the Mann-Whitney U test. Based on the analysis of the electric energy distribution from a prepared monitoring system it was found that traditional forecasting methods of the electricity production from a photovoltaic conversion, like multiple regression models, should not be the preferred methods of the analysis.
Young, S.P.; Isely, J.J.
2002-01-01
Forty-eight adult striped bass Morone saxatilis (3.2-19.1 kg) were captured by electrofishing in the tailrace of Richard B. Russell Dam and in the upper reaches of two major tributaries; they were implanted with temperature-sensitive radio transmitters and tracked approximately bimonthly for 20 months. As J. Strom Thurmond Reservoir downstream from the dam became thermally stratified in May, fish vacated the tributaries. From June to October, all striped bass were found within the reservoir's historical Savannah River channel. By August, most of the instrumented fish were found in the upper section of the reservoir, where optimal habitat was available throughout the summer owing to cool, artificially oxygenated hypolimnetic discharges from Richard B. Russell Dam. In mid-October the reservoir destratified, and fish dispersed from their up-reservoir summering areas and redistributed themselves throughout the reservoir. During early winter, the striped bass returned to tributary habitat or down-reservoir areas and generally used these locations throughout the winter. The fish exhibited a high degree of site fidelity to their summering areas, source tributaries (after fall dispersal and throughout the winter), and spring spawning areas. Mean movement rates were highest in the spring and fall, corresponding to the migration from tributaries in May and the return migration after fall dispersal. Mean movement rates were lowest in summer and winter, corresponding to the periods of high fidelity to summering and wintering areas. The average monthly temperatures and dissolved oxygen concentrations in areas used by striped bass were 19.0-20.4??C and 4.86-6.44 mg/L during May-October, which corresponded to average monthly habitat suitability index values of 0.76-0.98. Striped bass avoided temperatures above 25.1??C and dissolved oxygen concentrations less than 2.3 mg/L.
NASA Technical Reports Server (NTRS)
Comiso, Josefino C.; Perovich, Don; Stamnes, Knut; Stuart, Venetia (Editor)
2015-01-01
The polar regions are places of extremes. There are months when the regions are enveloped in unending darkness, and months when they are in continuous daylight. During the daylight months the sun is low on the horizon and often obscured by clouds. In the dark winter months temperatures are brutally cold, and high winds and blowing snow are common. Even in summer, temperatures seldom rise above 0degC. The cold winter temperatures cause the ocean to freeze, forming sea ice. This sea ice cover acts as a barrier limiting the transfer of heat, moisture, and momentum between the atmosphere and the ocean. It also greatly complicates the optical signature of the surface. Taken together, these factors make the polar regions a highly challenging environment for optical remote sensing of the ocean.
Assel, R.A.; Robertson, Dale M.
1995-01-01
Records of freezeup and breakup dates for Grand Traverse Bay, Michigan, and Lake Mendota, Wisconsin, are among the longest ice records available near the Great Lakes, beginning in 185 1 and 1855, respectively. The timing of freezeup and breakup results from an integration of meteorological conditions (primarily air temperature) that occur before these events. Changes in the average timing of these ice-events are translated into changes in air temperature by the use of empirical and process-driven models. The timing of freezeup and breakup at the two locations represents an integration of air temperatures over slightly different seasons (months). Records from both locations indicate that the early winter period before about 1890 was - 15°C cooler than the early winter period after that time; the mean temperature has, however, remained relatively constant since about 1890. Changes in breakup dates demonstrate a similar 1.0-1 .5”C increase in late winter and early spring air temperatures about 1890. More recent average breakup dates at both locations have been earlier than during 1890-1940, indicating an additional warming of 1.2”C in March since about 1940 and a warming of 1 . 1°C in January-March since about 1980. Ice records at these sites will continue to provide an early indication of the anticipated climatic warming, not only because of the large response of ice cover to small changes in air temperature but also because these records integrate climatic conditions during the seasons (winter-spring) when most warming is forecast to occur. Future reductions in ice cover may strongly affect the winter ecology of the Great Lakes by reducing the stable environment required by various levels of the food chain.
NASA Astrophysics Data System (ADS)
Silverman, Vered; Harnik, Nili; Matthes, Katja; Lubis, Sandro W.; Wahl, Sebastian
2018-05-01
The radiative effects induced by the zonally asymmetric part of the ozone field have been shown to significantly change the temperature of the NH winter polar cap, and correspondingly the strength of the polar vortex. In this paper, we aim to understand the physical processes behind these effects using the National Center for Atmospheric Research (NCAR)'s Whole Atmosphere Community Climate Model, run with 1960s ozone-depleting substances and greenhouse gases. We find a mid-winter polar vortex influence only when considering the quasi-biennial oscillation (QBO) phases separately, since ozone waves affect the vortex in an opposite manner. Specifically, the emergence of a midlatitude QBO signal is delayed by 1-2 months when radiative ozone-wave effects are removed. The influence of ozone waves on the winter polar vortex, via their modulation of shortwave heating, is not obvious, given that shortwave heating is largest during fall, when planetary stratospheric waves are weakest. Using a novel diagnostic of wave 1 temperature amplitude tendencies and a synoptic analysis of upward planetary wave pulses, we are able to show the chain of events that lead from a direct radiative effect on weak early fall upward-propagating planetary waves to a winter polar vortex modulation. We show that an important stage of this amplification is the modulation of individual wave life cycles, which accumulate during fall and early winter, before being amplified by wave-mean flow feedbacks. We find that the evolution of these early winter upward planetary wave pulses and their induced stratospheric zonal mean flow deceleration is qualitatively different between QBO phases, providing a new mechanistic view of the extratropical QBO signal. We further show how these differences result in opposite radiative ozone-wave effects between east and west QBOs.
"Cold" and "hot" thermal anomalies/events during spring and autumn in Poland
NASA Astrophysics Data System (ADS)
Graczyk, Dariusz; Szwed, Małgorzata; Choryński, Adam
2014-05-01
Regular air temperatures' changes, as an effect of succession of the seasons, are a part of people's everyday life. When winters and summers are not characterised by extreme thermal conditions, people are well prepared and there are no losses for agriculture and economy or human health consequences observed. A similar situation takes place in case of typical springs and autumns, where normally no too low or too high air temperatures occur. The situation becomes totally different when the air temperature significantly exceeds frames of typical temperature for particular months or seasons. Appearance of winter conditions during months in which they are not expected may lead to losses in different branches of the economy e.g. transport or agriculture. Heat in non-summer months potentially brings less damages for the economy, but it might be a great threat for human health, especially for those with cardiological diseases, and it may result in thermal discomfort. If these conditions last for sufficient period of time, they may cause disorders in plant vegetation cycles. One element of the discussion held on the global warming which has been observed since the half of the twentieth century, is the question of how this effects the occurrence of climatic anomalies. Does it result in an decrease of "cold" thermal anomalies and in an increase of frequency of "hot" anomalies? Or does it increase the occurrence of both types of these events? In this research there will be performed an analysis of the occurrence of conditions typical for winter months, outside the climatic winter (December, January, February) at ten locations in the area of Poland. During the months directly close to this period (November and March) the threshold for winter conditions will be maximum temperature below 0 oC which means occurrence of frost all day long. For other non-summer months the threshold will be mean daily temperature below 0 oC meaning low temperatures during the day, not only morning frosts. A similar procedure will be used for summer conditions outside the climatic summer (June, July, August), where for months close to climatic summer (May and September) the thresholds will be set at maximum temperature higher than 30 oC and 25 oC for other spring and autumn months. In order to assess if, and to what extent , the occurrence of anomalies and rare thermal events changes, their number will be compared in three sub-periods: 1951-1980; 1961-1990; 1991-2013 (the period after 1990, where warming in Poland is observed). The final stage of the analysis will be detection of trend of anomalies calculated for ten meteorological stations in the multi-year period of 1951-2013, using statistical tests in time series.
NASA Astrophysics Data System (ADS)
Auger, P. A.; Ulses, C.; Estournel, C.; Stemmann, L.; Somot, S.; Diaz, F.
2014-05-01
A realistic modeling approach is designed to address the role of winter mixing on the interannual variability of plankton dynamics in the north-western (NW) Mediterranean basin. For the first time, a high-resolution coupled hydrodynamic-biogeochemical model (Eco3m-S) covering a 30-year period (1976-2005) is validated on available in situ and satellite data for the NW Mediterranean. In this region, cold, dry winds in winter often lead to deep convection and strong upwelling of nutrients into the euphotic layer. High nutrient contents at the end of winter then support the development of a strong spring bloom of phytoplankton. Model results indicate that annual primary production is not affected by winter mixing due to seasonal balance (minimum in winter and maximum in spring). However, the total annual water column-integrated phytoplankton biomass appears to be favored by winter mixing because zooplankton grazing activity is low in winter and early spring. This reduced grazing is explained here by the rarefaction of prey due to both light limitation and the effect of mixing-induced dilution on prey/predator interactions. A negative impact of winter mixing on winter zooplankton biomass is generally simulated except for mesozooplankton. This difference is assumed to stem from the lower parameterized mortality, top trophic position and detritivorous diet of mesozooplankton in the model. Moreover, model suggests that the variability of annual mesozooplankton biomass is principally modulated by the effects of winter mixing on winter biomass. Thus, interannual variability of winter nutrient contents in the euphotic layer, resulting from winter mixing, would control spring primary production and thus annual mesozooplankton biomass. Our results show a bottom-up control of mesozooplankton communities, as observed at a coastal location of the Ligurian Sea.
USDA-ARS?s Scientific Manuscript database
Whether yield reduction risk of cotton fertilized with fall-applied poultry litter in regions with warm fall or winter months can be minimized by applying the litter in subsurface bands in conjunction with winter cover crop is unknown. A field study was conducted in Mississippi to test whether litte...
The report gives results of 4-month-long alpha-track detector (ATD) measurements of indoor radon concentrations, completed during the winter of 1988-89 in 38 of 40 houses where radon reduction techniques had been installed 2-4 years previously during an earlier EPA project. The t...
Applying Poultry Litter in the Fall to Fertilize Corn May not be Advisable Under Warm Climate
USDA-ARS?s Scientific Manuscript database
Row crop farmers prefer to apply poultry litter in the fall or winter but whether this practice is safe environmentally and effective for production in regions with warm fall and winter months is not well researched and documented. Research in Mississippi tested the effectiveness of fall- versus spr...
Teległów, Aneta; Marchewka, Jakub; Tabarowski, Zbigniew; Rembiasz, Konrad; Głodzik, Jacek; Scisłowska-Czarnecka, Anna
2015-01-01
The aim of the study was to examine potential differences in the morphological, rheological and biochemical blood parameters of winter swimmers who remained physically active during the period between the end of one winter swimming season and the beginning of another. The study included a group of healthy winter swimmers (n = 17, all between 30 and 60 years of age). Six months following the end of winter season, the levels of mean corpuscular hemoglobin concentration and mean corpuscular hemoglobin turned out to be significantly higher, while erythrocyte count and hematocrit level significantly lower than at the baseline. Moreover, the break in winter swimming was reflected by a significant increase in median erythrocyte elongation index at all shear stress levels ≥ 1.13 Pa. The only significant changes in biochemical parameters of the blood pertained to an increase in the concentration of transferrin and to a decrease in the total protein, albumin and beta-1 globulin concentrations. Seasonal effort of winter swimmers between the end of one winter swimming season and the beginning of another has a positive influence on morphological, rheological and biochemical blood parameters.
Hydrological impacts of climate change on the Tejo and Guadiana Rivers
NASA Astrophysics Data System (ADS)
Kilsby, C. G.; Tellier, S. S.; Fowler, H. J.; Howels, T. R.
2007-05-01
A distributed daily rainfall runoff model is applied to the Tejo and Guadiana river basins in Spain and Portugal to simulate the effects of climate change on runoff production, river flows and water resource availability with results aggregated to the monthly level. The model is calibrated, validated and then used for a series of climate change impact assessments for the period 2070 2100. Future scenarios are derived from the HadRM3H regional climate model (RCM) using two techniques: firstly a bias-corrected RCM output, with monthly mean correction factors calculated from observed rainfall records; and, secondly, a circulation-pattern-based stochastic rainfall model. Major reductions in rainfall and streamflow are projected throughout the year; these results differ from those for previous studies where winter increases are projected. Despite uncertainties in the representation of heavily managed river systems, the projected impacts are serious and pose major threats to the maintenance of bipartite water treaties between Spain and Portugal and the supply of water to urban and rural regions of Portugal.
Daily tadalafil for the chronic phase of stuttering priapism: a case report.
Massenio, Paolo; D'Altilia, Nicola; Sanguedolce, Francesca; Carrieri, Giuseppe; Cormio, Luigi
2018-05-31
Recurrent (stuttering) ischemic priapism is a challenging clinical condition. Frequent recurrences result in frequent hospital admissions whereas treatment with a shunting procedure often results in erectile dysfunction. A 22-year-old man with stuttering idiopathic priapism developed erectile dysfunction (IIEF-5 score 12) following a Winter's shunt; he was given tadalafil, 5 mg/daily, for 6 months. This treatment resulted in progressive restoration of erectile function in the 6 months following the shunt as well as in preventing recurrence of priapic episodes over a 24-month follow-up. This is the first report in literature of chronic treatment of stuttering priapism with a phosphodiesterase-5 inhibitor being able not only to prevent recurrent priapic episodes but also to restore erectile function following a Winter's shunt.
NASA Astrophysics Data System (ADS)
Apel, Heiko; Baimaganbetov, Azamat; Kalashnikova, Olga; Gavrilenko, Nadejda; Abdykerimova, Zharkinay; Agalhanova, Marina; Gerlitz, Lars; Unger-Shayesteh, Katy; Vorogushyn, Sergiy; Gafurov, Abror
2017-04-01
The semi-arid regions of Central Asia crucially depend on the water resources supplied by the mountainous areas of the Tien-Shan and Pamirs. During the summer months the snow and glacier melt dominated river discharge originating in the mountains provides the main water resource available for agricultural production, but also for storage in reservoirs for energy generation during the winter months. Thus a reliable seasonal forecast of the water resources is crucial for a sustainable management and planning of water resources. In fact, seasonal forecasts are mandatory tasks of all national hydro-meteorological services in the region. In order to support the operational seasonal forecast procedures of hydromet services, this study aims at the development of a generic tool for deriving statistical forecast models of seasonal river discharge. The generic model is kept as simple as possible in order to be driven by available hydrological and meteorological data, and be applicable for all catchments with their often limited data availability in the region. As snowmelt dominates summer runoff, the main meteorological predictors for the forecast models are monthly values of winter precipitation and temperature as recorded by climatological stations in the catchments. These data sets are accompanied by snow cover predictors derived from the operational ModSnow tool, which provides cloud free snow cover data for the selected catchments based on MODIS satellite images. In addition to the meteorological data antecedent streamflow is used as a predictor variable. This basic predictor set was further extended by multi-monthly means of the individual predictors, as well as composites of the predictors. Forecast models are derived based on these predictors as linear combinations of up to 3 or 4 predictors. A user selectable number of best models according to pre-defined performance criteria is extracted automatically by the developed model fitting algorithm, which includes a test for robustness by a leave-one-out cross validation. Based on the cross validation the predictive uncertainty was quantified for every prediction model. According to the official procedures of the hydromet services forecasts of the mean seasonal discharge of the period April to September are derived every month starting from January until June. The application of the model for several catchments in Central Asia - ranging from small to the largest rivers - for the period 2000-2015 provided skillful forecasts for most catchments already in January. The skill of the prediction increased every month, with R2 values often in the range 0.8 - 0.9 in April just before the prediction period. The forecasts further improve in the following months, most likely due to the integration of spring precipitation, which is not included in the predictors before May, or spring discharge, which contains indicative information for the overall seasonal discharge. In summary, the proposed generic automatic forecast model development tool provides robust predictions for seasonal water availability in Central Asia, which will be tested against the official forecasts in the upcoming years, with the vision of eventual operational implementation.
Forbes, Shari L.; Perrault, Katelynn A.; Stefanuto, Pierre-Hugues; Nizio, Katie D.; Focant, Jean-François
2014-01-01
The investigation of volatile organic compounds (VOCs) associated with decomposition is an emerging field in forensic taphonomy due to their importance in locating human remains using biological detectors such as insects and canines. A consistent decomposition VOC profile has not yet been elucidated due to the intrinsic impact of the environment on the decomposition process in different climatic zones. The study of decomposition VOCs has typically occurred during the warmer months to enable chemical profiling of all decomposition stages. The present study investigated the decomposition VOC profile in air during both warmer and cooler months in a moist, mid-latitude (Cfb) climate as decomposition occurs year-round in this environment. Pig carcasses (Sus scrofa domesticus L.) were placed on a soil surface to decompose naturally and their VOC profile was monitored during the winter and summer months. Corresponding control sites were also monitored to determine the natural VOC profile of the surrounding soil and vegetation. VOC samples were collected onto sorbent tubes and analyzed using comprehensive two-dimensional gas chromatography – time-of-flight mass spectrometry (GC×GC-TOFMS). The summer months were characterized by higher temperatures and solar radiation, greater rainfall accumulation, and comparable humidity when compared to the winter months. The rate of decomposition was faster and the number and abundance of VOCs was proportionally higher in summer. However, a similar trend was observed in winter and summer demonstrating a rapid increase in VOC abundance during active decay with a second increase in abundance occurring later in the decomposition process. Sulfur-containing compounds, alcohols and ketones represented the most abundant classes of compounds in both seasons, although almost all 10 compound classes identified contributed to discriminating the stages of decomposition throughout both seasons. The advantages of GC×GC-TOFMS were demonstrated for detecting and identifying trace levels of VOCs, particularly ethers, which are rarely reported as decomposition VOCs. PMID:25412504
Forbes, Shari L; Perrault, Katelynn A; Stefanuto, Pierre-Hugues; Nizio, Katie D; Focant, Jean-François
2014-01-01
The investigation of volatile organic compounds (VOCs) associated with decomposition is an emerging field in forensic taphonomy due to their importance in locating human remains using biological detectors such as insects and canines. A consistent decomposition VOC profile has not yet been elucidated due to the intrinsic impact of the environment on the decomposition process in different climatic zones. The study of decomposition VOCs has typically occurred during the warmer months to enable chemical profiling of all decomposition stages. The present study investigated the decomposition VOC profile in air during both warmer and cooler months in a moist, mid-latitude (Cfb) climate as decomposition occurs year-round in this environment. Pig carcasses (Sus scrofa domesticus L.) were placed on a soil surface to decompose naturally and their VOC profile was monitored during the winter and summer months. Corresponding control sites were also monitored to determine the natural VOC profile of the surrounding soil and vegetation. VOC samples were collected onto sorbent tubes and analyzed using comprehensive two-dimensional gas chromatography--time-of-flight mass spectrometry (GC × GC-TOFMS). The summer months were characterized by higher temperatures and solar radiation, greater rainfall accumulation, and comparable humidity when compared to the winter months. The rate of decomposition was faster and the number and abundance of VOCs was proportionally higher in summer. However, a similar trend was observed in winter and summer demonstrating a rapid increase in VOC abundance during active decay with a second increase in abundance occurring later in the decomposition process. Sulfur-containing compounds, alcohols and ketones represented the most abundant classes of compounds in both seasons, although almost all 10 compound classes identified contributed to discriminating the stages of decomposition throughout both seasons. The advantages of GC × GC-TOFMS were demonstrated for detecting and identifying trace levels of VOCs, particularly ethers, which are rarely reported as decomposition VOCs.
Carry-over body mass effect from winter to breeding in a resident seabird, the little penguin.
Salton, Marcus; Saraux, Claire; Dann, Peter; Chiaradia, André
2015-01-01
Using body mass and breeding data of individual penguins collected continuously over 7 years (2002-2008), we examined carry-over effects of winter body mass on timing of laying and breeding success in a resident seabird, the little penguin (Eudyptula minor). The austral winter month of July consistently had the lowest rate of colony attendance, which confirmed our expectation that penguins work hard to find resources at this time between breeding seasons. Contrary to our expectation, body mass in winter (July) was equal or higher than in the period before ('moult-recovery') and after ('pre-breeding') in 5 of 7 years for males and in all 7 years for females. We provided evidence of a carry-over effect of body mass from winter to breeding; females and males with higher body mass in winter were more likely to breed early and males with higher body mass in winter were likely to breed successfully. Sex differences might relate to sex-specific breeding tasks, where females may use their winter reserves to invest in egg-laying, whereas males use their winter reserves to sustain the longer fasts ashore during courtship. Our findings suggest that resident seabirds like little penguins can also benefit from a carry-over effect of winter body mass on subsequent breeding.
NASA Astrophysics Data System (ADS)
Zhang, Qiang; Xiao, Mingzhong; Singh, Vijay P.; Xu, Chong-Yu; Li, Jianfeng
2015-06-01
In this study, we thoroughly analyzed spatial and temporal distributions of runoff and their relation with precipitation changes based on monthly runoff dataset at 25 hydrological stations and monthly precipitation at 127 stations in Guangdong Province, south China. Trends of the runoff and precipitation are detected using Mann-Kendall trend test technique. Correlations between runoff and precipitation are tested using Spearman's and Pearson's correlation coefficients. The results indicate that: (1) annual maximum monthly runoff is mainly in decreasing tendency and significant increasing annual minimum monthly runoff is observed in the northern and eastern Guangdong Province. In addition, annual mean runoff is observed to be increasing at the stations located in the West and North Rivers and the coastal region; (2) analysis of seasonal runoff variations indicates increasing runoff in spring, autumn and winter. Wherein, significant increase of runoff is found at 8 stations and only 3 stations are dominated by decreasing runoff in winter; (3) runoff changes of the Guangdong Province are mainly the results of precipitation changes. The Guangdong Province is wetter in winter, spring and autumn. Summer is coming to be drier as reflected by decreasing runoff in the season; (4) both precipitation change and water reservoirs also play important roles in the increasing of annual minimum monthly streamflow. Seasonal shifts of runoff variations may pose new challenges for the water resources management under the influences of climate changes and intensifying human activities.
Comparative Performance and Model Agreement of Three Common Photovoltaic Array Configurations.
Boyd, Matthew T
2018-02-01
Three grid-connected monocrystalline silicon arrays on the National Institute of Standards and Technology (NIST) campus in Gaithersburg, MD have been instrumented and monitored for 1 yr, with only minimal gaps in the data sets. These arrays range from 73 kW to 271 kW, and all use the same module, but have different tilts, orientations, and configurations. One array is installed facing east and west over a parking lot, one in an open field, and one on a flat roof. Various measured relationships and calculated standard metrics have been used to compare the relative performance of these arrays in their different configurations. Comprehensive performance models have also been created in the modeling software pvsyst for each array, and its predictions using measured on-site weather data are compared to the arrays' measured outputs. The comparisons show that all three arrays typically have monthly performance ratios (PRs) above 0.75, but differ significantly in their relative output, strongly correlating to their operating temperature and to a lesser extent their orientation. The model predictions are within 5% of the monthly delivered energy values except during the winter months, when there was intermittent snow on the arrays, and during maintenance and other outages.
NASA Astrophysics Data System (ADS)
Yan, Xiaolu; Konopka, Paul; Ploeger, Felix; Tao, Mengchu; Bian, Jianchun; Mueller, Rolf
2017-04-01
El Nino and La Nina are opposite phases of El Nino-Southern Oscillation (ENSO). The extremes of ENSO patterns have impacts not only on ocean processes, but also on global weather and climate. The ENSO activities typically show pronounced features in boreal winter time, but some prolonged events may last for months or years. In this study we analyze the influence of ENSO on the atmospheric composition in the tropical and extra-tropical UTLS region in the months following strong ENSO events. In particular, we are interested in the impact of ENSO on the Asian summer monsoon (ASM) anticyclone. Using the Multivariate ENSO Index (MEI), we define two composites starting from strong El Nino and La Nina winters (|MEI|>0.9) and analyze the anomalies caused by them in the following months. To quantify the differences in dynamics, the velocity potential (VP) and the stream function (SF) are calculated based on ERA-Interim reanalysis from 1979 to 2015. SF shows that during winter the horizontal flow in the tropical UTLS is dominated by two equatorially symmetric anticyclones resembling the well-known Matsuno-Gill solution. In summer, the anticyclone in the North Hemisphere is shifted to the ASM region. VP shows that the centers of the divergent part of the flow lie in the West Tropical Pacific and Central Pacific for La Nina and El Nino winters, respectively. These centers move northwestwards during spring and summer. The anticyclone, subtropical jet and the divergent part of the flow after La Nina winters are significantly stronger than after El Nino winters. Based on the MLS measurements of CO, H2O and O3 from 2004 to 2015, we also discuss the respective anomalies at the tropopause level for the El Nino/La Nina composites. EL Nino composite of CO shows higher values in the tropical region not only during winter but also during spring and summer. La Nina composite of H2O shows low anomaly over Maritime Continent which spread over the whole tropics until summer. The H2O anomalies are consistent with the respective composites of the outgoing longwave radiation (OLR). O3 composites show more zonally symmetric features during and after strong El Nino than La Nina events. We also discuss the distribution of the mean age, H2O and O3 from the CLaMS simulation during 1979-2015. The distributions of mean age and O3 are well-correlated. The patterns of H2O and O3 distributions from CLaMS show similar features comparing with those from MLS. The difference between the El Nino/La Nina composites becomes insignificant in late summer. El Nino episodes which last until the next winter are also selected (1987, 1992 and 1993). The SF and VP distributions show strongest anomalies during these three years comparing with all El Nino results. In particular, ASM anticyclone is weak during these periods. Accordingly, O3 and H2O concentrations in the tropics show weak intrusions from the subtropics during summer. This indicates that if El Nino does not decay until the following summer, the ASM anticyclone will be significantly weaker.
NASA Astrophysics Data System (ADS)
Thiéblemont, Rémi; Matthes, Katja; Orsolini, Yvan J.; Hauchecorne, Alain; Huret, Nathalie
2016-09-01
Observational studies of Arctic stratospheric final warmings have shown that tropical/subtropical air masses can be advected to high latitudes and remain confined within a long-lived "frozen-in" anticyclone (FrIAC) for several months. It was suggested that the frequency of FrIACs may have increased since 2000 and that their interannual variability may be modulated by (i) the occurrence of major stratospheric warmings (mSSWs) in the preceding winter and (ii) the phase of the quasi-biennial oscillation (QBO). In this study, we tested these observational-based hypotheses for the first time using a chemistry climate model. Three 145 year sensitivity experiments were performed with the National Center of Atmospheric Research's Community Earth System Model (CESM): one control experiment including only natural variability, one with an extreme greenhouse gas emission scenario, and one without the QBO in the tropical stratosphere. In comparison with reanalysis, the model simulates a realistic frequency and characteristics of FrIACs, which occur under an abrupt and early winter-to-summer stratospheric circulation transition, driven by enhanced planetary wave activity. Furthermore, the model results support the suggestion that the development of FrIACs is favored by an easterly QBO in the middle stratosphere and by the absence of mSSWs during the preceding winter. The lower stratospheric persistence of background dynamical state anomalies induced by deep mSSWs leads to less favorable conditions for planetary waves to enter the high-latitude stratosphere in April, which in turn decreases the probability of FrIAC development. Our model results do not suggest that climate change conditions (RCP8.5 scenario) influence FrIAC occurrences.
NASA Astrophysics Data System (ADS)
Thiéblemont, Rémi; Matthes, Katja; Orsolini, Yvan; Hauchecorne, Alain; Huret, Nathalie
2017-04-01
Observational studies of Arctic stratospheric final warmings have shown that tropical/subtropical air masses can be advected to high latitudes and remain confined within a long-lived "frozen-in" anticyclone (FrIAC) for several months. It was suggested that the frequency of FrIACs may have increased since 2000 and that their interannual variability may be modulated by (i) the occurrence of major stratospheric warmings (mSSWs) in the preceding winter and (ii) the phase of the Quasi-Biennial Oscillation (QBO). In this study, we tested these observational-based hypotheses for the first time using a chemistry-climate model. Three 145-year sensitivity experiments were performed with the National Center of Atmospheric Research's Community Earth System Model (CESM): one control experiment including only natural variability, one with an extreme greenhouse gas emission scenario, and one without the QBO in the tropical stratosphere. In comparison with reanalysis, the model simulates a realistic frequency and characteristics of FrIACs, which occur under an abrupt and early winter-to-summer stratospheric circulation transition, driven by enhanced planetary wave activity. Furthermore, the model results support the suggestion that the development of FrIACs is favored by an easterly QBO in the middle stratosphere and by the absence of mSSWs during the preceding winter. The lower stratospheric persistence of background dynamical state anomalies induced by deep mSSWs leads to less favorable conditions for planetary waves to enter the high-latitude stratosphere in April, which in turn decreases the probability of FrIAC development. Our model results do not suggest that climate change conditions (RCP8.5 scenario) influence FrIAC occurrences.
Stevens, Jennifer P; Kachniarz, Bart; O'Reilly, Kristin; Howell, Michael D
2015-04-01
Researchers have found mixed results about the risk to patient safety in July, when newly minted physicians enter U.S. hospitals to begin their clinical training, the so-called "July effect." However, patient and family satisfaction and perception of physician competence during summer months remain unknown. The authors conducted a retrospective observational cohort study of 815 family members of adult intensive care unit (ICU) patients who completed the Family Satisfaction with Care in the Intensive Care Unit instrument from eight ICUs at Beth Israel Deaconess Medical Center, Boston, Massachusetts, between April 2008 and June 2011. The association of ICU care in the summer months (July-September) versus other seasons and family perception of physician competence was examined in univariable and multivariable analyses. A greater proportion of family members described physicians as competent in summer months as compared with winter months (odds ratio [OR] 1.9; 95% confidence interval [CI] 1.2-3.0; P = .003). After adjustment for patient and proxy demographics, severity of illness, comorbidities, and features of the admission in a multivariable model, seasonal variation of family perception of physician competence persisted (summer versus winter, OR of judging physicians competent 2.4; 95% CI 1.3-4.4; P = .004). Seasonal variation exists in family perception of physician competence in the ICU, but opposite to the "July effect." The reasons for this variation are not well understood. Further research is necessary to explore the role of senior provider involvement, trainee factors, system factors such as handoffs, or other possible contributors.
Giladi, Aviram M.; Shauver, Melissa J.; Ho, Allison; Zhong, Lin; Kim, H. Myra; Chung, Kevin C.
2014-01-01
Background Distal radius fractures (DRFs) are costly and debilitating injuries, especially for the elderly. DRFs often occur from falls and more commonly occur outdoors. Inclement weather, especially in the winter, may increase the risk of fall-related injuries. Small community studies have reported increased risk of DRF due to inclement winter weather; however, larger studies are lacking. Methods We analyzed a sample of 2007 Medicare claims for DRF. Weather data were collected for the date and location of each DRF in our analysis cohort. A novel slipperiness score (0–7, 7 indicates the most slippery weather) was used as a measure of the severity of slippery outdoor conditions. Negative binomial regression models evaluated the correlation between slipperiness and DRF occurrence. Results Risk of DRF was higher in winter months (Incidence Rate Ratio=1.2, 95%CI 1.14–1.26, p<0.001). Days with average temperature ≤ 32°F (IRR=1.36, 95%CI 1.19–1.54, p<0.001), snow/ice on ground at the start of the day (IRR=1.45, 95%CI 1.25–1.68, p<0.001), and freezing rain (IRR=1.24, 95%CI 1.03–1.49, p=0.025) all had an increased risk of DRF. Risk of sustaining a DRF was increased 21% on days with a slipperiness score of 5 or above (IRR=1.21, 95%CI 1.08–1.20, p=0.007). Additionally, for each increase in slipperiness score above 4, the IRR of DRF increased as well. Conclusions Weather events that create slippery walking conditions, most often occurring in winter months, result in an increased risk of DRF in the US elderly. This finding can be used to support resource allocation as well as awareness and prevention campaigns. Level of Evidence IV; retrospective cohort PMID:24469166
Atmospheric Rivers, Climate Change, and the Howard Hanson Dam
NASA Astrophysics Data System (ADS)
Warner, M.; Mass, C.; Shaffer, K.; Brettman, K.
2017-12-01
All wintertime extreme precipitation and major flooding events in Western Washington are associated with Atmospheric Rivers (ARs), narrow bands of elevated integrated water vapor transport (IVT) stretching from the tropical Pacific Ocean to the Pacific Northwest coast. Several studies over the last decade have suggested that climate change could impact the intensity, frequency, timing, and structure of Pacific Northwest extreme precipitation. The Howard Hanson Dam is situated on the Green River in the central Cascade Mountains in Western Washington and is operated by the US Army Corps of Engineers (USACE) in Seattle. The reservoir behind the dam has two functions: It is the main water supply for the city of Tacoma and is filled during the summer months, and it is empty during winter months when it is used for flood risk management during AR events, protecting billions of dollars of infrastructure downstream. The reservoir is maintained by the Cascade Mountains' abundant winter snowpack and precipitation. Since the reservoir behind Howard Hanson Dam must be empty before the flood season starts and is reliant on snowpack and precipitation to fill in late spring, impacts due to climate change are important for how the USACE operates and manages flood risk and water supply in the future. This work describes changes in the structure, climatology, and seasonality of cool-season atmospheric rivers influencing the west coast of North America by examining the projections of Coupled Model Intercomparison Project 5 (CMIP5) climate simulations forced by the Representative Concentration Pathway (RCP) 8.5 scenario. There are only slight changes in AR frequency and seasonality between historical (1970-1999) and future (2070-2099) periods considering the most extreme days (99th percentile) in integrated water vapor transport (IVT) along the West Coast, particularly along the southern part of the U.S. west coast, where some changes in the most extreme events are statistically significant. In contrast, using the number of future days exceeding the historical 99th percentile IVT threshold produces statistically significant increases in the frequency of extreme IVT events for all winter months. The peak in future AR days appears to occur approximately one month earlier.
Storlazzi, Curt D.; Reid, Jane A.
2010-01-01
Ocean surface waves are the dominant temporally and spatially variable process influencing sea floor sediment resuspension along most continental shelves. Wave-induced sediment mobility on the continental shelf and upper continental slope off central California for different phases of El Niño-Southern Oscillation (ENSO) events was modeled using monthly statistics derived from more than 14 years of concurrent hourly oceanographic and meteorologic data as boundary input for the Delft SWAN wave model, gridded sea floor grain-size data from the usSEABED database, and regional bathymetry. Differences as small as 0.5 m in wave height, 1 s in wave period, and 10° in wave direction, in conjunction with the spatially heterogeneous unconsolidated sea-floor sedimentary cover, result in significant changes in the predicted mobility of continental shelf surficial sediment in the study area. El Niño events result in more frequent mobilization on the inner shelf in the summer and winter than during La Niña events and on the outer shelf and upper slope in the winter months, while La Niña events result in more frequent mobilization on the mid-shelf during spring and summer months than during El Niño events. The timing and patterns of seabed mobility are addressed in context of geologic and biologic processes. By understanding the spatial and temporal variability in the disturbance of the sea floor, scientists can better interpret sedimentary patterns and ecosystem structure, while providing managers and planners an understanding of natural impacts when considering the permitting of offshore activities that disturb the sea floor such as trawling, dredging, and the emplacement of sea-floor engineering structures.
NASA Astrophysics Data System (ADS)
Nageswararao, M. M.; Mohanty, U. C.; Kiran Prasad, S.; Osuri, Krishna K.; Ramakrishna, S. S. V. S.
2016-11-01
The surface air temperature during the winter season (December-February) in India adversely affects agriculture as well as day-to-day life. Therefore, the accurate prediction of winter temperature in extended range is of utmost importance. The National Center for Environmental Prediction (NCEP) has been providing climatic variables from the fully coupled global climate model, known as Climate Forecast System version 1 (CFSv1) on monthly to seasonal scale since 2004, and it has been upgraded to CFSv2 subsequently in 2011. In the present study, the performance of CFSv1 and CFSv2 in simulating the winter 2 m maximum, minimum, and mean temperatures ( T max, T min, and T mean, respectively) over India is evaluated with respect to India Meteorological Department (IMD) 1° × 1° observations. The hindcast data obtained from both versions of CFS from 1982 to 2009 (27 years) with November initial conditions (lead-1) are used. The analyses of winter ( T max, T min, and T mean) temperatures revealed that CFSv1 and CFSv2 are able to replicate the patterns of observed climatology, interannual variability, and coefficient of variation with a slight negative bias. Of the two, CFSv2 is appreciable in capturing increasing trends of winter temperatures like observed. The T max, T min, and T mean correlations from CFSv2 is significantly high (0.35, 0.53, and 0.51, respectively), while CFSv1 correlations are less (0.29, 0.15, and 0.12) and insignificant. This performance of CFSv2 may be due to the better estimation of surface heat budget terms and realistic CO2 concentration, which were absent in CFSv1. CFSv2 proved to have a high probability of detection in predicting different categories (below, near, and above normal) for winter T min, which are required for crop yield and public utility services, over north India.
McCabe, G.J.
1989-01-01
Errors of the Thornthwaite model can be analyzed using adjusted pan evaporation as an index of potential evapotranspiration. An examination of ratios of adjusted pan evaporation to Thornthwaite potential evapotranspiration indicates that the ratios are highest in the winter and lowest during summer months. This trend suggests a parabolic pattern. In this study a parabolic function is used to adjust Thornthwaite estimates of potential evapotranspiration. Forty locations east of the Rocky Mountains are analyzed. -from Author
Cooke, Marie; Holzhauser, Kerri; Jones, Mark; Davis, Cathy; Finucane, Julie
2007-09-01
This research aimed to evaluate the use of aromatherapy massage and music as an intervention to cope with the occupational stress and anxiety that emergency department staff experience. The study also aimed to compare any differences in results between a summer and winter 12-week massage plan. Emergency nurses are subjected to significant stressors during their work and it is known that workloads and patient demands influence the role stress has on nurses. The perception that winter months are busier for emergency departments has long been held and there is some evidence that people with cardiac and respiratory dysfunction do present more frequently in the winter months. Massage has been found to decrease staff anxiety. The study used a one-group pre-test, post-test quasi-experimental design with random assignment. Staff occupational stress was assessed pre- and post- 12 weeks of aromatherapy massage with music and anxiety was measured pre and post each massage session. Sick leave was also measured. Comparisons of summer and winter data were undertaken. A total of 365 massages were given over two 12-week periods, one during summer and the other during winter. Analysis identified that aromatherapy massage with music significantly reduced anxiety for both seasonal periods. Premassage anxiety was significantly higher in winter than summer. No differences in sick leave and workload were found. There was no difference in the occupational stress levels of nurses following the two 12-week periods of massage. Emergency nurses were significantly more anxious in winter than summer but this cannot be attributed to increased sick leave or workloads. Aromatherapy massage with music significantly reduced emergency nurses' anxiety. High levels of anxiety and stress can be detrimental to the physical and emotional health of emergency nurses and the provision of a support mechanism such as on-site massage as an effective strategy should be considered.
Temperature sequence of eggs from oviposition through distribution: processing--part 2.
Koelkebeck, K W; Patterson, P H; Anderson, K E; Darre, M J; Carey, J B; Ahn, D U; Ernst, R A; Kuney, D R; Jones, D
2008-06-01
The Egg Safety Action Plan released in 1999 raised questions concerning egg temperature used in the risk assessment model. Therefore, a national study was initiated to determine the internal and external temperature sequence of eggs from oviposition through distribution. Researchers gathered data from commercial egg production, shell egg processing, and distribution facilities. The experimental design was a mixed model with 2 random effects for season and geographic region and a fixed effect for operation type (inline or offline). For this report, internal and external egg temperature data were recorded at specific points during shell egg processing in the winter and summer months. In addition, internal egg temperatures were recorded in pre- and postshell egg processing cooler areas. There was a significant season x geographic region interaction (P < 0.05) for both surface and internal temperatures. Egg temperatures were lower in the winter vs. summer, but eggs gained in temperature from the accumulator to the postshell egg processing cooler. During shell egg processing, summer egg surface and internal temperatures were greater (P < 0.05) than during the winter. When examining the effect of shell egg processing time and conditions, it was found that 2.4 and 3.8 degrees C were added to egg surface temperatures, and 3.3 and 6.0 degrees C were added to internal temperatures in the summer and winter, respectively. Internal egg temperatures were higher (P < 0.05) in the preshell egg processing cooler area during the summer vs. winter, and internal egg temperatures were higher (P < 0.05) in the summer when eggs were (3/4) cool (temperature change required to meet USDA-Agricultural Marketing Service storage regulation of 7.2 degrees C) in the postshell egg processing area. However, the cooling rate was not different (P > 0.05) for eggs in the postshell egg processing cooler area in the summer vs. winter. Therefore, these data suggest that season of year and geographic location can affect the temperature of eggs during shell egg processing and should be a component in future assessments of egg safety.
The winter gap effect in methane leak detection and repair with optical gas imaging cameras
NASA Astrophysics Data System (ADS)
Fox, T. A.; Barchyn, T.; Hugenholtz, C.
2017-12-01
Implementing effective leak detection and repair (LDAR) programs is essential for mitigating fugitive methane emissions from oil and gas operations. In Canada, newly proposed regulations will require that high-risk facilities be surveyed 3 times/yr for fugitive leaks. Like the United States, Canada promotes the use of Optical Gas Imaging cameras (OGIs) for detecting natural gas leaks during LDAR surveys. However, recent research suggests OGIs may perform poorly under adverse environmental conditions, especially in low temperatures. For regions like Canada that experience cold winters, OGIs may not be reliably used for months at a time, meaning that leaks may accumulate and emit for longer periods before being repaired. While considerable oil and gas activity occurs in high-latitude regions with cold winters, no research has explored how extended cold periods impact OGI-focused LDAR programs. To improve this understanding, we present a simple model exploring relationships among winter gap length, fugitive methane emissions, and investment input for LDAR programs employing OGI instruments in gas producing regions of different latitudes. Preliminary results suggest that longer gaps between LDAR surveys caused by cold temperatures result in either 1) higher total emissions for the year, or 2) greater time and equipment investment in LDAR programs to achieve emissions mitigation equivalent to LDAR programs operating under ideal conditions. When weather constraints are removed and LDAR surveys are evenly spaced throughout the year, emissions mitigation is optimized. However, as the winter gap duration and the size of the implicated area increases, fugitive leaks last longer. Furthermore, a spillover effect is observed as LDAR crews become overwhelmed with the high volume of work required as temperatures increase in the spring. Our model adds weight to the argument that LDAR programs should be tailored to regional needs, and that regulators should be more cognisant of sensor-specific limitations as they develop LDAR protocols.
Global salinity predictors of western United States precipitation
NASA Astrophysics Data System (ADS)
Liu, T.; Schmitt, R. W.; Li, L.
2016-12-01
Moisture transport from the excess of evaporation over precipitation in the global ocean drives terrestrial precipitation patterns. Sea surface salinity (SSS) is sensitive to changes in ocean evaporation and precipitation, and therefore, to changes in the global water cycle. We use the Met Office Hadley Centre EN4.2.0 SSS dataset to search for teleconnections between autumn-lead seasonal salinity signals and winter precipitation over the western United States. NOAA CPC Unified observational US precipitation in winter months is extracted from bounding boxes over the northwest and southwest and averaged. Lead autumn SON SSS in ocean areas that are relatively highly correlated with winter DJF terrestrial precipitation are filtered by a size threshold and treated as individual predictors. After removing linear trends from the response and explanatory variables and accounting for multiple collinearity, we use best subsets regression and the Bayesian information criterion (BIC) to objectively select the best model to predict terrestrial precipitation using SSS and SST predictors. The combination of autumn SSS and SST predictors can skillfully predict western US winter terrestrial precipitation (R2 = 0.51 for the US Northwest and R2 = 0.7 for the US Southwest). In both cases, SSS is a better predictor than SST. Thus, incorporating SSS can greatly enhance the accuracy of existing precipitation prediction frameworks that use SST-based climate indices and by extension improve watershed management.
Climatological observations and predicted sublimation rates at Lake Hoare, Antarctica.
Clow, G.D.; McKay, C.P.; Simmons, G.M.; Wharton, R.A.
1988-01-01
In December 1985, an automated meteorological station was established at Lake Hoare in the dry valley region of Antarctica. Here, we report on the first year-round observations available for any site in Taylor Valley. This dataset augments the year-round data obtained at Lake Vanda (Wright Valley) by winter-over crews during the late 1960s and early 1970s. The mean annual solar flux at Lake Hoare was 92 W m-2 during 1986, the mean air temperature -17.3 degrees C, and the mean 3-m wind speed 3.3 m s-1. The local climate is controlled by the wind regime during the 4-month sunless winter and by seasonal and diurnal variations in the incident solar flux during the remainder of the year. Temperature increases of 20 degrees-30 degrees C are frequently observed during the winter due to strong fo??hn winds descending from the Polar Plateau. A model incorporating nonsteady molecular diffusion into Kolmogorov-scale eddies in the interfacial layer and similarity-theory flux-profiles in the surface sublayer, is used to determine the rate of ice sublimation from the acquired meteorological data. Despite the frequent occurrence of strong winter fo??hns, the bulk of the annual ablation occurs during the summer due to elevated temperatures and persistent moderate winds. The annual ablation from Lake Hoare is estimated to have been 35.0 +/- 6.3 cm for 1986.
Mesospheric momentum fluxes observed by the MST radar at Poker Flat, Alaska
NASA Technical Reports Server (NTRS)
Wang, Ding-Yi; Fritts, David C.
1990-01-01
An analysis of the wave motions observed with the Poker Flat MST radar during the winter, summer, and fall of 1986 is presented. Monthly and daily mean winds, momentum fluxes, and velocity variances are investigated in detail. While several features are in agreement with previous measurements, some significant differences also are found to exist in the observations. Monthly mean horizontal winds between 82 and 89 km have amplitudes of 20-40 m/s westward and 10-25 m/s southward in July and August. In fall and winter, the horizontal winds between 58 and 75 km are weaker and essentially eastward.
Zong, Xue-Mei; Wang, Geng-Chen; Chen, Hong-Bin; Wang, Pu-Cai; Xuan, Yue-Jian
2007-11-01
Based on the atmospheric ozone sounding data, the average monthly and seasonal variety principles of atmospheric ozone concentration during six years are analyzed under the boundary layer in Beijing. The results show that the monthly variation of atmospheric ozone are obvious that the minimum values appear in January from less than 10 x 10(-9) on ground to less than 50 x 10(-9) on upper layer (2 km), but the maximum values appear in June from 85 x 10(-9) on ground to more than 90 x 10(-9) on upper layer. The seasonal variation is also clear that the least atmospheric ozone concentration is in winter and the most is in summer, but variety from ground to upper layer is largest in winter and least in summer. According to the type of outline, the outline of ozone concentration is composite of three types which are winter type, summer type and spring-autumn type. The monthly ozone concentration in different heights is quite different. After analyzing the relationship between ozone concentration and meteorological factors, such as temperature and humidity, we find ozone concentration on ground is linear with temperature and the correlation coefficient is more than 85 percent.
Middle Atmosphere Program. Handbook for MAP, Volume 5
NASA Technical Reports Server (NTRS)
Sechrist, C. F., Jr. (Editor)
1982-01-01
The variability of the stratosphere during the winter in the Northern Hemisphere is considered. Long term monthly mean 30-mbar maps are presented that include geopotential heights, temperatures, and standard deviations of 15 year averages. Latitudinal profiles of mean zonal winds and temperatures are given along with meridional time sections of derived quantities for the winters 1965/66 to 1980/81.
How Circulation of Water Affects Freezing in Ponds
ERIC Educational Resources Information Center
Moreau, Theresa; Lamontagne, Robert; Letzring, Daniel
2007-01-01
One means of preventing the top of a pond from freezing involves running a circulating pump near the bottom to agitate the surface and expose it to air throughout the winter months. This phenomenon is similar to that of the flowing of streams in subzero temperatures and to the running of taps to prevent pipe bursts in winter. All of these cases…
Kock, Tobias J.; Liedtke, Theresa L.; Rondorf, Dennis W.; Serl, John D.; Kohn, Mike; Bumbaco, Karin A.
2012-01-01
A 4-year evaluation was conducted to determine the proportion of juvenile coho salmon Oncorhynchus kisutch passing Cowlitz Falls Dam, on the Cowlitz River, Washington, during winter. River and reservoir populations of coho salmon parr were monitored using radiotelemetry to determine if streamflow increases resulted in increased downstream movement and dam passage. This was of interest because fish that pass downstream of Cowlitz Falls Dam become landlocked in Riffe Lake and are lost to the anadromous population. Higher proportions of reservoir-released fish (0.391-0.480) passed Cowlitz Falls Dam than did river-released fish (0.037-0.119). Event-time analyses demonstrated that streamflow increases were important predictors of dam passage rates during the study. The estimated effect of increasing streamflows on the risk of dam passage varied annually and ranged from 9% to 75% for every 28.3 m3/s increase in streamflow. These results have current management implications because they demonstrate the significance of dam passage by juvenile coho salmon during winter months when juvenile fish collection facilities are typically not operating. The results also have future management implications because climate change predictions suggest that peak streamflow timing for many watersheds in the Pacific Northwest will shift from late spring and early summer to winter. Increased occurrence of intense winter flood events is also expected. Our results demonstrate that juvenile coho salmon respond readily to streamflow increases and initiate downstream movements during winter months, which could result in increased passage at dams during these periods if climate change predictions are realized in the coming decades.
Salas, Eric Ariel L; Valdez, Raul; Michel, Stefan
2017-11-01
We modeled summer and winter habitat suitability of Marco Polo argali in the Pamir Mountains in southeastern Tajikistan using these statistical algorithms: Generalized Linear Model, Random Forest, Boosted Regression Tree, Maxent, and Multivariate Adaptive Regression Splines. Using sheep occurrence data collected from 2009 to 2015 and a set of selected habitat predictors, we produced summer and winter habitat suitability maps and determined the important habitat suitability predictors for both seasons. Our results demonstrated that argali selected proximity to riparian areas and greenness as the two most relevant variables for summer, and the degree of slope (gentler slopes between 0° to 20°) and Landsat temperature band for winter. The terrain roughness was also among the most important variables in summer and winter models. Aspect was only significant for winter habitat, with argali preferring south-facing mountain slopes. We evaluated various measures of model performance such as the Area Under the Curve (AUC) and the True Skill Statistic (TSS). Comparing the five algorithms, the AUC scored highest for Boosted Regression Tree in summer (AUC = 0.94) and winter model runs (AUC = 0.94). In contrast, Random Forest underperformed in both model runs.
Temperature impacts on the water year 2014 drought in California
Shukla, Shraddhanand; Safeeq, Mohammad; AghaKouchak, Amir; Guan, Kaiyu; Funk, Christopher C.
2015-01-01
California is experiencing one of the worst droughts on record. Here we use a hydrological model and risk assessment framework to understand the influence of temperature on the water year (WY) 2014 drought in California and examine the probability that this drought would have been less severe if temperatures resembled the historical climatology. Our results indicate that temperature played an important role in exacerbating the WY 2014 drought severity. We found that if WY 2014 temperatures resembled the 1916–2012 climatology, there would have been at least an 86% chance that winter snow water equivalent and spring-summer soil moisture and runoff deficits would have been less severe than the observed conditions. We also report that the temperature forecast skill in California for the important seasons of winter and spring is negligible, beyond a lead-time of one month, which we postulate might hinder skillful drought prediction in California.
Food Crops Response to Climate Change
NASA Astrophysics Data System (ADS)
Butler, E.; Huybers, P.
2009-12-01
Projections of future climate show a warming world and heterogeneous changes in precipitation. Generally, warming temperatures indicate a decrease in crop yields where they are currently grown. However, warmer climate will also open up new areas at high latitudes for crop production. Thus, there is a question whether the warmer climate with decreased yields but potentially increased growing area will produce a net increase or decrease of overall food crop production. We explore this question through a multiple linear regression model linking temperature and precipitation to crop yield. Prior studies have emphasised temporal regression which indicate uniformly decreased yields, but neglect the potentially increased area opened up for crop production. This study provides a compliment to the prior work by exploring this spatial variation. We explore this subject with a multiple linear regression model from temperature, precipitation and crop yield data over the United States. The United States was chosen as the training region for the model because there are good crop data available over the same time frame as climate data and presumably the yield from crops in the United States is optimized with respect to potential yield. We study corn, soybeans, sorghum, hard red winter wheat and soft red winter wheat using monthly averages of temperature and precipitation from NCEP reanalysis and yearly yield data from the National Agriculture Statistics Service for 1948-2008. The use of monthly averaged temperature and precipitation, which neglect extreme events that can have a significant impact on crops limits this study as does the exclusive use of United States agricultural data. The GFDL 2.1 model under a 720ppm CO2 scenario provides temperature and precipitation fields for 2040-2100 which are used to explore how the spatial regions available for crop production will change under these new conditions.
Highly-seasonal monsoons controlled by Central Asian Eocene epicontinental sea
NASA Astrophysics Data System (ADS)
Bougeois, Laurie; Tindall, Julia; de Rafélis, Marc; Reichart, Gert-Jan; de Nooijer, Lennart; Dupont-Nivet, Guillaume
2015-04-01
Modern Asian climate is mainly controlled by seasonal reverse winds driven by continent-ocean thermal contrast. This yields monsoon pattern characterized by a strong seasonality in terms of precipitation and temperature and a duality between humidity along southern and eastern Asia and aridity in Central Asia. According to climate models, Asian Monsoons and aridification have been governed by Tibetan plateau uplift, global climate changes and the retreat of a vast epicontinental sea (the Proto-Paratethys sea) that used to cover Eurasia in Eocene times (55 to 34 Myr ago). Evidence for Asian aridification and monsoons a old as Eocene, are emerging from proxy and model data, however, the role of the Proto-Paratethys sea remains to be established by proxy data. By applying a novel infra-annual geochemical multi-proxy methodology on Eocene oyster shells of the Proto-Paratethys sea and comparing results to climate simulations, we show that the Central Asian region was generally arid with high seasonality from hot and arid summers to wetter winters. This high seasonality in Central Asia supports a monsoonal circulation was already established although the climate pattern was significantly different than today. During winter months, a strong influence of the Proto-Paratethys moisture is indicated by enhanced precipitations significantly higher than today. Precipitation probably dwindled because of the subsequent sea retreat as well as the uplift of the Tibetan and Pamir mountains shielding the westerlies. During Eocene summers, the local climate was hotter and more arid than today despite the presence of the Proto Paratethys. This may be explained by warmer Eocene global conditions with a strong anticyclonic Hadley cell descending at Central Asian latitudes (25 to 45 N). urthermore, the Tibetan plateau emerging at this time to the south must have already contributed a stronger Foehn effect during summer months bringing warm and dry air into Central Asia. Proto-Paratethys moisture driven into Asia by the westerlies during winters provides a potential mechanical link between Eocene global climate and Asian aridification through sea level fluctuations.
NASA Astrophysics Data System (ADS)
Yan, Maoling; Liu, Pingzeng; Zhang, Chao; Zheng, Yong; Wang, Xizhi; Zhang, Yan; Chen, Weijie; Zhao, Rui
2018-01-01
Agroclimatological resources provide material and energy for agricultural production. This study is aimed to analyze the impact of selected climate factors change on wheat yield over the different growth period applied quantitatively method, by comparing two different time division modules of wheat growth cycle- monthly empirical-statistical multiple regression models ( From October to June of next year ) and growth stage empirical-statistical multiple regression models (Including sowing stage, seedling stage, tillering stage, overwintering period, regreening period, jointing stage, heading stage, maturity stage) analysis of relationship between agrometeorological data and growth stage records and winter wheat production in Yanzhou, Shandong Province of China. Correlation analysis(CA)was done for 35 years (from 1981 to 2015) between crop yield and corresponding weather parameters including daily mean temperature, sunshine duration, and average daily precipitation selected from 18 different meteorological factors. The results shows that the greatest impact on the winter wheat yield is the precipitation overwintering period in this area, each 1mm increase in daily mean rainfall was associated with 201.64 kg/hm2 lowered output. Moreover, the temperature and sunshine duration in heading period and maturity stage also exert significant influence on the output, every 1°C increase in daily mean temperature was associated with 199.85kg/hm2 adding output, every 1h increase in mean sunshine duration was associated with 130.68kg/hm2 reduced output. Comparing with the results of experiment which using months as step sizes and using farming as step sizes was in better agreement with the fluctuation in meteorological yield, offered a better explanation on the growth mechanism of wheat. Eventually the results indicated that 3 factors affects the yield during different growing periods of wheat in different extent and provided more specific reference to guide the agricultural production management in this area.
Analysis of the relationship between the monthly temperatures and weather types in Iberian Peninsula
NASA Astrophysics Data System (ADS)
Peña Angulo, Dhais; Trigo, Ricardo; Nicola, Cortesi; José Carlos, González-Hidalgo
2016-04-01
In this study, the relationship between the atmospheric circulation and weather types and the monthly average maximum and minimum temperatures in the Iberian Peninsula is modeled (period 1950-2010). The temperature data used were obtained from a high spatial resolution (10km x 10km) dataset (MOTEDAS dataset, Gonzalez-Hidalgo et al., 2015a). In addition, a dataset of Portuguese temperatures was used (obtained from the Portuguese Institute of Sea and Atmosphere). The weather type classification used was the one developed by Jenkinson and Collison, which was adapted for the Iberian Peninsula by Trigo and DaCamara (2000), using Sea Level Pressure data from NCAR/NCEP Reanalysis dataset (period 1951-2010). The analysis of the behaviour of monthly temperatures based on the weather types was carried out using a stepwise regression procedure of type forward to estimate temperatures in each cell of the considered grid, for each month, and for both maximum and minimum monthly average temperatures. The model selects the weather types that best estimate the temperatures. From the validation model it was obtained the error distribution in the time (months) and space (Iberian Peninsula). The results show that best estimations are obtained for minimum temperatures, during the winter months and in coastal areas. González-Hidalgo J.C., Peña-Angulo D., Brunetti M., Cortesi, C. (2015a): MOTEDAS: a new monthly temperature database for mainland Spain and the trend in temperature (1951-2010). International Journal of Climatology 31, 715-731. DOI: 10.1002/joc.4298
NASA Astrophysics Data System (ADS)
Bozkurt, Deniz; Rojas, Maisa; Valdivieso, Jonás; Falvey, Mark
2015-04-01
We have assessed the impact of projected increases in temperature and decreased precipitation on variability and potential changes in hydroclimate regimes and extremes over Andean basins in the central-southern Chile (~30-40S). The altitude of the southern Andes in the study area has an average altitude of 5000 m in the north that decreases to 3000 m at the southern edge. Climatically the region has a Mediterranean-like climate with mainly winter precipitation that gradually increases southwards, from around 300 mm/yr to 1000 mm/yr. The region is home to most of the population in Chile (~10 mil. inhabitants), it has fertile and productive agriculture land, as well as hydro-electrical power plants. During the 20th Century the region has experienced a decreasing precipitation trend imbedded in important interannual and decadal scale variability. We have used gridded observed daily precipitation and temperatures to drive and validate the VIC macro-scale model over the region of interest at 0.25 x 0.25 degree resolution. Historical (1960-2005) and projected (RCP8.5, 2006-2099) daily precipitation and temperatures from 28 CMIP5 models are adjusted via a transfer function based on the gridded observed daily precipitation and temperature data. Adjusted time series are then used to drive the VIC model in order to present climate change projections. The hydrological model simulations foresee that drying is robust in the models and total annual runoff will decrease in the future (40-45% by the end of the century). Center timing of runoff tends to shift to earlier days (3-5 weeks by the end of the century). In some areas over the Andes winter runoff is projected to increase due to upward movement of zero isotherm. Moreover, reductions in the amount of snowpack and accelerated snowmelt lead to more pronounced increase in winter evapotranspiration over the same areas. The simulated 12-months Standardized Runoff Index (SRI) clearly shows severe persistent hydrological droughts without (or a few) wet spell interruptions by the end of the century. On the other hand, probability density function of annual maximum runoff over high elevations (>1000 m) and higher interannual variability of 3-months SRI indicate a possible increase in the probability of flood events.
Brischoux, François; Dupoué, Andréaz; Lourdais, Olivier; Angelier, Frédéric
2016-02-01
Temperate ectotherms are expected to benefit from climate change (e.g., increased activity time), but the impacts of climate warming during the winter have mostly been overlooked. Milder winters are expected to decrease body condition upon emergence, and thus to affect crucial life-history traits, such as survival and reproduction. Mild winter temperature could also trigger a state of chronic physiological stress due to inadequate thermal conditions that preclude both dormancy and activity. We tested these hypotheses on a typical temperate ectothermic vertebrate, the aspic viper (Vipera aspis). We simulated different wintering conditions for three groups of aspic vipers (cold: ~6 °C, mild: ~14 °C and no wintering: ~24 °C) during a one month long period. We found that mild wintering conditions induced a marked decrease in body condition, and provoked an alteration of some hormonal mechanisms involved in emergence. Such effects are likely to bear ultimate consequences on reproduction, and thus population persistence. We emphasize that future studies should incorporate the critical, albeit neglected, winter season when assessing the potential impacts of global changes on ectotherms. Copyright © 2015 Elsevier Inc. All rights reserved.
Sage-grouse habitat selection during winter in Alberta
Carpenter, Jennifer L.; Aldridge, Cameron L.; Boyce, Mark S.
2010-01-01
Greater sage-grouse (Centrocercus urophasianus) are dependent on sagebrush (Artemisia spp.) for food and shelter during winter, yet few studies have assessed winter habitat selection, particularly at scales applicable to conservation planning. Small changes to availability of winter habitats have caused drastic reductions in some sage-grouse populations. We modeled winter habitat selection by sage-grouse in Alberta, Canada, by using a resource selection function. Our purpose was to 1) generate a robust winter habitat-selection model for Alberta sage-grouse; 2) spatially depict habitat suitability in a Geographic Information System to identify areas with a high probability of selection and thus, conservation importance; and 3) assess the relative influence of human development, including oil and gas wells, in landscape models of winter habitat selection. Terrain and vegetation characteristics, sagebrush cover, anthropogenic landscape features, and energy development were important in top Akaike's Information Criterionselected models. During winter, sage-grouse selected dense sagebrush cover and homogenous less rugged areas, and avoided energy development and 2-track truck trails. Sage-grouse avoidance of energy development highlights the need for comprehensive management strategies that maintain suitable habitats across all seasons. ?? 2010 The Wildlife Society.
Predictability and prediction of the total number of winter extremely cold days over China
NASA Astrophysics Data System (ADS)
Luo, Xiao; Wang, Bin
2018-03-01
The current dynamical climate models have limited skills in predicting winter temperature in China. The present study uses physics-based empirical models (PEMs) to explore the sources and limits of the seasonal predictability in the total number of extremely cold days (NECD) over China. A combined cluster-rotated EOF analysis reveals two sub-regions of homogeneous variability among hundreds of stations, namely the Northeast China (NE) and Main China (MC). This reduces the large-number of predictands to only two indices, the NCED-NE and NCED-MC, which facilitates detection of the common sources of predictability for all stations. The circulation anomalies associated with the NECD-NE exhibit a zonally symmetric Arctic Oscillation-like pattern, whereas those associated with the NECD-MC feature a North-South dipolar pattern over Asia. The predictability of the NECD originates from SST and snow cover anomalies in the preceding September and October. However, the two regions have different SST predictors: The NE predictor is in the western Eurasian Arctic while the MC predictor is over the tropical-North Pacific. The October snow cover predictors also differ: The NE predictor primarily resides in the central Eurasia while the MC predictor is over the western and eastern Eurasia. The PEM prediction results suggest that about 60% (55%) of the total variance of winter NECD over the NE (Main) China are likely predictable 1 month in advance. The NECD at each station can also be predicted by using the four predictors that were detected for the two indices. The cross-validated temporal correlation skills exceed 0.70 at most stations. The physical mechanisms by which the autumn Arctic sea ice, snow cover, and tropical-North Pacific SST anomalies affect winter NECD over the NE and Main China are discussed.
Increased body mass of ducks wintering in California's Central Valley
Fleskes, Joseph P.; Yee, Julie L.; Yarris, Gregory S.; Loughman, Daniel L.
2016-01-01
Waterfowl managers lack the information needed to fully evaluate the biological effects of their habitat conservation programs. We studied body condition of dabbling ducks shot by hunters at public hunting areas throughout the Central Valley of California during 2006–2008 compared with condition of ducks from 1979 to 1993. These time periods coincide with habitat increases due to Central Valley Joint Venture conservation programs and changing agricultural practices; we modeled to ascertain whether body condition differed among waterfowl during these periods. Three dataset comparisons indicate that dabbling duck body mass was greater in 2006–2008 than earlier years and the increase was greater in the Sacramento Valley and Suisun Marsh than in the San Joaquin Valley, differed among species (mallard [Anas platyrhynchos], northern pintail [Anas acuta], America wigeon [Anas americana], green-winged teal [Anas crecca], and northern shoveler [Anas clypeata]), and was greater in ducks harvested late in the season. Change in body mass also varied by age–sex cohort and month for all 5 species and by September–January rainfall for all except green-winged teal. The random effect of year nested in period, and sometimes interacting with other factors, improved models in many cases. Results indicate that improved habitat conditions in the Central Valley have resulted in increased winter body mass of dabbling ducks, especially those that feed primarily on seeds, and this increase was greater in regions where area of post-harvest flooding of rice and other crops, and wetland area, has increased. Conservation programs that continue to promote post-harvest flooding and other agricultural practices that benefit wintering waterfowl and continue to restore and conserve wetlands would likely help maintain body condition of wintering dabbling ducks in the Central Valley of California.
ERIC Educational Resources Information Center
Royce, Christine Anne
2005-01-01
Bulletin boards throughout schools in the month of January often have mittens, snowflakes, or penguins as decorations. This month's topic celebrates those tuxedo-clad birds that have come to symbolize winter and provides students with the opportunity to investigate adaptations that help penguins survive in their environment.
NASA Astrophysics Data System (ADS)
Zhang, Pengfei; Wu, Yutian; Smith, Karen L.
2018-01-01
To better understand the dynamical mechanism that accounts for the observed lead-lag correlation between the early winter Barents-Kara Sea (BKS) sea ice variability and the later winter midlatitude circulation response, a series of experiments are conducted using a simplified atmospheric general circulation model with a prescribed idealized near-surface heating over the BKS. A prolonged effect is found in the idealized experiments following the near-surface heating and can be explicitly attributed to the stratospheric pathway and the long time scale in the stratosphere. The analysis of the Eliassen-Palm flux shows that, as a result of the imposed heating and linear constructive interference, anomalous upward propagating planetary-scale waves are excited and weaken the stratospheric polar vortex. This stratospheric response persists for approximately 1-2 months accompanied by downward migration to the troposphere and the surface. This downward migration largely amplifies and extends the low-level jet deceleration in the midlatitudes and cold air advection over central Asia. The idealized model experiments also suggest that the BKS region is the most effective in affecting the midlatitude circulation than other regions over the Arctic.
Wind Induced Sediment Resuspension in a Microtidal Estuary
NASA Technical Reports Server (NTRS)
Booth, J. G.; Miller, R. L.; McKee, B. A.; Leathers, R. A.
1999-01-01
Bottom sediment resuspension frequency, duration and extent (% of bottom sediments affected) were characterized for the fifteen month period from September 1995 to January 1997 for the Barataria Basin, LA. An empirical model of sediment resuspension as a function of wind speed, direction, fetch and water depth was derived from wave theory. Water column turbidity was examined by processing remotely sensed radiance information from visible and near-IR AVHRR imagery. Based on model predictions, wind induced resuspension occurred during all seasons of this study. Seasonal characteristics for resuspension reveal that late fall, winter and early spring are the periods of most frequent and intense resuspension. Model predictions of the critical wind speed required to induce resuspension indicate that winds of 4 m/s (averaged over all wind directions resuspend approximately 50% of bottom sediments in the water bodies examined. Winds of this magnitude (4 m/s) occurred for 80% of the time during the late fall, winter and early spring and for approximately 30% of the time during the summer. More than 50% of the bottom sedimets are resuspended throughout the year, indicating the importance of resuspension as a process affecting sediment and biogeochemical fluxes in the Barataria Basin.
Impacts of crop rotations on soil organic carbon sequestration
NASA Astrophysics Data System (ADS)
Gobin, Anne; Vos, Johan; Joris, Ingeborg; Van De Vreken, Philippe
2013-04-01
Agricultural land use and crop rotations can greatly affect the amount of carbon sequestered in the soil. We developed a framework for modelling the impacts of crop rotations on soil carbon sequestration at the field scale with test case Flanders. A crop rotation geo-database was constructed covering 10 years of crop rotation in Flanders using the IACS parcel registration (Integrated Administration and Control System) to elicit the most common crop rotation on major soil types in Flanders. In order to simulate the impact of crop cover on carbon sequestration, the Roth-C model was adapted to Flanders' environment and coupled to common crop rotations extracted from the IACS geodatabases and statistical databases on crop yield. Crop allometric models were used to calculate crop residues from common crops in Flanders and subsequently derive stable organic matter fluxes to the soil (REGSOM). The REGSOM model was coupled to Roth-C model was run for 30 years and for all combinations of seven main arable crops, two common catch crops and two common dosages of organic manure. The common crops are winter wheat, winter barley, sugar beet, potato, grain maize, silage maize and winter rapeseed; the catch crops are yellow mustard and Italian ryegrass; the manure dosages are 35 ton/ha cattle slurry and 22 ton/ha pig slurry. Four common soils were simulated: sand, loam, sandy loam and clay. In total more than 2.4 million simulations were made with monthly output of carbon content for 30 years. Results demonstrate that crop cover dynamics influence carbon sequestration for a very large percentage. For the same rotations carbon sequestration is highest on clay soils and lowest on sandy soils. Crop residues of grain maize and winter wheat followed by catch crops contribute largely to the total carbon sequestered. This implies that agricultural policies that impact on agricultural land management influence soil carbon sequestration for a large percentage. The framework is therefore suited for further scenario analysis and impact assessment in order to support agri-environmental policy decisions.
Jachowski, David S.; Katzner, Todd; Rodrigue, Jane L.; Ford, W. Mark
2015-01-01
Conservation of animal migratory movements is among the most important issues in wildlife management. To address this need for landscape-scale monitoring of raptor populations, we developed a novel, baited photographic observation network termed the “Appalachian Eagle Monitoring Program” (AEMP). During winter months of 2008–2012, we partnered with professional and citizen scientists in 11 states in the United States to collect approximately 2.5 million images. To our knowledge, this represents the largest such camera-trap effort to date. Analyses of data collected in 2011 and 2012 revealed complex, often species-specific, spatial and temporal patterns in winter raptor movement behavior as well as spatial and temporal resource partitioning between raptor species. Although programmatic advances in data analysis and involvement are needed, the continued growth of the program has the potential to provide a long-term, cost-effective, range-wide monitoring tool for avian and terrestrial scavengers during the winter season. Perhaps most importantly, by relying heavily on citizen scientists, AEMP has the potential to improve long-term interest and support for raptor conservation and serve as a model for raptor conservation programs in other portions of the world.
A compound reconstructed prediction model for nonstationary climate processes
NASA Astrophysics Data System (ADS)
Wang, Geli; Yang, Peicai
2005-07-01
Based on the idea of climate hierarchy and the theory of state space reconstruction, a local approximation prediction model with the compound structure is built for predicting some nonstationary climate process. By means of this model and the data sets consisting of north Indian Ocean sea-surface temperature, Asian zonal circulation index and monthly mean precipitation anomaly from 37 observation stations in the Inner Mongolia area of China (IMC), a regional prediction experiment for the winter precipitation of IMC is also carried out. When using the same sign ratio R between the prediction field and the actual field to measure the prediction accuracy, an averaged R of 63% given by 10 predictions samples is reached.
NASA Astrophysics Data System (ADS)
Blazewicz, S.; White, R. A., III; Tas, N.; Euskirchen, E. S.; Mcfarland, J. W.; Jansson, J.; Waldrop, M. P.
2016-12-01
Permafrost contains a reservoir of frozen C estimated to be twice the size of the current atmospheric C pool. In response to changing climate, permafrost is rapidly warming which could result in widespread seasonal thawing. When permafrost thaws, soils that are rich in ice and C often transform into thermokarst wetlands with anaerobic conditions and significant production of atmospheric CH4. While most C flux research in recently thawed permafrost concentrates on the few summer months when seasonal thaw has occurred, there is mounting evidence that sizeable portions of annual CO2 and CH4 efflux occurs over winter or during a rapid burst of emissions associated with seasonal thaw. A potential mechanism for such efflux patterns is microbial activity in frozen soils over winter where gasses produced are partially trapped within ice until spring thaw. In order to better understand microbial transformation of soil C to greenhouse gas over winter, we applied stable isotope probing (SIP) targeted metagenomics combined with process measurements and field flux data to reveal activities of microbial communities in `frozen' soil from an Alaskan thermokarst bog. Field studies revealed build-up of CO2 and CH4 in frozen soils suggesting that microbial activity persisted throughout the winter in soils poised just below the freezing point. Laboratory incubations designed to simulate in-situ winter conditions (-1.5 °C and anaerobic) revealed continuous CH4 and CO2 production. Strikingly, the quantity of CH4 produced in 6 months in frozen soil was equivalent to approximately 80% of CH4 emitted during the 3 month summer `active' season. Heavy water SIP targeted iTag sequencing revealed growing bacteria and archaea in the frozen anaerobic soil. Growth was primarily observed in two bacterial phyla, Firmicutes and Bacteroidetes, suggesting that fermentation was likely the major C mineralization pathway. SIP targeted metagenomics facilitated characterization of the primary metabolic pathways in growing organisms that likely drove C mineralization. Results indicate that winter microbial activities can play an important role in controlling seasonal C flux in recent thawed permafrost and characterization of growing organisms leads to stronger mechanistic linkages between the soil microbial community and ecosystem processes.
N loss to drain flow and N2O emissions from a corn-soybean rotation with winter rye.
Gillette, K; Malone, R W; Kaspar, T C; Ma, L; Parkin, T B; Jaynes, D B; Fang, Q X; Hatfield, J L; Feyereisen, G W; Kersebaum, K C
2018-03-15
Anthropogenic perturbation of the global nitrogen cycle and its effects on the environment such as hypoxia in coastal regions and increased N 2 O emissions is of increasing, multi-disciplinary, worldwide concern, and agricultural production is a major contributor. Only limited studies, however, have simultaneously investigated NO 3 - losses to subsurface drain flow and N 2 O emissions under corn-soybean production. We used the Root Zone Water Quality Model (RZWQM) to evaluate NO 3 - losses to drain flow and N 2 O emissions in a corn-soybean system with a winter rye cover crop (CC) in central Iowa over a nine year period. The observed and simulated average drain flow N concentration reductions from CC were 60% and 54% compared to the no cover crop system (NCC). Average annual April through October cumulative observed and simulated N 2 O emissions (2004-2010) were 6.7 and 6.0kgN 2 O-Nha -1 yr -1 for NCC, and 6.2 and 7.2kgNha -1 for CC. In contrast to previous research, monthly N 2 O emissions were generally greatest when N loss to leaching were greatest, mostly because relatively high rainfall occurred during the months fertilizer was applied. N 2 O emission factors of 0.032 and 0.041 were estimated for NCC and CC using the tested model, which are similar to field results in the region. A local sensitivity analysis suggests that lower soil field capacity affects RZWQM simulations, which includes increased drain flow nitrate concentrations, increased N mineralization, and reduced soil water content. The results suggest that 1) RZWQM is a promising tool to estimate N 2 O emissions from subsurface drained corn-soybean rotations and to estimate the relative effects of a winter rye cover crop over a nine year period on nitrate loss to drain flow and 2) soil field capacity is an important parameter to model N mineralization and N loss to drain flow. Published by Elsevier B.V.
Shifting seasonal cycles of surface ozone: the role of regional vs. global emission changes
NASA Astrophysics Data System (ADS)
Clifton, O.; Fiore, A. M.; Correa, G. J.; Naik, V.; Horowitz, L. W.
2013-12-01
Surface-level ozone seasonal cycles vary in shape and in magnitude with location. These variations reflect local contributions, whose influence differs each month, from regional anthropogenic and natural precursor emissions, as well as ozone transported from various sources. We focus on two U.S. regions with markedly different seasonal cycles over recent decades: the Northeast and the InterMountain West. In the Northeast, there are peak ozone values in the summer months due to high regional NOx emissions, abundant sunlight and isoprene emissions during this season. The lower NOx emissions in the InterMountain West combined with higher altitude where transported 'background' ozone is larger, leads to a weak spring maximum. Parrish et al. [2013] report a shift in seasonal cycles to earlier months in spring over recent decades at remote sites. We investigate here the role of changing global and regional ozone precursor emissions over the 21st century. With GFDL's fully coupled climate chemistry model CM3, we use selected Representative Concentration Pathways (RCP) scenarios developed for the Coupled Model Intercomparison Project Phase 5 (CMIP5) in support of IPCC AR 5, and several sensitivity simulations, to examine the impacts of regional and global emissions on surface ozone seasonal cycles throughout the 21st century. In RCP8.5, an extreme climate warming scenario, methane doubles from the present to the end of the 21st century, whereas in RCP4.5, a more moderate climate warming scenario, there is a small (~10%) decrease of methane. For RCP8.5, global mean surface temperature increases by 4.5 K, and for RCP4.5, by 1.4 K. In RCP8.5 and RCP4.5, NOx emissions decrease globally by 70.1% and 52.3%, respectively, by the end of the 21st century. These regional NOx reductions shift the ozone maximum in the Northeast from summer to late winter/early spring, resembling the present-day seasonal cycle over the InterMountain West. Over the InterMoutain West, surface ozone also decreases in summer and increases in the late winter/early spring. We further find that in RCP8.5, the end of 21st century seasonal cycles in the Northeast and the InterMountain West increase by more than 5-15 ppb in each month due to the doubling of global methane. Across present-day high-NOx regions at northern mid-latitudes, surface ozone consistently decreases during the summer and fall months as NOx emissions decline globally, but in the RCP8.5 scenario increases during winter and early spring as CH4 rises.
Arctic Ocean Circulation Patterns Revealed by GRACE
NASA Astrophysics Data System (ADS)
Peralta-Ferriz, Cecilia; Morison, James H.; Wallace, John M.; Bonin, Jennifer A.; Zhang, Jinlun
2013-04-01
EOF analysis of non-seasonal, month-to-month variations in GRACE derived Arctic Ocean bottom pressure (OBP) yield three dominant modes. The first mode is a wintertime basin wide variation in mass associated with high atmospheric pressure (SLP) over Scandinavia. The second mode is a shift of mass from the central Arctic Ocean to the Siberian shelves due to low pressure over the basins, associated with the strength of the Arctic Oscillation. The third mode is a shift in mass between the Eastern and Western Siberian shelves, related to strength of the Beaufort High mainly in summer, and to eastward alongshore winds on the Barents Sea in winter. The PIOMAS and ECCO2 modeled OBP are consistent with the form of these modes and provide context in terms of variations in sea surface height. The models are used to investigate the ocean dynamics associated with each mode of OBP variability.
Water-resources data collected in the Devils Hole area, Ash Meadows, Nevada, 1975-76
Hanes, William Toby
1976-01-01
The U.S. Geological Survey collected water-level, spring-flow, and power-consumption data in the Devils Hole area in Nevada from July 1975 through June 1976. The work for this sfurth annual data report was done in cooperation with the National Park Service. Continuous recorders were used to monitor water levels in Devils Hole, three observation wells, and the flow from four springs. Also, monthly readings were made on two wells to help define a general trend of ground-water levels. Monthly meter readings of six electrically powered irrigation wells provided a record of power consumption, which in turn, is an index of the amount of water pumped. The purpose of the work is to observe the effects, if any, of ground-water withdrawals from specified irrigtion wells in the Ash Meadows area on (1) the water level in Devils Hole, and (2) the flow of four springs in the area. Fairbanks Spring and Big Spring, which are in the extreme northern and southern parts of Ash Meadows respectively, show little effect of pumping. An increase in the monthly average flow at Fairbanks Spring in September can be attributed to runoff and surficial recharge in the surrounding area caused by a large cloudburst. Jack Rabbit Spring, which is about 1 mile southwest of the major pumping field, is affected strongly by pumping. Jack Rabbit Spring flowed during the winter months but flowed very infrequently during non-winter months. Point of Rocks Spring had a flow pattern similar to Big Spring and Fairbanks Spring. All the springs had a general increase in flow during the Winter months. (Woodard-USGS)
NASA Astrophysics Data System (ADS)
Vyas, B. M.
2017-12-01
The analysis of investigation describes the experimental results of monthly surafcae short wave radiative(SWR) and longwave radaitive(LWR) atmospheric aerosols radaitive forcing derived from daily mesaured values of AOD at 550 nm from MODIS Terra and Acqau satellite as well as hourly measurement of AOD at 500nm from MICROTOPS _II sunsphotometer ( M/S Solar Light Co. USA) with round the clock of 24 hourly measurement of CNR-1 ( M/s KIP & ZONN, Netherland) during the clear sky days over Udaipur. For the present investigation, such above simulatneous daily data sets of period from Oct.,2011 to June 2017 were used to study the monthly and sesaonal ground level SWR and LWR over a semi- urban and semi-arid western Indian tropical site for pre- monsoon, post-monsoon and winter months. In this study, a well known method of computing surface SWR and LWR has been employed as Method -1 as suggested by Shrivastava et al., 2011. A stong and distinct different sesaonal surface SWR and LWR due to atmospheric aerosols has observed that the well defined seasonal neagtive SWR is observed maximum in pre- monsoon and minimum in winter and post-monsoon months. But in contary to the above, higher positive monthly LWR values are noticed in pre-monsoon as compared to in winter months. The The inter- annual sesaonal trend of the SWR and LWR are also noticed in the present work. The reslts of present study will be compared with other availlable simillar study using SBDART at other other Indian stations.
The winter season - Northern Great Plains
Lambeth, David O.; Faanes, Craig A.
1981-01-01
This winter was hardly a winter by usual standards. At Grand Forks six record highs were set in February, a month which averaged 11°F above normal, and a -20° reading was not recorded the entire season for the first time in 50 years. Fort Peck Lake in Montana finally iced over February 12, only to begin reopening three days later (CMC). Temperatures reached into the 70s in South Dakota and that state was "powdery dry" as a result of the driest weather in 37 years (EMS, DLB). Across the Region, snow cover was either absent or inconsequential.
Global marine bacterial diversity peaks at high latitudes in winter
Ladau, Joshua; Sharpton, Thomas J; Finucane, Mariel M; Jospin, Guillaume; Kembel, Steven W; O'Dwyer, James; Koeppel, Alexander F; Green, Jessica L; Pollard, Katherine S
2013-01-01
Genomic approaches to characterizing bacterial communities are revealing significant differences in diversity and composition between environments. But bacterial distributions have not been mapped at a global scale. Although current community surveys are way too sparse to map global diversity patterns directly, there is now sufficient data to fit accurate models of how bacterial distributions vary across different environments and to make global scale maps from these models. We apply this approach to map the global distributions of bacteria in marine surface waters. Our spatially and temporally explicit predictions suggest that bacterial diversity peaks in temperate latitudes across the world's oceans. These global peaks are seasonal, occurring 6 months apart in the two hemispheres, in the boreal and austral winters. This pattern is quite different from the tropical, seasonally consistent diversity patterns observed for most macroorganisms. However, like other marine organisms, surface water bacteria are particularly diverse in regions of high human environmental impacts on the oceans. Our maps provide the first picture of bacterial distributions at a global scale and suggest important differences between the diversity patterns of bacteria compared with other organisms. PMID:23514781
Crawford, Charles G.; Wilber, William G.; Peters, James G.
1980-01-01
A digital model calibrated to conditions in the Wabash River in Huntington County, Ind., was used to predict alternatives for future waste loadings that would be compatible with Indiana stream water-quality standards defined for two critical hydrologic conditons, summer and winter low flows. The major point-source waste load affecting the Wabash River in Huntington County is the Huntington wastewater-treatment facility. The most significnt factor potentially affecting the dissolved-oxygen concentration during summer low flows is nitrification. However, nitrification should not be a limiting factor on the allowable nitrogenous and carbonaceous waste loads for the Huntington wastewater-treatment facility during summer low flows if the ammonia-nitrogen toxicity standard for Indiana streams is met. The disolved-oxygen standard for Indiana stream, an average of 5.0 milligrams per liter, should be met during summer and winter low flows if the National Pollution Discharge Elimination System 's 5-day, carbonaceous biochemical-oxygen demands of a monthly average concentration of 30 milligrams per liter and a maximum weekly average of 45 milligrams per liter are not exceeded.
NASA Astrophysics Data System (ADS)
Best, Sara; Lundrigan, Sarah; Demirov, Entcho; Wroblewski, Joe
2011-10-01
Gilbert Bay on the southeast coast of Labrador is the site of the first Marine Protected Area (MPA) established in the subarctic coastal zone of eastern Canada. The MPA was created to conserve a genetically distinctive population of Atlantic cod, Gadus morhua. This article presents results from a study of the interannual variability in atmospheric and physical oceanographic characteristics of Gilbert Bay over the period 1949-2006. We describe seasonal and interannual variability of the atmospheric parameters at the sea surface in the bay. The interannual variability of the atmosphere in the Gilbert Bay region is related to the North Atlantic Oscillation (NAO) and a recent warming trend in the local climate of coastal Labrador. The related changes in seawater temperature, salinity and sea-ice thickness in winter are simulated with a one-dimensional water column model, the General Ocean Turbulence Model (GOTM). A warming Gilbert Bay ecosystem would be favorable for cod growth, but reduced sea-ice formation during the winter months increases the danger of traveling across the bay by snowmobile.
Attribution of UK Winter Floods to Anthropogenic Forcing
NASA Astrophysics Data System (ADS)
Schaller, N.; Alison, K.; Sparrow, S. N.; Otto, F. E. L.; Massey, N.; Vautard, R.; Yiou, P.; van Oldenborgh, G. J.; van Haren, R.; Lamb, R.; Huntingford, C.; Crooks, S.; Legg, T.; Weisheimer, A.; Bowery, A.; Miller, J.; Jones, R.; Stott, P.; Allen, M. R.
2014-12-01
Many regions of southern UK experienced severe flooding during the 2013/2014 winter. Simultaneously, large areas in the USA and Canada were struck by prolonged cold weather. At the time, the media and public asked whether the general rainy conditions over northern Europe and the cold weather over North America were caused by climate change. Providing an answer to this question is not trivial, but recent studies show that probabilistic event attribution is feasible. Using the citizen science project weather@home, we ran over 40'000 perturbed initial condition simulations of the 2013/2014 winter. These simulations fall into two categories: one set aims at simulating the world with climate change using observed sea surface temperatures while the second set is run with sea surface temperatures corresponding to a world that might have been without climate change. The relevant modelled variables are then downscaled by a hydrological model to obtain river flows. First results show that anthropogenic climate change led to a small but significant increase in the fractional attributable risk for 30-days peak flows for the river Thames. A single number can summarize the final result from probabilistic attribution studies indicating, for example, an increase, decrease or no change to the risk of the event occurring. However, communicating this to the public, media and other scientists remains challenging. The assumptions made in the chain of models used need to be explained. In addition, extreme events, like the UK floods of the 2013/2014 winter, are usually caused by a range of factors. While heavy precipitation events can be caused by dynamic and/or thermodynamic processes, floods occur only partly as a response to heavy precipitation. Depending on the catchment, they can be largely due to soil properties and conditions of the previous months. Probabilistic attribution studies are multidisciplinary and therefore all aspects need to be communicated properly.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-03
..., and 6 openings in September. During the winter months the bridge rarely opens since the recreational vessels that transit this waterway are normally in winter storage. The owner of the bridge, New York State... January 31, 2012, the draw shall open every three hours between 8 a.m. and 5 p.m., after at least a two...
Long-term flow forecasts based on climate and hydrologic modeling: Uruguay River basin
NASA Astrophysics Data System (ADS)
Tucci, Carlos Eduardo Morelli; Clarke, Robin Thomas; Collischonn, Walter; da Silva Dias, Pedro Leite; de Oliveira, Gilvan Sampaio
2003-07-01
This paper describes a procedure for predicting seasonal flow in the Rio Uruguay drainage basin (area 75,000 km2, lying in Brazilian territory), using sequences of future daily rainfall given by the global climate model (GCM) of the Brazilian agency for climate prediction (Centro de Previsão de Tempo e Clima, or CPTEC). Sequences of future daily rainfall given by this model were used as input to a rainfall-runoff model appropriate for large drainage basins. Forecasts of flow in the Rio Uruguay were made for the period 1995-2001 of the full record, which began in 1940. Analysis showed that GCM forecasts underestimated rainfall over almost all the basin, particularly in winter, although interannual variability in regional rainfall was reproduced relatively well. A statistical procedure was used to correct for the underestimation of rainfall. When the corrected rainfall sequences were transformed to flow by the hydrologic model, forecasts of flow in the Rio Uruguay basin were better than forecasts based on historic mean or median flows by 37% for monthly flows and by 54% for 3-monthly flows.
Performance of univariate forecasting on seasonal diseases: the case of tuberculosis.
Permanasari, Adhistya Erna; Rambli, Dayang Rohaya Awang; Dominic, P Dhanapal Durai
2011-01-01
The annual disease incident worldwide is desirable to be predicted for taking appropriate policy to prevent disease outbreak. This chapter considers the performance of different forecasting method to predict the future number of disease incidence, especially for seasonal disease. Six forecasting methods, namely linear regression, moving average, decomposition, Holt-Winter's, ARIMA, and artificial neural network (ANN), were used for disease forecasting on tuberculosis monthly data. The model derived met the requirement of time series with seasonality pattern and downward trend. The forecasting performance was compared using similar error measure in the base of the last 5 years forecast result. The findings indicate that ARIMA model was the most appropriate model since it obtained the less relatively error than the other model.
Towner, Alison V; Underhill, Les G; Jewell, Oliver J D; Smale, Malcolm J
2013-01-01
The seasonal occurrence of white sharks visiting Gansbaai, South Africa was investigated from 2007 to 2011 using sightings from white shark cage diving boats. Generalized linear models were used to investigate the number of great white sharks sighted per trip in relation to sex, month, sea surface temperature and Multivariate El Niño/Southern Oscillation (ENSO) Indices (MEI). Water conditions are more variable in summer than winter due to wind-driven cold water upwelling and thermocline displacement, culminating in colder water temperatures, and shark sightings of both sexes were higher during the autumn and winter months (March-August). MEI, an index to quantify the strength of Southern Oscillation, differed in its effect on the recorded numbers of male and female white sharks, with highly significant interannual trends. This data suggests that water temperature and climatic phenomena influence the abundance of white sharks at this coastal site. In this study, more females were seen in Gansbaai overall in warmer water/positive MEI years. Conversely, the opposite trend was observed for males. In cool water years (2010 to 2011) sightings of male sharks were significantly higher than in previous years. The influence of environmental factors on the physiology of sharks in terms of their size and sex is discussed. The findings of this study could contribute to bather safety programmes because the incorporation of environmental parameters into predictive models may help identify times and localities of higher risk to bathers and help mitigate human-white shark interactions.
Mars at Ls 145o: Acidalia/Mare Erythraeum
NASA Technical Reports Server (NTRS)
2005-01-01
11 January 2004 This picture is a composite of Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) daily global images acquired at Ls 145o during a previous Mars year. This month, Mars looks similar, as Ls 145o occurs in mid-January 2005. This picture shows the Acidalia/Mare Erythraeum face of Mars. Over the course of the month, additional faces of Mars as it appears at this time of year are being posted for MOC Picture of the Day. Ls, solar longitude, is a measure of the time of year on Mars. Mars travels 360o around the Sun in 1 Mars year. The year begins at Ls 0o--the start of northern spring and southern summer. In January 2005, it is northern summer and southern winter. The seasons on Mars occur according to Ls, described in thefollowing table: Ls Season 0 - 90 northern spring, southern autumn 90 - 180 northern summer, southern winter 180 - 270 northern autumn, southern spring 270 - 360 northern winter, southern summerMars at Ls 145o: Elysium/Mare Cimmerium
NASA Technical Reports Server (NTRS)
2005-01-01
This picture is a composite of Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) daily global images acquired at Ls 145 during a previous Mars year. This month, Mars looked similar, as Ls 145 occurred in mid-January 2005. This picture shows the Elysium/Mare Cimmerium face of Mars. Over the course of the month, additional faces of Mars as it appears at this time of year were posted for MOC Picture of the Day. Ls, solar longitude, is a measure of the time of year on Mars. Mars travels 360 around the Sun in 1 Mars year. The year begins at Ls 0 -- the start of northern spring and southern summer. In January 2005, it is northern summer and southern winter. The seasons on Mars occur according to Ls, described in the following table: Ls Season 0 - 90 northern spring, southern autumn 90 - 180 northern summer, southern winter 180 - 270 northern autumn, southern spring 270 - 360 northern winter, southern summerEnglish, A W
1979-07-01
The anterior mesenteric arteries of 138 horses slaughtered in southern Queensland were examined for the presence of S. vulgaris larvae. Seasonal differences were noted in the size of arterial populations of this parasite, with higher mean monthly numbers of worms per horse occurring in winter. There was an equally high incidence of severe verminous arteritis during the winter months of June, July and August, compared to arteries examined during the warmer months, when there were smaller numbers of larvae. It was concluded that more infective larvae were available on pasture during the warmer months, with subsequently large arterial populations some 3 to 4 months later. The parasite was encountered in 121 arteries (88%). The prevalence of adult helminths in the caeca of the same group of horses was S. vulgaris 88%; S. equinus 70%; S. edentatus 18%; Triodontophorus spp. 23%; A. perfoliata 62%. The overall prevalence of S. vulgaris was 93%, when the results of arterial and caecal observations were combined.
NASA Astrophysics Data System (ADS)
Kessouri, Faycal; Ulses, Caroline; Estournel, Claude; Marsaleix, Patrick; D'Ortenzio, Fabrizio; Severin, Tatiana; Taillandier, Vincent; Conan, Pascal
2018-03-01
A 3-D high-resolution coupled hydrodynamic-biogeochemical model of the western Mediterranean was used to study phytoplankton dynamics and organic carbon export in three regions with contrasting vertical regimes, ranging from deep convection to a shallow mixed layer. One month after the initial increase in surface chlorophyll (caused by the erosion of the deep chlorophyll maximum), the autumnal bloom was triggered in all three regions by the upward flux of nutrients resulting from mixed layer deepening. In contrast, at the end of winter, the end of turbulent mixing favored the onset of the spring bloom in the deep convection region. Low grazing pressure allowed rapid phytoplankton growth during the bloom. Primary production in the shallow mixed layer region, the Algerian subbasin, was characterized by a long period (4 months) of sustained phytoplankton development, unlike the deep convection region where primary production was inhibited during 2 months in winter. Despite seasonal variations, annual primary production in all three regions is similar. In the deep convection region, total organic carbon export below the photic layer (150 m) and transfer to deep waters (800 m) was 5 and 8 times, respectively, higher than in the Algerian subbasin. Although some of the exported material will be injected back into the surface layer during the next convection event, lateral transport, and strong interannual variability of MLD in this region suggest that a significant amount of exported material is effectively sequestrated.
Movements and distribution of polar bears in the Beaufort sea
Amstrup, Steven C.; Durner, George M.; Stirling, I.; Lunn, N.J.; Messier, F.
2000-01-01
We fitted 173 satellite radio collars (platform transmitter terminals) to 121 adult female polar bears in the Beaufort Sea and relocated the bears 44 736 times between 1985 and 1995. We regularly resighted many instrumented bears so that we could ascertain whether changes in movements or distribution were related to reproductive status. Mean short-term movement rates were less than 2 km/h for all classes of bears. Maximum movement rates occurred in winter and early summer. In the southern Beaufort Sea (SBS), net geographic movements from the beginning to the end of each month were smaller for females with cubs of the year than for solitary females, and larger in November than in April, May, or July. In May, June, July, and August, radio-collared bears in the SBS moved north. They moved south in October. In the northern Beaufort Sea (NBS), bears moved north in June and south in March and September. Total annual movements ranged from 1406 to 6203 km. Mean total distances moved each month ranged from 79 to 420 km. Total monthly movements by SBS bears were largest in early winter and smallest in early spring. In the NBS, movements were largest in summer and smallest in winter. In the SBS, females with cubs moved less each month than other females. Annual activity areas ranged from 7264 to 596 800 km2. Monthly activity areas ranged from 88 to 9760 km2. Seasonal fidelity to activity areas of bears captured in all parts of the Beaufort Sea was strongest in summer and weakest in spring.
THE GENERAL ECOLOGY AND GROWTH OF A SOLITARY ASCIDIAN, CORELLA WILLMERIANA.
Lambert, Gretchen
1968-10-01
1. A one-year field study of the ecology of the solitary ascidian Corella willmeriana Herdman was conducted between April, 1966, and April, 1967, at the Bremerton Yacht Club, Bremerton, Washington, where two polyvinyl chloride frames containing glass plates were examined at monthly intervals. 2. The results indicate that Corella is a primary colonizer, preferring to settle on clean surfaces. Growth is rapid during the summer, when sexual maturity, corresponding to a size of 12 mm., may be attained in three months and life span is approximately five months. Individuals grow at a slower rate and live longer during the winter; the life span then is seven or eight months. 3. Very young specimens of Corella are frequently overgrown during the winter by the colonial ascidian Diplosoma macdonaldi. The causes of death of adult Corella are not completely known, although a small percentage of them are eaten by the polyclad flatworm Eurylepta leoparda. A luxuriant spring growth of filamentous diatoms may cause death of adult Corella by smothering them.
Dispersion of atmospheric air pollution in summer and winter season.
Cichowicz, Robert; Wielgosiński, Grzegorz; Fetter, Wojciech
2017-11-04
Seasonal variation of air pollution is associated with variety of seasons and specificity of particular months which form the so-called summer and winter season also known as the "heating" season. The occurrence of higher values of air pollution in different months of a year is associated with the type of climate, and accordingly with different atmospheric conditions in particular months, changing state of weather on a given day, and anthropogenic activity. The appearance of these conditions results in different levels of air pollution characteristic for a given period. The study uses data collected during a seven-year period (2009-2015) in the automatic measuring station of immissions located in Eastern Wielkopolska. The analysis concerns the average and maximum values of air pollution (i.e., particulate matter PM10, sulfur dioxide, nitrogen dioxide, carbon monoxide, and ozone) from the perspective of their occurrence in particular seasons and months or in relation to meteorological actors such as temperature, humidity, and wind speed.
Southwell, Colin; Emmerson, Louise; Lunn, Daniel
2018-01-01
Polar seabirds adopt different over-wintering strategies to survive and build condition during the critical winter period. Penguin species either reside at the colony during the winter months or migrate long distances. Tracking studies and survey methods have revealed differences in winter migration routes among penguin species and colonies, dependent on both biotic and abiotic factors present. However, scan sampling methods are rarely used to reveal non-breeding behaviors during winter and little is known about presence at the colony site over this period. Here we show that Adélie penguins on the Yalour Islands in the Western Antarctic Peninsula (WAP) are present year-round at the colony and undergo a mid-winter peak in abundance during winter. We found a negative relationship between daylight hours and penguin abundance when either open water or compact ice conditions were present, suggesting that penguins return to the breeding colony when visibility is lowest for at-sea foraging and when either extreme low or high levels of sea ice exist offshore. In contrast, Adélie penguins breeding in East Antarctica were not observed at the colonies during winter, suggesting that Adélie penguins undergo differential winter strategies in the marginal ice zone on the WAP compared to those in East Antarctica. These results demonstrate that cameras can successfully monitor wildlife year-round in areas that are largely inaccessible during winter. PMID:29561876
NASA Astrophysics Data System (ADS)
Pathak, B.
2015-12-01
The diurnal evolution of shortwave solar radiance at the surface has been investigated from Kipp and Zonen CNR4 net radiometer measurements in a humid sub-tropical location Dibrugarh in the North Eastern region of India. Data for a total of 345 clear days within a span of two years during March 2013- January 2015 are analyzed which are further utilized to validate the Santa Barbara Discrete Ordinate Radiative Transfer (SBDART) simulated flux. The diurnal evolution of solar radiation maximizes in its amplitude in monsoon months (JJAS) and is minimum during the winter months (DJF) prescribed by the Northern Hemisphere routine. The net shortwave radiation increases from the minimum value of ~100 Wm-2 at the beginning of the year and attains maximum ~300 Wm-2 during monsoon. Both the measured and model simulated diurnal and seasonal solar flux exhibit similar behaviour at the surface with good correlation with R2~ 0.98-0.99. The present study also focuses on the validation of the surface albedo and the albedo retrieved from the Moderate Resolution Imaging Spectroradiometer (MODIS) measurements by the CNR4 net Radiometer measurements, which again shows a good agreement. This validation is essential for the reliability of satellite retrieved surface reflectance that are being utilised in the radiative transfer models. In order to study the influence of the aerosols upon the incoming solar irradiances the aerosol radiative forcing (ARF) and aerosol radiative forcing efficiency (ARFE) is estimated. The ARFEsurface during the Winter is the highest (-75.02 ± 8.03 W m-2 τ-1) and minimum during Retreating Monsoon (ON) (-58.40 ±25.03 W m-2 τ-1). For both the modeled and the field based estimation, the aerosol radiative forcing obtained during the study period ranged from -39 ±6 Wm-2 to -10 ±4 Wm-2 at the surface and 10±3 Wm-2 to 28±7 Wm-2 at the atmosphere and -7±4 Wm-2 to -10 ±3 Wm-2 at the TOA. The measured and the model ARF values differ by 5 - 8 % in winter and premonsoon and almost ~6% in monsoon. The average atmospheric heating rate is maximum in pre-monsoon for both the estimations. The observation of ARF is further compared with the ICTP's RegCM4 model in order to acquire the model utility in the location where measurements are not feasible.
Gabrey, S.W.; Afton, A.D.
2001-01-01
Many marshes in the Gulf Coast Chenier Plain, USA, are managed through a combination of fall or winter burning and structural marsh management (i.e., levees and water control structures; hereafter SMM). The goals of winter burning and SMM include improvement of waterfowl and furbearer habitat, maintenance of historic isohaline lines, and creation and maintenance of emergent wetlands. Although management practices are intended to influence the plant community, effects of these practices on primary productivity have not been investigated. Marsh processes, such as vertical accretion and nutrient cycles, which depend on primary productivity may be affected directly or indirectly by winter burning or SMM. We compared Chenier Plain plant community characteristics (species composition and above- and belowground biomass) in experimentally burned and unburned control plots within impounded and unimpounded marshes at 7 months (1996), 19 months (1997), and 31 months (1998) after burning. Burning and SMM did not affect number of plant species or species composition in our experiment. For all three years combined, burned plots had higher live above-ground biomass than did unburned plots. Total above-ground and dead above-ground biomasses were reduced in burned plots for two and three years, respectively, compared to those in unburned control plots. During all three years, belowground biomass was lower in impounded than in unimpounded marshes but did not differ between burn treatments. Our results clearly indicate that current marsh management practices influence marsh primary productivity and may impact other marsh processes, such as vertical accretion, that are dependent on organic matter accumulation and decay.
Bacheler, N.M.; Buckel, J.A.; Hightower, J.E.; Paramore, L.M.; Pollock, K.H.
2009-01-01
A joint analysis of tag return and telemetry data should improve estimates of mortality rates for exploited fishes; however, the combined approach has thus far only been tested in terrestrial systems. We tagged subadult red drum (Sciaenops ocellatus) with conventional tags and ultrasonic transmitters over 3 years in coastal North Carolina, USA, to test the efficacy of the combined telemetry - tag return approach. There was a strong seasonal pattern to monthly fishing mortality rate (F) estimates from both conventional and telemetry tags; highest F values occurred in fall months and lowest levels occurred during winter. Although monthly F values were similar in pattern and magnitude between conventional tagging and telemetry, information on F in the combined model came primarily from conventional tags. The estimated natural mortality rate (M) in the combined model was low (estimated annual rate ?? standard error: 0.04 ?? 0.04) and was based primarily upon the telemetry approach. Using high-reward tagging, we estimated different tag reporting rates for state agency and university tagging programs. The combined telemetry - tag return approach can be an effective approach for estimating F and M as long as several key assumptions of the model are met.
NASA Technical Reports Server (NTRS)
Lim, Young-Kwon; Kim, Hae-Dong
2014-01-01
The large-scale impacts of the Arctic Oscillation (AO) and the East Atlantic/West Russia (EA/WR) teleconnection on the East Asian winter climate anomalies are compared for the past 34 winters focusing on 1) interannual monthly to seasonal temperature variability, 2) East Asian winter monsoon (EAWM), and 3) the Siberian high (SH) and cold surge. Regression analysis reveals warming by AO and EA/WR over mid-latitude East Asia during their positive phase and vice versa. The EA/WR impact is found to be comparable to the AO impact in affecting the East Asian temperature and monsoon. For example, warm (cold) months over mid-latitude East Asia during the positive (negative) AO are clearly seen when the AO and EA/WR are in the same phase. Near zero correlation is found between temperature and the AO phase when both teleconnections are in an opposite phase. The well-known negative relationship between SH and the AO phase is observed significantly more often when the AO is in the same phase with the EA/WR. Also, the indices of EAWM, cold surge, and SH are found to be more highly negative-correlated with the EA/WR rather than with the AO. The advective temperature change and associated circulation demonstrate that the anomalous large-scale field including the SH over the mid-latitude Asian inland is better represented by the EA/WR, influencing the East Asian winter climates. These results suggest that the impact of EA/WR should be considered more important than previously thought for a better understanding of East Asian winter temperature and monsoon variability.
French, John R. P.; Schloesser, Don W.
1996-01-01
We studied the distribution and winter survival of the Asian clam, Corbicula fluminea, in the St. Clair River from the fall of 1988 to the spring of 1990. Between fall of 1988 and spring of 1989, distribution of Corbicula was extended from 5.5 to 11.5 km downstream from an electric power plant. However, total abundance of clams decreased during the winter. By fall of 1989, Corbicula was found 14.5 km from the power plant, and the mean density of clams was 27 individuals/m2. Between fall of 1989 and spring of 1990, distribution was reduced to 7.5 km from the power plant and abundance decreased 97%. During the winter of 1988-1989, we collected clams monthly from one station 2.2 km from the power plant, and we observed that clams survived the harsh winter for two months after the water temperature dropped about 1.5°C below the reported lethal level for Corbicula in midwinter. During the winer of 1989-1990, we held clams at the sediment-water interface in enclosures, and we observed that condition indices (dry body weight; dry shell weight) of clams remained stable (mean = 0.05 ± 0.01) in December and January and then declined significantly (p < 0.05) to 0.04 ± 0.01 in February. All clams perished by late March. The deteriorating physiological state of clams, as indicated by declining condition index, seemingly is a factor in late winter mortalities of Corbicula in the St. Clair River. In contrast to the rapid geographic spread and population increases in the southern United States, Corbicula likely will not spread rapidly throughout the Great Lakes beyond shoreline thermal refugia of heated-water discharge plumes from power plants.
Linking the pacific decadal oscillation to seasonal stream discharge patterns in Southeast Alaska
Neal, E.G.; Todd, Walter M.; Coffeen, C.
2002-01-01
This study identified and examined differences in Southeast Alaskan streamflow patterns between the two most recent modes of the Pacific decadal oscillation (PDO). Identifying relationships between the PDO and specific regional phenomena is important for understanding climate variability, interpreting historical hydrological variability, and improving water-resources forecasting. Stream discharge data from six watersheds in Southeast Alaska were divided into cold-PDO (1947-1976) and warm-PDO (1977-1998) subsets. For all watersheds, the average annual streamflows during cold-PDO years were not significantly different from warm-PDO years. Monthly and seasonal discharges, however, did differ significantly between the two subsets, with the warm-PDO winter flows being typically higher than the cold-PDO winter flows and the warm-PDO summer flows being typically lower than the cold-PDO flows. These results were consistent with and driven by observed temperature and snowfall patterns for the region. During warm-PDO winters, precipitation fell as rain and ran-off immediately, causing higher than normal winter streamflow. During cold-PDO winters, precipitation was stored as snow and ran off during the summer snowmelt, creating greater summer streamflows. The Mendenhall River was unique in that it experienced higher flows for all seasons during the warm-PDO relative to the cold-PDO. The large amount of Mendenhall River discharge caused by glacial melt during warm-PDO summers offset any flow reduction caused by lack of snow accumulation during warm-PDO winters. The effect of the PDO on Southeast Alaskan watersheds differs from other regions of the Pacific Coast of North America in that monthly/seasonal discharge patterns changed dramatically with the switch in PDO modes but annual discharge did not. ?? 2002 Elsevier Science B.V. All rights reserved.
Guibert, Michèle; Leclerc, Aurélie; Andrivon, Didier; Tivoli, Bernard
2012-01-01
Plant diseases are caused by pathogen populations continuously subjected to evolutionary forces (genetic flow, selection, and recombination). Ascochyta blight, caused by Mycosphaerella pinodes, is one of the most damaging necrotrophic pathogens of field peas worldwide. In France, both winter and spring peas are cultivated. Although these crops overlap by about 4 months (March to June), primary Ascochyta blight infections are not synchronous on the two crops. This suggests that the disease could be due to two different M. pinodes populations, specialized on either winter or spring pea. To test this hypothesis, 144 pathogen isolates were collected in the field during the winter and spring growing seasons in Rennes (western France), and all the isolates were genotyped using amplified fragment length polymorphism (AFLP) markers. Furthermore, the pathogenicities of 33 isolates randomly chosen within the collection were tested on four pea genotypes (2 winter and 2 spring types) grown under three climatic regimes, simulating winter, late winter, and spring conditions. M. pinodes isolates from winter and spring peas were genetically polymorphic but not differentiated according to the type of cultivars. Isolates from winter pea were more pathogenic than isolates from spring pea on hosts raised under winter conditions, while isolates from spring pea were more pathogenic than those from winter pea on plants raised under spring conditions. These results show that disease developed on winter and spring peas was initiated by a single population of M. pinodes whose pathogenicity is a plastic trait modulated by the physiological status of the host plant. PMID:23023742
NASA Astrophysics Data System (ADS)
Comas-Bru, Laia; McDermott, Frank
2013-04-01
Much of the 20th century multi-decadal variability in the NAO-winter precipitation relationship over the N. Atlantic / European sector can be ascribed to the combined effects of the North Atlantic Oscillation (NAO) and either the East Atlantic pattern (EA) or the Scandinavian pattern (SCA). The NAO, EA and SCA indices employed here are defined as the three leading vectors of the cross-correlation matrix calculated from monthly sea-level pressure anomalies for 138 complete winters from the 20CRv2 dataset (Compo et al., 2011). Winter precipitation data over Europe for the entire 20th century is derived from the high resolution CRU-TS3.1 climate dataset (Mitchell and Jones, 2005). Here we document for the first time, that different NAO/EA and NAO/SCA combinations systematically influence winter precipitation conditions in Europe as a consequence of NAO dipole migrations. We find that the zero-correlated line of the NAO-winter precipitation relationship migrates southwards when the EA is in the opposite phase to the NAO. This can be related to a south-westwards migration of the NAO dipole under these conditions, as shown by teleconnectivity maps. Similarly, a clockwise movement of the NAO-winter climate correlated areas occurs when the phase of the SCA is opposite to that of the NAO, reflecting a clockwise movement of the NAO dipole under these conditions. An important implication of these migrations is that they influence the spatial and temporal stationarity of climate-NAO relationships. As a result, the link between winter precipitation patterns and the NAO is not straightforward in some regions such as the southern UK, Ireland and France. For instance, much of the inter-annual variability in the N-S winter precipitation gradient in the UK, originally attributed to inter-annual and inter-decadal variability of the NAO, reflects the migration of the NAO dipole, linked to linear combinations of the NAO and the EA. Our results indicate that when the N-S winter precipitation gradient is accentuated by the occurrence of a positive EA during positive NAO winters, drier conditions than normal are found in the southern UK. This is consistent, for example, with the severe winter drought of 1976, when computed NAO and EA indices were both positive (0.97 and 1.87, respectively), illustrating the modulating effect of NAO/EA combinations on winter precipitation patterns in the southern UK. References: Compo GP et al. 2011. The Twentieth Century Reanalysis Project. Quarterly Journal of the Royal Meteorological Society, 137 (654), 1-28. Mitchell TD, Jones PD. 2005. An improved method for constructing a database of monthly climate observations and associated high-resolution grids. International Journal of Climatology, 25, 693-712.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doherty, K.E.; Naugle, D.E.; Walker, B.L.
Recent energy development has resulted in rapid and large-scale changes to western shrub-steppe ecosystems without a complete understanding of its potential impacts on wildlife populations. We modeled winter habitat use by female greater sage-grouse (Centrocercus urophasianus) in the Powder River Basin (PRB) of Wyoming and Montana, USA, to 1) identify landscape features that influenced sage-grouse habitat selection, 2) assess the scale at which selection occurred, 3) spatially depict winter habitat quality in a Geographic Information System, and 4) assess the effect of coal-bed natural gas (CBNG) development on winter habitat selection. We developed a model of winter habitat selection basedmore » on 435 aerial relocations of 200 radiomarked female sage-grouse obtained during the winters of 2005 and 2006. Percent sagebrush (Artemisia spp.) cover on the landscape was an important predictor of use by sage-grouse in winter. Sage-grouse were 1.3 times more likely to occupy sagebrush habitats that lacked CBNG wells within a 4-km{sup 2} area, compared to those that had the maximum density of 12.3 wells per 4 km{sup 2} allowed on federal lands. We validated the model with 74 locations from 74 radiomarked individuals obtained during the winters of 2004 and 2007. This winter habitat model based on vegetation, topography, and CBNG avoidance was highly predictive (validation R{sup 2} = 0.984). Our spatially explicit model can be used to identify areas that provide the best remaining habitat for wintering sage-grouse in the PRB to mitigate impacts of energy development.« less
A 305 year monthly rainfall series for the Island of Ireland (1711-2016)
NASA Astrophysics Data System (ADS)
Murphy, Conor; Burt, Tim P.; Broderick, Ciaran; Duffy, Catriona; Macdonald, Neil; Matthews, Tom; McCarthy, Mark P.; Mullan, Donal; Noone, Simon; Ryan, Ciara; Thorne, Peter; Walsh, Seamus; Wilby, Robert L.
2017-04-01
This paper derives a continuous 305-year monthly rainfall series for the Island of Ireland (IoI) for the period 1711-2016. Two key data sources are employed: i) a previously unpublished UK Met Office Note which compiled annual rainfall anomalies and corresponding monthly per mille amounts from weather diaries and early observational records for the period 1711-1977; and ii) a long-term, homogenised monthly IoI rainfall series for the period 1850-2016. Using estimates of long-term average precipitation sampled from the quality assured series, the full record is reconstituted and insights drawn regarding notable periods and the range of climate variability and change experienced. Consistency with other long records for the region is examined, including: the England and Wales Precipitation series (EWP; 1766-2016); the early EWP Glasspoole series (1716-1765) and the Central England Temperature series (CET; 1711-2016). Strong correspondence between all records is noted from 1780 onwards. While disparities are evident between the early EWP and Ireland series, the latter shows strong decadal consistency with CET throughout the record. In addition, independent, early observations from Cork and Dublin, along with available documentary sources, corroborate the derived series and add confidence to our reconstruction. The new IoI rainfall record reveals that the wettest decades occurred in the early 18th Century, despite the fact that IoI has experienced a long-term winter wetting trend consistent with climate model projections. These exceptionally wet winters of the 1720s and 1730s were concurrent with almost unprecedented warmth in the CET, glacial advance throughout Scandinavia, and glacial retreat in West Greenland, consistent with a wintertime NAO-type forcing. Our study therefore demonstrates the value of long-term observational records for providing insight to the natural climate variability of the North Atlantic region.
Daily, monthly, seasonal, and annual ammonia emissions from Southern High Plains cattle feedyards.
Todd, Richard W; Cole, N Andy; Rhoades, Marty B; Parker, David B; Casey, Kenneth D
2011-01-01
Ammonia emitted from beef cattle feedyards adds excess reactive N to the environment, contributes to degraded air quality as a precursor to secondary particulate matter, and represents a significant loss of N from beef cattle feedyards. We used open path laser spectroscopy and an inverse dispersion model to quantify daily, monthly, seasonal, and annual NH emissions during 2 yr from two commercial cattle feedyards in the Panhandle High Plains of Texas. Annual patterns of NH fluxes correlated with air temperature, with the greatest fluxes (>100 kg ha d) during the summer and the lowest fluxes (<15 kg ha d) during the winter. Mean monthly per capita emission rate (PCER) of NH-N at one feedyard ranged from 31 g NH-N head d (January) to 207 g NH-N head d (October), when increased dietary crude protein from wet distillers grains elevated emissions. Ammonia N emissions at the other feedyard ranged from 36 g NH-N head d (January) to 121 g NH-N head d (September). Monthly fractional NH-N loss ranged from a low of 19 to 24% to a high of 80 to 85% of fed N at the two feedyards. Seasonal PCER at the two feedyards averaged 60 to 71 g NH-N head d during winter and 103 to 158 g NH-N head d during summer. Annually, PCER was 115 and 80 g NH-N head d at the two feedyards, which represented 59 and 52% of N fed to the cattle. Detailed studies are needed to determine the effect of management and environmental variables such as diet, temperature, precipitation, and manure water content on NH emissions. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Variability of Winter Air Temperature in Mid-Latitude Europe
NASA Technical Reports Server (NTRS)
Otterman, J.; Ardizzone, J.; Atlas, R.; Bungato, D.; Cierniewski, J.; Jusem, J. C.; Przybylak, R.; Schubert, S.; Starr, D.; Walczewski, J.
2002-01-01
The aim of this paper is to report extreme winter/early-spring air temperature (hereinafter temperature) anomalies in mid-latitude Europe, and to discuss the underlying forcing to these interannual fluctuations. Warm advection from the North Atlantic in late winter controls the surface-air temperature, as indicated by the substantial correlation between the speed of the surface southwesterlies over the eastern North Atlantic (quantified by a specific Index Ina) and the 2-meter level air temperatures (hereinafter Ts) over Europe, 45-60 deg N, in winter. In mid-March and subsequently, the correlation drops drastically (quite often it is negative). This change in the relationship between Ts and Ina marks a transition in the control of the surface-air temperature: absorption of insolation replaces the warm advection as the dominant control. This forcing by maritime-air advection in winter was demonstrated in a previous publication, and is re-examined here in conjunction with extreme fluctuations of temperatures in Europe. We analyze here the interannual variability at its extreme by comparing warm-winter/early-spring of 1989/90 with the opposite scenario in 1995/96. For these two December-to-March periods the differences in the monthly mean temperature in Warsaw and Torun, Poland, range above 10 C. Short-term (shorter than a month) fluctuations of the temperature are likewise very strong. We conduct pentad-by-pentad analysis of the surface-maximum air temperature (hereinafter Tmax), in a selected location, examining the dependence on Ina. The increased cloudiness and higher amounts of total precipitable water, corollary effects to the warm low-level advection. in the 1989/90 winter, enhance the positive temperature anomalies. The analysis of the ocean surface winds is based on the Special Sensor Microwave/Imager (SSM/I) dataset; ascent rates, and over land wind data are from the European Centre for Medium-Range Weather Forecasts (ECMWF); maps of 2-m temperature, cloud cover and precipitable water are from the National Centers for Environmental Prediction (NCEP) Reanalysis.
NASA Astrophysics Data System (ADS)
Feng, S.
2017-12-01
Winter seasons have significant societal impacts across all sectors ranging from direct human health to ecosystems, transportation, and recreation. This study quantifies the severity of winter and its spatial-temporal variations using a newly developed winter severity index and daily temperature, snowfall and snow depth. The winter severity and the number of extreme winter days are decreasing across the global terrestrial areas during 1901-2015 except the southeast United States and isolated regions in the Southern Hemisphere. These changes are dominated by winter warming, while the changes in daily snowfall and snow depth played a secondary role. The simulations of multiple CMIP5 climate models can well capture the spatial and temporal variations of the observed changes in winter severity and extremes during 1951-2005. The models are consistent in projecting a future milder winter under various scenarios. The winter severity is projected to decrease 60-80% in the middle-latitude Northern Hemisphere under the business-as-usual scenario. The winter arrives later, ends earlier and the length of winter season will be notably shorter. The changes in harsh winter in the polar regions are weak, mainly because the warming leads to more snowfall in the high latitudes.
Under-ice availability of phytoplankton lipids is key to freshwater zooplankton winter survival.
Grosbois, Guillaume; Mariash, Heather; Schneider, Tobias; Rautio, Milla
2017-09-14
Shortening winter ice-cover duration in lakes highlights an urgent need for research focused on under-ice ecosystem dynamics and their contributions to whole-ecosystem processes. Low temperature, reduced light and consequent changes in autotrophic and heterotrophic resources alter the diet for long-lived consumers, with consequences on their metabolism in winter. We show in a survival experiment that the copepod Leptodiaptomus minutus in a boreal lake does not survive five months under the ice without food. We then report seasonal changes in phytoplankton, terrestrial and bacterial fatty acid (FA) biomarkers in seston and in four zooplankton species for an entire year. Phytoplankton FA were highly available in seston (2.6 µg L -1 ) throughout the first month under the ice. Copepods accumulated them in high quantities (44.8 µg mg dry weight -1 ), building lipid reserves that comprised up to 76% of body mass. Terrestrial and bacterial FA were accumulated only in low quantities (<2.5 µg mg dry weight -1 ). The results highlight the importance of algal FA reserve accumulation for winter survival as a key ecological process in the annual life cycle of the freshwater plankton community with likely consequences to the overall annual production of aquatic FA for higher trophic levels and ultimately for human consumption.
Ecological covariates based predictive model of malaria risk in the state of Chhattisgarh, India.
Kumar, Rajesh; Dash, Chinmaya; Rani, Khushbu
2017-09-01
Malaria being an endemic disease in the state of Chhattisgarh and ecologically dependent mosquito-borne disease, the study is intended to identify the ecological covariates of malaria risk in districts of the state and to build a suitable predictive model based on those predictors which could assist developing a weather based early warning system. This secondary data based analysis used one month lagged district level malaria positive cases as response variable and ecological covariates as independent variables which were tested with fixed effect panelled negative binomial regression models. Interactions among the covariates were explored using two way factorial interaction in the model. Although malaria risk in the state possesses perennial characteristics, higher parasitic incidence was observed during the rainy and winter seasons. The univariate analysis indicated that the malaria incidence risk was statistically significant associated with rainfall, maximum humidity, minimum temperature, wind speed, and forest cover ( p < 0.05). The efficient predictive model include the forest cover [IRR-1.033 (1.024-1.042)], maximum humidity [IRR-1.016 (1.013-1.018)], and two-way factorial interactions between district specific averaged monthly minimum temperature and monthly minimum temperature, monthly minimum temperature was statistically significant [IRR-1.44 (1.231-1.695)] whereas the interaction term has a protective effect [IRR-0.982 (0.974-0.990)] against malaria infections. Forest cover, maximum humidity, minimum temperature and wind speed emerged as potential covariates to be used in predictive models for modelling the malaria risk in the state which could be efficiently used for early warning systems in the state.
Jacquemin, Stephen J; Johnson, Laura T; Dirksen, Theresa A; McGlinch, Greg
2018-01-01
Grand Lake St. Marys watershed has drawn attention over the past decade as water quality issues resulting from nutrient loading have come to the forefront of public opinion, political concern, and scientific study. The objective of this study was to assess long-term changes in water quality (nutrient and sediment concentrations) following the distressed watershed rules package instituted in 2011. Since that time, a variety of rules (e.g., winter manure ban) and best management practices (cover crops, manure storage or transfers, buffers, etc.) have been implemented. We used a general linear model to assess variation in total suspended solids, particulate phosphorus, soluble reactive phosphorus (SRP), nitrate N, and total Kjeldahl nitrogen concentrations from daily Chickasaw Creek (drains ∼25% of watershed) samples spanning 2008 to 2016. Parameters were related to flow (higher values during high flows), timing (lower values during winter months), and the implementation of the distressed watershed rules package (lower values following implementation). Overall, reductions following the distressed designation for all parameters ranged from 5 to 35% during medium and high flow periods (with exception of SRP). Reductions were even more pronounced during winter months covered by the manure ban, where all parameters (including SRP) exhibited decreases at medium and high flows between 20 and 60%. While the reductions seen in this study are significant, concentrations are still highly elevated and continue to be a problem. We are optimistic that this study will serve to inform future management in the region and elsewhere. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
NASA Astrophysics Data System (ADS)
Schubert, B.; Jahren, A. H.
2017-12-01
Arctic sea ice thickness and extent are projected to continue their substantial decline during this century, with an 80% reduction in sea-ice extent by 2050. While there is a clear relationship between mean annual temperature (MAT) and the concentration of atmospheric carbon dioxide (pCO2) across both glacial and interglacial periods, data on seasonal fluctuations is limited. Here we report seasonal temperature estimates for the Arctic during the ice-free conditions of the late early to middle Eocene based upon exquisitely preserved, mummified wood collected from Banks Island, Northwest Territories, Canada ( 74 oN). Annual growth rings identified in the wood specimens were subdivided by hand at sub-millimeter resolution and cellulose was extracted from each sub-sample for determination of stable oxygen isotope (δ18O) value (n = 81). The data reveal a consistent, cyclic pattern of decreasing and increasing δ18O value up to 3‰ across growth rings that was consistent with patterns observed in other modern and fossil wood, including from other high latitude sites. From these data we quantified cold month and warm month seasonal temperatures using a previously published model (Schubert and Jahren, 2015, QSR, 125: 1-14). Our calculations revealed low overall seasonality in the Arctic during the Eocene with above-freezing winters and mild summers, consistent with the presence of high biomass temperate rainforests. These results highlight the importance of warm winters in maintaining ice-free conditions in the Arctic and suggest that increased winter temperatures in today's Arctic in response to rising pCO2 will be of particular importance for Arctic ice-loss.
Persistence Characteristics of Australian Rainfall Anomalies
NASA Astrophysics Data System (ADS)
Simmonds, Ian; Hope, Pandora
1997-05-01
Using 79 years (1913-1991) of Australian monthly precipitation data we examined the nature of the persistence of rainfall anomalies. Analyses were performed for four climate regions covering the country, as well as for the entire Australian continent. We show that rainfall over these regions has high temporal variability and that annual rainfall amounts over all five sectors vary in phase and are, with the exception of the north-west region, significantly correlated with the Southern Oscillation Index (SOI). These relationships were particularly strong during the spring season.It is demonstrated that Australian rainfall exhibits statistically significant persistence on monthly, seasonal, and (to a limited extent) annual time-scales, up to lags of 3 months and one season and 1 year. The persistence showed strong seasonal dependence, with each of the five regions showing memory out to 4 or 5 months from winter and spring. Many aspects of climate in the Australasian region are known to have undergone considerable changes about 1950. We show this to be true for persistence also; its characteristics identified for the entire record were present during the 1951--1980 period, but virtually disappeared in the previous 30-year period.Much of the seasonal distribution of rainfall persistence on monthly time-scales, particularly in the east, is due to the influence of the SOI. However, most of the persistence identified in winter and spring in the north-west is independent of the ENSO phenomenon.Rainfall anomalies following extreme dry and wet months, seasons and years (lowest and highest two deciles) persisted more than would be expected by chance. For monthly extreme events this was more marked in the winter semester for the wet events, except in the south-east region. In general, less persistence was found for the extreme seasons. Although the persistence of dry years was less than would have been expected by chance, the wet years appear to display persistence.
NASA Astrophysics Data System (ADS)
Ciucci, Enrica; Calussi, Pamela; Menesini, Ersilia; Mattei, Alessandra; Petralli, Martina; Orlandini, Simone
2011-05-01
This study aimed to analyze the impact of winter weather conditions on young children's behavior and affective states by examining a group of 61 children attending day-care centers in Florence (Italy). Participants were 33 males, 28 females and their 11 teachers. The mean age of the children at the beginning of the observation period was 24.1 months. The day-care teachers observed the children's behavioral and emotional states during the morning before their sleeping time and filled in a questionnaire for each baby five times over a winter period of 3 weeks. Air temperature, relative humidity, air pressure and solar radiation data were collected every 15 min from a weather station located in the city center of Florence. At the same time, air temperature and relative humidity data were collected in the classroom and in the garden of each day-care center. We used multilevel linear models to evaluate the extent to which children's emotional and behavioral states could be predicted by weather conditions, controlling for child characteristics (gender and age). The data showed that relative humidity and solar radiation were the main predictors of the children's emotional and behavioral states. The outdoor humidity had a significant positive effect on frustration, sadness and aggression; solar radiation had a significant negative effect only on sadness, suggesting that a sunny winter day makes children more cheerful. The results are discussed in term of implications for parents and teachers to improve children's ecological environment.
Ciucci, Enrica; Calussi, Pamela; Menesini, Ersilia; Mattei, Alessandra; Petralli, Martina; Orlandini, Simone
2011-05-01
This study aimed to analyze the impact of winter weather conditions on young children's behavior and affective states by examining a group of 61 children attending day-care centers in Florence (Italy). Participants were 33 males, 28 females and their 11 teachers. The mean age of the children at the beginning of the observation period was 24.1 months. The day-care teachers observed the children's behavioral and emotional states during the morning before their sleeping time and filled in a questionnaire for each baby five times over a winter period of 3 weeks. Air temperature, relative humidity, air pressure and solar radiation data were collected every 15 min from a weather station located in the city center of Florence. At the same time, air temperature and relative humidity data were collected in the classroom and in the garden of each day-care center. We used multilevel linear models to evaluate the extent to which children's emotional and behavioral states could be predicted by weather conditions, controlling for child characteristics (gender and age). The data showed that relative humidity and solar radiation were the main predictors of the children's emotional and behavioral states. The outdoor humidity had a significant positive effect on frustration, sadness and aggression; solar radiation had a significant negative effect only on sadness, suggesting that a sunny winter day makes children more cheerful. The results are discussed in term of implications for parents and teachers to improve children's ecological environment.
NASA Astrophysics Data System (ADS)
Rahman, A.; Ahmar, A. S.
2017-09-01
This research has a purpose to compare ARIMA Model and Holt-Winters Model based on MAE, RSS, MSE, and RMS criteria in predicting Primary Energy Consumption Total data in the US. The data from this research ranges from January 1973 to December 2016. This data will be processed by using R Software. Based on the results of data analysis that has been done, it is found that the model of Holt-Winters Additive type (MSE: 258350.1) is the most appropriate model in predicting Primary Energy Consumption Total data in the US. This model is more appropriate when compared with Holt-Winters Multiplicative type (MSE: 262260,4) and ARIMA Seasonal model (MSE: 723502,2).
Why did the 2015/16 El Niño Fail to Bring Excessive Precipitation to California?
NASA Astrophysics Data System (ADS)
Jong, B. T.; Ting, M.; Seager, R.; Lee, D. E.
2016-12-01
California has experienced severe drought in recent years posing great challenges to water resources, agriculture, and land management. El Niño, as the prime sources of seasonal to interannual climate predictability, offers the potential of alleviation of drought in California. Here, El Niño's impacts on California winter precipitation are examined. Our results, based on the observations during 1901-2010, show that El Niño's influence on precipitation strengthens from early to late winter even as El Niño weakens. The cause of the nonlinear relationship between sea surface temperature anomaly (SSTA) amplitude and teleconnection strength is the late winter warming of the climatological mean SST over the tropical eastern Pacific, allowing more active and eastward extending tropical deep convection anomaly. The 2015/16 El Niño, one of the strongest events in recent history, did not bring the heavy precipitation to California anticipated based on model forecasts and experience with the previous two strong El Niños, 1982/83 and 1997/98. North American Multi-Model Ensemble (NMME) 3-month average forecasts of SST from February 1 2016, models overestimated the Niño3 SSTA, compared to what actually occurred and, consistently, forecast heavier than observed California precipitation. The too high Niño3 SSTA drove too strong deep convection anomalies in the eastern tropical Pacific, triggering a too strong teleconnection that made the forecast California precipitation too wet. Thus, the faster than forecast decay in Niño3 SST anomalies at the end of the 2015/16 El Niño is one possible reason why the event failed to bring excess precipitation to California in the late winter. Controlled GCM experiments support this hypothesis and show that the teleconnection forced by the multimodel mean forecast of 2016 February-March-April SSTAs is stronger than the one forced by the observed SSTAs. Within the NMME those models that more correctly forecast the decay of El Niño 2015/16 also more correctly forecast modest precipitation anomalies over California.
Winter active bumblebees (Bombus terrestris) achieve high foraging rates in urban Britain.
Stelzer, Ralph J; Chittka, Lars; Carlton, Marc; Ings, Thomas C
2010-03-05
Foraging bumblebees are normally associated with spring and summer in northern Europe. However, there have been sightings of the bumblebee Bombus terrestris during the warmer winters in recent years in southern England. But what floral resources are they relying upon during winter and how much winter forage can they collect? To test if urban areas in the UK provide a rich foraging niche for bees we set up colonies of B. terrestris in the field during two late winter periods (2005/6 & 2006/7) in London, UK, and measured their foraging performance. Fully automatic radio-frequency identification (RFID) technology was used in 2006/7 to enable us to record the complete foraging activity of individually tagged bees. The number of bumblebees present during winter (October 2007 to March 2008) and the main plants they visited were also recorded during transect walks. Queens and workers were observed throughout the winter, suggesting a second generation of bee colonies active during the winter months. Mass flowering shrubs such as Mahonia spp. were identified as important food resources. The foraging experiments showed that bees active during the winter can attain nectar and pollen foraging rates that match, and even surpass, those recorded during summer. B. terrestris in the UK are now able to utilise a rich winter foraging resource in urban parks and gardens that might at present still be under-exploited, opening up the possibility of further changes in pollinator phenology.
Projected climate change impacts on winter recreation in the ...
A physically-based water and energy balance model is used to simulate natural snow accumulation at 247 winter recreation locations across the continental United States. We combine this model with projections of snowmaking conditions to determine downhill skiing, cross-country skiing, and snowmobiling season lengths under baseline and future climates, using data from five climate models and two emissions scenarios. The present-day simulations from the snow model without snowmaking are validated with observations of snow-water-equivalent from snow monitoring sites. Projected season lengths are combined with baseline estimates of winter recreation activity to monetize impacts to the selected winter recreation activity categories for the years 2050 and 2090. Estimate the physical and economic impact of climate change on winter recreation in the contiguous U.S.
Pilot utilization plan for satellite data-based service for agriculture in Poland
NASA Astrophysics Data System (ADS)
Gatkowska, Martyna; Paradowski, Karol; Wróbel, Karolina
2017-10-01
The paper aims at demonstrating the assumptions and achievements of the Pilot Utilization Plan Activities performed within the Project ASAP "Advanced Sustainable Agricultural Production", co-financed by European Space Agency under the ARTES IAP Programme. Within the course of the project, the Pilot Utilization Plan (PilUP) activities are performed in order to develop the remote sensing based models, and further calibrate and validate them in order to achieve the accuracy, which meets the requirements of paying customers. The completion of the first PilUP resulted in development of the following models based of Landsat 8 and Sentinel 2 satellite data: model of homogenous polygons demarcation on the basis of comparison of electromagnetic scanning results and bare soil spectral reflectance, model of problematic areas indication and model for yield potential, delivered on the basis of NDVI map developed 1 month before harvest and the map of yield/collected yield derived from Users participating in PilUP. The second edition of the PilUP is being conducted between March 2017 until the end of 2017. This edition includes farmers and insurance companies. The following activities are planned: development of model for delimitation of loses due to unfavorable wintering of winter crops and validation of the model with in-situ data collected by the insurance companies in-field investigators, further enhancement of the model for homogenous polygons delimitation and primary indication of soil productivity and testing of the applicability and viability of map of problematic areas with the farmers.
Synoptic Drivers of Precipitation in the Atlantic Sector of the Arctic
NASA Astrophysics Data System (ADS)
Cohen, L.; Hudson, S.; Graham, R.; Renwick, J. A.
2017-12-01
Precipitation in the Arctic has been shown to be increasing in recent decades, from both observational and modelling studies, with largest trends seen in autumn and winter. This trend is attributed to a combination of the warming atmosphere and reduced sea ice extent. The seasonality of precipitation in the Arctic is important as it largely determines whether the precipitation falls as snow or rain. This study assesses the spatial and temporal variability of the synoptic drivers of precipitation in the Atlantic (European) sector of the Arctic. This region of the Arctic is of particular interest as it has the largest inter-annual variability in sea ice extent and is the primary pathway for moisture transport into the Arctic from lower latitudes. This study uses the ECMWF ERA-I reanalysis total precipitation to compare to long-term precipitation observations from Ny Ålesund, Svalbard to show that the reanalysis captures the synoptic variability of precipitation well and that most precipitation in this region is synoptically driven. The annual variability of precipitation in the Atlantic Arctic shows strong regionality. In the Svalbard and Barents Sea region, most of the annual total precipitation occurs during autumn and winter (Oct-Mar) (>60% of annual total), while the high-Arctic (> 80N) and Kara Sea receives most of the annual precipitation ( 60% of annual total) during summer (July-Sept). Using a synoptic classification developed for this region, this study shows that winter precipitation is driven by winter cyclone occurrence, with strong correlations to the AO and NAO indices. High precipitation over Svalbard is also strongly correlated with the Scandinavian blocking pattern, which produces a southerly flow in the Greenland Sea/Svalbard area. An increasing occurrence of these synoptic patterns are seen for winter months (Nov and Jan), which may explain much of the observed winter increase in precipitation.
Chipps, S.R.; Einfalt, L.M.; Wahl, David H.
2000-01-01
We measured growth of age-0 tiger muskellunge as a function of ration size (25, 50, 75, and 100% C(max))and water temperature (7.5-25??C) and compared experimental results with those predicted from a bioenergetic model. Discrepancies between actual and predicted values varied appreciably with water temperature and growth rate. On average, model output overestimated winter consumption rates at 10 and 7.5??C by 113 to 328%, respectively, whereas model predictions in summer and autumn (20-25??C) were in better agreement with actual values (4 to 58%). We postulate that variation in model performance was related to seasonal changes in esocid metabolic rate, which were not accounted for in the bioenergetic model. Moreover, accuracy of model output varied with feeding and growth rate of tiger muskellunge. The model performed poorly for fish fed low rations compared with estimates based on fish fed ad libitum rations and was attributed, in part, to the influence of growth rate on the accuracy of bioenergetic predictions. Based on modeling simulations, we found that errors associated with bioenergetic parameters had more influence on model output when growth rate was low, which is consistent with our observations. In addition, reduced conversion efficiency at high ration levels may contribute to variable model performance, thereby implying that waste losses should be modeled as a function of ration size for esocids. Our findings support earlier field tests of the esocid bioenergetic model and indicate that food consumption is generally overestimated by the model, particularly in winter months and for fish exhibiting low feeding and growth rates.
Predictability of the Indian Ocean Dipole in the coupled models
NASA Astrophysics Data System (ADS)
Liu, Huafeng; Tang, Youmin; Chen, Dake; Lian, Tao
2017-03-01
In this study, the Indian Ocean Dipole (IOD) predictability, measured by the Indian Dipole Mode Index (DMI), is comprehensively examined at the seasonal time scale, including its actual prediction skill and potential predictability, using the ENSEMBLES multiple model ensembles and the recently developed information-based theoretical framework of predictability. It was found that all model predictions have useful skill, which is normally defined by the anomaly correlation coefficient larger than 0.5, only at around 2-3 month leads. This is mainly because there are more false alarms in predictions as leading time increases. The DMI predictability has significant seasonal variation, and the predictions whose target seasons are boreal summer (JJA) and autumn (SON) are more reliable than that for other seasons. All of models fail to predict the IOD onset before May and suffer from the winter (DJF) predictability barrier. The potential predictability study indicates that, with the model development and initialization improvement, the prediction of IOD onset is likely to be improved but the winter barrier cannot be overcome. The IOD predictability also has decadal variation, with a high skill during the 1960s and the early 1990s, and a low skill during the early 1970s and early 1980s, which is very consistent with the potential predictability. The main factors controlling the IOD predictability, including its seasonal and decadal variations, are also analyzed in this study.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pride, Kerry R., E-mail: hgp3@cdc.gov; Wyoming Department of Health, 6101 Yellowstone Road, Suite 510, Cheyenne, WY 82002; Peel, Jennifer L.
Objective: Short-term exposure to ground-level ozone has been linked to adverse respiratory and other health effects; previous studies typically have focused on summer ground-level ozone in urban areas. During 2008–2011, Sublette County, Wyoming (population: ~10,000 persons), experienced periods of elevated ground-level ozone concentrations during the winter. This study sought to evaluate the association of daily ground-level ozone concentrations and health clinic visits for respiratory disease in this rural county. Methods: Clinic visits for respiratory disease were ascertained from electronic billing records of the two clinics in Sublette County for January 1, 2008–December 31, 2011. A time-stratified case-crossover design, adjusted formore » temperature and humidity, was used to investigate associations between ground-level ozone concentrations measured at one station and clinic visits for a respiratory health concern by using an unconstrained distributed lag of 0–3 days and single-day lags of 0 day, 1 day, 2 days, and 3 days. Results: The data set included 12,742 case-days and 43,285 selected control-days. The mean ground-level ozone observed was 47±8 ppb. The unconstrained distributed lag of 0–3 days was consistent with a null association (adjusted odds ratio [aOR]: 1.001; 95% confidence interval [CI]: 0.990–1.012); results for lags 0, 2, and 3 days were consistent with the null. However, the results for lag 1 were indicative of a positive association; for every 10-ppb increase in the 8-h maximum average ground-level ozone, a 3.0% increase in respiratory clinic visits the following day was observed (aOR: 1.031; 95% CI: 0.994–1.069). Season modified the adverse respiratory effects: ground-level ozone was significantly associated with respiratory clinic visits during the winter months. The patterns of results from all sensitivity analyzes were consistent with the a priori model. Conclusions: The results demonstrate an association of increasing ground-level ozone with an increase in clinic visits for adverse respiratory-related effects in the following day (lag day 1) in Sublette County; the magnitude was strongest during the winter months; this association during the winter months in a rural location warrants further investigation. - Highlights: • We assessed elevated ground-level ozone in frontier Sublette County, Wyoming. • Ground-level ozone concentrations were moderately to highly correlated between stations. • Adverse respiratory-related clinic visits occurred year round at lag 1. • Strongest association of clinic visits was in the coldest months at lag 1.« less
Comparing Model Ozone Loss during the SOLVE and SOLVE-2 Winters
NASA Technical Reports Server (NTRS)
Drdla, K.
2003-01-01
Model simulations have been used to analyze the factors influencing ozone loss during the 1999-2000 and 2002-2003 js. For both winters, the evolution of the Arctic vortex from November to April has been simulated using a trajectory-based microphysical and photochemical model. Extensive PSC formation and strong ozone depletion are evident in both winters. However, the ozone loss begins earlier in the 2002-2003 winter, with significant ozone depletion by early January. Analysis of the model results shows that during December 2002 not only cold temperatures but also the vortex structure was critical, allowing PSC-processed air parcels to experience significant solar exposure. The resultant ozone loss can be differentiated from ozone loss that occurs in the springtime, in particular because of the continued exposure to PSCs. For example, chlorine reactivation by the PSCs causes ozone loss to be insensitive to denitrification. Therefore, diagnosing the extent of ozone loss early in the winter is critical In understanding the overall winter-long ozone depletion.
Development of a model system to identify differences in spring and winter oat.
Chawade, Aakash; Lindén, Pernilla; Bräutigam, Marcus; Jonsson, Rickard; Jonsson, Anders; Moritz, Thomas; Olsson, Olof
2012-01-01
Our long-term goal is to develop a Swedish winter oat (Avena sativa). To identify molecular differences that correlate with winter hardiness, a winter oat model comprising of both non-hardy spring lines and winter hardy lines is needed. To achieve this, we selected 294 oat breeding lines, originating from various Russian, German, and American winter oat breeding programs and tested them in the field in south- and western Sweden. By assaying for winter survival and agricultural properties during four consecutive seasons, we identified 14 breeding lines of different origins that not only survived the winter but also were agronomically better than the rest. Laboratory tests including electrolytic leakage, controlled crown freezing assay, expression analysis of the AsVrn1 gene and monitoring of flowering time suggested that the American lines had the highest freezing tolerance, although the German lines performed better in the field. Finally, six lines constituting the two most freezing tolerant lines, two intermediate lines and two spring cultivars were chosen to build a winter oat model system. Metabolic profiling of non-acclimated and cold acclimated leaf tissue samples isolated from the six selected lines revealed differential expression patterns of 245 metabolites including several sugars, amino acids, organic acids and 181 hitherto unknown metabolites. The expression patterns of 107 metabolites showed significant interactions with either a cultivar or a time-point. Further identification, characterisation and validation of these metabolites will lead to an increased understanding of the cold acclimation process in oats. Furthermore, by using the winter oat model system, differential sequencing of crown mRNA populations would lead to identification of various biomarkers to facilitate winter oat breeding.
NASA Astrophysics Data System (ADS)
Becker, Erich; Vadas, Sharon L.
2018-03-01
This study analyzes a new high-resolution general circulation model with regard to secondary gravity waves in the mesosphere during austral winter. The model resolves gravity waves down to horizontal and vertical wavelengths of 165 and 1.5 km, respectively. The resolved mean wave drag agrees well with that from a conventional model with parameterized gravity waves up to the midmesosphere in winter and up to the upper mesosphere in summer. About half of the zonal-mean vertical flux of westward momentum in the southern winter stratosphere is due to orographic gravity waves. The high intermittency of the primary orographic gravity waves gives rise to secondary waves that result in a substantial eastward drag in the winter mesopause region. This induces an additional eastward maximum of the mean zonal wind at z ˜ 100 km. Radar and lidar measurements at polar latitudes and results from other high-resolution global models are consistent with this finding. Hence, secondary gravity waves may play a significant role in the general circulation of the winter mesopause region.
Su, Wei-Ju; Chan, Ta-Chien; Chuang, Pei-Hung; Liu, Yu-Lun; Lee, Ping-Ing; Liu, Ming-Tsan; Chuang, Jen-Hsiang
2015-01-01
We aimed to estimate the pooled vaccine effectiveness (VE) in children over five winters through data linkage of two existing surveillance systems. Five test-negative case-control studies were conducted from November to February during the 2004/2005 to 2008/2009 seasons. Sentinel physicians from the Viral Surveillance Network enrolled children aged 6-59 months with influenza-like illness to collect throat swabs. Through linking with a nationwide vaccination registry, we measured the VE with a logistic regression model adjusting for age, gender, and week of symptom onset. Both fixed-effects and random-effects models were used in the meta-analysis. Four thousand four hundred and ninety-four subjects were included. The proportion of influenza test-positive subjects across the five seasons was 11.5% (132/1151), 7.2% (41/572), 23.9% (189/791), 6.6% (75/1135), and 11.2% (95/845), respectively. The pooled VE was 62% (95% confidence interval (CI) 48-83%) in both meta-analysis models. By age category, VE was 51% (95% CI 23-68%) for those aged 6-23 months and 75% (95% CI 60-84%) for those aged 24-59 months. Influenza vaccination provided measurable protection against laboratory-confirmed influenza among children aged 6-59 months despite variations in the vaccine match during the 2004/2005 to 2008/2009 influenza seasons in Taiwan. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
McFarland, Kent P.; Rimmer, Christopher C.; Goetz, James E.; Aubry, Yves; Wunderle, Joseph M.; Sutton, Anne; Townsend, Jason M.; Sosa, Alejandro Llanes; Kirkconnell, Arturo
2013-01-01
Conservation planning and implementation require identifying pertinent habitats and locations where protection and management may improve viability of targeted species. The winter range of Bicknell’s Thrush (Catharus bicknelli), a threatened Nearctic-Neotropical migratory songbird, is restricted to the Greater Antilles. We analyzed winter records from the mid-1970s to 2009 to quantitatively evaluate winter distribution and habitat selection. Additionally, we conducted targeted surveys in Jamaica (n = 433), Cuba (n = 363), Dominican Republic (n = 1,000), Haiti (n = 131) and Puerto Rico (n = 242) yielding 179 sites with thrush presence. We modeled Bicknell’s Thrush winter habitat selection and distribution in the Greater Antilles in Maxent version 3.3.1. using environmental predictors represented in 30 arc second study area rasters. These included nine landform, land cover and climatic variables that were thought a priori to have potentially high predictive power. We used the average training gain from ten model runs to select the best subset of predictors. Total winter precipitation, aspect and land cover, particularly broadleaf forests, emerged as important variables. A five-variable model that contained land cover, winter precipitation, aspect, slope, and elevation was the most parsimonious and not significantly different than the models with more variables. We used the best fitting model to depict potential winter habitat. Using the 10 percentile threshold (>0.25), we estimated winter habitat to cover 33,170 km2, nearly 10% of the study area. The Dominican Republic contained half of all potential habitat (51%), followed by Cuba (15.1%), Jamaica (13.5%), Haiti (10.6%), and Puerto Rico (9.9%). Nearly one-third of the range was found to be in protected areas. By providing the first detailed predictive map of Bicknell’s Thrush winter distribution, our study provides a useful tool to prioritize and direct conservation planning for this and other wet, broadleaf forest specialists in the Greater Antilles. PMID:23326554
Li, Zhong-Qiu; Wang, Zhi; Ge, Chen
2013-10-01
To understand the population status and behavioural features of wintering common cranes in the Yancheng Nature Reserve, two transects were established and population trends were monitored every month over five recent winters from 2008 to 2013. Wintering behaviours were also observed in order to explore the possible effects of family size and age on time budgets. Results indicated that the populations were stable with a range of 303 to 707 individuals. Negative effects of coastal developments were not found on the wintering population of common cranes, which might be related to their diets and preference for artificial wetland habitats. We found a significant effect of age on time budgets, with juveniles spending more time feeding and less time alerting, which might be related to the needs of body development and skill learning. Family size did not affect the time budgets of the cranes, which indicated that adults did not increase vigilance investment even when raising a larger family.
Soil Moisture Anomaly as Predictor of Crop Yield Deviation in Germany
NASA Astrophysics Data System (ADS)
Peichl, Michael; Thober, Stephan; Schwarze, Reimund; Meyer, Volker; Samaniego, Luis
2016-04-01
Natural hazards, such as droughts, have the potential to drastically diminish crop yield in rain-fed agriculture. For example, the drought in 2003 caused direct losses of 1.5 billion EUR only in Germany (COPA-COGECA 2003). Predicting crop yields allows to economize the mitigation of risks of weather extremes. Economic approaches for quantifying agricultural impacts of natural hazards mainly rely on temperature and related concepts. For instance extreme heat over the growing season is considered as best predictor of corn yield (Auffhammer and Schlenker 2014). However, those measures are only able to provide a proxy for the available water content in the root zone that ultimately determines plant growth and eventually crop yield. The aim of this paper is to analyse whether soil moisture has a causal effect on crop yield that can be exploited in improving adaptation measures. For this purpose, reduced form fixed effect panel models are developed with yield as dependent variable for both winter wheat and silo maize crops. The explanatory variables used are soil moisture anomalies, precipitation and temperature. The latter two are included to estimate the current state of the water balance. On the contrary, soil moisture provides an integrated signal over several months. It is also the primary source of water supply for plant growth. For each crop a single model is estimated for every month within the growing period to study the variation of the effects over time. Yield data is available for Germany as a whole on the level of administrative districts from 1990 to 2010. Station data by the German Weather Service are obtained for precipitation and temperature and are aggregated to the same spatial units. Simulated soil moisture computed by the mesoscale Hydrologic Model (mHM, www.ufz.de/mhm) is transformed into Soil Moisture Index (SMI), which represents the monthly soil water quantile and hence accounts directly for the water content available to plants. The results indicate that wet and dry soil moisture anomalies have a causal effect on crop yields. However, the effects vary in magnitude and direction for each crop depending on the month. For instance dry soil moisture anomalies in July, August and September reduce silo maize yield more than ten percent with respect to average conditions. Extreme wetness, however, increases silo maize yield in the same time period. A negative effect is observed for winter wheat during this period for both wet and dry anomalies. The reduction due to dry anomalies is smaller for winter wheat than for silo maize. This study shows that the impact of soil moisture anomalies varies dependent on months and crops. These evolving patterns provide new insights to improve adaptation measures for extreme soil moisture conditions. References Auffhammer, M., and W. Schlenker. 2014. "Empirical studies on agricultural impacts and adaptation." Energy Economics 46:555-561. COPA-COGECA. 2003. "Assessment of the impact of the heat wave and drought of the summer 2003 on agriculture and forestry." In Committee of Agricultural Organisations in the European Union General Committee for Agricultural Cooperation in the European Union, Brussels. p. 15.
Impact of the urban heat island on residents’ energy consumption: a case study of Qingdao
NASA Astrophysics Data System (ADS)
Ding, Feng; Pang, Huaji; Guo, Wenhui
2018-02-01
This paper examines impact of urban heat island on residents’ energy consumption through comparative analyses of monthly air temperature data observed in Qingdao, Laoshan and Huangdao weather stations. The results show effect of urban heat island is close related with urbanization speed. Recently, effects of urban heat island of Laoshan and Huangdao exceed that of Qingdao, consistent with rapid urbanization in Laoshan and Huangdao. Enhanced effect of urban heat island induces surface air temperature to rise up, further increase electricity energy consumption for air conditioning use in summer and reduce coal consumption for residents heating in winter. Comparing change of residents’ energy consumption in summer and winter, increments in summer are less than reduction in winter. This implicates effect of urban heat island is more obvious in winter than in summer.
ERIC Educational Resources Information Center
Sanders, James R.; Stufflebeam, Daniel L.
The energy crisis, specifically a shortage of natural gas, caused by the unusually cold winter of 1977, resulted in the Columbus, Ohio, schools being closed for a month. Schools heated with gas were closed, but students met one day a week in school buildings that used coal, oil, or electricity. The educational program continued with school…
Seasonal water storage, stress modulation, and California seismicity.
Johnson, Christopher W; Fu, Yuning; Bürgmann, Roland
2017-06-16
Establishing what controls the timing of earthquakes is fundamental to understanding the nature of the earthquake cycle and critical to determining time-dependent earthquake hazard. Seasonal loading provides a natural laboratory to explore the crustal response to a quantifiable transient force. In California, water storage deforms the crust as snow and water accumulates during the wet winter months. We used 9 years of global positioning system (GPS) vertical deformation time series to constrain models of monthly hydrospheric loading and the resulting stress changes on fault planes of small earthquakes. The seasonal loading analysis reveals earthquakes occurring more frequently during stress conditions that favor earthquake rupture. We infer that California seismicity rates are modestly modulated by natural hydrological loading cycles. Copyright © 2017, American Association for the Advancement of Science.
Morphology of the winter anomaly in NmF2 and Total Electron Content
NASA Astrophysics Data System (ADS)
Yasyukevich, Yury; Ratovsky, Konstantin; Yasyukevich, Anna; Klimenko, Maksim; Klimenko, Vladimir; Chirik, Nikolay
2017-04-01
We analyzed the winter anomaly manifestation in the F2 peak electron density (NmF2) and Total Electron Content (TEC) based on the observation data and model calculation results. For the analysis we used 1998-2015 TEC Global Ionospheric Maps (GIM) and NmF2 ground-based ionosonde observation data from and COSMIC, CHAMP and GRACE radio occultation data. We used Global Self-consistent Model of the Thermosphere, Ionosphere, and Protonosphere (GSM TIP) and International Reference Ionosphere model (IRI-2012). Based on the observation data and model calculation results we constructed the maps of the winter anomaly intensity in TEC and NmF2 for the different solar and geomagnetic activity levels. The winter anomaly intensity was found to be higher in NmF2 than in TEC according to both observation and modeling. In this report we show the similarity and difference in winter anomaly as revealed in experimental data and model results.
Depletions in winter total ozone values over southern England
NASA Technical Reports Server (NTRS)
Lapworth, A.
1994-01-01
A study has been made of the recently re-evaluated time series of daily total ozone values for the period 1979 to 1992 for southern England. The series consists of measurements made at two stations, Bracknell and Camborne. The series shows a steady decline in ozone values in the spring months over the period, and this is consistent with data from an earlier decade that has been published but not re-evaluated. Of exceptional note is the monthly mean for January 1992 which was very significantly reduced from the normal value, and was the lowest so far measured for this month. This winter was also noteworthy for a prolonged period during which a blocking anticyclone dominated the region, and the possibility existed that this was related to the ozone anomaly. It was possible to determine whether the origin of the low ozone value lay in ascending stratospheric motions. A linear regression analysis of ozone value deviation against 100hPa temperature deviations was used to reduce ozone values to those expected in the absence of high pressure. The assumption was made that the normal regression relation was not affected by atmospheric anomalies during the winter. This showed that vertical motions in the stratosphere only accounted for part of the ozone anomaly and that the main cause of the ozone deficit lay either in a reduced stratospheric circulation to which the anticyclone may be related or in chemical effects in the reduced stratospheric temperatures above the high pressure area. A study of the ozone time series adjusted to remove variations correlated with meteorological quantities, showed that during the period since 1979, one other winter, that of 1982/3, showed a similar although less well defined deficit in total ozone values.
Evaluating Active U: an internet-mediated physical activity program
Buis, Lorraine R; Poulton, Timothy A; Holleman, Robert G; Sen, Ananda; Resnick, Paul J; Goodrich, David E; Palma-Davis, LaVaughn; Richardson, Caroline R
2009-01-01
Background Engaging in regular physical activity can be challenging, particularly during the winter months. To promote physical activity at the University of Michigan during the winter months, an eight-week Internet-mediated program (Active U) was developed providing participants with an online physical activity log, goal setting, motivational emails, and optional team participation and competition. Methods This study is a program evaluation of Active U. Approximately 47,000 faculty, staff, and graduate students were invited to participate in the online Active U intervention in the winter of 2007. Participants were assigned a physical activity goal and were asked to record each physical activity episode into the activity log for eight weeks. Statistics for program reach, effectiveness, adoption, and implementation were calculated using the Re-Aim framework. Multilevel regression analyses were used to assess the decline in rates of data entry and goal attainment during the program, to assess the likelihood of joining a team by demographic characteristics, to test the association between various predictors and the number of weeks an individual met his or her goal, and to analyze server load. Results Overall, 7,483 individuals registered with the Active U website (≈16% of eligible), and 79% participated in the program by logging valid data at least once. Staff members, older participants, and those with a BMI < 25 were more likely to meet their weekly physical activity goals, and average rate of meeting goals was higher among participants who joined a competitive team compared to those who participated individually (IRR = 1.28, P < .001). Conclusion Internet-mediated physical activity interventions that focus on physical activity logging and goal setting while incorporating team competition may help a significant percentage of the target population maintain their physical activity during the winter months. PMID:19744311
NASA Astrophysics Data System (ADS)
Chen, Jing; Kawamura, Kimitaka; Liu, Cong-Qiang; Fu, Pingqing
2013-03-01
Anhydrosugars (galactosan, mannosan and levoglucosan), sugars (xylose, fructose, glucose, sucrose and trehalose) and sugar alcohols (erythritol, arabitol, mannitol and inositol) were measured in the aerosol samples collected in a remote island (Chichi-Jima, Japan) in the western North Pacific from 1990 to 1993 and from 2006 to 2009. Total concentrations of anhydrosugars, the biomass burning tracers, were 0.01-5.57 ng m-3 (average 0.76 ng m-3) during 1990-1993 versus 0.01-7.19 ng m-3 (0.64 ng m-3) during 2006-2009. Their seasonal variations were characterized by winter/spring maxima and summer/fall minima. Such a seasonal pattern should be caused by the enhanced long-range atmospheric transport of biomass burning products and terrestrial organic matter (such as higher plant detritus and soil dust) from the Asian continent in winter/spring seasons, when the westerly or winter monsoon system prevails over the western North Pacific. Sugars and sugar alcohols showed different seasonal patterns. The monthly mean concentrations of erythritol, arabitol, mannitol, inositol, fructose, glucose and trehalose were found to be higher in spring/summer and lower in fall/winter during both 1990-1993 and 2006-2009 periods, indicating an enhanced biogenic emission of aerosols in warm seasons. Interestingly, saccharides showed a gradual decrease in their concentrations from 1991 to 1993 and an increase from 2006 to 2009. In addition, the monthly averaged concentrations of sugars and sugar alcohols showed maxima in early summer during 1990-1993, which occurred about 1-2 months earlier than those during 2006-2009. Such a clear seasonal shift may be attributable to the changes in the strength of westerly and trade wind systems during two periods.
Ajtić, J; Brattich, E; Sarvan, D; Djurdjevic, V; Hernández-Ceballos, M A
2018-05-01
Relationships between the beryllium-7 activity concentrations in surface air and meteorological parameters (temperature, atmospheric pressure, and precipitation), teleconnection indices (Arctic Oscillation, North Atlantic Oscillation, and Scandinavian pattern) and number of sunspots are investigated using two multivariate statistical techniques: hierarchical cluster and factor analysis. The beryllium-7 surface measurements over 1995-2011, at four sampling sites located in the Scandinavian Peninsula, are obtained from the Radioactivity Environmental Monitoring Database. In all sites, the statistical analyses show that the beryllium-7 concentrations are strongly linked to temperature. Although the beryllium-7 surface concentration exhibits the well-characterised spring/summer maximum, our study shows that extremely high beryllium-7 concentrations, defined as the values exceeding the 90 th percentile in the data records for each site, also occur over the October-March period. Two types of autumn/winter extremes are distinguished: type-1 when the number of extremes in a given month is less than three, and type-2 when at least three extremes occur in a month. Factor analysis performed for these autumn/winter events shows a weaker effect of temperature and a stronger impact of the transport and production signal on the beryllium-7 concentrations. Further, the majority of the type-2 extremes are associated with a very high monthly Scandinavian teleconnection index. The type-2 extremes that occurred in January, February and March are also linked to sudden stratospheric warmings of the Arctic vortex. Our results indicate that the Scandinavian teleconnection index might be a good indicator of the meteorological conditions facilitating extremely high beryllium-7 surface concentrations over Scandinavia during autumn and winter. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Haiyang, Yu; Yanmei, Liu; Guijun, Yang; Xiaodong, Yang; Dong, Ren; Chenwei, Nie
2014-03-01
To achieve dynamic winter wheat quality monitoring and forecasting in larger scale regions, the objective of this study was to design and develop a winter wheat quality monitoring and forecasting system by using a remote sensing index and environmental factors. The winter wheat quality trend was forecasted before the harvest and quality was monitored after the harvest, respectively. The traditional quality-vegetation index from remote sensing monitoring and forecasting models were improved. Combining with latitude information, the vegetation index was used to estimate agronomy parameters which were related with winter wheat quality in the early stages for forecasting the quality trend. A combination of rainfall in May, temperature in May, illumination at later May, the soil available nitrogen content and other environmental factors established the quality monitoring model. Compared with a simple quality-vegetation index, the remote sensing monitoring and forecasting model used in this system get greatly improved accuracy. Winter wheat quality was monitored and forecasted based on the above models, and this system was completed based on WebGIS technology. Finally, in 2010 the operation process of winter wheat quality monitoring system was presented in Beijing, the monitoring and forecasting results was outputted as thematic maps.
Changing response of the North Atlantic/European winter climate to the 11 year solar cycle
NASA Astrophysics Data System (ADS)
Ma, Hedi; Chen, Haishan; Gray, Lesley; Zhou, Liming; Li, Xing; Wang, Ruili; Zhu, Siguang
2018-03-01
Recent studies have presented conflicting results regarding the 11 year solar cycle (SC) influences on winter climate over the North Atlantic/European region. Analyses of only the most recent decades suggest a synchronized North Atlantic Oscillation (NAO)-like response pattern to the SC. Analyses of long-term climate data sets dating back to the late 19th century, however, suggest a mean sea level pressure (mslp) response that lags the SC by 2-4 years in the southern node of the NAO (i.e. Azores region). To understand the conflicting nature and cause of these time dependencies in the SC surface response, the present study employs a lead/lag multi-linear regression technique with a sliding window of 44 years over the period 1751-2016. Results confirm previous analyses, in which the average response for the whole time period features a statistically significant 2-4 year lagged mslp response centered over the Azores region. Overall, the lagged nature of Azores mslp response is generally consistent in time. Stronger and statistically significant SC signals tend to appear in the periods when the SC forcing amplitudes are relatively larger. Individual month analysis indicates the consistent lagged response in December-January-February average arises primarily from early winter months (i.e. December and January), which has been associated with ocean feedback processes that involve reinforcement by anomalies from the previous winter. Additional analysis suggests that the synchronous NAO-like response in recent decades arises primarily from late winter (February), possibly reflecting a result of strong internal noise.
NASA Astrophysics Data System (ADS)
Lu, Y.
2017-12-01
Winter wheat is a staple crop for global food security, and is the dominant vegetation cover for a significant fraction of earth's croplands. As such, it plays an important role in soil carbon balance, and land-atmosphere interactions in these key regions. Accurate simulation of winter wheat growth is not only crucial for future yield prediction under changing climate, but also for understanding the energy and water cycles for winter wheat dominated regions. A winter wheat growth model has been developed in the Community Land Model 4.5 (CLM4.5), but its responses to irrigation and nitrogen fertilization have not been validated. In this study, I will validate winter wheat growth response to irrigation and nitrogen fertilization at five winter wheat field sites (TXLU, KSMA, NESA, NDMA, and ABLE) in North America, which were originally designed to understand winter wheat response to nitrogen fertilization and water treatments (4 nitrogen levels and 3 irrigation regimes). I also plan to further update the linkages between winter wheat yield and cold hazards. The previous cold damage function only indirectly affects yield through reduction on leaf area index (LAI) and hence photosynthesis, such approach could sometimes produce an unwanted higher yield when the reduced LAI saved more nutrient in the grain fill stage.
Beltran, Alyssa J.; Wu, Jun; Laurent, Olivier
2013-01-01
The relationships between meteorology and pregnancy outcomes are not well known. This article reviews available evidence on the relationships between seasonality or meteorology and three major pregnancy outcomes: the hypertensive disorders of pregnancy (including preeclampsia, eclampsia and gestational hypertension), gestational length and birth weight. In total 35, 28 and 27 studies were identified for each of these outcomes. The risks of preeclampsia appear higher for women with conception during the warmest months, and delivery in the coldest months of the year. Delivery in the coldest months is also associated with a higher eclampsia risk. Patterns of decreased gestational lengths have been observed for births in winter, as well as summer months. Most analytical studies also report decreases in gestational lengths associated with heat. Birth weights are lower for deliveries occurring in winter and in summer months. Only a limited number of studies have investigated the effects of barometric pressure on gestational length or the effects of temperature and sunshine exposure on birth weight, but these questions appear worth investigating further. Available results should encourage further etiological research aiming at enhancing our understanding of the relationships between meteorology and adverse pregnancy outcomes, ideally via harmonized multicentric studies. PMID:24362545
Beltran, Alyssa J; Wu, Jun; Laurent, Olivier
2013-12-20
The relationships between meteorology and pregnancy outcomes are not well known. This article reviews available evidence on the relationships between seasonality or meteorology and three major pregnancy outcomes: the hypertensive disorders of pregnancy (including preeclampsia, eclampsia and gestational hypertension), gestational length and birth weight. In total 35, 28 and 27 studies were identified for each of these outcomes. The risks of preeclampsia appear higher for women with conception during the warmest months, and delivery in the coldest months of the year. Delivery in the coldest months is also associated with a higher eclampsia risk. Patterns of decreased gestational lengths have been observed for births in winter, as well as summer months. Most analytical studies also report decreases in gestational lengths associated with heat. Birth weights are lower for deliveries occurring in winter and in summer months. Only a limited number of studies have investigated the effects of barometric pressure on gestational length or the effects of temperature and sunshine exposure on birth weight, but these questions appear worth investigating further. Available results should encourage further etiological research aiming at enhancing our understanding of the relationships between meteorology and adverse pregnancy outcomes, ideally via harmonized multicentric studies.
[Analysis of annual exposure to noise among private farmers according to production profile].
Solecki, Leszek
2007-01-01
The objective of the study was the recognition and evaluation of annual exposure to noise among private farmers on selected family farms of three different profiles of agricultural production (plant, animal and mixed). Based on time schedules of agricultural work activities and dosimetric measurements conducted during the whole year, 2 acoustic parameters were determined: total exposure to noise in individual months of the year and equivalent daily exposure to noise. The studies showed that in the case of farms carrying out plant production the highest value of total exposure to noise occurred during the summer-autumn months (July, September, October) and in winter (December, January). On farms of animal production profile the highest values were noted in summer-autumn months (August, October) and winter-spring months (January, March, May, June). On mixed production farms high values occurred in summer-autumn months (August-November) and in April. The distribution of equivalent daily exposure values during the whole year was similar. The results of the study indicated that the greatest noise load occurs on farms carrying out plant and mixed production, whereas the lowest values concerned farms of animal production profile. These values considerably exceed standard values.
Das, Aritra; Chatterjee, Rahul; Karthick, Morchan; Mahapatra, Tanmay; Chaudhuri, Indrajit
2016-01-01
Background Exclusive breastfeeding (EBF) during the first six months of life is considered a high impact but low-cost measure for reducing the morbidity and mortality among children. The current study investigated the association of seasonality and frontline worker(FLW) provided counselling with practice of EBF in Bihar, India. Methods We used the ‘Lot Quality Assurance Sampling’ technique to conduct a multi-stage sampling survey in 8 districts of Bihar. Regarding EBF, mothers of 0–5 (completed) months old children were asked if they had given only breastmilk to their children during the previous day, while mothers of 6–8 (completed) months old children were inquired about the total duration of EBF. We tested for association between EBF during the previous day with season of interview and EBF for full 6 months with nursing season. We also assessed if receiving counselling on EBF and complementary feeding had any association with relevant EBF indicators. Results Among the under-6 month old children, 76% received EBF during the previous day, whereas 92% of 6–8 (completed) months old children reportedly received EBF for the recommended duration. Proportion of 0–5 (completed) month old children receiving only breastmilk (during last 24 hours) decreased significantly with increasing age and with change of season from colder to warmer months. Odds of receiving only breastmilk during the previous day was significantly higher during the winter months (Adjusted odds ratio(AOR) = 1.50; 95% CI = 1.37, 1.63) compared to summer. Also, the children nursed primarily during the winter season had higher odds of receiving EBF for 6 months (AOR = 1.90, 95% CI = 1.43, 2.52) than those with non-winter nursing. Receiving FLW-counselling was positively associated with breastfeeding exclusively, even after adjusting for seasonality and other covariates (AOR = 1.82; 95% CI = 1.67, 1.98). Conclusions Seasonality is a significant but non-modifiable risk factor for EBF. However, FLW-counselling was found to increase practice of EBF irrespective of season. Scale-up of FLW-counselling services, with emphasis on summer months and mothers of older infants, can potentially reduce the impact of seasonality on EBF. PMID:27513642
Exploratory Disposal and Reuse Feasibility Analysis of Winter Maintenance Wash Water.
Ullinger, Heather L; Kennedy, Marla J; Schneider, William H; Miller, Christopher M
2016-01-01
The Ohio Department of Transportation has more than 60 facilities without sewer access generating approximately 19 million gallons of winter maintenance wash water. Off-site disposal is costly, creating the need for sustainable management strategies. The objective of this study was to conduct an exploratory feasibility analysis to assess wash water disposal and potential reuse as brine. Based on a comprehensive literature review and relevant environmental chemistry, a sampling protocol consisting of 31 water quality constituents was utilized for monthly sampling at three geographically distinct Ohio Department of Transportation garages during the winter of 2012. Results were compared to local disposal and reuse guidance limits. Three constituents, including a maximum copper concentration of 858 ppb, exceeded disposal limits, and many constituents also failed to meet reuse limits. Some concentrations were orders of magnitude higher than reuse limits and suggest pre-treatment would be necessary if wash water were reused as brine. These water quality results, in conjunction with copper chemical equilibrium modeling, show pH and dissolved carbon both significantly impact the total dissolved copper concentration and should be measured to assess reuse potential. The sampling protocol and specific obstacles highlighted in this paper aid in the future development of sustainable wash water management strategies.
Exploratory Disposal and Reuse Feasibility Analysis of Winter Maintenance Wash Water
2016-01-01
The Ohio Department of Transportation has more than 60 facilities without sewer access generating approximately 19 million gallons of winter maintenance wash water. Off-site disposal is costly, creating the need for sustainable management strategies. The objective of this study was to conduct an exploratory feasibility analysis to assess wash water disposal and potential reuse as brine. Based on a comprehensive literature review and relevant environmental chemistry, a sampling protocol consisting of 31 water quality constituents was utilized for monthly sampling at three geographically distinct Ohio Department of Transportation garages during the winter of 2012. Results were compared to local disposal and reuse guidance limits. Three constituents, including a maximum copper concentration of 858 ppb, exceeded disposal limits, and many constituents also failed to meet reuse limits. Some concentrations were orders of magnitude higher than reuse limits and suggest pre-treatment would be necessary if wash water were reused as brine. These water quality results, in conjunction with copper chemical equilibrium modeling, show pH and dissolved carbon both significantly impact the total dissolved copper concentration and should be measured to assess reuse potential. The sampling protocol and specific obstacles highlighted in this paper aid in the future development of sustainable wash water management strategies. PMID:26908148
NASA Astrophysics Data System (ADS)
Poan, E.; Gachon, P., Sr.; Laprise, R.; Aider, R.; Dueymes, G.
2017-12-01
This study describes a framework using possibilities given by regional climate models (RCMs) to gain insight into extratropical cyclone (EC) activity during winter over North America (NA). Recent past climate period (1981 - 2005) is firstly considered using the NCEP regional reanalysis (NARR) as a reference, along with the European global reanalysis ERA-Interim (ERAI) and two CMIP5 Global Climate Models (GCMs) used to drive the Canadian RCM - version 5 (CRCM5) and the corresponding regional-scale simulations. While ERAI and GCM simulations show basic agreement with NARR in terms of climatological EC track patterns, detailed bias analyses show that, on the one hand, ERAI presents statistically significant positive biases in terms of EC genesis and therefore occurrence while their intensity is well captured. On the other hand, GCMs present large negative intensity biases in the overall NA domain and particularly over the eastern coast. In addition, storm occurrence from GCMs over the northwestern topographic regions is highly overestimated. When the CRCM5 is driven by ERAI, no significant skill deterioration arises and, more importantly, all storm characteristics near areas with main relief and over regions with large water masses are significantly improved with respect to ERAI. Conversely, in GCM-driven simulations, the added value from the CRCM5 is less prominent and systematic, except over western areas with high topography and over the Western Atlantic coastlines where the most frequent and intense ECs are located. Finally, time period near the end of the 21st century (2071-2100) is considered to analyze EC characteristic trends and changes relative to the current climate conditions, showing important modifications in storm activity for certain winter months, especially in term of intensity over the eastern coast.
Seasonal forecasting of high wind speeds over Western Europe
NASA Astrophysics Data System (ADS)
Palutikof, J. P.; Holt, T.
2003-04-01
As financial losses associated with extreme weather events escalate, there is interest from end users in the forestry and insurance industries, for example, in the development of seasonal forecasting models with a long lead time. This study uses exceedences of the 90th, 95th, and 99th percentiles of daily maximum wind speed over the period 1958 to present to derive predictands of winter wind extremes. The source data is the 6-hourly NCEP Reanalysis gridded surface wind field. Predictor variables include principal components of Atlantic sea surface temperature and several indices of climate variability, including the NAO and SOI. Lead times of up to a year are considered, in monthly increments. Three regression techniques are evaluated; multiple linear regression (MLR), principal component regression (PCR), and partial least squares regression (PLS). PCR and PLS proved considerably superior to MLR with much lower standard errors. PLS was chosen to formulate the predictive model since it offers more flexibility in experimental design and gave slightly better results than PCR. The results indicate that winter windiness can be predicted with considerable skill one year ahead for much of coastal Europe, but that this deteriorates rapidly in the hinterland. The experiment succeeded in highlighting PLS as a very useful method for developing more precise forecasting models, and in identifying areas of high predictability.
NASA Technical Reports Server (NTRS)
Hurwitz, M. M.; Braesicke., P.; Pyle, J. A.
2011-01-01
In the stratosphere, equatorial winds continually alternate between easterly (westward) and westerly (eastward). This phenomenon is called the quasi-biennial oscillation (QBO). The average QBO cycle (Le. easterly to westerly to easterly) lasts approximately 27 months. Large-scale 'planetary' waves can only travel upward through the atmosphere when equatorial winds are westerly, and below a critical threshold. Thus, the amount of wave energy that reaches the middle atmosphere depends on the wind direction. When equatorial winds are easterly, wave energy is concentrated at higher latitudes, weakening the high-latitude eastward wind feature known as the 'polar jet' during the Northern Hemisphere winter season. Holton and Tan (1980) used atmospheric observations to show the dependence of the strength of the northern polar jet on the phase (easterly vs. westerly) of the QBO. This modeling study finds that the width of the quasi-biennial oscillation (QBO) varies from one cycle to the next, and that variation in QBO width may exert equal influence on the Arctic stratosphere as does the QBO wind direction. High latitude winds are weaker and ozone values are higher in a wide-QBO model simulation, as compared with a realistic simulation. This result implies that a relatively wider QBO acts like a preferential shift toward the easterly phase of the QBO.
Dependence of global radiation on cloudiness and surface albedo in Tartu, Estonia
NASA Astrophysics Data System (ADS)
Tooming, H.
The dependence of global and diffuse radiation on surface albedo due to multiple reflection of radiation between the surface and the atmosphere (base of clouds) is found on the basis of data obtained at the Tartu-Tõravere Actinometric Station over the period 1955-2000. It is found that the monthly totals of global radiation increase by up to 1.38-1.88 times, particularly in the winter half-year between November and March, when snow cover albedo may be high. A semi-empirical formula is derived for calculating with sufficient accuracy the monthly totals of global radiation, considering the amount of cloudiness and the surface albedo. In the time series of the monthly total by global radiation a downward trend occurs in winter months. A decrease in global radiation by up to 20% in the past 46 years can be explained primarily by a relatively high negative trend in the snow cover duration and surface albedo (up to -0.24). As a result, days are growing darker, a new phenomenon associated with climate change, which undoubtedly affects human mood to some extent.
Southern hemisphere low level wind circulation statistics from the Seasat scatterometer
NASA Technical Reports Server (NTRS)
Levy, Gad
1994-01-01
Analyses of remotely sensed low-level wind vector data over the Southern Ocean are performed. Five-day averages and monthly means are created and the month-to-month variability during the winter (July-September) of 1978 is investigated. The remotely sensed winds are compared to the Australian Bureau of Meteorology (ABM) and the National Meteorological Center (NMC) surface analyses. In southern latitudes the remotely sensed winds are stronger than what the weather services' analyses suggest, indicating under-estimation by ABM and NMC in these regions. The evolution of the low-level jet and the major stormtracks during the season are studied and different flow regimes are identified. The large-scale variability of the meridional flow is studied with the aid of empirical orthogonal function (EOF) analysis. The dominance of quasi-stationary wave numbers 3,4, and 5 in the winter flows is evident in both the EOF analysis and the mean flow. The signature of an exceptionally strong blocking situation is evident in July and the special conditions leading to it are discussed. A very large intraseasonal variability with different flow regimes at different months is documented.
NASA Astrophysics Data System (ADS)
Jha, Vandana
In this study we examine the cumulative effect of dust acting as cloud nucleating aerosol (cloud condensation nuclei (CCN), giant cloud condensation nuclei (GCCN), and ice nuclei (IN)) along with anthropogenic aerosol pollution acting primarily as CCN, over the entire Colorado Rocky Mountains from the months of October to April in the year 2004-2005; the snow year. This ˜6.5 months analysis provides a range of snowfall totals and variability in dust and anthropogenic aerosol pollution. The specific objectives of this research is to quantify the impacts of both dust and pollution aerosols on wintertime precipitation in the Colorado Mountains using the Regional Atmospheric Modeling System (RAMS). In general, dust enhances precipitation primarily by acting as IN, while aerosol pollution reduces water resources in the CRB via the so-called "spill-over" effect, by enhancing cloud droplet concentrations and reducing riming rates. Dust is more episodic and aerosol pollution is more pervasive throughout the winter season. Combined response to dust and aerosol pollution is a net reduction of water resources in the CRB. The question is by how much are those water resources affected? Our best estimate is that total winter-season precipitation loss for for the CRB the 2004-2005 winter season due to the combined influence of aerosol pollution and dust is 5,380,00 acre-feet of water. Sensitivity studies for different cases have also been run for the specific cases in 2004-2005 winter season to analyze the impact of changing dust and aerosol ratios on precipitation in the Colorado River Basin. The dust is varied from 3 to 10 times in the experiments and the response is found to be non monotonic and depends on various environmental factors. The sensitivity studies show that adding dust in a wet system increases precipitation when IN affects are dominant. For a relatively dry system high concentrations of dust can result in over-seeding the clouds and reductions in precipitation. However, when adding dust to a system with warmer cloud bases, the response is non-monotonical, and when CCN affects are dominant, reductions in precipitation are found.
Towner, Alison V.; Underhill, Les G.; Jewell, Oliver J. D.; Smale, Malcolm J.
2013-01-01
The seasonal occurrence of white sharks visiting Gansbaai, South Africa was investigated from 2007 to 2011 using sightings from white shark cage diving boats. Generalized linear models were used to investigate the number of great white sharks sighted per trip in relation to sex, month, sea surface temperature and Multivariate El Niño/Southern Oscillation (ENSO) Indices (MEI). Water conditions are more variable in summer than winter due to wind-driven cold water upwelling and thermocline displacement, culminating in colder water temperatures, and shark sightings of both sexes were higher during the autumn and winter months (March–August). MEI, an index to quantify the strength of Southern Oscillation, differed in its effect on the recorded numbers of male and female white sharks, with highly significant interannual trends. This data suggests that water temperature and climatic phenomena influence the abundance of white sharks at this coastal site. In this study, more females were seen in Gansbaai overall in warmer water/positive MEI years. Conversely, the opposite trend was observed for males. In cool water years (2010 to 2011) sightings of male sharks were significantly higher than in previous years. The influence of environmental factors on the physiology of sharks in terms of their size and sex is discussed. The findings of this study could contribute to bather safety programmes because the incorporation of environmental parameters into predictive models may help identify times and localities of higher risk to bathers and help mitigate human-white shark interactions. PMID:23951111
NASA Astrophysics Data System (ADS)
Chevooruvalappil Chandran, B.; Pittana, M.; Haas, C.
2015-12-01
Snow on sea ice is a critical and complex factor influencing sea ice processes. Deep snow with a high albedo and low thermal conductivity inhibits ice growth in winter and minimizes ice loss in summer. Very shallow or absent snow promotes ice growth in winter and ice loss in summer. The timing of snow ablation critically impacts summer sea ice mass balance. Here we assess the accuracy of various snow on sea ice data products from reanalysis and modeling comparing them with in situ measurements. The latter are based on the Warren et al. (1999) monthly climatology derived from snow ruler measurements between 1954-1991, and on daily snow depth retrievals from few drifting ice mass balance buoys (IMB) with sufficiently long observations spanning the summer season. These were compared with snow depth data from the National Center for Environmental Prediction Department of Energy Reanalysis 2 (NCEP), the Community Climate System Model 4 (CCSM4), and the Canadian Earth System Model 2 (CanESM2). Results are quite variable in different years and regions. However, there is often good agreement between CanESM2 and IMB snow depth during the winter accumulation and spring melt periods. Regional analyses show that over the western Arctic covered primarily with multiyear ice NCEP snow depths are in good agreement with the Warren climatology while CCSM4 overestimates snow depth. However, in the Eastern Arctic which is dominated by first-year ice the opposite behavior is observed. Compared to the Warren climatology CanESM2 underestimates snow depth in all regions. Differences between different snow depth products are as large as 10 to 20 cm, with large consequences for the sea ice mass balance. However, it is also very difficult to evaluate the accuracy of reanalysis and model snow depths due to a lack of extensive, continuous in situ measurements.
NASA Astrophysics Data System (ADS)
Ren, Rongcai; Rao, Jian; Wu, Guoxiong; Cai, Ming
2017-05-01
The concurrent effects of the El Niño-Southern Oscillation (ENSO) on the northern winter stratosphere have been widely recognized; however, the delayed effects of ENSO in the next winter after mature ENSO have yet to be confirmed in multi reanalyses and model simulations. This study uses three reanalysis datasets, a long-term fully coupled model simulation, and a high-top general circulation model to examine ENSO's delayed effects in the stratosphere. The warm-minus-cold composite analyses consistently showed that, except those quick-decaying quasi-biennial ENSO events that reverse signs during July-August-September (JAS) in their decay years, ENSO events particularly those quasi-quadrennial (QQ) that persist through JAS, always have a significant effect on the extratropical stratosphere in both the concurrent winter and the next winter following mature ENSO. During the concurrent winter, the QQ ENSO-induced Pacific-North American (PNA) pattern corresponds to an anomalous wavenumber-1 from the upper troposphere to the stratosphere, which acts to intensify/weaken the climatological wave pattern during warm/cold ENSO. Associated with the zonally quasi-homogeneous tropical forcing in spring of the QQ ENSO decay years, there appear persistent and zonally quasi-homogeneous temperature anomalies in the midlatitudes from the upper troposphere to the lower stratosphere until summer. With the reduction in ENSO forcing and the PNA responses in the following winter, an anomalous wavenumber-2 prevails in the extratropics. Although the anomalous wave flux divergence in the upper stratospheric layer is still dominated by wavenumber-1, it is mainly caused by wavenumber-2 in the lower stratosphere. However, the wavenumber-2 activity in the next winter is always underestimated in the model simulations, and wavenumber-1 activity dominates in both winters.
Prediction of winter precipitation over northwest India using ocean heat fluxes
NASA Astrophysics Data System (ADS)
Nageswararao, M. M.; Mohanty, U. C.; Osuri, Krishna K.; Ramakrishna, S. S. V. S.
2016-10-01
The winter precipitation (December-February) over northwest India (NWI) is highly variable in terms of time and space. The maximum precipitation occurs over the Himalaya region and decreases towards south of NWI. The winter precipitation is important for water resources and agriculture sectors over the region and for the economy of the country. It is an exigent task to the scientific community to provide a seasonal outlook for the regional scale precipitation. The oceanic heat fluxes are known to have a strong linkage with the ocean and atmosphere. Henceforth, in this study, we obtained the relationship of NWI winter precipitation with total downward ocean heat fluxes at the global ocean surface, 15 regions with significant correlations are identified from August to November at 90 % confidence level. These strong relations encourage developing an empirical model for predicting winter precipitation over NWI. The multiple linear regression (MLR) and principal component regression (PCR) models are developed and evaluated using leave-one-out cross-validation. The developed regression models are able to predict the winter precipitation patterns over NWI with significant (99 % confidence level) index of agreement and correlations. Moreover, these models capture the signals of extremes, but could not reach the peaks (excess and deficit) of the observations. PCR performs better than MLR for predicting winter precipitation over NWI. Therefore, the total downward ocean heat fluxes at surface from August to November are having a significant impact on seasonal winter precipitation over the NWI. It concludes that these interrelationships are more useful for the development of empirical models and feasible to predict the winter precipitation over NWI with sufficient lead-time (in advance) for various risk management sectors.
Stucker, J.H.; Cuthbert, F.J.; Winn, Brad; Noel, B.L.; Maddock, S.B.; Leary, P.R.; Cordes, J.; Wemmer, L.C.
2010-01-01
In 1993, a mark-recapture effort was initiated to band annually all Great Lakes Piping Plover nesting adults and offspring. With voluntary reporting by observers, >430 sightings of 154 individually-marked Great Lakes banded birds were documented on the wintering grounds during 19952005. This paper reports non-breeding distribution and site-fidelity and identifies Critical Habitat units used by this population during the winter. Information obtained through banded bird sightings indicates that the winter range of Great Lakes Piping Plovers extends from North Carolina to Texas, and the Bahamas, with the majority (75%) of reported individuals wintering in Georgia and Florida. About 95% of sightings were near or within federally-designated winter Critical Habitat for Piping Plovers. Within season (52%) and between-year (62%) site fidelity was documented for resightings within 3.5 km of initial sighting. Although breeding pairs do not winter in close association, there is some evidence to suggest that offspring winter closer to the male rather than the female parent (P-value = 0.03), and adult males and females appear to exhibit latitudinal segregation (P-value < 0.001). Females reach the winter grounds before males, arriving in July and staying through April (???9 months) or 75% of the annual cycle. The study is the first to identify winter distribution for the Great Lakes Piping Plover population. The significant proportion of the annual cycle spent on the wintering grounds emphasizes the importance of habitat protection during the non-breeding season for this federally-listed population.
A Model for the Growth of Opportunistic Macroalgae ( Enteromorpha sp.) in Tidal Estuaries
NASA Astrophysics Data System (ADS)
Martins, I.; Marques, J. C.
2002-08-01
The aim of this work was to develop a model capable of simulating the gross and the net growth of Enteromorpha sp. in tidal estuaries. The model was developed for the Mondego Estuary (Western Portugal) taking into account the key factors that control green macroalgae in the area. Enteromorpha gross growth was defined as a function of light, temperature, salinity and internal nutrients (N and P). Net growth was defined as gross growth minus respiration. The model was calibrated using a set of experimental data obtained in the laboratory under semi-controlled conditions. Sub-models of tidal height and light extinction coefficient variation were included for predicting macroalgal growth in the field, which constituted the model validation. According to the results, model predictions are well within the observed results, both in the laboratory and in the field. The largest discrepancies between predicted and observed values in the field refer to winter months and July. Possibly at these periods of the year, the prevailing external conditions (very low salinity in winter and high temperature and PFD in July) induced some physiological responses by Enteromorpha, which were not described by the model (e.g. sporulation, desiccation). The model was also used to demonstrate the need to consider dynamic descriptions of the light extinction coefficient in the water column ( k) when assessing primary productivity in tidal environments. If macroalgal-specific (e.g. nutrient internal status) and site-specific parameters (e.g. minimal and maximal depth, photoperiod) are considered, the present model may be used in a broader scale.
Exceptional Arctic warmth of early winter 2016 and attribution to global warming
NASA Astrophysics Data System (ADS)
van Oldenborgh, Geert Jan; Macias-Fauria, Marc; King, Andrew; Uhe, Peter; Philip, Sjoukje; Kew, Sarah; Karoly, David; Otto, Friederike; Allen, Myles; Cullen, Heidi
2017-04-01
The dark polar winters usually sport the coldest extremes on Earth, however this winter, the North Pole and the surrounding Arctic region have experienced record high temperatures in November and December, with daily means reaching 15 °C (27 °F) above normal and a November monthly mean that was 13 °C (23 °F) above normal on the pole. November also saw a brief retreat of sea-ice that was virtually unprecedented in nearly 40 years of satellite records, followed by a record low in November sea ice area since 1850. Unlike the Antarctic, Arctic lands are inhabited and their socio-economic systems are greatly affected by the impacts of extreme and unprecedented sea ice dynamics and temperatures, such as for example, the timing of marine mammal migrations, and refreezing rain on snow that prevents reindeer from feeding. Here we report on our multi-method rapid attribution analysis of North Pole November-December temperatures. To quantify the rarity of the event, we computed the November-December averaged temperature around the North Pole (80-90 °N) in the (short but North-pole covering) ERA-interim reanalysis. To put the event in context of natural variability, we use a longer and closely related time series based on the northern most meteorological observations on land (70-80 °N). This allows for a reconstruction of Arctic temperatures back to about 1900. We also perform a multi-method analysis of North Pole temperatures with two sets of climate models: the CMIP5 multi-model ensemble, and a large ensemble of model runs in the so-called Weather@Home project. Physical mechanisms that are responsible for temperature and sea ice variability in the North Pole region are also discussed. The observations and the bias-corrected CMIP5 ensemble point to a return period of about 50 to 200 years in the present climate, i.e., the probability of such an extreme is about 0.5% to 2% every year, with a large uncertainty. The observations show that November-December temperatures have risen on the North Pole, modulated by decadal North Atlantic variability. For all phases of this variability, a warm event like the one of this winter would have been extremely unlikely in the climate of a century ago. Both sets of models also give very comparable results and show that the bulk of the arctic temperature increase is due to anthropogenic emissions. This also holds for the warm extremes caused by the type of circulation present in the early winter of 2016.
Climate change in our backyards: the reshuffling of North America's winter bird communities.
Princé, Karine; Zuckerberg, Benjamin
2015-02-01
Much of the recent changes in North American climate have occurred during the winter months, and as result, overwintering birds represent important sentinels of anthropogenic climate change. While there is mounting evidence that bird populations are responding to a warming climate (e.g., poleward shifts) questions remain as to whether these species-specific responses are resulting in community-wide changes. Here, we test the hypothesis that a changing winter climate should favor the formation of winter bird communities dominated by warm-adapted species. To do this, we quantified changes in community composition using a functional index--the Community Temperature Index (CTI)--which measures the balance between low- and high-temperature dwelling species in a community. Using data from Project FeederWatch, an international citizen science program, we quantified spatiotemporal changes in winter bird communities (n = 38 bird species) across eastern North America and tested the influence of changes in winter minimum temperature over a 22-year period. We implemented a jackknife analysis to identify those species most influential in driving changes at the community level and the population dynamics (e.g., extinction or colonization) responsible for these community changes. Since 1990, we found that the winter bird community structure has changed with communities increasingly composed of warm-adapted species. This reshuffling of winter bird communities was strongest in southerly latitudes and driven primarily by local increases in abundance and regional patterns of colonization by southerly birds. CTI tracked patterns of changing winter temperature at different temporal scales ranging from 1 to 35 years. We conclude that a shifting winter climate has provided an opportunity for smaller, southerly distributed species to colonize new regions and promote the formation of unique winter bird assemblages throughout eastern North America. © 2014 John Wiley & Sons Ltd.
Precipitation Processes Derived from TRMM Satellite Data, Cloud Resolving Model and Field Campaigns
NASA Technical Reports Server (NTRS)
Tao, W.-K.; Lang, S.; Simpson, J.; Meneghini, R.; Halverson, J.; Johnson, R.; Adler, R.; Einaudi, Franco (Technical Monitor)
2001-01-01
Rainfall is a key link in the hydrologic cycle and is a primary heat source for the atmosphere. The vertical distribution of latent-heat release, which is accompanied by rainfall, modulates the large-scale circulations of the tropics and in turn can impact midlatitude weather. This latent heat release is a consequence of phase changes between vapor, liquid. and solid water. Present large-scale weather and climate models can simulate cloud latent heat release only crudely thus reducing their confidence in predictions on both global and regional scales. In this paper, NASA Tropical Rainfall Measuring (TRMM) precipitation radar (PR) derived rainfall information and the Goddard Convective and Stratiform Heating (CSH) algorithm used to estimate the four-dimensional structure of global monthly latent heating and rainfall profiles over the global tropics from December 1997 to October 2000. Rainfall latent heating and radar reflectively structure between ENSO (1997-1998 winter) and non-ENSO (1998-1999 winter) periods are examined and compared. The seasonal variation of heating over various geographic locations (i.e. Indian ocean vs west Pacific; Africa vs S. America) are also analyzed. In addition, the relationship between rainfall latent heating maximum heating level), radar reflectively and SST are examined.
Water Budget for the Island of Kauai, Hawaii
Shade, Patricia J.
1995-01-01
A geographic information system model was created to calculate a monthly water budget for the island of Kauai. Ground-water recharge is the residual component of a monthly water budget calculated using long-term average rainfall, streamflow, and pan-evaporation data, applied irrigation-water estimates, and soil characteristics. The water-budget components are defined seasonally, through the use of the monthly water budget, and spatially by aquifer-system areas, through the use of the geographic information system model. The mean annual islandwide water-budget totals are 2,720 Mgal/d for rainfall plus irrigation; 1,157 Mgal/d for direct runoff; 911 Mgal/d for actual evapotranspiration; and 652 Mgal/d for ground-water recharge. Direct runoff is 43 percent, actual evapotranspiration is 33 percent, and ground-water recharge is 24 percent of rainfall plus irrigation. Ground-water recharge in the natural land-use areas is spatially distributed in a pattern similar to the rainfall distribution. Distinct seasonal variations in the water-budget components are apparent from the monthly water-budget calculations. Rainfall and ground-water recharge peak during the wet winter months with highs in January of 3,698 Mgal/d (million gallons per day) and 981 Mgal/d, respectively; a slight peak in July and August relative to June and September is caused by increased orographic rainfall. Recharge is lowest in June (454 Mgal/d) and November (461 Mgal/d).
Solecki, Leszek
2005-01-01
The aim of the study was the recognition and evaluation of annual exposure to noise among private farmers on family farms of animal production profile. The study covered 16 family farms using arable land of the size of 14-50 ha (25.8 ha on average), equipped with agricultural tractors (working with a set of agricultural machines), machines for the production of fodder, workshop machines and woodworking saws. Based on the precise working time schedules concerning agricultural activities and dosimetric measurements conducted during the whole year, two acoustic parameters were determined: total exposure in individual months and equivalent daily exposure. The study showed that the highest values of the total monthly exposure to noise occurred in two summer-autumn months (August, October) and during four winter-spring months (January, March, and May, June). High values of the total exposure observed in the summer-autumn season result from the performance of intensive field and transport work activities, with prolonged duration of work and a large number of workdays in these months. The occurrence of high total values of the total exposure in winter-spring months, however, is associated with logging wood for winter (saws) and intensive repair work activities. In the seasons of the year analysed, high values of equivalent daily exposure were obtained, within the range: 4.20-4.86 Pa(2) x h. The average value of this parameter for the whole year reached the value: 3.61 Pa(2) x h (standard exceeded 3.6 times). This value is equivalent to the mean level of exposure to noise equal to 90.5 dB. In consideration of the moderate accuracy of mean values obtained and small degree of variability of the results, the data acquired in this study may be used in practice by proper State services for the evaluation of noise risk among private farmers specializing in animal production.
Seasonal evolution of S q current system at sub-auroral latitude
NASA Astrophysics Data System (ADS)
Vichare, Geeta; Rawat, Rahul; Hanchinal, A.; Sinha, A. K.; Dhar, A.; Pathan, B. M.
2012-11-01
The quiet-time (Σ K p ≤ 3) daily variations of the geomagnetic field at the Indian Antarctic station, Maitri (Geographic Coord.: 70.75°S, 11.73°E; Geomagnetic Coord.: 66.84°S, 56.29°E) during two consecutive years of a solar minimum are considered in order to investigate the characteristics of the solar quiet ( S q) current system. The present work reports the signatures of the south limb of the S q current loop of the southern hemisphere over a sub-auroral station. It is observed that the seasonal variation of the S q current strength over Maitri is strongest during the summer months and weakest during the winter months. In spite of the total darkness during the winter months, an S q pattern is identified at Maitri. The range of the horizontal field variation in the daily S q pattern during summer is one order higher than that during winter. An interesting feature regarding the phase of the local time variation in the seasonal pattern is found here. A sharp shift in the time of the peak S q current to later local times (> 1 hour per month) is observed during January-February and July-August, which may correspond to the transition from the complete presence, or absence, of sunlight to partial sunlight. The differences in the incoming solar UV radiation during such transitions can cause a sudden change in the local ionospheric conductivity pattern, and can also trigger some unusual thermo-tidal activity, that might be responsible for modifying the global S q pattern.
1983-09-01
cold winters. Coldest temperatures ir. winter months are caused by high pressure systems which move rapidly dohn from central Canada cr Hudson Eay... dolomitic marble; or sand (30 to 60 feet), Glacial till (30 to 50 feet), and bedrock. The materials occurring above the bedrock in the vicinity of the...Trenton Group Iberville formation Noncalcareous black shale interbedded with 1000 dolomite . Stony point formation Predominantly calcareous black shale
Wilhelm, Steven W; LeCleir, Gary R; Bullerjahn, George S; McKay, Robert M; Saxton, Matthew A; Twiss, Michael R; Bourbonniere, Richard A
2014-02-01
Carbon and nutrient cycles in large temperate lakes such as Lake Erie are primarily driven by phototrophic and heterotrophic microorganisms, although our understanding of these is often constrained to late spring through summer due to logistical constraints. During periods of > 90% ice cover in February of 2008, 2009, and 2010, we collected samples from an icebreaker for an examination of bacterial production as well as microbial community structure. In comparison with summer months (August 2002 and 2010), we tested hypotheses concerning seasonal changes in microbial community diversity and production. Bacterial production estimates were c. 2 orders of magnitude higher (volume normalized) in summer relative to winter. Our observations further demonstrate that the microbial community, including single-celled phototrophs, varied in composition between August and February. Sediment traps deployed and collected over a 3 year period (2008-2011) confirmed that carbon export was ongoing and not limiting winter production. The results support the notion that active primary producers in winter months export carbon to the sediments that is not consumed until the warmer seasons. The establishment of this linkage is a critical observation in efforts to understand the extent and severity of annual summertime formations of a zone of regional hypoxia in Lake Erie. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Macsween, K.; Edwards, G. C.
2017-12-01
Despite many decades of research, the controlling mechanisms of mercury (Hg) air-surface exhange are still poorly understood. Particularly in Australian ecosystems where there are few anthropogenic inputs. A clear understanding of these mechanisms is vital for accurate representation in the global Hg models, particularly regarding re-emission. Water is known to have a considerable influence on Hg exchange within a terrestrial ecosystem. Precipitation has been found to cause spikes is Hg emissions during the initial stages of rain event. While, Soil moisture content is known to enhance fluxes between 15 and 30% Volumetric soil water (VSW), above which fluxes become suppressed. Few field experiments exist to verify these dominantly laboratory or controlled experiments. Here we present work looking at Hg fluxes over an 8-month period at a vegetated background site. The aim of this study is to identify how changes to precipitation intensity and duration, coupled with variable soil moisture content may influence Hg flux across seasons. As well as the influence of other meteorological variables. Experimentation was undertaken using aerodynamic gradient micrometeorological flux method, avoiding disruption to the surface, soil moisture probes and rain gauge measurements to monitor alterations to substrate conditions. Meteorological and air chemistry variables were also measured concurrently throughout the duration of the study. During the study period, South-Eastern Australia experienced several intense east coast low storm systems during the Autumn and Spring months and an unusually dry winter. VSW rarely reached above 30% even following the intense rainfall experienced during the east coast lows. The generally dry conditions throughout winter resulted in an initial spike in Hg emissions when rainfall occurred. Fluxes decreased shortly after the rain began but remained slightly elevated. Given the reduced net radiation and cooler temperatures experienced during the winter months soils took several days to dry out, resulting in slightly enhanced fluxes for the days preceding rainfall. It is thought that seasonality of rainfall has a significant impact of Hg air-surface exchange trends, both through increased recovery times once rain has past and through the increased occurrence of major storm events.
NASA Astrophysics Data System (ADS)
Palomino-Lemus, Reiner; Córdoba-Machado, Samir; Quishpe-Vásquez, César; García-Valdecasas-Ojeda, Matilde; Raquel Gámiz-Fortis, Sonia; Castro-Díez, Yolanda; Jesús Esteban-Parra, María
2017-04-01
In this study the Principal Component Regression (PCR) method has been used as statistical downscaling technique for simulating boreal winter precipitation in Tropical America during the period 1950-2010, and then for generating climate change projections for 2071-2100 period. The study uses the Global Precipitation Climatology Centre (GPCC, version 6) data set over the Tropical America region [30°N-30°S, 120°W-30°W] as predictand variable in the downscaling model. The mean monthly sea level pressure (SLP) from the National Center for Environmental Prediction - National Center for Atmospheric Research (NCEP-NCAR reanalysis project), has been used as predictor variable, covering a more extended area [30°N-30°S, 180°W-30°W]. Also, the SLP outputs from 20 GCMs, taken from the Coupled Model Intercomparison Project (CMIP5) have been used. The model data include simulations with historical atmospheric concentrations and future projections for the representative concentration pathways RCP2.6, RCP4.5, and RCP8.5. The ability of the different GCMs to simulate the winter precipitation in the study area for present climate (1971-2000) was analyzed by calculating the differences between the simulated and observed precipitation values. Additionally, the statistical significance at 95% confidence level of these differences has been estimated by means of the bilateral rank sum test of Wilcoxon-Mann-Whitney. Finally, to project winter precipitation in the area for the period 2071-2100, the downscaling model, recalibrated for the total period 1950-2010, was applied to the SLP outputs of the GCMs under the RCP2.6, RCP4.5, and RCP8.5 scenarios. The results show that, generally, for present climate the statistical downscaling shows a high ability to faithfully reproduce the precipitation field, while the simulations performed directly by using not downscaled outputs of GCMs strongly distort the precipitation field. For future climate, the projected predictions under the RCP4.5 and RCP8.5 scenarios show large areas with significant changes. For the RCP2.6 scenario, projected results present a predominance of very moderate decreases in rainfall, although significant in some models. Keywords: climate change projections, precipitation, Tropical America, statistical downscaling. Acknowledgements: This work has been financed by the projects P11-RNM-7941 (Junta de Andalucía-Spain) and CGL2013-48539-R (MINECO-Spain, FEDER).
Seasonal variation in myocardial infarction is limited to patients with ST-elevations on admission.
Leibowitz, David; Planer, David; Weiss, Teddy; Rott, David
2007-01-01
Previous studies have demonstrated seasonal variation in the incidence of acute myocardial infarction (AMI) with an increase in cases during the winter months. However, they did not assess whether ST-elevation MI (STEMI) and non-ST-elevation MI (NSTEMI) exhibit similar changes. The object of this study was to compare the seasonal variation of STEMI and NSTEMI. All patients who presented with AMI and underwent coronary angiography within seven days of admission were identified via the institutional database. STEMI diagnosis required admission ECG demonstrating ST elevation in at least two continguous leads. All AMIs not meeting criteria for STEMI were defined as NSTEMI. Patients were divided into monthly and seasonal groups based on the date of admission with MI. A total of 784 patients were included: 549 patients with STEMI and 235 with NSTEMI. When STEMI patients were analyzed by season, there were 170 patients (31%) in the winter months, a statistically significant difference of excess MI (p<0.005). When NSTEMI patients were analyzed, there were 62 patients (26%) in the winter with no statistically significant difference in the seasonal variation. Our findings suggest that the previously noted seasonal variation in the incidence of AMI is limited to patients presenting with STEMI, and that there are important physiological differences between STEMI and NSTEMI, the nature of which remains to be elucidated.
Wyon, Matthew A; Koutedakis, Yiannis; Wolman, Roger; Nevill, Alan M; Allen, Nick
2014-01-01
Athletes who train indoors during the winter months exhibit low serum 25-hydroxyvitamin D [25(OH)D] concentrations due to a lack of sunlight exposure. This has been linked to impaired exercise performance. The purpose of this study was to assess the effects of oral vitamin D₃ supplementation on selected physical fitness and injury parameters in elite ballet dancers. Controlled prospective study. 24 elite classical ballet dancers (intervention n=17; control n=7) participated in a controlled 4-month oral supplementation of vitamin D₃ (2000 IU per day). Isometric muscular strength and vertical jump height were measured pre and post intervention. Injury occurrence during the intervention period was also recorded by the in-house medical team. Repeated measures ANOVA and Mann-Whitney-U statistical tests were used and significance was set at p ≤ 0.05. Significant increases were noted for the intervention group for isometric strength (18.7%, p<0.01) and vertical jump (7.1%, p<0.01). The intervention group also sustained significantly less injuries than the controls during the study period (p<0.01). Oral supplementation of vitamin D₃ during the winter months has beneficial effects on muscular performance and injury occurrence in elite ballet dancers. Copyright © 2013 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
A spurious warming trend in the NMME equatorial Pacific SST hindcasts
NASA Astrophysics Data System (ADS)
Shin, Chul-Su; Huang, Bohua
2017-06-01
Using seasonal hindcasts of six different models participating in the North American Multimodel Ensemble project, the trend of the predicted sea surface temperature (SST) in the tropical Pacific for 1982-2014 at each lead month and its temporal evolution with respect to the lead month are investigated for all individual models. Since the coupled models are initialized with the observed ocean, atmosphere, land states from observation-based reanalysis, some of them using their own data assimilation process, one would expect that the observed SST trend is reasonably well captured in their seasonal predictions. However, although the observed SST features a weak-cooling trend for the 33-year period with La Niña-like spatial pattern in the tropical central-eastern Pacific all year round, it is demonstrated that all models having a time-dependent realistic concentration of greenhouse gases (GHG) display a warming trend in the equatorial Pacific that amplifies as the lead-time increases. In addition, these models' behaviors are nearly independent of the starting month of the hindcasts although the growth rates of the trend vary with the lead month. This key characteristic of the forecasted SST trend in the equatorial Pacific is also identified in the NCAR CCSM3 hindcasts that have the GHG concentration for a fixed year. This suggests that a global warming forcing may not play a significant role in generating the spurious warming trend of the coupled models' SST hindcasts in the tropical Pacific. This model SST trend in the tropical central-eastern Pacific, which is opposite to the observed one, causes a developing El Niño-like warming bias in the forecasted SST with its peak in boreal winter. Its implications for seasonal prediction are discussed.
Rose, Hannah; Caminade, Cyril; Bolajoko, Muhammad Bashir; Phelan, Paul; van Dijk, Jan; Baylis, Matthew; Williams, Diana; Morgan, Eric R
2016-03-01
Recent climate change has resulted in changes to the phenology and distribution of invertebrates worldwide. Where invertebrates are associated with disease, climate variability and changes in climate may also affect the spatio-temporal dynamics of disease. Due to its significant impact on sheep production and welfare, the recent increase in diagnoses of ovine haemonchosis caused by the nematode Haemonchus contortus in some temperate regions is particularly concerning. This study is the first to evaluate the impact of climate change on H. contortus at a continental scale. A model of the basic reproductive quotient of macroparasites, Q0 , adapted to H. contortus and extended to incorporate environmental stochasticity and parasite behaviour, was used to simulate Pan-European spatio-temporal changes in H. contortus infection pressure under scenarios of climate change. Baseline Q0 simulations, using historic climate observations, reflected the current distribution of H. contortus in Europe. In northern Europe, the distribution of H. contortus is currently limited by temperatures falling below the development threshold during the winter months and within-host arrested development is necessary for population persistence over winter. In southern Europe, H. contortus infection pressure is limited during the summer months by increased temperature and decreased moisture. Compared with this baseline, Q0 simulations driven by a climate model ensemble predicted an increase in H. contortus infection pressure by the 2080s. In northern Europe, a temporal range expansion was predicted as the mean period of transmission increased by 2-3 months. A bimodal seasonal pattern of infection pressure, similar to that currently observed in southern Europe, emerges in northern Europe due to increasing summer temperatures and decreasing moisture. The predicted patterns of change could alter the epidemiology of H. contortus in Europe, affect the future sustainability of contemporary control strategies, and potentially drive local adaptation to climate change in parasite populations. © 2015 John Wiley & Sons Ltd.
Matter-Walstra, Klazien; Widmer, Marcel; Busato, André
2006-03-03
Climate- or holiday-related seasonality in hospital admission rates is well known for many diseases. However, little research has addressed the impact of tourism on seasonality in admission rates. We therefore investigated the influence of tourism on emergency admission rates in Switzerland, where winter and summer leisure sport activities in large mountain regions can generate orthopedic injuries. Using small area analysis, orthopedic hospital service areas (HSAo) were evaluated for seasonality in emergency admission rates. Winter sport areas were defined using guest bed accommodation rate patterns of guest houses and hotels located above 1000 meters altitude that show clear winter and summer peak seasons. Emergency admissions (years 2000-2002, n = 135'460) of local and nonlocal HSAo residents were evaluated. HSAo were grouped according to their area type (regular or winter sport area) and monthly analyses of admission rates were performed. Of HSAo within the defined winter sport areas 70.8% show a seasonal, summer-winter peak hospital admission rate pattern and only 1 HSAo outside the defined winter sport areas shows such a pattern. Seasonal hospital admission rates in HSAo in winter sport areas can be up to 4 times higher in winter than the intermediate seasons, and they are almost entirely due to admissions of nonlocal residents. These nonlocal residents are in general -and especially in winter- younger than local residents, and nonlocal residents have a shorter length of stay in winter sport than in regular areas. The overall geographic distribution of nonlocal residents admitted for emergencies shows highest rates during the winter as well as the summer in the winter sport areas. Small area analysis using orthopedic hospital service areas is a reliable method for the evaluation of seasonality in hospital admission rates. In Switzerland, HSAo defined as winter sport areas show a clear seasonal fluctuation in admission rates of only nonlocal residents, whereas HSAo defined as regular, non-winter sport areas do not show such seasonality. We conclude that leisure sport, and especially ski/snowboard tourism demands great flexibility in hospital beds, staff and resource planning in these areas.
Matter-Walstra, Klazien; Widmer, Marcel; Busato, André
2006-01-01
Background Climate- or holiday-related seasonality in hospital admission rates is well known for many diseases. However, little research has addressed the impact of tourism on seasonality in admission rates. We therefore investigated the influence of tourism on emergency admission rates in Switzerland, where winter and summer leisure sport activities in large mountain regions can generate orthopedic injuries. Methods Using small area analysis, orthopedic hospital service areas (HSAo) were evaluated for seasonality in emergency admission rates. Winter sport areas were defined using guest bed accommodation rate patterns of guest houses and hotels located above 1000 meters altitude that show clear winter and summer peak seasons. Emergency admissions (years 2000–2002, n = 135'460) of local and nonlocal HSAo residents were evaluated. HSAo were grouped according to their area type (regular or winter sport area) and monthly analyses of admission rates were performed. Results Of HSAo within the defined winter sport areas 70.8% show a seasonal, summer-winter peak hospital admission rate pattern and only 1 HSAo outside the defined winter sport areas shows such a pattern. Seasonal hospital admission rates in HSAo in winter sport areas can be up to 4 times higher in winter than the intermediate seasons, and they are almost entirely due to admissions of nonlocal residents. These nonlocal residents are in general -and especially in winter- younger than local residents, and nonlocal residents have a shorter length of stay in winter sport than in regular areas. The overall geographic distribution of nonlocal residents admitted for emergencies shows highest rates during the winter as well as the summer in the winter sport areas. Conclusion Small area analysis using orthopedic hospital service areas is a reliable method for the evaluation of seasonality in hospital admission rates. In Switzerland, HSAo defined as winter sport areas show a clear seasonal fluctuation in admission rates of only nonlocal residents, whereas HSAo defined as regular, non-winter sport areas do not show such seasonality. We conclude that leisure sport, and especially ski/snowboard tourism demands great flexibility in hospital beds, staff and resource planning in these areas. PMID:16512923
The likelihood of winter sprites over the Gulf Stream
NASA Astrophysics Data System (ADS)
Price, Colin; Burrows, William; King, Patrick
2002-11-01
With the recent introduction of the Canadian Lightning Detection Network (CLDN), it was revealed that during the winter months every year, the highest lightning activity within the network occurs over the Gulf Stream, southeast of Nova Scotia. These storms over the Gulf Stream, in addition to being of importance to trans-Atlantic shipping and aviation, have an unusually high fraction of positive polarity lightning, with unusually large peak currents. Such intense positive lightning flashes are known to generate transient luminous events (TLEs) such as sprites and elves in the upper atmosphere. It is found that many of these large positive discharges produce extremely low frequency (ELF) electromagnetic radiation detected at a field station in the Negev Desert, Israel, 8000 km away, in agreement with previously documented sprite observations. Since these winter storms occur in the same location every year, it provides a good opportunity for field experiments focused on studying winter sprites and oceanic thunderstorms.
Braunisch, Veronika; Patthey, Patrick; Arlettaz, Raphaël
2011-04-01
Outdoor winter recreation exerts an increasing pressure upon mountain ecosystems, with unpredictable, free-ranging activities (e.g., ski mountaineering, snowboarding, and snowshoeing) representing a major source of stress for wildlife. Mitigating anthropogenic disturbance requires the spatially explicit prediction of the interference between the activities of humans and wildlife. We applied spatial modeling to localize conflict zones between wintering Black Grouse (Tetrao tetrix), a declining species of Alpine timberline ecosystems, and two free-ranging winter sports (off-piste skiing [including snow-boarding] and snowshoeing). Track data (snow-sports and birds' traces) obtained from aerial photographs taken over a 585-km transect running along the timberline, implemented within a maximum entropy model, were used to predict the occurrence of snow sports and Black Grouse as a function of landscape characteristics. By modeling Black Grouse presence in the theoretical absence of free-ranging activities and ski infrastructure, we first estimated the amount of habitat reduction caused by these two factors. The models were then extrapolated to the altitudinal range occupied by Black Grouse, while the spatial extent and intensity of potential conflict were assessed by calculating the probability of human-wildlife co-occurrence. The two snow-sports showed different distribution patterns. Skiers' occurrence was mainly determined by ski-lift presence and a smooth terrain, while snowshoers' occurrence was linked to hiking or skiing routes and moderate slopes. Wintering Black Grouse avoided ski lifts and areas frequented by free-ranging snow sports. According to the models, Black Grouse have faced a substantial reduction of suitable wintering habitat along the timberline transect: 12% due to ski infrastructure and another 16% when adding free-ranging activities. Extrapolating the models over the whole study area results in an overall habitat loss due to ski infrastructure of 10%, while there was a > 10% probability of human-wildlife encounters on 67% of the remaining area of suitable wintering habitat. Only 23% of the wintering habitat was thus free of anthropogenic disturbance. By identifying zones of potential conflict, while rating its relative intensity, our model provides a powerful tool to delineate and prioritize areas where wildlife winter refuges and visitor steering measures should be implemented.
Simulation of a semi-permanent wetland basin in the Cottonwood Lake area, east-central North Dakota
Carroll, R.W.H.; Pohll, G.M.; Tracy, J.C.; Winter, T.C.; ,
2001-01-01
A coupled surface/subsurface hydrologic model was developed to examine the effects of climatic conditions on stage fluctuations within a semi-permanent wetland located in the Prairie Pothole region of east-central North Dakota. Model calibration was accomplished using data collected from 1981 to 1996 to encompass extreme climatic conditions. Results show that the processes of precipitation largely control wetland stage. Surface runoff produces short duration, high magnitude flows typically associated with spring thaw. On the other hand, groundwater contribution provides flows smaller in magnitude but higher in duration and these become increasingly important with respect to wetland stage during extended periods of drought and flood. Peak groundwater fluxes lag one-to-two months behind peak recharge rates and therefore occur predominantly during the month of June. Groundwater fluxes then attenuate slowly for the remainder of the year to the point where water may move out of the wetland and into the underlying aquifer during the fall and winter months. Despite an over simplification of the complex groundwater component of the wetland system it was found that this modeling approach was able to predict system response over 15 years, under extreme climatic conditions and with relatively easily attainable data input.
van Dooremalen, Coby; Gerritsen, Lonne; Cornelissen, Bram; van der Steen, Jozef J. M.; van Langevelde, Frank; Blacquière, Tjeerd
2012-01-01
Background Recent elevated winter loss of honey bee colonies is a major concern. The presence of the mite Varroa destructor in colonies places an important pressure on bee health. V. destructor shortens the lifespan of individual bees, while long lifespan during winter is a primary requirement to survive until the next spring. We investigated in two subsequent years the effects of different levels of V. destructor infestation during the transition from short-lived summer bees to long-lived winter bees on the lifespan of individual bees and the survival of bee colonies during winter. Colonies treated earlier in the season to reduce V. destructor infestation during the development of winter bees were expected to have longer bee lifespan and higher colony survival after winter. Methodology/Principal Findings Mite infestation was reduced using acaricide treatments during different months (July, August, September, or not treated). We found that the number of capped brood cells decreased drastically between August and November, while at the same time, the lifespan of the bees (marked cohorts) increased indicating the transition to winter bees. Low V. destructor infestation levels before and during the transition to winter bees resulted in an increase in lifespan of bees and higher colony survival compared to colonies that were not treated and that had higher infestation levels. A variety of stress-related factors could have contributed to the variation in longevity and winter survival that we found between years. Conclusions/Significance This study contributes to theory about the multiple causes for the recent elevated colony losses in honey bees. Our study shows the correlation between long lifespan of winter bees and colony loss in spring. Moreover, we show that colonies treated earlier in the season had reduced V. destructor infestation during the development of winter bees resulting in longer bee lifespan and higher colony survival after winter. PMID:22558421
Atmospheric circulation types and extreme areal precipitation in southern central Europe
NASA Astrophysics Data System (ADS)
Jacobeit, Jucundus; Homann, Markus; Philipp, Andreas; Beck, Christoph
2017-04-01
Gridded daily rainfall data for southern central Europe are aggregated to regions of similar precipitation variability by means of S-mode principal component analyses separately for the meteorological seasons. Atmospheric circulation types (CTs) are derived by a particular clustering technique including large-scale fields of SLP, vertical wind and relative humidity at the 700 hPa level as well as the regional rainfall time series. Multiple regression models with monthly CT frequencies as predictors are derived for monthly frequencies and amounts of regional precipitation extremes (beyond the 95 % percentile). Using predictor output from different global climate models (ECHAM6, ECHAM5, EC-EARTH) for different scenarios (RCP4.5, RCP8.5, A1B) and two projection periods (2021-2050, 2071-2100) leads to assessments of future changes in regional precipitation extremes. Most distinctive changes are indicated for the summer season with mainly increasing extremes for the earlier period and widespread decreasing extremes towards the end of the 21st century, mostly for the strong scenario. Considerable uncertainties arise from the predictor use of different global climate models, especially during the winter and spring seasons.
NASA Astrophysics Data System (ADS)
Torfstein, Adi; Teutsch, Nadya; Tirosh, Ofir; Shaked, Yeala; Rivlin, Tanya; Zipori, Assaf; Stein, Mordechai; Lazar, Boaz; Erel, Yigal
2017-08-01
Atmospheric dust loads and chemical compositions serve as a key link between global climate patterns and marine biogeochemical cycles. The primary source of atmospheric dust in the world today is the Sahara-Arabian desert belt. Although this source was also active during the Quaternary, the interpretation of paleo-dust records and their effects on marine ecosystems is complicated by the scarcely reported atmospheric load patterns of bioavailable phases (i.e., water and acid leachable phases) and present-day contamination of anthropogenic components. This study reports a multi-annual time series of atmospheric dust loads (2006-2016) and their chemical compositions (2006-2010) collected in the north Gulf of Aqaba (north Red Sea) at a weekly to bi-weekly resolution. Major and trace element abundances in each sample are reported for three fractions: water-soluble salts, carbonates and oxides (weak acid leach), and Al-silicates. Dust loads vary seasonally from low values in late summer (∼20-30 μg m-3) to higher values in the fall, and highest values in late winter and early spring (∼150-250 μg m-3). Major and trace element abundances allow to distinguish between the sources and chemical compositions that dominate high and low dust loads in each season. The water leachable fraction (L0) is relatively enriched in Na, Ca, K and Mg, the acid-leachable fraction (L1) is enriched in Ca as well as Na, Al, Mg, Zn, Cd and Pb, and the silicate residue (L2) in Al and Fe. High dust loads occurring mainly during winter and spring months are characterized by low Mg/Ca (L1, L2), low K/Al and Na/Al (L1) and high Ca/Al (L1), high Mg/Al (L2) and relatively un-weathered (L2) contents. High dust load intervals during winter months are characterized by low passing air masses originating from the Sahara, while the ambient winter dust (low dust load) is associated with proximal source regions from the East Sahara and Arabian Peninsula. During late winter and spring months, high dust loads originate from central and west Sahara and to a lesser extent from north Sahara. Low dust loads characterize the summer with limited compositional variability relative to winter-spring months. Summer dust is generally characterized by high K/Al (L1) ratios relative to late winter and spring. It is also relatively high in anthropogenic trace elements in the L0 and L1 fractions (e.g., Zn/Al, Pb/Al, Cr/Al, Ni/Al and V/Al), whereby back trajectories indicate the source of these components is primarily from south and east Europe. The total load (ng m-3) of anthropogenic trace elements however, remains higher during winter and spring, stemming from the overall significantly higher dust loads characterizing this time window. The temporal load patterns of important micronutrients such as Fe, Cd, Zn, Cu, Ni and others in the bio-available phases (L0, L1) are not correlated with major nutrients or Chlorophyll-a sea surface concentrations, suggesting that the atmospheric dust plays a limited role in driving primary productivity in the oligotrophic surface waters of the Gulf of Aqaba. On a wider scale, the results provide unique chemical fingerprinting of Sahara-Arabian dust that can be applied to reconstruct past trends in dust loads recorded in deep-sea cores and other geological archives from this and other regions.
McGeehin, M A; Mirabelli, M
2001-05-01
Heat and heat waves are projected to increase in severity and frequency with increasing global mean temperatures. Studies in urban areas show an association between increases in mortality and increases in heat, measured by maximum or minimum temperature, heat index, and sometimes, other weather conditions. Health effects associated with exposure to extreme and prolonged heat appear to be related to environmental temperatures above those to which the population is accustomed. Models of weather-mortality relationships indicate that populations in northeastern and midwestern U.S. cities are likely to experience the greatest number of illnesses and deaths in response to changes in summer temperature. Physiologic and behavioral adaptations may reduce morbidity and mortality. Within heat-sensitive regions, urban populations are the most vulnerable to adverse heat-related health outcomes. The elderly, young children, the poor, and people who are bedridden or are on certain medications are at particular risk. Heat-related illnesses and deaths are largely preventable through behavioral adaptations, including the use of air conditioning and increased fluid intake. Overall death rates are higher in winter than in summer, and it is possible that milder winters could reduce deaths in winter months. However, the relationship between winter weather and mortality is difficult to interpret. Other adaptation measures include heat emergency plans, warning systems, and illness management plans. Research is needed to identify critical weather parameters, the associations between heat and nonfatal illnesses, the evaluation of implemented heat response plans, and the effectiveness of urban design in reducing heat retention.
Modeling winter hydrological processes under differing climatic conditions: Modifying WEPP
NASA Astrophysics Data System (ADS)
Dun, Shuhui
Water erosion is a serious and continuous environmental problem worldwide. In cold regions, soil freeze and thaw has great impacts on infiltration and erosion. Rain or snowmelt on a thawing soil can cause severe water erosion. Of equal importance is snow accumulation and snowmelt, which can be the predominant hydrological process in areas of mid- to high latitudes and forested watersheds. Modelers must properly simulate winter processes to adequately represent the overall hydrological outcome and sediment and chemical transport in these areas. Modeling winter hydrology is presently lacking in water erosion models. Most of these models are based on the functional Universal Soil Loss Equation (USLE) or its revised forms, e.g., Revised USLE (RUSLE). In RUSLE a seasonally variable soil erodibility factor (K) was used to account for the effects of frozen and thawing soil. Yet the use of this factor requires observation data for calibration, and such a simplified approach cannot represent the complicated transient freeze-thaw processes and their impacts on surface runoff and erosion. The Water Erosion Prediction Project (WEPP) watershed model, a physically-based erosion prediction software developed by the USDA-ARS, has seen numerous applications within and outside the US. WEPP simulates winter processes, including snow accumulation, snowmelt, and soil freeze-thaw, using an approach based on mass and energy conservation. However, previous studies showed the inadequacy of the winter routines in the WEPP model. Therefore, the objectives of this study were: (1) To adapt a modeling approach for winter hydrology based on mass and energy conservation, and to implement this approach into a physically-oriented hydrological model, such as WEPP; and (2) To assess this modeling approach through case applications to different geographic conditions. A new winter routine was developed and its performance was evaluated by incorporating it into WEPP (v2008.9) and then applying WEPP to four study sites at different spatial scales under different climatic conditions, including experimental plots in Pullman, WA and Morris, MN, two agricultural drainages in Pendleton, OR, and a forest watershed in Mica Creek, ID. The model applications showed promising results, indicating adequacy of the mass- and energy-balance-based approach for winter hydrology simulation.
Temporal and Spatial Scales Matter: Circannual Habitat Selection by Bird Communities in Vineyards
Arlettaz, Raphaël; Korner, Pius
2017-01-01
Vineyards are likely to be regionally important for wildlife, but we lack biodiversity studies in this agroecosystem which is undergoing a rapid management revolution. As vine cultivation is restricted to arid and warm climatic regions, biodiversity-friendly management would promote species typical of southern biomes. Vineyards are often intensively cultivated, mostly surrounded by few natural features and offering a fairly mineral appearance with little ground vegetation cover. Ground vegetation cover and composition may further strongly vary with respect to season, influencing patterns of habitat selection by ecological communities. We investigated season-specific bird-habitat associations to highlight the importance of semi-natural habitat features and vineyard ground vegetation cover throughout the year. Given that avian habitat selection varies according to taxa, guilds and spatial scale, we modelled bird-habitat associations in all months at two spatial scales using mixed effects regression models. At the landscape scale, birds were recorded along 10 1-km long transects in Southwestern Switzerland (February 2014 –January 2015). At the field scale, we compared the characteristics of visited and unvisited vineyard fields (hereafter called parcels). Bird abundance in vineyards tripled in winter compared to summer. Vineyards surrounded by a greater amount of hedges and small woods harboured higher bird abundance, species richness and diversity, especially during the winter season. Regarding ground vegetation, birds showed a season-specific habitat selection pattern, notably a marked preference for ground-vegetated parcels in winter and for intermediate vegetation cover in spring and summer. These season-specific preferences might be related to species-specific life histories: more insectivorous, ground-foraging species occur during the breeding season whereas granivores predominate in winter. These results highlight the importance of investigating habitat selection at different spatial scales and all along the annual cycle in order to draw practical, season-specific management recommendations for promoting avian biodiversity in farmland. PMID:28146570
Variation in survivorship of a migratory songbird throughout its annual cycle
Sillett, T. Scott; Holmes, Richard T.
2002-01-01
1. Demographic data from both breeding and non-breeding periods are needed to manage populations of migratory birds, many of which are declining in abundance and are of conservation concern. Although habitat associations, and to a lesser extent, reproductive biology, are known for many migratory species, few studies have measured survival rates of these birds at different parts of their annual cycle. 2. Cormack-Jolly-Seber models and Akaike's information criterion model selection were used to investigate seasonal variation in survival of a Nearctic - Neotropical migrant songbird, the black-throated blue warbler, Dendroica caerulescens. Seasonal and annual survival were estimated from resightings of colour-ringed individuals on breeding grounds in New Hampshire, USA from 1986 to 2000 and on winter quarters in Jamaica, West Indies from 1986 to 1999. Warblers were studied each year during the May-August breeding period in New Hampshire and during the October-March overwinter period in Jamaica. 3. In New Hampshire, males had higher annual survival (0.51 + 0.03) and recapture probabilities (0.93 + 0.03) than did females (survival: 0.40 + 0.04; recapture: 0'87 + 0.06). In Jamaica, annual survival (0.43 + 0.03) and recapture (0'95 + 0.04) probabilities did not differ between sexes. Annual survival and recapture probabilities of young birds (i.e. yearlings in New Hampshire and hatch-year birds in Jamaica) did not differ from adults, indicating that from the time hatch-year individuals acquire territories on winter quarters in mid-October, they survive as well as adults within the same habitat. 4. Monthly survival probabilities during the summer (May-August) and winter (October-March) stationary periods were high: 1'0 for males in New Hampshire, and 0.99 + 0.01 for males in Jamaica and for females in both locations. 5. These annual and seasonal survival estimates were used to calculate warbler survival for the migratory periods. Monthly survival probability during migration ranged from 0.77 to 0.81 -+ 0.02. Thus, apparent mortality rates were at least 15 times higher during migration compared to that in the stationary periods, and more than 85% of apparent annual mortality of D. caerulescens occurred during migration. 6. Additional data from multiple species, especially measures of habitat-specific demography and dispersal, will improve our understanding of the relative impacts of the breeding, migratory, and winter periods on population dynamics of migratory birds and thus enhance future conservation efforts.
Variation in survivorship of a migratory songbird throughout its annual cycle
Scott, Sillett T.; Holmes, Richard T.
2002-01-01
1. Demographic data from both breeding and non-breeding periods are needed to manage populations of migratory birds, many of which are declining in abundance and are of conservation concern. Although habitat associations, and to a lesser extent, reproductive biology, are known for many migratory species, few studies have measured survival rates of these birds at different parts of their annual cycle. 2. Cormack-Jolly-Seber models and Akaike's information criterion model selection were used to investigate seasonal variation in survival of a Nearctic - Neotropical migrant songbird, the black-throated blue warbler, Dendroica caerulescens. Seasonal and annual survival were estimated from resightings of colour-ringed individuals on breeding grounds in New Hampshire, USA from 1986 to 2000 and on winter quarters in Jamaica, West Indies from 1986 to 1999. Warblers were studied each year during the May-August breeding period in New Hampshire and during the October-March overwinter period in Jamaica. 3. In New Hampshire, males had higher annual survival (0.51 ?? 0.03) and recapture probabilities (0.93 ?? 0.03) than did females (survival: 0.40 ?? 0.04; recapture: 0.87 ?? 0.06). In Jamaica, annual survival (0.43 ?? 0.03) and recapture (0.95 ?? 0.04) probabilities did not differ between sexes. Annual survival and recapture probabilities of young birds (i.e. yearlings in New Hampshire and hatch-year birds in Jamaica) did not differ from adults, indicating that from the time hatch-year individuals acquire territories on winter quarters in mid-October, they survive as well as adults within the same habitat. 4. Monthly survival probabilities during the summer (May-August) and winter (October-March) stationary periods were high: 1.0 for males in New Hampshire, and 0.99 ?? 0.01 for males in Jamaica and for females in both locations. 5. These annual and seasonal survival estimates were used to calculate warbler survival for the migratory periods. Monthly survival probability during migration ranged from 0.77 to 0.81 ?? 0.02. Thus, apparent mortality rates were at least 15 times higher during migration compared to that in the stationary periods, and more than 85% of apparent annual mortality of D. caerulescens occurred during migration. 6. Additional data from multiple species, especially measures of habitat-specific demography and dispersal, will improve our understanding of the relative impacts of the breeding, migratory, and winter periods on population dynamics of migratory birds and thus enhance future conservation efforts.
Loran-C monitor correlation over a 92-mile baseline in Ohio
NASA Technical Reports Server (NTRS)
Lilley, Robert W.; Edwards, Jamie S.
1988-01-01
Two Loran C monitors, at Galion and Athens, Ohio, were operated over a one-year period, measuring chain 9960 Time Delay (TD) and Signal to Noise Ratio (SNR). Analysis of data concentrated on correlation of short term TD variations during the winter months of 1985 to 86, over the 92 nm baseline. Excellent correlation was found, with slight additional improvement possible if local temperature is also included in the analysis. Although SNR and TD effects were suspected during the presence of thunderstorms near the monitors, the scope of the study did not permit storm by storm analysis. A computer tape data base of all measurements was produced, with measurements at both sites included. Data recording and analysis concentrated on the fall and winter months of September 1985 to February 1986.
Survey of conditions for artificial aurora experiments at EISCAT Tromsø using dynasonde data
NASA Astrophysics Data System (ADS)
Tsuda, T. T.; Rietveld, M. T.; Kosch, M. J.; Oyama, S.; Hosokawa, K.; Nozawa, S.; Kawabata, T.; Mizuno, A.; Ogawa, Y.
2018-03-01
We report a brief survey on conditions for artificial aurora optical experiments in F region heating with O-mode at the EISCAT Tromsø site using dynasonde data from 2000 to 2017. The results obtained in our survey indicate the following: The possible conditions for conducting artificial aurora experiments are concentrated in twilight hours in both evening and morning, compared with late-night hours; the possible conditions appear in fall, winter, and spring, while there is no chance in summer, and the month-to-month variation among fall, winter, and spring is not clear. The year-to-year variation is well correlated with the solar cycle, and experiments during the solar minimum would be almost hopeless. These findings are useful for planning future artificial aurora optical experiments.
Impact of Month of Birth on the Risk of Development of Autoimmune Addison's Disease.
Pazderska, Agnieszka; Fichna, Marta; Mitchell, Anna L; Napier, Catherine M; Gan, Earn; Ruchała, Marek; Santibanez-Koref, Mauro; Pearce, Simon H
2016-11-01
The pathogenesis of autoimmune Addison's disease (AAD) is thought to be due to interplay of genetic, immune, and environmental factors. A month-of-birth effect, with increased risk for those born in autumn/winter months, has been described in autoimmune conditions such as type 1 diabetes and autoimmune thyroid disease. Month-of-birth effect was investigated in 2 independent cohorts of AAD subjects. The monthly distribution of birth in AAD patients was compared with that of the general population using the cosinor test. A total of 415 AAD subjects from the United Kingdom cohort were compared with 8 180 180 United Kingdom births, and 231 AAD subjects from the Polish cohort were compared with 2 421 384 Polish births. Association between month of birth and the susceptibility to AAD. In the entire cohort of AAD subjects, month-of-birth distribution analysis showed significant periodicity with peak of births in December and trough in May (P = .028). Analysis of the odds ratio distribution based on month of birth in 2 cohorts of patients with AAD versus the general population revealed a December peak and May trough, and January peak and July trough, in the United Kingdom and Polish cohorts, respectively. For the first time, we demonstrate that month of birth exerts an effect on the risk of developing AAD, with excess risk in individuals born in winter months and a protective effect when born in the summer. Exposure to seasonal viral infections in the perinatal period, coupled with vitamin D deficiency, could lead to dysregulation of innate immunity affecting the risk of developing AAD.
Hibernation in an antarctic fish: on ice for winter.
Campbell, Hamish A; Fraser, Keiron P P; Bishop, Charles M; Peck, Lloyd S; Egginton, Stuart
2008-03-05
Active metabolic suppression in anticipation of winter conditions has been demonstrated in species of mammals, birds, reptiles and amphibians, but not fish. This is because the reduction in metabolic rate in fish is directly proportional to the decrease in water temperature and they appear to be incapable of further suppressing their metabolic rate independently of temperature. However, the Antarctic fish (Notothenia coriiceps) is unusual because it undergoes winter metabolic suppression irrespective of water temperature. We assessed the seasonal ecological strategy by monitoring swimming activity, growth, feeding and heart rate (f(H)) in N. coriiceps as they free-ranged within sub-zero waters. The metabolic rate of wild fish was extrapolated from f(H )recordings, from oxygen consumption calibrations established in the laboratory prior to fish release. Throughout the summer months N. coriiceps spent a considerable proportion of its time foraging, resulting in a growth rate (G(w)) of 0.18 +/- 0.2% day(-1). In contrast, during winter much of the time was spent sedentary within a refuge and fish showed a net loss in G(w) (-0.05 +/- 0.05% day(-1)). Whilst inactive during winter, N. coriiceps displayed a very low f(H), reduced sensory and motor capabilities, and standard metabolic rate was one third lower than in summer. In a similar manner to other hibernating species, dormancy was interrupted with periodic arousals. These arousals, which lasted a few hours, occurred every 4-12 days. During arousal activity, f(H) and metabolism increased to summer levels. This endogenous suppression and activation of metabolic processes, independent of body temperature, demonstrates that N. coriiceps were effectively 'putting themselves on ice' during winter months until food resources improved. This study demonstrates that at least some fish species can enter a dormant state similar to hibernation that is not temperature driven and presumably provides seasonal energetic benefits.
NASA Astrophysics Data System (ADS)
Leach, J.; Moore, D.
2015-12-01
Winter stream temperature of coastal mountain catchments influences fish growth and development. Transient snow cover and advection associated with lateral throughflow inputs are dominant controls on stream thermal regimes in these regions. Existing stream temperature models lack the ability to properly simulate these processes. Therefore, we developed and evaluated a conceptual-parametric catchment-scale stream temperature model that includes the role of transient snow cover and lateral advection associated with throughflow. The model provided reasonable estimates of observed stream temperature at three test catchments. We used the model to simulate winter stream temperature for virtual catchments located at different elevations within the rain-on-snow zone. The modelling exercise examined stream temperature response associated with interactions between elevation, snow regime, and changes in air temperature. Modelling results highlight that the sensitivity of winter stream temperature response to changes in climate may be dependent on catchment elevation and landscape position.
NASA Technical Reports Server (NTRS)
Evans, Gary W.; Stokols, Daniel; Carrere, Sybil
1988-01-01
This field study was conducted during the last decade of an austral winter-over at Palmer Station in the Antarctic. The purpose of the study was to understand temporal patterns in physiological arousal and psychological mood over the course of the mission. The investigators were principally interested in how people adapted over time to chronic and acute stressors, and how people use and modify their built environment. Physiological and psychological data were collected several times a week, and information on behavior and the use of physical facilities was collected monthly. Physiological and psychological data were compared with social changes in the setting toward the development of a sequential model of human-environment transactional relationships. Based on the study results, guidelines for design of future isolated and confined environments (ICEs) included: plan space for items which make people feel at home, provide materials to allow people to personalize their environment, allow for flexible environments, provide areas for visual and auditory privacy, equip areas for socializing and remove them from private areas, and provide facilities for exercise and for projects involving physical activity. The study offers guidelines about patterns of adaption that could be expected in an ICE, discusses how these settings can be programmed to facilitate successful adjustment, and provides information about how to design future ICE habitats to maximize a healthy living environment.
Crosbie, Ewan; Sorooshian, Armin; Monfared, Negar Abolhassani; Shingler, Taylor; Esmaili, Omid
2014-01-01
This study reports a multi-year (2000–2009) aerosol characterization for metropolitan Tehran and surrounding areas using multiple datasets (Moderate Resolution Imaging Spectroradiometer (MODIS), Multi-angle Imaging Spectroradiometer (MISR), Total Ozone Mapping Spectrometer (TOMS), Goddard Ozone Chemistry Aerosol Radiation and Transport (GOCART), and surface and upper air data from local stations). Monthly trends in aerosol characteristics are examined in the context of the local meteorology, regional and local emission sources, and air mass back-trajectory data. Dust strongly affects the region during the late spring and summer months (May–August) when aerosol optical depth (AOD) is at its peak and precipitation accumulation is at a minimum. In addition, the peak AOD that occurs in July is further enhanced by a substantial number of seasonal wildfires in upwind regions. Conversely, AOD is at a minimum during winter; however, reduced mixing heights and a stagnant lower atmosphere trap local aerosol emissions near the surface and lead to significant reductions in visibility within Tehran. The unique meteorology and topographic setting makes wintertime visibility and surface aerosol concentrations particularly sensitive to local anthropogenic sources and is evident in the noteworthy improvement in visibility observed on weekends. Scavenging of aerosol due to precipitation is evident during the winter when aconsistent increase in surface visibility and concurrent decrease in AOD is observed in the days after rain compared with the days immediately before rain. PMID:25083295
Wave climate simulation for southern region of the South China Sea
NASA Astrophysics Data System (ADS)
Mirzaei, Ali; Tangang, Fredolin; Juneng, Liew; Mustapha, Muzneena Ahmad; Husain, Mohd Lokman; Akhir, Mohd Fadzil
2013-08-01
This study investigates long-term variability and wave characteristic trends in the southern region of the South China Sea (SCS). We implemented the state-of-the art WAVEWATCH III spectral wave model to simulate a 31-year wave hindcast. The simulation results were used to assess the inter-annual variability and long-term changes in the SCS wave climate for the period 1979 to 2009. The model was forced with Climate Forecast System Reanalysis winds and validated against altimeter data and limited available measurements from an Acoustic Wave and Current recorder located offshore of Terengganu, Malaysia. The mean annual significant wave height and peak wave period indicate the occurrence of higher wave heights and wave periods in the central SCS and lower in the Sunda shelf region. Consistent with wind patterns, the wave direction also shows southeasterly (northwesterly) waves during the summer (winter) monsoon. This detailed hindcast demonstrates strong inter-annual variability of wave heights, especially during the winter months in the SCS. Significant wave height correlated negatively with Niño3.4 index during winter, spring and autumn seasons but became positive in the summer monsoon. Such correlations correspond well with surface wind anomalies over the SCS during El Nino events. During El Niño Modoki, the summer time positive correlation extends northeastwards to cover the entire domain. Although significant positive trends were found at 95 % confidence levels during May, July and September, there is significant negative trend in December covering the Sunda shelf region. However, the trend appears to be largely influenced by large El Niño signals.
Mechanisms of interannual- to decadal-scale winter Labrador Sea ice variability
NASA Astrophysics Data System (ADS)
Close, S.; Herbaut, C.; Houssais, M.-N.; Blaizot, A.-C.
2017-12-01
The variability of the winter sea ice cover of the Labrador Sea region and its links to atmospheric and oceanic forcing are investigated using observational data, a coupled ocean-sea ice model and a fully-coupled model simulation drawn from the CMIP5 archive. A consistent series of mechanisms associated with high sea ice cover are found amongst the various data sets. The highest values of sea ice area occur when the northern Labrador Sea is ice covered. This region is found to be primarily thermodynamically forced, contrasting with the dominance of mechanical forcing along the eastern coast of Baffin Island and Labrador, and the growth of sea ice is associated with anomalously fresh local ocean surface conditions. Positive fresh water anomalies are found to propagate to the region from a source area off the southeast Greenland coast with a 1 month transit time. These anomalies are associated with sea ice melt, driven by the enhanced offshore transport of sea ice in the source region, and its subsequent westward transport in the Irminger Current system. By combining sea ice transport through the Denmark Strait in the preceding autumn with the Greenland Blocking Index and the Atlantic Multidecadal Oscillation Index, strong correlation with the Labrador Sea ice area of the following winter is obtained. This relationship represents a dependence on the availability of sea ice to be melted in the source region, the necessary atmospheric forcing to transport this offshore, and a further multidecadal-scale link with the large-scale sea surface temperature conditions.
Williamson, Tanja N.; Nystrom, Elizabeth A.; Milly, Paul C.D.
2016-01-01
The Delaware River Basin (DRB) encompasses approximately 0.4 % of the area of the United States (U.S.), but supplies water to 5 % of the population. We studied three forested tributaries to quantify the potential climate-driven change in hydrologic budget for two 25-year time periods centered on 2030 and 2060, focusing on sensitivity to the method of estimating potential evapotranspiration (PET) change. Hydrology was simulated using the Water Availability Tool for Environmental Resources (Williamson et al. 2015). Climate-change scenarios for four Coupled Model Intercomparison Project Phase 5 (CMIP5) global climate models (GCMs) and two Representative Concentration Pathways (RCPs) were used to derive monthly change factors for temperature (T), precipitation (PPT), and PET according to the energy-based method of Priestley and Taylor (1972). Hydrologic simulations indicate a general increase in annual (especially winter) streamflow (Q) as early as 2030 across the DRB, with a larger increase by 2060. This increase in Q is the result of (1) higher winter PPT, which outweighs an annual actual evapotranspiration (AET) increase and (2) (for winter) a major shift away from storage of PPT as snow pack. However, when PET change is evaluated instead using the simpler T-based method of Hamon (1963), the increases in Q are small or even negative. In fact, the change of Q depends as much on PET method as on time period or RCP. This large sensitivity and associated uncertainty underscore the importance of exercising caution in the selection of a PET method for use in climate-change analyses.
Variability of Fram Strait Ice Flux and North Atlantic Oscillation
NASA Technical Reports Server (NTRS)
Kwok, Ron
1999-01-01
An important term in the mass balance of the Arctic Ocean sea ice is the ice export. We estimated the winter sea ice export through the Fram Strait using ice motion from satellite passive microwave data and ice thickness data from moored upward looking sonars. The average winter area flux over the 18-year record (1978-1996) is 670,000 square km, approximately 7% of the area of the Arctic Ocean. The winter area flux ranges from a minimum of 450,000 sq. km in 1984 to a maximum of 906,000 sq km in 1995. The daily, monthly and interannual variabilities of the ice area flux are high. There is an upward trend in the ice area flux over the 18-year record. The average winter volume flux over the winters of October 1990 through May 1995 is 1745 cubic km ranging from a low of 1375 cubic km in 1990 to a high of 2791 cubic km in 1994. The sea-level pressure gradient across the Fram Strait explains more than 80% of the variance in the ice flux over the 18-year record. We use the coefficients from the regression of the time-series of area flux versus pressure gradient across the Fram Strait and ice thickness data to estimate the summer area and volume flux. The average 12-month area flux and volume flux are 919,000 sq km and 2366 cubic km. We find a significant correlation (R =0.86) between the area flux and positive phases of the North Atlantic Oscillation (NAO) index over the months of December through March. Correlation between our six years of volume flux estimates and the NAO index gives R =0.56. During the high NAO years, a more intense Icelandic low increases the gradient in the sea-level pressure by almost 1 mbar across the Fram Strait thus increasing the atmospheric forcing on ice transport. Correlation is reduced during the negative NAO years because of decreased dominance of this large-scale atmospheric pattern on the sea-level pressure gradient across the Fram Strait. Additional information is contained in the original.
Old Growth Conifer Watersheds in the Western Cascades, Oregon: Sentinels of Climate Change
NASA Astrophysics Data System (ADS)
Miles, K. M.
2011-12-01
In the Pacific Northwest, where the majority of precipitation falls during the winter, mountain snowpacks provide an important source of streamflow during the dry summer months when water demands are frequently highest. Increasing temperatures associated with climate change are expected to result in a decline in winter snowpacks in western North America, earlier snowmelt, and subsequently a shift in the timing of streamflows, with an increasing fraction of streamflows occurring earlier in the water year and drier conditions during the summer. Long-term records from headwater watersheds in old growth conifer forest at the H. J. Andrews Experimental Forest (HJ Andrews), Oregon, provide the opportunity to examine changes in climate, vegetation, and streamflow. Continuous streamflow records have been collected since 1953, 1964, and 1969 from three small (8.5-60 ha) watersheds (WS2, WS8, and WS9). Over the 40- to 50-year period of study, late winter to early summer monthly average minimum temperatures have increased by 1-2°C, and spring snow water equivalent at a nearby Snotel site has declined, but monthly precipitation has remained unchanged. Spring runoff ratios have declined in by amounts equivalent to 0.59-2.45 mm day-1 at WS2, WS8, and WS9, which are comparable to estimated rates of stand-level transpiration from trees in these watersheds. However, winter runoff ratios have not changed significantly at either WS2 or WS9, and have actually decreased at WS8 by 2.43 mm day-1 over the period of record. Furthermore, summer runoff ratios have not changed significantly at either WS8 or WS9, and have increased at WS2 by 0.34 mm day-1 over the period of record. These findings suggest that warming temperatures have resulted in a reduction in spring snowpacks and an earlier onset of evapotranspiration in the spring when soil moisture is abundant, but physiological responses of these conifer forests to water stress and water surplus may mitigate or exceed the expression of a climate warming effect on winter or summer streamflow.
NASA Astrophysics Data System (ADS)
Kumar, Ashwini; Abouchami, W.; Galer, S. J. G.; Singh, Satinder Pal; Fomba, K. W.; Prospero, J. M.; Andreae, M. O.
2018-04-01
In order to assess the impact of mineral dust on climate and biogeochemistry, it is paramount to identify the sources of dust emission. In this regard, radiogenic isotopes have recently been used successfully for tracing North African dust provenance and its transport across the tropical Atlantic to the Caribbean. Here we present two time series of radiogenic isotopes (Pb, Sr and Nd) in dusts collected at the Cape Verde Islands and Barbados in order to determine the origin of the dust and examine the seasonality of westerly dust outflow from Northern Africa. Aerosol samples were collected daily during two campaigns - February 2012 (winter) and June-July 2013 (summer) - at the Cape Verde Atmospheric Observatory (CVAO) on the island of São Vicente (16.9°N, 24.9°W). A one-year-long time series of aerosols from Barbados (13.16°N, 59.43°W) - a receptor region in the Caribbean - was sampled at a lower, monthly resolution. Our results resolve a seasonal isotopic signal at Cape Verde shown by daily variations, with a larger radiogenic isotope variability in winter compared to that in summer. This summer signature is also observed over Barbados, indicating similar dust provenance at both locations, despite different sampling years. This constrains the isotope fingerprint of Saharan Air Layer (SAL) dust that is well-mixed during its transport. This result provides unequivocal evidence for a permanent, albeit of variable strength, long-range transport of African dust to the Caribbean and is in full agreement with atmospheric models of North African dust emission and transport across the tropical Atlantic in the SAL. The seasonal isotopic variability is related to changes in the dust source areas - mainly the Sahara and Sahel regions - that are active all-year-round, albeit with variable contributions in summer versus the winter months. Our results provide little support for much dust contributed from the Bodélé Depression in Chad - the "dustiest" place on Earth - reaching Cape Verde and Barbados during the summer, while contributions during the winter months are likely patchy and minor at most. Importantly, a short-term isotopic excursion is resolved in the Cape Verde winter record during a dust outbreak on 06-08 February 2012. This features a highly radiogenic Pb and Sr and unradiogenic Nd signature, marking a clear shift in dust provenance relative to that of normal days. As the dust storm waned, continuous gradual changes are observed, reflecting mixing and progressive dilution with dust typical of normal days. These inferences from radiogenic isotope tracers are corroborated by both satellite images (CALIPSO and MODIS) and back-trajectory analyses. The radiogenic isotope fingerprinting of these presently-active North African dust sources, and especially the Saharan Air Layer, will prove invaluable in studies of past dust emission from Northern Africa, where imagery and back trajectory analysis are unavailable.
Summer Leeside Rainfall Maxima over the Island of Hawaii
NASA Astrophysics Data System (ADS)
Huang, Y. F.; Chen, Y. L.
2016-12-01
The Kona area on the leeside in the island of Hawaii has distinctive summer rainfall maxima. The primary physical processes for the summer rainfall maxima in Kona are analyzed by comparing it with the winter rainfall. The annual and diurnal cycles there are investigated by employing the Fifth-generation Pennsylvania State University-NCAR Mesoscale Model coupled with the advanced land surface model from June 2004 and February 2010. During the summer, the nocturnal rainfall maximum adjacent to the Kona coast is larger than in winter because of the stronger, moister westerly reversed flow and offshore flow in summer. Comparisons between winter trade-wind days and winter mean show that the leeside Kona rainfall offshore in winter mainly occurs under trade-wind conditions. Moreover, the model results also attest to the impact of moisture content on the Kona leeside rainfall offshore. Comparisons between winter and summer trade-wind days indicate that upslope flows on the Kona slopes are stronger and the moisture content from the westerly reversed flow is higher in summer than in winter. The rainfall maximum on the lower Kona slopes is more pronounced in summer than in winter as a result of enhanced orographic lifting due to stronger upslope flow in the afternoon hours and the moister westerly reversed flow offshore, which merges with the upslope flow inland.
Multiannual forecasting of seasonal influenza dynamics reveals climatic and evolutionary drivers.
Axelsen, Jacob Bock; Yaari, Rami; Grenfell, Bryan T; Stone, Lewi
2014-07-01
Human influenza occurs annually in most temperate climatic zones of the world, with epidemics peaking in the cold winter months. Considerable debate surrounds the relative role of epidemic dynamics, viral evolution, and climatic drivers in driving year-to-year variability of outbreaks. The ultimate test of understanding is prediction; however, existing influenza models rarely forecast beyond a single year at best. Here, we use a simple epidemiological model to reveal multiannual predictability based on high-quality influenza surveillance data for Israel; the model fit is corroborated by simple metapopulation comparisons within Israel. Successful forecasts are driven by temperature, humidity, antigenic drift, and immunity loss. Essentially, influenza dynamics are a balance between large perturbations following significant antigenic jumps, interspersed with nonlinear epidemic dynamics tuned by climatic forcing.
NASA Technical Reports Server (NTRS)
1978-01-01
The author has identified the following significant results. LACIE acreage estimates were in close agreement with SRS estimates, and an operational system with a 14 day LANDSAT data turnaround could have produced an accurate acreage estimate (one which satisfied the 90/90 criterion) 1 1/2 to 2 months before harvest. Low yield estimates, resulting from agromet conditions not taken into account in the yield models, caused production estimates to be correspondingly low. However, both yield and production estimates satisfied the LACIE 90/90 criterion for winter wheat in the yardstick region.
NASA Astrophysics Data System (ADS)
Whitehead, P. G.; Jin, L.; Futter, M.; Crossman, J.
2011-12-01
A modelling study has been undertaken as part of a UK Water Industry Research Project to study and assess the likely impacts of climate change on river water quality across the UK. A range of climate scenarios (http://ukclimateprojections.defra.gov.uk/ ) have been used to generate future precipitation, evaporation and temperature time series at a range of catchments across the UK. These time series have then been used to drive the Integrated Catchment Model (INCA) suite to simulate flow, nitrate, ammonia, total and soluble reactive phosphorus, sediments, dissolved organic carbon (DOC) in the Rivers Tamar, Lugg, Tame, Kennet, Tweed and Lambourn. A wide range of responses have been obtained with impacts varying depending on river character, catchment location, flow regime, type of scenario and the time into the future. For example, The INCA-DOC model has been applied to the Hore catchment of the upper Severn catchment at Plynlimon, Wales. DOC is becoming an issue in the UK uplands due to rising trends in recent years. The trends are thought to be due primarily to reducing sulphur deposition but the climate variability certainly has an effect. This is because when peats dry out the oxidation processes enhance the production of DOC. The INCA-DOC model has been used to assess potential changes in DOC under the 2020s and 2050s climate. These results show quite large rises in October and September months when the soils become saturated and flush DOC. The INCA-N results for the Rivers Tweed (Scotland) and Kennet (England) suggest that nitrate and ammonia concentrations will be slightly higher in the winter months under the climate change scenarios, perhaps reflecting the higher flushing of nitrogen load from the catchment soils. However, in summer month nitrates fall significantly which reflects enhanced denitrification processes in the rivers. However, lower down the rivers where major point sources from effluents affect the river, nitrates and ammonia may increase because of lower flows in summer and hence less dilution. Modelling phosphorus and sediments in the Rivers Lugg, Tame and the Wensum (England) suggest phosphorus concentrations will decrease in summer due to lower flows in rural areas and the reduced flushing of diffuse sources of P from agricultural areas. However, in catchments with significant effluent discharges, the P concentrations will increase due to the reduced dilution of effluents. Sediments will increase with intense rainfall during winter months, although the increased frequency of storms, especially in summer months, will generate higher concentrations as sediments are flushed from the catchments. However, mean summer sediment concentrations will be lower due to the reduced diffuse runoff from agricultural areas. Finally it is worth pointing out that adaptation measures are possible with mitigation measures to control N deposition, fertiliser application rates, reintroducing wetlands and land management control.
NASA Astrophysics Data System (ADS)
Semple, Lucas M.; Carriveau, Rupp; Ting, David S.-K.
2018-04-01
In the Ontario greenhouse sector the misalignment of available solar radiation during the summer months and large heating demand during the winter months makes solar thermal collector systems an unviable option without some form of seasonal energy storage. Information obtained from Ontario greenhouse operators has shown that over 20% of annual natural gas usage occurs during the summer months for greenhouse pre-heating prior to sunrise. A transient model of the greenhouse microclimate and indoor conditioning systems is carried out using TRNSYS software and validated with actual natural gas usage data. A large-scale solar thermal collector system is then incorporated and found to reduce the annual heating energy demand by approximately 35%. The inclusion of the collector system correlates to a reduction of about 120 tonnes of CO2 equivalent emissions per acre of greenhouse per year. System payback period is discussed considering the benefits of a future Ontario carbon tax.
Mangrove species' responses to winter air temperature extremes in China
Chen, Luzhen; Wang, Wenqing; Li, Qingshun Q.; Zhang, Yihui; Yang, Shengchang; Osland, Michael J.; Huang, Jinliang; Peng, Congjiao
2017-01-01
The global distribution and diversity of mangrove forests is greatly influenced by the frequency and intensity of winter air temperature extremes. However, our understanding of how different mangrove species respond to winter temperature extremes has been lacking because extreme freezing and chilling events are, by definition, relatively uncommon and also difficult to replicate experimentally. In this study, we investigated species-specific variation in mangrove responses to winter temperature extremes in China. In 10 sites that span a latitudinal gradient, we quantified species-specific damage and recovery following a chilling event, for mangrove species within and outside of their natural range (i.e., native and non-native species, respectively). To characterize plant stress, we measured tree defoliation and chlorophyll fluorescence approximately one month following the chilling event. To quantify recovery, we measured chlorophyll fluorescence approximately nine months after the chilling event. Our results show high variation in the geographic- and species-specific responses of mangroves to winter temperature extremes. While many species were sensitive to the chilling temperatures (e.g., Bruguiera sexangula and species in the Sonneratia and Rhizophora genera), the temperatures during this event were not cold enough to affect certain species (e.g., Kandelia obovata, Aegiceras corniculatum, Avicennia marina, and Bruguiera gymnorrhiza). As expected, non-native species were less tolerant of winter temperature extremes than native species. Interestingly, tidal inundation modulated the effects of chilling. In comparison with other temperature-controlled mangrove range limits across the world, the mangrove range limit in China is unique due to the combination of the following three factors: (1) Mangrove species diversity is comparatively high; (2) winter air temperature extremes, rather than means, are particularly intense and play an important ecological role; and (3) due to afforestation and restoration efforts, several species of non-native mangroves have been introduced beyond their natural range limits. Hence, from a global perspective, mangroves in China provide valuable opportunities to advance understanding of the effects of freezing and chilling temperatures on mangroves. Within the context of climate change, our findings provide a foundation for better understanding and preparing for mangrove species-specific responses to future changes in the duration and intensity of winter temperature extremes.
NASA Technical Reports Server (NTRS)
Boville, B. A.; Kiehl, J. T.; Briegleb, B. P.
1988-01-01
The possible effect of the Antartic ozone hole on the evolution of the polar vortex during late winter and spring using a general circulation model (GCM) is examined. The GCM is a version of the NCAR Community Climate Model whose domain extends from the surface to the mesosphere and is similar to that described on Boville and Randel (1986). Ozone is not a predicted variable in the model. A zonally averaged ozone distribution is specified as a function of latitude, pressure and month for the radiation parameterization. Rather that explicitly address reasons for the formation of the ozone hole, researchers postulate its existence and ask what effect it has on the subsequent evolution of the vortex. The evolution of the model when an ozone hole is imposed is then discussed.
2006-06-30
This MOC image shows dunes in the north polar region of Mars. In this springtime view, the dunes are largely covered by frozen carbon dioxide that was deposited during the winter months in the northern hemisphere
Circulation and water properties in the landfast ice zone of the Alaskan Beaufort Sea
NASA Astrophysics Data System (ADS)
Weingartner, Thomas J.; Danielson, Seth L.; Potter, Rachel A.; Trefry, John H.; Mahoney, Andy; Savoie, Mark; Irvine, Cayman; Sousa, Leandra
2017-09-01
Moorings, hydrography, satellite-tracked drifters, and high-frequency radar data describe the annual cycle in circulation and water properties in the landfast ice zone (LIZ) of the Alaskan Beaufort Sea. Three seasons, whose duration and characteristics are controlled by landfast ice formation and ablation, define the LIZ: ;winter;, ;break-up;, and ;open-water;. Winter begins in October with ice formation and ends in June when rivers commence discharging. Winter LIZ ice velocities are zero, under-ice currents are weak ( 5 cm s-1), and poorly correlated with winds and local sea level. The along-shore momentum balance is between along-shore pressure gradients and bottom and ice-ocean friction. Currents at the landfast ice-edge are swift ( 35 cm s-1), wind-driven, with large horizontal shears, and potentially unstable. Weak cross-shore velocities ( 1 cm s-1) imply limited exchanges between the LIZ and the outer shelf in winter. The month-long break-up season (June) begins with the spring freshet and concludes when landfast ice detaches from the bottom. Cross-shore currents increase, and the LIZ hosts shallow ( 2 m), strongly-stratified, buoyant and sediment-laden, under-ice river plumes that overlie a sharp, 1 m thick, pycnocline across which salinity increases by 30. The plume salt balance is between entrainment and cross-shore advection. Break-up is followed by the 3-month long open-water season when currents are swift (≥20 cm s-1) and predominantly wind-driven. Winter water properties are initialized by fall advection and evolve slowly due to salt rejection from ice. Fall waters and ice within the LIZ derive from local rivers, the Mackenzie and/or Chukchi shelves, and the Arctic basin.
NASA Astrophysics Data System (ADS)
Ji, Zhonghui; Li, Ning; Wu, Xianhua
2017-08-01
Based on the related impact factors of precipitation anomaly referred in previous research, eight atmospheric circulation indicators in pre-winter and spring picked out by correlation analysis as the independent variables and the hazard levels of drought/flood sudden alternation index (DFSAI) as the dependent variables were used to construct the nonlinear and nonparametric classification and regression tree (CART) for the threshold determination and hazard evaluation on bimonthly and monthly scales in Huaihe River basin. Results show that the spring indicators about Arctic oscillation index (AOI_S), Asia polar vortex area index (APVAI_S), and Asian meridional circulation index (AMCI_S) were extracted as the three main impact factors, which were proved to be suitable for the hazard levels assessment of the drought/flood sudden alternation (DFSA) disaster based on bimonthly scale. On monthly scale, AOI_S, northern hemisphere polar vortex intensity index in pre-winter (NHPVII_PW), and AMCI_S are the three primary variables in hazard level prediction of DFSA in May and June; NHPVII_PW, AMCI_PW, and AMCI_S are for that in June and July; NHPVII_PW and EASMI are for that in July and August. The type of the disaster (flood to drought/drought to flood/no DFSA) and hazard level under different conditions also can be obtained from each model. The hazard level and type were expressed by the integer from - 3 to 3, which change from the high level of disaster that flood to drought (level - 3) to the high level of the reverse type (level 3). The middle number 0 represents no DFSA. The high levels of the two sides decrease progressively to the neutralization (level 0). When AOI_S less than - 0.355, the disaster of the quick turn from drought to flood is more apt to happen (level 1) on bimonthly scale; when AOI_S less than - 1.32, the same type disaster may occur (level 2) in May and June on monthly scale. When NHPVII_PW less than 341.5, the disaster of the quick turn from flood to drought will occur (level - 1) in June and July on monthly scale. By this analogy, different hazard types and levels all can be judged from the optimal models. The corresponding data from 2011 to 2015 were selected to verify the final models through the comparison between the predicted and actual levels, and the models of M1 (bimonthly scale), M2, and M3 (monthly scale) were proved to be acceptable by the prediction accuracy rate (compared the predicted with the observed levels, 73%, 11/15). The proposed CART method in this research is a new try for the short-term climate prediction.
Severe European winters in a secular perspective
NASA Astrophysics Data System (ADS)
Hoy, Andreas; Hänsel, Stephanie
2017-04-01
Temperature conditions during the winter time are substantially shaped by a strong year-to-year variability. European winters since the late 1980s - compared to previous decades and centuries - were mainly characterised by a high temperature level, including recent record-warm winters. Yet, comparably cold winters and severe cold spells still occur nowadays, like recently observed from 2009 to 2013 and in early 2017. Central England experienced its second coldest December since start of observations more than 350 years ago in 2010, and some of the lowest temperatures ever measured in northern Europe (below -50 °C in Lapland) were recorded in January 1999. Analysing thermal characteristics and spatial distribution of severe (historical) winters - using early instrumental data - helps expanding and consolidating our knowledge of past weather extremes. This contribution presents efforts towards this direction. We focus on a) compiling and assessing a very long-term instrumental, spatially widespread and well-distributed, high-quality meteorological data set to b) investigate very cold winter temperatures in Europe from early measurements until today. In a first step, we analyse the longest available time series of monthly temperature averages within Europe. Our dataset extends from the Nordic countries up to the Mediterranean and from the British Isles up to Russia. We utilise as much as possible homogenised times series in order to ensure reliable results. Homogenised data derive from the NORDHOM (Scandinavia) and HISTALP (greater alpine region) datasets or were obtained from national weather services and universities. Other (not specifically homogenised) data were derived from the ECA&D dataset or national institutions. The employed time series often start already during the 18th century, with Paris & Central England being the longest datasets (from 1659). In a second step, daily temperature averages are involved. Only some of those series are homogenised, but those available are sufficiently distributed throughout Europe to ensure reliable results. Furthermore, the comparably dense network of long-term observations allows an appropriate quality checking within the network. Additionally, the large collective of homogenised monthly data enables assessing the quality of many daily series. Daily data are used to sum up negative values for the respective winter periods to create times series of "cold summations", which are a good indicator for the severeness of winters in most parts of Europe. Additionally, days below certain thresholds may be counted or summed up. Future work will include daily minimum and maximum temperatures, allowing calculating and applying an extensive set of climate indices, refining the work presented here.
López, E; Mellado, M; Martínez, A M; Véliz, F G; García, J E; de Santiago, A; Carrillo, E
2018-04-01
This study aimed to investigate the effect of heat stress and month of birth on growth performance, pelleted starter intake, and stress-related hormones in Holstein calves. Birth weight and growth records, representing 4735 Holstein calves from a large commercial dairy herd in northern Mexico (25° N; 22.3 °C mean annual temperature) from 2013 to 2015, were analyzed. Temperature-humidity index (THI) at calving, season of birth, and month of birth were the independent variables, whereas growth traits were the dependent variables. Increased THI at birth from < 65 to > 85 units was associated with a decrease in birth weight from 39.3 to 38.7 kg. Calves subjected to high THI (> 75 units) at calving showed lesser (P < 0.01) pre-weaning gains (405 ± 97 g/calf/day), whereas those calves born with THI < 70 units presented the highest gains (466 ± 112 g/calf/day). Birth during the fall months reduced (P < 0.01) weaning weight by about 5 kg compared with winter months. Also, the pre-weaning average daily gain for calves born in the fall was about 70 g less (P < 0.01) than calves delivered in winter months. Plasma triiodothyronine and tetraiodothyronine levels were lower (1.02 ± 0.21 and 48 ± 7.9 ng/mL, respectively; P < 0.01) in summer and highest in winter (1.64 ± 0.48 and 66 ± 11 ng/mL, respectively). Mean plasma cortisol concentration was higher in heat-stressed calves born in summer (59 ± 40 ng/mL) than calves born in winter (20 ± 28 ng/mL). Pelleted starter intake 1 week before weaning was lowest (P < 0.01) in the fall (0.82 ± 0.26 kg/calf/day; mean ± SD) and highest in spring (1.26 ± 0.43 kg/calf/day). It was concluded that in this particular environment, heat stress affects birth weight and growth rate of Holstein calves. Thus, environmental management of the newborn calf during hot spring and summer months is warranted to optimize pelleted starter intake and calf growth rates.
NASA Astrophysics Data System (ADS)
Hori, Y.; Cheng, V. Y. S.; Gough, W. A.
2017-12-01
A network of winter roads in northern Canada connects a number of remote First Nations communities to all-season roads and rails. The extent of the winter road networks depends on the geographic features, socio-economic activities, and the numbers of remote First Nations so that it differs among the provinces. The most extensive winter road networks below the 60th parallel south are located in Ontario and Manitoba, serving 32 and 18 communities respectively. In recent years, a warmer climate has resulted in a shorter winter road season and an increase in unreliable road conditions; thus, limiting access among remote communities. This study focused on examining the future freezing degree-days (FDDs) accumulations during the winter road season at selected locations throughout Ontario's Far North and northern Manitoba using recent climate model projections from the multi-model ensembles of General Circulation Models (GCMs) under the Representative Concentration Pathway (RCP) scenarios. First, the non-parametric Mann-Kendall correlation test and the Theil-Sen method were used to identify any statistically significant trends between FDDs and time for the base period (1981-2010). Second, future climate scenarios are developed for the study areas using statistical downscaling methods. This study also examined the lowest threshold of FDDs during the winter road construction in a future period. Our previous study established the lowest threshold of 380 FDDs, which derived from the relationship between the FDDs and the opening dates of James Bay Winter Road near the Hudson-James Bay coast. Thus, this study applied the threshold measure as a conservative estimate of the minimum threshold of FDDs to examine the effects of climate change on the winter road construction period.
The Fraser Gyre: A cyclonic eddy off the coast of eastern Australia
NASA Astrophysics Data System (ADS)
Azis Ismail, Mochamad Furqon; Ribbe, Joachim; Karstensen, Johannes; Lemckert, Charles; Lee, Serena; Gustafson, Johann
2017-06-01
This paper examines the on-shelf circulation of the eastern Australian continental shelf for a region off southeast Queensland. We identify a characteristic seasonally reoccurring wind-driven cyclonic flow. It influences the cross-shelf exchange with the East Australian Current (EAC), which is the western boundary current of the South Pacific Ocean. We refer to this cyclonic circulation as the Fraser Gyre. It is located south of Fraser Island between about 25 °S and 27 °S. The region is adjacent to the intensification zone of the EAC where the current accelerates and establishes a swift, albeit seasonally variable southward boundary flow. Through the analysis of several data sets including remotely sensed sea surface temperature and sea surface height anomaly, satellite tracked surface drifters, ocean and atmospheric reanalysis data as well as geostrophic currents from altimetry, we find that the on-shelf Fraser Gyre develops during the southern hemisphere autumn and winter months. The gyre is associated with a longshore near-coast northward flow. Maximum northward on-shelf depth averaged velocities are estimated with about 0.15-0.26 ms-1. The flow turns eastward just to the south of Fraser Island and joins the persistent southward EAC flow along the shelf break. The annual mean net cross-shelf outward and inward flow associated with the gyre is about -1.17 ± 0.23 Sv in the north and 0.23 ± 0.13 Sv (1 Sv = 106 m3s-1) in the south. Mean seasonal water renewal time scales of the continental shelf are longest during austral winter with an average of about 3.3 days due to the Fraser Gyre retaining water over the shelf, however, monthly estimates range from 2 to 8 days with the longer timescale during the austral autumn and winter. The southerly wind during austral autumn and winter is identified as controlling the on shelf circulation and is the principal driver of the seasonally appearing Fraser Gyre. The conceptual model of the Fraser Gyre is consistent with general physical principals of the coastal shelf circulation. A southerly wind is associated with surface layer flow toward the coast, a near coast positive SSHa with a current in the direction of the wind, down-welling and export of shelf water. The Fraser Gyre influenced cross-shelf exchanges are possibly facilitating the offshore transport of fish larvae, sediments, nutrients, river discharges, and other properties across the shelf break and into the southward flowing EAC during the austral autumn and winter.
Modde, T.; Jeric, R.J.; Hubert, W.A.; Gipson, R.D.
1997-01-01
Flaming Gorge Reservoir, like many western North American reservoirs, is managed to release water during the winter months to allow for water storage associated with melting snow and rain during spring. Decreases in reservoir elevation during winter can cause mortalities of kokanee Oncorhynchus nerka spawned along the shoreline the previous fall. This study compared data on depth distribution of embryos and depth-adjusted survival to estimate the relative survival of emergent kokanee at different depths and the effect of winter drawdown on the proportion of deposited eggs that survive to emergence. Estimates of decreases in kokanee survival to emergence were 8.3% and 38.1% for reservoir elevation reductions of 1.0 m and 5.0 m, respectively.
Luedeling, Eike; Zhang, Minghua; Girvetz, Evan H
2009-07-16
Winter chill is one of the defining characteristics of a location's suitability for the production of many tree crops. We mapped and investigated observed historic and projected future changes in winter chill in California, quantified with two different chilling models (Chilling Hours, Dynamic Model). Based on hourly and daily temperature records, winter chill was modeled for two past temperature scenarios (1950 and 2000), and 18 future scenarios (average conditions during 2041-2060 and 2080-2099 under each of the B1, A1B and A2 IPCC greenhouse gas emissions scenarios, for the CSIRO-MK3, HadCM3 and MIROC climate models). For each scenario, 100 replications of the yearly temperature record were produced, using a stochastic weather generator. We then introduced and mapped a novel climatic statistic, "safe winter chill", the 10% quantile of the resulting chilling distributions. This metric can be interpreted as the amount of chilling that growers can safely expect under each scenario. Winter chill declined substantially for all emissions scenarios, with the area of safe winter chill for many tree species or cultivars decreasing 50-75% by mid-21st century, and 90-100% by late century. Both chilling models consistently projected climatic conditions by the middle to end of the 21st century that will no longer support some of the main tree crops currently grown in California, with the Chilling Hours Model projecting greater changes than the Dynamic Model. The tree crop industry in California will likely need to develop agricultural adaptation measures (e.g. low-chill varieties and dormancy-breaking chemicals) to cope with these projected changes. For some crops, production might no longer be possible.
Seasonal characteristics of water exchange in Beibu Gulf based on a particle tracking model
NASA Astrophysics Data System (ADS)
Wang, L.; Pan, W.; Yan, X.
2016-12-01
A lagrangian particle tracking model coupled with a three-dimensional Marine Environmental Committee Ocean Model (MEC) is used to study the transport and seasonal characteristics of water exchange in Beibu Gulf. The hydrodynamic model (MEC), which is forced with the daily surface and lateral boundary fluxes, as well as tidal harmonics and monthly climatological river discharges, is applied to simulate the flow field in the gulf during 2014. Using these results, particle tracking method which includes tidal advection and random walk in the horizontal is used to determine the residence times of sub regions within the gulf in response of winter and summer wind forcing. The result shows water exchange processes in the gulf have a similar tendency with seasonal circulation structure. During the sourthwestly prevailing wind in summer, water particles are traped within the gulf that considerably increases the residence time of each sub region. On the contrary, the presence of strong northeastly prevailing wind in winter drives particles to move cyclonicly leading to shorter residence times and rather active water exchanges among sub regions. Similarly, particle tracking is applied to investigate the water transport in Beibu Gulf. As Qiongzhou Strait and the wide opening in the south of the gulf are two significant channels connecting with the open ocean, continuous particle releases are simulated to quantify the influence range and the pathways of these sources water flowing into Beibu Gulf. The results show that water particles originated from Qiongzhou Strait are moving westward due to the year-round strong westward flow transportation. Influencing range in the north of the Beibu Gulf is enlarged by winter northeastly wind, however, it is blocked to the Leizhou Peninsula coastal region by summer westly wind. In the south opening, water particles are transported northward into the gulf along Hainan Island and flushed from Vietnam coastal region to the ocean rapidly by the longshore currents.
Fu, Yongshuo H; Campioli, Matteo; Deckmyn, Gaby; Janssens, Ivan A
2012-01-01
Budburst phenology is a key driver of ecosystem structure and functioning, and it is sensitive to global change. Both cold winter temperatures (chilling) and spring warming (forcing) are important for budburst. Future climate warming is expected to have a contrasting effect on chilling and forcing, and subsequently to have a non-linear effect on budburst timing. To clarify the different effects of warming during chilling and forcing phases of budburst phenology in deciduous trees, (i) we conducted a temperature manipulation experiment, with separate winter and spring warming treatments on well irrigated and fertilized saplings of beech, birch and oak, and (ii) we analyzed the observations with five temperature-based budburst models (Thermal Time model, Parallel model, Sequential model, Alternating model, and Unified model). The results show that both winter warming and spring warming significantly advanced budburst date, with the combination of winter plus spring warming accelerating budburst most. As expected, all three species were more sensitive to spring warming than to winter warming. Although the different chilling requirement, the warming sensitivity was not significantly different among the studied species. Model evaluation showed that both one- and two- phase models (without and with chilling, respectively) are able to accurately predict budburst. For beech, the Sequential model reproduced budburst dates best. For oak and birch, both Sequential model and the Thermal Time model yielded good fit with the data but the latter was slightly better in case of high parameter uncertainty. However, for late-flushing species, the Sequential model is likely be the most appropriate to predict budburst data in a future warmer climate.
NASA Astrophysics Data System (ADS)
Ortiz, Ivonne; Aydin, Kerim; Hermann, Albert J.; Gibson, Georgina A.; Punt, André E.; Wiese, Francis K.; Eisner, Lisa B.; Ferm, Nissa; Buckley, Troy W.; Moffitt, Elizabeth A.; Ianelli, James N.; Murphy, James; Dalton, Michael; Cheng, Wei; Wang, Muyin; Hedstrom, Kate; Bond, Nicholas A.; Curchitser, Enrique N.; Boyd, Charlotte
2016-12-01
We combined field data and the output from a climate-to-fish coupled biophysical model to calculate weekly climatologies and 1971-2009 time series of physical and biological drivers for 16 distinct regions of the eastern Bering Sea shelf and slope. We focus on spatial trends and physical-biological interactions as a framework to compare model output to localized or season-specific observations. Data on pollock (≥8 cm) diet were used to evaluate energy flows and zooplankton dynamics predicted by the model. Model validation shows good agreement to sea-ice cover albeit with a one month delay in ice retreat. Likewise, the timing of spring phytoplankton blooms in the model were delayed approximately one month in the south and extend further into summer, but the relative timing between the spring and fall bloom peaks was consistent with observations. Ice-related primary producers may shift the timing of the spring bloom maximum biomass earlier in years when sea ice was still present after mid-March in the southern regions. Including the effects of explicit, dynamic fish predation on zooplankton in the model shifts the seasonal spring peak and distribution of zooplankton later in the year relative to simulations with implicit predation dependent only on zooplankton biomass and temperature; the former capturing the dynamic demand on zooplankton prey by fish. Pollock diets based on stomach samples collected in late fall and winter from 1982-2013 show overwintering euphausiids and small pollock as key prey items in the outer and southern Bering Sea shelf; a characteristic not currently present in the model. The model captured two large-scale gradients, supported by field data, characterizing the overall dynamics: 1) inshore to off-shelf physical and biological differences with a gradient in inter-annual variability from higher frequency inshore to lower frequency offshore; and 2) latitudinal gradients in the timing of events. The combined effects of length of day, bathymetry, and tides, which are consistent from year to year, and the two large-scale gradients, characterize the environment on which regional differences were based and restrict their inter-annual and seasonal variability. Thus, the relative timing and sequence of events remained consistent within regions. The combination of model outputs and observational data revealed specific ecosystem processes: (1) The spatial progression in the timing, peaks and sequence of events over the shelf is driven by wind, sea ice, and stratification and creates a seasonal expansion and contraction of the warmer pelagic and bottom habitat suitable to pollock. (2) The seasonal warming of air temperature and the spring-summer expansion of the warm pelagic and bottom habitats influence the ice retreat and the associated ice edge and open water spring blooms, as well as subsequent production/abundance of copepods and euphausiids. (3) These warmer conditions favor pelagic energy flows to pollock (≥10 cm) and allow their distribution to expand shoreward and northward along the shelf break. (4) The fall-winter expansion of the seasonal ice cover drives the contraction of warmer waters towards the outer and southwest shelf and favors benthic energy flows over most of the shelf. There, fall blooms allow for additional lipid storage by large copepods and euphausiids that sink close to the bottom where they either go into diapause or have a restricted diel migration over winter. (5) During these cold months, the preferred pollock habitat shifts and contracts towards the outer and southwest shelf where their increased density and reduced prey availability leads to winter pollock cannibalism and consumption of overwintering euphausiids. Our project highlights the benefits of linking continuous and long-term field work with the development and implementation of highly complex models. In the face of uncertainty, simulations such as these, tightly coupled to field programs, will be instrumental as testbeds for process exploration and management evaluation, increasing their relevance for future fisheries and ecosystem management and strategic planning.
Southern Ocean monthly wave fields for austral winters 1985-1988 by Geosat radar altimeter
Josberger, E.G.; Mognard, N.M.
1996-01-01
Four years of monthly averaged wave height fields for the austral winters 19851988 derived from the Geosat altimeter data show a spatial variability of the scale of 500-1000 km that varies monthly and annually. This variability is superimposed on the zonal patterns surrounding the Antarctic continent and characteristic of the climatology derived from the U.S. Navy [1992] Marine Climatic Atlas of the World. The location and the intensity of these large-scale features, which are not found in the climatological fields, exhibit strong monthly and yearly variations. A global underestimation of the climatological mean wave heights by more than l m is also found over large regions of the Southern Ocean. The largest monthly averaged significant wave heights are above 5 m and are found during August of every year in the Indian Ocean, south of 40??S. The monthly wave fields show more variability in the Atlantic and Pacific Oceans than in the Indian Ocean. The Seasat data from 1978 and the Geosat data from 1985 and 1988 show an eastward rotation of the largest wave heights. However, this rotation is absent in 1986 and 1987; the former was a year of unusually low sea states, and the latter was a year of unusually high sea states, which suggests a link to the El Nin??o-Southern Oscillation event of 1986. Copyright 1996 by the American Geophysical Union.
Lightning Forcing in Global Fire Models: The Importance of Temporal Resolution
NASA Astrophysics Data System (ADS)
Felsberg, A.; Kloster, S.; Wilkenskjeld, S.; Krause, A.; Lasslop, G.
2018-01-01
In global fire models, lightning is typically prescribed from observational data with monthly mean temporal resolution while meteorological forcings, such as precipitation or temperature, are prescribed in a daily resolution. In this study, we investigate the importance of the temporal resolution of the lightning forcing for the simulation of burned area by varying from daily to monthly and annual mean forcing. For this, we utilize the vegetation fire model JSBACH-SPITFIRE to simulate burned area, forced with meteorological and lightning data derived from the general circulation model ECHAM6. On a global scale, differences in burned area caused by lightning forcing applied in coarser temporal resolution stay below 0.55% compared to the use of daily mean forcing. Regionally, however, differences reach up to 100%, depending on the region and season. Monthly averaged lightning forcing as well as the monthly lightning climatology cause differences through an interaction between lightning ignitions and fire prone weather conditions, accounted for by the fire danger index. This interaction leads to decreased burned area in the boreal zone and increased burned area in the Tropics and Subtropics under the coarser temporal resolution. The exclusion of interannual variability, when forced with the lightning climatology, has only a minor impact on the simulated burned area. Annually averaged lightning forcing causes differences as a direct result of the eliminated seasonal characteristics of lightning. Burned area is decreased in summer and increased in winter where fuel is available. Regions with little seasonality, such as the Tropics and Subtropics, experience an increase in burned area.
NASA Astrophysics Data System (ADS)
Kitajima, Kuni; Allen, Michael F.; Goulden, Michael L.
2013-12-01
and shrubs growing in California's mountains rely on deep roots to survive the hot and dry Mediterranean climate summer. The shallow montane soil cannot hold enough water to support summer transpiration, and plants must access deeper moisture from the weathered bedrock. We used the HYDRUS-1D model to simulate the moisture flux through the soil-plant continuum in Southern California's San Jacinto Mountains. The mechanisms facilitating deep water access are poorly understood, and it is possible that either or both hydraulic lift and capillary rise contribute to the survival and activity of trees and soil microorganisms. We modified HYDRUS to incorporate hydraulic lift and drove it with meteorological and physiological data. The modeled quantity of water lifted hydraulically ranged from near zero during the wet months to ~28 mm month-1 in midsummer. Likewise, modeled capillary rise was negligible during the winter and averaged ~15 mm month-1 during June through November. Both mechanisms provided water to support evapotranspiration during the dry months. Isotopic measurements of xylem water for eight shrub and tree species confirmed the importance of a deep source of water. Conventional and automated minirhizotron observations showed that fine-root and rhizomorph biomass remained relatively constant year-round, while mycorrhizal hyphae biomass varied markedly, peaking in the wet season and declining by ~70% in the dry season. Model results predict that hydraulic lift and capillary rise play key roles in Southern California's mountains: they support evapotranspiration and photosynthesis during the summer drought; they contribute to the year-round survival of fine roots and soil microorganisms.
Suicide Prevention Vigilant Guard Winter Olympics 2009 373rd Birthday H1N1 Flu Awareness Haiti Earthquake Army Suicide Prevention Month Warrior Care Midwest Flooding National Level Exercise National Guard's
NASA Technical Reports Server (NTRS)
Fritts, D. C.; Imura, H.; Lieberman, R.; Janches, D.; Singer, W.
2011-01-01
Two meteor radars with enhanced power and sensitivity and located at closely conjugate latitudes (54.6degN and 53.8degS) are employed for inter-hemispheric comparisons of mean winds and planetary wave structures. Our study uses data from June 2008 through May 2010 during which both radars provided nearly continuous wind measurements from approx.80 to 100 km. Monthly mean winds at 53.8degS exhibit a somewhat stronger westward mean zonal jet in spring and early summer at lower altitudes and no westward monthly mean winds at higher altitudes. In contrast, westward mean winds of approx.5-10 m/s at 54.6degN extend to above 96 km during late winter and early spring each year. Equatorward monthly mean winds extend approximately from spring to fall equinox at both latitudes, with amplitudes of approx.5-10 m/s and more rapid decreases in amplitude at 54.6degN at higher altitudes. Meridional mean winds are more variable at both latitudes during fall and winter, with both poleward and equatorward monthly means indicating longer-period variability. Planetary waves seen in the 2-day mean data are episodic and variable at both sites, exhibit dominant periodicities of approx.8-10 and 16-20 days and are more confined to late fall and winter at 54.6degN. At both latitudes, planetary waves in the two period bands coincide closely in time and exhibit similar horizontal velocity covariances that are positive (negative) at 54.6degN (53.8degS) during peak planetary wave responses.
Baek, Ji Hyun; Kim, Ji Sun; Huh, Iksoo; Lee, Kounseok; Park, Ju Hyun; Park, Taesung; Ha, Kyooseob; Hong, Kyung Sue
2015-02-01
Seasonality, an individual trait of seasonal variations in mood and behavior, has received clinical attention for its association with mood disorders. This study aimed to explore the prevalence, specific manifestation, and associated individual and climatic factors of seasonality in the non-elderly adult population. Five hundred fifty-two participants [male n=220; female n=332; mean age 34.92years, standard deviation (SD) 10.18] with no psychiatric history were recruited from the Seoul metropolitan area (37°33'58.87″N 126°58'40.63″E). Seasonality was evaluated using the Seasonal Pattern Assessment Questionnaire. Climatic variables used in analyses were averaged over recent 5years (from 2008 to 2013) on a monthly basis. The mean global seasonality score (GSS) was 5.53 (SD 3.91), and 16.2% (n=89) of participants had seasonal affective disorder (SAD) or sub-SAD. The "feeling worst" month in most of the participants with significant seasonality were winter (41.6%) or summer (38.2%). Socio-demographic factors including age and sex were not related to the seasonality. Decreased sunlight amount and diurnal temperature range in a given and previous month, and increased humidity in a previous month showed significant associations with the percentage of participants with the worst mood. The most frequently reported symptom related to seasonality was 'changes in energy level'. Specific manifestations were not significantly different between the winter type and the summer type. The summer and winter type seasonality in the non-clinical adult population did not differ in terms of behavioral manifestations. Decreased sunlight amount, diurnal temperature range, and increased humidity appeared to be major climatic factors associated with seasonality. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Loikith, Paul C.
Motivated by a desire to understand the physical mechanisms involved in future anthropogenic changes in extreme temperature events, the key atmospheric circulation patterns associated with extreme daily temperatures over North America in the current climate are identified. Several novel metrics are used to systematically identify and describe these patterns for the entire continent. The orientation, physical characteristics, and spatial scale of these circulation patterns vary based on latitude, season, and proximity to important geographic features (i.e., mountains, coastlines). The anomaly patterns associated with extreme cold events tend to be similar to, but opposite in sign of, those associated with extreme warm events, especially within the westerlies, and tend to scale with temperature in the same locations. The influence of the Pacific North American (PNA) pattern, the Northern Annular Mode (NAM), and the El Niño-Southern Oscillation (ENSO) on extreme temperature days and months shows that associations between extreme temperatures and the PNA and NAM are stronger than associations with ENSO. In general, the association with extremes tends to be stronger on monthly than daily time scales. Extreme temperatures are associated with the PNA and NAM in locations typically influenced by these circulation patterns; however many extremes still occur on days when the amplitude and polarity of these patterns do not favor their occurrence. In winter, synoptic-scale, transient weather disturbances are important drivers of extreme temperature days; however these smaller-scale events are often concurrent with amplified PNA or NAM patterns. Associations are weaker in summer when other physical mechanisms affecting the surface energy balance, such as anomalous soil moisture content, are associated with extreme temperatures. Analysis of historical runs from seventeen climate models from the CMIP5 database suggests that most models simulate realistic circulation patterns associated with extreme temperature days in most places. Model-simulated patterns tend to resemble observed patterns better in the winter than the summer and at 500 hPa than at the surface. There is substantial variability among the suite of models analyzed and most models simulate circulation patterns more realistically away from influential features such as large bodies of water and complex topography.
NASA Astrophysics Data System (ADS)
Cortesi, N.; Trigo, R.; González-Hidalgo, J. C.; Ramos, A.
2012-04-01
Precipitation over Iberian Peninsula (IP) presents large values of interannual variability and large spatial contrasts between wet mountainous regions in the north and dry regions in the southern plains. Unlike other European regions, IP was poorly monitored for precipitation during 19th century. Here we present a new approach to fill this gap. A set of 26 atmospheric circulation weather types (Trigo R.M. and DaCamara C.C., 2000) derived from a recent SLP dataset, the EMULATE (European and North Atlantic daily to multidecadal climate variability) Project, was used to reconstruct Iberian monthly precipitation from October to March during 1851-1947. Principal Component Regression Analysis was chosen to develop monthly precipitation reconstruction back to 1851 and calibrated over 1948-2003 period for 3030 monthly precipitation series of high-density homogenized MOPREDAS (Monthly Precipitation Database for Spain and Portugal) database. Validation was conducted over 1920-1947 at 15 key site locations. Results show high model performance for selected months, with a mean coefficient of variation (CV) around 0.6 during validation period. Lower CV values were achieved in western area of IP. Trigo, R. M., and DaCamara, C.C., 2000: "Circulation weather types and their impact on the precipitation regime in Portugal". Int. J. Climatol., 20, 1559-1581.
Climate and respiratory disease in Auckland, New Zealand.
Gosai, Ashmita; Salinger, James; Dirks, Kim
2009-12-01
Increases in the incidence of diseases are often observed during the cold winter months, particularly in cities in temperate climates. The study aim is to describe daily, monthly and seasonal trends in respiratory hospital admissions with climate in Auckland, New Zealand. Daily hospital admissions for total respiratory infections or inflammations (RII), total bronchitis and asthma (BA), and total whooping cough and acute bronchitis (TWCAB) for various age groups and ethnicities were obtained for the Auckland Region and compared with climate parameters on daily, monthly and seasonal time scales. Seasonal and monthly relationships with minimum temperature were very strong (p<0.001) for RII over all age groups, for BA in the older age groups (14-64, 65+) and for TWCAB in the <1 year old age group. European, NZ Māori and Pacific Islanders all showed increases in admissions as temperatures decreased. Pacific Islanders were particularly susceptible to RII. There was a lag in admissions of three to seven days after a temperature event. Results show that increases in respiratory admissions are strongly linked to minimum temperatures during winter, typical of cities with temperate climates and poorly-insulated houses. There are implications for hospital bed and staffing planning in Auckland hospitals.
Effects of backpack radiotags on female northern pintails wintering in California
Fleskes, Joseph P.
2003-01-01
To test whether backpack radiotags impacted the wintering biology of northern pintails (Anas acuta), I attached spear-suture (SSU, n=82 in 1993) or harness (HAR, n=337 in 1991-1993) backpack radiotags to female Hatch-Year (HY) and After-Hatch-Year (AHY) pintails after their autumn arrival in California. I evaluated impacts of radiotags on 1) wintering population distribution; 2) flock status, flock size, and body mass at harvest; and 3) August-March survival. I also compared retention of SSU and HAR following attachment. Distribution, flock status, and flock size at harvest of HAR, SSU, and unmarked (UMK) pintails were similar. However, harvest mass of HAR pintails averaged 1 33 g (SE=25 g) less than UMK pintails; loss tended to be greatest for heavier HY females in 1 993. Daily survival rates during 1 993-1 994 of HAR vs. SSU pintails were similar for both HY (0.9979 vs. 0.9974) and AHY (0.9988 vs. 0.9986) female pintails. Retention ranged from 30-1 58 days (x=81 d, SE=5 d) for the 37 SSU that I confirmed as being shed; all other SSU failed 1-month studies due to poor retention past a month.
NASA Astrophysics Data System (ADS)
Lupu, A.; Semeniuk, K.; McConnell, J. C.; Kaminski, J. W.; Toyota, K.; Neary, L.
2012-12-01
The Global Environmental Multiscale Air Quality (GEM-AQ) model was run in global and limited area model (LAM) modes for the baseline year 2000 and one future year, 2050, on three different horizontal grids of increasing resolution from global (1.5°) to North American (LAM, 0.45°) to Ontario regional scale (LAM, 0.15°). For the future simulation we used the high greenhouse emissions scenario RCP8.5. Boundary conditions for the LAM runs were taken from the coarser resolution runs. All simulations had 54 vertical sigma-pressure hybrid levels from the ground to the stratopause (˜50 km), which should give a good representation of ozone injection to the troposphere from the stratosphere. The model uses the interactive land surface scheme ISBA. Sea surface and lake temperatures are prescribed, but ice cover is partially interactive based on prescribed fields. A lake model, FLAKE, was coupled to GEM-AQ in order to capture the impacts of the Great Lakes on the meteorology when the model is run at high resolution. For the Ontario regional simulation the interactive lake model allowed for self-consistent water temperatures and moisture fluxes. The simulation for the year 2000 shows that the model is able to reproduce the observed monthly surface temperatures across the US. The monthly surface ozone is reproduced at the level of detail of most other air quality models with year 2000 weather as opposed to a free run forced by SSTs. Our year 2050 simulation shows that ozone levels during the summer throughout most of Ontario and Canada will increase. Regions south of the latitude of Lake Superior will generally see decreased levels of summer (JJA) ozone, except for around large urban areas such as Toronto, Chicago and Montreal. However, NOx levels will decrease during the summer, reflecting decreased emissions. Ozone levels in the US will generally improve. Other indices rather than simple averages yield a different perspective. If the MDA8 ozone metric and NO2 one-hour 98th percentile are used, then it is found that air quality across Canada and US will generally improve. From the perspective of meteorology, the most significant surface warming that is likely to occur by 2050 is during winter. The winter warming also reflects changes in large scale circulation with baroclinic eddy storm tracks moving north. Winter warming contributes to a surface ozone increase by 2050 in spite of reduced emissions. In addition, we note that in the Ontario region and environs for 2050 there is a significant increase (˜40) in the number of DD5 days, i.e. days where the temperature is above 5°C, a metric useful for the length of the growing season for agriculture. This also means that conditions that impact forests and movement of disease vectors will also change.
Winter weather demand considerations.
DOT National Transportation Integrated Search
2015-04-01
Winter weather has varied effects on travel behavior. Using 418 survey responses from the Northern Virginia : commuting area of Washington, D.C. and binary logit models, this study examines travel related changes under : different types of winter wea...
Benchmarking ensemble streamflow prediction skill in the UK
NASA Astrophysics Data System (ADS)
Harrigan, Shaun; Prudhomme, Christel; Parry, Simon; Smith, Katie; Tanguy, Maliko
2018-03-01
Skilful hydrological forecasts at sub-seasonal to seasonal lead times would be extremely beneficial for decision-making in water resources management, hydropower operations, and agriculture, especially during drought conditions. Ensemble streamflow prediction (ESP) is a well-established method for generating an ensemble of streamflow forecasts in the absence of skilful future meteorological predictions, instead using initial hydrologic conditions (IHCs), such as soil moisture, groundwater, and snow, as the source of skill. We benchmark when and where the ESP method is skilful across a diverse sample of 314 catchments in the UK and explore the relationship between catchment storage and ESP skill. The GR4J hydrological model was forced with historic climate sequences to produce a 51-member ensemble of streamflow hindcasts. We evaluated forecast skill seamlessly from lead times of 1 day to 12 months initialized at the first of each month over a 50-year hindcast period from 1965 to 2015. Results showed ESP was skilful against a climatology benchmark forecast in the majority of catchments across all lead times up to a year ahead, but the degree of skill was strongly conditional on lead time, forecast initialization month, and individual catchment location and storage properties. UK-wide mean ESP skill decayed exponentially as a function of lead time with continuous ranked probability skill scores across the year of 0.75, 0.20, and 0.11 for 1-day, 1-month, and 3-month lead times, respectively. However, skill was not uniform across all initialization months. For lead times up to 1 month, ESP skill was higher than average when initialized in summer and lower in winter months, whereas for longer seasonal and annual lead times skill was higher when initialized in autumn and winter months and lowest in spring. ESP was most skilful in the south and east of the UK, where slower responding catchments with higher soil moisture and groundwater storage are mainly located; correlation between catchment base flow index (BFI) and ESP skill was very strong (Spearman's rank correlation coefficient = 0.90 at 1-month lead time). This was in contrast to the more highly responsive catchments in the north and west which were generally not skilful at seasonal lead times. Overall, this work provides scientific justification for when and where use of such a relatively simple forecasting approach is appropriate in the UK. This study, furthermore, creates a low cost benchmark against which potential skill improvements from more sophisticated hydro-meteorological ensemble prediction systems can be judged.
A robust empirical seasonal prediction of winter NAO and surface climate.
Wang, L; Ting, M; Kushner, P J
2017-03-21
A key determinant of winter weather and climate in Europe and North America is the North Atlantic Oscillation (NAO), the dominant mode of atmospheric variability in the Atlantic domain. Skilful seasonal forecasting of the surface climate in both Europe and North America is reflected largely in how accurately models can predict the NAO. Most dynamical models, however, have limited skill in seasonal forecasts of the winter NAO. A new empirical model is proposed for the seasonal forecast of the winter NAO that exhibits higher skill than current dynamical models. The empirical model provides robust and skilful prediction of the December-January-February (DJF) mean NAO index using a multiple linear regression (MLR) technique with autumn conditions of sea-ice concentration, stratospheric circulation, and sea-surface temperature. The predictability is, for the most part, derived from the relatively long persistence of sea ice in the autumn. The lower stratospheric circulation and sea-surface temperature appear to play more indirect roles through a series of feedbacks among systems driving NAO evolution. This MLR model also provides skilful seasonal outlooks of winter surface temperature and precipitation over many regions of Eurasia and eastern North America.
NASA Technical Reports Server (NTRS)
Stauffer, Ryan M.; Thompson, Anne M.; Young, George S.
2016-01-01
Sonde-based climatologies of tropospheric ozone (O3) are vital for developing satellite retrieval algorithms and evaluating chemical transport model output. Typical O3 climatologies average measurements by latitude or region, and season. A recent analysis using self-organizing maps (SOM) to cluster ozonesondes from two tropical sites found that clusters of O3 mixing ratio profiles are an excellent way to capture O3variability and link meteorological influences to O3 profiles. Clusters correspond to distinct meteorological conditions, e.g., convection, subsidence, cloud cover, and transported pollution. Here the SOM technique is extended to four long-term U.S. sites (Boulder, CO; Huntsville, AL; Trinidad Head, CA; and Wallops Island, VA) with4530 total profiles. Sensitivity tests on k-means algorithm and SOM justify use of 3 3 SOM (nine clusters). Ateach site, SOM clusters together O3 profiles with similar tropopause height, 500 hPa height temperature, and amount of tropospheric and total column O3. Cluster means are compared to monthly O3 climatologies.For all four sites, near-tropopause O3 is double (over +100 parts per billion by volume; ppbv) the monthly climatological O3 mixing ratio in three clusters that contain 1316 of profiles, mostly in winter and spring.Large midtropospheric deviations from monthly means (6 ppbv, +710 ppbv O3 at 6 km) are found in two of the most populated clusters (combined 3639 of profiles). These two clusters contain distinctly polluted(summer) and clean O3 (fall-winter, high tropopause) profiles, respectively. As for tropical profiles previously analyzed with SOM, O3 averages are often poor representations of U.S. O3 profile statistics.
Stauffer, Ryan M.; Thompson, Anne M.; Young, George S.
2018-01-01
Sonde-based climatologies of tropospheric ozone (O3) are vital for developing satellite retrieval algorithms and evaluating chemical transport model output. Typical O3 climatologies average measurements by latitude or region, and season. Recent analysis using self-organizing maps (SOM) to cluster ozonesondes from two tropical sites found clusters of O3 mixing ratio profiles are an excellent way to capture O3 variability and link meteorological influences to O3 profiles. Clusters correspond to distinct meteorological conditions, e.g. convection, subsidence, cloud cover, and transported pollution. Here, the SOM technique is extended to four long-term U.S. sites (Boulder, CO; Huntsville, AL; Trinidad Head, CA; Wallops Island, VA) with 4530 total profiles. Sensitivity tests on k-means algorithm and SOM justify use of 3×3 SOM (nine clusters). At each site, SOM clusters together O3 profiles with similar tropopause height, 500 hPa height/temperature, and amount of tropospheric and total column O3. Cluster means are compared to monthly O3 climatologies. For all four sites, near-tropopause O3 is double (over +100 parts per billion by volume; ppbv) the monthly climatological O3 mixing ratio in three clusters that contain 13 – 16% of profiles, mostly in winter and spring. Large mid-tropospheric deviations from monthly means (−6 ppbv, +7 – 10 ppbv O3 at 6 km) are found in two of the most populated clusters (combined 36 – 39% of profiles). These two clusters contain distinctly polluted (summer) and clean O3 (fall-winter, high tropopause) profiles, respectively. As for tropical profiles previously analyzed with SOM, O3 averages are often poor representations of U.S. O3 profile statistics. PMID:29619288
Stauffer, Ryan M; Thompson, Anne M; Young, George S
2016-02-16
Sonde-based climatologies of tropospheric ozone (O 3 ) are vital for developing satellite retrieval algorithms and evaluating chemical transport model output. Typical O 3 climatologies average measurements by latitude or region, and season. Recent analysis using self-organizing maps (SOM) to cluster ozonesondes from two tropical sites found clusters of O 3 mixing ratio profiles are an excellent way to capture O 3 variability and link meteorological influences to O 3 profiles. Clusters correspond to distinct meteorological conditions, e.g. convection, subsidence, cloud cover, and transported pollution. Here, the SOM technique is extended to four long-term U.S. sites (Boulder, CO; Huntsville, AL; Trinidad Head, CA; Wallops Island, VA) with 4530 total profiles. Sensitivity tests on k-means algorithm and SOM justify use of 3×3 SOM (nine clusters). At each site, SOM clusters together O 3 profiles with similar tropopause height, 500 hPa height/temperature, and amount of tropospheric and total column O 3 . Cluster means are compared to monthly O 3 climatologies. For all four sites, near-tropopause O 3 is double (over +100 parts per billion by volume; ppbv) the monthly climatological O 3 mixing ratio in three clusters that contain 13 - 16% of profiles, mostly in winter and spring. Large mid-tropospheric deviations from monthly means (-6 ppbv, +7 - 10 ppbv O 3 at 6 km) are found in two of the most populated clusters (combined 36 - 39% of profiles). These two clusters contain distinctly polluted (summer) and clean O 3 (fall-winter, high tropopause) profiles, respectively. As for tropical profiles previously analyzed with SOM, O 3 averages are often poor representations of U.S. O 3 profile statistics.
NASA Astrophysics Data System (ADS)
Takaya, Yuhei; Yasuda, Tamaki; Fujii, Yosuke; Matsumoto, Satoshi; Soga, Taizo; Mori, Hirotoshi; Hirai, Masayuki; Ishikawa, Ichiro; Sato, Hitoshi; Shimpo, Akihiko; Kamachi, Masafumi; Ose, Tomoaki
2017-01-01
This paper describes the operational seasonal prediction system of the Japan Meteorological Agency (JMA), the Japan Meteorological Agency/Meteorological Research Institute-Coupled Prediction System version 1 (JMA/MRI-CPS1), which was in operation at JMA during the period between February 2010 and May 2015. The predictive skill of the system was assessed with a set of retrospective seasonal predictions (reforecasts) covering 30 years (1981-2010). JMA/MRI-CPS1 showed reasonable predictive skill for the El Niño-Southern Oscillation, comparable to the skills of other state-of-the-art systems. The one-tiered approach adopted in JMA/MRI-CPS1 improved its overall predictive skills for atmospheric predictions over those of the two-tiered approach of the previous uncoupled system. For 3-month predictions with a 1-month lead, JMA/MRI-CPS1 showed statistically significant skills in predicting 500-hPa geopotential height and 2-m temperature in East Asia in most seasons; thus, it is capable of providing skillful seasonal predictions for that region. Furthermore, JMA/MRI-CPS1 was superior overall to the previous system for atmospheric predictions with longer (4-month) lead times. In particular, JMA/MRI-CPS1 was much better able to predict the Asian Summer Monsoon than the previous two-tiered system. This enhanced performance was attributed to the system's ability to represent atmosphere-ocean coupled variability over the Indian Ocean and the western North Pacific from boreal winter to summer following winter El Niño events, which in turn influences the East Asian summer climate through the Pacific-Japan teleconnection pattern. These substantial improvements obtained by using an atmosphere-ocean coupled general circulation model underpin its success in providing more skillful seasonal forecasts on an operational basis.
Adesina, Ayodele Joseph; Kumar, Kanike Raghavendra; Sivakumar, Venkataraman; Griffith, Derek
2014-12-01
The present study uses the data collected from Cimel Sunphotometer of Aerosol Robotic Network (AERONET) for the period from January to December, 2012 over an urban site, Pretoria (PTR; 25.75°S, 28.28°E, 1449 m above sea level), South Africa. We found that monthly mean aerosol optical depth (AOD, τ(a)) exhibits two maxima that occurred in summer (February) and winter (August) having values of 0.36 ± 0.19 and 0.25 ± 0.14, respectively, high-to-moderate values in spring and thereafter, decreases from autumn with a minima in early winter (June) 0.12 ± 0.07. The Angstrom exponents (α440-870) likewise, have its peak in summer (January) 1.70 ± 0.21 and lowest in early winter (June) 1.38 ± 0.26, while the columnar water vapor (CWV) followed AOD pattern with high values (summer) at the beginning of the year (February, 2.10 ± 0.37 cm) and low values (winter) in the middle of the year (July, 0.66 ± 0.21 cm). The volume size distribution (VSD) in the fine-mode is higher in the summer and spring seasons, whereas in the coarse mode the VSD is higher in the winter and lower in the summer due to the hygroscopic growth of aerosol particles. The single scattering albedo (SSA) ranged from 0.85 to 0.96 at 440 nm over PTR for the entire study period. The averaged aerosol radiative forcing (ARF) computed using SBDART model at the top of the atmosphere (TOA) was -8.78 ± 3.1 W/m², while at the surface it was -25.69 ± 8.1 W/m² leading to an atmospheric forcing of +16.91 ± 6.8 W/m², indicating significant heating of the atmosphere with a mean of 0.47K/day. Copyright © 2014. Published by Elsevier B.V.
Keratosis pilaris on the cheek (image)
Keratosis pilaris occurs most commonly during childhood and produces small, rough spots. called papules, that are typically ... especially during winter months, makes the condition worse. Keratosis pilaris tends to be inherited and may be ...
Genetics Home Reference: seasonal affective disorder
... seasonal affective disorder are complex. A shortage of sunlight contributes to the development of the disorder in the fall and winter months, and too much sunlight is associated with seasonal affective disorder in the ...
Modes of Arctic Ocean Change from GRACE, ICESat and the PIOMAS and ECCO2 Models of the Arctic Ocean
NASA Astrophysics Data System (ADS)
Peralta Ferriz, C.; Morison, J. H.; Bonin, J. A.; Chambers, D. P.; Kwok, R.; Zhang, J.
2012-12-01
EOF analysis of month-to-month variations in GRACE derived Arctic Ocean bottom pressure (OBP) with trend and seasonal variation removed yield three dominant modes. The first mode is a basin wide variation in mass associated with high atmospheric pressure (SLP) over Scandinavia mainly in winter. The second mode is a shift of mass from the central Arctic Ocean to the Siberian shelves due to low pressure over the basins, associated with the Arctic Oscillation. The third mode is a shift in mass between the Eastern and Western Siberian shelves, related to strength of the Beaufort High mainly in summer, and to eastward alongshore winds on the Barents Sea in winter. The PIOMAS and ECCO2 modeled OBP show fair agreement with the form of these modes and provide context in terms of variations in sea surface height SSH. Comparing GRACE OBP from 2007 to 2011 with GRACE OBP from 2002 to 2006 reveals a rising trend over most of the Arctic Ocean but declines in the Kara Sea region and summer East Siberian Sea. ECCO2 bears a faint resemblance to the observed OBP change but appears to be biased negatively. In contrast, PIOMAS SSH and ECCO2 especially, show changes between the two periods that are muted but similar to ICESat dynamic ocean topography and GRACE-ICESat freshwater trends from 2005 through 2008 [Morison et al., 2012] with a rising DOT and freshening in the Beaufort Sea and a trough with decreased freshwater on the Russian side of the Arctic Ocean. Morison, J., R. Kwok, C. Peralta-Ferriz, M. Alkire, I. Rigor, R. Andersen, and M. Steele (2012), Changing Arctic Ocean freshwater pathways, Nature, 481(7379), 66-70.
Carbon and Water Vapor Fluxes of Different Ecosystems in Oklahoma
NASA Astrophysics Data System (ADS)
Wagle, P.; Gowda, P. H.; Northup, B. K.
2016-12-01
Information on exchange of energy, carbon dioxide (CO2), and water vapor (H2O) for major terrestrial ecosystems is vital to quantify carbon and water balances on a large-scale. It is also necessary to develop, test, and improve crop models and satellite-based production efficiency and evapotranspiration (ET) models, and to better understand the potential of terrestrial ecosystems to mitigate rising atmospheric CO2 concentration and climate change. A network (GRL-FLUXNET) of nine eddy flux towers has been established over a diverse range of terrestrial ecosystems, including native and improved perennial grasslands [unburned and grazed tallgrass prairie, burned and grazed tallgrass prairie, and burned Bermuda grass (Cynodon dactylon L.)], grazed and non-grazed winter wheat (Triticum aestivum L.), till and no-till winter wheat and canola (Brassica napus L.), alfalfa (Medicago sativa L.), and soybean (Glycine max L.), at the USDA-ARS, Grazinglands Research Laboratory, El Reno, OK. In this presentation, we quantify and compare net ecosystem CO2 exchange (NEE) and ET between recently burned and grazed tallgrass prairie and burned and non-grazed Bermuda grass pastures, alfalfa, and soybean. Preliminary results show monthly ensembles average NEE reached seasonal peak values of -29, -35, -25, and -20 µmol m-2 s-1 in burned tallgrass prairie pasture, burned Bermuda grass pasture, alfalfa, and soybean, respectively. Similarly, monthly ensembles average ET reached seasonal peak values of 0.22, 0.27, 0.25, 0.28 mm 30-min-1 in burned tallgrass prairie pasture, burned Bermuda grass pasture, alfalfa, and soybean, respectively. Seasonal patterns and daily magnitudes of NEE and ET and their responses to the similar climatic conditions will be further investigated.
Nibhanipudi, Kumara; Hassen, Getaw Worku; Smith, Arthur
2009-11-01
The objective of this study was to determine whether a combination of nebulized albuterol and ipratropium with warmed humidified oxygen would be more beneficial when compared to the same combination with humidified oxygen at room temperature. Albuterol alone was tested in the same settings. All patients between 6 and 17 years of age who presented to a pediatric emergency department in the winter months with acute exacerbation of bronchial asthma were given a combination of nebulized albuterol and ipratropium with warmed or room temperature humidified oxygen. Peak flow was measured before and after the treatment. Sixty patients were enrolled in the study, with 15 subjects in each group. The mean increase in peak flow in the albuterol-ipratropium with warm humidified oxygen group was 52.6, and in the albuterol-ipratropium with humidified oxygen at room temperature group, it was 26.2. The results of the albuterol with warmed humidified oxygen and with humidified oxygen at room temperature groups were 20.6 and 34.3, respectively. The differences between the groups were statistically significant. Our study shows that warmed humidified oxygen given along with the combination of nebulized albuterol and ipratropium is more beneficial for pediatric patients having an acute exacerbation of bronchial asthma in the winter months when compared to nebulized albuterol alone with warmed humidified oxygen, nebulized albuterol alone with room temperature humidified oxygen, or a combination of nebulized albuterol and ipratropium with room temperature humidified oxygen.
NASA Astrophysics Data System (ADS)
Marichev, V. N.; Samokhvalov, I. V.
2014-11-01
In the article the lidar observations of the winter stratosphere warming manifestations of (SW) 2011-13 over Tomsk are considered. In 2010/11 the winter warming took place in January with insignificant positive temperature deviations from the mean monthly values in its first decade and then two maxima on the 14th and 15th of January at the altitude of 30-40 km with a deviation to 45K. In 2011/12 the beginning of the SW was recorded from lidar measurements on December 26 and lasted for two decades of January. The maximum development of SW was at the end of December 2011 - the first decade of January. The biggest temperature deviations were at the 40-60K level in the height interval of 35-45 km. In 2012/13 the SW began on December 25. The phase of its maximum development fell on the 1-4th of January when the stratopause altitude dropped on 30 km and the maximum temperature deviation from the model at this level reached 70K. In contrast to the first two warming (minor), the last was referred to the major type wherein air mass circulation change happened in the upper stratosphere over Tomsk ((http://www.geo.fu-berlin.de/en/met/ag/strat/index.html).).
Spirit Nears North-Tilting Site for Winter Haven
NASA Technical Reports Server (NTRS)
2007-01-01
NASA's Mars Exploration Rover Spirit made daily progress in early December 2007 toward the northern edge of a low plateau called 'Home Plate.' The rover's operators selected an area with north-facing slope there (indicated by the blue-outlined rectangle) as a destination where Spirit would have its best chance of surviving low-solar-energy conditions of oncoming Martian winter. As indicated by the yellow line tracing the path Spirit has driven, the rover was near the western edge of the plateau on Sol (Martian day) 1,390 of the mission (Nov. 30, 2007), but nearing the northern edge by Sol 1,397 (Dec. 8, 2007). A north-facing slope helps Spirit maximizes electric output from its solar panels during winter months because Spirit is in the southern hemisphere of Mars, so the sun appears only in the northern sky during winter. For the third winter, which will reach its minimum solar-energy days in early June 2008, Spirit faces the challenge of having more dust on its solar panels than it had during its second winter. The base image for this map is a portion of a color image taken on Jan. 9, 2007, by the High Resolution Imaging Science Experiment camera on NASA's Mars Reconnaissance Orbiter.Survivorship across the annual cycle of a migratory passerine, the willow flycatcher
Paxton, Eben H.; Durst, Scott L.; Sogge, Mark K.; Koronkiewicz, Thomas J.; Paxton, Kristina L.
2017-01-01
Annual survivorship in migratory birds is a product of survival across the different periods of the annual cycle (i.e. breeding, wintering, and migration), and may vary substantially among these periods. Determining which periods have the highest mortality, and thus are potentially limiting a population, is important especially for species of conservation concern. To estimate survival probabilities of the willow flycatcher Empidonax traillii in each of the different periods, we combined demographic data from a 10-year breeding season study with that from a 5-year wintering grounds study. Estimates of annual apparent survival for breeding and wintering periods were nearly identical (65–66%), as were estimates of monthly apparent survival for both breeding and wintering stationary periods (98–99%). Because flycatchers spend at least half the year on the wintering grounds, overall apparent survivorship was lower (88%) on the wintering grounds than on the breeding grounds (97%). The migratory period had the highest mortality rate, accounting for 62% of the estimated annual mortality even though it comprises only one quarter or less of the annual cycle. The migratory period in the willow flycatcher and many other neotropical migrants is poorly understood, and further research is needed to identify sources of mortality during this crucial period.
Wang, Yu; Bian, Jianmin; Zhao, Yongsheng; Tang, Jie; Jia, Zhuo
2018-02-05
The source area of Liao River is a typical cold region in northeastern China, which experiences serious problems with agricultural nonpoint source pollution (NPS), it is important to understand future climate change impacts on NPS in the watershed. This issue has been investigated by coupling semi distributed hydrological model (SWAT), statistical downscaling model (SDSM) and global circulation model (GCMs). The results show that annual average temperature would rise by 2.1 °C (1.3 °C) in the 2080 s under scenario RCP8.5 (RCP4.5), and annual precipitation would increase by 67 mm (33 mm). The change in winter temperature and precipitation is most significant with an increase by 0.23 °C/10a (0.17 °C/10a) and 1.94 mm/10a (2.78 mm/10a). The future streamflow, TN and TP loads would decrease by 19.05% (10.59%), 12.27% (8.81%) and 10.63% (6.11%), respectively. Monthly average streamflow, TN and TP loads would decrease from March to November, and increase from December to February. This is because the increased precipitation and temperature in winter, which made the spring snowpack melting earlier. These study indicate the trends of nonpoint source pollution during the snowmelt period under climate change conditions, accordingly adaptation measures will be necessary.
NASA Astrophysics Data System (ADS)
Karpechko, A.; Tyrrell, N.; Räisänen, P.
2017-12-01
An atmospheric model with a well-defined stratosphere and an internally-generated Quasi-biennial oscillation (QBO) was used to study the relationship between the Eurasian snow extent and the wintertime climate of the Northern Hemisphere. A positive snow cover anomaly was imposed over Eurasia in early autumn and held constant until spring. A dynamical response to the snow anomaly is seen in the Northern polar stratosphere and troposphere during autumn and early winter, in line with previous modeling studies, and the monthly progression of the atmospheric anomalies follows the size of the surface forcing. However, this response is weaker, and occurs earlier in season, than that seen in observations. Considering the effect of QBO, we find a stratospheric vortex weakening during the easterly phase; the effect is weaker than that seen in observations. The strongest response of the polar vortex is found when both factors - the snow anomaly and the QBO phase - are considered together, with the response being close to an additive combination of the responses to the individual forcings. Our study suggests that the influence of autumn snow anomalies on the zonal mean atmospheric circulation is limited to autumn-early winter (November-December). Motivated by this result we search for a possible atmospheric signal of recent record high Eurasian snow extent anomalies in 2014 and 2016. The results are discussed.
Seasonal differences of model predictability and the impact of SST in the Pacific
NASA Astrophysics Data System (ADS)
Lang, X. M.; Wang, H. J.
2005-01-01
Both seasonal potential predictability and the impact of SST in the Pacific on the forecast skill over China are investigated by using a 9-level global atmospheric general circulation model developed at the Institute of Atmospheric Physics under the Chinese Academy of Sciences (IAP9L-ACCM). For each year during 1970 to 1999, the ensemble consists of seven integrations started from consecutive observational daily atmospheric fields and forced by observational monthly SST. For boreal winter, spring and summer, the variance ratios of the SST-forced variability to the total variability and the differences in the spatial correlation coefficients of seasonal mean fields in special years versus normal years are computed respectively. It follows that there are slightly inter-seasonal differences in the model potential predictability in the Tropics. At northern middle and high latitudes, prediction skill is generally low in spring and relatively high either in summer for surface air temperature and middle and upper tropospheric geopotential height or in winter for wind and precipitation. In general, prediction skill rises notably in western China, especially in northwestern China, when SST anomalies (SSTA) in the Ni (n) over tildeo-3 region are significant. Moreover, particular attention should be paid to the SSTA in the North Pacific (NP) if one aims to predict summer climate over the eastern part of China, i.e., northeastern China, North China and southeastern China.
Chase, K.J.
2011-01-01
This report documents the development of a precipitation-runoff model for the South Fork Flathead River Basin, Mont. The Precipitation-Runoff Modeling System model, developed in cooperation with the Bureau of Reclamation, can be used to simulate daily mean unregulated streamflow upstream and downstream from Hungry Horse Reservoir for water-resources planning. Two input files are required to run the model. The time-series data file contains daily precipitation data and daily minimum and maximum air-temperature data from climate stations in and near the South Fork Flathead River Basin. The parameter file contains values of parameters that describe the basin topography, the flow network, the distribution of the precipitation and temperature data, and the hydrologic characteristics of the basin soils and vegetation. A primary-parameter file was created for simulating streamflow during the study period (water years 1967-2005). The model was calibrated for water years 1991-2005 using the primary-parameter file. This calibration was further refined using snow-covered area data for water years 2001-05. The model then was tested for water years 1967-90. Calibration targets included mean monthly and daily mean unregulated streamflow upstream from Hungry Horse Reservoir, mean monthly unregulated streamflow downstream from Hungry Horse Reservoir, basin mean monthly solar radiation and potential evapotranspiration, and daily snapshots of basin snow-covered area. Simulated streamflow generally was in better agreement with observed streamflow at the upstream gage than at the downstream gage. Upstream from the reservoir, simulated mean annual streamflow was within 0.0 percent of observed mean annual streamflow for the calibration period and was about 2 percent higher than observed mean annual streamflow for the test period. Simulated mean April-July streamflow upstream from the reservoir was about 1 percent lower than observed streamflow for the calibration period and about 4 percent higher than observed for the test period. Downstream from the reservoir, simulated mean annual streamflow was 17 percent lower than observed streamflow for the calibration period and 12 percent lower than observed streamflow for the test period. Simulated mean April-July streamflow downstream from the reservoir was 13 percent lower than observed streamflow for the calibration period and 6 percent lower than observed streamflow for the test period. Calibrating to solar radiation, potential evapotranspiration, and snow-covered area improved the model representation of evapotranspiration, snow accumulation, and snowmelt processes. Simulated basin mean monthly solar radiation values for both the calibration and test periods were within 9 percent of observed values except during the month of December (28 percent different). Simulated basin potential evapotranspiration values for both the calibration and test periods were within 10 percent of observed values except during the months of January (100 percent different) and February (13 percent different). The larger percent errors in simulated potential evaporation occurred in the winter months when observed potential evapotranspiration values were very small; in January the observed value was 0.000 inches and in February the observed value was 0.009 inches. Simulated start of melting of the snowpack occurred at about the same time as observed start of melting. The simulated snowpack accumulated to 90-100 percent snow-covered area 1 to 3 months earlier than observed snowpack. This overestimated snowpack during the winter corresponded to underestimated streamflow during the same period. In addition to the primary-parameter file, four other parameter files were created: for a "recent" period (1991-2005), a historical period (1967-90), a "wet" period (1989-97), and a "dry" period (1998-2005). For each data file of projected precipitation and air temperature, a single parameter file can be used to simulate a s
Medhanie, G A; Pearl, D L; McEwen, S A; Guerin, M T; Jardine, C M; Schrock, J; LeJeune, J T
2014-01-01
The objectives of this study were to understand the temporal pattern of contamination of cattle feed by starling excrement on dairy farms and to evaluate the temporal pattern in recovering Escherichia coli O157:H7 or Salmonella in relation to the absolute mass of excrement recovered. A longitudinal study was conducted on 15 dairy farms in Ohio from July 2007 to October 2008. One open-topped tray filled with bird feed was placed near a cattle feeding site; bird excrement from the tray was weighed monthly for 12 consecutive months. Linear regression models with a random intercept for farm were computed to examine the association between the absolute weight of excrement recovered each month or the farm-specific standard score for weight of excrement, and month or season. Exact logistic regression was used to determine whether an association between recovering E. coli O157:H7 or Salmonella was present and the amount of excrement recovered and season. A spatial scan statistic was used to test for evidence of space-time clustering of excrement, based on the standard score for the weight of the excrement, among our study farms. A total of 5 of 179 excrement samples (2.79%) were positive for E. coli O157:H7 and 2 (1.12%) were positive for Salmonella. A significantly higher level of contamination with excrement was observed during the winter. The odds of recovering a pathogen increased with the amount of excrement recovered and decreased if the excrement was collected in the winter. A spatio-temporal cluster of contamination with excrement was detected. These findings provide basic information for future quantitative microbial risk assessments concerning the role of starlings in spreading enteric pathogens on dairy farms. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Ziemke, Jerry; Chandra, Sushil; Varotsos, C.
1998-01-01
This study investigates the distribution of clear-sky ultraviolet-B (UV-B, wavelengths 290-320 nm) trends in northern midlatitudes using 1979-1991 Nimbus 7 total ozone mapping spectrometer (TOMS) version 7 low-reflectivity (R<0.2) total ozone footprint measurements. The incorporation of essentially cloud-free ozone data from TOMS provides a direct method for separating transient cloud effects from anthropogenic and other dynamical factors present in UV-B. This study has also included both National Oceanic and Atmospheric Administration (NOAA) microwave sounding unit channel 4 (MSU4) and National Centers for Environmental Prediction (NCEP) 500 hPa temperature (T500) fields in our trend models to improve UV-Index (UVI) trend statistics and to investigate the effects of interannual changes in UVI caused by synoptic-scale (horizontal wavelengths 4000-8000 km) and planetary-scale (horizontal wavelengths greater than 8000 km) dynamical events. Clear-sky UVI trends in the northern midlatitudes show large increases (exceeding 10 % per decade) and distinct regional variability especially during winter-spring months which can be attributed to topography and dynamical forcing effects. In the UV-important summer-autumn months, these trends are more uniformly distributed and still statistically significant, although smaller at around +2 to +3 % per decade. Specifically, during April largest increases in midlatitude UVI are seen to extend from near the dateline eastward across North America. In June months largest UVI increases occur over the east Asian continent with values around +5 to +6 % per decade. These increases in UVI over both the Pacific and Asian continent regions persist through summer into Autumn. In the the European sector, statistically significant increases in clear-sky UVI are found over central Europe with values around +2 to +3 % per decade and +8 to +9 % per decade during summer and winter-spring months, respectively. Over the nearby Mediterranean region these seasonal trends are around +2 to +3 and +5 to +6 % per decade.
Pan-arctic trends in terrestrial dissolved organic matter from optical measurements
NASA Astrophysics Data System (ADS)
Mann, Paul; Spencer, Robert; Hernes, Peter; Six, Johan; Aiken, George; Tank, Suzanne; McClelland, James; Butler, Kenna; Dyda, Rachael; Holmes, Robert
2016-03-01
Climate change is causing extensive warming across arctic regions resulting in permafrost degradation, alterations to regional hydrology, and shifting amounts and composition of dissolved organic matter (DOM) transported by streams and rivers. Here, we characterize the DOM composition and optical properties of the six largest arctic rivers draining into the Arctic Ocean to examine the ability of optical measurements to provide meaningful insights into terrigenous carbon export patterns and biogeochemical cycling. The chemical composition of aquatic DOM varied with season, spring months were typified by highest lignin phenol and dissolved organic carbon (DOC) concentrations with greater hydrophobic acid content, and lower proportions of hydrophilic compounds, relative to summer and winter months. Chromophoric DOM (CDOM) spectral slope (S275-295) tracked seasonal shifts in DOM composition across river basins. Fluorescence and parallel factor analysis identified seven components across the six Arctic rivers. The ratios of 'terrestrial humic-like' versus 'marine humic-like' fluorescent components co-varied with lignin monomer ratios over summer and winter months, suggesting fluorescence may provide information on the age and degradation state of riverine DOM. CDOM absorbance (a350) proved a sensitive proxy for lignin phenol concentrations across all six river basins and over the hydrograph, enabling for the first time the development of a single pan-arctic relationship between a350 and terrigenous DOC (R2 = 0.93). Combining this lignin proxy with high-resolution monitoring of a350, pan-arctic estimates of annual lignin flux were calculated to range from 156 to 185 Gg, resulting in shorter and more constrained estimates of terrigenous DOM residence times in the Arctic Ocean (spanning 7 months to 2½ years). Furthermore, multiple linear regression models incorporating both absorbance and fluorescence variables proved capable of explaining much of the variability in lignin composition across rivers and seasons. Our findings suggest that synoptic, high-resolution optical measurements can provide improved understanding of northern high-latitude organic matter cycling and flux, and prove an important technique for capturing future climate-driven changes.
Impact of Month of Birth on the Risk of Development of Autoimmune Addison's Disease
Fichna, Marta; Mitchell, Anna L.; Napier, Catherine M.; Gan, Earn; Ruchała, Marek; Santibanez-Koref, Mauro; Pearce, Simon H.
2016-01-01
Context: The pathogenesis of autoimmune Addison's disease (AAD) is thought to be due to interplay of genetic, immune, and environmental factors. A month-of-birth effect, with increased risk for those born in autumn/winter months, has been described in autoimmune conditions such as type 1 diabetes and autoimmune thyroid disease. Objective: Month-of-birth effect was investigated in 2 independent cohorts of AAD subjects. Design, Setting, and Patients: The monthly distribution of birth in AAD patients was compared with that of the general population using the cosinor test. A total of 415 AAD subjects from the United Kingdom cohort were compared with 8 180 180 United Kingdom births, and 231 AAD subjects from the Polish cohort were compared with 2 421 384 Polish births. Main Outcome Measures: Association between month of birth and the susceptibility to AAD. Results: In the entire cohort of AAD subjects, month-of-birth distribution analysis showed significant periodicity with peak of births in December and trough in May (P = .028). Analysis of the odds ratio distribution based on month of birth in 2 cohorts of patients with AAD versus the general population revealed a December peak and May trough, and January peak and July trough, in the United Kingdom and Polish cohorts, respectively. Conclusion: For the first time, we demonstrate that month of birth exerts an effect on the risk of developing AAD, with excess risk in individuals born in winter months and a protective effect when born in the summer. Exposure to seasonal viral infections in the perinatal period, coupled with vitamin D deficiency, could lead to dysregulation of innate immunity affecting the risk of developing AAD. PMID:27575942
Monthly Rainfall Erosivity Assessment for Switzerland
NASA Astrophysics Data System (ADS)
Schmidt, Simon; Meusburger, Katrin; Alewell, Christine
2016-04-01
Water erosion is crucially controlled by rainfall erosivity, which is quantified out of the kinetic energy of raindrop impact and associated surface runoff. Rainfall erosivity is often expressed as the R-factor in soil erosion risk models like the Universal Soil Loss Equation (USLE) and its revised version (RUSLE). Just like precipitation, the rainfall erosivity of Switzerland has a characteristic seasonal dynamic throughout the year. This inter-annual variability is to be assessed by a monthly and seasonal modelling approach. We used a network of 86 precipitation gauging stations with a 10-minute temporal resolution to calculate long-term average monthly R-factors. Stepwise regression and Monte Carlo Cross Validation (MCCV) was used to select spatial covariates to explain the spatial pattern of R-factor for each month across Switzerland. The regionalized monthly R-factor is mapped by its individual regression equation and the ordinary kriging interpolation of its residuals (Regression-Kriging). As covariates, a variety of precipitation indicator data has been included like snow height, a combination of hourly gauging measurements and radar observations (CombiPrecip), mean monthly alpine precipitation (EURO4M-APGD) and monthly precipitation sums (Rhires). Topographic parameters were also significant explanatory variables for single months. The comparison of all 12 monthly rainfall erosivity maps showed seasonality with highest rainfall erosivity in summer (June, July, and August) and lowest rainfall erosivity in winter months. Besides the inter-annual temporal regime, a seasonal spatial variability was detectable. Spatial maps of monthly rainfall erosivity are presented for the first time for Switzerland. The assessment of the spatial and temporal dynamic behaviour of the R-factor is valuable for the identification of more susceptible seasons and regions as well as for the application of selective erosion control measures. A combination with monthly vegetation cover (C-factor) maps would enable the assessment of seasonal dynamics of erosion processes in Switzerland.
Causes of the 2011-14 California Drought
NASA Technical Reports Server (NTRS)
Seager, Richard; Hoerling, Martin; Schubert, Siegfried; Wang, Hailan; Lyon, Bradfield; Kumar, Arun; Nakamura, Jennifer; Henderson, Naomi
2015-01-01
The causes of the California drought during November-April winters of 2011/12-2013/14 are analyzed using observations and ensemble simulations with seven atmosphere models forced by observed SSTs. Historically, dry California winters are most commonly associated with a ridge off the west coast but no obvious SST forcing. Wet winters are most commonly associated with a trough off the west coast and an El Nino event. These attributes of dry and wet winters are captured by many of the seven models. According to the models, SST forcing can explain up to a third of California winter precipitation variance. SST forcing was key to sustaining a high pressure ridge over the west coast and suppressing precipitation during the three winters. In 2011/12 this was a response to a La Nina event, whereas in 2012/13 and 2013/14 it appears related to a warm west-cool east tropical Pacific SST pattern. All models contain a mode of variability linking such tropical Pacific SST anomalies to a wave train with a ridge off the North American west coast. This mode explains less variance than ENSO and Pacific decadal variability, and its importance in 2012/13 and 2013/14 was unusual. The models from phase 5 of CMIP (CMIP5) project rising greenhouse gases to cause changes in California all-winter precipitation that are very small compared to recent drought anomalies. However, a long-term warming trend likely contributed to surface moisture deficits during the drought. As such, the precipitation deficit during the drought was dominated by natural variability, a conclusion framed by discussion of differences between observed and modeled tropical SST trends.
NASA Astrophysics Data System (ADS)
Endale, Dinku M.; Fisher, Dwight S.; Steiner, Jean L.
2006-01-01
Few studies have reported runoff from small agricultural watersheds over sufficiently long period so that the effect of different cover types on runoff can be examined. We analyzed 45-yrs of monthly and annual rainfall-runoff characteristics of a small (7.8 ha) zero-order typical Southern Piedmont watershed in southeastern United States. Agricultural land use varied as follows: 1. Row cropping (5-yrs); 2. Kudzu ( Pueraria lobata; 5-yrs); 3. Grazed kudzu and rescuegrass ( Bromus catharticus; 7-yrs); and 4. Grazed bermudagrass and winter annuals ( Cynodon dactylon; 28-yrs). Land use and rainfall variability influenced runoff characteristics. Row cropping produced the largest runoff amount, percentage of the rainfall partitioned into runoff, and peak flow rates. Kudzu reduced spring runoff and almost eliminated summer runoff, as did a mixture of kudzu and rescuegrass (KR) compared to row cropping. Peak flow rates were also reduced during the kudzu and KR. Peak flow rates increased under bermudagrass but were lower than during row cropping. A simple process-based 'tanh' model modified to take the previous month's rainfall into account produced monthly rainfall and runoff correlations with coefficient of determination ( R2) of 0.74. The model was tested on independent data collected during drought. Mean monthly runoff was 1.65 times the observed runoff. Sustained hydrologic monitoring is essential to understanding long-term rainfall-runoff relationships in agricultural watersheds.
A ternary age-mixing model to explain contaminant occurrence in a deep supply well
Jurgens, Bryant; Bexfield, Laura M.; Eberts, Sandra
2014-01-01
The age distribution of water from a public-supply well in a deep alluvial aquifer was estimated and used to help explain arsenic variability in the water. The age distribution was computed using a ternary mixing model that combines three lumped parameter models of advection-dispersion transport of environmental tracers, which represent relatively recent recharge (post- 1950s) containing volatile organic compounds (VOCs), old intermediate depth groundwater (about 6500 years) that was free of drinking-water contaminants, and very old, deep groundwater (more than 21,000 years) containing arsenic above the USEPA maximum contaminant level of 10 µg/L. The ternary mixing model was calibrated to tritium, chloroflorocarbon-113, and carbon-14 (14C) concentrations that were measured in water samples collected on multiple occasions. Variability in atmospheric 14C over the past 50,000 years was accounted for in the interpretation of 14C as a tracer. Calibrated ternary models indicate the fraction of deep, very old groundwater entering the well varies substantially throughout the year and was highest following long periods of nonoperation or infrequent operation, which occured during the winter season when water demand was low. The fraction of young water entering the well was about 11% during the summer when pumping peaked to meet water demand and about 3% to 6% during the winter months. This paper demonstrates how collection of multiple tracers can be used in combination with simplified models of fluid flow to estimate the age distribution and thus fraction of contaminated groundwater reaching a supply well under different pumping conditions.
A Ternary Age-Mixing Model to Explain Contaminant Occurrence in a Deep Supply Well
Jurgens, Bryant C; Bexfield, Laura M; Eberts, Sandra M
2014-01-01
The age distribution of water from a public-supply well in a deep alluvial aquifer was estimated and used to help explain arsenic variability in the water. The age distribution was computed using a ternary mixing model that combines three lumped parameter models of advection-dispersion transport of environmental tracers, which represent relatively recent recharge (post-1950s) containing volatile organic compounds (VOCs), old intermediate depth groundwater (about 6500 years) that was free of drinking-water contaminants, and very old, deep groundwater (more than 21,000 years) containing arsenic above the USEPA maximum contaminant level of 10 µg/L. The ternary mixing model was calibrated to tritium, chloroflorocarbon-113, and carbon-14 (14C) concentrations that were measured in water samples collected on multiple occasions. Variability in atmospheric 14C over the past 50,000 years was accounted for in the interpretation of 14C as a tracer. Calibrated ternary models indicate the fraction of deep, very old groundwater entering the well varies substantially throughout the year and was highest following long periods of nonoperation or infrequent operation, which occured during the winter season when water demand was low. The fraction of young water entering the well was about 11% during the summer when pumping peaked to meet water demand and about 3% to 6% during the winter months. This paper demonstrates how collection of multiple tracers can be used in combination with simplified models of fluid flow to estimate the age distribution and thus fraction of contaminated groundwater reaching a supply well under different pumping conditions. PMID:24597520
Barriers to wheelchair use in the winter.
Ripat, Jacquie D; Brown, Cara L; Ethans, Karen D
2015-06-01
To test the hypothesis that challenges to community participation posed by winter weather are greater for individuals who use scooters, manual and power wheelchairs (wheeled mobility devices [WMDs]) than for the general ambulatory population, and to determine what WMD users identify as the most salient environmental barriers to community participation during the winter. Cross-sectional survey organized around 5 environmental domains: technological, natural, physical, social/attitudinal, and policy. Urban community in Canada. Convenience sample of WMD users or their proxy (N=99). Not applicable. Not applicable. Forty-two percent identified reduced outing frequency in winter months, associated with increased age (χ(3)=6.4, P=.04), lack of access to family/friends for transportation (χ(2)=8.1, P=.04), and primary type of WMD used in the winter (scooter χ(2)=8.8, P=.003). Most reported tires/casters becoming stuck in the snow (95%) or slipping on the ice (91%), difficulty ascending inclines/ramps (92%), and cold hands while using controls or pushing rims (85%); fewer identified frozen wheelchair/scooter batteries, seat cushions/backrests, or electronics. Sidewalks/roads were reported to be problematic by 99%. Eighty percent reported needing additional help in the winter. Limited community access in winter led to a sense of loneliness/isolation, and fear/anxiety related to safety. Respondents identified policies that limited participation during winter. People who use WMDs decrease their community participation in cold weather because of multiple environmental barriers. Clinicians, researchers, and policymakers can take a multidimensional approach to mitigate these barriers in order to enhance community participation by WMD users in winter. Copyright © 2015 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Circadian Rhythm and Sleep During Prolonged Antarctic Residence at Chinese Zhongshan Station.
Chen, Nan; Wu, Quan; Xiong, Yanlei; Chen, Guang; Song, Dandan; Xu, Chengli
2016-12-01
Residence at Zhongshan Station (69°22'24″S, 76°22'40″E) for over 1 year exposes winter-over members to marked changes of light-dark cycle, ranging from the constant daylight of polar days to the constant darkness of polar nights, in addition to geographic and social isolation. This extreme photoperiodic environment may increase the risk of sleep disturbances and circadian desynchrony. The aim of this study was to investigate the circadian rhythm and sleep phase of Chinese winter-over expeditioners at Zhongshan Station. This study was conducted on 17 healthy male participants before departure from Shanghai and during residence at Zhongshan Station for 1 year (before winter, mid-winter, and end of winter). Sequential urine samples over 48 hours were obtained, 6-sulphatoxymelatonin in urine was assessed, and the circadian rhythm was analyzed by a cosine curve-fitting method. Participants' sleep parameters were obtained from wrist actigraphy and sleep logs. Morningness-Eveningness Questionnaire and Seasonal Pattern Assessment Questionnaire were completed. The acrophase of 6-sulphatoxymelatonin rhythm, sleep onset, sleep offset, and mid-sleep time were delayed significantly (P < .05) in Antarctica relative to departure values. The subjects had greater eveningness preference (P < .05) in mid-winter in Antarctica. The Global Seasonality Score and the prevalence of subsyndromal seasonal affective disorder increased (P < .05) during winter. Our results indicate that during polar nights Chinese expeditioners experienced the following problems: delayed circadian rhythm and sleep phase, later chronotype, and incidence of subsyndromal seasonal affective disorder. An appropriate combination of artificial bright light during dark winter months and a strict social schedule are recommended in a winter-over station in Antarctica. Copyright © 2016 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.
Mass Mortality of Cassin's Auklets, Assessing the Impact of a Warming Ocean
NASA Astrophysics Data System (ADS)
Parrish, J.
2016-02-01
In Fall/Winter 2014-15, more than 100,000 Cassin's Auklets, Ptychoramphus aleuticus, washed ashore on U.S. West Coast beaches. A small-bodied, zooplanktivorous bird, Cassin's nest in colonies scattered along the Northeast Pacific coastline, with a particular concentration in the Scott Islands, northwest of Vancouver Island, BC where 80% of the world's population ( 3.5M) breeds. Standardized, effort-controlled beach surveys conducted by >500 volunteers for three citizen science organizations (BeachCOMBERS, Beach Watch, COASST) at >225 sites from Cape Flattery, WA to Monterey Bay, CA were used to document the event and contrast it to regionally specific long-term average carcass-fall. Data are abundance of independently verified carcass identifications collected (bi)monthly at known locations and dates, providing an instantaneous index of "new" carcass encounter rate. Two pulses were evident: A small but significant anomaly (+2-3 carcasses/km) in November primarily in California and a much larger (+20-25 carcasses/km) more sustained anomaly in December-January along the Washington and northern Oregon coastline. Four non-exclusive hypotheses were examined: surplus production of young-of-the year (i.e. elevated post-breeding mortality), severity of fall/winter storms (i.e. elevated winterkill), shifts in food diversity (proxied as copepod regional diversity along the Newport Line), and habitat compression calculated as location and relative area of wintering habitat (assessed by GLS-tagged birds) with a monthly SST anomaly <1.0oC. Multivariate models suggest production, food diversity and habitat compression are all valid predictors. Drifter simulations suggest that a large portion of the event can be explained by the extreme compression of cold water habitat in July-September 2014, trapping dispersing Scott Islands birds as the warm water anomaly expanded eastward, leaving open the question of whether this event was anomalous mortality and/or anomalously high beaching rates.
NASA Technical Reports Server (NTRS)
Otto, Christian
2010-01-01
The Amundsen-Scott South Pole Research station located at the geographic South Pole, is the most isolated, permanently inhabited human outpost on Earth. Medical care is provided to station personnel by a non-surgeon crew medical officer (CMO). During the winter-over period from February to October, the station is isolated, with no incoming or outgoing flights due to severe weather conditions. In late June, four months after the station had closed for the austral winter, a 31 year old meteorologist suffered a complete rupture of his patellar tendon while sliding done an embankment. An evacuation was deemed to be too risky to aircrews due to the extreme cold and darkness. A panel of physicians from Massachusetts General Hospital, Johns Hopkins University and the University of Texas Medical Branch were able to assess the patient remotely via telemedicine and agreed that surgery was the only means to restore mobility and prevent long term disability. The lack of a surgical facility and a trained surgical team were overcome by conversion of the clinic treatment area, and intensive preparation of medical laypersons as surgical assistants. The non-surgeon CMO and CMO assistant at South Pole, were guided through the administration of spinal anesthetic, and the two-hour operative repair by medical consultants at Massachusetts General Hospital. Real-time video of the operative field, directions from the remote consultants and audio communication were provided by videoconferencing equipment, operative cameras, and high bandwidth satellite communications. In real-time, opening incision/exposure, tendon relocation, hemostatsis, and operative closure by the CMO was closely monitored and guided and by the remote consultants. The patient s subsequent physical rehabilitation over the ensuing months of isolation was also monitored remotely via telemedicine. This was the first time in South Pole s history that remote teleguidance had been used for surgery and represents a model for real-time guidance of CMO s working at remote duty stations.
Kim, Na Yeon; Kim, Seong Jin; Jang, Se Young; Oh, Mi Rae; Tang, Yu Jiao; Seong, Hye Jin; Yun, Yeong Sik; Moon, Sang Ho
2017-10-01
This research analyzed behavioral characteristics of Hanwoo ( Bos taurus coreanae ) steers during each season and growth stage to enable measurement of the animals' welfare level for precision livestock farming. A hundred-eight beef steers were divided into three equal groups at a Hanwoo farm according to their growth stage: growing stage (GS), 8 months; early-fattening stage (EFS), 19 months; and late-fattening stage (LFS), 30 months. Twelve behavioral categories were continuously recorded for 13 day-time hours in each four seasons with three replications. Time spent standing was found to be significantly longer in summer at all growth stages (p<0.05). Hanwoos at the GS spent significantly longer standing time in spring and summer than those at the EFS and LFS (p<0.05). Lying time in summer was the shortest for all growth stages (p<0.05). Steers at the LFS spent significantly longer lying time than that at the GS (p<0.05) in summer. For GS and EFS, time spent eating in spring and autumn were longer than in summer and winter (p<0.05). Eating time was the longest for the GS in spring, autumn, and winter, excluding for the LFS in winter (p<0.05). Regarding ruminating, steers at the LFS spent significantly shorter time than those at other stages in all seasons (p<0.05). GS and EFS steers showed the longest walking time in summer compared with other seasons (p<0.05). At GS and LFS, drinking time in summer was the longest of all seasons (p<0.05). Sleeping time was significantly shorter in summer compared with the other seasons (p<0.05). Self-grooming time was the longest in winter for all growth stages (p<0.05). Steers were found to have more variable behavioral patterns during summer and the GS and less active behaviors during the LFS, thus extra care seems necessary during the GS, LFS, and summer period.
Nishino, Kazuaki; Yoshida, Fujiko; Nitta, Akari; Saito, Mieko; Saito, Kazuuchi
2013-12-01
To evaluate retrospectively seasonal fluctuations of transient intraocular pressure (IOP) elevation after automated visual field examination in patients with primary open-angle glaucoma (POAG). We reviewed 53 consecutive patients with POAG who visited Kaimeido Ophthalmic and Dental Clinic from January 2011 to March 2013, 21 men and 32 women aged 67.7 +/- 11.2 years. The patients were divided into 4 groups, spring, summer, autumn, and winter according to the month of automated visual field examination and both eyes of each patient were enrolled. IOP was measured immediately after automated visual field examination (vf IOP) and compared with the average IOP from the previous 3 months (pre IOP) and with the average IOP from the following 3 months (post IOP) in each season. IOP elevation rate was defined as (vf IOP- pre IOP)/pre IOP x 100% and calculated for each season (paired t test). Additionally, the correlation between mean deviation (MD) and IOP elevation rate was evaluated (single regression analysis). Exclusion criteria were patients who received cataract surgery during this study or had a history of any previous glaucoma surgery. The automated visual field test was performed with a Humphrey field analyzer and the Central 30-2 FASTPAC threshold program. The average vf IOP was 14.5 +/- 2.5 mmHg, higher than pre IOP 13.8 +/- 2.4 mmHg (p < 0.0001) and the post IOP 13.8 +/- 2.2 mmHg (p < 0.0001). IOP elevation rate in each season was 4.1 11.6% in spring (n = 22, p = 0.18), 0.1 +/- 9.9% in summer (n = 16, p = 1.0), 5.0 +/- 13.8% in autumn (n = 30. p = 0.11), 10.6 +/- 8.8% in winter (n = 38, p < 0.0001). The MD was not correlated with IOP elevation rate (p = 0.17). Patients with POAG show a transient IOP elevation after automated visual field examination, especially in the winter but not in the summer.
Kaier, Klaus; Frank, Uwe; Conrad, Andreas; Meyer, Elisabeth
2010-11-01
Extended-spectrum ß-lactamase (ESBL)-producing strains of bacteria have become a major public health concern. In the present study, the incidence of carriage of ESBL-producing strains was analyzed for general trends and seasonality. Monthly data on ESBL-producing strains were collected retrospectively at 2 large university hospitals in Germany. The mean monthly temperatures for the 2 settings were collected from Germany's national meteorological service. Multivariable time series analyses were performed to explain variations in the monthly incidence densities of carriage of ESBL-producing bacteria (number of cases involving ESBL-producing Escherichia coli and/or Klebsiella species per 1,000 patient days). For the final models, we incorporated variables for the ascending linear trends and other variables representing the mean monthly temperature. Our models demonstrated that there was an increasing trend in the incidences of carriage of ESBL-producing bacteria. In addition, the incidences of carriage of all ESBL-producing bacteria responded positively to the mean temperature, meaning that during the summer, more cases involving ESBL-producing bacteria were detected than during the winter. The same methodology was also applied to the incidence of methicillin-resistant Staphylococcus aureus carriage, but no association was found with the mean temperature. In the present study, we demonstrated that the monthly incidence of carriage of ESBL-producing bacteria was highly correlated with the mean monthly temperature, a fact that should be considered in experimental studies as an additional parameter influencing the incidence of ESBL-producing bacteria.
NASA Astrophysics Data System (ADS)
Tan, Xuezhi; Gan, Thian Yew; Chen, Shu; Liu, Bingjun
2018-05-01
Climate change and large-scale climate patterns may result in changes in probability distributions of climate variables that are associated with changes in the mean and variability, and severity of extreme climate events. In this paper, we applied a flexible framework based on the Bayesian spatiotemporal quantile (BSTQR) model to identify climate changes at different quantile levels and their teleconnections to large-scale climate patterns such as El Niño-Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), North Atlantic Oscillation (NAO) and Pacific-North American (PNA). Using the BSTQR model with time (year) as a covariate, we estimated changes in Canadian winter precipitation and their uncertainties at different quantile levels. There were some stations in eastern Canada showing distributional changes in winter precipitation such as an increase in low quantiles but a decrease in high quantiles. Because quantile functions in the BSTQR model vary with space and time and assimilate spatiotemporal precipitation data, the BSTQR model produced much spatially smoother and less uncertain quantile changes than the classic regression without considering spatiotemporal correlations. Using the BSTQR model with five teleconnection indices (i.e., SOI, PDO, PNA, NP and NAO) as covariates, we investigated effects of large-scale climate patterns on Canadian winter precipitation at different quantile levels. Winter precipitation responses to these five teleconnections were found to occur differently at different quantile levels. Effects of five teleconnections on Canadian winter precipitation were stronger at low and high than at medium quantile levels.
NASA Astrophysics Data System (ADS)
Wang, Rong; Chen, Jing M.; Pavlic, Goran; Arain, Altaf
2016-09-01
Winter leaf area index (LAI) of evergreen coniferous forests exerts strong control on the interception of snow, snowmelt and energy balance. Simulation of winter LAI and associated winter processes in land surface models is challenging. Retrieving winter LAI from remote sensing data is difficult due to cloud contamination, poor illumination, lower solar elevation and higher radiation reflection by snow background. Underestimated winter LAI in evergreen coniferous forests is one of the major issues limiting the application of current remote sensing LAI products. It has not been fully addressed in past studies in the literature. In this study, we used needle lifespan to correct winter LAI in a remote sensing product developed by the University of Toronto. For the validation purpose, the corrected winter LAI was then used to calculate land surface albedo at five FLUXNET coniferous forests in Canada. The RMSE and bias values for estimated albedo were 0.05 and 0.011, respectively, for all sites. The albedo map over coniferous forests across Canada produced with corrected winter LAI showed much better agreement with the GLASS (Global LAnd Surface Satellites) albedo product than the one produced with uncorrected winter LAI. The results revealed that the corrected winter LAI yielded much greater accuracy in simulating land surface albedo, making the new LAI product an improvement over the original one. Our study will help to increase the usability of remote sensing LAI products in land surface energy budget modeling.
Equilibrium Beach Profiles on the East and West U.S. Coasts
NASA Astrophysics Data System (ADS)
Ludka, B. C.; Guza, R. T.; McNinch, J. E.; O'Reilly, W.
2012-12-01
Beach elevation change observations from the United States west and east coasts are used to identify statistically the dominant cross-shore patterns in sand level fluctuations, and these changes are related to equilibrium beach profile concepts. Three to seven years of observations at four beaches in Southern California include monthly surveys of the subaerial (near MSL) beach, and quarterly surveys from the backbeach to about 8m depth. At Duck, North Carolina, observations include 31 years of monthly surveys from the dunes to about 8m depth. On the Southern California beaches, the dominant seasonal pattern is subaerial erosion in winter and accretion in summer. Seasonal fluctuations of 3m in shoreline vertical sand levels, and 50m in subaerial beach width, are not uncommon. The sand eroded from the shoreline in winter is stored in an offshore sand bar and returns to the beach face in summer. Wave conditions in Southern California also vary seasonally, with energetic waves arriving from the north in winter, and lower energy, longer period southerly swell arriving in summer. A spectral refraction model, initialized with a regional network of directional wave buoys, is used to estimate hourly wave conditions, in 10m water depth. Using an equilibrium hypothesis, that the shoreline (defined as the cross-shore location of the MSL contour) change rate depends on the wave energy and the wave energy disequilibrium, Yates (2009) modeled the time-varying shoreline location at several Southern California beaches with significant skill. The four free model parameters were calibrated to fit observations. Following Yates (2009), we extend the equilibrium shoreline model to include the horizontal displacement of other elevation contours. At the Southern California sites, the modeled contour translation depends on the incident wave energy, the present contour configuration, and observation-based estimates of the contour behavior (based on EOF spatial amplitudes). At Duck, seasonal variations of the wave field (measured immediately offshore) are large, but shoreline changes (usually <30cm) are smaller than in Southern California. Maximum vertical variations occur just seaward of the shoreline and the nearshore bathymetry is often barred. Plant (1999) show that bar crest position at Duck has equilibrium-like behavior. We will present the results of equilibrium shoreline and profile modeling at Duck. At both sites, we diagnose sources (e.g. grain size and incident waves) of the sometimes strong observed alongshore variations in sand level change patterns. Funding was provided by the US Army Corps of Engineers and the California Department of Boating and Waterways. REFERENCES Plant, N. G., R. A. Holman, M. H. Freilich, and W. A. Birkemeier (1999), A simple model for interannual sandbar behavior, J. Geophys. Res., 104(C7), 15,755-15,776. Yates, M. L., R. T. Guza, and W. C. O'Reilly (2009), Equilibrium shoreline response: Observations and modeling, J. Geophys. Res., 114, C09014.
Bulimia and anorexia nervosa in winter depression: lifetime rates in a clinical sample.
Gruber, N P; Dilsaver, S C
1996-01-01
Symptoms of an eating disorder (hyperphagia, carbohydrate craving, and weight gain) are characteristic of wintertime depression. Recent findings suggest that the severity of bulimia nervosa peaks during fall and winter months, and that persons with this disorder respond to treatment with bright artificial light. However, the rates of eating disorders among patients presenting for the treatment of winter depression are unknown. This study was undertaken to determine these rates among 47 patients meeting the DSM-III-R criteria for major depression with a seasonal pattern. All were evaluated using standard clinical interviews and the Structured Clinical Interview for DSM-III-R. Twelve (25.5%) patients met the DSM-III-R criteria for an eating disorder. Eleven patients had onset of mood disorder during childhood or adolescence. The eating disorder followed the onset of the mood disorder. Clinicians should inquire about current and past symptoms of eating disorders when evaluating patients with winter depression. PMID:8580121
NASA Astrophysics Data System (ADS)
Falk, Ulrike; Lopez, Damian; Silva-Busso, Adrian
2017-04-01
The South Shetland Islands are located at the northern tip of the Antarctic Peninsula which is among the fastest warming regions on Earth. Surface air temperature increases (ca. 3 K in 50 years) are concurrent with retreating glacier fronts, an increase in melt areas, ice surface lowering and rapid break-up and disintegration of ice shelves. Observed surface air temperature lapse rates show a high variability during winter months (standard deviations up to ±1.0 K/100 m), and a distinct spatial heterogeneity reflecting the impact of synoptic weather patterns especially during winter glacial mass accumulation periods. The increased mesocyclonic activity during the winter time in the study area results in intensified advection of warm, moist air with high temperatures and rain, and leads to melt conditions on the ice cap, fixating surface air temperatures to the melting point. The impact on winter accumulation results in even more negative mass balance estimates. Six years of glaciological measurements on mass balance stake transects are used with a glacier melt model to assess changes in melt water input to the coastal waters, glacier surface mass balance and the equilibrium line altitude. The average equilibrium line altitude (ELA) calculated from own glaciological observations for KGI over the time period 2010 - 2015 amounts to ELA=330±100 m. Published studies suggest rather stable condition slightly negative glacier mass balance until the mid 80's with an ELA of approx. 150 m. The calculated accumulation area ratio suggests rather dramatic changes in extension of the inland ice cap for the South Shetland Islands until an equilibrium with concurrent climate conditions is reached.
George, Janet L; Martin, Daniel J; Lukacs, Paul M; Miller, Michael W
2008-04-01
A pneumonia epidemic reduced bighorn sheep (Ovis canadensis) survival and recruitment during 1997-2000 in a population comprised of three interconnected wintering herds (Kenosha Mountains, Sugarloaf Mountain, Twin Eagles) that inhabited the Kenosha and Tarryall Mountain ranges in central Colorado, USA. The onset of this epidemic coincided temporally and spatially with the appearance of a single domestic sheep (Ovis aires) on the Sugarloaf Mountain herd's winter range in December 1997. Although only bighorns in the Sugarloaf Mountain herd were affected in 1997-98, cases also occurred during 1998-99 in the other two wintering herds, likely after the epidemic spread via established seasonal movements of male bighorns. In all, we located 86 bighorn carcasses during 1997-2000. Three species of Pasteurella were isolated in various combinations from affected lung tissues from 20 bighorn carcasses where tissues were available and suitable for diagnostic evaluation; with one exception, beta-hemolytic mannheimia (Pasteurella) haemolytica (primarily reported as biogroup 1(G) or 1(alphaG)) was isolated from lung tissues of cases evaluated during winter 1997-98. The epidemic dramatically lowered adult bighorn monthly survival in all three herds; a model that included an acute epidemic effect, differing between sexes and with vaccination status, that diminished linearly over the next 12 mo best represented field data. In addition to the direct mortality associated with epidemics in these three herds, lamb recruitment in years following the pneumonia epidemic also was depressed as compared to years prior to the epidemic. Based on observations presented here, pasteurellosis epidemics in free-ranging bighorn sheep can arise through incursion of domestic sheep onto native ranges, and thus minimizing contact between domestic and bighorn sheep appears to be a logical principle for bighorn sheep conservation.
Serum 25(OH)D seasonality in urologic patients from central Italy.
Calgani, Alessia; Iarlori, Marco; Rizi, Vincenzo; Pace, Gianna; Bologna, Mauro; Vicentini, Carlo; Angelucci, Adriano
2016-09-01
Hypovitaminosis D is increasingly recognized as a cofactor in several diseases. In addition to bone homeostasis, vitamin D status influences immune system, muscle activity and cell differentiation in different tissues. Vitamin D is produced in the skin upon exposure to UVB rays, and sufficient levels of serum 25(OH)D are dependent mostly on adequate sun exposure, and then on specific physiologic variables, including skin type, age and Body Mass Index (BMI). In contrast with common belief, epidemiologic data are demonstrating that hypovitaminosis D must be a clinical concern not only in northern Countries. In our study, we investigated vitamin D status in a male population enrolled in a urology clinic of central Italy. In addition, we evaluated the correlation between vitamin D status and UVB irradiance measured in our region. The two principal pathologies in the 95 enrolled patients (mean age 66years) were benign prostate hypertrophy and prostate carcinoma. >50% of patients had serum 25(OH)D values in the deficient range (<20ng/mL), and only 16% of cases had serum vitamin D concentration higher than 30ng/mL (optimal range). The seasonal stratification of vitamin D concentrations revealed an evident trend with the minimum mean value recorded in April and a maximum mean value obtained in September. UVB irradiance measured by pyranometer in our region (Abruzzo, central Italy) revealed a large difference during the year, with winter months characterized by an UV irradiance about tenfold lower than summer months. Then we applied a mathematical model in order to evaluate the expected vitamin D production according to the standard erythemal dose measured in the different seasons. In winter months, the low available UVB radiation and the small exposed skin area resulted not sufficient to obtain the recommended serum doses of vitamin D. Although in summer months UVB irradiance was largely in excess to produce vitamin D in the skin, serum vitamin D resulted sufficient in September only in those patients who declared an outdoor time of at least 3h per day in the previous summer. In conclusion, hypovitaminosis D is largely represented in elderly persons in our region. Seasonal fluctuation in serum 25(OH)D was explained by a reduced availability of UVB in winter and by insufficient solar exposure in summer. The relatively high outdoor time that emerged to be correlated with sufficient serum 25(OH)D in autumn warrants further studies to individuate potential risk co-variables for hypovitaminosis D in elderly men. Copyright © 2016 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Dykeman, Peter A.
1984-01-01
Teasel, prized by dried-flower arrangers for the distinctive beauty of its flower spike, is a conspicuous weed along roadsides and fencerows during autumn and winter months. Describes the history of the weed, physical characteristics and uses. (Author/ERB)
Modeling Influenza Transmission Using Environmental Parameters
NASA Technical Reports Server (NTRS)
Soebiyanto, Radina P.; Kiang, Richard K.
2010-01-01
Influenza is an acute viral respiratory disease that has significant mortality, morbidity and economic burden worldwide. It infects approximately 5-15% of the world population, and causes 250,000 500,000 deaths each year. The role of environments on influenza is often drawn upon the latitude variability of influenza seasonality pattern. In regions with temperate climate, influenza epidemics exhibit clear seasonal pattern that peak during winter months, but it is not as evident in the tropics. Toward this end, we developed mathematical model and forecasting capabilities for influenza in regions characterized by warm climate Hong Kong (China) and Maricopa County (Arizona, USA). The best model for Hong Kong uses Land Surface Temperature (LST), precipitation and relative humidity as its covariates. Whereas for Maricopa County, we found that weekly influenza cases can be best modelled using mean air temperature as its covariates. Our forecasts can further guides public health organizations in targeting influenza prevention and control measures such as vaccination.
2013-01-01
Background Human brucellosis incidence in China has been increasing dramatically since 1999. However, epidemiological features and potential factors underlying the re-emergence of the disease remain less understood. Methods Data on human and animal brucellosis cases at the county scale were collected for the year 2004 to 2010. Also collected were environmental and socioeconomic variables. Epidemiological features including spatial and temporal patterns of the disease were characterized, and the potential factors related to the spatial heterogeneity and the temporal trend of were analysed using Poisson regression analysis, Granger causality analysis, and autoregressive distributed lag (ADL) models, respectively. Results The epidemic showed a significantly higher spatial correlation with the number of sheep and goats than swine and cattle. The disease was most prevalent in grassland areas with elevation between 800–1,600 meters. The ADL models revealed that local epidemics were correlated with comparatively lower temperatures and less sunshine in winter and spring, with a 1–7 month lag before the epidemic peak in May. Conclusions Our findings indicate that human brucellosis tended to occur most commonly in grasslands at moderate elevation where sheep and goats were the predominant livestock, and in years with cooler winter and spring or less sunshine. PMID:24238301
NASA Technical Reports Server (NTRS)
Waters, J. W.; Froidevaux, L.; Read, W. G.; Manney, G. L.; Elson, L. S.; Flower, D. A.; Jarnot, R. F.; Harwood, R. S.
1993-01-01
Concentrations of atmospheric ozone and of ClO (the predominant form of reactive chlorine responsible for stratospheric ozone depletion) are reported for both the Arctic and Antarctic winters of the past 18 months. Chlorine in the lower stratosphere was almost completely converted to chemically reactive forms in both the northern and southern polar winter vortices. This occurred in the south long before the development of the Antarctic ozone hole, suggesting that ozone loss can be masked by influx of ozone-rich air.
Spatiotemporal patterns of infant bronchiolitis in a Tennessee Medicaid population.
Sloan, Chantel D; Gebretsadik, Tebeb; Wu, Pingsheng; Carroll, Kecia N; Mitchel, Edward F; Hartert, Tina V
2013-09-01
Respiratory syncytial virus (RSV) is a major cause of worldwide morbidity and mortality in infants, primarily through the induction of bronchiolitis. RSV epidemics are highly seasonal, occurring in the winter months in the northern hemisphere. Within the United States, RSV epidemic dynamics vary both spatially and temporally. This analysis employs a retrospective space–time scan statistic to locate spatiotemporal clustering of infant bronchiolitis in a very large Tennessee (TN) Medicaid cohort. We studied infants less than 6 months of age (N = 52,468 infants) who had an outpatient visit, emergency department visit, or hospitalization for bronchiolitis between 1995 and 2008. The scan statistic revealed distinctive and consistent patterns of deviation in epidemic timing. Eastern TN (Knoxville area) showed clustering in January and February, and Central TN (Nashville area) in November and December. This is likely due to local variation in geography-associated factors which should be taken into consideration in future modeling of RSV epidemics.
NASA Technical Reports Server (NTRS)
Wilreker, V. F.; Stiller, P. H.; Scott, G. W.; Kruse, V. J.; Smith, R. F.
1984-01-01
Assessing the performance of a MOD-OA horizontal axis wind turbine connected to an isolated diesel utility, a comprehensive data measurement program was conducted on the Block Island Power Company installation on Block Island, Rhode Island. The detailed results of that program focusing on three principal areas of (1) fuel displacement (savings), (2) dynamic interaction between the diesel utility and the wind turbine, (3) effects of three models of wind turbine reactive power control are presented. The approximate two month duration of the data acquisition program conducted in the winter months (February into April 1982) revealed performance during periods of highest wind energy penetration and hence severity of operation. Even under such conditions fuel savings were significant resulting in a fuel reduction of 6.7% while the MOD-OA was generating 10.7% of the total electrical energy. Also, electrical disturbance and interactive effects were of an acceptable level.
Skillful regional prediction of Arctic sea ice on seasonal timescales
NASA Astrophysics Data System (ADS)
Bushuk, Mitchell; Msadek, Rym; Winton, Michael; Vecchi, Gabriel A.; Gudgel, Rich; Rosati, Anthony; Yang, Xiaosong
2017-05-01
Recent Arctic sea ice seasonal prediction efforts and forecast skill assessments have primarily focused on pan-Arctic sea ice extent (SIE). In this work, we move toward stakeholder-relevant spatial scales, investigating the regional forecast skill of Arctic sea ice in a Geophysical Fluid Dynamics Laboratory (GFDL) seasonal prediction system. Using a suite of retrospective initialized forecasts spanning 1981-2015 made with a coupled atmosphere-ocean-sea ice-land model, we show that predictions of detrended regional SIE are skillful at lead times up to 11 months. Regional prediction skill is highly region and target month dependent and generically exceeds the skill of an anomaly persistence forecast. We show for the first time that initializing the ocean subsurface in a seasonal prediction system can yield significant regional skill for winter SIE. Similarly, as suggested by previous work, we find that sea ice thickness initial conditions provide a crucial source of skill for regional summer SIE.
Efficacy of methoprene for multi-year protection of stored wheat, brown rice, rough rice and corn
USDA-ARS?s Scientific Manuscript database
Hard red winter wheat, brown rice, rough rice, and corn were treated with the insect growth regulator (IGR) at rates of 1.25 and 2.5 ppm, held for 24 months at ambient conditions at the floor of a grain bin, and sampled every two months. Bioassays were done by exposing 10 mixed-sex adults of Rhyzope...
I. Newton; I. Wyllie; L. Dale
1997-01-01
During 1963-1996, 1,101 Barn Owl (Tyto alba) carcasses were received for autopsy and chemical analysis. Much larger numbers were received per month outside the breeding season than within it. A peak in the monthly mortality of first year birds occurred in autumn (November) and a peak in the mortality of adults in late winter (March).
Prescribed Burning and Direct-Seeding Old Clearcuts in the Piedmont
W. Henry McNab
1976-01-01
Logging slash 14 to 26 months old was burned at different seasons of the year in the Georgia Piedmont.The following winter, loblolly pine seeds were broadcast 1 to 13 months after burning. Burning 1 -year-old slash during early- or mid-growing season resulted in better stocking, greater height growth, and more effective hardwood control than burning during the dorm ant...
Uncertainty Analysis of Downscaled CMIP5 Precipitation Data for Louisiana, USA
NASA Astrophysics Data System (ADS)
Sumi, S. J.; Tamanna, M.; Chivoiu, B.; Habib, E. H.
2014-12-01
The downscaled CMIP3 and CMIP5 Climate and Hydrology Projections dataset contains fine spatial resolution translations of climate projections over the contiguous United States developed using two downscaling techniques (monthly Bias Correction Spatial Disaggregation (BCSD) and daily Bias Correction Constructed Analogs (BCCA)). The objective of this study is to assess the uncertainty of the CMIP5 downscaled general circulation models (GCM). We performed an analysis of the daily, monthly, seasonal and annual variability of precipitation downloaded from the Downscaled CMIP3 and CMIP5 Climate and Hydrology Projections website for the state of Louisiana, USA at 0.125° x 0.125° resolution. A data set of daily gridded observations of precipitation of a rectangular boundary covering Louisiana is used to assess the validity of 21 downscaled GCMs for the 1950-1999 period. The following statistics are computed using the CMIP5 observed dataset with respect to the 21 models: the correlation coefficient, the bias, the normalized bias, the mean absolute error (MAE), the mean absolute percentage error (MAPE), and the root mean square error (RMSE). A measure of variability simulated by each model is computed as the ratio of its standard deviation, in both space and time, to the corresponding standard deviation of the observation. The correlation and MAPE statistics are also computed for each of the nine climate divisions of Louisiana. Some of the patterns that we observed are: 1) Average annual precipitation rate shows similar spatial distribution for all the models within a range of 3.27 to 4.75 mm/day from Northwest to Southeast. 2) Standard deviation of summer (JJA) precipitation (mm/day) for the models maintains lower value than the observation whereas they have similar spatial patterns and range of values in winter (NDJ). 3) Correlation coefficients of annual precipitation of models against observation have a range of -0.48 to 0.36 with variable spatial distribution by model. 4) Most of the models show negative correlation coefficients in summer and positive in winter. 5) MAE shows similar spatial distribution for all the models within a range of 5.20 to 7.43 mm/day from Northwest to Southeast of Louisiana. 6) Highest values of correlation coefficients are found at seasonal scale within a range of 0.36 to 0.46.
Kriticos, Darren J.; Veldtman, Ruan
2017-01-01
The European wasp, Vespula germanica (Fabricius) (Hymenoptera: Vespidae), is of Palaearctic origin, being native to Europe, northern Africa and Asia, and introduced into North America, Chile, Argentina, Iceland, Ascension Island, South Africa, Australia and New Zealand. Due to its polyphagous nature and scavenging behaviour, V. germanica threatens agriculture and silviculture, and negatively affects biodiversity, while its aggressive nature and venomous sting pose a health risk to humans. In areas with warmer winters and longer summers, queens and workers can survive the winter months, leading to the build-up of large nests during the following season; thereby increasing the risk posed by this species. To prevent or prepare for such unwanted impacts it is important to know where the wasp may be able to establish, either through natural spread or through introduction as a result of human transport. Distribution data from Argentina and Australia, and seasonal phenology data from Argentina were used to determine the potential distribution of V. germanica using CLIMEX modelling. In contrast to previous models, the influence of irrigation on its distribution was also investigated. Under a natural rainfall scenario, the model showed similarities to previous models. When irrigation is applied, dry stress is alleviated, leading to larger areas modelled climatically suitable compared with previous models, which provided a better fit with the actual distribution of the species. The main areas at risk of invasion by V. germanica include western USA, Mexico, small areas in Central America and in the north-western region of South America, eastern Brazil, western Russia, north-western China, Japan, the Mediterranean coastal regions of North Africa, and parts of southern and eastern Africa. PMID:28715452
NASA Astrophysics Data System (ADS)
Lebeaupin Brossier, Cindy; Léger, Fabien; Giordani, Hervé; Beuvier, Jonathan; Bouin, Marie-Noëlle; Ducrocq, Véronique; Fourrié, Nadia
2017-07-01
The north-western Mediterranean Sea is a key location for the thermohaline circulation of the basin. The area is characterized by intense air-sea exchanges favored by the succession of strong northerly and north-westerly wind situations (mistral and tramontane) in autumn and winter. Such meteorological conditions lead to significant evaporation and ocean heat loss that are well known as the main triggering factor for the Dense Water Formation (DWF) and winter deep convection episodes. During the HyMeX second field campaign (SOP2, 1 February to 15 March 2013), several platforms were deployed in the area in order to document the DWF and the ocean deep convection, as the air-sea interface conditions. This study investigates the role of the ocean-atmosphere coupling on DWF during winter 2012-2013. The coupled system, based on the NEMO-WMED36 ocean model (1/36° resolution) and the AROME-WMED atmospheric model (2.5 km resolution), was run during 2 months covering the SOP2 and is compared to an ocean-only simulation forced by AROME-WMED real-time forecasts and to observations collected in the north-western Mediterranean area during the HyMeX SOP2. The comparison shows small differences in terms of net heat, water, and momentum fluxes. On average, DWF is slightly sensitive to air-sea coupling. However, fine-scale ocean processes, such as shelf DWF and export or eddies and fronts at the rim of the convective patch, are significantly modified. The wind-current interactions constitute an efficient coupled process at fine scale, acting as a turbulence propagating vectors, producing large mixing and convection at the rim of the convective patch.
Shiraki, Hiroto; Ashina, Shuichi
2018-01-01
After the severe nuclear disaster in Fukushima, which was triggered by the Great East Japan earthquake in March 2011, nuclear power plants in Japan were temporarily shut down for mandatory inspections. To prevent large-scale blackouts, the Japanese government requested companies and households to reduce electricity consumption in summer and winter. It is reported that the domestic electricity demand had a structural decrease because of the electricity conservation effect (ECE). However, quantitative analysis of the ECE is not sufficient, and especially time variation of the ECE remains unclear. Understanding the ECE is important because Japan’s NDC (nationally determined contribution) assumes the reduction of CO2 emissions through aggressive energy conservation. In this study, we develop a time series model of monthly electricity demand in Japan and estimate time variation of the ECE. Moreover, we evaluate the impact of electricity conservation on CO2 emissions from power plants. The dynamic linear model is used to separate the ECE from the effects of other irrelevant factors (e.g. air temperature, economic production, and electricity price). Our result clearly shows that consumers’ electricity conservation behavior after the earthquake was not temporary but became established as a habit. Between March 2011 and March 2016, the ECE on industrial electricity demand ranged from 3.9% to 5.4%, and the ECE on residential electricity demand ranged from 1.6% to 7.6%. The ECE on the total electricity demand was estimated at 3.2%–6.0%. We found a seasonal pattern that the residential ECE in summer is higher than that in winter. The emissions increase from the shutdown of nuclear power plants was mitigated by electricity conservation. The emissions reduction effect was estimated at 0.82 MtCO2–2.26 MtCO2 (−4.5% on average compared to the zero-ECE case). The time-varying ECE is necessary for predicting Japan’s electricity demand and CO2 emissions after the earthquake. PMID:29708988
NASA Astrophysics Data System (ADS)
Mandal, S.; Choudhury, B. U.
2015-07-01
Sagar Island, setting on the continental shelf of Bay of Bengal, is one of the most vulnerable deltas to the occurrence of extreme rainfall-driven climatic hazards. Information on probability of occurrence of maximum daily rainfall will be useful in devising risk management for sustaining rainfed agrarian economy vis-a-vis food and livelihood security. Using six probability distribution models and long-term (1982-2010) daily rainfall data, we studied the probability of occurrence of annual, seasonal and monthly maximum daily rainfall (MDR) in the island. To select the best fit distribution models for annual, seasonal and monthly time series based on maximum rank with minimum value of test statistics, three statistical goodness of fit tests, viz. Kolmogorove-Smirnov test (K-S), Anderson Darling test ( A 2 ) and Chi-Square test ( X 2) were employed. The fourth probability distribution was identified from the highest overall score obtained from the three goodness of fit tests. Results revealed that normal probability distribution was best fitted for annual, post-monsoon and summer seasons MDR, while Lognormal, Weibull and Pearson 5 were best fitted for pre-monsoon, monsoon and winter seasons, respectively. The estimated annual MDR were 50, 69, 86, 106 and 114 mm for return periods of 2, 5, 10, 20 and 25 years, respectively. The probability of getting an annual MDR of >50, >100, >150, >200 and >250 mm were estimated as 99, 85, 40, 12 and 03 % level of exceedance, respectively. The monsoon, summer and winter seasons exhibited comparatively higher probabilities (78 to 85 %) for MDR of >100 mm and moderate probabilities (37 to 46 %) for >150 mm. For different recurrence intervals, the percent probability of MDR varied widely across intra- and inter-annual periods. In the island, rainfall anomaly can pose a climatic threat to the sustainability of agricultural production and thus needs adequate adaptation and mitigation measures.
Honjo, Keita; Shiraki, Hiroto; Ashina, Shuichi
2018-01-01
After the severe nuclear disaster in Fukushima, which was triggered by the Great East Japan earthquake in March 2011, nuclear power plants in Japan were temporarily shut down for mandatory inspections. To prevent large-scale blackouts, the Japanese government requested companies and households to reduce electricity consumption in summer and winter. It is reported that the domestic electricity demand had a structural decrease because of the electricity conservation effect (ECE). However, quantitative analysis of the ECE is not sufficient, and especially time variation of the ECE remains unclear. Understanding the ECE is important because Japan's NDC (nationally determined contribution) assumes the reduction of CO2 emissions through aggressive energy conservation. In this study, we develop a time series model of monthly electricity demand in Japan and estimate time variation of the ECE. Moreover, we evaluate the impact of electricity conservation on CO2 emissions from power plants. The dynamic linear model is used to separate the ECE from the effects of other irrelevant factors (e.g. air temperature, economic production, and electricity price). Our result clearly shows that consumers' electricity conservation behavior after the earthquake was not temporary but became established as a habit. Between March 2011 and March 2016, the ECE on industrial electricity demand ranged from 3.9% to 5.4%, and the ECE on residential electricity demand ranged from 1.6% to 7.6%. The ECE on the total electricity demand was estimated at 3.2%-6.0%. We found a seasonal pattern that the residential ECE in summer is higher than that in winter. The emissions increase from the shutdown of nuclear power plants was mitigated by electricity conservation. The emissions reduction effect was estimated at 0.82 MtCO2-2.26 MtCO2 (-4.5% on average compared to the zero-ECE case). The time-varying ECE is necessary for predicting Japan's electricity demand and CO2 emissions after the earthquake.
NASA Technical Reports Server (NTRS)
Koster, R.; Mahanama, S.; Livneh, B.; Lettenmaier, D.; Reichle, R.
2011-01-01
in this study we examine how knowledge of mid-winter snow accumulation and soil moisture conditions contribute to our ability to predict streamflow months in advance. A first "synthetic truth" analysis focuses on a series of numerical experiments with multiple sophisticated land surface models driven with a dataset of observations-based meteorological forcing spanning multiple decades and covering the continental United States. Snowpack information by itself obviously contributes to the skill attained in streamflow prediction, particularly in the mountainous west. The isolated contribution of soil moisture information, however, is found to be large and significant in many areas, particularly in the west but also in region surrounding the Great Lakes. The results are supported by a supplemental, observations-based analysis using (naturalized) March-July streamflow measurements covering much of the western U.S. Additional forecast experiments using start dates that span the year indicate a strong seasonality in the skill contributions; soil moisture information, for example, contributes to kill at much longer leads for forecasts issued in winter than for those issued in summer.
NASA Astrophysics Data System (ADS)
Ivanov, Martin; Warrach-Sagi, Kirsten; Wulfmeyer, Volker
2018-04-01
A new approach for rigorous spatial analysis of the downscaling performance of regional climate model (RCM) simulations is introduced. It is based on a multiple comparison of the local tests at the grid cells and is also known as "field" or "global" significance. New performance measures for estimating the added value of downscaled data relative to the large-scale forcing fields are developed. The methodology is exemplarily applied to a standard EURO-CORDEX hindcast simulation with the Weather Research and Forecasting (WRF) model coupled with the land surface model NOAH at 0.11 ∘ grid resolution. Monthly temperature climatology for the 1990-2009 period is analysed for Germany for winter and summer in comparison with high-resolution gridded observations from the German Weather Service. The field significance test controls the proportion of falsely rejected local tests in a meaningful way and is robust to spatial dependence. Hence, the spatial patterns of the statistically significant local tests are also meaningful. We interpret them from a process-oriented perspective. In winter and in most regions in summer, the downscaled distributions are statistically indistinguishable from the observed ones. A systematic cold summer bias occurs in deep river valleys due to overestimated elevations, in coastal areas due probably to enhanced sea breeze circulation, and over large lakes due to the interpolation of water temperatures. Urban areas in concave topography forms have a warm summer bias due to the strong heat islands, not reflected in the observations. WRF-NOAH generates appropriate fine-scale features in the monthly temperature field over regions of complex topography, but over spatially homogeneous areas even small biases can lead to significant deteriorations relative to the driving reanalysis. As the added value of global climate model (GCM)-driven simulations cannot be smaller than this perfect-boundary estimate, this work demonstrates in a rigorous manner the clear additional value of dynamical downscaling over global climate simulations. The evaluation methodology has a broad spectrum of applicability as it is distribution-free, robust to spatial dependence, and accounts for time series structure.