DOE Office of Scientific and Technical Information (OSTI.GOV)
Berger, Matthew T.; Judd, Steven L.
This report contains a detailed site-specific management plan for the Hellsgate Winter Range Wildlife Mitigation Project. The report provides background information about the mitigation process, the review process, mitigation acquisitions, Habitat Evaluation Procedures (HEP) and mitigation crediting, current habitat conditions, desired future habitat conditions, restoration/enhancements efforts and maps.
Hellsgate Big Game Winter Range Wildlife Mitigation Project : Annual Report 2008.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whitney, Richard P.; Berger, Matthew T.; Rushing, Samuel
The Hellsgate Big Game Winter Range Wildlife Mitigation Project (Hellsgate Project) was proposed by the Confederated Tribes of the Colville Reservation (CTCR) as partial mitigation for hydropower's share of the wildlife losses resulting from Chief Joseph and Grand Coulee Dams. At present, the Hellsgate Project protects and manages 57,418 acres (approximately 90 miles2) for the biological requirements of managed wildlife species; most are located on or near the Columbia River (Lake Rufus Woods and Lake Roosevelt) and surrounded by Tribal land. To date we have acquired about 34,597 habitat units (HUs) towards a total 35,819 HUs lost from original inundationmore » due to hydropower development. In addition to the remaining 1,237 HUs left unmitigated, 600 HUs from the Washington Department of Fish and Wildlife that were traded to the Colville Tribes and 10 secure nesting islands are also yet to be mitigated. This annual report for 2008 describes the management activities of the Hellsgate Big Game Winter Range Wildlife Mitigation Project (Hellsgate Project) during the past year.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Casey, Daniel; Malta, Patrick
Portions of two important elk (Cervus elaphus) winter ranges totalling 8749 acres were lost due to the construction of the Hungry Horse Dam hydroelectric facility. This habitat loss decreased the carrying capacity of the both the elk and the mule deer (Odocoileus hemionus). In 1985, using funds from the Bonneville Power Administration (BPA) as authorized by the Northwest Power Act, the Montana Department of Fish, Wildlife and Parks (FWP) completed a wildlife mitigation plan for Hungry Horse Reservoir. This plan identified habitat enhancement of currently-occupied winter range as the most cost-efficient, easily implemented mitigation alternative available to address these large-scalemore » losses of winter range. The Columbia Basin Fish and Wildlife Program, as amended in 1987, authorized BPA to fund winter range enhancement to meet an adjusted goal of 133 additional elk. A 28-month advance design phase of the BPA-funded project was initiated in September 1987. Primary goals of this phase of the project included detailed literature review, identification of enhancement areas, baseline (elk population and habitat) data collection, and preparation of 3-year and 10-year implementation plans. This document will serve as a site-specific habitat and population monitoring plan which outlines our recommendations for evaluating the results of enhancement efforts against mitigation goals. 25 refs., 13 figs., 7 tabs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Casey, Daniel; Malta, Patrick
1990-06-01
Project goals are to rehabilitate 1120 acres of big game (elk and mule deer, Odocoileus hemionus) winter range on the Hungry Horse and Spotted Bear Districts of Flathead National Forest lands adjacent to Hungry Horse Reservoir. This project represents the initial phase of implementation toward the mitigation goal. A minimum of 547 acres Trust-funded enhancements are called for in this plan. The remainder are part of the typical Forest Service management activities for the project area. Monitor and evaluate the effects of project implementation on the big game forage base and elk and mule deer populations in the project area.more » Monitor enhancement success to determine effective acreage to be credited against mitigation goal. Additional enhancement acreage will be selected elsewhere in the Flathead Forest or other lands adjacent'' to the reservoir based on progress toward the mitigation goal as determined through monitoring. The Wildlife Mitigation Trust Fund Advisory Committee will serve to guide decisions regarding future enhancement efforts. 7 refs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yde, Chis
1990-06-01
The Libby hydroelectric project, located on the Kootenai River in northwestern Montana, resulted in several impacts to the wildlife communities which occupied the habitats inundated by Lake Koocanusa. Montana Department of Fish, Wildlife and Parks, in cooperation with the other management agencies, developed an impact assessment and a wildlife and wildlife habitat mitigation plan for the Libby hydroelectric facility. In response to the mitigation plan, Bonneville Power Administration funded a cooperative project between the Kootenai National Forest and Montana Department of Fish, Wildlife and Parks to develop a long-term habitat enhancement plan for the bighorn sheep and mule deer wintermore » and spring ranges adjacent to Lake Koocanusa. The project goal is to rehabilitate 3372 acres of bighorn sheep and 16,321 acres of mule deer winter and spring ranges on Kootenai National Forest lands adjacent to Lake Koocanusa and to monitor and evaluate the effects of implementing this habitat enhancement work. 2 refs.« less
Evaluating the impacts of wildland fires on caribou in interior Alaska
Joly, Kyle; Adams, Layne G.; Dale, Bruce W.; Collins, William
2002-01-01
Caribou are found throughout the boreal forests of interior Alaska, a region subject to chronic and expansive wildland fires. Fruticose lichens, if available, constitute the majority of the winter diet of caribou throughout their range and are common in mature boreal forests but largely absent from early successional stages. Fire, the dominant ecological driving force, increases vegetative diversity and productivity across the landscape but may reduce the availability of caribou winter forage for decades.Increasingly, wildland fire regimes are influenced by humans seeking to reduce fire hazards or mitigate the effects of years of fire suppression. Consequently, biologists have debated the importance of forage lichens to the dynamics of caribou populations, and land managers have questioned the importance of fire regime to wintering caribou. To better understand the impacts of wildland fire on caribou, we are simultaneously investigating the relationships between fire history, caribou movements, forage lichen availability, and caribou nutritional performance on their winter range.
Toews, Michael D; Tubbs, R Scott; Wann, Dylan Q; Sullivan, Dana
2010-10-01
Thrips are the most consistent insect pests of seedling cotton in the southeastern United States, where symptoms can range from leaf curling to stand loss. In a 2 year study, thrips adults and immatures were sampled at 14, 21 and 28 days after planting on cotton planted with a thiamethoxam seed treatment in concert with crimson clover, wheat or rye winter cover crops and conventional or strip tillage to investigate potential differences in thrips infestations. Densities of adult thrips, primarily Frankliniella fusca (Hinds), peaked on the first sampling date, whereas immature densities peaked on the second sampling date. Regardless of winter cover crop, plots that received strip tillage experienced significantly fewer thrips at each sampling interval. In addition, assessment of percentage ground cover 42 days after planting showed that there was more than twice as much ground cover in the strip-tilled plots compared with conventionally tilled plots. Correlation analyses showed that increased ground cover was inversely related to thrips densities that occurred on all three sampling dates in 2008 and the final sampling date in 2009. Growers who utilize strip tillage and a winter cover crop can utilize seed treatments for mitigation of early-season thrips infestation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yarde, Richard
2002-09-26
BPA proposes to fund the purchase of three parcels of land within the boundaries of the Spokane Indian Reservation, totaling approximately 870 acres. Title to the land will pass to the Spokane Tribe of Indians. The goal of the property acquisition is to dedicate the land to the protection, mitigation, and enhancement of fish and wildlife affected by the construction and operation of portions of the Federal Columbia River Power System.
Braunisch, Veronika; Patthey, Patrick; Arlettaz, Raphaël
2011-04-01
Outdoor winter recreation exerts an increasing pressure upon mountain ecosystems, with unpredictable, free-ranging activities (e.g., ski mountaineering, snowboarding, and snowshoeing) representing a major source of stress for wildlife. Mitigating anthropogenic disturbance requires the spatially explicit prediction of the interference between the activities of humans and wildlife. We applied spatial modeling to localize conflict zones between wintering Black Grouse (Tetrao tetrix), a declining species of Alpine timberline ecosystems, and two free-ranging winter sports (off-piste skiing [including snow-boarding] and snowshoeing). Track data (snow-sports and birds' traces) obtained from aerial photographs taken over a 585-km transect running along the timberline, implemented within a maximum entropy model, were used to predict the occurrence of snow sports and Black Grouse as a function of landscape characteristics. By modeling Black Grouse presence in the theoretical absence of free-ranging activities and ski infrastructure, we first estimated the amount of habitat reduction caused by these two factors. The models were then extrapolated to the altitudinal range occupied by Black Grouse, while the spatial extent and intensity of potential conflict were assessed by calculating the probability of human-wildlife co-occurrence. The two snow-sports showed different distribution patterns. Skiers' occurrence was mainly determined by ski-lift presence and a smooth terrain, while snowshoers' occurrence was linked to hiking or skiing routes and moderate slopes. Wintering Black Grouse avoided ski lifts and areas frequented by free-ranging snow sports. According to the models, Black Grouse have faced a substantial reduction of suitable wintering habitat along the timberline transect: 12% due to ski infrastructure and another 16% when adding free-ranging activities. Extrapolating the models over the whole study area results in an overall habitat loss due to ski infrastructure of 10%, while there was a > 10% probability of human-wildlife encounters on 67% of the remaining area of suitable wintering habitat. Only 23% of the wintering habitat was thus free of anthropogenic disturbance. By identifying zones of potential conflict, while rating its relative intensity, our model provides a powerful tool to delineate and prioritize areas where wildlife winter refuges and visitor steering measures should be implemented.
Rye cover crop effects on soil properties in no-till corn silage/soybean agroecosystems
USDA-ARS?s Scientific Manuscript database
Farmers in the U.S. Corn Belt are showing increasing interest in winter cover crops. Known benefits of winter cover crops include reductions in nutrient leaching, erosion mitigation, and weed suppression, however little research has investigated the effects of winter cover crops on soil properties. ...
Human recreation affects spatio-temporal habitat use patterns in red deer (Cervus elaphus)
Coppes, Joy; Burghardt, Friedrich; Hagen, Robert; Suchant, Rudi; Braunisch, Veronika
2017-01-01
The rapid spread and diversification of outdoor recreation can impact on wildlife in various ways, often leading to the avoidance of disturbed habitats. To mitigate human-wildlife conflicts, spatial zonation schemes can be implemented to separate human activities from key wildlife habitats, e.g., by designating undisturbed wildlife refuges or areas with some level of restriction to human recreation and land use. However, mitigation practice rarely considers temporal differences in human-wildlife interactions. We used GPS telemetry data from 15 red deer to study the seasonal (winter vs. summer) and diurnal (day vs. night) variation in recreation effects on habitat use in a study region in south-western Germany where a spatial zonation scheme has been established. Our study aimed to determine if recreation infrastructure and spatial zonation affected red deer habitat use and whether these effects varied daily or seasonally. Recreation infrastructure did not affect home range selection in the study area, but strongly determined habitat use within the home range. The spatial zonation scheme was reflected in both of these two levels of habitat selection, with refuges and core areas being more frequently used than the border zones. Habitat use differed significantly between day and night in both seasons. Both summer and winter recreation trails, and nearby foraging habitats, were avoided during day, whereas a positive association was found during night. We conclude that human recreation has an effect on red deer habitat use, and when designing mitigation measures daily and seasonal variation in human-wildlife interactions should be taken into account. We advocate using spatial zonation in conjunction with temporal restrictions (i.e., banning nocturnal recreation activities) and the creation of suitable foraging habitats away from recreation trails. PMID:28467429
NASA Astrophysics Data System (ADS)
Zhang, Guangbin; Yu, Haiyang; Fan, Xianfang; Yang, Yuting; Ma, Jing; Xu, Hua
2016-09-01
Traditional land management (no tillage, no drainage, NTND) during the winter fallow season results in substantial CH4 and N2O emissions from double-rice fields in China. A field experiment was conducted to investigate the effects of drainage and tillage during the winter fallow season on CH4 and N2O emissions and to develop mitigation options. The experiment had four treatments: NTND, NTD (drainage but no tillage), TND (tillage but no drainage), and TD (both drainage and tillage). The study was conducted from 2010 to 2014 in a Chinese double-rice field. During winter, total precipitation and mean daily temperature significantly affected CH4 emission. Compared to NTND, drainage and tillage decreased annual CH4 emissions in early- and late-rice seasons by 54 and 33 kg CH4 ha-1 yr-1, respectively. Drainage and tillage increased N2O emissions in the winter fallow season but reduced it in early- and late-rice seasons, resulting in no annual change in N2O emission. Global warming potentials of CH4 and N2O emissions were decreased by 1.49 and 0.92 t CO2 eq. ha-1 yr-1, respectively, and were reduced more by combining drainage with tillage, providing a mitigation potential of 1.96 t CO2 eq. ha-1 yr-1. A low total C content and high C / N ratio in rice residues showed that tillage in the winter fallow season reduced CH4 and N2O emissions in both early- and late-rice seasons. Drainage and tillage significantly decreased the abundance of methanogens in paddy soil, and this may explain the decrease of CH4 emissions. Greenhouse gas intensity was significantly decreased by drainage and tillage separately, and the reduction was greater by combining drainage with tillage, resulting in a reduction of 0.17 t CO2 eq. t-1. The results indicate that drainage combined with tillage during the winter fallow season is an effective strategy for mitigating greenhouse gas releases from double-rice fields.
NASA Astrophysics Data System (ADS)
McCarthy, M.; Dettinger, M. D.; Kauneckis, D. L.; Cox, D. A.; Albano, C.; Welborn, T.
2014-12-01
Atmospheric rivers (ARs) have historically caused ~80% of the most extreme winter storms and largest floods in California and parts of northwestern Nevada. In 2010, the U.S. Geological Survey developed the ARkStorm extreme-storm scenario to quantify risks from extreme winter storms and to allow stakeholders to explore and mitigate potential impacts. The scenario was constructed by concatenating two historical AR sequences and quantified by simulating them using a regional-weather model nested within global weather fields, resulting in a climatologically plausible 23-day storm sequence. The ARkStorm@Tahoe scenario was presented at six meetings with over 300 participants from local agencies, first-responders and local communities, each meeting having a different geographic or sectoral focus. These stakeholder meetings and an 18-question survey identified a wide range of social and ecological vulnerabilities to extreme winter storms, science and information needs to prepare and mitigate consequenses, and proactive measures to minimize impacts. Interruption of transportation, communications, and lack of power and backup fuel supplies were identified as the most likely and primary points of failure across multiple sectors and geographies, as these interruptions have cascading effects on natural and human environments by impeding emergency response efforts. Natural resource impacts of greatest concern include flooding, impacts to water quality, spread and establishment of invasive species, and interactions with other disturbance types (e.g., fire, landslides). Science needs include improved monitoring and models to facilitate better prediction and response, real-time and forecast inundation mapping to understand flood risks, and vulnerability assessments related to geomorphic hazards and water quality impacts. Results from this effort highlight several opportunities for increasing the resilience of communities and the environment to extreme storm events. Information collected in these meetings was used to develop a "tabletop" emergency-response exercise with over 120 participants in March 2014, as well as reports back to the community including specific recommendations for increasing preparedness, response, recovery, and resilience to extreme winter storm events.
Historical winter weather assessment for snow fence design using a numerical weather model.
DOT National Transportation Integrated Search
2017-03-30
Noriaki Ohara, Ph.D., Assistant Professor (0000-0002-7829-0779) : Snow fence is an effective hazard mitigation measure for the low visibility and low friction of the road surface under : winter weather condition. Prevailing wind directions and snow p...
Climate change affects winter chill for temperate fruit and nut trees.
Luedeling, Eike; Girvetz, Evan H; Semenov, Mikhail A; Brown, Patrick H
2011-01-01
Temperate fruit and nut trees require adequate winter chill to produce economically viable yields. Global warming has the potential to reduce available winter chill and greatly impact crop yields. We estimated winter chill for two past (1975 and 2000) and 18 future scenarios (mid and end 21st century; 3 Global Climate Models [GCMs]; 3 greenhouse gas emissions [GHG] scenarios). For 4,293 weather stations around the world and GCM projections, Safe Winter Chill (SWC), the amount of winter chill that is exceeded in 90% of all years, was estimated for all scenarios using the "Dynamic Model" and interpolated globally. We found that SWC ranged between 0 and about 170 Chill Portions (CP) for all climate scenarios, but that the global distribution varied across scenarios. Warm regions are likely to experience severe reductions in available winter chill, potentially threatening production there. In contrast, SWC in most temperate growing regions is likely to remain relatively unchanged, and cold regions may even see an increase in SWC. Climate change impacts on SWC differed quantitatively among GCMs and GHG scenarios, with the highest GHG leading to losses up to 40 CP in warm regions, compared to 20 CP for the lowest GHG. The extent of projected changes in winter chill in many major growing regions of fruits and nuts indicates that growers of these commodities will likely experience problems in the future. Mitigation of climate change through reductions in greenhouse gas emissions can help reduce the impacts, however, adaption to changes will have to occur. To better prepare for likely impacts of climate change, efforts should be undertaken to breed tree cultivars for lower chilling requirements, to develop tools to cope with insufficient winter chill, and to better understand the temperature responses of tree crops.
Albano, Christine M.; Dettinger, Michael; McCarthy, Maureen; Schaller, Kevin D.; Wellborn, Toby; Cox, Dale A.
2016-01-01
In the Sierra Nevada mountains (USA), and geographically similar areas across the globe where human development is expanding, extreme winter storm and flood risks are expected to increase with changing climate, heightening the need for communities to assess risks and better prepare for such events. In this case study, we demonstrate a novel approach to examining extreme winter storm and flood risks. We incorporated high-resolution atmospheric–hydrologic modeling of the ARkStorm extreme winter storm scenario with multiple modes of engagement with practitioners, including a series of facilitated discussions and a tabletop emergency management exercise, to develop a regional assessment of extreme storm vulnerabilities, mitigation options, and science needs in the greater Lake Tahoe region of Northern Nevada and California, USA. Through this process, practitioners discussed issues of concern across all phases of the emergency management life cycle, including preparation, response, recovery, and mitigation. Interruption of transportation, communications, and interagency coordination were among the most pressing concerns, and specific approaches for addressing these issues were identified, including prepositioning resources, diversifying communications systems, and improving coordination among state, tribal, and public utility practitioners. Science needs included expanding real-time monitoring capabilities to improve the precision of meteorological models and enhance situational awareness, assessing vulnerabilities of critical infrastructure, and conducting cost–benefit analyses to assess opportunities to improve both natural and human-made infrastructure to better withstand extreme storms. Our approach and results can be used to support both land use and emergency planning activities aimed toward increasing community resilience to extreme winter storm hazards in mountainous regions.
Ivey, Gary L.; Dugger, Bruce D.; Herziger, Caroline P.; Casazza, Michael L.; Fleskes, Joseph P.
2015-01-01
Body size is known to correlate with many aspects of life history in birds, and this knowledge can be used to manage and conserve bird species. However, few studies have compared the wintering ecology of sympatric subspecies that vary significantly in body size. We used radiotelemetry to examine the relationship between body size and site fidelity, movements, and home range in 2 subspecies of Sandhill Crane (Grus canadensis) wintering in the Sacramento–San Joaquin Delta of California, USA. Both subspecies showed high interannual return rates to the Delta study area, but Greater Sandhill Cranes (G. c. tabida) showed stronger within-winter fidelity to landscapes in our study region and to roost complexes within landscapes than did Lesser Sandhill Cranes (G. c. canadensis). Foraging flights from roost sites were shorter for G. c. tabida than for G. c. canadensis (1.9 ± 0.01 km vs. 4.5 ± 0.01 km, respectively) and, consequently, the mean size of 95% fixed-kernel winter home ranges was an order of magnitude smaller for G. c. tabida than for G. c. canadensis (1.9 ± 0.4 km2 vs. 21.9 ± 1.9 km2, respectively). Strong site fidelity indicates that conservation planning to manage for adequate food resources around traditional roost sites can be effective for meeting the habitat needs of these cranes, but the scale of conservation efforts should differ by subspecies. Analysis of movement patterns suggests that conservation planners and managers should consider all habitats within 5 km of a known G. c. tabida roost and within 10 km of a G. c. canadensis roost when planning for habitat management, mitigation, acquisition, and easements.
Vogstad, A R; Moxley, R A; Erickson, G E; Klopfenstein, T J; Smith, D R
2014-06-01
Pens of cattle with high Escherichia coli O157:H7 (STEC O157) prevalence at harvest may present a greater risk to food safety than pens of lower prevalence. Vaccination of live cattle against STEC O157 has been proposed as an approach to reduce STEC O157 prevalence in live cattle. Our objective was to create a stochastic simulation model to evaluate the effectiveness of pre-harvest interventions. We used the model to compare STEC O157 prevalence distributions for summer- and winter-fed cattle to summer-fed cattle immunized with a type III secreted protein (TTSP) vaccine. Model inputs were an estimate of vaccine efficacy, observed frequency distributions for number of animals within a pen, and pen-level faecal shedding prevalence for summer and winter. Uncertainty about vaccine efficacy was simulated using a log-normal distribution (mean = 58%, SE = 0.14). Model outputs were distributions of STEC O157 faecal pen prevalence of summer-fed cattle unvaccinated and vaccinated, and winter-fed cattle unvaccinated. The simulation was performed 5000 times. Summer faecal prevalence ranged from 0% to 80% (average = 30%). Thirty-six per cent of summer-fed pens had STEC O157 prevalence >40%. Winter faecal prevalence ranged from 0% to 60% (average = 10%). Seven per cent of winter-fed pens had STEC O157 prevalence >40%. Faecal prevalence for summer-fed pens vaccinated with a 58% efficacious vaccine product ranged from 0% to 52% (average = 13%). Less than one per cent of vaccinated pens had STEC O157 prevalence >40%. In this simulation, vaccination mitigated the risk of STEC O157 faecal shedding to levels comparable to winter, with the major effects being reduced average shedding prevalence, reduced variability in prevalence distribution, and a reduction in the occurrence of the highest prevalence pens. Food safety decision-makers may find this modelling approach useful for evaluating the value of pre-harvest interventions. © 2013 Blackwell Verlag GmbH.
Climate Change Affects Winter Chill for Temperate Fruit and Nut Trees
Luedeling, Eike; Girvetz, Evan H.; Semenov, Mikhail A.; Brown, Patrick H.
2011-01-01
Background Temperate fruit and nut trees require adequate winter chill to produce economically viable yields. Global warming has the potential to reduce available winter chill and greatly impact crop yields. Methodology/Principal Findings We estimated winter chill for two past (1975 and 2000) and 18 future scenarios (mid and end 21st century; 3 Global Climate Models [GCMs]; 3 greenhouse gas emissions [GHG] scenarios). For 4,293 weather stations around the world and GCM projections, Safe Winter Chill (SWC), the amount of winter chill that is exceeded in 90% of all years, was estimated for all scenarios using the “Dynamic Model” and interpolated globally. We found that SWC ranged between 0 and about 170 Chill Portions (CP) for all climate scenarios, but that the global distribution varied across scenarios. Warm regions are likely to experience severe reductions in available winter chill, potentially threatening production there. In contrast, SWC in most temperate growing regions is likely to remain relatively unchanged, and cold regions may even see an increase in SWC. Climate change impacts on SWC differed quantitatively among GCMs and GHG scenarios, with the highest GHG leading to losses up to 40 CP in warm regions, compared to 20 CP for the lowest GHG. Conclusions/Significance The extent of projected changes in winter chill in many major growing regions of fruits and nuts indicates that growers of these commodities will likely experience problems in the future. Mitigation of climate change through reductions in greenhouse gas emissions can help reduce the impacts, however, adaption to changes will have to occur. To better prepare for likely impacts of climate change, efforts should be undertaken to breed tree cultivars for lower chilling requirements, to develop tools to cope with insufficient winter chill, and to better understand the temperature responses of tree crops. PMID:21629649
Direct MSTID mitigation in precise GPS processing
NASA Astrophysics Data System (ADS)
Hernández-Pajares, Manuel; Wielgosz, Pawel; Paziewski, Jacek; Krypiak-Gregorczyk, Anna; Krukowska, Marta; Stepniak, Katarzyna; Kaplon, Jan; Hadas, Tomasz; Sosnica, Krzysztof; Bosy, Jaroslaw; Orus-Perez, Raul; Monte-Moreno, Enric; Yang, Heng; Garcia-Rigo, Alberto; Olivares-Pulido, Germán.
2017-03-01
In this paper, the authors summarize a simple and efficient approach developed to mitigate the problem in precise Global Navigation Satellite Systems (GNSS) positioning originated by the most frequent ionospheric wave signatures: the medium-scale traveling ionospheric disturbances (MSTIDs). The direct GNSS Ionospheric Interferometry technique (hereinafter dGII), presented in this paper, is applied for correcting MSTID effects on precise Real Time Kinematic (RTK) and tropospheric determination. It consists of the evolution of the former climatic Differential Delay Mitigation Model for MSTIDs (DMTID), for real-time conditions, using ionospheric data from a single permanent receiver only. The performance is demonstrated with networks of GNSS receivers in Poland, treated as users under real-time conditions, during two representative days in winter and summer seasons (days 353 and 168 of year 2013). In range domain, dGII typically reduces the ionospheric delay error up to 10-90% of the value when the MSTID mitigation model is not applied. The main dGII impact on precise positioning is that we can obtain reliable RTK position faster. In particular, the ambiguity success rate parameter increases, from 74% to 83%, with respect to the original uncorrected observations. The average of time to first fix is shortened from 30 s to 13 s. The improvement in troposphere estimaton, due to any potential impact of the MSTID mitigation model, was most difficult to demonstrate.
Mitigating Decision-Making Paralysis During Catastrophic Disasters
2011-03-01
COVERED Master’s Thesis 4. TITLE AND SUBTITLE Mitigating Decision-Making Paralysis During Catastrophic Disasters 6. AUTHOR( S ) Terrence J. Winters 5...FUNDING NUMBERS 7. PERFORMING ORGANIZATION NAME( S ) AND ADDRESS(ES) Naval Postgraduate School Monterey, CA 93943-5000 8. PERFORMING ORGANIZATION...REPORT NUMBER 9. SPONSORING /MONITORING AGENCY NAME( S ) AND ADDRESS(ES) N/A 10. SPONSORING/MONITORING AGENCY REPORT NUMBER 11
We will present observations and statistical analysis on indoor air and soil gas data, collected over four years (including parts of five winter seasons) along with data on meteorological and hydrological variations at an unoccupied pre-1920 duplex. The monitoring program has now...
The winter gap effect in methane leak detection and repair with optical gas imaging cameras
NASA Astrophysics Data System (ADS)
Fox, T. A.; Barchyn, T.; Hugenholtz, C.
2017-12-01
Implementing effective leak detection and repair (LDAR) programs is essential for mitigating fugitive methane emissions from oil and gas operations. In Canada, newly proposed regulations will require that high-risk facilities be surveyed 3 times/yr for fugitive leaks. Like the United States, Canada promotes the use of Optical Gas Imaging cameras (OGIs) for detecting natural gas leaks during LDAR surveys. However, recent research suggests OGIs may perform poorly under adverse environmental conditions, especially in low temperatures. For regions like Canada that experience cold winters, OGIs may not be reliably used for months at a time, meaning that leaks may accumulate and emit for longer periods before being repaired. While considerable oil and gas activity occurs in high-latitude regions with cold winters, no research has explored how extended cold periods impact OGI-focused LDAR programs. To improve this understanding, we present a simple model exploring relationships among winter gap length, fugitive methane emissions, and investment input for LDAR programs employing OGI instruments in gas producing regions of different latitudes. Preliminary results suggest that longer gaps between LDAR surveys caused by cold temperatures result in either 1) higher total emissions for the year, or 2) greater time and equipment investment in LDAR programs to achieve emissions mitigation equivalent to LDAR programs operating under ideal conditions. When weather constraints are removed and LDAR surveys are evenly spaced throughout the year, emissions mitigation is optimized. However, as the winter gap duration and the size of the implicated area increases, fugitive leaks last longer. Furthermore, a spillover effect is observed as LDAR crews become overwhelmed with the high volume of work required as temperatures increase in the spring. Our model adds weight to the argument that LDAR programs should be tailored to regional needs, and that regulators should be more cognisant of sensor-specific limitations as they develop LDAR protocols.
Richard, Nadège; Silva, Tomé S; Wulff, Tune; Schrama, Denise; Dias, Jorge P; Rodrigues, Pedro M L; Conceição, Luís E C
2016-06-16
A trial was carried out with gilthead seabream juveniles, aiming to investigate the ability of an enhanced dietary formulation (diet Winter Feed, WF, containing a higher proportion of marine-derived protein sources and supplemented in phospholipids, vitamin C, vitamin E and taurine) to assist fish in coping with winter thermal stress, compared to a low-cost commercial diet (diet CTRL). In order to identify the metabolic pathways affected by WF diet, a comparative two dimensional differential in-gel electrophoresis (2D-DIGE) analysis of fish liver proteome (pH 4–7) was undertaken at the end of winter. A total of 404 protein spots, out of 1637 detected, were differentially expressed between the two groups of fish. Mass spectrometry analysis of selected spots suggested that WF diet improved oxidative stress defense, reduced endoplasmic reticulum stress, enhanced metabolic flux through methionine cycle and phenylalanine/tyrosine catabolism, and induced higher aerobic metabolism and gluconeogenesis. Results support the notion that WF diet had a positive effect on fish nutritional state by partially counteracting the effect of thermal stress and underlined the sensitivity of proteome data for nutritional and metabolic profiling purposes. Intragroup variability and co-measured information were also used to pinpoint which proteins displayed a stronger relation with fish nutritional state. Winter low water temperature is a critical factor for gilthead seabream farming in the Mediterranean region, leading to a reduction of feed intake, which often results in metabolic and immunological disorders and stagnation of growth performances. In a recent trial, we investigated the ability of an enhanced dietary formulation (diet WF) to assist gilthead seabream in coping with winter thermal stress, compared to a standard commercial diet (diet CTRL). Within this context, in the present work, we identified metabolic processes that are involved in the stress-mitigating effect observed with diet WF, by undertaking a comparative analysis of fish liver proteome at the end of winter. This study brings information relative to biological processes that are involved in gilthead seabream winter thermal stress and shows that these can be mitigated through a nutritional strategy, assisting gilthead seabream to deal better with winter thermal conditions. Furthermore, the results show that proteomic information not only clearly distinguishes the two dietary groups from each other, but also captures heterogeneities that reflect intra-group differences in nutritional state. This was exploited in this work to refine the variable selection strategy so that protein spots displaying a stronger correlation with “nutritional state” could be identified as possible indicators of gilthead seabream metabolic and nutritional state. Finally, this study shows that gel-based proteomics seems to provide more reliable information than transmissive FT-IR spectroscopy, for the purposes of nutritional and metabolic profiling.
Reimer, G.M.; Szarzi, S.L.; Dolan, Michael P.
1998-01-01
An examination of year-long, in-home radon measurement in Colorado from commercial companies applying typical methods indicates that considerable variation in precision exists. This variation can have a substantial impact on any mitigation decisions, either voluntary or mandated by law, especially regarding property sale or exchange. Both long-term exposure (nuclear track greater than 90 days), and short-term (charcoal adsorption 4-7 days) exposure methods were used. In addition, periods of continuous monitoring with a highly calibrated alpha-scintillometer took place for accuracy calibration. The results of duplicate commercial analysis show that typical results are no better than ??25 percent with occasional outliers (up to 5 percent of all analyses) well beyond that limit. Differential seasonal measurements (winter/summer) by short-term methods provide equivalent information to single long-term measurements. Action levels in the U.S. for possible mitigation decisions should be selected so that they consider the measurement variability; specifically, they should reflect a concentration range similar to that adopted by the European Community.
NASA Astrophysics Data System (ADS)
Doyle, Chris
2014-01-01
The Vancouver 2010 Winter Olympics were held from 12 to 28 February 2010, and the Paralympic events followed 2 weeks later. During the Games, the weather posed a grave threat to the viability of one venue and created significant complications for the event schedule at others. Forecasts of weather with lead times ranging from minutes to days helped organizers minimize disruptions to sporting events and helped ensure all medal events were successfully completed. Of comparable importance, however, were the scenarios and forecasts of probable weather for the winter in advance of the Games. Forecasts of mild conditions at the time of the Games helped the Games' organizers mitigate what would have been very serious potential consequences for at least one venue. Snowmaking was one strategy employed well in advance of the Games to prepare for the expected conditions. This short study will focus on how operational decisions were made by the Games' organizers on the basis of both climatological and snowmaking forecasts during the pre-Games winter. An attempt will be made to quantify, economically, the value of some of the snowmaking forecasts made for the Games' operators. The results obtained indicate that although the economic value of the snowmaking forecast was difficult to determine, the Games' organizers valued the forecast information greatly. This suggests that further development of probabilistic forecasts for applications like pre-Games snowmaking would be worthwhile.
Harlow, Henry J.; Durner, George M.; Regehr, Eric V.; Rourke, Bryan C.; Robles, Manuel; Amstrup, Steven C.; Ben-David, Merav
2017-01-01
Abstract When reducing activity and using stored energy during seasonal food shortages, animals risk degradation of skeletal muscles, although some species avoid or minimize the resulting atrophy while experiencing these conditions during hibernation. Polar bears may be food deprived and relatively inactive during winter (when pregnant females hibernate and hunting success declines for other demographic groups) as well as summer (when sea ice retreats from key foraging habitats). We investigated muscle atrophy in samples of biceps femoris collected from free-ranging polar bears in the Southern Beaufort Sea (SBS) throughout their annual cycle. Atrophy was most pronounced in April–May as a result of food deprivation during the previous winter, with muscles exhibiting reduced protein concentration, increased water content, and lower creatine kinase mRNA. These animals increased feeding and activity in spring (when seal prey becomes more available), initiating a period of muscle recovery. During the following ice melt of late summer, ~30% of SBS bears abandon retreating sea ice for land; in August, these ‘shore’ bears exhibited no muscle atrophy, indicating that they had fully recovered from winter food deprivation. These individuals subsequently scavenged whale carcasses deposited by humans and by October, had retained good muscle condition. In contrast, ~70% of SBS bears follow the ice north in late summer, into deep water with less prey. These ‘ice’ bears fast; by October, they exhibited muscle protein loss and rapid changes in myosin heavy-chain isoforms in response to reduced activity. These findings indicate that, unlike other bears during winter hibernation, polar bears without food in summer cannot mitigate atrophy. Consequently, prolonged summer fasting resulting from climate change-induced ice loss creates a risk of greater muscle atrophy and reduced abilities to travel and hunt. PMID:28835844
Whiteman, John P.; Harlow, Henry J.; Durner, George M.; Regehr, Eric V.; Rourke, Bryan C.; Robles, Manuel; Amstrup, Steven C.; Ben-David, Merav
2017-01-01
When reducing activity and using stored energy during seasonal food shortages, animals risk degradation of skeletal muscles, although some species avoid or minimize the resulting atrophy while experiencing these conditions during hibernation. Polar bears may be food deprived and relatively inactive during winter (when pregnant females hibernate and hunting success declines for other demographic groups) as well as summer (when sea ice retreats from key foraging habitats). We investigated muscle atrophy in samples of biceps femoris collected from free-ranging polar bears in the Southern Beaufort Sea (SBS) throughout their annual cycle. Atrophy was most pronounced in April–May as a result of food deprivation during the previous winter, with muscles exhibiting reduced protein concentration, increased water content, and lower creatine kinase mRNA. These animals increased feeding and activity in spring (when seal prey becomes more available), initiating a period of muscle recovery. During the following ice melt of late summer, ~30% of SBS bears abandon retreating sea ice for land; in August, these ‘shore’ bears exhibited no muscle atrophy, indicating that they had fully recovered from winter food deprivation. These individuals subsequently scavenged whale carcasses deposited by humans and by October, had retained good muscle condition. In contrast, ~70% of SBS bears follow the ice north in late summer, into deep water with less prey. These ‘ice’ bears fast; by October, they exhibited muscle protein loss and rapid changes in myosin heavy-chain isoforms in response to reduced activity. These findings indicate that, unlike other bears during winter hibernation, polar bears without food in summer cannot mitigate atrophy. Consequently, prolonged summer fasting resulting from climate change-induced ice loss creates a risk of greater muscle atrophy and reduced abilities to travel and hunt.
Whiteman, John P; Harlow, Henry J; Durner, George M; Regehr, Eric V; Rourke, Bryan C; Robles, Manuel; Amstrup, Steven C; Ben-David, Merav
2017-01-01
When reducing activity and using stored energy during seasonal food shortages, animals risk degradation of skeletal muscles, although some species avoid or minimize the resulting atrophy while experiencing these conditions during hibernation. Polar bears may be food deprived and relatively inactive during winter (when pregnant females hibernate and hunting success declines for other demographic groups) as well as summer (when sea ice retreats from key foraging habitats). We investigated muscle atrophy in samples of biceps femoris collected from free-ranging polar bears in the Southern Beaufort Sea (SBS) throughout their annual cycle. Atrophy was most pronounced in April-May as a result of food deprivation during the previous winter, with muscles exhibiting reduced protein concentration, increased water content, and lower creatine kinase mRNA. These animals increased feeding and activity in spring (when seal prey becomes more available), initiating a period of muscle recovery. During the following ice melt of late summer, ~30% of SBS bears abandon retreating sea ice for land; in August, these 'shore' bears exhibited no muscle atrophy, indicating that they had fully recovered from winter food deprivation. These individuals subsequently scavenged whale carcasses deposited by humans and by October, had retained good muscle condition. In contrast, ~70% of SBS bears follow the ice north in late summer, into deep water with less prey. These 'ice' bears fast; by October, they exhibited muscle protein loss and rapid changes in myosin heavy-chain isoforms in response to reduced activity. These findings indicate that, unlike other bears during winter hibernation, polar bears without food in summer cannot mitigate atrophy. Consequently, prolonged summer fasting resulting from climate change-induced ice loss creates a risk of greater muscle atrophy and reduced abilities to travel and hunt.
King, D. Tommy; Fischer, Justin W.; Strickland, Bronson K.; Walter, W. David; Cunningham, Fred L.; Wang, Guiming
2016-01-01
Satellite telemetry was used to investigate summer and winter home ranges for resident and migrant American White Pelicans (Pelecanus erythrorhynchos) captured in the southeastern United States between 2002 and 2007. Home range utilization distributions were calculated using 50% and 95% kernel density estimators with the plug-in bandwidth selector. Mean summer home ranges (95%) varied from 177 to 4,710 km2 and mean winter home ranges (95%) ranged from 185 to 916 km2. Mean 50% and 95% home ranges of adult American White Pelicans during summer tended to be larger than those during winter, whereas mean 50% and 95% home ranges of immature pelicans during summer tended to be smaller than those during winter. Home ranges for all American White Pelicans encompassed the latitude range of 24°–55° N, including wintering, stop over, and nesting habitat. These data provide baseline movement and home range data for future studies of American White Pelican ecology.
Winter range arrival and departure of white-tailed deer in northeastern Minnesota
Nelson, M.E.
1995-01-01
I analyzed 364 spring and 239 fall migrations by 194 white-tailed deer (Odocoileus virginianus) from 1975 to 1993 in northeastern Minnesota to determine the proximate cause of arrivals on and departures from winter ranges. The first autumn temperatures below -7?C initiated fall migrations for 14% (95% confidence interval (CI) = 0-30) of female deer prior to snowfall in three autumns, but only 2% remained on winter ranges. During 14 autumns, the first temperatures below -7?C coincidental with snowfalls elicited migration in 45% (95% CI = 34-57) of females, and 91 % remained on winter ranges. Arrival dates failed to correlate with independent variables of temperature and snow depth, precluding predictive modeling of arrival on winter ranges. During 13 years, a mean of 80% of females permanently arrived on winter ranges by 31 December. Mean departure dates from winter ranges varied annually (19 March - 4 May) and between winter ranges (14 days) and according to snow depth (15-cm differences). Only 15 - 41 % of deer departed when snow depths were> 30 cm but 80% had done so by the time of lO-cm depths. Mean weekly snow depths in March (18-85 cm) and mean temperature in April (0.3 -8.1 ?c) explained most of the variation in mean departure dates from two winter ranges (Ely, R2 = 0.87, P < 0.0005, n = 19 springs; Isabella, R2 = 0.85, P = 0.0001, n = 12 springs). Mean differences between observed mean departure dates and mean departure dates predicted from equations ranged from 3 days (predictions within the study area) to 8 days (predictions for winter ranges 100-440 km distant).
Northrup, Joseph M; Anderson, Charles R; Wittemyer, George
2015-11-01
Extraction of oil and natural gas (hydrocarbons) from shale is increasing rapidly in North America, with documented impacts to native species and ecosystems. With shale oil and gas resources on nearly every continent, this development is set to become a major driver of global land-use change. It is increasingly critical to quantify spatial habitat loss driven by this development to implement effective mitigation strategies and develop habitat offsets. Habitat selection is a fundamental ecological process, influencing both individual fitness and population-level distribution on the landscape. Examinations of habitat selection provide a natural means for understanding spatial impacts. We examined the impact of natural gas development on habitat selection patterns of mule deer on their winter range in Colorado. We fit resource selection functions in a Bayesian hierarchical framework, with habitat availability defined using a movement-based modeling approach. Energy development drove considerable alterations to deer habitat selection patterns, with the most substantial impacts manifested as avoidance of well pads with active drilling to a distance of at least 800 m. Deer displayed more nuanced responses to other infrastructure, avoiding pads with active production and roads to a greater degree during the day than night. In aggregate, these responses equate to alteration of behavior by human development in over 50% of the critical winter range in our study area during the day and over 25% at night. Compared to other regions, the topographic and vegetative diversity in the study area appear to provide refugia that allow deer to behaviorally mediate some of the impacts of development. This study, and the methods we employed, provides a template for quantifying spatial take by industrial activities in natural areas and the results offer guidance for policy makers, mangers, and industry when attempting to mitigate habitat loss due to energy development. © 2015 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.
Mitigating flood exposure: Reducing disaster risk and trauma signature.
Shultz, James M; McLean, Andrew; Herberman Mash, Holly B; Rosen, Alexa; Kelly, Fiona; Solo-Gabriele, Helena M; Youngs, Georgia A; Jensen, Jessica; Bernal, Oscar; Neria, Yuval
2013-01-01
Introduction. In 2011, following heavy winter snowfall, two cities bordering two rivers in North Dakota, USA faced major flood threats. Flooding was foreseeable and predictable although the extent of risk was uncertain. One community, Fargo, situated in a shallow river basin, successfully mitigated and prevented flooding. For the other community, Minot, located in a deep river valley, prevention was not possible and downtown businesses and one-quarter of the homes were inundated, in the city's worst flood on record. We aimed at contrasting the respective hazards, vulnerabilities, stressors, psychological risk factors, psychosocial consequences, and disaster risk reduction strategies under conditions where flood prevention was, and was not, possible. Methods . We applied the "trauma signature analysis" (TSIG) approach to compare the hazard profiles, identify salient disaster stressors, document the key components of disaster risk reduction response, and examine indicators of community resilience. Results . Two demographically-comparable communities, Fargo and Minot, faced challenging river flood threats and exhibited effective coordination across community sectors. We examined the implementation of disaster risk reduction strategies in situations where coordinated citizen action was able to prevent disaster impact (hazard avoidance) compared to the more common scenario when unpreventable disaster strikes, causing destruction, harm, and distress. Across a range of indicators, it is clear that successful mitigation diminishes both physical and psychological impact, thereby reducing the trauma signature of the event. Conclusion . In contrast to experience of historic flooding in Minot, the city of Fargo succeeded in reducing the trauma signature by way of reducing risk through mitigation.
Shultz, James M; McLean, Andrew; Herberman Mash, Holly B; Rosen, Alexa; Kelly, Fiona; Solo-Gabriele, Helena M; Youngs Jr, Georgia A; Jensen, Jessica; Bernal, Oscar; Neria, Yuval
2013-01-01
Introduction. In 2011, following heavy winter snowfall, two cities bordering two rivers in North Dakota, USA faced major flood threats. Flooding was foreseeable and predictable although the extent of risk was uncertain. One community, Fargo, situated in a shallow river basin, successfully mitigated and prevented flooding. For the other community, Minot, located in a deep river valley, prevention was not possible and downtown businesses and one-quarter of the homes were inundated, in the city’s worst flood on record. We aimed at contrasting the respective hazards, vulnerabilities, stressors, psychological risk factors, psychosocial consequences, and disaster risk reduction strategies under conditions where flood prevention was, and was not, possible. Methods. We applied the “trauma signature analysis” (TSIG) approach to compare the hazard profiles, identify salient disaster stressors, document the key components of disaster risk reduction response, and examine indicators of community resilience. Results. Two demographically-comparable communities, Fargo and Minot, faced challenging river flood threats and exhibited effective coordination across community sectors. We examined the implementation of disaster risk reduction strategies in situations where coordinated citizen action was able to prevent disaster impact (hazard avoidance) compared to the more common scenario when unpreventable disaster strikes, causing destruction, harm, and distress. Across a range of indicators, it is clear that successful mitigation diminishes both physical and psychological impact, thereby reducing the trauma signature of the event. Conclusion. In contrast to experience of historic flooding in Minot, the city of Fargo succeeded in reducing the trauma signature by way of reducing risk through mitigation. PMID:28228985
L-325 Sagebrush Habitat Mitigation Project: FY2009 Compensation Area Monitoring Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Durham, Robin E.; Sackschewsky, Michael R.
2009-09-29
Annual monitoring in support of the Fluor Daniel Hanford Company (Fluor) Mitigation Action Plan (MAP) for Project L-325, Electrical Utility Upgrades was conducted in June 2009. MAP guidelines defined mitigation success for this project as 3000 established sagebrush transplants on a 4.5 ha mitigation site after five monitoring years. Annual monitoring results suggest that an estimated 2130 sagebrush transplants currently grow on the site. Additional activities in support of this project included gathering sagebrush seed and securing a local grower to produce between 2250 and 2500 10-in3 tublings for outplanting during the early winter months of FY2010. If the minimummore » number of seedlings grown for this planting meets quality specifications, and planting conditions are favorable, conservative survival estimates indicate the habitat mitigation goals outlined in the MAP will be met in FY2014.« less
Stephens, Tara; Wilson, Sian C; Cassidy, Ffion; Bender, Darren; Gummer, David; Smith, Des H V; Lloyd, Natasha; McPherson, Jana M; Moehrenschlager, Axel
2018-02-01
Given climate change, species' climatically suitable habitats are increasingly expected to shift poleward. Some imperilled populations towards the poleward edge of their species' range might therefore conceivably benefit from climate change. Interactions between climate and population dynamics may be complex, however, with climate exerting effects both indirectly via influence over food availability and more directly, via effects on physiology and its implications for survival and reproduction. A thorough understanding of these interactions is critical for effective conservation management. We therefore examine the relationship between climate, survival and reproduction in Canadian black-tailed prairie dogs, a threatened keystone species in an imperilled ecosystem at the northern edge of the species' range. Our analyses considered 8 years of annual mark-recapture data (2007-2014) in relation to growing degree days, precipitation, drought status and winter severity, as well as year, sex, age and body mass. Survival was strongly influenced by the interaction of drought and body mass class, and winter temperature severity. Female reproductive status was associated with the interaction of growing degree days and growing season precipitation, with spring precipitation and with winter temperature severity. Results related to body mass suggested that climatic variables exerted their effects via regulation of food availability with potential linked effects of food quality, immunological and behavioural implications, and predation risk. Predictions of future increases in drought conditions in North America's grassland ecosystems have raised concerns for the outlook of Canadian black-tailed prairie dogs. Insights gained from the analyses, however, point to mitigating species management options targeted at decoupling the mechanisms by which climate exerts its negative influence. Our approach highlights the importance of understanding the interaction between climate and population dynamics in peripheral populations whose viability might ultimately determine their species' ability to track climatically suitable space. © 2017 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.
El Nino - La Nina Implications on Flood Hazard Mitigation
DOE Office of Scientific and Technical Information (OSTI.GOV)
R. French; J. Miller
The effects of El Nino and La Nina periods on the maximum daily winter period depths of precipitation are examined using records from five precipitation gages on the Nevada Test Site. The potential implications of these effects are discussed.
W. Mark Ford; Kely N. Mertz; Jennifer M. Menzel; Kenneth K. Sturm
2007-01-01
We radio-tracked two male and one female Virginia northern flying squirrels (Glaucomys sabrinus fuscus) in the Allegheny Mountains of West Virginia at Snowshoe Mountain Resort, in winter 2003 and Canaan Valley National Wildlife Refuge in winter 2004, respectively, to document winter home range and habitat use in or near ski areas. Male home range...
Current range of the eastern population of Painted Bunting (Passerina ciris). Part II: Winter range
Sykes, P.W.; Holzman, S.; Iñigo-Elias, Eduardo E.
2007-01-01
The importance of wintering areas for Neotropical migrants is well established. The wintering range of the eastern population of Painted Bunting (Passerina ciris) is described in detail and presented in maps. The paper also discusses extralimital records from islands in the Caribbean Basin as well as scattered wintering individuals outside the winter range. The possibility of eastern birds wintering on the Yucatan Peninsula and adjacent Central America is considered. An extensive treatment of the protected areas of Peninsular Florida, the northern Bahamas, and Cuba describes the importance of upland habitats within these protected areas for wintering buntings. This information should be useful to land management agencies, conservation organizations, and private landholders for the welfare of the bunting and biodiversity in general and may also be of interest to ornithologists, other biological disciplines, naturalists, and birders.
Attributes of seasonal home range influence choice of migratory strategy in white-tailed deer
Henderson, Charles R.; Mitchell, Michael S.; Myers, Woodrow L.; Lukacs, Paul M.; Nelson, Gerald P.
2018-01-01
Partial migration is a common life-history strategy among ungulates living in seasonal environments. The decision to migrate or remain on a seasonal range may be influenced strongly by access to high-quality habitat. We evaluated the influence of access to winter habitat of high quality on the probability of a female white-tailed deer (Odocoileus virginianus) migrating to a separate summer range and the effects of this decision on survival. We hypothesized that deer with home ranges of low quality in winter would have a high probability of migrating, and that survival of an individual in winter would be influenced by the quality of their home range in winter. We radiocollared 67 female white-tailed deer in 2012 and 2013 in eastern Washington, United States. We estimated home range size in winter using a kernel density estimator; we assumed the size of the home range was inversely proportional to its quality and the proportion of crop land within the home range was proportional to its quality. Odds of migrating from winter ranges increased by 3.1 per unit increase in home range size and decreased by 0.29 per unit increase in the proportion of crop land within a home range. Annual survival rate for migrants was 0.85 (SD = 0.05) and 0.84 (SD = 0.09) for residents. Our finding that an individual with a low-quality home range in winter is likely to migrate to a separate summer range accords with the hypothesis that competition for a limited amount of home ranges of high quality should result in residents having home ranges of higher quality than migrants in populations experiencing density dependence. We hypothesize that density-dependent competition for high-quality home ranges in winter may play a leading role in the selection of migration strategy by female white-tailed deer.
NATURAL BASEMENT VENTILATION AS A RADON MITIGATION TECHNIQUE
The report documents a study of natural basement ventilation in two research houses during both the summer cooling season and the winter heating season. NOTE: Natural basement ventilation has always been recommended as a way to reduce radon levels in houses. However, its efficacy...
a Process-Based Drought Early Warning Indicator for Supporting State Drought Mitigation Decision
NASA Astrophysics Data System (ADS)
Fu, R.; Fernando, D. N.; Pu, B.
2014-12-01
Drought prone states such as Texas requires creditable and actionable drought early warning ranging from seasonal to multi-decadal scales. Such information cannot be simply extracted from the available climate prediction and projections because of their large uncertainties at regional scales and unclear connections to the needs of the decision makers. In particular, current dynamic seasonal predictions and climate projections, such as those produced by the NOAA national multi-models ensemble experiment (NMME) and the IPCC AR5 (CMIP5) models, are much more reliable for winter and spring than for the summer season for the US Southern Plains. They also show little connection between the droughts in winter/spring and those in summer, in contrast to the observed dry memory from spring to summer over that region. To mitigate the weakness of dynamic prediction/projections, we have identified three key processes behind the spring-to-summer dry memory through observational studies. Based on these key processes and related fields, we have developed a multivariate principle component statistical model to provide a probabilistic summer drought early warning indicator, using the observed or predicted climate conditions in winter and spring on seasonal scale and climate projection for the mid-21stcentury. The summer drought early warning indicator is constructed in a similar way to the NOAA probabilistic predictions that are familiar to water resource managers. The indicator skill is assessed using the standard NOAA climate prediction assessment tools, i.e., the two alternative forced choice (2AFC) and the Receiver Operating Characteristic (ROC). Comparison with long-term observations suggest that this summer drought early warning indicator is able to capture nearly all the strong summer droughts and outperform the dynamic prediction in this regard over the US Southern Plains. This early warning indicator has been used by the state water agency in May 2014 in briefing the state drought preparedness council and will be provided to stake holders through the website of the Texas state water planning agency. We will also present the results of our ongoing work on using NASA satellite based soil moisture and vegetation stress measurements to further improve the reliability of the summer drought early warning indicator.
Romera, Alvaro J; Cichota, Rogerio; Beukes, Pierre C; Gregorini, Pablo; Snow, Val O; Vogeler, Iris
2017-01-01
Intensification of pastoral dairy systems often means more nitrogen (N) leaching. A number of mitigation strategies have been proposed to reduce or reverse this trend. The main strategies focus on reducing the urinary N load onto pastures or reducing the rate of nitrification once the urine has been deposited. Restricted grazing is an example of the former and the use of nitrification inhibitors an example of the latter. A relevant concern is the cost effectiveness of these strategies, independently and jointly. To address this concern, we employed a modeling approach to estimate N leaching with and without the use of these mitigation options from a typical grazing dairy farm in New Zealand. Three restricted grazing options were modeled with and without a nitrification inhibitor (dicyandiamide, DCD) and the results were compared with a baseline farm (no restricted grazing, no inhibitor). Applying DCD twice a year, closely following the cows after an autumn and winter grazing round, has the potential to reduce annualized and farm-scale N leaching by ∼12%, whereas restricted grazing had leaching reductions ranging from 23 to 32%, depending on the timing of restricted grazing. Combining the two strategies resulted in leaching reductions of 31 to 40%. The abatement cost per kilogram of N leaching reduction was NZ$50 with DCD, NZ$32 to 37 for restricted grazing, and NZ$40 to 46 when the two were combined. For the range analyzed, all treatments indicated similar cost per percentage unit of mitigated N leaching, demonstrating that restricted grazing and nitrification inhibitors can be effective when used concurrently. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Stream-Groundwater Interaction Buffers Seasonal Changes in Urban Stream Water Quality
NASA Astrophysics Data System (ADS)
Ledford, S. H.; Lautz, L. K.
2013-12-01
Urban streams in the northeastern United States have large road salt inputs during winter, increased nonpoint sources of inorganic nitrogen, and decreased short-term and permanent storage of nutrients. Meadowbrook Creek, a first order stream in Syracuse, New York, flows along a negative urbanization gradient, from a channelized and armored stream running through the middle of a roadway to a pool-riffle stream meandering through a broad, vegetated floodplain with a riparian aquifer. In this study we investigated how reconnection to groundwater and introduction of riparian vegetation impacted surface water chemistry by making bi-weekly longitudinal surveys of stream water chemistry in the creek from May 2012 until June 2013. Chloride concentrations in the upstream, urban reach of Meadowbrook Creek were strongly influenced by discharge of road salt to the creek during snow melt events in winter and by the chemistry of water draining an upstream retention basin in summer. Chloride concentrations ranged from 161.2 mg/L in August to 2172 mg/L in February. Chloride concentrations in the downstream, 'connected' reach had less temporal variation, ranging from 252.0 mg/L in August to 1049 mg/L in January, and were buffered by groundwater discharge, as the groundwater chloride concentrations during the sampling period ranged from 84.0 to 655.4 mg/L. Groundwater discharge resulted in higher chloride concentrations in summer and lower concentrations in winter in the connected reach relative to the urban reach, minimizing annual variation. In summer, there was little-to-no nitrate in the urban reach due to a combination of limited sources and high primary productivity. In contrast, during the summer, nitrate concentrations reached over 1 mg N/L in the connected reach due to the presence of riparian vegetation and lower nitrate uptake due to cooler temperatures and shading. During the winter, when temperatures fell below freezing, nitrate concentrations in the urban reach increased to around 0.58 mg N/L, but were still lower than the connected reach, which averaged 0.88 mg N/L. Groundwater discharge rates were measured longitudinally along the creek during a constant rate Rhodamine WT injection and also confirmed qualitatively by longitudinal changes in stream sulfate and δ18O. The buffering capability of groundwater discharge in urban systems has implications for managers trying to mitigate the effects of urbanization on surface water.
NASA Astrophysics Data System (ADS)
Xiao, Dengpan; Qi, Yongqing; Li, Zhiqiang; Wang, Rende; Moiwo, Juana P.; Liu, Fengshan
2017-03-01
Given climate change can potentially influence crop phenology and subsequent yield, an investigation of relevant adaptation measures could increase the understanding and mitigation of these responses in the future. In this study, field observations at 10 stations in the Huang-Huai-Hai Plain of China (HHHP) are used in combination with the Agricultural Production Systems Simulator (APSIM)-Wheat model to determine the effect of thermal time shift on the phenology and potential yield of wheat from 1981-2009. Warming climate speeds up winter wheat development and thereby decreases the duration of the wheat growth period. However, APSIM-Wheat model simulation suggests prolongation of the period from flowering to maturity (Gr) of winter wheat by 0.2-0.8 d•10yr-1 as the number of days by which maturity advances, which is less than that by which flowering advances. Based on computed thermal time of the two critical growth phases of wheat, total thermal time from floral initiation to flowering (TT_floral_initiation) increasesd in seven out of the 10 investigated stations. Alternatively, total thermal time from the start of grainfilling to maturity (TT_start_ grain_fill) increased in all investigated stations, except Laiyang. It is thus concluded that thermal time shift during the past three decades (1981-2009) prolongs Gr by 0.2-3.0 d•10yr-1 in the study area. This suggests that an increase in thermal time (TT) of the wheat growth period is critical for mitigating the effect of growth period reduction due to warming climatic condition. Furthermore, climate change reduces potential yield of winter wheat in 80% of the stations by 2.3-58.8 kg•yr-1. However, thermal time shift (TTS) increases potential yield of winter wheat in most of the stations by 3.0-51.0 kg•yr-1. It is concluded that wheat cultivars with longer growth periods and higher thermal requirements could mitigate the negative effects of warming climate on crop production in the study area.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doherty, K.E.; Naugle, D.E.; Walker, B.L.
Recent energy development has resulted in rapid and large-scale changes to western shrub-steppe ecosystems without a complete understanding of its potential impacts on wildlife populations. We modeled winter habitat use by female greater sage-grouse (Centrocercus urophasianus) in the Powder River Basin (PRB) of Wyoming and Montana, USA, to 1) identify landscape features that influenced sage-grouse habitat selection, 2) assess the scale at which selection occurred, 3) spatially depict winter habitat quality in a Geographic Information System, and 4) assess the effect of coal-bed natural gas (CBNG) development on winter habitat selection. We developed a model of winter habitat selection basedmore » on 435 aerial relocations of 200 radiomarked female sage-grouse obtained during the winters of 2005 and 2006. Percent sagebrush (Artemisia spp.) cover on the landscape was an important predictor of use by sage-grouse in winter. Sage-grouse were 1.3 times more likely to occupy sagebrush habitats that lacked CBNG wells within a 4-km{sup 2} area, compared to those that had the maximum density of 12.3 wells per 4 km{sup 2} allowed on federal lands. We validated the model with 74 locations from 74 radiomarked individuals obtained during the winters of 2004 and 2007. This winter habitat model based on vegetation, topography, and CBNG avoidance was highly predictive (validation R{sup 2} = 0.984). Our spatially explicit model can be used to identify areas that provide the best remaining habitat for wintering sage-grouse in the PRB to mitigate impacts of energy development.« less
75 FR 57061 - Public Land Order No. 7748; Extension of Public Land Order No. 6797; Wyoming
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-17
... of the Whiskey Mountain Bighorn Sheep Winter Range in Fremont County. DATES: Effective Date... Whiskey Mountain Bighorn Sheep Winter Range. The withdrawal extended by this order will expire on....C. Ch. 2) to protect the Whiskey Mountain Bighorn Sheep Winter Range, is hereby extended for an...
Uher-Koch, Brian D.; Esler, Daniel N.; Iverson, Samuel A.; Ward, David; Boyd, Sean; Kirk, Molly; Lewis, Tyler L.; VanStratt, Corey S.; Brodhead, Katherine M.; Hupp, Jerry W.; Schmutz, Joel A.
2016-01-01
We quantified variation in winter survival of Surf Scoters (Melanitta perspicillata (L., 1758)) across nearly 30° of latitude on the Pacific coast of North America to evaluate potential effects on winter distributions, including observed differential distributions of age and sex classes. We monitored fates of 297 radio-marked Surf Scoters at three study sites: (1) near the northern periphery of their wintering range in southeast Alaska, USA, (2) the range core in British Columbia, Canada, and (3) the southern periphery in Baja California, Mexico. We detected 34 mortalities and determined that survival averaged lower at the range peripheries than in the range core, was lower during mid-winter than during late winter at all sites, and was positively correlated with body mass within locations. Although neither age nor sex class had direct effects, mass effects led to differential survival patterns among classes. When simultaneously incorporating these interacting influences, adult males of mean mass for their location had highest survival at the northern range periphery in Alaska, whereas adult females and juveniles had higher survival at the range core and the southern periphery. Our observations help to explain patterns of differential migration and distribution reported for this species and highlight seasonal periods (mid-winter) and locations (range peripheries) of elevated levels of mortality for demographically important age–sex classes (adult females).
Soil water improvements with the long-term use of a winter rye cover crop
USDA-ARS?s Scientific Manuscript database
The Midwestern United States is projected to experience increasing rainfall variability. One approach to mitigate climate impacts is to utilize crop and soil management practices that enhance soil water storage, reducing the risks of flooding as well as drought-induced crop water stress. While some ...
Soil water improvements with the long-term use of a winter rye cover crop
USDA-ARS?s Scientific Manuscript database
The Midwestern United States, a region that produces one-third of maize and one-quarter of soybeans globally, is projected to experience increasing rainfall variability with future climate change. One approach to mitigate climate impacts is to utilize crop and soil management practices that enhance ...
Winter home-range characteristics of American Marten (Martes americana) in Northern Wisconsin
Joseph B. Dumyahn; Patrick A. Zollner
2007-01-01
We estimated home-range size for American marten (Martes americana) in northern Wisconsin during the winter months of 2001-2004, and compared the proportion of cover-type selection categories (highly used, neutral and avoided) among home-ranges (95% fixed-kernel), core areas (50% fixed-kernel) and the study area. Average winter homerange size was 3....
Arctic sea ice, Eurasia snow, and extreme winter haze in China.
Zou, Yufei; Wang, Yuhang; Zhang, Yuzhong; Koo, Ja-Ho
2017-03-01
The East China Plains (ECP) region experienced the worst haze pollution on record for January in 2013. We show that the unprecedented haze event is due to the extremely poor ventilation conditions, which had not been seen in the preceding three decades. Statistical analysis suggests that the extremely poor ventilation conditions are linked to Arctic sea ice loss in the preceding autumn and extensive boreal snowfall in the earlier winter. We identify the regional circulation mode that leads to extremely poor ventilation over the ECP region. Climate model simulations indicate that boreal cryospheric forcing enhances the regional circulation mode of poor ventilation in the ECP region and provides conducive conditions for extreme haze such as that of 2013. Consequently, extreme haze events in winter will likely occur at a higher frequency in China as a result of the changing boreal cryosphere, posing difficult challenges for winter haze mitigation but providing a strong incentive for greenhouse gas emission reduction.
Arctic sea ice, Eurasia snow, and extreme winter haze in China
Zou, Yufei; Wang, Yuhang; Zhang, Yuzhong; Koo, Ja-Ho
2017-01-01
The East China Plains (ECP) region experienced the worst haze pollution on record for January in 2013. We show that the unprecedented haze event is due to the extremely poor ventilation conditions, which had not been seen in the preceding three decades. Statistical analysis suggests that the extremely poor ventilation conditions are linked to Arctic sea ice loss in the preceding autumn and extensive boreal snowfall in the earlier winter. We identify the regional circulation mode that leads to extremely poor ventilation over the ECP region. Climate model simulations indicate that boreal cryospheric forcing enhances the regional circulation mode of poor ventilation in the ECP region and provides conducive conditions for extreme haze such as that of 2013. Consequently, extreme haze events in winter will likely occur at a higher frequency in China as a result of the changing boreal cryosphere, posing difficult challenges for winter haze mitigation but providing a strong incentive for greenhouse gas emission reduction. PMID:28345056
NASA Astrophysics Data System (ADS)
Zhou, Wei; Lin, Shan; Wu, Lei; Zhao, Jingsong; Wang, Milan; Zhu, Bo; Mo, Yongliang; Hu, Ronggui; Chadwick, Dave; Shaaban, Muhammad
2017-12-01
Winter-flooded paddy is a typical rice-based cropping system to conserve water for the next rice growing season. Conversion of winter-flooded paddy to rice-wheat rotation has been widely adopted with the development of the water conservation infrastructure and the government's encouragement of winter agriculture in China in recent decades. However, the effects of this conversion on N2O emission are still not clear. Three winter-flooded paddy fields were studied in a split-plot design. One-half of each field was converted to rice-wheat rotation (RW), and the other half remained winter-flooded as rice-fallow (RF). Each plot of RW and RF was further divided into four subplots: three subplots for conventional N fertilizer application (RW-NC and RF-NC) and one for unfertilized treatment (RW-N0 and RF-N0). Conversion of RF-NC to RW-NC increased the N2O emission up to 6.6-fold in the first year and 4.4-fold in the second year. Moreover, N2O emissions for the entire wheat season were 1.74-3.74 kg N ha-1 and 0.24-0.31 kg N ha-1 from RW-NC and RW-N0, respectively, and accounted for 78%-94% and 78%-97% of the total annual amount. N2O emitted during the first 11-21 days of the wheat season from RW-NC was 1.48-3.28 kg N ha-1 and that from RW-N0 was 0.14-0.17 kg N ha-1, which contributed to 66%-82% and 45%-71% of the total annual amount, respectively. High N2O fluxes occurred when the soil water-filled pore space (WFPS) was in the range of 68%-72% and the ratio of available carbon to nitrogen in the soil was <1.42. The contribution of WFPS and dissolved organic carbon (DOC) explained most of the variation of the N2O fluxes compared with the other measured environmental and soil factors. These findings suggest that the conversion of winter-flooded paddy to rice-wheat rotation increased N2O emissions that could be mitigated by controlling the soil moisture and ratio of available soil carbon to nitrogen.
Taylor, Peta S; Hemsworth, Paul H; Groves, Peter J; Gebhardt-Henrich, Sabine G; Rault, Jean-Loup
2018-06-01
Little is known about the effect of accessing an outdoor range on chicken welfare. We tracked individual ranging behavior of 538 mixed-sex Ross 308 chickens on a commercial farm across 4 flocks in winter and summer. Before range access, at 17 to 19 d of age, and post-range access, at 30 to 33 and 42 to 46 d of age in winter and summer flocks respectively, welfare indicators were measured on chickens (pre-range: winter N = 292; summer N = 280; post-range: winter N = 131; summer N = 140), including weight, gait score, dermatitis and plumage condition. Post-ranging autopsies were performed (winter: N = 170; summer: N = 60) to assess breast burn, leg health, and ascites. Fewer chickens accessed the range in winter flocks (32.5%) than summer flocks (82.1%). Few relationships between welfare and ranging were identified in winter, likely due to minimal ranging and the earlier age of post-ranging data collection compared to summer flocks. In summer flocks prior to range access, chickens that accessed the range weighed 4.9% less (P = 0.03) than chickens that did not access the range. Pre-ranging weight, gait score, and overall plumage cover predicted the amount of range use by ranging chickens in summer flocks (P < 0.01), but it explained less than 5% of the variation, suggesting other factors are associated with ranging behavior. In summer flocks post-range access, ranging chickens weighed 12.8% less than non-ranging chickens (P < 0.001). More range visits were associated with lower weight (P < 0.01), improved gait scores (P = 0.02), greater breast plumage cover (P = 0.02), lower ascites index (P = 0.01), and less pericardial fluid (P = 0.04). More time spent on the range was associated with lower weight (P < 0.01) and better gait scores (P < 0.01). These results suggest that accessing an outdoor range in summer is partly related to changes in broiler chicken welfare. Further investigations are required to determine causation.
Direct nitrous oxide emissions from rapeseed in Germany
NASA Astrophysics Data System (ADS)
Fuß, Roland; Andres, Monique; Hegewald, Hannes; Kesenheimer, Katharina; Köbke, Sarah; Räbiger, Thomas; Suarez, Teresa; Stichnothe, Heinz; Flessa, Heiner
2014-05-01
The production of first generation biofuels has increased over the last decade in Germany. However, there is a strong public and scientific debate concerning ecological impact and sustainability of biofuel production. The EU Renewables Directive requires biofuels to save 35 % of GHG emissions compared to fossil fuels. Starting in 2017, 50 % mitigation of GHG emissions must be achieved. This presents challenges for production of biofuels from rapeseed, which is one of the major renewable resources used for fuel production. Field emissions of nitrous oxide (N2O) and GHG emissions during production of fertilizers contribute strongest to the GHG balance of rapeseed biofuel. Thus, the most promising GHG mitigation option is the optimization of nitrogen fertilization. Since 2012, field trials are conducted on five German research farms to quantify direct GHG emissions. The sites were selected to represent the main rapeseed production regions in Germany as well as climatic regions and soil types. Randomized plot designs were established, which allow monitoring (using manual chambers) impact of fertilization intensity on direct emissions and yield of the typical crop sequence (winter rape - winter wheat - winter barley). The effect of substituting mineral fertilizer with biogas digestate with and without addition of a nitrification inhibitor is also studied. Here we present results from the first cropping season. In 2013, annual direct N2O emissions as well as yield normalized N2O emissions from rape were low. This can be explained with the weather conditions as 2013 was characterized by a cold and long winter with snow until mid spring. As a result, emissions were smaller than predicted by the IPCC emission factors or by the Global Nitrous Oxide Calculator (GNOC). However, emissions still depend on nitrogen input.
Extreme weather-year sequences have nonadditive effects on environmental nitrogen losses.
Iqbal, Javed; Necpalova, Magdalena; Archontoulis, Sotirios V; Anex, Robert P; Bourguignon, Marie; Herzmann, Daryl; Mitchell, David C; Sawyer, John E; Zhu, Qing; Castellano, Michael J
2018-01-01
The frequency and intensity of extreme weather years, characterized by abnormal precipitation and temperature, are increasing. In isolation, these years have disproportionately large effects on environmental N losses. However, the sequence of extreme weather years (e.g., wet-dry vs. dry-wet) may affect cumulative N losses. We calibrated and validated the DAYCENT ecosystem process model with a comprehensive set of biogeophysical measurements from a corn-soybean rotation managed at three N fertilizer inputs with and without a winter cover crop in Iowa, USA. Our objectives were to determine: (i) how 2-year sequences of extreme weather affect 2-year cumulative N losses across the crop rotation, and (ii) if N fertilizer management and the inclusion of a winter cover crop between corn and soybean mitigate the effect of extreme weather on N losses. Using historical weather (1951-2013), we created nine 2-year scenarios with all possible combinations of the driest ("dry"), wettest ("wet"), and average ("normal") weather years. We analyzed the effects of these scenarios following several consecutive years of relatively normal weather. Compared with the normal-normal 2-year weather scenario, 2-year extreme weather scenarios affected 2-year cumulative NO 3 - leaching (range: -93 to +290%) more than N 2 O emissions (range: -49 to +18%). The 2-year weather scenarios had nonadditive effects on N losses: compared with the normal-normal scenario, the dry-wet sequence decreased 2-year cumulative N 2 O emissions while the wet-dry sequence increased 2-year cumulative N 2 O emissions. Although dry weather decreased NO 3 - leaching and N 2 O emissions in isolation, 2-year cumulative N losses from the wet-dry scenario were greater than the dry-wet scenario. Cover crops reduced the effects of extreme weather on NO 3 - leaching but had a lesser effect on N 2 O emissions. As the frequency of extreme weather is expected to increase, these data suggest that the sequence of interannual weather patterns can be used to develop short-term mitigation strategies that manipulate N fertilizer and crop rotation to maximize crop N uptake while reducing environmental N losses. © 2017 John Wiley & Sons Ltd.
Winter Precipitation Forecast in the European and Mediterranean Regions Using Cluster Analysis
NASA Astrophysics Data System (ADS)
Totz, Sonja; Tziperman, Eli; Coumou, Dim; Pfeiffer, Karl; Cohen, Judah
2017-12-01
The European climate is changing under global warming, and especially the Mediterranean region has been identified as a hot spot for climate change with climate models projecting a reduction in winter rainfall and a very pronounced increase in summertime heat waves. These trends are already detectable over the historic period. Hence, it is beneficial to forecast seasonal droughts well in advance so that water managers and stakeholders can prepare to mitigate deleterious impacts. We developed a new cluster-based empirical forecast method to predict precipitation anomalies in winter. This algorithm considers not only the strength but also the pattern of the precursors. We compare our algorithm with dynamic forecast models and a canonical correlation analysis-based prediction method demonstrating that our prediction method performs better in terms of time and pattern correlation in the Mediterranean and European regions.
Mountain big sagebrush age distribution and relationships on the northern Yellowstone Winter Range
Carl L. Wambolt; Trista L. Hoffman
2001-01-01
This study was conducted within the Gardiner Basin, an especially critical wintering area for native ungulates utilizing the Northern Yellowstone Winter Range. Mountain big sagebrush plants on 33 sites were classified as large (≥22 cm canopy cover), small (
Winter distribution of willow flycatcher subspecies
Paxton, E.H.; Unitt, P.; Sogge, M.K.; Whitfield, M.; Keim, P.
2011-01-01
Documenting how different regions across a species' breeding and nonbreeding range are linked via migratory movements is the first step in understanding how events in one region can influence events in others and is critical to identifying conservation threats throughout a migratory animal's annual cycle. We combined two studies that evaluated migratory connectivity in the Willow Flycatcher (Empidonax traillii), one using mitochondrial DNA sequences from 172 flycatchers sampled throughout their winter range, and another which examined morphological characteristics of 68 museum specimens collected in the winter range. Our results indicate that the four subspecies occupy distinct but overlapping regions of the winter range. Connectivity between specific breeding and winter grounds appears to be moderate to strong, with distributions that suggest migration patterns of both the chain and leap-frog types connecting the breeding and nonbreeding grounds. The Pacific lowlands of Costa Rica appear to be a key winter location for the endangered Southwestern Willow Flycatcher (E. t. extimus), although other countries in Central America may also be important for the subspecies. ?? The Cooper Ornithological Society 2011.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-23
... soundscapes, visitor use and experience, and park operations. Impacts associated with each of the alternatives..., soundscapes, and health and safety, were used in formulating the alternatives in the Plan/SEIS. Applies the... To mitigate impacts to wildlife, air quality, natural soundscapes, and visitor and employee safety...
Hoy, Sarah R; Peterson, Rolf O; Vucetich, John A
2018-06-01
Despite the importance of body size for individual fitness, population dynamics and community dynamics, the influence of climate change on growth and body size is inadequately understood, particularly for long-lived vertebrates. Although temporal trends in body size have been documented, it remains unclear whether these changes represent the adverse impact of climate change (environmental stress constraining phenotypes) or its mitigation (via phenotypic plasticity or evolution). Concerns have also been raised about whether climate change is indeed the causal agent of these phenotypic shifts, given the length of time-series analysed and that studies often do not evaluate - and thereby sufficiently rule out - other potential causes. Here, we evaluate evidence for climate-related changes in adult body size (indexed by skull size) over a 4-decade period for a population of moose (Alces alces) near the southern limit of their range whilst also considering changes in density, predation, and human activities. In particular, we document: (i) a trend of increasing winter temperatures and concurrent decline in skull size (decline of 19% for males and 13% for females) and (ii) evidence of a negative relationship between skull size and winter temperatures during the first year of life. These patterns could be plausibly interpreted as an adaptive phenotypic response to climate warming given that latitudinal/temperature clines are often accepted as evidence of adaptation to local climate. However, we also observed: (iii) that moose with smaller skulls had shorter lifespans, (iv) a reduction in lifespan over the 4-decade study period, and (v) a negative relationship between lifespan and winter temperatures during the first year of life. Those observations indicate that this phenotypic change is not an adaptive response to climate change. However, this decline in lifespan was not accompanied by an obvious change in population dynamics, suggesting that climate change may affect population dynamics and life-histories differently. © 2017 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Agrawal, Kajli
The space weather phenomenon involves the Sun, interplanetary space and the Earth. Different space weather conditions have diverse effects on the various layers of the Earth's atmosphere Technological advancements have created a situation in which human civilization is not only dependent on resources from deep inside the Earth, but also on the upper atmosphere and outer space region. Therefore, it is essential to improve the understanding of the impacts of space weather conditions on the ionosphere. This research focuses on the variation of total electron content (TEC) and the electron density within the E-region of the ionosphere, which extends from 80-150 km above the surface of the Earth, using radio occultation measurements obtained by COSMIC satellites and using Ionospheric Data Assimilation Four-Dimensional algorithm (IDA4D) which is used to mitigate the effects of F-region in the E-region estimation (Bust, Garner, & Gaussiran, 2004). E-region TEC and the electron density estimation for geomagnetic latitude range of 45°--80°, geomagnetic longitude range of -180°--180° and 1800--0600 MLT (magnetic local time) are presented for two active and two quiet days during winter solstice 2007. Active and quiet days are identified based on the Kp index values. Some of the important findings are (1) E-region electron peak density is higher during active days than during quiet days, and (2) during both types of days, higher density values were found at the magnetic latitude of >60° early morning MLT. Prominent E-region features (TEC and electron density) were observed during most active days over the magnetic latitude range of 60°-70° at ~02:00 MLT.
Assessing impacts of oil-shale development on the Piceance Basin mule deer herd
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, G.C.; Garrott, R.A.
Development of energy resources on big game ranges generally negatively impacts these important wildlife resources. Although habitat disturbance is generally important, this impact is overshadowed by the negative impacts due to an increasing human population in the area. Increased human activities particularly stress animals during winter periods when inadequate nutrition levels may have already severely impacted the population. Increased road traffic and poaching causes additional deaths, which a decline in survival rates expected, or at least changes in the cause of mortality. This paper describes the experimental design to monitor and mitigate the impact of oil shale development in northwesternmore » Colorado on the Piceance Basin mule deer herd. Biotelemetry techniques are used to measure changes through time in movements, habitat utilization, and survival rates between control and treatment areas. 2 figures.« less
Global environmental effects of impact-generated aerosols: Results from a general circulation model
NASA Technical Reports Server (NTRS)
Covey, C.; Ghan, S. J.; Weissman, Paul R.
1988-01-01
Cooling and darkening at Earth's surface are expected to result from the interception of sunlight by the high altitude worldwide dust cloud generated by impact of a large asteroid or comet, according to the one-dimensional radioactive-convective atmospheric model (RCM) of Pollack et al. An analogous three-dimensional general circulation model (GCM) simulation obtains the same basic result as the RCM but there are important differences in detail. In the GCM simulation the heat capacity of the oceans, not included in the RCM, substantially mitigates land surface cooling. On the other hand, the GCM's low heat capacity surface allows surface temperatures to drop much more rapidly than reported by Pollack et al. These two differences between RCM and GCM simulations were noted previously in studies of nuclear winter; GCM results for comet/asteroid winter, however, are much more severe than for nuclear winter because the assumed aerosol amount is large enough to intercept all sunlight falling on Earth. In the simulation the global average of land surface temperature drops to the freezing point in just 4.5 days, one-tenth the time required in the Pollack et al. simulation. In addition to the standard case of Pollack et al., which represents the collision of a 10-km diameter asteroid with Earth, additional scenarios are considered ranging from the statistically more frequent impacts of smaller asteroids to the collision of Halley's comet with Earth. In the latter case the kinetic energy of impact is extremely large due to the head-on collision resulting from Halley's retrograde orbit.
Marasco, Daniel E; Hunter, Betsy N; Culligan, Patricia J; Gaffin, Stuart R; McGillis, Wade R
2014-09-02
Quantifying green roof evapotranspiration (ET) in urban climates is important for assessing environmental benefits, including stormwater runoff attenuation and urban heat island mitigation. In this study, a dynamic chamber method was developed to quantify ET on two extensive green roofs located in New York City, NY. Hourly chamber measurements taken from July 2009 to December 2009 and April 2012 to October 2013 illustrate both diurnal and seasonal variations in ET. Observed monthly total ET depth ranged from 0.22 cm in winter to 15.36 cm in summer. Chamber results were compared to two predictive methods for estimating ET; namely the Penman-based ASCE Standardized Reference Evapotranspiration (ASCE RET) equation, and an energy balance model, both parametrized using on-site environmental conditions. Dynamic chamber ET results were similar to ASCE RET estimates; however, the ASCE RET equation overestimated bottommost ET values during the winter months, and underestimated peak ET values during the summer months. The energy balance method was shown to underestimate ET compared the ASCE RET equation. The work highlights the utility of the chamber method for quantifying green roof evapotranspiration and indicates green roof ET might be better estimated by Penman-based evapotranspiration equations than energy balance methods.
Mule deer and elk winter diet as an indicator of habitat competition
Michael R. Frisina; Carl L. Wambolt; W. Wyatt Fraas; Glen Guenther
2008-01-01
Mule deer (Odocoileus hemionus) populations have gradually declined in recent decades, while elk (Cervus elaphus) have often increased throughout their common ranges. The cause is uncertain and a source of debate. Increasing elk numbers on these ungulate winter ranges may be causing competition for resources. We contrast winter...
Paxton, Eben H.; Unitt, Philip; Sogge, Mark K.; Whitfield, Mary; Keim, Paul
2011-01-01
Documenting how different regions across a species' breeding and nonbreeding range are linked via migratory movements is the first step in understanding how events in one region can influence events in others and is critical to identifying conservation threats throughout a migratory animal's annual cycle. We combined two studies that evaluated migratory connectivity in the Willow Flycatcher (Empidonax traillii), one using mitochondrial DNA sequences from 172 flycatchers sampled throughout their winter range, and another which examined morphological characteristics of 68 museum specimens collected in the winter range. Our results indicate that the four subspecies occupy distinct but overlapping regions of the winter range. Connectivity between specific breeding and winter grounds appears to be moderate to strong, with distributions that suggest migration patterns of both the chain and leap-frog types connecting the breeding and nonbreeding grounds. The Pacific lowlands of Costa Rica appear to be a key winter location for the endangered Southwestern Willow Flycatcher (E. t. extimus), although other countries in Central America may also be important for the subspecies.
El Niño-Southern Oscillation Impacts on Winter Vegetable Production in Florida*.
NASA Astrophysics Data System (ADS)
Hansen, James W.; Jones, James W.; Kiker, Clyde F.; Hodges, Alan W.
1999-01-01
Florida's mild winters allow the state to play a vital role in supplying fresh vegetables for U.S. consumers. Producers also benefit from premium prices when low temperatures prevent production in most of the country. This study characterizes the influence of the El Niño-Southern Oscillation (ENSO) on the Florida vegetable industry using statistical analysis of the response of historical crop (yield, prices, production, and value) and weather variables (freeze hazard, temperatures, rainfall, and solar radiation) to ENSO phase and its interaction with location and time of year. Annual mean yields showed little evidence of response to ENSO phase and its interaction with location. ENSO phase and season interacted to influence quarterly yields, prices, production, and value. Yields (tomato, bell pepper, sweet corn, and snap bean) were lower and prices (bell pepper and snap bean) were higher in El Niño than in neutral or La Niña winters. Production and value of tomatoes were higher in La Niña winters. The yield response can be explained by increased rainfall, reduced daily maximum temperatures, and reduced solar radiation in El Niño winters. Yield and production of winter vegetables appeared to be less responsive to ENSO phase after 1980; for tomato and bell pepper, this may be due to improvements in production technology that mitigate problems associated with excess rainfall. Winter yield and price responses to El Niño events have important implications for both producers and consumers of winter vegetables, and suggest opportunities for further research.
NASA Astrophysics Data System (ADS)
Yang, Xiaolin; Chen, Yuanquan; Pacenka, Steven; Gao, Wangsheng; Ma, Li; Wang, Guangya; Yan, Peng; Sui, Peng; Steenhuis, Tammo S.
2015-03-01
Water shortage is the major bottleneck that limits sustainable yield of agriculture in the North China Plain. Due to the over-exploitation of groundwater for irrigating the winter wheat-summer maize double cropping systems, a groundwater crisis is becoming increasingly serious. To help identify more efficient and sustainable utilization of the limited water resources, the water consumption and water use efficiency of five irrigated cropping systems were calculated and the effect of cropping systems on groundwater table changes was estimated based on a long term field experiment from 2003 to 2013 in the North China Plain interpreted using a soil-water-balance model. The five cropping systems included sweet potato → cotton → sweet potato → winter wheat-summer maize (SpCSpWS, 4-year cycle), ryegrass-cotton → peanuts → winter wheat-summer maize (RCPWS, 3-year cycle), peanuts → winter wheat-summer maize (PWS, 2-year cycle), winter wheat-summer maize (WS, 1-year cycle), and continuous cotton (Cont C). The five cropping systems had a wide range of annual average actual evapotranspiration (ETa): Cont C (533 mm/year) < SpCSpWS (556 mm/year) < PWS (615 mm/year) < RCPWS (650 mm/year) < WS rotation (734 mm/year). The sequence of the simulated annual average groundwater decline due to the five cropping systems was WS (1.1 m/year) > RCPWS (0.7 m/year) > PWS (0.6 m/year) > SPCSPWS and Cont C (0.4 m/year). The annual average economic output water use efficiency (WUEe) increased in the order SpCSpWS (11.6 yuan ¥ m-3) > RCPWS (9.0 ¥ m-3) > PWS (7.3 ¥ m-3) > WS (6.8 ¥ m-3) > Cont C (5.6 ¥ m-3) from 2003 to 2013. Results strongly suggest that diversifying crop rotations could play a critically important role in mitigating the over-exploitation of the groundwater, while ensuring the food security or boosting the income of farmers in the North China Plain.
Barriers to wheelchair use in the winter.
Ripat, Jacquie D; Brown, Cara L; Ethans, Karen D
2015-06-01
To test the hypothesis that challenges to community participation posed by winter weather are greater for individuals who use scooters, manual and power wheelchairs (wheeled mobility devices [WMDs]) than for the general ambulatory population, and to determine what WMD users identify as the most salient environmental barriers to community participation during the winter. Cross-sectional survey organized around 5 environmental domains: technological, natural, physical, social/attitudinal, and policy. Urban community in Canada. Convenience sample of WMD users or their proxy (N=99). Not applicable. Not applicable. Forty-two percent identified reduced outing frequency in winter months, associated with increased age (χ(3)=6.4, P=.04), lack of access to family/friends for transportation (χ(2)=8.1, P=.04), and primary type of WMD used in the winter (scooter χ(2)=8.8, P=.003). Most reported tires/casters becoming stuck in the snow (95%) or slipping on the ice (91%), difficulty ascending inclines/ramps (92%), and cold hands while using controls or pushing rims (85%); fewer identified frozen wheelchair/scooter batteries, seat cushions/backrests, or electronics. Sidewalks/roads were reported to be problematic by 99%. Eighty percent reported needing additional help in the winter. Limited community access in winter led to a sense of loneliness/isolation, and fear/anxiety related to safety. Respondents identified policies that limited participation during winter. People who use WMDs decrease their community participation in cold weather because of multiple environmental barriers. Clinicians, researchers, and policymakers can take a multidimensional approach to mitigate these barriers in order to enhance community participation by WMD users in winter. Copyright © 2015 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Effects of fire and emergency seeding on hillslope erosion in southern California chaparral
Pete Wohlgemuth; Jan Beyers; C.D. Wakeman; S.G. Conard
2002-01-01
Catastrophic wildfires can set the stage for massive postfire erosion and sedimentation in southern California chaparral ecosystems with the onset of heavy winter rainstorms. As a mitigation measure, land managers have typically used grass seeding as a standard emergency rehabilitation technique. However, the effectiveness of grass seeding as a watershed protection...
USDA-ARS?s Scientific Manuscript database
Biofuel production from plant biomass seems to be a suitable solution to mitigate fossil fuel use and reduce greenhouse gas emissions. Cellulosic biomass seems to be a promising alternative renewable source of energy. The main components of plant material are cellulose, hemicellulose, lignin, ash, p...
Seasonal Variation in Abundance and Diversity of Bacterial Methanotrophs in Five Temperate Lakes
Samad, Md Sainur; Bertilsson, Stefan
2017-01-01
Lakes are significant sources of methane (CH4) to the atmosphere. Within these systems, methanotrophs consume CH4 and act as a potential biofilter mitigating the emission of this potent greenhouse gas. However, it is still not well understood how spatial and temporal variation in environmental parameters influence the abundance, diversity, and community structure of methanotrophs in lakes. To address this gap in knowledge, we collected water samples from three depths (surface, middle, and bottom) representing oxic to suboxic or anoxic zones of five different Swedish lakes in winter (ice-covered) and summer. Methanotroph abundance was determined by quantitative real time polymerase chain reaction and a comparison to environmental variables showed that temperature, season as well as depth, phosphate concentration, dissolved oxygen, and CH4 explained the observed variation in methanotroph abundance. Due to minimal differences in methane concentrations (0.19 and 0.29 μM for summer and winter, respectively), only a weak and even negative correlation was observed between CH4 and methanotrophs, which was possibly due to usage of CH4. Methanotrophs were present at concentrations ranging from 105 to 106 copies/l throughout the oxic (surface) and suboxic/anoxic (bottom) water mass of the lakes, but always contributed less than 1.3% to the total microbial community. Relative methanotroph abundance was significantly higher in winter than in summer and consistently increased with depth in the lakes. Phylogenetic analysis of pmoA genes in two clone libraries from two of the ice-covered lakes (Ekoln and Ramsen) separated the methanotrophs into five distinct clusters of Methylobacter sp. (Type I). Terminal restriction fragment length polymorphism analysis of the pmoA gene further revealed significant differences in methanotrophic communities between lakes as well as between winter and summer while there were no significant differences between water layers. The study provides new insights into diversity, abundance, community composition and spatial as well as temporal distribution of freshwater methanotrophs in low-methane dimictic lakes. PMID:28217121
Assessment of simulated and projected climate change in Pakistan using IPCC AR4-based AOGCMs
NASA Astrophysics Data System (ADS)
Saeed, F.; Athar, H.
2017-11-01
A detailed spatio-temporal assessment of two basic climatic parameters (temperature and precipitation) is carried out using 22 Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC AR4)-based atmospheric oceanic general circulation models (AOGCMs) over data-sparse and climatically vulnerable region of Pakistan (20°-37° N and 60°-78° E), for the first time, for the baseline period (1975-1999), as well as for the three projected periods during the twenty-first century centered at 2025-2049, 2050-2074, and 2075-2099, respectively, both on seasonal and on annual bases, under three Special Report on Emission Scenarios (SRES): A2, A1B, and B1. An ensemble-based approach consisting of the IPCC AR4-based AOGCMs indicates that during the winter season (from December to March), 66% of the models display robust projected increase of winter precipitation by about 10% relative to the baseline period, irrespective of emission scenario and projection period, in the upper northern subregion of Pakistan (latitude > 35° N). The projected robust changes in the temperature by the end of twenty-first century are in the range of 3 to 4 ° C during the winter season and on an annual basis, in the central and western regions of Punjab province, especially in A2 and A1B emission scenarios. In particular, the IPCC AR4 models project a progressive increase in temperature throughout Pakistan, in contrast to spatial distribution of precipitation, where spatially less uniform and robust results for projected periods are obtained on sign of change. In general, changes in both precipitation and temperature are larger in the summer season (JAS) as compared to the winter season in the coming decades, relative to the baseline period. This may require comprehensive long-term strategic policies to adapt and mitigate climate change in Pakistan, in comparison to what is currently envisaged.
Mule deer and energy development-Long-term trends of habituation and abundance.
Sawyer, Hall; Korfanta, Nicole M; Nielson, Ryan M; Monteith, Kevin L; Strickland, Dale
2017-11-01
As the extent and intensity of energy development in North America increases, so do disturbances to wildlife and the habitats they rely upon. Impacts to mule deer are of particular concern because some of the largest gas fields in the USA overlap critical winter ranges. Short-term studies of 2-3 years have shown that mule deer and other ungulates avoid energy infrastructure; however, there remains a common perception that ungulates habituate to energy development, and thus, the potential for a demographic effect is low. We used telemetry data from 187 individual deer across a 17-year period, including 2 years predevelopment and 15 years during development, to determine whether mule deer habituated to natural gas development and if their response to disturbance varied with winter severity. Concurrently, we measured abundance of mule deer to indirectly link behavior with demography. Mule deer consistently avoided energy infrastructure through the 15-year period of development and used habitats that were an average of 913 m further from well pads compared with predevelopment patterns of habitat use. Even during the last 3 years of study, when most wells were in production and reclamation efforts underway, mule deer remained >1 km away from well pads. The magnitude of avoidance behavior, however, was mediated by winter severity, where aversion to well pads decreased as winter severity increased. Mule deer abundance declined by 36% during the development period, despite aggressive onsite mitigation efforts (e.g. directional drilling and liquid gathering systems) and a 45% reduction in deer harvest. Our results indicate behavioral effects of energy development on mule deer are long term and may affect population abundance by displacing animals and thereby functionally reducing the amount of available habitat. © 2017 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.
Diffuse migratory connectivity in two species of shrubland birds: evidence from stable isotopes
Knick, Steven T.; Leu, Matthias; Rotenberry, John T.; Hanser, Steven E.; Fesenmyer, Kurt
2014-01-01
Connecting seasonal ranges of migratory birds is important for understanding the annual template of stressors that influence their populations. Brewer’s sparrows (Spizella breweri) and sagebrush sparrows (Artemisiospiza nevadensis) share similar sagebrush (Artemisia spp.) habitats for breeding but have different population trends that might be related to winter location. To link breeding and winter ranges, we created isoscapes of deuterium [stable isotope ratio (δ) of deuterium; δ2H] and nitrogen (δ15N) for each species modeled from isotope ratios measured in feathers of 264 Brewer’s and 82 sagebrush sparrows and environmental characteristics at capture locations across their breeding range. We then used feather δ2Hf and δ15Nf measured in 1,029 Brewer’s and 527 sagebrush sparrows captured on winter locations in southwestern United States to assign probable breeding ranges. Intraspecies population mixing from across the breeding range was strong for both Brewer’s and sagebrush sparrows on winter ranges. Brewer’s sparrows but not sagebrush sparrows were linked to more northerly breeding locations in the eastern part of their winter range. Winter location was not related to breeding population trends estimated from US Geological Survey Breeding Bird Survey routes for either Brewer’s or sagebrush sparrows. Primary drivers of population dynamics are likely independent for each species; Brewer’s and sagebrush sparrows captured at the same winter location did not share predicted breeding locations or population trends. The diffuse migratory connectivity displayed by Brewer’s and sagebrush sparrows measured at the coarse spatial resolution in our analysis also suggests that local environments rather than broad regional characteristics are primary drivers of annual population trends.
Salt as a mitigation option for decreasing nitrogen leaching losses from grazed pastures.
Ledgard, Stewart F; Welten, Brendon; Betteridge, Keith
2015-12-01
The main source of nitrogen (N) leaching from grazed pastures is animal urine with a high N deposition rate (i.e. per urine patch), particularly between late summer and early winter. Salt is a potential mitigation option as a diuretic to induce greater drinking-water intake, increase urination frequency, decrease urine N concentration and urine N deposition rate, and thereby potentially decrease N leaching. This hypothesis was tested in three phases: a cattle metabolism stall study to examine effects of salt supplementation rate on water consumption, urination frequency and urine N concentration; a grazing trial to assess effects of salt (150 g per heifer per day) on urination frequency; and a lysimeter study on effects of urine N rate on N leaching. Salt supplementation increased cattle water intake. Urination frequency increased by up to 69%, with a similar decrease in urine N deposition rate and no change in individual urination volume. Under field grazing, sensors showed increased urination frequency by 17%. Lysimeter studies showed a proportionally greater decrease in N leaching with decreased urine N rate. Modelling revealed that this could decrease per-hectare N leaching by 10-22%. Salt supplementation increases cattle water intake and urination frequency, resulting in a lower urine N deposition rate and proportionally greater decrease in urine N leaching. Strategic salt supplementation in autumn/early winter with feed is a practical mitigation option to decrease N leaching in grazed pastures. © 2015 Society of Chemical Industry.
Weather severity index on a mule deer winter range. [Odocoileus hemionus hemionus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leckenby, D.A.; Adams, A.W.
1986-05-01
Temperature, wind, and snow conditions predictably affect the nutrition, behavior, distribution, productivity, and mortality of free-ranging cattle and big game in winter. Indexing of data obtained with commonly available weather instruments to reflect episodes of positive and negative energy balances of free-ranging ruminants could aid scheduling of feeding programs and planning of cover-forage manipulations. Such a weather severity index was developed and tested over 11 winters. Plausible levels of stress and episodes of relative severity were depicted during winters when mule deer exhibited low, moderate, and high mortality. The index curves mirrored over-winter declines of fat reserves probably sustained bymore » mule deer. Lesser weather severity was predicted and measured in a western juniper woodland than in an adjacent rabbitbrush steppe community in southcentral Oregon. 32 references, 3 figures, 2 tables.« less
Physiological responses of Yellowstone bison to winter nutritional deprivation
DelGiudice, Glenn D.; Singer, Francis J.; Seal, Ulysses S.; Bowser, Gillian
1994-01-01
Because nutrition is critically related to other aspects of bison (Bison bison) ecology, and the winter ranges inhabited by bison in Yellowstone National Park (YNP) are ecologically diverse, it was important to determine if nutritional deprivation differences occurred among winter ranges. We used chemistry profiles of urine suspended in snow to compare nutritional deprivation of bison from January to April 1988 on 4 sampling areas of 3 winter ranges in YNP. Declining (P < 0.001) trends of urinary potassium: creatinine ratios in bison on all 4 sampling areas indicated progressive nutritional deprivation through late March. Concurrent increases (P ≤ 0.001) in mean urea nitrogen: creatinine ratios from late February through late march in 3 of 4 areas suggested that increased net catabolism was occurring. Diminished creatinine ratios of sodium and phosphorus reflected low dietary intake of these minerals throughout winter. Mean values and trends of urinary characteristics indicated nutritional deprivation varied among 3 winter ranges in YNP. Continued physiological monitoring of nutritional deprivation, along with detailed examination of other aspects of the bison's ecology, will provide greater insight into the role of ungulate nutrition in the dynamics of such a complex system and improve management.
Social perceptions versus meteorological observations of snow and winter along the Front Range
NASA Astrophysics Data System (ADS)
Milligan, William James, IV
This research aims to increase understanding of Front Range residents' perceptions of snow, winter and hydrologic events. This study also investigates how an individual's characteristics may shape perceptions of winter weather and climate. A survey was administered to determine if perceptions of previous winters align with observed meteorological data. The survey also investigated how individual characteristics influence perceptions of snow and winter weather. The survey was conducted primarily along the Front Range area of the state of Colorado in the United States of America. This is a highly populated semi-arid region that acts as an interface between the agricultural plains to the east that extend to the Mississippi River and the Rocky Mountains to the west. The climate is continental, and while many people recreate in the snowy areas of the mountains, most live where annual snowfall amounts are low. Precipitation, temperature, and wind speed datasets from selected weather stations were analyzed to determine correct survey responses. Survey analysis revealed that perceptions of previous winters do not necessarily align with observed meteorological data. The mean percentage of correct responses to all survey questions was 36.8%. Further analysis revealed that some individual characteristics (e.g. winter recreation, source of winter weather information) did influence correct responses to survey questions.
Using age of colonizing douglas-fir for the dating of young geomorphic surfaces: a case study
Pierson, Thomas C.
2013-01-01
Dating of many types of young (<500 year), dynamic, geomorphic landforms (e.g. mass-movement erosional tracks and deposits, alluvial terraces, flood plains, etc.) for purposes of hazard assessment and mitigation commonly requires greater dating precision than is available through radiocarbon dating or other methods. Ages of trees growing on landform surfaces have been used in a number of studies to estimate the time of landform creation or surface clearing, but the time lag between surface formation or disturbance and the reestablishment of trees can vary from 1 to more than 200 years (Desloges and Ryder 1990; Frenzen et al. 1988, 2005; Larsen and Bliss 1998; McCarthy and Luckman 1993; Sigafoos and Hendricks 1969; Winter et al. 2002). Appropriate lag times for selected tree species and for particular climatic and altitudinal ranges must be determined for the method to be useful.
Behm, Jocelyn E.; Wang, Lin; Huang, Yong; Long, Yongcheng; Zhu, Jianguo
2011-01-01
Environmental factors that affect spatiotemporal distribution patterns of animals usually include resource availability, temperature, and the risk of predation. However, they do not explain the counterintuitive preference of high elevation range in winter by the black-and-white snub-nosed monkey (Rhinopithecus bieti). We asked whether variation of sunshine along with elevations is the key driving force. To test this hypothesis, we conducted field surveys to demonstrate that there was a statistically significant pattern of high elevation use during winter. We then asked whether this pattern can be explained by certain environmental factors, namely temperature, sunshine duration and solar radiation. Finally, we concluded with a possible ecological mechanism for this pattern. In this study, we employed GIS technology to quantify solar radiation and sunshine duration across the monkey's range. Our results showed that: 1) R. bieti used the high altitude range between 4100–4400 m in winter although the yearly home range spanned from 3500–4500 m; 2) both solar radiation and sunshine duration increased with elevation while temperature decreased with elevation; 3) within the winter range, the use of range was significantly correlated with solar radiation and sunshine duration; 4) monkeys moved to the areas with high solar radiation and duration following a snowfall, where the snow melts faster and food is exposed earlier. We concluded that sunshine was the main factor that influences selection of high elevation habitat for R. bieti in winter. Since some other endotherms in the area exhibit similar winter distributional patterns, we developed a sunshine hypothesis to explain this phenomenon. In addition, our work also represented a new method of integrating GIS models into traditional field ecology research to study spatiotemporal distribution pattern of wildlife. We suggest that further theoretical and empirical studies are necessary for better understanding of sunshine influence on wildlife range use. PMID:21915329
Arteca, Ellen M.; Newman, Jonathan A.
2017-01-01
D. suzukii is a relatively recent and destructive pest species to the North American soft-skinned fruit industry. Understanding this species’ potential to shift in abundance and range due to changing climate is an important part of an effective mitigation and management strategy. We parameterized a temperature-driven D. suzukii population dynamics model using temperature data derived from several Global Circulation Models (CMIP5) with a range of relative concentration pathway (RCP) predictions. Mean consensus between the models suggest that without adaptation to both higher prolonged temperatures and higher short-term temperature events D. suzukii population levels are likely to drop in currently higher-risk regions. The potential drop in population is evident both as time progresses and as the severity of the RCP scenario increases. Some regions, particularly in northern latitudes, may experience increased populations due to milder winter and more developmentally-ideal summer conditions, but many of these regions are not currently known for soft-skinned fruit production and so the effects of this population increase may not have a significant impact. PMID:28396828
Joseph L. Ganey; William M. Block
2005-01-01
We summarized existing knowledge on winter movements and range and habitat use of radio-marked Mexican spotted owls. In light of that information, we evaluated the adequacy of current management guidelines. Seasonal movement or "migration" appears to be a regular feature of the winter ecology of Mexican spotted owls. Most radio-marked owls studied were...
Winter habitat selection patterns of Merriam's turkeys in the southern Black Hills, South Dakota
Chad P. Lehman; Mark A. Rumble; Lester D. Flake
2007-01-01
In northern areas of their expanded range, information on Merriam's turkeys (Meleagris gallopavo merriami) is lacking, specifically pertaining to wintering behavior and factors associated with winter habitat selection. Forest managers need detailed quantification of the effects of logging and other management practices on wintering habitats...
USDA-ARS?s Scientific Manuscript database
Heifers grazing winter range require supplemental nutrients to compliment dormant forage to achieve optimal growth and performance. A study was conducted to evaluate nutritional environment and effect of different supplementation strategies for developing heifers grazing dormant winter range. Eigh...
Maherchandani, Sunil; Shringi, B. N.; Kashyap, Sudhir Kumar
2018-01-01
ABSTRACT Aims: Multiple antimicrobial resistance in Escherichia coli of wild vertebrates is a global concern with scarce assessments on the subject from developing countries that have high human-wild species interactions. We studied the ecology of E. coli in a wintering population of Egyptian Vultures in India to understand temporal changes in both E. coli strains and patterns of antimicrobial resistance. Methods and Results: We ribotyped E. coli strains and assessed antimicrobial resistance from wintering vultures at a highly synanthropic carcass dump in north-west India. Both E. coli occurence (90.32%) and resistance to multiple antimicrobials (71.43%) were very high. Clear temporal patterns were apparent. Diversity of strains changed and homogenized at the end of the Vultures’ wintering period, while the resistance pattern showed significantly difference inter-annually, as well as between arrival and departing individuals within a wintering cycle. Significance of study: The carcass dump environment altered both E. coli strains and multiple antimicrobial resistance in migratory Egyptian Vultures within a season. Long-distance migratory species could therefore disseminate resistant E. coli strains across broad geographical scales rendering regional mitigation strategies to control multiple antimicrobial resistance in bacteria ineffective. PMID:29755700
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watson, Katheryn A.; Boal, Clint W.; Groen, Laurie M.
Swainson’s hawks (Buteo swainsoni) are a long-distance migratory species that breed in western North America and winter in Argentina. As a grassland species, they can also be found in agricultural settings, such as croplands and pastures. Wind energy is expanding rapidly across the breeding range of the population we chose to study, and we suspect the industry is also expanding in their wintering range and across the migratory pathway. Wind turbines pose a threat to birds, and migratory species may be especially susceptible to turbine-related mortality when these structures are placed in important migratory pathways. The purposes of this longtermmore » study were to examine potential threats that wind energy might pose to Swainson’s hawks on the breeding range, wintering range, and during migration, add to the body of ecological knowledge on migration and wintering habits, and describe breeding habits in a portion of their range that is relatively understudied.« less
Seasonal variation in the range areas of the diurnal rodent Octodon degus
Quirici, Verónica; Castro, Rodrigo A.; Ortiz-Tolhuysen, Liliana; Chesh, Adrian S.; Burger, Joseph Robert; Miranda, Eduardo; Cortés, Arturo; Hayes, Loren D.; Ebensperger, Luis A.
2012-01-01
Both breeding activity and abundance and quality of available food are expected to influence daily movements of animals. Animals are predicted to range over large areas to meet high energy demands associated with reproduction (females) or to increase mating success (males). However, animals should expand their range areas whenever food conditions deteriorate. To examine the extent to which breeding activity versus food availability influence space use, we compared the size and location of range areas (home ranges) of the degu (Octodon degus), a diurnal rodent from semiarid environments of north-central Chile, during the austral winter and summer seasons. Degus produce young during the austral spring (September–October) when high-quality food is readily available. In contrast, degus do not breed during the austral summer (January–March) when food is scarce and of low quality. We predicted that degus would range over smaller areas in winter if the availability of food has a greater influence on space than breeding activity. Individuals were radiotracked in winter and the following summer over a 3-year period. Surveys of herbaceous cover were conducted during winter and summer to determine seasonal changes in the abundance and quality of primary food. In summer degus expanded and moved the location of their range areas to locations with available food. Given that preferred food was less abundant in summer than winter, we suggest that degu range areas are strongly influenced by food conditions. PMID:22328788
Seasonal variation in the range areas of the diurnal rodent Octodon degus.
Quirici, Verónica; Castro, Rodrigo A; Ortiz-Tolhuysen, Liliana; Chesh, Adrian S; Burger, Joseph Robert; Miranda, Eduardo; Cortés, Arturo; Hayes, Loren D; Ebensperger, Luis A
2010-01-01
Both breeding activity and abundance and quality of available food are expected to influence daily movements of animals. Animals are predicted to range over large areas to meet high energy demands associated with reproduction (females) or to increase mating success (males). However, animals should expand their range areas whenever food conditions deteriorate. To examine the extent to which breeding activity versus food availability influence space use, we compared the size and location of range areas (home ranges) of the degu (Octodon degus), a diurnal rodent from semiarid environments of north-central Chile, during the austral winter and summer seasons. Degus produce young during the austral spring (September-October) when high-quality food is readily available. In contrast, degus do not breed during the austral summer (January-March) when food is scarce and of low quality. We predicted that degus would range over smaller areas in winter if the availability of food has a greater influence on space than breeding activity. Individuals were radiotracked in winter and the following summer over a 3-year period. Surveys of herbaceous cover were conducted during winter and summer to determine seasonal changes in the abundance and quality of primary food. In summer degus expanded and moved the location of their range areas to locations with available food. Given that preferred food was less abundant in summer than winter, we suggest that degu range areas are strongly influenced by food conditions.
Guo, Lei; Kelley, Kevin; Goh, Kean S
2007-11-01
A monitoring study was conducted in the tributaries and main stem of the Sacramento River, California, USA, during the storm event of January 26 to February 1, 2005. The purpose of the study was to evaluate the sources and loading of pesticides in the Sacramento River watershed during the winter storm season. A total of 26 pesticides or pesticide degradates were analyzed, among which five pesticides and one triazine degradate were detected. Diuron, diazinon, and simazine were found in all streams with a total load of 110.4, 15.4, and 15.7 kg, respectively, in the Sacramento River over the single storm event. Bromacil, hexazinone, and the triazine degradate diaminochlorotriazine were only detected in two smaller drainage canals with a load ranged from 0.25 to 7 kg. The major source of pesticides detected in the main stem Sacramento River was from the most upstream subbasin, the Sacramento River above Colusa, where detected pesticides either exceeded or were close to those at the main outlet of the Sacramento River at Alamar Marina. The higher precipitation in this subbasin was partly responsible for the greater contribution of pesticides observed. Diazinon was the only pesticide with concentrations above water quality criteria, indicating that additional mitigation measures may be needed to reduce its movement to surface water.
Winter range expansion of a hummingbird is associated with urbanization and supplementary feeding
Wood, Eric M.
2017-01-01
Anthropogenic changes to the landscape and climate cause novel ecological and evolutionary pressures, leading to potentially dramatic changes in the distribution of biodiversity. Warm winter temperatures can shift species' distributions to regions that were previously uninhabitable. Further, urbanization and supplementary feeding may facilitate range expansions and potentially reduce migration tendency. Here we explore how these factors interact to cause non-uniform effects across a species's range. Using 17 years of data from the citizen science programme Project FeederWatch, we examined the relationships between urbanization, winter temperatures and the availability of supplementary food (i.e. artificial nectar) on the winter range expansion (more than 700 km northward in the past two decades) of Anna's hummingbirds (Calypte anna). We found that Anna's hummingbirds have colonized colder locations over time, were more likely to colonize sites with higher housing density and were more likely to visit feeders in the expanded range compared to the historical range. Additionally, their range expansion mirrored a corresponding increase over time in the tendency of people to provide nectar feeders in the expanded range. This work illustrates how humans may alter the distribution and potentially the migratory behaviour of species through landscape and resource modification. PMID:28381617
The poster presents an assessment, using the CMAQ air quality model, showing the inorganic gas ratio (the ratio of free ammonia to total nitrate) can function as a screening indicator of the winter replacement of sulfate by nitrate when sulfate is reduced. It also presents an as...
Nutritional condition of Pacific Black Brant wintering at the extremes of their range
Mason, D.D.; Barboza, P.S.; Ward, D.H.
2006-01-01
Endogenous stores of energy allow birds to survive periods of severe weather and food shortage during winter. We documented changes in lipid, protein, moisture, and ash in body tissues of adult female Pacific Black Brant (Branta bernicla nigricans) and modeled the energetic costs of wintering. Birds were collected at the extremes of their winter range, in Alaska and Baja California, Mexico. Body lipids decreased over winter for birds in Alaska but increased for those in Baja California. Conversely, body protein increased over winter for Brant in Alaska and remained stable for birds in Baja California. Lipid stores likely fuel migration for Brant wintering in Baja California and ensure winter survival for those in Alaska. Increases in body protein may support earlier reproduction for Brant in Alaska. Predicted energy demands were similar between sites during late winter but avenues of expenditure were different. Birds in Baja California spent more energy on lipid synthesis while those in Alaska incurred higher thermoregulatory costs. Estimated daily intake rates of eelgrass were similar between sites in early winter; however, feeding time was more constrained in Alaska because of high tides and short photoperiods. Despite differences in energetic costs and foraging time, Brant wintering at both sites appeared to be in good condition. We suggest that wintering in Alaska may be more advantageous than long-distance migration if winter survival is similar between sites and constraints on foraging time do not impair body condition. ?? The Cooper Ornithological Society 2006.
Lee, Sangchul; Sadeghi, Ali M.; Yeo, In-Young; McCarty, Gregory W.; Hively, W. Dean
2017-01-01
Winter cover crops (WCCs) have been widely implemented in the Coastal Plain of the Chesapeake Bay watershed (CBW) due to their high effectiveness at reducing nitrate loads. However, future climate conditions (FCCs) are expected to exacerbate water quality degradation in the CBW by increasing nitrate loads from agriculture. Accordingly, the question remains whether WCCs are sufficient to mitigate increased nutrient loads caused by FCCs. In this study, we assessed the impacts of FCCs on WCC nitrate reduction efficiency on the Coastal Plain of the CBW using Soil and Water Assessment Tool (SWAT) model. Three FCC scenarios (2085 – 2098) were prepared using General Circulation Models (GCMs), considering three Intergovernmnental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) greenhouse gas emission scenarios. We also developed six representative WCC implementation scenarios based on the most commonly used planting dates and species of WCCs in this region. Simulation results showed that WCC biomass increased by ~ 58 % under FCC scenarios, due to climate conditions conducive to the WCC growth. Prior to implementing WCCs, annual nitrate loads increased by ~ 43 % under FCC scenarios compared to the baseline scenario (2001 – 2014). When WCCs were planted, annual nitrate loads were substantially reduced by ~ 48 % and WCC nitrate reduction efficiency water ~ 5 % higher under FCC scenarios relative to the baseline. The increase rate of WCC nitrate reduction efficiency varied by FCC scenarios and WCC planting methods. As CO2 concentration was higher and winters were warmer under FCC scenarios, WCCs had greater biomass and therefore showed higher nitrate reduction efficiency. In response to FCC scenarios, the performance of less effective WCC practices (e.g., barley, wheat, and late planting) under the baseline indicated ~ 14 % higher increase rate of nitrate reduction efficiency compared to ones with better effectiveness under the baseline (e.g., rye and early planting), due to warmer temperatures. According to simulation results, WCCs were effective to mitigate nitrate loads accelerated by FCCs and therefore the role of WCCs in mitigating nitrate loads is even more important in the given FCCs.
Poleward shifts in winter ranges of North American birds
Frank A. La Sorte; Frank R., III Thompson
2007-01-01
Climate change is thought to promote the poleward movement of geographic ranges; however, the spatial dynamics, mechanisms, and regional anthropogenic drivers associated with these trends have not been fully explored. We estimated changes in latitude of northern range boundaries, center of occurrence, and center of abundance for 254 species of winter avifauna in North...
Clark, Daniel E.; Koenen, Kiana K. G.; Whitney, Jillian J.; MacKenzie, Kenneth G.; DeStefano, Stephen
2016-01-01
While the breeding ecology of gulls (Laridae) has been well studied, their movements and spatial organization during the non-breeding season is poorly understood. The seasonal movements, winter-site fidelity, and site persistence of Ring-billed (Larus delawarensis) and Herring (L. argentatus) gulls to wintering areas were studied from 2008–2012. Satellite transmitters were deployed on Ring-billed Gulls (n = 21) and Herring Gulls (n = 14). Ten Ring-billed and six Herring gulls were tracked over multiple winters and > 300 wing-tagged Ring-billed Gulls were followed to determine winter-site fidelity and persistence. Home range overlap for individuals between years ranged between 0–1.0 (95% minimum convex polygon) and 0.31–0.79 (kernel utilization distributions). Ringbilled and Herring gulls remained at local wintering sites during the non-breeding season from 20–167 days and 74–161 days, respectively. The probability of a tagged Ring-billed Gull returning to the same site in subsequent winters was high; conversely, there was a low probability of a Ring-billed Gull returning to a different site. Ring-billed and Herring gulls exhibited high winter-site fidelity, but exhibited variable site persistence during the winter season, leading to a high probability of encountering the same individuals in subsequent winters.
Annual movements of a steppe eagle (Aquila nipalensis) summering in Mongolia and wintering in Tibet
Ellis, D.H.; Moon, S.L.; Robinson, J.W.
2001-01-01
An adult female steppe eagle (Aquila nipalensis Hodgson) was captured and fitted with a satellite transmitter in June 1995 in southeastern Mongolia. In fall, it traveled southwest towards India as expected, but stopped in southeastern Tibet and wintered in a restricted zone within the breeding range of the steppe eagle. In spring, the bird returned to the same area of Mongolia where it was captured. These observations, though derived from the movements of a single bird, suggest three things that are contrary to what is generally believed about steppe eagle biology. First, not all steppe eagles move to warmer climes in winter. Second, not all steppe eagles are nomadic in winter. Finally, because our bird wintered at the periphery of the steppe eagle breeding range in Tibet, perhaps birds that breed in this same area also winter there. If so, not all steppe eagles are migratory.
NASA Astrophysics Data System (ADS)
Chu, T.; Lindenschmidt, K. E.
2016-12-01
Monitoring river ice cover dynamics during the course of winter is necessary to comprehend possible negative effects of ice on anthropogenic systems and natural ecosystems to provide a basis to develop mitigation measures. Due to their large scale and limited accessibility to most places along river banks, especially in northern regions, remote sensing techniques are a suitable approach for monitoring river ice regimes. Additionally, determining the vertical displacements of ice covers due to changes in flow provides an indication of vulnerable areas to initial cracking and breakup of the ice cover. Such information is paramount when deciding on suitable locations for winter road crossing along rivers. A number of RADARSAT-2 (RS-2) beam modes (i.e. Wide Fine, Wide Ultra-Fine, Wide Fine Quad Polarization and Spotlight) and D-InSAR methods were examined in this research to characterize slant range and vertical displacement of ice covers along the Slave River in the Northwest Territories, Canada. Our results demonstrate that the RS-2 Spotlight beam mode, processed by the Multiple Aperture InSAR (MAI) method, outperformed other beam modes and conventional InSAR when characterizing spatio-temporal patterns of ice surface fluctuations. For example, the MAI based Spotlight differential interferogram derived from the January and February 2016 images of the Slave River Delta resulted in a slant range displacement of the ice surface between -3.3 and +3.6 cm (vertical displacement between -4.3 and +4.8 cm), due to the changes in river flow and river ice morphology between the two acquisition dates. It is difficult to monitor the ice movement in early and late winter periods due to the loss of phase coherence and error in phase unwrapping. These findings are consistent with our river ice hydraulic modelling and visual interpretation of the river ice processes under different hydrometeorological conditions and river ice morphology. An extension of this study is planned to incorporate the results of ice cover displacement (rise/drop) to locate areas of initial breakup in an ice jam forecasting system. Keywords: D-InSAR, Mutiple Aperture Radar InSAR (MAI), river ice displacement, RADARSAT-2
Albeni Falls Wildlife Protection, Mitigation, and Enhancement Plan, Final Report 1987.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, Robert C.
1988-08-01
A wildlife impact assessment and mitigation plan has been developed for the US Army Corps of Engineers Albeni Falls Project in northern Idaho. The Habitat Evaluation Procedure (HEP) was used to evaluate pre- and post-construction habitat conditions at the Albeni Falls Project. There were 6617 acres of wetlands converted to open water due to development and operation of the project. Eight evaluation species were selected with impacts expressed in numbers of Habitat Units (HU's). For a given species, one HU is equivalent to one acre of prime habitat. The Albeni Falls Project resulted in estimated losses of 5985 mallard HU's,more » 4699 Canada goose HU's, 3379 redhead HU's, 4508 breeding bald eagle HU's, 4365 wintering bald eagle HU's, 2286 black-capped chickadee HU's, 1680 white-tailed deer HU's, and 1756 muskrat HU's. The yellow warbler gained 71 HU's. Therefore, total target species estimated impacts were 28,587 HU's. Impacts on peregrine falcons were not quantified in terms of HU's. Projects have been proposed by an interagency team of biologists to mitigate the impacts of Albeni Falls on wildlife. The HEP was used to estimate benefits of proposed mitigation projects to target species. Through a series of proposed protection and enhancement actions, the mitigation plan will provide benefits of an estimated 28,590 target species HU's to mitigate Albeni Falls wildlife habitat values lost. 52 refs., 9 figs., 14 tabs.« less
Habitat Evaluation Procedures (HEP) Report : Hellsgate Project, 1999-2000 Technical Report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berger, Matthew
2000-05-01
A Habitat Evaluation Procedure (HEP) study was conducted on lands acquired and/or managed (4,568 acres total) by the Hellsgate Big Game Winter Range Wildlife Mitigation Project (Hellsgate project) to mitigate some of the losses associated with the original construction and operation of Grand Coulee Dam and inundation of habitats behind the dams. Three separate properties, totaling 2,224 acres were purchased in 1998. One property composed of two separate parcels, mostly grassland lies southeast of the town of Nespelem in Okanogan County (770 acres) and was formerly called the Hinman property. The former Hinman property lies within an area the Tribesmore » have set aside for the protection and preservation of the sharp-tailed grouse (Agency Butte unit). This special management area minus the Hinman acquisition contains 2,388 acres in a long-term lease with the Tribes. The second property lies just south of the Silver Creek turnoff (Ferry County) and is bisected by the Hellsgate Road (part of the Friedlander unit). This parcel contains 60 acres of riparian and conifer forest cover. The third property (now named the Sand Hills unit) acquired for mitigation (1,394 acres) lies within the Hellsgate Reserve in Ferry County. This new acquisition links two existing mitigation parcels (the old Sand Hills parcels and the Lundstrum Flat parcel, all former Kuehne purchases) together forming one large unit. HEP team members included individuals from the Colville Confederated Tribes Fish and Wildlife Department (CTCR), Washington Department of Fish and Wildlife (WDFW), and Bureau of Land Management (BLM). The HEP team conducted a baseline habitat survey using the following HEP species models: mule deer (Odocoileus hemionus), mink (Mustela vison), downy woodpecker (Picoides pubescens), bobcat (Lynx rufus), yellow warbler (Dendroica petechia), and sharp-tailed grouse (Tympanuchus phasianellus columbianus). HEP analysis and results are discussed within the body of the text. The cover types evaluated for this study were grasslands, shrub-steppe, rock, conifer forest and woodland, and riparian. These same cover types were evaluated for other Hellsgate Project acquisitions within the same geographic area. Mule deer habitat on the Sand Hills unit rated good overall for winter food and cover in the shrub-steppe and conifer woodland cover types. Sharp-tailed grouse habitat on the former Hinman property and special management area rated good for nesting and brood rearing in the grassland cover type. Mink habitat on the Friedlander parcel rated poor due to lack of food and cover in and along the riparian cover type. The Downy woodpecker rated poor for food and cover on the Friedlander parcel in the conifer forest cover type. This species also rated poor on the conifer woodland habitat on the Hinman parcel. Yellow warbler habitat on the Agency Butte Special Management area rated very poor due to lack of shrubs for cover and reproduction around the scattered semi/permanent ponds that occur on the area. Bobcat habitat on this same area rated poor due to lack of cover and food. Fragmentation of existing quality habitat is also a problem for both these species. This report is an analysis of baseline habitat conditions on mitigation and managed lands, and provides estimated habitat units for mitigation crediting purposes. In addition, this information will be used to manage these lands for the benefit of wildlife.« less
El Niño Southern Oscillation as an early warning tool for malaria outbreaks in India.
Dhiman, Ramesh C; Sarkar, Soma
2017-03-20
Risks of malaria epidemics in relation to El Niño and Southern Oscillation (ENSO) events have been mapped and studied at global level. In India, where malaria is a major public health problem, no such effort has been undertaken that inter-relates El Niño, Indian Summer Monsoon Rainfall (ISMR) and malaria. The present study has been undertaken to find out the relationship between ENSO events, ISMR and intra-annual variability in malaria cases in India, which in turn could help mitigate the malaria outbreaks. Correlation coefficients among 'rainfall index' (ISMR), '+ winter ONI' (NDJF) and 'malaria case index' were calculated using annual state-level data for the last 22 years. The 'malaria case index' representing 'relative change from mean' was correlated to the 4 month (November-February) average positive Oceanic Niño Index (ONI). The resultant correlations between '+ winter ONI' and 'malaria case index' were further analysed on geographical information system platform to generate spatial correlation map. The correlation between '+ winter ONI' and 'rainfall index' shows that there is great disparity in effect of ENSO over ISMR distribution across the country. Correlation between 'rainfall index' and 'malaria case index' shows that malaria transmission in all geographical regions of India are not equally affected by the ISMR deficit or excess. Correlation between '+ winter ONI' and 'malaria case index' was found ranging from -0.5 to + 0.7 (p < 0.05). A positive correlation indicates that increase in El Niño intensity (+ winter ONI) will lead to rise in total malaria cases in the concurrent year in the states of Orissa, Chhattisgarh, Jharkhand, Bihar, Goa, eastern parts of Madhya Pradesh, part of Andhra Pradesh, Uttarakhand and Meghalaya. Whereas, negative correlations were found in the states of Rajasthan, Haryana, Gujarat, part of Tamil Nadu, Manipur, Mizoram and Sikkim indicating the likelihood of outbreaks in La Nina condition. The generated map, representing spatial correlation between ' + winter ONI' and 'malaria case index', indicates positive correlations in eastern part, while negative correlations in western part of India. This study provides plausible guidelines to national programme for planning intervention measures in view of ENSO events. For better resolution, district level study with inclusion of IOD and 'epochal variation of monsoon rainfall' factors at micro-level is desired for better forecast of malaria outbreaks in the regions with 'no correlation'.
Scheutz, Charlotte; Pedersen, Rasmus Broe; Petersen, Per Haugsted; Jørgensen, Jørgen Henrik Bjerre; Ucendo, Inmaculada Maria Buendia; Mønster, Jacob G; Samuelsson, Jerker; Kjeldsen, Peter
2014-07-01
Methane generated at landfills contributes to global warming and can be mitigated by biocover systems relying on microbial methane oxidation. As part of a closure plan for an old unlined landfill without any gas management measures, an innovative biocover system was established. The system was designed based on a conceptual model of the gas emission patterns established through an initial baseline study. The study included construction of gas collection trenches along the slopes of the landfill where the majority of the methane emissions occurred. Local compost materials were tested as to their usefulness as bioactive methane oxidizing material and a suitable compost mixture was selected. Whole site methane emission quantifications based on combined tracer release and downwind measurements in combination with several local experimental activities (gas composition within biocover layers, flux chamber based emission measurements and logging of compost temperatures) proved that the biocover system had an average mitigation efficiency of approximately 80%. The study showed that the system also had a high efficiency during winter periods with temperatures below freezing. An economic analysis indicated that the mitigation costs of the biocover system were competitive to other existing greenhouse gas mitigation options. Copyright © 2014 Elsevier Ltd. All rights reserved.
Jean L. Steiner; Jeanne M. Schneider; Clay Pope; Sarah Pope; Paulette Ford; Rachel F. Steele; Terry Anderson
2015-01-01
The Southern Plains region contributes significantly to the Nationâs wheat and beef production. Winter wheat is the principal annual crop, with much of it serving dual-use as a cool-season annual forage in addition to grain production. Cattle are raised on extensive pasture and rangelands across the region. Agricultural production and farm income in the...
Air Force Civil Engineer, Volume 15, Number 3, 2007
2007-01-01
Korea during the winter. The runway is made of pierced steel plank . (U.S. Air Force photo) Transforming Air Force Firefighting...expect the fire chief and fire marshal to inform installation leadership when the mission is potentially impacted and to advocate risk mitigation...measures, and we expect leadership to listen. The use of “manage” in the phrase indicates that FES flights are expected to manage the event to the
The poster presents an assessment, using the CMAQ air quality model, showing the inorganic gas ratio (the ratio of free ammonia to total nitrate) can function as a screening indicator of the winter replacement of sulfate by nitrate when sulfate is reduced. It also presents an as...
Association of sea turtles with petroleum platforms in the north-central Gulf of Mexico
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lohoefener, R.; Hoggard, W.; Mullin, K.
1990-06-01
There are over 4,500 petroleum platforms in the north-central Gulf of Mexico. Explosives are commonly used to remove platforms and have the potential to kill nearby sea turtles. From June 1988-June 1990, the authors used aerial surveys to study turtle density and the spatial relationship between turtles and platforms offshore of Louisiana. They sighted 316 turtles most of which (92%) were loggerheads. Seventy-eight percent were sighted just east of the Mississippi River offshore of the Chandeleur Islands. East of the river, turtle densities ranged from 0.92 (winter) to 4.83 turtles/100 sq km (spring). West of the river, annual densities rangedmore » from 0.11-0.50 turtles/100 sq km. East of the river, three statistical tests indicated that turtles were generally closer to platforms than expected by chance alone. West of the river, turtles were randomly located with respect to platform locations. Before explosives are used, current mitigation measures require that no turtle can be sighted within 1,000 m of the platform. East of the river, the probability of a turtle being within 1,000 m of any platform selected at random was about 60%; west of the river, 2-7%. West of the river to about 92 W, the mitigation measures should protect turtles but offshore of the Chandeleur Islands, special precautions should be taken.« less
Korschgen, Carl E.; Green, W.L.; Kenow, Kevin P.
1997-01-01
Number, total biomass, and individual mass of winter buds of Vallisneria americana was significantly related to the depth of the 1% of surface irradiance (Z) and the photosynthetic photon irradiance calculated for each shading treatment imposed during this study. Between the range of 23.8 and 111.2 cm depth for the 1% Z, total biomass of winterbuds produced ranged from 0.63 to 0.01 g, counts ranged from 3.5 to 0.1, and mass of individual winterbuds ranged from 0.18 to 0.04 g. Total biomass of winter buds produced was reduced when plants were exposed to a 14-day period without irradiance during the middle of the growing season. Applying the results of the culture experiments to conditions found in Navigation Pool 8 of the Upper Mississippi River suggests that irradiance may indeed limit the distribution and abundance of Vallisneria americana by reducing the number and size of winter buds. (C) 1997 Elsevier Science B.V.
The value of agricultural wetlands as invertebrate resources for wintering shorebirds
Taft, Oriane W.; Haig, Susan M.
2005-01-01
Agricultural landscapes have received little recognition for the food resources they provide to wintering waterbirds. In the Willamette Valley of Oregon, modest yet significant populations of wintering shorebirds (Charadriiformes) regularly use hundreds of dispersed wetlands on agricultural lands. Benthic invertebrates are a critical resource for the survival of overwintering shorebirds, yet the abundance of invertebrate resources in agricultural wetlands such as these has not been quantified. To evaluate the importance of agricultural wetlands to a population of wintering shorebirds, the density, biomass, and general community composition of invertebrates available to birds were quantified at a sample of Willamette Valley sites during a wet (1999–2000) and a dry winter (2000–2001). Invertebrate densities ranged among wetlands from 173 to 1925 (mean ± S.E.: 936 ± 106) individuals/m2 in the wet winter, and from 214 to 3484 (1028 ± 155) individuals/m2 in the dry winter. Total invertebrate estimated biomass among wetlands ranged from 35 to 652 (mean ± S.E.: 364 ± 35) mg/m2 in the wet winter, and from 85 to 1405 (437 ± 62) mg/m2 in the dry winter. These estimates for food abundance were comparable to that observed in some other important freshwater wintering regions in North America.
Confounded winter and spring phenoclimatology on large herbivore ranges
Christianson, David; Klaver, Robert W.; Middleton, Arthur; Kauffman, Matthew
2013-01-01
Annual variation in winter severity and growing season vegetation dynamics appear to influence the demography of temperate herbivores but parsing winter from spring effects requires independent metrics of environmental conditions specific to each season. We tested for independence in annual variation amongst four common metrics used to describe winter severity and early growing season vegetation dynamics across the entire spatial distribution of elk (Cervus elaphus) in Wyoming from 1989 to 2006. Winter conditions and early growing season dynamics were correlated in a specific way. Winters with snow cover that ended early tended to be followed by early, but slow, rises in the normalized difference vegetation index (NDVI), while long winters with extended periods of snow cover were often followed by late and rapid rises in NDVI. Across the 35 elk ranges, 0.4–86.8 % of the variation in the rate of increase in NDVI’s in spring was explained by the date snow cover disappeared from SNOTEL stations. Because phenoclimatological metrics are correlated across seasons and shifting due to climate change, identifying environmental constraints on herbivore fitness, particularly migratory species, is more difficult than previously recognized.
Robert C. Musselman; John L. Korfmacher
2007-01-01
A study was begun in the winter of 2000-2001 and continued through the winter of 2001-2002 to examine air quality at the Green Rock snowmobile staging area at 2,985 m elevation in the Snowy Range of Wyoming. The study was designed to evaluate the effects of winter recreation snowmobile activity on air quality at this high elevation site by measuring levels of...
1999-01-08
KENNEDY SPACE CENTER, FLA. -- The Merritt Island National Wildlife Refuge, which shares a boundary with the Kennedy Space Center, is winter home to hundreds of waterfowl such as these coots and pintail ducks. The smaller coot inhabits open ponds and marshes, wintering in saltwater bays and inlets. They range from southern Canada to northern South America. The pintail can be found in marshes, prairie ponds and tundra, and salt marshes in winter. They range from Alaska and Greenland south to Central America and the West Indies
Habitat use by female mallards in the lower mississippi alluvial valley
Davis, B.E.; Afton, A.D.; Cox, R.R.
2009-01-01
Mallard (Anas platyrhynchos) populations in the lower Mississippi Alluvial Valley (LMAV), USA, historically averaged 1.6 million and represented the largest concentrations of wintering mallards in North America. Effective management of this wintering population requires current information on use of habitats. Accordingly, we employed radiotelemetry techniques to assess proportional use of habitats by female mallards during winters 20042005 and 20052006. We divided winters into 4 time periods defined by hunting seasons (FIRST, SPLIT, SECOND, and POST) and recorded diurnal and nocturnal locations. We examined variations in proportional use of habitats and use of areas closed to hunting due to effects of age (immature or ad), winter (20042005 or 20052006), time period (SECOND or POST), individual female, and all potential interactions of these effects, using locations recorded during the latter 2 time periods. We found that diurnal and nocturnal proportional use of habitats varied inconsistently among time periods and winters. Mean proportional use of forested wetlands ranged from 0.475 to 0.816 and from 0.428 to 0.764 during diurnal and nocturnal sampling periods, respectively. Diurnal proportional use of areas closed to hunting varied inconsistently among time periods and winters. Mean proportional use of areas closed to hunting ranged from 0.183 to 0.423 during diurnal sampling periods. Nocturnal use of areas closed to hunting varied inconsistently among female ages and time periods and among female ages and winters. Mean proportional use of areas closed to hunting ranged from 0.211 to 0.445 during nocturnal sampling periods. Our research suggests that forested wetlands in the LMAV provide important wintering habitats for female mallards; continued restoration and establishment of these habitats should benefit female mallards.
Habitat use by female mallards in the lower Mississippi alluvial valley
Davis, Bruce E.; Afton, Alan D.; Cox, Robert R.
2009-01-01
Mallard (Anas platyrhynchos) populations in the lower Mississippi Alluvial Valley (LMAV), USA, historically averaged 1.6 million and represented the largest concentrations of wintering mallards in North America. Effective management of this wintering population requires current information on use of habitats. Accordingly, we employed radiotelemetry techniques to assess proportional use of habitats by female mallards during winters 2004-2005 and 2005-2006. We divided winters into 4 time periods defined by hunting seasons (FIRST, SPLIT, SECOND, and POST) and recorded diurnal and nocturnal locations. We examined variations in proportional use of habitats and use of areas closed to hunting due to effects of age (immature or ad), winter (2004-2005 or 2005-2006), time period (SECOND or POST), individual female, and all potential interactions of these effects, using locations recorded during the latter 2 time periods. We found that diurnal and nocturnal proportional use of habitats varied inconsistently among time periods and winters. Mean proportional use of forested wetlands ranged from 0.475 to 0.816 and from 0.428 to 0.764 during diurnal and nocturnal sampling periods, respectively. Diurnal proportional use of areas closed to hunting varied inconsistently among time periods and winters. Mean proportional use of areas closed to hunting ranged from 0.183 to 0.423 during diurnal sampling periods. Nocturnal use of areas closed to hunting varied inconsistently among female ages and time periods and among female ages and winters. Mean proportional use of areas closed to hunting ranged from 0.211 to 0.445 during nocturnal sampling periods. Our research suggests that forested wetlands in the LMAV provide important wintering habitats for female mallards; continued restoration and establishment of these habitats should benefit female mallards.
Climate-driven effects of fire on winter habitat for caribou in the Alaskan-Yukon Arctic.
Gustine, David D; Brinkman, Todd J; Lindgren, Michael A; Schmidt, Jennifer I; Rupp, T Scott; Adams, Layne G
2014-01-01
Climatic warming has direct implications for fire-dominated disturbance patterns in northern ecosystems. A transforming wildfire regime is altering plant composition and successional patterns, thus affecting the distribution and potentially the abundance of large herbivores. Caribou (Rangifer tarandus) are an important subsistence resource for communities throughout the north and a species that depends on terrestrial lichen in late-successional forests and tundra systems. Projected increases in area burned and reductions in stand ages may reduce lichen availability within caribou winter ranges. Sufficient reductions in lichen abundance could alter the capacity of these areas to support caribou populations. To assess the potential role of a changing fire regime on winter habitat for caribou, we used a simulation modeling platform, two global circulation models (GCMs), and a moderate emissions scenario to project annual fire characteristics and the resulting abundance of lichen-producing vegetation types (i.e., spruce forests and tundra >60 years old) across a modeling domain that encompassed the winter ranges of the Central Arctic and Porcupine caribou herds in the Alaskan-Yukon Arctic. Fires were less numerous and smaller in tundra compared to spruce habitats throughout the 90-year projection for both GCMs. Given the more likely climate trajectory, we projected that the Porcupine caribou herd, which winters primarily in the boreal forest, could be expected to experience a greater reduction in lichen-producing winter habitats (-21%) than the Central Arctic herd that wintered primarily in the arctic tundra (-11%). Our results suggest that caribou herds wintering in boreal forest will undergo fire-driven reductions in lichen-producing habitats that will, at a minimum, alter their distribution. Range shifts of caribou resulting from fire-driven changes to winter habitat may diminish access to caribou for rural communities that reside in fire-prone areas.
Climate-driven effects of fire on winter habitat for caribou in the Alaskan-Yukon Arctic
Gustine, David D.; Brinkman, Todd J.; Lindgren, Michael A.; Schmidt, Jennifer I.; Rupp, T. Scott; Adams, Layne G.
2014-01-01
Climatic warming has direct implications for fire-dominated disturbance patterns in northern ecosystems. A transforming wildfire regime is altering plant composition and successional patterns, thus affecting the distribution and potentially the abundance of large herbivores. Caribou (Rangifer tarandus) are an important subsistence resource for communities throughout the north and a species that depends on terrestrial lichen in late-successional forests and tundra systems. Projected increases in area burned and reductions in stand ages may reduce lichen availability within caribou winter ranges. Sufficient reductions in lichen abundance could alter the capacity of these areas to support caribou populations. To assess the potential role of a changing fire regime on winter habitat for caribou, we used a simulation modeling platform, two global circulation models (GCMs), and a moderate emissions scenario to project annual fire characteristics and the resulting abundance of lichen-producing vegetation types (i.e., spruce forests and tundra >60 years old) across a modeling domain that encompassed the winter ranges of the Central Arctic and Porcupine caribou herds in the Alaskan-Yukon Arctic. Fires were less numerous and smaller in tundra compared to spruce habitats throughout the 90-year projection for both GCMs. Given the more likely climate trajectory, we projected that the Porcupine caribou herd, which winters primarily in the boreal forest, could be expected to experience a greater reduction in lichen-producing winter habitats (−21%) than the Central Arctic herd that wintered primarily in the arctic tundra (−11%). Our results suggest that caribou herds wintering in boreal forest will undergo fire-driven reductions in lichen-producing habitats that will, at a minimum, alter their distribution. Range shifts of caribou resulting from fire-driven changes to winter habitat may diminish access to caribou for rural communities that reside in fire-prone areas.
Timing anthropogenic stressors to mitigate their impact on marine ecosystem resilience.
Wu, Paul Pao-Yen; Mengersen, Kerrie; McMahon, Kathryn; Kendrick, Gary A; Chartrand, Kathryn; York, Paul H; Rasheed, Michael A; Caley, M Julian
2017-11-02
Better mitigation of anthropogenic stressors on marine ecosystems is urgently needed to address increasing biodiversity losses worldwide. We explore opportunities for stressor mitigation using whole-of-systems modelling of ecological resilience, accounting for complex interactions between stressors, their timing and duration, background environmental conditions and biological processes. We then search for ecological windows, times when stressors minimally impact ecological resilience, defined here as risk, recovery and resistance. We show for 28 globally distributed seagrass meadows that stressor scheduling that exploits ecological windows for dredging campaigns can achieve up to a fourfold reduction in recovery time and 35% reduction in extinction risk. Although the timing and length of windows vary among sites to some degree, global trends indicate favourable windows in autumn and winter. Our results demonstrate that resilience is dynamic with respect to space, time and stressors, varying most strongly with: (i) the life history of the seagrass genus and (ii) the duration and timing of the impacting stress.
Range Cattle Winter Water Consumption in Northern Great Plains
USDA-ARS?s Scientific Manuscript database
Water consumption and DMI has been found to be positively correlated and may interact to alter range cow productivity. Environmental conditions can have a significant influence on water consumption during the winter. The objective of this study was to determine influences of water and air temperatur...
Spring feeding on ungulate carcasses by grizzly bears in Yellowstone National Park
Green, Gerald I.; Mattson, D.J.; Peek, J.M.
1997-01-01
We studied the spring use of ungulate carcasses by grizzly bears (Ursus arctos horribilis) on ungulate winter ranges in Yellowstone National Park. We observed carcasses and bear tracks on survey routes that were travelled biweekly during spring of 1985-90 in the Firehole-Gibbon winter range and spring of 1987-90 in the Northern winter range. The probability that grizzly bears used a carcass was positively related to elevation and was lower within 400 m of a road, or within 5 km of a major recreational development compared to elsewhere. Carcass use peaked in April, coincident with peak ungulate deaths. Grizzly bears also were more likely to use carcasses in the Firehole-Gibbon compared to Northern Range study area. We attributed the effects of study area and elevation to the fact that grizzly bears den and are first active in the spring at high elevations and to differences in densities of competing scavengers. Probability of grizzly bear use was strongly related to body mass of carcasses on the Northern Range where densities of coyotes (Canis latrans) and black bears (U. americanus) appeared to be much higher than in the Firehole-Gibbon study area. We suggest that additional restrictions on human activity in ungulate winter ranges or movement of carcasses to remote areas could increase grizzly bear use of carrion. Fewer competing scavengers and greater numbers of adult ungulates vulnerable to winter mortality could have the same effect.
Shirk, R Y; Hamrick, J L; Zhang, C; Qiang, S
2014-01-01
Genetic diversity, and thus the adaptive potential of invasive populations, is largely based on three factors: patterns of genetic diversity in the species' native range, the number and location of introductions and the number of founding individuals per introduction. Specifically, reductions in genetic diversity (‘founder effects') should be stronger for species with low within-population diversity in their native range and few introductions of few individuals to the invasive range. We test these predictions with Geranium carolinianum, a winter annual herb native to North America and invasive in China. We measure the extent of founder effects using allozymes and microsatellites, and ask whether this is consistent with its colonization history and patterns of diversity in the native range. In the native range, genetic diversity is higher and structure is lower than expected based on life history traits. In China, our results provide evidence for multiple introductions near Nanjing, Jiangsu province, with subsequent range expansion to the west and south. Patterns of genetic diversity across China reveal weak founder effects that are driven largely by low-diversity populations at the expansion front, away from the introduction location. This suggests that reduced diversity in China has resulted from successive founder events during range expansion, and that the loss of genetic diversity in the Nanjing area was mitigated by multiple introductions from diverse source populations. This has implications for the future of G. carolinianum in China, as continued gene flow among populations should eventually increase genetic diversity within the more recently founded populations. PMID:24346497
De La Cruz, Susan E. W.; Eadie, John M.; Miles, A. Keith; Yee, Julie; Spragens, Kyle A.; Palm, Eric C.; Takekawa, John Y.
2014-01-01
Wide-ranging marine birds rely on multiple habitats for wintering, breeding, and migrating, and their conservation may be dependent on protecting networks of key areas. Urbanized estuaries are critical wintering and stopover areas for many declining sea ducks in North America; however, conservation measures within estuaries are difficult to establish given lack of knowledge about habitat use by these species and the variety of competing human interests. We applied hierarchical modeling to evaluate resource selection of sea ducks (surf scoters, Melanitta perspicillata) wintering in San Francisco Bay, California, USA, a large and highly urbanized estuary. We also examined their distribution, home range, and movements with respect to key habitat features and regions within the estuary. Herring roe was the strongest predictor of bird locations; however, eelgrass, water depth and salinity were also highly-ranked, with sea ducks using deeper areas of higher salinity associated with herring roe and eelgrass presence during mid-winter. Sea ducks were also strongly associated with ferry routes, suggesting these areas may contain resources that are too important to avoid and emphasizing the need to better understand water traffic effects. Movements and home range size differed between males and females in early winter but became more similar in late winter. Birds traveled farther and used several sub-bays in early winter compared to mid-winter when herring roe availability peaked in the Central Bay. Our findings identified key environmental variables, highlighted core use areas, and documented critical periods for consideration when developing conservation plans for sea ducks in urbanized estuaries.
Seasonal movement, residency, and migratory patterns of Wilson's Snipe (Gallinago delicata)
Cline, Brittany B.; Haig, Susan M.
2011-01-01
Cross-seasonal studies of avian movement establish links between geographically distinct wintering, breeding, and migratory stopover locations, or assess site fidelity and movement between distinct phases of the annual cycle. Far fewer studies have investigated individual movement patterns within and among seasons over an annual cycle. Within western Oregon's Willamette Valley throughout 2007, we quantified intra- and interseasonal movement patterns, fidelity (regional and local), and migratory patterns of 37 radiomarked Wilson's Snipe (Gallinago delicata) to elucidate residency in a region of breeding- and wintering-range overlap. Telemetry revealed complex regional population structure, including winter residents (74%), winter transients (14%), summer residents (9%), and one year-round resident breeder (3%). Results indicated a lack of connectivity between winter and summer capture populations, some evidence of partial migration, and between-season fidelity to the region (winter-resident return; subsequent fall). Across seasons, the extent of movements and use of multiple wetland sites suggested that Wilson's Snipe were capable of exploratory movements but more regularly perceived local and fine-scale segments of the landscape as connected. Movements differed significantly by season and residency; individuals exhibited contracted movements during late winter and more expansive movements during precipitation-limited periods (late spring, summer, fall). Mean home-range size was 3.5 ± 0.93 km2 (100% minimum convex polygon [MCP]) and 1.6 ± 0.42 km2 (95% fixed kernel) and did not vary by sex; however, home range varied markedly by season (range of 100% MCPs: 1.04–7.56 km2). The results highlight the need to consider seasonal and interspecific differences in shorebird life histories and space-use requirements when developing regional wetland conservation plans.
Long-Term Variability of Satellite Lake Surface Water Temperatures in the Great Lakes
NASA Astrophysics Data System (ADS)
Gierach, M. M.; Matsumoto, K.; Holt, B.; McKinney, P. J.; Tokos, K.
2014-12-01
The Great Lakes are the largest group of freshwater lakes on Earth that approximately 37 million people depend upon for fresh drinking water, food, flood and drought mitigation, and natural resources that support industry, jobs, shipping and tourism. Recent reports have stated (e.g., the National Climate Assessment) that climate change can impact and exacerbate a range of risks to the Great Lakes, including changes in the range and distribution of certain fish species, increased invasive species and harmful algal blooms, declining beach health, and lengthened commercial navigation season. In this study, we will examine the impact of climate change on the Laurentian Great Lakes through investigation of long-term lake surface water temperatures (LSWT). We will use the ATSR Reprocessing for Climate: Lake Surface Water Temperature & Ice Cover (ARC-Lake) product over the period 1995-2012 to investigate individual and interlake variability. Specifically, we will quantify the seasonal amplitude of LSWTs, the first and last appearances of the 4°C isotherm (i.e., an important identifier of the seasonal evolution of the lakes denoting winter and summer stratification), and interpret these quantities in the context of global interannual climate variability such as ENSO.
Ross, Beth E.; Hooten, Mevin B.; DeVink, Jean-Michel; Koons, David N.
2015-01-01
An understanding of species relationships is critical in the management and conservation of populations facing climate change, yet few studies address how climate alters species interactions and other population drivers. We use a long-term, broad-scale data set of relative abundance to examine the influence of climate, predators, and density dependence on the population dynamics of declining scaup (Aythya) species within the core of their breeding range. The state-space modeling approach we use applies to a wide range of wildlife species, especially populations monitored over broad spatiotemporal extents. Using this approach, we found that immediate snow cover extent in the preceding winter and spring had the strongest effects, with increases in mean snow cover extent having a positive effect on the local surveyed abundance of scaup. The direct effects of mesopredator abundance on scaup population dynamics were weaker, but the results still indicated a potential interactive process between climate and food web dynamics (mesopredators, alternative prey, and scaup). By considering climate variables and other potential effects on population dynamics, and using a rigorous estimation framework, we provide insight into complex ecological processes for guiding conservation and policy actions aimed at mitigating and reversing the decline of scaup.
Atmospheric propagation of infrasound across mountain ranges
NASA Astrophysics Data System (ADS)
Damiens, Florentin; Millet, Christophe; Lott, Francois
2017-11-01
Linear theory of acoustic propagation is used to analyze trapping of infrasound within the lower tropospheric waveguide during propagation above a mountain range. Atmospheric flow produced by the mountains is predicted by a nonlinear mounatin wave model. For the infrasound component, we solve the wave equation under the effective sound speed approximation using both a spectral collocation method and a WKB approach. It is shown that in realistic configurations, the mountain waves can deeply perturb the low level waveguide, which leads to significant acoustic dispersion. To interpret these results each acoustic mode is tracked separately as the horizontal distance increases. It is shown that during statically stable situations, roughly representative of winter or night situations, the mountain waves induce a Foehn effect downstream which shrinks significantly the waveguide. This yields a new form of infrasound absorption, that can largely outweigh the direct effect the moutain induces on the low-level waveguide. For the opposite case, when the low level flow is less statically stable (summer or day situations), mountain wave dynamics do not produce dramatic responses downstream. Instead, it favors the passage of infrasound, which somehow mitigates the direct effect of the obstacle.
An investigation of infrasound propagation over mountain ranges.
Damiens, Florentin; Millet, Christophe; Lott, François
2018-01-01
Linear theory is used to analyze trapping of infrasound within the lower tropospheric waveguide during propagation above a mountain range. Atmospheric flow produced by the mountains is predicted by a nonlinear mountain gravity wave model. For the infrasound component, this paper solves the wave equation under the effective sound speed approximation using both a finite difference method and a Wentzel-Kramers-Brillouin approach. It is shown that in realistic configurations, the mountain waves can deeply perturb the low-level waveguide, which leads to significant acoustic dispersion. To interpret these results, each acoustic mode is tracked separately as the horizontal distance increases. It is shown that during statically stable situations, situations that are common during night over land in winter, the mountain waves induce a strong Foehn effect downstream, which shrinks the waveguide significantly. This yields a new form of infrasound absorption that can largely outweigh the direct effect the mountain induces on the low-level waveguide. For the opposite case, when the low-level flow is less statically stable (situations that are more common during day in summer), mountain wave dynamics do not produce dramatic responses downstream. It may even favor the passage of infrasound and mitigate the direct effect of the obstacle.
Movements by juvenile and immature Steller's Sea Eagles Haliaeetus pelagicus tracked by satellite
McGrady, M.J.; Ueta, M.; Potapov, E.R.; Utekhina, I.; Marterov, V.; Ladyguine, A.; Zykov, V.; Cibor, J.; Fuller, Mark R.; Seegar, J.K.
2003-01-01
Twenty-four juvenile Steller's Sea Eagles Haliaeetus pelagicus were tracked via satellite from natal areas in Magadan, Kabarovsk, Amur, Sakhalin and Kamchatka. Nestling dispersal occurred between 9 September and 6 December (n = 24), mostly 14 September-21 October, and did not differ among regions or years. Most eagles made stopovers of 4-28 days during migration. Migration occurred 9 September-18 January, mostly along previously described routes, taking 4-116 days to complete (n = 18). Eagles averaged 47.8 km/day excluding stopovers; 22.9 km/day including stopovers. The mean degrees of latitude spanned during migration was: Kamchatka, 2.1; Magadan, 11.6; Amur, 7.3; and Sakhalin, 1.1. Eagle winter range sizes varied. Eagles concentrated in 1-3 subareas within overall winter ranges. The mean size of the first wintering subareas was 274 km2, the second 529 km2, and the third 1181 km2. Second wintering areas were south of first wintering areas. Spring migration started between 2 February and 31 March. Two eagles from Magadan were tracked onto summering grounds, well south of their natal areas. Both had early and late summering areas. One bird was followed for 25 months. It initiated its second autumn migration in the first half of October and arrived on its wintering grounds on 26 December. The second autumn migration covered 1839 km (20.9-22.4 km/day). Unlike its first winter when it used two subareas, this bird used only one subarea in 1998-99, but this was located near wintering areas used in 1997-98. It left its wintering ground between 13 April and 13 May, and arrived on its summering grounds between 7 June and 8 July. Unlike most satellite radiotracking studies, data are presented from a relatively large number of birds from across their breeding range, including new information on eagle movements on the wintering grounds and during the second year
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scheutz, Charlotte; Pedersen, Rasmus Broe; Petersen, Per Haugsted
Highlights: • An innovative biocover system was constructed on a landfill cell to mitigate the methane emission. • The biocover system had a mitigation efficiently of typically 80%. • The system also worked efficiently at ambient temperatures below freezing. • A whole landfill emission measurement tool was required to document the biocover system efficiency. - Abstract: Methane generated at landfills contributes to global warming and can be mitigated by biocover systems relying on microbial methane oxidation. As part of a closure plan for an old unlined landfill without any gas management measures, an innovative biocover system was established. The systemmore » was designed based on a conceptual model of the gas emission patterns established through an initial baseline study. The study included construction of gas collection trenches along the slopes of the landfill where the majority of the methane emissions occurred. Local compost materials were tested as to their usefulness as bioactive methane oxidizing material and a suitable compost mixture was selected. Whole site methane emission quantifications based on combined tracer release and downwind measurements in combination with several local experimental activities (gas composition within biocover layers, flux chamber based emission measurements and logging of compost temperatures) proved that the biocover system had an average mitigation efficiency of approximately 80%. The study showed that the system also had a high efficiency during winter periods with temperatures below freezing. An economic analysis indicated that the mitigation costs of the biocover system were competitive to other existing greenhouse gas mitigation options.« less
From Cyclone Tracks to the Costs of European Winter Storms: A Probabilistic Loss Assessment Model
NASA Astrophysics Data System (ADS)
Orwig, K.; Renggli, D.; Corti, T.; Reese, S.; Wueest, M.; Viktor, E.; Zimmerli, P.
2014-12-01
European winter storms cause billions of dollars of insured losses every year. Therefore, it is essential to understand potential impacts of future events, and the role reinsurance can play to mitigate the losses. The authors will present an overview on natural catastrophe risk assessment modeling in the reinsurance industry, and the development of a new innovative approach for modeling the risk associated with European winter storms.The new innovative approach includes the development of physically meaningful probabilistic (i.e. simulated) events for European winter storm loss assessment. The meteorological hazard component of the new model is based on cyclone and windstorm tracks identified in the 20thCentury Reanalysis data. The knowledge of the evolution of winter storms both in time and space allows the physically meaningful perturbation of historical event properties (e.g. track, intensity, etc.). The perturbation includes a random element but also takes the local climatology and the evolution of the historical event into account.The low-resolution wind footprints taken from the 20thCentury Reanalysis are processed by a statistical-dynamical downscaling to generate high-resolution footprints for both the simulated and historical events. Downscaling transfer functions are generated using ENSEMBLES regional climate model data. The result is a set of reliable probabilistic events representing thousands of years. The event set is then combined with country and site-specific vulnerability functions and detailed market- or client-specific information to compute annual expected losses.
Albano, Christine M.; Cox, Dale A.; Dettinger, Michael; Shaller, Kevin; Welborn, Toby L.; McCarthy, Maureen
2014-01-01
Atmospheric rivers (ARs) are strongly linked to extreme winter precipitation events in the Western U.S., accounting for 80 percent of extreme floods in the Sierra Nevada and surrounding lowlands. In 2010, the U.S. Geological Survey developed the ARkStorm extreme storm scenario for California to quantify risks from extreme winter storms and to allow stakeholders to better explore and mitigate potential impacts. To explore impacts on natural resources and communities in montane and adjacent environments, we downscaled the scenario to the greater Lake Tahoe, Reno and Carson City region of northern Nevada and California. This ArkStorm@Tahoe scenario was presented at six stakeholder meetings, each with a different geographic and subject matter focus. Discussions were facilitated by the ARkStorm@Tahoe team to identify social and ecological vulnerabilities to extreme winter storms, science and information needs, and proactive measures that might minimize impacts from this type of event. Information collected in these meetings was used to develop a tabletop emergency response exercise and set of recommendations for increasing resilience to extreme winter storm events in both Tahoe and the downstream communities of Northern Nevada.Over 300 individuals participated in ARkStorm@Tahoe stakeholder meetings and the emergency response exercise, including representatives from emergency response, natural resource and ecosystem management, health and human services, public utilities, and businesses. Interruption of transportation, communications, and lack of power and backup fuel supplies were identified as the most likely and primary points of failure across multiple sectors and geographies, as these interruptions have cascading effects on natural and human systems by impeding emergency response efforts. Other key issues that arose in discussions included contamination risks to water supplies and aquatic ecosystems, especially in the Tahoe Basin and Pyramid Lake, interagency coordination, credentialing, flood management, and coordination of health and human services during such an event. Mitigation options were identified for each of the key issues. Several science needs were identified, particularly the need for improved flood inundation maps. Finally, key lessons learned were identified and may help to increase preparedness, response and recovery from extreme storms in the future.
A New Platform for Investigating In-Situ NIR Reflectance in Snow
NASA Astrophysics Data System (ADS)
Johnson, M.; Taubenheim, J. R. L.; Stevenson, R.; Eldred, D.
2017-12-01
In-situ near infrared (NIR) reflectance measurements of the snowpack have been shown to have correlations to valuable snowpack properties. To-date many studies take these measurements by digging a pit and setting up a NIR camera to take images of the wall. This setup is cumbersome, making it challenging to investigate things like spatial variability. Over the course of 3 winters, a new device has been developed capable of mitigating some of the downfalls of NIR open pit photography. This new instrument is a NIR profiler capable of taking NIR reflectance measurements without digging a pit, with most measurements taking less than 30 seconds to retrieve data. The latest prototype is built into a ski pole and automatically transfers data wirelessly to the users smartphone. During 2016-2017 winter, the device was used by 37 different users resulting in over 4000 measurements in the Western United States, demonstrating a dramatic reduction in time to data when compared to other methods. Presented here are some initial findings from a full winter of using the ski pole version of this device.
NASA Astrophysics Data System (ADS)
Thomas, Ian; Jordan, Phil; Mellander, Per-Erik; Fenton, Owen; Shine, Oliver; hUallacháin, Daire Ó.; Creamer, Rachel; McDonald, Noeleen; Dunlop, Paul; Murphy, Paul
2016-04-01
Identifying critical source areas (CSAs) of diffuse pollution in agricultural catchments requires the accurate identification of hydrologically sensitive areas (HSAs) at highest propensity for generating surface runoff and transporting pollutants such as phosphorus (P). A new GIS-based HSA Index is presented that identifies HSAs at the sub-field scale. It uses a soil topographic index (STI) and accounts for the hydrological disconnection of overland flow via topographic impediment from flow sinks such as hedgerows and depressions. High resolution (0.25-2 m) LiDAR Digital Elevation Models (DEMs) are utilised to capture these microtopographic controls on flow pathways and hydrological connectivity. The HSA Index was applied to four agricultural catchments (~7.5-12 km2) with contrasting topography and soil types. Catchment HSA sizes were estimated using high resolution rainfall-quickflow measurements during saturated winter storm events in 2009-2014, and mapped using the HSA Index. HSA sizes ranged from 1.6-3.4% of the catchment area during median storm events and 2.9-8.5% during upper quartile events depending on whether well or poorly drained soils dominated, which validated HSA Index value distributions. Total flow sink volume capacities ranged from 8,298-59,584 m3 and caused 8.5-24.2% of overland-flow-generating-areas and 16.8-33.4% of catchment areas to become hydrologically disconnected from the open drainage channel network. HSA maps identified 'delivery points' along surface runoff pathways where transported pollutants such as P are delivered to the open drainage network. Using these as proposed locations for targeting mitigation measures such as riparian buffer strips (RBS) reduced costs compared to blanket implementation within an example agri-environment scheme by 66% and 91% over 1 and 5 years respectively, which included LiDAR DEM acquisition costs. Considering that HSAs are often the dominant P CSA factor in agricultural catchments and can override source pressures, targeting measures at HSAs is potentially a more sustainable, cost-effective and policy-applicable strategy for mitigating diffuse pollution.
Weather conditions associated with autumn migration by mule deer in Wyoming.
Rittenhouse, Chadwick D; Mong, Tony W; Hart, Thomas
2015-01-01
Maintaining ecological integrity necessitates a proactive approach of identifying and acquiring lands to conserve unfragmented landscapes, as well as evaluating existing mitigation strategies to increase connectivity in fragmented landscapes. The increased use of highway underpasses and overpasses to restore connectivity for wildlife species offers clear conservation benefits, yet also presents a unique opportunity to understand how weather conditions may impact movement of wildlife species. We used remote camera observations (19,480) from an existing wildlife highway underpass in Wyoming and daily meteorological observations to quantify weather conditions associated with autumn migration of mule deer in 2009 and 2010. We identified minimal daily temperature and snow depth as proximate cues associated with mule deer migration to winter range. These weather cues were consistent across does and bucks, but differed slightly by year. Additionally, extreme early season snow depth or cold temperature events appear to be associated with onset of migration. This information will assist wildlife managers and transportation officials as they plan future projects to maintain and enhance migration routes for mule deer.
Ramo, Cristina; Amat, Juan A; Nilsson, Leif; Schricke, Vincent; Rodríguez-Alonso, Mariano; Gómez-Crespo, Enrique; Jubete, Fernando; Navedo, Juan G; Masero, José A; Palacios, Jesús; Boos, Mathieu; Green, Andy J
2015-01-01
The unusually high quality of census data for large waterbirds in Europe facilitates the study of how population change varies across a broad geographical range and relates to global change. The wintering population of the greylag goose Anser anser in the Atlantic flyway spanning between Sweden and Spain has increased from 120 000 to 610 000 individuals over the past three decades, and expanded its wintering range northwards. Although population sizes recorded in January have increased in all seven countries in the wintering range, we found a pronounced northwards latitudinal effect in which the rate of increase is higher at greater latitudes, causing a constant shift in the centre of gravity for the spatial distribution of wintering geese. Local winter temperatures have a strong influence on goose numbers but in a manner that is also dependent on latitude, with the partial effect of temperature (while controlling for the increasing population trend between years) being negative at the south end and positive at the north end of the flyway. Contrary to assumptions in the literature, the expansion of crops exploited by greylag geese has made little contribution to the increases in population size. Only in one case (expansion of winter cereals in Denmark) did we find evidence of an effect of changing land use. The expanding and shifting greylag population is likely to have increasing impacts on habitats in northern Europe during the course of this century.
USDA-ARS?s Scientific Manuscript database
Extending the grazing season into the fall and winter increases the sustainability of livestock production by reducing winter feed costs. However, without exception, stockpiled range grasses do not meet nutritional requirements for ruminant livestock. This study compared fall/winter grazing of tra...
NASA Astrophysics Data System (ADS)
Shekhar, M. S.; Devi, Usha; Dash, S. K.; Singh, G. P.; Singh, Amreek
2018-04-01
The current trends in diurnal temperature range, maximum temperature, minimum temperature, mean temperature, and sun shine hours over different ranges and altitudes of Western Himalaya during winter have been studied. Analysis of 25 years of data shows an increasing trend in diurnal temperature range over all the ranges and altitudes of Western Himalaya during winter, thereby confirming regional warming of the region due to present climate change and global warming. Statistical studies show significant increasing trend in maximum temperature over all the ranges and altitudes of Western Himalaya. Minimum temperature shows significant decreasing trend over Pir Panjal and Shamshawari range and significant increasing trend over higher altitude of Western Himalaya. Similarly, sunshine hours show significant decreasing trend over Karakoram range. There exists strong positive correlation between diurnal temperature range and maximum temperature for all the ranges and altitudes of Western Himalaya. Strong negative correlation exists between diurnal temperature range and minimum temperature over Shamshawari and Great Himalaya range and lower altitude of Western Himalaya. Sunshine hours show strong positive correlation with diurnal temperature range over Pir Panjal and Great Himalaya range and lower and higher altitudes.
1999-01-08
KENNEDY SPACE CENTER, FLA. -- A pintail duck is poised for landing, joining other ducks and coots on the waters of the Merritt Island National Wildlife Refuge at Kennedy Space Center. The refuge is winter home to hundreds of waterfowl such as these coots and pintail ducks. The smaller coot inhabits open ponds and marshes, wintering in saltwater bays and inlets. They range from southern Canada to northern South America. The pintail can be found in marshes, prairie ponds and tundra, and salt marshes in winter. They range from Alaska and Greenland south to Central America and the West Indies
Zeigenfuss, Linda C.; Johnson, Therese L.
2015-12-17
Increases in the number of small-diameter, tree-sized (stems greater than 2.5 meter height) aspen stems were observed but only inside fences that excluded ungulates. In unfenced areas, stand structure was stagnant, with many medium- and large-diameter (older) stems and no replacement of small-diameter stems. By 2013, aspen saplings (stems less than or equal to 2.5 meter height) were recruiting on 29 percent of sampled sites, an increase from 13 percent of sites at baseline, but this was mainly due to growth inside fences. Upland herbaceous offtake dropped below baseline levels (61 percent) on both core and noncore winter range in 2010–14. Less than 10 percent of the upland areas had intense herbivory (greater than 85 percent offtake), and less than 30 percent of the landscape had offtake greater than 70 percent after 2009. Offtake levels in 2013 and 2014 indicated an increase in grazing pressure on upland sites compared to 2010–12 levels, but this change may have been in response to loss of large patches of both herbaceous and woody forage in Moraine Park following the 2012 Fern Lake Fire. Winter willow offtake remained steady from 2009 to 2014, and although there were no substantial increases in offtake, there were also no consistent declines. Winter-range willow offtake was below the baseline level of 35 percent only in 2013 and 2014. Willow heights have stayed at or above baseline levels of 0.9 meter. Average heights of willow increased compared to baseline measures within fenced habitat on the core winter range and on noncore (all unfenced) winter range. Willow cover increased at least 75 percent compared to baseline within core winter-range fenced areas and roughly 25 percent in noncore winter range. Overall, during the first 5 years of implementation, the EVMP at Rocky Mountain National Park seems to be making steady progress toward the vegetation objectives set out by the EVMP. Habitat fencing has been the most effective means of improving aspen and willow habitat conditions.
Takeshita, Kazutaka; Ikeda, Takashi; Takahashi, Hiroshi; Yoshida, Tsuyoshi; Igota, Hiromasa; Matsuura, Yukiko; Kaji, Koichi
2016-01-01
Assessing temporal changes in abundance indices is an important issue in the management of large herbivore populations. The drive counts method has been frequently used as a deer abundance index in mountainous regions. However, despite an inherent risk for observation errors in drive counts, which increase with deer density, evaluations of the utility of drive counts at a high deer density remain scarce. We compared the drive counts and mark-resight (MR) methods in the evaluation of a highly dense sika deer population (MR estimates ranged between 11 and 53 individuals/km2) on Nakanoshima Island, Hokkaido, Japan, between 1999 and 2006. This deer population experienced two large reductions in density; approximately 200 animals in total were taken from the population through a large-scale population removal and a separate winter mass mortality event. Although the drive counts tracked temporal changes in deer abundance on the island, they overestimated the counts for all years in comparison to the MR method. Increased overestimation in drive count estimates after the winter mass mortality event may be due to a double count derived from increased deer movement and recovery of body condition secondary to the mitigation of density-dependent food limitations. Drive counts are unreliable because they are affected by unfavorable factors such as bad weather, and they are cost-prohibitive to repeat, which precludes the calculation of confidence intervals. Therefore, the use of drive counts to infer the deer abundance needs to be reconsidered.
Sagebrush-ungulate relationships on the Northern Yellowstone Winter Range
Carl L. Wambolt
2005-01-01
Sagebrush (Artemisia) taxa have historically been the landscape dominants over much of the Northern Yellowstone Winter Range (NYWR). Their importance to the unnaturally large ungulate populations on the NYWR throughout the twentieth century has been recognized since the 1920s. Sagebrush-herbivore ecology has been the focus of research on the NYWR for...
Habitat-effectiveness index for elk on Blue Mountain Winter Ranges.
Jack Ward Thomas; Donavin A. Leckenby; Mark Henjum; Richard J. Pedersen; Larry D. Bryant
1988-01-01
An elk-habitat evaluation procedure for winter ranges in the Blue Mountains of eastern Oregon and Washington is described. The index is based on an interaction of size and spacing of cover and forage areas, roads open to traffic per unit of area, cover quality, and quantity and quality of forage.
Jacques, C.N.; Jenks, J.A.; Klaver, R.W.
2009-01-01
Knowledge of seasonal movements by pronghorns (Antilocapra americana) within the easternmost extension of sagebrush-steppe communities is limited. Current hypotheses regarding movement patterns suggest that pronghorns initiate seasonal movements in response to severe winter weather, snowfall patterns, spatial and temporal variation in forage abundance, and availability of water. From January 2002 to August 2005, we monitored movements of 76 adult (≥1.5 years) female pronghorns on 2 study areas (Harding and Fall River counties) in western South Dakota. We collected 8,750 visual locations, calculated 204 home ranges, and documented 17 seasonal movements. Eighty-four percent (n = 55) of pronghorns were nonmigratory and 10% (n = 6) were conditional migrators. Mean distance between summer and winter range was 23.1 km (SE = 2.8 km, n = 13). Five adult pronghorns (8%) dispersed a mean distance of 37.6 km (SE = 12.4 km); of which 1 female moved a straight-line distance of 75.0 km. Winter and summer home-range size varied (P < 0.0001) between study sites. Mean 95% adaptive kernel winter and summer home-range size of pronghorns was 55.5 and 19.7 km2, respectively, in Harding County and 127.2 and 65.9 km2, respectively, in Fall River County. Nonmigratory behavior exhibited by pronghorns was likely associated with minimal snow cover and moderate temperatures during winter 2002–2004. Variation in size of adult seasonal home ranges between sites was likely associated with differences in forage distribution and availability between regions.
Condition of Euphausia crystallorophias off East Antarctica in winter in comparison to other seasons
NASA Astrophysics Data System (ADS)
Nicol, S.; Virtue, P.; King, R.; Davenport, S. R.; McGaffin, A. F.; Nichols, P.
2004-08-01
Antarctic coastal krill ( Euphausia crystallorophias) were collected in Austral winter (July/August) 1999 in the Mertz Glacier polynya off the coast of East Antarctica and were compared to krill collected off East Antarctica during summer in 1996 and 2001 and spring 1999. A range of experiments and measurements were conducted to assess their relative condition in winter and summer. Krill collected in winter had pale yellow-green digestive glands, indicating some recent feeding activity. The size of the digestive glands was small relative to those of krill caught in summer. This indicates that feeding had been occurring at low levels during the collection period. Growth rates, measured using the instantaneous growth rate methodology, were close to zero in winter (range -5% to 7% per moult). This was an indication that some food had been available during the period of the moult cycle. Growth rates in spring ranged from -0.5% to +8.7% per moult and from 4% to 12% per moult in the summer. The mean length of the winter moult cycle (68 days) was considerably greater than the measured intermoult period in summer and spring (24-33 days). Lipid levels were low in winter, less than 5% of body weight, compared to summer levels of ˜15% (dry weight). Winter krill were richer in wax esters and poorer in polar lipids than specimens collected in summer. Krill in winter were lacking in C16 PUFA that are markers of the phytoplankton diet common in summer krill. Krill caught in the winter had significantly higher levels of 20:1 and 22:1 fatty acids (2.3%) and alcohols (8.1%) than krill sampled in summer (0.2%, 0%), indicating a shift to a carnivorous diet. Results from this study suggest that E. crystallorophias respond to low food abundance during the winter through metabolic and physiological processes. These processes were reflected in a decrease in growth rate and a significant increase in the intermoult period. The process of lipid utilisation and switching to a carnivorous/detrital type diet are also overwintering strategies employed by this species.
Gray Wolves as Climate Change Buffers in Yellowstone
Getz, Wayne M
2005-01-01
Understanding the mechanisms by which climate and predation patterns by top predators co-vary to affect community structure accrues added importance as humans exert growing influence over both climate and regional predator assemblages. In Yellowstone National Park, winter conditions and reintroduced gray wolves (Canis lupus) together determine the availability of winter carrion on which numerous scavenger species depend for survival and reproduction. As climate changes in Yellowstone, therefore, scavenger species may experience a dramatic reshuffling of food resources. As such, we analyzed 55 y of weather data from Yellowstone in order to determine trends in winter conditions. We found that winters are getting shorter, as measured by the number of days with snow on the ground, due to decreased snowfall and increased number of days with temperatures above freezing. To investigate synergistic effects of human and climatic alterations of species interactions, we used an empirically derived model to show that in the absence of wolves, early snow thaw leads to a substantial reduction in late-winter carrion, causing potential food bottlenecks for scavengers. In addition, by narrowing the window of time over which carrion is available and thereby creating a resource pulse, climate change likely favors scavengers that can quickly track food sources over great distances. Wolves, however, largely mitigate late-winter reduction in carrion due to earlier snow thaws. By buffering the effects of climate change on carrion availability, wolves allow scavengers to adapt to a changing environment over a longer time scale more commensurate with natural processes. This study illustrates the importance of restoring and maintaining intact food chains in the face of large-scale environmental perturbations such as climate change. PMID:15757363
Gray wolves as climate change buffers in Yellowstone.
Wilmers, Christopher C; Getz, Wayne M
2005-04-01
Understanding the mechanisms by which climate and predation patterns by top predators co-vary to affect community structure accrues added importance as humans exert growing influence over both climate and regional predator assemblages. In Yellowstone National Park, winter conditions and reintroduced gray wolves (Canis lupus) together determine the availability of winter carrion on which numerous scavenger species depend for survival and reproduction. As climate changes in Yellowstone, therefore, scavenger species may experience a dramatic reshuffling of food resources. As such, we analyzed 55 y of weather data from Yellowstone in order to determine trends in winter conditions. We found that winters are getting shorter, as measured by the number of days with snow on the ground, due to decreased snowfall and increased number of days with temperatures above freezing. To investigate synergistic effects of human and climatic alterations of species interactions, we used an empirically derived model to show that in the absence of wolves, early snow thaw leads to a substantial reduction in late-winter carrion, causing potential food bottlenecks for scavengers. In addition, by narrowing the window of time over which carrion is available and thereby creating a resource pulse, climate change likely favors scavengers that can quickly track food sources over great distances. Wolves, however, largely mitigate late-winter reduction in carrion due to earlier snow thaws. By buffering the effects of climate change on carrion availability, wolves allow scavengers to adapt to a changing environment over a longer time scale more commensurate with natural processes. This study illustrates the importance of restoring and maintaining intact food chains in the face of large-scale environmental perturbations such as climate change.
Yang, Xiao-Lin; Chen, Yuan-Quan; Steenhuis, Tammo S.; Pacenka, Steven; Gao, Wang-Sheng; Ma, Li; Zhang, Min; Sui, Peng
2017-01-01
In the North China Plain, groundwater tables have been dropping at unsustainable rates of 1 m per year due to irrigation of a double cropping system of winter wheat and summer maize. To reverse the trend, we examined whether alternative crop rotations could save water. Moisture contents were measured weekly at 20 cm intervals in the top 180 cm of soil as part of a 12-year field experiment with four crop rotations: sweet potato→ cotton→ sweet potato→ winter wheat-summer maize (SpCSpWS, 4-year cycle); peanuts → winter wheat-summer maize (PWS, 2-year cycle); ryegrass–cotton→ peanuts→ winter wheat-summer maize (RCPWS, 3-year cycle); and winter wheat-summer maize (WS, each year). We found that, compared to WS, the SpCSpWS annual evapotranspiration was 28% lower, PWS was 19% lower and RCPWS was 14% lower. The yield per unit of water evaporated improved for wheat within any alternative rotation compared to WS, increasing up to 19%. Average soil moisture contents at the sowing date of wheat in the SpCSpWS, PWS, and RCPWS rotations were 7, 4, and 10% higher than WS, respectively. The advantage of alternative rotations was that a deep rooted crop of winter wheat reaching down to 180 cm followed shallow rooted crops (sweet potato and peanut drawing soil moisture from 0 to 120 cm). They benefited from the sequencing and vertical complementarity of soil moisture extraction. Thus, replacing the traditional crop rotation with cropping system that involves rotating with annual shallow rooted crops is promising for reducing groundwater depletion in the North China Plain. PMID:28642779
Stålhandske, Sandra; Lehmann, Philipp; Pruisscher, Peter; Leimar, Olof
2015-12-01
The effect of spring temperature on spring phenology is well understood in a wide range of taxa. However, studies on how winter conditions may affect spring phenology are underrepresented. Previous work on Anthocharis cardamines (orange tip butterfly) has shown population-specific reaction norms of spring development in relation to spring temperature and a speeding up of post-winter development with longer winter durations. In this experiment, we examined the effects of a greater and ecologically relevant range of winter durations on post-winter pupal development of A. cardamines of two populations from the United Kingdom and two from Sweden. By analyzing pupal weight loss and metabolic rate, we were able to separate the overall post-winter pupal development into diapause duration and post-diapause development. We found differences in the duration of cold needed to break diapause among populations, with the southern UK population requiring a shorter duration than the other populations. We also found that the overall post-winter pupal development time, following removal from winter cold, was negatively related to cold duration, through a combined effect of cold duration on diapause duration and on post-diapause development time. Longer cold durations also lead to higher population synchrony in hatching. For current winter durations in the field, the A. cardamines population of southern UK could have a reduced development rate and lower synchrony in emergence because of short winters. With future climate change, this might become an issue also for other populations. Differences in winter conditions in the field among these four populations are large enough to have driven local adaptation of characteristics controlling spring phenology in response to winter duration. The observed phenology of these populations depends on a combination of winter and spring temperatures; thus, both must be taken into account for accurate predictions of phenology.
NASA Astrophysics Data System (ADS)
Pawar, H.; Garg, S.; Kumar, V.; Sachan, H.; Arya, R.; Sarkar, C.; Chandra, B. P.; Sinha, B.
2015-08-01
Many sites in the densely populated Indo-Gangetic Plain (IGP) frequently exceed the national ambient air quality standard (NAAQS) of 100 μg m-3 for 24 h average PM10 and 60 μg m-3 for 24 h average PM2.5 mass loadings, exposing residents to hazardous levels of particulate matter (PM) throughout the year. We quantify the contribution of long-range transport to elevated PM levels and the number of exceedance events through a back-trajectory climatology analysis of air masses arriving at the IISER Mohali Atmospheric Chemistry facility (30.667° N, 76.729° E; 310 m a.m.s.l.) for the period August 2011-June 2013. Air masses arriving at the receptor site were classified into six clusters, which represent synoptic-scale air-mass transport patterns. Long-range transport from the west leads to significant enhancements in the average fine- and coarse-mode PM mass loadings during all seasons. The contribution of long-range transport from the west and south-west (source regions: Arabia, Thar Desert, Middle East and Afghanistan) to coarse-mode PM varied between 9 and 57 % of the total PM10-2.5 mass. Local pollution episodes (wind speed < 1 m s-1) contributed to enhanced PM2.5 mass loadings during both the winter and summer seasons and to enhanced coarse-mode PM only during the winter season. South-easterly air masses (source region: eastern IGP) were associated with significantly lower fine- and coarse-mode PM mass loadings during all seasons. The fraction of days in each season during which the PM mass loadings exceeded the national ambient air quality standard was controlled by long-range transport to a much lesser degree. For the local cluster, which represents regional air masses (source region: NW-IGP), the fraction of days during which the national ambient air quality standard (NAAQS) of 60 μg m-3 for 24 h average PM2.5 was exceeded varied between 36 % of the days associated with this synoptic-scale transport during the monsoon, and 95 % during post-monsoon and winter seasons; the fraction of days during which the NAAQS of 100 μg m-3 for the 24 h average PM10 was exceeded, varied between 48 % during the monsoon and 98 % during the post-monsoon season. Long-range transport was responsible for both, bringing air masses with a significantly lower fraction of exceedance days from the eastern IGP and air masses with a moderate increase in the fraction of exceedance days from the west (source regions: Arabia, Thar Desert, Middle East and Afghanistan). In order to bring PM mass loadings into compliance with the NAAQS and to reduce the number of exceedance days, mitigation of regional combustion sources in the NW-IGP needs to be given highest priority.
Winter ecology of the greater prairie chicken on the Sheyenne National Grasslands, North Dakota
John E. Toepfer; Robert L. Eng
1988-01-01
Twenty radio-tagged prairie-chickens (6 cocks, 14 hens) were followed during the winter of 1984-85 on the Sheyenne National Grasslands in North Dakota. A total of 3,945 (2,879 day and 1,066 night) locations were obtained from 9 December to 15 March. Winter survival was high at 58.8%. Mean winter home range was 8.4 km2 and slightly larger for hens...
Fire, grazing history, lichen abundance, and winter distribution of caribou in Alaska's taiga
Collins, William B.; Dale, Bruce W.; Adams, Layne G.; McElwain, Darien E.; Joly, Kyle
2011-01-01
In the early 1990s the Nelchina Caribou (Rangifer tarandus) Herd (NCH) began a dramatic shift to its current winter range, migrating at least an additional 100 km beyond its historic range. We evaluated the impacts of fire and grazing history on lichen abundance and subsequent use and distribution by the NCH. Historic (prior to 1990) and current (2002) winter ranges of the NCH had similar vascular vegetation, lichen cover (P = 0.491), and fire histories (P = 0.535), but the former range had significantly less forage lichen biomass as a result of grazing by caribou. Biomass of forage lichens was twice as great overall (P = 0.031) and 4 times greater in caribou selected sites on the current range than in the historic range, greatly increasing availability to caribou. Caribou on the current range selected for stands with >20% lichen cover (P < 0.001), greater than 1,250 kg/ha (P < 0.001) forage lichen biomass and stands older than 80 yr postfire (P < 0.001). After fires, forage lichen cover and biomass seldom recovered sufficiently to attract caribou grazing until after ≥60 yr, and, as a group, primary forage lichen species did not reach maximum abundance until 180 yr postfire. Recovery following overgrazing can occur much more quickly because lichen cover, albeit mostly fragments, and organic substrates remain present. Our results provide benchmarks for wildlife managers assessing condition of caribou winter range and predicting effects of fires on lichen abundance and caribou distribution. Of our measurements of cover and biomass by species, densities and heights of trees, elevation, slope and aspect, only percentage cover by Cladonia amaurocraea, Cladina rangiferina, Flavocetraria cuculata, and lowbush cranberry (Vaccinium vitis‐idaea) were necessary for predicting caribou use of winter range.
Upper lethal temperatures in three cold-tolerant insects are higher in winter than in summer.
Vu, Henry M; Duman, John G
2017-08-01
Upper lethal temperatures (ULTs) of cold-adapted insect species in winter have not been previously examined. We anticipated that as the lower lethal temperatures (LLTs) decreased (by 20-30°C) with the onset of winter, the ULTs would also decrease accordingly. Consequently, given the recent increases in winter freeze-thaw cycles and warmer winters due to climate change, it became of interest to determine whether ambient temperatures during thaws were approaching ULTs during the cold seasons. However, beetle Dendroides canadensis (Coleoptera: Pyrochroidae) larvae had higher 24 and 48 h ULT 50 (the temperature at which 50% mortality occurred) in winter than in summer. The 24 and 48 h ULT 50 for D. canadensis in winter were 40.9 and 38.7°C, respectively. For D. canadensis in summer, the 24 and 48 h ULT 50 were 36.7 and 36.4°C. During the transition periods of spring and autumn, the 24 h ULT 50 was 37.3 and 38.5°C, respectively. While D. canadensis in winter had a 24 h LT 50 range between LLT and ULT of 64°C, the summer range was only 41°C. Additionally, larvae of the beetle Cucujus clavipes clavipes (Coleoptera: Cucujidae) and the cranefly Tipula trivittata (Diptera: Tipulidae) also had higher ULTs in winter than in summer. This unexpected phenomenon of increased temperature survivorship at both lower and higher temperatures in the winter compared with that in the summer has not been previously documented. With the decreased high temperature tolerance as the season progresses from winter to summer, it was observed that environmental temperatures are closest to upper lethal temperatures in spring. © 2017. Published by The Company of Biologists Ltd.
Migration of northern yellowstone elk: Implications of spatial structuring
White, P.J.; Proffitt, K.M.; Mech, L.D.; Evans, S.B.; Cunningham, J.A.; Hamlin, K.L.
2010-01-01
Migration can enhance survival and recruitment of mammals by increasing access to higher-quality forage or reducing predation risk, or both. We used telemetry locations collected from 140 adult female elk during 20002003 and 20072008 to identify factors influencing the migration of northern Yellowstone elk. Elk wintered in 2 semidistinct herd segments and migrated 10140 km to at least 12 summer areas in Yellowstone National Park (YNP) and nearby areas of Montana. Spring migrations were delayed after winters with increased snow pack, with earlier migration in years with earlier vegetation green-up. Elk wintering at lower elevations outside YNP migrated an average of 13 days earlier than elk at higher elevations. The timing of autumn migrations varied annually, but elk left their summer ranges at about the same time regardless of elevation, wolf numbers, or distance to their wintering areas. Elk monitored for multiple years typically returned to the same summer (96 fidelity, n 52) and winter (61 fidelity, n 41) ranges. Elk that wintered at lower elevations in or near the northwestern portion of the park tended to summer in the western part of YNP (56), and elk that wintered at higher elevations spent summer primarily in the eastern and northern parts of the park (82). Elk did not grossly modify their migration timing, routes, or use areas after wolf restoration. Elk mortality was low during summer and migration (8 of 225 elk-summers). However, spatial segregation and differential mortality and recruitment between herd segments on the northern winter range apparently contributed to a higher proportion of the elk population wintering outside the northwestern portion of YNP and summering in the western portion of the park. This change could shift wolf spatial dynamics more outside YNP and increase the risk of transmission of brucellosis from elk to cattle north of the park. ?? 2010 American Society of Mammalogists.
Climate-Driven Effects of Fire on Winter Habitat for Caribou in the Alaskan-Yukon Arctic
Gustine, David D.; Brinkman, Todd J.; Lindgren, Michael A.; Schmidt, Jennifer I.; Rupp, T. Scott; Adams, Layne G.
2014-01-01
Climatic warming has direct implications for fire-dominated disturbance patterns in northern ecosystems. A transforming wildfire regime is altering plant composition and successional patterns, thus affecting the distribution and potentially the abundance of large herbivores. Caribou (Rangifer tarandus) are an important subsistence resource for communities throughout the north and a species that depends on terrestrial lichen in late-successional forests and tundra systems. Projected increases in area burned and reductions in stand ages may reduce lichen availability within caribou winter ranges. Sufficient reductions in lichen abundance could alter the capacity of these areas to support caribou populations. To assess the potential role of a changing fire regime on winter habitat for caribou, we used a simulation modeling platform, two global circulation models (GCMs), and a moderate emissions scenario to project annual fire characteristics and the resulting abundance of lichen-producing vegetation types (i.e., spruce forests and tundra >60 years old) across a modeling domain that encompassed the winter ranges of the Central Arctic and Porcupine caribou herds in the Alaskan-Yukon Arctic. Fires were less numerous and smaller in tundra compared to spruce habitats throughout the 90-year projection for both GCMs. Given the more likely climate trajectory, we projected that the Porcupine caribou herd, which winters primarily in the boreal forest, could be expected to experience a greater reduction in lichen-producing winter habitats (−21%) than the Central Arctic herd that wintered primarily in the arctic tundra (−11%). Our results suggest that caribou herds wintering in boreal forest will undergo fire-driven reductions in lichen-producing habitats that will, at a minimum, alter their distribution. Range shifts of caribou resulting from fire-driven changes to winter habitat may diminish access to caribou for rural communities that reside in fire-prone areas. PMID:24991804
Kyle Joly; Randi R. Jandt; Cynthia R. Meyers; Martha J. Cole
2007-01-01
The population of the Western Arctic Herd, estimated at 490,000 caribou (Rangifer tarandus granti) in 2003, is at its highest level in 30 years. Twenty permanent range transects were established in the winter range of the Western Arctic Herd in 1981 to assess the impacts of grazing. These transects were revisited in 1995 and 1996 (1995/96). Only 18...
Ranging Behaviour of Commercial Free-Range Broiler Chickens 1: Factors Related to Flock Variability
Hemsworth, Paul H.; Groves, Peter J.; Rault, Jean-Loup
2017-01-01
Simple Summary Free-range chicken meat consumption has increased. However, little is known about how meat chickens use the outdoor range. Understanding ranging behaviour could help improve management and shed and range design to ensure optimal ranging opportunities. We tracked 1200 individual broiler chickens in four mixed sex flocks on one commercial farm across two seasons. More chickens accessed the range in summer than winter. Chickens that accessed the range in winter did so less frequently and for a shorter period of time daily than chickens ranging in summer. The number of chickens ranging and the frequency and duration of range visits increased over the first two weeks of range access and stabilised thereafter. More chickens entered and exited the range through particular doors in the shed. More chickens ranged in the morning and evening compared to the middle of the day. Ranging behaviour decreased with increased rainfall and shed dew point. This study provides knowledge regarding ranging behaviour in commercial conditions that may guide improvements on farm to provide chickens with optimal ranging opportunities. Abstract Little is known about the ranging behaviour of chickens. Understanding ranging behaviour is required to improve management and shed and range design to ensure optimal ranging opportunities. Using Radio Frequency Identification technology, we tracked 300 individual broiler chickens in each of four mixed sex ROSS 308 flocks on one commercial farm across two seasons. Ranging behaviour was tracked from the first day of range access (21 days of age) until 35 days of age in winter and 44 days of age in summer. Range use was higher than previously reported from scan sampling studies. More chickens accessed the range in summer (81%) than winter (32%; p < 0.05). On average, daily frequency and duration of range use was greater in summer flocks (4.4 ± 0.1 visits for a total of 26.3 ± 0.8 min/day) than winter flocks (3.2 ± 0.2 visits for a total of 7.9 ± 1.0 min/day). Seasonal differences were only marginally explained by weather conditions and may reflect the reduction in range exposure between seasons (number of days, hours per day, and time of day). Specific times of the day (p < 0.01) and pop-holes were favoured (p < 0.05). We provide evidence of relationships between ranging and external factors that may explain ranging preferences. PMID:28726734
Behavior of mule deer on the Keating Winter Range.
W.B. Fowler; J.E. Dealy
1987-01-01
Observations are presented from 4 years of record, 1976 to 1979, on behavior of mule deer (Odocoileus hemionus) in relation to site variables on the Keating Winter Range in northeastern Oregon. Analyses of animal use per unit area showed that the preferential selection of cells was related primarily to static site variables and secondarily to...
Randi Jandt; Kyle Joly; C. Randy Meyers; Charles Racine
2008-01-01
Lichen regeneration timelines are needed to establish sound fire management guidelines for caribou (Rangifer tarandus) winter range. Paired burned and unburned permanent vegetative cover transects were established after 1981, 1977, and 1972 tundra fires in northwestern Alaska to document regrowth of tundra vegetation including caribou forage...
Greater sage-grouse winter habitat use on the eastern edge of their range
Christopher C. Swanson; Mark A. Rumble; Nicholas W. Kaczor; Robert W. Klaver; Katie M. Herman-Brunson; Jonathan A. Jenks; Kent C. Jensen
2013-01-01
Greater sage-grouse (Centrocercus urophasianus) at the western edge of the Dakotas occur in the transition zone between sagebrush and grassland communities. These mixed sagebrush (Artemisia sp.) and grasslands differ from those habitats that comprise the central portions of the sage-grouse range; yet, no information is available on winter habitat selection within this...
Vuosku, Jaana; Ovaskainen, Anu; Stark, Sari; Rautio, Pasi
2016-01-01
At high latitudes, the climate has warmed at twice the rate of the global average with most changes observed in autumn, winter and spring. Increasing winter temperatures and wide temperature fluctuations are leading to more frequent rain-on-snow events and freeze-thaw cycles causing snow compaction and formation of ice layers in the snowpack, thus creating ice encasement (IE). By decreasing the snowpack insulation capacity and restricting soil-atmosphere gas exchange, modification of the snow properties may lead to colder soil but also to hypoxia and accumulation of trace gases in the subnivean environment. To test the effects of these overwintering conditions changes on plant winter survival and growth, we established a snow manipulation experiment in a coniferous forest in Northern Finland with Norway spruce and Scots pine seedlings. In addition to ambient conditions and prevention of IE, we applied three snow manipulation levels: IE created by artificial rain-on-snow events, snow compaction and complete snow removal. Snow removal led to deeper soil frost during winter, but no clear effect of IE or snow compaction done in early winter was observed on soil temperature. Hypoxia and accumulation of CO2 were highest in the IE plots but, more importantly, the duration of CO2 concentration above 5% was 17 days in IE plots compared to 0 days in ambient plots. IE was the most damaging winter condition for both species, decreasing the proportion of healthy seedlings by 47% for spruce and 76% for pine compared to ambient conditions. Seedlings in all three treatments tended to grow less than seedlings in ambient conditions but only IE had a significant effect on spruce growth. Our results demonstrate a negative impact of winter climate change on boreal forest regeneration and productivity. Changing snow conditions may thus partially mitigate the positive effect of increasing growing season temperatures on boreal forest productivity. PMID:27254100
Martz, Françoise; Vuosku, Jaana; Ovaskainen, Anu; Stark, Sari; Rautio, Pasi
2016-01-01
At high latitudes, the climate has warmed at twice the rate of the global average with most changes observed in autumn, winter and spring. Increasing winter temperatures and wide temperature fluctuations are leading to more frequent rain-on-snow events and freeze-thaw cycles causing snow compaction and formation of ice layers in the snowpack, thus creating ice encasement (IE). By decreasing the snowpack insulation capacity and restricting soil-atmosphere gas exchange, modification of the snow properties may lead to colder soil but also to hypoxia and accumulation of trace gases in the subnivean environment. To test the effects of these overwintering conditions changes on plant winter survival and growth, we established a snow manipulation experiment in a coniferous forest in Northern Finland with Norway spruce and Scots pine seedlings. In addition to ambient conditions and prevention of IE, we applied three snow manipulation levels: IE created by artificial rain-on-snow events, snow compaction and complete snow removal. Snow removal led to deeper soil frost during winter, but no clear effect of IE or snow compaction done in early winter was observed on soil temperature. Hypoxia and accumulation of CO2 were highest in the IE plots but, more importantly, the duration of CO2 concentration above 5% was 17 days in IE plots compared to 0 days in ambient plots. IE was the most damaging winter condition for both species, decreasing the proportion of healthy seedlings by 47% for spruce and 76% for pine compared to ambient conditions. Seedlings in all three treatments tended to grow less than seedlings in ambient conditions but only IE had a significant effect on spruce growth. Our results demonstrate a negative impact of winter climate change on boreal forest regeneration and productivity. Changing snow conditions may thus partially mitigate the positive effect of increasing growing season temperatures on boreal forest productivity.
Gillespie, Lauren M.; Volaire, Florence A.
2017-01-01
Background Dormancy in higher plants is an adaptive response enabling plant survival during the harshest seasons and has been more explored in woody species than in herbaceous species. Nevertheless, winter and summer shoot meristem dormancy are adaptive strategies that could play a major role in enhancing seasonal stress tolerance and resilience of widespread herbaceous plant communities. Scope This review outlines the symmetrical aspects of winter and summer dormancy in order to better understand plant adaptation to severe stress, and highlight research priorities in a changing climate. Seasonal dormancy is a good model to explore the growth–stress survival trade-off and unravel the relationships between growth potential and stress hardiness. Although photoperiod and temperature are known to play a crucial, though reversed, role in the induction and release of both types of dormancy, the thresholds and combined effects of these environmental factors remain to be identified. The biochemical compounds involved in induction or release in winter dormancy (abscisic acid, ethylene, sugars, cytokinins and gibberellins) could be a priority research focus for summer dormancy. To address these research priorities, herbaceous species, being more tractable than woody species, are excellent model plants for which both summer and winter dormancy have been clearly identified. Conclusions Summer and winter dormancy, although responding to inverse conditions, share many characteristics. This analogous nature can facilitate research as well as lead to insight into plant adaptations to extreme conditions and the evolution of phenological patterns of species and communities under climate change. The development of phenotypes showing reduced winter and/or enhanced summer dormancy may be expected and could improve adaptation to less predictable environmental stresses correlated with future climates. To this end, it is suggested to explore the inter- and intraspecific genotypic variability of dormancy and its plasticity according to environmental conditions to contribute to predicting and mitigating global warming. PMID:28087658
Miller, Tricia A.; Brooks, Robert P.; Lanzone, Michael J.; Cooper, Jeff; O'Malley, Kieran; Brandes, David; Duerr, Adam E.; Katzner, Todd
2017-01-01
Movement behavior and its relationship to habitat provide critical information toward understanding the effects of changing environments on birds. The eastern North American population of Golden Eagles (Aquila chrysaetos) is a genetically distinct and small population of conservation concern. To evaluate the potential responses of this population to changing landscapes, we calculated the home range and core area sizes of 52 eagles of 6 age–sex classes during the summer and winter seasons. Variability in range size was related to variation in topography and open cover, and to age and sex. In summer, eagle ranges that were smaller had higher proportions of ridge tops and open cover and had greater topographic roughness than did larger ranges. In winter, smaller ranges had higher proportions of ridge tops, hillsides and cliffs, and open cover than did larger ranges. All age and sex classes responded similarly to topography and open cover in both seasons. Not surprisingly, adult eagles occupied the smallest ranges in both seasons. Young birds used larger ranges than adults, and subadults in summer used the largest ranges (>9,000 km2). Eastern adult home ranges in summer were 2–10 times larger than those reported for other populations in any season. Golden Eagles in eastern North America may need to compensate for generally lower-quality habitat in the region by using larger ranges that support access to adequate quantities of resources (prey, updrafts, and nesting, perching, and roosting sites) associated with open cover and diverse topography. Our results suggest that climate change–induced afforestation on the breeding grounds and ongoing land cover change from timber harvest and energy development on the wintering grounds may affect the amount of suitable habitat for Golden Eagles in eastern North America.
Winter movements of Louisiana pine snakes (Pituophis ruthveni) in Texas and Louisiana
Josh B. Pierce; D. Craig Rudolph; Shirley J. Burgdorf; Richard R. Schaefer; Richard N. Conner; John G. Himes; C. Mike Duran; Laurence M. Hardy; Robert R. Fleet
2014-01-01
Despite concerns that the Louisiana Pine Snake (Pituophis ruthveni) has been extirpated from large portions of its historic range, only a limited number of studies on their movement patterns have been published. Winter movement patterns are of particular interest since it has been hypothesized that impacts of management practices would be reduced during the winter....
White-tailed deer migration and its role in wolf predation
Hoskinson, R.L.; Mech, L.D.
1976-01-01
Seventeen white-tailed deer (Odocoileus virginianus) were radio-tagged in winter yards and tracked for up to 17 months each (881 locations) from January 1973 through August 1974 in the central Superior National Forest of NE Minnesota following a drastic decline in deer numbers. Ten vyolves (Canis lupus) from 7 packs in the same area were radiotracked before and/or during the same period (703 locations). Deer had winter ranges averaging 26.4 ha. Spring migration took place from 26 March to 23 April and was related to loss of snow cover. Deer generally migrated ENE in straight-line distances of 10.0 to 38.0 km to summer ranges. Two fawns did not migrate. Arrival on summer ranges was between 19 April and 18 May, and summer ranges varied from 48.1 to 410.4 ha. Migration back to the same winter yards took place in early December, coincident with snow accumulation and low temperatures. Social grouping appeared strongest during migration and winter yarding. Survival of the radio-tagged deer was studied through 1 May 1975. Four deer were killed by wolves, one was poached, and one drowned. Mean age of the captured deer was 5.4 years and estimated minimum survival after capture was 2.6 years, giving an estimated total minimum survival of 8.0 years. This unusually high survival rate appeared to be related to the fact that both winter and summer ranges of these deer were situated along wolf-pack territory edges rather than in centers. In addition, most summer ranges of the radio-tagged deer were along major waterways where the deer could escape wolves.
Winter Photochemistry Underlying High Ozone in an Oil and Gas Producing Region
NASA Astrophysics Data System (ADS)
Brown, S. S.; Edwards, P. M.; Roberts, J. M.; Ahmadov, R.; Banta, R. M.; De Gouw, J. A.; Dube, W. P.; Field, R. A.; Gilman, J.; Graus, M.; Helmig, D.; Koss, A.; Langford, A. O.; Lefer, B. L.; Lerner, B. M.; McKeen, S. A.; Li, S. M.; Murphy, S. M.; Parrish, D. D.; Senff, C. J.; Stutz, J.; Thompson, C. R.; Trainer, M.; Veres, P. R.; Warneke, C.; Wild, R. J.; Young, C.; Yuan, B.; Zamora, R. J.; Washenfelder, R. A.
2014-12-01
Ozone formation during wintertime in oil and gas producing basins of the Rocky Mountain West now accounts for some of the highest ozone pollutant concentrations observed in the U.S. These events are scientifically challenging, occurring only during cold, snow covered periods when meteorological inversions concentrate pollutants near the surface, but when incident solar actinic flux that initiates photochemical reactions is at or near its minimum. A near-explicit chemical model that incorporates detailed measurements obtained during three successive winter field studies in the Uintah Basin, Utah, accurately reproduces the observed buildup of ozone and other photochemically generated species. It also identifies the sources of free radicals that drive this unusual photochemistry, and quantifies their relative contributions. Although sharing the same basic atmospheric chemistry, winter ozone formation differs from its summertime, urban counterpart in its dependence upon the relative concentrations of volatile organic compounds (VOCs) and nitrogen oxide (NOx) precursors. Observed NOx mixing ratios in the Uintah basin are lower than is typical of urban areas, while VOC levels are significantly larger. These extreme VOC concentrations allow for nearly optimal efficiency of ozone production from the available NOx. This analysis will inform the design of mitigation strategies and provide insight into the response of winter ozone to primary air pollutants in other regions, particularly those where oil and gas development is contemplated.
Eagleston, Holly; Rubin, Charles
2013-01-01
Many recreation impact studies have focused on summer activities, but the environmental impact of winter recreation is poorly characterized. This study characterizes the impact of snowshoe/cross-country ski compaction and snowmelt erosion on trails. Trail cross-sectional profiles were measured before and after the winter season to map changes in erosion due to winter recreation. Compacted snow on the trail was 30 % more dense than snowpack off the trail before spring melt out. Snow stayed on the trail 7 days longer. Soil and organic material was transported after spring snowmelt with -9.5 ± 2.4 cm(2) total erosion occurring on the trail transects and -3.8 ± 2.4 cm(2) total erosion occurring on the control transect (P = 0.046). More material was transported on the trail than on the control, 12.9± 2.4 versus 6.0 ± 2.4 cm(2) (P = 0.055), however, deposition levels remained similar on the trail and on the control. Snow compaction from snowshoers and cross-country skiers intensified erosion. Trail gradient was found to be significantly correlated to net changes in material on the trail (R (2) = 0.89, ρ = -0.98, P = 0.005). This study provides a baseline, showing that non-motorized winter recreation does impact soil erosion rates but more studies are needed. Trail managers should consider mitigation such as water bars, culverts and avoiding building trails with steep gradients, in order to reduce loss of soils on trails and subsequent sedimentation of streams.
NASA Astrophysics Data System (ADS)
Eagleston, Holly; Rubin, Charles
2013-01-01
Many recreation impact studies have focused on summer activities, but the environmental impact of winter recreation is poorly characterized. This study characterizes the impact of snowshoe/cross-country ski compaction and snowmelt erosion on trails. Trail cross-sectional profiles were measured before and after the winter season to map changes in erosion due to winter recreation. Compacted snow on the trail was 30 % more dense than snowpack off the trail before spring melt out. Snow stayed on the trail 7 days longer. Soil and organic material was transported after spring snowmelt with -9.5 ± 2.4 cm2 total erosion occurring on the trail transects and -3.8 ± 2.4 cm2 total erosion occurring on the control transect ( P = 0.046). More material was transported on the trail than on the control, 12.9± 2.4 versus 6.0 ± 2.4 cm2 ( P = 0.055), however, deposition levels remained similar on the trail and on the control. Snow compaction from snowshoers and cross-country skiers intensified erosion. Trail gradient was found to be significantly correlated to net changes in material on the trail ( R 2 = 0.89, ρ = -0.98, P = 0.005). This study provides a baseline, showing that non-motorized winter recreation does impact soil erosion rates but more studies are needed. Trail managers should consider mitigation such as water bars, culverts and avoiding building trails with steep gradients, in order to reduce loss of soils on trails and subsequent sedimentation of streams.
Effects of over-winter green cover on soil solution nitrate concentrations beneath tillage land.
Premrov, Alina; Coxon, Catherine E; Hackett, Richard; Kirwan, Laura; Richards, Karl G
2014-02-01
There is a growing need to reduce nitrogen losses from agricultural systems to increase food production while reducing negative environmental impacts. The efficacy of vegetation cover for reducing nitrate leaching in tillage systems during fallow periods has been widely investigated. Nitrate leaching reductions by natural regeneration (i.e. growth of weeds and crop volunteers) have been investigated to a lesser extent than reductions by planted cover crops. This study compares the efficacy of natural regeneration and a sown cover crop (mustard) relative to no vegetative cover under both a reduced tillage system and conventional plough-based system as potential mitigation measures for reducing over-winter soil solution nitrate concentrations. The study was conducted over three winter fallow seasons on well drained soil, highly susceptible to leaching, under temperate maritime climatic conditions. Mustard cover crop under both reduced tillage and conventional ploughing was observed to be an effective measure for significantly reducing nitrate concentrations. Natural regeneration under reduced tillage was found to significantly reduce the soil solution nitrate concentrations. This was not the case for the natural regeneration under conventional ploughing. The improved efficacy of natural regeneration under reduced tillage could be a consequence of potential stimulation of seedling germination by the autumn reduced tillage practices and improved over-winter plant growth. There was no significant effect of tillage practices on nitrate concentrations. This study shows that over winter covers of mustard and natural regeneration, under reduced tillage, are effective measures for reducing nitrate concentrations in free draining temperate soils. © 2013.
Indoor Thermal Factors and Symptoms in Office Workers: Findings from the U.S. EPA BASE Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mendell, Mark; Mirer, Anna
2008-06-01
Some prior research in office buildings has associated higher indoor temperatures even within the recommended thermal comfort range with increased worker symptoms. We reexamined this relationship in data from 95 office buildings in the U.S. Environmental Protection Agency's Building Assessment Survey and Evaluation (BASE) Study. We investigated relationships between building-related symptoms and thermal metrics constructed from real-time measurements. We estimated odds ratios (ORs) and 95percent confidence intervals in adjusted logistic regression models with general estimating equations, overall and by season. Winter indoor temperatures spanned the recommended winter comfort range; summer temperatures were mostly colder than the recommended summer range. Increasingmore » indoor temperatures, overall, were associated with increases in few symptoms. Higher winter indoor temperatures, however, were associated with increases in all symptoms analyzed. Higher summer temperatures, above 23oC, were associated with decreases in most symptoms. Humidity ratio, a metric of absolute humidity, showed few clear associations. Thus, increased symptoms with higher temperatures within the thermal comfort range were found only in winter. In summer, buildings were overcooled, and only the higher observed temperatures were within the comfort range; these were associated with decreased symptoms. Confirmation of these findings would suggest that thermal management guidelines consider health effects as well as comfort.« less
Stark, Sari; Julkunen-Tiitto, Riitta; Kumpula, Jouko
2007-03-01
Mammalian herbivores commonly alter the concentrations of secondary compounds in plants and, by this mechanism, have indirect effects on litter decomposition and soil carbon and nutrient cycling. In northernmost Fennoscandia, the subarctic mountain birch (Betula pubescens ssp. czerepanovii) forests are important pasture for the semidomestic reindeer (Rangifer tarandus). In the summer ranges, mountain birches are intensively browsed, whereas in the winter ranges, reindeer feed on ground lichens, and the mountain birches remain intact. We analyzed the effect of summer browsing on the concentrations of secondary substances, litter decomposition, and soil nutrient pools in areas that had been separated as summer or winter ranges for at least 20 years, and we predicted that summer browsing may reduce levels of secondary compounds in the mountain birch and, by this mechanism, have an indirect effect on the decomposition of mountain birch leaf litter and soil nutrient cycling. The effect of browsing on the concentration of secondary substances in the mountain birch leaves varied between different years and management districts, but in some cases, the concentration of condensed tannins was lower in the summer than in the winter ranges. In a reciprocal litter decomposition trial, both litter origin and emplacement significantly affected the litter decomposition rate. Decomposition rates were faster for the litter originating from and placed into the summer range. Soil inorganic nitrogen (N) concentrations were higher in the summer than in the winter ranges, which indicates that reindeer summer browsing may enhance the soil nutrient cycling. There was a tight inverse relationship between soil N and foliar tannin concentrations in the winter range but not in the summer range. This suggests that in these strongly nutrient-limited ecosystems, soil N availability regulates the patterns of resource allocation to condensed tannins in the absence but not in the presence of browsing.
Reed, J.A.; Flint, Paul L.
2007-01-01
We studied the movements and foraging effort of radio-marked Steller's Eiders (Polysticta stelleri) and Harlequin Ducks (Histrionicus histrionicus) to evaluate habitat quality in an area impacted by industrial activity near Dutch Harbor, Alaska. Foraging effort was relatively low, with Steller's Eiders foraging only 2.7 ± 0.6 (SE) hours per day and Harlequin Ducks 4.1 ± 0.5 hours per day. Low-foraging effort during periods of high-energetic demand generally suggests high food availability, and high food availability frequently corresponds with reductions in home range size. However, the winter ranges of Harlequin Ducks did not appear to be smaller than usual, with the mean range size in our study (5.5 ± 1.1 km2) similar to that reported by previous investigators. The mean size of the winter ranges of Steller's Eiders was similar (5.1 ± 1.3 km2), but no comparable estimates are available. Eutrophication of the waters near Dutch Harbor caused by seafood processing and municipal sewage effluent may have increased populations of the invertebrate prey of these sea ducks and contributed to their low-foraging effort. The threat of predation by Bald Eagles (Haliaeetus leucocephalus) that winter near Dutch Harbor may cause Steller's Eiders and Harlequin Ducks to move further offshore when not foraging, contributing to an increase in range sizes. Thus, the movement patterns and foraging behavior of these ducks likely represent a balance between the cost and benefits of wintering in a human-influenced environment.
Srinivasan, Rajagopalbabu; Riley, David; Diffie, Stan; Shrestha, Anita; Culbreath, Albert
2014-04-01
Thrips-transmitted Tomato spotted wilt virus (TSWV) has a broad host range including crops and weeds. In Georgia, TSWV is known to consistently affect peanut, tomato, pepper, and tobacco production. These crops are grown from March through November. In the crop-free period, weeds are presumed to serve as a green bridge for thrips and TSWV. Previous studies have identified several winter weeds as TSWV and thrips hosts. However, their ability to influence TSWV transmission in crops is still not completely understood. To further understand these interactions, population dynamics of two prevalent vectors, viz., Frankliniella fusca (Hinds) and Frankliniella occidentalis (Pergande), on selected winter weeds were monitored from October through April in four counties from 2004 to 2008. Peak populations were typically recorded in March. F. fusca and F. occidentalis adults were found on winter weeds and their percentages ranged from 0 to 68% in comparison with other adults. Immatures outnumbered all adults. Microcosm experiments indicated that the selected winter weeds differentially supported F. fusca reproduction and development. The time required to complete one generation (adult to adult) ranged from 11 to 16 d. Adult recovery ranged from 0.97 to 2.2 per female released. In addition, transmission assays revealed that thrips efficiently transmitted TSWV from peanut to weeds, the incidence of infection ranged from 10 to 55%. Back transmission assays with thrips from TSWV-infected weeds resulted in up to 75% TSWV infection in peanut. These whole-plant transmission and back transmission assays provide the basis for TSWV persistence in farmscapes year round.
Baranwal, Vinay Kumar; Negi, Nisha; Khurana, Paramjit
2017-01-01
Auxin Response Factors (ARFs) are at the core of the regulation mechanism for auxin-mediated responses, along with AUX/IAA proteins.They are critical in the auxin-mediated control of various biological responses including development and stress. A wild mulberry species genome has been sequenced and offers an opportunity to investigate this important gene family. A total of 17 ARFs have been identified from mulberry (Morus notabilis) which show a wide range of expression patterns. Of these 17 ARFs, 15 have strong acidic isoelectric point (pI) values and a molecular mass ranging from 52 kDa to 101 kDa. The putative promoters of these ARFs harbour cis motifs related to light-dependent responses, various stress responses and hormone regulations suggestive of their multifactorial regulation. The gene ontology terms for ARFs indicate their role in flower development, stress, root morphology and other such development and stress mitigation related activities. Conserved motif analysis showed the presence of all typical domains in all but four members that lack the PB1 domain and thus represent truncated ARFs. Expression analysis of these ARFs suggests their preferential expression in tissues ranging from leaf, root, winter bud, bark and male flowers. These ARFs showed differential expression in the leaf tissue of M. notabilis, Morus laevigata and Morus serrata. Insights gained from this analysis have implications in mulberry improvement programs. PMID:28841197
NASA Astrophysics Data System (ADS)
Prabhakara, Kusuma; Hively, W. Dean; McCarty, Gregory W.
2015-07-01
Winter cover crops are an essential part of managing nutrient and sediment losses from agricultural lands. Cover crops lessen sedimentation by reducing erosion, and the accumulation of nitrogen in aboveground biomass results in reduced nutrient runoff. Winter cover crops are planted in the fall and are usually terminated in early spring, making them susceptible to senescence, frost burn, and leaf yellowing due to wintertime conditions. This study sought to determine to what extent remote sensing indices are capable of accurately estimating the percent groundcover and biomass of winter cover crops, and to analyze under what critical ranges these relationships are strong and under which conditions they break down. Cover crop growth on six fields planted to barley, rye, ryegrass, triticale or wheat was measured over the 2012-2013 winter growing season. Data collection included spectral reflectance measurements, aboveground biomass, and percent groundcover. Ten vegetation indices were evaluated using surface reflectance data from a 16-band CROPSCAN sensor. Restricting analysis to sampling dates before the onset of prolonged freezing temperatures and leaf yellowing resulted in increased estimation accuracy. There was a strong relationship between the normalized difference vegetation index (NDVI) and percent groundcover (r2 = 0.93) suggesting that date restrictions effectively eliminate yellowing vegetation from analysis. The triangular vegetation index (TVI) was most accurate in estimating high ranges of biomass (r2 = 0.86), while NDVI did not experience a clustering of values in the low and medium biomass ranges but saturated in the higher range (>1500 kg/ha). The results of this study show that accounting for index saturation, senescence, and frost burn on leaves can greatly increase the accuracy of estimates of percent groundcover and biomass for winter cover crops.
Prabhakara, Kusuma; Hively, W. Dean; McCarty, Greg W.
2015-01-01
Winter cover crops are an essential part of managing nutrient and sediment losses from agricultural lands. Cover crops lessen sedimentation by reducing erosion, and the accumulation of nitrogen in aboveground biomass results in reduced nutrient runoff. Winter cover crops are planted in the fall and are usually terminated in early spring, making them susceptible to senescence, frost burn, and leaf yellowing due to wintertime conditions. This study sought to determine to what extent remote sensing indices are capable of accurately estimating the percent groundcover and biomass of winter cover crops, and to analyze under what critical ranges these relationships are strong and under which conditions they break down. Cover crop growth on six fields planted to barley, rye, ryegrass, triticale or wheat was measured over the 2012–2013 winter growing season. Data collection included spectral reflectance measurements, aboveground biomass, and percent groundcover. Ten vegetation indices were evaluated using surface reflectance data from a 16-band CROPSCAN sensor. Restricting analysis to sampling dates before the onset of prolonged freezing temperatures and leaf yellowing resulted in increased estimation accuracy. There was a strong relationship between the normalized difference vegetation index (NDVI) and percent groundcover (r2 = 0.93) suggesting that date restrictions effectively eliminate yellowing vegetation from analysis. The triangular vegetation index (TVI) was most accurate in estimating high ranges of biomass (r2 = 0.86), while NDVI did not experience a clustering of values in the low and medium biomass ranges but saturated in the higher range (>1500 kg/ha). The results of this study show that accounting for index saturation, senescence, and frost burn on leaves can greatly increase the accuracy of estimates of percent groundcover and biomass for winter cover crops.
NASA Astrophysics Data System (ADS)
Feng, S.
2017-12-01
Winter seasons have significant societal impacts across all sectors ranging from direct human health to ecosystems, transportation, and recreation. This study quantifies the severity of winter and its spatial-temporal variations using a newly developed winter severity index and daily temperature, snowfall and snow depth. The winter severity and the number of extreme winter days are decreasing across the global terrestrial areas during 1901-2015 except the southeast United States and isolated regions in the Southern Hemisphere. These changes are dominated by winter warming, while the changes in daily snowfall and snow depth played a secondary role. The simulations of multiple CMIP5 climate models can well capture the spatial and temporal variations of the observed changes in winter severity and extremes during 1951-2005. The models are consistent in projecting a future milder winter under various scenarios. The winter severity is projected to decrease 60-80% in the middle-latitude Northern Hemisphere under the business-as-usual scenario. The winter arrives later, ends earlier and the length of winter season will be notably shorter. The changes in harsh winter in the polar regions are weak, mainly because the warming leads to more snowfall in the high latitudes.
Model-based assessment of aspen responses to elk herbivory in Rocky Mountain National Park
Peter J. Weisberg; Michael B. Coughenour
2001-01-01
In Rocky Mountain National Park, aspen has been observed to decline on elk winter range for many decades. The SAVANNA ecosystem model was adapted to explore interactions between elk herbivory and aspen dynamics on the elk winter range. Several scenarios were explored that considered different levels of overall elk population; different levels of elk utilization of...
Mortality of aspen on the Gros Ventre elk winter range
Richard G. Krebill
1972-01-01
Stands of aspen on the Gros Ventre elk winter range of northwestern Wyoming are suffering high mortality and are not regenerating satisfactorily. If the 1970 mortality rate (3.6 percent) continues, about a two-thirds reduction in the numbers of tree-sized aspen can be expected by year 2000. Collected evidence suggests that the mortality rate is unusually high because...
NASA Technical Reports Server (NTRS)
Lent, P. C. (Principal Investigator)
1976-01-01
The author has identified the following significant results. Winter and summer moose range maps of three selected areas were produced (1:63,360 scale). The analytic approach is very similar to modified clustering. Preliminary results indicate that this method is not only more accurate but considerably less expensive than supervised classification techniques.
American black duck summer range versus winter range: a dichotomy of riches
Longcore, J.R.; Perry, Matthew C.
2002-01-01
The status of the American black duck (Anas rubripes) population has more often been attributed to a single event than to multiple events over time and throughout space. The difference in the quality of the habitat, however defined, within breeding areas in the North and in the southerly wintering areas, especially Chesapeake Bay, also has been proposed as affecting black duck status. The obvious question is 'What variable cuts across all habitats, time, and space to affect black ducks?' This paper attempts to answer that question by examining the connectivity of seemingly unrelated variables and events associated with the black duck's summer range and its winter range relative to population change. Insights from examples of relations among these variables reveal how results may be confounded and even misleading. A perspective that may be required to ensure future black duck populations is discussed.
Migratory double breeding in Neotropical migrant birds.
Rohwer, Sievert; Hobson, Keith A; Rohwer, Vanya G
2009-11-10
Neotropical migratory songbirds typically breed in temperate regions and then travel long distances to spend the majority of the annual cycle in tropical wintering areas. Using stable-isotope methodology, we provide quantitative evidence of dual breeding ranges for 5 species of Neotropical migrants. Each is well known to have a Neotropical winter range and a breeding range in the United States and Canada. However, after their first bout of breeding in the north, many individuals migrate hundreds to thousands of kilometers south in midsummer to breed a second time during the same summer in coastal west Mexico or Baja California Sur. They then migrate further south to their final wintering areas in the Neotropics. Our discovery of dual breeding ranges in Neotropical migrants reveals a hitherto unrealized flexibility in life-history strategies for these species and underscores that demographic models and conservation plans must consider dual breeding for these migrants.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tuskan, Gerald A; Yin, Tongming
Lack of aspen (Populus tremuloides) recruitment and canopy replacement of aspen stands that grow on the edges of grasslands on the low-elevation elk (Cervus elaphus) winter range of Rocky Mountain National Park (RMNP) in Colorado has been a cause of concern for more than 70 years (Packard, 1942; Olmsted, 1979; Stevens, 1980; Hess, 1993; R.J. Monello, T.L. Johnson, and R.G. Wright, Rocky Mountain National Park, 2006, written commun.). These aspen stands are a significant resource since they are located close to the park's road system and thus are highly visible to park visitors. Aspen communities are integral to the ecologicalmore » structure of montane and subalpine landscapes because they contain high native species richness of plants, birds, and butterflies (Chong and others, 2001; Simonson and others, 2001; Chong and Stohlgren, 2007). These low-elevation, winter range stands also represent a unique component of the park's plant community diversity since most (more than 95 percent) of the park's aspen stands grow in coniferous forest, often on sheltered slopes and at higher elevations, while these winter range stands are situated on the low-elevation ecotone between the winter range grasslands and some of the park's drier coniferous forests.« less
Fish stranding in freshwater systems: sources, consequences, and mitigation.
Nagrodski, Alexander; Raby, Graham D; Hasler, Caleb T; Taylor, Mark K; Cooke, Steven J
2012-07-30
Fish can become stranded when water levels decrease, often rapidly, as a result of anthropogenic (e.g., canal drawdown, hydropeaking, vessel wakes) and natural (e.g., floods, drought, winter ice dynamics) events. We summarize existing research on stranding of fish in freshwater, discuss the sources, consequences, and mitigation options for stranding, and report current knowledge gaps. Our literature review revealed that ∼65.5% of relevant peer-reviewed articles were found to focus on stranding associated with hydropower operations and irrigation projects. In fact, anthropogenic sources of fish stranding represented 81.8% of available literature compared to only 19.9% attributed to natural fish stranding events. While fish mortality as a result of stranding is well documented, our analysis revealed that little is known about the sublethal and long-term consequences of stranding on growth and population dynamics. Furthermore, the contribution of stranding to annual mortality rates is poorly understood as are the potential ecosystem-scale impacts. Mitigation strategies available to deal with stranding include fish salvage, ramping rate limitations, and physical habitat works (e.g., to contour substrate to minimize stranding). However, a greater knowledge of the factors that cause fish stranding would promote the development and refinement of mitigation strategies that are economically and ecologically sustainable. Copyright © 2012 Elsevier Ltd. All rights reserved.
Major winter and nonwinter floods in selected basins in New York and Pennsylvania
Langbein, Walter Basil
1947-01-01
The scientific design of flood-control works is based on an evaluation of the hydrologic factors basic to flood events, particularly how rainfall and snow runoff, soil conditions, and channel influences can combine to produce greater or lesser floods. For this purpose an analysis of the pertinent hydrologic data is needed. The methods of analysis adopted should conform as closely as possible to those already in use and must be adapted to the quality of the available information. Maximum floods in 8 basins in New York and Pennsylvania during the winter and nonwinter months were studied, a total of 21 floods. The most outstanding winter flood of record in the North Atlantic region was that of March 1936. Rainfall plus snow melt in the basins studied ranged between 3.04 and 6.87 inches, and associated volumes of direct runoff from 1.88 to 5.63 inches. Winter floods have a common characteristic in their relation to freezing temperature. The antecedent periods, representing a period of snow accumulation and frost penetration, are below freezing, and the flood itself is contemporaneous with a period of above-freezing temperatures, usually associated with rain, during which the previously accumulated snow is melted. A second common characteristic of major winter floods is their tendency to be associated with widespread causal meteorologic conditions. There was a more complete conversion of rainfall and snow melt into runoff during the winter storms studied than during the wettest nonwinter flood. Snow melt during winter floods ranged from 0.04 to 0.07 inch per degree-day above 32° F. The depth of mean areal rainfall produced by the nonwinter storms studied ranged from 3.05 to 4.96 inches. The maximum 24-hour quantity at single stations was 14 inches, which was measured during the storm of July 1935 in New York. The volume of direct runoff ranged between 1.39 and 3.41 inches. The portion of rainfall that was converted into runoff varied in accordance with the rate of antecedent base flow, expressed in second-feet per square mile, and emphasized the influence of antecedent conditions. The average volume of direct runoff during winter floods was 4.24 inches, and the average during nonwinter floods was 2.44 inches. The latter, however, were more concentrated as to time, tending to compensate for large volume of runoff in winter, so that the crest rates of direct runoff averaged 0.056 inches per hour during the winter and 0.051 inches during the nonwinter period.
Range-wide patterns of migratory connectivity in the western sandpiper Calidris mauri
Franks, Samantha E.; Norris, D. Ryan; Kyser, T. Kurt; Fernández, Guillermo; Schwarz, Birgit; Carmona, Roberto; Colwell, Mark A.; Sandoval, Jorge Correa; Dondua, Alexey; Gates, H. River; Haase, Ben; Hodkinson, David J.; Jiménez, Ariam; Lanctot, Richard B.; Ortego, Brent; Sandercock, Brett K.; Sanders, Felicia J.; Takekawa, John Y.; Warnock, Nils; Ydenberg, Ron C.; Lank, David B.
2012-01-01
Understanding the population dynamics of migratory animals and predicting the consequences of environmental change requires knowing how populations are spatially connected between different periods of the annual cycle. We used stable isotopes to examine patterns of migratory connectivity across the range of the western sandpiper Calidris mauri. First, we developed a winter isotope basemap from stable-hydrogen (δD), -carbon (δ13C), and -nitrogen (δ15N) isotopes of feathers grown in wintering areas. δD and δ15N values from wintering individuals varied with the latitude and longitude of capture location, while δ13C varied with longitude only. We then tested the ability of the basemap to assign known-origin individuals. Sixty percent of wintering individuals were correctly assigned to their region of origin out of seven possible regions. Finally, we estimated the winter origins of breeding and migrant individuals and compared the resulting empirical distribution against the distribution that would be expected based on patterns of winter relative abundance. For breeding birds, the distribution of winter origins differed from expected only among males in the Yukon-Kuskokwim (Y-K) Delta and Nome, Alaska. Males in the Y-K Delta originated overwhelmingly from western Mexico, while in Nome, there were fewer males from western North America and more from the Baja Peninsula than expected. An unexpectedly high proportion of migrants captured at a stopover site in the interior United States originated from eastern and southern wintering areas, while none originated from western North America. In general, we document substantial mixing between the breeding and wintering populations of both sexes, which will buffer the global population of western sandpipers from the effects of local habitat loss on both breeding and wintering grounds.
Barbet-Massin, Morgane; Walther, Bruno A.; Thuiller, Wilfried; Rahbek, Carsten; Jiguet, Frédéric
2009-01-01
We modelled the present and future sub-Saharan winter distributions of 64 trans-Saharan migrant passerines to predict the potential impacts of climate change. These predictions used the recent ensemble modelling developments and the latest IPCC climatic simulations to account for possible methodological uncertainties. Results suggest that 37 species would face a range reduction by 2100 (16 of these by more than 50%); however, the median range size variation is −13 per cent (from −97 to +980%) under a full dispersal hypothesis. Range centroids were predicted to shift by 500±373 km. Predicted changes in range size and location were spatially structured, with species that winter in southern and eastern Africa facing larger range contractions and shifts. Predicted changes in regional species richness for these long-distance migrants are increases just south of the Sahara and on the Arabian Peninsula and major decreases in southern and eastern Africa. PMID:19324660
Effects of sea ice on winter site fidelity of Pacific common eiders (Somateria mollissima v-nigrum)
Petersen, Margaret R.; Douglas, David C.; Wilson, Heather M.; McCloskey, Sarah E.
2012-01-01
In northern marine habitats, the presence or absence of sea ice results in variability in the distribution of many species and the quality and availability of pelagic winter habitat. To understand the effects of ice on intra- and inter-annual winter site fidelity and movements in a northern sea-duck species, we marked 25 adult Pacific Common Eiders (Somateria mollissima v-nigrum) on their nesting area at Cape Espenberg, Alaska, with satellite transmitters and monitored their movements to their wintering areas in the northern Bering Sea for a 2-year period. We examined changes in winter fidelity in relation to home-range characteristics and ice. Characteristics of polynyas (areas with persistent open water during winter) varied substantially and likely had an effect on the size of winter ranges and movements within polynyas. Movements within polynyas were correlated with changes in weather that affected ice conditions. Ninety-five percent of individuals were found within their 95% utilization distribution (UD) of the previous year, and 90% were found within their 50% UD. Spatial distributions of winter locations between years changed for 32% of the individuals; however, we do not consider these subtle movements biologically significant. Although ice conditions varied between polynyas within and between years, the Common Eiders monitored in our study showed a high degree of fidelity to their winter areas. This observation is counterintuitive, given the requirement that resources are predictable for site fidelity to occur; however, ice may not have been severe enough to restrict access to other resources and, subsequently, force birds to move.
Kyle Joly; F. Stuart III Chapin; David R. Klein
2010-01-01
Lichens are an important winter forage for large, migratory herds of caribou (Rangifer tarandus granti) that can influence population dynamics through effects on body condition and in turn calf recruitment and survival. We investigated the vegetative and physiographic characteristics of winter range of the Western Arctic Herd in northwest Alaska, one...
K. P. McFarland; C. C. Rimmer; J. E. Goetz; Y. Aubry; J. M. Wunderle Jr.; A. Hayes-Sutton; J. M. Townsend; A. Llanes Sosa; A. Kirkconnell
2013-01-01
Conservation planning and implementation require identifying pertinent habitats and locations where protection and management may improve viability of targeted species. The winter range of Bicknellâs Thrush (Catharus bicknelli), a threatened Nearctic-Neotropical migratory songbird, is restricted to the Greater Antilles. We analyzed winter records from the mid-1970s to...
Developmental plasticity of mating calls enables acoustic communication in diverse environments
Beckers, Oliver M; Schul, Johannes
2008-01-01
Male calls of the katydid Neoconocephalus triops exhibit substantial developmental plasticity in two parameters: (i) calls of winter males are continuous and lack the verse structure of summer calls and (ii) at equal temperatures, summer males produce calls with a substantially higher pulse rate than winter males. We raised female N. triops under conditions that reliably induced either summer or winter phenotype and tested their preferences for the call parameters that differ between summer and winter males. Neither generation was selective for the presence of verses, but females had strong preferences for pulse rates: only a narrow range of pulse rates was attractive. The attractive ranges did not differ between summer and winter females. Both male pulse rate and female preference for pulse rate changed with ambient temperature, but female preference changed more than the male calls. As a result, the summer call was attractive only at 25°C, whereas the slower winter call was attractive only at 20°C. Thus, developmental plasticity of male calls compensates for differences in temperature dependency between calls and preferences and enables the communication system to function in heterogeneous environments. The potential role of call plasticity during the invasion of new habitats is discussed. PMID:18302998
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grimes, B.H.; Huish, M.T.; Kerby, J.H.
1989-08-01
Species profiles are literature summaries of the taxonomy, morphology, range, life history, and environmental requirements of coastal species. They are designed to assist in environmental impact assessments. The summer flounder supports an important commercial and recreational fishery in the Mid-Atlantic and are important constituent of estuarine and continental shelf systems throughout the region. Summer flounder spawning begins in September and winter flounder spawning begins in June. Summer flounder eggs are pelagic whereas winter flounder eggs are demersal. Summer flounder larvae are more abundant in inlets, and juveniles are found in estuarine seagrass beds in salinities {>=}12 ppt. Winter flounder juvenilesmore » are abundant in shallow bays and estuaries, moving seaward in spring and summer. Growth of winter flounder and summer flounder is seasonal. There are probably three spawning populations of both species which produce a complex stock pattern. Summer flounder are tolerant of a wide range of chemical and physica faactors, but prefer {gt}10 ppt salinities. Winter flounder optimal temperature is 18.5 {degree}C. Diseases of winter flounder are more prevalent in polluted waters. Summer flounder are tolerant of sediments laden with contaminants. 64 refs., 5 figs., 2 tabs.« less
Northern Galápagos Corals Reveal Twentieth Century Warming in the Eastern Tropical Pacific
NASA Astrophysics Data System (ADS)
Jimenez, Gloria; Cole, Julia E.; Thompson, Diane M.; Tudhope, Alexander W.
2018-02-01
Models and observations disagree regarding sea surface temperature (SST) trends in the eastern tropical Pacific. We present a new Sr/Ca-SST record that spans 1940-2010 from two Wolf Island corals (northern Galápagos). Trend analysis of the Wolf record shows significant warming on multiple timescales, which is also present in several other records and gridded instrumental products. Together, these data sets suggest that most of the eastern tropical Pacific has warmed over the twentieth century. In contrast, recent decades have been characterized by warming during boreal spring and summer (especially north of the equator), and subtropical cooling during boreal fall and winter (especially south of the equator). These SST trends are consistent with the effects of radiative forcing, mitigated by cooling due to wind forcing during boreal winter, as well as intensified upwelling and a strengthened Equatorial Undercurrent.
NASA Astrophysics Data System (ADS)
Kuttippurath, J.; Godin-Beekmann, S.; Lefèvre, F.; Goutail, F.
2010-06-01
The stratospheric ozone loss during the Arctic winters 2004/05-2009/10 is investigated by using high resolution simulations from the chemical transport model Mimosa-Chim and observations from Microwave Limb Sounder (MLS) on Aura by the passive tracer technique. The winter 2004/05 was the coldest of the series with strongest chlorine activation. The ozone loss diagnosed from both model and measurements inside the polar vortex at 475 K ranges from ~1-0.7 ppmv in the warm winter 2005/06 to 1.7 ppmv in the cold winter 2004/05. Halogenated (chlorine and bromine) catalytic cycles contribute to 75-90% of the accumulated ozone loss at this level. At 675 K the lowest loss of ~0.4 ppmv is computed in 2008/09 from both simulations and observations and, the highest loss is estimated in 2006/07 by the model (1.3 ppmv) and in 2004/05 by MLS (1.5 ppmv). Most of the ozone loss (60-75%) at this level results from cycles catalysed by nitrogen oxides (NO and NO2) rather than halogens. At both 475 and 675 K levels the simulated ozone evolution inside the polar vortex is in reasonably good agreement with the observations. The ozone total column loss deduced from the model calculations at the MLS sampling locations inside the vortex ranges between 40 DU in 2005/06 and 94 DU in 2004/05, while that derived from observations ranges between 37 DU and 111 DU in the same winters. These estimates from both Mimosa-Chim and MLS are in general good agreement with those from the ground-based UV-VIS (ultra violet-visible) ozone loss analyses for the respective winters.
Habitat Suitability Index Models: American black duck (wintering)
Lewis, James C.; Garrison, Russell L.
1984-01-01
INTRODUCTION The American black duck, commonly known as the black duck, is migratory and has a wide geographic range. American black ducks breed from Cape Hatteras, North Carolina, west to the Mississippi River and north through the eastern Canadian boreal forest (Bellrose 1976). The winter range extends from the Rio Grande River on the Texas coast, northeast to Lake Michigan, east to Nova Scotia, south to Florida, and west to Texas (Wright 1954). American black ducks arrive on their wintering habitats between September and early December and remain there until February to April (Bellrose 1976). Their preferred habitat varies considerably through the wintering range. Habitat use appears related to food availability, freedom from disturbance, weather, and often upon the presence of large bodies of open water. These interrelated elements are essential for meeting the energy demands and other nutritional requirements of black ducks in response to the rigors of cold weather and migration. In the Atlantic Flyway, winter populations of American black ducks concentrate in marine and estuarine wetlands (U.S. Fish and Wildlife Service 1979). They use salt marshes and small tidal bays for feeding and loafing areas. In wintering areas north of Chesapeake Bay, American black ducks frequently feed on tidal flats and rest in emergent wetlands or on ice-free bays, rivers, and coastal reservoirs. In the Chesapeake bay area, migrant and wintering American black ducks occupy a wide variety of habitats (Stewart 1962). They strongly favor brackish bays with extensive adjacent agricultural lands. Estuarine bays, coastal salt marshes, tidal fresh marshes, and adjacent impoundments receive high usage. American black ducks also concentrate in forested wetlands in and adjacent to estuaries in the South Atlantic Flyway, especially in Virginia and North Carolina.
Wintering ecology of adult North American ospreys
Washburn, Brian E.; Martell, Mark S.; Bierregaard, Richard O.; Henny, Charles J.; Dorr, Brian S.; Olexa, Thomas J.
2014-01-01
North American Ospreys (Pandion haliaetus) typically migrate long distances to their wintering grounds in the tropics. Beyond the general distribution of their wintering range (i.e., the Caribbean, South America, and Central America), very little is known about the wintering ecology of these birds. We used satellite telemetry to determine the duration of wintering period, to examine the characteristics of wintering areas used by Ospreys, and to quantify space use and activity patterns of wintering Ospreys. Adult Ospreys migrated to wintering sites and exhibited high wintering site fidelity among years. Overall, Ospreys wintered on river systems (50.6%) more than on lakes (19.0%), and use of coastal areas was (30.4%) intermediate. Ospreys remained on their wintering grounds for an average of 154 d for males and 167 d for females. Locations of wintering Ospreys obtained via GPS-capable satellite telemetry suggest these birds move infrequently and their movements are very localized (i.e., 2 and 1.4 km2, respectively. Overall, our findings suggest wintering adult North American Ospreys are very sedentary, demonstrating a pattern of limited daily movements and high fidelity to a few select locations (presumably roosts). We suggest this wintering strategy might be effective for reducing the risk of mortality and maximizing energy conservation.
Winter feeding of elk in the Greater Yellowstone Ecosystem and its effects on disease dynamics
Cotterill, Gavin G.; Cross, Paul C.; Cole, Eric K.; Fuda, Rebecca K.; Rogerson, Jared D.; Scurlock, Brandon M.; du Toit, Johan T.
2018-01-01
Providing food to wildlife during periods when natural food is limited results in aggregations that may facilitate disease transmission. This is exemplified in western Wyoming where institutional feeding over the past century has aimed to mitigate wildlife–livestock conflict and minimize winter mortality of elk (Cervus canadensis). Here we review research across 23 winter feedgrounds where the most studied disease is brucellosis, caused by the bacterium Brucella abortus. Traditional veterinary practices (vaccination, test-and-slaughter) have thus far been unable to control this disease in elk, which can spill over to cattle. Current disease-reduction efforts are being guided by ecological research on elk movement and density, reproduction, stress, co-infections and scavengers. Given the right tools, feedgrounds could provide opportunities for adaptive management of brucellosis through regular animal testing and population-level manipulations. Our analyses of several such manipulations highlight the value of a research–management partnership guided by hypothesis testing, despite the constraints of the sociopolitical environment. However, brucellosis is now spreading in unfed elk herds, while other diseases (e.g. chronic wasting disease) are of increasing concern at feedgrounds. Therefore experimental closures of feedgrounds, reduced feeding and lower elk populations merit consideration.
Wheat production in Bangladesh: its future in the light of global warming.
Hossain, Akbar; Teixeira da Silva, Jaime A
2013-01-01
The most fundamental activity of the people of Bangladesh is agriculture. Modelling projections for Bangladesh indicate that warmer temperatures linked to climate change will severely reduce the growth of various winter crops (wheat, boro rice, potato and winter vegetables) in the north and central parts. In summer, crops in south-eastern parts of the country are at risk from increased flooding as sea levels increase. Wheat is one of the most important winter crops and is temperature sensitive and the second most important grain crop after rice. In this review, we provide an up-to-date and detailed account of wheat research of Bangladesh and the impact that global warming may have on agriculture, especially wheat production. Although flooding is not of major importance or consequence to the wheat crop at present, some perspectives are provided on this stress since wheat is flood sensitive and the incidence of flooding is likely to increase. This information and projections will allow wheat breeders to devise new breeding programmes to attempt to mitigate future global warming. We discuss what this implies for food security in the broader context of South Asia.
Wheat production in Bangladesh: its future in the light of global warming
Hossain, Akbar; Teixeira da Silva, Jaime A.
2012-01-01
Background and aims The most fundamental activity of the people of Bangladesh is agriculture. Modelling projections for Bangladesh indicate that warmer temperatures linked to climate change will severely reduce the growth of various winter crops (wheat, boro rice, potato and winter vegetables) in the north and central parts. In summer, crops in south-eastern parts of the country are at risk from increased flooding as sea levels increase. Key facts Wheat is one of the most important winter crops and is temperature sensitive and the second most important grain crop after rice. In this review, we provide an up-to-date and detailed account of wheat research of Bangladesh and the impact that global warming may have on agriculture, especially wheat production. Although flooding is not of major importance or consequence to the wheat crop at present, some perspectives are provided on this stress since wheat is flood sensitive and the incidence of flooding is likely to increase. Projections This information and projections will allow wheat breeders to devise new breeding programmes to attempt to mitigate future global warming. We discuss what this implies for food security in the broader context of South Asia. PMID:23304431
NASA Astrophysics Data System (ADS)
Weissert, L. F.; Salmond, J. A.; Turnbull, J. C.; Schwendenmann, L.
2016-10-01
Measurements of CO2 fluxes in temperate climates have shown that urban areas are a net source of CO2 and that photosynthetic CO2 uptake is generally not sufficient to offset local CO2 emissions. However, little is known about the role of vegetation in cities where biogenic CO2 uptake is not limited to a 2-8 months growing season. This study used the eddy covariance technique to quantify the atmospheric CO2 fluxes over a period of 12 months in a residential area in subtropical Auckland, New Zealand, where the vegetation cover (surface cover fraction: 47%) is dominated by evergreen vegetation. Radiocarbon isotope measurements of CO2 were conducted at three different times of the day (06:00-09:00, 12:00-15:00, 01:00-04:00) for four consecutive weekdays in summer and winter to differentiate anthropogenic sources of CO2 (fossil fuel combustion) from biogenic sources (ecosystem respiration, combustion of biofuel/biomass). The results reveal previously unreported patterns for CO2 fluxes, with no seasonal variability and negative (net uptake) CO2 midday fluxes throughout the year, demonstrating photosynthetic uptake by the evergreen vegetation all year-round. The winter radiocarbon measurements showed that 85% of the CO2 during the morning rush hour was attributed to fossil fuel emissions, when wind was from residential areas. However, for all other time periods radiocarbon measurements showed that fossil fuel combustion was not a large source of CO2, suggesting that biogenic processes likely dominate CO2 fluxes at this residential site. Overall, our findings highlight the importance of vegetation in residential areas to mitigate local CO2 emissions, particularly in cities with a climate that allows evergreen vegetation to maintain high photosynthetic rates over winter. As urban areas grow, urban planners need to consider the role of urban greenspace to mitigate urban CO2 emissions.
Home range use and survival of southern flying squirrels in fragmented forest landscapes
Jacques, Christopher N.; Zweep, James S.; Jenkins, Sean E.; Klaver, Robert W.
2017-01-01
We studied home range use, spatial activity patterns, and annual survival of southern flying squirrels (SFS; Glaucomys volans) across fragmented landscapes of west-central Illinois. We calculated seasonal home range sizes and annual survival from 67 animals (36 males, 31 females) captured during 2014–2016. Home range and core area sizes were similar (P ≥ 0.46) among males and females across summer (April–September) and winter (October–March) seasons. Average distance between consecutive animal locations did not vary by sex, season, or year. Similarly, cumulative distance between consecutive locations did not vary by sex, season, or year and ranged from 1,189 to 1,661 m between summer and winter seasons. Mean annual composite home range and core area sizes were 10.39 and 1.25 ha, respectively; estimated home ranges (10.3 ha) of females are the largest documented for this species. We documented 8 deaths, all attributed to predation, the majority (63%) of which occurred during winter; annual survival was 71%. Our results underscore effects of habitat productivity on seasonal home range dynamics and space use patterns of SFS in fragmented landscapes. SFS may compensate for reduced availability of overstory mast-producing trees that characterize unproductive habitats and low-density populations by exhibiting similar movement patterns and use of available habitat by both sexes throughout the year. Winter communal nesting appears to be influenced by availability of cavity trees, thereby confirming the importance of standing snags in contributing essential habitat to flying squirrel populations in fragmented forests.
Wildlife mitigation and monitoring report Gunnison, Colorado, site
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-04-01
The Uranium Mill Tailings Remedial Action (UMTRA) Project is administered by the U.S. Department of Energy (DOE); its purpose is to cleanup uranium mill tailings and other contaminated material at 24 UMTRA Project sites in 10 states. This report summarizes the wildlife mitigation and monitoring program under way at the Gunnison UMTRA Project, Gunnison, Colorado. Remedial action at the Gunnison site was completed in December 1995 and is described in detail in the Gunnison completion report. The impacts of this activity were analyzed in the Gunnison environmental assessment (EA). These impacts included two important game species: the pronghorn antelope (Antilocapramore » americans) and sage grouse (Wentrocerus urophasianus). Haul truck traffic was predicted to limit antelope access to water sources north of the Tenderfoot Mountain haul road and that truck traffic along this and other haul roads could result in antelope road kills. Clearing land at the disposal cell, haul road and borrow site activities, and the associated human activities also were predicted to negatively impact (directly and indirectly) sage grouse breeding, nesting, loafing, and wintering habitat. As a result, an extensive mitigation and monitoring plan began in 1992. Most of the monitoring studies are complete and the results of these studies, written by different authors, appear in numerous reports. This report will: (1) Analyze existing impacts and compare them to predicted impacts. (2) Summarize mitigation measures. (3) Summarize all existing monitoring data in one report. (4) Analyze the effectiveness of the mitigation measures.« less
The effects of plant competition upon the growth and survival of bitterbrush seedlings
Richard L. Hubbard
1956-01-01
Many winter deer ranges throughout the West have been steadily deteriorating as a result of overgrazing, fire, and insect depredations. Lack of winter forage has caused heavy mortality of deer. The problem has become so acute that some of the western states have started research to determine what can be done to rehabilitate these ranges, if and when the causes of...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fan, Jiwen; Leung, Lai-Yung R.; DeMott, Paul J.
2014-05-01
In the paper “Aerosol impacts on California winter clouds and precipitation during CalWater 2011: local pollution versus long-range transported dust” by J. Fan et al., wrong versions of Fig. 8 and Fig. 12 were published. Please find the correct figures below.
Shiraki, Hiroto; Ashina, Shuichi
2018-01-01
After the severe nuclear disaster in Fukushima, which was triggered by the Great East Japan earthquake in March 2011, nuclear power plants in Japan were temporarily shut down for mandatory inspections. To prevent large-scale blackouts, the Japanese government requested companies and households to reduce electricity consumption in summer and winter. It is reported that the domestic electricity demand had a structural decrease because of the electricity conservation effect (ECE). However, quantitative analysis of the ECE is not sufficient, and especially time variation of the ECE remains unclear. Understanding the ECE is important because Japan’s NDC (nationally determined contribution) assumes the reduction of CO2 emissions through aggressive energy conservation. In this study, we develop a time series model of monthly electricity demand in Japan and estimate time variation of the ECE. Moreover, we evaluate the impact of electricity conservation on CO2 emissions from power plants. The dynamic linear model is used to separate the ECE from the effects of other irrelevant factors (e.g. air temperature, economic production, and electricity price). Our result clearly shows that consumers’ electricity conservation behavior after the earthquake was not temporary but became established as a habit. Between March 2011 and March 2016, the ECE on industrial electricity demand ranged from 3.9% to 5.4%, and the ECE on residential electricity demand ranged from 1.6% to 7.6%. The ECE on the total electricity demand was estimated at 3.2%–6.0%. We found a seasonal pattern that the residential ECE in summer is higher than that in winter. The emissions increase from the shutdown of nuclear power plants was mitigated by electricity conservation. The emissions reduction effect was estimated at 0.82 MtCO2–2.26 MtCO2 (−4.5% on average compared to the zero-ECE case). The time-varying ECE is necessary for predicting Japan’s electricity demand and CO2 emissions after the earthquake. PMID:29708988
Kock, Alison; O’Riain, M. Justin; Mauff, Katya; Meÿer, Michael; Kotze, Deon; Griffiths, Charles
2013-01-01
White sharks (Carcharodon carcharias) are threatened apex predators and identification of their critical habitats and how these are used are essential to ensuring improved local and ultimately global white shark protection. In this study we investigated habitat use by white sharks in False Bay, South Africa, using acoustic telemetry. 56 sharks (39 female, 17 male), ranging in size from 1.7–5 m TL, were tagged with acoustic transmitters and monitored on an array of 30 receivers for 975 days. To investigate the effects of season, sex and size on habitat use we used a generalized linear mixed effects model. Tagged sharks were detected in the Bay in all months and across all years, but their use of the Bay varied significantly with the season and the sex of the shark. In autumn and winter males and females aggregated around the Cape fur seal colony at Seal Island, where they fed predominantly on young of the year seals. In spring and summer there was marked sexual segregation, with females frequenting the Inshore areas and males seldom being detected. The shift from the Island in autumn and winter to the Inshore region in spring and summer by females mirrors the seasonal peak in abundance of juvenile seals and of migratory teleost and elasmobranch species respectively. This study provides the first evidence of sexual segregation at a fine spatial scale and demonstrates that sexual segregation in white sharks is not restricted to adults, but is apparent for juveniles and sub-adults too. Overall, the results confirm False Bay as a critical area for white shark conservation as both sexes, across a range of sizes, frequent the Bay on an annual basis. The finding that female sharks aggregate in the Inshore regions when recreational use peaks highlights the need for ongoing shark-human conflict mitigation strategies. PMID:23383052
Honjo, Keita; Shiraki, Hiroto; Ashina, Shuichi
2018-01-01
After the severe nuclear disaster in Fukushima, which was triggered by the Great East Japan earthquake in March 2011, nuclear power plants in Japan were temporarily shut down for mandatory inspections. To prevent large-scale blackouts, the Japanese government requested companies and households to reduce electricity consumption in summer and winter. It is reported that the domestic electricity demand had a structural decrease because of the electricity conservation effect (ECE). However, quantitative analysis of the ECE is not sufficient, and especially time variation of the ECE remains unclear. Understanding the ECE is important because Japan's NDC (nationally determined contribution) assumes the reduction of CO2 emissions through aggressive energy conservation. In this study, we develop a time series model of monthly electricity demand in Japan and estimate time variation of the ECE. Moreover, we evaluate the impact of electricity conservation on CO2 emissions from power plants. The dynamic linear model is used to separate the ECE from the effects of other irrelevant factors (e.g. air temperature, economic production, and electricity price). Our result clearly shows that consumers' electricity conservation behavior after the earthquake was not temporary but became established as a habit. Between March 2011 and March 2016, the ECE on industrial electricity demand ranged from 3.9% to 5.4%, and the ECE on residential electricity demand ranged from 1.6% to 7.6%. The ECE on the total electricity demand was estimated at 3.2%-6.0%. We found a seasonal pattern that the residential ECE in summer is higher than that in winter. The emissions increase from the shutdown of nuclear power plants was mitigated by electricity conservation. The emissions reduction effect was estimated at 0.82 MtCO2-2.26 MtCO2 (-4.5% on average compared to the zero-ECE case). The time-varying ECE is necessary for predicting Japan's electricity demand and CO2 emissions after the earthquake.
NASA Astrophysics Data System (ADS)
Webley, P. W.; Cahill, C. F.; Rogers, M.; Hatfield, M. C.
2016-12-01
Unmanned Aircraft Systems (UAS) have enormous potential for use in geoscience research and supporting operational needs from natural hazard assessment to the mitigation of critical infrastructure failure. They provide a new tool for universities, local, state, federal, and military organizations to collect new measurements not readily available from other sensors. We will present on the UAS capabilities and research of the Alaska Center for Unmanned Aircraft Systems Integration (ACUASI, http://acuasi.alaska.edu/). Our UAS range from the Responder with its dual visible/infrared payload that can provide simultaneous data to our new SeaHunter UAS with 90 lb. payload and multiple hour flight time. ACUASI, as a designated US Federal Aviation Administration (FAA) test center, works closely with the FAA on integrating UAS into the national airspace. ACUASI covers all aspects of working with UAS from pilot training, airspace navigation, flight operations, and remote sensing analysis to payload design and integration engineers and policy experts. ACUASI's recent missions range from supporting the mapping of sea ice cover for safe passage of Alaskans across the hazardous winter ice to demonstrating how UAS can be used to provide support during oil spill response. Additionally, we will present on how ACUASI has worked with local authorities in Alaska to integrate UAS into search and rescue operations and with NASA and the FAA on their UAS Transport Management (UTM) project to fly UAS within the manned airspace. ACUASI is also working on developing new capabilities to sample volcanic plumes and clouds, map forest fire impacts and burn areas, and develop a new citizen network for monitoring snow extent and depth during Northern Hemisphere winters. We will demonstrate how UAS can be integrated in operational support systems and at the same time be used in geoscience research projects to provide high precision, accurate, and reliable observations.
2013-01-01
Background Low absolute humidity (AH) has been associated with increased influenza virus survival and transmissibility and the onset of seasonal influenza outbreaks. Humidification of indoor environments may mitigate viral transmission and may be an important control strategy, particularly in schools where viral transmission is common and contributes to the spread of influenza in communities. However, the variability and predictors of AH in the indoor school environment and the feasibility of classroom humidification to levels that could decrease viral survival have not been studied. Methods Automated sensors were used to measure temperature, humidity and CO2 levels in two Minnesota grade schools without central humidification during two successive winters. Outdoor AH measurements were derived from the North American Land Data Assimilation System. Variability in indoor AH within classrooms, between classrooms in the same school, and between schools was assessed using concordance correlation coefficients (CCC). Predictors of indoor AH were examined using time-series Auto-Regressive Conditional Heteroskedasticity models. Classroom humidifiers were used when school was not in session to assess the feasibility of increasing indoor AH to levels associated with decreased influenza virus survival, as projected from previously published animal experiments. Results AH varied little within classrooms (CCC >0.90) but was more variable between classrooms in the same school (CCC 0.81 for School 1, 0.88 for School 2) and between schools (CCC 0.81). Indoor AH varied widely during the winter (range 2.60 to 10.34 millibars [mb]) and was strongly associated with changes in outdoor AH (p < 0.001). Changes in indoor AH on school weekdays were strongly associated with CO2 levels (p < 0.001). Over 4 hours, classroom humidifiers increased indoor AH by 4 mb, an increase sufficient to decrease projected 1-hour virus survival by an absolute value of 30% during winter months. Conclusions During winter, indoor AH in non-humidified grade schools varies substantially and often to levels that are very low. Indoor results are predicted by outdoor AH over a season and CO2 levels (which likely reflects human activity) during individual school days. Classroom humidification may be a feasible approach to increase indoor AH to levels that may decrease influenza virus survival and transmission. PMID:23383620
Ranging Behaviour of Commercial Free-Range Broiler Chickens 1: Factors Related to Flock Variability.
Taylor, Peta S; Hemsworth, Paul H; Groves, Peter J; Gebhardt-Henrich, Sabine G; Rault, Jean-Loup
2017-07-20
Little is known about the ranging behaviour of chickens. Understanding ranging behaviour is required to improve management and shed and range design to ensure optimal ranging opportunities. Using Radio Frequency Identification technology, we tracked 300 individual broiler chickens in each of four mixed sex ROSS 308 flocks on one commercial farm across two seasons. Ranging behaviour was tracked from the first day of range access (21 days of age) until 35 days of age in winter and 44 days of age in summer. Range use was higher than previously reported from scan sampling studies. More chickens accessed the range in summer (81%) than winter (32%; p < 0.05). On average, daily frequency and duration of range use was greater in summer flocks (4.4 ± 0.1 visits for a total of 26.3 ± 0.8 min/day) than winter flocks (3.2 ± 0.2 visits for a total of 7.9 ± 1.0 min/day). Seasonal differences were only marginally explained by weather conditions and may reflect the reduction in range exposure between seasons (number of days, hours per day, and time of day). Specific times of the day ( p < 0.01) and pop-holes were favoured ( p < 0.05). We provide evidence of relationships between ranging and external factors that may explain ranging preferences.
Takeshita, Kazutaka; Yoshida, Tsuyoshi; Igota, Hiromasa; Matsuura, Yukiko
2016-01-01
Assessing temporal changes in abundance indices is an important issue in the management of large herbivore populations. The drive counts method has been frequently used as a deer abundance index in mountainous regions. However, despite an inherent risk for observation errors in drive counts, which increase with deer density, evaluations of the utility of drive counts at a high deer density remain scarce. We compared the drive counts and mark-resight (MR) methods in the evaluation of a highly dense sika deer population (MR estimates ranged between 11 and 53 individuals/km2) on Nakanoshima Island, Hokkaido, Japan, between 1999 and 2006. This deer population experienced two large reductions in density; approximately 200 animals in total were taken from the population through a large-scale population removal and a separate winter mass mortality event. Although the drive counts tracked temporal changes in deer abundance on the island, they overestimated the counts for all years in comparison to the MR method. Increased overestimation in drive count estimates after the winter mass mortality event may be due to a double count derived from increased deer movement and recovery of body condition secondary to the mitigation of density-dependent food limitations. Drive counts are unreliable because they are affected by unfavorable factors such as bad weather, and they are cost-prohibitive to repeat, which precludes the calculation of confidence intervals. Therefore, the use of drive counts to infer the deer abundance needs to be reconsidered. PMID:27711181
Wenger, Seth J.; Isaak, Daniel J.; Luce, Charles H.; Neville, Helen M.; Fausch, Kurt D.; Dunham, Jason B.; Dauwalter, Daniel C.; Young, Michael K.; Elsner, Marketa M.; Rieman, Bruce E.; Hamlet, Alan F.; Williams, Jack E.
2011-01-01
Broad-scale studies of climate change effects on freshwater species have focused mainly on temperature, ignoring critical drivers such as flow regime and biotic interactions. We use downscaled outputs from general circulation models coupled with a hydrologic model to forecast the effects of altered flows and increased temperatures on four interacting species of trout across the interior western United States (1.01 million km2), based on empirical statistical models built from fish surveys at 9,890 sites. Projections under the 2080s A1B emissions scenario forecast a mean 47% decline in total suitable habitat for all trout, a group of fishes of major socioeconomic and ecological significance. We project that native cutthroat trout Oncorhynchus clarkii, already excluded from much of its potential range by nonnative species, will lose a further 58% of habitat due to an increase in temperatures beyond the species’ physiological optima and continued negative biotic interactions. Habitat for nonnative brook trout Salvelinus fontinalis and brown trout Salmo trutta is predicted to decline by 77% and 48%, respectively, driven by increases in temperature and winter flood frequency caused by warmer, rainier winters. Habitat for rainbow trout, Oncorhynchus mykiss, is projected to decline the least (35%) because negative temperature effects are partly offset by flow regime shifts that benefit the species. These results illustrate how drivers other than temperature influence species response to climate change. Despite some uncertainty, large declines in trout habitat are likely, but our findings point to opportunities for strategic targeting of mitigation efforts to appropriate stressors and locations. PMID:21844354
Wenger, S.J.; Isaak, D.J.; Luce, C.H.; Neville, H.M.; Fausch, K.D.; Dunham, J.B.; Dauwalter, D.C.; Young, M.K.; Elsner, M.M.; Rieman, B.E.; Hamlet, A.F.; Williams, J.E.
2011-01-01
Broad-scale studies of climate change effects on freshwater species have focused mainly on temperature, ignoring critical drivers such as flow regime and biotic interactions. We use downscaled outputs from general circulation models coupled with a hydrologic model to forecast the effects of altered flows and increased temperatures on four interacting species of trout across the interior western United States (1.01 million km2), based on empirical statistical models built from fish surveys at 9,890 sites. Projections under the 2080s A1B emissions scenario forecast a mean 47% decline in total suitable habitat for all trout, a group of fishes of major socioeconomic and ecological significance. We project that native cutthroat trout Oncorhynchus clarkii, already excluded from much of its potential range by nonnative species, will lose a further 58% of habitat due to an increase in temperatures beyond the species' physiological optima and continued negative biotic interactions. Habitat for nonnative brook trout Salvelinus fontinalis and brown trout Salmo trutta is predicted to decline by 77% and 48%, respectively, driven by increases in temperature and winter flood frequency caused by warmer, rainier winters. Habitat for rainbow trout, Oncorhynchus mykiss, is projected to decline the least (35%) because negative temperature effects are partly offset by flow regime shifts that benefit the species. These results illustrate how drivers other than temperature influence species response to climate change. Despite some uncertainty, large declines in trout habitat are likely, but our findings point to opportunities for strategic targeting of mitigation efforts to appropriate stressors and locations.
Wu, Ruo-Nan; Meng, Han; Wang, Yong-Feng; Gu, Ji-Dong
2018-06-01
Forest ecosystems have great ecological values in mitigation of climate change and protection of biodiversity of flora and fauna; re-forestry is commonly used to enhance the sequestration of atmospheric CO 2 into forest storage biomass. Therefore, seasonal and spatial dynamics of the major microbial players in nitrification, ammonia-oxidizing archaea (AOA) and bacteria (AOB), in acidic soils of young and matured revegetated forests were investigated to elucidate the changes of microbial communities during forest restoration, and compared to delineate the patterns of community shifts under the influences of environmental factors. AOA were more abundant than AOB in both young and matured revegetated forest soils in both summer and winter seasons. In summer, however, the abundance of amoA-AOA decreased remarkably (p < 0.01), ranging from 1.90 (± 0.07) × 10 8 copies per gram dry soil in matured forest to 5.04 (± 0.43) × 10 8 copies per gram dry soil in young forest, and amoA-AOB was below detection limits to obtain any meaningful values. Moreover, exchangeable Al 3+ and organic matter were found to regulate the physiologically functional nitrifiers, especially AOA abundance in acidic forest soils. AOB community in winter showed stronger correlation with the restoration status of revegetated forests and AOA community dominated by Nitrosotalea devanaterra, in contrast, was more sensitive to the seasonal and spatial variations of environmental factors. These results enrich the current knowledge of nitrification during re-forestry and provide valuable information to developmental status of revegetated forests for management through microbial analysis.
Managing the Financial Risks of Water Scarcity
NASA Astrophysics Data System (ADS)
Characklis, Greg; Foster, Ben; Kern, Jordan; Meyer, Eliot; Zeff, Harrison
2015-04-01
Environmental uncertainty poses a growing number of financial risks to society, with droughts, floods, extreme temperatures and violent storms imposing costs that approach 500 billion per year. While structural forms of mitigation (i.e. levees, dams) will certainly play a role in limiting financial impacts, these are large investments whose full value is only rarely realized. Furthermore, the value of such long-lived measures becomes increasingly uncertain in a changing climate, raising the issue of whether they will be effective 20-30 years hence. Financial instruments, such as index insurance, can provide increased flexibility by providing compensation for losses only when they occur, and limited contract periods allow terms to be periodically rewritten in response to changing conditions. Financial instruments can also be effectively combined with other economic tools and infrastructure to create integrated solutions in which infrastructure mitigates losses from moderate events, while financial products compensate for more rare, but extreme, events. There is a long history of environmentally-related insurance and hedging instruments, but to date the actuarial analyses that underlie contract structure and pricing have been based on straightforward observations, such as cumulative rainfall. More recently, simple correlations between two time series have been used to develop index-based contracts. Links between temperature and electricity demand, for example, provide a basis for contracts that are used to limit the financial exposure of power generators to low revenues during unseasonably warm winters or cool summers. Unfortunately, few environmental risks can be so quickly and easily linked to a financial impact. However, with a more advanced understanding of the environmental systems that give rise to financial losses, opportunities exist to develop innovative contracts for a range of new applications. Recent research describes the characterization and mitigation of financial losses experienced by such entities as water utilities, hydropower producers and inland shipping firms as a result of water scarcity, all of which suggest a growing role for financial instruments in managing environmental risk.
NASA Astrophysics Data System (ADS)
Field, J.; Paustian, K.
2016-12-01
The interior mountain West is particularly vulnerable to climate change with potential impacts including drought and wildfire intensification, and wide-scale species disruptions due to shifts in habitable elevation ranges or other effects. One such example is the current outbreak of native mountain pine and spruce beetles across the Rockies, with warmer winters, dryer summers, and a legacy of logging and fire suppression all interacting to result in infestation and unprecedented tree mortality over more than 42 million acres. Current global climate change mitigation commitments imply that shifts to renewable energy must be supplemented with widespread deployment of carbon-negative technologies such as BECCS and biochar. Carefully-designed forest bioenergy and biochar industries can play an important role in meeting these targets, valorizing woody biomass and allowing more acres to be actively managed under existing land management goals while simultaneously displacing fossil energy use and directly sequestering carbon. In this work we assess the negative emissions potential from the deployment of biochar co-producing thermochemical bioenergy technologies in the Rockies using beetle-kill wood as a feedstock, a way of leveraging a climate change driven problem for climate mitigation. We start with a review and classification of bioenergy lifecycle assessment emission source categories, clarifying the differences in mechanism and confidence around emissions sources, offsets, sequestration, and leakage effects. Next we develop methods for modeling ecosystem carbon response to biomass removals at the stand scale, considering potential species shifts and regrowth rates under different harvest systems deployed in different areas. We then apply a lifecycle assessment framework to evaluate the performance of a set of real-world bioenergy technologies at enterprise scale, including biomass logistics and conversion product yields. We end with an exploration of regional-scale mitigation capacity considering wide-scale deployment and potential wildfire feedback effects of harvest, highlighting the relative importance of supply chain, conversion technology, ecological, and epistemological uncertainties in realizing wide-scale negative emissions in this region.
Beyond arctic and alpine: the influence of winter climate on temperate ecosystems.
Ladwig, Laura M; Ratajczak, Zak R; Ocheltree, Troy W; Hafich, Katya A; Churchill, Amber C; Frey, Sarah J K; Fuss, Colin B; Kazanski, Clare E; Muñoz, Juan D; Petrie, Matthew D; Reinmann, Andrew B; Smith, Jane G
2016-02-01
Winter climate is expected to change under future climate scenarios, yet the majority of winter ecology research is focused in cold-climate ecosystems. In many temperate systems, it is unclear how winter climate relates to biotic responses during the growing season. The objective of this study was to examine how winter weather relates to plant and animal communities in a variety of terrestrial ecosystems ranging from warm deserts to alpine tundra. Specifically, we examined the association between winter weather and plant phenology, plant species richness, consumer abundance, and consumer richness in 11 terrestrial ecosystems associated with the U.S. Long-Term Ecological Research (LTER) Network. To varying degrees, winter precipitation and temperature were correlated with all biotic response variables. Bud break was tightly aligned with end of winter temperatures. For half the sites, winter weather was a better predictor of plant species richness than growing season weather. Warmer winters were correlated with lower consumer abundances in both temperate and alpine systems. Our findings suggest winter weather may have a strong influence on biotic activity during the growing season and should be considered in future studies investigating the effects of climate change on both alpine and temperate systems.
Simulating the influences of various fire regimes on caribou winter habitat
Rupp, T. Scott; Olson, Mark; Adams, Layne G.; Dale, Bruce W.; Joly, Kyle; Henkelman, Jonathan; Collins, William B.; Starfield, Anthony M.
2006-01-01
Caribou are an integral component of high‐latitude ecosystems and represent a major subsistence food source for many northern people. The availability and quality of winter habitat is critical to sustain these caribou populations. Caribou commonly use older spruce woodlands with adequate terrestrial lichen, a preferred winter forage, in the understory. Changes in climate and fire regime pose a significant threat to the long‐term sustainability of this important winter habitat. Computer simulations performed with a spatially explicit vegetation succession model (ALFRESCO) indicate that changes in the frequency and extent of fire in interior Alaska may substantially impact the abundance and quality of winter habitat for caribou. We modeled four different fire scenarios and tracked the frequency, extent, and spatial distribution of the simulated fires and associated changes to vegetation composition and distribution. Our results suggest that shorter fire frequencies (i.e., less time between recurring fires) on the winter range of the Nelchina caribou herd in eastern interior Alaska will result in large decreases of available winter habitat, relative to that currently available, in both the short and long term. A 30% shortening of the fire frequency resulted in a 3.5‐fold increase in the area burned annually and an associated 41% decrease in the amount of spruce–lichen forest found on the landscape. More importantly, simulations with more frequent fires produced a relatively immature forest age structure, compared to that which currently exists, with few stands older than 100 years. This age structure is at the lower limits of stand age classes preferred by caribou from the Nelchina herd. Projected changes in fire regime due to climate warming and/or additional prescribed burning could substantially alter the winter habitat of caribou in interior Alaska and lead to changes in winter range use and/or population dynamics.
Subsequent-year recaptures at winter sites in three species of shrubland sparrows (Emberizidae)
Knick, Steven T.; Leu, Matthias; Hanser, Steven E.
2017-01-01
The tendency by individual birds to return to winter sites in subsequent years can be important in assessing the potential influence of habitat changes during the nonbreeding period. We recaptured five Brewer's (Spizella breweri), seven sagebrush (Artemisiospiza nevadensis), and three black-throated (Amphispiza bilineata) sparrows from 1–3 subsequent years at the same winter location following their initial capture. Two Brewer's and one sagebrush sparrow returned to the same winter location at least 4 years after their initial capture. Levels of feather deuterium indicated that birds captured together on winter sites had different breeding ranges. Although individuals of these species returned to specific sites used in previous years, the low recapture rate suggests that wintering individuals may use an itinerant strategy adapted to seasonal food resources.
Torpor in free-ranging antechinus: does it increase fitness?
NASA Astrophysics Data System (ADS)
Rojas, A. Daniella; Körtner, Gerhard; Geiser, Fritz
2014-02-01
Antechinus are small, insectivorous, heterothermic marsupial mammals that use torpor from late summer to early winter and reproduce once a year in late winter/early spring. Males die after mating, most females produce only a single litter, but some survive a second winter and produce another litter. As it is not known how these females manage to survive the second winter after the energetically demanding reproductive period and then reproduce a second time, we aimed to provide the first data on thermal biology of free-ranging antechinus by using temperature telemetry. Male Antechinus stuartii and Antechinus flavipes rarely entered torpor in autumn/early winter in the wild, expressing only shallow bouts of <2 h. Female A. stuartii used torpor extensively, employing bouts up to 16.7 h with body temperatures as low as 17.8 °C. Interestingly, although first and second year females used similar torpor patterns, torpor occurrence was almost twofold in second year (93 % of days) than first year females (49 %), and the proportion of the overall monitoring period animals spent torpid was 3.2-fold longer in the former with a corresponding shorter activity period. Our study suggests that intensive use of torpor is crucial for second year females for autumn and winter survival and production of a second litter. We provide the first evidence of an age-related pattern in daily torpor expression in free-ranging mammals and show that torpor use is a complex process that is affected not only by the current energy availability and thermal conditions but also by the reproductive history and age of individuals.
NASA Astrophysics Data System (ADS)
Caicedo, J. A.; Uman, M. A.; Pilkey, J. T.
2018-01-01
We present the first lightning evolution studies, via the Lightning Mapping Array (LMA) and radar, performed in North Central Florida. Parts of three winter/spring frontal storms (cold season) and two complete summer (warm season) multicell storms are studied. Storm parameters measured are as follows: total number of flashes, flash-type classification, first flashes, flash initiation altitude, flash initiation power, flash rate (flashes per minute), charge structure, altitude and temperature ranges of the inferred charge regions, atmospheric isotherm altitude, radar base reflectivity (dBZ), and radar echo tops (EET). Several differences were found between summer multicell and winter/spring frontal storms in North Central Florida: (1) in winter/spring storms, the range of altitudes that all charge regions occupy is up to 1 km lower in altitude than in summer storms, as are the 0°C, -10°C, and -20°C isotherms; (2) lightning activity in summer storms is highly correlated with changes in radar signatures, in particular, echo tops; and (3) the LMA average initiation power of all flash types in winter/frontal storms is about an order of magnitude larger than that for summer storms. In relation to storms in other geographical locations, North Central Florida seasonal storms were found to have similarities in most parameters studied with a few differences, examples in Florida being (1) colder initiation altitudes for intracloud flashes, (2) charge regions occupying larger ranges of atmospheric temperatures, and (3) winter/spring frontal storms not having much lightning activity in the stratiform region.
NASA Astrophysics Data System (ADS)
Poyda, Arne; Wizemann, Hans-Dieter; Ingwersen, Joachim; Wulfmeyer, Volker; Streck, Thilo
2017-04-01
The impact of agricultural land use on soil organic carbon (SOC) dynamics has been widely studied in the past few decades, particularly in context of the SOC forcing or mitigation potential of global climate change. Grassland utilization can increase or maintain SOC stocks. Arable cropping tends to decrease SOC stocks, at least for some time after land use change (SMITH, 2008). In the long run, it can be assumed that SOC reaches a steady state where the production of roots and aboveground crop residues and possibly organic fertilization level out soil respiration. To study the effects of crop type, year and regional site conditions on CO2 exchange and C budgets of arable cropping systems in Southwest Germany, eddy covariance measurements were conducted on a total of six sites in the two climatically contrasting regions of Kraichgau and Swabian Alb since 2009. Main crops were winter wheat, silage maize and winter rapeseed but also winter barley, summer barley and spelt were cultivated on the Swabian Alb sites. Cover crops were grown between winter and summer crops on all sites. Net ecosystem exchange (NEE) data were gap-filled following REICHSTEIN et al. (2005) and partitioned into ecosystem respiration (RECO) and gross primary production (GPP) using seasonally differing temperature response functions of nighttime NEE. Furthermore, different approaches for filling long data gaps of several months in winter were evaluated. Considering C inputs by organic fertilizers and C removals by harvest, C budgets were calculated per site and year. First results indicate that the variability of NEE fluxes between different crops is much higher compared to the variability between different years of a certain crop. However, regional differences in soil and weather conditions significantly influence plant growth dynamics and thus CO2 exchange.
The role of CSP in Brazil: A multi-model analysis
NASA Astrophysics Data System (ADS)
Soria, Rafael; Lucena, André F. P.; Tomaschek, Jan; Fichter, Tobias; Haasz, Thomas; Szklo, Alexandre; Schaeffer, Roberto; Rochedo, Pedro; Fahl, Ulrich; Kern, Jürgen; Hoffmann, Susanne
2016-05-01
MESSAGE, TIMES and REMIX-CEM are potential tools for modelling a larger penetration of variable renewable energy (VRE) into the Brazilian power system. They also allow devising the opportunities that concentrated solar power (CSP) plants offer to the power system and to the wider energy system. There are different opportunities for CSP in Brazil in the short and medium term, consolidating this technology as a feasible alternative for greenhouse gas (GHG) mitigation in Brazil. This work verified that CSP is a cost-effective option only under very stringent mitigation scenarios (4DS and 2DS) and when carbon capture and storage (CCS) is not available. Still, according to the findings of REMIX-CEM-B, CSP can provide firm energy and dispatchable capacity in the Northeast region of Brazil, optimally complementing wind and PV generation. Moreover, CSP can offer additional flexibility to the Northeast power system, especially during winter and after 2030.
Mangrove species' responses to winter air temperature extremes in China
Chen, Luzhen; Wang, Wenqing; Li, Qingshun Q.; Zhang, Yihui; Yang, Shengchang; Osland, Michael J.; Huang, Jinliang; Peng, Congjiao
2017-01-01
The global distribution and diversity of mangrove forests is greatly influenced by the frequency and intensity of winter air temperature extremes. However, our understanding of how different mangrove species respond to winter temperature extremes has been lacking because extreme freezing and chilling events are, by definition, relatively uncommon and also difficult to replicate experimentally. In this study, we investigated species-specific variation in mangrove responses to winter temperature extremes in China. In 10 sites that span a latitudinal gradient, we quantified species-specific damage and recovery following a chilling event, for mangrove species within and outside of their natural range (i.e., native and non-native species, respectively). To characterize plant stress, we measured tree defoliation and chlorophyll fluorescence approximately one month following the chilling event. To quantify recovery, we measured chlorophyll fluorescence approximately nine months after the chilling event. Our results show high variation in the geographic- and species-specific responses of mangroves to winter temperature extremes. While many species were sensitive to the chilling temperatures (e.g., Bruguiera sexangula and species in the Sonneratia and Rhizophora genera), the temperatures during this event were not cold enough to affect certain species (e.g., Kandelia obovata, Aegiceras corniculatum, Avicennia marina, and Bruguiera gymnorrhiza). As expected, non-native species were less tolerant of winter temperature extremes than native species. Interestingly, tidal inundation modulated the effects of chilling. In comparison with other temperature-controlled mangrove range limits across the world, the mangrove range limit in China is unique due to the combination of the following three factors: (1) Mangrove species diversity is comparatively high; (2) winter air temperature extremes, rather than means, are particularly intense and play an important ecological role; and (3) due to afforestation and restoration efforts, several species of non-native mangroves have been introduced beyond their natural range limits. Hence, from a global perspective, mangroves in China provide valuable opportunities to advance understanding of the effects of freezing and chilling temperatures on mangroves. Within the context of climate change, our findings provide a foundation for better understanding and preparing for mangrove species-specific responses to future changes in the duration and intensity of winter temperature extremes.
Ely, Craig R; Franson, J Christian
2014-04-01
Tundra swans (Cygnus columbianus) like many waterfowl species are susceptible to lead (Pb) poisoning, and Pb-induced mortality has been reported from many areas of their wintering range. Little is known however about Pb levels throughout the annual cycle of tundra swans, especially during summer when birds are on remote northern breeding areas where they are less likely to be exposed to anthropogenic sources of Pb. Our objective was to document summer Pb levels in tundra swans throughout their breeding range in Alaska to determine if there were population-specific differences in blood Pb concentrations that might pose a threat to swans and to humans that may consume them. We measured blood Pb concentrations in tundra swans at five locations in Alaska, representing birds that winter in both the Pacific Flyway and Atlantic Flyway. We also marked swans at each location with satellite transmitters and coded neck bands, to identify staging and wintering sites and determine if winter site use correlated with summer Pb concentrations. Blood Pb levels were generally low (<0.2 μg/ml) in swans across all breeding areas. Pb levels were lower in cygnets than adults, suggesting that swans were likely exposed to Pb on wintering areas or on return migration to Alaska, rather than on the summer breeding grounds. Blood Pb levels varied significantly across the five breeding areas, with highest concentrations in birds on the North Slope of Alaska (wintering in the Atlantic Flyway), and lowest in birds from the lower Alaska Peninsula that rarely migrate south for winter.
Ely, Craig R.; Franson, Christian
2014-01-01
Tundra swans (Cygnus columbianus) like many waterfowl species are susceptible to lead (Pb) poisoning, and Pb-induced mortality has been reported from many areas of their wintering range. Little is known however about Pb levels throughout the annual cycle of tundra swans, especially during summer when birds are on remote northern breeding areas where they are less likely to be exposed to anthropogenic sources of Pb. Our objective was to document summer Pb levels in tundra swans throughout their breeding range in Alaska to determine if there were population-specific differences in blood Pb concentrations that might pose a threat to swans and to humans that may consume them. We measured blood Pb concentrations in tundra swans at five locations in Alaska, representing birds that winter in both the Pacific Flyway and Atlantic Flyway. We also marked swans at each location with satellite transmitters and coded neck bands, to identify staging and wintering sites and determine if winter site use correlated with summer Pb concentrations. Blood Pb levels were generally low ( < 0.2 μg/ml) in swans across all breeding areas. Pb levels were lower in cygnets than adults, suggesting that swans were likely exposed to Pb on wintering areas or on return migration to Alaska, rather than on the summer breeding grounds. Blood Pb levels varied significantly across the five breeding areas, with highest concentrations in birds on the North Slope of Alaska (wintering in the Atlantic Flyway), and lowest in birds from the lower Alaska Peninsula that rarely migrate south for winter.
Emergence of long distance bird migrations: a new model integrating global climate changes
NASA Astrophysics Data System (ADS)
Louchart, Antoine
2008-12-01
During modern birds history, climatic and environmental conditions have evolved on wide scales. In a continuously changing world, landbirds annual migrations emerged and developed. However, models accounting for the origins of these avian migrations were formulated with static ecogeographic perspectives. Here I reviewed Cenozoic paleoclimatic and paleontological data relative to the palearctic paleotropical long distance (LD) migration system. This led to propose a new model for the origin of LD migrations, the ‘shifting home’ model (SHM). It is based on a dynamic perspective of climate evolution and may apply to the origins of most modern migrations. Non-migrant tropical African bird taxa were present at European latitudes during most of the Cenozoic. Their distribution limits shifted progressively toward modern tropical latitudes during periods of global cooling and increasing seasonality. In parallel, decreasing winter temperatures in the western Palearctic drove shifts of population winter ranges toward the equator. I propose that this induced the emergence of most short distance migrations, and in turn LD migrations. This model reconciliates ecologically tropical ancestry of most LD migrants with predominant winter range shifts, in accordance with requirements for heritable homing. In addition, it is more parsimonious than other non-exclusive models. Greater intrinsic plasticity of winter ranges implied by the SHM is supported by recently observed impacts of the present global warming on migrating birds. This may induce particular threats to some LD migrants. The ancestral, breeding homes of LD migrants were not ‘northern’ or ‘southern’ but shifted across high and middle latitudes while migrations emerged through winter range shifts themselves.
Annual and seasonal tornado activity in the United States and the global wind oscillation
NASA Astrophysics Data System (ADS)
Moore, Todd W.
2018-06-01
Previous studies have searched for relationships between tornado activity and atmospheric teleconnections to provide insight on the relationship between tornadoes, their environments, and larger scale patterns in the climate system. Knowledge of these relationships is practical because it can improve seasonal and sub-seasonal predictions of tornado probability and, therefore, help mitigate tornado-related losses. This study explores the relationships between the annual and seasonal tornado activity in the United States and the Global Wind Oscillation. Time series herein show that phases of the Global Wind Oscillation, and atmospheric angular momentum anomalies, vary over a period of roughly 20-25 years. Rank correlations indicate that tornado activity is weakly correlated with phases 2, 3, and 4 (positive) and 6, 7, and 8 (negative) of the Global Wind Oscillation in winter, spring, and fall. The correlation is not as clear in summer or at the annual scale. Non-parametric Mann-Whitney U tests indicate that winters and springs with more phase 2, 3, and 4 and fewer phase 6, 7, and 8 days tend to have more tornadoes. Lastly, logistic regression models indicate that winters and springs with more phase 2, 3, and 4 days have greater likelihoods of having more than normal tornado activity. Combined, these analyses suggest that seasons with more low atmospheric angular momentum days, or phase 2, 3, and 4 days, tend to have greater tornado activity than those with fewer days, and that this relationship is most evident in winter and spring.
Dzuds, droughts, and livestock mortality in Mongolia
NASA Astrophysics Data System (ADS)
Palat Rao, Mukund; Davi, Nicole K.; D'Arrigo, Rosanne D.; Skees, Jerry; Nachin, Baatarbileg; Leland, Caroline; Lyon, Bradfield; Wang, Shih-Yu; Byambasuren, Oyunsanaa
2015-07-01
Recent incidences of mass livestock mortality, known as dzud, have called into question the sustainability of pastoral nomadic herding, the cornerstone of Mongolian culture. A total of 20 million head of livestock perished in the mortality events of 2000-2002, and 2009-2010. To mitigate the effects of such events on the lives of herders, international agencies such as the World Bank are taking increasing interest in developing tailored market-based solutions like index-insurance. Their ultimate success depends on understanding the historical context and underlying causes of mortality. In this paper we examine mortality in 21 Mongolian aimags (provinces) between 1955 and 2013 in order to explain its density independent cause(s) related to climate variability. We show that livestock mortality is most strongly linked to winter (November-February) temperatures, with incidences of mass mortality being most likely to occur because of an anomalously cold winter. Additionally, we find prior summer (July-September) drought and precipitation deficit to be important triggers for mortality that intensifies the effect of upcoming winter temperatures on livestock. Our density independent mortality model based on winter temperature, summer drought, summer precipitation, and summer potential evaporanspiration explains 48.4% of the total variability in the mortality dataset. The Mongolian index based livestock insurance program uses a threshold of 6% mortality to trigger payouts. We find that on average for Mongolia, the probability of exceedance of 6% mortality in any given year is 26% over the 59 year period between 1955 and 2013.
Annual and seasonal tornado activity in the United States and the global wind oscillation
NASA Astrophysics Data System (ADS)
Moore, Todd W.
2017-08-01
Previous studies have searched for relationships between tornado activity and atmospheric teleconnections to provide insight on the relationship between tornadoes, their environments, and larger scale patterns in the climate system. Knowledge of these relationships is practical because it can improve seasonal and sub-seasonal predictions of tornado probability and, therefore, help mitigate tornado-related losses. This study explores the relationships between the annual and seasonal tornado activity in the United States and the Global Wind Oscillation. Time series herein show that phases of the Global Wind Oscillation, and atmospheric angular momentum anomalies, vary over a period of roughly 20-25 years. Rank correlations indicate that tornado activity is weakly correlated with phases 2, 3, and 4 (positive) and 6, 7, and 8 (negative) of the Global Wind Oscillation in winter, spring, and fall. The correlation is not as clear in summer or at the annual scale. Non-parametric Mann-Whitney U tests indicate that winters and springs with more phase 2, 3, and 4 and fewer phase 6, 7, and 8 days tend to have more tornadoes. Lastly, logistic regression models indicate that winters and springs with more phase 2, 3, and 4 days have greater likelihoods of having more than normal tornado activity. Combined, these analyses suggest that seasons with more low atmospheric angular momentum days, or phase 2, 3, and 4 days, tend to have greater tornado activity than those with fewer days, and that this relationship is most evident in winter and spring.
NASA Astrophysics Data System (ADS)
Kuttippurath, J.; Godin-Beekmann, S.; Lefèvre, F.; Goutail, F.
2010-10-01
The polar stratospheric ozone loss during the Arctic winters 2004/2005-2009/2010 is investigated by using high resolution simulations from the chemical transport model Mimosa-Chim and observations from Aura Microwave Limb Sounder (MLS), by applying the passive tracer technique. The winter 2004/2005 shows the coldest temperatures, highest area of polar stratospheric clouds and strongest chlorine activation in 2004/2005-2009/2010. The ozone loss diagnosed from both simulations and measurements inside the polar vortex at 475 K ranges from 0.7 ppmv in the warm winter 2005/2006 to 1.5-1.7 ppmv in the cold winter 2004/2005. Halogenated (chlorine and bromine) catalytic cycles contribute to 75-90% of the ozone loss at this level. At 675 K the lowest loss of 0.3-0.5 ppmv is computed in 2008/2009, and the highest loss of 1.3 ppmv is estimated in 2006/2007 by the model and in 2004/2005 by MLS. Most of the ozone loss (60-75%) at this level results from nitrogen catalytic cycles rather than halogen cycles. At both 475 and 675 K levels the simulated ozone and ozone loss evolution inside the vortex is in reasonably good agreement with the MLS observations. The ozone partial column loss in 350-850 K deduced from the model calculations at the MLS sampling locations inside the polar vortex ranges between 43 DU in 2005/2006 and 109 DU in 2004/2005, while those derived from the MLS observations range between 26 DU and 115 DU for the same winters. The partial column ozone depletion derived in that vertical range is larger than that estimated in 350-550 K by 19±7 DU on average, mainly due to NOx chemistry. The column ozone loss estimates from both Mimosa-Chim and MLS in 350-850 K are generally in good agreement with those derived from ground-based ultraviolet-visible spectrometer total ozone observations for the respective winters, except in 2010.
Daily and seasonal activity patterns in the eastern gray squirrel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bland, M.E.
1977-03-01
The daily and seasonal activity patterns of the eastern gray squirrel were investigated between July 1, 1971 and September 16, 1972. Seasonal variations existed in the amount of time per day squirrels were active, the time of onset and cessation of activity, and the size of home range. Squirrels were most active in the fall and spring and least active in the winter. Two peaks in activity (morning and evening) with a mid-day resting period were characteristic of the summer activity pattern. During the winter one brief period of activity occurred during the warm mid-day hours. In the fall themore » time of onset of activity was consistent and occurred 20 to 30 minutes before sunrise. Cessation of activity was also regular and took place 20 to 30 minutes after sunset. Times of onset and cessation of activity were irregular during the winter and summer with onset usually occurring after sunrise and cessation before sunset. Home range size was smallest in winter and largest in late spring and late summer. Male and female range sizes were similar in fall and winter but in the spring and summer ranges of males exceeded those of females. During winter one night nest location was used per given two week period and daytime activity was restricted to the area around the den site. In spring, summer, and fall each squirrel used between two and three nest locations per two week period and squirrels traveled considerable distance from the den site. Hardwood and cedar forests were heavily utilized by the squirrels with approximately 53 percent of the locations occurring in hardwood forests and 38 percent in cedar forests. Correlations between the amount of time per day squirrels were active and various abiotic and biotic factors were made. Snow cover and/or extremely cold temperatures during the winter and early spring curtailed movement, and rainy weather in summer decreased activity. The availability of acorns in the autumn and the appearance of food in the spring increased movement.« less
Grider, John F; Larsen, Angela L; Homyack, Jessica A; Kalcounis-Rueppell, Matina C
2016-01-01
Across the entire distribution of a species, populations may have variable responses to environmental perturbations. Many bat species experience mortality in large portions of their range during hibernation and along migratory paths to and from wintering grounds, from White-nose syndrome (WNS) and wind energy development, respectively. In some areas, warm temperatures may allow bats to remain active through winter, thus decreasing their susceptibility to WNS and/or mortality associated with migration to wintering grounds. These areas could act as a refugia and be important for the persistence of local populations. To determine if warmer temperatures affect bat activity, we compared year-round activity of bat populations in the Coastal Plain and Piedmont of North Carolina, USA, two regions that differ in winter temperature. We established six recording stations, four along a 295-kilometer north-south transect in the Coastal Plain, and two in the Piedmont of North Carolina. We recorded bat activity over two years. We supplemented our recordings with mist-net data. Although bat activity was lower during winter at all sites, the odds of recording a bat during winter were higher at Coastal Plain sites when compared with Piedmont sites. Further, bats in the Piedmont had a lower level of winter activity compared to summer activity than bats in the Coastal Plain that had more similar levels of activity in the winter and summer. We found high bat species richness on the Coastal Plain in winter, with winter-active species including those known to hibernate throughout most of their range and others known to be long distance migrants. In particular, two species impacted by WNS, the northern long-eared bat (Myotis septentrionalis) and tricolored bat (Perimyotis subflavus), were present year round in the Coastal Plain. The tricolored bat was also present year-round in the Piedmont. In the Coastal Plain, the long distance migratory hoary bat (Lasiurus cinereus) was active in the winter but not present during the other seasons, and the long distance migratory silver-haired bat (Lasionycteris noctivagans) was active primarily in the winter, suggesting the Coastal Plain may be an overwintering ground for these two species. We suggest that the winter activity exhibited by populations of bats on the North Carolina Coastal Plain has important conservation implications and these populations should be carefully monitored and afforded protection.
NASA Astrophysics Data System (ADS)
Nanus, Leora; Campbell, Donald H.; Lehmann, Christopher M. B.; Mast, M. Alisa
2018-03-01
Variation in source areas and source types of atmospheric nitrogen (N) deposition to high-elevation ecosystems in the Rocky Mountains were evaluated using spatially and temporally distributed N isotope data from atmospheric deposition networks for 1995-2016. This unique dataset links N in wet deposition and snowpack to mobile and stationary emissions sources, and enhances understanding of the impacts of anthropogenic activities and environmental policies that mitigate effects of accelerated N cycling across the Rocky Mountain region. δ15N-NO3- at 50 U.S. Geological Survey Rocky Mountain Snowpack (Snowpack) sites ranged from -3.3‰ to +6.5‰, with a mean value of +1.4‰. At 15 National Atmospheric Deposition Program (NADP)/National Trends Network wet deposition (NADP Wetfall) sites, summer δ15N-NO3- is significantly lower ranging from -7.6‰ to -1.3‰ while winter δ15N-NO3- ranges from -2.6‰ to +5.5‰, with a mean value of +0.7‰ during the cool season. The strong seasonal difference in NADP Wetfall δ15N-NO3- is due in part to variation in the proportion of N originating from source regions at different times of the year due to seasonal changes in weather patterns. Snowpack NO3- and δ15N-NO3- are significantly related to NADP Wetfall (fall and winter) suggesting that bulk snowpack samples provide a reliable estimate at high elevations. Spatial trends show higher NO3- concentrations and δ15N-NO3- in the Southern Rocky Mountains located near larger anthropogenic N emission sources compared to the Northern Rocky Mountains. NADP Wetfall δ15N-NH4+ ranged from -10‰ to 0‰, with no observed spatial pattern. However, the lowest δ15N-NH4+(-9‰), and the highest NH4+ concentration (35 μeq/L) were observed at a Utah site dominated by local agricultural activities, whereas the higher δ15N-NH4+ observed in Colorado and Wyoming are likely due to mixed sources, including fossil fuel combustion and agricultural sources. These findings show spatial and seasonal variation in N isotope data that reflect differences in sources of anthropogenic N deposition to high-elevation ecosystems and have important implications for environmental policy across the Rocky Mountain region.
Entropy-Based TOA Estimation and SVM-Based Ranging Error Mitigation in UWB Ranging Systems
Yin, Zhendong; Cui, Kai; Wu, Zhilu; Yin, Liang
2015-01-01
The major challenges for Ultra-wide Band (UWB) indoor ranging systems are the dense multipath and non-line-of-sight (NLOS) problems of the indoor environment. To precisely estimate the time of arrival (TOA) of the first path (FP) in such a poor environment, a novel approach of entropy-based TOA estimation and support vector machine (SVM) regression-based ranging error mitigation is proposed in this paper. The proposed method can estimate the TOA precisely by measuring the randomness of the received signals and mitigate the ranging error without the recognition of the channel conditions. The entropy is used to measure the randomness of the received signals and the FP can be determined by the decision of the sample which is followed by a great entropy decrease. The SVM regression is employed to perform the ranging-error mitigation by the modeling of the regressor between the characteristics of received signals and the ranging error. The presented numerical simulation results show that the proposed approach achieves significant performance improvements in the CM1 to CM4 channels of the IEEE 802.15.4a standard, as compared to conventional approaches. PMID:26007726
Rail Transit Winterization Technology and Systems Operations Study
DOT National Transportation Integrated Search
1980-09-01
The severe winters of 1977-1978 and 1978-1979 caused all snowbelt transit systems to experience a variety of problems which resulted in impaired service ranging from systems delays to complete system shutdowns. The scope of this report includes a sum...
McFarland, Kent P.; Rimmer, Christopher C.; Goetz, James E.; Aubry, Yves; Wunderle, Joseph M.; Sutton, Anne; Townsend, Jason M.; Sosa, Alejandro Llanes; Kirkconnell, Arturo
2013-01-01
Conservation planning and implementation require identifying pertinent habitats and locations where protection and management may improve viability of targeted species. The winter range of Bicknell’s Thrush (Catharus bicknelli), a threatened Nearctic-Neotropical migratory songbird, is restricted to the Greater Antilles. We analyzed winter records from the mid-1970s to 2009 to quantitatively evaluate winter distribution and habitat selection. Additionally, we conducted targeted surveys in Jamaica (n = 433), Cuba (n = 363), Dominican Republic (n = 1,000), Haiti (n = 131) and Puerto Rico (n = 242) yielding 179 sites with thrush presence. We modeled Bicknell’s Thrush winter habitat selection and distribution in the Greater Antilles in Maxent version 3.3.1. using environmental predictors represented in 30 arc second study area rasters. These included nine landform, land cover and climatic variables that were thought a priori to have potentially high predictive power. We used the average training gain from ten model runs to select the best subset of predictors. Total winter precipitation, aspect and land cover, particularly broadleaf forests, emerged as important variables. A five-variable model that contained land cover, winter precipitation, aspect, slope, and elevation was the most parsimonious and not significantly different than the models with more variables. We used the best fitting model to depict potential winter habitat. Using the 10 percentile threshold (>0.25), we estimated winter habitat to cover 33,170 km2, nearly 10% of the study area. The Dominican Republic contained half of all potential habitat (51%), followed by Cuba (15.1%), Jamaica (13.5%), Haiti (10.6%), and Puerto Rico (9.9%). Nearly one-third of the range was found to be in protected areas. By providing the first detailed predictive map of Bicknell’s Thrush winter distribution, our study provides a useful tool to prioritize and direct conservation planning for this and other wet, broadleaf forest specialists in the Greater Antilles. PMID:23326554
Gillespie, Lauren M; Volaire, Florence A
2017-02-01
Dormancy in higher plants is an adaptive response enabling plant survival during the harshest seasons and has been more explored in woody species than in herbaceous species. Nevertheless, winter and summer shoot meristem dormancy are adaptive strategies that could play a major role in enhancing seasonal stress tolerance and resilience of widespread herbaceous plant communities. This review outlines the symmetrical aspects of winter and summer dormancy in order to better understand plant adaptation to severe stress, and highlight research priorities in a changing climate. Seasonal dormancy is a good model to explore the growth-stress survival trade-off and unravel the relationships between growth potential and stress hardiness. Although photoperiod and temperature are known to play a crucial, though reversed, role in the induction and release of both types of dormancy, the thresholds and combined effects of these environmental factors remain to be identified. The biochemical compounds involved in induction or release in winter dormancy (abscisic acid, ethylene, sugars, cytokinins and gibberellins) could be a priority research focus for summer dormancy. To address these research priorities, herbaceous species, being more tractable than woody species, are excellent model plants for which both summer and winter dormancy have been clearly identified. Summer and winter dormancy, although responding to inverse conditions, share many characteristics. This analogous nature can facilitate research as well as lead to insight into plant adaptations to extreme conditions and the evolution of phenological patterns of species and communities under climate change. The development of phenotypes showing reduced winter and/or enhanced summer dormancy may be expected and could improve adaptation to less predictable environmental stresses correlated with future climates. To this end, it is suggested to explore the inter- and intraspecific genotypic variability of dormancy and its plasticity according to environmental conditions to contribute to predicting and mitigating global warming. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Development of migratory behavior in northern white-tailed deer
Nelson, M.E.
1998-01-01
I examined the development of migratory behavior in northern white-tailed deer (Odocoileus virginianus) from 1975 to 1996 by radio-tracking adult females and their fawns. Of 40 migratory fawns with radio-collared mothers, all returned from winter ranges to their mothers' summer ranges, as did 36 fawns with unknown mothers. Of 1.5- to 3.0-year-old daughters with radio-collared mothers, 67-80% continued migrating with mothers to their traditional summer ranges. Eighty-four percent (16/19) of yearling dispersers continued migratory behavior after replacing their natal summer ranges with their dispersal ranges, and 88% (14/16) of these continued migrating to their natal winter ranges, some through at least 6.5 years of age. Twenty percent (4/20) of nonmigratory fawns dispersed as yearlings, and two became migratory between their dispersal summer ranges and new winter ranges, one through 4.9 years of age and another through 6.5 years. Seven fawns changed their movement behavior from migratory to nonmigratory or vice versa as yearlings or when older, indicating that migratory behavior is not under rigid genetic control. Thus, the adaptiveness of migration must depend upon natural selection operating upon varying capacities and propensities to learn and mimic long-distance movements and not upon migratory behavior directly.
Morrow, William R; Griffin, W Michael; Matthews, H Scott
2008-05-15
We update a previously presented Linear Programming (LP) methodology for estimating state level costs for reducing CO2 emissions from existing coal-fired power plants by cofiring switchgrass, a biomass energy crop, and coal. This paper presents national level results of applying the methodology to the entire portion of the United States in which switchgrass could be grown without irrigation. We present incremental switchgrass and coal cofiring carbon cost of mitigation curves along with a presentation of regionally specific cofiring economics and policy issues. The results show that cofiring 189 million dry short tons of switchgrass with coal in the existing U.S. coal-fired electricity generation fleet can mitigate approximately 256 million short tons of carbon-dioxide (CO2) per year, representing a 9% reduction of 2005 electricity sector CO2 emissions. Total marginal costs, including capital, labor, feedstock, and transportation, range from $20 to $86/ton CO2 mitigated,with average costs ranging from $20 to $45/ton. If some existing power plants upgrade to boilers designed for combusting switchgrass, an additional 54 million tons of switchgrass can be cofired. In this case, total marginal costs range from $26 to $100/ton CO2 mitigated, with average costs ranging from $20 to $60/ton. Costs for states east of the Mississippi River are largely unaffected by boiler replacement; Atlantic seaboard states represent the lowest cofiring cost of carbon mitigation. The central plains states west of the Mississippi River are most affected by the boiler replacement option and, in general, go from one of the lowest cofiring cost of carbon mitigation regions to the highest. We explain the variation in transportation expenses and highlight regional cost of mitigation variations as transportation overwhelms other cofiring costs.
Migration patterns and wintering range of common loons breeding in the Northeastern United States
Kenow, K.P.; Adams, D.; Schoch, N.; Evers, D.C.; Hanson, W.; Yates, D.; Savoy, L.; Fox, T.J.; Major, A.; Kratt, R.; Ozard, J.
2009-01-01
A study, using satellite telemetry, was conducted to determine the precise migration patterns and wintering locations of Common Loons (Gavia immer) breeding in the northeastern United States. Transmitters were implanted in 17 loons (16 adults and one juvenile) that were captured on breeding lakes in New York, New Hampshire, and Maine during the summers of 2003, 2004, and 2005. Transmitters from ten of the birds provided adequate location data to document movement to wintering areas. Most adult loons appeared to travel non-stop from breeding lakes, or neighboring lakes (within 15 km), to the Atlantic coast. Adult loons marked in New Hampshire and Maine wintered 152 to 239 km from breeding lakes, along the Maine coast. Adult loons marked in the Adirondack Park of New York wintered along the coasts of Massachusetts (414 km from breeding lake), Rhode Island (362 km), and southern New Jersey (527 km). Most of the loons remained relatively stationary throughout the winter, but the size of individual wintering areas of adult loons ranged from 43 to 1,159 km 2, based on a 95% fixed kernel utilization distribution probability. A juvenile bird from New York made a number of stops at lakes and reservoirs en route to Long Island Sound (325 km from breeding lake). Maximum functional life of transmitters was about 12 months, providing an opportunity to document spring migration movements as well. This work provides essential information for development and implementation of regional Common Loon conservation strategies in the Northeastern U.S.
Financial Impact of Cancer Drug Wastage and Potential Cost Savings From Mitigation Strategies.
Leung, Caitlyn Y W; Cheung, Matthew C; Charbonneau, Lauren F; Prica, Anca; Ng, Pamela; Chan, Kelvin K W
2017-07-01
Cancer drug wastage occurs when a parenteral drug within a fixed vial is not administered fully to a patient. This study investigated the extent of drug wastage, the financial impact on the hospital budget, and the cost savings associated with current mitigation strategies. We conducted a cross-sectional study in three University of Toronto-affiliated hospitals of various sizes. We recorded the actual amount of drug wasted over a 2-week period while using current mitigation strategies. Single-dose vial cancer drugs with the highest wastage potentials were identified (14 drugs). To calculate the hypothetical drug wastage with no mitigation strategies, we determined how many vials of drugs would be needed to fill a single prescription. The total drug costs over the 2 weeks ranged from $50,257 to $716,983 in the three institutions. With existing mitigation strategies, the actual drug wastage over the 2 weeks ranged from $928 to $5,472, which was approximately 1% to 2% of the total drug costs. In the hypothetical model with no mitigation strategies implemented, the projected drug cost wastage would have been $11,232 to $149,131, which accounted for 16% to 18% of the total drug costs. As a result, the potential annual savings while using current mitigation strategies range from 15% to 17%. The financial impact of drug wastage is substantial. Mitigation strategies lead to substantial cost savings, with the opportunity to reinvest those savings. More research is needed to determine the appropriate methods to minimize risk to patients while using the cost-saving mitigation strategies.
NASA Astrophysics Data System (ADS)
Wilber, Dara H.; Clarke, Douglas G.; Alcoba, Catherine M.; Gallo, Jenine
2016-01-01
The effect of climate variability on flatfish includes not only the effects of warming on sensitive life history stages, but also impacts from more frequent or unseasonal extreme cold temperatures. Cold weather events can affect the overwintering capabilities of flatfish near their low temperature range limits. We examined the responses of two flatfish species, the thin-bodied windowpane (Scophthalmus aquosus) and cold-tolerant winter flounder (Pseudopleuronectes americanus), to variable winter temperatures in a Northwest Atlantic estuary using abundance and size data collected during a monitoring study, the Aquatic Biological Survey, conducted from 2002 to 2010. Winter and spring abundances of small (50 to 120 mm total length) juvenile windowpane were positively correlated with adult densities (spawning stock) and fall temperatures (thermal conditions experienced during post-settlement development for the fall-spawned cohort) of the previous year. Windowpane abundances in the estuary were significantly reduced and the smallest size class was nearly absent after several consecutive years with cold (minimum temperatures < 1 °C) winters. Interannual variation in winter flounder abundances was unrelated to the severity of winter temperatures. A Paulik diagram illustrates strong positive correlations between annual abundances of sequential winter flounder life history stages (egg, larval, Age-1 juvenile, and adult male) within the estuary, reflecting residency within the estuary through their first year of life. Temperature variables representing conditions during winter flounder larval and post-settlement development were not significant factors in multiple regression models exploring factors that affect juvenile abundances. Likewise, densities of predators known to consume winter flounder eggs and/or post-settlement juveniles were not significantly related to interannual variation in winter flounder juvenile abundances. Colder estuarine temperatures through the first year of life were associated with smaller Age-1 winter flounder body size. For example, Age-1 winter flounder developing under conditions that differed by 1.9 °C in mean daily water temperature, averaged 98.7 mm total length (TL) and 123.1 mm TL, for the relatively cold vs. moderate years, respectively. More frequent cold temperature extremes associated with climate variability may negatively impact the overwintering capabilities of some flatfish near their cold temperature range limits, whereas cold-tolerant species may experience reduced growth, which imparts the ecological challenges associated with smaller body size.
The range of medication storage temperatures in aeromedical emergency medical services.
Madden, J F; O'Connor, R E; Evans, J
1999-01-01
The United States Pharmacopoeia (USP) recommends that medication storage temperatures should be maintained between 15 degrees C and 30 degrees C (59 degrees F to 86 degrees F). Concerns have been raised that storage temperatures in EMS may deviate from this optimal range, predisposing drugs to degradation. This study was conducted to determine whether temperatures inside the drug box carried by paramedics aboard a helicopter remained within the range. The Aviation Section, with a paramedic on board, utilizes two helicopters and conducts approximately 80 patient care flights per month. A dual-display indoor/outdoor thermometer with memory was used to measure the highest and lowest temperatures during each shift. The thermometer was kept with medications in a nylon drug bag, which remained on the helicopter except when needed for patient care. Ambient temperature measurements at the location of the helicopter base were obtained from the National Climatic Data Center. Temperature ranges were recorded during day shift (8 AM to 4 PM) and night shift (4 PM to 12 AM) during the winter from December 1, 1995, to March 13, 1996, and summer from June 17, 1996, to September 14, 1996. Statistical analysis was performed using chi-square and the Bonferroni-adjusted t-test. Compared with the winter day period, the winter night period had lower minimum (13.2 degrees C vs 14.7 degrees C, p = 0.003) and maximum (20.3 degrees C vs 21.2 degrees C, p = 0.02) temperatures. Both were below the USP minimum. The summer day period had higher maximum temperatures than the summer night period (31.2 degrees C vs 27.6 degrees C, p = 5 x 10(-9)). The mean daytime summer maximum exceeded the USP upper limit. Storage temperatures outside of the USP range were observed during 49% of winter days, 62% of winter nights, 56% of summer days, and 27% of summer nights. There was a significant tendency for summer days (p = 8 x 10(-8)) and winter nights (p = 0.009) to be outside of the acceptable range. There was moderate correlation between ambient and drug box temperatures (r2 = 0.49). Medications stored aboard an EMS helicopter are exposed to extremes of temperature, even inside a drug bag. Measures are needed to attenuate storage temperature fluctuations aboard aeromedical helicopters.
Ecological scale and seasonal heterogeneity in the spatial behaviors of giant pandas.
Zhang, Zejun; Sheppard, James K; Swaisgood, Ronald R; Wang, Guan; Nie, Yonggang; Wei, Wei; Zhao, Naxun; Wei, Fuwen
2014-01-01
We report on the first study to track the spatial behaviors of wild giant pandas (Ailuropoda melanoleuca) using high-resolution global positioning system (GPS) telemetry. Between 2008 and 2009, 4 pandas (2 male and 2 female) were tracked in Foping Reserve, China for an average of 305 days (± 54.8 SE). Panda home ranges were larger than those of previous very high frequency tracking studies, with a bimodal distribution of space-use and distinct winter and summer centers of activity. Home range sizes were larger in winter than in summer, although there was considerable individual variability. All tracked pandas exhibited individualistic, unoriented and multiphasic movement paths, with a high level of tortuosity within seasonal core habitats and directed, linear, large-scale movements between habitats. Pandas moved from low elevation winter habitats to high elevation (>2000 m) summer habitats in May, when temperatures averaged 17.5 °C (± 0.3 SE), and these large-scale movements took <1 month to complete. The peak in panda mean elevation occurred in Jul, after which they began slow, large-scale movements back to winter habitats that were completed in Nov. An adult female panda made 2 longdistance movements during the mating season. Pandas remain close to rivers and streams during winter, possibly reflecting the elevated water requirements to digest their high-fiber food. Panda movement path tortuosity and first-passage-time as a function of spatial scale indicated a mean peak in habitat search effort and patch use of approximately 700 m. Despite a high degree of spatial overlap between panda home ranges, particularly in winter, we detected neither avoidance nor attraction behavior between conspecifics. © 2012 Wiley Publishing Asia Pty Ltd, ISZS and IOZ/CAS.
NASA Astrophysics Data System (ADS)
García González, Raquel; Verhoef, Anne; Vidale, Pier Luigi; Gan, Guohui; Wu, Yupeng; Hughes, Andrew; Mansour, Majdi; Blyth, Eleanor; Finch, Jon; Main, Bruce
2010-05-01
An increased uptake of alternative low or non-CO2 emitting energy sources is one of the key priorities for policy makers to mitigate the effects of environmental change. Relatively little work has been undertaken on the mitigation potential of Ground Coupled Heat Pumps (GCHPs) despite the fact that a GCHP could significantly reduce CO2 emissions from heating systems. It is predicted that under climate change the most probable scenario is for UK temperatures to increase and for winter rainfall to become more abundant; the latter is likely to cause a general rise in groundwater levels. Summer rainfall may reduce considerably, while vegetation type and density may change. Furthermore, recent studies underline the likelihood of an increase in the number of heat waves. Under such a scenario, GCHPs will increasingly be used for cooling as well as heating. These factors will affect long-term performance of horizontal GCHP systems and hence their economic viability and mitigation potential during their life span ( 50 years). The seasonal temperature differences encountered in soil are harnessed by GCHPs to provide heating in the winter and cooling in the summer. The performance of a GCHP system will depend on technical factors (heat exchanger (HE) type, length, depth, and spacing of pipes), but also it will be determined to a large extent by interactions between the below-ground parts of the system and the environment (atmospheric conditions, vegetation and soil characteristics). Depending on the balance between extraction and rejection of heat from and to the ground, the soil temperature in the neighbourhood of the HE may fall or rise. The GROMIT project (GROund coupled heat pumps MITigation potential), funded by the Natural Environment Research Council (UK), is a multi-disciplinary research project, in collaboration with EarthEnergy Ltd., which aims to quantify the CO2 mitigation potential of horizontal GCHPs. It considers changing environmental conditions and combines model predictions of soil moisture content and soil temperature with measurements at different GCHP locations over the UK. The combined effect of environment dynamics and horizontal GCHP technical properties on long-term GCHP performance will be assessed using a detailed land surface model (JULES: Joint UK Land Environment Simulator, Meteorological Office, UK) with additional equations embedded describing the interaction between GCHP heat exchangers and the surrounding soil. However, a number of key soil physical processes are currently not incorporated in JULES, such as groundwater flow, which, especially in lowland areas, can have an important effect on the heat flow between soil and HE. Furthermore, the interaction between HE and soil may also cause soil vapour and moisture fluxes. These will affect soil thermal conductivity and hence heat flow between the HE and the surrounding soil, which will in turn influence system performance. The project will address these issues. We propose to drive an improved version of JULES (with equations to simulate GCHP exchange embedded), with long-term gridded (1 km) atmospheric, soil and vegetation data (reflecting current and future environmental conditions) to reliably assess the mitigation potential of GCHPs over the entire domain of the UK, where uptake of GCHPs has been low traditionally. In this way we can identify areas that are most suitable for the installation of GCHPs. Only then recommendations can be made to local and regional governments, for example, on how to improve the mitigation potential in less suitable areas by adjusting GCHP configurations or design.
Chlamydial-caused infectious keratoconjunctivitis in bighorn sheep of Yellowstone National Park
Meagher, Mary; Quinn, William J.; Stackhouse, Larry
1992-01-01
An epizootic of infectious keratoconjuctivitis occurred in bighorn sheep (Ovis canadensis) in Yellowstone National Park during the winter of 1981-82. The causative organism was identified as Chlamydia sp. Mortality related to the epizootic was approximately 60% of an estimated 500 bighorn sheep in the northern range population. The infection probably affected all sex and age classes, but field surveys of live animals and mortality suggested that mature rams died disproportionately. Limited field observations the following winter on individuals having both normal and cloudy-appearing eyes suggested that half of the bighorns then present on the core units of winter range had contracted the disease and survived. By 1988, there were about 300 bighorn sheep in the population.
Ganusevich, S.A.; Maechtle, T.L.; Seegar, W.S.; Yates, M.A.; McGrady, M.J.; Fuller, M.; Schueck, L.; Dayton, J.; Henny, C.J.
2004-01-01
Four female Peregrine Falcons Falco peregrinus breeding on the Kola Peninsula, Russia, were fitted with satellite-received transmitters in 1994. Their breeding home ranges averaged 1175 (sd = ±714) km2, and overlapped considerably. All left their breeding grounds in September and migrated generally south-west along the Baltic Sea. The mean travel rate for three falcons was 190 km/day. Two Falcons wintered on the coasts of France and in southern Spain, which were, respectively, 2909 and 4262 km from their breeding sites. Data on migration routes suggested that Falcons took a near-direct route to the wintering areas. No prolonged stopovers were apparent. The 90% minimum convex polygon winter range of a bird that migrated to Spain encompassed 213 km2 (n = 54). The area of the 50% minimum convex polygon was 21.5 km2 (n = 29). Data from this study agree with others from North America that show that Falcons breeding in a single area do not necessarily follow the same migratory path southward and do not necessarily use the same wintering grounds.
Geographic variation in winter adaptations of snowshoe hares (Lepus americanus)
Gigliotti, Laura C.; Diefenbach, Duane R.; Sheriff, M.J.
2017-01-01
Understanding adaptations of nonhibernating northern endotherms to cope with extreme cold is important because climate-induced changes in winter temperatures and snow cover are predicted to impact these species the most. We compared winter pelage characteristics and heat production of snowshoe hares (Lepus americanus Erxleben, 1777) on the southern edge of their range, in Pennsylvania (USA), to a northern population, in the Yukon (Canada), to investigate how hares might respond to changing environmental conditions. We also investigated how hares in Pennsylvania altered movement rates and resting spot selection to cope with variable winter temperatures. Hares from Pennsylvania had shorter, less dense, and less white winter coats than their northern counterparts, suggesting lower coat insulation. Hares in the southern population had lower pelage temperatures, indicating that they produced less heat than those in the northern population. In addition, hares in Pennsylvania did not select for resting spots that offered thermal advantages, but selected locations offering visual obstruction from predators. Movement rates were associated with ambient temperature, with the smallest movements occurring at the lower and upper range of observed ambient temperatures. Our results indicate that snowshoe hares may be able to adapt to future climate conditions via changes in pelage characteristics, metabolism, and behavior.
Connectivity of wood thrush breeding, wintering, and migration sites based on range-wide tracking.
Stanley, Calandra Q; McKinnon, Emily A; Fraser, Kevin C; Macpherson, Maggie P; Casbourn, Garth; Friesen, Lyle; Marra, Peter P; Studds, Colin; Ryder, T Brandt; Diggs, Nora E; Stutchbury, Bridget J M
2015-02-01
Many migratory animals are experiencing rapid population declines, but migration data with the geographic scope and resolution to quantify the complex network of movements between breeding and nonbreeding regions are often lacking. Determining the most frequently used migration routes and nonbreeding regions for a species is critical for understanding population dynamics and making effective conservation decisions. We tracked the migration of individual Wood Thrushes (Hylocichla mustelina) (n = 102) from across their range with light-level geolocators and, for the first time, quantified migration routes and wintering regions for distinct breeding populations. We identified regional and species-level migratory connectivity networks for this declining songbird by combining our tracking results with range-wide breeding abundance estimates and forest cover data. More than 50% of the species occupied the eastern wintering range (Honduras to Costa Rica), a region that includes only one-third of all wintering habitat and that is undergoing intensive deforestation. We estimated that half of all Wood Thrushes in North America migrate south through Florida in fall, whereas in spring approximately 73% funnel northward through a narrow span along the central U.S. Gulf Coast (88-93°W). Identifying migratory networks is a critical step for conservation of songbirds and we demonstrated with Wood Thrushes how it can highlight conservation hotspots for regional populations and species as a whole. © 2014 Society for Conservation Biology.
Winter Survival of Meloidogyne incognita in Six Soil Types
Windham, G. L.; Barker, K. R.
1988-01-01
Winter survival of Meloidogyne incognita in six soil types (Fuquay sand, Norfolk loamy sand, Portsmouth loamy sand, muck, Cecil sandy clay loam, and Cecil sandy clay) was determined in microplots at one location from November 1981 to May 1982 and from November 1982 to March 1983. Survival, based on second-stage juveniles (J2) of M. incognita, from November 1981 until May 1982 ranged from 1% in the muck soil to 6% in a Cecil sandy clay loam, but survival rates were much higher the next year following a winter with higher average temperatures. Survival rates of J2 from November to March ranged from 20 to 40% the first winter and from 38 to 87% the second. Soil type did not have a striking effect on the overwintering capabilities ofM. incognita. There were no differences between clay and sand soils, whereas survival of J2 in the muck tended to be lower than in the mineral soils. PMID:19290193
Winter Survival of Meloidogyne incognita in Six Soil Types.
Windham, G L; Barker, K R
1988-01-01
Winter survival of Meloidogyne incognita in six soil types (Fuquay sand, Norfolk loamy sand, Portsmouth loamy sand, muck, Cecil sandy clay loam, and Cecil sandy clay) was determined in microplots at one location from November 1981 to May 1982 and from November 1982 to March 1983. Survival, based on second-stage juveniles (J2) of M. incognita, from November 1981 until May 1982 ranged from 1% in the muck soil to 6% in a Cecil sandy clay loam, but survival rates were much higher the next year following a winter with higher average temperatures. Survival rates of J2 from November to March ranged from 20 to 40% the first winter and from 38 to 87% the second. Soil type did not have a striking effect on the overwintering capabilities ofM. incognita. There were no differences between clay and sand soils, whereas survival of J2 in the muck tended to be lower than in the mineral soils.
NASA Astrophysics Data System (ADS)
Cohen, Jed; Moeltner, Klaus; Reichl, Johannes; Schmidthaler, Michael
2018-01-01
Predicted changes in temperature and other weather events may damage the electricity grid and cause power outages. Understanding the costs of power outages and how these costs change over time with global warming can inform outage-mitigation-investment decisions. Here we show that across 19 EU nations the value of uninterrupted electricity supply is strongly related to local temperatures, and will increase as the climate warms. Bayesian hierarchical modelling of data from a choice experiment and respondent-specific temperature measures reveals estimates of willingness to pay (WTP) to avoid an hour of power outage between €0.32 and €1.86 per household. WTP varies on the basis of season and is heterogeneous between European nations. Winter outages currently cause larger per household welfare losses than summer outages per hour of outage. However, this dynamic will begin to shift under plausible future climates, with summer outages becoming substantially more costly and winter outages becoming slightly less costly on a per-household, per-hour basis.
NASA Astrophysics Data System (ADS)
McDuffie, E. E.; Brown, S. S.
2017-12-01
The heterogeneous chemistry of N2O5 impacts the budget of tropospheric oxidants, which directly controls air quality at Earth's surface. The reaction between gas-phase N2O5 and aerosol particles occurs largely at night, and is therefore more important during the less-intensively-studied winter season. Though N2O5-aerosol interactions are vital for the accurate understanding and simulation of tropospheric chemistry and air quality, many uncertainties persist in our understanding of how various environmental factors influence the reaction rate and probability. Quantitative and accurate evaluation of these factors directly improves the predictive capabilities of atmospheric models, used to inform mitigation strategies for wintertime air pollution. In an update to last year's presentation, The Wintertime Fate of N2O5: Observations and Box Model Analysis for the 2015 WINTER Aircraft Campaign, this presentation will focus on recent field results regarding new information about N2O5 heterogeneous chemistry and future research directions.
Winter precipitation forecast in the European and Mediterranean regions using cluster analysis
NASA Astrophysics Data System (ADS)
Molnos, S.
2017-12-01
The European and Mediterranean climates are sensitive to large-scale circulation of the atmosphere andocean making it difficult to forecast precipitation or temperature on seasonal time-scales. In addition, theMediterranean region has been identified as a hotspot for climate change and already today a drying in theMediterranean region is observed.Thus, it is critically important to predict seasonal droughts as early as possible such that water managersand stakeholders can mitigate impacts.We developed a novel cluster-based forecast method to empirically predict winter's precipitationanomalies in European and Mediterranean regions using precursors in autumn. This approach does notonly utilizes the amplitude but also the pattern of the precursors in generating the forecast.Using a toy model we show that it achieves a better forecast skill than more traditional regression models. Furthermore, we compare our algorithm with dynamic forecast models demonstrating that our prediction method performs better in terms of time and pattern correlation in the Mediterranean and European regions.
Source apportionment of PM2.5 across China using LOTOS-EUROS
NASA Astrophysics Data System (ADS)
Timmermans, R.; Kranenburg, R.; Manders, A.; Hendriks, C.; Segers, A.; Dammers, E.; Zhang, Q.; Wang, L.; Liu, Z.; Zeng, L.; Denier van der Gon, H.; Schaap, M.
2017-09-01
China's population is exposed to high levels of particulate matter (PM) due to its strong economic growth and associated urbanization and industrialization. To support policy makers to develop cost effective mitigation strategies it is of crucial importance to understand the emission sources as well as formation routes responsible for high pollution levels. In this study we applied the LOTOS-EUROS model with its module to track the contributions of predefined source sectors to China for the year 2013 using the MEIC emission inventory. It is the first application of the model system to a region outside Europe. The source attribution was aimed to provide insight in the sector and area of origin of PM2.5 for the cities of Beijing and Shanghai. The source attribution shows that on average about half of the PM2.5 pollution in both cities originates from the municipality itself. About a quarter of the PM2.5 comes from the neighbouring provinces, whereas the remaining quarter is attributed to long range transport from anthropogenic and natural components. Residential combustion, transport, and industry are identified as the main sources with comparable contributions allocated to these sectors. The importance of the sectors varies throughout the year and differs slightly between the cities. During winter, urban contributions from residential combustion are dominant, whereas industrial and traffic contributions with a larger share of regional transport are more important during summer. The evaluation of the model results against satellite and in-situ observations shows the ability of the LOTOS-EUROS model to capture many features of the variability in particulate matter and its precursors in China. The model shows a systematic underestimation of particulate matter concentrations, especially in winter. This illustrates that modelling particulate matter remains challenging as it comes to components like secondary organic aerosol and suspended dust as well as emissions and formation of PM during winter time haze situations. All in all, the LOTOS-EUROS system proves to be a powerful tool for policy support applications outside Europe as the intermediate complexity of the model allows the assessment of the area and sector of origin over decadal time periods.
NASA Astrophysics Data System (ADS)
Walden, Von P.; Hudson, Stephen R.; Cohen, Lana; Murphy, Sarah Y.; Granskog, Mats A.
2017-08-01
The Norwegian young sea ice campaign obtained the first measurements of the surface energy budget over young, thin Arctic sea ice through the seasonal transition from winter to summer. This campaign was the first of its kind in the North Atlantic sector of the Arctic. This study describes the atmospheric and surface conditions and the radiative and turbulent heat fluxes over young, thin sea ice. The shortwave albedo of the snow surface ranged from about 0.85 in winter to 0.72-0.80 in early summer. The near-surface atmosphere was typically stable in winter, unstable in spring, and near neutral in summer once the surface skin temperature reached 0°C. The daily average radiative and turbulent heat fluxes typically sum to negative values (-40 to 0 W m-2) in winter but then transition toward positive values of up to nearly +60 W m-2 as solar radiation contributes significantly to the surface energy budget. The sensible heat flux typically ranges from +20-30 W m-2 in winter (into the surface) to negative values between 0 and -20 W m-2 in spring and summer. A winter case study highlights the significant effect of synoptic storms and demonstrates the complex interplay of wind, clouds, and heat and moisture advection on the surface energy components over sea ice in winter. A spring case study contrasts a rare period of 24 h of clear-sky conditions with typical overcast conditions and highlights the impact of clouds on the surface radiation and energy budgets over young, thin sea ice.
Carbon and Water Vapor Fluxes of Different Ecosystems in Oklahoma
NASA Astrophysics Data System (ADS)
Wagle, P.; Gowda, P. H.; Northup, B. K.
2016-12-01
Information on exchange of energy, carbon dioxide (CO2), and water vapor (H2O) for major terrestrial ecosystems is vital to quantify carbon and water balances on a large-scale. It is also necessary to develop, test, and improve crop models and satellite-based production efficiency and evapotranspiration (ET) models, and to better understand the potential of terrestrial ecosystems to mitigate rising atmospheric CO2 concentration and climate change. A network (GRL-FLUXNET) of nine eddy flux towers has been established over a diverse range of terrestrial ecosystems, including native and improved perennial grasslands [unburned and grazed tallgrass prairie, burned and grazed tallgrass prairie, and burned Bermuda grass (Cynodon dactylon L.)], grazed and non-grazed winter wheat (Triticum aestivum L.), till and no-till winter wheat and canola (Brassica napus L.), alfalfa (Medicago sativa L.), and soybean (Glycine max L.), at the USDA-ARS, Grazinglands Research Laboratory, El Reno, OK. In this presentation, we quantify and compare net ecosystem CO2 exchange (NEE) and ET between recently burned and grazed tallgrass prairie and burned and non-grazed Bermuda grass pastures, alfalfa, and soybean. Preliminary results show monthly ensembles average NEE reached seasonal peak values of -29, -35, -25, and -20 µmol m-2 s-1 in burned tallgrass prairie pasture, burned Bermuda grass pasture, alfalfa, and soybean, respectively. Similarly, monthly ensembles average ET reached seasonal peak values of 0.22, 0.27, 0.25, 0.28 mm 30-min-1 in burned tallgrass prairie pasture, burned Bermuda grass pasture, alfalfa, and soybean, respectively. Seasonal patterns and daily magnitudes of NEE and ET and their responses to the similar climatic conditions will be further investigated.
Production versus environmental impact trade-offs for Swiss cropping systems: a model-based approach
NASA Astrophysics Data System (ADS)
Necpalova, Magdalena; Lee, Juhwan; Six, Johan
2017-04-01
There is a growing need to improve sustainability of agricultural systems. The key focus remains on optimizing current production systems in order to deliver food security at low environmental costs. It is therefore essential to identify and evaluate agricultural management practices for their potential to maintain or increase productivity and mitigate climate change and N pollution. Previous research on Swiss cropping systems has been concentrated on increasing crop productivity and soil fertility. Thus, relatively little is known about management effects on net soil greenhouse gas (GHG) emissions and environmental N losses in the long-term. The aim of this study was to extrapolate findings from Swiss long-term field experiments and to evaluate the system-level sustainability of a wide range of cropping systems under conditions beyond field experimentation by comparing their crop productivity and impacts on soil carbon, net soil GHG emissions, NO3 leaching and soil N balance over 30 years. The DayCent model was previously parameterized for common Swiss crops and crop-specific management practices and evaluated for productivity, soil carbon dynamics and N2O emissions from Swiss cropping systems. Based on a prediction uncertainty criterion for crop productivity and soil carbon (rRMSE<0.3), in total 39 cropping systems were selected. Each system was evaluated under soil and climate conditions representative of Therwil, Frick, Reckenholz and Changins sites with four replications. Soil inputs were sampled from normal probability distributions defined by available site-specific data using the Latin hypercube sampling method. Net soil GHG emissions were derived from changes in soil carbon, N2O emissions and CH4 oxidation and the annual net global warming potential (GWP) was calculated using IPCC (2014). For statistical analyses, the systems were grouped into the following categories: (a) farming system: organic (ORG), integrated (IN) and mineral (MIN); (b) tillage: conventional (CT), reduced (RT) and no-till (NT); (c) cover cropping: no cover cropping (NCC), winter cover cropping (CC) and winter green manuring (GM). The productivity of Swiss cropping systems was mainly driven by total N inputs to the systems. The GWP of systems ranged from -450 to 1309 kg CO2 eq ha-1 yr-1. All studied systems, except for ORG-RT-GM systems, acted as a source of net soil GHG emissions with the relative contribution of soil N2O emissions to GWP of more than 60%. The GWP of systems with CT decreased consistently with increasing use of organic manures (MIN>IN>ORG). NT relative to RT management showed to be more effective in reducing GWP from MIN systems due to reduced soil N2O emissions and positive effects on soil C sequestration. GM relative to CC management was shown to be more effective in mitigating NO3 leaching and overall N losses from MIN systems; particularly in combination with NT management. GM management also increased soil N balance of MIN and ORG systems relative to CC management, which caused an additional N removal through CC harvest. Our results suggest that there is a substantial potential for improvement and optimizing the sustainability of Swiss cropping systems across sites especially in the context of climate change mitigation and adaptation.
NASA Astrophysics Data System (ADS)
Salameh, Thérèse; Sauvage, Stéphane; Afif, Charbel; Borbon, Agnès; Locoge, Nadine
2016-03-01
We applied the positive matrix factorization model to two large data sets collected during two intensive measurement campaigns (summer 2011 and winter 2012) at a sub-urban site in Beirut, Lebanon, in order to identify NMHC (non-methane hydrocarbons) sources and quantify their contribution to ambient levels. Six factors were identified in winter and five factors in summer. PMF-resolved source profiles were consistent with source profiles established by near-field measurements. The major sources were traffic-related emissions (combustion and gasoline evaporation) in winter and in summer accounting for 51 and 74 wt %, respectively, in agreement with the national emission inventory. The gasoline evaporation related to traffic source had a significant contribution regardless of the season (22 wt % in winter and 30 wt % in summer). The NMHC emissions from road transport are estimated from observations and PMF results, and compared to local and global emission inventories. The PMF analysis finds reasonable differences on emission rates, of 20-39 % higher than the national road transport inventory. However, global inventories (ACCMIP, EDGAR, MACCity) underestimate the emissions up to a factor of 10 for the transportation sector. When combining emission inventory to our results, there is strong evidence that control measures in Lebanon should be targeted on mitigating the NMHC emissions from the traffic-related sources. From a global perspective, an assessment of VOC (volatile organic compounds) anthropogenic emission inventories for the Middle East region as a whole seems necessary as these emissions could be much higher than expected at least from the road transport sector.
A geographical and seasonal comparison of nitrogen uptake by phytoplankton in the Southern Ocean
NASA Astrophysics Data System (ADS)
Philibert, R.; Waldron, H.; Clark, D.
2015-03-01
The impact of light and nutrients (such as silicate and iron) availability on nitrogen uptake and primary production vary seasonally and regionally in the Southern Ocean. The seasonal cycle of nitrogen uptake by phytoplankton in the Southern Ocean is not fully resolved over an annual scale due to the lack of winter in situ measurements. In this study, nitrate and ammonium uptake rates were measured using 15N tracers during a winter cruise in July 2012 and a summer cruise in February-March 2013. The winter cruise consisted of two legs: leg 1 extended from Cape Town to the ice margin along the GoodHope line and leg 2 stretched from the ice margin to Marion Island. The summer cruise was mostly focused on the subantarctic zone of the Atlantic sector. In winter, nitrogen uptake rates were measured at 55 and 1% of the surface photosynthetically active radiation (sPAR). The summer uptake rates were measured at four light depths corresponding to 55, 30, 10 and 3% sPAR. The integrated nitrate uptake rates during the winter cruise ranged from 0.17 to 5.20 mmol N m-2 d-1 (average 1.14 mmol N m-2 d-1) while the ammonium uptake rates ranged from 0.60 to 32.86 mmol N m-2 d-1 (average 6.73 mmol N m-2 d-1). During the summer cruise, the mean-integrated nitrate uptake rate was 0.20 mmol N m-2 d-1 with a range between 0.10 and 0.38 mmol N m-2 d-1. The integrated ammonium uptake rate averaged 4.39 mmol N m-2 d-1 and ranged from 1.12 to 9.05 mmol N m-2 d-1. The factors controlling nitrogen uptake in winter and summer were investigated. During the winter cruise, it was found that the different nitrogen uptake regimes were not separated by the fronts of the Antarctic Circumpolar Current (ACC). Light (in terms of day length) and ammonium concentration had the most influence on the nitrogen uptake. In the summer, increases in the mixed layer depth (MLD) resulted in increased nitrogen uptake rates. This suggests that the increases in the MLD could be alleviating nutrient limitations experienced by the phytoplankton at the end of summer.
Ecological studies of the timber wolf in Northeastern Minnesota.
L. David Mech; L.D. Jr. Frenzel
1971-01-01
Aerial observations and radio tracking showed that wolves had ranges of 43 to 1,000 square miles. Kill rate during usual winters was one deer per wolf per 18 days, but harsher winters allowed increased kill. Wolf-killed deer generally were older and had more abnormalities than hunter-killed deer.
Phenotypic plasticity of winter wheat heading date and grain yield across the U.S. Great Plains
USDA-ARS?s Scientific Manuscript database
Phenotypic plasticity describes the range of phenotypes produced by a single genotype under varying environmental conditions. We evaluated the extent of phenotypic variation and plasticity in thermal time to heading and grain yield in 299 hard winter wheat (Triticum aestivum L.) genotypes representa...
NASA Astrophysics Data System (ADS)
Kato, Shungo; Pochanart, Pakpong; Kajii, Yoshizumi
Chichi-jima island is located in the Pacific about 1000 km from the Japanese main island and is an ideal remote observatory from which to assess the long-range transport of polluted air from East Asia. The ozone concentration was measured from August 1997 to August 1998. Owing to the air mass change, the seasonal variation of ozone shows a distinct character: low concentration (about 13 ppbv) for the maritime air mass during the summer, and high concentration (about 40 ppbv) for the continental air mass during the winter. To assess the contribution of the long-range transport of polluted air during winter, nonmethane hydrocarbons were also measured in December 1999. Using backward trajectory analysis, the transport time of the air mass from the source area in the Pacific rim region was calculated for each sample. The concentration of hydrocarbons shows a clear negative correlation against the transport time. This analysis clearly shows the transport of polluted air, emitted in East Asia, to the Pacific during the winter. The plots of suitable hydrocarbon pairs showed that the decrease of hydrocarbon concentrations during winter is mainly caused by the mixing with clean background air.
Buma, Brian; Hennon, Paul E; Harrington, Constance A; Popkin, Jamie R; Krapek, John; Lamb, Melinda S; Oakes, Lauren E; Saunders, Sari; Zeglen, Stefan
2017-07-01
Climate change is causing rapid changes to forest disturbance regimes worldwide. While the consequences of climate change for existing disturbance processes, like fires, are relatively well studied, emerging drivers of disturbance such as snow loss and subsequent mortality are much less documented. As the climate warms, a transition from winter snow to rain in high latitudes will cause significant changes in environmental conditions such as soil temperatures, historically buffered by snow cover. The Pacific coast of North America is an excellent test case, as mean winter temperatures are currently at the snow-rain threshold and have been warming for approximately 100 years post-Little Ice Age. Increased mortality in a widespread tree species in the region has been linked to warmer winters and snow loss. Here, we present the first high-resolution range map of this climate-sensitive species, Callitropsis nootkatensis (yellow-cedar), and document the magnitude and location of observed mortality across Canada and the United States. Snow cover loss related mortality spans approximately 10° latitude (half the native range of the species) and 7% of the overall species range and appears linked to this snow-rain transition across its range. Mortality is commonly >70% of basal area in affected areas, and more common where mean winter temperatures is at or above the snow-rain threshold (>0 °C mean winter temperature). Approximately 50% of areas with a currently suitable climate for the species (<-2 °C) are expected to warm beyond that threshold by the late 21st century. Regardless of climate change scenario, little of the range which is expected to remain suitable in the future (e.g., a climatic refugia) is in currently protected landscapes (<1-9%). These results are the first documentation of this type of emerging climate disturbance and highlight the difficulties of anticipating novel disturbance processes when planning for conservation and management. © 2016 John Wiley & Sons Ltd.
A Polarization Technique for Mitigating Low Grazing Angle Radar Sea Clutter
2017-03-03
alarm mitigation, low grazing angles, polarimetry , radar, sea clutter. I. INTRODUCTION Sea clutter poses unique challenges for maritime radars looking...radar polarimetry offers a practical means of robustly mitigating LGA sea clutter across a range of radar and environmental parameters, we stood up a
de Souza Pereira, Márcia; Heitmann, Dieter; Reifenhäuser, Werner; Meire, Rodrigo Ornellas; Santos, Luciana Silva; Torres, João Paulo M; Malm, Olaf; Körner, Wolfgang
2007-04-01
Monitoring of immission of persistent organic pollutants in the industrialized area of Volta Redonda (V.R.) and in the National Park of Itatiaia (PNI) in southeast Brazil was performed using an endemic bromeliad species as biomonitor and measuring bulk deposition rates of polychlorinated biphenyls (PCB) and polycyclic aromatic hydrocarbons (PAH). For the sum of PCB, overall deposition rates were between 17 and 314 ng/(m2 day) in winter and between 43 and 81 ng/(m2 day) in summer, respectively. Deposition rates of dioxin-like PCBs ranged from 0.14 to 2.8 pg WHO-TEQ/(m2 day) in winter and from 0.90 to 4.3 pg WHO-TEQ/(m2 day) in summer. PCB deposition rates (total PCB and WHO-TEQ) were in the same range in winter in V.R. and PNI. In summer, contamination levels in V.R. were 6-10-folds higher than in PNI. PCB concentrations in biomonitor samples from V.R. and PNI were in the same range in summer and in winter. Concentrations of total PCB ranged from 14 to 95 microg/kg dry matter (d.m.) in winter and from 18 to 27 microg/kg d.m. in summer, respectively. The TEQ values were between 1.7 and 4.1 ng WHO-TEQ/kg d.m. in winter and between 1.9 and 2.9 ng WHO-TEQ/kg d.m. in summer. PCB concentrations of di-ortho PCB but not of non-ortho PCB were a factor of 2-4 lower in summer in both areas. PCB congener profiles resembled those from technical formulations. The profiles shifted to the higher chlorinated congeners in summer, probable due to revolatilisation of the lighter components at higher temperatures. PCB profiles in biomonitor resembled those from deposition samples and the shift to the heavier congeners in summer was even more pronounced. PAH deposition rates were in a similar range in both areas (131-2415 ng/(m2 day)). PAH levels in biomonitor samples from V.R. were about one order of magnitude higher than in samples from PNI indicating the impact of local sources. PAH profiles revealed stationary thermal processes as main source of contamination in V.R. whereas in PNI, biomass burning seems to be the main contamination source.
4 Living roofs in 3 locations: Does configuration affect runoff mitigation?
NASA Astrophysics Data System (ADS)
Fassman-Beck, Elizabeth; Voyde, Emily; Simcock, Robyn; Hong, Yit Sing
2013-05-01
Four extensive living roofs and three conventional (control) roofs in Auckland, New Zealand have been evaluated over periods of 8 months to over 2 yrs for stormwater runoff mitigation. Up to 56% cumulative retention was measured from living roofs with 50-150 mm depth substrates installed over synthetic drainage layers, and with >80% plant coverage. Variation in cumulative %-retention amongst sites is attributed to different durations of monitoring, rather than actual performance. At all sites, runoff rarely occurred at all from storms with less than 25 mm of precipitation, from the combined effects of substrates designed to maximize moisture storage and because >90% of individual events were less than 25 mm. Living roof runoff depth per event is predicted well by a 2nd order polynomial model (R2 = 0.81), again demonstrating that small storms are well managed. Peak flow per event from the living roofs was 62-90% less than a corresponding conventional roof's runoff. Seasonal retention performance decreased slightly in winter, but was nonetheless substantial, maintaining 66% retention at one site compared to 45-93% in spring-autumn at two sites. Peak flow mitigation did not vary seasonally. During a 4-month period of concurrent monitoring at all sites, varied substrate depth did not influence runoff depth (volume), %-retention, or %-peak flow mitigation compared to a control roof at the same site. The magnitude of peak flow was greater from garden shed-scale living roofs compared to the full-scale living roofs. Two design aspects that could be manipulated to increase peak flow mitigation include lengthening the flow path through the drainage layer to vertical gutters and use of flow-retarding drainage layer materials.
Genetic differentiation between sympatric and allopatric wintering populations of Snow Geese
Humphries, E.M.; Peters, J.L.; Jonsson, J.E.; Stone, R.; Afton, A.D.; Omland, K.E.
2009-01-01
Blackwater National Wildlife Refuge on the Delmarva Peninsula, Maryland, USA has been the wintering area of a small population of Lesser Snow Geese (Chen caerulescens caerulescens; LSGO) since the 1930s. Snow Geese primarily pair in wintering areas and gene flow could be restricted between this and other LSGO wintering populations. Winter pair formation also could facilitate interbreeding with sympatric but morphologically differentiated Greater Snow Geese (C. c. atlantica; GSGO).We sequenced 658 bp of the mitochondrial DNA control region for 68 Snow Geese from East Coast and Louisiana wintering populations to examine the level of genetic differentiation among populations and subspecies. We found no evidence for genetic differentiation between LSGO populations but, consistent with morphological differences, LSGO and GSGO were significantly differentiated. We also found a lack of genetic differentiation between different LSGO morphotypes from Louisiana. We examined available banding data and found the breeding range of Delmarva LSGO overlaps extensively with LSGO that winter in Louisiana, and documented movements between wintering populations. Our results suggest the Delmarva population of LSGO is not a unique population unit apart from Mid-Continent Snow Geese. ?? 2009 by the Wilson Ornithological Society.
Mimarakis, D; Roumeliotaki, T; Roussos, P; Giakoumaki, S G; Bitsios, P
2018-01-01
Urbanicity, immigration and winter-birth are stable epidemiological risk factors for schizophrenia, but their relationship to schizotypy is unknown. This is a first examination of the association of these epidemiological risk factors with positive schizotypy, in nonclinical adolescents, controlling for a range of potential and known confounders. We collected socio-demographics, life-style, family and school circumstances, positive schizotypy dimensions and other personality traits from 445 high school pupils (192 males, 158 immigrants) from 9 municipalities in Athens and Heraklion, Greece, which covered a range of host population and migrant densities. Using multivariate hierarchical linear regressions models, we estimated the association of schizotypy dimensions with: (1) demographics of a priori interest (winter-birth, immigrant status, urban characteristics), including family financial and mental health status; (2) factors resulting from principal component analysis (PCA) of the demographic and personal data; (3) factors resulting from PCA of the personality questionnaires. Adolescent women scored higher on schizotypy than men. High anxiety/neuroticism was the most consistent and significant predictor of all schizotypy dimensions in both sexes. In the fully adjusted models, urbanicity predicted magical thinking and unusual experiences in women, while winter-birth and immigration predicted paranoid ideation and unusual experiences respectively in men. These results support the continuum hypothesis and offer potential insights in the nature of risk conferred by winter-birth, urbanicity and immigration and the nature of important sex differences. Controlling for a wide range of potential confounding factors increases the robustness of these results and confidence that these were not spurious associations. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Asthma prevalence in German Olympic athletes: A comparison of winter and summer sport disciplines.
Selge, Charlotte; Thomas, Silke; Nowak, Dennis; Radon, Katja; Wolfarth, Bernd
2016-09-01
Prevalence of asthma in elite athletes shows very wide ranges. It remains unclear to what extent this is influenced by the competition season (winter vs. summer) or the ventilation rate achieved during competition. The aim of this study was to evaluate prevalence of asthma in German elite winter and summer athletes from a wide range of sport disciplines and to identify high risk groups. In total, 265 German elite winter athletes (response 77%) and 283 German elite summer athletes (response 64%) answered validated respiratory questionnaires. Using logistic regression, the asthma risks associated with competition season and ventilation rate during competition, respectively, were investigated. A subset of winter athletes was also examined for their FENO-levels and lung function. With respect to all asthma outcomes, no association was found with the competition season. Regarding the ventilation rate, athletes in high ventilation sports were at increased risk of asthma, as compared to athletes in low ventilation sports (doctors' diagnosed asthma: OR 2.32, 95% CI 1.19-4.53; use of asthma medication: OR 4.46, 95% CI 1.52-13.10; current wheeze or use of asthma medication: OR 2.78, 95% CI 1.34-5.76). Athletes with doctors' diagnosed asthma were at an approximate four-fold risk of elevated FENO-values. The clinically relevant finding of this study is that athletes' asthma seems to be more common in sports with high ventilation during competition, whereas the summer or winter season had no impact on the frequency of the disease. Among winter athletes, elevated FENO suggested suboptimal control of asthma. Copyright © 2016 Elsevier Ltd. All rights reserved.
The history of the U. S. Department of Agriculture, Agricultural Research Service in Nevada
USDA-ARS?s Scientific Manuscript database
The severe winter of 1889-1890 nearly wiped out the range livestock industry in Nevada and resulted in livestock operators understanding that they needed irrigated hay production to carry their stock through the winter months. Congress funded the construction of irrigation in Nevada in which was nam...
Mitigation of Shore Damage Attributed to the Federal Navigation Structures at Hammond Bay Harbor.
1976-11-01
34.’,u:e bz ma :’s Winter wren :,. UsatN2II Golden crown kinglet , f, cI’OPuM Cedar waxwing ’ ’’w .": x?,r’ ,7jq Northern shrike * , ~ PIPar Starling...flycatcher Pct-,hlidon Bank swallows Progue sabis Purple martins Troo Zodytes aedon House wren Dv,,’tolZa oaroliensis Catbird T ,xosterna rufern Brown...and Related Land Resources b the Wic ’ , sir ,S ,ounci 1. S. ai 9.t Mr. and Mi_rs. Joseph__ Mser I. Comment: We have read the environin.ntaIl impact
Effects of weather on habitat selection and behavior of mallards wintering in Nebraska
Jorde, Dennis G.; Krapu, G.L.; Crawford, R.D.; Hay, M.A.
1984-01-01
Sex and age ratios, habitat selection, spatial characteristics, and time budgets of Mallards (Anas platyrhynchos) wintering on the Platte River in south central Nebraska were studied from mid-December to early April 1978-1980. The proportion of females and subadults in the population increased substantially from a cold to a mild winter. Radio-tagged Mallards shifted from riverine to canal roost sites during the coldest periods of the winter, seemingly because of more favorable microclimatic conditions there. Subadults ranged over larger areas during winter than did adults. Activity patterns varied with weather conditions, time of day, and habitat type. During cold periods, energetically costly activities such as aggression and courtship decreased at roost sites and the intensity of foraging activities in fields increased. Mallards were more active at riverine than canal sites during both years. High energy requirements and intense competition for scarce food appear to be primary factors limiting the northernmost distribution of Mallards in winter and causing their skewed sex and age ratios.
Winter climate limits subantarctic low forest growth and establishment.
Harsch, Melanie A; McGlone, Matt S; Wilmshurst, Janet M
2014-01-01
Campbell Island, an isolated island 600 km south of New Zealand mainland (52 °S, 169 °E) is oceanic (Conrad Index of Continentality = -5) with small differences between mean summer and winter temperatures. Previous work established the unexpected result that a mean annual climate warming of c. 0.6 °C since the 1940's has not led to upward movement of the forest limit. Here we explore the relative importance of summer and winter climatic conditions on growth and age-class structure of the treeline forming species, Dracophyllum longifolium and Dracophyllum scoparium over the second half of the 20th century. The relationship between climate and growth and establishment were evaluated using standard dendroecological methods and local climate data from a meteorological station on the island. Growth and establishment were correlated against climate variables and further evaluated within hierarchical regression models to take into account the effect of plot level variables. Winter climatic conditions exerted a greater effect on growth and establishment than summer climatic conditions. Establishment is maximized under warm (mean winter temperatures >7 °C), dry winters (total winter precipitation <400 mm). Growth, on the other hand, is adversely affected by wide winter temperature ranges and increased rainfall. The contrasting effect of winter warmth on growth and establishment suggests that winter temperature affects growth and establishment through differing mechanisms. We propose that milder winters enhance survival of seedlings and, therefore, recruitment, but increases metabolic stress on established plants, resulting in lower growth rates. Future winter warming may therefore have complex effects on plant growth and establishment globally.
Winter Climate Limits Subantarctic Low Forest Growth and Establishment
Harsch, Melanie A.; McGlone, Matt S.; Wilmshurst, Janet M.
2014-01-01
Campbell Island, an isolated island 600 km south of New Zealand mainland (52°S, 169°E) is oceanic (Conrad Index of Continentality = −5) with small differences between mean summer and winter temperatures. Previous work established the unexpected result that a mean annual climate warming of c. 0.6°C since the 1940's has not led to upward movement of the forest limit. Here we explore the relative importance of summer and winter climatic conditions on growth and age-class structure of the treeline forming species, Dracophyllum longifolium and Dracophyllum scoparium over the second half of the 20th century. The relationship between climate and growth and establishment were evaluated using standard dendroecological methods and local climate data from a meteorological station on the island. Growth and establishment were correlated against climate variables and further evaluated within hierarchical regression models to take into account the effect of plot level variables. Winter climatic conditions exerted a greater effect on growth and establishment than summer climatic conditions. Establishment is maximized under warm (mean winter temperatures >7 °C), dry winters (total winter precipitation <400 mm). Growth, on the other hand, is adversely affected by wide winter temperature ranges and increased rainfall. The contrasting effect of winter warmth on growth and establishment suggests that winter temperature affects growth and establishment through differing mechanisms. We propose that milder winters enhance survival of seedlings and, therefore, recruitment, but increases metabolic stress on established plants, resulting in lower growth rates. Future winter warming may therefore have complex effects on plant growth and establishment globally. PMID:24691026
Soil Water Improvements with the Long Term Use of a Winter Rye Cover Crop
NASA Astrophysics Data System (ADS)
Basche, A.; Kaspar, T.; Archontoulis, S.; Jaynes, D. B.; Sauer, T. J.; Parkin, T.; Miguez, F.
2015-12-01
The Midwestern United States, a region that produces one-third of maize and one-quarter of soybeans globally, is projected to experience increasing rainfall variability with future climate change. One approach to mitigate climate impacts is to utilize crop and soil management practices that enhance soil water storage, reducing the risks of flooding and runoff as well as drought-induced crop water stress. While some research indicates that a winter cover crop in a maize-soybean rotation increases soil water, producers continue to be concerned that water use by cover crops will reduce water for a following cash crop. We analyzed continuous in-field soil moisture measurements over from 2008-2014 at a Central Iowa research site that has included a winter rye cover crop in a maize-soybean rotation for thirteen years. This period of study included years in the top third of wettest years on record (2008, 2010, 2014) as well as years in the bottom third of driest years (2012, 2013). We found the cover crop treatment to have significantly higher soil water storage from 2012-2014 when compared to the no cover crop treatment and in most years greater soil water content later in the growing season when a cover crop was present. We further found that the winter rye cover crop significantly increased the field capacity water content and plant available water compared to the no cover crop treatment. Finally, in 2012 and 2013, we measured maize and soybean biomass every 2-3 weeks and did not see treatment differences in crop growth, leaf area or nitrogen uptake. Final crop yields were not statistically different between the cover and no cover crop treatment in any of the years of this analysis. This research indicates that the long-term use of a winter rye cover crop can improve soil water dynamics without sacrificing cash crop growth.
Kumar, Gulshan; Rattan, Usha Kumari; Singh, Anil Kumar
2016-01-01
Winter dormancy is a well known mechanism adopted by temperate plants, to mitigate the chilling temperature of winters. However, acquisition of sufficient chilling during winter dormancy ensures the normal phenological traits in subsequent growing period. Thus, low temperature appears to play crucial roles in growth and development of temperate plants. Apple, being an important temperate fruit crop, also requires sufficient chilling to release winter dormancy and normal phenological traits, which are often associated with yield and quality of fruits. DNA cytosine methylation is one of the important epigenetic modifications which remarkably affect the gene expression during various developmental and adaptive processes. In present study, methylation sensitive amplified polymorphism was employed to assess the changes in cytosine methylation during dormancy, active growth and fruit set in apple, under differential chilling conditions. Under high chill conditions, total methylation was decreased from 27.2% in dormant bud to 21.0% in fruit set stage, while no significant reduction was found under low chill conditions. Moreover, the demethylation was found to be decreased, while methylation increased from dormant bud to fruit set stage under low chill as compared to high chill conditions. In addition, RNA-Seq analysis showed high expression of DNA methyltransferases and histone methyltransferases during dormancy and fruit set, and low expression of DNA glcosylases during active growth under low chill conditions, which was in accordance with changes in methylation patterns. The RNA-Seq data of 47 genes associated with MSAP fragments involved in cellular metabolism, stress response, antioxidant system and transcriptional regulation showed correlation between methylation and their expression. Similarly, bisulfite sequencing and qRT-PCR analysis of selected genes also showed correlation between gene body methylation and gene expression. Moreover, significant association between chilling and methylation changes was observed, which suggested that chilling acquisition during dormancy in apple is likely to affect the epigenetic regulation through DNA methylation.
NASA Astrophysics Data System (ADS)
Salameh, T.; Sauvage, S.; Afif, C.; Borbon, A.; Locoge, N.
2015-10-01
We applied the Positive Matrix Factorization model to two large datasets collected during two intensive measurement campaigns (summer 2011 and winter 2012) at a sub-urban site in Beirut, Lebanon, in order to identify NMHC sources and quantify their contribution to ambient levels. Six factors were identified in winter and five factors in summer. PMF-resolved source profiles were consistent with source profiles established by near-field measurements. The major sources were traffic-related emissions (combustion and gasoline evaporation) in winter and in summer accounting for 51 and 74 wt % respectively in agreement with the national emission inventory. The gasoline evaporation related to traffic source had a significant contribution regardless of the season (22 wt % in winter and 30 wt % in summer). The NMHC emissions from road transport are estimated from observations and PMF results, and compared to local and global emission inventories. The national road transport inventory shows lowest emissions than the ones from PMF but with a reasonable difference lower than 50 %. Global inventories show higher discrepancies with lower emissions up to a factor of 10 for the transportation sector. When combining emission inventory to our results, there is a strong evidence that control measures in Lebanon should be targeted on mitigating the NMHC emissions from the traffic-related sources. From a global perspective, an assessment of VOC anthropogenic emission inventories for the Middle East region as a whole seems necessary as these emissions could be much higher than expected at least from the road transport sector. Highlights: - PMF model was applied to identify major NMHC sources and their seasonal variation. - Gasoline evaporation accounts for more than 40 % both in winter and in summer. - NMHC urban emissions are dominated by traffic related sources in both seasons. - Agreement with the emission inventory regarding the relative contribution of the on-road mobile source but disagreement in terms of emission quantities suggesting an underestimation of the inventories.
Belotti, Elisa; Weder, Nicole; Bufka, Luděk; Kaldhusdal, Arne; Küchenhoff, Helmut; Seibold, Heidi; Woelfing, Benno; Heurich, Marco
2015-01-01
In Central Europe, protected areas are too small to ensure survival of populations of large carnivores. In the surrounding areas, these species are often persecuted due to competition with game hunters. Therefore, understanding how predation intensity varies spatio-temporally across areas with different levels of protection is fundamental. We investigated the predation patterns of Eurasian lynx (Lynx lynx) on roe deer (Capreolus capreolus) and red deer (Cervus elaphus) in both protected areas and multi-use landscapes of the Bohemian Forest Ecosystem. Based on 359 roe and red deer killed by 10 GPS-collared lynx, we calculated the species-specific annual kill rates and tested for effects of season and lynx age, sex and reproductive status. Because roe and red deer in the study area concentrate in unprotected lowlands during winter, we modeled spatial distribution of kills separately for summer and winter and calculated-the probability of a deer killed by lynx and-the expected number of kills for areas with different levels of protection. Significantly more roe deer (46.05–74.71/year/individual lynx) were killed than red deer (1.57–9.63/year/individual lynx), more deer were killed in winter than in summer, and lynx family groups had higher annual kill rates than adult male, single adult female and subadult female lynx. In winter the probability of a deer killed and the expected number of kills were higher outside the most protected part of the study area than inside; in summer, this probability did not differ between areas, and the expected number of kills was slightly larger inside than outside the most protected part of the study area. This indicates that the intensity of lynx predation in the unprotected part of the Bohemian Forest Ecosystem increases in winter, thus mitigation of conflicts in these areas should be included as a priority in the lynx conservation strategy. PMID:26379142
Kumar, Gulshan; Rattan, Usha Kumari; Singh, Anil Kumar
2016-01-01
Winter dormancy is a well known mechanism adopted by temperate plants, to mitigate the chilling temperature of winters. However, acquisition of sufficient chilling during winter dormancy ensures the normal phenological traits in subsequent growing period. Thus, low temperature appears to play crucial roles in growth and development of temperate plants. Apple, being an important temperate fruit crop, also requires sufficient chilling to release winter dormancy and normal phenological traits, which are often associated with yield and quality of fruits. DNA cytosine methylation is one of the important epigenetic modifications which remarkably affect the gene expression during various developmental and adaptive processes. In present study, methylation sensitive amplified polymorphism was employed to assess the changes in cytosine methylation during dormancy, active growth and fruit set in apple, under differential chilling conditions. Under high chill conditions, total methylation was decreased from 27.2% in dormant bud to 21.0% in fruit set stage, while no significant reduction was found under low chill conditions. Moreover, the demethylation was found to be decreased, while methylation increased from dormant bud to fruit set stage under low chill as compared to high chill conditions. In addition, RNA-Seq analysis showed high expression of DNA methyltransferases and histone methyltransferases during dormancy and fruit set, and low expression of DNA glcosylases during active growth under low chill conditions, which was in accordance with changes in methylation patterns. The RNA-Seq data of 47 genes associated with MSAP fragments involved in cellular metabolism, stress response, antioxidant system and transcriptional regulation showed correlation between methylation and their expression. Similarly, bisulfite sequencing and qRT-PCR analysis of selected genes also showed correlation between gene body methylation and gene expression. Moreover, significant association between chilling and methylation changes was observed, which suggested that chilling acquisition during dormancy in apple is likely to affect the epigenetic regulation through DNA methylation. PMID:26901339
High winter ozone pollution from carbonyl photolysis in an oil and gas basin.
Edwards, Peter M; Brown, Steven S; Roberts, James M; Ahmadov, Ravan; Banta, Robert M; deGouw, Joost A; Dubé, William P; Field, Robert A; Flynn, James H; Gilman, Jessica B; Graus, Martin; Helmig, Detlev; Koss, Abigail; Langford, Andrew O; Lefer, Barry L; Lerner, Brian M; Li, Rui; Li, Shao-Meng; McKeen, Stuart A; Murphy, Shane M; Parrish, David D; Senff, Christoph J; Soltis, Jeffrey; Stutz, Jochen; Sweeney, Colm; Thompson, Chelsea R; Trainer, Michael K; Tsai, Catalina; Veres, Patrick R; Washenfelder, Rebecca A; Warneke, Carsten; Wild, Robert J; Young, Cora J; Yuan, Bin; Zamora, Robert
2014-10-16
The United States is now experiencing the most rapid expansion in oil and gas production in four decades, owing in large part to implementation of new extraction technologies such as horizontal drilling combined with hydraulic fracturing. The environmental impacts of this development, from its effect on water quality to the influence of increased methane leakage on climate, have been a matter of intense debate. Air quality impacts are associated with emissions of nitrogen oxides (NOx = NO + NO2) and volatile organic compounds (VOCs), whose photochemistry leads to production of ozone, a secondary pollutant with negative health effects. Recent observations in oil- and gas-producing basins in the western United States have identified ozone mixing ratios well in excess of present air quality standards, but only during winter. Understanding winter ozone production in these regions is scientifically challenging. It occurs during cold periods of snow cover when meteorological inversions concentrate air pollutants from oil and gas activities, but when solar irradiance and absolute humidity, which are both required to initiate conventional photochemistry essential for ozone production, are at a minimum. Here, using data from a remote location in the oil and gas basin of northeastern Utah and a box model, we provide a quantitative assessment of the photochemistry that leads to these extreme winter ozone pollution events, and identify key factors that control ozone production in this unique environment. We find that ozone production occurs at lower NOx and much larger VOC concentrations than does its summertime urban counterpart, leading to carbonyl (oxygenated VOCs with a C = O moiety) photolysis as a dominant oxidant source. Extreme VOC concentrations optimize the ozone production efficiency of NOx. There is considerable potential for global growth in oil and gas extraction from shale. This analysis could help inform strategies to monitor and mitigate air quality impacts and provide broader insight into the response of winter ozone to primary pollutants.
High winter ozone pollution from carbonyl photolysis in an oil and gas basin
NASA Astrophysics Data System (ADS)
Edwards, Peter M.; Brown, Steven S.; Roberts, James M.; Ahmadov, Ravan; Banta, Robert M.; Degouw, Joost A.; Dubé, William P.; Field, Robert A.; Flynn, James H.; Gilman, Jessica B.; Graus, Martin; Helmig, Detlev; Koss, Abigail; Langford, Andrew O.; Lefer, Barry L.; Lerner, Brian M.; Li, Rui; Li, Shao-Meng; McKeen, Stuart A.; Murphy, Shane M.; Parrish, David D.; Senff, Christoph J.; Soltis, Jeffrey; Stutz, Jochen; Sweeney, Colm; Thompson, Chelsea R.; Trainer, Michael K.; Tsai, Catalina; Veres, Patrick R.; Washenfelder, Rebecca A.; Warneke, Carsten; Wild, Robert J.; Young, Cora J.; Yuan, Bin; Zamora, Robert
2014-10-01
The United States is now experiencing the most rapid expansion in oil and gas production in four decades, owing in large part to implementation of new extraction technologies such as horizontal drilling combined with hydraulic fracturing. The environmental impacts of this development, from its effect on water quality to the influence of increased methane leakage on climate, have been a matter of intense debate. Air quality impacts are associated with emissions of nitrogen oxides (NOx = NO + NO2) and volatile organic compounds (VOCs), whose photochemistry leads to production of ozone, a secondary pollutant with negative health effects. Recent observations in oil- and gas-producing basins in the western United States have identified ozone mixing ratios well in excess of present air quality standards, but only during winter. Understanding winter ozone production in these regions is scientifically challenging. It occurs during cold periods of snow cover when meteorological inversions concentrate air pollutants from oil and gas activities, but when solar irradiance and absolute humidity, which are both required to initiate conventional photochemistry essential for ozone production, are at a minimum. Here, using data from a remote location in the oil and gas basin of northeastern Utah and a box model, we provide a quantitative assessment of the photochemistry that leads to these extreme winter ozone pollution events, and identify key factors that control ozone production in this unique environment. We find that ozone production occurs at lower NOx and much larger VOC concentrations than does its summertime urban counterpart, leading to carbonyl (oxygenated VOCs with a C = O moiety) photolysis as a dominant oxidant source. Extreme VOC concentrations optimize the ozone production efficiency of NOx. There is considerable potential for global growth in oil and gas extraction from shale. This analysis could help inform strategies to monitor and mitigate air quality impacts and provide broader insight into the response of winter ozone to primary pollutants.
Winter Cover Crop Effects on Nitrate Leaching in Subsurface Drainage as Simulated by RZWQM-DSSAT
NASA Astrophysics Data System (ADS)
Malone, R. W.; Chu, X.; Ma, L.; Li, L.; Kaspar, T.; Jaynes, D.; Saseendran, S. A.; Thorp, K.; Yu, Q.
2007-12-01
Planting winter cover crops such as winter rye (Secale cereale L.) after corn and soybean harvest is one of the more promising practices to reduce nitrate loss to streams from tile drainage systems without negatively affecting production. Because availability of replicated tile-drained field data is limited and because use of cover crops to reduce nitrate loss has only been tested over a few years with limited environmental and management conditions, estimating the impacts of cover crops under the range of expected conditions is difficult. If properly tested against observed data, models can objectively estimate the relative effects of different weather conditions and agronomic practices (e.g., various N fertilizer application rates in conjunction with winter cover crops). In this study, an optimized winter wheat cover crop growth component was integrated into the calibrated RZWQM-DSSAT hybrid model and then we compare the observed and simulated effects of a winter cover crop on nitrate leaching losses in subsurface drainage water for a corn-soybean rotation with N fertilizer application rates over 225 kg N ha-1 in corn years. Annual observed and simulated flow-weighted average nitrate concentration (FWANC) in drainage from 2002 to 2005 for the cover crop treatments (CC) were 8.7 and 9.3 mg L-1 compared to 21.3 and 18.2 mg L-1 for no cover crop (CON). The resulting observed and simulated FWANC reductions due to CC were 59% and 49%. Simulations with the optimized model at various N fertilizer rates resulted in average annual drainage N loss differences between CC and CON to increase exponentially from 12 to 34 kg N ha-1 for rates of 11 to 261 kg N ha-1. The results suggest that RZWQM-DSSAT is a promising tool to estimate the relative effects of a winter crop under different conditions on nitrate loss in tile drains and that a winter cover crop can effectively reduce nitrate losses over a range of N fertilizer levels.
Episodic acidification of a coastal plain stream in Virginia
O'Brien, A. K.; Eshleman, K.N.
1996-01-01
This study investigates the episodic acidification of Reedy Creek, a wetland-influenced coastal plain stream near Richmond, Virginia. Primary objectives of the study were to quantify the episodic variability of acid- base chemistry in Reedy Creek, to examine the seasonal variability in episodic response and to explain the hydrological and geochemical factors that contribute to episodic acidification. Chemical response was similar in each of the seven storms examined, however, the ranges in concentrations observed were commonly greater in summer/fall storms than in winter/spring storms. An increase in SO4/2- concentration with discharge was observed during all storms and peak concentration occurred at or near peak flow. Small increases in Mg2+, Ca2+, K+ concentrations and dissolved organic carbon (DOC) were observed during most storms. At the same time, ANC, Na+ and Cl- concentrations usually decreased with increasing discharge. In summer/fall storms, the absolute increase in SO4/2- concentration was one-third to 15 times the increase observed in winter/spring storms; the decrease in ANC during summer/fall storms was usually within the range of the decrease observed in winter/spring storms. In contrast, the decrease in Na+ and Cl- concentrations during winter/spring storms was much greater than that observed during summer/fall storms. Data show that while base flow anion deficit was higher in summer/fall than in winter/spring, anion deficit decreased during most summer/fall storms. In contrast, base flow anion deficit was lower in spring and winter, but increased during winter/spring storms. Increased SO4/2- concentration was the main cause of episodic acidification during storms at Reedy Creek, but increased anion deficit indicates organic acids may contribute to episodic acidification during winter/spring storms. Changes in SO4/2- concentration coincident with the hydrograph rise indicate quick routing of water through the watershed. Saturation overland flow appears to be the likely mechanism by which solutes are transported to the stream during storm flow.
Ewert, Marcela; Deming, Jody W
2014-08-01
Wintertime measurements near Barrow, Alaska, showed that bacteria near the surface of first-year sea ice and in overlying saline snow experience more extreme temperatures and salinities, and wider fluctuations in both parameters, than bacteria deeper in the ice. To examine impacts of such conditions on bacterial survival, two Arctic isolates with different environmental tolerances were subjected to winter-freezing conditions, with and without the presence of organic solutes involved in osmoprotection: proline, choline, or glycine betaine. Obligate psychrophile Colwellia psychrerythraea strain 34H suffered cell losses under all treatments, with maximal loss after 15-day exposure to temperatures fluctuating between -7 and -25 °C. Osmoprotectants significantly reduced the losses, implying that salinity rather than temperature extremes presents the greater stress for this organism. In contrast, psychrotolerant Psychrobacter sp. strain 7E underwent miniaturization and fragmentation under both fluctuating and stable-freezing conditions, with cell numbers increasing in most cases, implying a different survival strategy that may include enhanced dispersal. Thus, the composition and abundance of the bacterial community that survives in winter sea ice may depend on the extent to which overlying snow buffers against extreme temperature and salinity conditions and on the availability of solutes that mitigate osmotic shock, especially during melting. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Covey, Curt; Ghan, Steven J.; Walton, John J.; Weissman, Paul R.
1989-01-01
Interception of sunlight by the high altitude worldwide dust cloud generated by impact of a large asteroid or comet would lead to substantial land surface cooling, according to our three-dimensional atmospheric general circulation model (GCM). This result is qualitatively similar to conclusions drawn from an earlier study that employed a one-dimensional atmospheric model, but in the GCM simulation the heat capacity of the oceans substantially mitigates land surface cooling, an effect that one-dimensional models cannot quantify. On the other hand, the low heat capacity of the GCM's land surface allows temperatures to drop more rapidly in the initial stage of cooling than in the one-dimensional model study. These two differences between three-dimensional and one-dimensional model simulations were noted previously in studies of nuclear winter; GCM-simulated climatic changes in the Alvarez-inspired scenario of asteroid/comet winter, however, are more severe than in nuclear winter because the assumed aerosol amount is large enough to intercept all sunlight falling on earth. Impacts of smaller objects could also lead to dramatic, though less severe, climatic changes, according to our GCM. Our conclusion is that it is difficult to imagine an asteroid or comet impact leading to anything approaching complete global freezing, but quite reasonable to assume that impacts at the Alvarez level, or even smaller, dramatically alter the climate in at least a patchy sense.
NASA Astrophysics Data System (ADS)
Schleicher, N. J.; Schäfer, J.; Blanc, G.; Chen, Y.; Chai, F.; Cen, K.; Norra, S.
2015-05-01
Particulate mercury (HgP) concentrations in weekly aerosol samples (PM2.5 and TSP) from Beijing, China, were measured for a complete year. In addition, spatial differences were measured for a shorter time period at four different sites and potential source materials were analyzed. Average HgP concentrations in PM2.5 samples were 0.26 ng/m3 for day-time PM2.5, 0.28 ng/m3 for night-time PM2.5, and 0.57 ng/m3 for TSP samples, respectively. Coal combustion was identified as the major source of HgP in Beijing. Other sources included industrial activities as well as red color on historical buildings as a minor contribution. Spatial differences were pronounced with highest concentrations in the inner city (inside the 3rd ring road). The results further showed a strong seasonality with highest concentrations in winter and lowest in summer due to local meteorological conditions (precipitation in summer and stagnant conditions and low mixing layer height in winter) as well as seasonal sources, such as coal combustion for heating purposes. Day-night differences also showed a seasonal pattern with higher night-time concentrations during summer and higher day-time concentrations during winter. Compared to other cities worldwide, the HgP concentrations in Beijing were alarmingly high, suggesting that airborne particulate Hg should be the focus of future monitoring activities and mitigation measures.
Record-breaking Ozone Loss during Arctic Winter 2010/2011: Comparison with Arctic Winter 1996/1997
NASA Astrophysics Data System (ADS)
Godin Beekmann, S.; Kuttipurath, J.; Lefèvre, F.; Santee, M. L.; Froidevaux, L.
2011-12-01
Polar processing and chemical ozone loss is analysed during the Arctic winter/spring 2010/2011. The analyses with temperatures and potential vorticity (PV) data show a prolonged vortex from early December through mid-April. The PV maps illustrate strong vortex persistence in the lower stratosphere between 450 and 675 K, showing similar evolution with time. The minimum temperatures extracted from ECMWF data at 40-90°N show values below 195 K for a record period of first week of December through second week of April, indicating the longest period of colder temperatures for 17 years. At 10 hPa, there was a warming of about 10 K at 60°N and 40 K at 90°N around mid-January. The heat flux also showed high values in line with the increase in temperatures, of about 425 m K/s at 60°N at the same pressure level. However, the westerlies were strong (e.g. 35-45 m/s at 60°N) enough to keep the vortex intact until mid-April. Because of the cold temperatures in late winter and early spring, large areas of Polar Stratospheric Clouds (PSC) were found in the 400-600 K isentropic level range. Though the maximum values of PSCs area are smaller compared to other cold winters such as 2005, the extended period of presence of PSCs during this winter was exceptional, especially in late February-mid-March, in agreement with the cold temperatures during the period. Ozone loss analyses with high resolution Mimosa-Chim chemical transport model simulations show that the loss started by early January, and was about 0.5 ppmv in late January. The loss progressed slowly to 1 ppmv by the end of February, and then intensified by early March. The ozone depletion estimated by the passive method finds a maximum value of about 2-2.3 ppmv by the end of March-early April in the 450-550K range inside the vortex, which coincides with the areas of PSCs and high chlorine activation. This is the largest loss ever estimated with this model for any Arctic winter. It is consistent with the unprecedented chlorine activation that occurred in the winter, as the modeled ClO values show about 1.7 ppbv in early January and about 1 ppbv in March at 450-550K. This is longest period of chlorine activation noted among the Arctic winters. The ozone partial column loss reaches about 115-150 DU in the range 350 - 550 K. These model results for ozone, ozone loss and ClO are in good agreement with those found from Aura Microwave Limb Sounder observations. Since the winter 1996/1997 was also very cold in March - April, a comparison between both winters 2011 and 1997 will be presented, based on temperature, PV, Heat flux data and ozone loss estimations. Similarities and differences in the polar processing and ozone loss during both winters will be discussed using various measurements and model simulations. Copyright 2011. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klise, Katherine A.; Murray, Regan; Bynum, Michael
Water utilities are vulnerable to a wide variety of human-caused and natural disasters. These disruptive events can result in loss of water service, contaminated water, pipe breaks, and failed equipment. Furthermore, long term changes in water supply and customer demand can have a large impact on the operating conditions of the network. The ability to maintain drinking water service during and following these types of events is critical. Simulation and analysis tools can help water utilities explore how their network will respond to disruptive events and plan effective mitigation strategies. The U.S. Environmental Protection Agency and Sandia National Laboratories aremore » developing new software tools to meet this need. The Water Network Tool for Resilience (WNTR, pronounced winter) is a Python package designed to help water utilities investigate resilience of water distribution systems over a wide range of hazardous scenarios and to evaluate resilience-enhancing actions. The following documentation includes installation instructions and examples, description of software features, and software license. It is assumed that the reader is familiar with the Python Programming Language. References are included for additional background on software components. Online documentation, hosted at http://wntr.readthedocsio/, will be updated as new features are added. The online version includes API documentation and information for developers.« less
Hydrologic and hydraulic analyses for the Black Fork Mohican River Basin in and near Shelby, Ohio
Huitger, Carrie A.; Ostheimer, Chad J.; Koltun, G.F.
2016-05-06
Hydrologic and hydraulic analyses were done for selected reaches of five streams in and near Shelby, Richland County, Ohio. The U.S. Geological Survey (USGS), in cooperation with the Muskingum Watershed Conservancy District, conducted these analyses on the Black Fork Mohican River and four tributaries: Seltzer Park Creek, Seltzer Park Tributary, Tuby Run, and West Branch. Drainage areas of the four stream reaches studied range from 0.51 to 60.3 square miles. The analyses included estimation of the 10-, 2-, 1-, and 0.2-percent annual-exceedance probability (AEP) flood-peak discharges using the USGS Ohio StreamStats application. Peak discharge estimates, along with cross-sectional and hydraulic structure geometries, and estimates of channel roughness coefficients were used as input to step-backwater models. The step-backwater water models were used to determine water-surface elevation profiles of four flood-peak discharges and a regulatory floodway. This study involved the installation of, and data collection at, a streamflow-gaging station (Black Fork Mohican River at Shelby, Ohio, 03129197), precipitation gage (Rain gage at Reservoir Number Two at Shelby, Ohio, 405209082393200), and seven submersible pressure transducers on six selected river reaches. Two precipitation-runoff models, one for the winter events and one for nonwinter events for the headwaters of the Black Fork Mohican River, were developed and calibrated using the data collected. With the exception of the runoff curve numbers, all other parameters used in the two precipitation-runoff models were identical. The Nash-Sutcliffe model efficiency coefficients were 0.737, 0.899, and 0.544 for the nonwinter events and 0.850 and 0.671 for the winter events. Both of the precipitation-runoff models underestimated the total volume of water, with residual runoff ranging from -0.27 inches to -1.53 inches. The results of this study can be used to assess possible mitigation options and define flood hazard areas that will contribute to the protection of life and property. This study could also assist emergency managers, community officials, and residents in determining when flooding may occur and planning evacuation routes during a flood.
Global source attribution of sulfate aerosol and its radiative forcing
NASA Astrophysics Data System (ADS)
Yang, Y.; Wang, H.; Smith, S.; Easter, R. C.; Ma, P. L.; Qian, Y.; Li, C.; Yu, H.; Rasch, P. J.
2017-12-01
Sulfate is an important aerosol that poses health risks and influences climate. Due to long-range atmospheric transport, local sulfate pollution could result from intercontinental influences, making domestic efforts of improving air quality inefficient. Accurate understanding of source attribution of sulfate and its radiative forcing is important for both regional air quality improvement and global climate mitigation. In this study, for the first time, a sulfur source-tagging capability is implemented in the Community Atmosphere Model (CAM5) to quantify the global source-receptor relationships of sulfate and its direct and indirect radiative forcing (DRF and IRF). Near-surface sulfate concentrations are mostly contributed by local emissions in regions with high emissions, while over regions with relatively low SO2 emissions, the near-surface sulfate is primarily attributed to non-local sources from long-range transport. The export of SO2 and sulfate from Europe contributes 20% of sulfate concentrations over North Africa, Russia and Central Asia. Sources from the Middle East account for 20% of sulfate over North Africa, Southern Africa and Central Asia in winter and autumn, and 20% over South Asia in spring. East Asia accounts for about 50% of sulfate over Southeast Asia in winter and autumn, 15% over Russia in summer, and 10% over North America in spring. South Asia contributes to 25% of sulfate over Southeast Asia in spring. Lifetime of aerosols, together with regional export, is found to determine regional air quality. The simulated global total sulfate DRF is -0.42 W m-2, with 75% contributed by anthropogenic sulfate and 25% contributed by natural sulfate. In the Southern Hemisphere tropics, dimethyl sulfide (DMS) contributes the most to the total DRF. East Asia has the largest contribution of 20-30% over the Northern Hemisphere mid- and high-latitudes. A 20% perturbation of sulfate and its precursor emissions gives a sulfate IRF of -0.44 W m-2. DMS has the largest contribution, explaining half of the global sulfate IRF. IRF over regions in the Southern Hemisphere with low background aerosols is more sensitive to emission perturbation than those over the polluted Northern Hemisphere.
Chen, Wei-Hsiang; Yang, Jun-Hong; Yuan, Chung-Shin; Yang, Ying-Hsien
2016-10-01
Wastewater treatment plants (WWTPs) have been recognized as important sources for anthropogenic greenhouse gas (GHG) emission. The objective of the study was to thoroughly investigate a typical industrial WWTP in southern Taiwan in winter and summer which possesses the emission factors close to those reported values, with the analyses of emission factors, mass fluxes, fugacity, lab-scale in situ experiments, and impact assessment. The activated sludge was the important source in winter and summer, and nitrous oxide (N 2 O) was the main contributor (e.g., 57 to 91 % of total GHG emission in a unit of kg carbon dioxide-equivalent/kg chemical oxygen demand). Albeit important for the GHGs in the atmosphere, the fractional contribution of the GHG emission to the carbon or nitrogen removal in wastewater treatment was negligible (e.g., less than 1.5 %). In comparison with the sludge concentration or retention time, adjusting the aeration rate was more effective to diminish the GHG emission in the activated sludge without significantly affecting the treated water quality. When the aeration rate in the activated sludge simulation was reduced by 75 %, the mass flux of N 2 O could be diminished by up to 53 % (from 9.6 to 4.5 mg/m 2 -day). The total emission in the WWTP (including carbon dioxide, methane, and N 2 O) would decrease by 46 % (from 0.67 to 0.36 kg CO 2 -equiv/kg COD). However, the more important benefit of changing the aeration rate was lowering the energy consumption in operation of the WWTP, as the fractional contribution of pumping to the total emission from the WWTP ranged from 46 to 93 % within the range of the aeration rate tested. Under the circumstance in which reducing the burden of climate change is a global campaign, the findings provide insight regarding the GHG emission from treatment of industrial wastewater and the associated impact on the treatment performance and possible mitigation strategies by operational modifications.
The effect of simulated cold weather transport on core body temperature and behavior of broilers.
Strawford, M L; Watts, J M; Crowe, T G; Classen, H L; Shand, P J
2011-11-01
During the winter in Western Canada, broilers are routinely transported in ambient temperatures ranging from 0°C to -40°C, yet there is little research in this area. This study examined the physiology and behavior of broilers undergoing simulated transport at typical Western Canadian winter temperatures. Groups of 15 broilers aged 32 to 33 d were exposed to an air stream regulated to -5, -10, or -15°C. Birds were placed into a typical transport drawer. Following baseline observations, the drawer was placed into a test chamber where cold air was drawn past the birds for 3 h. Three replications were conducted at each temperature. The birds adjusted their position within the drawer based upon the temperature distribution within the drawer. In comparison to the baseline period, exposing the birds to a cold air stream caused them to avoid the front plane (P = 0.003) which was the coldest area within the drawer. The birds did not adjust their usage of the middle (P = 0.308) and rear (P = 0.640) planes, because these were the warmer areas within the drawer. The total amount of space the birds occupied within the drawer did not decrease when exposed to the test chamber (P = 0.669). The core body temperature (CBT) did not vary and was within the known normal range during the normal (P = 0.528), pre-chamber (P = 0.060), and post-chamber (P = 0.285) periods. The CBT of the birds significantly decreased during the in-chamber period (P < 0.001) and then increased during the lairage period (P < 0.001). The shrink loss (P = 0.981) and amount of time to resume feed consumption (P = 0.357) were not affected by exposing the birds to temperatures of -5°C and colder. Exposing birds to temperatures of -5°C and colder had a negative effect on the CBT of the birds. However, the birds demonstrated behaviors which mitigated the negative effect that cold exposure could have on their CBT.
Seasonal cues induce phenotypic plasticity of Drosophila suzukii to enhance winter survival.
Shearer, Peter W; West, Jessica D; Walton, Vaughn M; Brown, Preston H; Svetec, Nicolas; Chiu, Joanna C
2016-03-22
As global climate change and exponential human population growth intensifies pressure on agricultural systems, the need to effectively manage invasive insect pests is becoming increasingly important to global food security. Drosophila suzukii is an invasive pest that drastically expanded its global range in a very short time since 2008, spreading to most areas in North America and many countries in Europe and South America. Preliminary ecological modeling predicted a more restricted distribution and, for this reason, the invasion of D. suzukii to northern temperate regions is especially unexpected. Investigating D. suzukii phenology and seasonal adaptations can lead to a better understanding of the mechanisms through which insects express phenotypic plasticity, which likely enables invasive species to successfully colonize a wide range of environments. We describe seasonal phenotypic plasticity in field populations of D. suzukii. Specifically, we observed a trend of higher proportions of flies with the winter morph phenotype, characterized by darker pigmentation and longer wing length, as summer progresses to winter. A laboratory-simulated winter photoperiod and temperature (12:12 L:D and 10 °C) were sufficient to induce the winter morph phenotype in D. suzukii. This winter morph is associated with increased survival at 1 °C when compared to the summer morph, thus explaining the ability of D. suzukii to survive cold winters. We then used RNA sequencing to identify gene expression differences underlying seasonal differences in D. suzukii physiology. Winter morph gene expression is consistent with known mechanisms of cold-hardening such as adjustments to ion transport and up-regulation of carbohydrate metabolism. In addition, transcripts involved in oogenesis and DNA replication were down-regulated in the winter morph, providing the first molecular evidence of a reproductive diapause in D. suzukii. To date, D. suzukii cold resistance studies suggest that this species cannot overwinter in northern locations, e.g. Canada, even though they are established pests in these regions. Combining physiological investigations with RNA sequencing, we present potential mechanisms by which D. suzukii can overwinter in these regions. This work may contribute to more accurate population models that incorporate seasonal variation in physiological parameters, leading to development of better management strategies.
Tanabe, Aiko; Masuki, Shizue; Nemoto, Ken-Ichi; Nose, Hiroshi
2018-04-01
Habitual exercise training is recommended to young people for their health promotion, but adherence may be influenced by atmospheric temperature (T a ) if performed outdoors. We compared the adherence to and the effects of a home-based interval walking training (IWT) program on sedentary female college students between winter and summer. For summer training over 176 days, 48 subjects (18-22 years old) were randomly divided into two groups: the control group (CNT summer , n = 24), which maintained a sedentary lifestyle as before, and the IWT group (IWT summer , n = 24), which performed IWT while energy expenditure was monitored by accelerometry. For winter training over 133 days, another group of 47 subjects (18-24 years old) was randomly divided into CNT winter (n = 24) and IWT winter (n = 23), as in summer. The peak T a per day was 26 ± 6 °C (SD) (range of 9-35 °C) in summer, much higher than 7 ± 5 °C (range of - 3-20 °C) in winter (P < 0.001). During a ~ 50-day vacation period, participants walked 2.1 ± 0.3 (SE) days/week in IWT summer , less than 4.2 ± 0.3 days/week in IWT winter (P < 0.001), with half of the energy expenditure/week for fast walking during the winter vacation (P < 0.02), whereas both IWT groups walked ~ 2 days/week during a school period (P > 0.8). After training, the peak aerobic capacity and knee flexion force increased in IWT winter (P < 0.01) but not in CNT winter (P > 0.3). Conversely, these parameters decreased in the summer groups. Thus, the adherence to and effects of IWT on sedentary female college students in Japan decreased in summer at least partially due to a high T a .
The relationship of blue crab abundance to winter mortality of Whooping Cranes
Pugesek, Bruce H.; Baldwin, Michael J.; Stehn, Thomas
2013-01-01
We sampled blue crab (Callinectes sapidus) numbers in marshes on the Aransas National Wildlife Refuge, Texas from 1998-2006, while simultaneously censusing the wintering population of Whooping Cranes (Grus americana) on the refuge and surrounding habitats. This was done to determine whether mortality of wintering Whooping Cranes was related to the availability of this food source. Yearly variation in crab numbers was high, ranging from a low of 0.1 crabs to a high of 3.4 crabs per 100-m transect section. Significant non-linear increases in both juvenile and adult mortality in relation to decreasing crab abundance was observed. Results suggest that some threshold of crab abundance exists in which Whooping Cranes have higher survival on their wintering grounds.
NASA Astrophysics Data System (ADS)
Rahman, A.; Ahmar, A. S.
2017-09-01
This research has a purpose to compare ARIMA Model and Holt-Winters Model based on MAE, RSS, MSE, and RMS criteria in predicting Primary Energy Consumption Total data in the US. The data from this research ranges from January 1973 to December 2016. This data will be processed by using R Software. Based on the results of data analysis that has been done, it is found that the model of Holt-Winters Additive type (MSE: 258350.1) is the most appropriate model in predicting Primary Energy Consumption Total data in the US. This model is more appropriate when compared with Holt-Winters Multiplicative type (MSE: 262260,4) and ARIMA Seasonal model (MSE: 723502,2).
Lee, Se-Yeun; Hamlet, Alan F.; Grossman, Eric E.
2016-01-01
Previous studies have shown that the impacts of climate change on the hydrologic response of the Skagit River are likely to be substantial under natural (i.e. unregulated) conditions. To assess the combined effects of changing natural flow and dam operations that determine impacts to regulated flow, a new integrated daily-time-step reservoir operations model was constructed for the Skagit River Basin. The model was used to simulate current reservoir operating policies for historical flow conditions and for projected flows for the 2040s (2030–2059) and 2080s (2070–2099). The results show that climate change is likely to cause substantial seasonal changes in both natural and regulated flow, with more flow in the winter and spring, and less in summer. Hydropower generation in the basin follows these trends, increasing (+ 19%) in the winter/ spring, and decreasing (- 29%) in the summer by the 2080s. The regulated 100-year flood is projected to increase by 23% by the 2040s and 49% by the 2080s. Peak winter sediment loading in December is projected to increase by 335% by the 2080s in response to increasing winter flows, and average annual sediment loading increases from 2.3 to 5.8 teragrams (+ 149%) per year by the 2080s. Regulated extreme low flows (7Q10) are projected to decrease by about 30% by the 2080s, but remain well above natural low flows. Both current and proposed alternative flood control operations are shown to be largely ineffective in mitigating increasing flood risks in the lower Skagit due to the distribution of flow in the basin during floods.
Seasonal variations in sleep disorders of nurses.
Chang, Yuanmay; Lam, Calvin; Chen, Su-Ru; Sithole, Trevor; Chung, Min-Huey
2017-04-01
To investigate the difference between nurses and the general population regarding seasonal variations in sleep disorders during 2004-2008. The effects of season and group interaction on sleep disorders with regard to different comorbidities were also examined. Studies on seasonal variations in sleep disorders were mainly conducted in Norway for the general population. Furthermore, whether different comorbidities cause seasonal variations in sleep disorders in nurses remains unknown. A retrospective study. Data from the Taiwan National Health Insurance Research Database were used in generalised estimating equation Poisson distribution models to investigate the differences in sleep disorders between nurses and the general population diagnosed with sleep disorders (each n = 7643) as well as the interaction effects of sleep disorders between the groups with respect to different seasons. Furthermore, the interaction effects between groups and seasons on sleep disorders in the subgroups of comorbid anxiety disorders and depressive disorders were studied. Both the nurses and the general population had fewer outpatient visits for sleep disorders in winter than in other seasons. The nurses had fewer outpatient visits for sleep disorders than the general population did in each season. The nurses had more outpatient visits for sleep disorders in winter than in summer compared with the general population in the comorbid depressive disorder subgroup but not in the comorbid anxiety disorder subgroup. Nurses and the general population exhibited similar seasonal patterns of sleep disorders, but nurses had fewer outpatient visits for sleep disorders than the general population did in each season. For nurses with comorbid depressive disorders, outpatient visits for sleep disorders were more numerous in winter than in summer, potentially because nurses with comorbid depressive disorders are affected by shorter daylight exposure during winter. Depression and daylight exposure may be considered in mitigating sleep disorders in nurses. © 2016 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Moravek, A.; Murphy, J. G.; Baasandorj, M.; Fibiger, D. L.; Franchin, A.; Goldberger, L.; McDuffie, E. E.; McKeen, S. A.; Middlebrook, A. M.; Thornton, J. A.; Womack, C.; Brown, S. S.
2017-12-01
Winter air pollution in urban areas is a major global concern due to increased levels of fine particulate matter (PM) affecting public health. The Great Salt Lake region regularly experiences periods of high particulate matter during winter persistent cold air pool events (PCAPs), periods of atmospheric stagnation. Previous studies have shown that ammonium nitrate is responsible for up to 70% of PM2.5 (particulate matter with a diameter less than 2.5 microns) in the Great Salt Lake region during these periods. Ammonium nitrate is formed from ammonia (NH3) and nitric acid (HNO3); therefore understanding sources of NH3 and its role in the formation of particulate matter is crucial for mitigation of air pollution in this region. In this study, we measured NH3 aboard a Twin Otter aircraft within the Utah Winter Fine Particulate Study (UWFPS) using Quantum Cascade Laser Infrared Absorption Spectroscopy (QC-TILDAS). A total of 23 flights were performed in the period from 16 Jan to 12 Feb 2017 covering the Salt Lake City urban area, the Great Salt Lake and nearby valleys. The spatial distribution of NH3 during flights is presented and identifies major NH3 sources and their role in particle formation for the region. Substantial variation of NH3 was observed over the entire region with highest NH3 mixing ratios over agricultural areas and the lowest NH3 abundance over the Great Salt Lake. Regional WRF-Chem model simulations are used to compare the measurements to available NH3 emission inventories and to improve our understanding of the vertical distribution of NH3. The relative influence of the atmospheric stability for the formation of ammonium nitrate is investigated.
NASA Astrophysics Data System (ADS)
Yang, Yang; Ren, R.-C.; Cai, Ming
2016-12-01
The stratosphere has been cooling under global warming, the causes of which are not yet well understood. This study applied a process-based decomposition method (CFRAM; Coupled Surface-Atmosphere Climate Feedback Response Analysis Method) to the simulation results of a Coupled Model Intercomparison Project, phase 5 (CMIP5) model (CCSM4; Community Climate System Model, version 4), to demonstrate the responsible radiative and non-radiative processes involved in the stratospheric cooling. By focusing on the long-term stratospheric temperature changes between the "historical run" and the 8.5 W m-2 Representative Concentration Pathway (RCP8.5) scenario, this study demonstrates that the changes of radiative radiation due to CO2, ozone and water vapor are the main divers of stratospheric cooling in both winter and summer. They contribute to the cooling changes by reducing the net radiative energy (mainly downward radiation) received by the stratospheric layer. In terms of the global average, their contributions are around -5, -1.5, and -1 K, respectively. However, the observed stratospheric cooling is much weaker than the cooling by radiative processes. It is because changes in atmospheric dynamic processes act to strongly mitigate the radiative cooling by yielding a roughly 4 K warming on the global average base. In particular, the much stronger/weaker dynamic warming in the northern/southern winter extratropics is associated with an increase of the planetary-wave activity in the northern winter, but a slight decrease in the southern winter hemisphere, under global warming. More importantly, although radiative processes dominate the stratospheric cooling, the spatial patterns are largely determined by the non-radiative effects of dynamic processes.
Terry L. Master; Robert S. Mulvihill; Robert C. Leberman; Julio Sanchez; Ernesto Carmen
2005-01-01
We made preliminary observations on the winter distribution, ecology and behavior of Louisiana Waterthrushes (Seiurus motacilla) in Costa Rica during January 1999 and 2000. We visited 24 headwater streams in three of the four principal mountain ranges in the country (Cordilleras Tilarán, Central, and the Talamanca) and confirmed the...
Habitat conditions associated with lynx hunting behavior during winter in northern Washington
Benjamin T. Maletzke; Gary M. Koehler; Robert B. Wielgus; Keith B. Aubry; Marc A. Evans
2008-01-01
Effectively managing habitat for threatened populations of Canada lynx (Lynx canadensis) requires knowledge of habitat conditions that provide for the ecological needs of lynx. We snow-tracked lynx to identify habitat conditions associated with hunting behavior and predation during winters of 2002-2003 and 2003-2004 in the northern Cascade Range in...
How Do Plants and Animals Prepare for Winter?
ERIC Educational Resources Information Center
Larm, Brooke
2017-01-01
This article describes how a farm-based class in the Great Lakes region investigated how plants and animals prepare for winter. Two groups of children, ranging in ages from three to five years old, had a farm, pasture, gardens, forest, and a pond available for exploration. A low teacher-to-child ratio was maintained, with one teacher to…
Nanus, Leora; Campbell, Donald H.; Lehmann, Christopher M.B.; Mast, M. Alisa
2018-01-01
Variation in source areas and source types of atmospheric nitrogen (N) deposition to high-elevation ecosystems in the Rocky Mountains were evaluated using spatially and temporally distributed N isotope data from atmospheric deposition networks for 1995-2016. This unique dataset links N in wet deposition and snowpack to mobile and stationary emissions sources, and enhances understanding of the impacts of anthropogenic activities and environmental policies that mitigate effects of accelerated N cycling across the Rocky Mountain region. δ15N−NO3− at 50 U.S. Geological Survey Rocky Mountain Snowpack (Snowpack) sites ranged from −3.3‰ to +6.5‰, with a mean value of +1.4‰. At 15 National Atmospheric Deposition Program (NADP)/National Trends Network wet deposition (NADP Wetfall) sites, summer δ15N−NO3− is significantly lower ranging from −7.6‰ to −1.3‰ while winter δ15N−NO3− ranges from −2.6‰ to +5.5‰, with a mean value of +0.7‰ during the cool season. The strong seasonal difference in NADP Wetfall δ15N−NO3− is due in part to variation in the proportion of N originating from source regions at different times of the year due to seasonal changes in weather patterns. Snowpack NO3− and δ15N−NO3− are significantly related to NADP Wetfall (fall and winter) suggesting that bulk snowpack samples provide a reliable estimate at high elevations. Spatial trends show higher NO3−concentrations and δ15N−NO3− in the Southern Rocky Mountains located near larger anthropogenic N emission sources compared to the Northern Rocky Mountains. NADP Wetfall δ15N−NH4+ ranged from −10‰ to 0‰, with no observed spatial pattern. However, the lowest δ15N−NH4+(−9‰), and the highest NH4+ concentration (35 μeq/L) were observed at a Utah site dominated by local agricultural activities, whereas the higher δ15N−NH4+observed in Colorado and Wyoming are likely due to mixed sources, including fossil fuel combustion and agricultural sources. These findings show spatial and seasonal variation in N isotope data that reflect differences in sources of anthropogenic N deposition to high-elevation ecosystems and have important implications for environmental policy across the Rocky Mountain region.
Slip resistance of winter footwear on snow and ice measured using maximum achievable incline.
Hsu, Jennifer; Shaw, Robert; Novak, Alison; Li, Yue; Ormerod, Marcus; Newton, Rita; Dutta, Tilak; Fernie, Geoff
2016-05-01
Protective footwear is necessary for preventing injurious slips and falls in winter conditions. Valid methods for assessing footwear slip resistance on winter surfaces are needed in order to evaluate footwear and outsole designs. The purpose of this study was to utilise a method of testing winter footwear that was ecologically valid in terms of involving actual human testers walking on realistic winter surfaces to produce objective measures of slip resistance. During the experiment, eight participants tested six styles of footwear on wet ice, on dry ice, and on dry ice after walking over soft snow. Slip resistance was measured by determining the maximum incline angles participants were able to walk up and down in each footwear-surface combination. The results indicated that testing on a variety of surfaces is necessary for establishing winter footwear performance and that standard mechanical bench tests for footwear slip resistance do not adequately reflect actual performance. Practitioner Summary: Existing standardised methods for measuring footwear slip resistance lack validation on winter surfaces. By determining the maximum inclines participants could walk up and down slopes of wet ice, dry ice, and ice with snow, in a range of footwear, an ecologically valid test for measuring winter footwear performance was established.
Slip resistance of winter footwear on snow and ice measured using maximum achievable incline
Hsu, Jennifer; Shaw, Robert; Novak, Alison; Li, Yue; Ormerod, Marcus; Newton, Rita; Dutta, Tilak; Fernie, Geoff
2016-01-01
Abstract Protective footwear is necessary for preventing injurious slips and falls in winter conditions. Valid methods for assessing footwear slip resistance on winter surfaces are needed in order to evaluate footwear and outsole designs. The purpose of this study was to utilise a method of testing winter footwear that was ecologically valid in terms of involving actual human testers walking on realistic winter surfaces to produce objective measures of slip resistance. During the experiment, eight participants tested six styles of footwear on wet ice, on dry ice, and on dry ice after walking over soft snow. Slip resistance was measured by determining the maximum incline angles participants were able to walk up and down in each footwear–surface combination. The results indicated that testing on a variety of surfaces is necessary for establishing winter footwear performance and that standard mechanical bench tests for footwear slip resistance do not adequately reflect actual performance. Practitioner Summary: Existing standardised methods for measuring footwear slip resistance lack validation on winter surfaces. By determining the maximum inclines participants could walk up and down slopes of wet ice, dry ice, and ice with snow, in a range of footwear, an ecologically valid test for measuring winter footwear performance was established. PMID:26555738
NASA Astrophysics Data System (ADS)
Whelan, Michael; Ramos, Andre; Guymer, Ian; Villa, Raffaella; Jefferson, Bruce
2016-04-01
Pesticides make important contributions to modern agriculture but losses from land to water can present problems for environmental management, particularly in catchments where surface waters are abstracted for drinking water. Where artificial field drains represent a dominant pathway for pesticide transfers, buffer zones provide little mitigation potential. Instead, "on-line" constructed wetlands have been proposed as a potential means of reducing pesticide fluxes in drainage ditches and headwater streams. Here, we evaluate the potential of small free-surface wetlands to reduce pesticide concentrations in surface waters using a combination of field monitoring and numerical modelling. Two small constructed wetland systems in a first order catchment in Cambridgeshire, UK, were monitored over the 2014-2015 winter season. Discharge was measured at several flow control structures and samples were collected every eight hours and analysed for metaldehyde, a commonly-used molluscicide. Metaldehyde is moderately mobile and, like many other compounds, it has been regularly detected at high concentrations in surface water samples in a number of drinking water supply catchments in the UK over the past few years. However, it is unusually difficult to remove via conventional drinking water treatment which makes it particularly problematical for water companies. Metaldehyde losses from the upstream catchment were significant with peak concentrations occurring in the first storm events in early autumn, soon after application. Concentrations and loads appeared to be unaffected by transit through the wetland over a range of flow conditions - probably due to short solute residence times (quantified via several tracing experiments employing rhodamine WT - a fluorescent dye). A dynamic model, based on fugacity concepts, was constructed to describe chemical fate in the wetland system. The model was used to evaluate mitigation potential and management options under field conditions and for a range of different pesticides under alternative flow and wetland dimension scenarios. In agreement with observations, model predictions for metaldehyde losses in the monitored system were negligible. The scenario analysis suggested that, even for pesticides with a relatively short aquatic half life, wetland systems would need to be much larger than those studied here in order to get any appreciable attenuation. Shallow systems have highest potential for promoting losses due to biodegradation, if we assume that most degrading organisms reside in fixed biofilms in the sediment. Sorption is not predicted to represent a significant net sink, except over short time scales in the first runoff event after application.
de Souza Pereira, Márcia; Waller, Ulrich; Reifenhäuser, Werner; Torres, João Paulo M; Malm, Olaf; Körner, Wolfgang
2007-04-01
Monitoring of immission of persistent organic pollutants in the industrialized area of Volta Redonda (V.R.) and in the National Park of Itatiaia (PNI) in southeast Brazil was performed using an endemic Bromeliad species as biomonitor and measuring total deposition rates on funnels covered with polyurethane foams. Samples were collected during 78 days in V.R. and 95 days in PNI in winter (dry season, June-August 2003) and during 114 days in both areas in summer (rainy season, December 2003-February 2004). The PCDD/PCDF deposition rates ranged from 0.10 to 1.9 pg WHO-TEQ/(m2 day) in winter and from 0.11 to 2.2 pg WHO-TEQ/(m2 day) in summer. Deposition rates found in V.R. in summer were four- to ninefold higher than those measured in PNI, while in winter deposition rates in both regions were in the same range. Deposition rates in V.R. in summer were about five fold lower than those measured in 1996. PCDD/PCDF levels in biomonitor samples were between 0.95 and 14.6 ng WHO-TEQ/kg d.m. in winter and between 2.2 and 5.2 ng WHO-TEQ/kg d.m. in summer. In winter, concentrations found in V.R. were up to 11 times higher than those found in PNI, while in summer the levels measured in both areas were comparable. The homologue and isomer profiles found in the deposition as well as in the biomonitor samples from V.R. indicate that steel production is the main source of contamination in the region, whereas in PNI, the long range transport of these pollutants is the predominant contamination pathway.
Zhao, Ben; Ata-Ui-Karim, Syed Tahir; Yao, Xia; Tian, YongChao; Cao, WeiXing; Zhu, Yan; Liu, XiaoJun
2016-01-01
Diagnosing the status of crop nitrogen (N) helps to optimize crop yield, improve N use efficiency, and reduce the risk of environmental pollution. The objectives of the present study were to develop a critical N (Nc) dilution curve for winter wheat (based on spike dry matter [SDM] during the reproductive growth period), to compare this curve with the existing Nc dilution curve (based on plant dry matter [DM] of winter wheat), and to explore its ability to reliably estimate the N status of winter wheat. Four field experiments, using varied N fertilizer rates (0-375 kg ha-1) and six cultivars (Yangmai16, Ningmai13, Ningmai9, Aikang58, Yangmai12, Huaimai 17), were conducted in the Jiangsu province of eastern China. Twenty plants from each plot were sampled to determine the SDM and spike N concentration (SNC) during the reproductive growth period. The spike Nc curve was described by Nc = 2.85×SDM-0.17, with SDM ranging from 0.752 to 7.233 t ha-1. The newly developed curve was lower than the Nc curve based on plant DM. The N nutrition index (NNI) for spike dry matter ranged from 0.62 to 1.1 during the reproductive growth period across the seasons. Relative yield (RY) increased with increasing NNI; however, when NNI was greater than 0.96, RY plateaued and remained stable. The spike Nc dilution curve can be used to correctly identify the N nutrition status of winter wheat to support N management during the reproductive growth period for winter wheat in eastern China.
NASA Astrophysics Data System (ADS)
Liu, T.; Schmitt, R. W.; Li, L.
2017-12-01
Using 69 years of historical data from 1948-2017, we developed a method to globally search for sea surface salinity (SSS) and temperature (SST) predictors of regional terrestrial precipitation. We then applied this method to build an autumn (SON) SSS and SST-based 3-month lead predictive model of winter (DJF) precipitation in southwestern United States. We also find that SSS-only models perform better than SST-only models. We previously used an arbitrary correlation coefficient (r) threshold, |r| > 0.25, to define SSS and SST predictor polygons for best subset regression of southwestern US winter precipitation; from preliminary sensitivity tests, we find that |r| > 0.18 yields the best models. The observed below-average precipitation (0.69 mm/day) in winter 2015-2016 falls within the 95% confidence interval of the prediction model. However, the model underestimates the anomalous high precipitation (1.78 mm/day) in winter 2016-2017 by more than three-fold. Moisture transport mainly attributed to "pineapple express" atmospheric rivers (ARs) in winter 2016-2017 suggests that the model falls short on a sub-seasonal scale, in which case storms from ARs contribute a significant portion of seasonal terrestrial precipitation. Further, we identify a potential mechanism for long-range SSS and precipitation teleconnections: standing Rossby waves. The heat applied to the atmosphere from anomalous tropical rainfall can generate standing Rossby waves that propagate to higher latitudes. SSS anomalies may be indicative of anomalous tropical rainfall, and by extension, standing Rossby waves that provide the long-range teleconnections.
Indoor Air Vapor Intrusion Mitigation Approaches
The National Risk Management Research Laboratory has developed a technology transfer document regarding management and treatment of vapor intrusion into building structures. This document describes the range of mitigation technologies available.
Natural avalanches and transportation: A case study from Glacier National Park, Montana, USA
Reardon, B.A.; Fagre, Daniel B.; Steiner, R.W.
2004-01-01
In January 2004, two natural avalanches (destructive class 3) derailed a freight train in John F. Stevens Canyon, on the southern boundary of Glacier National Park. The railroad tracks were closed for 29 hours due to cleanup and lingering avalanche hazard, backing up 112km of trains and shutting down Amtrak’s passenger service. The incident marked the fourth time in three winters that natural avalanches have disrupted transportation in the canyon, which is also the route of U.S. Highway 2. It was the latest in a 94-year history of accidents that includes three fatalities and the destruction of a major highway bridge. Despite that history and the presence of over 40 avalanche paths in the 16km canyon, mitigation is limited to nine railroad snow sheds and occasional highway closures. This case study examines natural avalanche cycles of the past 28 winters using data from field observations, a Natural Resources Conservation Service (NRCS) SNOTEL station, and data collected since 2001 at a high-elevation weather station. The avalanches occurred when storms with sustained snowfall buried a persistent near-surface faceted layer and/or were followed by rain-on-snow or dramatic warming (as much as 21oC in 30 minutes). Natural avalanche activity peaked when temperatures clustered near freezing (mean of -1.5oC at 1800m elev.). Avalanches initiated through rapid loading, rain falling on new snow, and/ or temperature-related changes in the mechanical properties of slabs. Lastly, the case study describes how recent incidents have prompted a unique partnership of land management agencies, private corporations and non-profit organizations to develop an avalanche mitigation program for the transportation corridor.
David D. Diaz; Susan Charnley; Hannah Gosnell
2009-01-01
There are opportunities for forest owners and ranchers to participate in emerging carbon markets and contribute to climate change mitigation through carbon oriented forest and range management activities. These activities often promote sutainable forestry and ranching and broader conservation goals while having the potential to provide a new income stream for...
Iko, W.M.; Archuleta, A.S.; Knopf, F.L.
2003-01-01
Declines of over 60% in mountain plover (Charadrius montanus) populations over the past 30 years have made it a species of concern throughout its current range and a proposed species for listing under the U.S. Endangered Species Act. Wintering mountain plovers spend considerable time on freshly plowed agricultural fields where they may potentially be exposed to anticholinesterase pesticides. Because of the population status and wintering ecology of plovers, the objectives of our study were to use nondestructive methods to report baseline plasma cholinesterase (ChE) levels in free-ranging mountain plovers wintering in California, USA, and to assess whether sampled birds showed signs of ChE inhibition related to anticholinesterase chemical exposure. We compared plasma ChE activity for mountain plovers sampled from the Carrizo Plain (an area relatively free of anticholinesterase pesticide use) with similar measures for plovers from the Central Valley (where anticholinesterase pesticides are widely used). Analyses for ChE inhibition indicated that none of the plovers had been recently exposed to these chemicals. However, mean ChE levels of plovers from the Central Valley were significantly higher (32%) than levels reported for plovers from the Carrizo Plain. This result differs from our original assumption of higher exposure risk to mountain plovers in the Central Valley but does suggest that some effect is occurring in the ChE activity of mountain plovers wintering in California.
Seasonality of Groundwater Recharge in the Basin and Range Province, Western North America
NASA Astrophysics Data System (ADS)
Neff, K. L.; Meixner, T.; Ajami, H.; De La Cruz, L.
2015-12-01
For water-scarce communities in the western U.S., it is critical to understand groundwater recharge regimes and how those regimes might shift in the face of climate change and impact groundwater resources. Watersheds in the Basin and Range Geological Province are characterized by a variable precipitation regime of wet winters and variable summer precipitation. The relative contributions to groundwater recharge by summer and winter precipitation vary throughout the province, with winter precipitation recharge dominant in the northern parts of the region, and recharge from summer monsoonal precipitation playing a more significant role in the south, where the North American Monsoon (NAM) extends its influence. Stable water isotope data of groundwater and seasonal precipitation from sites in Sonora, Mexico and the U.S. states of California, Nevada, Utah, Arizona, Colorado, New Mexico, and Texas were examined to estimate and compare groundwater recharge seasonality throughout the region. Contributions of winter precipitation to annual recharge vary from 69% ± 41% in the southernmost Río San Miguel Basin in Sonora, Mexico, to 100% ± 36% in the westernmost Mojave Desert of California. The Normalized Seasonal Wetness Index (NSWI), a simple water budget method for estimating recharge seasonality from climatic data, was shown to approximate recharge seasonality well in several winter precipitation-dominated systems, but less well in basins with significant summer precipitation.
Barber-Meyer, Shannon; Mech, L. David
2016-01-01
Moose (Alces americanus) in northeastern Minnesota have declined by 55% since 2006. Although the cause is unresolved, some studies have suggested that Gray Wolves (Canis lupus) contributed to the decline. After the Moose decline, wolves could either decline or switch prey. To determine which occurred in our study area, we compared winter wolf counts and summer diet before and after the Moose decline. While wolf numbers in our study area nearly doubled from 23 in winter 2002 to an average of 41 during winters 2011–2013, calf:cow ratios (the number of calves per cow observed during winter surveys) in the wider Moose range more than halved from 0.93 in 2002 to an average of 0.31 during 2011–2013. Compared to summer 2002, wolves in summers 2011–2013 consumed fewer Moose and more White-tailed Deer (Odocoileus virginianus). While deer densities were similar during each period, average vulnerability, as reflected by winter severity, was greater during 2011–2013 than 2002, probably explaining the wolf increase. During the wolf increase Moose calves remained a summer food item. These findings suggest that in part of the Moose range, deer subsidized wolf numbers while wolves also preyed on Moose calves. This contributed to a Moose decline and is a possible case of apparent competition and inverse-density-dependent predation.
NASA Technical Reports Server (NTRS)
Eckermann, S. D.; Wu, D. L.
2012-01-01
Orographic gravity-wave (OGW) parameterizations in models produce waves over subtropical mountain ranges in Australia and Africa that propagate into the stratosphere during austral winter and deposit momentum, affecting weather and climate. Satellite sensors have measured stratospheric GWs for over a decade, yet find no evidence of these waves. So are parameterizations failing here? Here we argue that the short wavelengths of subtropical OGWs place them near or below the detection limits of satellite sensors. To test this hypothesis, we reanalyze nine years of stratospheric radiances from the Atmospheric Infrared Sounder (AIRS) on NASA's Aqua satellite during austral winter, applying new averaging techniques to maximize signal-to-noise and improve thresholds for OGW detection. Deep climatological enhancements in stratospheric OGW variance over specific mountain ranges in Australia and southern Africa are revealed for the first time, which exhibit temporal and vertical variations consistent with predicted OGW responses to varying background winds.
Ranging Behaviour of Commercial Free-Range Broiler Chickens 2: Individual Variation.
Taylor, Peta S; Hemsworth, Paul H; Groves, Peter J; Gebhardt-Henrich, Sabine G; Rault, Jean-Loup
2017-07-20
Little is known about broiler chicken ranging behaviour. Previous studies have monitored ranging behaviour at flock level but whether individual ranging behaviour varies within a flock is unknown. Using Radio Frequency Identification technology, we tracked 1200 individual ROSS 308 broiler chickens across four mixed sex flocks in two seasons on one commercial farm. Ranging behaviour was tracked from first day of range access (21 days of age) until 35 days of age in winter flocks and 44 days of age in summer flocks. We identified groups of chickens that differed in frequency of range visits: chickens that never accessed the range (13 to 67% of tagged chickens), low ranging chickens (15 to 44% of tagged chickens) that accounted for <15% of all range visits and included chickens that used the range only once (6 to 12% of tagged chickens), and high ranging chickens (3 to 9% of tagged chickens) that accounted for 33 to 50% of all range visits. Males spent longer on the range than females in winter ( p < 0.05). Identifying the causes of inter-individual variation in ranging behaviour may help optimise ranging opportunities in free-range systems and is important to elucidate the potential welfare implications of ranging.
Mustonen, Anne-Mari; Asikainen, Juha; Kauhala, Kaarina; Paakkonen, Tommi; Nieminen, Petteri
2007-01-01
The raccoon dog (Nyctereutes procyonoides) is the only canid with passive overwintering in areas with cold winters, but the depth and rhythmicity of wintertime hypothermia in the wild raccoon dog are unknown. To study the seasonal rhythms of body temperature (T(b)), seven free-ranging animals were captured and implanted with intra-abdominal T(b) loggers and radio-tracked during years 2004-2006. The average size of the home ranges was 306+/-26 ha, and the average 24 h T(b) was 38.0+/-<0.01 degrees C during the snow-free period (May-November). The highest and lowest T(b) were usually recorded around midnight (21:00-02:00 h) and between 05:00-11:00 h, respectively, and the range of the 24 h oscillations was 1.2+/-0.01 degrees C. The animals lost approximately 43+/-6% of body mass in winter (December-April), when the average size of the home ranges was 372+/-108 ha. During the 2-9-wk periods of passivity in January-March, the average 24 h T(b) decreased by 1.4-2.1 degrees C compared to the snow-free period. The raccoon dogs were hypothermic for 5 h in the morning (06:00-11:00 h), whereas the highest T(b) values were recorded between 16:00-23:00 h. The range of the 24 h oscillations increased by approximately 0.6 degrees C, and the rhythmicity was more pronounced than in the snow-free period. The ambient temperature and depth of snow cover were important determinants of the seasonal T(b) rhythms. The overwintering strategy of the raccoon dog resembled the patterns of winter sleep in bears and badgers, but the wintertime passivity of the species was more intermittent and the decrease in the T(b) less pronounced.
Cow and calf weight trends on mountain summer range.
Jon M. Skovlin
1962-01-01
Mountain range furnishes the bulk of summer forage for commercial cow-calf operations in northeastern Oregon. Herds maintained on valley range and pasture during winter and spring months are annually trailed to mountain ranges and remain there until calves are ready for fall markets (fig. 1).
Assessing cumulative impacts to wintering Bald Eagles and their habitats in western Washington
DOE Office of Scientific and Technical Information (OSTI.GOV)
Witmer, G.W.; O'Neil, T.A.
Bald Eagles (Haliaeetus leucocephalus) of Washington, the largest wintering population in the lower 48 states, are subject to numerous pressures and impacts from human activites. An evaluative method potential cumulative impacts of multiple hydroelectric development and logging activities on known and potential eagle use areas. Four resource components include food supply, roost sites, mature riparian forest, and disturbance. In addition to actual estimates of losses in food supply (fish biomass in kg) and habitat (km/sup 2/) in one river basin, impact levels from 0 (none) to 4 (high) were assigned for each development and for each component based on themore » impacts anticipated and the estimated value of the site to eagles. Midwinter eagle surveys, aerial photography, topographic and forest stand maps, and site visits were used in the analysis. Impacts were considered additive for all but the disturbance component, which was adjusted for potential synergism between developments. Adjustments were made for mitigation before the impacts were aggregated into a single, dimensionless cumulative impact score. 50 refs., 1 fig., 1 tab.« less
Cannon, Susan H.; Gartner, Joseph E.; Rupert, Michael G.; Michael, John A.
2010-01-01
This report presents an emergency assessment of potential debris-flow hazards from basins burned by the 2009 La Brea and Jesusita fires in Santa Barbara County, the Guiberson fire in Ventura County, the Morris fire in Los Angeles County, the Sheep, Oak Glen, and Pendleton fires in San Bernardino County, and the Cottonwood fire in Riverside County, southern California. Statistical-empirical models developed to analyze postfire debris flows are used to estimate the probability and volume of debris-flows produced from drainage basins within each of the burned areas. Debris-flow probabilities and volumes are estimated as functions of different measures of basin burned extent, gradient, and material properties in response to both a 3-hour-duration, 2-year-recurrence thunderstorm and to a widespread, 12-hour-duration, 2-year-recurrence winter storm. This assessment provides critical information for issuing warnings, locating and designing mitigation measures, and planning evacuation timing and routes within the first two winters following the fire.
Use of real-time PCR to detect canine parvovirus in feces of free-ranging wolves.
Mech, L David; Almberg, Emily S; Smith, Douglas; Goyal, Sagar; Singer, Randall S
2012-04-01
Using real-time PCR, we tested 15 wolf (Canis lupus) feces from the Superior National Forest (SNF), Minnesota, USA, and 191 from Yellowstone National Park (YNP), USA, collected during summer and 13 during winter for canine parvovirus (CPV)-2 DNA. We also tested 20 dog feces for CPV-2 DNA. The PCR assay was 100% sensitive and specific with a minimum detection threshold of 10(4) 50% tissue culture infective dose. Virus was detected in two winter specimens but none of the summer specimens. We suggest applying the technique more broadly especially with winter feces.
Marrow fat deposition and skeletal growth in caribou calves
Adams, Layne G.
2003-01-01
I evaluated rates of marrow fat deposition and skeletal growth of caribou (Rangifer tarandus granti) calves through 20 days of age at Denali National Park, Alaska, USA. Both were negatively correlated with late winter snowfall, indicating the prolonged effects of maternal undernutrition following severe winters. Using regression analyses, I found that the rates of marrow fat deposition and hindfoot growth during the 20 days following birth declined 46% and 68%, respectively, over the range of winter severity during this study. These measures of development may indicate a broader array of effects of maternal undernutrition, influencing the vulnerability of caribou calves to predation.
Use of real-time PCR to detect canine parvovirus in feces of free-ranging wolves
Mech, L. David; Almberg, Emily S.; Smith, Douglas; Goyal, Sagar; Singer, Randall S.
2012-01-01
Using real-time PCR, we tested 15 wolf (Canis lupus) feces from the Superior National Forest (SNF), Minnesota, USA, and 191 from Yellowstone National Park (YNP), USA, collected during summer and 13 during winter for canine parvovirus (CPV)-2 DNA. We also tested 20 dog feces for CPV-2 DNA. The PCR assay was 100% sensitive and specific with a minimum detection threshold of 104 50% tissue culture infective dose. Virus was detected in two winter specimens but none of the summer specimens. We suggest applying the technique more broadly especially with winter feces.
Exposure to radon in the Gadime Cave, Kosovo.
Bahtijari, M; Vaupotic, J; Gregoric, A; Stegnar, P; Kobal, I
2008-02-01
Air radon concentration was measured in summer and winter at 11 points along the tourist guided route in the Gadime Cave in Kosovo using alpha scintillation cells and etched track detectors. At two points in summer, values higher than 1700Bqm(-3) were observed; they otherwise were in the range 400-1000Bqm(-3). Values were lower in winter. The effective dose received by a person during a 90min visit is 3.7microSv in summer and 2.5microSv in winter. For a tourist guide the annual effective dose is less than 3.5mSv.
Daily movements of female mallards wintering in Southwestern Louisiana
Link, Paul T.; Afton, Alan D.; Cox, Robert R.; Davis, Bruce E.
2011-01-01
Understanding daily movements of waterfowl is crucial to management of winter habitats, especially along the Gulf Coast where hunting pressure is high. Radio-telemetry was used to investigate movements of female Mallards (Anas platyrchychos) wintering in southwestern Louisiana. Movement distances were analyzed from 2,455 paired locations (diurnal and nocturnal) of 126 Mallards during winters 2004–2005 and 2005–2006 to assess effects of winter, female age, areas closed (Lacassine National Wildlife Refuge [LAC], Cameron Prairie National Wildlife Refuge [CAM], Amoco Pool [AMOCO] or open to hunting [OPEN]), and habitat type, including all interactions. Movement distances from the various land management categories were not consistent by age, date, or by winter. Flight distances from LAC increased with date, whereas those from CAM and OPEN did not vary significantly by date. Female Mallards moved short distances between diurnal and nocturnal sites (ranging from 3.1 to 15.0 km by land management category), suggesting that they are able to meet their daily energy requirements within a smaller area than Northern Pintails (Anas acuta, hereafter Pintails), and thus minimize transit energy costs.
NASA Astrophysics Data System (ADS)
Matsangouras, Ioannis T.; Nastos, Panagiotis T.
2014-05-01
Natural hazards pose an increasing threat to society and new innovative techniques or methodologies are necessary to be developed, in order to enhance the risk mitigation process in nowadays. It is commonly accepted that disaster risk reduction is a vital key for future successful economic and social development. The systematic improvement accuracy of extended-range prognosis products, relating with monthly and seasonal predictability, introduced them as a new essential link in risk mitigation procedure. Aiming at decreasing the risk, this paper presents the use of seasonal and monthly forecasting process that was tested over west Greece from September to December, 2013. During that season significant severe weather events occurred, causing significant impact to the local society (severe storms/rainfalls, hail, flash floods, etc). Seasonal and monthly forecasting products from European Centre for Medium-Range Weather Forecasts (ECMWF) depicted, with probabilities stratified by terciles, areas of Greece where significant weather may occur. As atmospheric natural hazard early warning systems are able to deliver warnings up to 72 hours in advance, this study illustrates that extended-range prognosis could be introduced as a new technique in risk mitigation. Seasonal and monthly forecast products could highlight extended areas where severe weather events may occur in one month lead time. In addition, a risk mitigation procedure, that extended prognosis products are adopted, is also presented providing useful time to preparedness process at regional administration level.
Historical Winter Status of Three Upland Ammodramus Sparrows in South Carolina
DOE Office of Scientific and Technical Information (OSTI.GOV)
McNair, D.B.; Post, W.
2000-10-01
The wintering status of three upland sparrows were compared based upon collections. LeConte's sparrow was previously abundant during incursion years, but was less common on the coast. LeConte's and Henslow's were much more abundant 75-115 years ago. The later may result from breeding range reductions and habitat loss. The study demonstrates the usefulness of historical data.
M. Case; C.B. Halpern; S.A. Levin
2013-01-01
Pocket gophers (Geomyidae) are major agents of disturbance in North American grasslands. Gopher mounds bury existing plants and influence community structure through various mechanisms. However, in mountain meadows that experience winter snowpack, gophers also create winter castings, smaller tube-shaped deposits, previously ignored in studies of plantâgopher...
Greater mass increases annual survival of Prothonotary Warblers wintering in northeastern Costa Rica
Jared D. Wolfe; Matthew D. Johnson; C. John Ralph
2013-01-01
Estimates of survival of nearctic-neotropic migrants have broadened our understanding of life-history variation across taxa and latitudes. Despite the importance of assessing migrants' survival through all phases of their life-cycle, data from their tropical winter ranges are few. In this study we used 14 years of data on captured birds to quantify the influence...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-14
...] Notice of Public Meeting, Whiskey Mountain Bighorn Sheep Range Locatable Mineral Withdrawal Extension, WY...) will hold a public meeting in conjunction with the Whiskey Mountain Bighorn Sheep Range Locatable... of Proposed Withdrawal Extension for the Whiskey Mountain Bighorn Sheep Winter Range, which was...
Climate change in our backyards: the reshuffling of North America's winter bird communities.
Princé, Karine; Zuckerberg, Benjamin
2015-02-01
Much of the recent changes in North American climate have occurred during the winter months, and as result, overwintering birds represent important sentinels of anthropogenic climate change. While there is mounting evidence that bird populations are responding to a warming climate (e.g., poleward shifts) questions remain as to whether these species-specific responses are resulting in community-wide changes. Here, we test the hypothesis that a changing winter climate should favor the formation of winter bird communities dominated by warm-adapted species. To do this, we quantified changes in community composition using a functional index--the Community Temperature Index (CTI)--which measures the balance between low- and high-temperature dwelling species in a community. Using data from Project FeederWatch, an international citizen science program, we quantified spatiotemporal changes in winter bird communities (n = 38 bird species) across eastern North America and tested the influence of changes in winter minimum temperature over a 22-year period. We implemented a jackknife analysis to identify those species most influential in driving changes at the community level and the population dynamics (e.g., extinction or colonization) responsible for these community changes. Since 1990, we found that the winter bird community structure has changed with communities increasingly composed of warm-adapted species. This reshuffling of winter bird communities was strongest in southerly latitudes and driven primarily by local increases in abundance and regional patterns of colonization by southerly birds. CTI tracked patterns of changing winter temperature at different temporal scales ranging from 1 to 35 years. We conclude that a shifting winter climate has provided an opportunity for smaller, southerly distributed species to colonize new regions and promote the formation of unique winter bird assemblages throughout eastern North America. © 2014 John Wiley & Sons Ltd.
Stucker, J.H.; Cuthbert, F.J.; Winn, Brad; Noel, B.L.; Maddock, S.B.; Leary, P.R.; Cordes, J.; Wemmer, L.C.
2010-01-01
In 1993, a mark-recapture effort was initiated to band annually all Great Lakes Piping Plover nesting adults and offspring. With voluntary reporting by observers, >430 sightings of 154 individually-marked Great Lakes banded birds were documented on the wintering grounds during 19952005. This paper reports non-breeding distribution and site-fidelity and identifies Critical Habitat units used by this population during the winter. Information obtained through banded bird sightings indicates that the winter range of Great Lakes Piping Plovers extends from North Carolina to Texas, and the Bahamas, with the majority (75%) of reported individuals wintering in Georgia and Florida. About 95% of sightings were near or within federally-designated winter Critical Habitat for Piping Plovers. Within season (52%) and between-year (62%) site fidelity was documented for resightings within 3.5 km of initial sighting. Although breeding pairs do not winter in close association, there is some evidence to suggest that offspring winter closer to the male rather than the female parent (P-value = 0.03), and adult males and females appear to exhibit latitudinal segregation (P-value < 0.001). Females reach the winter grounds before males, arriving in July and staying through April (???9 months) or 75% of the annual cycle. The study is the first to identify winter distribution for the Great Lakes Piping Plover population. The significant proportion of the annual cycle spent on the wintering grounds emphasizes the importance of habitat protection during the non-breeding season for this federally-listed population.
Large-scale climate variation modifies the winter grouping behavior of endangered Indiana bats
Thogmartin, Wayne E.; McKann, Patrick C.
2014-01-01
Power laws describe the functional relationship between 2 quantities, such as the frequency of a group as the multiplicative power of group size. We examined whether the annual size of well-surveyed wintering populations of endangered Indiana bats (Myotis sodalis) followed a power law, and then leveraged this relationship to predict whether the aggregation of Indiana bats in winter was influenced by global climate processes. We determined that Indiana bat wintering populations were distributed according to a power law (mean scaling coefficient α = −0.44 [95% confidence interval {95% CI} = −0.61, −0.28). The antilog of these annual scaling coefficients ranged between 0.67 and 0.81, coincident with the three-fourths power found in many other biological phenomena. We associated temporal patterns in the annual (1983–2011) scaling coefficient with the North Atlantic Oscillation (NAO) index in August (βNAOAugust = −0.017 [90% CI = −0.032, −0.002]), when Indiana bats are deciding when and where to hibernate. After accounting for the strong effect of philopatry to habitual wintering locations, Indiana bats aggregated in larger wintering populations during periods of severe winter and in smaller populations in milder winters. The association with August values of the NAO indicates that bats anticipate future winter weather conditions when deciding where to roost, a heretofore unrecognized role for prehibernation swarming behavior. Future research is needed to understand whether the three-fourths–scaling patterns we observed are related to scaling in metabolism.
NASA Astrophysics Data System (ADS)
Deming, J. W.; Ewert, M.; Bowman, J. S.
2013-12-01
The brines of polar winter sea ice are inhabited by significant densities of microbes (Bacteria and Archaea) that experience a range of extreme conditions depending on location in, and age of, the ice. Newly formed sea ice in winter expels microbes (and organic exudates) onto the surface of the ice, where they can be wicked into frost flowers or into freshly deposited snow, resulting in populations at the ice-air and air-snow interfaces characterized by even more extreme conditions. The influence of snow thickness over the ice on the fate of these microbes, and their potential for dispersal or mediation of exchanges with other components of the ice-snow system, is not well known. Examination of in situ temperature data from the Mass Balance Observatory (MBO) offshore of Barrow, Alaska, during the winter of 2011 allowed recognition of an hierarchy of fluctuation regimes in temperature and (by calculation) brine salinity, where the most stable conditions were encountered within the sea ice and the least stable highest in the snow cover, where temperature fluctuations were significantly more energetic as determined by an analysis of power spectral density. A prior analysis of snow thickness near the MBO had already revealed significant ablation events, potentially associated with bacterial mortality, that would have exposed the saline (microbe-rich) snow layer to wind-based dispersal. To better understand the survival of marine bacteria under these dynamic and extreme conditions, we conducted laboratory experiments with Arctic bacterial isolates, subjecting them to simulations of the freezing regimes documented at the MBS. The impact of the fluctuation regime was shown to be species-specific, with the organism of narrower temperature and salinity growth ranges suffering 30-50% mortality (which could be partially relieved by providing protection against salt-shock). This isolate, the psychrophilic marine bacterium Colwellia psychrerythraea strain 34H (temperature range of -12 to 18°C, salinity range of 20 to 50), was originally isolated from Arctic marine sediments. The other isolate, the psychrotolerant and extremely halophilic bacterium Psychrobacter sp. strain 7E (temperature range of -1 [possibly lower] to 25°C, salinity range of 32 to 125), not only survived the most extreme conditions but demonstrated a potentially effective dispersal strategy of cell fragmentation and miniaturization (resulting in higher cell numbers). This extremophile was isolated from upper winter sea-ice brine in the Beaufort Sea. Bacterial survival and dispersal from sea-ice brines in Arctic winter thus appears to depend on the nature of the organisms involved and on the thickness of snow cover, which determines how dynamic and extreme are the exposure conditions. The observed species-specific reactions to extreme and fluctuating conditions may help to explain the different structures of microbial communities inhabiting the range of environments defined by the ice-snow system and provide model organisms and research directions for future work to evaluate potential activity or exchanges with other components of the system.
Deutsch, C.J.; Reid, J.P.; Bonde, R.K.; Easton, Dean E.; Kochman, H.I.; O'Shea, T.J.
2003-01-01
The West Indian manatee (Trichechus manatus) is endangered by human activities throughout its range, including the U.S. Atlantic coast where habitat degradation from coastal development and manatee deaths from watercraft collisions have been particularly severe. We radio-tagged and tracked 78 manatees along the east coast of Florida and Georgia over a 12-year period (1986-1998). Our goals were to characterize the seasonal movements, migratory behavior, and site fidelity of manatees in this region in order to provide information for the development of effective conservation strategies. Most study animals were tracked remotely with the Argos satellite system, which yielded a mean (SD) of 3.7 (1.6) locations per day; all were regularly tracked in the field using conventional radiotelemetry methods. The combined data collection effort yielded >93,000 locations over nearly 32,000 tag-days. The median duration of tracking was 8.3 months per individual, but numerous manatees were tracked over multiple years (max = 6.8 years). Most manatees migrated seasonally over large distances between a northerly warm-season range and a southerly winter range (median one-way distance = 280 km, max = 830 km), but 12% of individuals were resident in a relatively small area (2,300 km of coastline between southeastern Florida and Rhode Island. No study animals journeyed to the Gulf coast of Florida. Regions heavily utilized by tagged manatees included: Fernandina Beach, FL to Brunswick, GA in the warm season; northern Biscayne Bay to Port Everglades, FL in the winter; and central coastal Florida, especially the Banana River and northern Indian River lagoons, in all seasons. Daily travel rate, defined as the distance between successive mean daily locations, averaged 2.5 km (SD = 1.7), but this varied with season, migratory pattern, and sex. Adult males traveled a significantly greater distance per day than did adult females for most of the warm season, which corresponded closely with the principal period of breeding activity, but there was no difference between the sexes in daily travel rate during the winter. The timing of seasonal migrations differed markedly between geographic regions. Most long-distance movements in the southern half of the study area occurred between November and March in response to changing temperatures, whereas most migrations in the northern region took place during the warmer, non-winter months. Manatees left their warm-season range in central Florida in response to cold fronts that dropped water temperatures by an average of 2.0??C over the 24-hr period preceding departure. Water temperature at departure from the warm-season range averaged 19??C, but varied among individuals (16-22??C) and was not related to body size or female reproductive status. The presence of industrial warm-water effluents permitted many manatees to overwinter north of their historic winter range, and for some migrants this delayed autumn migrations and facilitated earlier spring migrations. Southward autumn and northward spring migrations lasted an average of 10 and 15 days at mean rates of 33.5 (SD = 7.6) and 27.3 (SD = 10.5) km/day, respectively. The highest rate of travel during migration was 87 km/day (3.6 km/hr) during winter. Manatees overwintering in southeastern Florida often traveled north during mild weather - sometimes reaching their warm-season range - only to return south again with the next major cold front. Manatees were consistent in their seasonal movement patterns across years and showed strong fidelity, to warm-season and winter ranges. Within a season, individuals usually occupied only 1 or 2 core use areas that encompassed about 90% of daily locations. Most manatees returned faithfully to the same seasonal ranges year after year (median distance between range centers was <5 km between years). Seasonal movements of 4 immature manatees tracked as calves with their mothers
Influence of seasonal climatic variability on shallow infiltration at Yucca Mountain
Hevesi, Joseph A.; Flint, Alan L.
1993-01-01
To analyze infiltration and the redistribution of moisture in alluvial deposits at Yucca Mountain, water content profiles at a 13.5 m deep borehole were measured at monthly intervals using a neutron moisture probe. Increases in water content to a maximum depth of 1.8 m in response to winter season precipitation were noted. Below a depth of 1.8 m, a gradual drying trend was indicated. A simulation study showed that, although small amounts of water may be percolating through the deep nonwetted ones of the profile, the influence of climatic variability on infiltration through thick alluvial deposits at Yucca Mountain is greatly mitigated by evapotranspiration.
NASA Astrophysics Data System (ADS)
Thiéblemont, R.; Huret, N.; Hauchecorne, A.; Drouin, M.
2011-12-01
The 2010/2011 stratospheric winter has recorded one of the strongest ozone depletion in the Arctic region since observations began. Such phenomenon is currently very difficult to predict as it strongly depends on winter dynamical conditions. The aim of this study is to characterize winter/spring dynamical stratospheric conditions and the ozone depletion yield. We used the AURA-MLS (Microwave Limb Sounder) measurements, the ECMWF (European Centre for Medium-Range Weather Forecasts) Era-Interim meteorological fields and the results of the potential vorticity contour advection model MIMOSA (Modélisation Isentrope du transport Méso-échelle de l'Ozone Stratosphérique par Advection). Dynamical processes associated with the 2010/2011 winter have been investigated and replaced in a climatologic context by comparing this winter to previous similar and different winter/spring seasons over the last 20 years. Preliminary results show that the polar night jet in 2010/2011 was of an extraordinary strength during February-March, as for the same period in 1995/1996 where the ozone depletion was close to 30 %. Using MIMOSA model, we also show that the polar vortex during February-March 2010/2011 was more centred above the pole than the climatologic location. Wave activity and heat fluxes deduced from ECMWF data allow us to evaluate the specific conditions encountered during this 2010/2011 winter and mechanisms which lead to such extreme situation.
Winter Season Mortality: Will Climate Warming Bring Benefits?
Kinney, Patrick L; Schwartz, Joel; Pascal, Mathilde; Petkova, Elisaveta; Tertre, Alain Le; Medina, Sylvia; Vautard, Robert
2015-06-01
Extreme heat events are associated with spikes in mortality, yet death rates are on average highest during the coldest months of the year. Under the assumption that most winter excess mortality is due to cold temperature, many previous studies have concluded that winter mortality will substantially decline in a warming climate. We analyzed whether and to what extent cold temperatures are associated with excess winter mortality across multiple cities and over multiple years within individual cities, using daily temperature and mortality data from 36 US cities (1985-2006) and 3 French cities (1971-2007). Comparing across cities, we found that excess winter mortality did not depend on seasonal temperature range, and was no lower in warmer vs. colder cities, suggesting that temperature is not a key driver of winter excess mortality. Using regression models within monthly strata, we found that variability in daily mortality within cities was not strongly influenced by winter temperature. Finally we found that inadequate control for seasonality in analyses of the effects of cold temperatures led to spuriously large assumed cold effects, and erroneous attribution of winter mortality to cold temperatures. Our findings suggest that reductions in cold-related mortality under warming climate may be much smaller than some have assumed. This should be of interest to researchers and policy makers concerned with projecting future health effects of climate change and developing relevant adaptation strategies.
Winter season mortality: will climate warming bring benefits?
NASA Astrophysics Data System (ADS)
Kinney, Patrick L.; Schwartz, Joel; Pascal, Mathilde; Petkova, Elisaveta; Le Tertre, Alain; Medina, Sylvia; Vautard, Robert
2015-06-01
Extreme heat events are associated with spikes in mortality, yet death rates are on average highest during the coldest months of the year. Under the assumption that most winter excess mortality is due to cold temperature, many previous studies have concluded that winter mortality will substantially decline in a warming climate. We analyzed whether and to what extent cold temperatures are associated with excess winter mortality across multiple cities and over multiple years within individual cities, using daily temperature and mortality data from 36 US cities (1985-2006) and 3 French cities (1971-2007). Comparing across cities, we found that excess winter mortality did not depend on seasonal temperature range, and was no lower in warmer vs. colder cities, suggesting that temperature is not a key driver of winter excess mortality. Using regression models within monthly strata, we found that variability in daily mortality within cities was not strongly influenced by winter temperature. Finally we found that inadequate control for seasonality in analyses of the effects of cold temperatures led to spuriously large assumed cold effects, and erroneous attribution of winter mortality to cold temperatures. Our findings suggest that reductions in cold-related mortality under warming climate may be much smaller than some have assumed. This should be of interest to researchers and policy makers concerned with projecting future health effects of climate change and developing relevant adaptation strategies.
Evaluation of aerial transects for counting winter mallards
Reinecke, K.J.; Brown, M.W.; Nassar, J.R.
1992-01-01
Winter waterfowl surveys rarely use sampling methods, and little is known about the precision and biases of their population estimates. Consequently, we developed aerial transect surveys (n=5) in 4 strata comprising 16 substrata in the lower Mississippi Alluvial Valley during winters 1987-88 through 1989-90 to estimate mallard (Anas platyrhynchos) population indices and determine regional patterns of habitat use. Mallard population indices ranged from 1,147,628 (SE=192,341) in December 1988 to 1,790,708 (SE=179,406) in January 1988. Coefficients of variation (CV's) for early winter surveys averaged 0.15 and those for late winter surveys averaged 0.10. During early winter, 59-69% of mallards were on wetlands with water regimes managed for waterfowl; whereas in late winter, 52-79% used wetlands with unmanaged water regimes. Late winter was wet during 1987-88 and 1988-89, and most mallards (62-68%) were on naturally flooded croplands. Use of forested wetlands (3-11%) and moist-soil habitats (3-29%) varied among surveys but was not correlated with water conditions. The number of mallards using naturally flooded croplands (e.g., >1,100,000 in Jan 1988) illustrated the extent of habitat use on private lands. We recommend transect surveys (e.g., 5-yr intervals) for evaluating responses of mallard populations to management programs and as a sampling framework for integrating regional waterfowl research and management data.
Space use of wintering waterbirds in India: Influence of trophic ecology on home-range size
Namgail, Tsewang; Takekawa, John Y.; Balachandran, Sivananinthaperumal; Sathiyaselvam, Ponnusamy; Mundkur, Taej; Newman, Scott H.
2014-01-01
Relationship between species' home range and their other biological traits remains poorly understood, especially in migratory birds due to the difficulty associated with tracking them. Advances in satellite telemetry and remote sensing techniques have proved instrumental in overcoming such challenges. We studied the space use of migratory ducks through satellite telemetry with an objective of understanding the influence of body mass and feeding habits on their home-range sizes. We marked 26 individuals, representing five species of migratory ducks, with satellite transmitters during two consecutive winters in three Indian states. We used kernel methods to estimate home ranges and core use areas of these waterfowl, and assessed the influence of body mass and feeding habits on home-range size. Feeding habits influenced the home-range size of the migratory ducks. Carnivorous ducks had the largest home ranges, herbivorous ducks the smallest, while omnivorous species had intermediate home-ranges. Body mass did not explain variation in home-range size. To our knowledge, this is the first study of its kind on migratory ducks, and it has important implications for their conservation and management.
Variability of Winter Air Temperature in Mid-Latitude Europe
NASA Technical Reports Server (NTRS)
Otterman, J.; Ardizzone, J.; Atlas, R.; Bungato, D.; Cierniewski, J.; Jusem, J. C.; Przybylak, R.; Schubert, S.; Starr, D.; Walczewski, J.
2002-01-01
The aim of this paper is to report extreme winter/early-spring air temperature (hereinafter temperature) anomalies in mid-latitude Europe, and to discuss the underlying forcing to these interannual fluctuations. Warm advection from the North Atlantic in late winter controls the surface-air temperature, as indicated by the substantial correlation between the speed of the surface southwesterlies over the eastern North Atlantic (quantified by a specific Index Ina) and the 2-meter level air temperatures (hereinafter Ts) over Europe, 45-60 deg N, in winter. In mid-March and subsequently, the correlation drops drastically (quite often it is negative). This change in the relationship between Ts and Ina marks a transition in the control of the surface-air temperature: absorption of insolation replaces the warm advection as the dominant control. This forcing by maritime-air advection in winter was demonstrated in a previous publication, and is re-examined here in conjunction with extreme fluctuations of temperatures in Europe. We analyze here the interannual variability at its extreme by comparing warm-winter/early-spring of 1989/90 with the opposite scenario in 1995/96. For these two December-to-March periods the differences in the monthly mean temperature in Warsaw and Torun, Poland, range above 10 C. Short-term (shorter than a month) fluctuations of the temperature are likewise very strong. We conduct pentad-by-pentad analysis of the surface-maximum air temperature (hereinafter Tmax), in a selected location, examining the dependence on Ina. The increased cloudiness and higher amounts of total precipitable water, corollary effects to the warm low-level advection. in the 1989/90 winter, enhance the positive temperature anomalies. The analysis of the ocean surface winds is based on the Special Sensor Microwave/Imager (SSM/I) dataset; ascent rates, and over land wind data are from the European Centre for Medium-Range Weather Forecasts (ECMWF); maps of 2-m temperature, cloud cover and precipitable water are from the National Centers for Environmental Prediction (NCEP) Reanalysis.
Malisova, O; Bountziouka, V; Panagiotakos, D Β; Zampelas, A; Kapsokefalou, M
2013-07-01
Water balance is achieved when water intake from solid and fluid foods and drinking water meets water losses, mainly in sweat, urine and faeces. Seasonality, particularly in Mediterranean countries that have a hot summer, may affect water loss and consequently water balance. Water balance has not been estimated before on a population level and the effect of seasonality has not been evaluated. The present study aimed to compare water balance, intake and loss in summer and winter in a sample of the general population in Greece. The Water Balance Questionnaire (WBQ) was used to evaluate water balance, estimating water intake and loss in summer (n = 480) and in winter (n = 412) on a stratified sample of the general population in Athens, Greece. In winter, mean (SD) water balance was -63 (1478) mL/day(-1) , mean (SD)water intake was 2892 (987) mL/day(-1) and mean (quartile range) water loss was 2637 (1810-3922) mL/day(-1) . In summer, mean (SD) water balance was -58 (2150) mL/day(-1) , mean (SD) water intake was 3875 (1373) mL/day(-1) and mean (quartile range) water loss was 3635 (2365-5258) mL/day(-1) . Water balance did not differ between summer and winter (P = 0.96); however, the data distribution was different; in summer, approximately 8% more participants were falling in the low and high water balance categories. Differences in water intake from different sources were identified (P < 0.05). Water balance in summer and winter was not different. However, water intake and loss were approximately 40% higher in summer than in winter. More people were falling in the low and high water balance categories in summer when comparing the distribution on water balance in winter. © 2013 The Authors Journal of Human Nutrition and Dietetics © 2013 The British Dietetic Association Ltd.
Zhao, Ben; Ata-UI-Karim, Syed Tahir; Yao, Xia; Tian, YongChao; Cao, WeiXing; Zhu, Yan; Liu, XiaoJun
2016-01-01
Diagnosing the status of crop nitrogen (N) helps to optimize crop yield, improve N use efficiency, and reduce the risk of environmental pollution. The objectives of the present study were to develop a critical N (Nc) dilution curve for winter wheat (based on spike dry matter [SDM] during the reproductive growth period), to compare this curve with the existing Nc dilution curve (based on plant dry matter [DM] of winter wheat), and to explore its ability to reliably estimate the N status of winter wheat. Four field experiments, using varied N fertilizer rates (0–375 kg ha-1) and six cultivars (Yangmai16, Ningmai13, Ningmai9, Aikang58, Yangmai12, Huaimai 17), were conducted in the Jiangsu province of eastern China. Twenty plants from each plot were sampled to determine the SDM and spike N concentration (SNC) during the reproductive growth period. The spike Nc curve was described by Nc = 2.85×SDM-0.17, with SDM ranging from 0.752 to 7.233 t ha-1. The newly developed curve was lower than the Nc curve based on plant DM. The N nutrition index (NNI) for spike dry matter ranged from 0.62 to 1.1 during the reproductive growth period across the seasons. Relative yield (RY) increased with increasing NNI; however, when NNI was greater than 0.96, RY plateaued and remained stable. The spike Nc dilution curve can be used to correctly identify the N nutrition status of winter wheat to support N management during the reproductive growth period for winter wheat in eastern China. PMID:27732634
Morris, Niall P; Body, Richard
2017-08-01
The De Winter ECG pattern has been reported to indicate acute left anterior descending coronary artery occlusion and is often considered to be an 'ST elevation myocardial infarction (STEMI) equivalent'. We aimed to investigate the morphology of the 'De Winter ECG pattern' and evaluate the test characteristics of the De Winter pattern for the diagnosis of acute coronary occlusion. We identified papers through the Medline, EMBASE and COCHRANE databases and screened for bias using QUADAS-2. First, measurements were recorded from every ECG reported in the literature and aggregated. Second, diagnostic accuracy data from eligible cohort studies were extracted. The primary outcome was defined as at least 70% angiographic stenosis of a major epicardial vessel. Thirteen papers reported data relevant to question 1 and three papers reported data relevant to question 2. All ECGs showed maximal up-sloping ST depression in lead V3 with a median amplitude of 0.3 mV (interquartile range: 0.2-4 mV). T-wave height peaked in lead V3 with a median amplitude 0.9 mV (interquartile range: 0.8-1.1 mV). The De Winter pattern had positive predictive values of 95.2% (95% confidence interval: 76.2-99.9%), 100% (69.2-100.0%) and 100% (51.7-100%) in the three respective diagnostic studies. There is limited evidence that the De Winter ECG pattern is a 'STEMI equivalent'. The available data suggest that the pattern has high positive predictive value for acute occlusion. Further research is required to evaluate specificity and to determine whether rapid revascularization improves mortality.
Miller, Alicia S.; Shepherd, Gary R.; Fratantoni, Paula S.
2016-01-01
Black sea bass (Centropristis striata) migrations are believed to play a role in overwinter survival and connectivity between juvenile and adult populations. This study investigated oceanographic drivers of winter habitat choice and regional differences between populations of juvenile and adult black sea bass. Trends in cohort strength, as a result of juvenile survival, were also identified. Oceanographic and fisheries survey data were analyzed using generalized additive models. Among the oceanographic variables investigated, salinity was the main driver in habitat selection with an optimal range of 33–35 practical salinity units (PSU) for both juveniles and adults. Preferred temperature ranges varied between juveniles and adults, but held a similar minimum preference of >8°C. Salinity and temperature ranges also differed by regions north and south of Hudson Canyon. Shelf water volume had less of an effect than temperature or salinity, but showed an overall negative relationship with survey catch. The effect of winter conditions on juvenile abundance was also observed across state and federal survey index trends. A lack of correlation observed among surveys in the fall paired with a strong correlation in the spring identifies the winter period as a factor determining year-class strength of new recruits to the population. A rank order analysis of spring indices identified three of the largest year classes occurring during years with reduced shelf water volumes, warmer winter shelf waters, and a 34 PSU isohaline aligned farther inshore. While greater catches of black sea bass in the northwest Atlantic Ocean remain south of Hudson Canyon, the species’ range has expanded north in recent years. PMID:26824350
George, Janet L; Martin, Daniel J; Lukacs, Paul M; Miller, Michael W
2008-04-01
A pneumonia epidemic reduced bighorn sheep (Ovis canadensis) survival and recruitment during 1997-2000 in a population comprised of three interconnected wintering herds (Kenosha Mountains, Sugarloaf Mountain, Twin Eagles) that inhabited the Kenosha and Tarryall Mountain ranges in central Colorado, USA. The onset of this epidemic coincided temporally and spatially with the appearance of a single domestic sheep (Ovis aires) on the Sugarloaf Mountain herd's winter range in December 1997. Although only bighorns in the Sugarloaf Mountain herd were affected in 1997-98, cases also occurred during 1998-99 in the other two wintering herds, likely after the epidemic spread via established seasonal movements of male bighorns. In all, we located 86 bighorn carcasses during 1997-2000. Three species of Pasteurella were isolated in various combinations from affected lung tissues from 20 bighorn carcasses where tissues were available and suitable for diagnostic evaluation; with one exception, beta-hemolytic mannheimia (Pasteurella) haemolytica (primarily reported as biogroup 1(G) or 1(alphaG)) was isolated from lung tissues of cases evaluated during winter 1997-98. The epidemic dramatically lowered adult bighorn monthly survival in all three herds; a model that included an acute epidemic effect, differing between sexes and with vaccination status, that diminished linearly over the next 12 mo best represented field data. In addition to the direct mortality associated with epidemics in these three herds, lamb recruitment in years following the pneumonia epidemic also was depressed as compared to years prior to the epidemic. Based on observations presented here, pasteurellosis epidemics in free-ranging bighorn sheep can arise through incursion of domestic sheep onto native ranges, and thus minimizing contact between domestic and bighorn sheep appears to be a logical principle for bighorn sheep conservation.
Li, Zhong-Qiu; Wang, Zhi; Ge, Chen
2013-10-01
To understand the population status and behavioural features of wintering common cranes in the Yancheng Nature Reserve, two transects were established and population trends were monitored every month over five recent winters from 2008 to 2013. Wintering behaviours were also observed in order to explore the possible effects of family size and age on time budgets. Results indicated that the populations were stable with a range of 303 to 707 individuals. Negative effects of coastal developments were not found on the wintering population of common cranes, which might be related to their diets and preference for artificial wetland habitats. We found a significant effect of age on time budgets, with juveniles spending more time feeding and less time alerting, which might be related to the needs of body development and skill learning. Family size did not affect the time budgets of the cranes, which indicated that adults did not increase vigilance investment even when raising a larger family.
USDA-ARS?s Scientific Manuscript database
Stockpiled tall fescue can provide economical winter feed for grazing livestock in the mid-Atlantic of the United States. The objective of this study was to evaluate the effect of N rate and application timing on the yield of stockpiled tall fescue. Four N rates ranging from 0 to 120 lb N/acre wer...
Aaron S. Weed; Barbara J. Bentz; Matthew P. Ayres; Thomas P. Holmes
2015-01-01
Milder winters have contributed to recent outbreaks of Dendroctonus ponderosae in Canada, but have not been evaluated as a factor permitting concurrent outbreaks across its large range (ca.1500 9 1500 km) in the western United States (US). We examined the trend in minimum air temperatures in D. ponderosae habitats across the western US and assessed whether warming...
Biology, spread, and biological control of winter moth in the eastern United States
Joseph Elkinton; George Boettner; Andrew Liebhold; Rodger Gwiazdowski
2015-01-01
The winter moth (Operophtera brumata L.; Lepidoptera: Geometridae) is an inchworm caterpillar that hatches coincident with bud-break on its hosts and feeds on a wide range of deciduous trees. It is one of a group of geometrid species that feed in early spring and then pupate in the top layer of the soil or litter beginning in mid-May. As postulated...
Patrick C. Tobin; Richard M. Turcotte; Laura M. Blackburn; John A. Juracko; Brian T. Simpson
2017-01-01
The ability to survive winter temperatures is a key determinant of insect distributional ranges and population dynamics in temperate ecosystems. Although many insects overwinter in a state of diapause, the hemlock woolly adelgid [Adelges tsugae (Annand)] is an exception and instead develops during winter. We studied a low density population of
Seasonal patterns in acidity of precipitation and their implications for forest stream ecosystems
James W. Hornbeck; Gene E. Likens; John S. Eaton
1976-01-01
Data collected since 1965 at a network of 9 stations in the northeastern United States show that precipitation is most acid in the growing season (May-September) and least acid in winter (December-February). For the Hubbard Brook station in New Hampshire, where the mean hydrogen ion content of precipitation ranges between 46 μeq/l in winter and 102 μ...
NASA Astrophysics Data System (ADS)
Albright, R.; Langdon, C.; Anthony, K. R. N.
2013-05-01
Ocean acidification is projected to shift coral reefs from a state of net accretion to one of net dissolution this century. Presently, our ability to predict global-scale changes to coral reef calcification is limited by insufficient data relating seawater carbonate chemistry parameters to in situ rates of reef calcification. Here, we investigate natural trends in carbonate chemistry of the Davies Reef flat in the central Great Barrier Reef on diel and seasonal timescales and relate these trends to benthic carbon fluxes by quantifying net ecosystem calcification (nec) and net community production (ncp). Results show that seawater carbonate chemistry of the Davies Reef flat is highly variable over both diel and seasonal timescales. pH (total scale) ranged from 7.92 to 8.17, pCO2 ranged from 272 to 542 μatm, and aragonite saturation state (Ωarag) ranged from 2.9 to 4.1. Diel cycles in carbonate chemistry were primarily driven by ncp, and warming explained 35% and 47% of the seasonal shifts in pCO2 and pH, respectively. Daytime ncp averaged 36 ± 19 mmol C m-2 h-1 in summer and 33 ± 13 mmol C m-2 h-1 in winter; nighttime ncp averaged -22 ± 20 and -7 ± 6 mmol C m-2 h-1 in summer and winter, respectively. Daytime nec averaged 11 ± 4 mmol CaCO3 m-2 h-1 in summer and 8 ± 3 mmol CaCO3 m-2 h-1 in winter, whereas nighttime nec averaged 2 ± 4 mmol and -1 ± 3 mmol CaCO3 m-2 h-1 in summer and winter, respectively. Net ecosystem calcification was positively correlated with Ωarag for both seasons. Linear correlations of nec and Ωarag indicate that the Davies Reef flat may transition from a state of net calcification to net dissolution at Ωarag values of 3.4 in summer and 3.2 in winter. Diel trends in Ωarag indicate that the reef flat is currently below this calcification threshold 29.6% of the time in summer and 14.1% of the time in winter.
Uncertainty in Estimates of Net Seasonal Snow Accumulation on Glaciers from In Situ Measurements
NASA Astrophysics Data System (ADS)
Pulwicki, A.; Flowers, G. E.; Radic, V.
2017-12-01
Accurately estimating the net seasonal snow accumulation (or "winter balance") on glaciers is central to assessing glacier health and predicting glacier runoff. However, measuring and modeling snow distribution is inherently difficult in mountainous terrain, resulting in high uncertainties in estimates of winter balance. Our work focuses on uncertainty attribution within the process of converting direct measurements of snow depth and density to estimates of winter balance. We collected more than 9000 direct measurements of snow depth across three glaciers in the St. Elias Mountains, Yukon, Canada in May 2016. Linear regression (LR) and simple kriging (SK), combined with cross correlation and Bayesian model averaging, are used to interpolate estimates of snow water equivalent (SWE) from snow depth and density measurements. Snow distribution patterns are found to differ considerably between glaciers, highlighting strong inter- and intra-basin variability. Elevation is found to be the dominant control of the spatial distribution of SWE, but the relationship varies considerably between glaciers. A simple parameterization of wind redistribution is also a small but statistically significant predictor of SWE. The SWE estimated for one study glacier has a short range parameter (90 m) and both LR and SK estimate a winter balance of 0.6 m w.e. but are poor predictors of SWE at measurement locations. The other two glaciers have longer SWE range parameters ( 450 m) and due to differences in extrapolation, SK estimates are more than 0.1 m w.e. (up to 40%) lower than LR estimates. By using a Monte Carlo method to quantify the effects of various sources of uncertainty, we find that the interpolation of estimated values of SWE is a larger source of uncertainty than the assignment of snow density or than the representation of the SWE value within a terrain model grid cell. For our study glaciers, the total winter balance uncertainty ranges from 0.03 (8%) to 0.15 (54%) m w.e. depending primarily on the interpolation method. Despite the challenges associated with accurately and precisely estimating winter balance, our results are consistent with the previously reported regional accumulation gradient.
Orpwood, J E; Armstrong, J D; Griffiths, S W
2010-11-01
This study examines seasonal (winter v. summer) differences in space-time budgets, food intake and growth of Atlantic salmon Salmo salar parr in a controlled, large-scale stream environment, to examine the direction and magnitude of shifts in behaviour patterns as influenced by the availability of overhead cover and food supply. Salmo salar parr tested in the presence of overhead cover were significantly more nocturnal and occupied more peripheral positions than those tested in the absence of overhead cover. This increase in nocturnal activity was driven primarily by increased activity at night, accompanied by a reduction in daytime activity during winter. The presence of overhead cover had no effect on rates of food intake or growth for a given food supply in a given season. Growth rates were significantly higher for fish subjected to a high food supply than those subjected to a low food supply. Food supply did not affect the extent to which S. salar parr were nocturnal. These results were consistent between winter and summer. The use of riparian shading as a management technique to mitigate the effects of warming allows the adoption of more risk-averse foraging behaviour and may be particularly beneficial in circumstances where it serves also to increase the availability of food. © 2010 Crown Copyright Marine Scotland. Journal of Fish Biology © 2010 The Fisheries Society of the British Isles.
Arctic cognition: a study of cognitive performance in summer and winter at 69 degrees N
NASA Technical Reports Server (NTRS)
Brennen, T.; Martinussen, M.; Hansen, B. O.; Hjemdal, O.
1999-01-01
Evidence has accumulated over the past 15 years that affect in humans is cyclical. In winter there is a tendency to depression, with remission in summer, and this effect is stronger at higher latitudes. In order to determine whether human cognition is similarly rhythmical, this study investigated the cognitive processes of 100 participants living at 69 degrees N. Participants were tested in summer and winter on a range of cognitive tasks, including verbal memory, attention and simple reaction time tasks. The seasonally counterbalanced design and the very northerly latitude of this study provide optimal conditions for detecting impaired cognitive performance in winter, and the conclusion is negative: of five tasks with seasonal effects, four had disadvantages in summer. Like the menstrual cycle, the circannual cycle appears to influence mood but not cognition.
Is it really so bad? A comparison of positive and negative experiences in Antarctic winter stations
NASA Technical Reports Server (NTRS)
Wood, J.; Hysong, S. J.; Lugg, D. J.; Harm, D. L.
2000-01-01
This study examined the range of positive and negative themes reported by 104 Australian Antarctic winter personnel at four stations during two austral winters. Reports from the expeditioners were subjected to a content analysis using the TextSmart software from SPSS, Inc. Results indicated that, although the list of negative experiences is lengthy, most events are relatively rare. On the other hand, although the list of positive experiences is short, the frequencies with which they are reported are much greater than for most of the problems. Possible explanations for these themes and for future directions are discussed.
Implanting radio transmitters in wintering canvasbacks
Olsen, Glenn H.; Dein, F. Joshua; Haramis, G. Michael; Jorde, Dennis G.
1992-01-01
To conduct telemetry studies of wintering canvasbacks (Aythya valisineria) on Chesapeake Bay [Maryland, USA], we needed to devise a suitable method of radio transmitter attachment. We describe as aseptic, intraabdominal surgical technique, using the inhalation anesthetic isoflurane, to implant 20-g radio transmitters in free-ranging canvasbacks. We evaluated the technique over 3 winters (1987-89), when an annual average of 83 female canvasbacks received implant surgery during a 9-day period in mid-December. Of 253 ducks, 248 (98%) were implanted successfully, and 200 (80.65) completed the 70-day study until early March. No mortality or abnormal behavior from surgery was identified post-release.
Untangling the Causes of Variation in ClNO2 Yield from the WINTER Campaign
NASA Astrophysics Data System (ADS)
Fibiger, D. L.; Lopez-Hilfiker, F.; McDuffie, E. E.; Dubé, W.; Lee, B. H.; Ebben, C. J.; Sparks, T.; Wooldridge, P. J.; Weinheimer, A. J.; Montzka, D.; Schroder, J. C.; Campuzano-Jost, P.; Guo, H.; Sullivan, A.; Dibb, J. E.; Weber, R. J.; Jimenez, J. L.; Cohen, R. C.; Thornton, J. A.; Brown, S. S.
2016-12-01
Nitrogen oxides play a key role in atmospheric chemistry. In the lower troposphere they catalyze ozone (O3) production during the day, while at night they react to form nitric acid and remove O3. While these processes are well studied in summertime, winter measurements are far more limited. While summer has more active photochemistry, in winter there is greater potential for longer-range transport of pollutants as they have longer lifetimes against photochemical or heterogeneous oxidation. As part of the Wintertime INvestigation of Transport, Emission and Reactivity (WINTER) campaign, aircraft-based measurements were made over the northeastern United States of oxidized nitrogen species, their precursors and products. At night, NOX (NO + NO2) reacts with O3 to form N2O5. The N2O5 can then be taken up onto aerosol particles where it forms either two HNO3 or HNO3 and ClNO2. The balance between these pathways is important for atmospheric chemistry the next day, as ClNO2 will photolyze to yield a NO2 molecule and a Cl radical. In contrast, HNO3 does not participate in further radical chemistry. Thus, formation of ClNO2 can lead to longer-range transport of NOX as well as radical production in less polluted areas. Laboratory studies suggest that the yield of ClNO2 is dependent on the relative concentrations of aerosol chloride and liquid water, but it is unknown whether these yields can be accurately predicted based on air mass history or measured ambient aerosol composition. The observed levels of ClNO2 varied significantly throughout the WINTER campaign from below detection limit to over 2 ppbv, while the yield of ClNO2 covered its entire possible range of 0 to 1. In this study we will use the wealth of data and wide range of observed values to constrain which factors are most important in determining ClNO2 yield and to compare these yields to recent parameterizations from laboratory studies.
NASA Astrophysics Data System (ADS)
Dorrepaal, E.; Signarbieux, C.; Jassey, V.; Mills, R.; Buttler, A.; Robroek, B.
2014-12-01
Winter seasonality with extensive frost, snow cover and low incoming radiation characterise large areas at mid- and high latitudes, especially in mountain ranges and in the arctic. Given these adverse conditions, it is often assumed that ecosystem processes, such as plant photosynthesis, nutrient uptake and microbial activities, cease, or at best diminish to marginal rates compared to summer. However, snow is a good thermal insulator and a sufficiently thick snow cover might enable temperature-limited processes to continue in winter, especially belowground. Changes in winter precipitation may alter these conditions, yet, relative to the growing season, winter ecosystem processes remain poorly understood. We performed a snow-removal experiment on an ombrotrophic bog in the Swiss Jura mountains (1036 m.a.s.l.) to compare above- and belowground ecosystem processes with and without snow cover during mid- and late-winter (February and April) with the subsequent spring (June) and summer (July). The presence of 1m snow in mid-winter and 0.4m snow in late-winter strongly reduced the photosynthetic capacity (Amax) of Eriophorum vaginatum as well as the total microbial biomass compared to spring and summer values. Amax of Sphagnum magellanicum and uptake of 15N-labelled ammonium-nitrate by vascular plants were, however, almost as high or higher in mid- and late-winter as in summer. Snow removal increased the number of freeze-thaw cycles in mid-winter but also increased the minimum soil temperature in late-winter before ambient snow-melt. This strongly reduced all measured ecosystem processes in mid-winter compared to control and to spring and summer values. Plant 15N-uptake, Amax of Eriophorum and total microbial biomass returned to, or exceeded, control values soon before or after snowmelt. However, Sphagnum Amax and its length growth, as well as the structure of the microbial community showed clear carry-over effects of the reduced winter snow cover into next summer. Altogether, our data indicate that peatlands are active in winter. However, a continuous snow cover is crucial for ecosystem processes both in winter and in the subsequent summer and a reduction of snow thickness or duration due to climate change may impact on peatland ecosystem functioning at various levels.
Selected carbonyl compounds in the air of Silesia region
NASA Astrophysics Data System (ADS)
Czaplicka, Marianna; Chrobok, Michał
2018-01-01
This study was carried out to characterize three aldehydes of health concern (formaldehyde, acetaldehyde, and acrolein) at a three sites in Silesian region (Poland) in January and June 2015. Aldehydes in polluted atmospheres comes from both primary and secondary sources, which limits the control strategies for these reactive compounds. Average aldehyde concentration in summer period lies in range from 3.13 μg/m3 to 10.43 μg/m3, in winter period in range from 29.0 μg/m3 to 32.2 μg/m3. Acetaldehyde was dominant compound in winter period, in summer formaldehyde concentration was highest of all determined aldehydes.
NASA Astrophysics Data System (ADS)
Outram, Faye; Hiscock, Kevin; Dugdale, Stephen; Lovett, Andrew
2015-04-01
In order to reduce annual riverine loadings of nutrients which are responsible for degradation of ecosystems downstream and in near coastal areas, it is important to first understand the mobilisation and pathways responsible for transporting them from source to river and how these pathways vary in space and time. The Blackwater tributary of the River Wensum in Norfolk, England, has been equipped with a sensor network as part of the Demonstration Test Catchments project, which has the aim of reducing pollution from agriculture to river systems whilst maintaining food security by the trial of mitigation measures on working farms at the sub-catchment level. The River Wensum is a lowland chalk catchment with intensive arable agriculture and high occurrence of tile drainage on heavier soils. Three hydrological years of high-frequency data have been gathered in the Blackwater since October 2011, including rainfall, half hourly measurements of discharge and groundwater level coupled with hydrochemical parameters including nitrate, total phosphorus (TP) and total reactive phosphorus (TRP). In the three years of data collection, there were distinct departures from long-term rainfall averages as the winter of 2011-12 was extremely dry following a drought from the previous hydrological year, followed by a summer which was unseasonably wet, which continued into the following winter. The relationship between rainfall, storage and discharge was found to be complex, which in turn had an impact on the dominant controls transporting nutrients from the landscape to the river network. Thirty three storms occurred throughout the three year period which have been analysed in the context of the range of hydrometeorological conditions observed throughout the dataset. Discharge-concentration hysteretic responses of nitrogen, TP and TRP have been used alongside statistical analysis of storm characteristics including antecedent hydrological conditions. The nitrate storm response showed distinct seasonal patterns which were greatly impacted by the activation of tile drain flow throughout the winter period and during the fertiliser application window between March-May, with the dry winter in 2011-12 standing apart from the more 'typical' years. Four different storm response categories were identified for nitrate according to dominant flow pathways. The phosphorus response was far less uniform throughout the study period, showing patterns of exhaustion with successive events. Both nitrate and phosphorus loads were disproportionate to flow volume in storm events which occurred after significant dry periods. The data show the importance of antecedent conditions in the storage, mobilisation and transport of nitrogen and phosphorus in agricultural catchments which has important implications for the conceptual understanding of catchment functioning and environmental management.
Donaldson, Michael E; Davy, Christina M; Vanderwolf, Karen J; Willis, Craig K R; Saville, Barry J; Kyle, Christopher J
2018-02-23
Pseudogymnoascus destructans is the causal agent of bat white-nose syndrome (WNS), which is devastating some North American bat populations. Previous transcriptome studies provided insight regarding the molecular mechanisms involved in WNS; however, it is unclear how different environmental parameters could influence pathogenicity. This information could be useful in developing management strategies to mitigate the negative impacts of P. destructans on bats. We cultured three P. destructans isolates from Atlantic Canada on two growth media (potato dextrose agar and Sabouraud dextrose agar) that differ in their nitrogen source, and at two separate incubation temperatures (4 C and 15 C) that approximate the temperature range of bat hibernacula during the winter and a temperature within its optimal mycelial growth range. We conducted RNA sequencing to determine transcript levels in each sample and performed differential gene expression (DGE) analyses to test the influence of growth medium and incubation temperature on gene expression. We also compared our in vitro results with previous RNA-sequencing data sets generated from P. destructans growing on the wings of a susceptible host, Myotis lucifugus. Our findings point to a critical role for substrate and incubation temperature in influencing the P. destructans transcriptome. DGE analyses suggested that growth medium plays a larger role than temperature in determining P. destructans gene expression and that although the psychrophilic fungus responds to different nitrogen sources, it may have evolved for continued growth at a broad range of low temperatures. Further, our data suggest that down-regulation of the RNA-interference pathway and increased fatty acid metabolism are involved in the P. destructans-bat interaction. Finally, we speculate that to reduce the activation of host defense responses, P. destructans minimizes changes in the expression of genes encoding secreted proteins during bat colonization.
Territoriality, site fidelity, and survivorship of willow flycatchers wintering in Costa Rica
Koronkiewicz, T.J.; Sogge, M.K.; van Riper, Charles; Paxton, E.H.
2006-01-01
We studied wintering Willow Flycatchers (Empidonax traillii) in two seasonal freshwater wetland habitats in northwestern Costa Rica during five boreal winters, to determine habitat occupancy, overwinter and between-year site and territory fidelity, and the degree to which the sexes maintain and defend winter territories. Both males and females used agonistic displays, song, and other vocalizations to maintain and defend mutually exclusive winter territories. Males were generally more abundant than females, but this varied by site and year. There was no significant difference in male and female territory size, nor any indication of sexual habitat segregation. Similarity in morphology and aggressiveness between the sexes may account for the lack of habitat segregation and the ability of females to maintain territories at wintering sites. Each year, 80%-92% of banded flycatchers that were present in midwinter remained at the site until late winter; of these, 86%-100% of individuals maintained the same territories throughout the entire period. We also observed nonterritorial floaters that subsequently established and held winter territories. Between-year site fidelity averaged 68%, and almost all returning birds established territories with boundaries similar to the previous year. Between-year apparent survivorship estimates ranged annually from 54%-72%, with no difference between sites but weak support for higher survivorship of males compared to females. Values for winter site and territory fidelity were generally higher than those reported for other species and for Willow Flycatchers on the breeding grounds; between-year survivorship estimates were similar to those reported for breeding flycatchers. ?? The Cooper Ornithological Society 2006.
Osland, Michael J.; Day, Richard H.; Doyle, Thomas W.; Enwright, Nicholas
2013-01-01
We live in an era of unprecedented ecological change in which ecologists and natural resource managers are increasingly challenged to anticipate and prepare for the ecological effects of future global change. In this study, we investigated the potential effect of winter climate change upon salt marsh and mangrove forest foundation species in the southeastern United States. Our research addresses the following three questions: (1) What is the relationship between winter climate and the presence and abundance of mangrove forests relative to salt marshes; (2) How vulnerable are salt marshes to winter climate change-induced mangrove forest range expansion; and (3) What is the potential future distribution and relative abundance of mangrove forests under alternative winter climate change scenarios? We developed simple winter climate-based models to predict mangrove forest distribution and relative abundance using observed winter temperature data (1970–2000) and mangrove forest and salt marsh habitat data. Our results identify winter climate thresholds for salt marsh–mangrove forest interactions and highlight coastal areas in the southeastern United States (e.g., Texas, Louisiana, and parts of Florida) where relatively small changes in the intensity and frequency of extreme winter events could cause relatively dramatic landscape-scale ecosystem structural and functional change in the form of poleward mangrove forest migration and salt marsh displacement. The ecological implications of these marsh-to-mangrove forest conversions are poorly understood, but would likely include changes for associated fish and wildlife populations and for the supply of some ecosystem goods and services.
Measured Performance of a Low Temperature Air Source Heat Pump
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, R. K.
2013-09-01
A 4-ton Low Temperature Heat Pump (LTHP) manufactured by Hallowell International was installed in a residence near New Haven, Connecticut and monitored over two winters of operation. After attending to some significant service issues, the heat pump operated as designed. This report should be considered a review of the dual compressor 'boosted heat pump' technology. The Low Temperature Heat Pumpsystem operates with four increasing levels of capacity (heat output) as the outdoor temperature drops. The system was shown to select capacity correctly, supplying the appropriate amount of heat to the house across the full range of outdoor temperatures. The system'smore » Coefficient of Performance (Seasonal COP, or SCOP) over two entire winters was calculated, based on measured data, to be 3.29over the first winter and 2.68 over the second winter. A second seasonal efficiency calculation by a different method yielded a SCOP of 2.78 for the first winter and 2.83 for the second winter. This second seasonal efficiency calculation was determined by comparing measured heat pump energy use to the in situ energy use with resistance heat alone. This method is the ratio of the slopes of thedaily energy use load lines.« less
Turgut, Altan; Orr, Marshall; Pasewark, Bruce
2007-05-01
Waveguide invariant theory is used to describe the frequency shifts of constant acoustic intensity level curves in broadband signal spectrograms measured at the New Jersey Shelf during the winter of 2003. The broadband signals (270-330 Hz) were transmitted from a fixed source and received at three fixed receivers, located at 10, 20, and 30 km range along a cross-shelf propagation track. The constant acoustic intensity level curves of the received signals indicate regular frequency shifts that can be well predicted by the change in water depth observed through tens of tidal cycles. A second pattern of frequency shifts is observed at only 30 km range where significant variability of slope-water intrusion was measured. An excellent agreement between observed frequency shifts of the constant acoustic intensity levels and those predicted by the change in tide height and slope water elevations suggests the capability of long-term acoustic monitoring of tide and slope water intrusions in winter conditions.
Old Growth Conifer Watersheds in the Western Cascades, Oregon: Sentinels of Climate Change
NASA Astrophysics Data System (ADS)
Miles, K. M.
2011-12-01
In the Pacific Northwest, where the majority of precipitation falls during the winter, mountain snowpacks provide an important source of streamflow during the dry summer months when water demands are frequently highest. Increasing temperatures associated with climate change are expected to result in a decline in winter snowpacks in western North America, earlier snowmelt, and subsequently a shift in the timing of streamflows, with an increasing fraction of streamflows occurring earlier in the water year and drier conditions during the summer. Long-term records from headwater watersheds in old growth conifer forest at the H. J. Andrews Experimental Forest (HJ Andrews), Oregon, provide the opportunity to examine changes in climate, vegetation, and streamflow. Continuous streamflow records have been collected since 1953, 1964, and 1969 from three small (8.5-60 ha) watersheds (WS2, WS8, and WS9). Over the 40- to 50-year period of study, late winter to early summer monthly average minimum temperatures have increased by 1-2°C, and spring snow water equivalent at a nearby Snotel site has declined, but monthly precipitation has remained unchanged. Spring runoff ratios have declined in by amounts equivalent to 0.59-2.45 mm day-1 at WS2, WS8, and WS9, which are comparable to estimated rates of stand-level transpiration from trees in these watersheds. However, winter runoff ratios have not changed significantly at either WS2 or WS9, and have actually decreased at WS8 by 2.43 mm day-1 over the period of record. Furthermore, summer runoff ratios have not changed significantly at either WS8 or WS9, and have increased at WS2 by 0.34 mm day-1 over the period of record. These findings suggest that warming temperatures have resulted in a reduction in spring snowpacks and an earlier onset of evapotranspiration in the spring when soil moisture is abundant, but physiological responses of these conifer forests to water stress and water surplus may mitigate or exceed the expression of a climate warming effect on winter or summer streamflow.
Assessment and Mitigation of Electromagnetic Pulse (EMP) Impacts at Short-pulse Laser Facilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Jr., C G; Bond, E; Clancy, T
2009-10-02
The National Ignition Facility (NIF) will be impacted by electromagnetic pulse (EMP) during normal long-pulse operation, but the largest impacts are expected during short-pulse operation utilizing the Advanced Radiographic Capability (ARC). Without mitigation these impacts could range from data corruption to hardware damage. We describe our EMP measurement systems on Titan and NIF and present some preliminary results and thoughts on mitigation.
Assessment and Mitigation of Electromagnetic Pulse (EMP) Impacts at Short-pulse Laser Facilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Jr., C G; Bond, E; Clancy, T
2010-02-04
The National Ignition Facility (NIF) will be impacted by electromagnetic pulse (EMP) during normal long-pulse operation, but the largest impacts are expected during short-pulse operation utilizing the Advanced Radiographic Capability (ARC). Without mitigation these impacts could range from data corruption to hardware damage. We describe our EMP measurement systems on Titan and NIF and present some preliminary results and thoughts on mitigation.
2007 Precision Strike Winter Roundtable - Precision Engagement - Strategic Context for the Long War
2007-02-01
but also to import Mercedes - Benzes , pricey cognacs and other luxury items to buy loyalty. Washington fears that North Korea could decide to use its...Cappuccio—Executive Vice President and General Manager, Advanced Development Programs & Strategic Planning, Lockheed Martin Company JOINT INNOVATION ... Innovative Minds Lockheed Martin Aeronautics Company Frank Cappuccio, February 1, 2007 Precision Strike Winter Roundtable “Long Range Strike Weapons” 2Lockheed
Strategic Studies Quarterly. Volume 6, Number 4, Winter 2012
2012-01-01
surfaced in Australia, where a disgruntled employee rigged a computerized control system at a water treatment plant and...strategy" refers to a multilinear whole-of-government method geared to overcome the resistance and effects of a rival’s A2/AD strategy. r * Anti-Access...counterspace tech- nologies, and long-range surface -to-air missiles. To a force that intends to [44] STRATEGIC STUDIES QUARTERLY ♦ WINTER 2012
Joseph L. Ganey; Sean C. Kyle; Todd A. Rawlinson; Darrell L. Apprill; James P Ward
2014-01-01
Mexican Spotted Owls (Strix occidentalis lucida) are common in older forests within their range but also persist in many areas burned by wildfire and may selectively forage in these areas. One hypothesis explaining this pattern postulates that prey abundance increases in burned areas following wildfire. We observed movement to wintering areas within areas burned by...
Body-mass, survival, and pairing consequences of winter-diet restriction in wood ducks
Demarest, D.W.; Kaminski, R.M.; Brennan, L.A.; Boyle, C.R.
1997-01-01
We conducted feeding experiments with captive, wild-strain wood ducks (Aix sponsa) during winters 1990-91 and 1991-92 to test effects of increasing levels of food restriction on body mass dynamics, mortality, and pair formation. Male and female wood ducks fed restricted diets (i.e., 5, 10, 15, or 20% less food [g] than consumed on the previous day by a control group fed ad libitum) weighed less (P ??? 0.037) than birds fed ad libitum; those on 15 and 20% restricted diets weighed least. Increased mortality and decreased pair formation occurred only within the 20% restricted group (P ??? 0.049). We concluded that food restriction ranging between 15 and 20% of ad libitum intake may signify a threshold above which survival and reproduction of captive wood ducks may be impaired. Because energy costs of free living are greater than in captivity, a lower threshold may exist for wild wood ducks. Research is needed to validate the threshold theory for free-ranging wood ducks and other waterfowl, and to evaluate its potential application for conservation of winter foraging habitat. Conservation of bottomland hardwood ecosystems, which provide important foraging habitat for migrating and wintering wood ducks, should be encouraged to prevent potential negative effects on wood duck life-cycle events.
Movements and bioenergetics of canvasbacks wintering in the upper Chesapeake Bay
Howerter, D.W.
1990-01-01
The movement patterns, range areas and energetics of canvasbacks (Aythya valisineria) wintering in the upper Chesapeake Bay, Maryland, were investigated. Eighty-seven juvenile female canvasbacks were radio-tracked between 30 December 1988 and 25 March 1989. Diurnal time and energy budgets were constructed for a time of day-season matrix for canvasbacks using riverine and main bay habitats. Canvasbacks were very active at night, making regular and often lengthy crepuscular movements (x = 11.7 km) from near shore habitats during the day to off shore habitats at night. Movement patterns were similar for birds using habitats on the eastern and western shores of the Bay. Canvasbacks had extensive home ranges averaging 14,286 ha, and used an average of 1.97 core areas. Sleeping was the predominant diurnal behavior. Telemetry indicated that canvasbacks actively fed at night. Canvasbacks spent more time in active behaviors (e.g. swimming, alert) on the eastern shore than on the western shore. Similarly, canvasbacks were more active during daytime hours at locations where artificial feeding occurred. Behavioral patterns were only weakly correlated with weather patterns. Canvasbacks appeared to reduce energy expenditure in mid-winter by reducing distances moved, reducing feeding activities and increasing the amount of time spent sleeping. This pattern was observed even though 1988-89 mid-winter weather conditions were very mild.
Performance evaluation of Ormat unit at Wabuska, Nevada. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Culver, G.
1986-07-01
Three nominal 24 hour tests under summer, winter and spring weather conditions, were run on an Ormat geothermal binary power generation machine. The machine, located at TAD's Enterprises in Wabuska, Nevada is supplied with approximately 830 gpm of geothermal water at 221/sup 0/F and has two spray cooling ponds. During the tests, temperature, pressure, and flows of geothermal water, freon, cooling water and instantaneous electrical production were recorded hourly. At least once during each test, energy consumption of the well pump, freon feed pump and cooling water pumps were made. Power output of the machine is limited by spray pondmore » capacity. Net output ranged from 410.2 kW during summer conditions when cooling water was 65/sup 0/F to 610.4 kW during winter conditions when cooling water was 55/sup 0/F. Net resource utilization ranged from 1.005 Whr/lb during the summer test to 1.55 Whr/lb during the winter test. Spray pond performance averaged 63% for the fall and winter tests. Availability of the Ormat unit itself during the eight month test period was generally good, averaging 95.5%. Overall system availability, including well pumps, cooling system and electric grid was somewhat less - averaging 83%.« less
Evening flights of female northern pintails from a major roost site
Cox, R.R.; Afton, A.D.
1996-01-01
We monitored evening flights of female Northern Pintails (Anas acuta) from Lacassine National Wildlife Refuge (NWR) in southwestern Louisiana during winters of 1991-1992 and 1992-1993. We analyzed the influence of female age, winter, and date within wintering period on three flight parameters: distance, duration, and departure time. Flight distance and duration increased with date within wintering period, and age differences in flight distance and duration were not consistent between winters. Females departed 12 min later, on average, on clear, moonlit evenings than on overcast, moonless evenings, and 4 min later when winds were light rather than heavy. After controlling for variation due to environmental conditions, immature females departed Lacassine NWR 1.3 min earlier, on average, than did adults. Flight parameters of females did not differ between hunting and non-hunting time periods. Estimated daily transit costs ranged from 27-54% of basal metabolic rate, 7-19% of daily energy expenditure, and 8-20% of daily dietary intake of rice (Oryza sativa). Our findings that flight distance and duration increased with date within wintering period were consistent with predictions of refuging theory, but alternative hypotheses also could explain these results. Evening flights of Northern Pintails roosting on Lacassine NWR were greater in distance and duration than those reported for most other species of wintering waterfowl. We recommend that proximity of refuges to feeding sites be considered in conservation and management plans for wintering Northern Pintails and other refuging waterfowl.
Bleiker, K P; Smith, G D; Humble, L M
2017-10-01
Winter mortality is expected to be a key factor determining the ability of mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae), to expand its range in Canada. We determined the mortality rate and supercooling points of eggs from the beetle's historic range in southern British Columbia as well as the recently expanded range in north-central Alberta and tested if eggs require an extended period of chilling to reach their maximum cold tolerance. We found no effect of population source or acclimation time on egg cold tolerance. Although 50% of eggs can survive brief exposure to -20.5 °C (LT50), storage at 0.3 °C and -7.5 °C for 59 d resulted in 50% and 100% mortality, respectively. Our results indicate that eggs suffer significant prefreeze mortality and are not well-adapted to overwintering: eggs are unlikely to survive winter throughout much of the beetle's range. Our results provide information that can be used to help model the climatic suitability of mountain pine beetle, including how changes in seasonality associated with new or changing climates may affect winter survival. In addition to lower lethal temperatures, it is critical that the duration of exposure to sublethal cold temperatures are considered in a comprehensive index of cold tolerance and incorporated into survival and population models. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Shared responsibility for managing fatigue: Hearing the pilots
O’Keeffe, Karyn M.; Signal, T. Leigh; Gander, Philippa H.
2018-01-01
In commercial aviation, fatigue is defined as a physiological state of reduced mental or physical performance capability resulting from sleep loss, extended wakefulness, circadian phase, and/or workload. The International Civil Aviation Organisation mandates that responsibility for fatigue risk management is shared between airline management, pilots, and support staff. However, to date, the majority of research relating to fatigue mitigations in long range operations has focused on the mitigations required or recommended by regulators and operators. Little research attention has been paid to the views or operational experience of the pilots who use these (or other) mitigations. This study focused on pilots’ views and experiences of in-flight sleep as the primary fatigue mitigation on long range flights. It also sought information about other fatigue mitigation strategies they use. Thematic analysis was used to explore written comments from diary and survey data collected during long range and ultra-long range trips (N = 291 pilots on three different aircraft types, 17 different out-and-back trips, and four airlines based on three continents). The findings indicate that the recommended fatigue mitigation strategies on long-haul flights (particularly in-flight sleep) are effective and well-utilised, consistent with quantitative findings from the same trips. Importantly however, the analyses also highlight areas that require further investigation, including flight preparation strategies in relation to the uncertainty of in-flight break allocation. There were two strategies for sleep prior to a flight: maximising sleep if pilots were expecting later breaks in the flight; or minimising sleep if they were expecting breaks earlier or at unfavourable times in the circadian cycle. They also provide a broader view of the factors that affect the amount and quality of pilots’ in-flight sleep, about which evidence has previously been largely anecdotal. The study underscores the value of including the views and experience of pilots in fatigue risk management. PMID:29782533
High altitude flights by ruddy shelduck Tadorna ferruginea during trans-Himalayan migrations
Parr, N.; Bearhop, S.; Douglas, David C.; Takekawa, J.Y.; Prosser, Diann J.; Newman, S.H.; Perry, W.M.; Balachandran, S.; Witt, M.J.; Hou, Y.; Luo, Z.; Hawkes, L.A.
2017-01-01
Birds that migrate across high altitude mountain ranges are faced with the challenge of maintaining vigorous exercise in environments with limited oxygen. Ruddy shelducks are known to use wintering grounds south of the Tibetan Plateau at sea level and breeding grounds north of Himalayan mountain range. Therefore, it is likely these shelducks are preforming high altitude migrations. In this study we analyse satellite telemetry data collected from 15 ruddy shelduck from two populations wintering south of the Tibetan Plateau from 2007 to 2011. During north and south migrations ruddy shelduck travelled 1481 km (range 548–2671 km) and 1238 km (range 548–2689 km) respectively. We find mean maximum altitudes of birds in flight reached 5590 m (range of means 4755–6800 m) and mean maximum climb rates of 0.45 m s–1 (range 0.23–0.74 m s–1). The ruddy shelduck is therefore an extreme high altitude migrant that has likely evolved a range of physiological adaptations in order to complete their migrations.
Methane mitigation shows significant benefits towards achieving the 1.5 degree target.
NASA Astrophysics Data System (ADS)
Collins, W.; Webber, C.; Cox, P. M.; Huntingford, C.; Lowe, J. A.; Sitch, S.
2017-12-01
Most analyses of allowable carbon emissions to achieve the 1.5 degree target implicitly assume that the ratio of CO2 to non-CO2 greenhouse gases remains near constant, and that all radiative forcing factors have similar impacts on land and ocean carbon storage. Here we determine how plausible reductions in methane emissions will make the carbon targets more feasible. We account for the latest estimates of the methane radiative effect as well as the indirect effects of methane on ozone. We particularly address the differing effects of methane and CO2 mitigation on the land carbon storage including via reduced concentrations of surface ozone. The methodology uses an intermediate complexity climate model (IMOGEN) coupled to a land surface model (JULES) which represents the details of the terrestrial carbon cycle. The carbon emissions inputs to IMOGEN are varied to find allowable pathways consistent with the Paris 1.5 K or 2.0 K targets. The IMOGEN physical parameters are altered to represent the climate characteristics of 38 CMIP5 models (such as climate sensitivity) to provide bounds on the range of allowable CO2 emissions. We examine the effects of three different methane mitigation options that are broadly consistent with the ranges in the SSP scenarios: little mitigation, cost-optimal mitigation, and maximal mitigation. The land and ocean carbon storage increases with methane mitigation, allowing more flexibility in CO2 emission reduction. This is mostly since CO2 fertilisation is reduced less with high methane mitigation, with a small contribution from reduced plant damage with lower surface ozone levels.
Tsai, Jiun-Horng; Chang, Li-Peng; Chiang, Hung-Lung
2013-07-01
A Micro-Orifice Uniform Deposition Impactor (MOUDI) and a Nano-MOUDI were employed to determine the size-segregated mass distributions of ambient particulate matter (PM) and water-soluble ionic species for particulate constituents. In addition, gas precursors, including HCl, HONO, HNO3, SO2, and NH3 gases, were analyzed by an annular denuder system. PM size mass distribution, mass concentration, and ionic species concentration were measured during the day and at night during episode and non-episode periods in winter and summer. Average total suspended particle (TSP) concentrations during episode days in winter were as high as 153 ± 33 μg/m(3), and PM mass concentrations in summer were as low as one-third of that in winter. Generally, PM concentration at night was higher than that in the daytime in southern Taiwan during the sampling periods. In winter during the episode periods, the size-segregated mass distribution of PM mass concentration was mostly in the 0.32-3.2-μm range, and the PM concentration increased significantly in the range of 0.32-3.2 μm at night. Ammonium, nitrate, and sulfate were the dominant water-soluble ionic species in PM, contributing 34-48% of TSP mass. High concentrations of ammonia (12.9-49 μg/m(3)) and SO2 (2.6-27 μg/m(3)) were observed in the gas precursors. The conversion ratio was high in the PM size range of 0.18-3.2 μm both during the day and at night in winter, and the conversion ratio of episode days was 20% higher than that of non-episode days. The conversion factor was high for both nitrogen and sulfur species at nighttime, especially on episode days.
Seebacher, Frank; Elsey, Ruth M; Trosclair, Phillip L
2003-01-01
Regulation of body temperature may increase fitness of animals by ensuring that biochemical and physiological processes proceed at an optimal rate. The validity of current methods of testing whether or not thermoregulation in reptiles occurs is often limited to very small species that have near zero heat capacity. The aim of this study was to develop a method that allows estimation of body temperature null distributions of large reptiles and to investigate seasonal thermoregulation in the American alligator (Alligator mississippiensis). Continuous body temperature records of wild alligators were obtained from implanted dataloggers in winter (n=7, mass range: 1.6-53.6 kg) and summer (n=7, mass range: 1.9-54.5 kg). Body temperature null distributions were calculated by randomising behavioural postures, thereby randomly altering relative animal surface areas exposed to different avenues of heat transfer. Core body temperatures were predicted by calculations of transient heat transfer by conduction and blood flow. Alligator body temperatures follow regular oscillations during the day. Occasionally, body temperature steadied during the day to fall within a relatively narrow range. Rather than indicating shuttling thermoregulation, however, this pattern could be predicted from random movements. Average daily body temperature increases with body mass in winter but not in summer. Daily amplitudes of body temperature decrease with increasing body mass in summer but not in winter. These patterns result from differential exposure to heat transfer mechanisms at different seasons. In summer, alligators are significantly cooler than predictions for a randomly moving animal, and the reverse is the case in winter. Theoretical predictions show, however, that alligators can be warmer in winter if they maximised their sun exposure. We concluded that alligators may not rely exclusively on regulation of body temperature but that they may also acclimatise biochemically to seasonally changing environmental conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, Qian; Sun, Ning; Yearsley, John
We apply an integrated hydrology-stream temperature modeling system, DHSVM-RBM, to examine the response of the temperature of the major streams draining to Puget Sound to land cover and climate change. We first show that the model construct is able to reconstruct observed historic streamflow and stream temperature variations at a range of time scales. We then explore the relative effect of projected future climate and land cover change, including riparian vegetation, on streamflow and stream temperature. Streamflow in summer is likely to decrease as the climate warms especially in snowmelt-dominated and transient river basins despite increased streamflow in their lowermore » reaches associated with urbanization. Changes in streamflow also result from changes in land cover, and changes in stream shading result from changes in riparian vegetation, both of which influence stream temperature. However, we find that the effect of riparian vegetation changes on stream temperature is much greater than land cover change over the entire basin especially during summer low flow periods. Furthermore, while future projected precipitation change will have relatively modest effects on stream temperature, projected future air temperature increases will result in substantial increases in stream temperature especially in summer. These summer stream temperature increases will be associated both with increasing air temperature, and projected decreases in low flows. We find that restoration of riparian vegetation could mitigate much of the projected summer stream temperature increases. We also explore the contribution of riverine thermal loadings to the heat balance of Puget Sound, and find that the riverine contribution is greatest in winter, when streams account for up to 1/8 of total thermal inputs (averaged from December through February), with larger effects in some sub-basins. We project that the riverine impact on thermal inputs to Puget Sound will become greater with both urbanization and climate change in winter but become smaller in summer due to climate change.« less
Very-short range forecasting system for 2018 Pyeonchang Winter Olympic and Paralympic games
NASA Astrophysics Data System (ADS)
Nam, Ji-Eun; Park, Kyungjeen; Kim, Minyou; Kim, Changhwan; Joo, Sangwon
2016-04-01
The 23rd Olympic Winter and the 13th Paralympic Winter Games will be held in Pyeongchang, Republic of Korea respectively from 9 to 25 February 2018 and from 9 to 18 February 2018. The Korea Meteorological Administration (KMA) and the National Institute for Meteorological Science (NIMS) have the responsibility to provide weather information for the management of the Games and the safety of the public. NIMS will carry out a Forecast Demonstration Project (FDP) and a Research and Development Project (RDP) which will be called ICE-POP 2018. These projects will focus on intensive observation campaigns to understand severe winter weathers over the Pyeongchang region, and the research results from the RDP will be used to improve the accuracy of nowcasting and very short-range forecast systems during the Games. To support these projects, NIMS developed Very-short range Data Assimilation and Prediction System (VDAPS), which is run in real time with 1 hour cycling interval and up to 12 hour forecasts. The domain is covering Korean Peninsular and surrounding seas with 1.5km horizontal resolution. AWS, windprofiler, buoy, sonde, aircraft, scatwinds, and radar radial winds are assimilated by 3DVAR on 3km resolution inner domain. The rain rate is converted into latent heat and initialized via nudging. The visibility data are also assimilated with the addition of aerosol control variable. The experiments results show the improvement in rainfall over south sea of Korean peninsula. In order to reduce excessive rainfalls during first 2 hours due to the reduced cycling interval, the data assimilation algorithm is optimized.
Predictability of CFSv2 in the tropical Indo-Pacific region, at daily and subseasonal time scales
NASA Astrophysics Data System (ADS)
Krishnamurthy, V.
2018-06-01
The predictability of a coupled climate model is evaluated at daily and intraseasonal time scales in the tropical Indo-Pacific region during boreal summer and winter. This study has assessed the daily retrospective forecasts of the Climate Forecast System version 2 from the National Centers of Environmental Prediction for the period 1982-2010. The growth of errors in the forecasts of daily precipitation, monsoon intraseasonal oscillation (MISO) and the Madden-Julian oscillation (MJO) is studied. The seasonal cycle of the daily climatology of precipitation is reasonably well predicted except for the underestimation during the peak of summer. The anomalies follow the typical pattern of error growth in nonlinear systems and show no difference between summer and winter. The initial errors in all the cases are found to be in the nonlinear phase of the error growth. The doubling time of small errors is estimated by applying Lorenz error formula. For summer and winter, the doubling time of the forecast errors is in the range of 4-7 and 5-14 days while the doubling time of the predictability errors is 6-8 and 8-14 days, respectively. The doubling time in MISO during the summer and MJO during the winter is in the range of 12-14 days, indicating higher predictability and providing optimism for long-range prediction. There is no significant difference in the growth of forecasts errors originating from different phases of MISO and MJO, although the prediction of the active phase seems to be slightly better.
Conserving migratory mule deer through the umbrella of sage-grouse
Copeland, H. E.; Sawyer, H.; Monteith, K. L.; Naugle, D.E.; Pocewicz, Amy; Graf, N.; Kauffman, Matthew J.
2014-01-01
Conserving migratory ungulates in increasingly human-dominated landscapes presents a difficult challenge to land managers and conservation practitioners. Nevertheless, ungulates may receive ancillary benefits from conservation actions designed to protect species of greater conservation priority where their ranges are sympatric. Greater Sage-Grouse (Centrocerus urophasianus), for example, have been proposed as an umbrella species for other sagebrush (Artemesia spp.)-dependent fauna. We examined a landscape where conservation efforts for sage-grouse overlap spatially with mule deer (Odocoileus hemionus) to determine whether sage-grouse conservation measures also might protect important mule deer migration routes and seasonal ranges. We conducted a spatial analysis to determine what proportion of migration routes, stopover areas, and winter ranges used by mule deer were located in areas managed for sage-grouse conservation. Conservation measures overlapped with 66–70% of migration corridors, 74–75% of stopovers, and 52–91% of wintering areas for two mule deer populations in the upper Green River Basin of Wyoming. Of those proportions, conservation actions targeted towards sage-grouse accounted for approximately half of the overlap in corridors and stopover areas, and nearly all overlap on winter ranges, indicating that sage-grouse conservation efforts represent an important step in conserving migratory mule deer. Conservation of migratory species presents unique challenges because although overlap with conserved lands may be high, connectivity of the entire route must be maintained as barriers to movement anywhere within the migration corridor could render it unviable. Where mule deer habitats overlap with sage-grouse core areas, our results indicate that increased protection is afforded to winter ranges and migration routes within the umbrella of sage-grouse conservation, but this protection is contingent on concentrated developments within core areas not intersecting with high-priority stopovers or corridors, and that the policy in turn does not encourage development on deer ranges outside of core areas. With the goal of protecting entire migration routes, our analysis highlights areas of potential conservation focus for mule deer, which are characterized by high exposure to residential development and use by a large proportion of migrating deer.
Modeling Caribou Movements: Seasonal Ranges and Migration Routes of the Central Arctic Herd
Nicholson, Kerry L.; Arthur, Stephen M.; Horne, Jon S.; Garton, Edward O.; Del Vecchio, Patricia A.
2016-01-01
Migration is an important component of the life history of many animals, but persistence of large-scale terrestrial migrations is being challenged by environmental changes that fragment habitats and create obstacles to animal movements. In northern Alaska, the Central Arctic herd (CAH) of barren-ground caribou (Rangifer tarandus granti) is known to migrate over large distances, but the herd’s seasonal distributions and migratory movements are not well documented. From 2003–2007, we used GPS radio-collars to determine seasonal ranges and migration routes of 54 female caribou from the CAH. We calculated Brownian bridges to model fall and spring migrations for each year and used the mean of these over all 4 years to identify areas that were used repeatedly. Annual estimates of sizes of seasonal ranges determined by 90% fixed kernel utilization distributions were similar between summer and winter (X̅ = 27,929 SE = 1,064 and X̅ = 26,585 SE = 4912 km2, respectively). Overlap between consecutive summer and winter ranges varied from 3.3–18.3%. Percent overlap between summer ranges used during consecutive years (X̅ = 62.4% SE = 3.7%) was higher than for winter ranges (X̅ = 42.8% SE = 5.9%). Caribou used multiple migration routes each year, but some areas were used by caribou during all years, suggesting that these areas should be managed to allow for continued utilization by caribou. Restoring migration routes after they have been disturbed or fragmented is challenging. However, prior knowledge of movements and threats may facilitate maintenance of migratory paths and seasonal ranges necessary for long-term persistence of migratory species. PMID:27045587
NASA Technical Reports Server (NTRS)
Knudsen, Bjorn; Vondergathen, Peter; Braathen, Geir O.; Fabian, Rolf; Jorgensen, Torben S.; Kyro, Esko; Neuber, Roland; Rummukainen, Markku
1994-01-01
Ozone sonde data of the winters 1988/89, 1989/90, and 1990/91 from a group of Arctic stations are used in this study. The ozone mixing ratio on several isentropic surfaces is correlated to the potential vorticity (P). The P is based on the initialized analysis data from the European Center for Medium-Range Weather Forecasts. Similar investigations were made by Lait et al. (Geophys. Res. Lett., 17, 521-524, March Supplement 1990) for the AASE campaign (January and February 1989), showing how the ozone mixing ratio varies with the distance to the edge of the vortex. Their findings are confirmed and extended to the following two winters. Furthermore we have studied the temporal development of the P-ozone correlations during these winters in order to recognize any chemical ozone depletion.
The structure and toxicity of winter cyanobacterial bloom in a eutrophic lake of the temperate zone.
Wejnerowski, Łukasz; Rzymski, Piotr; Kokociński, Mikołaj; Meriluoto, Jussi
2018-06-22
Winter cyanobacterial blooms have become increasingly common in eutrophic lakes advocating a need for their monitoring and risk assessment. The present study evaluated the toxicity of a winter cyanobacterial bloom in a eutrophicated freshwater lake located in Western Poland. The bloom was dominated by potentially toxic species: Planktothrix agardhii, Limnothrix redekei, and Aphanizomenon gracile. The toxin analysis revealed the presence of demethylated forms of microcystin-RR and microcystin-LR in ranges of 24.6-28.7 and 6.6-7.6 µg/L, respectively. The toxicity of sampled water was further evaluated in platelet-rich plasma isolated from healthy human subjects using lipid peroxidation and lactate dehydrogenase assays. No significant adverse effects were observed. The present study demonstrates that toxicity of some winter cyanobacterial blooms in the temperate zone, like that in Lubosińskie Lake, may not exhibit significant health risks despite microcystin production.
Gray, Kathryn T; Escobar, Astrid M; Schaeffer, Paul J; Mineo, Patrick M; Berner, Nancy J
2016-06-01
Seasonal acclimatization permits organisms to maintain function in the face of environmental change. Tadpoles of the green frog (Lithobates clamitans) overwinter as tadpoles in much of their range. Because they are active in winter, we hypothesized that green frog tadpoles would display acclimatization of metabolic and locomotor function. We collected tadpoles in Sewanee, Tennessee (35.2°N) in winter and summer. Tadpoles collected during each season were tested at both winter (8°C) and summer (26°C) temperatures. Winter tadpoles were able to maintain swimming performance at both temperatures, whereas swimming performance decreased at cold temperatures in summer tadpoles. There was no evidence for seasonal acclimatization of whole-animal metabolic rate. Although whole-animal metabolic acclimatization was not observed, the activities of cytochrome c oxidase, citrate synthase, and lactate dehydrogenase measured in skeletal muscle homogenates showed higher activity in winter-acclimatized tadpoles indicating compensation for temperature. Further, the composition of muscle membranes of winter tadpoles had less saturated and more monounsaturated fatty acids and a higher ω-3 balance, unsaturation index, and peroxidation index than summer tadpoles. These data indicate that reversible phenotypic plasticity of thermal physiology occurs in larval green frog tadpoles. They appear to compensate for colder temperatures to maintain burst-swimming velocity and the ability to escape predators without the cost of maintaining a constant, higher standard metabolic rate in the winter. © 2016 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Meshalkina, Joulia; Yaroslavtsev, Alexis; Vassenev, Ivan
2017-04-01
Croplands could have equal or even greater net ecosystem production than several natural ecosystems (Hollinger et al., 2004), so agriculture plays a substantial role in mitigation strategies for the reduction of carbon dioxide emissions. In Central Russia, where agricultural soils carbon loses are 9 time higher than natural (forest's) soils ones (Stolbovoi, 2002), the reduction of carbon dioxide emissions in agroecosystems must be the central focus of the scientific efforts. Although the balance of the CO2 mostly attributed to management practices, limited information exists regarding the crop rotation overall as potential of C sequestration. In this study, we present data on carbon balance of the typical grain crop rotation in Moscow region followed for 4 years by measuring CO2 fluxes by paired eddy covariance stations (EC). The study was conducted at the Precision Farming Experimental Fields of the Russian Timiryazev State Agricultural University, Moscow, Russia. The experimental site has a temperate and continental climate and situated in south taiga zone with Arable Sod-Podzoluvisols (Albeluvisols Umbric). Two fields of the four-course rotation were studied in 2013-2016. Crop rotation included winter wheat (Triticum sativum L.), barley (Hordeum vulgare L.), potato crop (Solanum tuberosum L.) and cereal-legume mixture (Vicia sativa L. and Avena sativa L.). Crops sowing occurred during the period from mid-April to mid-May depending on weather conditions. Winter wheat was sown in the very beginning of September and the next year it occurred from under the snow in the phase of tillering. White mustard (Sinapis alba) was sown for green manure after harvesting winter wheat in mid of July. Barley was harvested in mid of August, potato crop was harvested in September. Cereal-legume mixture on herbage was collected depending on the weather from early July to mid-August. Carbon uptake (NEE negative values) was registered only for the fields with winter wheat and white mustard; perhaps because the two crops were cultivated on the same field within one growing season. Other cases showed CO2 emission. NEE for barley field was equal to zero or even positive during the whole year; considering only the growing season, NEE for barley was about 100 g C m-2 lower and usually was negative. Carbon uptake for cereals was strongly related with weather conditions: in favorable years it was higher. Potato crop and cereal-legume mixture showed difference in 50-100 g C m-2 per year in NEE in different years related to difference in yields. The total agroecosystems respiration ranged from 400 to 550 g C m-2 per year and was closely linked to weather conditions. Closed balance for whole years showed that carbon losses were observed for all studied agroecosystems. It was minimal for fields with winter wheat, with mustard, used as green manure, and it was maximal for fields with cereal-legume mixture. Values about 200-250 g C m-2 per year may be considered as estimated values for the total carbon loss for the typical grain crop rotation in Moscow region. The use of mustard as a green manure reduced this value by three-quarters.
Bigger is not always better for overwintering young-of-year steelhead
Connolly, P.J.; Petersen, J.H.
2003-01-01
Many fishes occur across broad ranges of latitude and elevation, where winter temperatures can vary from mild to harsh. We conducted a laboratory experiment with three sizes of age-0 steelhead Oncorhynchus mykiss to examine growth, condition, and energy reserves under low rations at three levels of water temperature typical of this species' distribution during winter. At the end of the 111-d experiment, all three starting sizes of age-0 steelhead (small, 2-3 g; medium, 3-4 g; large, 4-5 g) held in 3??C water had lower total lipid weight than those held in 6??C and 9??C water. Large fish had higher total lipid weight than small fish at the onset of the experiment and retained higher amounts at the end. However, large fish had either the lowest percentage increases or the highest percentage decreases in fork length, biomass, condition factor, total lipid weight, and percent lipids within all thermal treatments. The magnitude of the differences between small and large fish was highest in the warmest (9??C) water. We used bioenergetics simulations of juvenile steelhead growth to examine fish response to initial size, winter temperature, and food availability. Relatively warm water temperatures in winter, coupled with limited food availability, may present more of a physiological challenge to larger age-0 steelhead than to smaller fish. Our results suggest that achievement of large size before the start of a steelhead's first winter can have a cost under episodic conditions found across the wide ranges of latitude and elevation within this species' distribution.
NASA Astrophysics Data System (ADS)
Kuttippurath, J.; Godin-Beekmann, S.; Lefèvre, F.; Santee, M. L.; Froidevaux, L.; Hauchecorne, A.
2015-09-01
A detailed analysis of the polar ozone loss processes during 10 recent Antarctic winters is presented with high-resolution MIMOSA-CHIM (Modèle Isentrope du transport Méso-échelle de l'Ozone Stratosphérique par Advection avec CHIMie) model simulations and high-frequency polar vortex observations from the Aura microwave limb sounder (MLS) instrument. The high-frequency measurements and simulations help to characterize the winters and assist the interpretation of interannual variability better than either data or simulations alone. Our model results for the Antarctic winters of 2004-2013 show that chemical ozone loss starts in the edge region of the vortex at equivalent latitudes (EqLs) of 65-67° S in mid-June-July. The loss progresses with time at higher EqLs and intensifies during August-September over the range 400-600 K. The loss peaks in late September-early October, when all EqLs (65-83° S) show a similar loss and the maximum loss (> 2 ppmv - parts per million by volume) is found over a broad vertical range of 475-550 K. In the lower stratosphere, most winters show similar ozone loss and production rates. In general, at 500 K, the loss rates are about 2-3 ppbv sh-1 (parts per billion by volume per sunlit hour) in July and 4-5 ppbv sh-1 in August-mid-September, while they drop rapidly to 0 by mid-October. In the middle stratosphere, the loss rates are about 3-5 ppbv sh-1 in July-August and October at 675 K. On average, the MIMOSA-CHIM simulations show that the very cold winters of 2005 and 2006 exhibit a maximum loss of ~ 3.5 ppmv around 550 K or about 149-173 DU over 350-850 K, and the warmer winters of 2004, 2010, and 2012 show a loss of ~ 2.6 ppmv around 475-500 K or 131-154 DU over 350-850 K. The winters of 2007, 2008, and 2011 were moderately cold, and thus both ozone loss and peak loss altitudes are between these two ranges (3 ppmv around 500 K or 150 ± 10 DU). The modeled ozone loss values are in reasonably good agreement with those estimated from Aura MLS measurements, but the model underestimates the observed ClO, largely due to the slower vertical descent in the model during spring.
Quantifying the Benefit of Early Climate Change Mitigation in Avoiding Biodiversity Loss
NASA Astrophysics Data System (ADS)
Warren, R.; Vanderwal, J.; Price, J.; Welbergen, J.; Atkinson, I. M.; Ramirez-Villegas, J.; Osborn, T.; Shoo, L.; Jarvis, A.; Williams, S.; Lowe, J. A.
2014-12-01
Quantitative simulations of the global-scale benefits of climate change mitigation in avoiding biodiversity loss are presented. Previous studies have projected widespread global and regional impacts of climate change on biodiversity. However, these have focused on analysis of business-as-usual scenarios, with no explicit mitigation policy included. This study finds that early, stringent mitigation would avoid a large proportion of the impacts of climate change induced biodiversity loss projected for the 2080s. Furthermore, despite the large number of studies addressing extinction risks in particular species groups, few studies have explored the issue of potential range loss in common and widespread species. Our study is a comprehensive global scale analysis of 48,786 common and widespread species. We show that without climate change mitigation, 57+/-6% of the plants and 34+/-7% of the animals studied are likely to lose over 50% of their present climatic range by the 2080s. This estimate incorporates realistic, taxon-specific dispersal rates. With stringent mitigation, in which emissions peak in 2016 and are reduced by 5% annually thereafter, these losses are reduced by 60%. Furthermore, with stringent mitigation, global temperature rises more slowly, allowing an additional three decades for biodiversity to adapt to a temperature rise of 2C above pre-industrial levels. The work also shows that even with mitigation not all the impacts can now be avoided, and ecosystems and biodiversity generally has a very limited capacity to adapt. Delay in mitigation substantially reduces the percentage of impacts that can be avoided, for example if emissions do not peak until 2030, the percentage of losses that can be avoided declines to 40%. Since even small declines in common and widespread species can disrupt ecosystem function and services, these results indicate that without mitigation, globally widespread losses in ecosystem service provision are to be expected.
Wolf predation risk associated with white-tailed deer movements
Nelson, M.E.; Mech, L.D.
1991-01-01
The survival of 159 yearling and adult deer (Odocoileus virginianus) was monitored by telemetry during 282 spring and 219 fall individual migrations to winter deeryards in northeastern Minnesota. A disproportionate number of deer were killed by wolves (Canis lupus) during fall migration relative to the short time they spent migrating, but not during spring migration. Predation was also significantly greater for male and female yearlings and adult females outside deeryards during winter. Survival of 79 yearlings dispersing from natal ranges was high (1.00). It appears that changing climatic conditions combined with unfamiliar terrain and undetermined factors predispose migratory deer to wolf predation during fall. These findings support an earlier hypothesis that winter yarding is an antipredator strategy.
Winter diet of lake herring (Coregonus artedi) in western Lake Superior
Link, Jason; Selgeby, James H.; Hoff, Michael H.; Haskell, Craig
1995-01-01
Lake herring (Coregonus artedi) and zooplankton samples were simultaneously collected through the ice in the Apostle Islands region of western Lake Superior to provide information on the winter feeding ecology of lake herring. Zooplankton constituted the entire diet of the 38 lake herring collected for this study. We found no evidence of piscivory, although it has been reported by anglers. Diet selectivities were calculated using a Wilcoxon signed-ranks test and showed a preference of lake herring for larger zooplankton, especially Diaptomus sicilis, whereas the smaller copepod,Cyclops bicuspidatus thomasi, and immature copepod stages were selected against. These data document that overwintering copepods are food for a broad size range of lake herring in winter.
Diet and gut morphology of male mallards during winter in North Dakota
Olsen, R.E.; Cox, R.R.; Afton, A.D.; Ankney, C.D.
2011-01-01
A free-ranging Mallard (Anas platyrhynchos) population was investigated during winter (December-January 1996-1999) below the Garrison Dam, North Dakota, USA, to relate diet to gut morphology variation in males. Four explanatory variables (fish consumption, male age, winter, and body size) were evaluated as to whether they influenced five response variables associated with gut characteristics of Mallards. Response variables were lower gastro-intestinal tract mass (LGIT), dry liver mass, dry gizzard mass, small intestine length, and ceca length. Diets of Mallards were comprised primarily of Rainbow Smelt (Osmerus mordax) and concomitantly variation in gizzard mass was small. LGIT mass of juveniles was larger than that of adults, greater for those that consumed fish, and greater during the coldest and snowiest winter. Liver mass and small intestine length of Mallards that consumed fish were greater than those that did not. Mallards may maintain lengthy intestines to increase digestive efficiency. Gut size variation was not entirely attributable to dietary composition but also influenced by body size and environmental conditions such that over-winter survival is maximized.
Spring migration and summer destinations of northern pintails from the coast of southern California
Miller, Michael R.; Takekawa, John Y.; Battaglia, Daniel S.; Golightly, Richard T.; Perry, William M.
2010-01-01
To examine pathways, timing, and destinations during migration in spring, we attached satellite-monitored transmitters (platform transmitting terminals) to 10 northern pintails (Anas acuta) during February 2001, at Point Mugu, Ventura County, California. This is a wintering area on the southern coast of California. We obtained locations from five adult males and three adult females every 3rd day through August. Average date of departure from the wintering area was 15 March (SE = 3 days). We documented extended stopovers of ≥30 days for several northern pintails that could have accommodated nesting attempts (San Joaquin Valley, southwestern Montana, southern Alberta, north-central Nevada) or post-nesting molt (eastern Oregon, south-central Saskatchewan, northern Alaska, central Alberta). Wintering northern pintails from the southern coast of California used a wide range of routes, nesting areas, and schedules during migration in spring, which was consistent with the larger, wintering population in the Central Valley of California. Therefore, conservation of habitat that is targeted at stopover, nesting, and molting areas will benefit survival and management of both wintering populations.
Circadian Rhythm and Sleep During Prolonged Antarctic Residence at Chinese Zhongshan Station.
Chen, Nan; Wu, Quan; Xiong, Yanlei; Chen, Guang; Song, Dandan; Xu, Chengli
2016-12-01
Residence at Zhongshan Station (69°22'24″S, 76°22'40″E) for over 1 year exposes winter-over members to marked changes of light-dark cycle, ranging from the constant daylight of polar days to the constant darkness of polar nights, in addition to geographic and social isolation. This extreme photoperiodic environment may increase the risk of sleep disturbances and circadian desynchrony. The aim of this study was to investigate the circadian rhythm and sleep phase of Chinese winter-over expeditioners at Zhongshan Station. This study was conducted on 17 healthy male participants before departure from Shanghai and during residence at Zhongshan Station for 1 year (before winter, mid-winter, and end of winter). Sequential urine samples over 48 hours were obtained, 6-sulphatoxymelatonin in urine was assessed, and the circadian rhythm was analyzed by a cosine curve-fitting method. Participants' sleep parameters were obtained from wrist actigraphy and sleep logs. Morningness-Eveningness Questionnaire and Seasonal Pattern Assessment Questionnaire were completed. The acrophase of 6-sulphatoxymelatonin rhythm, sleep onset, sleep offset, and mid-sleep time were delayed significantly (P < .05) in Antarctica relative to departure values. The subjects had greater eveningness preference (P < .05) in mid-winter in Antarctica. The Global Seasonality Score and the prevalence of subsyndromal seasonal affective disorder increased (P < .05) during winter. Our results indicate that during polar nights Chinese expeditioners experienced the following problems: delayed circadian rhythm and sleep phase, later chronotype, and incidence of subsyndromal seasonal affective disorder. An appropriate combination of artificial bright light during dark winter months and a strict social schedule are recommended in a winter-over station in Antarctica. Copyright © 2016 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.
1999-01-08
KENNEDY SPACE CENTER, FLA. -- Ducks take flight across the marshes of the Merritt Island National Wildlife Refuge at Kennedy Space Center. The duck at top-center is a pintail, which can be found in marshes, prairie ponds and tundra, and salt marshes in winter. They range from Alaska and Greenland south to Central America and the West Indies. The open waters of the Wildlife Refuge provide wintering areas for 23 species of migratory waterfowl as well as a year-round home for great blue herons, great egrets, wood storks, cormorants, brown pelicans and other species of marsh and shore birds. The refuge comprises 92,000 acres, ranging from fresh-water impoundments, salt-water estuaries and brackish marshes to hardwood hammocks and pine flatwoods
Snowpack ion accumulation and loss in a basin draining to Lake Superior
Stottlemyer, Robert
1987-01-01
The objective of this study was to relate winter precipitation ionic inputs, snowpack retention, and change in first-order stream chemistry with spring snowpack melt. During winter 1982–83, measurement of precipitation inputs, snowpack concentration and loading, and streamwater concentration and discharge of Ca2+, K+, H+, NO3−, and SO42− from a 176-ha watershed reveals that only H+ might be lost from the snowpack before first thaw. Above-freezing soil temperature beneath the snowpack may be a factor in H+ loss. An initial 1-d thaw resulted in loss of over one third (6 eq∙ha−1) of the snowpack Ca2+. Over one half the snowpack load of K+, H+, NO3−, and SO42−, was lost in a subsequent midwinter freeze–thaw period. Snowpack loading of ionic species was reduced by 70–90% before peak spring melting and stream discharge. Ecosystem H+ retention and biological uptake of NO3− further mitigate ionic "pulses" in streamwater. Sulfate discharge exceeds bulk inputs, which suggests significant dry deposition input and little forest soil retention of this anion. The snowpack was relatively small, which limits wider application of these results to the region.
Huang, Tao; Ju, Xiaotang; Yang, Hao
2017-02-08
Nitrate leaching is one of the most important pathways of nitrogen (N) loss which leads to groundwater contamination or surface water eutrophication. Clarifying the rates, controlling factors and characteristics of nitrate leaching is the pre-requisite for proposing effective mitigation strategies. We investigated the effects of interactions among chemical N fertilizer, straw and manure applications on nitrogen leaching in an intensively managed calcareous Fluvo-aquic soil with winter wheat-summer maize cropping rotations on the North China Plain from October 2010 to September 2013 using ceramic suction cups and seepage water calculations based on a long-term field experiment. Annual nitrate leaching reached 38-60 kg N ha -1 from conventional N managements, but declined by 32-71% due to optimum N, compost manure or municipal waste treatments, respectively. Nitrate leaching concentrated in the summer maize season, and fewer leaching events with high amounts are the characteristics of nitrate leaching in this region. Overuse of chemical N fertilizers, high net mineralization and nitrification, together with predominance of rainfall in the summer season with light soil texture are the main controlling factors responsible for the high nitrate leaching loss in this soil-crop-climatic system.
Severe Pollution in China Amplified by Atmospheric Moisture.
Tie, Xuexi; Huang, Ru-Jin; Cao, Junji; Zhang, Qiang; Cheng, Yafang; Su, Hang; Chang, Di; Pöschl, Ulrich; Hoffmann, Thorsten; Dusek, Uli; Li, Guohui; Worsnop, Douglas R; O'Dowd, Colin D
2017-11-17
In recent years, severe haze events often occurred in China, causing serious environmental problems. The mechanisms responsible for the haze formation, however, are still not well understood, hindering the forecast and mitigation of haze pollution. Our study of the 2012-13 winter haze events in Beijing shows that atmospheric water vapour plays a critical role in enhancing the heavy haze events. Under weak solar radiation and stagnant moist meteorological conditions in winter, air pollutants and water vapour accumulate in a shallow planetary boundary layer (PBL). A positive feedback cycle is triggered resulting in the formation of heavy haze: (1) the dispersal of water vapour is constrained by the shallow PBL, leading to an increase in relative humidity (RH); (2) the high RH induces an increase of aerosol particle size by enhanced hygroscopic growth and multiphase reactions to increase particle size and mass, which results in (3) further dimming and decrease of PBL height, and thus further depressing of aerosol and water vapour in a very shallow PBL. This positive feedback constitutes a self-amplification mechanism in which water vapour leads to a trapping and massive increase of particulate matter in the near-surface air to which people are exposed with severe health hazards.
Seasonal skin darkening in Chinese women: the Shanghaiese experience of daily sun protection.
Qiu, Huixia; Flament, Frederic; Long, Xiaohui; Wu, Jun; Xu, Mengzhi; Leger, Didier Saint; Meaudre, Helene; Senee, Jerome; Piot, Bertrand; Bazin, Roland
2013-01-01
The facial skin tone of two groups of Chinese women from Shanghai was compared using standard colorimetric space techniques during a 6-month interval between January and July 2011. During the study period, one group of women (n = 40) applied a potent sun-protective cosmetic product daily, while the other group (n = 40) did not use any sun protection. The results, based on images taken using a standardized digital camera coupled to a spectroradiometer, showed that sun protection largely mitigated changes in the components of skin tone, ie, lightness, melanization, and individual typology angle parameters. The skin darkening process appeared to be reduced or prevented in the sun-protected group when compared with the control group. The sun-protected women had participated in an earlier study in 2008, which confirmed that seasonal skin darkening occurs from winter through summer in Shanghaiese women. Comparing the data obtained in the winters of 2008 and 2011, we were able to identify better the impact of 3 years of aging on the components of skin tone. Comparing data between seasons on the same women with (2011 study) and without (2008 study) sun protection highlights the role of the test product in preventing skin darkening.
The Spatial-Temporal Characteristics of Air Pollution in China from 2001–2014
Bao, Junzhe; Yang, Xiping; Zhao, Zhiyuan; Wang, Zhenkun; Yu, Chuanhua; Li, Xudong
2015-01-01
To provide some useful information about the control of air pollution in China, we studied the spatial-temporal characteristics of air pollution in China from 2001–2014. First, we drew several line charts and histograms of the Air Pollution Index (API) and Air Quality Index (AQI) of 31 capital cities and municipalities to research the distribution across different times and cities; then, we researched the spatial clustering of API and AQI; finally, we examined the shift of the gravity center of API and AQI in different years and months. The API values had a decreasing trend: the high values had a clustering trend in some northern cities, and the low values had a clustering trend in some southern cities. The AQI values were relatively low, from 15:00–17:00 during the day. The gravity center of API had a trend of moving south from 2001–2003, then fluctuated in an unordered pattern and moved north in the winter. The AQI gravity center did not have a regular shift during different months. In conclusion, the government should take action to mitigate air pollution in some typical cities, as well as air pollution during the winter. PMID:26694427
NASA Astrophysics Data System (ADS)
Huang, Tao; Ju, Xiaotang; Yang, Hao
2017-02-01
Nitrate leaching is one of the most important pathways of nitrogen (N) loss which leads to groundwater contamination or surface water eutrophication. Clarifying the rates, controlling factors and characteristics of nitrate leaching is the pre-requisite for proposing effective mitigation strategies. We investigated the effects of interactions among chemical N fertilizer, straw and manure applications on nitrogen leaching in an intensively managed calcareous Fluvo-aquic soil with winter wheat-summer maize cropping rotations on the North China Plain from October 2010 to September 2013 using ceramic suction cups and seepage water calculations based on a long-term field experiment. Annual nitrate leaching reached 38-60 kg N ha-1 from conventional N managements, but declined by 32-71% due to optimum N, compost manure or municipal waste treatments, respectively. Nitrate leaching concentrated in the summer maize season, and fewer leaching events with high amounts are the characteristics of nitrate leaching in this region. Overuse of chemical N fertilizers, high net mineralization and nitrification, together with predominance of rainfall in the summer season with light soil texture are the main controlling factors responsible for the high nitrate leaching loss in this soil-crop-climatic system.
Global environmental effects of impact-generated aerosols: Results from a general circulation model
NASA Technical Reports Server (NTRS)
Covey, Curt; Ghan, Steven J.; Walton, John J.; Weissman, Paul R.
1989-01-01
Interception of sunlight by the high altitude worldwide dust cloud generated by impact of a large asteroid or comet would lead to substantial land surface cooling, according to the three-dimensional atmospheric general circulation model (GCM). This result is qualitatively similar to conclusions drawn from an earlier study that employed a one-dimensional atmospheric model, but in the GCM simulation the heat capacity of the oceans, not included in the one-dimensional model, substantially mitigates land surface cooling. On the other hand, the low heat capacity of the GCM's land surface allows temperatures to drop more rapidly in the initial stages of cooling than in the one-dimensional model study. GCM-simulated climatic changes in the scenario of asteroid/comet winter are more severe than in nuclear winter because the assumed aerosol amount is large enough to intercept all sunlight falling on earth. Impacts of smaller objects could also lead to dramatic, though of course less severe, climatic changes, according to the GCM. An asteroid or comet impact would not lead to anything approaching complete global freezing, but quite reasonable to assume that impacts would dramatically alter the climate in at least a patchy sense.
DOT National Transportation Integrated Search
2015-05-01
This document presents summary and detailed findings from a research effort to develop estimates of the cost-effectiveness of a range of project types funded under the Congestion Mitigation and Air Quality (CMAQ) Improvement Program. In this study, c...
A multi-model assessment of the co-benefits of climate mitigation for global air quality
NASA Astrophysics Data System (ADS)
Rao, Shilpa; Klimont, Zbigniew; Leitao, Joana; Riahi, Keywan; van Dingenen, Rita; Aleluia Reis, Lara; Calvin, Katherine; Dentener, Frank; Drouet, Laurent; Fujimori, Shinichiro; Harmsen, Mathijs; Luderer, Gunnar; Heyes, Chris; Strefler, Jessica; Tavoni, Massimo; van Vuuren, Detlef P.
2016-12-01
We present a model comparison study that combines multiple integrated assessment models with a reduced-form global air quality model to assess the potential co-benefits of global climate mitigation policies in relation to the World Health Organization (WHO) goals on air quality and health. We include in our assessment, a range of alternative assumptions on the implementation of current and planned pollution control policies. The resulting air pollution emission ranges significantly extend those in the Representative Concentration Pathways. Climate mitigation policies complement current efforts on air pollution control through technology and fuel transformations in the energy system. A combination of stringent policies on air pollution control and climate change mitigation results in 40% of the global population exposed to PM levels below the WHO air quality guideline; with the largest improvements estimated for India, China, and Middle East. Our results stress the importance of integrated multisector policy approaches to achieve the Sustainable Development Goals.
The influence of Atmospheric Rivers over the South Atlantic on rainfall in South Africa
NASA Astrophysics Data System (ADS)
Ramos, A. M.; Trigo, R. M.; Blamey, R. C.; Tome, R.; Reason, C. J. C.
2017-12-01
An automated atmospheric river (AR) detection algorithm is used for the South Atlantic Ocean basin, allowing the identification of the major ARs impinging on the west coast of South Africa during the austral winter months (April-September) for the period 1979-2014, using two reanalysis products (NCEP-NCAR and ERA-Interim). The two products show relatively good agreement, with 10-15 persistent ARs (lasting 18h or longer) occurring on average per winter and nearly two thirds of these systems occurring poleward of 35°S. The relationship between persistent AR activity and winter rainfall is demonstrated using South African Weather Service rainfall data. Most stations positioned in areas of high topography contained the highest percentage of rainfall contributed by persistent ARs, whereas stations downwind, to the east of the major topographic barriers, had the lowest contributions. Extreme rainfall days in the region are also ranked by their magnitude and spatial extent. It is found that around 70% of the top 50 daily winter rainfall extremes in South Africa were in some way linked to ARs (both persistent and non-persistent). Results suggest that although persistent ARs are important contributors to heavy rainfall events, they are not necessarily a prerequisite. Overall, the findings of this study support akin assessments in the last decade on ARs in the northern hemisphere bound for the western coasts of USA and Europe. AcknowledgementsThe financial support for attending this workshop was possible through FCT project UID/GEO/50019/2013 - Instituto Dom Luiz. The author wishes also to acknowledge the contribution of project IMDROFLOOD - Improving Drought and Flood Early Warning, Forecasting and Mitigation using real-time hydroclimatic indicators (WaterJPI/0004/2014, Funded by Fundação para a Ciência e a Tecnologia, Portugal (FCT)), with the data provided to achieve this work. A. M. Ramos was also supported by a FCT postdoctoral grant (FCT/DFRH/ SFRH/BPD/84328/2012).
Mi, Chunrong; Falk, Huettmann
2016-01-01
The rapidly changing climate makes humans realize that there is a critical need to incorporate climate change adaptation into conservation planning. Whether the wintering habitats of Great Bustards (Otis tarda dybowskii), a globally endangered migratory subspecies whose population is approximately 1,500–2,200 individuals in China, would be still suitable in a changing climate environment, and where this could be found, is an important protection issue. In this study, we selected the most suitable species distribution model for bustards using climate envelopes from four machine learning models, combining two modelling approaches (TreeNet and Random Forest) with two sets of variables (correlated variables removed or not). We used common evaluation methods area under the receiver operating characteristic curves (AUC) and the True Skill Statistic (TSS) as well as independent test data to identify the most suitable model. As often found elsewhere, we found Random Forest with all environmental variables outperformed in all assessment methods. When we projected the best model to the latest IPCC-CMIP5 climate scenarios (Representative Concentration Pathways (RCPs) 2.6, 4.5 and 8.5 in three Global Circulation Models (GCMs)), and averaged the project results of the three models, we found that suitable wintering habitats in the current bustard distribution would increase during the 21st century. The Northeast Plain and the south of North China were projected to become two major wintering areas for bustards. However, the models suggest that some currently suitable habitats will experience a reduction, such as Dongting Lake and Poyang Lake in the Middle and Lower Yangtze River Basin. Although our results suggested that suitable habitats in China would widen with climate change, greater efforts should be undertaken to assess and mitigate unstudied human disturbance, such as pollution, hunting, agricultural development, infrastructure construction, habitat fragmentation, and oil and mine exploitation. All of these are negatively and intensely linked with global change. PMID:26855870
SAGE III Aerosol Extinction Validation in the Arctic Winter: Comparisons with SAGE II and POAM III
NASA Technical Reports Server (NTRS)
Thomason, L. W.; Poole, L. R.; Randall, C. E.
2007-01-01
The use of SAGE III multiwavelength aerosol extinction coefficient measurements to infer PSC type is contingent on the robustness of both the extinction magnitude and its spectral variation. Past validation with SAGE II and other similar measurements has shown that the SAGE III extinction coefficient measurements are reliable though the comparisons have been greatly weighted toward measurements made at mid-latitudes. Some aerosol comparisons made in the Arctic winter as a part of SOLVE II suggested that SAGE III values, particularly at longer wavelengths, are too small with the implication that both the magnitude and the wavelength dependence are not reliable. Comparisons with POAM III have also suggested a similar discrepancy. Herein, we use SAGE II data as a common standard for comparison of SAGE III and POAM III measurements in the Arctic winters of 2002/2003 through 2004/2005. During the winter, SAGE II measurements are made infrequently at the same latitudes as these instruments. We have mitigated this problem through the use potential vorticity as a spatial coordinate and thus greatly increased the number of coincident events. We find that SAGE II and III extinction coefficient measurements show a high degree of compatibility at both 1020 nm and 450 nm except a 10-20% bias at both wavelengths. In addition, the 452 to 1020-nm extinction ratio shows a consistent bias of approx. 30% throughout the lower stratosphere. We also find that SAGE II and POAM III are on average consistent though the comparisons show a much higher variability and larger bias than SAGE II/III comparisons. In addition, we find that the two data sets are not well correlated below 18 km. Overall, we find both the extinction values and the spectral dependence from SAGE III are robust and we find no evidence of a significant defect within the Arctic vortex.
NASA Astrophysics Data System (ADS)
Morway, E. D.; Niswonger, R. G.; Triana, E.
2016-12-01
In irrigated agricultural regions supplied by both surface-water and groundwater, increased reliance on groundwater during sustained drought leads to long-term water table drawdown and subsequent surface-water losses. This, in turn, may threaten the sustainability of the irrigation project. To help offset groundwater resource losses and restore water supply reliability, an alternative management strategy commonly referred to as managed aquifer recharge (MAR) in agricultural regions helps mitigate long-term aquifer drawdown and provides additional water for subsequent withdraw. Sources of MAR in this investigation are limited to late winter runoff in years with above average precipitation (i.e., above average snowpack). However, where winter MAR results in an elevated water table, non-beneficial consumptive use may increase from evapotranspiration in adjacent and down-gradient fallow and naturally vegetated lands. To rigorously explore this trade-off, the recently published MODSIM-MODFLOW model was applied to quantify both the benefits and unintended consequences of MAR. MODSIM-MODFLOW is a generalized modeling tool capable of exploring the effects of altered river operations within an integrated groundwater and surface-water (GW-SW) model. Thus, the MODSIM-MODFLOW model provides a modeling platform capable of simulating MAR in amounts and duration consistent with other senior water rights in the river system (e.g., minimum in-stream flow requirements). Increases in non-beneficial consumptive use resulting from winter MAR are evaluated for a hypothetical model patterned after alluvial aquifers common in arid and semi-arid areas of the western United States. Study results highlight (1) the benefit of an implicitly-coupled river operations and hydrologic modeling tool, (2) the balance between winter MAR and the potential increase in non-beneficial consumptive use, and (3) conditions where MAR may or may not be an appropriate management option, such as the availability of surface-water storage.
Mi, Chunrong; Falk, Huettmann; Guo, Yumin
2016-01-01
The rapidly changing climate makes humans realize that there is a critical need to incorporate climate change adaptation into conservation planning. Whether the wintering habitats of Great Bustards (Otis tarda dybowskii), a globally endangered migratory subspecies whose population is approximately 1,500-2,200 individuals in China, would be still suitable in a changing climate environment, and where this could be found, is an important protection issue. In this study, we selected the most suitable species distribution model for bustards using climate envelopes from four machine learning models, combining two modelling approaches (TreeNet and Random Forest) with two sets of variables (correlated variables removed or not). We used common evaluation methods area under the receiver operating characteristic curves (AUC) and the True Skill Statistic (TSS) as well as independent test data to identify the most suitable model. As often found elsewhere, we found Random Forest with all environmental variables outperformed in all assessment methods. When we projected the best model to the latest IPCC-CMIP5 climate scenarios (Representative Concentration Pathways (RCPs) 2.6, 4.5 and 8.5 in three Global Circulation Models (GCMs)), and averaged the project results of the three models, we found that suitable wintering habitats in the current bustard distribution would increase during the 21st century. The Northeast Plain and the south of North China were projected to become two major wintering areas for bustards. However, the models suggest that some currently suitable habitats will experience a reduction, such as Dongting Lake and Poyang Lake in the Middle and Lower Yangtze River Basin. Although our results suggested that suitable habitats in China would widen with climate change, greater efforts should be undertaken to assess and mitigate unstudied human disturbance, such as pollution, hunting, agricultural development, infrastructure construction, habitat fragmentation, and oil and mine exploitation. All of these are negatively and intensely linked with global change.
La Sorte, Frank A; Fink, Daniel; Blancher, Peter J; Rodewald, Amanda D; Ruiz-Gutierrez, Viviana; Rosenberg, Kenneth V; Hochachka, Wesley M; Verburg, Peter H; Kelling, Steve
2017-12-01
Understanding the susceptibility of highly mobile taxa such as migratory birds to global change requires information on geographic patterns of occurrence across the annual cycle. Neotropical migrants that breed in North America and winter in Central America occur in high concentrations on their non-breeding grounds where they spend the majority of the year and where habitat loss has been associated with population declines. Here, we use eBird data to model weekly patterns of abundance and occurrence for 21 forest passerine species that winter in Central America. We estimate species' distributional dynamics across the annual cycle, which we use to determine how species are currently associated with public protected areas and projected changes in climate and land-use. The effects of global change on the non-breeding grounds is characterized by decreasing precipitation, especially during the summer, and the conversion of forest to cropland, grassland, or peri-urban. The effects of global change on the breeding grounds are characterized by increasing winter precipitation, higher temperatures, and the conversion of forest to peri-urban. During spring and autumn migration, species are projected to encounter higher temperatures, forests that have been converted to peri-urban, and increased precipitation during spring migration. Based on current distributional dynamics, susceptibility to global change is characterized by the loss of forested habitats on the non-breeding grounds, warming temperatures during migration and on the breeding grounds, and declining summer rainfall on the non-breeding grounds. Public protected areas with low and medium protection status are more prevalent on the non-breeding grounds, suggesting that management opportunities currently exist to mitigate near-term non-breeding habitat losses. These efforts would affect more individuals of more species during a longer period of the annual cycle, which may create additional opportunities for species to respond to changes in habitat or phenology that are likely to develop under climate change. © 2017 John Wiley & Sons Ltd.
Space-time models for a panzootic in bats, with a focus on the endangered Indiana bat
Thogmartin, Wayne E.; King, R. Andrew; Szymanski, Jennifer A.; Pruitt, Lori
2012-01-01
Knowledge of current trends of quickly spreading infectious wildlife diseases is vital to efficient and effective management. We developed space-time mixed-effects logistic regressions to characterize a disease, white-nose syndrome (WNS), quickly spreading among endangered Indiana bats (Myotis sodalis) in eastern North America. Our goal was to calculate and map the risk probability faced by uninfected colonies of hibernating Indiana bats. Model covariates included annual distance from and direction to nearest sources of infection, geolocational information, size of the Indiana bat populations within each wintering population, and total annual size of populations known or suspected to be affected by WNS. We considered temporal, spatial, and spatiotemporal formulae through the use of random effects for year, complex (a collection of interacting hibernacula), and yearxcomplex. Since first documented in 2006, WNS has spread across much of the range of the Indiana bat. No sizeable wintering population now occurs outside of the migrational distance of an infected source. Annual rates of newly affected wintering Indiana bat populations between winter 2007 to 2008 and 2010 to 2011 were 4, 6, 8, and 12%; this rate increased each year at a rate of 3%. If this increasing rate of newly affected populations continues, all wintering populations may be affected by 2016. Our models indicated the probability of a wintering population exhibiting infection was a linear function of proximity to affected Indiana bat populations and size of the at-risk population. Geographic location was also important, suggesting broad-scale influences. For every 50-km increase in distance from a WNS-affected population, risk of disease declined by 6% (95% CI=5.2-5.7%); for every increase of 1,000 Indiana bats, there was an 8% (95% CI = 1-21%) increase in disease risk. The increasing rate of infection seems to be associated with the movement of this disease into the core of the Indiana bat range. Our spatially explicit estimates of disease risk may aid managers in prioritizing surveillance and management for wintering populations of Indiana bats and help understand the risk faced by other hibernating bat species.
Long Term Decline in Eastern US Winter Temperature Extremes.
NASA Astrophysics Data System (ADS)
Trenary, L. L.; DelSole, T. M.; Tippett, M. K.; Doty, B.
2016-12-01
States along the US eastern seaboard have experienced successively harsh winter conditions in recent years. This has prompted speculation that climate change is leading to more extreme winter conditions. In this study we quantify changes in the observed winter extremes over the period 1950-2015, by examining year-to-year differences in intensity, frequency and likelihood of daily cold temperature extremes in the north, mid, and south Atlantic states along the US east coast. Analyzing station data for these three regions, we find that while the north and mid-Atlantic regions experienced record-breaking cold temperatures in 2015, there is no long-term increase in the intensity of cold extremes anywhere along the eastern seaboard. Likewise, despite the record number of cold days in these two regions during 2014 and 2015, there is no systematic increase in the frequency of cold extremes. To determine whether the observed changes are natural or human-forced, we repeat our analysis using a suite of climate simulations, with and without external forcing. Generally, model simulations suggest that human-induced forcing does not significantly influence the range of daily winter temperature. Combining this result with the fact that the observed winter temperatures are becoming warmer and less variable, we conclude that the recent intensification of eastern US cold extremes is only temporary.
ANALYSIS OF DESIGN RANGE FOR A STROKING SEAT ON A STROKING FLOOR TO MITIGATE BLAST LOADING EFFECTS
2017-05-16
and the optimal design points that can mitigate the occupant injury to a range of input parameters. One key conclusion from the study is that blast...stroking) in another case . The results from this study are shown in Figure 10. The original two baseline design points explored in the previous...this study , occupant is positioned with feet on the foot-rest attached to the seat system. However, a particular vehicle design may have the
Genetic diversity among pentaploid buffelgrass accessions
USDA-ARS?s Scientific Manuscript database
Buffelgrass (Pennisetum ciliare) is an important range and pasture grass that grows in the arid tropics and semi-tropics. It has excellent drought tolerance but lacks winter hardiness. Even though the grass reproduces primarily by apomixis, it is highly polymorphic. A range of chromosome numbers ...
NASA Astrophysics Data System (ADS)
Ghauri, Badar; Zafar, Sumaira
2016-07-01
Northern Pakistan and bordering Indian Punjab experience intense smog and fog during fall and winters. Environmentalists have been raising their voices over the situation and demanded control over regional emissions to save the livelihood of millions of dwellers whose trade, commerce and agriculture is at stake because of long smog/ fog spells.. This paper estimates the area affected by haze, smog and fog during 2006- 2010. MODIS (geo-referenced MODIS subsets India1, 2 &3) of the area in Pakistan and India from 2006 to 2010 for the period October to February) were analyzed using state of the art software ENVI 4.2 and ArcGIS 10.2. This process resulted in area belonging to each class that is; haze, smog and fog. On the basis of density, haze and fog cover was determined. Variations in fog cover, its density and identification of location of fog initiation process were also determined using near real time (30 minutes) METEOSAT-7 IODC data where actually fog formation started and then extended to the area of favorable conditions. Haze has been noticed to intensify due to massive burning of agricultural waste (rice husk) in India and Pakistan towards the end of October each year. MODIS thermal anomalies/fire data (MYD 14) were also used to verify this activity on the ground, which results in hazy conditions at regional level during fall months. Haze-affected area during 2006 to 2010 in Pakistan ranged from 155,000 Km2 to 354,000 Km2 and in India it ranged from 333,000 Km2 to 846,000 Km2. Similarly winter fog cover during this period in Pakistan varied from 136,000 Km2 to 381,000 Km2 and in India it was estimated at 327,000 Km2 to 566,000 Km2. This phenomenon was more prominent in India than in Pakistan where and fog cover was at least twice than that was observed in Pakistan. It has been noted that area covered by fog, smog and haze doubled during the study period in the region. Atmospheric dimming during autumn/ fall also reduces the mixing height leading to greater pollutants accumulation. So far no mitigation steps have been taken to combat this regional issue. Reduction in local emissions is highly recommended to save at least the lives of vulnerable (children, elderly, patients etc).
O'Donnell, Jonathan A.; Aiken, George R.; Walvoord, Michelle Ann; Butler, Kenna D.
2012-01-01
Groundwater discharge to rivers has increased in recent decades across the circumpolar region and has been attributed to thawing permafrost in arctic and subarctic watersheds. Permafrost-driven changes in groundwater discharge will alter the flux of dissolved organic carbon (DOC) in rivers, yet little is known about the chemical composition and reactivity of dissolved organic matter (DOM) of groundwater in permafrost settings. Here, we characterize DOM composition of winter flow in 60 rivers and streams of the Yukon River basin to evaluate the biogeochemical consequences of enhanced groundwater discharge associated with permafrost thaw. DOC concentration of winter flow averaged 3.9 ± 0.5 mg C L−1, yet was highly variable across basins (ranging from 20 mg C L−1). In comparison to the summer-autumn period, DOM composition of winter flow had lower aromaticity (as indicated by specific ultraviolet absorbance at 254 nm, or SUVA254), lower hydrophobic acid content, and a higher proportion of hydrophilic compounds (HPI). Fluorescence spectroscopy and parallel factor analysis indicated enrichment of protein-like fluorophores in some, but not all, winter flow samples. The ratio of DOC to dissolved organic nitrogen, an indicator of DOM biodegradability, was positively correlated with SUVA254 and negatively correlated with the percentage of protein-like compounds. Using a simple two-pool mixing model, we evaluate possible changes in DOM during the summer-autumn period across a range of conditions reflecting possible increases in groundwater discharge. Across three watersheds, we consistently observed decreases in DOC concentration and SUVA254 and increases in HPI with increasing groundwater discharge. Spatial patterns in DOM composition of winter flow appear to reflect differences in the relative contributions of groundwater from suprapermafrost and subpermafrost aquifers across watersheds. Our findings call for more explicit consideration of DOC loss and stabilization pathways associated with changing subsurface hydrology in watersheds underlain by thawing permafrost.
NASA Astrophysics Data System (ADS)
Bailey, Monika E.; Isaac, George A.; Gultepe, Ismail; Heckman, Ivan; Reid, Janti
2014-01-01
An automated short-range forecasting system, adaptive blending of observations and model (ABOM), was tested in real time during the 2010 Vancouver Olympic and Paralympic Winter Games in British Columbia. Data at 1-min time resolution were available from a newly established, dense network of surface observation stations. Climatological data were not available at these new stations. This, combined with output from new high-resolution numerical models, provided a unique and exciting setting to test nowcasting systems in mountainous terrain during winter weather conditions. The ABOM method blends extrapolations in time of recent local observations with numerical weather predictions (NWP) model predictions to generate short-range point forecasts of surface variables out to 6 h. The relative weights of the model forecast and the observation extrapolation are based on performance over recent history. The average performance of ABOM nowcasts during February and March 2010 was evaluated using standard scores and thresholds important for Olympic events. Significant improvements over the model forecasts alone were obtained for continuous variables such as temperature, relative humidity and wind speed. The small improvements to forecasts of variables such as visibility and ceiling, subject to discontinuous changes, are attributed to the persistence component of ABOM.
Forristal, Victoria E.; Creel, Scott; Taper, Mark L.; Scurlock, Brandon M.; Cross, Paul C.
2012-01-01
Habitat modifications and supplemental feeding artificially aggregate some wildlife populations, with potential impacts upon contact and parasite transmission rates. Less well recognized, however, is how increased aggregation may affect wildlife physiology. Crowding has been shown to induce stress responses, and increased glucocorticoid (GC) concentrations can reduce immune function and increase disease susceptibility. We investigated the effects of supplemental feeding and the aggregation that it induces on behavior and fecal glucocorticoid metabolite concentrations (fGCM) in elk (Cervus elaphus) using observational and experimental approaches. We first compared fGCM levels of elk on supplemental feedgrounds to neighboring elk populations wintering in native habitats using data from 2003 to 2008. We then experimentally manipulated the distribution of supplemental food on feedgrounds to investigate whether more widely distributed food would result in lower rates of aggression and stress hormone levels. Contrary to some expectations that fed elk may be less stressed than unfed elk during the winter, we found that elk on feedgrounds had fecal GC levels at least 31% higher than non-feedground populations. Within feedgrounds, fGCM levels were strongly correlated with local measures of elk density (r2 = 0.81). Dispersing feed more broadly, however, did not have a detectable effect on fGCM levels or aggression rates. Our results suggest that increases in aggregation associated with winter feedgrounds affects elk physiology, and the resulting increases in fGCM levels are not likely to be mitigated by management efforts that distribute the feed more widely. Additional research is needed to assess whether these increases in fGCMs directly alter parasite transmission and disease dynamics.
Global climate anomalies and potential infectious disease risks: 2014-2015.
Chretien, Jean-Paul; Anyamba, Assaf; Small, Jennifer; Britch, Seth; Sanchez, Jose L; Halbach, Alaina C; Tucker, Compton; Linthicum, Kenneth J
2015-01-26
The El Niño/Southern Oscillation (ENSO) is a global climate phenomenon that impacts human infectious disease risk worldwide through droughts, floods, and other climate extremes. Throughout summer and fall 2014 and winter 2015, El Niño Watch, issued by the US National Oceanic and Atmospheric Administration, assessed likely El Niño development during the Northern Hemisphere fall and winter, persisting into spring 2015. We identified geographic regions where environmental conditions may increase infectious disease transmission if the predicted El Niño occurs using El Niño indicators (Sea Surface Temperature [SST], Outgoing Longwave Radiation [OLR], and rainfall anomalies) and literature review of El Niño-infectious disease associations. SSTs in the equatorial Pacific and western Indian Oceans were anomalously elevated during August-October 2014, consistent with a developing weak El Niño event. Teleconnections with local climate is evident in global precipitation patterns, with positive OLR anomalies (drier than average conditions) across Indonesia and coastal southeast Asia, and negative anomalies across northern China, the western Indian Ocean, central Asia, north-central and northeast Africa, Mexico/Central America, the southwestern United States, and the northeastern and southwestern tropical Pacific. Persistence of these conditions could produce environmental settings conducive to increased transmission of cholera, dengue, malaria, Rift Valley fever, and other infectious diseases in regional hotspots as during previous El Niño events. The current development of weak El Niño conditions may have significant potential implications for global public health in winter 2014-spring 2015. Enhanced surveillance and other preparedness measures in predicted infectious disease hotspots could mitigate health impacts.
Harclerode, C L; Gentry, T J; Aitkenhead-Peterson, J A
2013-06-01
Diffuse sources of surface water pathogens and nutrients can be difficult to isolate in larger river basins. This study used a geographical or nested approach to isolate diffuse sources of Escherichia coli and other water quality constituents in a 145.7-km(2) river basin in south central Texas, USA. Average numbers of E. coli ranged from 49 to 64,000 colony forming units (CFU) per 100 mL depending upon season and stream flow over the 1-year sampling period. Nitrate-N concentrations ranged from 48 to 14,041 μg L(-1) and orthophosphate-P from 27 to 2,721 μg L(-1). High concentrations of nitrate-N, dissolved organic nitrogen, and orthophosphate-P were observed downstream of waste water treatment plants but E. coli values were higher in a watershed draining an older part of the city. Total urban land use explained between 56 and 72 % of the variance in mean annual E. coli values (p < 0.05) in nine hydrologically disconnected creeks. Of the types of urban land use, commercial land use explained most of the variance in E. coli values in the fall and winter. Surface water sodium, alkalinity, and potassium concentrations in surface water were best described by the proportion of commercial land use in the watershed. Based on our nested approach in examining surface water, city officials are able to direct funding to specific areas of the basin in order to mitigate high surface water E. coli numbers and nutrient concentrations.
"Fire Moss" Cover and Function in Severely Burned Forests of the Western United States
NASA Astrophysics Data System (ADS)
Grover, H.; Doherty, K.; Sieg, C.; Robichaud, P. R.; Fulé, P. Z.; Bowker, M.
2017-12-01
With wildfires increasing in severity and extent throughout the Western United States, land managers need new tools to stabilize recently burned ecosystems. "Fire moss" consists of three species, Ceratodon purpureus, Funaria hygrometrica, and Bryum argentum. These mosses colonize burned landscapes quickly, aggregate soils, have extremely high water holding capacity, and can be grown rapidly ex-situ. In this talk, I will focus on our efforts to understand how Fire Moss naturally interacts with severely burned landscapes. We examined 14 fires in Arizona, New Mexico, Washington, and Idaho selecting a range of times since fire, and stratified plots within each wildfire by winter insolation and elevation. At 75+ plots we measured understory plant cover, ground cover, Fire Moss cover, and Fire Moss reproductive effort. On plots in the Southwest, we measured a suite of soil characteristics on moss covered and adjacent bare soil including aggregate stability, shear strength, compressional strength, and infiltration rates. Moss cover ranged from 0-75% with a mean of 16% across all plots and was inversely related to insolation (R2 = .32, p = <.01), directly related to elevation (R2 = .13, p = .02), and not related to slope (R2 = .02, p =.41). Moss covered areas had twice as much shear strength and compressional strength, and three times higher aggregate stability and infiltration rates as adjacent bare ground. These results will allow us to model locations where Fire Moss will naturally increase postfire hillslope soil stability, locations for targeting moss restoration efforts, and suggest that Fire Moss could be a valuable tool to mitigate post wildfire erosion.
Quantifying salinity and season effects on eastern oyster clearance and oxygen consumption rates
Casas, S.M.; Lavaud, Romain; LaPeyre, Megan K.; Comeau, L. A.; Filgueira, R.; LaPeyre, Jerome F.
2018-01-01
There are few data on Crassostrea virginica physiological rates across the range of salinities and temperatures to which they are regularly exposed, and this limits the applicability of growth and production models using these data. The objectives of this study were to quantify, in winter (17 °C) and summer (27 °C), the clearance and oxygen consumption rates of C. virginica from Louisiana across a range of salinities typical of the region (3, 6, 9, 15 and 25). Salinity and season (temperature and reproduction) affected C. virginica physiology differently; salinity impacted clearance rates with reduced feeding rates at low salinities, while season had a strong effect on respiration rates. Highest clearance rates were found at salinities of 9–25, with reductions ranging from 50 to 80 and 90 to 95% at salinities of 6 and 3, respectively. Oxygen consumption rates in summer were four times higher than in winter. Oxygen consumption rates were within a narrow range and similar among salinities in winter, but varied greatly among individuals and salinities in summer. This likely reflected varying stages of gonad development. Valve movements measured at the five salinities indicated oysters were open 50–60% of the time in the 6–25 salinity range and ~ 30% at a salinity of 3. Reduced opening periods, concomitant with narrower valve gap amplitudes, are in accord with the limited feeding at the lowest salinity (3). These data indicate the need for increased focus on experimental determination of optimal ranges and thresholds to better quantify oyster population responses to environmental changes.
Factors influencing elk recruitment across ecotypes in the Western United States
Lukacs, Paul M.; Mitchell, Michael S.; Hebblewhite, Mark; Johnson, Bruce K.; Johnson, Heather; Kauffman, Matthew J.; Proffitt, Kelly M.; Zager, Peter; Brodie, Jedediah; Hersey, Kent R.; Holland, A. Andrew; Hurley, Mark; McCorquodale, Scott; Middleton, Arthur; Nordhagen, Matthew; Nowak, J. Joshua; Walsh, Daniel P.; White, P.J.
2018-01-01
Ungulates are key components in ecosystems and economically important for sport and subsistence harvest. Yet the relative importance of the effects of weather conditions, forage productivity, and carnivores on ungulates are not well understood. We examined changes in elk (Cervus canadensis) recruitment (indexed as age ratios) across 7 states and 3 ecotypes in the northwestern United States during 1989–2010, while considering the effects of predator richness, forage productivity, and precipitation. We found a broad‐scale, long‐term decrease in elk recruitment of 0.48 juveniles/100 adult females/year. Weather conditions (indexed as summer and winter precipitation) showed small, but measurable, influences on recruitment. Forage productivity on summer and winter ranges (indexed by normalized difference vegetation index [NDVI] metrics) had the strongest effect on elk recruitment relative to other factors. Relationships between forage productivity and recruitment varied seasonally and regionally. The productivity of winter habitat was more important in southern parts of the study area, whereas annual variation in productivity of summer habitat had more influence on recruitment in northern areas. Elk recruitment varied by up to 15 juveniles/100 adult females across the range of variation in forage productivity. Areas with more species of large carnivores had relatively low elk recruitment, presumably because of increased predation. Wolves (Canis lupus) were associated with a decrease of 5 juveniles/100 adult females, whereas grizzly bears (Ursus arctos) were associated with an additional decrease of 7 juveniles/100 adult females. Carnivore species can have a critical influence on ungulate recruitment because their influence rivals large ranges of variation in environmental conditions. A more pressing concern, however, stems from persistent broad‐scale decreases in recruitment across the distribution of elk in the northwestern United States, irrespective of carnivore richness. Our results suggest that wildlife managers interested in improving recruitment of elk consider the combined effects of habitat and predators. Efforts to manage summer and winter ranges to increase forage productivity may have a positive effect on recruitment.
Corcuera, Leyre; Gil-Pelegrin, Eustaquio; Notivol, Eduardo
2011-01-01
As part of a program to select maritime pine (Pinus pinaster Ait.) genotypes for resistance to low winter temperatures, we examined variation in photosystem II activity by chlorophyll fluorescence. Populations and families within populations from contrasting climates were tested during two consecutive winters through two progeny trials, one located at a continental and xeric site and one at a mesic site with Atlantic influence. We also obtained the LT₅₀, or the temperature that causes 50% damage, by controlled freezing and the subsequent analysis of chlorophyll fluorescence in needles and stems that were collected from populations at the continental trial site.P. pinaster showed sensitivity to winter stress at the continental site, during the colder winter. The combination of low temperatures, high solar irradiation and low precipitation caused sustained decreases in maximal photochemical efficiency (F(v)/F(m)), quantum yield of non-cyclic electron transport (Φ(PSII)) and photochemical quenching (qP). The variation in photochemical parameters was larger among families than among populations, and population differences appeared only under the harshest conditions at the continental site. As expected, the environmental effects (winter and site) on the photochemical parameters were much larger than the genotypic effects (population or family). LT₅₀ was closely related to the minimum winter temperatures of the population's range. The dark-adapted F(v)/F(m) ratio discriminated clearly between interior and coastal populations.In conclusion, variations in F(v)/F(m), Φ(PSII), qP and non-photochemical quenching (NPQ) in response to winter stress were primarily due to the differences between the winter conditions and the sites and secondarily due to the differences among families and their interactions with the environment. Populations from continental climates showed higher frost tolerance (LT₅₀) than coastal populations that typically experience mild winters. Therefore, LT₅₀, as estimated by F(v)/F(m), is a reliable indicator of frost tolerance among P. pinaster populations.
Corcuera, Leyre; Gil-Pelegrin, Eustaquio; Notivol, Eduardo
2011-01-01
As part of a program to select maritime pine (Pinus pinaster Ait.) genotypes for resistance to low winter temperatures, we examined variation in photosystem II activity by chlorophyll fluorescence. Populations and families within populations from contrasting climates were tested during two consecutive winters through two progeny trials, one located at a continental and xeric site and one at a mesic site with Atlantic influence. We also obtained the LT50, or the temperature that causes 50% damage, by controlled freezing and the subsequent analysis of chlorophyll fluorescence in needles and stems that were collected from populations at the continental trial site. P. pinaster showed sensitivity to winter stress at the continental site, during the colder winter. The combination of low temperatures, high solar irradiation and low precipitation caused sustained decreases in maximal photochemical efficiency (Fv/Fm), quantum yield of non-cyclic electron transport (ΦPSII) and photochemical quenching (qP). The variation in photochemical parameters was larger among families than among populations, and population differences appeared only under the harshest conditions at the continental site. As expected, the environmental effects (winter and site) on the photochemical parameters were much larger than the genotypic effects (population or family). LT50 was closely related to the minimum winter temperatures of the population's range. The dark-adapted Fv/Fm ratio discriminated clearly between interior and coastal populations. In conclusion, variations in Fv/Fm, ΦPSII, qP and non-photochemical quenching (NPQ) in response to winter stress were primarily due to the differences between the winter conditions and the sites and secondarily due to the differences among families and their interactions with the environment. Populations from continental climates showed higher frost tolerance (LT50) than coastal populations that typically experience mild winters. Therefore, LT50, as estimated by Fv/Fm, is a reliable indicator of frost tolerance among P. pinaster populations. PMID:22220195
Men, Cong; Liu, Ruimin; Wang, Qingrui; Guo, Lijia; Shen, Zhenyao
2018-10-01
Due to significant human activity, road dust is becoming contaminated by heavy metals in many cities. To comprehensively investigate the variation of contamination level and sources of heavy metals in road dust, 10 heavy metals in road dust samples from Beijing, China, in both summer and winter, were evaluated by spatial analysis using geographic information system (GIS) mapping technology and the positive matrix factorization (PMF) Model. Although the concentrations of some heavy metals between summer and winter had similarities, the differences of others and spatial distributions of heavy metals between summer and winter were considerable. The mean concentrations of As, Cd, Cr, Cu, and Fe were lower in winter, while those of Hg, Mn, Ni, Pb, and Zn were higher. According to the values of the Pollution Index (PI) and Nemerow Integrated Pollution Index (NIPI), there were no obvious differences between summer and winter, but the range between different sites in winter was nearly twice that of summer. Based on the PMF model, four sources of heavy metals in the dust samples were identified. Although the types of sources were consistent, the relative contributions of each source differed between summer and winter. Non-exhaust vehicle emissions was the most important source in summer (34.47 wt%), while fuel combustion contributed the largest proportion to the total heavy metals in winter (32.40 wt%). The impact of each source also showed spatial variation different trends in summer and winter. With the alteration of seasons, intensity of human activities also changed, such as the number of tourists, energy needs for building temperature regulation, construction, and the amount of pesticides and fertilizer. That might be the reason for the variation of heavy metal concentrations and relative contribution of their sources between summer and winter. Copyright © 2018 Elsevier B.V. All rights reserved.
AIRS Ozone Burden During Antarctic Winter: Time Series from 8/1/2005 to 9/30/2005
2007-07-24
The Atmospheric Infrared Sounder (AIRS) provides a daily global 3-dimensional view of Earth's ozone layer. Since AIRS observes in the thermal infrared spectral range, it also allows scientists to view from space the Antarctic ozone hole for the first time continuously during polar winter. This image sequence captures the intensification of the annual ozone hole in the Antarctic Polar Vortex. http://photojournal.jpl.nasa.gov/catalog/PIA09938
Ranging Behaviour of Commercial Free-Range Broiler Chickens 2: Individual Variation
Groves, Peter J.; Rault, Jean-Loup
2017-01-01
Simple Summary Although the consumption of free-range chicken meat has increased, little is known about the ranging behaviour of meat chickens on commercial farms. Studies suggest range use is low and not all chickens access the range when given the opportunity. Whether ranging behaviour differs between individuals within a flock remains largely unknown and may have consequences for animal welfare and management. We monitored individual chicken ranging behaviour from four mixed sex flocks on a commercial farm across two seasons. Not all chickens accessed the range. We identified groups of chickens that differed in ranging behaviour (classified by frequency of range visits): chickens that accessed the range only once, low frequency ranging chickens and high frequency ranging chickens, the latter accounting for one-third to one half of all range visits. Sex was not predictive of whether a chicken would access the range or the number of range visits, but males spent more time on the range in winter. We found evidence that free-range chicken ranging varies between individuals within the same flock on a commercial farm. Whether such variation in ranging behaviour relates to variation in chicken welfare remains to be investigated. Abstract Little is known about broiler chicken ranging behaviour. Previous studies have monitored ranging behaviour at flock level but whether individual ranging behaviour varies within a flock is unknown. Using Radio Frequency Identification technology, we tracked 1200 individual ROSS 308 broiler chickens across four mixed sex flocks in two seasons on one commercial farm. Ranging behaviour was tracked from first day of range access (21 days of age) until 35 days of age in winter flocks and 44 days of age in summer flocks. We identified groups of chickens that differed in frequency of range visits: chickens that never accessed the range (13 to 67% of tagged chickens), low ranging chickens (15 to 44% of tagged chickens) that accounted for <15% of all range visits and included chickens that used the range only once (6 to 12% of tagged chickens), and high ranging chickens (3 to 9% of tagged chickens) that accounted for 33 to 50% of all range visits. Males spent longer on the range than females in winter (p < 0.05). Identifying the causes of inter-individual variation in ranging behaviour may help optimise ranging opportunities in free-range systems and is important to elucidate the potential welfare implications of ranging. PMID:28726735
Brook, Ryan K; Wal, Eric Vander; van Beest, Floris M; McLachlan, Stéphane M
2013-02-01
Transmission of bovine tuberculosis (Mycobacterium bovis) among wildlife and livestock has created important risks for conservation and agriculture. Management strategies aimed at controlling TB have typically been top-down, regionally focused, and government-led programs that were at best only partially successful. The purpose of this study was to quantify co-mingling of elk and white-tailed deer (WTD) with cattle at multiple spatial scales (i.e., the regional farm scale and winter cattle feeding area patch) in southwestern Manitoba, Canada, to assess the potential for bovine tuberculosis transmission and identify alternative management strategies. For each spatial scale we quantified use of cattle farms by elk and white-tailed deer. We mailed questionnaires to rural households and then conducted personal interviews with 86 cattle farmers to map the spatial distribution of their cattle winter feeding areas at a fine scale. We deployed Global Positioning System (GPS) collars on 48 wild elk and 16 wild white-tailed deer from 2003 to 2011. Elk were observed on farms by 66% of cattle producers, including 5% and 20% who observed direct and indirect contact, respectively, between elk and cattle. Cattle producers consistently (≈100%) observed white-tailed deer on their farms, including 11% and 47% whom observed direct and indirect contact, respectively, between white-tailed deer and cattle. A higher probability of white-tailed deer-cattle contact at the regional scale occurs on farms that (1) left crop residues specifically for wildlife, (2) had larger cattle herds, (3) used round bale feeders, and (4) were farther away from protected areas. None of the GPS-collared elk locations overlapped with cattle winter feeding areas. In contrast, 21% of GPS-collared white-tailed deer locations overlapped with winter cattle winter feeding areas (22% of these were from male WTD and 78% were from female WTD). White-tailed deer selected cattle winter feeding areas with higher (1) forage crop, (2) grassland/rangeland, and (3) forest cover around the cattle feeding area. Farmers overall expressed strongly negative attitudes toward eradicating the elk population or fencing the park to eradicate TB, but were generally supportive of less invasive and farm-based approaches. Our results suggested that management efforts to prevent TB transmission at the wildlife-agriculture interface can be effectively implemented using a 'bottom-up' approach that focuses on practical, farm-based mitigation strategies. This approach can be implemented by individual farm operators, is relatively low cost, and is generally well supported by farmers relative to other more extreme and controversial measures like wildlife eradication. Copyright © 2012. Published by Elsevier B.V.
Zeigenfuss, Linda C.; Binkley, Dan; Tuskan, Gerald A.; Romme, William H.; Yin, Tongming; DiFazio, Stephen; Singer, Francis J.
2008-01-01
Lack of recruitment and canopy replacement of aspen (Populus tremuloides) stands that grow on the edges of grasslands on the low-elevation elk (Cervus elaphus) winter range of Rocky Mountain National Park (RMNP) in Colorado have been a cause of concern for more than 70 years. We used a combination of traditional dendrochronology and genetic techniques as well as measuring the characteristics of regenerating and nonregenerating stands on the elk winter range to determine when and under what conditions and estimated elk densities these stands established and through what mechanisms they may regenerate. The period from 1975 to 1995 at low elevation on the east side had 80-95 percent fewer aspen stems than would be expected based on the trend from 1855 through 1965. The age structure of aspen in the park indicates that the interacting effects of fires, elk population changes, and livestock grazing had more-or-less consistent effects on aspen from 1855 to 1965. The lack of a significant change in aspen numbers in recent decades in the higher elevation and west side parts of the park supports the idea that the extensive effects of elk browsing have been more important in reducing aspen numbers than other factors. The genetic variation of aspen populations in RMNP is high at the molecular level. We expected to find that most patches of aspen in the park were composed of a single clone of genetically identical trees, but in fact just 7 percent of measured aspen patches consisted of a single clone. A large frequency of polyploid (triploid and tetraploid) genotypes were found on the low elevation, east-side elk winter range. Nonregenerating aspen stands on the winter range had greater annual offtake, shorter saplings, and lower density of mid-height (1.5-2.5 m) saplings than regenerating stands. Overwinter elk browsing, however, did not appear to inhibit the leader length of aspen saplings. The winter range aspen stands of RMNP appear to be highly resilient in the face of very intense herbivory by elk and harsh environmental conditions. Conservation efforts through fencing protection and decreased elk browsing pressure are already being planned as part of the park's new elk management plan. If these efforts are undertaken, conditions that encourage stem recruitment to the tree canopy will likely result and the continued survival of these aspen stands will be enhanced.
NASA Astrophysics Data System (ADS)
Schleicher, N. J.; Schäfer, J.; Chen, Y.; Blanc, G.; Chen, Y.; Chai, F.; Cen, K.; Norra, S.
2016-01-01
Atmospheric particulate mercury (HgP) was studied before, during, and after the Olympic Summer Games in Beijing, China, in August 2008 in order to investigate the efficiency of the emission control measures implemented by the Chinese Government. These source control measures comprised traffic reductions, increase in public transportation, planting of vegetation, establishment of parks, building freeze at construction sites, cleaner production techniques for industries and industry closures in Beijing and also in the surrounding areas. Strictest measures including the ;odd-even ban; to halve the vehicle volume were enforced from the 20th of July to the 20th of September 2008. The Olympic period provided the unique opportunity to investigate the efficiency of these comprehensive actions implemented in order to reduce air pollution on a large scale. Therefore, the sampling period covered summer (August, September) and winter (December and January) samples over several years from December 2005 to September 2013. Average HgP concentrations in total suspended particulates (TSP) sampled in August 2008 were 81 ± 39 pg/m3 while TSP mass concentrations were 93 ± 49 μg/m3. This equals a reduction by about 63% for TSP mass and 65% for HgP, respectively, compared to the previous two years demonstrating the short-term success of the measures. However, after the Olympic Games, HgP concentrations increased again to pre-Olympic levels in August 2009 while values in August 2010 decreased again by 30%. Moreover, winter samples, which were 2- to 11-fold higher than corresponding August values, showed decreasing concentrations over the years indicating a long-term improvement of HgP pollution in Beijing. However, regarding adverse health effects, comparisons with soil guideline values and studies from other cities highlighted that HgP concentrations in TSP remained high in Beijing despite respective control measures. Consequently, future mitigation measures need to be tailored more specifically to further reduce HgP concentrations in Beijing.
Energy budget above a high-elevation subalpine forest in complex topography
Turnipseed, A.A.; Blanken, P.D.; Anderson, D.E.; Monson, Russell K.
2002-01-01
Components of the energy budget were measured above a subalpine coniferous forest over two complete annual cycles. Sensible and latent heat fluxes were measured by eddy covariance. Bowen ratios ranged from 0.7 to 2.5 in the summer (June-September) depending upon the availability of soil water, but were considerably higher (???3-6) during winter (December-March). Energy budget closure averaged better than 84% on a half-hourly basis in both seasons with slightly greater closure during the winter months. The energy budget showed a dependence on friction velocity (u*), approaching complete closure at u* values greater than 1 m s-1. The dependence of budget closure on u* explained why energy balance was slightly better in the winter as opposed to summer, since numerous periods of high turbulence occur in winter. It also explained the lower degree of energy closure (???10% less) during easterly upslope flow since these periods were characterized by low wind speeds (U < 4 m s-1) and friction velocities (u* < 0.5 m s-1). Co-spectral analysis suggests a shift of flux density towards higher frequencies under conditions where closure was obtained. It is suggested that low frequency contributions to the flux and advection were responsible for the lack of day-time energy budget closure. These effects were reduced at high friction velocities observed at our site. Our ability to close the energy budget at night was also highly dependent on friction velocity, approaching near closure (???90%) at u* values between 0.7 and 1.1 m s-1. Below this range, the airflow within the canopy becomes decoupled with the flow above. Above this range, insufficient temperature resolution of the sonic anemometer obscured the small temperature fluctuations, rendering measurements intractable. ?? 2002 Elsevier Science B.V. All rights reserved.
Movements of wintering surf scoters: Predator responses to different prey landscapes
Kirk, M.; Esler, Daniel N.; Iverson, S.A.; Boyd, W.S.
2008-01-01
The distribution of predators is widely recognized to be intimately linked to the distribution of their prey. Foraging theory suggests that predators will modify their behaviors, including movements, to optimize net energy intake when faced with variation in prey attributes or abundance. While many studies have documented changes in movement patterns of animals in response to temporal changes in food, very few have contrasted movements of a single predator species naturally occurring in dramatically different prey landscapes. We documented variation in the winter movements, foraging range size, site fidelity, and distribution patterns of a molluscivorous sea duck, the surf scoter (Melanitta perspicillata), in two areas of coastal British Columbia with very different shellfish prey features. Baynes Sound has extensive tidal flats with abundant clams, which are high-quality and temporally stable prey for scoters. Malaspina Inlet is a rocky fjord-like inlet where scoters consume mussels that are superabundant and easily accessible in some patches but are heavily depleted over the course of winter. We used radio telemetry to track surf scoter movements in both areas and found that in the clam habitats of Baynes Sound, surf scoters exhibited limited movement, small winter ranges, strong foraging site fidelity, and very consistent distribution patterns. By contrast, in mussel habitats in the Malaspina Inlet, surf scoters displayed more movement, larger ranges, little fidelity to specific foraging sites, and more variable distribution patterns. We conclude that features associated with the different prey types, particularly the higher depletion rates of mussels, strongly influenced seasonal space use patterns. These findings are consistent with foraging theory and confirm that predator behavior, specifically movements, is environmentally mediated. ?? 2008 Springer-Verlag.
NASA Astrophysics Data System (ADS)
Allen, S. T.; Kirchner, J. W.; Braun, S.; Siegwolf, R. T.; Goldsmith, G. R.
2017-12-01
Xylem water isotopic composition can reveal how water moves through soil and is subsequently taken up by plants. By examining how xylem water isotopes vary across distinct climates and soils, we test how these site characteristics control critical-zone water movement and tree uptake. Xylem water was collected from over 900 trees at 191 sites across Switzerland during a 10-day period in mid-summer 2015. Sites contained oak, beech and/or spruce trees and ranged in elevation from 260 to 1870 m asl with mean annual precipitation from 700 to 2060 mm. Xylem water samples were analyzed for 2H and 18O using isotope ratio mass spectrometry. Patterns in the temporal origin of xylem water showed regional differences. For example, trees in the southern and alpine regions had xylem water isotopic signatures that more closely resembled summer precipitation. The isotopic spatial range observed for mid-summer xylem waters was similar to the seasonal range of precipitation; that is, mid-summer xylem water at some sites resembled summer precipitation, and at other sites resembled winter precipitation. Xylem water from spruces, oaks, and beeches at the same sites did not differ from each other, despite these species having different rooting habits. Across all sites and species, precipitation amount correlated positively with xylem δ18O. In higher-precipitation areas, summer rain apparently displaces or mixes with older (winter) stored waters, thus reducing the winter-water isotopic signal in xylem water. Alternatively, in areas with limited precipitation, xylem water more closely matched winter water, indicating greater use of older stored water. We conclude that regional variations in precipitation deficits determine variations in the turnover rate of plant-available soil water and storage.
Wilson, Scott; LaDeau, Shannon L; Tøttrup, Anders P; Marra, Peter P
2011-09-01
Geographic variation in the population dynamics of a species can result from regional variability in climate and how it affects reproduction and survival. Identifying such effects for migratory birds requires the integration of population models with knowledge of migratory connectivity between breeding and nonbreeding areas. We used Bayesian hierarchical models with 26 years of Breeding Bird Survey data (1982-2007) to investigate the impacts of breeding- and nonbreeding-season climate on abundance of American Redstarts (Setophaga ruticilla) across the species range. We focused on 15 populations defined by Bird Conservation Regions, and we included variation across routes and observers as well as temporal trends and climate effects. American Redstart populations that breed in eastern North America showed increased abundance following winters with higher plant productivity in the Caribbean where they are expected to overwinter. In contrast, western breeding populations showed little response to conditions in their expected wintering areas in west Mexico, perhaps reflecting lower migratory connectivity or differential effects of winter rainfall on individuals across the species range. Unlike the case with winter climate, we found few effects of temperature prior to arrival in spring (March-April) or during the nesting period (May-June) on abundance the following year. Eight populations showed significant changes in abundance, with the steepest declines in the Atlantic Northern Forest (-3.4%/yr) and the greatest increases in the Prairie Hardwood Transition (4%/yr). This study emphasizes how the effects of climate on populations of migratory birds are context dependent and can vary depending on geographic location and the period of the annual cycle. Such knowledge is essential for predicting regional variation in how populations of a species might vary in their response to climate change.
First record of the common sandpiper for the Hawaiian Islands
Pratt, Thane K.
2016-01-01
With a breeding range spanning Eurasia and a winter range extending from Africa to Australasia, the Common Sandpiper (Actitis hypoleucos) is indeed the common and familiar sandpiper of the Old World. It is the Old World counterpart of the Spotted Sandpiper (A. macularius) of the Americas and its only congener. The Spotted Sandpiper is a vagrant to the Hawaiian Islands (David 1991, Pyle and Pyle 2009), but no Common Sandpiper had been reported until one spent the winter of 2010–2011 at Honuapo lagoon, Whittington Beach County Park, Hawaii Island. Previously, Pyle and Pyle (2009) summarized all records of Actitis for the islands and concluded that 21 of the 32 could be identified with certainty as Spotted Sandpipers. Among the remaining 11 records, the Common Sandpiper could not be ruled out. The Common Sandpiper is a possibility because it reaches Micronesia as a regular winter visitor (Baker 1951) and western Polynesia and Alaska as a vagrant (Kessel and Gibson 1978, Pratt et al. 1987, Gibson and Byrd 2007). There are no records elsewhere in North America (Howell et al. 2014).
Characterization and Local Emission Sources for Ammonia in an Urban Environment.
Galán Madruga, D; Fernández Patier, R; Sintes Puertas, M A; Romero García, M D; Cristóbal López, A
2018-04-01
Ammonia levels were evaluated in the urban environment of Madrid City, Spain. A total of 110 samplers were distributed throughout the city. Vehicle traffic density, garbage containers and sewers were identified as local emission sources of ammonia. The average ammonia concentrations were 4.66 ± 2.14 µg/m 3 (0.39-11.23 µg/m 3 range) in the winter and 5.30 ± 1.81 µg/m 3 (2.33-11.08 µg/m 3 range) in the summer. Spatial and seasonal variations of ammonia levels were evaluated. Hotspots were located in the south and center of Madrid City in both winter and summer seasons, with lower ammonia concentrations located in the north (winter) and in the west and east (summer). The number of representative points that were needed to establish a reliable air quality monitoring network for ammonia was determined using a combined clustering and kriging approach. The results indicated that 40 samplers were sufficient to provide a reliable estimate for Madrid City.
Haggerty, Julia Hobson; Epstein, Kathleen; Stone, Michael; Cross, Paul
2018-01-01
Amenity migration describes the movement of peoples to rural landscapes and the transition toward tourism and recreation and away from production-oriented land uses (ranching, timber harvesting). The resulting mosaic of land uses and community structures has important consequences for wildlife and their management. This research note examines amenity-driven changes to social-ecological systems in the Greater Yellowstone Ecosystem, specifically in lower elevations that serve as winter habitat for elk. We present a research agenda informed by a preliminary and exploratory mixed-methods investigation: the creation of a “social-impact” index of land use change on elk winter range and a focus group with wildlife management experts. Our findings suggest that elk are encountering an increasingly diverse landscape with respect to land use, while new ownership patterns increase the complexity of social and community dynamics. These factors, in turn, contribute to increasing difficulty meeting wildlife management objectives. To deal with rising complexity across social and ecological landscapes of the Greater Yellowstone Ecosystem, future research will focus on property life cycle dynamics, as well as systems approaches.
Associating seasonal range characteristics with survival of female white-tailed deer
Klaver, R.W.; Jenks, J.A.; Deperno, C.S.; Griffin, S.L.
2008-01-01
Delineating populations is critical for understanding population dynamics and managing habitats. Our objective was to delineate subpopulations of migratory female white-tailed deer (Odocoileus virginianus) in the central Black Hills, South Dakota and Wyoming, USA, on summer and winter ranges. We used fuzzy classification to assign radiocollared deer to subpopulations based on spatial location, characterized subpopulations by trapping sites, and explored relationships among survival of subpopulations and habitat variables. In winter, Kaplan-Meier estimates for subpopulations indicated 2 groups: high (S = 0.991 ?? 0.005 [x- ?? SE]) and low (S = 0.968 ?? 0.007) weekly survivorship. Survivorship increased with basal area per hectare of trees, average diameter at breast height of trees, percent cover of slash, and total point-center quarter distance of trees. Cover of grass and forbs were less for the high survivorship than the lower survivorship group. In summer, deer were spaced apart with mixed associations among subpopulations. Habitat manipulations that promote or maintain large trees (i.e., basal area = 14.8 m2/ha and average dbh of trees = 8.3 cm) would seem to improve adult survival of deer in winter.
Wilson, Ryan R.; Gustine, David D.; Joly, Kyle
2014-01-01
Worldwide, some caribou (Rangifer tarandus) populations are experiencing declines due partially to the expansion of industrial development. Caribou can exhibit behavioral avoidance of development, leading to indirect habitat loss, even if the actual footprint is small. Thus, it is important to understand before construction begins how much habitat might be affected by proposed development. In northern Alaska, an industrial road that has been proposed to facilitate mining transects a portion of the Western Arctic caribou herd's winter range. To understand how winter habitat use might be affected by the road, we estimated resource selection patterns during winter for caribou in a study area surrounding the proposed road. We assessed the reductions of habitat value associated with three proposed routes at three distance thresholds for disturbance. High-value winter habitat tended to occur in locally rugged areas that have not burned recently and have a high density of lichen and early dates of spring snowmelt. We found that 1.5% to 8.5% (146-848 km2) of existing high-value winter habitat in our study area might be reduced in quality. The three alternative routes were only marginally different. Our results suggest that the road would have minimal direct effects on high-value winter habitat; however, additional cumulative impacts to caribou (e.g., increased access by recreationists and hunters) should be considered before the full effects of the road can be estimated.
Weather Prediction Center (WPC) Home Page
grids, quantitative precipitation, and winter weather outlook probabilities can be found at: http Short Range Products » More Medium Range Products Quantitative Precipitation Forecasts Legacy Page Discussion (Day 1-3) Quantitative Precipitation Forecast Discussion NWS Weather Prediction Center College
Range Cattle Winter Water Consumption in Northern Great Plains
USDA-ARS?s Scientific Manuscript database
Water consumption and DMI may interact to alter range cow productivity. Furthermore, environmental conditions and water temperature may influence water consumption. Therefore, the objective of this study was to determine influences of water and air temperature on quantity and pattern of water intake...
Herbicide mitigation in microcosms simulating stormwater basins subject to polluted water inputs.
Bois, P; Huguenot, D; Jézéquel, K; Lollier, M; Cornu, J Y; Lebeau, T
2013-03-01
Non-point source pollution as a result of wine-growing activity is of high concern. Stormwater basins (SWB) found downstream of vineyard watersheds could show a potential for the mitigation of runoff water containing herbicides. In this study, mitigation of vinery-used herbicides was studied in microcosms with a very similar functioning to that recorded in SWB. Mitigation efficiency of glyphosate, diuron and 3,4-dichloroaniline (3,4-DCA) was investigated by taking into account hydraulic flow rate, mitigation duration, bioaugmentation and plant addition. Mitigation efficiency measured in water ranged from 63.0% for diuron to 84.2% for 3,4-DCA and to 99.8% for glyphosate. Water-storage duration in the SWB and time between water supplies were shown to be the most influential factors on the mitigation efficiency. Six hours water-storage duration allowed an efficient sorption of herbicides and their degradation by indigenous microorganisms in 5 weeks. Neither bioaugmentation nor plant addition had a significant effect on herbicide mitigation. Our results show that this type of SWB are potentially relevant for the mitigation of these herbicides stemming from wine-growing activity, providing a long enough hydraulic retention time. Copyright © 2012 Elsevier Ltd. All rights reserved.
222Rn variations in Mystery Cave, Minnesota
Lively, R.S.; Krafthefer, B.C.
1995-01-01
222Rn concentrations and meteorological parameters were measured at 4- h intervals over a 2-y period in Mystery Cave, southeastern Minnesota. Continuous radon monitors and meteorological sensors connected to data loggers were installed at several locations along commercial tour routes. 222Rn concentrations ranged as high as 25 kBq m-3 in summer and 20 kBq m-3 in winter. Average winter concentrations were lower than summer by at least a factor of two. Seasonal radon variations were correlative with outside air temperatures. During the winter, radon concentrations were observed to fluctuate periodically by factors of 20 or more in under 24 h. Both the long- and short-term variations are correlative with temperature- induced mixing of cave air with surface air.
Evaluating soil moisture and yield of winter wheat in the Great Plains using Landsat data
NASA Technical Reports Server (NTRS)
Heilman, J. L.; Kanemasu, E. T.; Bagley, J. O.; Rasmussen, V. P.
1977-01-01
Locating areas where soil moisture is limiting to crop growth is important for estimating winter-wheat yields on a regional basis. In the 1975-76 growing season, we evaluated soil-moisture conditions and winter-wheat yields for a five-state region of the Great Plains using Landsat estimates of leaf area index (LAI) and an evapotranspiration (ET) model described by Kanemasu et al (1977). Because LAI was used as an input, the ET model responded to changes in crop growth. Estimated soil-water depletions were high for the Nebraska Panhandle, southwestern Kansas, southeastern Colorado, and the Texas Panhandle. Estimated yields in five-state region ranged from 1.0 to 2.9 metric ton/ha.
The spectrum of electron content fluctuations in the ionosphere.
NASA Technical Reports Server (NTRS)
Titheridge, J. E.
1971-01-01
Continuous records of the electron content of the ionosphere, from 1965 to 1970, are used to obtain power spectra covering periods from 30 sec to 2 yr at latitudes of 34 deg S and 42 deg S. At periods up to 5 min amplitudes were less than 0.2% of the total electron content. Variations produced by gravity waves were very common in the range from 20 to 80 min, with no preferred periods. The amplitude increased during the day, particularly in winter when periodic components predominated. The cutoff at about 17 min was sharply defined, giving a mean scale height for the neutral atmosphere of about 43 km in summer, 47 km on winter days, and 42 km on winter nights.
Habitat use, movements and home range of wintering Lesser Scaup in Florida
Herring, G.; Collazo, J.A.
2005-01-01
Radio telemetry and diurnal time activity budgets were used to show that wintering Lesser Scaup (Aythya affinis) used different habitats for comfort and feeding activities at Merritt Island National Wildlife Refuge (Merritt Island), Florida and adjacent estuarine areas. Management should take this spatial consideration into account. The same data were used to determine if habitat use differed between sexes. Data on movements and home range were used to evaluate habitat quality and potential effects of human disturbance. Scaup foraged more in impounded wetlands and rested more in open estuarine regions. Mean distance between diurnal and nocturnal sites was 2.7 km (SE ?? 0.3), and was similar between sexes and from mid to late winter. Male and female fixed kernel home ranges and core use areas did not differ. Mean fixed kernel 95% home range and 50% core use areas were 15.1 km2 (SE ?? 2.0) and 2.7 km2 (SE ?? 0.5) respectively, representing 3% and 0.5% of surveyed habitats. Males and females used habitats similarly and short distances traveled between diurnal and nocturnal sites suggested that habitat conditions were similar across the impounded wetlands and shallow portions of both the Indian River and Banana River. Sedentary or short movements suggested that disturbance was probably negligible at the principal areas used by Lesser Scaup. Habitat management strategies for scaup should not be restricted to Merritt Island. Adjustments should be made to take into account that maintenance activities occur in adjacent estuarine areas as well.
Winter ecology and habitat use of lesser prairie-chickens in west Texas, 2008-11
Boal, Clint W.; Pirius, Nicholas E.
2012-01-01
The lesser prairie-chicken (Tympanuchus pallidicinctus) has experienced declines in population and occupied range by more than 90 percent since the late 1800s. The lesser prairie-chicken has been listed as a candidate species for protection under the Endangered Species Act and is undergoing review for actual listing. Populations and distribution of lesser prairie-chickens in Texas are thought to be at or near all time lows. These factors have led to substantially increased concern for conservation of the species. It is apparent that sound management and conservation strategies for lesser prairie-chickens are necessary to ensure the long-term persistence of the species. To develop those strategies, basic ecological information is required. Currently, there is a paucity of data on the wintering ecology of the species. We examined home range, habitat use, and survival of lesser prairie-chickens during the winters of 2008–9, 2009–10, and 2010–11 in sand shinnery oak (Quercus havardii) landscapes in west Texas. We captured and radio-tagged 53 adult lesser prairie-chickens. We obtained sufficient locations to estimate winter home-range size for 23 individuals. Home-range size did not differ between years or by sex. Although female prairie-chickens had slightly larger home ranges (503.5 ± 34.9 ha) compared to males (489.1 ± 34.9 ha), the differences were not significant (t2 = 0.05, P = 0.96). During the nonbreeding season, we found that 97.2 percent of locations of male and female prairie-chickens alike were within 3.2 kilometers (km) of the lek of capture. Most locations (96.8%) were within 1.7 km of a known lek and almost all locations (99.9%) were within 3.2 km of an available water source. Habitat cover types were not used proportional to occurrence within the home ranges, grassland dominated areas with sand shinnery oak were used more than available, and sand sagebrush (Artemisia filifolia) areas dominated with grassland as well as sand sagebrush areas dominated with bare ground were both used less than available. Survival rates during the first 2 years (year 1: 0.846 ± 0.141; year 2: 0.827 ± 0.092) were among the highest ever reported for the species during the nonbreeding season. Survival was markedly decreased in year 3 (0.572 ± 0.136) and resulted in an overall nonbreeding season average of 0.721 (± 0.0763). These are still among the highest survival rates reported for the species; it does not appear that winter season mortality is a strong limiting factor in lesser prairie-chicken persistence in the study area.
Blast Mitigation by Water Mist, (3) Mitigation of Confined and Unconfined Blasts
2006-07-14
2 (vv)I1 1 j7(T - TJ) (18) In addition to drag, heat transfer, and vaporization, droplet breakup must also be accounted for when large droplets...Mitigation of Confined and Unconfined Blasts Table of Contents 1 . Introduction 2 . Numerical Model and Solution Procedure 2.1 Gas-phase Model 2.2...enclosure at 1 , 2 , 5, and 15 ms after detonation of a 2.12 kg explosive without water mist present. Temperature contour range is from 300 to 2500 K
Haukos, David A.; Smith, Loren M.
1992-01-01
Between 25,000 and 30,000 playa lakes are in the playa lakes region of the southern high plains (Fig. 1). Most playas are in west Texas (about 20,000), and fewer, in New Mexico, Oklahoma, Kansas, and Colorado. The playa lakes region is one of the most intensively cultivated areas of North America. Dominant crops range from cotton in southern areas to cereal grains in the north. Therefore, most of the native short-grass prairie is gone, replaced by crops and, recently, grasses of the Conservation Reserve Program. Playas are the predominant wetlands and major wildlife habitat of the region.More than 115 bird species, including 20 species of waterfowl, and 10 mammal species have been documented in playas. Waterfowl nest in the area, producing up to 250,000 ducklings in wetter years. Dominant breeding and nesting species are mallards and blue-winged teals. During the very protracted breeding season, birds hatch from April through August. Several million shorebirds and waterfowl migrate through the area each spring and fall. More than 400,000 sandhill cranes migrate through and winter in the region, concentrating primarily on the larger saline lakes in the southern portion of the playa lakes region.The primary importance of the playa lakes region to waterfowl is as a wintering area. Wintering waterfowl populations in the playa lakes region range from 1 to 3 million birds, depending on fall precipitation patterns that determine the number of flooded playas. The most common wintering ducks are mallards, northern pintails, green-winged teals, and American wigeons. About 500,000 Canada geese and 100,000 lesser snow geese winter in the playa lakes region, and numbers of geese have increased annually since the early 1980’s. This chapter describes the physiography and ecology of playa lakes and their attributes that benefit waterfowl.
Arctic sea ice leads from advanced very high resolution radiometer images
NASA Technical Reports Server (NTRS)
Lindsay, R. W.; Rothrock, D. A.
1995-01-01
A large number of advanced very high resolution radiometer (AVHRR) images from throughout 1989 are analyzed to determine lead characteristics. The units of analysis are square 200-km cells, and there are 270 such cells in the data set. Clouds are masked manually. Leads determine from images of the potential open water delta, a scaled version of the surface temperature or albedo that weights thin ice by its thermal or brightness impact. The lead fraction is determined as the mean delta, the monthly mean lead fraction ranges from 0.02 in winter to 0.06 in summer in the central Arctic and is near 0.08 in the winter in the peripheral seas. A method of accounting for lead width sampling errors due to the finite sample areas is introduced. In the central Arctic the observed mean lead width for a threshold of delta = 0.1 ranges from 2 or 3 km (near the resolution of the instrument) in the winter to 6 km in the summer. In the peripheral seas it is about 5 km in the winter. Width distributions are often more heavily weighted in the tail than exponential distributions and are well approximated by a power law. The along-track, number density power law N = aw(exp -6) has a mean exponent of b = 1.60 (standard deviation 0.18) and shows some seasonal variability. Mean floe widths in the central Arctic are 40 to 50 km in the winter, dropping to about 10 km in the summer. For floes the power law has a mean exponent of 0.93 and exhibits a clearer annual cycle. Lead orientation is determined with a method based on the direction of maximum extent.
NASA Astrophysics Data System (ADS)
Quinton, John; Stevens, Carly
2010-05-01
Pollution swapping occurs when a mitigation option introduced to reduce one pollutant results in an increase in a different pollutant. Although the concept of pollution swapping is widely understood it has received little attention in research and policy design. This study investigated diffuse pollution mitigation options applied in combinable crop systems. They are: cover crops, residue management, no-tillage, riparian buffer zones, contour grass strips and constructed wetlands. A wide range of water and atmospheric pollutants were considered, including nitrogen, phosphorus, carbon and sulphur. It is clear from this investigation that there is no single mitigation option that will reduce all pollutants and in this poster we consider how choices may be made between mitigation measures which may have a positive effect on one pollutant but a negative effect on another.
Extending medium-range predictability of extreme hydrological events in Europe
Lavers, David A.; Pappenberger, Florian; Zsoter, Ervin
2014-01-01
Widespread flooding occurred across northwest Europe during the winter of 2013/14, resulting in large socioeconomic damages. In the historical record, extreme hydrological events have been connected with intense water vapour transport. Here we show that water vapour transport has higher medium-range predictability compared with precipitation in the winter 2013/14 forecasts from the European Centre for Medium-Range Weather Forecasts. Applying the concept of potential predictability, the transport is found to extend the forecast horizon by 3 days in some European regions. Our results suggest that the breakdown in precipitation predictability is due to uncertainty in the horizontal mass convergence location, an essential mechanism for precipitation generation. Furthermore, the predictability increases with larger spatial averages. Given the strong association between precipitation and water vapour transport, especially for extreme events, we conclude that the higher transport predictability could be used as a model diagnostic to increase preparedness for extreme hydrological events. PMID:25387309
Evidence for range contraction of snowshoe hare in Pennsylvania
Diefenbach, Duane R.; Rathbun, Stephen L.; Vreeland, J.K.; Grove, Deborah; Kanapaux, William J.
2016-01-01
In Pennsylvania, Lepus americanus (Snowshoe Hare) is near the southern limits of its range and at risk of range contraction because of loss of early-successional forest and impacts of climate change. We used hunter-harvest data to investigate changes in the distribution of Snowshoe Hare in Pennsylvania (1983–2011), forest inventory and land-use data to assess changes in amount and distribution of early-successional forest (1988–2011), and occupancy modeling (2004) to identify habitat and climate variables that explain the current distribution of Snowshoe Hare. We determined presence of Snowshoe Hare based on visual sightings, observations of tracks, and DNA analysis of fecal pellets, and used repeated visits to sampling sites and occupancy models to estimate occupancy rates (Ψ). Hunter-harvest data indicated the range of Snowshoe Hare in Pennsylvania contracted towards northwestern and northeastern portions of the state. Based on occupancy modeling, Snowshoe Hare were most likely to occupy early-successional and mixed deciduous-coniferous forest types and areas with colder winter temperatures, which coincided with the distribution of hunter harvests. Among the 4 forest types, we estimated Ψ = 0.52-0.79 and Ψ = 0.10-0.32 where winter temperatures were coldest and warmest, respectively. Total forest loss was <1% during 1988-2011, and the loss of early-successional forest in the current and former range of Snowshoe Hares was similar as were mean patch size and a fragmentation metric of early-successional habitat. Thus, changes in forest characteristics did not explain the range contraction we observed. We used climate-model predictions and our occupancy model to predict that average occupancy probability across northern Pennsylvania may decline from 0.27 in 2004 to 0.10–0.18 by 2050–2059, depending on the climate model. The range of Snowshoe Hare in Pennsylvania has contracted to regions of Pennsylvania with the coldest winter temperatures and most persistent snowpack, and based on projected climate change, our results suggest further range contraction of Snowshoe Hare in Pennsylvania.
Bevelhimer, Mark S.; DeRolph, Christopher R.; Schramm, Michael P.
2016-06-06
Uncertainty about environmental mitigation needs at existing and proposed hydropower projects makes it difficult for stakeholders to minimize environmental impacts. Hydropower developers and operators desire tools to better anticipate mitigation requirements, while natural resource managers and regulators need tools to evaluate different mitigation scenarios and order effective mitigation. Here we sought to examine the feasibility of using a suite of multidisciplinary explanatory variables within a spatially explicit modeling framework to fit predictive models for future environmental mitigation requirements at hydropower projects across the conterminous U.S. Using a database comprised of mitigation requirements from more than 300 hydropower project licenses, wemore » were able to successfully fit models for nearly 50 types of environmental mitigation and to apply the predictive models to a set of more than 500 non-powered dams identified as having hydropower potential. The results demonstrate that mitigation requirements have been a result of a range of factors, from biological and hydrological to political and cultural. Furthermore, project developers can use these models to inform cost projections and design considerations, while regulators can use the models to more quickly identify likely environmental issues and potential solutions, hopefully resulting in more timely and more effective decisions on environmental mitigation.« less
DeRolph, Christopher R; Schramm, Michael P; Bevelhimer, Mark S
2016-10-01
Uncertainty about environmental mitigation needs at existing and proposed hydropower projects makes it difficult for stakeholders to minimize environmental impacts. Hydropower developers and operators desire tools to better anticipate mitigation requirements, while natural resource managers and regulators need tools to evaluate different mitigation scenarios and order effective mitigation. Here we sought to examine the feasibility of using a suite of multi-faceted explanatory variables within a spatially explicit modeling framework to fit predictive models for future environmental mitigation requirements at hydropower projects across the conterminous U.S. Using a database comprised of mitigation requirements from more than 300 hydropower project licenses, we were able to successfully fit models for nearly 50 types of environmental mitigation and to apply the predictive models to a set of more than 500 non-powered dams identified as having hydropower potential. The results demonstrate that mitigation requirements are functions of a range of factors, from biophysical to socio-political. Project developers can use these models to inform cost projections and design considerations, while regulators can use the models to more quickly identify likely environmental issues and potential solutions, hopefully resulting in more timely and more effective decisions on environmental mitigation. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bevelhimer, Mark S.; DeRolph, Christopher R.; Schramm, Michael P.
Uncertainty about environmental mitigation needs at existing and proposed hydropower projects makes it difficult for stakeholders to minimize environmental impacts. Hydropower developers and operators desire tools to better anticipate mitigation requirements, while natural resource managers and regulators need tools to evaluate different mitigation scenarios and order effective mitigation. Here we sought to examine the feasibility of using a suite of multidisciplinary explanatory variables within a spatially explicit modeling framework to fit predictive models for future environmental mitigation requirements at hydropower projects across the conterminous U.S. Using a database comprised of mitigation requirements from more than 300 hydropower project licenses, wemore » were able to successfully fit models for nearly 50 types of environmental mitigation and to apply the predictive models to a set of more than 500 non-powered dams identified as having hydropower potential. The results demonstrate that mitigation requirements have been a result of a range of factors, from biological and hydrological to political and cultural. Furthermore, project developers can use these models to inform cost projections and design considerations, while regulators can use the models to more quickly identify likely environmental issues and potential solutions, hopefully resulting in more timely and more effective decisions on environmental mitigation.« less
Applying stochastic small-scale damage functions to German winter storms
NASA Astrophysics Data System (ADS)
Prahl, B. F.; Rybski, D.; Kropp, J. P.; Burghoff, O.; Held, H.
2012-03-01
Analyzing insurance-loss data we derive stochastic storm-damage functions for residential buildings. On district level we fit power-law relations between daily loss and maximum wind speed, typically spanning more than 4 orders of magnitude. The estimated exponents for 439 German districts roughly range from 8 to 12. In addition, we find correlations among the parameters and socio-demographic data, which we employ in a simplified parametrization of the damage function with just 3 independent parameters for each district. A Monte Carlo method is used to generate loss estimates and confidence bounds of daily and annual storm damages in Germany. Our approach reproduces the annual progression of winter storm losses and enables to estimate daily losses over a wide range of magnitudes.
NASA Astrophysics Data System (ADS)
Jones, B. M.; Durner, G. M.; Stoker, J.; Shideler, R.; Perham, C.; Liston, G. E.
2013-12-01
Polar bear (Ursus maritimus) populations throughout the Arctic are being threatened by reductions in critical sea ice habitat. Throughout much of their range, polar bears give birth to their young in winter dens that are excavated in snowdrifts. New-born cubs, which are unable to survive exposure to Arctic winter weather, require 2-3 months of the relatively warm, stable, and undisturbed environment of the den for their growth. In the southern Beaufort Sea (BS), polar bears may den on the Alaskan Arctic Coastal Plain (ACP).The proportion of dens occurring on land has increased because of reductions in stable multi-year ice, increases in unconsolidated ice, and lengthening of the fall open-water period. Large portions of the ACP are currently being used for oil and gas activities and proposed projects will likely expand this footprint in the near future. Since petroleum exploration and development activities increase during winter there is the potential for human activities to disturb polar bears in maternal dens. Thus, maps showing the potential distribution of terrestrial denning habitat can help to mitigate negative interactions. Prior remote sensing efforts have consisted of manual interpretation of vertical aerial photography and automated classification of Interferometric Synthetic Aperture (IfSAR) derived digital terrain models (DTM) (5-m spatial resolution) focused on the identification of snowdrift forming landscape features. In this study, we assess the feasibility of airborne Light Detection and Ranging (LiDAR) data (2-m spatial resolution) for the automated classification of potential polar bear maternal denning habitat in a 1,400 km2 area on the central portion of the ACP. The study region spans the BS coast from the Prudhoe Bay oilfield in the west to near Point Thompson in the east and extends inland from 10 to 30 km. Approximately 800 km2 of the study area contains 19 known den locations, 51 field survey sites with information on bank height and slope that were previously used to identify potential habitat, photo-interpreted denning habitat, and an IfSAR DTM. When compared to the known den locations, the photo-interpreted dataset identified all 19 sites (100%), the classified IfSAR dataset identified 18 of the 19 sites (95%), and the classified LiDAR data identified all 19 sites (100%). When compared to the 51 field survey locations located along coast, river, and lake banks, the photo-interpreted dataset correctly identified 88%, the IfSAR 75%, and the LiDAR 96%. While all methods performed reasonably well, LiDAR performed best and in addition to identifying potential habitat along river, coast, and lake bluffs, it also resolved potential habitat along pingos, erosional landscape remnants, beaded stream gulches, thermo-erosional gullies, thermokarst pits, sand dunes, and human infrastructure. These comparisons highlight the utility of using LiDAR data for the identification of potential polar bear maternal denning habitat on the Alaskan ACP.
Hydrogen-Bonding Surfaces for Ice Mitigation
NASA Technical Reports Server (NTRS)
Smith, Joseph G., Jr.; Wohl, Christopher J.; Kreeger, Richard E.; Hadley, Kevin R.; McDougall, Nicholas
2014-01-01
Ice formation on aircraft, either on the ground or in-flight, is a major safety issue. While ground icing events occur predominantly during the winter months, in-flight icing can happen anytime during the year. The latter is more problematic since it could result in increased drag and loss of lift. Under a Phase I ARMD NARI Seedling Activity, coated aluminum surfaces possessing hydrogen-bonding groups were under investigation for mitigating ice formation. Hydroxyl and methyl terminated dimethylethoxysilanes were prepared via known chemistries and characterized by spectroscopic methods. These materials were subsequently used to coat aluminum surfaces. Surface compositions were based on pure hydroxyl and methyl terminated species as well as mixtures of the two. Coated surfaces were characterized by contact angle goniometry. Receding water contact angle data suggested several potential surfaces that may exhibit reduced ice adhesion. Qualitative icing experiments performed under representative environmental temperatures using supercooled distilled water delivered via spray coating were inconclusive. Molecular modeling studies suggested that chain mobility affected the interface between ice and the surface more than terminal group chemical composition. Chain mobility resulted from the creation of "pockets" of increased free volume for longer chains to occupy.
Reproduction and early-age survival of manatees at Blue Spring, Upper St. Johns River, Florida
O'Shea, Thomas J.; Hartley, W.C.; O'Shea, Thomas J.; Ackerman, B.B.; Percival, H. Franklin
1995-01-01
We summarize reproduction of adults and survival of calves and subadult Florida manatees (Trichechus manatus latirostris) that were identified in winter at Blue Spring on the upper St. Johns River in Florida. Some records span more than 20 years, but most are from 15-year continuous annual observations during winter 1978-79 through winter 1992-93. Fifty-seven, first-year calves were identified; 55 litter sizes were one, and one consisted oftwins (1.79% of all births). Sex ratios of first-year calves did notsignificantly differfrom 1:1. Based on 21 of35 sighted females (15 individuals) that appeared pregnant and returned with calves during the subsequent winter, we estimated an early (neonatal to about 6 months) calf survival of 0.600. Based on estimations with a minimum-number-known-alive method, calf survival from the first to the second winter was at least 0.822, and subadult survival was 0.903 to the third, 0.958 to the fourth, 1.00 to the fifth, and 1.00 to the sixth winters. Seven females were observed from year of birth to their first winter with a nursing calf; the mean age at parturition to the first calf that survived to the next winter was 5.4 + 0.98 (SD) years. The estimated ages at first conception ranged from 3 to 6 years. The proportion of adult pregnant females was 0.410/year. Weaning was not observed in winter. Intervals between births averaged 2.60 + 0.81 years. The pooled proportion of adult females nursing first-winter calves was 0.303; the proportion of adult females nursing calves of any age was 0.407. These values do not significantly differ from those ofmanatees from the Crystal River or Atlantic Coast study areas. Anecdotal accounts are provided that suggested the existence of a pseudo estrus, an 11 to 13-month gestation, suppression of parturition in winter, and giving birth in quiet backwaters and canals. A female from Blue Spring produced at least seven calves during the 22 years since first observed and died giving birth at an estimated age of 29 years.
Overseas Varietal Analysis 2009 Crop Soft Red Winter Wheat
USDA-ARS?s Scientific Manuscript database
Each customer in the survey has a preference for specific protein targets. Grain shipments within those protein ranges may perform better than individual varieties that often have a wider range in protein than normally observed in pooled cargos of commercial grain shipments. The feedback on protei...
Milner, Jos M; van Beest, Floris M; Solberg, Erling J; Storaas, Torstein
2013-08-01
A life history strategy that favours somatic growth over reproduction is well known for long-lived iteroparous species, especially in unpredictable environments. Risk-sensitive female reproductive allocation can be achieved by a reduced reproductive effort at conception, or the subsequent adjustment of investment during gestation or lactation in response to unexpected environmental conditions or resource availability. We investigated the relative importance of reduced investment at conception compared with later in the reproductive cycle (i.e. prenatal, perinatal or neonatal mortality) in explaining reproductive failure in two high-density moose (Alces alces) populations in southern Norway. We followed 65 multiparous, global positioning system (GPS)-collared females throughout the reproductive cycle and focused on the role of maternal nutrition during gestation in determining reproductive success using a quasi-experimental approach to manipulate winter forage availability. Pregnancy rates in early winter were normal (≥0.8) in all years while spring calving rates ranged from 0.4 to 0.83, with prenatal mortality accounting for most of the difference. Further losses over summer reduced autumn recruitment rates to 0.23-0.69, despite negligible predation. Over-winter mass loss explained variation in both spring calving and autumn recruitment success better than absolute body mass in early or late winter. Although pregnancy was related to body mass in early winter, overall reproductive success was unrelated to pre-winter body condition. We therefore concluded that reproductive success was limited by winter nutritional conditions. However, we could not determine whether the observed reproductive allocation adjustment was a bet-hedging strategy to maximise reproduction without compromising survival or whether females were simply unable to invest more resources in their offspring.
Winter fluxes of CO2 and CH4 from subalpine soils in Rocky Mountain National Park, Colorado
Mast, M. Alisa; Wickland, Kimberly P.; Striegl, Robert G.; Clow, David W.
1998-01-01
Fluxes of CO2 and CH4 through a seasonal snowpack were measured in and adjacent to a subalpine wetland in Rocky Mountain National Park, Colorado. Gas diffusion through the snow was controlled by gas production or consumption in the soil and by physical snowpack properties. The snowpack insulated soils from cold midwinter air temperatures allowing microbial activity to continue through the winter. All soil types studied were net sources of CO2 to the atmosphere through the winter, whereas saturated soils in the wetland center were net emitters of CH4 and soils adjacent to the wetland were net CH4 consumers. Most sites showed similar temporal patterns in winter gas fluxes; the lowest fluxes occurred in early winter, and maximum fluxes occurred at the onset of snowmelt. Temporal changes in fluxes probably were related to changes in soil-moisture conditions and hydrology because soil temperatures were relatively constant under the snowpack. Average winter CO2 fluxes were 42.3, 31.2, and 14.6 mmol m−2 d−1 over dry, moist, and saturated soils, respectively, which accounted for 8 to 23% of the gross annual CO2emissions from these soils. Average winter CH4 fluxes were −0.016, 0.274, and 2.87 mmol m−2 d−1over dry, moist, and saturated soils, respectively. Microbial activity under snow cover accounted for 12% of the annual CH4 consumption in dry soils and 58 and 12% of the annual CH4 emitted from moist and saturated soils, respectively. The observed ranges in CO2 and CH4 flux through snow indicated that winter fluxes are an important part of the annual carbon budget in seasonally snow-covered terrains.
Ice duration drives winter nitrate accumulation in north temperate lakes
Powers, Steven M; Labou, Stephanie G.; Baulch, Helen M.; Hunt, Randall J.; Lottig, Noah R.; Hampton, Stephanie E.; Stanley, Emily H.
2017-01-01
The duration of winter ice cover on lakes varies substantially with climate variability, and has decreased over the last several decades in many temperate lakes. However, little is known of how changes in seasonal ice cover may affect biogeochemical processes under ice. We examined winter nitrogen (N) dynamics under ice using a 30+ yr dataset from five oligotrophic/mesotrophic north temperate lakes to determine how changes in inorganic N species varied with ice duration. Nitrate accumulated during winter and was strongly related to the number of days since ice-on. Exogenous inputs accounted for less than 3% of nitrate accumulation in four of the five lakes, suggesting a paramount role of nitrification in regulating N transformation and the timing of chemical conditions under ice. Winter nitrate accumulation rates ranged from 0.15 μg N L−1 d−1 to 2.7 μg N L−1 d−1 (0.011–0.19 μM d−1), and the mean for intermediate depths was 0.94 μg N L−1 d−1(0.067 μM d−1). Given that winters with shorter ice duration (< 120 d) have become more frequent in these lakes since the late 1990s, peak winter nitrate concentrations and cumulative nitrate production under ice may be declining. As ice extent and duration change, the physical and chemical conditions supporting life will shift. This research suggests we may expect changes in the form and amount of inorganic N, and altered dissolved nitrogen : phosphorus ratios, in lakes during winters with shorter ice duration.
Seasonal variation in body mass, body temperature and thermogenesis in the Hwamei, Garrulax canorus.
Wu, Mei-Xiu; Zhou, Li-Meng; Zhao, Li-Dan; Zhao, Zhi-Jun; Zheng, Wei-Hong; Liu, Jin-Song
2015-01-01
The basal thermogenesis of birds is beginning to be viewed as a highly flexible physiological trait influenced by environmental fluctuations, particularly changes in ambient temperature (Ta). Many birds living in regions with seasonal fluctuations in Ta typically respond to cold by increasing their insulation and adjusting their metabolic rate. To understand these metabolic adaptations, body temperature (Tb), metabolic rate (MR), thermal neutral zone (TNZ) and thermal conductance were measured within a range of temperatures from 5 to 40°C in free-living Hwamei, Garrulax canorus, in both winter and summer. Body mass was 61.2±0.3g in winter and 55.5±1.0g in summer, and mean Tb was 41.6±0.1°C in winter and 42.3±0.1°C in summer. TNZ was between 28.3 and 35.1°C in winter and between 28.7 and 33.2°C in summer. The mean basal metabolic rate (BMR) within TNZ was 203.32±11.81ml O2 h(-1) in winter and 168.99±6.45ml O2 h(-1) in summer. Minimum thermal conductance was 3.73±0.09joulesg(-1)h(-1)°C(-1) in winter and 3.26±0.06joulesg(-1)h(-1)°C(-1) in summer. Birds caught in winter had higher body mass, MR, and more variable TNZ than those in summer. The increased winter BMR indicates improved ability to cope with cold and maintenance of a high Tb. These results show that the Hwamei's metabolism is not constant, but exhibits pronounced seasonal phenotypic flexibility associated with maintenance of a high Tb. Copyright © 2014 Elsevier Inc. All rights reserved.
Johnson, Barry L.; Knights, Brent C.; Barko, John W.; Gaugush, Robert F.; Soballe, David M.; James, William F.
1998-01-01
The backwaters of large rivers provide winter refuge for many riverine fish, but they often exhibit low dissolved oxygen levels due to high biological oxygen demand and low flows. Introducing water from the main channel can increase oxygen levels in backwaters, but can also increase current velocity and reduce temperature during winter, which may reduce habitat suitability for fish. In 1993, culverts were installed to introduce flow to the Finger Lakes, a system of six backwater lakes on the Mississippi River, about 160 km downstream from Minneapolis, Minnesota. The goal was to improve habitat for bluegills and black crappies during winter by providing dissolved oxygen concentrations >3 mg/L, current velocities <1 cm/s, and temperatures >1°C. To achieve these conditions, we used data on lake volume and oxygen demand to estimate the minimum flow required to maintain 3 mg/L of dissolved oxygen in each lake. Estimated flows ranged from 0.02 to 0.14 m3/s among lakes. Data gathered in winter 1994 after the culverts were opened, indicated that the estimated flows met habitat goals, but that thermal stratification and lake morphometry can reduce the volume of optimal habitat created.
Peng, Wei; Zhao, Liuwei; Liu, Fengmao; Xue, Jiaying; Li, Huichen; Shi, Kaiwei
2014-01-01
The changes of imidacloprid, pyraclostrobin, azoxystrobin and fipronil residues were studied to investigate the carryover of pesticide residues in winter jujube during paste processing. A multi-residue analytical method for winter jujube was developed based on the QuEChERS approach. The recoveries for the pesticides were between 87.5% and 116.2%. LODs ranged from 0.002 to 0.1 mg kg(-1). The processing factor (Pf) is defined as the ratio of pesticide residue concentration in the paste to that in winter jujube. Pf was higher than 1 for the removal of extra water, and other steps were generally less than 1, indicating that the whole process resulted in lower pesticide residue levels in paste. Peeling would be the critical step for pesticide removal. Processing factors varied among different pesticides studied. The results are useful to address optimisation of the processing techniques in a manner that leads to considerable pesticide residue reduction.
Nichols, James D.; Hines, James E.
1987-01-01
In the present report we address questions about winter distribution patterns and survival rates of North American mallards Anas platyrhynchos. Inferences are based on analyses of banding and recovery data from both winter and preseason banding period. The primary wintering range of the mallard was dividded into 45 minor reference areas and 15 major reference areas which were used to summarize winter banding data. Descriptive tables and figures on the recovery distributions of winter-banded mallards are presented. Using winter recoveries of preseason-banded mallards, we found apparent differences between recovery distribution of young versus adult birds from the same breeding ground reference areas. However, we found no sex-specific differences in winter recovery distribution patterns. Winter recovery distributions of preseason-banded birds also provided evidence that mallards exhibited some degree of year-to-year variation in wintering ground location. The age- and sex-specificity of such variation was tested using winter recoveries of winter-banded birds, and results indicated that subadult (first year) birds were less likely to return to the same wintering grounds the following year than adults. Winter recovery distributions of preseason-banded mallards during 1950-58 differed from distributions in 1966-76. These differences could have resulted from either true distributional shifts or geographic changes in hunting pressure. Survival and recovery rates were estimated from winter banding data. We found no evidence of differences in survival or recovery rates between subadult and adult mallards. Thus, the substantial difference between survival rates of preseason-banded young and adult mallards must result almost entirely from higher mortality of young birds during the approximate period, August-January. Male mallards showed higher survival than females, corroborating inferences based on preseason data. Tests with winter banding and band recovery data indicated some degree of year-to-year variation in both survival and recovery rates, a result again consistent with inference from preseason data. Some evidence indication geographic variation in survival rates; however, there were no consistent directional differences between survival rates of mallards from adjacent northern versus southern areas, or eastern versus western areas. In some comparisons, Central Flyway mallards exhibited slightly higher survival rates than mallards from other flyways. Weighted mean estimates of continental survival rates were computed for the period 1960-77 from both winter banding data and preseason banding of adults. Resulting estimates differed significantly for males, but not for females, and the magnitude of the difference between point estimates was relatively small, even for males. The direction of the difference between these estimates was predicted correctly from previous work on the effects of heterogeneous survival an d recovery rates on band recovery model estimates. The similarity of survival estimates from these two independent data sets supports the believe that biases in these estimates are relatively small.
Wang, Shiyu; Liu, Fei; Wu, Wenyong; Hu, Yaqi; Liao, Renkuan; Chen, Gaoting; Wang, Jiulong; Li, Jialin
2018-04-12
Reclaimed water reuse has become an important means of alleviating agricultural water shortage worldwide. However, the presence of endocrine disrupters has roused up considerable attention. Barrel test in farmland was conducted to investigate the migration of nonylphenol (NP) and bisphenol A (BPA) in soil-winter wheat system simulating reclaimed water irrigation. Additionally, the health risks on humans were assessed based on US EPA risk assessment model. The migration of NP and BPA decreased from the soil to the winter wheat; the biological concentration factors (BCFs) of NP and BPA in roots, stems, leaves, and grains all decreased with their added concentrations in soils. The BCFs of NP and BPA in roots were greatest (0.60-5.80 and 0.063-1.45, respectively). The average BCFs of NP and BPA in winter wheat showed negative exponential relations to their concentrations in soil. The amounts of NP and BPA in soil-winter wheat system accounted for 8.99-28.24% and 2.35-4.95%, respectively, of the initial amounts added into the soils. The hazard quotient (HQ) for children and adults ranged between 10 -6 and 1, so carcinogenic risks could be induced by ingesting winter wheat grains under long-term reclaimed water irrigation. Copyright © 2018 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tinney, R.T.
1988-03-01
Humpback whales wintering in Hawaii may be affected by human activities in the nearshore waters apparently favored by the whales. The report reviews available information on the number, age/sex composition, reproductive status, distribution, movements, and essential habitats of the whales in Hawaii. It then identifies human activities that may be affecting the whales or their habitats and describes their nature, magnitude, and significance. This is followed by: a review of existing local, state, and Federal laws and regulations and their adequacy for avoiding or mitigating the effects of human activities on the whales; an identification of critical information gaps regardingmore » the whales and the human activities.« less
Thomas, Bindi; Holland, John D; Minot, Edward O
2008-01-01
During a five-year GPS satellite tracking study in Sabi Sand Reserve (SSR) and Kruger National Park (KNP) we monitored the daily movements of an elephant cow (Loxodonta africana) from September 2003 to August 2008. The study animal was confirmed to be part of a group of seven elephants therefore her position is representative of the matriarchal group. We found that the study animal did not use habitat randomly and confirmed strong seasonal fidelity to its summer and winter five-year home ranges. The cow's summer home range was in KNP in an area more than four times that of her SSR winter home range. She exhibited clear park habitation with up to three visits per year travelling via a well-defined northern or southern corridor. There was a positive correlation between the daily distance the elephant walked and minimum daily temperature and the elephant was significantly closer to rivers and artificial waterholes than would be expected if it were moving randomly in KNP and SSR. Transect lines established through the home ranges were surveyed to further understand the fine scale of the landscape and vegetation representative of the home ranges.
Plant materials and methodologies for Great Basin rangelands
USDA-ARS?s Scientific Manuscript database
The Nevada Section, Society for Range Management held a winter meeting/symposium January 2017 in Sparks, Nevada. Nearly a century and half of research and experience was presented by scientists in the field of soil science, range and weed science and plant genetics. The ability of resource managers ...
The Framework of a Coastal Hazards Model - A Tool for Predicting the Impact of Severe Storms
Barnard, Patrick L.; O'Reilly, Bill; van Ormondt, Maarten; Elias, Edwin; Ruggiero, Peter; Erikson, Li H.; Hapke, Cheryl; Collins, Brian D.; Guza, Robert T.; Adams, Peter N.; Thomas, Julie
2009-01-01
The U.S. Geological Survey (USGS) Multi-Hazards Demonstration Project in Southern California (Jones and others, 2007) is a five-year project (FY2007-FY2011) integrating multiple USGS research activities with the needs of external partners, such as emergency managers and land-use planners, to produce products and information that can be used to create more disaster-resilient communities. The hazards being evaluated include earthquakes, landslides, floods, tsunamis, wildfires, and coastal hazards. For the Coastal Hazards Task of the Multi-Hazards Demonstration Project in Southern California, the USGS is leading the development of a modeling system for forecasting the impact of winter storms threatening the entire Southern California shoreline from Pt. Conception to the Mexican border. The modeling system, run in real-time or with prescribed scenarios, will incorporate atmospheric information (that is, wind and pressure fields) with a suite of state-of-the-art physical process models (that is, tide, surge, and wave) to enable detailed prediction of currents, wave height, wave runup, and total water levels. Additional research-grade predictions of coastal flooding, inundation, erosion, and cliff failure will also be performed. Initial model testing, performance evaluation, and product development will be focused on a severe winter-storm scenario developed in collaboration with the Winter Storm Working Group of the USGS Multi-Hazards Demonstration Project in Southern California. Additional offline model runs and products will include coastal-hazard hindcasts of selected historical winter storms, as well as additional severe winter-storm simulations based on statistical analyses of historical wave and water-level data. The coastal-hazards model design will also be appropriate for simulating the impact of storms under various sea level rise and climate-change scenarios. The operational capabilities of this modeling system are designed to provide emergency planners with the critical information they need to respond quickly and efficiently and to increase public safety and mitigate damage associated with powerful coastal storms. For instance, high resolution local models will predict detailed wave heights, breaking patterns, and current strengths for use in warning systems for harbor-mouth navigation and densely populated coastal regions where beach safety is threatened. The offline applications are intended to equip coastal managers with the information needed to manage and allocate their resources effectively to protect sections of coast that may be most vulnerable to future severe storms.
NASA Astrophysics Data System (ADS)
Baibakov, K.; O'Neill, N. T.; Herber, A.; Ritter, C.; Duck, T. J.; Schulz, K.; Schrems, O.
2011-12-01
Aerosols can significantly alter the Arctic's delicate radiative balance, both directly by absorbing and scattering solar and terrestrial radiation, and indirectly by influencing cloud properties through their critical role as cloud condensation nuclei. The understanding of aerosol dynamics, however, is especially poor in the Arctic, where our knowledge of the actual aerosol load, transport as well as physical and chemical properties is very limited. Among the biggest limitations is the absence of consistent night-time aerosol optical depth (AOD) measurements during the Polar Winter. AOD is a multi-spectral indicator of the total vertical extinction due to atmospheric aerosols and is one of the most important (aerosol) radiative forcing parameters. During the day, AOD is traditionally measured using the well-known sunphotometry technique, but night-time AOD measurements up to now have been extremely scarce. Recently developed starphotometry techniques based on extinction measurements of bright-star radiation help to mitigate the lack of any type consistent and regular Polar Night measurements. In an effort to address the dearth of AOD measurements during the Polar Winter , two starphotometers (denoted as SP-NYA and SP-PRL) were installed at two key high-Arctic stations: AWIPEV base at Ny Alesund (Spitsbergen, 78°55"N, 11°55"E) and the PEARL observatory at Eureka, Canada (79°59'N, 85°56'W). In the fall of 2010 both instruments were upgraded, in part to allow semi-automatic data acquisition with remote control capabilities. In addition to starphotometers, both stations are equipped with aerosol backscatter lidar systems: KARL (Koldeway Raman Lidar) and MPL (Micropulsed Lidar) at Ny Alesund and CRL (CANDAC Raman Lidar) at Eureka. During the 2010-11Polar Winter (Oct 2010-Mar 2011) measurements were performed whenever possible. We present preliminary event-driven results, for key optical parameters such as multi-band AOD, fine-mode (sub-micron) and coarse-mode (super-micron) optical depths that are derived from the star extinction measurements. We also show how the starphotometry-lidar synergy can be used in a routine analysis to better detect and characterize aerosol events. Finally, based on the preliminary evidence from satellite data and backward trajectories, we give some examples of potential aerosol transport into the Arctic during the Polar Winter.
NASA Astrophysics Data System (ADS)
Pontalier, Q.; Loiseau, J.; Goroshin, S.; Frost, D. L.
2018-04-01
The attenuation of a blast wave from a high-explosive charge surrounded by a layer of inert material is investigated experimentally in a spherical geometry for a wide range of materials. The blast wave pressure is inferred from extracting the blast wave velocity with high-speed video as well as direct measurements with pressure transducers. The mitigant consists of either a packed bed of particles, a particle bed saturated with water, or a homogeneous liquid. The reduction in peak blast wave overpressure is primarily dependent on the mitigant to explosive mass ratio, M/C, with the mitigant material properties playing a secondary role. Relative peak pressure mitigation reduces with distance and for low values of M/C (< 10) can return to unmitigated pressure levels in the mid-to-far field. Solid particles are more effective at mitigating the blast overpressure than liquids, particularly in the near field and at low values of M/C, suggesting that the energy dissipation during compaction, deformation, and fracture of the powders plays an important role. The difference in scaled arrival time of the blast and material fronts increases with M/C and scaled distance, with solid particles giving the largest separation between the blast wave and cloud of particles. Surrounding a high-explosive charge with a layer of particles reduces the positive-phase blast impulse, whereas a liquid layer has no influence on the impulse in the far field. Taking the total impulse due to the blast wave and material impact into account implies that the damage to a nearby structure may actually be augmented for a range of distances. These results should be taken into consideration in the design of explosive mitigant systems.
NASA Astrophysics Data System (ADS)
Pontalier, Q.; Loiseau, J.; Goroshin, S.; Frost, D. L.
2018-05-01
The attenuation of a blast wave from a high-explosive charge surrounded by a layer of inert material is investigated experimentally in a spherical geometry for a wide range of materials. The blast wave pressure is inferred from extracting the blast wave velocity with high-speed video as well as direct measurements with pressure transducers. The mitigant consists of either a packed bed of particles, a particle bed saturated with water, or a homogeneous liquid. The reduction in peak blast wave overpressure is primarily dependent on the mitigant to explosive mass ratio, M/ C, with the mitigant material properties playing a secondary role. Relative peak pressure mitigation reduces with distance and for low values of M/ C (< 10) can return to unmitigated pressure levels in the mid-to-far field. Solid particles are more effective at mitigating the blast overpressure than liquids, particularly in the near field and at low values of M/ C, suggesting that the energy dissipation during compaction, deformation, and fracture of the powders plays an important role. The difference in scaled arrival time of the blast and material fronts increases with M/ C and scaled distance, with solid particles giving the largest separation between the blast wave and cloud of particles. Surrounding a high-explosive charge with a layer of particles reduces the positive-phase blast impulse, whereas a liquid layer has no influence on the impulse in the far field. Taking the total impulse due to the blast wave and material impact into account implies that the damage to a nearby structure may actually be augmented for a range of distances. These results should be taken into consideration in the design of explosive mitigant systems.
Wang, Yunqi; Zhang, Yinghua; Zhang, Rui; Li, Jinpeng; Zhang, Meng; Zhou, Shunli; Wang, Zhimin
2018-03-15
The groundwater table has fallen sharply over the last 30years on the North China Plain, resulting in a shortage of water for winter wheat irrigation. Reducing irrigation may be an important strategy to maintain agricultural sustainability in the region; however, few studies have evaluated the transition from conventional irrigation management practices to reduced irrigation management practices in the winter wheat-summer maize rotation system. Here, we compare the yield, water consumption, and water use efficiency of winter wheat-summer maize rotation under conventional irrigation and reduced irrigation on the North China Plain from 2012 to 2015. Reducing irrigation decreased the yield but increased the water use efficiency and significantly advanced the harvest date of winter wheat. As a result, the summer maize sowing date advanced significantly, and the flowering date subsequently advanced 2-8days, thus extending the summer maize grain-filling stage. Therefore, the yield and water use efficiency of summer maize were higher under reduced irrigation than conventional irrigation, which compensated for the winter wheat yield loss under reduced irrigation. In addition, under reduced irrigation from 2012 to 2015, the yield and water use efficiency advantage of the winter wheat-summer maize rotation ranged from 0.0 to 9.7% and from 4.1 to 14.7%, respectively, and water consumption and irrigated water decreased by 20-61mm and 150mm, respectively, compared to conventional irrigation. Overall, the reduced irrigation management practice involving no irrigation after sowing winter wheat, and sowing summer maize on June 7 produced the most favorable grain yield with superb water use efficiency in the winter wheat-summer maize rotation. This study indicates that reducing irrigation could be an efficient means to cope with water resource shortages while maintaining crop production sustainability on the North China Plain. Copyright © 2017. Published by Elsevier B.V.
Pagter, Majken; Andersen, Uffe Brandt; Andersen, Lillie
2015-03-23
Global climate models predict an increase in the mean surface air temperature, with a disproportionate increase during winter. Since temperature is a major driver of phenological events in temperate woody perennials, warming is likely to induce changes in a range of these events. We investigated the impact of slightly elevated temperatures (+0.76 °C in the air, +1.35 °C in the soil) during the non-growing season (October-April) on freezing tolerance, carbohydrate metabolism, dormancy release, spring phenology and reproductive output in two blackcurrant (Ribes nigrum) cultivars to understand how winter warming modifies phenological traits in a woody perennial known to have a large chilling requirement and to be sensitive to spring frost. Warming delayed dormancy release more in the cultivar 'Narve Viking' than in the cultivar 'Titania', but advanced budburst and flowering predominantly in 'Titania'. Since 'Narve Viking' has a higher chilling requirement than 'Titania', this indicates that, in high-chilling-requiring genotypes, dormancy responses may temper the effect of warming on spring phenology. Winter warming significantly reduced fruit yield the following summer in both cultivars, corroborating the hypothesis that a decline in winter chill may decrease reproductive effort in blackcurrant. Elevated winter temperatures tended to decrease stem freezing tolerance during cold acclimation and deacclimation, but it did not increase the risk of freeze-induced damage mid-winter. Plants at elevated temperature showed decreased levels of sucrose in stems of both cultivars and flower buds of 'Narve Viking', which, in buds, was associated with increased concentrations of glucose and fructose. Hence, winter warming influences carbohydrate metabolism, but it remains to be elucidated whether decreased sucrose levels account for any changes in freezing tolerance. Our results demonstrate that even a slight increase in winter temperature may alter phenological traits in blackcurrant, but to various extents depending on genotype-specific differences in chilling requirement. Published by Oxford University Press on behalf of the Annals of Botany Company.
Pagter, Majken; Andersen, Uffe Brandt; Andersen, Lillie
2015-01-01
Global climate models predict an increase in the mean surface air temperature, with a disproportionate increase during winter. Since temperature is a major driver of phenological events in temperate woody perennials, warming is likely to induce changes in a range of these events. We investigated the impact of slightly elevated temperatures (+0.76 °C in the air, +1.35 °C in the soil) during the non-growing season (October–April) on freezing tolerance, carbohydrate metabolism, dormancy release, spring phenology and reproductive output in two blackcurrant (Ribes nigrum) cultivars to understand how winter warming modifies phenological traits in a woody perennial known to have a large chilling requirement and to be sensitive to spring frost. Warming delayed dormancy release more in the cultivar ‘Narve Viking’ than in the cultivar ‘Titania’, but advanced budburst and flowering predominantly in ‘Titania’. Since ‘Narve Viking’ has a higher chilling requirement than ‘Titania’, this indicates that, in high-chilling-requiring genotypes, dormancy responses may temper the effect of warming on spring phenology. Winter warming significantly reduced fruit yield the following summer in both cultivars, corroborating the hypothesis that a decline in winter chill may decrease reproductive effort in blackcurrant. Elevated winter temperatures tended to decrease stem freezing tolerance during cold acclimation and deacclimation, but it did not increase the risk of freeze-induced damage mid-winter. Plants at elevated temperature showed decreased levels of sucrose in stems of both cultivars and flower buds of ‘Narve Viking’, which, in buds, was associated with increased concentrations of glucose and fructose. Hence, winter warming influences carbohydrate metabolism, but it remains to be elucidated whether decreased sucrose levels account for any changes in freezing tolerance. Our results demonstrate that even a slight increase in winter temperature may alter phenological traits in blackcurrant, but to various extents depending on genotype-specific differences in chilling requirement. PMID:25802249
Allam, Ayman; Fleifle, Amr; Tawfik, Ahmed; Yoshimura, Chihiro; El-Saadi, Aiman
2015-12-01
The suitability of agricultural drainage water (ADW) for reuse in irrigation was indexed based on a simulation of quality and quantity. The ADW reuse index (DWRI) has two components; the first one indicates the suitability of water quality (QLT) for reuse in irrigation based on the mixing ratio of ADW to canal irrigation water without violating the standards of using mixed water in irrigation, while the second indicates the available water quantity (QNT) based on the ratio of the available ADW to the required reuse discharge to meet the irrigation requirements alongside the drain. The QLT and QNT values ranged from 0 to ≥3 and from 0 to ≥0.40, respectively. Correspondingly, five classes from excellent to poor and from high scarcity to no scarcity were proposed to classify the QLT and QNT values, respectively. This approach was then applied to the Gharbia drain in the Nile Delta, Egypt, combined with QUAL2Kw simulations in the summer and winter of 2012. The QLT values along the drain ranged from 1.11 to 2.91 and 0.68 to 1.73 for summer and winter, respectively. Correspondingly, the QLT classes ranged from good to very good and from fair to good, respectively. In regard to QNT, values ranged from 0.10 to 0.62 and from 0.10 to 0.88 for summer and winter, respectively. Correspondingly, the QNT classes ranged from medium scarcity to no scarcity for both seasons. The demonstration of DWRI in the Gharbia drain suggests that the proposed index presents a simple tool for spatially evaluating the suitability of ADW for reuse in irrigation. Copyright © 2015 Elsevier B.V. All rights reserved.
Halbritter, Dale A; Teets, Nicholas M; Williams, Caroline M; Daniels, Jaret C
Predicting how rapid climate change will affect terrestrial biota depends on a thorough understanding of an organism's biology and evolutionary history. Organisms at their range boundaries are particularly sensitive to climate change. As predominantly terrestrial poikilotherms, insects are often geographically limited by extremes in ambient temperatures. We compared the cold hardiness strategies of two geographically widespread butterflies, the pine white, Neophasia menapia, and the Mexican pine white, N. terlooii (Lepidoptera: Pieridae), at the near-contact zone of their range boundaries. Eggs are laid on pine needles and are exposed to harsh winter conditions. Eggs were collected from wild-caught butterflies, and we determined the supercooling point (SCP) and lower lethal temperature (LLT 50 ) of overwintering eggs. The SCP of Neophasia menapia eggs (-29.0 ± 0.6 °C) was significantly lower than that of N. terlooii eggs (-21.8 ± 0.7 °C). Both species were freeze-intolerant and capable of surviving down to their respective SCPs (LLT 50 of N. menapia between -30 and -31 °C, N. terlooii between -20 and -21 °C). Cold exposure time did not affect the survival of N. menapia, but N. terlooii experienced somewhat greater mortality at sub-freezing temperatures during longer exposures. Our results, coupled with an analysis of microclimate data, indicate that colder winters in northern Arizona may contribute to the northern range limit for N. terlooii. Furthermore, careful analysis of historical weather data indicates that mortality from freezing is unlikely in southern Arizona but possible in northern Arizona. Movements of Neophasia range boundaries could be monitored as potential biological responses to climate change. Published by Elsevier Ltd.
Hess, Jeremy J.; Ebi, Kristie L.; Markandya, Anil; Balbus, John M.; Wilkinson, Paul; Haines, Andy; Chalabi, Zaid
2014-01-01
Background: Policy decisions regarding climate change mitigation are increasingly incorporating the beneficial and adverse health impacts of greenhouse gas emission reduction strategies. Studies of such co-benefits and co-harms involve modeling approaches requiring a range of analytic decisions that affect the model output. Objective: Our objective was to assess analytic decisions regarding model framework, structure, choice of parameters, and handling of uncertainty when modeling health co-benefits, and to make recommendations for improvements that could increase policy uptake. Methods: We describe the assumptions and analytic decisions underlying models of mitigation co-benefits, examining their effects on modeling outputs, and consider tools for quantifying uncertainty. Discussion: There is considerable variation in approaches to valuation metrics, discounting methods, uncertainty characterization and propagation, and assessment of low-probability/high-impact events. There is also variable inclusion of adverse impacts of mitigation policies, and limited extension of modeling domains to include implementation considerations. Going forward, co-benefits modeling efforts should be carried out in collaboration with policy makers; these efforts should include the full range of positive and negative impacts and critical uncertainties, as well as a range of discount rates, and should explicitly characterize uncertainty. We make recommendations to improve the rigor and consistency of modeling of health co-benefits. Conclusion: Modeling health co-benefits requires systematic consideration of the suitability of model assumptions, of what should be included and excluded from the model framework, and how uncertainty should be treated. Increased attention to these and other analytic decisions has the potential to increase the policy relevance and application of co-benefits modeling studies, potentially helping policy makers to maximize mitigation potential while simultaneously improving health. Citation: Remais JV, Hess JJ, Ebi KL, Markandya A, Balbus JM, Wilkinson P, Haines A, Chalabi Z. 2014. Estimating the health effects of greenhouse gas mitigation strategies: addressing parametric, model, and valuation challenges. Environ Health Perspect 122:447–455; http://dx.doi.org/10.1289/ehp.1306744 PMID:24583270
Jones, G R; Brandon, C; Gill, D P
2017-07-01
Winter weather conditions may negatively influence participation of older adults in daily physical activity (PA). Assess the influence of winter meteorological variables, day-time peak ambient temperature, windchill, humidity, and snow accumulation on the ground to accelerometer measured PA values in older adults. 50 community-dwelling older adults (77.4±4.7yrs; range 71-89; 12 females) living in Southwestern Ontario (Latitude 42.9°N Longitude 81.2° W) Canada, wore a waist-borne accelerometer during active waking hours (12h) for 7 consecutive days between February and April 2007. Hourly temperature, windchill, humidity, and snowfall accumulation were obtained from meteorological records and time locked to hourly accelerometer PA values. Regression analysis revealed significant relationships between time of day, ambient daytime high temperature and a humidity for participation in PA. Windchill temperature added no additional influence over PA acclamation already influenced by ambient day-time temperature and the observed variability in PA patterns relative to snow accumulation over the study period was too great to warrant its inclusion in the model. Most PA was completed in the morning hours and increased as the winter month's transitioned to spring (February through April). An equation was developed to adjust for winter weather conditions using temperature, humidity and time of day. Accurate PA assessment during the winter months must account for the ambient daytime high temperatures, humidity, and time of day. These older adults were more physically active during the morning hours and became more active as the winter season transitioned to spring. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Hudson, P.; Botzen, W. J. W.; Kreibich, H.; Bubeck, P.; Aerts, J. C. J. H.
2014-01-01
The employment of damage mitigation measures by individuals is an important component of integrated flood risk management. In order to promote efficient damage mitigation measures, accurate estimates of their damage mitigation potential are required. That is, for correctly assessing the damage mitigation measures' effectiveness from survey data, one needs to control for sources of bias. A biased estimate can occur if risk characteristics differ between individuals who have, or have not, implemented mitigation measures. This study removed this bias by applying an econometric evaluation technique called Propensity Score Matching to a survey of German households along along two major rivers major rivers that were flooded in 2002, 2005 and 2006. The application of this method detected substantial overestimates of mitigation measures' effectiveness if bias is not controlled for, ranging from nearly € 1700 to € 15 000 per measure. Bias-corrected effectiveness estimates of several mitigation measures show that these measures are still very effective since they prevent between € 6700-14 000 of flood damage. This study concludes with four main recommendations regarding how to better apply Propensity Score Matching in future studies, and makes several policy recommendations.
NASA Astrophysics Data System (ADS)
Hudson, P.; Botzen, W. J. W.; Kreibich, H.; Bubeck, P.; Aerts, J. C. J. H.
2014-07-01
The employment of damage mitigation measures (DMMs) by individuals is an important component of integrated flood risk management. In order to promote efficient damage mitigation measures, accurate estimates of their damage mitigation potential are required. That is, for correctly assessing the damage mitigation measures' effectiveness from survey data, one needs to control for sources of bias. A biased estimate can occur if risk characteristics differ between individuals who have, or have not, implemented mitigation measures. This study removed this bias by applying an econometric evaluation technique called propensity score matching (PSM) to a survey of German households along three major rivers that were flooded in 2002, 2005, and 2006. The application of this method detected substantial overestimates of mitigation measures' effectiveness if bias is not controlled for, ranging from nearly EUR 1700 to 15 000 per measure. Bias-corrected effectiveness estimates of several mitigation measures show that these measures are still very effective since they prevent between EUR 6700 and 14 000 of flood damage per flood event. This study concludes with four main recommendations regarding how to better apply propensity score matching in future studies, and makes several policy recommendations.
Pintail ducks tread the waters of KSC
NASA Technical Reports Server (NTRS)
1999-01-01
Two female pintail ducks search for food in the winter waters of the Merritt Island National Wildlife Refuge at Kennedy Space Center. The pintails can be found in the marshes, prairie ponds and tundra of Alaska, Greenland and north and western United States; in the winter they range south and east to Central America and the West Indies, sometimes in salt marshes such as the refuge offers. The open water of the refuge provides wintering areas for 23 species of migratory waterfowl, as well as a year-round home for great blue herons, great egrets, wood storks, cormorants, brown pelicans and other species of marsh and shore birds. The 92,000-acre refuge is also habitat for more than 310 species of birds, 25 mammals, 117 fishes and 65 amphibians and reptiles.
1999-01-21
KENNEDY SPACE CENTER, FLA. -- Two female pintail ducks search for food in the winter waters of the Merritt Island National Wildlife Refuge at Kennedy Space Center. The pintails can be found in the marshes, prairie ponds and tundra of Alaska, Greenland and north and western United States; in the winter they range south and east to Central America and the West Indies, sometimes in salt marshes such as the refuge offers. The open water of the refuge provides wintering areas for 23 species of migratory waterfowl, as well as a year-round home for great blue herons, great egrets, wood storks, cormorants, brown pelicans and other species of marsh and shore birds. The 92,000-acre refuge is also habitat for more than 310 species of birds, 25 mammals, 117 fishes and 65 amphibians and reptiles
Fire Weather Sun/Moon Long Range Forecasts Climate Prediction Past Weather Past Weather Heating/Cooling Space Weather Sun (Ultraviolet Radiation) Safety Campaigns Wind Drought Winter Weather Information