NASA Astrophysics Data System (ADS)
Chi, Xiaoli; Li, Rui; Cubasch, Ulrich; Cao, Wenting
2018-04-01
The thermal comfort and its changes in the 31 provincial capital cities of mainland China in the past 30 years were comprehensively evaluated using the Physiologically Equivalent Temperature (PET) and Universal Thermal Climate Index (UTCI) indicators. The PET and UTCI values were highly correlated with each other and presented similar thermal comfort pattern, although their sensitivities might differ slightly. The results showed that these cities covered, respectively, 4-8 and 6-8 thermal comfort classes of the PET and UTCI scale. On the whole, the annual cumulative number of pleasant days was more than 160 days/year. In terms of seasonal variations in thermal comfort conditions, the 31 provincial capital cities in mainland China can be classified into 5 types, which are, respectively, characterized by pleasant summer and severe cold winter (type-I); pleasant spring, autumn, winter, and severe hot summer (type-II); pleasant spring and autumn, slightly pleasant summer, and cold winter (type-III); pleasant spring and autumn, hot stress summer, and slightly cold winter (type-IV); and pleasant spring, summer, autumn, and cool winter (type-V). Type-II cities are rare winter resorts, while type-I cities are natural summer resorts. Type-V cities are the year round pleasant resorts. In the past three decades, the cities in mainland China had experienced increasing pleasant duration in late winter and early spring and intensifying heat stress in summer. The reduction in annual cumulative number of cold stress days in higher latitude/altitude cities outweighed the increase in duration of heat stress in subtropical cities. These may provide some references for urban planning and administration in mainland China.
Jet fuel from 18 cool-season oilseed feedstocks in a semi-arid environment
NASA Astrophysics Data System (ADS)
Allen, Brett; Jabro, Jay
2017-04-01
Renewable jet fuel feedstocks can potentially offset the demand for petroleum based transportation resources, diversify cropping systems, and provide numerous ecosystem services . However, identifying suitable feedstock supplies remains a primary constraint to adoption. A 4-yr, multi-site experiment initiated in fall 2012 investigated the yield potential of six winter- and twelve spring-types of cool-season oilseed feedstocks. Sidney, MT (250 mm annual growing season precipitation) was one of eight sites in the western USA with others in Colorado, Idaho, Iowa, Minnesota, North Dakota, Oregon, and Texas. Winter types of Camelina sativa (1), Brassica napus (4), and B. rapa (1) were planted in mid-September, while spring types of Camelina sativa (1), B. napus (4), B. rapa (1), B. juncea (2), B. carinata (2), and Sinapis alba (2) were planted in early to late April. Seeding rates varied by entry and were between 4 to 11 kg/ha. All plots were under no-till management. Plots were 3 by 9 m with each treatment (oilseed entry) replicated four times. Camelina 'Joelle' was the only fall-seeded entry that survived winters with little to no snow cover on plots and where minimum air temperature reached -32°C. Stands of 'Joelle' in the spring of all years were excellent. 'Joelle' plots were typically harvested in July, while spring types were harvested 2-6 weeks later. Severe hailstorms during the late growing seasons of 2013 and 2015 resulted in up to 95% seed loss, preventing normal seed yield harvest of spring types. The B. carinata and spring camelina were the least and most susceptible to hail damage during plant maturity, respectively. 'Joelle' winter camelina was harvested before the severe weather in both years, showing the benefit of an early maturing crop in regions prone to late season hail. Overall, camelina was the only winter type that showed potential as an oilseed feedstock due to its superior winter hardiness. For spring types, B. napus, Camelina sativa, and B. carinata showed the greatest potential. Seed yield, excluding the five winter types that succumbed every year to winter kill, ranged from about 200 to 2000 kg/ha, with B. napus hybrids (1900 kg/ha), winter and spring camelina (1700 kg/ha), and B. carinata (1300 kg/ha) showing the greatest feedstock potential. Other measurements taken, but not reported included crop phenology, canopy spectral reflectance, leaf area, leaf area index, canopy temperature, soil water use, crop biomass, yield components, seed oil%, seed fatty acid composition, and drought resistance. Overall, camelina was the only winter type in addition to spring types of B. napus, B. carinata, and camelina that showed good potential for jet fuel feedstocks in the semi-arid northern Great Plains, USA.
A risk analysis of winter navigation in Finnish sea areas.
Valdez Banda, Osiris A; Goerlandt, Floris; Montewka, Jakub; Kujala, Pentti
2015-06-01
Winter navigation is a complex but common operation in north-European sea areas. In Finnish waters, the smooth flow of maritime traffic and safety of vessel navigation during the winter period are managed through the Finnish-Swedish winter navigation system (FSWNS). This article focuses on accident risks in winter navigation operations, beginning with a brief outline of the FSWNS. The study analyses a hazard identification model of winter navigation and reviews accident data extracted from four winter periods. These are adopted as a basis for visualizing the risks in winter navigation operations. The results reveal that experts consider ship independent navigation in ice conditions the most complex navigational operation, which is confirmed by accident data analysis showing that the operation constitutes the type of navigation with the highest number of accidents reported. The severity of the accidents during winter navigation is mainly categorized as less serious. Collision is the most typical accident in ice navigation and general cargo the type of vessel most frequently involved in these accidents. Consolidated ice, ice ridges and ice thickness between 15 and 40cm represent the most common ice conditions in which accidents occur. Thus, the analysis presented in this article establishes the key elements for identifying the operation types which would benefit most from further safety engineering and safety or risk management development. Copyright © 2015 Elsevier Ltd. All rights reserved.
Sun, Fengming; Fan, Guangyi; Hu, Qiong; Zhou, Yongming; Guan, Mei; Tong, Chaobo; Li, Jiana; Du, Dezhi; Qi, Cunkou; Jiang, Liangcai; Liu, Weiqing; Huang, Shunmou; Chen, Wenbin; Yu, Jingyin; Mei, Desheng; Meng, Jinling; Zeng, Peng; Shi, Jiaqin; Liu, Kede; Wang, Xi; Wang, Xinfa; Long, Yan; Liang, Xinming; Hu, Zhiyong; Huang, Guodong; Dong, Caihua; Zhang, He; Li, Jun; Zhang, Yaolei; Li, Liangwei; Shi, Chengcheng; Wang, Jiahao; Lee, Simon Ming-Yuen; Guan, Chunyun; Xu, Xun; Liu, Shengyi; Liu, Xin; Chalhoub, Boulos; Hua, Wei; Wang, Hanzhong
2017-11-01
Allotetraploid oilseed rape (Brassica napus L.) is an agriculturally important crop. Cultivation and breeding of B. napus by humans has resulted in numerous genetically diverse morphotypes with optimized agronomic traits and ecophysiological adaptation. To further understand the genetic basis of diversification and adaptation, we report a draft genome of an Asian semi-winter oilseed rape cultivar 'ZS11' and its comprehensive genomic comparison with the genomes of the winter-type cultivar 'Darmor-bzh' as well as two progenitors. The integrated BAC-to-BAC and whole-genome shotgun sequencing strategies were effective in the assembly of repetitive regions (especially young long terminal repeats) and resulted in a high-quality genome assembly of B. napus 'ZS11'. Within a short evolutionary period (~6700 years ago), semi-winter-type 'ZS11' and the winter-type 'Darmor-bzh' maintained highly genomic collinearity. Even so, certain genetic differences were also detected in two morphotypes. Relative to 'Darmor-bzh', both two subgenomes of 'ZS11' are closely related to its progenitors, and the 'ZS11' genome harbored several specific segmental homoeologous exchanges (HEs). Furthermore, the semi-winter-type 'ZS11' underwent potential genomic introgressions with B. rapa (A r ). Some of these genetic differences were associated with key agronomic traits. A key gene of A03.FLC3 regulating vernalization-responsive flowering time in 'ZS11' was first experienced HE, and then underwent genomic introgression event with A r , which potentially has led to genetic differences in controlling vernalization in the semi-winter types. Our observations improved our understanding of the genetic diversity of different B. napus morphotypes and the cultivation history of semi-winter oilseed rape in Asia. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Küttel, Marcel; Luterbacher, Jürg; Wanner, Heinz
2011-03-01
Using pressure fields classified by the SANDRA algorithm, this study investigates the changes in the relationship between North Atlantic/European sea level pressure (SLP) and gridded European winter (DJF) temperature and precipitation back to 1750. Important changes in the frequency of the SLP clusters are found, though none of them indicating significant long-term trends. However, for the majority of the SLP clusters a tendency toward overall warmer and partly wetter winter conditions is found, most pronounced over the last decades. This suggests important within-type variations, i.e. the temperature and precipitation fields related to a particular SLP pattern change their characteristics over time. Using a decomposition scheme we find for temperature and precipitation that within-type-related variations dominate over those due to changed frequencies of the SLP clusters: Approximately 70% (60%) of European winter temperature (precipitation) variations can be explained by within-type changes, most strongly expressed over Eastern Europe and Scandinavia. This indicates that the current European winter warming cannot be explained by changed frequencies of the SLP patterns alone, but to a larger degree by changed characteristics of the patterns themselves. Potential sources of within-type variations are discussed.
Winter weather demand considerations.
DOT National Transportation Integrated Search
2015-04-01
Winter weather has varied effects on travel behavior. Using 418 survey responses from the Northern Virginia : commuting area of Washington, D.C. and binary logit models, this study examines travel related changes under : different types of winter wea...
Abdelhadi, O M A; Babiker, S A; Picard, B; Jurie, C; Jailler, R; Hocquette, J F; Faye, B
2012-01-01
Thirty fattened one humped desert camels were used to examine the effect of season on contractile and metabolic properties of Longissimus thoracis (LT) muscle. Ten camels were slaughtered according to seasons of the year (winter, summer and autumn). Season significantly influenced muscle chemical composition, ultimate pH (pHu) and color. Activities of metabolic enzymes were higher during autumn season compared to summer and winter for phosphofructokinase (+64% compared to both seasons) and for isocitrate dehydrogenase (+35% and +145% in autumn vs. summer and winter, respectively). Quantification of muscle myosin heavy chain isoforms by SDS-PAGE electrophoresis showed only presence of type I and type IIa MyHC in camel muscle and indicated high proportion in winter for type I and in autumn for type IIa with respect to other seasons. Several correlations between different MyHC proportions and enzyme activities were reported. These findings indicated that muscle characteristics in camels are influenced by season. Copyright © 2011 Elsevier Ltd. All rights reserved.
Guibert, Michèle; Leclerc, Aurélie; Andrivon, Didier; Tivoli, Bernard
2012-01-01
Plant diseases are caused by pathogen populations continuously subjected to evolutionary forces (genetic flow, selection, and recombination). Ascochyta blight, caused by Mycosphaerella pinodes, is one of the most damaging necrotrophic pathogens of field peas worldwide. In France, both winter and spring peas are cultivated. Although these crops overlap by about 4 months (March to June), primary Ascochyta blight infections are not synchronous on the two crops. This suggests that the disease could be due to two different M. pinodes populations, specialized on either winter or spring pea. To test this hypothesis, 144 pathogen isolates were collected in the field during the winter and spring growing seasons in Rennes (western France), and all the isolates were genotyped using amplified fragment length polymorphism (AFLP) markers. Furthermore, the pathogenicities of 33 isolates randomly chosen within the collection were tested on four pea genotypes (2 winter and 2 spring types) grown under three climatic regimes, simulating winter, late winter, and spring conditions. M. pinodes isolates from winter and spring peas were genetically polymorphic but not differentiated according to the type of cultivars. Isolates from winter pea were more pathogenic than isolates from spring pea on hosts raised under winter conditions, while isolates from spring pea were more pathogenic than those from winter pea on plants raised under spring conditions. These results show that disease developed on winter and spring peas was initiated by a single population of M. pinodes whose pathogenicity is a plastic trait modulated by the physiological status of the host plant. PMID:23023742
Iowa DOT weather information system to support winter maintenance operations
DOT National Transportation Integrated Search
2000-01-01
Understanding and interpreting weather information can be critical to the success of any winter snow and ice removal operation. Knowing when, where and what type of deicing material to use for a particular winter weather event can be a challenge to e...
Circulation weather types and their influence on precipitation in Serbia
NASA Astrophysics Data System (ADS)
Putniković, Suzana; Tošić, Ivana; Đurđević, Vladimir
2016-10-01
An objective classification scheme of atmospheric circulation, in which daily circulation is determined by the strength, direction, and vorticity of geostrophic flow, has been applied to the atmosphere over Serbia for the time period 1961-2010. The results for the sea level and isobaric level of 500 hPa for winter and summer are presented. The 26 circulation types (eight pure direction, 16 hybrid, cyclonic, and anticyclonic types) are determined and described. Each of the circulation types has a distinct underlying synoptic pattern that produces the expected type and direction of flow over the study area. The relative frequencies of the circulation types, and the relationship between the precipitation and circulation types at three stations on a seasonal time scale are analyzed. The anticyclonic weather type dominates in winter (18.93 %) and summer (18.70 %), followed by the northeasterly type (16.65 %) in summer, and the cyclonic type (12.83 %) in winter. The cyclonic types (C and hybrid) have a higher than average probability of rain at all stations. Conversely, the anticyclonic types are associated with a lower than average probability and intensity of rainfall.
49 CFR 575.106 - Tire fuel efficiency consumer information program.
Code of Federal Regulations, 2013 CFR
2013-10-01
... tires, deep tread, winter-type snow tires, space-saver or temporary use spare tires, tires with nominal... deep tread, winter-type snow tires and limited production tires that it manufactures which are exempt... to have included in the database of information available to consumers on NHTSA's Web site. (ii...
49 CFR 575.106 - Tire fuel efficiency consumer information program.
Code of Federal Regulations, 2014 CFR
2014-10-01
... tires, deep tread, winter-type snow tires, space-saver or temporary use spare tires, tires with nominal... deep tread, winter-type snow tires and limited production tires that it manufactures which are exempt... to have included in the database of information available to consumers on NHTSA's Web site. (ii...
49 CFR 575.106 - Tire fuel efficiency consumer information program.
Code of Federal Regulations, 2012 CFR
2012-10-01
... tires, deep tread, winter-type snow tires, space-saver or temporary use spare tires, tires with nominal... deep tread, winter-type snow tires and limited production tires that it manufactures which are exempt... to have included in the database of information available to consumers on NHTSA's Web site. (ii...
NASA Astrophysics Data System (ADS)
Rahman, A.; Ahmar, A. S.
2017-09-01
This research has a purpose to compare ARIMA Model and Holt-Winters Model based on MAE, RSS, MSE, and RMS criteria in predicting Primary Energy Consumption Total data in the US. The data from this research ranges from January 1973 to December 2016. This data will be processed by using R Software. Based on the results of data analysis that has been done, it is found that the model of Holt-Winters Additive type (MSE: 258350.1) is the most appropriate model in predicting Primary Energy Consumption Total data in the US. This model is more appropriate when compared with Holt-Winters Multiplicative type (MSE: 262260,4) and ARIMA Seasonal model (MSE: 723502,2).
Contrasting Response of Carbon Fluxes to Winter Warming across Land Cover Types in Southern NH, USA
NASA Astrophysics Data System (ADS)
Sanders-DeMott, R.; Ouimette, A.; Lepine, L. C.; Fogarty, S.; Burakowski, E. A.; Contosta, A.; Ollinger, S. V.; Conte, T.
2017-12-01
Natural and managed ecosystems play a key role in climate through regulation of carbon dioxide, as well as their effects on other greenhouse gases, surface heat fluxes, and albedo. In the northeastern United States, winter air temperatures are rising more rapidly than mean annual temperatures and the depth and duration of seasonal snowpack is decreasing. Although winter fluxes of carbon are small relative to the growing season, there is mounting evidence that biological processes in winter contribute significantly to annual ecosystem carbon budgets and that changes in winter conditions could lead to shifting patterns and magnitudes of seasonal carbon uptake. To determine the response of differing land cover types to variation in winter conditions we used eddy covariance to monitor carbon exchange from a co-located mixed temperate forest and a managed grassland in Durham, NH from 2014-2017, which included an anomalous warm winter (air temperatures 3°C warmer than 14-year mean) with low snowpack in 2016. We examined cumulative winter and spring net ecosystem exchange, as well as the sensitivity of ecosystem respiration to air and soil temperatures in the presence and absence of a deep (>15 cm) snowpack. We found that warm winter temperatures and low snow conditions led to relatively large cumulative losses of carbon from the forest in February/March 2016, while the grassland was a moderate net sink for carbon during the same period. When temperatures were above 0°C, mid-day carbon uptake in the grassland was controlled by the presence or absence of snow cover. Our results suggest that forest carbon losses to the atmosphere in deciduous forests may increase during warm, snow-free winter conditions when vegetation is restricted in winter carbon uptake capacity by phenology. However, non-forested vegetation such as perennial grasses have a greater potential to activate photosynthesis in winter and to take up carbon in the "dormant season," perhaps moderating increasing winter carbon losses due to increasing winter temperatures.
Use of habitats by female mallards wintering in Southwestern Louisiana
Link, Paul T.; Afton, A.D.; Cox, R.R.; Davis, B.E.
2011-01-01
Habitat use by wintering Mallards (Anas platyrhychos) on the Gulf Coast Chenier Plain (GCCP) has received little study and quantitative data is needed for management of GCCP waterfowl. Radio-telemetry techniques were used to record habitats used by 135 female Mallards during winters 2004-2005 and 2005-2006 in south-western Louisiana. Habitat use was quantitatively estimated for areas open and closed to hunting, by general habitat types (i.e., marsh, rice, idle, pasture, or other), and for specific marsh types (i.e., freshwater, intermediate, brackish, or salt). Variation in these estimates was subsequently examined in relation to individual female, female age (adult or immature), winter (2004-2005 or 2005-2006), and hunt periods within winter (second hunting season [SHUNT] or post hunting season [POST]). Diurnal use of areas closed to hunting was greater during hunted time periods in winter 2005-2006 than in winter 2004-2005. Nocturnal use of areas closed to hunting was 3.1 times greater during SHUNT than during POST, and immatures used areas closed to hunting more than adults. Diurnal use of marsh was 3.3 times greater than that of any other habitat during both winters. Nocturnal use of marsh, rice, idle, and pasture were similar during both winters. Females used freshwater marsh habitats extensively (64.699.8% proportional use), whereas brackish and salt marsh combined was used less frequently (035.8% proportional use). These results suggest that freshwater marsh is important to Mallards and a high priority for restoration and management efforts.
Winter Survival of Meloidogyne incognita in Six Soil Types
Windham, G. L.; Barker, K. R.
1988-01-01
Winter survival of Meloidogyne incognita in six soil types (Fuquay sand, Norfolk loamy sand, Portsmouth loamy sand, muck, Cecil sandy clay loam, and Cecil sandy clay) was determined in microplots at one location from November 1981 to May 1982 and from November 1982 to March 1983. Survival, based on second-stage juveniles (J2) of M. incognita, from November 1981 until May 1982 ranged from 1% in the muck soil to 6% in a Cecil sandy clay loam, but survival rates were much higher the next year following a winter with higher average temperatures. Survival rates of J2 from November to March ranged from 20 to 40% the first winter and from 38 to 87% the second. Soil type did not have a striking effect on the overwintering capabilities ofM. incognita. There were no differences between clay and sand soils, whereas survival of J2 in the muck tended to be lower than in the mineral soils. PMID:19290193
Winter Survival of Meloidogyne incognita in Six Soil Types.
Windham, G L; Barker, K R
1988-01-01
Winter survival of Meloidogyne incognita in six soil types (Fuquay sand, Norfolk loamy sand, Portsmouth loamy sand, muck, Cecil sandy clay loam, and Cecil sandy clay) was determined in microplots at one location from November 1981 to May 1982 and from November 1982 to March 1983. Survival, based on second-stage juveniles (J2) of M. incognita, from November 1981 until May 1982 ranged from 1% in the muck soil to 6% in a Cecil sandy clay loam, but survival rates were much higher the next year following a winter with higher average temperatures. Survival rates of J2 from November to March ranged from 20 to 40% the first winter and from 38 to 87% the second. Soil type did not have a striking effect on the overwintering capabilities ofM. incognita. There were no differences between clay and sand soils, whereas survival of J2 in the muck tended to be lower than in the mineral soils.
Winter home-range characteristics of American Marten (Martes americana) in Northern Wisconsin
Joseph B. Dumyahn; Patrick A. Zollner
2007-01-01
We estimated home-range size for American marten (Martes americana) in northern Wisconsin during the winter months of 2001-2004, and compared the proportion of cover-type selection categories (highly used, neutral and avoided) among home-ranges (95% fixed-kernel), core areas (50% fixed-kernel) and the study area. Average winter homerange size was 3....
Qian, W; Meng, J; Li, M; Frauen, M; Sass, O; Noack, J; Jung, C
2006-06-01
In spite of its short history of being an oil crop in China, the Chinese semi-winter rapeseed (Brassica napus L., 2n = 38, AACC) has been improved rapidly by intentional introgression of genomic components from Chinese B. rapa (2n = 20, AA). As a result, the Chinese semi-winter rapeseed has diversified genetically from the spring and winter rapeseed grown in the other regions such as Europe and North America. The objectives of this study were to investigate the roles of the introgression of the genomic components from the Chinese B. rapa in widening the genetic diversity of rapeseed and to verify the role of this introgression in the evolution of the Chinese rapeseed. Ten lines of the new type of rapeseed, which were produced by introgression of Chinese B. rapa to Chinese normal rapeseed, were compared for genetic diversity using amplified fragment length polymorphism (AFLP) with three groups of 35 lines of the normal rapeseed, including 9 semi-winter rapeseed lines from China, 9 winter rapeseed lines from Europe and 17 spring rapeseed lines from Northern Europe, Canada and Australia. Analysis of 799 polymorphic fragments revealed that within the groups, the new type rapeseed had the highest genetic diversity, followed by the semi-winter normal rapeseed from China. Spring and winter rapeseed had the lowest genetic diversity. Among the groups, the new type rapeseed group had the largest average genetic distance to the other three groups. Principal component analysis and cluster analysis, however, could not separate the new type rapeseed group from Chinese normal rapeseed group. Our data suggested that the introgression of Chinese B. rapa could significantly diversify the genetic basis of the rapeseed and play an important role in the evolution of Chinese rapeseed. The use of new genetic variation for the exploitation of heterosis in Brassica hybrid breeding is discussed.
Tsujimoto, Tetsuro; Yamamoto-Honda, Ritsuko; Kajio, Hiroshi; Kishimoto, Miyako; Noto, Hiroshi; Hachiya, Remi; Kimura, Akio; Kakei, Masafumi; Noda, Mitsuhiko
2014-11-01
Blood glucose control in patients with diabetes mellitus (DM) is reportedly influenced by the seasons, with hemoglobin A1c (HbA1c) levels decreasing in the summer or warm season and increasing in the winter or cold season. In addition, several studies have shown that sepsis is also associated with the seasons. Although both blood glucose control and sepsis can strongly affect the occurrence of severe hypoglycemia, few studies have examined the seasonal variation of severe hypoglycemia. The aim of the present study is to examine the association between severe hypoglycemia and the seasons in patients with type 1 diabetes mellitus (T1DM), type 2 diabetes mellitus (T2DM), and non-diabetes mellitus (non-DM). We retrospectively reviewed all the patients with severe hypoglycemia at a national center in Japan between April 1, 2006 and March 31, 2012. A total of 57,132 consecutive cases that had visited the emergency room by ambulance were screened, and 578 eligible cases of severe hypoglycemia were enrolled in this study. The primary outcome was to assess the seasonality of severe hypoglycemia. In the T1DM group (n = 88), severe hypoglycemia occurred significantly more often in the summer than in the winter (35.2% in summer vs 18.2% in winter, P = 0.01), and the HbA1c levels were highest in the winter and lowest in the summer (9.1% [7.6%-10.1%] in winter vs 7.7% [7.1%-8.3%] in summer, P = 0.13). In the non-DM group (n = 173), severe hypoglycemia occurred significantly more often in the winter than in the summer (30.6% in winter vs 19.6% in summer, P = 0.01), and sepsis as a complication occurred significantly more often in winter than in summer (24.5% in winter vs 5.9% in summer, P = 0.02). In the T2DM group (n = 317), the occurrence of severe hypoglycemia and the HbA1c levels did not differ significantly among the seasons. The occurrence of severe hypoglycemia might be seasonal and might fluctuate with temperature changes. Patients should be treated more carefully during the season in which severe hypoglycemia is more common.
Rödiger, Stefan; Kramer, Toni; Frömmel, Ulrike; Weinreich, Jörg; Roggenbuck, Dirk; Guenther, Sebastian; Schaufler, Katharina; Schröder, Christian; Schierack, Peter
2015-09-01
We report the population structure and dynamics of one Escherichia coli population of wild mallard ducks in their natural environment over four winter seasons, following the characterization of 100 isolates each consecutive season. Macro-restriction analysis was used to define isolates variously as multi- or 1-year pulsed-field gel electrophoresis (PFGE) types. Isolates were characterized genotypically based on virulence-associated genes (VAGs), phylogenetic markers, and phenotypically based on haemolytic activity, antimicrobial resistance, adhesion to epithelial cells, microcin production, motility and carbohydrate metabolism. Only 12 out of 220 PFGE types were detectable over more than one winter, and classified as multi-year PFGE types. There was a dramatic change of PFGE types within two winter seasons. Nevertheless, the genetic pool (VAGs) and antimicrobial resistance pattern remained remarkably stable. The high diversity and dynamics of this E. coli population were also demonstrated by the occurrence of PFGE subtypes and differences between isolates of one PFGE type (based on VAGs, antimicrobial resistance and adhesion rates). Multi- and 1-year PFGE types differed in antimicrobial resistance, VAGs and adhesion. Other parameters were not prominent colonization factors. In conclusion, the high diversity, dynamics and stable genetic pool of an E. coli population seem to enable their successful colonization of host animal population over time. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Chapman, C. J.; Pennington, D.; Beitscher, M. R.; Godek, M. L.
2017-12-01
Understanding and forecasting the characteristics of winter weather change in the northern U.S. is vital to regional economy, agriculture, tourism and resident life. This is especially true in the Northeast and Northern Plains where substantial changes to the winter season have already been documented in the atmospheric science and biological literature. As there is no single established definition of `winter', this research attempts to identify the winter season in both regions utilizing a synoptic climatological approach with air mass frequencies. The Spatial Synoptic Classification is used to determine the daily air mass/ weather type conditions since 1950 at 40 locations across the two regions. Annual frequencies are first computed as a baseline reference. Then winter air mass frequencies and departures from normal are calculated to define the season along with the statistical significance. Once the synoptic winter is established, long-term regional changes to the season and significance are explored. As evident global changes have occurred after 1975, an Early period of years prior to 1975 and a Late set for all years following this date are compared. Early and Late record synoptic changes are then examined to assess any thermal and moisture condition changes of the regional winter air masses over time. Cold to moderately dry air masses dominate annually in both regions. Northeast winters are also characterized by cold to moderate dry air masses, with coastal locations experiencing more Moist Polar types. The Northern Plains winters are dominated by cold, dry air masses in the east and cold to moderate dry air masses in the west. Prior to 1975, Northeast winters are defined by an increase in cooler and wetter air masses. Dry Tropical air masses only occur in this region after 1975. Northern Plains winters are also characterized by more cold, dry air masses prior to 1975. More Dry Moderate and Moist Moderate air masses have occurred since 1975. These results demonstrate that Northeast winters have air mass conditions that have become warmer and drier in recent decades. Additionally, Northern Plains winters have air mass setups that have become warmer and more moist since the mid 1970s.
Winter Weather Tips: Understanding Alerts and Staying Safe this Season | Poster
By Jenna Seiss and Kylie Tomlin, Guest Writers, and Ashley DeVine, Staff Writer Maryland residents face the possibility of dangerous winter weather each year—from icy conditions to frigid temperatures. You may be familiar with the different types of winter weather alerts issued by the National Weather Service (NWS), but do you know what each alert means?
Winter and early spring CO2 efflux from tundra communities of northern Alaska
NASA Astrophysics Data System (ADS)
Fahnestock, J. T.; Jones, M. H.; Brooks, P. D.; Walker, D. A.; Welker, J. M.
1998-11-01
Carbon dioxide concentrations through snow were measured in different arctic tundra communities on the North Slope of Alaska during winter and early spring of 1996. Subnivean CO2 concentrations were always higher than atmospheric CO2. A steady state diffusion model was used to generate conservative estimates of CO2 flux to the atmosphere. The magnitude of CO2 efflux differed with tundra community type, and rates of carbon release increased from March to May. Winter CO2 efflux was highest in riparian and snow bed communities and lowest in dry heath, upland tussock, and wet sedge communities. Snow generally accrues earlier in winter and is deeper in riparian and snow bed communities compared with other tundra communities, which are typically windswept and do not accumulate much snow during the winter. These results support the hypothesis that early and deep snow accumulation may insulate microbial populations from very cold temperatures, allowing sites with earlier snow cover to sustain higher levels of activity throughout winter compared to communities that have later developing snow cover. Extrapolating our estimates of CO2 efflux to the entire snow-covered season indicates that total carbon flux during winter in the Arctic is 13-109 kg CO2-C ha-1, depending on the vegetation community type. Wintertime CO2 flux is a potentially important, yet largely overlooked, part of the annual carbon cycle of tundra, and carbon release during winter should be accounted for in estimates of annual carbon balance in arctic ecosystems.
Comparison of winter temperature profiles in asphalt and concrete pavements.
DOT National Transportation Integrated Search
2014-06-01
The objectives of this research were to 1) determine which pavement type, asphalt or concrete, has : higher surface temperatures in winter and 2) compare the subsurface temperatures under asphalt and : concrete pavements to determine the pavement typ...
Winter and early spring CO2 efflux from tundra communities of northern Alaska
Fahnestock, J.T.; Jones, M.H.; Brooks, P.D.; Walker, D.A.; Welker, J.M.
1998-01-01
Carbon dioxide concentrations through snow were measured in different arctic tundra communities on the North Slope of Alaska during winter and early spring of 1996. Subnivean CO2 concentrations were always higher than atmospheric CO2. A steady state diffusion model was used to generate conservative estimates of CO2 flux to the atmosphere. The magnitude of CO2 efflux differed with tundra community type, and rates of carbon release increased from March to May. Winter CO2 efflux was highest in riparian and snow bed communities and lowest in dry heath, upland tussock, and wet sedge communities. Snow generally accrues earlier in winter and is deeper in riparian and snow bed communities compared with other tundra communities, which are typically windswept and do not accumulate much snow during the winter. These results support the hypothesis that early and deep snow accumulation may insulate microbial populations from very cold temperatures, allowing sites with earlier snow cover to sustain higher levels of activity throughout winter compared to communities that have later developing snow cover. Extrapolating our estimates of CO2 efflux to the entire snow-covered season indicates that total carbon flux during winter in the Arctic is 13-109 kg CO2-C ha-1, depending on the vegetation community type. Wintertime CO2 flux is a potentially important, yet largely overlooked, part of the annual carbon cycle of tundra, and carbon release during winter should be accounted for in estimates of annual carbon balance in arctic ecosystems. Copyright 1998 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
Milne, R.; Wallmann, J.; Myrick, D. T.
2010-12-01
The National Weather Service Office in Reno is responsible for issuing Blizzard Warnings, Winter Storm Warnings, and Winter Weather Advisories for the Sierra, including the Lake Tahoe Basin and heavily traveled routes such as Interstate 80, Highway 395 and Highway 50. These forecast products prepare motorists for harsh travel conditions as well as those venturing into the backcountry, which are essential to the NWS mission of saving lives and property. During the winter season, millions of people from around the world visit the numerous world class ski resorts in the Sierra and the Lake Tahoe Basin, which is vital to the local economy. This situation creates a challenging decision for the forecasters to provide appropriate wording in winter statements to keep the public safe, without significantly impacting the local tourism-based economy. Numerous text and graphical products, including online weather briefings, are utilized by NWS Reno to highlight hazards in ensuring the public, businesses, and other government agencies are prepared for winter storms and take appropriate safety measures. The effectiveness of these product types will be explored, with past snowstorms used as examples to show how forecasters determine which type of text or graphical product is most appropriate to convey the hazardous weather threats.
[Indoor air quality in school facilities in Cassino (Italy)].
Langiano, Elisa; Lanni, Liana; Atrei, Patrizia; Ferrara, Maria; La Torre, Giuseppe; Capelli, Giovanni; De Vito, Elisabetta
2008-01-01
This study evaluated the indoor air quality of 26 classrooms of secondary schools in the city of Cassino (Italy). Two types of school buildings were assessed: buildings specifically designed as schools, and former dwellings converted to schools. Measurements were taken in both winter and spring months, before students entered the classrooms and while the classrooms were occupied. Lower thermal comfort levels were observed during the winter months; in fact, during the winter, ideal temperature, humidity and air speed parameters were found in only a small percentage of classrooms and students were found to experience thermal discomfort as a result. Air velocity was often found to be inadequate both in winter and spring months and in both types of school buildings evaluated. Illumination levels measured during the winter months with both natural daylight and mixed illumination, were found to be below 200 lux, the minimum recommended level recommended by the ministerial decree 18.12.1975. Noise levels above the maximum level recommended by the ministerial decree 01.03.1991 were also frequently observed. The symptoms most frequently reported by students were headache, difficulties in concentrating, cough, and unusual tiredness. The various discomfort situations observed in both types of school buildings point toward a need for greater attention toward indoor air quality of schools as this can have affect students' attention, concentration, productivity and comfort.
2012-01-01
Background Rapeseed (Brassica napus L.) has spring and winter genotypes adapted to different growing seasons. Winter genotypes do not flower before the onset of winter, thus leading to a longer vegetative growth period that promotes the accumulation and allocation of more resources to seed production. The development of winter genotypes enabled the rapeseed to spread rapidly from southern to northern Europe and other temperate regions of the world. The molecular basis underlying the evolutionary transition from spring- to winter- type rapeseed is not known, however, and needs to be elucidated. Results We fine-mapped the spring environment specific quantitative trait locus (QTL) for flowering time, qFT10-4,in a doubled haploid (DH) mapping population of rapeseed derived from a cross between Tapidor (winter-type) and Ningyou7 (semi-winter) and delimited the qFT10-4 to an 80-kb region on chromosome A10 of B. napus. The BnFLC.A10 gene, an ortholog of FLOWERING LOCUS C (FLC) in Arabidopsis, was cloned from the QTL. We identified 12 polymorphic sites between BnFLC.A10 parental alleles of the TN-DH population in the upstream region and in intron 1. Expression of both BnFLC.A10 alleles decreased during vernalization, but decreased more slowly in the winter parent Tapidor. Haplotyping and association analysis showed that one of the polymorphic sites upstream of BnFLC.A10 is strongly associated with the vernalization requirement of rapeseed (r2 = 0.93, χ2 = 0.50). This polymorphic site is derived from a Tourist-like miniature inverted-repeat transposable element (MITE) insertion/deletion in the upstream region of BnFLC.A10. The MITE sequence was not present in the BnFLC.A10 gene in spring-type rapeseed, nor in ancestral ‘A’ genome species B. rapa genotypes. Our results suggest that the insertion may have occurred in winter rapeseed after B. napus speciation. Conclusions Our findings strongly suggest that (i) BnFLC.A10 is the gene underlying qFT10-4, the QTL for phenotypic diversity of flowering time in the TN-DH population, (ii) the allelic diversity caused by MITE insertion/deletion upstream of BnFLC.A10 is one of the major causes of differentiation of winter and spring genotypes in rapeseed and (iii) winter rapeseed has evolved from spring genotypes through selection pressure at the BnFLC.A10 locus, enabling expanded cultivation of rapeseed along the route of Brassica domestication. PMID:23241244
Hou, Jinna; Long, Yan; Raman, Harsh; Zou, Xiaoxiao; Wang, Jing; Dai, Shutao; Xiao, Qinqin; Li, Cong; Fan, Longjiang; Liu, Bin; Meng, Jinling
2012-12-15
Rapeseed (Brassica napus L.) has spring and winter genotypes adapted to different growing seasons. Winter genotypes do not flower before the onset of winter, thus leading to a longer vegetative growth period that promotes the accumulation and allocation of more resources to seed production. The development of winter genotypes enabled the rapeseed to spread rapidly from southern to northern Europe and other temperate regions of the world. The molecular basis underlying the evolutionary transition from spring- to winter- type rapeseed is not known, however, and needs to be elucidated. We fine-mapped the spring environment specific quantitative trait locus (QTL) for flowering time, qFT10-4,in a doubled haploid (DH) mapping population of rapeseed derived from a cross between Tapidor (winter-type) and Ningyou7 (semi-winter) and delimited the qFT10-4 to an 80-kb region on chromosome A10 of B. napus. The BnFLC.A10 gene, an ortholog of FLOWERING LOCUS C (FLC) in Arabidopsis, was cloned from the QTL. We identified 12 polymorphic sites between BnFLC.A10 parental alleles of the TN-DH population in the upstream region and in intron 1. Expression of both BnFLC.A10 alleles decreased during vernalization, but decreased more slowly in the winter parent Tapidor. Haplotyping and association analysis showed that one of the polymorphic sites upstream of BnFLC.A10 is strongly associated with the vernalization requirement of rapeseed (r2 = 0.93, χ2 = 0.50). This polymorphic site is derived from a Tourist-like miniature inverted-repeat transposable element (MITE) insertion/deletion in the upstream region of BnFLC.A10. The MITE sequence was not present in the BnFLC.A10 gene in spring-type rapeseed, nor in ancestral 'A' genome species B. rapa genotypes. Our results suggest that the insertion may have occurred in winter rapeseed after B. napus speciation. Our findings strongly suggest that (i) BnFLC.A10 is the gene underlying qFT10-4, the QTL for phenotypic diversity of flowering time in the TN-DH population, (ii) the allelic diversity caused by MITE insertion/deletion upstream of BnFLC.A10 is one of the major causes of differentiation of winter and spring genotypes in rapeseed and (iii) winter rapeseed has evolved from spring genotypes through selection pressure at the BnFLC.A10 locus, enabling expanded cultivation of rapeseed along the route of Brassica domestication.
The Advanced Transportation Weather Information System (ATWIS)
DOT National Transportation Integrated Search
2000-01-01
Understanding and interpreting weather information can be critical to the success of any winter snow and ice removal operation. Knowing when, where and what type of deicing material to use for a particular winter weather event can be a challenge to e...
Partial-reflection studies of D-region winter variability. [electron density measurements
NASA Technical Reports Server (NTRS)
Denny, B. W.; Bowhill, S. A.
1973-01-01
D-region electron densities were measured from December, 1972, to July, 1973, at Urbana, Illinois (latitude 40.2N) using the partial-reflection technique. During the winter, electron densities at altitudes of 72, 76.5, and 81 km show cyclical changes with a period of about 5 days that are highly correlated between these altitudes, suggesting that the mechanism responsible for the winter anomaly in D-region ionization applies throughout this height region. From January 13 to February 3, a pronounced wave-like variation occurred in the partial-reflection measurements, apparently associated with a major stratospheric warming that developed in that period. During the same time period, a traveling periodic variation is observed in the 10-mb height; it is highly correlated with the partial-reflection measurements. Electron density enhancements occur approximately at the same time as increases in the 10-mb height. Comparison of AL and A3 absorption measurements with electron density measurements below 82 km indicates that the winter anomaly in D-region ionization is divided into two types. Type 1, above about 82 km, extends horizontally for about 200 km while type 2, below about 82 km, extends for a horizontal scale of at least 1000 km.
Characterisation of seasonal flood types according to timescales in mixed probability distributions
NASA Astrophysics Data System (ADS)
Fischer, Svenja; Schumann, Andreas; Schulte, Markus
2016-08-01
When flood statistics are based on annual maximum series (AMS), the sample often contains flood peaks, which differ in their genesis. If the ratios among event types change over the range of observations, the extrapolation of a probability distribution function (pdf) can be dominated by a majority of events that belong to a certain flood type. If this type is not typical for extraordinarily large extremes, such an extrapolation of the pdf is misleading. To avoid this breach of the assumption of homogeneity, seasonal models were developed that differ between winter and summer floods. We show that a distinction between summer and winter floods is not always sufficient if seasonal series include events with different geneses. Here, we differentiate floods by their timescales into groups of long and short events. A statistical method for such a distinction of events is presented. To demonstrate their applicability, timescales for winter and summer floods in a German river basin were estimated. It is shown that summer floods can be separated into two main groups, but in our study region, the sample of winter floods consists of at least three different flood types. The pdfs of the two groups of summer floods are combined via a new mixing model. This model considers that information about parallel events that uses their maximum values only is incomplete because some of the realisations are overlaid. A statistical method resulting in an amendment of statistical parameters is proposed. The application in a German case study demonstrates the advantages of the new model, with specific emphasis on flood types.
DOT National Transportation Integrated Search
2012-05-01
The ability of state DOTs to adequately clear roadways during winter weather conditions is critical for a safe and effective : freight transportation system. Variables affecting winter maintenance operations include the type of precipitation, air and...
Zong, Xue-Mei; Wang, Geng-Chen; Chen, Hong-Bin; Wang, Pu-Cai; Xuan, Yue-Jian
2007-11-01
Based on the atmospheric ozone sounding data, the average monthly and seasonal variety principles of atmospheric ozone concentration during six years are analyzed under the boundary layer in Beijing. The results show that the monthly variation of atmospheric ozone are obvious that the minimum values appear in January from less than 10 x 10(-9) on ground to less than 50 x 10(-9) on upper layer (2 km), but the maximum values appear in June from 85 x 10(-9) on ground to more than 90 x 10(-9) on upper layer. The seasonal variation is also clear that the least atmospheric ozone concentration is in winter and the most is in summer, but variety from ground to upper layer is largest in winter and least in summer. According to the type of outline, the outline of ozone concentration is composite of three types which are winter type, summer type and spring-autumn type. The monthly ozone concentration in different heights is quite different. After analyzing the relationship between ozone concentration and meteorological factors, such as temperature and humidity, we find ozone concentration on ground is linear with temperature and the correlation coefficient is more than 85 percent.
ERIC Educational Resources Information Center
Tarbuth, Lawson, Comp.
Educators may find activities for indoor and outdoor winter programs in the games of the traditional Eskimo. These games are dominated by few-step operations and low level structural organization. For the most part they are quickly organized, begun, terminated, and ready to be recommenced. All types of games can be found, including quiet ones,…
T.D. Perkins; G.T. Adams; S.T. Lawson; P.G. Schaberg; S.G. McNulty
2000-01-01
Current-year red spruce (Picea rubens Sarg.) foliage is predisposed to winter injury by one or more types of anthropogenic pollutants, particularly acidic deposition. The resultant defoliation, when severe and repeated, leads to dieback and eventual mortality of affected red spruce individuals
Carbon dioxide and water vapor fluxes of winter wheat and tallgrass prairie ecosystems
USDA-ARS?s Scientific Manuscript database
Winter wheat (Triticum aestivum L.) and tallgrass prairie are common land cover types in the Southern Plains of the United States. In recent years, agricultural expansion into native grasslands has been extensive, particularly either managed pasture or dryland crops such as wheat. In this study, we ...
Cook, Nigel B
2003-11-01
To determine the prevalence of lameness as a function of season (summer vs winter), housing type (free stalls vs tie stalls), and stall surface (sand vs any other surface) among lactating dairy cows in Wisconsin. Epidemiologic survey. 3,621 lactating dairy cows in 30 herds. Herds were visited once during the summer and once during the winter, and a locomotion score ranging from 1 (no gait abnormality) to 4 (severe lameness) was assigned to all lactating cows. Cows with a score of 3 or 4 were considered to be clinically lame. Mean +/- SD herd lameness prevalence was 21.1 +/- 10.5% during the summer and 23.9 +/- 10.7% during the winter; these values were significantly different. During the winter, mean prevalence of lameness in free-stall herds with non-sand stall surfaces (33.7%) was significantly higher than prevalences in free-stall herds with sand stall surfaces (21.2%), tie-stall herds with non-sand stall surfaces (21.7%), and tie-stall herds with sand stall surfaces (12.1%). Results suggest that the prevalence of lameness among dairy cattle in Wisconsin is higher than previously thought and that lameness prevalence is associated with season, housing type, and stall surface.
The Imperial Valley of California is critical to wintering Mountain Plovers
Wunder, Michael B.; Knopf, F.L.
2003-01-01
We surveyed Mountain Plovers (Charadrius montanus) wintering in the Imperial Valley of California in January 2001, and also recorded the types of crop fields used by plovers in this agricultural landscape. We tallied 4037 plovers in 36 flocks ranging in size from 4 to 596 birds. Plovers were more common on alfalfa and Bermudagrass fields than other field types. Further, most birds were on alfalfa fields that were currently being (or had recently been) grazed, primarily by domestic sheep. Plovers used Bermudagrass fields only after harvest and subsequent burning. Examination of Christmas Bird Count data from 1950–2000 indicated that the Mountain Plover has abandoned its historical wintering areas on the coastal plains of California. Numbers in the Central Valley seem to have undergone recent declines also. We believe that the cultivated landscape of the Imperial Valley provides wintering habitats for about half of the global population of Mountain Plovers. We attribute the current importance of the Imperial Valley for Mountain Plovers to loss of native coastal and Central Valley habitats rather than to a behavioral switching of wintering areas through time. Future changes in specific cropping or management practices in the Imperial Valley will have a major impact on the conservation status of this species.
A Statistical Comparison of PSC Model Simulations and POAM Observations
NASA Technical Reports Server (NTRS)
Strawa, A. W.; Drdla, K.; Fromm, M.; Bokarius, K.; Gore, Warren J. (Technical Monitor)
2002-01-01
A better knowledge of PSC composition and formation mechanisms is important to better understand and predict stratospheric ozone depletion. Several past studies have attempted to compare modeling results with satellite observations. These comparisons have concentrated on case studies. In this paper we adopt a statistical approach. POAM PSC observations from several Arctic winters are categorized into Type Ia and Ib PSCs using a technique based on Strawa et al. The discrimination technique has been modified to employ the wavelengths dependence of the extinction signal at all wavelengths rather than only at 603 and 10 18 nm. Winter-long simulations for the 1999-2000 Arctic winter have been made using the IMPACT model. These simulations have been constrained by aircraft observations made during the SOLVE/THESEO 2000 campaign. A complete set of winter-long simulations was run for several different microphysical and PSC formation scenarios. The simulations give us perfect knowledge of PSC type (Ia, Ib, or II), composition, especially condensed phase HNO3 which is important for denitrification, and condensed phase H2O. Comparisons are made between the simulation and observation of PSC extinction at 1018 rim versus wavelength dependence, winter-long percentages of Ia and Ib occurrence, and temporal and altitude trends of the PSCs. These comparisons allow us to comment on how realistic some modeling scenarios are.
Regional and climatic controls on seasonal dust deposition in the southwestern U.S.
Reheis, M.C.; Urban, F.E.
2011-01-01
Vertical dust deposition rates (dust flux) are a complex response to the interaction of seasonal precipitation, wind, changes in plant cover and land use, dust source type, and local vs. distant dust emission in the southwestern U.S. Seasonal dust flux in the Mojave-southern Great Basin (MSGB) deserts, measured from 1999 to 2008, is similar in summer-fall and winter-spring, and antecedent precipitation tends to suppress dust flux in winter-spring. In contrast, dust flux in the eastern Colorado Plateau (ECP) region is much larger in summer-fall than in winter-spring, and twice as large as in the MSGB. ECP dust is related to wind speed, and in the winter-spring to antecedent moisture. Higher summer dust flux in the ECP is likely due to gustier winds and runoff during monsoonal storms when temperature is also higher. Source types in the MSGB and land use in the ECP have important effects on seasonal dust flux. In the MSGB, wet playas produce salt-rich dust during wetter seasons, whereas antecedent and current moisture suppress dust emission from alluvial and dry-playa sources during winter-spring. In the ECP under drought conditions, dust flux at a grazed-and-plowed site increased greatly, and also increased at three annualized, previously grazed sites. Dust fluxes remained relatively consistent at ungrazed and currently grazed sites that have maintained perennial vegetation cover. Under predicted scenarios of future climate change, these results suggest that an increase in summer storms may increase dust flux in both areas, but resultant effects will depend on source type, land use, and vegetation cover. ?? 2011.
Winter distribution of willow flycatcher subspecies
Paxton, E.H.; Unitt, P.; Sogge, M.K.; Whitfield, M.; Keim, P.
2011-01-01
Documenting how different regions across a species' breeding and nonbreeding range are linked via migratory movements is the first step in understanding how events in one region can influence events in others and is critical to identifying conservation threats throughout a migratory animal's annual cycle. We combined two studies that evaluated migratory connectivity in the Willow Flycatcher (Empidonax traillii), one using mitochondrial DNA sequences from 172 flycatchers sampled throughout their winter range, and another which examined morphological characteristics of 68 museum specimens collected in the winter range. Our results indicate that the four subspecies occupy distinct but overlapping regions of the winter range. Connectivity between specific breeding and winter grounds appears to be moderate to strong, with distributions that suggest migration patterns of both the chain and leap-frog types connecting the breeding and nonbreeding grounds. The Pacific lowlands of Costa Rica appear to be a key winter location for the endangered Southwestern Willow Flycatcher (E. t. extimus), although other countries in Central America may also be important for the subspecies. ?? The Cooper Ornithological Society 2011.
Effects of weather on habitat selection and behavior of mallards wintering in Nebraska
Jorde, Dennis G.; Krapu, G.L.; Crawford, R.D.; Hay, M.A.
1984-01-01
Sex and age ratios, habitat selection, spatial characteristics, and time budgets of Mallards (Anas platyrhynchos) wintering on the Platte River in south central Nebraska were studied from mid-December to early April 1978-1980. The proportion of females and subadults in the population increased substantially from a cold to a mild winter. Radio-tagged Mallards shifted from riverine to canal roost sites during the coldest periods of the winter, seemingly because of more favorable microclimatic conditions there. Subadults ranged over larger areas during winter than did adults. Activity patterns varied with weather conditions, time of day, and habitat type. During cold periods, energetically costly activities such as aggression and courtship decreased at roost sites and the intensity of foraging activities in fields increased. Mallards were more active at riverine than canal sites during both years. High energy requirements and intense competition for scarce food appear to be primary factors limiting the northernmost distribution of Mallards in winter and causing their skewed sex and age ratios.
Forest disturbance type differentially affects seasonal moose forage
R.A. Lautenschlager; Hewlette S. Crawford; Martin R. Stokes; Timothy L. Stone
1997-01-01
We examined the effects of forest disturbance on forage availability, moose (Alces alces) seasonal forage selection, and predicted in vivo digestibility in eastern Maine. Wet-mass estimates and dry-mass conversions of species consumed by 3 tamed moose were made throughout the year (late winter, early spring, late spring, summer, fall, early winter)...
Modeling the association between HR variability and illness in elite swimmers
Hellard, Philippe; Guimaraes, Fanny; Avalos, Marta; Houel, Nicolas; Hausswirth, Christophe; Toussaint, Jean François
2011-01-01
Purpose To determine whether heart rate variability, an indirect measure of autonomic control, is associated with upper respiratory tract and pulmonary infections, muscular affections and all-type pathologies in elite swimmers. Methods Seven elite international and 11 national swimmers were followed weekly for two years. The indexes of cardiac autonomic regulation in supine and orthostatic position were assessed as explanatory variables by time-domain (SD1, SD2) and spectral analyses (high frequency- HF; 0.15 Hz-0.40Hz, low frequency-LF; 0.04-0.15 Hz and HF/LF ratio) of heart rate variability. Logistic mixed models described the relationship between the explanatory variables and the risk of upper respiratory tract and pulmonary infections, muscular affections and all-type pathologies. Results The risk of all-type pathologies was higher for national swimmers and in winter (p<0.01). An increase in the parasympathetic indexes (HF, SD1) in supine position assessed one week earlier was linked to a higher risk of upper respiratory tract and pulmonary infections (p<0.05), and to a higher risk of muscular affections (increase in HF, p<0.05). Multivariate analyses showed: (1) a higher all-type pathologies risk in winter, and for an increase in the total power of heart rate variability associated with a decline SD1 in supine position; (2) a higher all-type pathologies risk in winter associated with a decline in HF assessed one week earlier in orthostatic position; and (3) a higher risk of muscular affections in winter associated with a decrease SD1 and an increase LF in orthostatic position. Conclusion Swimmers’ health maintenance requires particular attention when autonomic balance shows a sudden increase in parasympathetic indices in supine position assessed one week earlier evolving toward sympathetic predominance in supine and orthostatic positions. PMID:21085039
Ajtić, J; Brattich, E; Sarvan, D; Djurdjevic, V; Hernández-Ceballos, M A
2018-05-01
Relationships between the beryllium-7 activity concentrations in surface air and meteorological parameters (temperature, atmospheric pressure, and precipitation), teleconnection indices (Arctic Oscillation, North Atlantic Oscillation, and Scandinavian pattern) and number of sunspots are investigated using two multivariate statistical techniques: hierarchical cluster and factor analysis. The beryllium-7 surface measurements over 1995-2011, at four sampling sites located in the Scandinavian Peninsula, are obtained from the Radioactivity Environmental Monitoring Database. In all sites, the statistical analyses show that the beryllium-7 concentrations are strongly linked to temperature. Although the beryllium-7 surface concentration exhibits the well-characterised spring/summer maximum, our study shows that extremely high beryllium-7 concentrations, defined as the values exceeding the 90 th percentile in the data records for each site, also occur over the October-March period. Two types of autumn/winter extremes are distinguished: type-1 when the number of extremes in a given month is less than three, and type-2 when at least three extremes occur in a month. Factor analysis performed for these autumn/winter events shows a weaker effect of temperature and a stronger impact of the transport and production signal on the beryllium-7 concentrations. Further, the majority of the type-2 extremes are associated with a very high monthly Scandinavian teleconnection index. The type-2 extremes that occurred in January, February and March are also linked to sudden stratospheric warmings of the Arctic vortex. Our results indicate that the Scandinavian teleconnection index might be a good indicator of the meteorological conditions facilitating extremely high beryllium-7 surface concentrations over Scandinavia during autumn and winter. Copyright © 2018 Elsevier Ltd. All rights reserved.
Evaluation of pheromone-baited traps for winter moth and Bruce spanworm (Lepidoptera: Geometridae).
Elkinton, Joseph S; Lance, David; Boettner, George; Khrimian, Ashot; Leva, Natalie
2011-04-01
We tested different pheromone-baited traps for surveying winter moth, Operophtera brumata (L.) (Lepidoptera: Geometridae), populations in eastern North America. We compared male catch at Pherocon 1C sticky traps with various large capacity traps and showed that Universal Moth traps with white bottoms caught more winter moths than any other trap type. We ran the experiment on Cape Cod, MA, where we caught only winter moth, and in western Massachusetts, where we caught only Bruce spanworm, Operophtera bruceata (Hulst) (Lepidoptera: Geometridae), a congener of winter moth native to North America that uses the same pheromone compound [(Z,Z,Z)-1,3,6,9-nonadecatetraene] and is difficult to distinguish from adult male winter moths. With Bruce spanworm, the Pherocon 1C sticky traps caught by far the most moths. We tested an isomer of the pheromone [(E,Z,Z)-1,3,6,9-nonadecatetraene] that previous work had suggested would inhibit captures of Bruce spanworm but not winter moths. We found that the different doses and placements of the isomer suppressed captures of both species to a similar degree. We are thus doubtful that we can use the isomer to trap winter moths without also catching Bruce spanworm. Pheromone-baited survey traps will catch both species.
NASA Astrophysics Data System (ADS)
Tanoue, M.; Ichiyanagi, K.; Yoshimura, K.; Shimada, J.; Hirabayashi, Y.
2017-12-01
Understanding the dynamics of the origins of precipitation (i.e., vapor source regions of evaporated moisture) is useful for long-term forecasting and calibration of water isotope thermometer. In the Asian monsoon region, vapor source regions are identified by the deuterium excess (d-excess; defined as δD - 8 • δ18O) of precipitation because its values mainly reflect humidity conditions during evaporation at the source regions. In Japan, previous studies assumed the Sea of Japan to be the dominant source of winter precipitation when the d-excess value in winter is >20‰ or higher than the average value in summer. Because this assumption is based on an interpretation that the high d-excess value is due to an interaction between the continental winter monsoon (WM) and warm sea surface at the Sea of Japan, it may not be appropriate for winter precipitation caused by extratropical cyclones (EC). Here, we utilized a regional isotope circulation model and then clarified local patterns of isotopic composition and the origins of precipitation in the WM and EC types over Japan. The results indicated that moisture originating from the Sea of Japan made the highest contribution to precipitation on the Sea of Japan side of Japan in the WM type, whereas the Pacific Ocean was the dominant source of precipitation over Japan in the EC type. Because d-excess values were higher in the WM than in the EC type, we can assume that the Sea of Japan was the dominant source of precipitation on the Sea of Japan side when the d-excess value was high. Because precipitation on the Pacific Ocean side and the Kyushu island of Japan was mainly caused by the EC type, we could not identify the dominant source of precipitation as the Sea of Japan from only the d-excess values in these regions. We also found that WM activity could be estimated from observed d-excess values due to a clear positive correlation between simulated d-excess values and the activity.
Mishra, Ashish; Gond, Surendra K; Kumar, Anuj; Sharma, Vijay K; Verma, Satish K; Kharwar, Ravindra N; Sieber, Thomas N
2012-08-01
A total of 1,151 endophytic fungal isolates representing 29 taxa were isolated from symptom-less, surface-sterilized segments of stem, leaf, petiole, and root of Tinospora cordifolia which had been collected at three locations differing in air pollution in India (Ramnagar, Banaras Hindu University, Maruadih) during three seasons (summer, monsoon, winter). Endophytes were most abundant in leaf tissues (29.38% of all isolates), followed by stem (18.16%), petiole (10.11%), and root segments (6.27%). The frequency of colonization (CF) varied more strongly among tissue type and season than location. CF was maximal during monsoon followed by winter and minimal during summer. A species each of Guignardia and Acremonium could only be isolated from leaves, whereas all other species occurred in at least two tissue types. Penicillium spp. were dominant (12.62% of all isolates), followed by Colletotrichum spp. (11.8%), Cladosporium spp. (8.9%), Chaetomium globosum (8.1%), Curvularia spp. (7.6%), and Alternaria alternata (6.8%). Species richness, evenness, and the Shannon-Wiener diversity index followed the same pattern as the CF with the tissue type and the season having the greatest effect on these indices, suggesting that tissue type and season are more influential than geography. Dissimilarity of endophyte communities in regards to species composition was highest among seasons. Colletotrichum linicola occurred almost exclusively in winter, Fusarium oxysporum only in winter and summer but never during monsoon and Curvularia lunata only in winter and during monsoon but never in summer. Emissions of NO(2), SO(2), and suspended particulate matter were negatively correlated with the CF. Ozone did not have any effect. The frequency of most species declined with increasing pollution, but some showed an opposite trend (e.g., Aspergillus flavus). Five unnamed taxa (sterile mycelia) were identified as Aspergillus tubingensis, Colletotrichum crassipes, Botryosphaeria rhodina, Aspergillus sydowii, and Pseudofusicoccum violaceum, using molecular tools. Fifteen of the 29 endophyte taxa exhibited antibacterial activity. B. rhodina (JQ031157) and C. globosum showed activity against all bacterial human pathogens tested, with the former showing higher activity than the latter.
Snow Based Winter Tourism and Kinds of Adaptations to Climate Change
NASA Astrophysics Data System (ADS)
Breiling, M.
2009-04-01
Austria is the most intensive winter tourism country in the world with some 4% contribution in the national GNP. Snow based winter tourism became the lead economy of mountain areas, covering two thirds of the country and is by far economically more important than agriculture and forestry. While natural snow was the precondition for the establishment of winter tourism, artificial snow is nowadays the precondition to maintain winter tourism in the current economic intensity. Skiing originally low tech, is developing increasingly into high tech. While skiing was comparatively cheap in previous days due to natural snow, skiing is getting more expensive and exclusive for a higher income class due to the relative high production costs. Measures to adapt to a warmer climate can be divided into three principle types: physical adaptation, technical adaptation - where artificial snow production plays a major role - and social adaptation. It will be discussed under which conditions each adaptation type seems feasible in dependence of the level of warming. In particular physical and technical adaptations are related to major investments. Practically every ski resort has to decide about what is an appropriate, economically cost efficient level of adaptation. Adapting too much reduces profits. Adapting too little does not bring enough income. The optimal level is often not clear. In many cases public subsidies help to collect funds for adaptation and to keep skiing profitable. The possibility to adapt on local, regional or on national scales will depend on the degree of warming, the future price of artificial snow production and the public means foreseen to support the winter tourism industry.
NASA Astrophysics Data System (ADS)
Caicedo, J. A.; Uman, M. A.; Pilkey, J. T.
2018-01-01
We present the first lightning evolution studies, via the Lightning Mapping Array (LMA) and radar, performed in North Central Florida. Parts of three winter/spring frontal storms (cold season) and two complete summer (warm season) multicell storms are studied. Storm parameters measured are as follows: total number of flashes, flash-type classification, first flashes, flash initiation altitude, flash initiation power, flash rate (flashes per minute), charge structure, altitude and temperature ranges of the inferred charge regions, atmospheric isotherm altitude, radar base reflectivity (dBZ), and radar echo tops (EET). Several differences were found between summer multicell and winter/spring frontal storms in North Central Florida: (1) in winter/spring storms, the range of altitudes that all charge regions occupy is up to 1 km lower in altitude than in summer storms, as are the 0°C, -10°C, and -20°C isotherms; (2) lightning activity in summer storms is highly correlated with changes in radar signatures, in particular, echo tops; and (3) the LMA average initiation power of all flash types in winter/frontal storms is about an order of magnitude larger than that for summer storms. In relation to storms in other geographical locations, North Central Florida seasonal storms were found to have similarities in most parameters studied with a few differences, examples in Florida being (1) colder initiation altitudes for intracloud flashes, (2) charge regions occupying larger ranges of atmospheric temperatures, and (3) winter/spring frontal storms not having much lightning activity in the stratiform region.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gordon, G.A.; Lough, J.M.; Fritts, H.C.
Reconstructions of winter (December-February) sea level pressure (SLP) from western North American tree-ring chronologies are compared with a proxy record of winter severity in Japan derived from the historically documented freeze dates of Lake Suwa. The SLP reconstructions extend from 1602 to 1961 and freeze dates from 1443 to 1954. The instrumental and reconstructed SLP for the 20th century reveal two distinct circulation regimes (teleconnection patterns) over the North Pacific that appear to be associated with severe and mild winters and, consequently, with early and late freezing of the lake. The reconstructed SLPO anomaly map for severe winters prior tomore » 1683 shows a pattern similar to those in the instrumental and reconstructed records of the 20th century. The analysis reveals that the reliability of the reconstruction may vary with the configuration of the actual SLP pattern as the mild winter pattern is not as well reconstructed as the severe winter pattern. That result illustrates the importance of testing the reliability of a reconstruction within the context of the intended interpretation. This analysis demonstrates how different types of proxy climate data can be compared and verified.« less
Pattern recognition analysis of polar clouds during summer and winter
NASA Technical Reports Server (NTRS)
Ebert, Elizabeth E.
1992-01-01
A pattern recognition algorithm is demonstrated which classifies eighteen surface and cloud types in high-latitude AVHRR imagery based on several spectral and textural features, then estimates the cloud properties (fractional coverage, albedo, and brightness temperature) using a hybrid histogram and spatial coherence technique. The summertime version of the algorithm uses both visible and infrared data (AVHRR channels 1-4), while the wintertime version uses only infrared data (AVHRR channels 3-5). Three days of low-resolution AVHRR imagery from the Arctic and Antarctic during January and July 1984 were analyzed for cloud type and fractional coverage. The analysis showed significant amounts of high cloudiness in the Arctic during one day in winter. The Antarctic summer scene was characterized by heavy cloud cover in the southern ocean and relatively clear conditions in the continental interior. A large region of extremely low brightness temperatures in East Antarctica during winter suggests the presence of polar stratospheric cloud.
Matter-Walstra, Klazien; Widmer, Marcel; Busato, André
2006-03-03
Climate- or holiday-related seasonality in hospital admission rates is well known for many diseases. However, little research has addressed the impact of tourism on seasonality in admission rates. We therefore investigated the influence of tourism on emergency admission rates in Switzerland, where winter and summer leisure sport activities in large mountain regions can generate orthopedic injuries. Using small area analysis, orthopedic hospital service areas (HSAo) were evaluated for seasonality in emergency admission rates. Winter sport areas were defined using guest bed accommodation rate patterns of guest houses and hotels located above 1000 meters altitude that show clear winter and summer peak seasons. Emergency admissions (years 2000-2002, n = 135'460) of local and nonlocal HSAo residents were evaluated. HSAo were grouped according to their area type (regular or winter sport area) and monthly analyses of admission rates were performed. Of HSAo within the defined winter sport areas 70.8% show a seasonal, summer-winter peak hospital admission rate pattern and only 1 HSAo outside the defined winter sport areas shows such a pattern. Seasonal hospital admission rates in HSAo in winter sport areas can be up to 4 times higher in winter than the intermediate seasons, and they are almost entirely due to admissions of nonlocal residents. These nonlocal residents are in general -and especially in winter- younger than local residents, and nonlocal residents have a shorter length of stay in winter sport than in regular areas. The overall geographic distribution of nonlocal residents admitted for emergencies shows highest rates during the winter as well as the summer in the winter sport areas. Small area analysis using orthopedic hospital service areas is a reliable method for the evaluation of seasonality in hospital admission rates. In Switzerland, HSAo defined as winter sport areas show a clear seasonal fluctuation in admission rates of only nonlocal residents, whereas HSAo defined as regular, non-winter sport areas do not show such seasonality. We conclude that leisure sport, and especially ski/snowboard tourism demands great flexibility in hospital beds, staff and resource planning in these areas.
Matter-Walstra, Klazien; Widmer, Marcel; Busato, André
2006-01-01
Background Climate- or holiday-related seasonality in hospital admission rates is well known for many diseases. However, little research has addressed the impact of tourism on seasonality in admission rates. We therefore investigated the influence of tourism on emergency admission rates in Switzerland, where winter and summer leisure sport activities in large mountain regions can generate orthopedic injuries. Methods Using small area analysis, orthopedic hospital service areas (HSAo) were evaluated for seasonality in emergency admission rates. Winter sport areas were defined using guest bed accommodation rate patterns of guest houses and hotels located above 1000 meters altitude that show clear winter and summer peak seasons. Emergency admissions (years 2000–2002, n = 135'460) of local and nonlocal HSAo residents were evaluated. HSAo were grouped according to their area type (regular or winter sport area) and monthly analyses of admission rates were performed. Results Of HSAo within the defined winter sport areas 70.8% show a seasonal, summer-winter peak hospital admission rate pattern and only 1 HSAo outside the defined winter sport areas shows such a pattern. Seasonal hospital admission rates in HSAo in winter sport areas can be up to 4 times higher in winter than the intermediate seasons, and they are almost entirely due to admissions of nonlocal residents. These nonlocal residents are in general -and especially in winter- younger than local residents, and nonlocal residents have a shorter length of stay in winter sport than in regular areas. The overall geographic distribution of nonlocal residents admitted for emergencies shows highest rates during the winter as well as the summer in the winter sport areas. Conclusion Small area analysis using orthopedic hospital service areas is a reliable method for the evaluation of seasonality in hospital admission rates. In Switzerland, HSAo defined as winter sport areas show a clear seasonal fluctuation in admission rates of only nonlocal residents, whereas HSAo defined as regular, non-winter sport areas do not show such seasonality. We conclude that leisure sport, and especially ski/snowboard tourism demands great flexibility in hospital beds, staff and resource planning in these areas. PMID:16512923
Daily movements of female mallards wintering in Southwestern Louisiana
Link, Paul T.; Afton, Alan D.; Cox, Robert R.; Davis, Bruce E.
2011-01-01
Understanding daily movements of waterfowl is crucial to management of winter habitats, especially along the Gulf Coast where hunting pressure is high. Radio-telemetry was used to investigate movements of female Mallards (Anas platyrchychos) wintering in southwestern Louisiana. Movement distances were analyzed from 2,455 paired locations (diurnal and nocturnal) of 126 Mallards during winters 2004–2005 and 2005–2006 to assess effects of winter, female age, areas closed (Lacassine National Wildlife Refuge [LAC], Cameron Prairie National Wildlife Refuge [CAM], Amoco Pool [AMOCO] or open to hunting [OPEN]), and habitat type, including all interactions. Movement distances from the various land management categories were not consistent by age, date, or by winter. Flight distances from LAC increased with date, whereas those from CAM and OPEN did not vary significantly by date. Female Mallards moved short distances between diurnal and nocturnal sites (ranging from 3.1 to 15.0 km by land management category), suggesting that they are able to meet their daily energy requirements within a smaller area than Northern Pintails (Anas acuta, hereafter Pintails), and thus minimize transit energy costs.
Paxton, Eben H.; Unitt, Philip; Sogge, Mark K.; Whitfield, Mary; Keim, Paul
2011-01-01
Documenting how different regions across a species' breeding and nonbreeding range are linked via migratory movements is the first step in understanding how events in one region can influence events in others and is critical to identifying conservation threats throughout a migratory animal's annual cycle. We combined two studies that evaluated migratory connectivity in the Willow Flycatcher (Empidonax traillii), one using mitochondrial DNA sequences from 172 flycatchers sampled throughout their winter range, and another which examined morphological characteristics of 68 museum specimens collected in the winter range. Our results indicate that the four subspecies occupy distinct but overlapping regions of the winter range. Connectivity between specific breeding and winter grounds appears to be moderate to strong, with distributions that suggest migration patterns of both the chain and leap-frog types connecting the breeding and nonbreeding grounds. The Pacific lowlands of Costa Rica appear to be a key winter location for the endangered Southwestern Willow Flycatcher (E. t. extimus), although other countries in Central America may also be important for the subspecies.
Effects of ENSO on weather-type frequencies and properties at New Orleans, Louisiana, USA
McCabe, G.J.; Muller, R.A.
2002-01-01
Examination of historical climate records indicates a significant relation between the El Nin??o/Southern Oscillation (ENSO) and seasonal temperature and precipitation in Louisiana. In this study, a 40 yr record of twice daily (06:00 and 15:00 h local time) weather types are used to study the effects of ENSO variability on the local climate at New Orleans, Louisiana. Tropical Pacific sea-surface temperatures (SSTs) for the NINO3.4 region are used to define ENSO events (i.e. El Nin??o and La Nin??a events), and daily precipitation and temperature data for New Orleans are used to define weather-type precipitation and temperature properties. Data for winters (December through February) 1962-2000 are analyzed. The 39 winters are divided into 3 categories; winters with NINO3.4 SST anomalies 1??C (El Nin??o events), and neutral conditions (all other years). For each category, weather-type frequencies and properties (i.e. precipitation and temperature) are determined and analyzed. Results indicate that El Nin??o events primarily affect precipitation characteristics of weather types at New Orleans, whereas the effects of La Nin??a events are most apparent in weather-type frequencies. During El Nin??o events, precipitation for some of the weather types is greater than during neutral and La Nin??a conditions and is related to increased water vapor transport from the Tropics to the Gulf of Mexico. The changes in weather-type frequencies during La Nin??a events are indicative of a northward shift in storm tracks and/or a decrease in storm frequency in southern Louisiana.
McElderry, Robert M
2016-04-01
Surviving inhospitable periods or seasons may greatly affect fitness. Evidence of this exists in the prevalence of dormant stages in the life cycles of most insects. Here I focused on butterflies with distinct seasonal morphological types (not a genetic polymorphism) in which one morphological type, or form, delays reproduction until favorable conditions return, while the other form develops in an environment that favors direct reproduction. For two butterflies, Anaea aidea and A. andria, I tested the hypothesis that the development of each seasonal form involves a differential allocation of resources to survival at eclosion. I assayed differences in adult longevity among summer and winter forms in either a warm, active environment or a cool, calm environment. Winter form adults lived 40 times longer than summer form but only in calm, cool conditions. The magnitude of this difference provided compelling evidence that the winter form body plan and metabolic strategy (i.e. resource conservatism) favor long term survival. This research suggests that winter form adults maintain lowered metabolic rate, a common feature of diapause, to conserve resources and delay senescence while overwintering. Copyright © 2016 Elsevier Ltd. All rights reserved.
The Effect of Climate Change on Snow Pack at Sleepers River, Vermont, USA
NASA Astrophysics Data System (ADS)
Shanley, J. B.; Chalmers, A.; Denner, J.; Clark, S.
2017-12-01
Sleepers River Research Watershed, a U.S. Geological Survey Water, Energy, and Biogeochemical Budgets (WEBB) site in northeastern Vermont, has a 58-year record (since 1959) of snow depth and snow water equivalence (SWE), one of the longest continuous records in eastern North America. Snow measurements occur weekly during the winter at the watershed using an Adirondack type snow tube sampler. Sleepers River averages about 1100 mm of precipitation annually of which 20 to 30 percent falls as snow. Snow cover typically persists from December to April. Length of snow cover and snow depth vary with elevation, aspect, and cover type. Sites include open field, and hardwood and conifer stand clearings from 225 to 630 meters elevation. We evaluated changes in snow depth, snow cover duration, and SWE relative to elevation, soil frost depth, air temperature, total precipitation, and the El Niño - Southern Oscillation (ENSO) cycle. Overall, warmer winter temperatures have resulted in more midwinter thaws, more rain during the winter, and more variable soil frost depth. Trends in snowpack amount and duration were compared to winter-spring streamflow center-of-mass to evaluate if shifts in the snow pack regime were leading to earlier snowmelt.
Hygiene at winter bird feeders in a southwestern Ontario city.
Prescott, J F; Hunter, D B; Campbell, G D
2000-01-01
To further understand the source of the epidemic of salmonellosis in some species of birds using bird feeders in southern Ontario in the winter of 1997-1998, 124 bird feeder stations were examined for their state of hygiene and for Salmonella on 5 occasions during the winter of 1999 in a city of 100,000 people in southwestern Ontario. No Salmonella were isolated from feed contaminated with feces recovered from the feeders. Squirrel-proof feeders were significantly less contaminated with feces than were other feeder types (hopper, platform, silo), which did not differ significantly in their hygiene scores. Contamination of squirrel-proof feeders increased significantly through the course of the study, but other feeder types showed no significant change. Hygiene was poorer if feeders were maintained equally by both male and female household members, particularly as they grew older, but no age or gender effect was observed if only one person was largely responsible for maintaining the feeders. We concluded that winter bird feeder stations in a southern Ontario city were not contaminated with Salmonella but that bird feeder stations could be designed better to reduce fecal contamination of feed. PMID:10992987
Paul, Shanty; Wildhagen, Henning; Janz, Dennis; Teichmann, Thomas; Hänsch, Robert; Polle, Andrea
2016-01-01
Cytokinins play an important role in vascular development. But knowledge on the cellular localization of this growth hormone in the stem and other organs of woody plants is lacking. The main focus of this study was to investigate the occurrence and cellular localization of active cytokinins in leaves, roots, and along the stem of Populus × canescens and to find out how the pattern is changed between summer and winter. An ARR5::GUS reporter construct was used to monitor distribution of active cytokinins in different tissues of transgenic poplar lines. Three transgenic lines tested under outdoor conditions showed no influence of ARR5::GUS reporter construct on the growth performance compared with the wild-type, but one line lost the reporter activity. ARR5::GUS activity indicated changes in the tissue- and cell type-specific pattern of cytokinin activity during dormancy compared with the growth phase. ARR5::GUS activity, which was present in the root tips in the growing season, disappeared in winter. In the stem apex ground tissue, ARR5::GUS activity was higher in winter than in summer. Immature leaves from tissue-culture grown plants showed inducible ARR5::GUS activity. Leaf primordia in summer showed ARR5::GUS activity, but not the expanded leaves of outdoor plants or leaf primordia in winter. In stem cross sections, the most prominent ARR5::GUS activity was detected in the cortex region and in the rays of bark in summer and in winter. In the cambial zone the ARR5::GUS activity was more pronounced in the dormant than in growth phase. The pith and the ray cells adjacent to the vessels also displayed ARR5::GUS activity. In silico analyses of the tissue-specific expression patterns of the whole PtRR type-A family of poplar showed that PtRR10, the closest ortholog to the Arabidopsis ARR5 gene, was usually the most highly expressed gene in all tissues. In conclusion, gene expression and tissue-localization indicate high activity of cytokinins not only in summer, but also in winter. The presence of the signal in meristematic tissues supports their role in meristem maintenance. The reporter lines will be useful to study the involvement of cytokinins in acclimation of poplar growth to stress.
Use of seeded exotic grasslands by wintering birds
George, Andrew D.; O'Connell, Timothy J.; Hickman, Karen R.; Leslie,, David M.
2013-01-01
Despite widespread population declines of North American grassland birds, effects of anthropogenic disturbance of wintering habitat of this guild remain poorly understood. We compared avian abundance and habitat structure in fields planted by the exotic grass Old World bluestem (Bothriochloa ischaemum; OWB) to that in native mixed-grass prairie. During winters of 2007-2008 and 2008-2009, we conducted bird and vegetation surveys in six native grass and six OWB fields in Garfield, Grant, and Alfalfa counties, Oklahoma. We recorded 24 species of wintering birds in native fields and 14 species in OWB monocultures. While vegetation structure was similar between field types, abundance of short-eared owls (Asio flammeus), northern harriers (Circus cyaneus) and Smith's longspurs (Calcarius pictus) was higher in OWB fields during at least one year. The use of OWB fields by multiple species occupying different trophic positions suggested that vegetation structure of OWB can meet habitat requirements of some wintering birds, but there is insufficient evidence to determine if it provides superior conditions to native grasses.
Surveillance of avian influenza virus type A in semi-scavenging ducks in Bangladesh
2013-01-01
Background Ducks are the natural reservoir of influenza A virus and the central host for highly pathogenic avian influenza (H5N1), while domestic ducks rearing in semi-scavenging system could serve as re-assortment vessels for re-emerging new subtypes of influenza viruses between birds to human. Avian influenza virus (AIV) surveillance in Bangladesh has been passive, relying on poultry farmers to report suspected outbreaks of highly pathogenic H5N1 influenza. Here, the results of an active surveillance effort focusing on the semi-scavenging ducks are presented. Result A total of 2100 cloacal swabs and 2100 sera were collected from semi-scavenging ducks from three wintering-sites of Bangladesh during three successive winter seasons, December through February in the years between 2009 and 2012. Virus isolation and identification were carried out from the cloacal swabs by virus propagation in embryonated hen eggs followed by amplification of viral RNA using Avian influenza virus (AIV) specific RT-PCR. The overall prevalence of avian influenza type A was 22.05% for swab samples and 39.76% ducks were sero-positive for avian influenza type A antibody. Extremely low sero-prevalence (0.09%) of AIV H5N1 was detected. Conclusions Based on our surveillance results, we conclude that semi-scavenging ducks in Bangladesh might play important role in transmitting Avian Influenza virus (AIV) type A. However, the current risk of infection for humans from domestic ducks in Bangladesh is negligible. We believe that this relatively large dataset over three winters in Bangladesh might create a strong foundation for future studies of AIV prevalence, evolution, and ecology in wintering sites around the globe. PMID:24099526
Winter storm intensity, hazards, and property losses in the New York tristate area.
Shimkus, Cari E; Ting, Mingfang; Booth, James F; Adamo, Susana B; Madajewicz, Malgosia; Kushnir, Yochanan; Rieder, Harald E
2017-07-01
Winter storms pose numerous hazards to the Northeast United States, including rain, snow, strong wind, and flooding. These hazards can cause millions of dollars in damages from one storm alone. This study investigates meteorological intensity and impacts of winter storms from 2001 to 2014 on coastal counties in Connecticut, New Jersey, and New York and underscores the consequences of winter storms. The study selected 70 winter storms on the basis of station observations of surface wind strength, heavy precipitation, high storm tide, and snow extremes. Storm rankings differed between measures, suggesting that intensity is not easily defined with a single metric. Several storms fell into two or more categories (multiple-category storms). Following storm selection, property damages were examined to determine which types lead to high losses. The analysis of hazards (or events) and associated damages using the Storm Events Database of the National Centers for Environmental Information indicates that multiple-category storms were responsible for a greater portion of the damage. Flooding was responsible for the highest losses, but no discernible connection exists between the number of storms that afflict a county and the damage it faces. These results imply that losses may rely more on the incidence of specific hazards, infrastructure types, and property values, which vary throughout the region. © 2017 The Authors. Annals of the New York Academy of Sciences published by Wiley Periodicals Inc. on behalf of The New York Academy of Sciences.
Sprite Climatology in the Eastern Mediterranean Region
NASA Astrophysics Data System (ADS)
Yair, Yoav; Price, Colin; Katzenelson, Dor; Rosenthal, Neta; Rubanenko, Lior; Ben-Ami, Yuval; Arnone, Enrico
2015-04-01
We present statistical analysis of 436 sprites observed in 7 winter campaigns from 2006/7-2012/13. Results show a clear peak in the frequency of sprite detections, with maximum values (< 40% of events) between 00:30-02:15 LST (22:30-00:15 UT; LST=UT+2). The detection times of sprites are well-correlated with a relative increase in the fraction of +CG strokes, which exhibit maxima between 00:00-02:00 LST. The morphological distribution of 339 sprites, that we were able to clearly identify, is dominated by column sprites (49.3%), with angels (33.0%) and carrots (25.7%) being less frequent. This is similar to reports of winter sprites over the Sea of Japan and summer ones in central Europe. Other shapes such as trees, wishbones, etc. appear quite rarely. Single element events constitute 16.5% of observations, with 83.5% containing 2 elements or more. Clusters of homogeneous types are slightly more frequent than mixed ones (55%). Our observations suggest winter East Mediterranean thunderstorms to have a vertical structure that is an intermediate type between high tropical convective systems and the lower cloud-top cells in winter thunderstorms over the Sea of Japan. The climatology shows that the Eastern Mediterranean is a major sprite producer during Northern Hemisphere winter, and thus the existing and future optical observation infrastructure in Israel offers ground-based coverage for upcoming space missions that aim to map global sprite activity.
Flood Losses Associated with Winter Storms in the U.S. Northeast
NASA Astrophysics Data System (ADS)
Ting, M.; Shimkus, C.
2015-12-01
Winter storms pose a number of hazards to coastal communities in the U.S. Northeast including heavy rain, snow, strong wind, cold temperatures, and flooding. These hazards can cause millions in property damages from one storm alone. This study addresses the impacts of winter storms from 2001 - 2012 on coastal counties in the U.S. Northeast and underscores the significant economic consequences extreme winter storms have on property. The analysis on the types of hazards (floods, strong wind, snow, etc.) and associated damage from the National Climatic Data Center Storm Events Database indicates that floods were responsible for the highest damages. This finding suggests that winter storm vulnerability could grow in the future as precipitation intensity increases and sea level rise exacerbate flood losses. Flood loss maps are constructed based on damage amount, which can be compared to the flood exposure maps constructed by the NOAA Office of Coastal Management. Interesting agreements and discrepancies exist between the two methods, which warrant further examination. Furthermore, flood losses often came from storms characterized as heavy precipitation storms and strong surge storms, and sometimes both, illustrating the compounding effect of flood risks in the region. While New Jersey counties experienced the most damage per unit area, there is no discernable connection between population density and damage amount, which suggests that societal impacts may rely less on population characteristics and more on infrastructure types and property values, which vary throughout the region.
Spatial distribution of cold-season lightning frequency in the coastal areas of the Sea of Japan
NASA Astrophysics Data System (ADS)
Tsurushima, Daiki; Sakaida, Kiyotaka; Honma, Noriyasu
2017-12-01
The coastal areas of the Sea of Japan are a well-known hotspot of winter lightning activity. This study distinguishes between three common types of winter lightning in that region (types A-C), based on their frequency distributions and the meteorological conditions under which they occur. Type A lightning occurs with high frequency in the Tohoku district. It is mainly caused by cold fronts that accompany cyclones passing north of the Japanese islands. Type B, which occurs most frequently in the coastal areas of the Hokuriku district, is mainly caused by topographically induced wind convergence and convective instability, both of which are associated with cyclones having multiple centers. Type C's lightning frequency distribution pattern is similar to that of type B, but its principal cause is a topographically induced wind convergence generated by cold air advection from the Siberian continent. Type A is most frequently observed from October to November, while types B and C tend to appear from November to January, consistent with seasonal changes in lightning frequency distribution in Japan's Tohoku and Hokuriku districts.
NASA Astrophysics Data System (ADS)
Yu, Yueyue; Cai, Ming; Ren, Rongcai; Rao, Jian
2018-01-01
The relationship between continental-scale cold air outbreaks (CAOs) in the mid-latitudes and pulse signals in the stratospheric mass circulation in Northern Hemisphere winter (December-February) is investigated using ERA-Interim data for the 32 winters from 1979 to 2011. Pulse signals in the stratospheric mass circulation include "PULSE_TOT", "PULSE_W1", and "PULSE_W2" events, defined as a period of stronger meridional mass transport into the polar stratosphere by total flow, wavenumber-1, and wavenumber-2, respectively. Each type of PULSE event occurs on average 4-6 times per winter. A robust relationship is found between two dominant patterns of winter CAOs and PULSE_W1 and PULSE_W2 events. Cold temperature anomalies tend to occur over Eurasia with the other continent anomalously warm during the 2 weeks before the peak dates of PULSE_W1 events, while the opposite temperature anomaly pattern can be found after the peak dates; and during the 1-2 weeks centered on the peak dates of PULSE_W2 events, a higher probability of occurrence of CAOs is found over both continents. These relationships become more robust for PULSE_W1 and PULSE_W2 events of larger peak intensity. PULSE_TOT events are classified into five types, which have a distinct coupling relationship with PULSE_W1 and PULSE_W2 events. The specific pattern of CAOs associated with each type of PULSE_TOT event is found to be a combination of the CAO patterns associated with PULSE_W1 and PULSE_W2 events. The percentage of PULSE_TOT events belonging to the types that are dominated by PULSE_W2 events increases with the peak intensity of PULSE_TOT events. Accordingly, the related CAO pattern is close to that associated with PULSE_W1 for PULSE_TOT events with small-to-medium intensity, but tends to resemble that associated with PULSE_W2 events as the peak intensity of PULSE_TOT events increases.
NASA Astrophysics Data System (ADS)
Otero, Noelia; Sillmann, Jana; Butler, Tim
2018-03-01
A gridded, geographically extended weather type classification has been developed based on the Jenkinson-Collison (JC) classification system and used to evaluate the representation of weather types over Europe in a suite of climate model simulations. To this aim, a set of models participating in the Coupled Model Intercomparison Project Phase 5 (CMIP5) is compared with the circulation from two reanalysis products. Furthermore, we examine seasonal changes between simulated frequencies of weather types at present and future climate conditions. The models are in reasonably good agreement with the reanalyses, but some discrepancies occur in cyclonic days being overestimated over North, and underestimated over South Europe, while anticyclonic situations were overestimated over South, and underestimated over North Europe. Low flow conditions were generally underestimated, especially in summer over South Europe, and Westerly conditions were generally overestimated. The projected frequencies of weather types in the late twenty-first century suggest an increase of Anticyclonic days over South Europe in all seasons except summer, while Westerly days increase over North and Central Europe, particularly in winter. We find significant changes in the frequency of Low flow conditions and the Easterly type that become more frequent during the warmer seasons over Southeast and Southwest Europe, respectively. Our results indicate that in winter the Westerly type has significant impacts on positive anomalies of maximum and minimum temperature over most of Europe. Except in winter, the warmer temperatures are linked to Easterlies, Anticyclonic and Low Flow conditions, especially over the Mediterranean area. Furthermore, we show that changes in the frequency of weather types represent a minor contribution of the total change of European temperatures, which would be mainly driven by changes in the temperature anomalies associated with the weather types themselves.
Patterns of Genetic Structure and Linkage Disequilibrium in a Large Collection of Pea Germplasm
Siol, Mathieu; Jacquin, Françoise; Chabert-Martinello, Marianne; Smýkal, Petr; Le Paslier, Marie-Christine; Aubert, Grégoire; Burstin, Judith
2017-01-01
Pea (Pisum sativum, L.) is a major pulse crop used both for animal and human alimentation. Owing to its association with nitrogen-fixing bacteria, it is also a valuable component for low-input cropping systems. To evaluate the genetic diversity and the scale of linkage disequilibrium (LD) decay in pea, we genotyped a collection of 917 accessions, gathering elite cultivars, landraces, and wild relatives using an array of ∼13,000 single nucleotide polymorphisms (SNP). Genetic diversity is broadly distributed across three groups corresponding to wild/landraces peas, winter types, and spring types. At a finer subdivision level, genetic groups relate to local breeding programs and type usage. LD decreases steeply as genetic distance increases. When considering subsets of the data, LD values can be higher, even if the steep decay remains. We looked for genomic regions exhibiting high level of differentiation between wild/landraces, winter, and spring pea, respectively. Two regions on linkage groups 5 and 6 containing 33 SNPs exhibit stronger differentiation between winter and spring peas than would be expected under neutrality. Interestingly, QTL for resistance to cold acclimation and frost resistance have been identified previously in the same regions. PMID:28611254
Application of winter mushroom powder as an alternative to phosphates in emulsion-type sausages.
Choe, Jeehwan; Lee, Juri; Jo, Kyung; Jo, Cheorun; Song, Minho; Jung, Samooel
2018-05-01
This research evaluated the utilization of winter mushrooms as a replacement for phosphate in emulsion-type sausages. Winter mushroom powder (WMP) was added to the sausages at 0, 0.5, 1.0, 1.5, and 2.0% (w/w), and phosphate was added at 0.3% as a positive control. The WMP additions above 1.0% increased the pH of meat batter and efficiently inhibited the exudation of fat from the sausages (p < 0.05). Lipid oxidation of sausages was inhibited by the addition of WMP (p < 0.05). On the other hand, the addition of phosphate and WMP provided different instrumental texture properties. However, no adverse effects were observed with respect to the color and sensory properties of the sausages containing WMP, except for that containing 2.0% WMP. Therefore, this research indicates that WMP can effectively replace phosphate in meat products, and that the most effective addition level may be 1.0% WMP. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Maliniemi, V.; Asikainen, T.; Mursula, K.
2017-12-01
Northern Hemisphere winter circulation is known to be affected by both internal and external (solar-related) forcings. Earlier studies have shown ENSO and volcanic activity to produce negative and positive North Atlantic Oscillation (NAO) type responses, respectively. In addition, recent studies have shown a positive NAO response related to both geomagnetic activity (proxy for solar wind driven particle precipitation) and sunspot activity (proxy for solar irradiance). These solar-related signals have been suggested to be due to the changes in the polar vortex. Here the relative role of these four internal and external drivers on wintertime circulation in the Northern Hemisphere is studied. The phase of the quasi-biennial oscillation (QBO) is used to study the driver responses for different stratospheric conditions. Moreover, the effects are separated for early (Dec/Jan) and late (Feb/Mar) winter. The global pattern of ENSO is very similar (negative NAO) otherwise, but in early winter and westerly QBO the pattern is changed in the Atlantic sector to a weakly positive NAO. The positive NAO pattern due to volcanic activity is more pronounced for westerly QBO in both early and late winter. The positive NAO pattern produced by geomagnetic activity is obtained during easterly QBO phase in both early and late winter. Sunspot related NAO response in late winter is also strongly modulated by the QBO phase. These results imply that the stratospheric conditions expressed by QBO significantly modulate the way the internal and external drivers affect the Northern Hemisphere winter climate.
USDA-ARS?s Scientific Manuscript database
Economic analysis has revealed that in most parts of the country, the largest economic costs for cattle production are for winter feed. This study was initiated to evaluate the effect of two winter nutrition programs on three breeds of cows grazing bahiagrass pastures in central Florida. Data on 4...
Studded and unstudded winter tires in fatal road accidents in Finland.
Malmivuo, Mikko; Luoma, Juha; Porthin, Markus
2017-07-04
The aim of the study was to compare the safety effects of studded and unstudded winter tires based on fatal road accidents. The data included 958 road accidents involving a passenger car or van that occurred in Finland from November to March between 1997 and 2012. Comparing the proportions of winter tire type in accidents and in general traffic showed that the overall effect of tire type on the number of accidents was not significant, although studded tires reduced fatal accidents by 10-15%. Compared to unstudded tires, studded tires reduced accidents significantly only on bald ice in 2005-2012. Drivers using unstudded tires were more experienced and their profession was more frequently related to driving. In addition, the vehicle age was lower for vehicles with unstudded tires. On the other hand, the state of repair was less pertinent for unstudded than for studded tires. These confounding factors offset their effects to some degree. The risk of fatal road accidents in winter between studded and unstudded tires does not differ significantly. However, the accident risk has recently been substantially higher on bald ice for unstudded than for studded tires. The magnitude of this risk difference is difficult to determine without specific information on exposure by road surface.
Winter circulation weather types and hospital admissions for respiratory diseases in Galicia, Spain
NASA Astrophysics Data System (ADS)
Royé, D.; Taboada, J. J.; Martí, A.; Lorenzo, M. N.
2016-04-01
The link between various pathologies and atmospheric conditions has been a constant topic of study over recent decades in many places across the world; knowing more about it enables us to pre-empt the worsening of certain diseases, thereby optimizing medical resources. This study looked specifically at the connections in winter between respiratory diseases and types of atmospheric weather conditions (Circulation Weather Types, CWT) in Galicia, a region in the north-western corner of the Iberian Peninsula. To do this, the study used hospital admission data associated with these pathologies as well as an automatic classification of weather types. The main result obtained was that weather types giving rise to an increase in admissions due to these diseases are those associated with cold, dry weather, such as those in the east and south-east, or anticyclonic types. A second peak was associated with humid, hotter weather, generally linked to south-west weather types. In the future, this result may help to forecast the increase in respiratory pathologies in the region some days in advance.
Winter circulation weather types and hospital admissions for respiratory diseases in Galicia, Spain.
Royé, D; Taboada, J J; Martí, A; Lorenzo, M N
2016-04-01
The link between various pathologies and atmospheric conditions has been a constant topic of study over recent decades in many places across the world; knowing more about it enables us to pre-empt the worsening of certain diseases, thereby optimizing medical resources. This study looked specifically at the connections in winter between respiratory diseases and types of atmospheric weather conditions (Circulation Weather Types, CWT) in Galicia, a region in the north-western corner of the Iberian Peninsula. To do this, the study used hospital admission data associated with these pathologies as well as an automatic classification of weather types. The main result obtained was that weather types giving rise to an increase in admissions due to these diseases are those associated with cold, dry weather, such as those in the east and south-east, or anticyclonic types. A second peak was associated with humid, hotter weather, generally linked to south-west weather types. In the future, this result may help to forecast the increase in respiratory pathologies in the region some days in advance.
NASA Technical Reports Server (NTRS)
Pierson, Duane L.; Mehta, Satish K.; Cooley, Helen; Dubow, Robin; Lugg, Desmond
1999-01-01
Reactivation of Epstein-Barr virus (EBV) and cell-mediated immune (CMI) responses were followed in 16 Antarctic expeditioners during winter-over isolation at two Australian National Antarctic Research Expedition stations. Delayed-type hypersensitivity skin testing was used as an indicator of the CMI response, which was evaluated two times before winter isolation and three times during isolation. At all five evaluation times, 8 or more of the 16 subjects had a diminished. CMI response. Diminished CMI was observed on every test occasion in 4/16 subjects; only 2/16 subjects exhibited normal CMI responses for all five tests. A polymerase chain reaction (PCR) assay was used to detect EBV DNA in saliva specimens collected before, after, and during the winter isolation. EBV DNA was present in 17% (111/642) of the saliva specimens; all 16 subjects shed EBV in their saliva on at least one occasion. The probability of EBV shedding increased (p=0.013) from 6% before or after winter isolation to 13% during the winter period. EBV appeared in saliva during the winter isolation more frequently (p<0.0005) when CMI responsiveness was diminished than when CMI status was normal. The findings indicate that the psychosocial, physical, and other stresses associated with working and living in physical isolation during the Antarctic winter results in diminished CMI and an accompanying increased reactivation and shedding of latent viruses.
NASA Technical Reports Server (NTRS)
Mehta, S. K.; Pierson, D. L.; Cooley, H.; Dubow, R.; Lugg, D.
2000-01-01
Epstein-Barr virus (EBV) reactivation and cell-mediated immune (CMI) responses were followed in 16 Antarctic expeditioners during winter-over isolation at 2 Australian National Antarctic Research Expedition stations. Delayed-type hypersensitivity (DTH) skin testing was used as an indicator of the CMI response, that was evaluated 2 times before winter isolation and 3 times during isolation. At all 5 evaluation times, 8 or more of the 16 subjects had a diminished CMI response. Diminished DTH was observed on every test occasion in 4/16 subjects; only 2/16 subjects exhibited normal DTH responses for all 5 tests. A polymerase chain reaction (PCR) assay was used to detect EBV DNA in saliva specimens collected before, during, and after the winter isolation. EBV DNA was present in 17% (111/642) of the saliva specimens; all 16 subjects shed EBV in their saliva on at least 1 occasion. The probability of EBV shedding increased (P = 0.013) from 6% before or after winter isolation to 13% during the winter period. EBV appeared in saliva during the winter isolation more frequently (P < 0.0005) when DTH response was diminished than when DTH was normal. The findings indicate that the psychosocial, physical, and other stresses associated with working and living in physical isolation during the Antarctic winter result in diminished CMI and an accompanying increased reactivation and shedding of latent viruses.
Fleskes, Joseph P.; Jarvis, Robert L.; Gilmer, David S.
2003-01-01
Habitat selection and use are measures of relative importance of habitats to wildlife and necessary information for effective wildlife conservation. To measure the relative importance of flooded agricultural fields and other landscapes to northern pintails (Anas acuta) wintering in Tulare Basin (TB), California, we radiotagged female pintails during late August-early October, 1991-1993 in TB and other San Joaquin Valley areas and determined use and selection of these TB landscapes through March each year. Availability of landscape and field types in TB changed within and among years. Pintail use and selection (based upon use-to-availability log ratios) of landscape and field types differed among seasons, years, and diel periods. Fields flooded after harvest and before planting (i.e., pre-irrigated) were the most available, used, and selected landscape type before the hunting season (Prehunt). Safflower was the most available, used, and-except in 1993, when pre-irrigated fallow was available-selected pre-irrigated field type during Prehunt. Pre-irrigated barley-wheat received 19-22% of use before hunting season, but selection varied greatly among years and diel periods. During and after hunting season, managed marsh was the most available, used, and, along with floodwater areas, selected landscape type; pre-irrigated cotton and alfalfa were the least selected field types and accounted for <13% of pintail use. Agricultural drainwater evaporation ponds, sewage treatment ponds, and reservoirs accounted for 42-48% of flooded landscape available but were little used and least selected. Exodus of pintails from TB coincided with drying of pre-irrigated fallow, safflower, and barley-wheat fields early in winter, indicating that preferred habitats were lacking in TB during late winter. Agriculture conservation programs could improve TB for pintails by increasing flooding of fallow and harvested safflower and grain fields. Conservation of remaining wetlands should concentrate on increasing the amount and productivity of marsh that is shallow-flooded as pre-irrigated grain fields dry. If pin- tails were provided with adequate preferred field and marsh habitats, including hunt-day sanctuaries, contaminant risks associated with exposure to drainwater evaporation ponds probably should remain low for these waterfowl even if their abundance in TB increased.
Sakamoto, Hironari; Uchiyama, Shigehisa; Kihara, Akiko; Tsutake, Toyoshige; Bekki, Kanae; Inaba, Yohei; Nakagome, Hideki; Kunugita, Naoki
2015-01-01
Indoor air quality (IAQ) is a major concern, because people on average spend the vast majority of their time indoors and they are repeatedly exposed to indoor air pollutants. In this study, to assess indoor air quality in Chiba City, gaseous chemical compounds were surveyed using four types of diffusive sampler. Gaseous chemical compounds such as carbonyls, volatile organic compounds (VOC), acid gases, basic gases, and ozone were measured in indoor and outdoor air of 50 houses throughout Chiba City in winter and summer. Four types of diffusive sampler were used in this study: DSD-BPE/DNPH packed with 2,4-dinitrophenyl hydrazine and trans-1,2-bis(2-pyridyl)ethylene-coated silica for ozone and carbonyls; VOC-SD packed with Carboxen 564 particles for volatile organic compounds; DSD-TEA packed with triethanolamine-impregnated silica for acid gases; and DSD-NH3 packed with phosphoric acid-impregnated silica for basic gases. Almost all compounds in indoor air were detected at higher concentrations in summer than in winter. However, the nitrogen dioxide concentration in indoor air particularly increased only in winter, which well correlated with the formic acid concentration (correlation coefficient=0.974). The compound with the highest concentrations in indoor air was p-dichlorobenzene, with recorded levels of 13,000 μg m(-3) in summer and 1,100 μg m(-3) in winter in indoor air. p-Dichlorobenzene in summer and nitrogen dioxide in winter are detected at markedly high concentrations. Pollution control and continuous monitoring of IAQ are indispensable for human health.
Barriers to wheelchair use in the winter.
Ripat, Jacquie D; Brown, Cara L; Ethans, Karen D
2015-06-01
To test the hypothesis that challenges to community participation posed by winter weather are greater for individuals who use scooters, manual and power wheelchairs (wheeled mobility devices [WMDs]) than for the general ambulatory population, and to determine what WMD users identify as the most salient environmental barriers to community participation during the winter. Cross-sectional survey organized around 5 environmental domains: technological, natural, physical, social/attitudinal, and policy. Urban community in Canada. Convenience sample of WMD users or their proxy (N=99). Not applicable. Not applicable. Forty-two percent identified reduced outing frequency in winter months, associated with increased age (χ(3)=6.4, P=.04), lack of access to family/friends for transportation (χ(2)=8.1, P=.04), and primary type of WMD used in the winter (scooter χ(2)=8.8, P=.003). Most reported tires/casters becoming stuck in the snow (95%) or slipping on the ice (91%), difficulty ascending inclines/ramps (92%), and cold hands while using controls or pushing rims (85%); fewer identified frozen wheelchair/scooter batteries, seat cushions/backrests, or electronics. Sidewalks/roads were reported to be problematic by 99%. Eighty percent reported needing additional help in the winter. Limited community access in winter led to a sense of loneliness/isolation, and fear/anxiety related to safety. Respondents identified policies that limited participation during winter. People who use WMDs decrease their community participation in cold weather because of multiple environmental barriers. Clinicians, researchers, and policymakers can take a multidimensional approach to mitigate these barriers in order to enhance community participation by WMD users in winter. Copyright © 2015 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Climate-driven effects of fire on winter habitat for caribou in the Alaskan-Yukon Arctic.
Gustine, David D; Brinkman, Todd J; Lindgren, Michael A; Schmidt, Jennifer I; Rupp, T Scott; Adams, Layne G
2014-01-01
Climatic warming has direct implications for fire-dominated disturbance patterns in northern ecosystems. A transforming wildfire regime is altering plant composition and successional patterns, thus affecting the distribution and potentially the abundance of large herbivores. Caribou (Rangifer tarandus) are an important subsistence resource for communities throughout the north and a species that depends on terrestrial lichen in late-successional forests and tundra systems. Projected increases in area burned and reductions in stand ages may reduce lichen availability within caribou winter ranges. Sufficient reductions in lichen abundance could alter the capacity of these areas to support caribou populations. To assess the potential role of a changing fire regime on winter habitat for caribou, we used a simulation modeling platform, two global circulation models (GCMs), and a moderate emissions scenario to project annual fire characteristics and the resulting abundance of lichen-producing vegetation types (i.e., spruce forests and tundra >60 years old) across a modeling domain that encompassed the winter ranges of the Central Arctic and Porcupine caribou herds in the Alaskan-Yukon Arctic. Fires were less numerous and smaller in tundra compared to spruce habitats throughout the 90-year projection for both GCMs. Given the more likely climate trajectory, we projected that the Porcupine caribou herd, which winters primarily in the boreal forest, could be expected to experience a greater reduction in lichen-producing winter habitats (-21%) than the Central Arctic herd that wintered primarily in the arctic tundra (-11%). Our results suggest that caribou herds wintering in boreal forest will undergo fire-driven reductions in lichen-producing habitats that will, at a minimum, alter their distribution. Range shifts of caribou resulting from fire-driven changes to winter habitat may diminish access to caribou for rural communities that reside in fire-prone areas.
Climate-driven effects of fire on winter habitat for caribou in the Alaskan-Yukon Arctic
Gustine, David D.; Brinkman, Todd J.; Lindgren, Michael A.; Schmidt, Jennifer I.; Rupp, T. Scott; Adams, Layne G.
2014-01-01
Climatic warming has direct implications for fire-dominated disturbance patterns in northern ecosystems. A transforming wildfire regime is altering plant composition and successional patterns, thus affecting the distribution and potentially the abundance of large herbivores. Caribou (Rangifer tarandus) are an important subsistence resource for communities throughout the north and a species that depends on terrestrial lichen in late-successional forests and tundra systems. Projected increases in area burned and reductions in stand ages may reduce lichen availability within caribou winter ranges. Sufficient reductions in lichen abundance could alter the capacity of these areas to support caribou populations. To assess the potential role of a changing fire regime on winter habitat for caribou, we used a simulation modeling platform, two global circulation models (GCMs), and a moderate emissions scenario to project annual fire characteristics and the resulting abundance of lichen-producing vegetation types (i.e., spruce forests and tundra >60 years old) across a modeling domain that encompassed the winter ranges of the Central Arctic and Porcupine caribou herds in the Alaskan-Yukon Arctic. Fires were less numerous and smaller in tundra compared to spruce habitats throughout the 90-year projection for both GCMs. Given the more likely climate trajectory, we projected that the Porcupine caribou herd, which winters primarily in the boreal forest, could be expected to experience a greater reduction in lichen-producing winter habitats (−21%) than the Central Arctic herd that wintered primarily in the arctic tundra (−11%). Our results suggest that caribou herds wintering in boreal forest will undergo fire-driven reductions in lichen-producing habitats that will, at a minimum, alter their distribution. Range shifts of caribou resulting from fire-driven changes to winter habitat may diminish access to caribou for rural communities that reside in fire-prone areas.
Cun-Yang Niu; Frederick C. Meinzer; Guang-You Hao
2017-01-01
1. In temperate ecosystems, freeze-thaw events are an important environmental stress that can induce severe xylem embolism (i.e. clogging of conduits by air bubbles) in overwintering organs of trees. However, no comparative studies of different adaptive strategies among sympatric tree species for coping with winter embolism have examined the potential role of the...
Tervo, Outi M; Parks, Susan E; Miller, Lee A
2009-09-01
Singing behavior has been described from bowhead whales in the Bering Sea during their annual spring migration and from Davis Strait during their spring feeding season. It has been suggested that this spring singing behavior is a remnant of the singing during the winter breeding season, though no winter recordings are available. In this study, the authors describe recordings made during the winter and spring months of bowhead whales in Disko Bay, Western-Greenland. A total of 7091 bowhead whale sounds were analyzed to describe the vocal repertoire, the singing behavior, and the changes in vocal behavior from February to May. The vocal signals could be divided into simple (frequency-modulated) calls (n=483), complex (amplitude-modulated) calls (n=635), and song notes (n=5973). Recordings from the end of February to middle of March were characterized by higher call rates with a greater diversity of call types than recordings made later in the season. This study is the first description of bowhead song from the stock in Western-Greenland during both the winter and spring months, and provides support for the hypothesis that song during the winter months contains more song notes than song from the spring making the winter song more variable.
46 CFR Appendix A to Part 45 - Load Line Certificate Form
Code of Federal Regulations, 2011 CFR
2011-10-01
... registry Type of Ship: TYPE “A” TYPE “B” TYPE “B” with increased freeboard freeboard from deck line Midsummer MS Summer S Intermediate I Winter W load line above S Upper edge of line through center of diamond... salt water of the St. Lawrence River west of a straight line from Cap de Rosiers to West Point...
Coupled Effects of Climatic and Socio-economic Factors on Winter Cropping in India
NASA Astrophysics Data System (ADS)
Jain, M.; Mondal, P.; Galford, G. L.; DeFries, R. S.
2015-12-01
India is predicted to be one of the most vulnerable regions in terms of agricultural sensitivity to future climate changes. Approximately 69% of India's population is rural, and over 55% of the working population relies on agriculture for sustenance and livelihoods. Indian smallholder farmers who own less than 2 ha of farmland represent 78% of the total Indian farmers and produce 41% of the country's food crops. These smallholder farmers are among some of the most vulnerable communities to climatic and economic changes due to limited access to technology, infrastructure, markets, and institutional or financial support in the case of adverse climatic events. Baseline information on agricultural sensitivity to climate variability will provide useful information for regional-level, and eventually state- and national-level, strategies and policies that promote adaption to climate variability. We use a decade of remote sensing analysis of cropping patterns and climatic factors along with census data for irrigation and demographic factors to understand winter cropping trajectories across agro-ecological zones in India. Findings from multiple agro-ecological zones indicate that there are three primary trajectories in winter cropping in India - increasing, fluctuating, and decreasing. In the Central Indian Highlands, for example, the most dominant trend is that of fluctuating cropped area, ranging between ~37,300 km2 in 2010 and ~21,100 km2 in 2013, which is associated with village-level access to irrigation and local labor dynamics. Clay soil type and increasing irrigation coverage were associated with intensification. Yet, suitable soil type and access to irrigation do not reduce vulnerability to high daytime temperatures that is negatively associated with winter crop cover. With pronounced winter warming projected in the coming decades, effective adaptation by smallholder farmers would require additional strategies, such as access to fine-scale temperature forecasts ahead of the planting season and heat-tolerant winter crop varieties.
Zaccari, Fernanda; Galietta, Giovanni
2015-01-01
Winter squash “type butternut” is harvested in physiological ripening for better commercial distribution, when sensory and/or nutritional quality is not optimum for consumption. The objective of this study was to quantify the content of α-carotene, β-carotene, color and dry matter in the pulp of raw and microwave-cooked winter squash “type butternut” (variety CosmoF1) in three states of commercial maturity. Immature, mature, and very mature fruit, defined at the time of the harvest by the percentage of orange peel and green stalk, were evaluated. The highest concentration of carotenes (α-carotene + β-carotene) in mg.100 g−1 pulp wet basis was found in very mature fruits (31.96 mg), followed by mature fruits (24.65 mg), and immature fruits (18.82 mg). Microwave cooking caused the loss of β-carotene (28.6% wet basis) and α-carotene (34.1%). Cooking promote a greater reduction of α-carotene in immature (40.3%) and mature (34.5%) fruits. The ratio of β-carotene and α-carotene content increased with commercial maturity from 0.93 for immature fruits to 1.0 for very mature fruit, with higher ratio in cooked pulp (1.04) vs. raw pulp (0.96). PMID:28231218
Men, Cong; Liu, Ruimin; Wang, Qingrui; Guo, Lijia; Shen, Zhenyao
2018-10-01
Due to significant human activity, road dust is becoming contaminated by heavy metals in many cities. To comprehensively investigate the variation of contamination level and sources of heavy metals in road dust, 10 heavy metals in road dust samples from Beijing, China, in both summer and winter, were evaluated by spatial analysis using geographic information system (GIS) mapping technology and the positive matrix factorization (PMF) Model. Although the concentrations of some heavy metals between summer and winter had similarities, the differences of others and spatial distributions of heavy metals between summer and winter were considerable. The mean concentrations of As, Cd, Cr, Cu, and Fe were lower in winter, while those of Hg, Mn, Ni, Pb, and Zn were higher. According to the values of the Pollution Index (PI) and Nemerow Integrated Pollution Index (NIPI), there were no obvious differences between summer and winter, but the range between different sites in winter was nearly twice that of summer. Based on the PMF model, four sources of heavy metals in the dust samples were identified. Although the types of sources were consistent, the relative contributions of each source differed between summer and winter. Non-exhaust vehicle emissions was the most important source in summer (34.47 wt%), while fuel combustion contributed the largest proportion to the total heavy metals in winter (32.40 wt%). The impact of each source also showed spatial variation different trends in summer and winter. With the alteration of seasons, intensity of human activities also changed, such as the number of tourists, energy needs for building temperature regulation, construction, and the amount of pesticides and fertilizer. That might be the reason for the variation of heavy metal concentrations and relative contribution of their sources between summer and winter. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Lussem, U.; Hütt, C.; Waldhoff, G.
2016-06-01
Timely availability of crop acreage estimation is crucial for maintaining economic and ecological sustainability or modelling purposes. Remote sensing data has proven to be a reliable source for crop mapping and acreage estimation on parcel-level. However, when relying on a single source of remote sensing data, e.g. multispectral sensors like RapidEye or Landsat, several obstacles can hamper the desired outcome, for example cloud cover or haze. Another limitation may be a similarity in optical reflectance patterns of crops, especially in an early season approach by the end of March, early April. Usually, a reliable crop type map for winter-crops (winter wheat/rye, winter barley and rapeseed) in Central Europe can be obtained by using optical remote sensing data from late April to early May, given a full coverage of the study area and cloudless conditions. These prerequisites can often not be met. By integrating dual-polarimetric SAR-sensors with high temporal and spatial resolution, these limitations can be overcome. SAR-sensors are not influenced by clouds or haze and provide an additional source of information due to the signal-interaction with plant-architecture. The overall goal of this study is to investigate the contribution of Sentinel-1 SAR-data to regional crop type mapping for an early season map of disaggregated winter-crops for a subset of the Rur-Catchment in North Rhine-Westphalia (Germany). For this reason, RapidEye data and Sentinel-1 data are combined and the performance of Support Vector Machine and Maximum Likelihood classifiers are compared. Our results show that a combination of Sentinel-1 and RapidEye is a promising approach for most crops, but consideration of phenology for data selection can improve results. Thus the combination of optical and radar remote sensing data indicates advances for crop-type classification, especially when optical data availability is limited.
NASA Astrophysics Data System (ADS)
Fischer, M. L.; Billesbach, D. P.; Riley, W. J.; Berry, J. A.; Torn, M. S.
2004-12-01
Accurate prediction of the regional responses of carbon and water fluxes to changing climate, land use, and management requires models that are parameterized and tested against measurements made in multiple land cover types and over seasonal and inter-annual time scales. In particular, modelers predicting fluxes for un-irrigated agriculture are posed with the additional challenge of characterizing the onset and severity of water stress. We report results from three years of an ongoing series of measurement campaigns that quantify the spatial heterogeneity of land surface-atmosphere exchanges of carbon dioxide, water, and energy. Eddy covariance flux measurements were made in pastures and dominant crop types surrounding the US-DOE Atmospheric Radiation Measurement Program central facility near Lamont, Oklahoma (36.605 N, 97.485 W). Ancillary measurements included radiation budget, meteorology, soil moisture and temperature, leaf area index, plant biomass, and plant and soil carbon and nitrogen content. Within a given year, the dominant spatial variation in fluxes of carbon, water, and energy are caused by variations of land cover due to the distinct phenology of winter-spring (winter wheat) versus summer crops (e.g., pasture, sorghum, soybeans). Within crop and yearly variations were smaller. In 2002, variations in net ecosystem carbon exchange (NEE), for three closely spaced winter wheat fields was 10-20%. Variations between years for the same crop types were also large. Net primary production (NPP) of winter wheat in the spring of 2003 versus 2002 increased by a factor of two, while NEE increased by 35%. The large increase in production and NEE are positively correlated with precipitation, integrated over the previous summer-fall periods. We discuss the implications of these results by extracting and comparing factors relevant for parameterization of land surface models and by comparing crop yield with historic variations in yield at the landscape scale.
Wu, Fuyong; Liu, Xueping; Wang, Wei; Man, Yu Bon; Chan, Chuen Yu; Liu, Wenxin; Tao, Shu; Wong, Ming Hung
2015-12-01
The concentrations and composition of sixteen PAHs adsorbed to respirable particulate matter (PM10≤10 μm) and inhalable particulate matter (PM2.5≤2.5 μm) were determined during autumn and winter in rural households of Henan Province, China, which used four types of domestic energy [crop residues, coal, liquid petroleum gas (LPG) and electricity] for cooking and heating. The present results show that there were significantly (p<0.05) seasonal variations of particulate-bound PAHs in the rural households. The daily mean concentrations of particulate-bound PAHs in the kitchens, sitting rooms and outdoors were apparently higher in winter than those in autumn, except those in the kitchens using coal. The present study also shows that there were obvious variations of particulate-bound PAHs among the four types of domestic energy used in the rural households. The households using LPG for cooking can, at least in some circumstances, have higher concentrations of PAHs in the kitchens than using crop residues or electricity. In addition, using coal in the sitting rooms seemed to result in apparently higher concentrations of particulate-bound PAHs than using the other three types of domestic energy during winter. The most severe contamination occurred in the kitchens using LPG in winter, where the daily mean concentrations of PM2.5-bound PAHs were up to 762.5±931.2 ng m(-3), indicating that there was serious health risk of inhalation exposure to PAHs in the rural households of Henan Province. Rural residents' exposure to PM2.5-bound PAHs in kitchens would be roughly reduced by 69.8% and 85.5% via replacing coal or crop residues with electricity in autumn. The pilot research would provide important supplementary information to the indoor air pollution studies in rural area. Copyright © 2015 Elsevier B.V. All rights reserved.
Roth, James D
2002-09-01
Consumption of marine foods by terrestrial predators can lead to increased predator densities, potentially impacting their terrestrial resources. For arctic foxes (Alopex lagopus), access to such marine foods in winter depends on sea ice, which is threatened by global climate change. To quantify the importance of marine foods (seal carrion and seal pups) and document temporal variation in arctic fox diet I measured the ratios of the stable isotopes of carbon ((13)C/(12)C) in hair of arctic foxes near Cape Churchill, Manitoba, from 1994 to 1997. These hair samples were compared to the stable carbon isotope ratios of several prey species. Isotopic differences between seasonally dimorphic pelage types indicated a diet with a greater marine content in winter when sea ice provided access to seal carrion. Annual variation in arctic fox diet in both summer and winter was correlated with lemming abundance. Marine food sources became much more important in winters with low lemming populations, accounting for nearly half of the winter protein intake following a lemming decline. Potential alternative summer foods with isotopic signatures differing from lemmings included goose eggs and caribou, but these were unavailable in winter. Reliance on marine food sources in winter during periods of low lemming density demonstrates the importance of the sea ice as a potential habitat for this arctic fox population and suggests that a continued decline in sea ice extent will disrupt an important link between the marine and terrestrial ecosystems.
Schindler, Dirk; Grebhan, Karin; Albrecht, Axel; Schönborn, Jochen; Kohnle, Ulrich
2012-01-01
Data on storm damage attributed to the two high-impact winter storms 'Wiebke' (28 February 1990) and 'Lothar' (26 December 1999) were used for GIS-based estimation and mapping (in a 50 × 50 m resolution grid) of the winter storm damage probability (P(DAM)) for the forests of the German federal state of Baden-Wuerttemberg (Southwest Germany). The P(DAM)-calculation was based on weights of evidence (WofE) methodology. A combination of information on forest type, geology, soil type, soil moisture regime, and topographic exposure, as well as maximum gust wind speed field was used to compute P(DAM) across the entire study area. Given the condition that maximum gust wind speed during the two storm events exceeded 35 m s(-1), the highest P(DAM) values computed were primarily where coniferous forest grows in severely exposed areas on temporarily moist soils on bunter sandstone formations. Such areas are found mainly in the mountainous ranges of the northern Black Forest, the eastern Forest of Odes, in the Virngrund area, and in the southwestern Alpine Foothills.
Posmanik, Roy; Nejidat, Ali; Dahan, Ofer; Gross, Amit
2017-09-01
Expansion of dryland agriculture requires intensive supplement of organic fertilizers to improve the fertility of nutrient-poor desert soils. The environmental impact of organic supplements in hot desert climates is not well understood. We report on seasonal emissions of nitrous oxide (N 2 O) from sand and loess soils, amended with limed and non-limed anaerobic digestate of poultry manure in the Israeli Negev desert. All amended soils had substantially higher N 2 O emissions, particularly during winter applications, compared to unammended soils. Winter emissions from amended loess (10-175mgN 2 Om -2 day -1 ) were markedly higher than winter emissions from amended sand (2-7mgN 2 Om -2 day -1 ). Enumeration of marker genes for nitrification and denitrification suggested that both have contributed to N 2 O emissions according to prevailing environmental conditions. Lime treatment of digested manure inhibited N 2 O emissions regardless of season or soil type, thus reducing the environmental impact of amending desert soils with manure digestate. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Melentyev, Konstantin V.; Chernook, Vladimir I.
Types of hydrological hazards are various but its agencies are especially diversified . At this study hazard effects will be assessed for White Sea population of Greenland seals - a representatives of high level of marine fodder chains and the prime part of the Arctic nature. Number of population and type of their migration are strongly depended from different meteorological and hydrological parameters and processes, climate change and anthropogenical press, including pollution and fur-seal fishery, create additional problems. Especially hard situation happens now with the ice- associated sea mammals (p olar bear, seal, walrus, etc.). Mass destruction of seals in the White Sea (ecological catastrophe) which happens periodically is close connected with different kind of meteorological and hydrological hazard. Greenland seals selected these water areas for whelping where a rookeries are organized on pack ice. But severe winter conditions (long-run severe frosts and NE winds) can modify ice regime of the White Sea which lead to effect "blocking" of pack ice (and whelping rookeries) inside the "Basin". These features stimulated strong reduction number ofseals (especially pups). Marine biology use modelling of the system "sea mammal-media", study "behavior factors" and mammals biodiversity at the different natural conditions. But the main critical goal is the development of special observational network for the White Sea and contiguous regions. A contemporary technologies assume integration of remote sensing and in situ hydro-chemical measurements. Airborne IR and visible observation of the marginal Arctic seas became now an indispensable part of marine ecological investigations. Application of satellite data for monitoring of sea mammals has been attractive also but practical use is restrained by its small spatial resolution, daytime illumination and cloud influence in the Arctic. Launching ERS synthetic aperture radar (SAR) in 1991, which provides global all- weather soundig with resolution 20-25 m, changed situation. High transparency of snow and relatively deep penetration of signals in ice is basis of sub-surface sounding. SAR images allow fix documentary different ice parameters: development and arrangement, ice type, shape of floes, ice concentration and compactness. Unfortunately time being resolution couldn't resolve individual sea mammal. In order to investigate the ice regime, estimate number of seals at the different winter conditions and forecast the future tendency of population decrease we perform regularly ice reconnaissance. Accomplish these observations and computations more precisely could be done at the time of mass accumulation of seals, that is whelping and moulting period. Aerial inspection is difficult task: weather conditions and masking coloration obstructs the problems, sometimes mammals couldn't be quite founded. Comprehensive study of ERS SAR signatures for diagnosis type of winter hydrology of the Arctic seas and ice conditions produced by severe winter , assessment of possibility forecast of future development of ice and studying ice as non-biotic factor of ecology of Pagophilus groenladicus and other ice-associated forms of sea mammals is a new interdisciplinary approach in marine biology. First experience of such application SAR data for diagnosis of hydrological hazard produced by severe winter has been undertaken in the White Sea and contiguous seas in 1996. Sub-satellite experiments onboard nuclear icebreaker "Taymir" provided validation program, ice cores and water samples were gathered and evaluated using chemi-luminiscent methods in connection with seal' behavior patterns. Since then aircraft Antonov-26 «Arktika» provided ice and seals investigations systematically. Helicopter is employed for in situ observations, ice cores and water samples are investigated in laboratory for measurement of different pollutant , dissolved organic matter and other hydro-chemical and radio-physical paramet ers. European Space Agency (ESA) supported this work in 1998-2000. Results of comprehensive study of hydrological hazard and ecological catastrophe in the White Sea produced by 1998/99 severe winter season are demonstrated. Satellite diagnostic and situation forecast is fulfilled for the different winter severity: results of airborne charting of seals are compared for the different ice and weather conditions . 1999/2000 winter is analyzed as mean-climatic winter season.
Hippocampal Astrocytes in Migrating and Wintering Semipalmated Sandpiper Calidris pusilla.
Carvalho-Paulo, Dario; de Morais Magalhães, Nara G; de Almeida Miranda, Diego; Diniz, Daniel G; Henrique, Ediely P; Moraes, Isis A M; Pereira, Patrick D C; de Melo, Mauro A D; de Lima, Camila M; de Oliveira, Marcus A; Guerreiro-Diniz, Cristovam; Sherry, David F; Diniz, Cristovam W P
2017-01-01
Seasonal migratory birds return to the same breeding and wintering grounds year after year, and migratory long-distance shorebirds are good examples of this. These tasks require learning and long-term spatial memory abilities that are integrated into a navigational system for repeatedly locating breeding, wintering, and stopover sites. Previous investigations focused on the neurobiological basis of hippocampal plasticity and numerical estimates of hippocampal neurogenesis in birds but only a few studies investigated potential contributions of glial cells to hippocampal-dependent tasks related to migration. Here we hypothesized that the astrocytes of migrating and wintering birds may exhibit significant morphological and numerical differences connected to the long-distance flight. We used as a model the semipalmated sandpiper Calidris pusilla , that migrates from northern Canada and Alaska to South America. Before the transatlantic non-stop long-distance component of their flight, the birds make a stopover at the Bay of Fundy in Canada. To test our hypothesis, we estimated total numbers and compared the three-dimensional (3-D) morphological features of adult C. pusilla astrocytes captured in the Bay of Fundy ( n = 249 cells) with those from birds captured in the coastal region of Bragança, Brazil, during the wintering period ( n = 250 cells). Optical fractionator was used to estimate the number of astrocytes and for 3-D reconstructions we used hierarchical cluster analysis. Both morphological phenotypes showed reduced morphological complexity after the long-distance non-stop flight, but the reduction in complexity was much greater in Type I than in Type II astrocytes. Coherently, we also found a significant reduction in the total number of astrocytes after the transatlantic flight. Taken together these findings suggest that the long-distance non-stop flight altered significantly the astrocytes population and that morphologically distinct astrocytes may play different physiological roles during migration.
Lu, Liang; Ren, Zhoupeng; Yue, Yujuan; Yu, Xiaotao; Lu, Shan; Li, Guichang; Li, Hailong; Wei, Jianchun; Liu, Jingli; Mu, You; Hai, Rong; Yang, Yonghai; Wei, Rongjie; Kan, Biao; Wang, Hu; Wang, Jinfeng; Wang, Zuyun; Liu, Qiyong; Xu, Jianguo
2016-02-24
After the earthquake on 14, April 2010 at Yushu in China, a plague epidemic hosted by Himalayan marmot (Marmota himalayana) became a major public health concern during the reconstruction period. A rapid assessment of the distribution of Himalayan marmot in the area was urgent. The aims of this study were to analyze the relationship between environmental factors and the distribution of burrow systems of the marmot and to predict the distribution of marmots. Two types of marmot burrows (hibernation and temporary) in Yushu County were investigated from June to September in 2011. The location of every burrow was recorded with a global positioning system receiver. An ecological niche model was used to determine the relationship between the burrow occurrence data and environmental variables, such as land surface temperature (LST) in winter and summer, normalized difference vegetation index (NDVI) in winter and summer, elevation, and soil type. The predictive accuracies of the models were assessed by the area under the curve of the receiving operator curve. The models for hibernation and temporary burrows both performed well. The contribution orders of the variables were LST in winter and soil type, NDVI in winter and elevation for the hibernation burrow model, and LST in summer, NDVI in summer, soil type and elevation in the temporary burrow model. There were non-linear relationships between the probability of burrow presence and LST, NDVI and elevation. LST of 14 and 23 °C, NDVI of 0.22 and 0.60, and 4100 m were inflection points. A substantially higher probability of burrow presence was observed in swamp soil and dark felty soil than in other soil types. The potential area for hibernation burrows was 5696 km(2) (37.7% of Yushu County), and the area for temporary burrows was 7711 km(2) (51.0% of Yushu County). The results suggested that marmots preferred warm areas with relatively low altitudes and good vegetation conditions in Yushu County. Based on these results, the present research is useful in understanding the niche selection and distribution pattern of marmots in this region.
Aircraft and Ground Vehicle Winter Runway Friction Assessment
NASA Technical Reports Server (NTRS)
Yager, Thomas J.
1999-01-01
Some background information is given together with the scope and objectives of a 5-year, Joint Winter Runway Friction Measurement Program between the National Aeronautics & Space Administration (NASA), Transport Canada (TC), and the Federal Aviation Administration (FAA). The primary objective of this effort is to perform instrumented aircraft and ground vehicle tests aimed at identifying a common number that all the different ground vehicle devices would report. This number, denoted the International Runway Friction Index (IRFI), will be related to all types of aircraft stopping performance. The range of test equipment, the test sites, test results and accomplishments, the extent of the substantial friction database compiled, and future test plans will be described. Several related studies have also been implemented including the effects of contaminant type on aircraft impingement drag, and the effectiveness of various runway and aircraft de-icing chemical types, and application rates.
Condition of Euphausia crystallorophias off East Antarctica in winter in comparison to other seasons
NASA Astrophysics Data System (ADS)
Nicol, S.; Virtue, P.; King, R.; Davenport, S. R.; McGaffin, A. F.; Nichols, P.
2004-08-01
Antarctic coastal krill ( Euphausia crystallorophias) were collected in Austral winter (July/August) 1999 in the Mertz Glacier polynya off the coast of East Antarctica and were compared to krill collected off East Antarctica during summer in 1996 and 2001 and spring 1999. A range of experiments and measurements were conducted to assess their relative condition in winter and summer. Krill collected in winter had pale yellow-green digestive glands, indicating some recent feeding activity. The size of the digestive glands was small relative to those of krill caught in summer. This indicates that feeding had been occurring at low levels during the collection period. Growth rates, measured using the instantaneous growth rate methodology, were close to zero in winter (range -5% to 7% per moult). This was an indication that some food had been available during the period of the moult cycle. Growth rates in spring ranged from -0.5% to +8.7% per moult and from 4% to 12% per moult in the summer. The mean length of the winter moult cycle (68 days) was considerably greater than the measured intermoult period in summer and spring (24-33 days). Lipid levels were low in winter, less than 5% of body weight, compared to summer levels of ˜15% (dry weight). Winter krill were richer in wax esters and poorer in polar lipids than specimens collected in summer. Krill in winter were lacking in C16 PUFA that are markers of the phytoplankton diet common in summer krill. Krill caught in the winter had significantly higher levels of 20:1 and 22:1 fatty acids (2.3%) and alcohols (8.1%) than krill sampled in summer (0.2%, 0%), indicating a shift to a carnivorous diet. Results from this study suggest that E. crystallorophias respond to low food abundance during the winter through metabolic and physiological processes. These processes were reflected in a decrease in growth rate and a significant increase in the intermoult period. The process of lipid utilisation and switching to a carnivorous/detrital type diet are also overwintering strategies employed by this species.
Two types of expansion onsets in the Earth's two hemispheres
NASA Astrophysics Data System (ADS)
Foerster, M.; Mishin, V.; Mishin, V. M.; Kurikalova, M.; Karavaev, Y.; Lunyushkin, S.
2016-12-01
On the maps of distribution of field - aligned currents (FAC) of 15 investigated substorms we have found two main types of M-I feedback instability: 1) "summer" (type 1), and 2) "winter" (type 2). In equinox both types were observed, different in the two hemispheres. Each type of instability creates two simultaneous local expansion onsets, EOs: Type 1 - non-linear amplification of the downward FAC in one hemisphere and Type 2 - non-linear amplification of the upward FAC in the other hemisphere.
Buff, P R; Messer, N T; Cogswell, A M; Johnson, P J; Keisler, D H; Ganjam, V K
2007-11-01
The objective of this study was to determine if seasonal and/or pulsatile variations occur in plasma concentrations of thyrotropin (TSH) and leptin in mares while maintaining a constant energy balance. Blood samples were collected every 20 min during a 24h period in winter and again in summer from six Quarter Horse type mares. Plasma concentrations of TSH, leptin, and T(4) were determined by radioimmunoassay. No differences were observed in body weight between winter (388.1+/-12.5 kg) and summer (406.2+/-12.5 kg; P=0.11). Plasma concentrations of TSH were greater in the summer (2.80+/-0.07 ng/ml) when compared to winter (0.97+/-0.07 ng/ml; P<0.001). Pulse frequency of TSH was not different between winter (6.17+/-0.78 pulses/24h) and summer (5.33+/-0.78 pulses/24h; P=0.49). Mean TSH pulse amplitude, pulse area, and area under the curve were all greater in summer compared to winter (3.11+/-0.10 ng/ml versus 1.20+/-0.10 ng/ml, 24.86+/-0.10 ng/ml min versus 13.46+/-1.90 ng/ml min, 3936+/-72.93 ng/ml versus 1284+/-72.93 ng/ml, respectively; P<0.01). Mean concentrations of leptin were greater in summer (2.48+/-0.17 ng/ml) compared to winter (0.65+/-0.17 ng/ml; P<0.001). Pulsatile secretion patterns of leptin were not observed in any horses during experimentation. Mean concentrations of T(4) were greater in winter (20.3+/-0.4 ng/ml) compared to summer (18.2+/-0.4 ng/ml; P<0.001). These seasonal differences between winter and summer provide evidence of possible seasonal regulation of TSH and leptin.
Winter fluxes of CO2 and CH4 from subalpine soils in Rocky Mountain National Park, Colorado
Mast, M. Alisa; Wickland, Kimberly P.; Striegl, Robert G.; Clow, David W.
1998-01-01
Fluxes of CO2 and CH4 through a seasonal snowpack were measured in and adjacent to a subalpine wetland in Rocky Mountain National Park, Colorado. Gas diffusion through the snow was controlled by gas production or consumption in the soil and by physical snowpack properties. The snowpack insulated soils from cold midwinter air temperatures allowing microbial activity to continue through the winter. All soil types studied were net sources of CO2 to the atmosphere through the winter, whereas saturated soils in the wetland center were net emitters of CH4 and soils adjacent to the wetland were net CH4 consumers. Most sites showed similar temporal patterns in winter gas fluxes; the lowest fluxes occurred in early winter, and maximum fluxes occurred at the onset of snowmelt. Temporal changes in fluxes probably were related to changes in soil-moisture conditions and hydrology because soil temperatures were relatively constant under the snowpack. Average winter CO2 fluxes were 42.3, 31.2, and 14.6 mmol m−2 d−1 over dry, moist, and saturated soils, respectively, which accounted for 8 to 23% of the gross annual CO2emissions from these soils. Average winter CH4 fluxes were −0.016, 0.274, and 2.87 mmol m−2 d−1over dry, moist, and saturated soils, respectively. Microbial activity under snow cover accounted for 12% of the annual CH4 consumption in dry soils and 58 and 12% of the annual CH4 emitted from moist and saturated soils, respectively. The observed ranges in CO2 and CH4 flux through snow indicated that winter fluxes are an important part of the annual carbon budget in seasonally snow-covered terrains.
O'Brien, Eileen C; Kilbane, Mark T; McKenna, Malachi J; Segurado, Ricardo; Geraghty, Aisling A; McAuliffe, Fionnuala M
2018-04-01
Pregnancy is characterised by increased bone turnover, but high bone turnover with resorption exceeding formation may lead to negative maternal bone remodelling. Recent studies are conflicting regarding the effect of calcium on skeletal health in pregnancy. The aim of this study was to examine the seasonal effect of serum 25-hydroxyvitamin D (25OHD) and dietary calcium on a marker of bone resorption. This was prospective study of 205 pregnant women [two cohorts; early pregnancy at 13 weeks (n = 96), and late pregnancy at 28 weeks (n = 109)]. Serum 25OHD and urine cross-linked N-telopeptides of type I collagen (uNTX) were measured at both time points. Intakes of vitamin D and calcium were recorded using 3-day food diaries at each trimester. Compared to summer pregnancies, winter pregnancies had significantly lower 25OHD and significantly higher uNTX. Higher calcium intakes were negatively correlated with uNTX in winter, but not summer. In late pregnancy, compared to those reporting calcium intakes ≥1000 mg/day, intakes of <1000 mg/day were associated with a greater increase in uNTX in winter pregnancies than in summer (41.8 vs. 0.9%). Increasing calcium intake in winter by 200 mg/day predicted a 13.3% reduction in late pregnancy uNTX. In late pregnancy, during winter months when 25OHD is inadequate, intakes of dietary calcium <1000 mg/day were associated with significantly increased bone resorption (uNTX). Additional dietary calcium is associated with reduced bone resorption in late pregnancy, with greater effect observed in winter. Further research regarding optimal dietary calcium and 25OHD in pregnancy is required, particularly for women gestating through winter.
Winter wheat mapping combining variations before and after estimated heading dates
NASA Astrophysics Data System (ADS)
Qiu, Bingwen; Luo, Yuhan; Tang, Zhenghong; Chen, Chongcheng; Lu, Difei; Huang, Hongyu; Chen, Yunzhi; Chen, Nan; Xu, Weiming
2017-01-01
Accurate and updated information on winter wheat distribution is vital for food security. The intra-class variability of the temporal profiles of vegetation indices presents substantial challenges to current time series-based approaches. This study developed a new method to identify winter wheat over large regions through a transformation and metric-based approach. First, the trend surfaces were established to identify key phenological parameters of winter wheat based on altitude and latitude with references to crop calendar data from the agro-meteorological stations. Second, two phenology-based indicators were developed based on the EVI2 differences between estimated heading and seedling/harvesting dates and the change amplitudes. These two phenology-based indicators revealed variations during the estimated early and late growth stages. Finally, winter wheat data were extracted based on these two metrics. The winter wheat mapping method was applied to China based on the 250 m 8-day composite Moderate Resolution Imaging Spectroradiometer (MODIS) 2-band Enhanced Vegetation Index (EVI2) time series datasets. Accuracy was validated with field survey data, agricultural census data, and Landsat-interpreted results in test regions. When evaluated with 653 field survey sites and Landsat image interpreted data, the overall accuracy of MODIS-derived images in 2012-2013 was 92.19% and 88.86%, respectively. The MODIS-derived winter wheat areas accounted for over 82% of the variability at the municipal level when compared with agricultural census data. The winter wheat mapping method developed in this study demonstrates great adaptability to intra-class variability of the vegetation temporal profiles and has great potential for further applications to broader regions and other types of agricultural crop mapping.
Body composition and weight dynamics of wintering greater white-fronted geese
Ely, Craig R.; Raveling, Dennis G.
1989-01-01
Adult greater white-fronted geese (Anser albifrons frontalis) wintering in southern Oregon and California increased or maintained body weight in autumn, lost weight from autumn through winter, and rapidly increased in weight before spring migration in late April. We documented significant annual differences in body weights for both sexes. We related seasonal changes in body weight to changes in lipid levels, which were lowest (12-13% of wet wt in M and F) in mid-March and highest in late April (24% in F). Greater white-fronted geese maintained lipid levels during winter similar to those reported for large subspecies of Canada geese (Branta canadensis), and greater than those reported for small subspecies of Canada geese and other small species of geese. Protein content of carcasses varied significantly in females; i.e., lowest in early October and highest in late October and late April. Differences among species in patterns of weight change and body composition during winter seem to be related to social organization, body size, food type, and foraging behavior. Females left spring staging areas weighing relatively less than most other species of geese and may have benefited from foraging opportunities on the nesting grounds.
Otoki, Yurika; Hennebelle, Marie; Levitt, Anthony J; Nakagawa, Kiyotaka; Swardfager, Walter; Taha, Ameer Y
2017-06-01
Disturbances in peripheral and brain lipid metabolism, including the omega-3 fatty acid docosahexaenoic acid (DHA), have been reported in major depressive disorder (MDD). However, these changes have yet to be confirmed in MDD with seasonal pattern (MDD-s), a subtype of recurrent MDD. The present exploratory study quantified plasma plasmalogen and diacyl-phospholipid species, and fatty acids within total phospholipids, cholesteryl esters, triacylglycerols and free fatty acids in non-medicated MDD-s participants (n = 9) during euthymia in summer or fall, and during depression in winter in order to screen for potential high sensitivity lipid biomarkers. Triacylglycerol alpha-linolenic acid concentration was significantly decreased, and myristoleic acid concentration was significantly increased, during winter depression compared to summer-fall euthymia. 1-stearyl-2-docosahexaenoyl-sn-glycero-3-phosphoethanolamine, a diacyl-phospholipid containing stearic acid and DHA, was significantly decreased in winter depression. Concentrations of cholesteryl ester oleic acid and several polyunsaturated fatty acids between summer/fall and winter increased in proportion to the increase in depressive symptoms. The observed changes in lipid metabolic pathways in winter-type MDD-s offer new promise for lipid biomarker development.
Preliminary investigations of the winter ecology of Long-billed Curlews in coastal Texas
Woodin, Marc C.; Skoruppa, Mary Kay; Edwardson, Jeremy W.; Austin, Jane E.
2012-01-01
Results from this 1-year pilot study yielded an intriguing combination of findings that warrant further investigation. Observations include reduced numbers of roosting birds along the Texas coast during dry conditions, highly dynamic use of nocturnal roost sites, use of widely divergent habitat types for foraging, low body mass of most captured birds, and apparent fidelity to general feeding areas. Future investigations of this eastern winter population of curlews would benefit from larger sample sizes and monitoring of individual birds.
Wu, Guohai; Wilen, Ronald W.; Robertson, Albert J.; Gusta, Lawrence V.
1999-01-01
Superoxide dismutase (SOD) gene expression was investigated to elucidate its role in drought and freezing tolerance in spring and winter wheat (Triticum aestivum). cDNAs encoding chloroplastic Cu/ZnSODs and mitochondrial MnSODs were isolated from wheat. MnSOD and Cu/ZnSOD genes were mapped to the long arms of the homologous group-2 and -7 chromosomes, respectively. Northern blots indicated that MnSOD genes were drought inducible and decreased after rehydration. In contrast, Cu/ZnSOD mRNA was not drought inducible but increased after rehydration. In both spring and winter wheat seedlings exposed to 2°C, MnSOD transcripts attained maximum levels between 7 and 49 d. Transcripts of Cu/ZnSOD mRNA were detected sooner in winter than in spring wheat; however, they disappeared after 21 d of acclimation. Transcripts of both classes of SOD genes increased during natural acclimation in both spring and winter types. Exposure of fully hardened plants to three nonlethal freeze-thaw cycles resulted in Cu/Zn mRNA accumulation; however, MnSOD mRNA levels declined in spring wheat but remained unchanged in winter wheat. The results of the dehydration and freeze-thaw-cycle experiments suggest that winter wheat has evolved a more effective stress-repair mechanism than spring wheat. PMID:10364402
Potential Seasonal Predictability for Winter Storms over Europe
NASA Astrophysics Data System (ADS)
Wild, Simon; Befort, Daniel J.; Leckebusch, Gregor C.
2017-04-01
Reliable seasonal forecasts of strong extra-tropical cyclones and windstorms would have great social and economical benefits, as these events are the most costly natural hazards over Europe. In a previous study we have shown good agreement of spatial climatological distributions of extra-tropical cyclones and wind storms in state-of-the-art multi-member seasonal prediction systems with reanalysis. We also found significant seasonal prediction skill of extra-tropical cyclones and windstorms affecting numerous European countries. We continue this research by investigating the mechanisms and precursor conditions (primarily over the North Atlantic) on a seasonal time scale leading to enhanced extra-tropical cyclone activity and winter storm frequency over Europe. Our results regarding mechanisms show that an increased surface temperature gradient at the western edge of the North Atlantic can be related to enhanced winter storm frequency further downstream causing for example a greater number of storms over the British Isles, as observed in winter 2013-14.The so-called "Horseshoe Index", a SST tripole anomaly pattern over the North Atlantic in the summer months can also cause a higher number of winter storms over Europe in the subsequent winter. We will show results of AMIP-type sensitivity experiments using an AGCM (ECHAM5), supporting this hypothesis. Finally we will analyse whether existing seasonal forecast systems are able to capture these identified mechanisms and precursor conditions affecting the models' seasonal prediction skill.
Ecological impacts of winter water level drawdowns on lake littoral zones: A review
Roy, Allison
2017-01-01
Freshwater littoral zones harbor diverse ecological communities and serve numerous ecosystem functions that are controlled, in part, by natural water level fluctuations. However, human alteration of lake hydrologic regimes beyond natural fluctuations threaten littoral zone ecological integrity. One type of hydrologic alteration in lakes is winter water level drawdowns, which are frequently employed for hydropower, flood control, and macrophyte control, among other purposes. Here, we synthesize the abiotic and biotic responses to annual and novel winter water level drawdowns in littoral zones of lakes and reservoirs. The dewatering, freezing, and increased erosion of exposed lakebeds drive changes in the littoral zone. Shoreline-specific physicochemical conditions such as littoral slope and shoreline exposure further induce modifications. Loss of fine sediment decreases nutrient availability over time, but desiccation may promote a temporary nutrient pulse upon re-inundation. Annual winter drawdowns can decrease taxonomic richness of macrophytes and benthic invertebrates and shift assemblage composition to favor taxa with r-selected life history strategies and with functional traits resistant to direct and indirect drawdown effects. Fish assemblages, though less directly affected by winter drawdowns (except where there is critically low dissolved oxygen), experience negative effects via indirect pathways like decreased food resources and spawning habitat. We identify eight general research gaps to guide future research that could improve our understanding about the complex effects of winter drawdowns on littoral zone ecology.
Banda-Villanueva, Iris; Contreras-Lozano, Jorge; Garcia-Salas, Juan; González-Páez, Hugo
2013-06-01
The Piping Plover (Charadrius melodus) is a migratory endangered species that arrives, along with a great number of other winter migratory birds, to Boca Ciega every year. In spite of the importance of this ecosystem, these species, are threatened by the current habitat change caused by the dredging activities in the area. With the aim to generate new information about the importance of this area during winter, we studied C melodus activities during the winter season in Laguna Madre, from December 2009 to March 2010. Our objectives were: 1) determine the importance of the area during winter, 2) describe C. melodus ethology, feeding substrate preferences and food items, 3) to analyze and describe the sympatric diversity associated with C melodus. A total of ninety nine individuals were observed during the monitoring. The Cochran and Kendall test showed a high significance of the species with the substrate and signs tests using a binomial distribution that indicated a high preference for algal type of substrate. The highest activity recorded for this species during this winter season was feeding. The principal food items found in sediments were larvae of Diptera: Chironomidae and Ephydridae. The sympatric species of C. melodus were two families of Charadriiforms: Scolopacidae (nine species) and Charadriidae (two species). We concluded that this is an important area for feeding, protection and rest sites for this species, and its protection and management is recommended.
Climate-Driven Effects of Fire on Winter Habitat for Caribou in the Alaskan-Yukon Arctic
Gustine, David D.; Brinkman, Todd J.; Lindgren, Michael A.; Schmidt, Jennifer I.; Rupp, T. Scott; Adams, Layne G.
2014-01-01
Climatic warming has direct implications for fire-dominated disturbance patterns in northern ecosystems. A transforming wildfire regime is altering plant composition and successional patterns, thus affecting the distribution and potentially the abundance of large herbivores. Caribou (Rangifer tarandus) are an important subsistence resource for communities throughout the north and a species that depends on terrestrial lichen in late-successional forests and tundra systems. Projected increases in area burned and reductions in stand ages may reduce lichen availability within caribou winter ranges. Sufficient reductions in lichen abundance could alter the capacity of these areas to support caribou populations. To assess the potential role of a changing fire regime on winter habitat for caribou, we used a simulation modeling platform, two global circulation models (GCMs), and a moderate emissions scenario to project annual fire characteristics and the resulting abundance of lichen-producing vegetation types (i.e., spruce forests and tundra >60 years old) across a modeling domain that encompassed the winter ranges of the Central Arctic and Porcupine caribou herds in the Alaskan-Yukon Arctic. Fires were less numerous and smaller in tundra compared to spruce habitats throughout the 90-year projection for both GCMs. Given the more likely climate trajectory, we projected that the Porcupine caribou herd, which winters primarily in the boreal forest, could be expected to experience a greater reduction in lichen-producing winter habitats (−21%) than the Central Arctic herd that wintered primarily in the arctic tundra (−11%). Our results suggest that caribou herds wintering in boreal forest will undergo fire-driven reductions in lichen-producing habitats that will, at a minimum, alter their distribution. Range shifts of caribou resulting from fire-driven changes to winter habitat may diminish access to caribou for rural communities that reside in fire-prone areas. PMID:24991804
36 CFR 294.1 - Recreation areas.
Code of Federal Regulations, 2014 CFR
2014-07-01
... stations, stores, horse and boat liveries, garages, and similar types of public service accommodations), bathing beaches, winter sports areas, lodges, and similar facilities and appurtenant structures needed by...
36 CFR 294.1 - Recreation areas.
Code of Federal Regulations, 2013 CFR
2013-07-01
... stations, stores, horse and boat liveries, garages, and similar types of public service accommodations), bathing beaches, winter sports areas, lodges, and similar facilities and appurtenant structures needed by...
36 CFR 294.1 - Recreation areas.
Code of Federal Regulations, 2011 CFR
2011-07-01
... stations, stores, horse and boat liveries, garages, and similar types of public service accommodations), bathing beaches, winter sports areas, lodges, and similar facilities and appurtenant structures needed by...
36 CFR 294.1 - Recreation areas.
Code of Federal Regulations, 2012 CFR
2012-07-01
... stations, stores, horse and boat liveries, garages, and similar types of public service accommodations), bathing beaches, winter sports areas, lodges, and similar facilities and appurtenant structures needed by...
36 CFR 294.1 - Recreation areas.
Code of Federal Regulations, 2010 CFR
2010-07-01
... stations, stores, horse and boat liveries, garages, and similar types of public service accommodations), bathing beaches, winter sports areas, lodges, and similar facilities and appurtenant structures needed by...
USDA-ARS?s Scientific Manuscript database
Fusarium head blight (FHB) has become one of the most damaging wheat diseases in humid and semi-humid regions around the world. Breeding efforts have focused on resistance mechanisms that limit the spread once a spike is infected, or type II resistance. But resistance to initial infection, type I re...
Mapping Winter Wheat with Multi-Temporal SAR and Optical Images in an Urban Agricultural Region
Zhou, Tao; Pan, Jianjun; Zhang, Peiyu; Wei, Shanbao; Han, Tao
2017-01-01
Winter wheat is the second largest food crop in China. It is important to obtain reliable winter wheat acreage to guarantee the food security for the most populous country in the world. This paper focuses on assessing the feasibility of in-season winter wheat mapping and investigating potential classification improvement by using SAR (Synthetic Aperture Radar) images, optical images, and the integration of both types of data in urban agricultural regions with complex planting structures in Southern China. Both SAR (Sentinel-1A) and optical (Landsat-8) data were acquired, and classification using different combinations of Sentinel-1A-derived information and optical images was performed using a support vector machine (SVM) and a random forest (RF) method. The interference coherence and texture images were obtained and used to assess the effect of adding them to the backscatter intensity images on the classification accuracy. The results showed that the use of four Sentinel-1A images acquired before the jointing period of winter wheat can provide satisfactory winter wheat classification accuracy, with an F1 measure of 87.89%. The combination of SAR and optical images for winter wheat mapping achieved the best F1 measure–up to 98.06%. The SVM was superior to RF in terms of the overall accuracy and the kappa coefficient, and was faster than RF, while the RF classifier was slightly better than SVM in terms of the F1 measure. In addition, the classification accuracy can be effectively improved by adding the texture and coherence images to the backscatter intensity data. PMID:28587066
Forest type influences transmission of Phytophthora ramorum in California oak woodlands
J. M. Davidson; H. A. Patterson; A. C. Wickland; E. J. Fichtner; D. M. Rizzo
2011-01-01
The transmission ecology of Phytophthora ramorum from bay laurel (Umbellularia californica) leaves was compared between mixed-evergreen and redwood forest types throughout winter and summer disease cycles in central, coastal California. In a preliminary multisite study, we found that abscission rates of infected leaves were higher at mixed...
He, Feng-Peng; Wang, Wei
2016-01-01
The response of microbial respiration from soil organic carbon (SOC) decomposition to environmental changes plays a key role in predicting future trends of atmospheric CO2 concentration. However, it remains uncertain whether there is a universal trend in the response of microbial respiration to increased temperature and nutrient addition among different vegetation types. In this study, soils were sampled in spring, summer, autumn and winter from five dominant vegetation types, including pine, larch and birch forest, shrubland, and grassland, in the Saihanba area of northern China. Soil samples from each season were incubated at 1, 10, and 20°C for 5 to 7 days. Nitrogen (N; 0.035 mM as NH4NO3) and phosphorus (P; 0.03 mM as P2O5) were added to soil samples, and the responses of soil microbial respiration to increased temperature and nutrient addition were determined. We found a universal trend that soil microbial respiration increased with increased temperature regardless of sampling season or vegetation type. The temperature sensitivity (indicated by Q10, the increase in respiration rate with a 10°C increase in temperature) of microbial respiration was higher in spring and autumn than in summer and winter, irrespective of vegetation type. The Q10 was significantly positively correlated with microbial biomass and the fungal: bacterial ratio. Microbial respiration (or Q10) did not significantly respond to N or P addition. Our results suggest that short-term nutrient input might not change the SOC decomposition rate or its temperature sensitivity, whereas increased temperature might significantly enhance SOC decomposition in spring and autumn, compared with winter and summer. PMID:27070782
White-crowned sparrows wintering in Maryland and West Virginia
Llewellyn, L.M.
1949-01-01
During the Christmas holidays (1947) five white-crowned sparrows (Zonotrichia l. leucophrys) were trapped and banded at McCoole, Allegany County, Maryland. On January 31 and February 1, 1948, 11 more were banded and a flock of at least 21 white-crowns was counted feeding in the snow under pigweed (Amaranthus hybridus). On the latter date five others were observed feeding under the same type of vegetation near the Potomac River in Keyser, Mineral County, West Virginia. All birds ob- served were immatures. So far as is known this is the first published record for this species wintering in Maryland. It has been previously reported in winter from West Virginia in Hampshire, Kanawha, and Cabell Counties (Maurice G. Brooks, 'A Check List of West Virginia Birds,' 1944).
Linkmeyer, Andrea; Hofer, Katharina; Rychlik, Michael; Herz, Markus; Hausladen, Hans; Hückelhoven, Ralph; Hess, Michael
2016-01-01
Fusarium head blight (FHB) of small cereals is a disease of global importance with regard to economic losses and mycotoxin contamination harmful to human and animal health. In Germany, FHB is predominantly associated with wheat and F. graminearum is recognised as the major causal agent of the disease, but little is known about FHB of barley. Monitoring of the natural occurrence of FHB on Bavarian barley revealed differences for individual Fusarium spp. in incidence and severity of grain infection between years and between spring and winter barley. Parallel measurement of fungal DNA content in grain and mycotoxin content suggested the importance of F. graminearum in winter barley and of F. langsethiae in spring barley for FHB. The infection success of these two species was associated with certain weather conditions and barley flowering time. Inoculation experiments in the field revealed different effects of five Fusarium spp. on symptom formation, grain yield and mycotoxin production. A significant association between fungal infection of grain and mycotoxin content was observed following natural or artificial infection with the type B trichothecene producer F. culmorum, but not with the type A trichothecene-producing species F. langsethiae and F. sporotrichioides. Trichothecene type A toxin contamination also occurred in the absence of significant damage to grain and did not necessarily promote fungal colonisation.
Association Analysis of Stem Rust Resistance in U.S. Winter Wheat
Zhang, Dadong; Bowden, Robert L.; Yu, Jianming; Carver, Brett F.; Bai, Guihua
2014-01-01
Stem rust has become a renewed threat to global wheat production after the emergence and spread of race TTKSK (also known as Ug99) and related races from Africa. To elucidate U.S. winter wheat resistance genes to stem rust, association mapping was conducted using a panel of 137 lines from cooperative U.S. winter wheat nurseries from 2008 and simple sequence repeat (SSR) and sequence tagged site (STS) markers across the wheat genome. Seedling infection types were evaluated in a greenhouse experiment using six U.S. stem rust races (QFCSC, QTHJC, RCRSC, RKQQC, TPMKC and TTTTF) and TTKSK, and adult plant responses to bulked U.S. races were evaluated in a field experiment. A linearization algorithm was used to convert the qualitative Stakman scale seedling infection types for quantitative analysis. Association mapping successfully detected six known stem rust seedling resistance genes in U.S. winter wheat lines with frequencies: Sr6 (12%), Sr24 (9%), Sr31 (15%), Sr36 (9%), Sr38 (19%), and Sr1RSAmigo (8%). Adult plant resistance gene Sr2 was present in 4% of lines. SrTmp was postulated to be present in several hard winter wheat lines, but the frequency could not be accurately determined. Sr38 was the most prevalent Sr gene in both hard and soft winter wheat and was the most effective Sr gene in the adult plant field test. Resistance to TTKSK was associated with nine markers on chromosome 2B that were in linkage disequilibrium and all of the resistance was attributed to the Triticum timopheevii chromosome segment carrying Sr36. Potential novel rust resistance alleles were associated with markers Xwmc326-203 on 3BL, Xgwm160-195 and Xwmc313-225 on 4AL near Sr7, Xgwm495-182 on 4BL, Xwmc622-147 and Xgwm624-146 on 4DL, and Xgwm334-123 on 6AS near Sr8. Xwmc326-203 was associated with adult plant resistance to bulked U.S. races and Xgwm495-182 was associated with seedling resistance to TTKSK. PMID:25072699
Vogstad, A R; Moxley, R A; Erickson, G E; Klopfenstein, T J; Smith, D R
2014-06-01
Pens of cattle with high Escherichia coli O157:H7 (STEC O157) prevalence at harvest may present a greater risk to food safety than pens of lower prevalence. Vaccination of live cattle against STEC O157 has been proposed as an approach to reduce STEC O157 prevalence in live cattle. Our objective was to create a stochastic simulation model to evaluate the effectiveness of pre-harvest interventions. We used the model to compare STEC O157 prevalence distributions for summer- and winter-fed cattle to summer-fed cattle immunized with a type III secreted protein (TTSP) vaccine. Model inputs were an estimate of vaccine efficacy, observed frequency distributions for number of animals within a pen, and pen-level faecal shedding prevalence for summer and winter. Uncertainty about vaccine efficacy was simulated using a log-normal distribution (mean = 58%, SE = 0.14). Model outputs were distributions of STEC O157 faecal pen prevalence of summer-fed cattle unvaccinated and vaccinated, and winter-fed cattle unvaccinated. The simulation was performed 5000 times. Summer faecal prevalence ranged from 0% to 80% (average = 30%). Thirty-six per cent of summer-fed pens had STEC O157 prevalence >40%. Winter faecal prevalence ranged from 0% to 60% (average = 10%). Seven per cent of winter-fed pens had STEC O157 prevalence >40%. Faecal prevalence for summer-fed pens vaccinated with a 58% efficacious vaccine product ranged from 0% to 52% (average = 13%). Less than one per cent of vaccinated pens had STEC O157 prevalence >40%. In this simulation, vaccination mitigated the risk of STEC O157 faecal shedding to levels comparable to winter, with the major effects being reduced average shedding prevalence, reduced variability in prevalence distribution, and a reduction in the occurrence of the highest prevalence pens. Food safety decision-makers may find this modelling approach useful for evaluating the value of pre-harvest interventions. © 2013 Blackwell Verlag GmbH.
Structures and ice-binding faces of the alanine-rich type I antifreeze proteins.
Patel, Shruti N; Graether, Steffen P
2010-04-01
Antifreeze proteins (AFPs) protect cold-blooded organisms from the damage caused by freezing through their ability to inhibit ice growth. The type I AFP family, found in several fish species, contains proteins that have a high alanine content (>60% of the sequence) and structures that are almost all alpha-helical. We examine the structure of the type I AFP isoforms HPLC6 from winter flounder, shorthorn sculpin 3, and the winter flounder hyperactive type I AFP. The HPLC6 isoform structure consists of a single alpha-helix that is 37 residues long, whereas the shorthorn sculpin 3 isoform consists of two helical regions separated by a kink. The high-resolution structure of the hyperactive type I AFP has yet to be determined, but circular dichroism data and analytical ultracentrifugation suggest that the 195 residue protein is a side-by-side dimer of two alpha-helices. The alanine-rich ice-binding faces of HPLC6 and hyperactive type I AFP are discussed, and we propose that the ice-binding face of the shorthorn sculpin 3 AFP contains Ala14, Ala19, and Ala25. We also propose that the denaturation of hyperactive type I AFP at room temperature is explained by the stabilization of the dimerization interface through hydrogen bonds.
Corsi, S R; Hall, D W; Geis, S W
2001-07-01
Streams receiving runoff from General Mitchell International Airport (GMIA), Milwaukee, Wisconsin, USA, were studied to assess toxic impacts of aircraft and runway deicers. Elevated levels of constituents related to deicing (propylene glycol, ethylene glycol, and ammonia) were observed in stream samples. The LC50s of type I deicer for Ceriodaphnia dubia, Pimephelas promelas, Hyalela azteca, and Chironimus tentans and the EC50 for Microtox were less than 5,000 mg/L of propylene glycol. Concentrations up to 39,000 mg/L were observed at airport outfall sites in samples collected during deicing events. The IC25s of type I deicer for C. dubia and P. promelas were less than 1,500 mg/L of propylene glycol. Concentrations up to 960 mg/L were observed in low-flow samples at an airport outfall site. Measured toxicity of stream water was greatest during winter storms when deicers were applied. Chronic toxicity was observed at airport outfall samples from low-flow periods in the winter and the summer, with the greater toxic impacts from the winter sample. All forms of toxicity in stream-water samples decreased as downstream flows increased.
Corsi, Steven; Hall, David W.; Geis, Steven W.
2001-01-01
Streams receiving runoff from General Mitchell International Airport (GMIA), Milwaukee, Wisconsin, USA, were studied to assess toxic impacts of aircraft and runway deicers. Elevated levels of constituents related to deicing (propylene glycol, ethylene glycol, and ammonia) were observed in stream samples. The LC50s of type I deicer for Ceriodaphnia dubia, Pimephelas promelas, Hyalela azteca, and Chironimus tentans and the EC50 for Microtox® were less than 5,000 mg/L of propylene glycol. Concentrations up to 39,000 mg/L were observed at airport outfall sites in samples collected during deicing events. The IC25s of type I deicer for C. dubia and P. promelas were less than 1,500 mg/L of propylene glycol. Concentrations up to 960 mg/L were observed in low-flow samples at an airport outfall site. Measured toxicity of stream water was greatest during winter storms when deicers were applied. Chronic toxicity was observed at airport outfall samples from low-flow periods in the winter and the summer, with the greater toxic impacts from the winter sample. All forms of toxicity in stream-water samples decreased as downstream flows increased.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stalker, James R.; Bossert, James E.
1997-12-31
In this study we investigate complex terrain effects on precipitation with RAMS for both in winter and summer cases from a microphysical perspective. We consider a two dimensional east-west topographic cross section in New Mexico representative of the Jemez mountains on the west and the Sangre de Cristo mountains on the east. Located between these two ranges is the Rio Grande Valley. In these two dimensional experiments, variations in DSDs are considered to simulate total precipitation that closely duplicate observed precipitation.
Tip-Dieback in Young Loblolly Pine Plantations
David B. South; Patrick Brown; Phillip M. Dougherty; Sonya Olykan; Brett Runion; Adya Singh; Malcolm Skinner
2002-01-01
Dieback of loblolly pine (Pinus taeda L.) has been observed in certain intensively managed plantations throughout the South. There are two distinct types of dieback; winter dieback usually appears in February and March while summer dieback appears in July (or later) and increases during the fall. Both types have very high levels of K in terminal...
NASA Astrophysics Data System (ADS)
Kirpes, R.; Bondy, A. L.; Bonanno, D.; Moffet, R.; Wang, B.; Laskin, A.; Ault, A. P.; Pratt, K.
2016-12-01
The Arctic region is undergoing rapid transformations and loss of sea ice due to climate change. With increased sea ice fracturing resulting in greater open ocean surface, winter emissions of sea spray aerosol (SSA) are expected to be increasing. Additionally, during the winter-spring transition, Arctic haze contributes to the Arctic aerosol budget. The magnitude of aerosol climate effects depends on the aerosol composition and mixing state (distribution of chemical species within and between particles). However, few studies of aerosol chemistry have been conducted in the winter Arctic, despite it being a time when aerosol impacts on clouds are expected to be significant. To study aerosol composition and mixing state in the winter Arctic, atmospheric particles were collected near Barrow, Alaska in January and February 2014 for off-line individual particle chemical analysis. SSA was the most prevalent particle type observed. Sulfate and nitrate were observed to be internally mixed with SSA and organic aerosol. Greater than 98% of observed SSA particles contained organic content, with 15-35% organic volume fraction on average for individual particles. The SSA organic compounds consisted of carbohydrates, lipids, and fatty acids found in the seawater surface microlayer. SSA was determined to be emitted from open leads, while transported sulfate and nitrate contributed to aging of SSA and organic aerosol. Determining the aerosol chemical composition and mixing state in the winter Arctic will further the understanding of how individual aerosol particles impact climate through radiative effects and cloud formation.
Sitnikov, Lilya; Rohan, Kelly J; Evans, Maggie; Mahon, Jennifer N; Nillni, Yael I
2013-12-01
There is no empirical basis for determining which seasonal affective disorder (SAD) patients are best suited for what type of treatment. Using data from a parent clinical trial comparing light therapy (LT), cognitive-behavioral therapy (CBT), and their combination (CBT + LT) for SAD, we constructed hierarchical linear regression models to explore baseline cognitive vulnerability constructs (i.e., dysfunctional attitudes, negative automatic thoughts, response styles) as prognostic and prescriptive factors of acute and next winter depression outcomes. Cognitive constructs did not predict or moderate acute treatment outcomes. Baseline dysfunctional attitudes and negative automatic thoughts were prescriptive of next winter treatment outcomes. Participants with higher baseline levels of dysfunctional attitudes and negative automatic thoughts had less severe depression the next winter if treated with CBT than if treated with LT. In addition, participants randomized to solo LT who scored at or above the sample mean on these cognitive measures at baseline had more severe depressive symptoms the next winter relative to those who scored below the mean. Baseline dysfunctional attitudes and negative automatic thoughts did not predict treatment outcomes in participants assigned to solo CBT or CBT + LT. Therefore, SAD patients with extremely rigid cognitions did not fare as well in the subsequent winter if treated initially with solo LT. Such patients may be better suited for initial treatment with CBT, which directly targets cognitive vulnerability processes. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Anderson, J. E.; Kalcic, M. T. (Principal Investigator)
1982-01-01
Digital processed aircraft-acquired thematic mapping simulator (TMS) data collected during the winter season over a forested site in southern Mississippi are presented to investigate the utility of TMS data for use in forest inventories and monitoring. Analyses indicated that TMS data are capable of delineating the mixed forest land cover type to an accuracy of 92.5 % correct. The accuracies associated with river bottom forest and pine forest were 95.5 and 91.5 % correct. The accuracies associated with river bottom forest and pine forest were 95.5 and 91.5 % correct, respectively. The figures reflect the performance for products produced using the best subset of channels for each forest cover type. It was found that the choice of channels (subsets) has a significant effect on the accuracy of classification produced, and that the same channels are not the most desirable for all three forest types studied. Both supervised and unsupervised spectral signature development techniques are evaluated; the unsupervised methods proved unacceptable for the three forest types considered.
Jaman, M Firoj; Huffman, Michael A
2013-01-01
Macaques are characterized by their wide distribution and ability to adapt to a variety of habitats. Activity budgets are affected by habitat type, season, and food availability in relation to differing age-sex class and individual requirements. We conducted a comparative study on two commensal rhesus groups, one living in a rural village and the other in the center of urban Dhaka, Bangladesh. The study was conducted in three different seasons between 2007 and 2009 in order to evaluate how habitat type and season affects their behavioral activities. Differences in food type and its availability between these two habitats were mainly responsible for the variations in activity budgets between groups. Feeding time in the rural group was significantly longer than that in the urban group. In contrast, grooming and object manipulation/play were significantly greater in the urban than the rural group. Seasonal variations in all major behaviors were significantly affected by group, with more time spent feeding in summer than in winter/dry season, and more time spent grooming and moving in winter/dry season than summer in the rural group. In contrast, time spent resting was greater in the monsoon and summer seasons than the winter/dry season in the urban group. Grooming time was greater in the winter/dry season than the monsoon and summer seasons. In both groups, immature of both sexes spent significantly more time on feeding and object manipulation/playing and less time resting than adults. Adult females spent more time grooming than males and immatures, of both sexes, in both groups. Moreover, the rural group spent most of their time feeding on garden/crop produce and wild plant food resources, while the urban group spent more time feeding on provisioned foods. These results showed that differences in the activity budgets of rural and urban dwelling macaques were due largely to the differences in available food resources. Commensal rhesus macaques show a high degree of behavioral flexibility in response to habitat and resource variability, and knowledge of these differences is important for the conservation and management of highly commensal primates.
Tryjanowski, Piotr; Skórka, Piotr; Sparks, Tim H; Biaduń, Waldemar; Brauze, Tomasz; Hetmański, Tomasz; Martyka, Rafał; Indykiewicz, Piotr; Myczko, Łukasz; Kunysz, Przemysław; Kawa, Piotr; Czyż, Stanisław; Czechowski, Paweł; Polakowski, Michał; Zduniak, Piotr; Jerzak, Leszek; Janiszewski, Tomasz; Goławski, Artur; Duduś, Leszek; Nowakowski, Jacek J; Wuczyński, Andrzej; Wysocki, Dariusz
2015-10-01
Bird feeding is one of the most widespread direct interactions between man and nature, and this has important social and environmental consequences. However, this activity can differ between rural and urban habitats, due to inter alia habitat structure, human behaviour and the composition of wintering bird communities. We counted birds in 156 squares (0.25 km(2) each) in December 2012 and again in January 2013 in locations in and around 26 towns and cities across Poland (in each urban area, we surveyed 3 squares and also 3 squares in nearby rural areas). At each count, we noted the number of bird feeders, the number of bird feeders with food, the type of feeders, additional food supplies potentially available for birds (bread offered by people, bins) and finally the birds themselves. In winter, urban and rural areas differ in the availability of food offered intentionally and unintentionally to birds by humans. Both types of food availability are higher in urban areas. Our findings suggest that different types of bird feeder support only those species specialized for that particular food type and this relationship is similar in urban and rural areas.
Evaluation of the operation efficiency of solar panels in winter
NASA Astrophysics Data System (ADS)
Burakova, A. D.; Burakova, L. N.; Anisimov, I. A.; Burakova, O. D.
2017-06-01
The article deals with the issue of increasing the comfort and safety of life in cities by applying an alternative energy source for power supply of transport infrastructure facilities. Due to the peculiarity of the Russian Federation territory location, most cities are characterized by a long winter period, which makes it necessary to consider the features of using solar panels under these conditions. It has been established that the efficiency of solar panels depends on their type and location, the presence of snow cover on their surface, and the ambient air temperature. It has been revealed that flexible solar panels have some advantages that determine their ability to be used for power supply of transport infrastructure facilities. In the paper, the optimum angle of inclination of rigid solar panels in the winter period of the year is determined.
Diet of western Burrowing Owls wintering in southern Texas
Littles, C.J.; Williford, D.; Skoruppa, M.K.; Woodin, M.C.; Hickman, G.C.
2007-01-01
Winter diets of the western Burrowing Owl (Athene cunicularia hypugaea) are little known. We determined the diet of western Burrowing Owls wintering in southern Texas by analyzing the contents of 182 pellets collected over four winters (1999-2000, 2001-2002, 2002-2003, and 2003-2004) in three habitat types (agricultural, mainland grassland, and barrier island). Remains of a total of 7476 prey items were recovered, 98% of which were arthropods. Gryllidae (crickets) formed the largest component (50%) of the prey, followed by lepidopteran larvae (13%), beetles (8%), spiders (7%), and earwigs (6%). Although vertebrates, primarily small mammals and birds, represented only 2% of prey items by number, they represented most (71%) of the biomass. Northern pygmy mice (Baiomys taylori) and fulvous harvest mice (Reithrodontomys fulveccens) were the two most frequently consumed vertebrate species. In all habitats, arthropods, especially orthopterans, were the primary prey item by number, whereas vertebrates, primarily small mammals, were the most important by biomass. Greater consumption of arthropods by Burrowing Owls in agricultural areas may be a factor contributing to owl use of these highly altered environments. ?? 2007 The Raptor Research Foundation, Inc.
Diurnal stream habitat use of juvenile Atlantic salmon, brown trout and rainbow trout in winter
Johnson, J. H.; Douglass, K.A.
2009-01-01
The diurnal winter habitat of three species of juvenile salmonids was examined in a tributary of Skaneateles Lake, NY to compare habitat differences among species and to determine if species/age classes were selecting specific habitats. A total of 792 observations were made on the depth, velocity, substrate and cover (amount and type) used by sympatric subyearling Atlantic salmon, subyearling brown trout and subyearling and yearling rainbow trout. Subyearling Atlantic salmon occurred in shallower areas with faster velocities and less cover than the other salmonid groups. Subyearling salmon was also the only group associated with substrate of a size larger than the average size substrate in the study reach during both winters. Subyearling brown trout exhibited a preference for vegetative cover. Compared with available habitat, yearling rainbow trout were the most selective in their habitat use. All salmonid groups were associated with more substrate cover in 2002 under high flow conditions. Differences in the winter habitat use of these salmonid groups have important management implications in terms of both habitat protection and habitat enhancement.
Dong, Zhiwen; Qin, Dahe; Qin, Xiang; Cui, Jianyong; Kang, Shichang
2017-04-01
Trace elements in the atmosphere could provide information about regional atmospheric pollution. This study presented a whole year of precipitation observation data regarding the concentrations of trace metals (e.g., Cr, Ni, Cu, Mn, Cd, Mo, Pb, Sb, Ti, and Zn), and a TEM-EDX (transmission electron microscope-energy dispersive X-ray spectrometer) analysis from June 2014 to September 2015 at a remote alpine glacier basin in Northwest China, the Laohugou (LHG) basin (4200 m a.s.l.), to determine the regional scale of atmospheric conditions and chemical processing in the free troposphere in the region. The results of the concentrations of trace metals showed that, although the concentrations generally were lower compared with that of surrounding rural areas (and cities), they showed an obviously higher concentration and higher EFs in winter (DJF) and a relatively lower concentration and lower EFs in summer (JJA) and autumn (SON), implying clearly enhanced winter pollution of the regional atmosphere in Northwest China. The TEM observed residue in precipitation that was mainly composed of types of dust, salt-dust, BC-fly ash-soot, and organic particles in precipitation, which also showed remarked seasonal change, showing an especially high ratio of BC-soot-fly ash particles in winter precipitation compared with that of other seasons (while organic particles were higher in the summer), indicating significant increased anthropogenic particles in the winter atmosphere. The source of increased winter anthropogenic pollutants mainly originated from emissions from coal combustion, e.g., the regional winter heating supply for residents and cement factories in urban and rural regions of Northwest China. Moderate Resolution Imaging Spectroradiometer (MODIS) atmospheric optical depth (AOD) also showed a significant influence of regional atmospheric pollutant emissions over the region in winter. In total, this work indicated that the atmospheric environment in western Qilian Mountains also showed enhanced anthropogenic pollution in winter, probably mainly caused by regional fossil fuel combustion.
NASA Astrophysics Data System (ADS)
Gao, Jiajia; Tian, Hezhong; Cheng, Ke; Lu, Long; Zheng, Mei; Wang, Shuxiao; Hao, Jiming; Wang, Kun; Hua, Shenbing; Zhu, Chuanyong; Wang, Yong
2015-04-01
Airborne particles in urban Beijing during haze days and normal days were collected and analyzed in the autumn and winter seasons to reveal the chemical characteristics variations of air pollution. The air quality in haze days was substantially worse than that in normal days. Both the relatively low wind speed and high relative humidity were in favor of the accumulation of pollution species and new formation of secondary PM2.5 in the atmosphere. Elevated concentrations of elements and water-soluble inorganic ions were found on haze days for both PM10 and PM2.5. Particularly, the crustal element, such as Fe, in both PM10 and PM2.5 were substantially higher in autumn normal days and winter haze days than those in autumn haze days and winter normal days, indicating that the abundance of Fe in autumn haze days mainly be originated from crustal dust while in winter haze days it might be primarily emitted from anthropogenic sources (iron and steel smelting) instead of road dust. Secondary ion species (SO42-, NO3-, NH4+) in particles were generated much more during haze episodes, and contributed a higher proportion in PM2.5 than in PM10 during the two sampling periods. Moreover, HYSPLIT model was used to explain the possible transport of airborne particles from distant sources. By comparing with south-type trajectory, west-type trajectory entrained larger amounts of primary crustal pollutants, while, south-type trajectory was comprised of a higher mass of anthropogenic pollution species. The results of back trajectory analysis indicated that the elevated concentration of aerosol and its chemical components during haze days might be caused by the integrated effects of accumulation under stagnant meteorological condition and the transport emissions of pollutants from anthropogenic sources surrounding Beijing city.
Genome-wide association mapping of frost tolerance in barley (Hordeum vulgare L.)
2013-01-01
Background Frost tolerance is a key trait with economic and agronomic importance in barley because it is a major component of winter hardiness, and therefore limits the geographical distribution of the crop and the effective transfer of quality traits between spring and winter crop types. Three main frost tolerance QTL (Fr-H1, Fr-H2 and Fr-H3) have been identified from bi-parental genetic mapping but it can be argued that those mapping populations only capture a portion of the genetic diversity of the species. A genetically broad dataset consisting of 184 genotypes, representative of the barley gene pool cultivated in the Mediterranean basin over an extended time period, was genotyped with 1536 SNP markers. Frost tolerance phenotype scores were collected from two trial sites, Foradada (Spain) and Fiorenzuola (Italy) and combined with the genotypic data in genome wide association analyses (GWAS) using Eigenstrat and kinship approaches to account for population structure. Results GWAS analyses identified twelve and seven positive SNP associations at Foradada and Fiorenzuola, respectively, using Eigenstrat and six and four, respectively, using kinship. Linkage disequilibrium analyses of the significant SNP associations showed they are genetically independent. In the kinship analysis, two of the significant SNP associations were tightly linked to the Fr-H2 and HvBmy loci on chromosomes 5H and 4HL, respectively. The other significant kinship associations were located in genomic regions that have not previously been associated with cold stress. Conclusions Haplotype analysis revealed that most of the significant SNP loci are fixed in the winter or facultative types, while they are freely segregating within the un-adapted spring barley genepool. Although there is a major interest in detecting new variation to improve frost tolerance of available winter and facultative types, from a GWAS perspective, working within the un-adapted spring germplasm pool is an attractive alternative strategy which would minimize statistical issues, simplify the interpretation of the data and identify phenology independent genetic determinants of frost tolerance. PMID:23802597
NASA Astrophysics Data System (ADS)
Shoko, Cletah; Mutanga, Onisimo
2017-10-01
The present study assessed the potential of varying spectral configuration of Landsat 8 Operational Land Imager (OLI), Sentinel 2 MultiSpectal Instrument (MSI) and Worldview 2 sensors in the seasonal discrimination of Festuca costata (C3) and Themeda Triandra (C4) grass species in the Drakensberg, South Africa. This was achieved by resampling hyperspectral measurements to the spectral windows corresponding to the three sensors at two distinct seasonal periods (summer peak and end of winter), using the Discriminant Analysis (DA) classification ensemble. In summer, standard bands of the Worldview 2 produced the highest overall classification accuracy (98.61%), followed by Sentinel 2 (97.52%), whereas the Landsat 8 spectral configuration was the least performer, using vegetation indices (95.83%). In winter, Sentinel 2 spectral bands produced the highest accuracy (96.18%) for the two species, followed by Worldview 2 (94.44%) and Landsat 8 yielded the least (91.67%) accuracy. Results also showed that maximum separability between C3 and C4 grasses was in summer, while at the end of winter considerable overlaps were noted, especially when using the spectral settings of the Landsat 8 OLI and Sentinel 2 shortwave infrared bands. Test of significance in species reflectance further confirmed that in summer, there were significant differences (P < 0.05), whereas in winter, most of the spectral windows of all sensors yielded insignificant differences (P > 0.05) between the two species. In this regard, the peak summer period presents a promising opportunity for the spectral discrimination of C3 and C4 grass species functional types, than the end of winter, when using multispectral sensors. Results from this study highlight the influence of seasonality on discrimination and therefore provide the basis for the successful discrimination and mapping of C3 and C4 grass species.
Hippocampal Astrocytes in Migrating and Wintering Semipalmated Sandpiper Calidris pusilla
Carvalho-Paulo, Dario; de Morais Magalhães, Nara G.; de Almeida Miranda, Diego; Diniz, Daniel G.; Henrique, Ediely P.; Moraes, Isis A. M.; Pereira, Patrick D. C.; de Melo, Mauro A. D.; de Lima, Camila M.; de Oliveira, Marcus A.; Guerreiro-Diniz, Cristovam; Sherry, David F.; Diniz, Cristovam W. P.
2018-01-01
Seasonal migratory birds return to the same breeding and wintering grounds year after year, and migratory long-distance shorebirds are good examples of this. These tasks require learning and long-term spatial memory abilities that are integrated into a navigational system for repeatedly locating breeding, wintering, and stopover sites. Previous investigations focused on the neurobiological basis of hippocampal plasticity and numerical estimates of hippocampal neurogenesis in birds but only a few studies investigated potential contributions of glial cells to hippocampal-dependent tasks related to migration. Here we hypothesized that the astrocytes of migrating and wintering birds may exhibit significant morphological and numerical differences connected to the long-distance flight. We used as a model the semipalmated sandpiper Calidris pusilla, that migrates from northern Canada and Alaska to South America. Before the transatlantic non-stop long-distance component of their flight, the birds make a stopover at the Bay of Fundy in Canada. To test our hypothesis, we estimated total numbers and compared the three-dimensional (3-D) morphological features of adult C. pusilla astrocytes captured in the Bay of Fundy (n = 249 cells) with those from birds captured in the coastal region of Bragança, Brazil, during the wintering period (n = 250 cells). Optical fractionator was used to estimate the number of astrocytes and for 3-D reconstructions we used hierarchical cluster analysis. Both morphological phenotypes showed reduced morphological complexity after the long-distance non-stop flight, but the reduction in complexity was much greater in Type I than in Type II astrocytes. Coherently, we also found a significant reduction in the total number of astrocytes after the transatlantic flight. Taken together these findings suggest that the long-distance non-stop flight altered significantly the astrocytes population and that morphologically distinct astrocytes may play different physiological roles during migration. PMID:29354035
Seasonal Difference in Postthyroidectomy Hypocalcemia: A Montreal-Based Study.
Mascarella, Marco A; Forest, Véronique-Isabelle; Nhan, Carol; Leboeuf, Rébecca; Tamilia, Michael; Mlynarek, Alex M; Payne, Richard J
2016-02-01
Hypocalcemia following thyroidectomy often prolongs hospital stay and is potentially life-threatening. The objective of this study is to determine whether the season when thyroidectomy is performed is associated with postoperative hypocalcemia. Retrospective case series of patients undergoing thyroid surgery from 2009 to 2015. Tertiary care academic institution in Montreal, Canada. A consecutive sample of 823 patients undergoing thyroidectomy by a single high-volume otolaryngologist for a suspected or confirmed thyroid malignancy. Patient demographics, procedure type, calcium and vitamin D supplementation, and seasonal rate of hypocalcemia postthyroidectomy were calculated and compared. Average seasonal rates of postthyroidectomy hypocalcemia in the winter, spring, summer, and autumn were, respectively, 8.3% (8 of 216), 7.3% (12 of 165), 1.5% (3 of 201), and 3.5% (8 of 228; P < .005). Patients operated in the winter were 5.6 times more likely to develop hypocalcemia as compared with those in the summer (P < .01; 95% confidence interval: 1.7-18.7). In a multiple regression analysis factoring in season when surgery was performed, procedure type, and preoperative vitamin D/calcium supplementation, surgery occurring in the winter predicted a hypocalcemia event (correlation coefficient [SE]: 0.72 [0.024], P = .026; 0.006 [0.025], P = .81; 0.004 [0.019], P = .82, respectively). In this study, patients undergoing thyroidectomy in the winter months were more likely to develop postoperative hypocalcemia when compared with those operated in the summer. Further studies are needed to understand the role of vitamin D in the observed seasonal difference in hypocalcemia rates. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2015.
Urbański, Arkadiusz; Czarniewska, Elżbieta; Baraniak, Edward; Rosiński, Grzegorz
2017-06-01
Insect overwintering is one of the most astonishing phases of the insect life cycle. Despite vast amounts of knowledge available about the physiological mechanisms of this phenomenon, the impact of stress factors on insect immune system functioning during the winter is still unknown. The aim of this study is to analyze how low temperatures influence the immune system of the beetle Nicrophorus vespilloides. The results show that the beetle's immune system is differently modulated by cold induced in laboratory settings than that which occurs in natural conditions. Among beetles cultured in conditions similar to summer, low temperatures, did not influence the number of circulating haemocytes, phenoloxidase activity, haemocytes morphology, and percentage ratio of haemocyte types. In these beetles, differences were noted only in the ability of haemocytes to perform phagocytosis. Individuals acclimated in natural conditions in autumn had a higher level of humoral response and a different percentage ratio of haemocyte types. During the winter period, the number of haemocytes in the beetles decreased, but the percentage ratio of phagocytic haemocytes increased. Furthermore, we noted an increase of phenoloxidase activity. Our study also showed mitotic divisions of haemocytes in haemolymph collected from burying beetles after cold exposure and from burying beetles collected from natural conditions during autumn and winter. Differences in response to low temperatures in laboratory conditions and the natural environment suggest that the simultaneous presence of other stress factors during winter such as desiccation and starvation have a significant influence on the activity of burying beetle's immune system. © 2016 Institute of Zoology, Chinese Academy of Sciences.
Craig, Robert J.; Klaver, Robert W.
2012-01-01
At regional scales, the most important variables associated with diversity are latitudinally-based temperature and net primary productivity, although diversity is also influenced by habitat. We examined bird species richness, community density and community evenness in forests of eastern Connecticut to determine whether: 1) spatial and seasonal patterns exist in diversity, 2) energy explains the greatest proportion of variation in diversity parameters, 3) variation in habitat explains remaining diversity variance, and 4) seasonal shifts in diversity provide clues about how environmental variables shape communities. We sought to discover if our data supported predictions of the species–energy hypothesis. We used the variable circular plot technique to estimate bird populations and quantified the location, elevation, forest type, vegetation type, canopy cover, moisture regime, understory density and primary production for the study sites. We found that 1) summer richness and population densities are roughly equal in northeastern and southeastern Connecticut, whereas in winter both concentrate toward the coast, 2) variables linked with temperature explained much of the patterns in winter diversity, but energy-related variables showed little relationship to summer diversity, 3) the effect of habitat variables on diversity parameters predominated in summer, although their effect was weak, 4) contrary to theory, evenness increased from summer to winter, and 5) support for predictions of species–energy theory was primarily restricted to winter data. Although energy and habitat played a role in explaining community patterns, they left much of the variance in regional diversity unexplained, suggesting that a large stochastic component to diversity also may exist.
NASA Astrophysics Data System (ADS)
Aggarwal, S. G.; Singh, K.; Singh, N.; Gupta, P. K.
2009-12-01
Fossil-fuel and bio-fuel burning are the two major sources identified for high carbonaceous aerosol loadings in several mega cities in India. In the last decade, according to a report from the Central Pollution Control Board (CPCB, 1999), the vehicular emission (mostly diesel-powered engines) was contributed to ~67% of the total air pollution load in New Delhi. Therefore, a policy decision was taken by the government, and most of the diesel-powered engines were converted to compressed natural gas (CNG) -powered engines by 2003. To better understand the effect of these changes on air quality, we collected high volume aerosol samples (total suspended particles, TSP) mostly for a day basis at our institute building in New Delhi almost everyday during winter season (November to January) from 2002 to 2008. We found very high mean aerosol loading, i.e., 488±47 μg m-3 in 2002 winter, which dropped significantly to 280±73 μg m-3 in 2003 winter. Thereafter, a steadily increased trend of aerosol mass loadings was observed, i.e., 339±112, 339±120, 412±107 and 444±55 μg m-3 in 2004, 2005, 2006 and 2007 winters, respectively. Similar trend was also observed for elemental carbon (EC) concentration in TSP, which was peaked in 2002 (47±11 μg m-3) and minimized in 2003 (32±6 μg m-3), and then gradually increased to 41±8 μg m-3 in 2007 winter. These decline trends of aerosol mass and EC concentrations in 2003 can be explained well, because of the conversion of diesel engine to CNG engines of public transport facilities. However, again increase in aerosol mass and EC concentrations possibly because of a high increase in road traffic in recent years. According to the economic survey of New Delhi 2008-09, the number of vehicles (which includes all types of engines, i.e., petrol, diesel and CNG) has grown from ~3.3 millions in 1997-98 to ~5.6 millions in 2007-08. The influence of engine types and vehicle population on aerosol loading can also be explained well by SO2 and NO2 concentration trend (data obtained from the local agency) for the study period. On the other hand, during winter-time from 2002 to 2008, meteorological data (e.g., mean temperature, humidity, precipitation) did not change significantly. This study suggests that winter aerosol loadings in New Delhi are largely influenced by the local sources (fossil fuel combustion).
Further observations on soil freezing in the Pacific Northwest.
Charles E. Hale
1951-01-01
Frost observations during the winter and spring of 1949-1950 indicated that pronounced soil freezing conditions existed in the ponderosa pine, lodgepole pine, grass and brush types in eastern Oregon and Washington. Accordingly, a study was designed to determine the occurrence and character of frost under these widespread forest and range types. This paper presents a...
Irrigation and cultivar effect on flax fiber and seed yield in the southeast USA
USDA-ARS?s Scientific Manuscript database
Flax (Linum usitatissimum L.) is a potential winter crop for the Southeast USA that can be grown for both seed and fiber. The objective of this research was to evaluate the effect of irrigation on flax straw, fiber, and seed yield of fiber-type and seed-type cultivars at different flax growth stage...
Overwinter survival of neotropical migratory birds in early successional and mature tropical forests
Conway, C.J.; Powell, G.V.N.; Nichols, J.D.
1995-01-01
Many Neotropical migratory species inhabit both mature and early successional forest on their wintering grounds, yet comparisons of survival rates between habitats are lacking. Consequently, the factors affecting habitat suitability for Neotropical migrants and the potential effects of tropical deforestation on migrants are not well understood. We estimated over-winter survival and capture probabilities of Wood Thrush (Hylocichla mustelina), Ovenbird (Seiurus aurocapillus), Hooded Warbler (Wilsonia citrina), and Kentucky Warbler (Oporomis formosus) inhabiting two common tropical habitat types, mature and early-successional forest. Our results suggest that large differences (for example, ratio of survival rates (gamma) < 0.85) in overwinter survival between these habitats do not exist for any of these species. Age ratios did not differ between habitats, but males were more common in forest habitats and females more common in successional habitats for Hooded Warblers and Kentucky Warblers. Future research on overwinter survival should address the need for age- and sex-specific survival estimates before we can draw strong conclusions regarding winter habitat suitability. Our estimates of over-winter survival extrapolated to annual survival rates that were generally lower than previous estimates of annual survival of migratory birds. Capture probability differed between habitats for Kentucky Warblers, but our results provide strong evidence against large differences in capture probability between habitats for Wood Thrush, Hooded Warblers, and Ovenbirds. We found no temporal or among site differences in survival or capture probability for any of the four species. Additional research is needed to examine the effects of winter habitat use on survival during migration and between-winter survival.
Impacts of Synoptic Weather Patterns on Snow Albedo at Sites in New England
NASA Astrophysics Data System (ADS)
Adolph, A. C.; Albert, M. R.; Lazarcik, J.; Dibb, J. E.; Amante, J.; Price, A. N.
2015-12-01
Winter snow in the northeastern United States has changed over the last several decades, resulting in shallower snow packs, fewer days of snow cover and increasing precipitation falling as rain in the winter. In addition to these changes which cause reductions in surface albedo, increasing winter temperatures also lead to more rapid snow grain growth, resulting in decreased snow reflectivity. We present in-situ measurements and analyses to test the sensitivity of seasonal snow albedo to varying weather conditions at sites in New England. In particular, we investigate the impact of temperature on snow albedo through melt and grain growth, the impact of precipitation event frequency on albedo through snow "freshening," and the impact of storm path on snow structure and snow albedo. Over three winter seasons between 2013 and 2015, in-situ snow characterization measurements were made at three non-forested sites across New Hampshire. These near-daily measurements include spectrally resolved albedo, snow optical grain size determined through contact spectroscopy, snow depth, snow density and local meteorological parameters. Combining this information with storm tracks derived from HYSPLIT modeling, we quantify the current sensitivity of northeastern US snow albedo to temperature as well as precipitation type, frequency and path. Our analysis shows that southerly winter storms result in snow with a significantly lower albedo than storms which come from across the continental US or the Atlantic Ocean. Interannual variability in temperature and statewide spatial variability in snowfall rates at our sites show the relative importance of snowfall amount and temperatures in albedo evolution over the course of the winter.
ALOS PALSAR Winter Coherence and Summer Intensities for Large Scale Forest Monitoring in Siberia
NASA Astrophysics Data System (ADS)
Thiel, Christian; Thiel, Carolin; Santoro, Maurizio; Schmullius, Christiane
2008-11-01
In this paper summer intensity and winter coherence images are used for large scale forest monitoring. The intensities (FBD HH/HV) have been acquired during summer 2007 and feature the K&C intensity stripes [1]. The processing consisted of radiometric calibration, orthorectification, and topographic normalisation. The coherence has been estimated from interferometric pairs with 46-days repeat-pass intervals. The pairs have been acquired during the winters 2006/2007 and 2007/2008. During both winters suited weather conditions have been reported. Interferometric processing consisted of SLC co-registration at sub-pixel level, common-band filtering in range and azimuth and generation of a differential interferogram, which was used in the coherence estimation procedure based on adaptive estimation. All images were geocoded using SRTM data. The pixel size of the final SAR products is 50 m x 50 m. It could already be demonstrated, that by using PALSAR intensities and winter coherence forest and non-forest can be clearly separated [2]. By combining both data types hardly any overlap of the class signatures was detected, even though the analysis was conducted on pixel level and no speckle filter has been applied. Thus, the delineation of a forest cover mask could be executed operationally. The major hitch is the definition of a biomass threshold for regrowing forest to be distinguished as forest.
Cathryn H. Greenberg; Douglas J. Levey; Charles Kwit; John P. McCarty; Scott F. Pearson; Sarah Sargent; John Kilgo
2012-01-01
Fleshy fruit is a key food resource for many vertebrates and may be particularly important energy source to birds during fall migration and winter. Hence, land managers should know how fruit availability varies among forest types, seasons, and years. We quantified fleshy fruit abundance monthly for 9 years (1995â2003) in 56 0.1-ha plots in 5 forest types of South...
NASA Astrophysics Data System (ADS)
Zheng, Y.; Zhang, R.; Bourassa, M. A.
2014-12-01
Composite analysis from NCEP-NCAR reanalysis datasets over the period 1948-2007 indicates that stronger East Asian winter monsoons (EAWM) and stronger Australian summer monsoons (ASM) generally co-exist in boreal winters preceding the onset of El Niño, although the EAWM tend to be weak after 1990, probably because of the decadal shift of EAWM and the change in El Niño events from cold-tongue type to warm-pool type. The anomalous EAWM and ASM enhance surface westerlies over the western tropical Pacific Ocean (WTP). It is proposed that the enhanced surface westerlies over the WTP prior to El Niño onset are generally associated with the concurrent anomalous EAWM and ASM. A simple analytical atmospheric model is constructed to test the hypothesis that the emergence of enhanced surface westerlies over the WTP can be linked to concurrent EAWM and ASM anomalies. Model results indicate that when anomalous northerlies from the EAWM converge with anomalous southerlies from the ASM, westerly anomalies over the WTP are enhanced. This result provides a possible explanation of the co-impact of the EAWM and the ASM on the onset of El Niño through enhancing the surface westerly over the WTP.
CO2 flux over young and snow-covered Arctic pack ice in winter and spring
NASA Astrophysics Data System (ADS)
Nomura, Daiki; Granskog, Mats A.; Fransson, Agneta; Chierici, Melissa; Silyakova, Anna; Ohshima, Kay I.; Cohen, Lana; Delille, Bruno; Hudson, Stephen R.; Dieckmann, Gerhard S.
2018-06-01
Rare CO2 flux measurements from Arctic pack ice show that two types of ice contribute to the release of CO2 from the ice to the atmosphere during winter and spring: young, thin ice with a thin layer of snow and older (several weeks), thicker ice with thick snow cover. Young, thin sea ice is characterized by high salinity and high porosity, and snow-covered thick ice remains relatively warm ( > -7.5 °C) due to the insulating snow cover despite air temperatures as low as -40 °C. Therefore, brine volume fractions of these two ice types are high enough to provide favorable conditions for gas exchange between sea ice and the atmosphere even in mid-winter. Although the potential CO2 flux from sea ice decreased due to the presence of the snow, the snow surface is still a CO2 source to the atmosphere for low snow density and thin snow conditions. We found that young sea ice that is formed in leads without snow cover produces CO2 fluxes an order of magnitude higher than those in snow-covered older ice (+1.0 ± 0.6 mmol C m-2 day-1 for young ice and +0.2 ± 0.2 mmol C m-2 day-1 for older ice).
Yetinson, T; Shilo, M
1979-06-01
Luminous bacteria in the Mediterranean Sea and the Gulf of Aqaba-Elat have different distribution patterns. In the Mediterranean Sea, Beneckea harveyi is present all year round, with different subtypes alternating in summer and winter; Photobacterium fischeri was only present during the winter. In the Gulf of Elat, P. leiognathi is present throughout the water column in similar densities during the entire year. This constancy in distribution is presumably due to the near-constancy in water temperature. In summer, Photobacterium leiognathi is replaced by B. harveyi in coastal surface waters. In the hypersaline Bardawil lagoon, only B. harveyi types are present. P. fischeri, a major component of the Mediterranean Sea winter communities, is absent from the lagoon. Luminous Beneckea strains show a great diversity in properties, e.g. temperature range for growth, sensitivity to infection by phages, sensitivity to attack by Bdellovibrio strains, and differences in tolerance to high-salinity shock. Therefore, subdivision of the taxonomic cluster of B. harveyi into subtypes is indicated. The composition of the luminous bacteria communities may serve as indicators of different marine water bodies. The symbiotic luminous bacteria of the light organ of the common Gulf of Elat fish, Photoblepharon palbebratus steinitzi, is different from any of the types described.
Yetinson, T.; Shilo, M.
1979-01-01
Luminous bacteria in the Mediterranean Sea and the Gulf of Aqaba-Elat have different distribution patterns. In the Mediterranean Sea, Beneckea harveyi is present all year round, with different subtypes alternating in summer and winter; Photobacterium fischeri was only present during the winter. In the Gulf of Elat, P. leiognathi is present throughout the water column in similar densities during the entire year. This constancy in distribution is presumably due to the near-constancy in water temperature. In summer, Photobacterium leiognathi is replaced by B. harveyi in coastal surface waters. In the hypersaline Bardawil lagoon, only B. harveyi types are present. P. fischeri, a major component of the Mediterranean Sea winter communities, is absent from the lagoon. Luminous Beneckea strains show a great diversity in properties, e.g. temperature range for growth, sensitivity to infection by phages, sensitivity to attack by Bdellovibrio strains, and differences in tolerance to high-salinity shock. Therefore, subdivision of the taxonomic cluster of B. harveyi into subtypes is indicated. The composition of the luminous bacteria communities may serve as indicators of different marine water bodies. The symbiotic luminous bacteria of the light organ of the common Gulf of Elat fish, Photoblepharon palbebratus steinitzi, is different from any of the types described. Images PMID:16345404
Antarctic-type blue whale calls recorded at low latitudes in the Indian and eastern Pacific Oceans
NASA Astrophysics Data System (ADS)
Stafford, Kathleen M.; Bohnenstiehl, DelWayne R.; Tolstoy, Maya; Chapp, Emily; Mellinger, David K.; Moore, Sue E.
2004-10-01
Blue whales, Balaenoptera musculus, were once abundant around the Antarctic during the austral summer, but intensive whaling during the first half of the 20th century reduced their numbers by over 99%. Although interannual variability of blue whale occurrence on the Antarctic feeding grounds was documented by whalers, little was known about where the whales spent the winter months. Antarctic blue whales produce calls that are distinct from those produced by blue whales elsewhere in the world. To investigate potential winter migratory destinations of Antarctic blue whales, we examined acoustic data for these signals from two low-latitude locales: the eastern tropical Pacific Ocean and the Indian Ocean. Antarctic-type blue whale calls were detected on hydrophones in both regions during the austral autumn and winter (May-September), with peak detections in July. Calls occurred over relatively brief periods in both oceans, suggesting that there may be only a few animals migrating so far north and/or producing calls. Antarctic blue whales appear to use both the Indian and eastern Pacific Oceans concurrently, indicating that there is not a single migratory destination. Acoustic data from the South Atlantic and from mid-latitudes in the Indian or Pacific Oceans are needed for a more global understanding of migratory patterns and destinations of Antarctic blue whales.
Molecular Typing of Pneumococci for Investigation of Linked Cases of Invasive Pneumococcal Disease ▿
Pichon, Bruno; Moyce, Laura; Sheppard, Carmen; Slack, Mary; Turbitt, Deborah; Pebody, Richard; Spencer, David A.; Edwards, Justin; Krahé, Daniel; George, Robert
2010-01-01
In winter 2007-2008, an outbreak of pediatric pneumonia caused by serotype 5 pneumococci was identified in a northeast London suburb. Variable number of tandem repeat analyses clustered these pneumococci from the other serotype 5 pneumococci in the United Kingdom, highlighting the importance of this discriminative typing method in supporting epidemiological investigations. PMID:20164267
NASA Astrophysics Data System (ADS)
Mitchell, D. L.; Garnier, A.; Mejia, J.; Avery, M. A.; Erfani, E.
2016-12-01
To date, it is not clear whether the climate intervention method known as cirrus cloud thinning (CCT) can be viable since it requires cirrus clouds to form through homogeneous ice nucleation (henceforth hom) and some recent GCM studies predict cirrus are formed primarily through heterogeneous ice nucleation (henceforth het). A new CALIPSO infrared retrieval method has been developed for single-layer cirrus cloud that measures the temperature dependence of their layer-averaged number concentration N, effective diameter De and ice water content for optical depths (OD) between 0.3 and 3.0. Based on N, the prevailing ice nucleation mechanism (hom or het) can be estimated as a function of temperature, season, latitude and surface type. These satellite results indicate that seeding cirrus clouds at high latitudes during winter may produce significant global surface cooling. This is because hom often appears to dominate over land during winter north of 30°N latitude while the same appears true for most of the Southern Hemisphere (south of 30°S) during all seasons. Moreover, the sampled cirrus cloud frequency of occurrence in the Arctic is at least twice as large during winter relative to other seasons, while frequency of occurrence in the Antarctic peaks in the spring and is second-highest during winter. During Arctic winter, a combination of frequent hom cirrus, maximum cirrus coverage and an extreme or absent sun angle produces the maximum seasonal cirrus net radiative forcing (warming). Thus a reduction in OD and coverage (via CCT) for these cirrus clouds could yield a significant net cooling effect. From these CALIPSO retrievals, De-T relationships are generated as a function of season, latitude and surface type (land vs. ocean). These will be used in CAM5 to estimate De and the ice fall speed, from which the cirrus radiative forcing will be estimated during winter north of 30°latitude, where hom cirrus are common. Another CAM5 simulation will replace the hom cirrus De-T relationships with those corresponding to het cirrus (at similar latitudes). In this way the potential cooling from CCT in the Northern Hemisphere will be estimated. If a field campaign was ever conducted for testing the efficacy of CCT, this CALIPSO retrieval could be used to help determine whether the seeded hom cirrus were transformed into het cirrus.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, S. -Y. Simon; Lin, Yen-Heng; Lee, Ming-Ying
In January 2016, a robust reversal of the Arctic Oscillation (AO) took place associated with a rapid tropospheric warming in the Arctic region; this was followed by the occurrence of a classic sudden stratospheric warming in March-April. The succession of these two distinct Arctic warming events provides a stimulating opportunity to examine their characteristics in terms of similarities and differences. Historical cases of these two types of Arctic warming were identified and validated based upon tropical linkages with the Madden-Julian Oscillation and El Niño as well as those documented in previous studies. Our results indicate a recent and accelerated increasemore » in the tropospheric warming type versus a flat trend in stratospheric warming type. Given that tropospheric warming events occur twice as fast than the stratospheric warming type, the noted increase in the former implies further intensification in midlatitude winter weather extremes similar to those experienced in early 2016. Forced simulations with an atmospheric general circulation model suggest that the reduced Arctic sea ice contributes to the observed increase in the tropospheric warming events and associated impact on the anomalously cold Siberia.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Simon; Lin, Yen-Heng; Lee, Ming-Ying
2017-04-22
In January 2016, a robust reversal of the Arctic Oscillation (AO) took place associated with a rapid tropospheric warming in the Arctic region; this was followed by the occurrence of a classic sudden stratospheric warming in March-April. The succession of these two distinct Arctic warming events provides a stimulating opportunity to examine their characteristics in terms of similarities and differences. Historical cases of these two types of Arctic warming were identified and validated based upon tropical linkages with the Madden-Julian Oscillation and El Niño as well as those documented in previous studies. Our results indicate a recent and accelerated increasemore » in the tropospheric warming type versus a flat trend in stratospheric warming type. Given that tropospheric warming events occur twice as fast than the stratospheric warming type, the noted increase in the former implies further intensification in midlatitude winter weather extremes similar to those experienced in early 2016. Forced simulations with an atmospheric general circulation model suggest that the reduced Arctic sea ice contributes to the observed increase in the tropospheric warming events and associated impact on the anomalously cold Siberia.« less
49 CFR 575.106 - Tire fuel efficiency consumer information program.
Code of Federal Regulations, 2010 CFR
2010-10-01
... tires, deep tread, winter-type snow tires, space-saver or temporary use spare tires, tires with nominal... Web site. (ii) Requirements for tire retailers. Subject to paragraph (e)(1)(iii) of this section, each...
49 CFR 575.106 - Tire fuel efficiency consumer information program.
Code of Federal Regulations, 2011 CFR
2011-10-01
... tires, deep tread, winter-type snow tires, space-saver or temporary use spare tires, tires with nominal... Web site. (ii) Requirements for tire retailers. Subject to paragraph (e)(1)(iii) of this section, each...
Plug-and-play initiative : phase II : final report.
DOT National Transportation Integrated Search
2017-01-01
Clear Roads has undertaken an initiative to establish a Plug-and-Play protocol that fosters interoperability between various winter maintenance equipment and a point location (central office). This report documents the data types and communication me...
Lingjaerde, O; Regine Føreland, A
1999-04-01
Seasonal affective disorder, winter depression type (WD-SAD), is characterized by recurring autumn/winter depression with full remission or hypomania/mania in summer. However, some patients have an otherwise typical WD but with incomplete summer remission. We wanted to elucidate in what other respects such patients differ from typical WD-SAD patients. 14 patients meeting DSM-III-R criteria for Seasonal Pattern except for incomplete summer remission (ISR), were compared with 144 patients meeting the full criteria, including complete summer remission (CSR), with regard to demography, illness history, clinical symptoms, and response to light treatment. In comparison with the CSR group, the ISR group had a longer duration of illness, more often used antidepressants, and improved significantly less after treatment with bright light for 6 days, whereas the symptomatology in winter (Montgomery-Asberg Depression Rating Scale plus hypersomnia, hyperphagia, and carbohydrate craving) was similar in the two groups. The ISR group was small, and the severity of their summer depression could only be assessed retrospectively. Patients with otherwise typical WD but with incomplete summer remission respond poorly to light treatment. Full summer remission should be retained as a criterion for WD-SAD.
Production of Ethanol From Newly Developed and Improved Winter Barley Cultivars.
Nghiem, Nhuan P; Brooks, Wynse S; Griffey, Carl A; Toht, Matthew J
2017-05-01
Winter barley has attracted strong interest as a potential feedstock for fuel ethanol production in regions with mild winter climate such as the mid-Atlantic and northeastern USA. Ten recently developed and improved winter barley cultivars and breeding lines including five hulled and five hull-less lines were experimentally evaluated for potential ethanol production. The five hulled barley lines included three released cultivars (Thoroughbred, Atlantic, and Secretariat) and two breeding lines (VA09B-34 and VA11B-4). The five hull-less lines also included three released cultivars (Eve, Dan, and Amaze 10) and two breeding lines (VA08H-65 and VA13H-34). On the average, the hull-less barley cultivars produced more ethanol per unit mass because of their higher starch and β-glucan contents. However, since the hulled barley cultivars had higher agronomic yield, the potential ethanol production per acre of land for the two types were approximately equal. Among the ten cultivars tested, the hull-less cultivar Amaze 10 was the best one for ethanol production. The ethanol yield values obtained for this cultivar were 2.61 gal per bushel and 292 gal per acre.
NASA Technical Reports Server (NTRS)
Karteris, M. A. (Principal Investigator)
1980-01-01
A winter black and white band 5, a winter color, a fall color, and a diazo color composite of the fall scene were used to assess the use and potential of LANDSAT images for mapping and estimating acreage of small scattered forest tracts in Barry County, Michigan. Forests as small as 2.5 acres were mapped from each LANDSAT data source. The maps for each image were compared with an available forest-type map. Mapping errors detected were categorized as boundary and identification errors. The most frequently misclassified areas were agriculture lands, treed-bogs, brushlands and lowland and mixed hardwood stands. Stocking level affected interpretation more than stand size. The overall level of the interpretation performance was expressed through the estimation of classification, interpretation, and mapping accuracies. These accuracies ranged from 74 between 74% and 98%. Considering errors, accuracy, and cost, winter color imagery is the best LANDSAT alternative for mapping small forest tracts. However, since the availability of cloud-free winter images of the study area is significantly lower than images for other seasons, a diazo enhanced image of a fall scene is recommended as the best next best alternative.
Temperature extremes in Alaska: temporal variability and circulation background
NASA Astrophysics Data System (ADS)
Sulikowska, Agnieszka; Walawender, Jakub P.; Walawender, Ewelina
2018-06-01
The aims of this study are to characterize the spatial and temporal variability of extremely warm days (WDs) and warm spells (WSs) in summer as well as extremely cold days (CDs) and cold spells (CSs) in winter in Alaska in the years 1951-2015 and to determine the role of atmospheric circulation in their occurrence. The analysis is performed using daily temperature maxima (T MAX) and minima (T MIN) measured at 10 weather stations in Alaska as well as mean daily values of sea level pressure and wind direction at the 850 hPa isobaric level. WD (CD) is defined as a day with T MAX above the 95th (T MIN below the 5th) percentile of a probability density function calculated from observations, and WS (CS) equals at least three consecutive WDs (CDs). Frequency of the occurrence and severity of warm and cold extremes as well as duration of WSs and CSs is analyzed. In order to characterize synoptic conditions during temperature extremes, the objective classification scheme of advection types considering jointly the direction of the air influx and type of pressure system is employed. The results show that the general trend is towards the warmer temperatures, and the warming is greater in the winter than summer and for T MAX as opposed to T MIN. This is reflected in changes in the frequency of occurrence and intensity of temperature extremes which are much more pronounced in the case of winter cold extremes (decreasing tendencies) than summer warm extremes (increasing tendencies). The occurrence of temperature extremes is generally favored by anticyclonic weather with advection direction indicating air mass flows from the interior of the North American continent as well as the south (warm extremes in summer) and north (cold extremes in winter).
NASA Astrophysics Data System (ADS)
Molotch, Noah P.; Barnard, David M.; Burns, Sean P.; Painter, Thomas H.
2016-09-01
The distribution of forest cover exerts strong controls on the spatiotemporal distribution of snow accumulation and snowmelt. The physical processes that govern these controls are poorly understood given a lack of detailed measurements of snow states. In this study, we address one of many measurement gaps by using contact spectroscopy to measure snow optical grain size at high spatial resolution in trenches dug between tree boles in a subalpine forest. Trenches were collocated with continuous measurements of snow depth and vertical profiles of snow temperature and supplemented with manual measurements of snow temperature, geometric grain size, grain type, and density from trench walls. There was a distinct difference in snow optical grain size between winter and spring periods. In winter and early spring, when facetted snow crystal types were dominant, snow optical grain size was 6% larger in canopy gaps versus under canopy positions; a difference that was smaller than the measurement uncertainty. By midspring, the magnitude of snow optical grain size differences increased dramatically and patterns of snow optical grain size became highly directional with 34% larger snow grains in areas south versus north of trees. In winter, snow temperature gradients were up to 5-15°C m-1 greater under the canopy due to shallower snow accumulation. However, in canopy gaps, snow depths were greater in fall and early winter and therefore more significant kinetic growth metamorphism occurred relative to under canopy positions, resulting in larger snow grains in canopy gaps. Our findings illustrate the novelty of our method of measuring snow optical grain size, allowing for future studies to advance the understanding of how forest and meteorological conditions interact to impact snowpack evolution.
Gillespie, Lauren M.; Volaire, Florence A.
2017-01-01
Background Dormancy in higher plants is an adaptive response enabling plant survival during the harshest seasons and has been more explored in woody species than in herbaceous species. Nevertheless, winter and summer shoot meristem dormancy are adaptive strategies that could play a major role in enhancing seasonal stress tolerance and resilience of widespread herbaceous plant communities. Scope This review outlines the symmetrical aspects of winter and summer dormancy in order to better understand plant adaptation to severe stress, and highlight research priorities in a changing climate. Seasonal dormancy is a good model to explore the growth–stress survival trade-off and unravel the relationships between growth potential and stress hardiness. Although photoperiod and temperature are known to play a crucial, though reversed, role in the induction and release of both types of dormancy, the thresholds and combined effects of these environmental factors remain to be identified. The biochemical compounds involved in induction or release in winter dormancy (abscisic acid, ethylene, sugars, cytokinins and gibberellins) could be a priority research focus for summer dormancy. To address these research priorities, herbaceous species, being more tractable than woody species, are excellent model plants for which both summer and winter dormancy have been clearly identified. Conclusions Summer and winter dormancy, although responding to inverse conditions, share many characteristics. This analogous nature can facilitate research as well as lead to insight into plant adaptations to extreme conditions and the evolution of phenological patterns of species and communities under climate change. The development of phenotypes showing reduced winter and/or enhanced summer dormancy may be expected and could improve adaptation to less predictable environmental stresses correlated with future climates. To this end, it is suggested to explore the inter- and intraspecific genotypic variability of dormancy and its plasticity according to environmental conditions to contribute to predicting and mitigating global warming. PMID:28087658
Seasonal Incidence of Bacterial Temperature Types in Louisiana Soil and Water
Larkin, John M.
1970-01-01
Psychrophilic bacteria were not detected in soil, mud, and water in the summer. In winter, they were present in water and mud and constituted a significant portion of the bacterial flora in lake water. PMID:4921063
49 CFR 579.26 - Reporting requirements for manufacturers of tires.
Code of Federal Regulations, 2010 CFR
2010-10-01
... of tires with the same SKU, plant where manufactured, and year for which the volume produced or imported is less than 15,000, or are deep tread, winter-type snow tires, space-saver or temporary use spare...
49 CFR 579.26 - Reporting requirements for manufacturers of tires.
Code of Federal Regulations, 2011 CFR
2011-10-01
... of tires with the same SKU, plant where manufactured, and year for which the volume produced or imported is less than 15,000, or are deep tread, winter-type snow tires, space-saver or temporary use spare...
Aerobic stability of wheat and orchardgrass round-bale silages during winter.
Rhein, R T; Coblentz, W K; Turner, J E; Rosenkrans, C F; Ogden, R K; Kellogg, D W
2005-05-01
Using recently developed technology, balage is often stored in large (1.2 x 1.2 m) round bales that are wrapped in plastic film with an in-line wrapper. The aerobic stability of this fermented forage is important, particularly during winter months when it is fed to livestock or sold as a cash crop. Two types of forage, orchardgrass [Dactylis glomerata L.; 54.4% dry matter (DM)] and wheat (Triticum aestivum L.; 62.4% DM), were packaged in large round bales and wrapped with an in-line wrapper during May 2002. Twenty-one bales of each balage type were unwrapped and exposed to air on Dec. 10, 2002 for 0, 2, 4, 8, 16, 24, or 32 d (ambient temperature range = 0.6 to 19.4 degrees C) to evaluate aerobic stability. For both orchardgrass and wheat balage, final bale weight, concentration of DM, and pH were not affected by exposure time. Across both balage types, DM recoveries were > or = 97% for all bales, indicating that both balage types were very stable when exposed to air. For orchardgrass balage, exposure time had no effect on concentrations of NDF, ADF, hemicellulose, cellulose, or lignin, thereby indicating that little deterioration occurred. Similarly, no contrast relating any fiber component with exposure time was significant for wheat balage. Concentrations of crude protein (CP) were not affected by exposure time for wheat balage, but there was a tendency for exposed orchardgrass bales to have greater concentrations of CP than bales sampled on d 0. Exposure time had no effect on 48-h in situ digestibility of DM for wheat balage, but there was a tendency for a linear increase with exposure time for orchardgrass balage. However, the overall range (78.2 to 80.5%) over the 32-d exposure period was very narrow, and this response is probably of limited biological significance. Generally, concentrations of fermentation acids were low, primarily because of the high concentration of DM within these balages, and only minimal changes in these acids were observed over the exposure interval. These results suggest that the balage evaluated in this trial during winter conditions was very stable after exposure to air for up to 32 d. This should allow for considerable flexibility with respect to feeding, transport, and marketing of balage during winter months without significant aerobic deterioration.
2010-01-01
BriggsTypeIndicator (3d ed.; Palo Alto, Calif.: Consulting Psycholo- gists Press, 1998). 8. Carl G. Jung , PsychologicalTypes (Princeton, N.J...Intuitive, Feeling, and Perceiving preferences. Winter2009-10 37 The Importance of Intuition The MBTI is based on Carl Jung’s theory of personality...preferences. Jung argues that the first function in personality is how one perceives the en- vironment and gathers data. Those with a Sensing
NASA Technical Reports Server (NTRS)
Hamill, Patrick; Toon, O. B.
1990-01-01
The SAM II extinction profiles and the associated temperature profiles are used to determine the amount of denitrification of the winter polar stratospheres. Clear evidence of the denitrification process in the Antarctic data is seen. There are indications in the Arctic data that denitrification mechanisms may be at work there also. At the latitudes observed by the SAM II satellite system, denitrification begins before the formation of extensive ice clouds and may be due to sedimentation of nitric acid particles. However, the possibility of dinitrification by type II PSCs at latitudes not observed by SAM II cannot be excluded.
Winter habitat associations of diurnal raptors in Californias Central Valley
Pandolrno, E.R.; Herzog, M.P.; Hooper, S.L.; Smith, Z.
2011-01-01
The wintering raptors of California's Central Valley are abundant and diverse. Despite this, little information exists on the habitats used by these birds in winter. We recorded diurnal raptors along 19 roadside survey routes throughout the Central Valley for three consecutive winters between 2007 and 2010. We obtained data sufficient to determine significant positive and negative habitat associations for the White-tailed Kite (Elanus leucurus), Bald Eagle {Haliaeetus leucocephalus), Northern Harrier (Circus cyaneus), Red-tailed Hawk (Buteo jamaicensis), Ferruginous Hawk (Buteo regalis), Rough-legged Hawk (Buteo lagopus), American Kestrel (Falco sparverius), and Prairie Falcon (Falco mexicanus). The Prairie Falcon and Ferruginous and Rough-legged hawks showed expected strong positive associations with grasslands. The Bald Eagle and Northern Harrier were positively associated not only with wetlands but also with rice. The strongest positive association for the White-tailed Kite was with wetlands. The Red-tailed Hawk was positively associated with a variety of habitat types but most strongly with wetlands and rice. The American Kestrel, Northern Harrier, and White-tailed Kite were positively associated with alfalfa. Nearly all species were negatively associated with urbanized landscapes, orchards, and other intensive forms of agriculture. The White-tailed Kite, Northern Harrier, Redtailed Hawk, Ferruginous Hawk, and American Kestrel showed significant negative associations with oak savanna. Given the rapid conversion of the Central Valley to urban and intensive agricultural uses over the past few decades, these results have important implications for conservation of these wintering raptors in this region.
Morales, Melanie; Pintó-Marijuan, Marta; Munné-Bosch, Sergi
2016-01-01
In Mediterranean-type ecosystems plants are exposed to several adverse environmental conditions throughout the year, ranging from drought stress during the warm and dry summers to chilling stress due to the typical drop in temperatures during winters. Here we evaluated the ecophysiological response, in terms of photoinhibition and photoprotection, of the dioecious Mediterranean palm, Chamaerops humilis to seasonal variations in environmental conditions. Furthermore, we considered as well the influence of plant size, maturity, and sexual dimorphism. Results showed evidence of winter photoinhibition, with a marked decrease of the F v /F m ratio below 0.7 between January and March, which was coincident with the lowest temperatures. During this period, the de-epoxidation state of the xanthophyll cycle and zeaxanthin levels increased, which might serve as a photoprotection mechanism, owing the full recovery from winter photoinhibition during spring. Furthermore, mature plants showed lower chlorophyll levels and higher β-carotene levels per unit of chlorophyll than juvenile plants, and females displayed lower leaf water contents and higher photoinhibition than males during summer, probably due to increased reproductive effort of females. However, neither low temperatures during winter nor reproductive events in females during the summer led to irreversible damage to the photosynthetic apparatus. We conclude that (i) the Mediterranean dwarf palm, C. humilis, suffers from photoinhibition during winter, but this is transient and does not lead to irreversible damage, and (ii) females from this plant species are more sensitive than males to photoinhibition during reproductive events.
Discriminating Type 1a and 1b PSCs in Satellite Data
NASA Technical Reports Server (NTRS)
Strawa, Anthony W.; Drdla, Katja; Fromm, Michael; Hoppel, Karl W.; Pueschel, Rudolf; Browell, Edward V.; Hostetler, Chris A.; Hamill, Patrick; Gore, Warren J. (Technical Monitor)
2000-01-01
We explore the use of satellite observations in discriminating types of PSCs and their ramifications. Polar Stratospheric Clouds (PSCs), which form in the winter polar vortex, have been identified as effecting ozone loss. One major result from the recent SOLVE mission is in-situ evidence of the existence of very large particles that contain nitric acid. These particles are consistent with Type la PSCs. The significance of this finding is that these large particles will have appreciable sedimentation velocities, taking nitric acid out of the stratospheric regions, causing denitrification. Since nitric acid typically mitigates ozone loss, denitrification leads to increased ozone loss. Type lb PSCs are smaller and do not sediment to any appreciable degree. Satellite measurements are made continuously throughout the winter, and offer more global coverage than in situ measurements. Thus, it would very useful to be able to discriminate PSC types from satellite measurements. Our long-term goals are to better understand the formation mechanisms and effects of PSCs. Discriminating PSC type using satellite data will give us a very important tool in this effort. A multi-wavelength analysis of POAM aerosol extinction during SOLVE has revealed differences in the radiative characteristics of PSC events. We explore the use of POAM observations to discriminate between Type la and lb Pscs. A trajectory model is used to simulate PSC la and lb particles. Calculated radiative properties act as a guide for discriminating the satellite occultation measurements. Aircraft based PSC observations are-used as confirmation of these observations.
Clear roads' safety effect on elderly drivers.
DOT National Transportation Integrated Search
2011-10-01
Driving on roads that are covered with ice or snow is hazardous for all drivers, but there may be : disproportionally high risks for certain age groups on certain road types and different winter : maintenance practices may also have a greater influen...
[Winter wheat yield gap between field blocks based on comparative performance analysis].
Chen, Jian; Wang, Zhong-Yi; Li, Liang-Tao; Zhang, Ke-Feng; Yu, Zhen-Rong
2008-09-01
Based on a two-year household survey data, the yield gap of winter wheat in Quzhou County of Hebei Province, China in 2003-2004 was studied through comparative performance analysis (CPA). The results showed that there was a greater yield gap (from 4.2 to 7.9 t x hm(-2)) between field blocks, with a variation coefficient of 0.14. Through stepwise forward linear multiple regression, it was found that the yield model with 8 selected variables could explain 63% variability of winter wheat yield. Among the variables selected, soil salinity, soil fertility, and irrigation water quality were the most important limiting factors, accounting for 52% of the total yield gap. Crop variety was another important limiting factor, accounting for 14%; while planting date, fertilizer type, disease and pest, and water press accounted for 7%, 14%, 10%, and 3%, respectively. Therefore, besides soil and climate conditions, management practices occupied the majority of yield variability in Quzhou County, suggesting that the yield gap could be reduced significantly through optimum field management.
Yearly simulation of a solar-aided R22-DEGDME absorption heat pump system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ileri, A.
1995-12-31
The performance of a solar-aided R22-DEGDME absorption heat pump system designed for 100 kW cooling capacity is investigated by a computer simulation using hourly data for Ankara. In summer the generator, and in winter the evaporator, receives solar energy while the remaining demands are met by auxiliary heaters. When needed, these boost the temperature of the water from the storage tank to the minimum allowable levels which are determined as 20{degree}C in winter and over 80{degree}C in summer. The system performance, judged by the fraction of the load supplied from solar energy, is affected mostly from the climate, source temperaturemore » limit, collector type and area but little from storage tank size, for the sizes and configuration under investigation. With 400 m{sup 2} of high efficiency collectors, the solar energy supplied 38% of the demand in winter and 91% of the demand in summer. 22 refs., 2 figs., 6 tabs.« less
Wyatt, Lindsay E; Strickler, Susan R; Mueller, Lukas A; Mazourek, Michael
2016-01-01
Both the fruit mesocarp and the seeds of winter squash can be used for consumption, although the focus of breeding efforts varies by cultivar. Cultivars bred for fruit consumption are selected for fruit mesocarp quality traits such as carotenoid content, percent dry matter, and percent soluble solids, while these traits are essentially ignored in oilseed pumpkins. To compare fruit development in these two types of squash, we sequenced the fruit transcriptome of two cultivars bred for different purposes: an acorn squash, ‘Sweet REBA’, and an oilseed pumpkin, ‘Lady Godiva’. Putative metabolic pathways were developed for carotenoid, starch, and sucrose synthesis in winter squash fruit and squash homologs were identified for each of the structural genes in the pathways. Gene expression, especially of known rate-limiting and branch point genes, corresponded with metabolite accumulation both across development and between the two cultivars. Thus, developmental regulation of metabolite genes is an important factor in winter squash fruit quality. PMID:27688889
NASA Astrophysics Data System (ADS)
Stocking, Jessica; Bishop, Mary Anne; Arab, Ali
2018-01-01
Understanding bird distributions outside of the breeding season may help to identify important criteria for winter refuge. We surveyed marine birds in Prince William Sound, Alaska, USA over nine winters from 2007 to 2016. Our objectives were twofold: to examine the seasonal patterns of piscivorous species overwintering in Prince William Sound, and to explore the relationships between spatial covariates and bird distributions, accounting for inherent spatial structure. We used hurdle models to examine nine species groups of piscivorous seabirds: loons, grebes, cormorants, mergansers, large gulls, small gulls, kittiwakes, Brachyramphus murrelets, and murres. Seven groups showed pronounced seasonal patterns. The models with the most support identified water depth and distance to shore as key environmental covariates, while habitat type, wave exposure, sea surface temperature and seafloor slope had less support. Environmental associations are consistent with the available knowledge of forage fish distribution during this time, but studies that address habitat associations of prey fish in winter could strengthen our understanding of processes in Prince William Sound.
NASA Astrophysics Data System (ADS)
Santos, Mónica; Santos, J. A.; Fragoso, M.
2015-11-01
A long time series of damaging flood records in Northern Portugal for 1871-2011, gathered from a large number of documentary sources, is analyzed. The relationships between damaging floods (DFs) and relevant circulation weather types (CWTs) are also assessed. The DFs database has 1861 records and CWTs are identified using the 20th century reanalysis dataset v2. A coefficient of effectiveness (CE) is calculated for each weather type in order to assess DF-CWT relationships. Furthermore, conditions in the 10 days preceding a DF outbreak, type of flood and season were taken into account in CE calculations. The DF occurrences were responsible for 186 killed people, 59 injured, 29 missing, 1873 displaced and 15,924 homeless people. The monthly frequencies each CWT show that anticyclonic (A) and easterly wind (E) types are prevalent in winter, whereas R tends to prevail in the summer half of the year. However, the results show that the cyclonic (C) type has a positive frequency with DF occurrence (i.e. anomalously frequent), both on the DF day and on the nine previous days. The C type is commonly associated with southwesterly flow and unsettled weather conditions over Portugal, which are favorable to rain-generating mechanisms. The results also highlight some seasonal variation: in autumn, winter and spring, the C type is largely related to DFs, while the A and E types acquire higher preponderance in the summer. In effect, the latter two CWTs may trigger thunderstorms and heavy precipitation episodes in the Douro River catchment in summer.
Haan, E A; Furness, M E; Knowles, S; Morris, L L; Scott, G; Svigos, J M; Vigneswaren, R
1989-06-01
We describe a male infant with microcephalic osteodysplastic primordial dwarfism. The clinical and radiological manifestations most closely resemble those of the patient described by Winter et al. to have manifestations overlapping with both osteodysplastic primordial dwarfism types I and III. The classification of the patient within the spectrum of osteodysplastic primordial dwarfism is discussed and the distinctive neuropathology documented.
Kim, Jong-Choon; Kim, Jin Young; Yeom, Seok Ran; Jeong, Bo Yoon; Hwang, Hey-Zoo; Park, Keum-Joo; Lee, Seung-won
2008-09-01
In a previous study, we examined the physiological responses of male Sprague-Dawley rats over a 4-week exposure to concrete and clay cages. No general toxicological changes were observed in rats exposed to either of the two cage types in summer. Under winter conditions, however, various general toxicological effects were detected in rats housed in concrete cages, although rats housed in clay cages showed no such effects. The infrared thermographic examination indicated that skin temperature in the concrete-housed rats was abnormally low, but not so in the clay-housed rats. We examined proteomic changes in the serum of rats housed in winter in concrete and clay cages using two-dimensional differential in-gel electrophoresis and mass spectrometry/mass spectrometry. Five proteins were identified and quantitatively validated; all were cold stress-induced, acute phase proteins that were either up-regulated (haptoglobin) or down-regulated (alpha-1-inhibitor III, alpha-2u globulin, complement component 3, and vitamin D-binding protein) in the concrete-housed rats. These results suggest that the 4-week exposure to a concrete cage in winter elicited a typical systemic inflammatory reaction (i.e. acute phase response) in the exposed rats.
Barros, M S; Morais, D B; Araújo, M R; Carvalho, T F; Matta, S L P; Pinheiro, E C; Freitas, M B
2013-08-01
Seasonal variation is a key factor regulating energy metabolism and reproduction in several mammals, including bats. This study aimed to track seasonal changes in the energy reserves of the insectivorous bat Molossus molossus associated with its reproductive cycle. Adult males were collected during the four neotropical annual seasons in Viçosa - MG, Brazil. Blood and tissues were collected for metabolic analysis and testes were removed for histology and morphometry. Our results show that liver and breast muscle glycogen concentrations were significantly lower in winter. The adiposity index was significantly higher in the fall compared to winter and spring. Seminiferous tubules were greater in diameter in animals captured in fall and winter, indicating a higher investment in spermatic production during these seasons. The percentage of Leydig cells was higher in summer compared to fall and winter. We suggest that M. molossus presents a type of seasonal reproduction with two peaks of testicular activity: one in fall, with higher sperm production (spermatogenesis), and another in summer, with higher hormone production (steroidogenesis). The metabolic pattern may be associated with reproductive events, especially due to the highest fat storage observed in the fall, which coincides with the further development of the seminiferous tubules.
Indoor PAHs at schools, homes and offices in Rome, Italy
NASA Astrophysics Data System (ADS)
Romagnoli, P.; Balducci, C.; Perilli, M.; Gherardi, M.; Gordiani, A.; Gariazzo, C.; Gatto, M. P.; Cecinato, A.
2014-08-01
Indoor and outdoor concentrations of polycyclic aromatic hydrocarbons (PAHs) associated with PM2.5 particles were monitored in three microenvironments (schools, homes and offices) in the city of Rome, Italy, between winter 2011 and summer 2012. Molecular signatures and indoor/outdoor concentration ratios of PAHs were investigated, with special emphasis on carcinogenic congeners. At indoor locations, total PAHs ranged, on average, from 1.8 to 8.4 ng/m3 in winter and from 0.30 to 1.35 ng/m3 in spring/summer. Outdoors, total PAH concentrations were found to reach 6.3-17.9 ng/m3 in winter and 0.42-1.74 ng/m3 in spring-summer. Indoors, the concentration of benzo[a]pyrene (BaP) was as high as 1.1 ng/m3 in winter and below 0.1 ng/m3 in the warm season, independently of site type; the yearly average remained below the European guideline value. The indoor/outdoor concentration ratios of individual compounds were lower than one for most of congeners, suggesting that outdoor sources were predominant. Nonetheless, the percentages of PAH compounds changed with sites and seasons; in particular, in spring/summer, the concentration of BaP at our sites was more than twice that recorded at the regional network stations.
Sprite climatology in the Eastern Mediterranean Region
NASA Astrophysics Data System (ADS)
Yair, Yoav; Price, Colin; Katzenelson, Dor; Rosenthal, Neta; Rubanenko, Lior; Ben-Ami, Yuval; Arnone, Enrico
2015-04-01
We present statistical analysis of 436 sprites observed in 7 winter campaigns from 2006/7-2012/13. Results show a clear peak in the frequency of sprite detections, with maximum values (< 40% of events) between 00:30 and 02:15 LST (22:30-00:15 UT; LST = UT + 2). The detection times of sprites are well-correlated with a relative increase in the fraction of + CG strokes, which exhibit maxima between 00:00 and 02:00 LST. The morphological distribution of 339 sprites, that we were able to clearly identify, is dominated by column sprites (49.3%), with angels (33.0%) and carrots (25.7%) being less frequent. This is similar to reports of winter sprites over the Sea of Japan and summer ones in Central Europe. Other shapes such as trees, wishbones, etc. appear quite rarely. Single element events constitute 16.5% of observations, with 83.5% containing 2 elements or more. Clusters of homogenous types are slightly more frequent than mixed ones (55%). Our observations suggest winter Mediterranean thunderstorms to have a vertical structure in between high tropical convective systems and the lower cloud-top cells in Japan. The climatology shows the Eastern Mediterranean to be a major sprite producer in Northern Hemisphere winter, and offers ground-based coverage for future space missions.
Fuel loads, fire regimes, and post-fire fuel dynamics in Florida Keys pine forests
Sah, J.P.; Ross, M.S.; Snyder, J.R.; Koptur, S.; Cooley, H.C.
2006-01-01
In forests, the effects of different life forms on fire behavior may vary depending on their contributions to total fuel loads. We examined the distribution of fuel components before fire, their effects on fire behavior, and the effects of fire on subsequent fuel recovery in pine forests within the National Key Deer Refuge in the Florida Keys. We conducted a burning experiment in six blocks, within each of which we assigned 1-ha plots to three treatments: control, summer, and winter burn. Owing to logistical constraints, we burned only 11 plots, three in winter and eight in summer, over a 4-year period from 1998 to 2001. We used path analysis to model the effects of fuel type and char height, an indicator of fire intensity, on fuel consumption. Fire intensity increased with surface fuel loads, but was negatively related to the quantity of hardwood shrub fuels, probably because these fuels are associated with a moist microenvironment within hardwood patches, and therefore tend to resist fire. Winter fires were milder than summer fires, and were less effective at inhibiting shrub encroachment. A mixed seasonal approach is suggested for fire management, with burns applied opportunistically under a range of winter and summer conditions, but more frequently than that prevalent in the recent past. ?? IAWF 2006.
NASA Astrophysics Data System (ADS)
Guilhermet, J.; Preunkert, S.; Voisin, D.; Baduel, C.; Legrand, M.
2013-05-01
Using a newly developed method dedicated to measurements of water-soluble humic-like substances (HULISWS) in atmospheric aerosol samples, the carbon mass quantification of HULISWS in an Alpine ice core is achieved for the first time. The method is based on the extraction of HULISWS with a weak anion-exchanger resin and the subsequent quantification of the extracted carbon fraction with a total organic carbon (TOC) analyzer. Measurements were performed along a Col du Dôme (4250 m above sea level, French Alps) ice core covering the 1920-2004 time period. The HULISWS concentrations exhibit a well-marked seasonal cycle with winter minima close to 7 ppbC and summer maxima ranging between 10 and 50 ppbC. Whereas the winter HULISWS concentrations remained unchanged over the twentieth century, the summer concentrations increased from 20 ppbC prior to the Second World War to 35 ppbC in the 1970-1990s. These different trends reflect the different types of HULISWS sources in winter and summer. HULISWS are mainly primarily emitted by domestic wood burning in winter and secondary in summer being produced from biogenic precursors. For unknown reason, the HULISWS signal is found to be unusual in ice samples corresponding to World War II.
NASA Astrophysics Data System (ADS)
Lee, B. S.; Lajtha, K.
2014-12-01
Dissolved organic matter (DOM) leaching through soil affects soil carbon sequestration and the carbon metabolism of receiving water bodies. Improving our understanding of the sources and fate of DOM at varying spatial and temporal patterns is crucial for land management decisions. However, little is known about how DOM sources change with land use types and seasonal flow patterns. In the Willamette River Basin (WRB), which is home to Oregon's major cities including Portland and Salem, forested headwaters transition to agricultural and urban land. The climate of WRB has a distinctive seasonal pattern with dry warm summers and wet winters driven by winter precipitation and snowmelt runoff between November and March. This study examined DOM fluorescence characteristic in stream water from 21 locations collected monthly and 16 locations collected seasonally to identify the sources and fate of DOM in the upper WRB in contrasting land uses. DOC and dissolved organic nitrogen concentrations increased as the flow rate increased during winter precipitation at all sites. This indicates that increased flow rate increased the connectivity between land and nearby water bodies. DOM fluorescent properties varied among land use types. During the first precipitation event after a long dry summer, a microbial DOM signature in agricultural areas increased along with nitrate concentrations. This may be because accumulated nutrients on land during the dry season flowed to nearby streams during the first rain event and promoted microbial growth in the streams. During the month of the highest flow rate in 2014, sampling sites near forest showed evidence of a greater terrestrial DOM signature compared to its signature during the dry season. This indicates fluorescent DOM characteristics in streams vary as the flow connectivity changes even within the same land type.
Paudel, Indira; Shaviv, Avi; Bernstein, Nirit; Heuer, Bruria; Shapira, Or; Lukyanov, Victor; Bar-Tal, Asher; Rotbart, Nativ; Ephrath, Jhonathan; Cohen, Shabtai
2016-04-01
Water quality, soil and climate can interact to limit photosynthesis and to increase photooxidative damage in sensitive plants. This research compared diffusive and non-diffusive limitations to photosynthesis as well as photorespiration of leaves of grapefruit trees in heavy clay and sandy soils having a previous history of treated wastewater (TWW) irrigation for >10 years, with different water qualities [fresh water (FW) vs TWW and sodium amended treated wastewater (TWW + Na)] in two arid climates (summer vs winter) and in orchard and lysimeter experiments. TWW irrigation increased salts (Na(+) and Cl(-) ), membrane leakage, proline and soluble sugar content, and decreased osmotic potentials in leaves of all experiments. Reduced leaf growth and higher stomatal and non-stomatal (i.e. mesophyll) limitations were found in summer and on clay soil for TWW and TWW + Na treatments in comparison to winter, sandy soil and FW irrigation, respectively. Stomatal closure, lower chlorophyll content and altered Rubisco activity are probable causes of higher limitations. On the other hand, non-photochemical quenching, an alternative energy dissipation pathway, was only influenced by water quality, independent of soil type and season. Furthermore, light and CO2 response curves were investigated for other possible causes of higher non-stomatal limitation. A higher proportion of non-cyclic electrons were directed to the O2 dependent pathway, and a higher proportion of electrons were diverted to photorespiration in summer than in winter. In conclusion, both diffusive and non-diffusive limitations contribute to the lower photosynthetic performance of leaves following TWW irrigation, and the response depends on soil type and environmental factors. © 2015 Scandinavian Plant Physiology Society.
Langford, Fritha M; Rutherford, Kenneth Md; Jack, Mhairi C; Sherwood, Lorna; Lawrence, Alistair B; Haskell, Marie J
2009-02-01
There have been increases in the number of organic dairy farms in the UK in recent years. However, there is little information on the impact of organic regulations on cow welfare. As part of a larger study, we aimed to investigate differences between organic and non-organic farms in management practices and winter housing quality. Forty organic and 40 non-organic farms throughout the UK were visited. Organic and non-organic farms were paired for housing type, and as far as possible for herd size, genetic merit and location. A detailed questionnaire covering key aspects of dairy management was carried out with each farmer. On a subset of twenty pairs, an assessment of the quality of the winter housing for both lactating and dry cows was undertaken, covering the parlour, bedding, loafing and feeding areas. Management practices and building conditions varied greatly within farm types and there was considerable overlap between organic and non-organic farms. Milk yield, level and composition of concentrate feed, management of heifers and calving, and use of 'alternative treatments' to prevent and treat mastitis differed between organic and non-organic farms. In all other respects there were no differences between farm types. Building dimensions per cow did not differ, even though organic recommendations advise greater space per cow than recommended for non-organic farms. The similarity between organic and non-organic farms in most respects indicates that cow housing and health, based on both the described management regimes and the farmers' perceptions of disease incidence, on organic dairy farms is neither compromised by the regulations, nor considerably better than on non-organic farms.
Baek, Ji Hyun; Kim, Ji Sun; Huh, Iksoo; Lee, Kounseok; Park, Ju Hyun; Park, Taesung; Ha, Kyooseob; Hong, Kyung Sue
2015-02-01
Seasonality, an individual trait of seasonal variations in mood and behavior, has received clinical attention for its association with mood disorders. This study aimed to explore the prevalence, specific manifestation, and associated individual and climatic factors of seasonality in the non-elderly adult population. Five hundred fifty-two participants [male n=220; female n=332; mean age 34.92years, standard deviation (SD) 10.18] with no psychiatric history were recruited from the Seoul metropolitan area (37°33'58.87″N 126°58'40.63″E). Seasonality was evaluated using the Seasonal Pattern Assessment Questionnaire. Climatic variables used in analyses were averaged over recent 5years (from 2008 to 2013) on a monthly basis. The mean global seasonality score (GSS) was 5.53 (SD 3.91), and 16.2% (n=89) of participants had seasonal affective disorder (SAD) or sub-SAD. The "feeling worst" month in most of the participants with significant seasonality were winter (41.6%) or summer (38.2%). Socio-demographic factors including age and sex were not related to the seasonality. Decreased sunlight amount and diurnal temperature range in a given and previous month, and increased humidity in a previous month showed significant associations with the percentage of participants with the worst mood. The most frequently reported symptom related to seasonality was 'changes in energy level'. Specific manifestations were not significantly different between the winter type and the summer type. The summer and winter type seasonality in the non-clinical adult population did not differ in terms of behavioral manifestations. Decreased sunlight amount, diurnal temperature range, and increased humidity appeared to be major climatic factors associated with seasonality. Copyright © 2014 Elsevier Inc. All rights reserved.
Earley, Bernadette; McNamara, John D; Jerrams, Stephen J; O'Riordan, Edward G
2017-05-30
The objective was to investigate the effect of placing mats on concrete slatted floors on performance, behaviour, hoof condition, dirt scores, physiological and immunological variables of beef steers, and to compare responses with animals on out-wintering pads. Continental crossbred beef steers [n = 360; mean (±SD) initial live weight 539 kg (42.2)] were blocked by breed and live weight and randomly assigned to one of five treatments; (1) Concrete slats alone, (2) Mat 1 (Natural Rubber structure) (Durapak Rubber Products), (3) Mat 2 (Natural rubber structure) (EasyFix), (4) Mat 3 (modified ethylene vinyl acetate (EVA) foam structure) and (5) Out-wintering pads (OWP's). Animals on the OWPs had a greater (P < 0.05) live weight gain (P < 0.05) compared with the slat and Mat 2 treatments: results for Mat 1 and Mat 3 were the same (P > 0.05) as the other treatments. Animals on the OWPs had reduced lying percentage time compared with all the other treatments. Dry matter (DM) intake was greater for animals on the OWPs compared with all the other treatments. Carcass weight, kill out proportion, carcass fat score, carcass composition score, FCR and physiological responses were similar (P > 0.05) among treatments. No incidence of laminitis was observed among treatments. The number of hoof lesions was greater on all mat types (P < 0.05) compared with concrete slats and OWP treatments. Dirt scores were greater (P < 0.05) for animals on OWPs when measured on days 42, 84, 105, 126 and 150 compared with animals on slats. Under the conditions adopted for the present study, there was no evidence to suggest that animals housed on bare concrete slats were disadvantaged in respect of animal welfare compared with animals housed on other floor types. It is concluded that the welfare of steers was not adversely affected by slats compared with different mat types or OWPs.
NASA Astrophysics Data System (ADS)
Harpold, A. A.; Dettinger, M. D.; Rajagopal, S.
2017-12-01
Although drought is a recurring problem, recent extreme snow droughts have refocused attention on the interaction of meteorological extremes and snow accumulation in mountains. Only recently have two distinct types of snow drought been defined that help to differentiate a variety of water management implications. Dry snow drought is caused by deficits of winter precipitation and resulting low snow accumulation. Warm snow drought is characterized by temperature extremes causing faster and earlier snowmelt and/or shifts from snow to rain. Here we use 462 Snow Telemetry (SNOTEL) sites in the western U.S. to quantify snow drought as 75% of the long-term average snow water equivalent (SWE). We further subdivide dry snow droughts using SWE to winter precipitation (SWE/P) ratios that were near normal from warm snow droughts where SWE/P ratios were below normal and experienced SWE losses (warm-melt) or received unusual amounts of winter rain (warm-rain snow drought). Using this method we show clear regional patterns in the type and frequency of snow drought. Warm snow droughts on April 1st were most common in all but the highest elevations of the Rocky Mountains. The middle Rocky Mountains sites also experienced less frequent snow drought than the maritime and southern mountains. Warm-melt snow droughts were the primary cause in the Cascade Mountains and the southwestern sites, with only the Sierra Nevada and Wasatch mountains showing consistent warm-rain snow drought. These regional differences limited the predictability of snow drought with simple models of temperature and precipitation. We will discuss the effects of snow drought type and magnitude on streamflow forecasting skill using empirical relationships developed by water management agencies. We expect these types of snow drought to differentially affect streamflow regime and its predictability, as well as forest growth and mortality during and following drought.
A Climatology of Polar Stratospheric Cloud Types by MIPAS-Envisat
NASA Astrophysics Data System (ADS)
Spang, Reinhold; Hoffmann, Lars; Griessbach, Sabine; Orr, Andrew; Höpfner, Michael; Müller, Rolf
2015-04-01
For Chemistry Climate Models (CCM) it is still a challenging task to properly represent the evolution of the polar vortices over the entire winter season. The models usually do not include comprehensive microphysical modules to evolve the formation of different types of polar stratospheric clouds (PSC) over the winter. Consequently, predictions on the development and recovery of the future ozone hole have relatively large uncertainties. A climatological record of hemispheric measurement of PSC types could help to better validate and improve the PSC schemes in CCMs. The Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) instrument onboard the ESA Envisat satellite operated from July 2002 to April 2012. The infra-red limb emission measurements compile a unique dataset of day and night measurements of polar stratospheric clouds up to the poles. From the spectral measurements in the 4.15-14.6 microns range it is possible to select a number of atmospheric window regions and spectral signatures to classify PSC cloud types like nitric acid hydrates, sulfuric ternary solution droplets, and ice particles. The cloud detection sensitivity is similar to space borne lidars, but MIPAS adds complementary information due to its different measurement technique (limb instead of nadir) and wavelength region. Here we will describe a new classification method for PSCs based on the combination of multiple brightness temperature differences (BTD) and colour ratios. Probability density functions (PDF) of the MIPAS measurements in conjunction with a database of radiative transfer model calculations of realistic PSC particle size distributions enable the definition of regions attributed to specific or mixed types clouds. Applying a naive bias classifier for independent criteria to all defined classes in four 2D PDF distributions, it is possible to assign the most likely PSC type to any measured cloud spectrum. Statistical Monte Carlo test have been applied to quantify uncertainties and the sensitivity to a priori information of the approach. The processing of the complete MIPAS data set of almost 10 years of PSC observations with a first version of the new classification approach is completed. Results for various northern and southern hemisphere winters will be presented. The temporal evolution of the PSC types with respect to the temporal development of the meteorological conditions of the polar vortex as well as comparison with space and ground based lidar measurements will be investigated.
The ILAN sprite campaigns in Israel: results from 7 years of observations
NASA Astrophysics Data System (ADS)
Yair, Yoav; Rubanenko, Lior; Katzenelson, Dor; Rosenthal, Neta; Mezuman, Keren; Price, Colin
2014-05-01
The ILAN (Imaging of Lightning And Nocturnal flashes, http://ilanteam.com/) campaigns have been conducted since 2004 from Israel, observing winter thunderstorms in the eastern Mediterranean. We searched for transient luminous events using the standard commercial CCD cameras (Watec N100, 902H2 Ultimate) and the UFO-capture software for event detection, commonly used by other TLE- research groups in Europe and Japan. Winter thunderstorms mostly occur in conjunction with the passage of cold fronts in Cyprus lows, and thus TLEs are best observed when the storms are 200-300 km west of the Israeli coastline, above the Mediterranean Sea. We present statistical analysis of 505 sprites observed in 7 winter campaigns from 2006/7-2012/13. Results show a clear peak in the frequency of sprite detections, with maximum values (above 40% of events) between 00:30-02:50 LST (Local Standard Time, UT+2). This distribution is very different from that of lightning in the region, which peaks ~ 05:00 LST over the sea (Altaratz et al., 2001), hinting at the different temporal behavior of +CG flashes, known to be the major producers of sprites. The morphological distribution of 339 sprites is dominated by column sprites (49.3%) with angels (33.0%) and carrots (25.7%) being less frequent. This is similar to reports of winter sprites over the Sea of Japan (Matsudo et al., 2007). Other shapes (trees, wishbones, etc.; Bór, 2013) appear quite rarely. Single element events constitute 16.8% of observations, with 83.2% containing 2 elements or more. Clusters of homogenous types are slightly more frequent than mixed ones (55%). In some rare cases we observed 12-23 elements in a single sprite. The number of elements and the temporal distribution of different sprite types will be presented and compared with the properties of the parent thunderstorms. Altaratz, O., Levin Z. and Y. Yair, 2001: Winter thunderstorms in Israel - a study with lightning location systems and weather radar. Month. Weath. Rev., 129, 5, 1259-1266. Bór, J., 2013: Optically perceptible characteristics of sprites observed in Central Europe in 2007-2009. Jour. Atmos. Sol. Terr. Phys., 92, 151-177 doi.org/10.1016/j.jastp.2012.10.008. Matsudo Y., Suzuki T., Hayakawa M., Yamashita K., Ando Y., Michimoto K., Korepano V., 2007: Characteristics of Japanese winter sprites and their parent lightning as estimated by VHF lightning and ELF transients Jour. Atmos. Solar Terr. Phys., 69, 12, 1431-1446.
Using Conditional Analysis to Investigate Spatial and Temporal patterns in Upland Rainfall
NASA Astrophysics Data System (ADS)
Sakamoto Ferranti, Emma Jayne; Whyatt, James Duncan; Timmis, Roger James
2010-05-01
The seasonality and characteristics of rainfall in the UK are altering under a changing climate. Summer rainfall is generally decreasing whereas winter rainfall is increasing, particularly in northern and western areas (Maraun et al., 2008) and recent research suggests these rainfall increases are amplified in upland areas (Burt and Ferranti, 2010). Conditional analysis has been used to investigate these rainfall patterns in Cumbria, an upland area in northwest England. Cumbria was selected as an example of a topographically diverse mid-latitude region that has a predominately maritime and westerly-defined climate. Moreover it has a dense network of more than 400 rain gauges that have operated for periods between 1900 and present day. Cumbria has experienced unprecedented flooding in the past decade and understanding the spatial and temporal changes in this and other upland regions is important for water resource and ecosystem management. The conditional analysis method examines the spatial and temporal variations in rainfall under different synoptic conditions and in different geographic sub-regions (Ferranti et al., 2009). A daily synoptic typing scheme, the Lamb Weather Catalogue, was applied to classify rainfall into different weather types, for example: south-westerly, westerly, easterly or cyclonic. Topographic descriptors developed using GIS were used to classify rain gauges into 6 directionally-dependant geographic sub-regions: coastal, windward-lowland, windward-upland, leeward-upland, leeward-lowland, secondary upland. Combining these classification methods enabled seasonal rainfall climatologies to be produced for specific weather types and sub-regions. Winter rainfall climatologies were constructed for all 6 sub-regions for 3 weather types - south-westerly (SW), westerly (W), and cyclonic (C); these weather types contribute more than 50% of total winter rainfall. The frequency of wet-days (>0.3mm), the total winter rainfall and the average wet day rainfall amount were analysed for each rainfall sub-region and weather type from 1961-2007 (Ferranti et al., 2010). The conditional analysis showed total rainfall under SW and W weather types to be increasing, with the greatest increases observed in the upland sub-regions. The increase in total SW rainfall is driven by a greater occurrence of SW rain days, and there has been little change to the average wet-day rainfall amount. The increase in total W rainfall is driven in part by an increase in the frequency of wet-days, but more significantly by an increase in the average wet-day rainfall amount. In contrast, total rainfall under C weather types has decreased. Further analysis will investigate how spring, summer and autumn rainfall climatologies have changed for the different weather types and sub-regions. Conditional analysis that combines GIS and synoptic climatology provides greater insights into the processes underlying readily available meteorological data. Dissecting Cumbrian rainfall data under different synoptic and geographic conditions showed the observed changes in winter rainfall are not uniform for the different weather types, nor for the different geographic sub-regions. These intricate details are often lost during coarser resolution analysis, and conditional analysis will provide a detailed synopsis of Cumbrian rainfall processes against which Regional Climate Model (RCM) performance can be tested. Conventionally RCMs try to simulate composite rainfall over many different weather types and sub-regions and by undertaking conditional validation the model performance for individual processes can be tested. This will help to target improvements in model performance, and ultimately lead to better simulation of rainfall in areas of complex topography. BURT, T. P. & FERRANTI, E. J. S. (2010) Changing patterns of heavy rainfall in upland areas: a case study from northern England. Atmospheric Environment, [in review]. FERRANTI, E. J. S., WHYATT, J. D. & TIMMIS, R. J. (2009) Development and application of topographic descriptors for conditional analysis of rainfall. Atmospheric Science Letters, 10, 177-184. FERRANTI, E. J. S., WHYATT, J. D., TIMMIS, R. J. & DAVIES, G. (2010) Using GIS to investigate spatial and temporal variations in upland rainfall. Transactions in GIS, [in press]. MARAUN, D., OSBORN, T. J. & GILLETT, N. P. (2008) United Kingdom daily precipitation intensity: improved early data, error estimates and an update from 2000 to 2006. International Journal of Climatology, 28, 833-842.
DOT National Transportation Integrated Search
1997-08-01
This report presents the results of investigations on the rail anchor/fastener effects on rail movement and the resulting rail force distribution in continuous welded rail (CWR) track during rail breaks and destressing operations. Two types of tests ...
USDA-ARS?s Scientific Manuscript database
Pecan scab (Fusicladium effusum [G. Winter]) is the most important disease of pecan in the U.S. Measuring the severity of scab accurately and reliably and providing data amenable to analysis using parametric statistics is important where treatments are being compared to minimize the risk of Type II ...
NASA Technical Reports Server (NTRS)
Kotada, K.; Nakagawa, S.; Kai, K.; Yoshino, M. M.; Takeda, K.; Seki, K.
1985-01-01
In order to study the distribution of evapotranspiration in the humid region using remote sensing technology, the parameter (alpha) in the Priestley-Taylor model was determined. The daily means of the parameter alpha = 1.14 can be available from summer to autumn and alpha = to approximately 2.0 in winter. The results of the satellite and the airborne sensing done on 21st and 22nd January, 1983, are described. Using the vegetation distribution in the Tsukuba Academic New Town, as well as the radiation temperature obtained by remote sensing and the radiation data observed at the ground surface, the evapotranspiration was calculated for each vegetation type by the Priestley-Taylor method. The daily mean evapotranspiration on 22nd January, 1983, was approximately 0.4 mm/day. The differences in evapotranspiration between the vegetation types were not detectable, because the magnitude of evapotranspiration is very little in winter.
McAbee, Kathryn; Reinhardt, Keith; Germino, Matthew; Bosworth, Andrew
2017-01-01
Semi-arid rangelands are important carbon (C) pools at global scales. However, the degree of net C storage or release in water-limited systems is a function of precipitation amount and timing, as well as plant community composition. In northern latitudes of western North America, C storage in cold-desert ecosystems could increase with boosts in wintertime precipitation, in which climate models predict, due to increases in wintertime soil water storage that enhance summertime productivity. However, there are few long-term, manipulative field-based studies investigating how rangelands will respond to altered precipitation amount or timing. We measured aboveground C pools and fluxes at leaf, soil, and ecosystem scales over a single growing season in plots that had 200 mm of supplemental precipitation added in either winter or summer for the past 21 years, in shrub- and exotic-bunchgrass-dominated garden plots. At our cold-desert site (298 mm precipitation during the study year), we hypothesized that increased winter precipitation would stimulate the aboveground C uptake and storage relative to ambient conditions, especially in plots containing shrubs. Our hypotheses were generally supported: ecosystem C uptake and long-term biomass accumulation were greater in winter- and summer-irrigated plots compared to control plots in both vegetation communities. However, substantial increases in the aboveground biomass occurred only in winter-irrigated plots that contained shrubs. Our findings suggest that increases in winter precipitation will enhance C storage of this widespread ecosystem, and moreso in shrub- compared to grass-dominated communities.
McAbee, Kathryn; Reinhardt, Keith; Germino, Matthew J; Bosworth, Andrew
2017-03-01
Semi-arid rangelands are important carbon (C) pools at global scales. However, the degree of net C storage or release in water-limited systems is a function of precipitation amount and timing, as well as plant community composition. In northern latitudes of western North America, C storage in cold-desert ecosystems could increase with boosts in wintertime precipitation, in which climate models predict, due to increases in wintertime soil water storage that enhance summertime productivity. However, there are few long-term, manipulative field-based studies investigating how rangelands will respond to altered precipitation amount or timing. We measured aboveground C pools and fluxes at leaf, soil, and ecosystem scales over a single growing season in plots that had 200 mm of supplemental precipitation added in either winter or summer for the past 21 years, in shrub- and exotic-bunchgrass-dominated garden plots. At our cold-desert site (298 mm precipitation during the study year), we hypothesized that increased winter precipitation would stimulate the aboveground C uptake and storage relative to ambient conditions, especially in plots containing shrubs. Our hypotheses were generally supported: ecosystem C uptake and long-term biomass accumulation were greater in winter- and summer-irrigated plots compared to control plots in both vegetation communities. However, substantial increases in the aboveground biomass occurred only in winter-irrigated plots that contained shrubs. Our findings suggest that increases in winter precipitation will enhance C storage of this widespread ecosystem, and moreso in shrub- compared to grass-dominated communities.
[Thermal comfort and indoor air quality in some of the italian state police workplaces.
Chirico, Francesco; Rulli, Giuseppina
2017-12-01
Little can be found in the literature about thermal comfort and indoor air quality (IAQ) in law enforcement workplaces. This study, based on environmental surveys carried out by the Centro Sanitario Polifunzionale of Milan (Italian State Police Health Service Department), aims to assess the thermal comfort and IAQ in some of the Italian State Police workplaces. Measurements were performed in some indoor workplaces such as offices, archives, laboratories and guard-houses in various regions (Lombardia, Emilia Romagna, Liguria, Veneto, Trentino Alto-Adige) of Northern Italy. The PMV/PPD model developed by Fangar for the evaluation of the thermal comfort was used. We measured both CO2 concentration and relative humidity indoor levels for the evaluation of IAQ. We used Chi square and t Student tests to study both prevalence of thermal discomfort and low IAQ, and their differences between summer and winter. For the purposes of the present study we carried out 488 measurements in 36 buildings (260 in winter and 228 in summer). Our results showed that thermal comfort was reached in 95% and 68% of environmental measurements (in winter and summer, respectively). In summer, we measured different types of thermal discomfort. As regard to IAQ, CO2 exceeded the threshold limit value (1000 ppm) in 39% (winter) and 9% (summer) of our measurements. Chi-square test showed a statistically significant difference between summer and winter for all outcomes considered. Indeed, thermal comfort was better in winter than summer (X2 = 61.0795), while IAQ was found to be better in the summer than winter considering both the CO2 1000 ppm and 1200 ppm threshold values (X2 = 56.9004 and X2 = 8.8845 respectively). Prevalence of low relative humidity in winter was higher than in summer (X2 = 124.7764). Even though this study did not report any situation of risk to Italian police officers health and safety, it has highlighted some potential issues in some of the examined workplaces, concerning thermal comfort in summer and IAQ in winter. Regarding the risk assessment process, simple and inexpensive preventive measures are already feasible in the 'observation phase' of the risk assessment, before execution of instrumental environmental survey. According to the technical standards and risk assessment models, this way might increase both comfort levels for workers employed in indoor environments and the effectiveness of the risk assessment process, through the optimization of available resources. Copyright© by Aracne Editrice, Roma, Italy.
Peng, Yan; Yang, Wanqin; Li, Jun; Wang, Bin; Zhang, Chuan; Yue, Kai; Wu, Fuzhong
2015-01-01
Litter decomposition during winter can provide essential nutrients for plant growth in the subsequent growing season, which plays important role in preventing the expansion of dry areas and maintaining the stability of ecotone ecosystems. However, limited information is currently available on the contributions of soil fauna to litter decomposition during winter in such ecosystems. Therefore, a field experiment that included litterbags with two different mesh sizes (0.04 mm and 3 mm) was conducted to investigate the contribution of soil fauna to the loss of foliar litter mass in winter from November 2013 to April 2014 along the upper reaches of the Minjiang River. Two litter types of the dominant species were selected in each ecosystem: cypress (Cupressus chengiana) and oak (Quercus baronii) in ecotone; cypress (Cupressus chengiana) and clovershrub (Campylotropis macrocarpa) in dry valley; and fir (Abies faxoniana) and birch (Betula albosinensis) in montane forest. Over one winter incubation, foliar litter lost 6.0%-16.1%, 11.4%-26.0%, and 6.4%-8.5% of initial mass in the ecotone, dry valley and montane forest, respectively. Soil fauna showed obvious contributions to the loss of foliar litter mass in all of the ecosystems. The highest contribution (48.5%-56.8%) was observed in the ecotone, and the lowest contribution (0.4%-25.8%) was observed in the montane forest. Compared with other winter periods, thawing period exhibited higher soil fauna contributions to litter mass loss in ecotone and dry valley, but both thawing period and freezing period displayed higher soil fauna contributions in montane forest. Statistical analysis demonstrated that the contribution of soil fauna was significantly correlated with temperature and soil moisture during the winter-long incubation. These results suggest that temperature might be the primary control factor in foliar litter decomposition, but more active soil fauna in the ecotone could contribute more in litter decomposition and its related ecological processes in this region.
Peng, Yan; Yang, Wanqin; Li, Jun; Wang, Bin; Zhang, Chuan; Yue, Kai; Wu, Fuzhong
2015-01-01
Litter decomposition during winter can provide essential nutrients for plant growth in the subsequent growing season, which plays important role in preventing the expansion of dry areas and maintaining the stability of ecotone ecosystems. However, limited information is currently available on the contributions of soil fauna to litter decomposition during winter in such ecosystems. Therefore, a field experiment that included litterbags with two different mesh sizes (0.04 mm and 3 mm) was conducted to investigate the contribution of soil fauna to the loss of foliar litter mass in winter from November 2013 to April 2014 along the upper reaches of the Minjiang River. Two litter types of the dominant species were selected in each ecosystem: cypress (Cupressus chengiana) and oak (Quercus baronii) in ecotone; cypress (Cupressus chengiana) and clovershrub (Campylotropis macrocarpa) in dry valley; and fir (Abies faxoniana) and birch (Betula albosinensis) in montane forest. Over one winter incubation, foliar litter lost 6.0%-16.1%, 11.4%-26.0%, and 6.4%-8.5% of initial mass in the ecotone, dry valley and montane forest, respectively. Soil fauna showed obvious contributions to the loss of foliar litter mass in all of the ecosystems. The highest contribution (48.5%-56.8%) was observed in the ecotone, and the lowest contribution (0.4%-25.8%) was observed in the montane forest. Compared with other winter periods, thawing period exhibited higher soil fauna contributions to litter mass loss in ecotone and dry valley, but both thawing period and freezing period displayed higher soil fauna contributions in montane forest. Statistical analysis demonstrated that the contribution of soil fauna was significantly correlated with temperature and soil moisture during the winter-long incubation. These results suggest that temperature might be the primary control factor in foliar litter decomposition, but more active soil fauna in the ecotone could contribute more in litter decomposition and its related ecological processes in this region. PMID:25901894
Gillespie, Lauren M; Volaire, Florence A
2017-02-01
Dormancy in higher plants is an adaptive response enabling plant survival during the harshest seasons and has been more explored in woody species than in herbaceous species. Nevertheless, winter and summer shoot meristem dormancy are adaptive strategies that could play a major role in enhancing seasonal stress tolerance and resilience of widespread herbaceous plant communities. This review outlines the symmetrical aspects of winter and summer dormancy in order to better understand plant adaptation to severe stress, and highlight research priorities in a changing climate. Seasonal dormancy is a good model to explore the growth-stress survival trade-off and unravel the relationships between growth potential and stress hardiness. Although photoperiod and temperature are known to play a crucial, though reversed, role in the induction and release of both types of dormancy, the thresholds and combined effects of these environmental factors remain to be identified. The biochemical compounds involved in induction or release in winter dormancy (abscisic acid, ethylene, sugars, cytokinins and gibberellins) could be a priority research focus for summer dormancy. To address these research priorities, herbaceous species, being more tractable than woody species, are excellent model plants for which both summer and winter dormancy have been clearly identified. Summer and winter dormancy, although responding to inverse conditions, share many characteristics. This analogous nature can facilitate research as well as lead to insight into plant adaptations to extreme conditions and the evolution of phenological patterns of species and communities under climate change. The development of phenotypes showing reduced winter and/or enhanced summer dormancy may be expected and could improve adaptation to less predictable environmental stresses correlated with future climates. To this end, it is suggested to explore the inter- and intraspecific genotypic variability of dormancy and its plasticity according to environmental conditions to contribute to predicting and mitigating global warming. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Zhao, Junbin; Peichl, Matthias; Nilsson, Mats B
2017-08-01
At high latitudes, winter climate change alters snow cover and, consequently, may cause a sustained change in soil frost dynamics. Altered winter soil conditions could influence the ecosystem exchange of carbon dioxide (CO 2 ) and, in turn, provide feedbacks to ongoing climate change. To investigate the mechanisms that modify the peatland CO 2 exchange in response to altered winter soil frost, we conducted a snow exclusion experiment to enhance winter soil frost and to evaluate its short-term (1-3 years) and long-term (11 years) effects on CO 2 fluxes during subsequent growing seasons in a boreal peatland. In the first 3 years after initiating the treatment, no significant effects were observed on either gross primary production (GPP) or ecosystem respiration (ER). However, after 11 years, the temperature sensitivity of ER was reduced in the treatment plots relative to the control, resulting in an overall lower ER in the former. Furthermore, early growing season GPP was also lower in the treatment plots than in the controls during periods with photosynthetic photon flux density (PPFD) ≥800 μmol m -2 s -1 , corresponding to lower sedge leaf biomass in the treatment plots during the same period. During the peak growing season, a higher GPP was observed in the treatment plots under the low light condition (i.e. PPFD 400 μmol m -2 s -1 ) compared to the control. As Sphagnum moss maximizes photosynthesis at low light levels, this GPP difference between the plots may have been due to greater moss photosynthesis, as indicated by greater moss biomass production, in the treatment plots relative to the controls. Our study highlights the different responses to enhanced winter soil frost among plant functional types which regulate CO 2 fluxes, suggesting that winter climate change could considerably alter the growing season CO 2 exchange in boreal peatlands through its effect on vegetation development. © 2017 John Wiley & Sons Ltd.
Two alternative juvenile life history types for fall Chinook salmon in the Snake River basin
Connor, W.P.; Sneva, J.G.; Tiffan, K.F.; Steinhorst, R.K.; Ross, D.
2005-01-01
Fall Chinook salmon Oncorhynchus tshawytscha in the Snake River basin were listed under the Endangered Species Act in 1992. At the time of listing, it was assumed that fall Chinook salmon juveniles in the Snake River basin adhered strictly to an ocean-type life history characterized by saltwater entry at age 0 and first-year wintering in the ocean. Research showed, however, that some fall Chinook salmon juveniles in the Snake River basin spent their first winter in a reservoir and resumed seaward movement the following spring at age 1 (hereafter, reservoir-type juveniles). We collected wild and hatchery ocean-type fall Chinook salmon juveniles in 1997 and wild and hatchery reservoir-type juveniles in 1998 to assess the condition of the reservoir-type juveniles at the onset of seaward movement. The ocean-type juveniles averaged 112-139 mm fork length, and the reservoir-type juveniles averaged 222-224 mm fork length. The large size of the reservoir-type juveniles suggested a high potential for survival to salt water and subsequent return to freshwater. Scale pattern analyses of the fall Chinook salmon spawners we collected during 1998-2003 supported this point. Of the spawners sampled, an overall average of 41% of the wild fish and 51% of the hatchery fish had been reservoir-type juveniles. Males that had been reservoir-type juveniles often returned as small "minijacks" (wild, 16% of total; hatchery, 40% of total), but 84% of the wild males, 60% of the hatchery males, and 100% of the wild and hatchery females that had been reservoir-type juveniles returned at ages and fork lengths commonly observed in populations of Chinook salmon. We conclude that fall Chinook salmon in the Snake River basin exhibit two alternative juvenile life histories, namely ocean-type and reservoir-type. ?? Copyright by the American Fisheries Society 2005.
Snow cover in the Siberian forest-steppe
NASA Technical Reports Server (NTRS)
Zykov, I. V.
1985-01-01
A study is made of the snow cover on an experimental agricultural station in Mariinsk in the winter of 1945 to 1946. Conditions of snow cover formation, and types and indicators of snow cover are discussed. Snow cover structure and conditions and nature of thawing are described.
Fernbank Science Center Forest Teacher's Guide-1967.
ERIC Educational Resources Information Center
Cherry, Jim; And Others
This guide is designed primarily to familiarize teachers with the types of programs available through the Fernback Science Center. Instructional programs involving the use of the Fernbank Forest are outlined. Programs for secondary students include Plant Taxonomy, Field Ecology, Winter Taxonomy of Plants, and Climax Forest Succession. Elementary…
DOT National Transportation Integrated Search
2012-12-01
Two major earthquakes in Alaska, namely 1964 Great Alaskan earthquake and 2002 Denali earthquake, occurred in winter season when the ground crust was frozen. : None of the then-existing foundation types was able to withstand the force from the frozen...
Seismic performance and design of bridge foundations in liquefiable ground with a frozen crust.
DOT National Transportation Integrated Search
2012-12-01
Two major earthquakes in Alaska, namely 1964 Great Alaskan earthquake and 2002 Denali earthquake, occurred in winter season when the ground crust was frozen. None of the then-existing foundation types was able to withstand the force from the frozen c...
SEASONAL MONITORING OF ELEMENTS AT THREE CONSTRUCTED TREATMENT WETLANDS: 1999-2001
A suite of major, minor, and trace elements in sediment, pore water, and overlying water were monitored during winter and summer over a three year period at three different types of constructed treatment wetlands to evaluate their efficacy with season. Acid-volatile sulfide (AVS)...
Simulation of different types of ENSO impacts on South Asian Monsoon in CCSM4
NASA Astrophysics Data System (ADS)
Islam, Siraj ul; Tang, Youmin
2017-02-01
It has been found in observation that there are different types of influences of El Nino Southern Oscillation (ENSO) on the South Asian Monsoon (SAM). A correct description and representation of these teleconnections is critical for climate models to simulate and predict SAM. In this study, we examine these teleconnections in NCAR CAM4 and CCSM4 models, including the strength and weakness of these models in preserving different types of ENSO-SAM relationships. By using observational and simulation dataset, the composite analysis, based on specific selection criteria, is performed for both SAM rainfall and the eastern equatorial Pacific sea surface temperature (SST) anomalies. Anomalous SAM rainfall is characterized in three different types i.e. the indirect influence of the SST anomalies of preceding winter (DJF-only), direct influence of the SST anomalies of concurrent summer (JJAS-only) and the combined influence of both preceding winter and concurrent summer (DJF&JJAS). The analysis reveals that CAM4 uncoupled simulation can reasonably well reproduce the anomalous SAM rainfall in DJF-only and DJF&JJAS types whereas the model fails to simulate the anomalous rainfall in the JJAS-only type. The better performance of CAM4, particularly in DJF&JJAS type, comes from its realistic simulation of moisture content and thermal contrast. Its failure to preserve the ENSO-SAM relationship of JJAS-only type is due to the absence of ENSO induced warming in Northern Indian Ocean via atmospheric circulation which is indirectly linked to the lack of air-sea coupling. The role of Indian Ocean in controlling the ENSO-SAM teleconnections of the DJF&JJAS type is further investigated using CAM4 sensitivity experiments. It is found that in absence of Indian Ocean SST, the anomalous SAM summer rainfall suppresses in the DJF&JJAS type, suggesting the important modulation by Indian Ocean SST probably through the preceding winter equatorial Pacific SST forcing and the atmospheric circulations. On the other hand, CCSM4 shows large systematical errors in DJF-only and DJF&JJAS types and reproduce weak anomalous SAM rainfall. The failure of CCSM4 in simulating DJF-only and DJF&JJAS types is found mainly due to the errors in its SST simulation. The JJAS-only type is better reproduced in the CCSM4 simulation as compared to CAM4 and observation composites. Strong convergence over the SAM region which intensifies the anomalous SAM is seen to be responsible for its better simulation in this type. It is found that the atmospheric circulations in CCSM4 contribute more than the thermal contrast in modulating the intensity of anomalous rainfall in JJAS-only type. This study suggests that, although air-sea coupling is important for better SAM simulation and its relationship with ENSO, the SST bias in coupled model can significantly degrade ENSO-SAM relationship.
Komiskey, Matthew J.; Stuntebeck, Todd D.; Frame, Dennis R.; Madison, Fred W.
2011-01-01
Nutrients and sediment in surface runoff from frozen agricultural fields were monitored within three small (16.0 ha [39.5 ac] or less), adjacent basins at a no-till farm in southwest Wisconsin during four winters from 2003 to 2004 through 2006 to 2007. Runoff depths and flow-weighted constituent concentrations were compared to determine the impacts of surface-applied liquid-dairy or solid-beef manure to frozen and/or snow-covered ground. Despite varying the manure type and the rate and timing of applications, runoff depths were not significantly different among basins within each winter period. Sediment losses were low (generally less than 22 kg ha−1 [20 lb ac−1] in any year) and any statistical differences in sediment concentrations among basins were not related to the presence or absence of manure or the amount of runoff. Concentrations and losses of total nitrogen and total phosphorus were significantly increased in basins that had either manure type applied less than one week preceding runoff. These increases occurred despite relatively low application rates. Lower concentrations and losses were measured in basins that had manure applied in fall and early winter and an extended period of time (months) had elapsed before the first runoff event. The highest mean, flow-weighted concentrations of total nitrogen (31.8 mg L−1) and total phosphorus (10.9 mg L−1) occurred in winter 2003 to 2004, when liquid-dairy manure was applied less than one week before runoff. On average, dissolved phosphorus accounted for over 80% of all phosphorus measured in runoff during frozen-ground periods. The data collected as part of this study add to the limited information on the quantity and quality of frozen-ground runoff at field edges, and the results highlight the importance of manure management decisions during frozen-ground periods to minimize nutrients lost in surface runoff.
NASA Astrophysics Data System (ADS)
Manfron, Giacinto; Delmotte, Sylvestre; Busetto, Lorenzo; Hossard, Laure; Ranghetti, Luigi; Brivio, Pietro Alessandro; Boschetti, Mirco
2017-05-01
Crop simulation models are commonly used to forecast the performance of cropping systems under different hypotheses of change. Their use on a regional scale is generally constrained, however, by a lack of information on the spatial and temporal variability of environment-related input variables (e.g., soil) and agricultural practices (e.g., sowing dates) that influence crop yields. Satellite remote sensing data can shed light on such variability by providing timely information on crop dynamics and conditions over large areas. This paper proposes a method for analyzing time series of MODIS satellite data in order to estimate the inter-annual variability of winter wheat sowing dates. A rule-based method was developed to automatically identify a reliable sample of winter wheat field time series, and to infer the corresponding sowing dates. The method was designed for a case study in the Camargue region (France), where winter wheat is characterized by vernalization, as in other temperate regions. The detection criteria were chosen on the grounds of agronomic expertise and by analyzing high-confidence time-series vegetation index profiles for winter wheat. This automatic method identified the target crop on more than 56% (four-year average) of the cultivated areas, with low commission errors (11%). It also captured the seasonal variability in sowing dates with errors of ±8 and ±16 days in 46% and 66% of cases, respectively. Extending the analysis to the years 2002-2012 showed that sowing in the Camargue was usually done on or around November 1st (±4 days). Comparing inter-annual sowing date variability with the main local agro-climatic drivers showed that the type of preceding crop and the weather conditions during the summer season before the wheat sowing had a prominent role in influencing winter wheat sowing dates.
NASA Astrophysics Data System (ADS)
Van Loon, Anne; Laaha, Gregor; Van Lanen, Henny; Parajka, Juraj; Fleig, Anne; Ploum, Stefan
2016-04-01
Around the world, drought events with severe socio-economic impacts seem to have a link with winter snowpack. That is the case for the current California drought, but analysing historical archives and drought impact databases for the US and Europe we found many impacts that can be attributed to snowpack anomalies. Agriculture and electricity production (hydropower) were found to be the sectors that are most affected by drought related to snow. In this study, we investigated the processes underlying hydrological drought in snow-dominated regions. We found that drought drivers are different in different regions. In Norway, more than 90% of spring streamflow droughts were preceded by below-average winter precipitation, while both winter air temperature and spring weather were indifferent. In Austria, however, spring streamflow droughts could only be explained by a combination of factors. For most events, winter and spring air temperatures were above average (70% and 65% of events, respectively), and winter and spring precipitation was below average (75% and 80%). Because snow storage results from complex interactions between precipitation and temperature and these variables vary strongly with altitude, snow-related drought drivers have a large spatial variability. The weather input is subsequently modified by land properties. Multiple linear regression between drought severity variables and a large number of catchment characteristics for 44 catchments in Austria showed that storage influences both drought duration and deficit volume. The seasonal storage of water in snow and glaciers was found to be a statistically important variable explaining streamflow drought deficit. Our drought impact analysis in Europe also showed that 40% of the selected drought impacts was caused by a combination of snow-related and other drought types. For example, the combination of a winter drought with a preceding or subsequent summer drought was reported to have a large effect on reservoir levels and, consequently, on drinking water and electricity production. Snow storage therefore, is an important factor to consider in drought monitoring, prediction and management.
NASA Astrophysics Data System (ADS)
Van Loon, A.; Laaha, G.; Van Lanen, H.; Parajka, J.; Fleig, A. K.; Ploum, S.
2015-12-01
Around the world, drought events with severe socio-economic impacts seem to have a link with winter snowpack. That is the case for the current California drought, but analysing historical archives and drought impact databases for the US and Europe we found many impacts that can be attributed to snowpack anomalies. Agriculture and electricity production (hydropower) were found to be the sectors that are most affected by drought related to snow. In this study, we investigated the processes underlying hydrological drought in snow-dominated regions. We found that drought drivers are different in different regions. In Norway, more than 90% of spring streamflow droughts were preceded by below-average winter precipitation, while both winter air temperature and spring weather were indifferent. In Austria, however, spring streamflow droughts could only be explained by a combination of factors. For most events, winter and spring air temperatures were above average (70% and 65% of events, respectively), and winter and spring precipitation was below average (75% and 80%). Because snow storage results from complex interactions between precipitation and temperature and these variables vary strongly with altitude, snow-related drought drivers have a large spatial variability. The weather input is subsequently modified by land properties. Multiple linear regression between drought severity variables and a large number of catchment characteristics for 44 catchments in Austria showed that storage influences both drought duration and deficit volume. The seasonal storage of water in snow and glaciers was found to be a statistically important variable explaining streamflow drought deficit. Our drought impact analysis in Europe also showed that 40% of the selected drought impacts was caused by a combination of snow-related and other drought types. For example, the combination of a winter drought with a preceding or subsequent summer drought was reported to have a large effect on reservoir levels and, consequently, on drinking water and electricity production. Snow storage therefore, is an important factor to consider in drought monitoring, prediction and management.
September-March survival of female northern pintails radiotagged in San Joaquin Valley, California
Fleskes, J.P.; Jarvis, R.L.; Gilmer, D.S.
2002-01-01
To improve understanding of pintail ecology, we radiotagged 191 hatch-year (HY) and 228 after-hatch-year (AHY) female northern pintails (Anas acuta) in the San Joaquin Valley (SJV), and studied their survival throughout central California, USA, during September-March, 1991-1994. We used adjusted Akaike Information Criterion (AICc) values to contrast known-fate models and examine variation in survival rates relative to year, interval, wintering region (AJV, other central California), pintail age, body mass at capture, capture date, capture area, and radio type. The best-fitting model included only interval x year and age x body mass; the next 2 best-fitting models also included wintering region and capture date. Hunting caused 83% of the mortalities we observed, and survival was consistently lower during hunting than nonhunting intervals. Nonhunting and hunting mortality during early winter was highest during the 1991-1992 drought year. Early-winter survival improved during the study along with habitat conditions in the Grassland Ecological Area (EA), where most radiotagged pintails spent early winter. Survival was more closely related to body mass at capture for HY than AHY pintails, even after accounting for the later arrival (based on capture date) of HY pintails, suggesting HY pintails are less adept at improving their condition. Thus, productivity estimates based on harvest age ratios may be biased if relative vulnerability of HY and AHY pintails is assumed to be constant because fall body condition of pintails may vary greatly among years. Cumulative winter survival was 75.6% (95% CI = 68.3% to 81.7%) for AHY and 65.4% (56.7% to 73.1%) for HY female pintails. Daily odds of survival in the cotton-agriculture landscape of the SJV were -21.3% (-40.3% to +3.7%) lower than in the rice-agriculture landscape of the Sacramento Valley (SACV) and other central California areas. Higher hunting mortality may be 1 reason pintails have declined more in SJV than in SACV.
Xiong, Li; Xu, Zhen-Feng; Wu, Fu-Zhong; Yang, Wan-Qin; Yin, Rui; Li, Zhi-Ping; Gou, Xiao-Lin; Tang, Shi-Shan
2014-05-01
This study characterized the dynamics of the activities of urease, nitrate reductase and nitrite reductase in both soil organic layer and mineral soil layer under three depths of snow pack (deep snowpack, moderate snowpack and shallow snowpack) over the three critical periods (snow formed period, snow stable period, and snow melt period) in the subalpine Abies faxoniana forest of western Sichuan in the winter of 2012 and 2013. Throughout the winter, soil temperature under deep snowpack increased by 46.2% and 26.2%, respectively in comparison with moderate snowpack and shallow snowpack. In general, the three nitrogen-related soil enzyme activities under shallow snowpack were 0.8 to 3.9 times of those under deep snowpack during the winter. In the beginning and thawing periods of seasonal snow pack, shallow snowpack significantly increased the activities of urease, nitrate and nitrite reductase enzyme in both soil organic layer and mineral soil layer. Although the activities of the studied enzymes in soil organic layer and mineral soil layer were observed to be higher than those under deep- and moderate snowpacks in deep winter, no significant difference was found under the three snow packs. Meanwhile, the effects of snowpack on the activities of the measured enzymes were related with season, soil layer and enzyme type. Significant variations of the activities of nitrogen-related enzymes were found in three critical periods over the winter, and the three measured soil enzymes were significantly higher in organic layer than in mineral layer. In addition, the activities of the three measured soil enzymes were closely related with temperature and moisture in soils. In conclusion, the decrease of snow pack induced by winter warming might increase the activities of soil enzymes related with nitrogen transformation and further stimulate the process of wintertime nitrogen transformation in soils of the subalpine forest.
NASA Astrophysics Data System (ADS)
Sankaré, Housseyni; Thériault, Julie M.
2016-11-01
Winter precipitation types can have major consequences on power outages, road conditions and air transportation. The type of precipitation reaching the surface depends strongly on the vertical temperature of the atmosphere, which is often composed of a warm layer aloft and a refreezing layer below it. A small variation of the vertical structure can lead to a change in the type of precipitation near the surface. It has been shown in previous studies that the type of precipitation depends also on the precipitation rate, which is directly linked to the particle size distribution and that a difference as low as 0.5 °C in the vertical temperature profile could change the type of precipitation near the surface. Given the importance of better understanding the formation of winter precipitation type, the goal of this study is to assess the impact of the snowflake habit aloft on the type of precipitation reaching the surface when the vertical temperature is near 0 °C. To address this, a one dimensional cloud model coupled with a bulk microphysics scheme was used. Four snowflake types (dendrite, bullet, column and graupel) have been added to the scheme. The production of precipitation at the surface from these types of snow has been compared to available observations. The results showed that the thickness of the snow-rain transition is four times deeper when columns and graupel only fall through the atmosphere compared to dendrites. Furthermore, a temperature of the melting layer that is three (four) times warmer is required to completely melt columns and graupel (dendrites). Finally, the formation of freezing rain is associated with the presence of lower density snowflakes (dendrites) aloft compared to the production of ice pellets (columns). Overall, this study demonstrated that the type of snowflakes has an impact on the type of precipitation reaching the surface when the temperature is near 0 °C.
Two distinct phenotypes of asthma in elite athletes identified by latent class analysis.
Couto, Mariana; Stang, Julie; Horta, Luís; Stensrud, Trine; Severo, Milton; Mowinckel, Petter; Silva, Diana; Delgado, Luís; Moreira, André; Carlsen, Kai-Håkon
2015-01-01
Clusters of asthma in athletes have been insufficiently studied. Therefore, the present study aimed to characterize asthma phenotypes in elite athletes using latent class analysis (LCA) and to evaluate its association with the type of sport practiced. In the present cross-sectional study, an analysis of athletes' records was carried out in databases of the Portuguese National Anti-Doping Committee and the Norwegian School of Sport Sciences. Athletes with asthma, diagnosed according to criteria given by the International Olympic Committee, were included for LCA. Sports practiced were categorized into water, winter and other sports. Of 324 files screened, 150 files belonged to asthmatic athletes (91 Portuguese; 59 Norwegian). LCA retrieved two clusters: "atopic asthma" defined by allergic sensitization, rhinitis and allergic co-morbidities and increased exhaled nitric oxide levels; and "sports asthma", defined by exercise-induced respiratory symptoms and airway hyperesponsiveness without allergic features. The risk of developing the phenotype "sports asthma" was significantly increased in athletes practicing water (OR = 2.87; 95% CI [1.82-4.51]) and winter (OR = 8.65; 95% CI [2.67-28.03]) sports, when compared with other athletes. Two asthma phenotypes were identified in elite athletes: "atopic asthma" and "sports asthma". The type of sport practiced was associated with different phenotypes: water and winter sport athletes had three- and ninefold increased risk of "sports asthma". Recognizing different phenotypes is clinically relevant as it would lead to distinct targeted treatments.
NASA Astrophysics Data System (ADS)
Velázquez, Nadia Jimena; Burry, Lidia Susana; Fugassa, Martín Horacio; Civalero, María Teresa; Aschero, Carlos Alberto
2014-01-01
Palynological, palaeoparasitological and paleobotanical studies of coprolites found in archaeological sites from Perito Moreno National Park (47°57‧S72°05‧W) yielded information on diet, palaeoenvironment and health. These studies allowed adding evidence to the reconstruction of life history of the hunter-gatherers that inhabited Patagonia during the Holocene. We examined the season of the year when camelid Lama guanicoe coprolites (5400 ± 64 yr 14C BP to 9640 ± 190 yr 14C BP) were deposited at Cerro Casa de Piedra 7 (site CCP7). The study used palynological evidence and comparison with pollen spectra of modern feces collected during summer, fall, winter and spring of 2010. The dominant types were: pollen of Nothofagus, Empetrum rubrum, Asteraceae subfam. Asteroideae, Nassauvia, Caryophyllaceae and Poaceae; fern spores; remains of Eimeria macusaniensis; and plant remains of Poaceae, Festuca pallescens, Stipa speciosa, Armeria maritima, Gaultheria mucronata and E. rubrum. Pollen spectra of modern and fossil feces were used for multivariate analysis. Coprolites associated to fall and winter modern feces. These results and those obtained from pollen concentration values and the presence of pollen types indicators of seasonality, allowed the determination of summer, fall and winter coprolites. However, caution must be taken with the seasonality results of coprolites dated earlier than 9000 years BP since the environmental conditions differed from now. The site was probably a camelid shelter during the unfavorable seasons.
Góral, Tomasz; Wiśniewska, Halina; Ochodzki, Piotr; Walentyn-Góral, Dorota
2016-10-18
Resistance to Fusarium head blight in 32 winter triticale and 34 winter wheat accessions was evaluated. Triticale and wheat were sown in field experiments in two locations. At the time of flowering, heads were inoculated with three Fusarium culmorum isolates. Fusarium head blight index was scored and after the harvest percentage of Fusarium damaged kernels was assessed. Grain was analysed for type B trichothecenes (deoxynivalenol and derivatives, nivalenol) and zearalenone (ZEN) content. The average Fusarium head blight indexes were 28.0% for wheat and 19.2% for triticale accessions. The percentage of Fusarium damaged kernels was also higher for wheat and came to 55.6%, while for triticale this figure was 40.2%. The average content of deoxynivalenol (DON) for wheat amounted to 11.65 mg/kg and was lower than the result for triticale which was 14.12 mg/kg. The average contents of nivalenol were similar in both cereals: 4.13 mg/kg and 5.19 mg/kg for wheat and triticale respectively. Considerable amounts of DON derivatives in the cereals were also detected. The ZEN content in the grain was 0.60 mg/kg for wheat and 0.66 mg/kg for triticale. Relationships between Fusarium head blight index, Fusarium damaged kernels and mycotoxin contents were statistically significant for wheat and mostly insignificant for triticale. Triticale proved to have less infected heads and kernels than wheat. However, the content of type B trichothecenes was higher in triticale grain than in wheat grain.
EFFECTS OF BURNRATE, WOOD SPECIES, ALTITUDE, AND STOVE TYPE ON WOODSTOVE EMISSIONS
During the winter of 1986-87, the U.S. Environmental Protection Agency (EPA) conducted an emission measurement program in Boise, ID, as part of the Integrated Air Cancer Project (IACP). This program was designed to identify the potential mutagenic impact of residential wood burni...
Fracture Analysis of Welded Type 304 Stainless Steel Pipe
1986-11-01
American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code . In order to accomplish these objectives, a series of seven full...Mechanical Engineers Boiler and Pressure Vessel Code , Section XI IWB-3640 (Winter Addenda 1983). 5. Ranganath, S., and U.S. Mehta, "Engineering Methods for
ERIC Educational Resources Information Center
Crumpecker, Cheryl
2012-01-01
When the author asks her students to illustrate different types of weather, invariably their paintings look like nonobjective artwork: Winter often becomes one snowman with hundreds of asterisk snowflakes scattered throughout the picture. Spring? A rainbow with smiley-faced suns. So, in what direction could the author lead her students that would…
NASA Astrophysics Data System (ADS)
Huixia, Wu; Angela, Doherty; Jones, Huw D.
Agrobacterium-mediated transformation of wheat is becoming a viable alternative to the more established biolistic protocols. It offers advantages in terms of simple, low-copy-number integrations and can be applied with similar efficiencies to specific durum wheat and spring and winter bread wheat types varieties.
Teaching Avalanche Safety Courses: Instructional Techniques and Field Exercises.
ERIC Educational Resources Information Center
Watters, Ron
This paper discusses course structure, teaching techniques, and field exercises for enhancing winter travelers' avalanche knowledge and skills. In two class sessions, the course typically consists of a historical perspective; a section on snow physics (clouds, types of snow crystals, effects of riming, identification of precipitated snow crystals,…
Investigating Type I Polar Stratospheric Cloud Formation Mechanisms with POAM Satellite Observations
NASA Technical Reports Server (NTRS)
Strawa, Anthony W.; Drdla, K.; Fromm, M.; Hoppel, K.; Browell, E.; Hamill, P.; Dempsey, D.; Gore, Warren J. (Technical Monitor)
2001-01-01
Type Ia PSCs are believed to be composed of nitric acid hydrate particles. Recent results from the SOLVE/THESEO 2000 campaign showed evidence that this type of PSC was composed of a small number of very large particles capable of sedimentary denitrification of regions of the stratosphere. It is unknown whether homogeneous or heterogeneous nucleation is responsible for the formation of these PSCs. Arctic winters are tending to be colder in response to global tropospheric warming. The degree to which this influences ozone depletion will depend on the freezing mechanism of nitric acid hydrate particles. If nucleation is homogeneous it implies that the freezing process is an inherent property of the particle, while heterogeneous freezing means that the extent of PSCs will depend in part on the number of nuclei available. The Polar Ozone and Aerosol Measurement (POAM)II and III satellites have been making observations of stratospheric aerosols and Polar Stratospheric Clouds (PSCs) since 1994. Recently, we have developed a technique that can discriminate between Type Ia and Ib PSCs using these observations. A statistical approach is employed to demonstrate the robustness of this approach and results are compared with lidar measurements. The technique is used to analyze observations from POAM II and II during Northern Hemisphere winters where significant PSC formation occurred with the objective of exploring Type I PSC formation mechanisms. The different PSCs identified using this method exhibit different growth curve as expressed as extinction versus temperature.
A nutritionally mediated risk effect of wolves on elk.
Christianson, David; Creel, Scott
2010-04-01
Though it is widely argued that antipredator responses carry nutritional costs, or risk effects, these costs are rarely measured in wild populations. To quantify risk effects in elk, a species that strongly responds to the presence of wolves, we noninvasively monitored diet selection and nutrient balance in wintering elk in the Upper Gallatin, Montana, USA, over three winters while quantifying the local presence of wolves at a fine spatiotemporal scale. Standard nutritional indices based on the botanical and chemical composition of 786 fecal samples, 606 snow urine samples, and 224 forage samples showed that elk were generally malnourished throughout winter. Increased selection for dietary nitrogen within forage types (e.g., grasses) led to approximately 8% higher fecal nitrogen in the presence of wolves. However, urinary allantoin : creatinine and potassium : creatinine ratios decreased in the presence of wolves, suggesting large declines in energy intake, equal to 27% of maintenance requirements. Urinary nitrogen : creatinine ratios confirmed that deficiencies in nitrogen and/or energy were exacerbated in the presence of wolves, leading to increased endogenous protein catabolism. Overall, the nutritional effects of wolf presence may be of sufficient magnitude to reduce survival and reproduction in wintering elk. Nutritionally mediated risk effects may be important for understanding predator-prey dynamics in wild populations, but such effects could be masked as bottom-up forces if antipredator responses are not considered.
Isotope signatures in winter moulted feathers predict malaria prevalence in a breeding avian host.
Yohannes, Elizabeth; Hansson, Bengt; Lee, Raymond W; Waldenström, Jonas; Westerdahl, Helena; Akesson, Mikael; Hasselquist, Dennis; Bensch, Staffan
2008-11-01
It is widely accepted that animal distribution and migration strategy might have co-evolved in relation to selection pressures exerted by parasites. Here, we first determined the prevalence and types of malaria blood parasites in a breeding population of great reed warblers Acrocephalus arundinaceus using PCR. Secondly, we tested for differences in individual feather stable isotope signatures (delta (13)C, delta (15)N, deltaD and delta (34)S) to investigate whether malaria infected and non-infected birds had occupied different areas in winter. We show that birds moulting in Afro-tropical habitats with significantly higher delta (13)C and delta (15)N but lower deltaD and delta(34)S values were more frequently infected with malaria parasites. Based on established patterns of isotopic distributions, our results indicate that moulting sites with higher incidence of malaria are generally drier and situated further to the north in West Africa than sites with lower incidence of malaria. Our findings are pertinent to the general hypothesis that animal distribution and particularly avian migration strategy might evolve in response to selection pressures exerted by parasites at different geographic scales. Tradeoffs between investment in energy demanding life history traits (e.g. migration and winter moult) and immune function are suggested to contribute to the particular choice of habitat during migration and at wintering sites.
Gao, Dawen; Li, Zhe; Guan, Junxue; Liang, Hong
2017-04-01
In this study, we investigated the occurrence and fate of nonylphenol (NP), nonylphenol monoethoxylate (NP1EO) and nonylphenol diethoxylate (NP2EO) in a full scale sewage treatment plant, which applied an Anaerobic/Oxic process. Concentrations of NP, NP1EO and NP2EO in the wastewater were measured during the period spanning a whole year. The results showed remarkable seasonal variation in the concentrations of the compounds. The NPnEO compounds were most abundant in winter, with the total concentrations of influent NP, NP1EO and NP2EO ranging from 3900 to 7000ng/L, 4000 to 4800ng/L and 5200 to 7200ng/L, respectively. Regarding the total removal efficiencies of the three types of short-chain NPnEO compounds, different trends were exhibited according to different seasons. The average removal efficiency of NP for the different seasons ranked as follows: winter>summer>autumn>spring; NP2EO concentrations decreased as follows: summer>autumn>winter>spring, while NP1EO concentrations reduced according to: spring>summer>autumn>winter. We also investigated the contribution ratio of individual treatment units in the A/O process, with the findings suggesting that the anaerobic treatment unit plays an important role in the elimination of short-chain NPnEOs from the wastewater. Copyright © 2016. Published by Elsevier B.V.
Correlates of Harlequin Duck densities during winter in Prince William Sound, Alaska
Esler, Daniel N.; Bowman, Timothy D.; Dean, T.A.; O'Clair, Charles E.; Jewett, S.C.; McDonald, L.L.
2000-01-01
We evaluated relationships of Harlequin Duck (Histrionicus histrionicus) densities to habitat attributes, history of habitat contamination by the 1989 Exxon Valdez oil spill, and prey biomass density and abundance during winters 1995-1997 in Prince William Sound, Alaska. Habitat features that explained variation in duck densities included distance to streams and reefs, degree of exposure to wind and wave action, and dominant substrate type. After accounting for these effects, densities were lower in oiled than unoiled areas, suggesting that population recovery from the oil spill was not complete, due either to lack of recovery from initial oil spill effects or continuing deleterious effects. Prey biomass density and abundance were not strongly related to duck densities after accounting for habitat and area effects. Traits of Harlequin Ducks that reflect their affiliation with naturally predictable winter habitats, such as strong site fidelity and intolerance of increased energy costs, may make their populations particularly vulnerable to chronic oil spill effects and slow to recover from population reductions, which may explain lower densities than expected on oiled areas nearly a decade following the oil spill.
Payling, Laura M; Juniper, Darren T; Drake, Chris; Rymer, Caroline; Givens, D Ian
2015-07-01
Milk is the largest source of iodine in UK diets and an earlier study showed that organic summer milk had significantly lower iodine concentration than conventional milk. There are no comparable studies with winter milk or the effect of milk fat class or heat processing method. Two retail studies with winter milk are reported. Study 1 showed no effect of fat class but organic milk was 32.2% lower in iodine than conventional milk (404 vs. 595 μg/L; P<0.001). Study 2 found no difference between conventional and Channel Island milk but organic milk contained 35.5% less iodine than conventional milk (474 vs. 306 μg/L; P<0.001). UHT and branded organic milk also had lower iodine concentrations than conventional milk (331 μg/L; P<0.001 and 268 μg/L: P<0.0001 respectively). The results indicate that replacement of conventional milk by organic or UHT milk will increase the risk of sub-optimal iodine status especially for pregnant/lactating women. Copyright © 2015 Elsevier Ltd. All rights reserved.
Particulate pollution in different housing types in a UK suburban location.
Nasir, Zaheer Ahmad; Colbeck, Ian
2013-02-15
To investigate the levels of particulate pollution in residential built environments measurements of PM(10), PM(2.5), and PM(1) and concentrations were made between 2004 and 2008 in various residencies in a UK suburban location. Measurements were carried out in three different residential settings (Types I, II and III). In type I non-smoking living rooms, the highest 24-hour mean concentrations were found in summer. When smoking took place in type I residences, the concentrations of PM(10), PM(2.5) and PM(1), during the winter were almost double those in summer. In type II houses the concentrations were higher in the houses with open plan kitchens than in those with separate kitchens. In type III houses, mean concentrations were significantly higher in wood heated living rooms than those using central heating. In kitchens, cooking resulted in substantially higher concentrations of particulate matter with levels above those in smoking living rooms in winter. The hourly maximum values of number concentration were considerably higher in smoking rooms than non-smoking ones. Cooking resulted in increased number concentrations, with the average hourly maximum concentration of 179,110 #/cm(3). Particle mass and number emission rates were determined for a number of activities. In kitchens grilling had the highest average number emission rate, followed by boiling and frying. The results clearly highlight the impact of different forms of dwelling and their use and management by occupants on the levels of particulate matter in naturally ventilated residential built environments. Copyright © 2012 Elsevier B.V. All rights reserved.
Timing effects in health valuations.
Leiter, Andrea M; Pruckner, Gerald J
2014-06-01
This paper analyzes the impact of external sources of information, conveyed by the frequency of risky events that vary across time, on the individual willingness to pay (WTP) for a reduction of mortality risk. We collected data from a contingent valuation (CV) exercise conducted in two waves (fall and winter) to examine whether individual WTP varied across periods that differed in the predominance of fatal accidents. Risk valuations were based on fatal snow avalanche accidents, that is, a type of risk with seasonal differences in occurrence. We found slightly lower but statistically significant mean WTP figures in the winter than in the fall sample because of time-varying individual risk attitudes and, therefore, recommend controlling for these factors in risk assessment CV surveys. Copyright © 2013 John Wiley & Sons, Ltd.
Ammonia emissions from dairy production in Wisconsin.
Harper, L A; Flesch, T K; Powell, J M; Coblentz, W K; Jokela, W E; Martin, N P
2009-05-01
Ammonia gas is the only significant basic gas that neutralizes atmospheric acid gases produced from combustion of fossil fuels. This reaction produces an aerosol that is a component of atmospheric haze, is implicated in nitrogen (N) deposition, and may be a potential human health hazard. Because of the potential impact of NH3 emissions, environmentally and economically, the objective of this study was to obtain representative and accurate NH3 emissions data from large dairy farms (>800 cows) in Wisconsin. Ammonia concentrations and climatic measurements were made on 3 dairy farms during winter, summer, and autumn to calculate emissions using an inverse-dispersion analysis technique. These study farms were confinement systems utilizing freestall housing with nearby sand separators and lagoons for waste management. Emissions were calculated from the whole farm including the barns and any waste management components (lagoons and sand separators), and from these components alone when possible. During winter, the lagoons' NH3 emissions were very low and not measurable. During autumn and summer, whole-farm emissions were significantly larger than during winter, with about two-thirds of the total emissions originating from the waste management systems. The mean whole-farm NH3 emissions in winter, autumn, and summer were 1.5, 7.5, and 13.7% of feed N inputs emitted as NH3-N, respectively. Average annual emission comparisons on a unit basis between the 3 farms were similar at 7.0, 7.5, and 8.4% of input feed N emitted as NH3-N, with an annual average for all 3 farms of 7.6 +/- 1.5%. These winter, summer, autumn, and average annual NH3 emissions are considerably smaller than currently used estimates for dairy farms, and smaller than emissions from other types of animal-feeding operations.
Activity pattern and personal exposure to nitrogen dioxide in indoor and outdoor microenvironments.
Kornartit, C; Sokhi, R S; Burton, M A; Ravindra, Khaiwal
2010-01-01
People are exposed to air pollution from a range of indoor and outdoor sources. Concentrations of nitrogen dioxide (NO(2)), which is hazardous to health, can be significant in both types of environments. This paper reports on the measurement and analysis of indoor and outdoor NO(2) concentrations and their comparison with measured personal exposure in various microenvironments during winter and summer seasons. Furthermore, the relationship between NO(2) personal exposure in various microenvironments and including activities patterns were also studied. Personal, indoor microenvironments and outdoor measurements of NO(2) levels were conducted using Palmes tubes for 60 subjects. The results showed significant differences in indoor and outdoor NO(2) concentrations in winter but not for summer. In winter, indoor NO(2) concentrations were found to be strongly correlated with personal exposure levels. NO(2) concentration in houses using a gas cooker was higher in all rooms than those with an electric cooker during the winter campaign, whereas there was no significant difference noticed in summer. The average NO(2) levels in kitchens with a gas cooker were twice as high as those with an electric cooker, with no significant difference in the summer period. A time-weighted average personal exposure was calculated and compared with measured personal exposures in various indoor microenvironments (e.g. front doors, bedroom, living room and kitchen); including non-smokers, passive smokers and smoker. The estimated results were closely correlated, but showed some underestimation of the measured personal exposures to NO(2) concentrations. Interestingly, for our particular study higher NO(2) personal exposure levels were found during summer (14.0+/-1.5) than winter (9.5+/-2.4).
Remote Diagnosis of Nitrogen Status in Winter Oilseed Rape
NASA Astrophysics Data System (ADS)
Liu, S.
2016-12-01
Winter oilseed rape is one of the most important oilseed crops in the world. Compared with cereal crops, it requires high amount of nitrogen (N) supplies, but it is also characterized by low N use efficiency. The N nutrition index (NNI), defined as the ratio of the actual plant N concentration (PNC) to the critical PNC at a given biomass level, has been widely used to diagnose plant N status and to aid optimizing N fertilization. But traditional techniques to determine NNI in the lab are time-consuming and expensive. Remote sensing provides a promising approach for large-scale and rapid monitoring and diagnosis of crop N status. In this study, we conducted the experiment in the winter oilseed rape field with eight fertilization treatments in the growing season of 2014 and 2015. PNC, dry mass, and canopy spectra were measured during the different growth stages of winter oilseed rape. The N dilution curve was developed with measurements, and NNI was computed and analyzed for different treatments and different growth stage. For the same treatment, NNI decreased as more leaves were developing. Two methods were applied to remotely estimating NNI for winter oilseed rape: (1) NNI was estimated directly with vegetation indices (VIs) derived from canopy spectra; (2) the actual PNC and the critical PNC at the given biomass level were estimated separately with different types of VIs, and NNI was then computed with the two parts of the estimations. We found that VIs based solely on bands in the visible region provided the most accurate estimates of PNC. Estimating NNI directly with VIs had better performance than estimating the actual PNC and the critical PNC separately.
NASA Astrophysics Data System (ADS)
Poyda, Arne; Wizemann, Hans-Dieter; Ingwersen, Joachim; Wulfmeyer, Volker; Streck, Thilo
2017-04-01
The impact of agricultural land use on soil organic carbon (SOC) dynamics has been widely studied in the past few decades, particularly in context of the SOC forcing or mitigation potential of global climate change. Grassland utilization can increase or maintain SOC stocks. Arable cropping tends to decrease SOC stocks, at least for some time after land use change (SMITH, 2008). In the long run, it can be assumed that SOC reaches a steady state where the production of roots and aboveground crop residues and possibly organic fertilization level out soil respiration. To study the effects of crop type, year and regional site conditions on CO2 exchange and C budgets of arable cropping systems in Southwest Germany, eddy covariance measurements were conducted on a total of six sites in the two climatically contrasting regions of Kraichgau and Swabian Alb since 2009. Main crops were winter wheat, silage maize and winter rapeseed but also winter barley, summer barley and spelt were cultivated on the Swabian Alb sites. Cover crops were grown between winter and summer crops on all sites. Net ecosystem exchange (NEE) data were gap-filled following REICHSTEIN et al. (2005) and partitioned into ecosystem respiration (RECO) and gross primary production (GPP) using seasonally differing temperature response functions of nighttime NEE. Furthermore, different approaches for filling long data gaps of several months in winter were evaluated. Considering C inputs by organic fertilizers and C removals by harvest, C budgets were calculated per site and year. First results indicate that the variability of NEE fluxes between different crops is much higher compared to the variability between different years of a certain crop. However, regional differences in soil and weather conditions significantly influence plant growth dynamics and thus CO2 exchange.
NASA Astrophysics Data System (ADS)
Humber, M. L.; Copati, E.; Sanchez, A.; Sahajpal, R.; Puricelli, E.; Becker-Reshef, I.
2017-12-01
Accurate crop production data is fundamental for reducing uncertainly and volatility in the domestic and international agricultural markets. The Agricultural Estimates Department of the Buenos Aires Grain Exchange has worked since 2000 on the estimation of different crop production data. With this information, the Grain Exchange helps different actors of the agricultural chain, such as producers, traders, seed companies, market analyst, policy makers, into their day to day decision making. Since 2015/16 season, the Grain Exchange has worked on the development of a new earth observations-based method to identify winter crop planted area at a regional scale with the aim of improving crop production estimates. The objective of this new methodology is to create a reliable winter crop mask at moderate spatial resolution using Landsat-8 imagery by exploiting bi-temporal differences in the phenological stages of winter crops as compared to other landcover types. In collaboration with the University of Maryland, the map has been validated by photointerpretation of a stratified statistically random sample of independent ground truth data in the four largest producing provinces of Argentina: Buenos Aires, Cordoba, La Pampa, and Santa Fe. In situ measurements were also used to further investigate conditions in the Buenos Aires province. Preliminary results indicate that while there are some avenues for improvement, overall the classification accuracy of the cropland and non-cropland classes are sufficient to improve downstream production estimates. Continuing research will focus on improving the methodology for winter crop mapping exercises on a yearly basis as well as improving the sampling methodology to optimize collection of validation data in the future.
Evidence of negative leaders which precede fast rise ICC pulses of upward
NASA Astrophysics Data System (ADS)
Yoshida, S.; Akita, M.; Morimoto, T.; Ushio, T.; Kawasaki, Z.; Wang, D.; Takagi, N.
2008-12-01
During winter thunderstorm season in Japan, a lightning observation campaign was conducted with using a VHF broadband digital interferometer (DITF), a capacitive antenna, and Rogowski coils to study the charge transfer mechanism associated with ICC pulses of upward lightning. All the detection systems recorded one upward negative lightning stroke hitting a lightning protection tower. The upward lightning consists of only the Initial Stage (IS) with one upward positive leader and six ICC pulses. The six ICC pulses are sub-classified clearly into two types according to current pulse shapes. The type 1 ICC pulses have a higher geometric mean (GM) current peak of 17 kA and a shorter GM 10-90% risetime of 8.9 μs, while the type 2 ICC pulses have a lower GM current peak of 0.34 kA and longer GM 10-90% risetime of 55 μs. The type 1 ICC pulses have the preceding negative leaders connecting to the channel of the continuing current, while the type 2 ICC pulses have no clear preceding negative leader. These negative leaders prior to the type 1 ICC pulses probably caused the current increases of the ICC pulses, which means that the negative leaders created the channels for the ICC pulses. The height of the space charge transferred by one of the type 1 ICC pulses was estimated about 700 m above sea level at most. This observation result is the first evidence to show explicitly the existence of the negative leaders prior to the fast rise ICC pulse. Furthermore, the result shows that space charge could exist at a low attitude such as 700 m above sea level. This fact is one of the reasons why upward lightning occurs even from rather low structures during winter thunderstorm season in Japan.
Lee, Cameron C
2015-11-01
Previous research using varying methods has shown that the day-to-day variability in cardiovascular (CV)-related mortality is correlated with a number of different meteorological variables, though these relationships can vary geographically. This research systematically examines the relationship between anomalous winter CV-related mortality and geographically and seasonally relative multivariate surface weather types derived from a recently developed gridded weather typing classification (GWTC) for cities in varying climate regions of the United States of America (USA). Results indicate that for all locations examined, during winter, a dry and cool (DC) weather type is significantly related to increased CV-related mortality, especially in the 2 weeks immediately after it occurs, with no apparent mortality displacement. Across the USA as a whole, the peak of this relationship is a 4.1% increase in CV-related mortality at a lag of 3 days. Spike days in CV-related mortality show similar trends, being over 50% more likely 2 to 4 days after the DC type occurs. A humid and warm (HW) weather type exhibited a significant and opposite relationship to that of DC. While these results for DC and HW were statistically significant at every location examined, the magnitudes were larger in the warmer locations. Among other weather types, Warm Front Passages (WFP) were also related to significant increases in CV-related mortality, especially 1 day after they occurred. Though this link was much more varied geographically than results found with DC or HW, it suggests that sequences of multiple DC days followed by WFP may result in increased CV-related mortality.
Identification of aerosol types over an urban site based on air-mass trajectory classification
NASA Astrophysics Data System (ADS)
Pawar, G. V.; Devara, P. C. S.; Aher, G. R.
2015-10-01
Columnar aerosol properties retrieved from MICROTOPS II Sun Photometer measurements during 2010-2013 over Pune (18°32‧N; 73°49‧E, 559 m amsl), a tropical urban station in India, are analyzed to identify aerosol types in the atmospheric column. Identification/classification is carried out on the basis of dominant airflow patterns, and the method of discrimination of aerosol types on the basis of relation between aerosol optical depth (AOD500 nm) and Ångström exponent (AE, α). Five potential advection pathways viz., NW/N, SW/S, N, SE/E and L have been identified over the observing site by employing the NOAA-HYSPLIT air mass back trajectory analysis. Based on AE against AOD500 nm scatter plot and advection pathways followed five major aerosol types viz., continental average (CA), marine continental average (MCA), urban/industrial and biomass burning (UB), desert dust (DD) and indeterminate or mixed type (MT) have been identified. In winter, sector SE/E, a representative of air masses traversed over Bay of Bengal and Eastern continental Indian region has relatively small AOD (τpλ = 0.43 ± 0.13) and high AE (α = 1.19 ± 0.15). These values imply the presence of accumulation/sub-micron size anthropogenic aerosols. During pre-monsoon, aerosols from the NW/N sector have high AOD (τpλ = 0.61 ± 0.21), and low AE (α = 0.54 ± 0.14) indicating an increase in the loading of coarse-mode particles over Pune. Dominance of UB type in winter season for all the years (i.e. 2010-2013) may be attributed to both local/transported aerosols. During pre-monsoon seasons, MT is the dominant aerosol type followed by UB and DD, while the background aerosols are insignificant.
NASA Astrophysics Data System (ADS)
Lee, Cameron C.
2015-11-01
Previous research using varying methods has shown that the day-to-day variability in cardiovascular (CV)-related mortality is correlated with a number of different meteorological variables, though these relationships can vary geographically. This research systematically examines the relationship between anomalous winter CV-related mortality and geographically and seasonally relative multivariate surface weather types derived from a recently developed gridded weather typing classification (GWTC) for cities in varying climate regions of the United States of America (USA). Results indicate that for all locations examined, during winter, a dry and cool (DC) weather type is significantly related to increased CV-related mortality, especially in the 2 weeks immediately after it occurs, with no apparent mortality displacement. Across the USA as a whole, the peak of this relationship is a 4.1% increase in CV-related mortality at a lag of 3 days. Spike days in CV-related mortality show similar trends, being over 50% more likely 2 to 4 days after the DC type occurs. A humid and warm (HW) weather type exhibited a significant and opposite relationship to that of DC. While these results for DC and HW were statistically significant at every location examined, the magnitudes were larger in the warmer locations. Among other weather types, Warm Front Passages (WFP) were also related to significant increases in CV-related mortality, especially 1 day after they occurred. Though this link was much more varied geographically than results found with DC or HW, it suggests that sequences of multiple DC days followed by WFP may result in increased CV-related mortality.
NASA Technical Reports Server (NTRS)
Pawson, Steven; Lamich, David; Ledvina, Andrea; Lucchesi, Robert; Owens, Tommy; Newman, Paul A.; Atlas, Robert (Technical Monitor)
2002-01-01
An evaluation is presented of the performance in the northern winter 1999/2000 of the GEOS-3 troposphere-stratosphere data assimilation system (DAS). The impacts of the two main input data types are assessed: upper-air soundings (sondes) provide wind and temperature information and satellite-based (Tiros Operational Vertical Sounders: TOVS) give estimates of the thermal structure. It is shown that in the low stratosphere (300-70hPa) the analyses are generally slightly warmer than the sonde data, but colder than the TOVS data; this relationship reverses between 70 and 10 hPa. There are geographical biases, related to the spatial and temporal coverage of the observation types and to the statistical weights assigned to them in the DAS. Forecasts show a tendency to reduce zonal asymmetries in the atmospheric flow and to suppress stratospheric temperature minima. In the DAS, the analysis increments compensate for this, but it leads to important biases in the multi-day forecasts. The analysis increments are as large as the diabatic forcing in the lower polar stratosphere, indicating a substantial model bias. The results provide important insights into the roles of different data types and the circulation model in producing accurate analyses for studies of polar chemistry and physical processes.
Kang, Sung-Ryong; King, Sammy L.
2013-01-01
Hydrologic connectivity and environmental variation can influence nekton assemblages in coastal ecosystems. We evaluated the effects of hydrologic connectivity (permanently connected pond: PCP; temporary connected pond: TCP), salinity, vegetation coverage, water depth and other environmental variables on seasonal nekton assemblages in freshwater, brackish, and saline marshes of the Chenier Plain, Louisiana, USA. We hypothesize that 1) nekton assemblages in PCPs have higher metrics (density, biomass, assemblage similarity) than TCPs within all marsh types and 2) no nekton species would be dominant across all marsh types. In throw traps, freshwater PCPs in Fall (36.0 ± 1.90) and Winter 2009 (43.2 ± 22.36) supported greater biomass than freshwater TCPs (Fall 2009: 9.1 ± 4.65; Winter 2009: 8.3 ± 3.42). In minnow traps, saline TCPs (5.9 ± 0.85) in Spring 2009 had higher catch per unit effort than saline PCPs (0.7 ± 0.67). Our data only partially support our first hypothesis as freshwater marsh PCPs had greater assemblage similarity than TCPs. As predicted by our second hypothesis, no nekton species dominated across all marsh types. Nekton assemblages were structured by individual species responses to the salinity gradient as well as pond habitat attributes (submerged aquatic vegetation coverage, dissolved oxygen, hydrologic connectivity).
Identification of type and causes of filamentous bulking under Mediterranean conditions.
Noutsopoulos, C; Andreadakis, A; Mamais, D; Gavalakis, E
2007-01-01
A national survey to identify the most common filamentous microorganisms in Greek wastewater treatment plants, to assess the extent of filamentous bulking phenomenon and to correlate the occurrence of these bacteria to specific operating parameters, was carried out for five years. According to the conclusions of this survey filamentous bulking is a widespread phenomenon in Greek wastewater treatment plants. Almost 70% of the sludge samples examined exhibited filament indices greater than 4 during the winter period. The most common filamentous species found in a decreasing order were M. parvicella, Type 0092, GALOs, Type 0041 and N. limicola. A seasonal variation of the composition of the biomass was observed. M. parvicella is the dominant species during winter periods, while T0092 is the dominant species during summer conditions. This seasonal pattern of biomass composition was followed by a similar seasonal variation of the settling characteristics in terms of Filament Index (FI) and Sludge Volume Index (SVI) values. M. parvicella's proliferation is favored in Carrousel and oxidation ditches systems especially when primary settling stage was preceeded, whereas its growth is also highly stimulated in intermittent aeration systems, even in the absence of primary settling tanks. Finally there is evidence that Bio-P systems without primary sedimentation inhibit its growth.
The Behaviour of the Military Battery Type BB248/U Used to Start the Engine of the A.P.C.
1979-12-01
UNCLASS IFIED I I ABSTRACT ~ ‘The performance of the lead—acid battery used to start the diesel engine ~~~~he Armoured Personnel Carrier...vehicle engines . One factor limiting the performance of this battery system is the very low Canadian winter temperatures, especially in Northern...information on the conditions of discharge inside the vehicle. For example, the military battery type BB248/U used to start the engine of the Armoured
USDA-ARS?s Scientific Manuscript database
Type of heifer development system can have major impact on the future productivity and retention rate of the cowherd. Therefore, the objective of this experiment was to determine growth, reproductive performance, retention rate, and economic efficiency of heifer’s developed in a range raised (with ...
Microhabitat Characteristics of sites used by swamp rabbits
Patrick A. Zollner; Winston P. Smith; Leonard A. Brennan
2000-01-01
The swamp rabbit (Sylvilagus aquaticus) is one of the least studied North American lagomorphs; a better understanding of the habitat types it uses will improve management of this species. We studied microhabitat characteristics of sites associated with specific behaviors of the swamp rabbit. During spring-summer (15 April-1 October) and fall-winter (...
Vulnerability of crops and native grasses to summer drying in the U.S. Southern Great Plains
USDA-ARS?s Scientific Manuscript database
The Southern Great Plains are characterized by a fine-scale mixture of different land cover types, predominantly winter-wheat and pasture lands, with relatively small areas of other crops, native prairie, and switchgrass. Recent droughts and predictions of increased drought (especially during the s...
The influence of weather on fibrinolysis and fibrinogenolysis. [in human body
NASA Technical Reports Server (NTRS)
Marchenko, V. I.
1974-01-01
Analysis of fibrinolysis and fibrinogenolysis indices by month showed an increase in the activity of these processes from winter to summer (1967-1968). At all seasons of the year, fibrinolysis and fibrinogenolysis increase during weather of the cyclonic type with passage of fronts and sharp fluctuations in meteorological factors in the atmosphere.
Habitat and host associations of Craterellus tubaeformis in northwestern Oregon.
M.J. Trappe
2004-01-01
Knowledge of the habitat and host associations of Craterellus tubaeformis (winter chanterelle) is the key to understanding the ecological characteristics needed for its conservation. In this study, a survey of forest types in northwestern Oregon for mycorrhizal associates is performed and the hypotheses that stand age and the volume of well-decayed...
About | USDA Plant Hardiness Zone Map
of plants. Wind, soil type, soil moisture, humidity, pollution, snow, and winter sunshine can greatly it might cause rapid changes in the plant's temperature. Soil moisture: Plants have different requirements for soil moisture, and this might vary seasonally. Plants that might otherwise be hardy in your
ERIC Educational Resources Information Center
Sarvis, Gisele Winton
2010-01-01
Hiking between the farmer's field and the deciduous forest at Scanlon Creek Nature Centre near Bradford, Ontario, a grade 3 class and the author were studying different types of soils. As soil explorers they were hiking to different locations to see, touch and smell clay, silt and humus soils. The author always likes to bring a sense of discovery…
Big Rock Candy Mountain. Resources for Our Education. A Learning to Learn Catalog. Winter 1970.
ERIC Educational Resources Information Center
Portola Inst., Inc., Menlo Park, CA.
Imaginative learning resources of various types are reported in this catalog under the subject headings of process learning, education environments, classroom materials and methods, home learning, and self discovery. Books reviewed are on the subjects of superstition, Eastern religions, fairy tales, philosophy, creativity, poetry, child care,…
Snow Pads Used for Pipeline Construction in Alaska, 1976. Construction, Use and Breakup,
1980-07-01
vens Village, this winter road proceeded north- pass of a wheeled or tracked vehicle using a ward through Bettles and Anaktuvuk Pass to blade if...successfully by quirements and then describes how these can be Hercules C-130 and executive jet-type aircraft. met using specified quantities of materials
In the Hot Seat--Analyzing Your Heating Options
ERIC Educational Resources Information Center
Palliser, Janna
2011-01-01
When winter rolls around, keeping yourself and your home warm is of the utmost importance. Heating your home seems like a simple subject to tackle, but there are many heating systems available, requiring different fuels, installations, and costs. The various fuel types and their environmental footprints will be the focus of this month's column.…
USDA-ARS?s Scientific Manuscript database
Summer-dormant cool-season grasses might be a viable component of pasture if Mediterranean and Mediterranean-type environments with relative mild winters and hot and dry summers. Management practices for summer-dormant forages are being developed, including production strategies with compatible leg...
Uejio, Christopher K; Yale, Steven H; Malecki, Kristen; Borchardt, Mark A; Anderson, Henry A; Patz, Jonathan A
2014-04-01
This study investigated if the type of drinking water source (treated municipal, untreated municipal, and private well water) modifies the effect of hydrology on childhood (aged < 5 years) gastrointestinal illness. We conducted a time series study to assess the relationship between hydrologic and weather conditions with childhood gastrointestinal illness from 1991 to 2010. The Central and Northern Wisconsin study area includes households using all 3 types of drinking water systems. Separate time series models were created for each system and half-year period (winter/spring, summer/fall). More precipitation (summer/fall) systematically increased childhood gastrointestinal illness in municipalities accessing untreated water. The relative risk of contracting gastrointestinal illness was 1.4 in weeks with 3 centimeters of precipitation and 2.4 in very wet weeks with 12 centimeters of precipitation. By contrast, gastrointestinal illness in private well and treated municipal areas was not influenced by hydrologic conditions, although warmer winter temperatures slightly increased incidence. Our study suggests that improved drinking water protection, treatment, and delivery infrastructure may improve public health by specifically identifying municipal water systems lacking water treatment that may transmit waterborne disease.
Carbon budgets of thirteen years at the FLUXNET cropland site Oensingen, Switzerland
NASA Astrophysics Data System (ADS)
Emmel, Carmen; Revill, Andrew; Hörtnagl, Lukas; Eugster, Werner
2017-04-01
The FLUXNET cropland site at Oensingen, Switzerland (CH-Oe2) is located on the Swiss Plateau, which is representative for the average domain of agricultural crop production in Switzerland. The site is managed under the low pesticide integrated production (IP) farming protocol and features a crop rotation focusing on winter wheat, but also includes winter barley, rapeseed, peas and potatoes as well as intermediate cover crops. Thirteen years of eddy covariance and meteorological measurements are available for the site. The carbon imports through manure applications and sowing, along with the exports through harvests, were quantified. In this study, we analyze the carbon budgets of all crop types and measurement years. These results will be compared to changes in soil carbon content. We will answer the questions: (1) Has the crop rotation and field management resulted in a net carbon source or sink? (2) To what extent are the different crop types linked to net carbon exchanges? (3) What are the climatic potential drivers for the interannual cropland carbon budget? (4) Is the carbon budget reflected in the changes in soil carbon content?
Seasonal food use by white-tailed deer at Valley Forge National Historical Park, Pennsylvania, USA
NASA Astrophysics Data System (ADS)
Cypher, Brian L.; Yahner, Richard H.; Cypher, Ellen A.
1988-03-01
Food habits of white-tailed deer ( Odocoileus virginianus) were examined from January to November 1984 via fecal-pellet analysis at Valley Forge National Historical Park (VFNHP), which represents an “island” habitat for deer surrounded by extensive urbanization, in southeastern Pennsylvania. In addition, use of fields by deer was compared to food habits. Herbaceous vegetation (forbs, leaves of woody plants, and conifer needles) was the predominant food type in all seasons except fall. Acorns and graminoids (grasses and sedges) were important food resources in fall and spring, respectively. Use of woody browse (twigs) was similar among seasons. Field use was relatively high during fall, winter without snow cover (<20 cm), and spring when food resources in fields were readily available. In contrast, use of fields was lowest in summer when preferred woodland foods were available and in winter with snow cover when food in fields was not readily accessible. Patterns of food-type use by deer at VFNHP indicate the year-round importance of nonwoody foods and field habitats to deer populations on public lands such as national parks in the northeastern United States.
Eker, Hatice Koçak; Derinkuyu, Betül Emine; Ünal, Sevim; Masliah-Planchon, Julien; Drunat, Séverine; Verloes, Alain
2014-01-01
Baraitser-Winter syndrome (BRWS) is a rare condition affecting the development of the brain and the face. The most common characteristics are unusual facial appearance including hypertelorism and ptosis, ocular colobomas, hearing loss, impaired neuronal migration and intellectual disability. BRWS is caused by mutations in the ACTB and ACTG1 genes. Cerebro-fronto-facial syndrome (CFFS) is a clinically heterogeneous condition with distinct facial dysmorphism, and brain abnormalities. Three subtypes are identified. We report a female infant with striking facial features and brain anomalies (included polymicrogyria) that fit into the spectrum of the CFFS type 3 (CFFS3). She also had minor anomalies on her hands and feet, heart and kidney malformations, and recurrent infections. DNA investigations revealed c.586C>T mutation (p.Arg196Cys) in ACTB. This mutation places this patient in the spectrum of BRWS. The same mutation has been detected in a polymicrogyric patient reported previously in literature. We expand the malformation spectrum of BRWS/CFFS3, and present preliminary findings for phenotype-genotype correlation in this spectrum. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
NASA Astrophysics Data System (ADS)
Kelly, A. E.; Goulden, M.; Fellows, A. W.
2013-12-01
California's Mediterranean climate supports a broad diversity of ecosystem types, including Sequoia forests in the mid-montane Sierra Nevada. Understanding how winter cold and summer drought interact to produce the lush forest in the Sierra is critical to predicting the impacts of projected climate change on California's ecosystems, water supply, and carbon cycling. We investigated how smooth gradients of temperature and water availability produced sharp thresholds in biomass, productivity, growing season, water use, and ultimately ecosystem type and function. We used the climate gradient of the western slope of the Sierra Nevada as a study system. Four eddy covariance towers were situated in the major ecosystem types of the Sierra Nevada at approximately 800-m elevation intervals. Eddy flux data were combined with remote sensing and direct measurements of biomass, productivity, soil available water, and evapotranspiration to understand how weather and available water control ecosystem production and function. We found that production at the high elevation lodgepole site at 2700 m was strongly limited by winter cold. Production at the low elevation oak woodland site at 400 m was strongly limited by summer drought. The yellow pine site at 1200 m was only 4 °C cooler than the oak woodland site, yet had an order of magnitude more biomass and productivity with year-round growth. The mixed conifer site at 2000 m is 3.5 °C warmer than the lodgepole forest, yet also has higher biomass, ten times higher productivity, and year-round growth. We conclude that there is a broad climatological 'sweet spot' within the Sierra Nevada, in which the Mediterranean climate can support large-statured forest with high growth rates. The range of the mid-elevation forest was sharply bounded by water limitation at the lower edge and cold limitation at the upper edge despite small differences in precipitation and temperature across these boundaries. Our results suggest that small changes in precipitation or winter warming could markedly alter ecosystem structure and function as well as carbon and water cycling in the Sierra Nevada.
Developing ecological criteria for prescribed fire in South Florida pine rockland ecosystems
Snyder, James R.; Ross, Michael S.; Koptur, Suzanne; Sah, Jay P.
2005-01-01
The pine rocklands of South Florida, characterized by a rich herbaceous flora with many narrowly endemic taxa beneath an overstory of south Florida slash pine (Pinus elliottii var. densa), are found in three areas: the Miami Rock Ridge of southeastern peninsular Florida, the Lower Florida Keys, and slightly elevated portions of the southern Big Cypress National Preserve. Fire is an important element in these ecosystems, since in its absence the pine canopy is likely to be replaced by dense hardwoods, resulting in loss of the characteristic pineland herb flora. Prescribed fire has been used in Florida Keys pine forests since the creation of the National Key Deer Refuge (NKDR), with the primary aim of reducing fuels. Because fire can also be an effective tool in shaping ecological communities, we conducted a 4-year research study which explored a range of fire management options in NKDR. The intent of the study was to provide the Fish and Wildlife Service and other land managers with information regarding when and where to burn in order to perpetuate these unique forests. In 1998 we initiated a burning experiment in a randomized complete block design. Three treatments were to be carried out in a single well-defined block in each of two characteristic understory types during each year from 1998 through 2000. One understory type was characterized by a relatively sparse shrub layer and a well-developed herb layer ('open'), and the second had a dense shrub layer and poorly developed herb layer ('shrubby'). The three burn treatments were: (a) summer burn, (b) winter burn, and (c) no burn, or control. Three 1- ha plots were established in each block, and randomly assigned to the three treatments. Though the first year experimental burns were carried out without incident, constraints posed by external factors, including nationwide and statewide prohibitions on prescribed burning due to wildfires in other regions, delayed the experimental burns and precluded collection of postburn data on one third of the burns. Ultimately we burned only eleven plots, three in winter and eight in summer, over a four-year period from 1998 to 2001. Vegetation was sampled in a stratified, nested design within 18 plots. Trees were sampled in a 1.0-ha plot, shrubs in twenty 50-m2 circular (radius 4 m) subplots within the tree plot, and the herb layer in four circular 1-m2 quadrats (radius 0.57 m) within each subplot. The amount of fuel in the shrub layer was estimated by applying regression models to plant dimensional data, and ground layer fuel was estimated by a harvest method. The effects of Key deer herbivory on regeneration of the understory pine rockland plant community after fire was studied by monitoring inside and outside exclosures established within two of the six blocks. Pine trees constituted more than half (53.3%) of the biomass, but understory fine fuels comprised a surprisingly high proportion of total aboveground biomass. In the three blocks in which paired summer and winter burns were successfully conducted, the summer burns were more intense than the winter burns as judged by our indicators of fire intensity. Because of the differences in fire intensity between seasons, it was not possible to say whether observed differences in vegetation response between summer and winter burns were due to season or to fire intensity. The mortality of South Florida slash pine trees was greater after the summer burn than the winter burn in each block, but other vegetation responses were rarely as consistent. For instance, Metopium showed less recovery after summer burns in two blocks and after the winter burn in the third block. Moreover, there were instances in which alternative growth stages of the same species responded differently. Adult palms succumbed more frequently to summer than winter burns, and mortality of Coccothrinax exceeded that of Thrinax. In contrast, small palms recovered more readily after summer burns than winter burns. High in
Czaban, Janusz; Wróblewska, Barbara; Sułek, Alicja; Mikos, Marzena; Boguszewska, Edyta; Podolska, Grażyna; Nieróbca, Anna
2015-01-01
Field experiments were conducted during three consecutive growing seasons (2007/08, 2008/09 and 2009/10) with four winter wheat (Triticum aestivum L.) cultivars - 'Bogatka', 'Kris', 'Satyna' and 'Tonacja' - grown on fields with a three-field crop rotation (winter triticale, spring barley, winter wheat) and in a four-field crop rotation experiment (spring wheat, spring cereals, winter rapeseed, winter wheat). After the harvest, kernels were surface disinfected with 2% NaOCl and then analysed for the internal infection by different species of Fusarium. Fusaria were isolated on Czapek-Dox iprodione dichloran agar medium and identified on the basis of macro- and micro-morphology on potato dextrose agar and synthetic nutrient agar media. The total wheat grain infection by Fusarium depended mainly on relative humidity (RH) and a rainfall during the flowering stage. Intensive rainfall and high RH in 2009 and 2010 in the period meant the proportions of infected kernels by the fungi were much higher than those in 2008 (lack of precipitation during anthesis). Weather conditions during the post-anthesis period changed the species composition of Fusarium communities internally colonising winter wheat grain. The cultivars significantly varied in the proportion of infected kernels by Fusarium spp. The growing season and type of crop rotation had a distinct effect on species composition of Fusarium communities colonising the grain inside. A trend of a higher percentage of the colonised kernels by the fungi in the grain from the systems using more fertilisers and pesticides as well as the buried straw could be perceived. The most frequent species in the grain were F. avenaceum, F. tricinctum and F. poae in 2008, and F. avenaceum, F. graminearum, F. tricinctum and F. poae in 2009 and 2010. The contents of deoxynivalenol and zearalenon in the grain were correlated with the percentage of kernels colonised by F. graminearum and were the highest in 2009 in the grain from the four-field crop rotation. The content of T-2/HT-2 toxins was the highest in 2010 in grain from the three-field crop rotation and it was correlated with the isolation frequency of F. langsethiae.
Dietary response of sympatric deer to fire using stable isotope analysis of liver tissue
Walter, W. David; Zimmerman, T.J.; Leslie, David M.; Jenks, J.A.
2009-01-01
Carbon (??13C) and nitrogen (??15N) isotopes in biological samples from large herbivores identify photosynthetic pathways (C3 vs. C4) of plants they consumed and can elucidate potential nutritional characteristics of dietary selection. Because large herbivores consume a diversity of forage types, ??13C and ??15N in their tissue can index ingested and assimilated diets through time. We assessed ??13C and ??15N in metabolically active liver tissue of sympatric mule deer (Odocoileus hemionus) and white-tailed deer (O. virginianus) to identify dietary disparity resulting from use of burned and unburned areas in a largely forested landscape. Interspecific variation in dietary disparity of deer was documented 2-3 years post-fire in response to lag-time effects of vegetative response to burning and seasonal (i.e., summer, winter) differences in forage type. Liver ??13C for mule deer were lower during winter and higher during summer 2 years post-fire on burned habitat compared to unburned habitat suggesting different forages were consumed by mule deer in response to fire. Liver ??15N for both species were higher on burned than unburned habitat during winter and summer suggesting deer consumed more nutritious forage on burned habitat during both seasons 2 and 3 years post-fire. Unlike traditional methods of dietary assessment that do not measure uptake of carbon and nitrogen from dietary components, analyses of stable isotopes in liver or similar tissue elucidated ??13C and ??15N assimilation from seasonal dietary components and resulting differences in the foraging ecology of sympatric species in response to fire.
Paralympic medical services for the 2010 paralympic winter games.
Taunton, Jack; Wilkinson, Michael; Celebrini, Rick; Stewart, Robert; Stasyniuk, Treny; Van de Vliet, Peter; Willick, Stuart; Ferrer, Josep Martinez
2012-01-01
To present the planning and medical encounters for the 2010 Paralympic Winter Games. Prospective medical encounter study. 2010 Paralympic Winter Games. Athletes, coaches, officials, workforce, volunteers, and media. Sport type: alpine, Nordic, and sledge hockey and curling. Participant type: athlete, workforce, and spectators. Terrain and speed. Medical encounters entered in database at competitive (alpine skiing, biathlon, cross-country skiing, sledge hockey, and curling) and noncompetitive (Whistler and Vancouver Polyclinics, presentation centers, opening and closing ceremonies, media center, Paralympic Family Hotel) venues. Forty-two nations participated with 1350 Paralympic athletes, coaches, and officials. There were 2590 accredited medical encounters (657 athletes, 25.4%; 682 International Federation/National Paralympic Committee officials, 26.3%; 57 IPC, 2.2%; 8 media, 0.3%; 1075 workforce, 41.5%; 111 others, 4.3%) and 127 spectator encounters for a total of 2717 encounters. During the preopening period medical services saw 201 accredited personnel. The busiest venues during the Paralympic Games were the Whistler (1633 encounters) and Vancouver (748 encounters) Polyclinics. Alpine, sledge hockey, and curling were the busiest competitive venues. The majority of medical encounters were musculoskeletal (44.6%, n = 1156). Medical services recorded 1657 therapy treatments, 977 pharmaceutical prescriptions dispensed, 204 dental treatments, 353 imaging examinations (more than 50% from alpine skiing), and 390 laboratory tests. There were 24 ambulance transfers with 7 inpatient hospitalizations for a total of 24 inpatient days and 4 outpatient visits. The mandate to have minimal impact on the health services of Vancouver and the Olympic Corridor while offering excellent medical services to the Games was accomplished. This data will be valuable to future organizing committees.
NASA Astrophysics Data System (ADS)
Queralt, S.; Hernández, E.; Barriopedro, D.; Gallego, D.; Ribera, P.; Casanova, C.
2009-12-01
An analysis of winter intensity and frequency of precipitation is presented, based on 102 daily precipitation stations over Spain and the Balearic Islands for the 1997-2006 decade. Precipitation stations have been merged in the eight different regions which compose the analyzed area by the use of an EOF analysis. NAO influence on the intensity and frequency of precipitation of each region is described in terms of mean precipitation, mean rain frequency, the number of extreme events, changes in the precipitation distribution and the prevalent synoptic configuration. Results indicate a non-stationary response; NAO signal being more evident in mid-late winter. Strong regional differences in the response to NAO are also found, which vary according to the specific character of the precipitation under analysis. Thus, NAO exerts a clear effect on the intensity of total and extreme precipitation rates in northern and westernmost Spanish regions, whereas the frequency of precipitation is clearly affected by NAO in central and southwestern areas. While the correlation between NAO and precipitation is negative for most of the analyzed area, two regions reveal positive responses to NAO in total precipitation occurrence and intensity for specific months. Further analyses reveal asymmetric responses to opposite phases of NAO in the precipitation distributions of some regions. The complex regional relationship between NAO and precipitation is also revealed through the modulation of the former in the preferred Circulation Weather Types associated to precipitation in each region. This spatially non-homogeneous NAO signal stresses the need of caution when employing Iberian precipitation as a proxy for NAO.
Schiessl, Sarah; Samans, Birgit; Hüttel, Bruno; Reinhard, Richard; Snowdon, Rod J.
2014-01-01
Flowering, the transition from the vegetative to the generative phase, is a decisive time point in the lifecycle of a plant. Flowering is controlled by a complex network of transcription factors, photoreceptors, enzymes and miRNAs. In recent years, several studies gave rise to the hypothesis that this network is also strongly involved in the regulation of other important lifecycle processes ranging from germination and seed development through to fundamental developmental and yield-related traits. In the allopolyploid crop species Brassica napus, (genome AACC), homoeologous copies of flowering time regulatory genes are implicated in major phenological variation within the species, however the extent and control of intraspecific and intergenomic variation among flowering-time regulators is still unclear. To investigate differences among B. napus morphotypes in relation to flowering-time gene variation, we performed targeted deep sequencing of 29 regulatory flowering-time genes in four genetically and phenologically diverse B. napus accessions. The genotype panel included a winter-type oilseed rape, a winter fodder rape, a spring-type oilseed rape (all B. napus ssp. napus) and a swede (B. napus ssp. napobrassica), which show extreme differences in winter-hardiness, vernalization requirement and flowering behavior. A broad range of genetic variation was detected in the targeted genes for the different morphotypes, including non-synonymous SNPs, copy number variation and presence-absence variation. The results suggest that this broad variation in vernalization, clock and signaling genes could be a key driver of morphological differentiation for flowering-related traits in this recent allopolyploid crop species. PMID:25202314
Góral, Tomasz; Wiśniewska, Halina; Ochodzki, Piotr; Walentyn-Góral, Dorota
2016-01-01
Resistance to Fusarium head blight in 32 winter triticale and 34 winter wheat accessions was evaluated. Triticale and wheat were sown in field experiments in two locations. At the time of flowering, heads were inoculated with three Fusarium culmorum isolates. Fusarium head blight index was scored and after the harvest percentage of Fusarium damaged kernels was assessed. Grain was analysed for type B trichothecenes (deoxynivalenol and derivatives, nivalenol) and zearalenone (ZEN) content. The average Fusarium head blight indexes were 28.0% for wheat and 19.2% for triticale accessions. The percentage of Fusarium damaged kernels was also higher for wheat and came to 55.6%, while for triticale this figure was 40.2%. The average content of deoxynivalenol (DON) for wheat amounted to 11.65 mg/kg and was lower than the result for triticale which was 14.12 mg/kg. The average contents of nivalenol were similar in both cereals: 4.13 mg/kg and 5.19 mg/kg for wheat and triticale respectively. Considerable amounts of DON derivatives in the cereals were also detected. The ZEN content in the grain was 0.60 mg/kg for wheat and 0.66 mg/kg for triticale. Relationships between Fusarium head blight index, Fusarium damaged kernels and mycotoxin contents were statistically significant for wheat and mostly insignificant for triticale. Triticale proved to have less infected heads and kernels than wheat. However, the content of type B trichothecenes was higher in triticale grain than in wheat grain. PMID:27763547
A comparison of models for estimating potential evapotranspiration for Florida land cover types
Douglas, Ellen M.; Jacobs, Jennifer M.; Sumner, David M.; Ray, Ram L.
2013-01-01
We analyzed observed daily evapotranspiration (DET) at 18 sites having measured DET and ancillary climate data and then used these data to compare the performance of three common methods for estimating potential evapotranspiration (PET): the Turc method (Tc), the Priestley-Taylor method (PT) and the Penman-Monteith method (PM). The sites were distributed throughout the State of Florida and represent a variety of land cover types: open water (3), marshland (4), grassland/pasture (4), citrus (2) and forest (5). Not surprisingly, the highest DET values occurred at the open water sites, ranging from an average of 3.3 mm d-1 in the winter to 5.3 mm d-1 in the spring. DET at the marsh sites was also high, ranging from 2.7 mm d-1 in winter to 4.4 mm d-1 in summer. The lowest DET occurred in the winter and fall seasons at the grass sites (1.3 mm d-1 and 2.0 mm d-1, respectively) and at the forested sites (1.8 mm d-1 and 2.3 mm d-1, respectively). The performance of the three methods when applied to conditions close to PET (Bowen ratio ≤ 1) was used to judge relative merit. Under such PET conditions, annually aggregated Tc and PT methods perform comparably and outperform the PM method, possibly due to the sensitivity of the PM method to the limited transferability of previously determined model parameters. At a daily scale, the PT performance appears to be superior to the other two methods for estimating PET for a variety of land covers in Florida.
DeAnda, Abe; Grossi, Eugene A; Balsam, Leora B; Moon, Marc R; Barlow, Clifford W; Navia, Daniel O; Ursomanno, Patricia; Ziganshin, Bulat A; Rabinovich, Annette E; Elefteriades, John A; Smith, Julian A
2015-12-01
Seasonal variations of Stanford Type A dissections (STADs) have been previously described in the Northern Hemisphere (NH). This study sought to determine if these variation are mirrored in the Southern Hemisphere (SH). Data from patients treated surgically for STADs were retrospectively obtained from existing administrative and clinical databases from NH and SH sites. Data points of interest included age, sex, date of dissection, and 30-day mortality. The dates of dissections (independent of year) were then organized by season. A total of 1418 patients were identified (729 NH and 689 SH) with complete data available for 1415; 896 patients were male with a mean age was 61 ± 14 years, and the overall 30-day mortality was 17.3%. Comparison of NH and SH on a month-to-month basis demonstrated a 6-month phase shift and a significant difference by season, with STADs occurring predominantly in the winter and least in the summer. Decomposition of the monthly incidence using Fourier analysis revealed the phase shift of the primary harmonic to be -21.9 and 169.8 degrees (days), respectively, for NH and SH. The resultant 191.7 day difference did not exactly correspond to the anticipated 6-month difference but was compatible with the original hypothesis. Chronobiology plays a role in the occurrence of STADs with the highest occurrence in the winter months independent of the hemisphere. Season is not the predominant reason why aortas dissect, but for patients at risk, the increase in systemic vascular resistance during the winter months may account for the seasonal variations seen.
Song, Zhi-Wen; Wang, Lin; Xu, Ai-Ling; Wu, Deng-Deng; Xia, Yan
2015-02-01
Using BIOLOG-GN plates, this article describes the carbon sources metabolic characteristics of airborne microbial communities in a free surface-flow constructed wetland in different seasons and clarify the correlation between airborne microbial metabolic functions and environmental factors. The average well color development (AWCD), carbon metabolic profiles and McIntosh values of airborne microbial communities in different seasons were quite different. Analysis of the variations showed that AWCD in spring and summer differed significantly from that in autumn and winter (P < 0.01). In the same season, the degree of utilization of different types of carbon by airborne microbes was different. Summer had a significant difference from other seasons (P < 0.05). Dominant communities of airborne microbes in four seasons were carboxylic acids metabolic community, carbohydrates metabolic community, polymers metabolic community and carboxylic acids metabolic community respectively. Principal component analysis showed that the carbon metabolic characteristics of airborne microbial community in autumn were similar to those in winter but different from those in spring and summer. The characteristics of carbon metabolism revealed differences between summer and spring, autumn, or winter. These differences were mainly caused by amines or amides while the differences between spring and autumn or winter were mainly caused by carboxylic acids. Environmental factors, including changes in wind speed, temperature, and humidity acted to influence the carbon sources metabolic properties of airborne microbial community. The dominant environmental factors that acted to influence the carbon sources metabolic properties of airborne microbial community varied between different seasons.
NASA Technical Reports Server (NTRS)
Jeong, Hye-In; Lee, Doo Young; Karumuri, Ashok; Ahn, Joong-Bae; Lee, June-Yi; Luo, Jing-Jia; Schemm, Jae-Kyung E.; Hendon, Harry H.; Braganza, Karl; Ham, Yoo-Geun
2012-01-01
Forecast skill of the APEC Climate Center (APCC) Multi-Model Ensemble (MME) seasonal forecast system in predicting two main types of El Nino-Southern Oscillation (ENSO), namely canonical (or cold tongue) and Modoki ENSO, and their regional climate impacts is assessed for boreal winter. The APCC MME is constructed by simple composite of ensemble forecasts from five independent coupled ocean-atmosphere climate models. Based on a hindcast set targeting boreal winter prediction for the period 19822004, we show that the MME can predict and discern the important differences in the patterns of tropical Pacific sea surface temperature anomaly between the canonical and Modoki ENSO one and four month ahead. Importantly, the four month lead MME beats the persistent forecast. The MME reasonably predicts the distinct impacts of the canonical ENSO, including the strong winter monsoon rainfall over East Asia, the below normal rainfall and above normal temperature over Australia, the anomalously wet conditions across the south and cold conditions over the whole area of USA, and the anomalously dry conditions over South America. However, there are some limitations in capturing its regional impacts, especially, over Australasia and tropical South America at a lead time of one and four months. Nonetheless, forecast skills for rainfall and temperature over East Asia and North America during ENSO Modoki are comparable to or slightly higher than those during canonical ENSO events.
Eronen-Rasimus, Eeva; Luhtanen, Anne-Mari; Rintala, Janne-Markus; Delille, Bruno; Dieckmann, Gerhard; Karkman, Antti; Tison, Jean-Louis
2017-10-01
Antarctic sea-ice bacterial community composition and dynamics in various developmental stages were investigated during the austral winter in 2013. Thick snow cover likely insulated the ice, leading to high (<4 μg l -1 ) chlorophyll-a (chl-a) concentrations and consequent bacterial production. Typical sea-ice bacterial genera, for example, Octadecabacter, Polaribacter and Glaciecola, often abundant in spring and summer during the sea-ice algal bloom, predominated in the communities. The variability in bacterial community composition in the different ice types was mainly explained by the chl-a concentrations, suggesting that as in spring and summer sea ice, the sea-ice bacteria and algae may also be coupled during the Antarctic winter. Coupling between the bacterial community and sea-ice algae was further supported by significant correlations between bacterial abundance and production with chl-a. In addition, sulphate-reducing bacteria (for example, Desulforhopalus) together with odour of H 2 S were observed in thick, apparently anoxic ice, suggesting that the development of the anaerobic bacterial community may occur in sea ice under suitable conditions. In all, the results show that bacterial community in Antarctic sea ice can stay active throughout the winter period and thus possible future warming of sea ice and consequent increase in bacterial production may lead to changes in bacteria-mediated processes in the Antarctic sea-ice zone.
NASA Astrophysics Data System (ADS)
Vermote, E.; Franch, B.; Becker-Reshef, I.; Claverie, M.; Huang, J.; Zhang, J.; Sobrino, J. A.
2014-12-01
Wheat is the most important cereal crop traded on international markets and winter wheat constitutes approximately 80% of global wheat production. Thus, accurate and timely forecasts of its production are critical for informing agricultural policies and investments, as well as increasing market efficiency and stability. Becker-Reshef et al. (2010) used an empirical generalized model for forecasting winter wheat production. Their approach combined BRDF-corrected daily surface reflectance from Moderate resolution Imaging Spectroradiometer (MODIS) Climate Modeling Grid (CMG) with detailed official crop statistics and crop type masks. It is based on the relationship between the Normalized Difference Vegetation Index (NDVI) at the peak of the growing season, percent wheat within the CMG pixel, and the final yields. This method predicts the yield approximately one month to six weeks prior to harvest. In this study, we include the Growing Degree Day (GDD) information extracted from NCEP/NCAR reanalysis data in order to improve the winter wheat production forecast by increasing the timeliness of the forecasts while conserving the accuracy of the original model. We apply this modified model to three major wheat-producing countries: United States of America, Ukraine and China from 2001 to 2012. We show that a reliable forecast can be made between one month to a month and a half prior to the peak NDVI (meaning two months to two and a half months prior to harvest) while conserving an accuracy of 10% in the production forecast.
Characteristics of urban natural areas influencing winter bird use in southern Ontario, Canada.
Smith, Paul G R
2007-03-01
Characteristics of urban natural areas and surrounding landscapes were identified that best explain winter bird use for 28 urban natural areas in southern Ontario, Canada. The research confirms for winter birds the importance of area (size) and natural vegetation, rather than managed, horticultural parkland, within urban natural areas as well as percent urban land use and natural habitat in surrounding landscapes. Alien bird density and percent ground feeding species increased with percent surrounding urban land use. Higher percent forest cover was associated with higher percentages of forest, bark feeding, small (<20 g) and insectivorous species. Natural area size (ha) was related to higher species richness, lower evenness and higher percentages of insectivorous, forest interior, area-sensitive, upper canopy, bark feeding, and non-resident species. Higher number of habitat types within natural areas and percent natural habitat in surrounding landscapes were also associated with higher species richness. Common, resident bird species dominated small areas (<6.5 ha), while less common non-residents increased with area, indicative of a nested distribution. Areas at least 6.5 ha and more generally >20 ha start to support some area-sensitive species. Areas similar to rural forests had >25% insectivores, >25% forest interior species, >25% small species, and <5% alien species. Indicator species separated urban natural areas from rural habitats and ordination placed urban natural areas along a gradient between urban development and undisturbed, rural forests. More attention is needed on issues of winter bird conservation in urban landscapes.
Characteristics of Urban Natural Areas Influencing Winter Bird Use in Southern Ontario, Canada
NASA Astrophysics Data System (ADS)
Smith, Paul G. R.
2007-03-01
Characteristics of urban natural areas and surrounding landscapes were identified that best explain winter bird use for 28 urban natural areas in southern Ontario, Canada. The research confirms for winter birds the importance of area (size) and natural vegetation, rather than managed, horticultural parkland, within urban natural areas as well as percent urban land use and natural habitat in surrounding landscapes. Alien bird density and percent ground feeding species increased with percent surrounding urban land use. Higher percent forest cover was associated with higher percentages of forest, bark feeding, small (<20 g) and insectivorous species. Natural area size (ha) was related to higher species richness, lower evenness and higher percentages of insectivorous, forest interior, area-sensitive, upper canopy, bark feeding, and non-resident species. Higher number of habitat types within natural areas and percent natural habitat in surrounding landscapes were also associated with higher species richness. Common, resident bird species dominated small areas (<6.5 ha), while less common non-residents increased with area, indicative of a nested distribution. Areas at least 6.5 ha and more generally >20 ha start to support some area-sensitive species. Areas similar to rural forests had >25% insectivores, >25% forest interior species, >25% small species, and <5% alien species. Indicator species separated urban natural areas from rural habitats and ordination placed urban natural areas along a gradient between urban development and undisturbed, rural forests. More attention is needed on issues of winter bird conservation in urban landscapes.
A study of the tolerance block approach to special stratification. [winter wheat in Kansas
NASA Technical Reports Server (NTRS)
Richardson, W. (Principal Investigator)
1979-01-01
The author has identified the following significant results. Twelve winter wheat LACIE segments in Kansas were used to compare the performance of three clustering methods: (1) BCLUST, which uses a spectral distance function to accumulate clusters; (2) blocks-alone, which divides spectral space into equally populated blocks; and (3) block-seeds, which uses spectral means of blocks-alone as seeds for accumulating distance-type clusters. Both BCLUST and block-seeds performed equally well and outperformed blocks-alone significantly. Their average variance ratio of about 0.5 showed imperfect separation of wheat from non-wheat. This result points to the need to explore the achievable crop separability in the spectral/temporal domain, and suggest evaluating derived features rather than data channels as a means to achieve purer spectral strata.
Trends in extreme daily temperatures and humidex index in the United Arab Emirates over 1948-2014.
NASA Astrophysics Data System (ADS)
Yang, H. W.; Ouarda, T.
2015-12-01
This study deals with the analysis of the characteristics of extreme temperature events in the Middle East, using NCEP reanalysis gridded data, for the summer (May-October) and winter (November-April) seasons. Trends in the occurrences of three types of heat spells during 1948-2014 are studied by both Linear Regression (LR) and Mann-Kendall (MK) test. Changes in the diurnal temperature range (DTR) are also investigated. To better understand the effects of heat spells on public health, the Humidex, a combination index of ambient temperature and relative humidity, is also used. Using percentile threshold, temperature (Humidex) Type-A and Type-B heat spells are defined respectively by daily maximum and minimum temperature (Humidex). Type-C heat spells are defined as the joint occurrence of Type-A and Type-B heat spells at the same time. In the Middle East, it is found that no coherent trend in temperature Type-A heat spells is observed. However, the occurrences of temperature Type-B and C heat spells have consistently increased since 1948. For Humidex heat spells, coherently increased activities of all three types of heat spells are observed in the area. During the summer, the magnitude of the positive trends in Humidex heat spells are generally stronger than temperature heat spells. More than half of the locations in the area show significantly negative DTR trends in the summer, but the trends vary according to the region in the winter. Annual mean temperature has increased an average by 0.5°C, but it is mainly associated with the daily minimum temperature which has warmed up by 0.84°C.Daily maximum temperature showed no significant trends. The warming is hence stronger in minimum temperatures than in maximum temperatures resulting in a decrease in DTR by 0.16 °C per decade. This study indicates hence that the UAE has not become hotter, but it has become less cold during 1948 to 2014.
Prevalence of operator fatigue in winter maintenance operations.
Camden, Matthew C; Medina-Flintsch, Alejandra; Hickman, Jeffrey S; Bryce, James; Flintsch, Gerardo; Hanowski, Richard J
2018-02-02
Similar to commercial motor vehicle drivers, winter maintenance operators are likely to be at an increased risk of becoming fatigued while driving due to long, inconsistent shifts, environmental stressors, and limited opportunities for sleep. Despite this risk, there is little research concerning the prevalence of winter maintenance operator fatigue during winter emergencies. The purpose of this research was to investigate the prevalence, sources, and countermeasures of fatigue in winter maintenance operations. Questionnaires from 1043 winter maintenance operators and 453 managers were received from 29 Clear Road member states. Results confirmed that fatigue was prevalent in winter maintenance operations. Over 70% of the operators and managers believed that fatigue has a moderate to significant impact on winter maintenance operations. Approximately 75% of winter maintenance operators reported to at least sometimes drive while fatigued, and 96% of managers believed their winter maintenance operators drove while fatigued at least some of the time. Furthermore, winter maintenance operators and managers identified fatigue countermeasures and sources of fatigue related to winter maintenance equipment. However, the countermeasures believed to be the most effective at reducing fatigue during winter emergencies (i.e., naps) were underutilized. For example, winter maintenance operators reported to never use naps to eliminate fatigue. These results indicated winter maintenance operations are impacted by operator fatigue. These results support the increased need for research and effective countermeasures targeting winter maintenance operator fatigue. Copyright © 2018 Elsevier Ltd. All rights reserved.
Shrubland carbon sink depends upon winter water availability in the warm deserts of North America
Biederman, Joel A.; Scott, Russell L.; John A. Arnone,; Jasoni, Richard L.; Litvak, Marcy E.; Moreo, Michael T.; Papuga, Shirley A.; Ponce-Campos, Guillermo E.; Schreiner-McGraw, Adam P.; Vivoni, Enrique R.
2018-01-01
Global-scale studies suggest that dryland ecosystems dominate an increasing trend in the magnitude and interannual variability of the land CO2 sink. However, such model-based analyses are poorly constrained by measured CO2 exchange in open shrublands, which is the most common global land cover type, covering ∼14% of Earth’s surface. Here we evaluate how the amount and seasonal timing of water availability regulate CO2 exchange between shrublands and the atmosphere. We use eddy covariance data from six US sites across the three warm deserts of North America with observed ranges in annual precipitation of ∼100–400mm, annual temperatures of 13–18°C, and records of 2–8 years (33 site-years in total). The Chihuahuan, Sonoran and Mojave Deserts present gradients in both mean annual precipitation and its seasonal distribution between the wet-winter Mojave Desert and the wet-summer Chihuahuan Desert. We found that due to hydrologic losses during the wettest summers in the Sonoran and Chihuahuan Deserts, evapotranspiration (ET) was a better metric than precipitation of water available to drive dryland CO2 exchange. In contrast with recent synthesis studies across diverse dryland biomes, we found that NEP could not be directly predicted from ET due to wintertime decoupling of the relationship between ecosystem respiration (Reco) and gross ecosystem productivity (GEP). Ecosystem water use efficiency (WUE=GEP/ET) did not differ between winter and summer. Carbon use efficiency (CUE=NEP/GEP), however, was greater in winter because Reco returned a smaller fraction of carbon to the atmosphere (23% of GEP) than in summer (77%). Combining the water-carbon relations found here with historical precipitation since 1980, we estimate that lower average winter precipitation during the 21st century reduced the net carbon sink of the three deserts by an average of 6.8TgC yr1. Our results highlight that winter precipitation is critical to the annual carbon balance of these warm desert shrublands.
Temperature sequence of eggs from oviposition through distribution: processing--part 2.
Koelkebeck, K W; Patterson, P H; Anderson, K E; Darre, M J; Carey, J B; Ahn, D U; Ernst, R A; Kuney, D R; Jones, D
2008-06-01
The Egg Safety Action Plan released in 1999 raised questions concerning egg temperature used in the risk assessment model. Therefore, a national study was initiated to determine the internal and external temperature sequence of eggs from oviposition through distribution. Researchers gathered data from commercial egg production, shell egg processing, and distribution facilities. The experimental design was a mixed model with 2 random effects for season and geographic region and a fixed effect for operation type (inline or offline). For this report, internal and external egg temperature data were recorded at specific points during shell egg processing in the winter and summer months. In addition, internal egg temperatures were recorded in pre- and postshell egg processing cooler areas. There was a significant season x geographic region interaction (P < 0.05) for both surface and internal temperatures. Egg temperatures were lower in the winter vs. summer, but eggs gained in temperature from the accumulator to the postshell egg processing cooler. During shell egg processing, summer egg surface and internal temperatures were greater (P < 0.05) than during the winter. When examining the effect of shell egg processing time and conditions, it was found that 2.4 and 3.8 degrees C were added to egg surface temperatures, and 3.3 and 6.0 degrees C were added to internal temperatures in the summer and winter, respectively. Internal egg temperatures were higher (P < 0.05) in the preshell egg processing cooler area during the summer vs. winter, and internal egg temperatures were higher (P < 0.05) in the summer when eggs were (3/4) cool (temperature change required to meet USDA-Agricultural Marketing Service storage regulation of 7.2 degrees C) in the postshell egg processing area. However, the cooling rate was not different (P > 0.05) for eggs in the postshell egg processing cooler area in the summer vs. winter. Therefore, these data suggest that season of year and geographic location can affect the temperature of eggs during shell egg processing and should be a component in future assessments of egg safety.
Effects of Winter Climate Change on Plant and Soil Ecology of Cryoturbated Non-Sorted Circles Tundra
NASA Astrophysics Data System (ADS)
Monteux, S.; Krab, E. J.; Rönnefarth, J.; Becher, M.; Blume-Werry, G.; Kreyling, J.; Keuper, F.; Klaminder, J.; Kobayashi, M.; Lundin, E. J.; Milbau, A.; Teuber, L. M.; Weedon, J.; Dorrepaal, E.
2014-12-01
Cryoturbation is the movement of soil particles through repeated freeze-thaw events, resulting in the burial of large amounts of soil organic carbon (SOC). Non-sorted circles are a common type of cryoturbated ground in arctic and alpine areas underlain by permafrost. They appear as sparsely vegetated areas surrounded by denser tundra vegetation. Climate change in arctic environments will likely increase winter precipitation in large parts of the Arctic in Europe, Asia and America, resulting in deeper snow cover. Snow is a good thermal insulator and modifications in freezing intensity and freeze-thaw cycles are therefore likely, which could affect the burial of organic matter. Moreover, vegetation, soil fauna and soil microbial communities, which are important drivers of SOC dynamics, may be impacted directly by the altered winter conditions and indirectly by reduced cryoturbation. We aimed to investigate this, and therefore subjected non-sorted circles in North-Swedish subarctic alpine tundra to two years of increased thermal insulation in winter and spring, using snow fences or fibre cloth (Figure 1). Both snow fences and fibre cloth manipulations increased surface soil temperatures, especially daily minimum temperatures, and strongly reduced freeze-thaw frequency. We compared the impacts of these manipulations on plant performance, soil chemistry, soil fauna and soil microbial communities between the centre of the circles and the dense tundra heath just outside. Directly after snowmelt, the extra winter insulation decreased plant leaf damage, both in the centre and in adjacent tundra, but responses differed between species. We will further present the responses of plant phenology and growth, soil pH and dissolved organic carbon content, soil fauna activity, Collembola community composition and body size distribution, as well as fungal and bacterial diversity profiles and functional groups abundance. We expect that winter warming due to increased snow cover and its effects on cryoturbation will stimulate the biotic components of non-sorted circles, but may change the interactions between organisms at different trophic levels of this ecosystem. The resulting new balance between increased productivity and decomposer activity might have large implications for this important carbon pool.
Chattopadhyay, Bhaskar P; Das, Satadal; Adhikari, Atin; Alam, Jane
2007-06-01
Grain storage depot workers suffer from different respiratory problems after getting the exposure to storage grain dust. Which is a mixture of pesticides, fungi, silica, bacteria, spores, storage mites, animal hairs, pollens etc. The present study was undertaken to evaluate the fungal spore concentration in summer and winter season as well as the pulmonary function status of the workers; studies are limited in our country. In summer and winter seasons, air sampling was done to measure the airborne fungal spore concentration inside the godowns by Rotorod sampler, UK. Aspergilla, Alternaria, Drechslera, Epicoccum, Nigrospora, Periconia were very much common and found higher in winter compared to summer. The respiratory functional status was assessed in two groups of workers of the same storage grain depot (total n=316) in summer (n=136) and in winter (n=180). List of the workers was collected from the authority and randomly selected every alternate worker and divide them for the studies in summer and winter seasons. Slow Vital Capacity (SVC), Forced Vital Capacity (FVC), and Peak Expiratory Flow Rate (PEFR) were recorded and Forced Expiratory Volume in one second (FEV1), FEV1% and different flow rates were calculated. The Immunoglobulin- E (IgE) level in the blood serum was assessed on post shift pulmonary function tests (PFT) decreased workers. The age, height and weight of the same categories of workers of both studies are highly comparable. Mean PFT values in summer found higher than winter. A gradual decrement of values were found as age was increased but not with duration of exposure. Post-shift PFT was carried in 21.8% (69) workers of which 46.4% (32) workers showed the decrement of values. The serum IgE level of the post-shift PFT decreased subjects was found more than 250 IU/ml in 53.1% (17) workers. Restrictive, obstructive and combined types of respiratory impairments were noticed among the workers. Presence of different spores in varying concentration in the working atmosphere may be responsible for the post shift decrement of PFT, allergic symptoms, high IgE level and respiratory impairments among the workers.
American woodcock winter distribution and fidelity to wintering areas
Diefenbach, D.R.; Derleth, E.L.; Vander Haegen, W. Matthew; Nichols, J.D.; Hines, J.E.
1990-01-01
We examined winter distribution and fidelity to wintering areas for the American Woodcock (Scolopax minor), which exhibits reversed, sexual size dimorphism. Band-recovery data revealed no difference in winter distributions of different age/sex classes for woodcock from the same breeding ares. Similarly, band recoveries from woodcock banded on wintering grounds revealed no difference in fidelity to wintering sites. Males may winter north of a latitude that is optimal for survival based on physiological considerations, but they gain a reproductive advantage if they are among the first to arrive on the breeding grounds. This may explain our results, which indicate males and females have similar distribution patterns during winter.
Development of a Graduate Education Program for U.S. Army Interns and Careerists
ERIC Educational Resources Information Center
Schmidt, Steven W.; Mott, Vivian W.
2012-01-01
In the winter of 2007, a small group of faculty and administrators at East Carolina University (ECU) began discussions with personnel at the U.S. Army Training and Doctrine Command (TRADOC) at Fort Monroe, Virginia, regarding the education and continuing professional development of U.S. Army civilian interns and careerists (two types of…
Using a wood stove to heat greenhouses
Gloria Whitefeather-Spears
2009-01-01
The Red Lake Tribal Forestry Greenhouse in Red Lake, MN, utilizes four types of outdoor furnaces for heating through the fall, winter, and spring. The WoodMaster® is a highly efficient, wood-fired furnace that provides forced-air heat to the greenhouse. The HeatmorTM furnace is an economical wood-fired alternative that can provide lower...
ERIC Educational Resources Information Center
Office of Student Financial Assistance (ED), Washington, DC.
A manual on sampling is presented to assist audit and program reviewers, project officers, managers, and program specialists of the U.S. Office of Student Financial Assistance (OSFA). For each of the following types of samples, definitions and examples are provided, along with information on advantages and disadvantages: simple random sampling,…
Nitrogen deposition effects on Mediterranean-type ecosystems: An ecological assessment
R. Ochoa-Hueso; E.B. Allen; C. Branquinho; C. Cruz; T. Dias; Mark Fenn; E. Manrique; M.E. Pérez-Corona; L.J. Sheppard; W.D. Stock
2011-01-01
We review the ecological consequences of N deposition on the five Mediterranean regions of the world. Seasonality of precipitation and fires regulate the N cycle in these water-limited ecosystems, where dry N deposition dominates. Nitrogen accumulation in soils and on plant surfaces results in peaks of availability with the first winter rains. Decoupling between N...
Development of Public Affairs Media Use.
ERIC Educational Resources Information Center
Tims, Albert R., Jr.
To examine the relationship between parent and child news media use within specific age groups and to evaluate the stability of this use over time, 501 parent child pairs were interviewed by telephone in the winter and again in the fall of 1980 on their political views, social values, and media use. Findings on exposure to five types of…
Habitat usage by prairie grouse on the Sheyenne National Grasslands
Llewellyn L. Manske; William T. Barker
1988-01-01
Prairie grouse habitat usage was observed for six years. Spring and summer habitat usage was primarily in the upland and midland grassland habitat types. Habitat usage shifted during the fall and winter to cropland and associated tree shelterbelts. The switchgrass plant community was the primary concealment cover for nesting and roosting. Cropland and associated tree...
Deer Habitat in the Ozark Forests of Arkansas
Mitchell J. Rogers; Lowell K. Halls; James G. Dickson
1990-01-01
Two enclosures of 590 and 675 acres were constructed and stocked with white-tailed deer (Odocoileus virginianus) to determine the deer carrying capacity of an Ozark mountain forest and to evaluate the impact of winter food plots on deer survival and productivity. Deer diets varied considerably within and among years, and they were closely related to habitat type and...
Evaluation of capture techniques for long-billed curlews wintering in Texas
Woodin, Marc C.; Skoruppa, Mary K.; Edwardson, Jeremy W.; Austin, Jane E.
2012-01-01
Texas coast harbors the largest, eastern-most populations of Long-billed Curlews (Numenius americanus) in North America; however, very little is known about their migration and wintering ecology. Curlews are readily captured on their breeding grounds, but experience with capturing the species during the non-breeding season is extremely limited. We assessed the efficacy of 6 capture techniques for Long-billed Curlews in winter: 1) modified noose ropes, 2) remotely controlled bow net, 3) Coda Netgun, 4) Super Talon net gun, 5) Hawkseye whoosh net, and 6) cast net. The Coda Netgun had the highest rate of captures per unit of effort (CPUE = 0.31; 4 curlew captures/13 d of trapping effort), followed by bow net (CPUE = 0.17; 1 capture/6 d of effort), whoosh net (CPUE = 0.14; 1 capturel7 d of effort), and noose ropes (CPUE = 0.07; 1 capturel15 d of effort). No curlews were captured using the Super Talon net gun or a cast net (3 d and 1 d of effort, respectively). Multiple capture techniques should be readily available for maximum flexibility in matching capture methods with neophobic curlews that often unpredictably change referred feeding locations among extremely different habitat types.
Multidisciplinary fingerprints: forensic reconstruction of an insect reinvasion
Kim, Kyung Seok; Jones, Gretchen D.; Westbrook, John K.; Sappington, Thomas W.
2010-01-01
An unexpected outbreak of boll weevils, Anthonomus grandis, an insect pest of cotton, across the Southern Rolling Plains (SRP) eradication zone of west-central Texas, USA, was detected soon after passage of Tropical Storm Erin through the Winter Garden district to the south on 16 August 2007. The synchrony and broad geographic distribution of the captured weevils suggest that long-distance dispersal was responsible for the reinvasion. We integrated three types of assessment to reconstruct the geographic origin of the immigrants: (i) DNA fingerprinting; (ii) pollen fingerprinting; and (iii) atmospheric trajectory analysis. We hypothesized the boll weevils originated in the Southern Blacklands zone near Cameron, or in the Winter Garden district near Uvalde, the nearest regions with substantial populations. Genetic tests broadly agree that the immigrants originated southeast of the SRP zone, probably in regions represented by Uvalde or Weslaco. The SRP pollen profile from weevils matched that of Uvalde better than that of Cameron. Wind trajectories supported daily wind-aided dispersal of weevils from the Uvalde region to the SRP from 17 to 24 August, but failed to support migration from the Cameron region. Taken together the forensic evidence strongly implicates the Winter Garden district near Uvalde as the source of reinvading boll weevils. PMID:19828497
NASA Astrophysics Data System (ADS)
Changnon, David; Ritsche, Michael; Elyea, Karen; Shelton, Steve; Schramm, Kevin
2000-09-01
This paper illustrates a key lesson related to most uses of long-range climate forecast information, namely that effective weather-related decision-making requires understanding and integration of weather information with other, often complex factors. Northern Illinois University's heating plant manager and staff meteorologist, along with a group of meteorology students, worked together to assess different types of available information that could be used in an autumn natural gas purchasing decision. Weather information assessed included the impact of ENSO events on winters in northern Illinois and the Climate Prediction Center's (CPC) long-range climate outlooks. Non-weather factors, such as the cost and available supplies of natural gas prior to the heating season, contribute to the complexity of the natural gas purchase decision. A decision tree was developed and it incorporated three parts: (a) natural gas supply levels, (b) the CPC long-lead climate outlooks for the region, and (c) an ENSO model developed for DeKalb. The results were used to decide in autumn whether to lock in a price or ride the market each winter. The decision tree was tested for the period 1995-99, and returned a cost-effective decision in three of the four winters.
NASA Astrophysics Data System (ADS)
Le Corre, Nicolas; Peuziat, Ingrid; Brigand, Louis; Gélinaud, Guillaume; Meur-Férec, Catherine
2013-10-01
Disturbance to wintering birds by human recreational activities has become a major concern for managers of many natural areas. Few studies have examined how recreationists perceive their effects on birds, although this impacts their behavior on natural areas. We surveyed 312 users on two coastal ornithological sites in Brittany, France, to investigate their perception of the effects of human activities on wintering birds. The results show that the awareness of environmental issues and knowledge of bird disturbance depends on the socioeconomic characteristics of each user group, both between the two sites and within each site. Results also indicate that, whatever the site and the user group, the vast majority of the respondents (77.6 %) believed that their own presence had no adverse effects on the local bird population. Various arguments were put forward to justify the users' own harmlessness. Objective information on recreationists' awareness of environmental issues, and particularly on their own impact on birds, is important to guide managers in their choice of the most appropriate visitor educational programs. We recommend developing global but also specific educational information for each type of user to raise awareness of their own impact on birds.
Air-induction aspirator-aerators cut heat loss to the atmosphere
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hodel, A.E.
1993-04-01
The efficiency of biological treatment at the Amoco Chemical's Cedar Bayou plant's activated-sludge wastewater-treatment system was reduced when outdoor temperatures fell below 65[degrees]F. Amoco experienced microbe fragmenting and failure to settle in final clarification, especially during winter. Meeting permit standards during winter was a concern. With mechanical aerators, water is pumped upward and thrown into the air. Much heat loss in the aerated basin was from evaporation and conduction of the mechanical aerator spray. The plant's wastewater staff decided to replace the aerators with subsurface, propeller-type aerator-mixers. These air-induction, aspirating aerator-mixers employ a system that eliminates the spray action throughmore » which evaporation and conduction can occur. The aspirator-aeration systems also have saved energy. The units do not have to overcome the forces of gravity, as with mechanical, surface splasher aerators, which required more horsepower and higher energy consumption to throw the water up into the air. The new units can be conveniently turned on and off to match a fluctuating flow. Since the Cedar Bayou plant installed the system, the aspirator-aerators' subsurface mixing capabilities have made winter permit compliance a steadfast routine.« less
Cold hardiness in relation to trace metal stress in the freeze-avoiding beetle Tenebrio molitor.
Pedersen, Sindre A; Kristiansen, Erlend; Hansen, Bjørn H; Andersen, Rolf A; Zachariassen, Karl E
2006-08-01
The antifreeze proteins (AFPs) are a family of proteins characterised by their ability to inhibit the growth of ice. These proteins have evolved as a protection against lethal freezing in freeze avoiding species. Metal stress has been shown to reduce the cold hardening in invertebrates, but no study has investigated how this type of stress affects the production of AFPs. This study demonstrates that exposure to cadmium (Cd), copper (Cu) and zinc (Zn) reduces the normal developmental increase in AFP levels in Tenebrio molitor larvae reared under summer conditions. Exposure to winter conditions, however stimulated the production of AFPs in the metal exposed larvae, and raised the concentrations of AFPs to normal winter levels. The reduced level of AFPs in metal-stressed animals acclimated to summer conditions seems to arise from alterations in the normal gene expression of AFPs. The results indicate that metal exposure may cause freeze avoiding insects to become more susceptible to lethal freezing, as they enter the winter with lowered levels of AFPs. Such an effect cannot be revealed by ordinary toxicological tests, but may nevertheless be of considerable ecological importance.
Wintering ecology of adult North American ospreys
Washburn, Brian E.; Martell, Mark S.; Bierregaard, Richard O.; Henny, Charles J.; Dorr, Brian S.; Olexa, Thomas J.
2014-01-01
North American Ospreys (Pandion haliaetus) typically migrate long distances to their wintering grounds in the tropics. Beyond the general distribution of their wintering range (i.e., the Caribbean, South America, and Central America), very little is known about the wintering ecology of these birds. We used satellite telemetry to determine the duration of wintering period, to examine the characteristics of wintering areas used by Ospreys, and to quantify space use and activity patterns of wintering Ospreys. Adult Ospreys migrated to wintering sites and exhibited high wintering site fidelity among years. Overall, Ospreys wintered on river systems (50.6%) more than on lakes (19.0%), and use of coastal areas was (30.4%) intermediate. Ospreys remained on their wintering grounds for an average of 154 d for males and 167 d for females. Locations of wintering Ospreys obtained via GPS-capable satellite telemetry suggest these birds move infrequently and their movements are very localized (i.e., 2 and 1.4 km2, respectively. Overall, our findings suggest wintering adult North American Ospreys are very sedentary, demonstrating a pattern of limited daily movements and high fidelity to a few select locations (presumably roosts). We suggest this wintering strategy might be effective for reducing the risk of mortality and maximizing energy conservation.
Cold truths: how winter drives responses of terrestrial organisms to climate change.
Williams, Caroline M; Henry, Hugh A L; Sinclair, Brent J
2015-02-01
Winter is a key driver of individual performance, community composition, and ecological interactions in terrestrial habitats. Although climate change research tends to focus on performance in the growing season, climate change is also modifying winter conditions rapidly. Changes to winter temperatures, the variability of winter conditions, and winter snow cover can interact to induce cold injury, alter energy and water balance, advance or retard phenology, and modify community interactions. Species vary in their susceptibility to these winter drivers, hampering efforts to predict biological responses to climate change. Existing frameworks for predicting the impacts of climate change do not incorporate the complexity of organismal responses to winter. Here, we synthesise organismal responses to winter climate change, and use this synthesis to build a framework to predict exposure and sensitivity to negative impacts. This framework can be used to estimate the vulnerability of species to winter climate change. We describe the importance of relationships between winter conditions and performance during the growing season in determining fitness, and demonstrate how summer and winter processes are linked. Incorporating winter into current models will require concerted effort from theoreticians and empiricists, and the expansion of current growing-season studies to incorporate winter. © 2014 The Authors. Biological Reviews © 2014 Cambridge Philosophical Society.
NASA Astrophysics Data System (ADS)
Feng, S.
2017-12-01
Winter seasons have significant societal impacts across all sectors ranging from direct human health to ecosystems, transportation, and recreation. This study quantifies the severity of winter and its spatial-temporal variations using a newly developed winter severity index and daily temperature, snowfall and snow depth. The winter severity and the number of extreme winter days are decreasing across the global terrestrial areas during 1901-2015 except the southeast United States and isolated regions in the Southern Hemisphere. These changes are dominated by winter warming, while the changes in daily snowfall and snow depth played a secondary role. The simulations of multiple CMIP5 climate models can well capture the spatial and temporal variations of the observed changes in winter severity and extremes during 1951-2005. The models are consistent in projecting a future milder winter under various scenarios. The winter severity is projected to decrease 60-80% in the middle-latitude Northern Hemisphere under the business-as-usual scenario. The winter arrives later, ends earlier and the length of winter season will be notably shorter. The changes in harsh winter in the polar regions are weak, mainly because the warming leads to more snowfall in the high latitudes.
33 CFR 100.109 - Winter Harbor Lobster Boat Race, Winter Harbor, ME.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Winter Harbor Lobster Boat Race, Winter Harbor, ME. 100.109 Section 100.109 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF... Lobster Boat Race, Winter Harbor, ME. (a) Regulated area. The regulated area includes all waters of Winter...
NASA Astrophysics Data System (ADS)
Wang, D.; Takagi, N.
2012-12-01
We have observed the lightning occurred on a 100 m high windmill and its 105 m high standalone lightning-protection tower about 45 m separated from the windmill in the Hokuriku area of Japan for 7 consecutive winter seasons from 2005 to 2012. Our main observation items include: (1) Lightning current at the bottom of both the windmill and the tower. (2) Thunderstorm electric fields and the electric field changes caused by lightning at multiple sites. (3) Optical images by both low and high speed imaging systems. During the 7 winter seasons, over 100 lightning have hit either the tower or the windmill or both. All the lightning but two observed are of upward lightning. Those upward lightning can be sub-classified into self-initiated types and other-triggered types according to whether there is a discharge activity prior to the upward leaders or not. Self-initiated and other-triggered upward lightning tend to have biased percentages in terms of striking locations (windmill versus tower) and thunderstorm types (active versus weak). All the upward lightning but one contained only initial continuous current stages. In the presentation, we will first give a review on those results we have reported before [1-3]. As an update, we will report the following results. (1) The electric field change required for triggering a negative upward leader is usually more than twice bigger than that for triggering a positive upward leader. (2) An electric current pulse with an amplitude of several tens of Amperes along a high structure has been observed to occur in response to a rapid electric change generated by either a nearby return stroke or K-change. References [1] D.Wang, N.Takagi, T.Watanebe, H. Sakurano, M. Hashimoto, Observed characteristics of upward leaders that are initiated from a windmill and its lightning protection tower, Geophys. Res. Lett., Vol.35, L02803, doi:10.1029/2007GL032136, 2008. [2] W. Lu, D.Wang, Y. Zhang and N. Takagi, Two associated upward lightning flashes that produced opposite polarity electric field changes, Geophys. Res. Lett., Vol.36, L05801, doi:10.1029/2008GL036598, 2009. [3] D. Wang, N. Takagi, Characteristics of Winter Lightning that Occurred on a Windmill and its Lightning Protection Tower in Japan, IEEJ Trans. on Power and Energy, Vol. 132, No.6, pp.568-572, Doi:10.1541/ieejpes.132.568, 2012.
Conte, S; Faucitano, L; Bergeron, R; Torrey, S; Gonyou, H W; Crowe, T; Tamminga, E Toth; Widowski, T M
2015-12-01
Two experiments were done to assess the effects of season, truck type, and location in the truck on the gastrointestinal tract temperature (GTT) of market-weight pigs during transport. In Exp. 1, a total of 504 sentinel pigs were selected from a total load of 3,756 pigs over 12 wk in summer or winter and transported in either a double-decked (DD) hydraulic truck or a pot-belly (PB) trailer for 2 h. In Exp. 2, a total of 330 sentinel pigs were selected from a total load of 2,145 pigs over 11 wk in summer or winter and transported in a PB trailer for 8 h. In both experiments, sentinel pigs were equipped with a temperature data logger for the real-time GTT recording from the farm to slaughter. Transport was divided into 8 periods in Exp. 1 (rest, pretravel, initial travel, prearrival 1, prearrival 2, unloading, lairage 1, and lairage 2) and in Exp. 2 (rest, pretravel 1, pretravel 2, travel, prearrival 1, prearrival 2, lairage 1, and lairage 2). A delta GTT (ΔGTT) was calculated as the difference between the measured GTT at any determined event and the GTT measured at rest. In Exp. 1, the ΔGTT of pigs was greater ( < 0.001) in summer than in winter and only during the pretravel and initial travel periods. No difference was observed in the ΔGTT between the 2 truck types ( > 0.10). In summer, pigs located in the front top and rear top compartments of the PB trailer presented greater ( < 0.05) ΔGTT values than those transported in the middle top and front belly compartments during initial travel. In summer, during prearrival 1 and 2, a greater ( < 0.05) loss of GTT was found in pigs located in the rear top compartment of the DD truck compared with the rear lower compartment and in the front middle compartment compared with the rear middle compartment of the PB trailer. In Exp. 2, the ΔGTT of pigs was greater ( = 0.03) in summer than in winter during pretravel 2. Pigs in the front top compartment had a greater ( < 0.05) ΔGTT compared with pigs in the middle top, lower deck, and front belly compartments during the pretravel periods. Based on the results of the 2 experiments, modifications of the PB trailer model are recommended to limit body temperature increase due to physical stress at loading and unloading, and during transport due to inconsistent ventilation rate across vehicle locations.
Winter movement dynamics of Black Brant
Lindberg, Mark S.; Ward, David H.; Tibbitts, T. Lee; Roser, John
2007-01-01
Although North American geese are managed based on their breeding distributions, the dynamics of those breeding populations may be affected by events that occur during the winter. Birth rates of capital breeding geese may be influenced by wintering conditions, mortality may be influenced by timing of migration and wintering distribution, and immigration and emigration among breeding populations may depend on winter movement and timing of pair formation. We examined factors affecting movements of black brant (Branta bernicla nigricans) among their primary wintering sites in Mexico and southern California, USA, (Mar 1998-Mar 2000) using capture-recapture models. Although brant exhibited high probability (>0.85) of monthly and annual fidelity to the wintering sites we sampled, we observed movements among all wintering sites. Movement probabilities both within and among winters were negatively related to distance between sites. We observed a higher probability both of southward movement between winters (Mar to Dec) and northward movement between months within winters. Between-winter movements were probably most strongly affected by spatial and temporal variation in habitat quality as we saw movement patterns consistent with contrasting environmental conditions (e.g., La Niña and El Niño southern oscillation cycles). Month-to-month movements were related to migration patterns and may also have been affected by differences in habitat conditions among sites. Patterns of winter movements indicate that a network of wintering sites may be necessary for effective conservation of brant.
Winter movement dynamics of black brant
Lindberg, Mark S.; Ward, David H.; Tibbitts, T. Lee; Roser, John
2007-01-01
Although North American geese are managed based on their breeding distributions, the dynamics of those breeding populations may be affected by events that occur during the winter. Birth rates of capital breeding geese may be influenced by wintering conditions, mortality may be influenced by timing of migration and wintering distribution, and immigration and emigration among breeding populations may depend on winter movement and timing of pair formation. We examined factors affecting movements of black brant (Branta bernicla nigricans) among their primary wintering sites in Mexico and southern California, USA, (Mar 1998–Mar 2000) using capture–recapture models. Although brant exhibited high probability (>0.85) of monthly and annual fidelity to the wintering sites we sampled, we observed movements among all wintering sites. Movement probabilities both within and among winters were negatively related to distance between sites. We observed a higher probability both of southward movement between winters (Mar to Dec) and northward movement between months within winters. Between-winter movements were probably most strongly affected by spatial and temporal variation in habitat quality as we saw movement patterns consistent with contrasting environmental conditions (e.g., La Niña and El Niño southern oscillation cycles). Month-to-month movements were related to migration patterns and may also have been affected by differences in habitat conditions among sites. Patterns of winter movements indicate that a network of wintering sites may be necessary for effective conservation of brant.
Bosch, Jordi; Sgolastra, Fabio; Kemp, William P
2010-12-01
Most insects from temperate areas enter diapause ahead of winter. Species diapausing in a feeding stage and accumulating metabolic reserves during permissive pre-wintering conditions are expected to enter diapause shortly before the onset of winter. In contrast, species diapausing in a non-feeding stage are expected to lower their metabolism as soon as possible to avoid excessive consumption of metabolic reserves. The solitary bee Osmia lignaria winters as a non-feeding adult within its cocoon, but previous studies show important weight losses and increased winter mortality in populations pre-wintered for extended periods. We measured respiration rates to assess diapause initiation and maintenance during pre-wintering, and tested whether timing of adult eclosion affected fitness by measuring fat body depletion, winter mortality and post-winter longevity. We worked with different cohorts of a population reared under natural conditions, and manipulated pre-wintering duration in a population reared under artificial conditions. In agreement with our expectation, O. lignaria lower their metabolic rates within a few days of adult eclosion, but nonetheless suffer strong weight loss during pre-wintering. Early developing individuals suffer greater weight loss and fat body depletion, and have short post-winter longevity. Although, we found no differences in winter mortality among treatments, our results indicate that increased mortality may occur in years with late winter arrivals. We discuss fundamental ecophysiological differences between adult and prepupal diapause within the Megachilidae, and hypothesize that species wintering as adults will be more negatively affected by a situation of extended summers under a scenario of global warming. Copyright © 2010 Elsevier Ltd. All rights reserved.
The role of South Pacific atmospheric variability in the development of different types of ENSO
NASA Astrophysics Data System (ADS)
You, Yujia; Furtado, Jason C.
2017-07-01
Recent advances in tropical Pacific climate variability have focused on understanding the development of El Niño-Southern Oscillation (ENSO) events, specifically the types or "flavors" of ENSO (i.e., central versus eastern Pacific events). While precursors to ENSO events exist, distinguishing the particular flavor of the expected ENSO event remains unresolved. This study offers a new look at ENSO predictability using South Pacific atmospheric variability during austral winter as an indicator. The positive phase of the leading mode of South Pacific sea level pressure variability, which we term the South Pacific Oscillation (SPO), exhibits a meridional dipole with with a(n) (anti)cyclonic anomaly dominating the subtropics (extratropics/high latitudes). Once energized, the cyclonic anomalies in the subtropical node of the SPO weaken the southeasterly trade winds and promote the charging of the eastern equatorial Pacific Ocean, giving rise to eastern Pacific ENSO events. Indeed, the type of ENSO event can be determined accurately using only the magnitude and phase of the SPO during austral winter as a predictor (17 out of 23 cases). The SPO may also play a role in explaining the asymmetry of warm and cold events. Collectively, our findings present a new perspective on ENSO-South Pacific interactions that can advance overall understanding of the ENSO system and enhance its predictability across multiple timescales.
NASA Astrophysics Data System (ADS)
Ingle, Kapilkumar; Horváth, Ádám; Gallé-Szpisjak, Nikolett; Gellért, Levente; Csata, Enikő; Gallé, Róbert
2018-05-01
Overwintering in temperate regions is a prominent mortality risk for invertebrates and may affect their behaviour and body condition. Pardosa alacris is a common ground dwelling spider in central European native and plantation forests, and habitat type and prey availability may play important roles in their overwintering. The effect of overwintering on body condition and behaviour of spiders in semi natural and exotic habitats is relatively unknown. Here we assess the effects of winter on spiders from native poplar and exotic pine plantations. The locomotory behaviour of P. alacris (distance covered and speed) was assessed by tracking their movement in a white circular plastic arena. We assessed body condition, body size, and total fat content. Forest type and sex had significant effects on body length. Fat content was significantly higher in the spring than in autumn, and spiders covered larger distances and were faster in autumn than in spring. Fat content had a significant negative effect on average speed. Spiders in native forests were smaller but grew more during the winter than in exotic plantations, possibly due to higher prey availability in native forests. Visually-hunting predators may significantly affect spiders. Fat spiders with better body condition moved less, and were thus less detectable by predators. However the low movement rate may result in a low rate of encountering prey items, thus lowering feeding efficiency.
NASA Astrophysics Data System (ADS)
Xie, Qiaoyun; Huang, Wenjiang; Dash, Jadunandan; Song, Xiaoyu; Huang, Linsheng; Zhao, Jinling; Wang, Renhong
2015-12-01
Leaf area index (LAI) is an important indicator for monitoring crop growth conditions and forecasting grain yield. Many algorithms have been developed for remote estimation of the leaf area index of vegetation, such as using spectral vegetation indices, inversion of radiative transfer models, and supervised learning techniques. Spectral vegetation indices, mathematical combination of reflectance bands, are widely used for LAI estimation due to their computational simplicity and their applications ranged from the leaf scale to the entire globe. However, in many cases, their applicability is limited to specific vegetation types or local conditions due to species specific nature of the relationship used to transfer the vegetation indices to LAI. The overall objective of this study is to investigate the most suitable vegetation index for estimating winter wheat LAI under eight different types of fertilizer and irrigation conditions. Regression models were used to estimate LAI using hyperspectral reflectance data from the Pushbroom Hyperspectral Imager (PHI) and in-situ measurements. Our results showed that, among six vegetation indices investigated, the modified soil-adjusted vegetation index (MSAVI) and the normalized difference vegetation index (NDVI) exhibited strong and significant relationships with LAI, and thus were sensitive across different nitrogen and water treatments. The modified triangular vegetation index (MTVI2) confirmed its potential on crop LAI estimation, although second to MSAVI and NDVI in our study. The enhanced vegetation index (EVI) showed moderate performance. However, the ratio vegetation index (RVI) and the modified simple ratio index (MSR) predicted the least accurate estimations of LAI, exposing the simple band ratio index's weakness under different treatment conditions. The results support the use of vegetation indices for a quick and effective LAI mapping procedure that is suitable for winter wheat under different management practices.
Radiative transfer within seagrass canopies: impact on carbon budgets and light requirements
NASA Astrophysics Data System (ADS)
Zimmerman, Richard C.; Mobley, Curtis D.
1997-02-01
Seagrasses are ecologically important but extremely vulnerable to anthropogenic modifications of the coastal zone that affect light availability within these unique ecosystems. Strongly pigmented seagrass leaves can extend for more than 1 m above the substrate and biomass is distributed unevenly throughout the canopy. in this study, light attenuation in a 7 m water column that contained a seagrass canopy extending 1.5 m above the bottom was calculated by the radiative transfer model Hydrolight using the spectral absorbance of eelgrass leaves and a non-uniform vertical distribution of biomass. Runs were performed in clear and turbid water columns, over san d and mud substrates, and with shoot densities ranging from 25 to 200 m-2 using solar angles for both winter and summer solstices. The flux of photosynthetically active irradiance (EPAR) reaching the top of the seagrass canopy was twice as high in summer compared to winter, and in clear water compared to turbid water. Sediment type had a measurable effect on EPAR only within the bottom third of the canopy. Light penetration within the canopy was inversely proportional to shoot density. Introduction of daylength and a sinusoidal distribution of EPAR throughout the day greatly increased the importance of solar elevation on daily integrated production relative to water column turbidity and sediment type. Shoot-specific productivity decreased and the position of maximum shoot productivity within the canopy shallowed as shoot density increased. Positive net photosynthesis for entire shoots was possible only when plant density was lower than 100 shoots m-2 in winter; values consistent with field observations. Although very simplistic with regard to inherent optical properties of real seagrass leaves, this model was able to generate estimates of maximum sustainable shoot density that were fully testable by, and wholly consistent with, field observations.
A comparison of models for estimating potential evapotranspiration for Florida land cover types
Douglas, E.M.; Jacobs, J.M.; Sumner, D.M.; Ray, R.L.
2009-01-01
We analyzed observed daily evapotranspiration (DET) at 18 sites having measured DET and ancillary climate data and then used these data to compare the performance of three common methods for estimating potential evapotranspiration (PET): the Turc method (Tc), the Priestley-Taylor method (PT) and the Penman-Monteith method (PM). The sites were distributed throughout the State of Florida and represent a variety of land cover types: open water (3), marshland (4), grassland/pasture (4), citrus (2) and forest (5). Not surprisingly, the highest DET values occurred at the open water sites, ranging from an average of 3.3 mm d-1 in the winter to 5.3 mm d-1 in the spring. DET at the marsh sites was also high, ranging from 2.7 mm d-1 in winter to 4.4 mm d-1 in summer. The lowest DET occurred in the winter and fall seasons at the grass sites (1.3 mm d-1 and 2.0 mm d-1, respectively) and at the forested sites (1.8 mm d-1 and 2.3 mm d-1, respectively). The performance of the three methods when applied to conditions close to PET (Bowen ratio ??? 1) was used to judge relative merit. Under such PET conditions, annually aggregated Tc and PT methods perform comparably and outperform the PM method, possibly due to the sensitivity of the PM method to the limited transferability of previously determined model parameters. At a daily scale, the PT performance appears to be superior to the other two methods for estimating PET for a variety of land covers in Florida. ?? 2009 Elsevier B.V.
Xu, Wei; Riley, Erin A; Austin, Elena; Sasakura, Miyoko; Schaal, Lanae; Gould, Timothy R; Hartin, Kris; Simpson, Christopher D; Sampson, Paul D; Yost, Michael G; Larson, Timothy V; Xiu, Guangli; Vedal, Sverre
2017-03-01
Air pollution exposure prediction models can make use of many types of air monitoring data. Fixed location passive samples typically measure concentrations averaged over several days to weeks. Mobile monitoring data can generate near continuous concentration measurements. It is not known whether mobile monitoring data are suitable for generating well-performing exposure prediction models or how they compare with other types of monitoring data in generating exposure models. Measurements from fixed site passive samplers and mobile monitoring platform were made over a 2-week period in Baltimore in the summer and winter months in 2012. Performance of exposure prediction models for long-term nitrogen oxides (NO X ) and ozone (O 3 ) concentrations were compared using a state-of-the-art approach for model development based on land use regression (LUR) and geostatistical smoothing. Model performance was evaluated using leave-one-out cross-validation (LOOCV). Models performed well using the mobile peak traffic monitoring data for both NO X and O 3 , with LOOCV R 2 s of 0.70 and 0.71, respectively, in the summer, and 0.90 and 0.58, respectively, in the winter. Models using 2-week passive samples for NO X had LOOCV R 2 s of 0.60 and 0.65 in the summer and winter months, respectively. The passive badge sampling data were not adequate for developing models for O 3 . Mobile air monitoring data can be used to successfully build well-performing LUR exposure prediction models for NO X and O 3 and are a better source of data for these models than 2-week passive badge data.
Pearson, Daniel K.; Braun, Christopher L.; Moring, J. Bruce
2016-01-21
This report documents differences in the mapped spatial extents and physical characteristics of in-channel fish habitat evaluated at the mesohabitat scale during winter 2011–12 (moderate streamflow) and summer 2012 (low streamflow) at 15 sites on the Middle Rio Grande in New Mexico starting about 3 kilometers downstream from Cochiti Dam and ending about 40 kilometers upstream from Elephant Butte Reservoir. The results of mesohabitat mapping, physical characterization, and fish assemblage surveys are summarized from the data that were collected. The report also presents general comparisons of physical mesohabitat data, such as wetted area and substrate type, and biological mesohabitat data, which included fish assemblage composition, species richness, Rio Grande silvery minnow relative abundance, and Rio Grande silvery minnow catch per unit effort.
Coe, Jeffrey A.; Godt, Jonathan; Tachker, Pierre
2004-01-01
This report documents the spatial distribution of 3,800 landslides caused by 1997-98 El Ni?o winter rainfall in the vicinity of Crow Creek in Alameda and Contra Costa Counties, California. The report also documents 558 historical (pre-1997-98) landslides. Landslides were mapped from 1:12,000-scale aerial photographs and classified as either debris flows or slides. Slides include rotational and translational slides, earth flows, and complex slope movements. Debris flows and slides from the 1997-98 winter modified 1 percent of the surface of the 148.6 km2 study area. Debris flows were scattered throughout the area, regardless of the type of underlying bedrock geology. Slides, however, were concentrated in a soft sandstone, conglomerate, and clayey group of rock units. Digital map files accompany the report.
Multi-Frequency Investigation into Scattering from Vegetation over the Growth Cycle
NASA Technical Reports Server (NTRS)
Lang, R. H.; Kurum, M.; O'Neill, P. E.; Joseph, A. T.; Deshpande, M. D.; Cosh, M. H.
2016-01-01
In this investigation, we aim to collect and use time-series multi-frequency microwave data over winter wheat during entire growth cycle to characterize vegetation dynamics and to quantify its effects on soil moisture retrievals. We plan to incorporate C-band radar and VHF receiver within the existing L-band radarradiometer system called ComRAD (SMAPs ground based simulator). With C-bands ability to sense vegetation details and VHFs root-zone soil moisture within ComRADs footprint, we will be able to test our discrete scatterer vegetation models and parameters at various surface conditions. The purpose of this study is to determine optical depth and effective scattering albedo of vegetation of a given type (i.e. winter wheat) at various stages of growth that are need to refine soil moisture retrieval algorithms being developed for the SMAP mission.
Derman, W; Schwellnus, M P; Jordaan, E; Runciman, P; Van de Vliet, P; Blauwet, C; Webborn, N; Willick, S; Stomphorst, J
2016-09-01
To describe the epidemiology of injuries at the Sochi 2014 Winter Paralympic Games. A total of 547 athletes from 45 countries were monitored daily for 12 days during the Sochi 2014 Winter Paralympic Games (6564 athlete days). Daily injury data were obtained from teams with their own medical support (32 teams, 510 athletes) and teams without their own medical support (13 teams, 37 athletes) through electronic data capturing systems. There were 174 total injuries reported, with an injury incidence rate (IR) of 26.5 per 1000 athlete days (95% CI 22.7% to 30.8%). There was a significantly higher IR recorded in alpine skiing/snowboarding (IR of 41.1 (95% CI 33.7% to 49.6%) p=0.0001) compared to cross-country skiing/biathlon, ice sledge hockey or wheelchair curling. Injuries in the shoulder region were the highest single-joint IR (IR of 6.4 (95% CI 4.6% to 8.6%)), although total upper and lower body IR were similar (IR 8.5 vs 8.4 (95% CI 6.4% to 11.1%)). Furthermore, the IR of acute injuries was significantly higher than other types of injury onset (IR of 17.8 (95% CI 14.7% to 21.4%)). In a Winter Paralympic Games setting, athletes report higher injury incidence than do Olympic athletes or athletes in a Summer Paralympic Games setting. The highest incidence of injury was reported in the alpine skiing/snowboarding sporting category. There was a similar incidence of injury in the upper and lower limbs. The joint with the greatest rate of injury reported was the shoulder joint. Our data can inform injury prevention programmes and policy considerations regarding athlete safety in future Winter Paralympic Games. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
NASA Astrophysics Data System (ADS)
Zhou, Xianfeng; Huang, Wenjiang; Kong, Weiping; Ye, Huichun; Luo, Juhua; Chen, Pengfei
2016-11-01
Timely and accurate assessment of canopy nitrogen content (CNC) provides valuable insight into rapid and real-time nitrogen status monitoring in crops. A semi-empirical approach based on spectral index was extensively used for nitrogen content estimation. However, in many cases, due to specific vegetation types or local conditions, the applicability and robustness of established spectral indices for nitrogen retrieval were limited. The objective of this study was to investigate the optimal spectral index for winter wheat (Triticum aestivum L.) CNC estimation using Pushbroom Hyperspectral Imager (PHI) airborne hyperspectral data. Data collected from two different field experiments that were conducted during the major growth stages of winter wheat in 2002 and 2003 were used. Our results showed that a significant linear relationship existed between nitrogen and chlorophyll content at the canopy level, and it was not affected by cultivars, growing conditions and nutritional status of winter wheat. Nevertheless, it varied with growth stages. Periods around heading stage mainly worsened the relationship and CNC estimation, and CNC assessment for growth stages before and after heading could improve CNC retrieval accuracy to some extent. CNC assessment with PHI airborne hyperspectra suggested that spectral indices based on red-edge band including narrowband and broadband CIred-edge, NDVI-like and ND705 showed convincing results in CNC retrieval. NDVI-like and ND705 were sensitive to detect CNC changes less than 5 g/m2, narrowband and broadband CIred-edge were sensitive to a wide range of CNC variations. Further evaluation of CNC retrieval using field measured hyperspectra indicated that NDVI-like was robust and exhibited the highest accuracy in CNC assessment, and spectral indices (CIred-edge and CIgreen) that established on narrow or broad bands showed no obvious difference in CNC assessment. Overall, our study suggested that NDVI-like was the optimal indicator for winter wheat CNC retrieval.
NASA Astrophysics Data System (ADS)
Hawkins, Nathan Ryan
The Blackland Prairie of Texas is one of the most heavily altered and threatened ecoregions in North America. A large part of the current threats to the ecoregion are related to rapid urban growth in cities within the Blackland Prairie. Major threats are related to conversion natural and semi-natural land to urban and suburban land, and increased resource demands from the growing urban population. To quantify these changes, I generated landcover maps using unsupervised classification techniques for the years 1984, 1993, 2004, and 2009 in a portion of the central Blackland Prairie centered around Navarro County, Texas and used post-classification comparison to determine the change in landcover. The largest changes in landcover occurred due to the creation of Richland Chambers Reservoir in 1987, and the subsequent flooding of mostly bottomland forest (a loss of 11,858.4ha of water from 1985-1993). This change occurred because of increased demand for water by the population of the Dallas-Fort Worth-Arlington Metropolitan Study Area. Other changes that occurred in the study area included increases in cropland (26,590.14ha from 1985-2009), grass (25,368ha from 1985-2009), and developed (4,877.55ha from 1985-2009) landcover types. Increases in crop and grass landcover types suggest agricultural intensification occurring within the study area, while an increase in developed landcover indicates an increase in urbanization in a mostly rural county. Since changes in landcover have been demonstrated to affect wildlife in other areas, I used motion-sensing camera traps to survey the predator community in the area. I identified species occurring and developed occupancy models using variables that describe a number of landscape features that may be important to those species. Detections were dominated by a few common species, which included coyotes (psi4=0.7778 winter, psi=0.6667 summer), bobcats (psi=0.8889 winter, psi=0.7778 summer), raccoons (psi=1 winter, psi=0.9091 summer), striped skunks (psi=0.9167 winter, psi=0.8182 summer), and opossums (psi=0.9231 winter, psi=0.9231 summer). Uncommon species detected included river otters (psi=0.4000 winter, psi=0.2000 summer), gray foxes (psi=0.2308 winter), and one spotted skunk (psi=0.0833 summer). Results indicate that changes in landscape features will most likely affect mesopredators in the area. Some species will likely increase in abundance and distribution while others will decrease in abundance and distribution as a result of changes. I also estimated species richness using nonparametric richness estimators that use incidence (presence/absence) data. I detected 9 mesopredator species (bobcat, coyote, opossum, river otter, raccoon, striped skunk, domestic dog, and domestic cat, gray fox, and eastern spotted skunk) in the study area. Considering all study sites at once resulted in species richness estimates of 9-10 species, suggesting that most predators were sampled. When study sites were split into eastern and western groups based on habitat gradients within the study area, slightly different estimates were generated. For the western part of the study area, estimates suggest 9-10 species are present, while in the eastern part of the study area, estimates suggest 6-8 species are present. Results suggest that mesopredator richness is declining compared to historical levels. Large contiguous prairie habitats need to be protected and/or restored to conserve rare prairie communities and the mesopredators they support.
Currie, Robert W.
2016-01-01
Extreme winter losses of honey bee colonies are a major threat to beekeeping but the combinations of factors underlying colony loss remain debatable. We monitored colonies in two environments (colonies wintered indoors or outdoors) and characterized the effects of two parasitic mites, seven viruses, and Nosema on honey bee colony mortality and population loss over winter. Samples were collected from two locations within hives in fall, mid-winter and spring of 2009/2010. Although fall parasite and pathogen loads were similar in outdoor and indoor-wintered colonies, the outdoor-wintered colonies had greater relative reductions in bee population score over winter. Seasonal patterns in deformed wing virus (DWV), black queen cell virus (BQCV), and Nosema level also differed with the wintering environment. DWV and Nosema levels decreased over winter for indoor-wintered colonies but BQCV did not. Both BQCV and Nosema concentration increased over winter in outdoor-wintered colonies. The mean abundance of Varroa decreased and concentration of Sacbrood virus (SBV), Kashmir bee virus (KBV), and Chronic bee paralysis virus (CBPV) increased over winter but seasonal patterns were not affected by wintering method. For most viruses, either entrance or brood area samples were reasonable predictors of colony virus load but there were significant season*sample location interactions for Nosema and BQCV, indicating that care must be taken when selecting samples from a single location. For Nosema spp., the fall entrance samples were better predictors of future infestation levels than were fall brood area samples. For indoor-wintered colonies, Israeli acute paralysis virus IAPV concentration was negatively correlated with spring population size. For outdoor-wintered hives, spring Varroa abundance and DWV concentration were positively correlated with bee loss and negatively correlated with spring population size. Multivariate analyses for fall collected samples indicated higher DWV was associated with colony death as did high SBV for spring-collected samples. PMID:27448049
Characteristics of mesospheric gravity waves over the southeastern Tibetan Plateau region
NASA Astrophysics Data System (ADS)
Li, Qinzeng; Xu, Jiyao; Liu, Xiao; Yuan, Wei; Chen, Jinsong
2016-09-01
The Tibetan Plateau (TP), known as "Third Pole" of the Earth, has important influences on global climates and local weather. An important objective in present study is to investigate how orographic features of the TP affect the geographical distributions of gravity wave (GW) sources. Three-year OH airglow images (November 2011 to October 2014) from Qujing (25.6°N, 103.7°E) were used to study the characteristics of GWs over the southeastern TP region. Along with the almost concurrent and collocated meteor radar wind measurements and temperature data from SABER/TIMED satellite, the propagation conditions of three types of GWs (freely propagating, ducted, or evanescent) were estimated. Most of GWs exhibited ducted or evanescent characteristics. Almost all GWs propagate southeastward in winter. The GW propagation directions in winter are significantly different from other airglow imager observations at northern middle latitudes. Wind data and convective precipitation fields from the European Centre for Medium-Range Weather Forecasts reanalysis data are used to study the sources of GWs on the edge of the TP. Using backward ray-tracing analysis, we find that most of the mesospheric freely propagating GWs are located in or near the large wind shear intensity region ( 10 km- 17 km) on the southeastern edge of the TP in spring and winter. The averaged value of momentum flux is 11.6 ± 5.2 m2/s2 in winter and 7.5 ± 3.1 m2/s2 in summer. This work will provide valuable information for the GW parameterization schemes in general circulation models in TP region.
NASA Astrophysics Data System (ADS)
Kim, Yongcheol; Lee, Bongju; Ha, Kucheol; Yoon, Yunyeol; Moon, Sangho; Cho, Suyoung; Kim, Seongyun
2013-04-01
Protected water curtain cultivation system is an energy saving technique for winter season by splashing groundwater on the inner roof of the green house. But the issue is that the method results in groundwater level deterioration because it disposes the used groundwater to nearby stream. Reuse of the groundwater for water curtain cultivation is important Groundwater level, steam level, and groundwater usage rate are investigated at the five green house concentrated areas such as Cheongwon, Namyangju, Choongju, Namwon, Jinju. Groundwater usage rate is estimated using a ultrasonic flowmeter for a specific well and using the combination of pressure sensor and propeller type velocity counting equipment at a water disposal channel from November to April which is water curtain cultivating season. Groundwater usage rate ranges from 46.9m3/d to 108.0m3/d for a 10a greenhouse. Groundwater level change is strongly influenced by seasonal variation of rainfall and concentrated pumping activities in winter but the level is lower than stream level all year long resulting in all year around losing stream at Cheongwon, Namyangju, Jinju. At Nanwon, the stream is converted from losing one in winter to gaining one in summer. Groundwater level deterioration at concentrated water curtain cultivation area is found to be severe for some area where circulating water curtain cultivation system is need to be applied for groundwater restoration and sustainable cultivation in winter. Circulating water curtain cultivation system can restore the groundwater level by recharging the used groundwater through injection well and then pumping out from pumping well.
de Oliveira, Thales Leandro Coutinho; de Araújo Soares, Rodrigo; Ramos, Eduardo Mendes; das Graças Cardoso, Maria; Alves, Eduardo; Piccoli, Roberta Hilsdorf
2011-01-05
This research evaluated the antimicrobial effect of the winter savory (Satureja montana L.) essential oil (EO) against Clostridium perfringens type A (ATCC 3624) inoculated in mortadella-type sausages formulated with different levels of sodium nitrite (NaNO₂: 0 ppm, 100 ppm and 200 ppm) in addition to EO at concentrations of 0.0%, 0.78%, 1.56% and 3.125% stored at 25°C for 30 days. The EO extracted by hydrodistillation and analyzed by gas chromatography-mass spectrometry (CG-MS) was tested in vitro using an agar well diffusion method for determination of minimum inhibitory concentration (MIC) on C. perfringens. According to compositional analysis of the winter savory EO, 26 chemical compounds were identified, and the major constituents were thymol (28.99%), p-cymene (12.00%), linalool (11.00%) and carvacrol (10.71%). The results obtained showed that EO applied at a concentration of 1.56%, which was defined as the MIC, exhibited antimicrobial activity against C. perfringens in the in vitro assays, and the transmission electron microscopy (TEM) revealed structural damage and cell lysis of C. perfringens caused by EO treatment. A synergistic effect between NaNO₂ and EO was observed. In mortadella-type sausages formulated with 100 ppm of NaNO₂ and EO at all concentrations tested, the population of target microorganisms was reduced (p≤0.05) compared to control samples during all storage period. This data suggests the potential combined use of savory EO and minimal amounts of the synthetic additive, NaNO₂ to control C. perfringens in mortadella, which goes according to current market trends, where consumers are requesting natural products. Copyright © 2010 Elsevier B.V. All rights reserved.
Dikmen, S; Khan, F A; Huson, H J; Sonstegard, T S; Moss, J I; Dahl, G E; Hansen, P J
2014-09-01
The SLICK haplotype (http://omia.angis.org.au/OMIA001372/9913/) in cattle confers animals with a short and sleek hair coat. Originally identified in Senepol cattle, the gene has been introduced into Holsteins. The objectives of the current study were to determine (1) whether lactating Holsteins with the slick hair phenotype have superior ability for thermoregulation compared with wild-type cows or relatives not inheriting the SLICK haplotype, and (2) whether seasonal depression in milk yield would be reduced in SLICK cows. In experiment 1, diurnal variation in vaginal temperature in the summer was monitored for cows housed in a freestall barn with fans and sprinklers. Vaginal temperatures were lower in slick-haired cows than in relatives and wild-type cows. In experiment 2, acute responses to heat stress were monitored after cows were moved to a dry lot in which the only heat abatement was shade cloth. The increases in rectal temperature and respiration rate caused by heat stress during the day were lower for slick cows than for relatives or wild-type cows. Moreover, sweating rate was higher for slick cows than for cows of the other 2 types. In experiment 3, effects of season of calving (summer vs. winter) on milk yield and composition were determined. Compared with milk yield of cows calving in winter, milk yield during the first 90 d in milk was lower for cows calving in the summer. However, this reduction was less pronounced for slick cows than for wild-type cows. In conclusion, Holsteins with slick hair have superior thermoregulatory ability compared with non-slick animals and experience a less drastic depression in milk yield during the summer. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-06
... particular nights are not necessarily insignificant from the standpoint of PM 10 and PM 2.5 formation... winter nights to provide frost protection for certain type of crops (like citrus) when temperatures are... reasonably be estimated at approximately 15 pounds per day of NO X .\\1\\ \\1\\ Most engines are fired on propane...
Seasonal variations in aerosol optical properties over China
Yuesi Wang; Jinyuan Xin; Zhanqing Li; Shigong Wang; Pucai Wang; Wei Min Hao; Bryce L. Nordgren; Hongbin Chen; Lili Wang; Yang Sun
2012-01-01
Seasonal variations in background aerosol optical depth (AOD) and aerosol type are investigated over various ecosystems in China based upon three years' worth of meteorological data and data collected by the Chinese Sun Hazemeter Network. In most parts of China, AODs are at a maximum in spring or summer and at a minimum in autumn or winter. Minimum values (0.10~0....
Prescribed fire effects in a longleaf pine ecosystem--are winter fires working?
Rebecca J. Barlow; John S. Kush; John C. Gilbert; Sharon M. Hermann
2015-01-01
Longleaf pine (Pinus palustris Mill.) ecosystems once dominated 60 to 90 million acres and supported one of the most diverse floras in North America. It is well-known that longleaf pine ecosystems must burn frequently to maintain natural structure and function. This vegetation type ranks as one of the most fire-dependent in the country and must...
The effect on vegetation and soil temperature of logging flood-plain white spruce.
C.T. Dyrness; L.A. Vlereck; M.J. Foote; J.C. Zasada
1988-01-01
During winter 1982-83, five silvicultural treatments were applied on Willow Island (near Fairbanks, Alaska): two types of shelterwood cuttings, a clearcutting, a clearcutting with broadcast slash burning, and a thinning. The effects of these treatments on vegetation, soil temperature, and frost depth were followed from 1983 through 1985. In 1984 and 1985, logged plots...
Airborn Ku-band polarimetric radar remote sensing of terrestrial snow cover
Simon H. Yueh; Steve J. Dinardo; Ahmed Akgiray; Richard West; Donald W. Cline; Kelly Elder
2009-01-01
Characteristics of the Ku-band polarimetric scatterometer (POLSCAT) data acquired from five sets of aircraft flights in the winter months of 2006-2008 for the second Cold Land Processes Experiment (CLPX-II) in Colorado are described in this paper. The data showed the response of the Ku-band radar echoes to snowpack changes for various types of background vegetation in...
NASA Technical Reports Server (NTRS)
Drdla, K.; Turco, R. P.; Elliott, S.
1993-01-01
A detailed model of polar stratospheric clouds (PSCs), which includes nucleation, condensational growth. and sedimentation processes, has been applied to the study of heterogeneous chemical reactions. For the first time, the extent of chemical processing during a polar winter has been estimated for an idealized air parcel in the Antarctic vortex by calculating in detail the rates of heterogeneous reactions on PSC particles. The resulting active chlorine and NO(x) concentrations at first sunrise are analyzed with respect to their influence upon the Antarctic ozone hole using a photochemical model. It is found that the species present at sunrise are primarily influenced by the relative values of the heterogeneous reaction rate constants and the initial gas concentrations. However, the extent of chlorine activation is also influenced by whether N2O5 is removed by reaction with HCl or H2O. The reaction of N2O5 with HCl, which occurs rapidly on type 1 PSCs, activates the chlorine contained in the reservoir species HCl. Hence the presence and surface area of type 1 PSCs early in the winter are crucial in determining ozone depletion.
Uejio, Christopher K.; Yale, Steven H.; Malecki, Kristen; Borchardt, Mark A.; Anderson, Henry A.; Patz, Jonathan A.
2014-01-01
Objectives. This study investigated if the type of drinking water source (treated municipal, untreated municipal, and private well water) modifies the effect of hydrology on childhood (aged < 5 years) gastrointestinal illness. Methods. We conducted a time series study to assess the relationship between hydrologic and weather conditions with childhood gastrointestinal illness from 1991 to 2010. The Central and Northern Wisconsin study area includes households using all 3 types of drinking water systems. Separate time series models were created for each system and half-year period (winter/spring, summer/fall). Results. More precipitation (summer/fall) systematically increased childhood gastrointestinal illness in municipalities accessing untreated water. The relative risk of contracting gastrointestinal illness was 1.4 in weeks with 3 centimeters of precipitation and 2.4 in very wet weeks with 12 centimeters of precipitation. By contrast, gastrointestinal illness in private well and treated municipal areas was not influenced by hydrologic conditions, although warmer winter temperatures slightly increased incidence. Conclusions. Our study suggests that improved drinking water protection, treatment, and delivery infrastructure may improve public health by specifically identifying municipal water systems lacking water treatment that may transmit waterborne disease. PMID:24524509
NASA Technical Reports Server (NTRS)
Graves, E. B.
1982-01-01
The feasibility of remotely piloted aircraft performing year around missions at an altitude of 70,000 feet is determined. Blimp and airplane type vehicles employing solar-voltaic, microwave, or nuclear propulsion systems were considered. A payload weighing 100 pounds and requiring 1000 watts of continuous power was assumed for analysis purposes. Results indicate that a solar powered aircraft requires more solar cell area than is available on conventional aircraft configurations if designed for the short days and high wind speeds associated with the winter season. A conventionally shaped blimp that uses solar power appears feasible if maximum airspeed is limited to about 100 ft/s. No viable airplane configuration that uses solar power and designed to withstand the winter environment was found. Both a conventionally shaped blimp and airplane appear feasible using microwave power. Nuclear powered aircraft of these type are also feasible. Societal attitudes toward the use of solar power in high altitude aircraft appear favorable. The use of microwave power for this purpose is controversial, even though the ground station required would transmit power at levels comparable to existing satellite communications stations.
Tidal management sffects sub-adult fish assemblages in impounded South Carolina Marshes
Carswell, Ben L.; Peterson, James T.; Jennings, Cecil A.
2015-01-01
In coastal South Carolina, most impounded marshes are managed for waterfowl; fewer are managed for fishes. Tidal control is central to each strategy but raises concerns that nursery function could be impaired. This research examined the assemblage composition of fishes during early-life stages. We sampled two impoundments of each management type monthly in 2008 and 2009. We used light traps to collect 61,527 sub-adult fish representing 21 species and 16 families and push nets to collect 12,670 sub-adult fish representing 13 species and 11 families. The effective number of species detected at larval stage in “fish” impoundments (summer mean = 2.52 ± 0.20, winter mean = 2.02 ± 0.66) was greater than in “waterfowl” impoundments (summer mean = 1.27 ± 0.14, winter mean = 1.06 ± 0.09); CI = 90 %. Species richness did not differ between management types, but hierarchical linear models predicted differences in assemblage composition. These findings underscore the importance of frequent water exchange for maintaining diverse assemblages of early-life-stage fishes in marsh impoundments.
Magnúsdóttir, Edda E; Miller, Patrick J O; Lim, Rangyn; Rasmussen, Marianne H; Lammers, Marc O; Svavarsson, Jörundur
2015-11-01
The songs of the male humpback whales have traditionally been associated with breeding activities at low latitude breeding grounds during winter. This study provides the first detailed analysis of humpback whale songs recorded in the subarctic waters of Iceland using passive acoustic recorders. Recordings were collected during three winter seasons: 2008-2009, 2009-2010, and 2011 during which singing was detected in all seasons. Peak song occurrence was during January-February in all years; this coincides with the timing of the peak breeding season of humpback whales in the Northern hemisphere. A total of 2810 song units from all years were measured and statistically divided into 14 groups, which constructed 25 phrases. The song unit repertoires included stable song unit types that occurred frequently in songs during all years while the occurrence of other song unit types varied more between years. Around 60% of the phrases were conserved between the first two study seasons, while the majority of phrases found during the last study season had not been observed before. This study indicates the importance of a subarctic feeding ground for song progression and song exchange and possibly as an opportunistic mating ground for migrating or overwintering humpback whales.
Route prediction model of infectious diseases for 2018 Winter Olympics in Korea
NASA Astrophysics Data System (ADS)
Kim, Eungyeong; Lee, Seok; Byun, Young Tae; Kim, Jae Hun; Lee, Hyuk-jae; Lee, Taikjin
2014-03-01
There are many types of respiratory infectious diseases caused by germs, virus, mycetes and parasites. Researchers recently have tried to develop mathematical models to predict the epidemic of infectious diseases. However, with the development of ground transportation system in modern society, the spread of infectious diseases became faster and more complicated in terms of the speed and the pathways. The route of infectious diseases during Vancouver Olympics was predicted based on the Susceptible-Infectious-Recovered (SIR) model. In this model only the air traffic as an essential factor for the intercity migration of infectious diseases was involved. Here, we propose a multi-city transmission model to predict the infection route during 2018 Winter Olympics in Korea based on the pre-existing SIR model. Various types of transportation system such as a train, a car, a bus, and an airplane for the interpersonal contact in both inter- and intra-city are considered. Simulation is performed with assumptions and scenarios based on realistic factors including demographic, transportation and diseases data in Korea. Finally, we analyze an economic profit and loss caused by the variation of the number of tourists during the Olympics.
Latitudinal variation in population structure of wintering Pacific Black Brant
Schamber, J.L.; Sedinger, J.S.; Ward, D.H.; Hagmeier, K.R.
2007-01-01
Latitudinal variation in population structure during the winter has been reported in many migratory birds, but has been documented in few species of waterfowl. Variation in environmental and social conditions at wintering sites can potentially influence the population dynamics of differential migrants. We examined latitudinal variation in sex and age classes of wintering Pacific Black Brant (Branta bernicla nigricans). Brant are distributed along a wide latitudinal gradient from Alaska to Mexico during the winter. Accordingly, migration distances for brant using different wintering locations are highly variable and winter settlement patterns are likely associated with a spatially variable food resource. We used resightings of brant banded in southwestern Alaska to examine sex and age ratios of birds wintering at Boundary Bay in British Columbia, and at San Quintin Bay, Ojo de Liebre Lagoon, and San Ignacio Lagoon in Baja California from 1998 to 2000. Sex ratios were similar among wintering locations for adults and were consistent with the mating strategy of geese. The distribution of juveniles varied among wintering areas, with greater proportions of juveniles observed at northern (San Quintin Bay and Ojo de Liebre Lagoon) than at southern (San Ignacio Lagoon) locations in Baja California. We suggest that age-related variation in the winter distribution of Pacific Black Brant is mediated by variation in productivity among individuals at different wintering locations and by social interactions among wintering family groups.
Thompson, Thomas R.; Boal, Clint W.; Lucia, Duane
2009-01-01
We examined relative abundances of grassland birds among Conservation Reserve Program (CRP) fields seeded with 2 monocultures of introduced grass species and 2 mixes of native grasses in the Southern High Plains of Texas. We assessed bird compositions among these 4 cover types and between the cover types pooled into categories of introduced and native fields. Breeding season bird diversity and total abundance did not differ among cover types or between introduced and native fields. Grasshopper Sparrows (Ammodramus savannarum), Cassin's Sparrows (Aimophila cassinii), and Western Meadowlarks (Sturnella neglecta) accounted for more than 90% of breeding season detections. Grasshopper Sparrows were the most abundant and found in all cover types. Cassin's Sparrows were 38% to 170% more abundant among the native seed mix without buffalograss (Buchloë dactyloides) compared to 3 other cover types. Although this association was statistically lost when cover types were pooled into introduced or native fields (U = 93.5, P = 0.91), the species was still 50% more abundant among native CRP than introduced CRP fields. Meadowlarks occurred ubiquitously but at very low numbers during the breeding season. During winter, avian abundance was 44% greater among native CRP than introduced CRP fields. Meadowlarks, Homed Larks (Eremophila alpestris), and Savannah Sparrows (Passerculus sandwichensis) accounted for 94% of all winter detections. Meadowlarks occurred ubiquitously, but Horned Larks and Savannah Sparrows were 157% and 96% more abundant, respectively, among native CRP than introduced CRP fields. Our data suggest that monocultures of introduced grasses may benefit some bird species but also that native seed mixes may have a more positive influence through increased diversity and abundance of grassland birds. However, pooling cover types into the broader categories of introduced or native grasses may dampen or occlude biologically meaningful results. It may be prudent to avoid broad categorization of CRP fields based solely on native or introduced grass cover when assessing habitat associations of grassland birds.
2017-01-01
The persistence of atmospheric circulation anomalies over East Asia shows a winter to winter recurrence (WTWR) phenomenon. Seasonal variations in sea level pressure anomalies and surface wind anomalies display significantly different characteristics between WTWR and non-WTWR years. The WTWR years are characterized by the recurrence of both a strong (weak) anomalous Siberian High and an East Asian winter monsoon over two successive winters without persistence through the intervening summer. However, anomalies during the non-WTWR years have the opposite sign between the current and ensuing winters. The WTWR of circulation anomalies contributes to that of surface air temperature anomalies (SATAs), which is useful information for improving seasonal and interannual climate predictions over East Asia and China. In the positive (negative) WTWR years, SATAs are cooler (warmer) over East Asia in two successive winters, but the signs of the SATAs are opposite in the preceding and subsequent winters during the non-WTWR years. PMID:28178351
Zhao, Xia; Yang, Guang
2017-01-01
The persistence of atmospheric circulation anomalies over East Asia shows a winter to winter recurrence (WTWR) phenomenon. Seasonal variations in sea level pressure anomalies and surface wind anomalies display significantly different characteristics between WTWR and non-WTWR years. The WTWR years are characterized by the recurrence of both a strong (weak) anomalous Siberian High and an East Asian winter monsoon over two successive winters without persistence through the intervening summer. However, anomalies during the non-WTWR years have the opposite sign between the current and ensuing winters. The WTWR of circulation anomalies contributes to that of surface air temperature anomalies (SATAs), which is useful information for improving seasonal and interannual climate predictions over East Asia and China. In the positive (negative) WTWR years, SATAs are cooler (warmer) over East Asia in two successive winters, but the signs of the SATAs are opposite in the preceding and subsequent winters during the non-WTWR years.
Mason, D.D.; Barboza, P.S.; Ward, D.H.
2007-01-01
We compared body size and mass of the whole body, organs, adipose tissue, and muscles of adult Pacific Black Brant (Branta bernicla nigricans (Lawrence, 1846)) collected concurrently in Alaska and Baja California during the fall, winter, and spring of 2002–2003. Head and tarsal lengths of males were similar between sites and slightly larger for females in Alaska than in Baja California. Brant appear to operate under similar physiological bounds, but patterns of nutrient allocation differ between sites. Birds wintering in Alaska lost similar amounts of adipose tissue during early winter as birds in Baja California gained during late winter before migration. Masses of the body, adipose tissue, and flight muscles during mid-winter were similar between sites. Seasonal adipose tissue deposition may, therefore, equally favor winter residency or long-distance migration. Gonad and liver masses increased in late winter for birds in Alaska but not for those in Baja California, suggesting birds wintering in Baja may delay reproductive development in favor of allocating reserves needed for migration. Phenotypic flexibility allows Brant to use widely divergent wintering sites. The wintering location of Brant likely depends more upon changes in environmental conditions and food availability, than upon physiological differences between the two wintering populations.
NASA Astrophysics Data System (ADS)
Fellows, A.; Flerchinger, G. N.; Lohse, K. A.; Seyfried, M. S.
2017-12-01
Predicting winter CO2 efflux across the rain-to-snow transition zone is challenging in the cold semiarid northern Great Basin, USA, complicated by steep environmental gradients and marked heterogeneity in ecosystem properties. We therefore examined winter CO2 efflux over 9 site-years using 4 eddy covariance towers located in the Reynolds Creek Critical Zone Observatory. The sites were sagebrush shrublands located at 1425, 1680, 2098, and 2111 m, and spanned a large part of the rain-to-snow transition zone. We focused on two objectives. First, we quantified winter CO2 efflux at the sites, and considered how these varied with elevation. Second, we used a within-site and cross-site analysis to examine the biological and physical factors that impact winter CO2 efflux. Winter conditions were identified using temperature, snow depth, and CO2 exchange measurements and included 12,922 observations. The duration of winter conditions increased from 90 to 180 days with elevation. Peak snow depth increased from < 30 to > 100 cm with elevation. Cumulative winter CO2 efflux accounted for > 10% of the total annual CO2 efflux, increased with elevation, and was a key component of net ecosystem production at some sites in some years. The importance of winter CO2 efflux was accentuated by the region's long winters and also dry summers that decreased water availability and decomposition during non-winter periods. Preliminary regressions examining air temperature, soil temperature, wind speed, snow depth, and gross carbon uptake indicated some of these factors control the rate of winter CO2 efflux and require consideration, but that additional work is needed to disentangle co-linearity and assess the importance of these factors within and between sites. These findings suggest a consideration of winter CO2 efflux is warranted in cold winter-wet semiarid ecosystems, particularly where winters are long and non-winter CO2 efflux is strongly limited by water availability.
Özkundakci, Deniz; Gsell, Alena S; Hintze, Thomas; Täuscher, Helgard; Adrian, Rita
2016-01-01
How climate change will affect the community dynamics and functionality of lake ecosystems during winter is still little understood. This is also true for phytoplankton in seasonally ice-covered temperate lakes which are particularly vulnerable to the presence or absence of ice. We examined changes in pelagic phytoplankton winter community structure in a north temperate lake (Müggelsee, Germany), covering 18 winters between 1995 and 2013. We tested how phytoplankton taxa composition varied along a winter-severity gradient and to what extent winter severity shaped the functional trait composition of overwintering phytoplankton communities using multivariate statistical analyses and a functional trait-based approach. We hypothesized that overwintering phytoplankton communities are dominated by taxa with trait combinations corresponding to the prevailing winter water column conditions, using ice thickness measurements as a winter-severity indicator. Winter severity had little effect on univariate diversity indicators (taxon richness and evenness), but a strong relationship was found between the phytoplankton community structure and winter severity when taxon trait identity was taken into account. Species responses to winter severity were mediated by the key functional traits: motility, nutritional mode, and the ability to form resting stages. Accordingly, one or the other of two functional groups dominated the phytoplankton biomass during mild winters (i.e., thin or no ice cover; phototrophic taxa) or severe winters (i.e., thick ice cover; exclusively motile taxa). Based on predicted milder winters for temperate regions and a reduction in ice-cover durations, phytoplankton communities during winter can be expected to comprise taxa that have a relative advantage when the water column is well mixed (i.e., need not be motile) and light is less limiting (i.e., need not be mixotrophic). A potential implication of this result is that winter severity promotes different communities at the vernal equinox, which may have different nutritional quality for the next trophic level and ecosystem-scale effects. © 2015 John Wiley & Sons Ltd.
Müller, Lisa; Hildebrandt, Carolin; Raschner, Christian
2017-01-01
The aim of this study was to analyse the role of a relative age effect (RAE) and to investigate the influence of biological maturity status on the RAE at the 7th International Children`s Winter Games. The birth dates of all 572 participants (365 males, 207 females) were analysed, and the biological maturity status of 384 athletes (243 males, 141 females) was assessed by the age at peak height velocity (APHV) method. A RAE was present in the total sample (χ2 = 67.81; p < 0.001), and among both male (χ2 = 49.02; p < 0.001) and female athletes (χ2 = 37.00; p < 0.001) as well as for strength- (χ2 = 56.46; p < 0.001), endurance- (χ2 = 20.48; p = 0.039) and technique-related types of sports (χ2 = 20.48; p = 0.041). No significant differences in biological maturity status were present between the male athletes of single relative age quarters. Among the female athletes a significant difference was present (F = 5.94, p < 0.001); relatively younger female athletes had significantly lower values in the APHV, which indicated that they were maturing earlier. However, when dividing the athletes into normal, early and late maturing athletes, it could be seen that among the relatively younger athletes, hardly any late maturing athletes were present. These findings revealed that relatively younger athletes seemed to only have a chance for selection if they were early maturing, whereas relatively older athletes had an increased likelihood for selection independent of their biological maturity status. In the future, the relative age and the biological maturity status should be considered in the talent development system for various types of winter sport, to contribute to more fairness and to not discriminate against relatively younger and less mature athletes. Key points The relative age strongly influenced the participation rate at the 7th ICG in 2016. A highly significant RAE was present among male and female participants and among athletes of all three groups of sport disciplines: strength-, endurance- and technique-related types of sport. A significant influence of the biological maturity status on the selection was present among female participants – relatively younger female athletes were more mature than relatively older athletes. Relatively younger male and female athletes seem to only have a chance for selection for the Games if they are early maturing, whereas relatively older athletes have an increased likelihood for selection independent of their biological maturity status. In the future, the biological maturity status and the relative age should be considered in the talent development system for various types of winter sport, to contribute to more fairness and to not discriminate against relatively younger and less mature athletes. PMID:28630572
Kumar, Narender; Manimaran, A.; Kumaresan, A.; Sreela, L.; Patbandha, Tapas Kumar; Tiwari, Shiwani; Chandra, Subhash
2016-01-01
Aim: Present study aimed to evaluate the different episodes of clinical mastitis (CM) and influence of duration of treatment and seasonality on the occurrence of different episodes of CM in crossbred cows. Materials and Methods: A total of 1194 lactation data of crossbred CM cows were collected from mastitis treatment record from 2002 to 2012. Data of CM cows were classified into types of episodes (pattern of repeated or multiple episodes occurrence) and number of episodes (magnitude of multiple cases). Types of episodes were divided as single (clinical cure by a single episode of treatment), relapse (retreatment of the same cow within 21 days), recurrence (new CM at least 21 days after treatment), and both (relapse and recurrence). The season was classified as winter (December to March), summer (April to June), rainy (July to September), and autumn (October to November). The difference between incidences of different types of CM episodes and the association between number or type of CM episodes with duration of treatment and seasons of CM occurrence were analyzed by Chi-square test. Results: Among 1194 animals suffered with CM, 53, 16, and 18% had the single episode, relapse, and recurrence, respectively; while 13% suffered by both relapse and recurrence. We estimated the duration of treatment and found 80% of the cows treated 1-8 days, in which 65% treated for 1-4 days, while 35% cows were treated for 5-8 days. Further, 12% cows treated for 9-15 days and 7.5% cows treated >15 days. The relationship between duration of treatment and different episodes of CM revealed that 1-8 days treated cows were mostly cured by the single episode with less relapse and recurrence. In contrast, the incidences of recurrence and relapse episodes were higher in cows treated for more than 9 days. The highest incidence of relapse was noticed in winter (36%) than other seasons (10-28%), while the recurrence was less during autumn (9%) compared to other seasons (20-40%). Conclusion: Cows those suffered by both relapse and recurrence were more susceptible to CM, and they need to be culled from farm to control the transmission of infections. Although the influence of seasonality was difficult to understand, the higher magnitude of relapse and recurrence during winter suggested the adverse effects of cold stress on treatment outcome. PMID:27051189
Kumar, Narender; Manimaran, A; Kumaresan, A; Sreela, L; Patbandha, Tapas Kumar; Tiwari, Shiwani; Chandra, Subhash
2016-01-01
Present study aimed to evaluate the different episodes of clinical mastitis (CM) and influence of duration of treatment and seasonality on the occurrence of different episodes of CM in crossbred cows. A total of 1194 lactation data of crossbred CM cows were collected from mastitis treatment record from 2002 to 2012. Data of CM cows were classified into types of episodes (pattern of repeated or multiple episodes occurrence) and number of episodes (magnitude of multiple cases). Types of episodes were divided as single (clinical cure by a single episode of treatment), relapse (retreatment of the same cow within 21 days), recurrence (new CM at least 21 days after treatment), and both (relapse and recurrence). The season was classified as winter (December to March), summer (April to June), rainy (July to September), and autumn (October to November). The difference between incidences of different types of CM episodes and the association between number or type of CM episodes with duration of treatment and seasons of CM occurrence were analyzed by Chi-square test. Among 1194 animals suffered with CM, 53, 16, and 18% had the single episode, relapse, and recurrence, respectively; while 13% suffered by both relapse and recurrence. We estimated the duration of treatment and found 80% of the cows treated 1-8 days, in which 65% treated for 1-4 days, while 35% cows were treated for 5-8 days. Further, 12% cows treated for 9-15 days and 7.5% cows treated >15 days. The relationship between duration of treatment and different episodes of CM revealed that 1-8 days treated cows were mostly cured by the single episode with less relapse and recurrence. In contrast, the incidences of recurrence and relapse episodes were higher in cows treated for more than 9 days. The highest incidence of relapse was noticed in winter (36%) than other seasons (10-28%), while the recurrence was less during autumn (9%) compared to other seasons (20-40%). Cows those suffered by both relapse and recurrence were more susceptible to CM, and they need to be culled from farm to control the transmission of infections. Although the influence of seasonality was difficult to understand, the higher magnitude of relapse and recurrence during winter suggested the adverse effects of cold stress on treatment outcome.
Beyond arctic and alpine: the influence of winter climate on temperate ecosystems.
Ladwig, Laura M; Ratajczak, Zak R; Ocheltree, Troy W; Hafich, Katya A; Churchill, Amber C; Frey, Sarah J K; Fuss, Colin B; Kazanski, Clare E; Muñoz, Juan D; Petrie, Matthew D; Reinmann, Andrew B; Smith, Jane G
2016-02-01
Winter climate is expected to change under future climate scenarios, yet the majority of winter ecology research is focused in cold-climate ecosystems. In many temperate systems, it is unclear how winter climate relates to biotic responses during the growing season. The objective of this study was to examine how winter weather relates to plant and animal communities in a variety of terrestrial ecosystems ranging from warm deserts to alpine tundra. Specifically, we examined the association between winter weather and plant phenology, plant species richness, consumer abundance, and consumer richness in 11 terrestrial ecosystems associated with the U.S. Long-Term Ecological Research (LTER) Network. To varying degrees, winter precipitation and temperature were correlated with all biotic response variables. Bud break was tightly aligned with end of winter temperatures. For half the sites, winter weather was a better predictor of plant species richness than growing season weather. Warmer winters were correlated with lower consumer abundances in both temperate and alpine systems. Our findings suggest winter weather may have a strong influence on biotic activity during the growing season and should be considered in future studies investigating the effects of climate change on both alpine and temperate systems.
Nutritional condition of Pacific Black Brant wintering at the extremes of their range
Mason, D.D.; Barboza, P.S.; Ward, D.H.
2006-01-01
Endogenous stores of energy allow birds to survive periods of severe weather and food shortage during winter. We documented changes in lipid, protein, moisture, and ash in body tissues of adult female Pacific Black Brant (Branta bernicla nigricans) and modeled the energetic costs of wintering. Birds were collected at the extremes of their winter range, in Alaska and Baja California, Mexico. Body lipids decreased over winter for birds in Alaska but increased for those in Baja California. Conversely, body protein increased over winter for Brant in Alaska and remained stable for birds in Baja California. Lipid stores likely fuel migration for Brant wintering in Baja California and ensure winter survival for those in Alaska. Increases in body protein may support earlier reproduction for Brant in Alaska. Predicted energy demands were similar between sites during late winter but avenues of expenditure were different. Birds in Baja California spent more energy on lipid synthesis while those in Alaska incurred higher thermoregulatory costs. Estimated daily intake rates of eelgrass were similar between sites in early winter; however, feeding time was more constrained in Alaska because of high tides and short photoperiods. Despite differences in energetic costs and foraging time, Brant wintering at both sites appeared to be in good condition. We suggest that wintering in Alaska may be more advantageous than long-distance migration if winter survival is similar between sites and constraints on foraging time do not impair body condition. ?? The Cooper Ornithological Society 2006.
Mu, Cheng-ying; Yang, Xiao-guang; Yang, Jie; Li, Ke-nan; Zheng, Dong-xiao
2015-10-01
The relationships between mortality rate and low temperature for different cultivars of winter-spring wheat during mid-winter period were identified through two-year outdoor potting experiments and indoor manually controlled freezing experiments. We defined the lethally critical temperature and the density of antifreeze capability when the mortality rate reached 10%, 20% and 50% for different cultivars of winter-spring wheat during mid-winter period. The strong-winterness wheat (Yanda 1817 and Jing 411) showed the best freezing resistance and the 50%-lethal temperatures (LT50) of these two cultivars were -21.5 °C and -21.2 °C, respectively. The freezing resistance of winterness wheat and weak-winternes wheat were worse than that of strong-winterness wheat. The LT50 of winterness wheat cultivars Nongda 211 and Nongda 5363 were -21.1 °C and -20.3 °C, while that of weak-winterness wheat cultivars Zheng 366 and Ping' an 8 were -18.5 °C and -18.4 °C , respectively. Springness wheat (Zheng 9023 and Yanzhan 4110) showed the worst freezing resistance, and the LT50 were -15.4 °C and -14.7 °C, respectively. When temperature declined to freezing injury occurred, mortality rate increment for weak-winterness wheat was the highest for each 1 °C decrease. The mortality rates of weak-winterness wheat cultivars Zheng 366 and Ping' an 8 increased by 16.8% and 25.8%, and that of winterness wheat cultivars Nongda 211 and Nongda 5363 increased by 14.7% and 18.9%. The mortality rate of strong-winterness wheat cultivars Yanda 1817 and Jing 411 increased by 15.4% and 13.1%, and that of springiness wheat cultivas Zheng 9023 and Yanzhan 4110 increased by 13.8% and 15.1%. Comparatively, if temperature decreased continuously after the occurrence of freezing injury, the weak-winterness wheat would suffer greater risk.
Warmed Winter Water Temperatures Alter Reproduction in Two Fish Species
NASA Astrophysics Data System (ADS)
Firkus, Tyler; Rahel, Frank J.; Bergman, Harold L.; Cherrington, Brian D.
2018-02-01
We examined the spawning success of Fathead Minnows ( Pimephales promelas) and Johnny Darters ( Etheostoma nigrum) exposed to elevated winter water temperatures typical of streams characterized by anthropogenic thermal inputs. When Fathead Minnows were exposed to temperature treatments of 12, 16, or 20 °C during the winter, spawning occurred at 16 and 20 °C but not 12 °C. Eggs were deposited over 9 weeks before winter spawning ceased. Fathead Minnows from the three winter temperature treatments were then exposed to a simulated spring transition. Spawning occurred at all three temperature treatments during the spring, but fish from the 16° and 20 °C treatment had delayed egg production indicating a latent effect of warm winter temperatures on spring spawning. mRNA analysis of the egg yolk protein vitellogenin showed elevated expression in female Fathead Minnows at 16 and 20 °C during winter spawning that decreased after winter spawning ceased, whereas Fathead Minnows at 12 °C maintained comparatively low expression during winter. Johnny Darters were exposed to 4 °C to represent winter temperatures in the absence of thermal inputs, and 12, 16, and 20 °C to represent varying degrees of winter thermal pollution. Johnny Darters spawned during winter at 12, 16, and 20 °C but not at 4 °C. Johnny Darters at 4 °C subsequently spawned following a simulated spring period while those at 12, 16, and 20 °C did not. Our results indicate elevated winter water temperatures common in effluent-dominated streams can promote out-of-season spawning and that vitellogenin expression is a useful indicator of spawning readiness for fish exposed to elevated winter temperatures.
Warmed Winter Water Temperatures Alter Reproduction in Two Fish Species.
Firkus, Tyler; Rahel, Frank J; Bergman, Harold L; Cherrington, Brian D
2018-02-01
We examined the spawning success of Fathead Minnows (Pimephales promelas) and Johnny Darters (Etheostoma nigrum) exposed to elevated winter water temperatures typical of streams characterized by anthropogenic thermal inputs. When Fathead Minnows were exposed to temperature treatments of 12, 16, or 20 °C during the winter, spawning occurred at 16 and 20 °C but not 12 °C. Eggs were deposited over 9 weeks before winter spawning ceased. Fathead Minnows from the three winter temperature treatments were then exposed to a simulated spring transition. Spawning occurred at all three temperature treatments during the spring, but fish from the 16° and 20 °C treatment had delayed egg production indicating a latent effect of warm winter temperatures on spring spawning. mRNA analysis of the egg yolk protein vitellogenin showed elevated expression in female Fathead Minnows at 16 and 20 °C during winter spawning that decreased after winter spawning ceased, whereas Fathead Minnows at 12 °C maintained comparatively low expression during winter. Johnny Darters were exposed to 4 °C to represent winter temperatures in the absence of thermal inputs, and 12, 16, and 20 °C to represent varying degrees of winter thermal pollution. Johnny Darters spawned during winter at 12, 16, and 20 °C but not at 4 °C. Johnny Darters at 4 °C subsequently spawned following a simulated spring period while those at 12, 16, and 20 °C did not. Our results indicate elevated winter water temperatures common in effluent-dominated streams can promote out-of-season spawning and that vitellogenin expression is a useful indicator of spawning readiness for fish exposed to elevated winter temperatures.
Aerosol Pollution from Small Combustors in a Village
Zwozdziak, A.; Samek, L.; Sowka, I.; Furman, L.; Skrętowicz, M.
2012-01-01
Urban air pollution is widely recognized. Recently, there have been a few projects that examined air quality in rural areas (e.g., AUPHEP project in Austria, WOODUSE project in Denmark). Here we present the results within the International Cooperation Project RER/2/005 targeted at studying the effect of local combustion processes to air quality in the village of Brzezina in the countryside north-west of Wroclaw (south western Poland). We identified the potential emission sources and quantified their contributions. The ambient aerosol monitoring (PM10 and elemental concentrations) was performed during 4 measurement cycles, in summer 2009, 2010 and in winter 2010, 2011. Some receptor modeling techniques, factor analysis-multiple linear regression analysis (FA-MLRA) and potential source localization function (PSLF), have been used. Different types of fuel burning along with domestic refuse resulted in an increased concentration of PM10 particle mass, but also by an increased in various other compounds (As, Pb, Zn). Local combustion sources contributed up to 80% to PM10 mass in winter. The effect of other sources was small, from 6 to 20%, dependently on the season. Both PM10 and elemental concentrations in the rural settlement were comparable to concentrations at urban sites in summer and were much higher in winter, which can pose asignificant health risk to its inhabitants. PMID:22629226
Climate change is affecting mortality of weasels due to camouflage mismatch.
Atmeh, Kamal; Andruszkiewicz, Anna; Zub, Karol
2018-05-24
Direct phenological mismatch caused by climate change can occur in mammals that moult seasonally. Two colour morphs of the weasel Mustela nivalis (M. n.) occur sympatrically in Białowieża Forest (NE Poland) and differ in their winter pelage colour: white in M. n. nivalis and brown in M. n. vulgaris. Due to their small body size, weasels are vulnerable to attacks by a range of different predators; thus cryptic coat colour may increase their winter survival. By analysing trapping data, we found that the share of white subspecies in the weasel population inhabiting Białowieża Forest decreases with decreasing numbers of days with snow cover. This led us to hypothesise that selective predation pressure should favour one of the two phenotypes, according to the prevailing weather conditions in winter. A simple field experiment with weasel models (white and brown), exposed against different background colours, revealed that contrasting models faced significantly higher detection by predators. Our observations also confirmed earlier findings that the plasticity of moult in M. n. nivalis is very limited. This means that climate change will strongly influence the mortality of the nivalis-type due to prolonged camouflage mismatch, which will directly affect the abundance and geographical distribution of this subspecies.
Elbert, Yevgeniy; Burkom, Howard S
2009-11-20
This paper discusses further advances in making robust predictions with the Holt-Winters forecasts for a variety of syndromic time series behaviors and introduces a control-chart detection approach based on these forecasts. Using three collections of time series data, we compare biosurveillance alerting methods with quantified measures of forecast agreement, signal sensitivity, and time-to-detect. The study presents practical rules for initialization and parameterization of biosurveillance time series. Several outbreak scenarios are used for detection comparison. We derive an alerting algorithm from forecasts using Holt-Winters-generalized smoothing for prospective application to daily syndromic time series. The derived algorithm is compared with simple control-chart adaptations and to more computationally intensive regression modeling methods. The comparisons are conducted on background data from both authentic and simulated data streams. Both types of background data include time series that vary widely by both mean value and cyclic or seasonal behavior. Plausible, simulated signals are added to the background data for detection performance testing at signal strengths calculated to be neither too easy nor too hard to separate the compared methods. Results show that both the sensitivity and the timeliness of the Holt-Winters-based algorithm proved to be comparable or superior to that of the more traditional prediction methods used for syndromic surveillance.
75 FR 76405 - Winter Bee, Inc., Provisional Acceptance of a Settlement Agreement and Order
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-08
... CONSUMER PRODUCT SAFETY COMMISSION [CPSC Docket No. 11-C0002] Winter Bee, Inc., Provisional...(e).\\1\\ Published below is a provisionally-accepted Settlement Agreement with Winter Bee, Inc... 1. In accordance with 16 CFR 1118.20, Winter Bee, Inc. (``Winter Bee'') and the staff (``Staff'') of...
Introducing winter canola to the winter wheat-fallow region of the Pacific Northwest
USDA-ARS?s Scientific Manuscript database
Growers in the low-rainfall, winter wheat-fallow region of the Pacific Northwest are in need of an alternative crop to diversify their markets, manage pests, and increase wheat yields. Winter canola may be a viable crop option for growers in the region. However, agronomic research for winter canol...
NASA Astrophysics Data System (ADS)
van Puijenbroek, Marinka E. B.; Nolet, Corjan; de Groot, Alma V.; Suomalainen, Juha M.; Riksen, Michel J. P. M.; Berendse, Frank; Limpens, Juul
2017-12-01
Dune development along highly dynamic land-sea boundaries is the result of interaction between vegetation and dune size with sedimentation and erosion processes. Disentangling the contribution of vegetation characteristics from that of dune size would improve predictions of nebkha dune development under a changing climate, but has proven difficult due to the scarcity of spatially continuous monitoring data. This study explored the contributions of vegetation and dune size to dune development for locations differing in shelter from the sea. We monitored a natural nebkha dune field of 8 ha, along the coast of the island Texel, the Netherlands, for 1 year using an unmanned aerial vehicle (UAV) with camera. After constructing a digital surface model and orthomosaic we derived for each dune (1) vegetation characteristics (species composition, vegetation density, and maximum vegetation height), (2) dune size (dune volume, area, and maximum height), (3) degree of shelter (proximity to other nebkha dunes and the sheltering by the foredune). Changes in dune volume over summer and winter were related to vegetation, dune size and degree of shelter. We found that a positive change in dune volume (dune growth) was linearly related to initial dune volume over summer but not over winter. Big dunes accumulated more sand than small dunes due to their larger surface area. Exposed dunes increased more in volume (0.81 % per dune per week) than sheltered dunes (0.2 % per dune per week) over summer, while the opposite occurred over winter. Vegetation characteristics did not significantly affect dune growth in summer, but did significantly affect dune growth in winter. Over winter, dunes dominated by Ammophila arenaria, a grass species with high vegetation density throughout the year, increased more in volume than dunes dominated by Elytrigia juncea, a grass species with lower vegetation density (0.43 vs. 0.42 (m3 m-3) week-1). The effect of species was irrespective of dune size or distance to the sea. Our results show that dune growth in summer is mainly determined by dune size, whereas in winter dune growth was determined by vegetation type. In our study area the growth of exposed dunes was likely restricted by storm erosion, whereas growth of sheltered dunes was restricted by sand supply. Our results can be used to improve models predicting coastal dune development.
Bacteriological and molecular studies of Clostridium perfringens infections in newly born calves.
Selim, A M; Elhaig, M M; Zakaria, I; Ali, A
2017-01-01
Clostridium perfringens is considered one of the important causes of calf diarrhea. Two hundred and twenty-seven clinical samples from newly born and dead diarrheic calves were examined bacteriologically and by PCR. Bacterial culture identified C. perfringens in 168 of 227 samples. A total of 144 of these isolates were lecithinase positive, indicating C. perfringens Type A. In addition, 154 isolates were positive by alpha toxin encoding gene-PCR assay. This study showed high agreement between the results of bacteriology and multiplex PCR. The multiplex PCR typed all isolates that were typed as C. perfringens Type A through bacteriologic methods, but ten samples that were lecithinase negative were positive in the multiplex PCR. The study showed the highest occurrence of C. perfringens Type A isolations from calves during the winter and autumn compared with other seasons.
Bahreini, Rassol; Currie, Robert W
2015-08-01
The objective of this study was to assess the effectiveness of a cooperative breeding program designed to enhance winter survival of honey bees (Apis mellifera L.) when exposed to high levels of varroa (Varroa destructor Anderson and Trueman) in outdoor-wintered and indoor-wintered colonies. Half of the colonies from selected and unselected stocks were randomly assigned to be treated with late autumn oxalic acid treatment or to be left untreated. Colonies were then randomly assigned to be wintered either indoors (n = 37) or outdoors (n = 40). Late autumn treatment with oxalic acid did not improve wintering performance. However, genotype of bees affected colony survival and the proportion of commercially viable colonies in spring, as indicated by greater rates of colony survival and commercially viable colonies for selected stock (43% survived and 33% were viable) in comparison to unselected stock (19% survived and 9% were viable) across all treatment groups. Indoor wintering improved spring bee population score, proportion of colonies surviving, and proportion of commercially viable colonies relative to outdoor wintering (73% of selected stock and 41% of unselected stock survived during indoor wintering). Selected stock showed better "tolerance" to varroa as the selected stock also maintained higher bee populations relative to unselected stock. However, there was no evidence of "resistance" in selected colonies (reduced mite densities). Collectively, this experiment showed that breeding can improve tolerance to varroa and this can help minimize colony loss through winter and improve colony wintering performance. Overall, colony wintering success of both genotypes of bees was better when colonies were wintered indoors than when colonies were wintered outdoors. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Groundhog Day for Medical Artificial Intelligence.
London, Alex John
2018-05-01
Following a boom in investment and overinflated expectations in the 1980s, artificial intelligence entered a period of retrenchment known as the "AI winter." With advances in the field of machine learning and the availability of large datasets for training various types of artificial neural networks, AI is in another cycle of halcyon days. Although medicine is particularly recalcitrant to change, applications of AI in health care have professionals in fields like radiology worried about the future of their careers and have the public tittering about the prospect of soulless machines making life-and-death decisions. Medicine thus appears to be at an inflection point-a kind of Groundhog Day on which either AI will bring a springtime of improved diagnostic and predictive practices or the shadow of public and professional fear will lead to six more metaphorical weeks of winter in medical AI. © 2018 The Hastings Center.
A versatile technique for capturing urban gulls during winter
Clark, Daniel E.; Koenen, Kiana K. G.; MacKenzie, Kenneth G.; Pereira, Jillian W.; DeStefano, Stephen
2014-01-01
The capture of birds is a common part of many avian studies but often requires large investments of time and resources. We developed a novel technique for capturing gulls during the non-breeding season using a net launcher that was effective and efficient. The technique can be used in a variety of habitats and situations, including urban areas. Using this technique, we captured 1,326 gulls in 125 capture events from 2008 to 2012 in Massachusetts, USA. On average, 10 ring-billed gulls (Larus delawarensis; range = 1–37) were captured per trapping event. Capture rate (the number of birds captured per trapping event) was influenced by the type of bait used and also the time of the year (greatest in autumn, lowest in winter). Our capture technique could be adapted to catch a variety of urban or suburban birds and mammals that are attracted to bait.
Bolduc, F.; Afton, A.D.
2004-01-01
We studied relationships among sediment variables (carbon content, C:N, hardness, oxygen penetration, silt-clay fraction), hydrologic variables (dissolved oxygen, salinity, temperature, transparency, water depth), sizes and biomass of common invertebrate classes, and densities of 15 common waterbird species in ponds of impounded freshwater, oligohaline, mesohaline, and unimpounded mesohaline marshes during winters 1997-98 to 1999-2000 on Rockefeller State Wildlife Refuge, Louisiana, USA. Canonical correspondence analysis and forward selection was used to analyze the above variables. Water depth and oxygen penetration were the variables that best segregated habitat characteristics that resulted in maximum densities of common waterbird species. Most common waterbird species were associated with specific marsh types, except Green-winged Teal (Anas crecca) and Northern Shoveler (Anas clypeata). We concluded that hydrologic manipulation of marsh ponds is the best way to manage habitats for these birds, if the hydrology can be controlled adequately.
The SETI episode in the 1967 discovery of pulsars
NASA Astrophysics Data System (ADS)
Penny, Alan John
2013-09-01
In the winter of 1967 Cambridge radio astronomers discovered a new type of radio source of such an artificial seeming nature that for a few weeks some members of the group had to seriously consider whether they had discovered an extraterrestrial intelligence. Although their investigations lead them to a natural explanation (they had discovered pulsars), they had discussed the implications if it was indeed an artificial source: how to verify such a conclusion and how to announce it, and whether such a discovery might be dangerous. In this they presaged many of the components of the SETI Detection Protocols and the proposed Reply Protocols which have been used to guide the responses of groups dealing with the detection of an extraterrestrial intelligence. These Protocols were only established some twenty five years later in the 1990s and 2000s. Using contemporary and near-contemporary documentation and later recollections, this paper discusses in detail what happened that winter.
Opitz v Boberfeld, W; Theobald, P C; Laser, H
2003-06-01
Regarding the estimation of the energy concentration or digestibility of herb-dominated forage and plant samples from winter pastures, it could be expected that the estimation is only reliable when in vitro methods with rumen fluid as inoculum (= gas production techniques) are used. For the verification of this thesis based on logical reflections, an in vitro-method with rumen fluid added as inoculum, as well as chemical, and enzymatic methods were applied under consideration of existing estimating functions. As a possible reason for the observed divergence of the methods, effects of fungal infections or, respectively, secondary compounds in herbs are discussed. At the present state of knowledge, it is adequate to estimate the energy concentration in vitro by gas tests, as far as fattening types like suckler cows and beef cattle are concerned, maybe in contrast to the forage evaluation for dairy cows.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khan, F.A.; Iqbal, M.; Ghouse, A.K.M.
The Kasimpur Thermal Power Plant Complex (located in the District Aligarh, Uttar Pradesh, India) runs on a low grade, sulphur rich, bituminous type of coal with a daily average consumption rte of about 3,192 metric tons during winter season. Its effluents, mainly consisting of oxides of sulphur, nitrogen and carbon as well as particulate matters, were noted to affect the reproductive behavior of Melilotus indica-a winter season weed growing wild as a component of a grassland community. The samples consisting of 10 plants were collected at monthly intervals from 5 sites located about 0.5, 2, 6, 12 and 20 kmmore » leaward from the Complex. Emergence of inflorescence was delayed at the polluted sites. However, fruit formation started simultaneously (in March) at all the five sites. The pollution induced senescence of floral buds, flowers and fruits, but did not alter markedly weight of seed and fruit.« less
Fruit production in mature and recently regenerated forests of the Appalachians
Cathryn H. Greenberg; Douglas J. Levey; David L. Loftis
2007-01-01
Fleshy fruit is a key food resource for both game and nongame wildlife, and it may be especially important for migratory birds during fall and for resident birds and mammals during winter. Land managers need to know how land uses affect the quantities and species of fruit produced in different forest types and how fruit production varies seasonally and as young stands...
Energy Balance Model for Imagery and Electromagnetic Propagation: Revised
1994-07-01
paddy 12 Sugar cane 15 Cocoa 16 Ground nuts 17 Winter rye 18-23 Beets 18 Maize 18 Tobacco 19 Potatoes, Yams 19 Alfalfa 23-32 Cotton 20-22 Sorghum 20...continued) Type of Surface Zo (cm) Alfalfa 2.7 Cashew orchard, 2 m high 3.5-4.0 Potatoes, 60 cm high 4.0 Farmland, few trees 6.0 Farmland, many hedges 8.0
Piñon mortality from 2001 to 2005: Causes and management strategies
Tom Eager
2008-01-01
(Please note, this is an abstract only) Pinon mortality in the pinon-juniper and pinon-sage types of the Southwest peaked in 2003 following several years of winter drought. The majority of the droughtweakened trees died from pinon ips bark beetle attacks, but twig beetles also played a role. Forest Service aerial surveyors estimate more than 50 million pinon trees died...
2007-10-22
lines LI-L. NDBC buoy 42040 is indicated by the triangle . Table I Mooring summary M LAT LON Start day End day dt Zl zn d: Bottom Type 2004 2005 I...to the Bermuda High, but in curl. Furthermore, they show reasonable correspondence winter, the wind forcing is dominated by the trade winds (presented
ERIC Educational Resources Information Center
Walker, Janet S., Ed.; Gowen, L. Kris, Ed.; Aue, Nicole, Ed.
2008-01-01
This issue of "Focal Point" explores how the increasing emphasis on using evidence-based practices and a "system of care" approach is driving changes in jobs and roles related to children's mental health. Articles in the issue describe how agencies and providers of services and supports have responded to these changes by creating new types of…
Christine A. Vogt; Stanley J. Cindrity
2003-01-01
This paper reports research completed in the fall/winter seasons of 2001/2002 on home owners living in the wildland urban interface for the USDA Forest Service. The primary research focus was to understand human dimensions of wildland fire, particularly attitudes toward and approval of three fuel treatment types (prescribed burning, mechanical thinning, and defensible...
[Spatial analysis of autumn-winter type scrub typhus in Shandong province, 2006-2014].
Yang, H; Bi, Z W; Kou, Z Q; Zheng, L; Zhao, Z T
2016-05-01
To discuss the spatial-temporal distribution and epidemic trends of autumn-winter type scrub typhus in Shandong province, and provide scientific evidence for further study for the prevention and control of the disease. The scrub typhus surveillance data during 2006-2014 were collected from Shandong Disease Reporting Information System. The data was analyzed by using software ArcGIS 9.3(ESRI Inc., Redlands, CA, USA), GeoDa 0.9.5-i and SatScan 9.1.1. The Moran' s I, log-likelihood ratio(LLR), relative risk(RR)were calculated and the incidence choropleth maps, local indicators of spatial autocorrelation cluster maps and space scaning cluster maps were drawn. A total of 4 453 scrub typhus cases were reported during 2006-2014, and the annual incidence increased with year. Among the 17 prefectures(municipality)in Shandong, 13 were affected by scrub typhus. The global Moran's I index was 0.501 5(P<0.01). The differences in local Moran' s I index among 16 prefectures were significant(P<0.01). The " high-high" clustering areas were mainly Wulian county, Lanshan district and Juxian county of Rizhao, Xintai county of Tai' an, Gangcheng and Laicheng districts of Laiwu, Yiyuan county of Zibo and Mengyin county of Linyi. Spatial scan analysis showed that an eastward moving trend of high-risk clusters and two new high-risk clusters were found in Zaozhuang in 2014. The centers of the most likely clusters were in the south central mountainous areas during 2006-2010 and in 2012, eastern hilly areas in 2011, 2013 and 2014, and the size of the clusters expanded in 2008, 2011, 2013 and 2014. One spatial-temporal cluster was detected from October 1, 2014 to November 30, 2014, the center of the cluster was in Rizhao and the radius was 222.34 kilometers. A positive spatial correlation and spatial agglomerations were found in the distribution of autumn-winter type scrub typhus in Shandong. Since 2006, the epidemic area of the disease has expanded and the number of high-risk areas has increased. Moreover, the eastward moving and periodically expanding trends of high-risk clusters were detected.
Improving UK Air Quality Modelling Through Exploitation of Satellite Observations
NASA Astrophysics Data System (ADS)
Pope, Richard; Chipperfield, Martyn; Savage, Nick
2014-05-01
In this work the applicability of satellite observations to evaluate the operational UK Met Office Air Quality in the Unified Model (AQUM) have been investigated. The main focus involved the AQUM validation against satellite observations, investigation of satellite retrieval error types and of synoptic meteorological-atmospheric chemistry relationships simulated/seen by the AQUM/satellite. The AQUM is a short range forecast model of atmospheric chemistry and aerosols up to 5 days. It has been designed to predict potentially hazardous air pollution events, e.g. high concentrations of surface ozone. The AQUM has only been validated against UK atmospheric chemistry recording surface stations. Therefore, satellite observations of atmospheric chemistry have been used to further validate the model, taking advantage of better satellite spatial coverage. Observations of summer and winter 2006 tropospheric column NO2 from both OMI and SCIAMACHY show that the AQUM generally compares well with the observations. However, in northern England positive biases (AQUM - satellite) suggest that the AQUM overestimates column NO2; we present results of sensitivity experiments on UK emissions datasets suspected to be the cause. In winter, the AQUM over predicts background column NO2 when compared to both satellite instruments. We hypothesise that the cause is the AQUM winter night-time chemistry, where the NO2 sinks are not substantially defined. Satellite data are prone to errors/uncertainty such as random, systematic and smoothing errors. We have investigated these error types and developed an algorithm to calculate and reduce the random error component of DOAS NO2 retrievals, giving more robust seasonal satellite composites. The Lamb Weather Types (LWT), an objective method of classifying the daily synoptic weather over the UK, were used to create composite satellite maps of column NO2 under different synoptic conditions. Under cyclonic conditions, satellite observed UK column NO2 is reduced as the indicative south-westerly flow transports it away from the UK over the North Sea. However, under anticyclonic conditions, the satellite shows that the stable conditions enhance the build-up of column NO2 over source regions. The influence of wind direction on column NO2 can also be seen from space with transport leeward of the source regions.
Evaluations on the potential productivity of winter wheat based on agro-ecological zone in the world
NASA Astrophysics Data System (ADS)
Wang, H.; Li, Q.; Du, X.; Zhao, L.; Lu, Y.; Li, D.; Liu, J.
2015-04-01
Wheat is the most widely grown crop globally and an essential source of calories in human diets. Maintaining and increasing global wheat production is therefore strongly linked to food security. In this paper, the evaluation model of winter wheat potential productivity was proposed based on agro-ecological zone and the historical winter wheat yield data in recent 30 years (1983-2011) obtained from FAO. And the potential productions of winter wheat in the world were investigated. The results showed that the realistic potential productivity of winter wheat in Western Europe was highest and it was more than 7500 kg/hm2. The realistic potential productivity of winter wheat in North China Plain were also higher, which was about 6000 kg/hm2. However, the realistic potential productivity of winter wheat in the United States which is the main winter wheat producing country were not high, only about 3000 kg/hm2. In addition to these regions which were the main winter wheat producing areas, the realistic potential productivity in other regions of the world were very low and mainly less than 1500 kg/hm2, like in southwest region of Russia. The gaps between potential productivity and realistic productivity of winter wheat in Kazakhstan and India were biggest, and the percentages of the gap in realistic productivity of winter wheat in Kazakhstan and India were more than 40%. In Russia, the gap between potential productivity and realistic productivity of winter wheat was lowest and the percentage of the gap in realistic productivity of winter wheat in Russia was only 10%.
Arambourou, Hélène; Stoks, Robby
2015-10-01
Despite the increased attention for the effects of pesticides under global warming no studies tested how winter warming affects subsequent sensitivity to pesticides. Winter warming is expected to cause delayed negative effects when it increases metabolic rates and thereby depletes energy reserves. Using a common-garden experiment, we investigated the combined effect of a 4 °C increase in winter temperature and subsequent exposure to chlorpyrifos in the aquatic larvae of replicated low- and high-latitude European populations of the damselfly Ischnura elegans. The warmer winter (8 °C) resulted in a higher winter survival and higher growth rates compared to the cold winter (4 °C) commonly experienced by European high-latitude populations. Low-latitude populations were better at coping with the warmer winter, indicating thermal adaptation to the local winter temperatures. Subsequent chlorpyrifos exposure at 20 °C induced strong negative effects on survival, growth rate, lipid content and acetylcholinesterase activity while phenoloxidase activity increased. These pesticide effects were not affected by winter warming. Our results suggest that for species where winter warming has positive effects on life history, no delayed effects on the sensitivity to subsequent pesticide exposure should be expected. Copyright © 2015 Elsevier B.V. All rights reserved.
Waterbirds foods in winter-managed ricefields in Mississippi
Manley, S.W.; Kaminski, R.M.; Reinecke, K.J.; Gerard, P.D.
2004-01-01
Ricefields are important foraging habitats for waterfowl and other waterbirds in primary North American wintering regions. We conducted a large-scale experiment to test effects of post-harvest ricefield treatment, winter water management, and temporal factors on availabilities of rice, moist-soil plant seeds, aquatic invertebrates, and green forage in the Mississippi Alluvial Valley (MAV), Mississippi, USA, fall-winter 1995-1997. Our results revealed that a large decrease in rice grain occurred between harvest and early winter (79-99%), which, if generally true throughout the MAV, would have critical implications on foraging carrying capacity of ricefields for migrating and wintering waterbirds. During the remainder of winter, food resources generally were similar among treatment combinations. An exception was biomass of aquatic invertebrates, which demonstrated potential to increase by late winter in ricefields that remained flooded. We offer revised calculations of foraging carrying capacity for waterfowl in MAV ricefields and recommend continuing research and management designed to increase availability of residual rice and aquatic invertebrates in winter.
NASA Astrophysics Data System (ADS)
Liu, Wenbin; Wang, Lei; Chen, Deliang; Tu, Kai; Ruan, Chengqing; Hu, Zengyun
2016-06-01
The relationship between the large-scale circulation dynamics and regional precipitation regime in the Tibetan Plateau (TP) has so far not been well understood. In this study, we classify the circulation types using the self-organizing maps based on the daily field of 500 hPa geopotential height and link them to the precipitation climatology in the eastern and central TP. By virtue of an objective determining method, 18 circulation types are quantified. The results show that the large amount of precipitation in summer is closely related to the circulation types in which the enhanced and northward shifted subtropical high (SH) over the northwest Pacific and the obvious cyclconic circulation anomaly over the Bay of Bengal are helpful for the Indian summer monsoon and East Asian summer monsoon to take abundant low-latitude moisture to the eastern and southern TP. On the contrary, the dry winter in the central and eastern Tibet corresponds to the circulation types with divergence over the central and eastern TP and the water vapor transportations of East Asian winter monsoon and mid-latitude westerly are very weak. Some circulation types are associated with some well-known circulation patterns/monsoons influencing the TP (e.g. East Atlantic Pattern, El Niño Southern Oscillation, Indian Summer Monsoon and the mid-latitude westerly), and exhibit an overall good potential for explaining the variability of regional seasonal precipitation. Moreover, the climate shift signals in the late 1970s over the eastern Pacific/North Pacific Oceans could also be reflected by both the variability of some circulation types and their correspondingly composite precipitations. This study extends our understandings for the large-scale atmospheric dynamics and their linkages with regional precipitation and is beneficial for the climate change projection and related adaptation activities in the highest and largest plateau in the world.
Movements of wintering surf scoters: Predator responses to different prey landscapes
Kirk, M.; Esler, Daniel N.; Iverson, S.A.; Boyd, W.S.
2008-01-01
The distribution of predators is widely recognized to be intimately linked to the distribution of their prey. Foraging theory suggests that predators will modify their behaviors, including movements, to optimize net energy intake when faced with variation in prey attributes or abundance. While many studies have documented changes in movement patterns of animals in response to temporal changes in food, very few have contrasted movements of a single predator species naturally occurring in dramatically different prey landscapes. We documented variation in the winter movements, foraging range size, site fidelity, and distribution patterns of a molluscivorous sea duck, the surf scoter (Melanitta perspicillata), in two areas of coastal British Columbia with very different shellfish prey features. Baynes Sound has extensive tidal flats with abundant clams, which are high-quality and temporally stable prey for scoters. Malaspina Inlet is a rocky fjord-like inlet where scoters consume mussels that are superabundant and easily accessible in some patches but are heavily depleted over the course of winter. We used radio telemetry to track surf scoter movements in both areas and found that in the clam habitats of Baynes Sound, surf scoters exhibited limited movement, small winter ranges, strong foraging site fidelity, and very consistent distribution patterns. By contrast, in mussel habitats in the Malaspina Inlet, surf scoters displayed more movement, larger ranges, little fidelity to specific foraging sites, and more variable distribution patterns. We conclude that features associated with the different prey types, particularly the higher depletion rates of mussels, strongly influenced seasonal space use patterns. These findings are consistent with foraging theory and confirm that predator behavior, specifically movements, is environmentally mediated. ?? 2008 Springer-Verlag.
Chatterjee, Abhijit; Ghosh, Sanjay K; Adak, Anandamay; Singh, Ajay K; Devara, Panuganti C S; Raha, Sibaji
2012-01-01
The loading of atmospheric particulate matter (aerosol) in the eastern Himalaya is mainly regulated by the locally generated anthropogenic aerosols from the biomass burning and by the aerosols transported from the distance sources. These different types of aerosol loading not only affect the aerosol chemistry but also produce consequent signature on the radiative properties of aerosol. An extensive study has been made to study the seasonal variations in aerosol components of fine and coarse mode aerosols and black carbon along with the simultaneous measurements of aerosol optical depth on clear sky days over Darjeeling, a high altitude station (2200 masl) at eastern Himalayas during the year 2008. We observed a heavy loading of fine mode dust component (Ca(2+)) during pre-monsoon (Apr-May) which was higher by 162% than its annual mean whereas during winter (Dec-Feb), the loading of anthropogenic aerosol components mainly from biomass burning (fine mode SO(4)(2-) and black carbon) were higher (76% for black carbon and 96% for fine mode SO(4)(2-)) from their annual means. These high increases in dust aerosols during pre-monsoon and anthropogenic aerosols during winter enhanced the aerosol optical depth by 25 and 40%, respectively. We observed that for every 1% increase in anthropogenic aerosols, AOD increased by 0.55% during winter whereas for every 1% increase in dust aerosols, AOD increased by 0.46% during pre-monsoon. The natural dust transport process (during pre-monsoon) plays as important a role in the radiation effects as the anthropogenic biomass burning (during winter) and their differential effects (rate of increase of the AOD with that of the aerosol concentration) are also very similar. This should be taken into account in proper modeling of the atmospheric environment over eastern Himalayas.
NASA Astrophysics Data System (ADS)
Isaac, G. A.; Joe, P. I.; Mailhot, J.; Bailey, M.; Bélair, S.; Boudala, F. S.; Brugman, M.; Campos, E.; Carpenter, R. L.; Crawford, R. W.; Cober, S. G.; Denis, B.; Doyle, C.; Reeves, H. D.; Gultepe, I.; Haiden, T.; Heckman, I.; Huang, L. X.; Milbrandt, J. A.; Mo, R.; Rasmussen, R. M.; Smith, T.; Stewart, R. E.; Wang, D.; Wilson, L. J.
2014-01-01
A World Weather Research Programme (WWRP) project entitled the Science of Nowcasting Olympic Weather for Vancouver 2010 (SNOW-V10) was developed to be associated with the Vancouver 2010 Olympic and Paralympic Winter Games conducted between 12 February and 21 March 2010. The SNOW-V10 international team augmented the instrumentation associated with the Winter Games and several new numerical weather forecasting and nowcasting models were added. Both the additional observational and model data were available to the forecasters in real time. This was an excellent opportunity to demonstrate existing capability in nowcasting and to develop better techniques for short term (0-6 h) nowcasts of winter weather in complex terrain. Better techniques to forecast visibility, low cloud, wind gusts, precipitation rate and type were evaluated. The weather during the games was exceptionally variable with many periods of low visibility, low ceilings and precipitation in the form of both snow and rain. The data collected should improve our understanding of many physical phenomena such as the diabatic effects due to melting snow, wind flow around and over terrain, diurnal flow reversal in valleys associated with daytime heating, and precipitation reductions and increases due to local terrain. Many studies related to these phenomena are described in the Special Issue on SNOW-V10 for which this paper was written. Numerical weather prediction and nowcast models have been evaluated against the unique observational data set now available. It is anticipated that the data set and the knowledge learned as a result of SNOW-V10 will become a resource for other World Meteorological Organization member states who are interested in improving forecasts of winter weather.
Rodríguez-Ruiz, Juan; de la Puente, Javier; Parejo, Deseada; Valera, Francisco; Calero-Torralbo, Miguel A; Reyes-González, José M; Zajková, Zuzana; Bermejo, Ana; Avilés, Jesús M
2014-01-01
Long-distance migrants are suffering drastic declines in the last decades. Causes beneath this problem are complex due to the wide spatial and temporal scale involved. We aim to reveal migratory routes, stopover areas, wintering grounds, and migratory strategies for the most southwestern populations of the near-threatened European Roller Coracias garrulus in order to identify conservation key areas for the non-breeding stage of this species. To this end, we used tracking data from seven satellite transmitters fitted to birds breeding in different populations throughout the Iberian Peninsula and four geolocators fitted to individuals in a southeastern Iberian population. Precise satellite data were used to describe daily activity patterns and speed in relation to the main regions crossed during the migration. Individuals from the most southwestern Iberian populations made a detour towards the Atlantic African coast whereas those from northeastern populations followed a straight north-to-south route. We identified important stopover areas in the Sahel belt, mainly in the surroundings of the Lake Chad, and wintering grounds on southwestern Africa farther west than previously reported for the species. Concerning the migratory strategy, satellite data revealed: 1) a mainly nocturnal flying activity, 2) that migration speed depended on the type of crossed habitat, with higher average speed while crossing the desert; and 3) that the migration was slower and lasted longer in autumn than in spring. The studied populations showed weak migratory connectivity, suggesting the confluence of birds from a wide range of breeding grounds in a restricted wintering area. Therefore, we suggest to target on defining precisely key areas for this species and identifying specific threats in them in order to develop an appropriate global conservation programme for the European Roller.
NASA Astrophysics Data System (ADS)
Yahia, Moohammed Wasim; Johansson, Erik
2013-07-01
Consideration of urban microclimate and thermal comfort is an absolute neccessity in urban development, and a set of guidelines for every type of climate must be elaborated. However, to develop guidelines, thermal comfort ranges need to be defined. The aim of this study was to evaluate the behaviour of different thermal indices by investigating different thermal environments in Damascus during summer and winter. A second aim was to define the lower and upper limits of the thermal comfort range for some of these indices. The study was based on comprehensive micrometeorological measurements combined with questionnaires. It was found that the thermal conditions of different outdoor environments vary considerably. In general, Old Damascus, with its deep canyons, is more comfortable in summer than modern Damascus where there is a lack of shade. Conversely, residential areas and parks in modern Damascus are more comfortable in winter due to more solar access. The neutral temperatures of both the physiologically equivalent temperature (PET) and the outdoor standard effective temperature (OUT_SET*) were found to be lower in summer than in winter. At 80 % acceptability, the study defined the lower comfort limit in winter to 21.0 °C and the upper limit in summer to 31.3 °C for PET. For OUT_SET*, the corresponding lower and upper limits were 27.6 °C and 31.3 °C respectively. OUT_SET* showed a better correlation with the thermal sensation votes than PET. The study also highlighted the influence of culture and traditions on people's clothing as well as the influence of air conditioning on physical adaptation.
Direct nitrous oxide emissions from rapeseed in Germany
NASA Astrophysics Data System (ADS)
Fuß, Roland; Andres, Monique; Hegewald, Hannes; Kesenheimer, Katharina; Köbke, Sarah; Räbiger, Thomas; Suarez, Teresa; Stichnothe, Heinz; Flessa, Heiner
2014-05-01
The production of first generation biofuels has increased over the last decade in Germany. However, there is a strong public and scientific debate concerning ecological impact and sustainability of biofuel production. The EU Renewables Directive requires biofuels to save 35 % of GHG emissions compared to fossil fuels. Starting in 2017, 50 % mitigation of GHG emissions must be achieved. This presents challenges for production of biofuels from rapeseed, which is one of the major renewable resources used for fuel production. Field emissions of nitrous oxide (N2O) and GHG emissions during production of fertilizers contribute strongest to the GHG balance of rapeseed biofuel. Thus, the most promising GHG mitigation option is the optimization of nitrogen fertilization. Since 2012, field trials are conducted on five German research farms to quantify direct GHG emissions. The sites were selected to represent the main rapeseed production regions in Germany as well as climatic regions and soil types. Randomized plot designs were established, which allow monitoring (using manual chambers) impact of fertilization intensity on direct emissions and yield of the typical crop sequence (winter rape - winter wheat - winter barley). The effect of substituting mineral fertilizer with biogas digestate with and without addition of a nitrification inhibitor is also studied. Here we present results from the first cropping season. In 2013, annual direct N2O emissions as well as yield normalized N2O emissions from rape were low. This can be explained with the weather conditions as 2013 was characterized by a cold and long winter with snow until mid spring. As a result, emissions were smaller than predicted by the IPCC emission factors or by the Global Nitrous Oxide Calculator (GNOC). However, emissions still depend on nitrogen input.
Warrick, J.A.; Washburn, L.; Brzezinski, Mark A.; Siegel, D.A.
2005-01-01
The Santa Clara River delivers nutrient rich runoff to the eastern Santa Barbara Channel during brief (???1-3 day) episodic events. Using both river and oceanographic measurements, we evaluate river loading and dispersal of dissolved macronutrients (silicate, inorganic N and P) and comment on the biological implications of these nutrient contributions. Both river and ocean observations suggest that river nutrient concentrations are inversely related to river flow rates. Land use is suggested to influence these concentrations, since runoff from a subwatershed with substantial agriculture and urban areas had much higher nitrate than runoff from a wooded subwatershed. During runoff events, river nutrients were observed to conservatively mix into the buoyant, surface plume immediately seaward of the Santa Clara River mouth. Dispersal of these river nutrients extended 10s of km into the channel. Growth of phytoplankton and nutrient uptake was low during our observations (1-3 days following runoff), presumably due to the very low light levels resulting from high turbidity. However, nutrient quality of runoff (Si:N:P = 16:5:1) was found to be significantly different than upwelling inputs (13:10:1), which may influence different algal responses once sediments settle. Evaluation of total river nitrate loads suggests that most of the annual river nutrient fluxes to the ocean occur during the brief winter flooding events. Wet winters (such as El Nin??o) contribute nutrients at rates approximately an order-of-magnitude greater than "average" winters. Although total river nitrate delivery is considerably less than that supplied by upwelling, the timing and location of these types of events are very different, with river discharge (upwelling) occurring predominantly in the winter (summer) and in the eastern (western) channel. ?? 2004 Elsevier Ltd. All rights reserved.
Ecological significance of seed desiccation sensitivity in Quercus ilex
Joët, Thierry; Ourcival, Jean-Marc; Dussert, Stéphane
2013-01-01
Background and Aims Several widespread tree species of temperate forests, such as species of the genus Quercus, produce recalcitrant (desiccation-sensitive) seeds. However, the ecological significance of seed desiccation sensitivity in temperate regions is largely unknown. Do seeds of such species suffer from drying during the period when they remain on the soil, between shedding in autumn and the return of conditions required for germination in spring? Methods To test this hypothesis, the Mediterranean holm oak (Quercus ilex) forest was used as a model system. The relationships between the climate in winter, the characteristics of microhabitats, acorn morphological traits, and the water status and viability of seeds after winter were then investigated in 42 woodlands sampled over the entire French distribution of the species. Key Results The percentages of germination and normal seedling development were tightly linked to the water content of seeds after the winter period, revealing that in situ desiccation is a major cause of mortality. The homogeneity of seed response to drying suggests that neither intraspecific genetic variation nor environmental conditions had a significant impact on the level of desiccation sensitivity of seeds. In contrast, the water and viability status of seeds at the time of collection were dramatically influenced by cumulative rainfall and maximum temperatures during winter. A significant effect of shade and of the type of soil cover was also evidenced. Conclusions The findings establish that seed desiccation sensitivity is a key functional trait which may influence the success of recruitment in temperate recalcitrant seed species. Considering that most models of climate change predict changes in rainfall and temperature in the Mediterranean basin, the present work could help foresee changes in the distribution of Q. ilex and other oak species, and hence plant community alterations. PMID:23388882
Coccolithophore community response to increasing pCO2 in Mediterranean oligotrophic waters
NASA Astrophysics Data System (ADS)
Oviedo, A. M.; Ziveri, P.; Gazeau, F.
2017-02-01
The effects of elevated partial pressure of CO2 (pCO2) on plankton communities in oligotrophic ecosystems were studied during two mesocosm experiments: one during summer 2012 in the Bay of Calvi, France, and another during winter 2013 in the Bay of Villefranche, France. Here we report on the relative abundances of coccolithophores versus siliceous phytoplankton, coccolithophore community structure, Emiliania huxleyi coccolith morphology and calcification degree. A pCO2 mediated succession of phytoplankton groups did not occur. During both experiments, coccolithophore abundance and community structure varied with time independently of pCO2 levels. Changes in the community structure were partly explained by the concentration of phosphate during the winter experiment. During the summer experiment, it was not clearly related to any of the parameters measured but possibly to changes in temperature. Phenological changes in the community and an attenuated response due to the low biomass building during the winter experiment could have masked the response to pCO2. E. huxleyi dominated the coccolithophore community in winter; it was not affected by elevated pCO2 at any time. In contrast, the abundance of Rabdosphaera clavigera, the dominant species in summer, increased with time and this increase was affected at elevated pCO2. Thus, a different coccolithophore community response based on species-specific sensitivities to pCO2 is still likely. Finally, elevated pCO2 had no traceable effect on E. huxleyi (type A) coccolith morphology or on the degree of coccolith calcification. Our results highlight the possibility that, in oligotrophic regions, nutrient availability, temperature or intrinsic phenological changes might exert larger constrains on the coccolithophore community structure than high pCO2 does solely.
How is Workers' Mood Affected by Workplace Lighting?
NASA Astrophysics Data System (ADS)
Tonello, Graciela
The aim of the study was to investigate to what extent variations in natural daylight, as well as in indoor lighting and decoration, would affect the mood of people working indoor. It was assumed that such an impact would be moderated by the personality characteristics of the individuals. The study was carried out in northern Argentina in workplaces consisting mostly of open plan offices, but also some rooms for one or two persons, and a factory plant were included. About 20 per cent completely lacked windows. In spite of the considerable variations in day length, ranging from ten-and-a-half hours in June to fourteen hours in December, no overall seasonal variations in mood could be established. One obvious reason for this may have been the frequent use of shading devices which reduced the impact of the variations in natural daylight between summer and winter. On the other hand, the differences between the interior environments in terms of lighting and decoration did seem to have at least some impact. Both analyses of regression and variance showed interior decoration to be the most important from the emotional point of view. The participants throughout, reported a more positive mood in the colourful environments. The difference was consistent over the year but became significant only during autumn and winter. Individuals of type B (few signs of tension) reported a more positive emotional status throughout the year than those of type A, which is in line with previous results linking type A to anger and hostility.
Allué-Guardia, Anna; Jofre, Juan; Muniesa, Maite
2012-08-01
Two cytolethal distending toxin (Cdt) type V-encoding bacteriophages (Φ62 and Φ125) were induced spontaneously from their wild-type Escherichia coli strains and from the lysogens generated in Shigella sonnei. The stability of Cdt phages was determined at various temperatures and pH values after 1 month of storage by means of infectivity tests using a plaque blot assay and analysis of phage genomes using real-time quantitative PCR (qPCR): both were highly stable. We assessed the inactivation of Cdt phages by thermal treatment, chlorination, UV radiation, and in a mesocosm in both summer and winter. The results for the two Cdt phages showed similar trends and were also similar to the phage SOM23 used for reference, but they showed a much higher persistence than Cdt-producing E. coli. Cdt phages showed maximal inactivation after 1 h at 70°C, 30 min of UV radiation, and 30 min of contact with a 10-ppm chlorine treatment. Inactivation in a mesocosm was higher in summer than in winter, probably because of solar radiation. The treatments reduced the number of infectious phages but did not have a significant effect on the Cdt phage particles detected by qPCR. Cdt phages were quantified by qPCR in 73% of river samples, and these results suggest that Cdt phages are a genetic vehicle and the natural reservoir for cdt in the environment.
Epidemiology of Feature-Specific Injuries Sustained by Skiers in a Snow Park.
Carús, Luis; Escorihuela, María
2016-09-01
The objective of the present case series study was to analyze injury types and injured anatomic locations resulting from skiing in snow park (SP) features and to determine potential risk factors for ski injuries in an SP. The study was conducted during the 2013-2014 winter season in the SP of a major winter resort located in the Spanish Pyrenees. Cases involved skiers who experienced feature-related injuries in the SP. A total of 113 cases met the inclusion criteria. Logistic regression was used to calculate the odds of injury types and injury to anatomic locations on aerial versus nonaerial features. The overall injury rate was 0.9 per 1000 skier runs. The proportion of injuries was higher for aerials (1.18% of uses) than for nonaerials (0.66% of uses). Results revealed that the upper extremities were the most commonly injured body region, and sprains/strains/dislocations and fractures were the most common injury type. The most commonly injured anatomic location on nonaerial features was the face, while on aerial features it was the head. A higher proportion of fractures was observed on aerial features, while a higher proportion of sprains/strains/dislocations was observed on nonaerial features. Prevention strategies to reduce injury risk include SP redesign, safety and communication policies, instruction on technical skills, and promotion of the use of protective equipment. Copyright © 2016 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.
Bolatti, Elisa M; Chouhy, Diego; Hošnjak, Lea; Casal, Pablo E; Kocjan, Boštjan J; Bottai, Hebe; Stella, Emma J; Sanchez, Adriana; Bussy, Ramón Fernandez; Poljak, Mario; Giri, Adriana A
2017-06-01
We present the first longitudinal study reporting the natural history of human papillomavirus (HPV) infection in sun-exposed skin of healthy individuals living in a geographical area in which solar UV radiation is influenced by the ozone content of the atmosphere. During three climatic seasons, skin swab samples were obtained from 78 healthy individuals and the prevalence of cutaneous HPVs was assessed with broad-spectrum FAP and CUT primers and determined at 54, 45 and 47 % in spring, summer and winter, respectively. Frequencies of mixed HPV infections were significantly higher in spring with respect to summer and winter (P=0.02). Seventy-one different HPV types/putative types were identified. While 62 volunteers were HPV-infected in at least one season, 23 had persistent infections. β-PVs (β-1) were the most prevalent and persistent. Age was associated with both the infection status (P=0.01) and the type of HPV infection (no infection, indeterminate/transient, persistent P=0.02). The molecular/phylogenetic analysis of the newly identified β-PV, officially designated as HPV209, showed that the virus has a typical genomic organization of cutaneous HPVs with five early (E6, E7, E1, E2 and E4) and two late genes (L2 and L1), which clusters to the species β-2. This provides useful data on cutaneous HPV infections in high UV-exposed regions.
Air- and Dustborne Mycoflora in Houses Free of Water Damage and Fungal Growth
Horner, W. Elliott; Worthan, Anthony G.; Morey, Philip R.
2004-01-01
Typically, studies on indoor fungal growth in buildings focus on structures with known or suspected water damage, moisture, and/or indoor fungal growth problems. Reference information on types of culturable fungi and total fungal levels are generally not available for buildings without these problems. This study assessed 50 detached single-family homes in metropolitan Atlanta, Ga., to establish a baseline of “normal and typical” types and concentrations of airborne and dustborne fungi in urban homes which were predetermined not to have noteworthy moisture problems or indoor fungal growth. Each home was visually examined, and samples of indoor and outdoor air and of indoor settled dust were taken in winter and summer. The results showed that rankings by prevalence and abundance of the types of airborne and dustborne fungi did not differ from winter to summer, nor did these rankings differ when air samples taken indoors were compared with those taken outdoors. Water indicator fungi were essentially absent from both air and dust samples. The air and dust data sets were also examined specifically for the proportions of colonies from ecological groupings such as leaf surface fungi and soil fungi. In the analysis of dust for culturable fungal colonies, leaf surface fungi constituted a considerable portion (>20%) of the total colonies in at least 85% of the samples. Thus, replicate dust samples with less than 20% of colonies from leaf surface fungi are unlikely to be from buildings free of moisture or mold growth problems. PMID:15528497
Examining winter visitor use in Yellowstone National Park
Mae A. Davenport; Wayne A. Freimund; William T. Borrie; Robert E. Manning; William A. Valliere; Benjamin Wang
2000-01-01
This research was designed to assist the managers of Yellowstone National Park (YNP) in their decision making about winter visitation. The focus of this report is on winter use patterns and winter visitor preferences. It is the authorâs hope that this information will benefit both the quality of winter experiences and the stewardship of the park resources. This report...
Stalidzans, E; Zacepins, A; Kviesis, A; Brusbardis, V; Meitalovs, J; Paura, L; Bulipopa, N; Liepniece, M
2017-02-01
Honey bee wintering in a wintering building (indoors) with controlled microclimate is used in some cold regions to minimize colony losses due to the hard weather conditions. The behavior and possible state of bee colonies in a dark room, isolated from natural environment during winter season, was studied by indirect temperature measurements to analyze the expression of their annual rhythm when it is not affected by ambient temperature, rain, snow, wind, and daylight. Thus, the observed behavior in the wintering building is initiated solely by bee colony internal processes. Experiments were carried out to determine the dynamics of temperature above the upper hive body and weight dynamics of indoors and outdoors wintered honey bee colonies and their brood-rearing performance in spring. We found significantly lower honey consumption-related weight loss of indoor wintered colonies compared with outdoor colonies, while no significant difference in the amount of open or sealed brood was found, suggesting that wintering building saves food and physiological resources without an impact on colony activity in spring. Indoor wintered colonies, with or without thermal insulation, did not have significant differences in food consumption and brood rearing in spring. The thermal behavior and weight dynamics of all experimental groups has changed in the middle of February possibly due to increased brood-rearing activity. Temperature measurement above the upper hive body is a convenient remote monitoring method of wintering process. Predictability of food consumption in a wintering building, with constant temperature, enables wintering without oversupply of wintering honey. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Change in abundance of pacific brant wintering in alaska: evidence of a climate warming effect?
Ward, David H.; Dau, Christian P.; Tibbitts, T. Lee; Sedinger, James S.; Anderson, Betty A.; Hines, James E.
2009-01-01
Winter distribution of Pacific Flyway brant (Branta bernicla nigricans) has shifted northward from lowtemperate areas to sub-Arctic areas over the last 42 years. We assessed the winter abundance and distribution of brant in Alaska to evaluate whether climate warming may be contributing to positive trends in the most northern of the wintering populations. Mean surface air temperatures during winter at the end of the Alaska Peninsula increased about 1??C between 1963 and 2004, resulting in a 23% reduction in freezing degree days and a 34% decline in the number of days when ice cover prevents birds from accessing food resources. Trends in the wintering population fluctuated with states of the Pacific Decadal Oscillation, increasing during positive (warm) phases and decreasing during negative (cold) phases, and this correlation provides support for the hypothesis that growth in the wintering population of brant in Alaska is linked to climate warming. The size of the wintering population was negatively correlated with the number of days of strong northwesterly winds in November, which suggests that the occurrence of tailwinds favorable for migration before the onset of winter was a key factor in whether brant migrated from Alaska or remained there during winter. Winter distribution of brant on the Alaska Peninsula was highly variable and influenced by ice cover, particularly at the heavily used Izembek Lagoon. Observations of previously marked brant indicated that the Alaska wintering population was composed primarily of birds originating from Arctic breeding colonies that appear to be growing. Numbers of brant in Alaska during winter will likely increase as temperatures rise and ice cover decreases at high latitudes in response to climate warming. ?? The Arctic Institute of North America.
Murari, Vishnu; Kumar, Manish; Mhawish, Alaa; Barman, S C; Banerjee, Tirthankar
2017-04-01
The variation in particulate mass and particulate types (PM 2.5 and PM 10 ) with respect to local/regional meteorology was analyzed from January to December 2014 (n = 104) for an urban location over the middle Indo-Gangetic Plain (IGP). Both coarser (mean ± SD; PM 10 161.3 ± 110.4 μg m -3 , n = 104) and finer particulates (PM 2.5 81.78 ± 66.4 μg m -3 ) revealed enormous mass loading with distinct seasonal effects (range: PM 10 12-535 μg m -3 ; PM 2.5 8-362 μg m -3 ). Further, 56% (for PM 2.5 ) to 81% (for PM 10 ) of monitoring events revealed non-attainment national air quality standard especially during winter months. Particulate types (in terms of PM 2.5 /PM 10 0.49 ± 0.19) also exhibited temporal variations with high PM 2.5 loading particularly during winter (0.62) compared to summer months (0.38). Local meteorology has clear distinguishing trends in terms of dry summer (March to June), wet winter (December to February), and monsoon (July to September). Among all the meteorological variables (average temperature, rainfall, relative humidity (RH), wind speed (WS)), temperature was found to be inversely related with particulate loading (r PM10 -0.79; r PM2.5 -0.87) while RH only resulted a significant association with PM 2.5 during summer (r PM10 0.07; r PM2.5 0.55) and with PM 10 during winter (r PM10 0.53; r PM2.5 0.24). Temperature, atmospheric boundary layer (ABL), and RH were cumulatively recognized as the dominant factors regulating particulate concentration as days with high particulate loading (PM 2.5 >150 μg m -3 ; PM 10 >260 μg m -3 ) appeared to have lower ABL (mean 660 m), minimum temperature (<22.6 °C), and high RH (∼79%). The diurnal variations of particulate ratio were mostly insignificant except minor increases during night having a high wintertime ratio (0.58 ± 0.07) over monsoon (0.34 ± 0.05) and summer (0.30 ± 0.07). Across the region, atmospheric visibility appeared to be inversely associated with particulate (r PM2.5 -0.84; r PM10 -0.79) for all humid conditions, while at RH ≥80%, RH appeared as the most dominant factor in regulating visibility compared to particulate loading. The Lagrangian particle dispersion model was further used to identify possible regions contributing particulate loading through regional/transboundary movement.
NASA Astrophysics Data System (ADS)
Auger, P. A.; Ulses, C.; Estournel, C.; Stemmann, L.; Somot, S.; Diaz, F.
2014-05-01
A realistic modeling approach is designed to address the role of winter mixing on the interannual variability of plankton dynamics in the north-western (NW) Mediterranean basin. For the first time, a high-resolution coupled hydrodynamic-biogeochemical model (Eco3m-S) covering a 30-year period (1976-2005) is validated on available in situ and satellite data for the NW Mediterranean. In this region, cold, dry winds in winter often lead to deep convection and strong upwelling of nutrients into the euphotic layer. High nutrient contents at the end of winter then support the development of a strong spring bloom of phytoplankton. Model results indicate that annual primary production is not affected by winter mixing due to seasonal balance (minimum in winter and maximum in spring). However, the total annual water column-integrated phytoplankton biomass appears to be favored by winter mixing because zooplankton grazing activity is low in winter and early spring. This reduced grazing is explained here by the rarefaction of prey due to both light limitation and the effect of mixing-induced dilution on prey/predator interactions. A negative impact of winter mixing on winter zooplankton biomass is generally simulated except for mesozooplankton. This difference is assumed to stem from the lower parameterized mortality, top trophic position and detritivorous diet of mesozooplankton in the model. Moreover, model suggests that the variability of annual mesozooplankton biomass is principally modulated by the effects of winter mixing on winter biomass. Thus, interannual variability of winter nutrient contents in the euphotic layer, resulting from winter mixing, would control spring primary production and thus annual mesozooplankton biomass. Our results show a bottom-up control of mesozooplankton communities, as observed at a coastal location of the Ligurian Sea.
Stålhandske, Sandra; Lehmann, Philipp; Pruisscher, Peter; Leimar, Olof
2015-12-01
The effect of spring temperature on spring phenology is well understood in a wide range of taxa. However, studies on how winter conditions may affect spring phenology are underrepresented. Previous work on Anthocharis cardamines (orange tip butterfly) has shown population-specific reaction norms of spring development in relation to spring temperature and a speeding up of post-winter development with longer winter durations. In this experiment, we examined the effects of a greater and ecologically relevant range of winter durations on post-winter pupal development of A. cardamines of two populations from the United Kingdom and two from Sweden. By analyzing pupal weight loss and metabolic rate, we were able to separate the overall post-winter pupal development into diapause duration and post-diapause development. We found differences in the duration of cold needed to break diapause among populations, with the southern UK population requiring a shorter duration than the other populations. We also found that the overall post-winter pupal development time, following removal from winter cold, was negatively related to cold duration, through a combined effect of cold duration on diapause duration and on post-diapause development time. Longer cold durations also lead to higher population synchrony in hatching. For current winter durations in the field, the A. cardamines population of southern UK could have a reduced development rate and lower synchrony in emergence because of short winters. With future climate change, this might become an issue also for other populations. Differences in winter conditions in the field among these four populations are large enough to have driven local adaptation of characteristics controlling spring phenology in response to winter duration. The observed phenology of these populations depends on a combination of winter and spring temperatures; thus, both must be taken into account for accurate predictions of phenology.
Assessing winter cover crop nutrient uptake efficiency using a water quality simulation model
NASA Astrophysics Data System (ADS)
Yeo, I.-Y.; Lee, S.; Sadeghi, A. M.; Beeson, P. C.; Hively, W. D.; McCarty, G. W.; Lang, M. W.
2013-11-01
Winter cover crops are an effective conservation management practice with potential to improve water quality. Throughout the Chesapeake Bay Watershed (CBW), which is located in the Mid-Atlantic US, winter cover crop use has been emphasized and federal and state cost-share programs are available to farmers to subsidize the cost of winter cover crop establishment. The objective of this study was to assess the long-term effect of planting winter cover crops at the watershed scale and to identify critical source areas of high nitrate export. A physically-based watershed simulation model, Soil and Water Assessment Tool (SWAT), was calibrated and validated using water quality monitoring data and satellite-based estimates of winter cover crop species performance to simulate hydrological processes and nutrient cycling over the period of 1991-2000. Multiple scenarios were developed to obtain baseline information on nitrate loading without winter cover crops planted and to investigate how nitrate loading could change with different winter cover crop planting scenarios, including different species, planting times, and implementation areas. The results indicate that winter cover crops had a negligible impact on water budget, but significantly reduced nitrate leaching to groundwater and delivery to the waterways. Without winter cover crops, annual nitrate loading was approximately 14 kg ha-1, but it decreased to 4.6-10.1 kg ha-1 with winter cover crops resulting in a reduction rate of 27-67% at the watershed scale. Rye was most effective, with a potential to reduce nitrate leaching by up to 93% with early planting at the field scale. Early planting of winter cover crops (~30 days of additional growing days) was crucial, as it lowered nitrate export by an additional ~2 kg ha-1 when compared to late planting scenarios. The effectiveness of cover cropping increased with increasing extent of winter cover crop implementation. Agricultural fields with well-drained soils and those that were more frequently used to grow corn had a higher potential for nitrate leaching and export to the waterways. This study supports the effective implement of winter cover crop programs, in part by helping to target critical pollution source areas for winter cover crop implementation.
Factors Contributing to Extremely Wet Winters in California
NASA Astrophysics Data System (ADS)
Jong, B. T.; Ting, M.; Seager, R.
2015-12-01
As California continues to battle the severe drought conditions, it becomes increasingly important to understand the atmospheric and oceanic conditions that may possible break this ongoing drought. Is a strong El Niño, such as the 2015/16 event, enough to break the drought? We examine in this study the possible factors that lead to extremely wet winters (the wettest 15%) in both Northern and Southern CA. The relationships between CA winter precipitation and sea surface temperature conditions in the Pacific, as well as atmospheric circulation are determined by using observational and reanalysis data from 1901 to 2010. One of the key features of the atmospheric circulation is the location of the low pressure anomaly, whether caused by El Niño or other factors. If the anomaly locates right off the US west coast, CA tends to be wet, and vice versa. Furthermore, the duration of the circulation anomaly seems to be crucial. During wet El Niño winters, the peak of the circulation anomaly is in the late winter, whereas, during non-wet El Niño winters, the peak of the anomaly is in the early winter. Thus, an El Niño that can last to late winter is more likely to cause an extremely wet winter in the state. The intensity of El Niño is another critical factor. In the wettest tercile late winter, a strong El Niño can bring about 200% of climatological precipitation to CA, while a weak El Niño can bring only less than 150% of climatology. In combination, only a strong El Niño that can last to late winter may make extremely wet winters very likely in CA. To explore the other factors, composites of circulation anomaly during wet & non-El Niño winters were also analyzed. The results show that a zonally propagating wave train, originating from western North Pacific, contributes to low pressure center and wet winter conditions in the state. Thus, coastal low pressure anomaly is a consistent feature for an extremely wet winters in California, but the origin of forcing can come from both tropics and mid-latitude.
Winter climate limits subantarctic low forest growth and establishment.
Harsch, Melanie A; McGlone, Matt S; Wilmshurst, Janet M
2014-01-01
Campbell Island, an isolated island 600 km south of New Zealand mainland (52 °S, 169 °E) is oceanic (Conrad Index of Continentality = -5) with small differences between mean summer and winter temperatures. Previous work established the unexpected result that a mean annual climate warming of c. 0.6 °C since the 1940's has not led to upward movement of the forest limit. Here we explore the relative importance of summer and winter climatic conditions on growth and age-class structure of the treeline forming species, Dracophyllum longifolium and Dracophyllum scoparium over the second half of the 20th century. The relationship between climate and growth and establishment were evaluated using standard dendroecological methods and local climate data from a meteorological station on the island. Growth and establishment were correlated against climate variables and further evaluated within hierarchical regression models to take into account the effect of plot level variables. Winter climatic conditions exerted a greater effect on growth and establishment than summer climatic conditions. Establishment is maximized under warm (mean winter temperatures >7 °C), dry winters (total winter precipitation <400 mm). Growth, on the other hand, is adversely affected by wide winter temperature ranges and increased rainfall. The contrasting effect of winter warmth on growth and establishment suggests that winter temperature affects growth and establishment through differing mechanisms. We propose that milder winters enhance survival of seedlings and, therefore, recruitment, but increases metabolic stress on established plants, resulting in lower growth rates. Future winter warming may therefore have complex effects on plant growth and establishment globally.
Winter Climate Limits Subantarctic Low Forest Growth and Establishment
Harsch, Melanie A.; McGlone, Matt S.; Wilmshurst, Janet M.
2014-01-01
Campbell Island, an isolated island 600 km south of New Zealand mainland (52°S, 169°E) is oceanic (Conrad Index of Continentality = −5) with small differences between mean summer and winter temperatures. Previous work established the unexpected result that a mean annual climate warming of c. 0.6°C since the 1940's has not led to upward movement of the forest limit. Here we explore the relative importance of summer and winter climatic conditions on growth and age-class structure of the treeline forming species, Dracophyllum longifolium and Dracophyllum scoparium over the second half of the 20th century. The relationship between climate and growth and establishment were evaluated using standard dendroecological methods and local climate data from a meteorological station on the island. Growth and establishment were correlated against climate variables and further evaluated within hierarchical regression models to take into account the effect of plot level variables. Winter climatic conditions exerted a greater effect on growth and establishment than summer climatic conditions. Establishment is maximized under warm (mean winter temperatures >7 °C), dry winters (total winter precipitation <400 mm). Growth, on the other hand, is adversely affected by wide winter temperature ranges and increased rainfall. The contrasting effect of winter warmth on growth and establishment suggests that winter temperature affects growth and establishment through differing mechanisms. We propose that milder winters enhance survival of seedlings and, therefore, recruitment, but increases metabolic stress on established plants, resulting in lower growth rates. Future winter warming may therefore have complex effects on plant growth and establishment globally. PMID:24691026
Does Wyoming's Core Area Policy Protect Winter Habitats for Greater Sage-Grouse?
Smith, Kurt T; Beck, Jeffrey L; Pratt, Aaron C
2016-10-01
Conservation reserves established to protect important habitat for wildlife species are used world-wide as a wildlife conservation measure. Effective reserves must adequately protect year-round habitats to maintain wildlife populations. Wyoming's Sage-Grouse Core Area policy was established to protect breeding habitats for greater sage-grouse (Centrocercus urophasianus). Protecting only one important seasonal habitat could result in loss or degradation of other important habitats and potential declines in local populations. The purpose of our study was to identify the timing of winter habitat use, the extent which individuals breeding in Core Areas used winter habitats, and develop resource selection functions to assess effectiveness of Core Areas in conserving sage-grouse winter habitats in portions of 5 Core Areas in central and north-central Wyoming during winters 2011-2015. We found that use of winter habitats occured over a longer period than current Core Area winter timing stipulations and a substantial amount of winter habitat outside of Core Areas was used by individuals that bred in Core Areas, particularly in smaller Core Areas. Resource selection functions for each study area indicated that sage-grouse were selecting habitats in response to landscapes dominated by big sagebrush and flatter topography similar to other research on sage-grouse winter habitat selection. The substantial portion of sage-grouse locations and predicted probability of selection during winter outside small Core Areas illustrate that winter requirements for sage-grouse are not adequately met by existing Core Areas. Consequently, further considerations for identifying and managing important winter sage-grouse habitats under Wyoming's Core Area Policy are warranted.
The impact exploration of agricultural drought on winter wheat yield in the North China Plain
NASA Astrophysics Data System (ADS)
Yang, Jianhua; Wu, Jianjun; Han, Xinyi; Zhou, Hongkui
2017-04-01
Drought is one of the most serious agro-climatic disasters in the North China Plain, which has a great influence on winter wheat yield. Global warming exacerbates the drought trend of this region, so it is important to study the effect of drought on winter wheat yield. In order to assess the drought-induced winter wheat yield losses, SPEI (standardized precipitation evapotranspiration index), the widely used drought index, was selected to quantify the drought from 1981 to 2013. Additionally, the EPIC (Environmental Policy Integrated Climate) crop model was used to simulate winter wheat yield at 47 stations in this region from 1981 to 2013. We analyzed the relationship between winter wheat yield and the SPEI at different time scales in each month during the growing season. The trends of the SPEI and the trends of winter wheat yield at 47 stations over the past 32 years were compared with each other. To further quantify the effect of drought on winter wheat yield, we defined the year that SPEI varied from -0.5 to 0.5 as the normal year, and calculated the average winter wheat yield of the normal years as a reference yield, then calculated the reduction ratios of winter wheat based on the yields mentioned above in severe drought years. As a reference, we compared the results with the reduction ratios calculated from the statistical yield data. The results showed that the 9 to 12-month scales' SPEI in April, May and June had a high correlation with winter wheat yield. The trends of the SPEI and the trends of winter wheat yield over the past 32 years showed a positive correlation (p<0.01) and have similar spatial distributions. The proportion of the stations with the same change trend between the SPEI and winter wheat yield was 70%, indicating that drought was the main factor leading to a decline in winter wheat yield in this region. The reduction ratios based on the simulated yield and the reduction ratios calculated from the statistical yield data have a high positive correlation (p<0.01), which may provide a way to quantitatively evaluate the winter wheat yield losses caused by drought. Key words: drought, winter wheat yield, SPEI, EPIC, the North China Plain
European seasonal mortality and influenza incidence due to winter temperature variability
NASA Astrophysics Data System (ADS)
Ballester, Joan; Rodó, Xavier; Robine, Jean-Marie; Herrmann, François Richard
2016-10-01
Recent studies have vividly emphasized the lack of consensus on the degree of vulnerability (see ref. ) of European societies to current and future winter temperatures. Here we consider several climate factors, influenza incidence and daily numbers of deaths to characterize the relationship between winter temperature and mortality in a very large ensemble of European regions representing more than 400 million people. Analyses highlight the strong association between the year-to-year fluctuations in winter mean temperature and mortality, with higher seasonal cases during harsh winters, in all of the countries except the United Kingdom, the Netherlands and Belgium. This spatial distribution contrasts with the well-documented latitudinal orientation of the dependency between daily temperature and mortality within the season. A theoretical framework is proposed to reconcile the apparent contradictions between recent studies, offering an interpretation to regional differences in the vulnerability to daily, seasonal and long-term winter temperature variability. Despite the lack of a strong year-to-year association between winter mean values in some countries, it can be concluded that warmer winters will contribute to the decrease in winter mortality everywhere in Europe.
Neurotic psychopathology and alexithymia among winter swimmers and controls--a prospective study.
Lindeman, Sari; Hirvonen, Jorma; Joukamaa, Matti
2002-05-01
Random samples of 25 voluntary Finnish winter swimmers (7 males, 18 females) and 11 controls (3 males, 8 females were followed prospectively during the winter season from October 1999 to May 2000 to (determine whether winter swimming is beneficial for mental well-being, as many of its practitioners claim. The Crown-Crisp Experimental Index (CCEI) was used for measuring free-floating anxiety, phobic anxiety, obsessionality, depression, somatic anxiety and hysteria, and the 20-item version of the Toronto Alexithymia Scale (TAS-20) for measuring alexithymia. Self-reported somatic and mental health and the reasons for and the frequency of winter-swimming were asked, too. As resealed by open questions, the winter swimmers reported positive effects of winter swimming. Several of the swimmers also told that they had started winter swimming to improve their physical and mental health. Their experience was that the swimming had relieved physical symptoms and made their mood more positive. However, we found no major differences between winter swimmers and controls in any CCEI or TAS variables. The structured questionnaires do not necessarily, however, reach subjective feelings and experiences.
Optical Flares and a Long-lived Dark Spot on a Cool Shallow Contact Binary
NASA Astrophysics Data System (ADS)
Qian, S.-B.; Wang, J.-J.; Zhu, L.-Y.; Snoonthornthum, B.; Wang, L.-Z.; Zhao, E. G.; Zhou, X.; Liao, W.-P.; Liu, N.-P.
2014-05-01
W UMa-type stars are contact systems where both cool components fill the critical Roche lobes and share a common convective envelope. Long and unbroken time-series photometry is expected to play an important role in their origin and activity. The newly discovered short-period W UMa-type star, CSTAR 038663, was monitored continuously by Chinese Small Telescope ARray (CSTAR) in Antarctica during the winters of 2008 and 2010. There were 15 optical flares recorded in the i band during the winter of 2010. This was the first time such flares were detected from a W UMa-type star. By analyzing the nearly unbroken photometric data from 2008, it is discovered that CSTAR 038663 is a W-type shallow contact binary system (f = 10.6(± 2.9)%) with a high mass ratio of q = 1.12(± 0.01), where the less massive component is slightly hotter than the more massive one. The asymmetric light curves are explained by the presence of a dark spot on the more massive component. Its temperature is about 800 K lower than the stellar photosphere and it covers 2.1% of the total photospheric surface. The lifetime of the dark spot is longer than 116 days. Using 725 eclipse times, we found that the observed-calculated (O-C) curve may show a cyclic variation that is explained by the presence of a close-in third body. Both the shallow contact configuration and the extremely high mass ratio suggest that CSTAR 038663 is presently evolving into a contact system with little mass transfer. The formation and evolution is driven by the loss of angular momentum via magnetic braking, and the close-in companion star is expected to play an important role, removing angular momentum from the central eclipsing binary.
Aerospace Power Journal. Volume 15, Number 4, Winter 2001
2001-01-01
other hand, a flood or hurricane may cause few surgical casualties but increase demand for emergency-room and public- health services as well as...the Defense Department. Overseas, these types of requests would come through the State Department, as they did after Hurricane Mitch struck...transportable hospital when a five-person, backpack-portable surgical team can provide the needed care. After hurricanes or floods, for example, one may have a
The foods of fur animals of the Patuxent Research Refuge, Maryland
Llewellyn, L.M.; Uhler, F.M.
1952-01-01
Approximately 300 digestive tracts of fur animals obtained mostly during the winter trapping season and 560 scats from animals live-trapped on the Patuxent Research Refuge near Laure!, Maryland, were analyzed. The resulting data are summarized and a brief description of the area and important habitat types is given. The animals studied include the raccoon, red fox, gray fox, mink, New York weasel, skunk, opossum, and house cat.
USDA-ARS?s Scientific Manuscript database
High-temperature adult-plant (HTAP) resistance to stripe rust (Puccinia striiformis f. sp. tritici) is a durable type of resistance in wheat. The objective of this study was to identify quantitative trait loci (QTL) conferring the HTAP resistance to stripe rust in a population consisted of 179 F7:8...
Smart Building. Volume 2: System Description
2006-05-01
demonstrated.this technology at the 2002 Winter Olympic Games in Salt Lake City, Utah. The system was installed on a building known as Social Hall Plaza...select the detailed engineering contractors. 3.1.3.8 Sealing the Protective Envelope Due to the type of roof construction on the building there was ...in time to support the Olympics . Prototype testing was completed following the Olympics and additional testing may be performed to better
Shargil, Dorit; Fine, Pinchas; Gerstl, Zev; Nitsan, Ido; Kurtzman, Daniel
2016-01-15
We studied corticosterone occurrence in lettuce plants grown on three biosolids amended soils under irrigation with either tap water or secondary wastewater effluent. Corticosterone was examined as it has possible implications for human health. It is a major glucocorticoid, and as such has an effect on regulation of metabolism, immune functions and stress response. The plants were grown in 220-L lysimeters packed with 3 soils which represent a wide range of physicochemical properties. Lettuce was grown in cycles (two in summer and two in winter) during 3 years, and in every spring season the sludges were re-applied. Corticosterone was quantified using ELISA and LCMS, and was found in the biosolids, tap water, wastewater effluent and lettuce plants. The respective ranges of concentrations were: 11-92 ng g(-1), 0.5-1.6 ng L(-1), 4.2-4.7 ng L(-1); and 1-900 ng g(-1) dry weight. A positive relationship was found between corticosterone concentrations in winter-grown lettuces and the plants fresh weight. The corticosterone content of the plants did not correspond with either the type of irrigation water or the biosolids type and rate of application or the soil properties. Copyright © 2015 Elsevier B.V. All rights reserved.
Home advantage in the Winter Paralympic Games 1976-2014.
Wilson, Darryl; Ramchandani, Girish
2017-01-01
There is a limited amount of home advantage research concerned with winter sports. There is also a distinct lack of studies that investigate home advantage in the context of para sport events. This paper addresses this gap in the knowledge by examining home advantage in the Winter Paralympic Games. Using a standardised measure of success, we compared the performances of host nations at home with their own performances away from home between 1976 and 2014. Both country level and individual sport level analysis is conducted for this time period. Comparisons are also drawn with the Winter Olympic Games since 1992, the point from which both the Winter Olympic Games and the Winter Paralympic Games have been hosted by the same nations and in the same years. Clear evidence of a home advantage effect in the Winter Paralympic Games was found at country level. When examining individual sports, only alpine skiing and cross country skiing returned a significant home advantage effect. When comparing home advantage in the Winter Paralympic Games with the Winter Olympic Games for the last seven host nations (1992-2014), we found that home advantage was generally more pronounced (although not a statistically significant difference) in the case of the former. The causes of home advantage in the Winter Paralympic Games are unclear and should be investigated further.
Clark, Daniel E.; Koenen, Kiana K. G.; Whitney, Jillian J.; MacKenzie, Kenneth G.; DeStefano, Stephen
2016-01-01
While the breeding ecology of gulls (Laridae) has been well studied, their movements and spatial organization during the non-breeding season is poorly understood. The seasonal movements, winter-site fidelity, and site persistence of Ring-billed (Larus delawarensis) and Herring (L. argentatus) gulls to wintering areas were studied from 2008–2012. Satellite transmitters were deployed on Ring-billed Gulls (n = 21) and Herring Gulls (n = 14). Ten Ring-billed and six Herring gulls were tracked over multiple winters and > 300 wing-tagged Ring-billed Gulls were followed to determine winter-site fidelity and persistence. Home range overlap for individuals between years ranged between 0–1.0 (95% minimum convex polygon) and 0.31–0.79 (kernel utilization distributions). Ringbilled and Herring gulls remained at local wintering sites during the non-breeding season from 20–167 days and 74–161 days, respectively. The probability of a tagged Ring-billed Gull returning to the same site in subsequent winters was high; conversely, there was a low probability of a Ring-billed Gull returning to a different site. Ring-billed and Herring gulls exhibited high winter-site fidelity, but exhibited variable site persistence during the winter season, leading to a high probability of encountering the same individuals in subsequent winters.
Carry-over body mass effect from winter to breeding in a resident seabird, the little penguin.
Salton, Marcus; Saraux, Claire; Dann, Peter; Chiaradia, André
2015-01-01
Using body mass and breeding data of individual penguins collected continuously over 7 years (2002-2008), we examined carry-over effects of winter body mass on timing of laying and breeding success in a resident seabird, the little penguin (Eudyptula minor). The austral winter month of July consistently had the lowest rate of colony attendance, which confirmed our expectation that penguins work hard to find resources at this time between breeding seasons. Contrary to our expectation, body mass in winter (July) was equal or higher than in the period before ('moult-recovery') and after ('pre-breeding') in 5 of 7 years for males and in all 7 years for females. We provided evidence of a carry-over effect of body mass from winter to breeding; females and males with higher body mass in winter were more likely to breed early and males with higher body mass in winter were likely to breed successfully. Sex differences might relate to sex-specific breeding tasks, where females may use their winter reserves to invest in egg-laying, whereas males use their winter reserves to sustain the longer fasts ashore during courtship. Our findings suggest that resident seabirds like little penguins can also benefit from a carry-over effect of winter body mass on subsequent breeding.
Deacclimation may be crucial for winter survival of cereals under warming climate.
Rapacz, Marcin; Jurczyk, Barbara; Sasal, Monika
2017-03-01
Climate warming can change the winter weather patterns. Warmer temperatures during winter result in a lower risk of extreme freezing events. On the other hand the predicted warm gaps during winter will decrease their freezing tolerance. Both contradict effects will affect winter survival but their resultant effect is unclear. In this paper, we demonstrate that climate warming may result in a decrease in winter survival of plants. A field study of winterhardiness of common wheat and triticale was established at 11 locations and repeated during three subsequent winters. The freezing tolerance of the plants was studied after controlled cold acclimation and de-acclimation using both plant survival analysis and chlorophyll fluorescence measurements. Cold deacclimation resistance was shown to be independent from cold acclimation ability. Further, cold deacclimation resistance appeared to be crucial for overwintering when deacclimation conditions occurred in the field. The shortening of uninterrupted cold acclimation may increase cold deacclimation efficiency, which could threaten plant survival during warmer winters. Measurements of chlorophyll fluorescence transient showed some differences triggered by freezing before and after deacclimation. We conclude that cold deacclimation resistance should be considered in the breeding of winter cereals and in future models of winter damage risk. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Marine predator surveys in Glacier Bay National Park and Preserve
Bodkin, James L.; Kloecker, Kimberly A.; Coletti, Heather A.; Esslinger, George G.; Monson, Daniel H.; Ballachey, Brenda E.
2002-01-01
Since 1999, vessel based surveys to estimate species composition, distribution and relative abundance of marine birds and mammals have been conducted along coastal and pelagic (offshore) transects in Glacier Bay, Alaska. Surveys have been conducted during winter (November-March) and summer (June). This annual report presents the results of those surveys conducted in March and June of 2001. Following completion of surveys in 2002 we will provide a final report of the results of all surveys conducted between 1999 and 2002.Glacier Bay supports diverse and abundant assemblages of marine birds and mammals. In 2001 we identified 58 species of bird, 7 species of marine mammal, and 6 species of terrestrial mammal on transects sampled during winter and summer. Of course all species are not equally abundant. Among all taxa, in both seasons, sea ducks were the numerically dominant group. In their roles as consumers and because of their generally large size, marine mammals are also likely important in the consumption of energy produced in the Glacier Bay ecosystem. Most common and abundant marine birds and mammals can be placed in either a fish based (e.g. alcids and pinnipeds), or a benthic invertebrate (e.g. sea ducks and sea otters) based food web.Distinct differences in the species composition and abundance of marine birds were observed between winter and summer surveys. Winter marine bird assemblages were dominated numerically (> 11,000; 65% of all birds) by a relatively few species of sea ducks (scoters, goldeneye, Bufflehead, Harlequin and Long-tailed ducks). The sea ducks were distributed almost exclusively along near shore habitats. The prevalence of sea ducks during the March surveys indicates the importance of Glacier Bay as a wintering area for this poorly understood group of animals that occupy a high trophic position in a principally benthic invertebrate (mussel and clam) food web. Marine mammal assemblages were generally consistent between seasons, although Humpback and Killer whales were not observed in winter 2001.Summer marine bird assemblages remained numerically dominated by sea ducks, but species composition shifted between the goldeneye whose density was 44/m2 in winter to < 0.2/m2 in summer, to scoters, whose density was 29/m2 in winter to > 60/m2 in summer. Large increases in Black-legged kittiwake, murrelet (Marbled and Kittlitz’s) and Common merganser densities were detected during summer surveys. Seasonal differences in abundance of species likely reflected differences in life history attributes (e.g. reproductive biology, foraging ecology) among species.Because of differences observed in species composition between the winter and summer, it is apparent that a single annual survey cannot accurately describe the populations of marine birds and mammals that occur in Glacier Bay. Preliminary analysis further suggests that interpretations of data resulting from this type of survey may depend to a large extent on the individual species. Because species exhibit differences in behavior, morphology, coloration, and distribution, accuracy and precision of abundance estimates likely vary among species. Confidence in survey results should be evaluated in consideration of life history and detection probabilities at the species level. However, survey results likely provide reasonable estimates of species composition and relative abundance, as well as accurate abundance estimates for those species whose detection closely approximates one.
Comparison of bacteria populations in clean and recycled sand used for bedding in dairy facilities.
Kristula, M A; Rogers, W; Hogan, J S; Sabo, M
2005-12-01
Bedding samples were collected twice from commercial dairy free-stall facilities that used recycled sand and clean sand in both the summer and winter. Collection began on the day sand was taken from the pile (d 0) and placed in the free stalls, and continued for 5 to 7 additional days. The number of colonies per gram of bedding of gram-negative bacteria, coliforms, Streptococcus spp., and Klebsiella spp. were estimated for each sand sample as well as amounts of dry and organic matter. Clean sand (CS) and recycled sand (RS) had the same bacterial counts when compared at any sampling time. The mean counts of bacterial populations did vary over the course of the study in both CS and RS. There was a significant increase in bacterial counts from d 0 to d 1 for gram-negative bacteria, coliforms, and Streptococcus spp. in both winter and summer. Counts of gram-negative bacteria, coliforms, Klebsiella spp., and Streptococcus spp. did not differ from d 1 to 7 in the winter. Total counts of gram-negative bacteria did not differ from d 1 to 7 in the summer. On d 1 in the summer, coliform counts were lower than at d 5 to 7, and Klebsiella spp. counts were lower than on d 3 to 7. Streptococcus spp. counts were high on d 1 and were constant through d 7 in both winter and summer trials. The number of coliform and Klebsiella spp. in both CS and RS was below the threshold thought to cause mastitis during the sampling times. The number of Streptococcus spp. was high in both CS and RS during the sampling periods. Other management factors need to be identified to decrease the number of Streptococcus spp. in bedding. Recycled sand had a higher organic matter and lower dry matter compared with CS in winter and summer. The results for this study were obtained from multiple herd comparisons, and herd was a significant effect suggesting that different management systems influence the number and types of bacteria in both CS and RS.
Ishikawa, Masaya; Oda, Asuka; Fukami, Reiko; Kuriyama, Akira
2014-01-01
Wintering Sasa senanensis, dwarf bamboo, is known to employ deep supercooling as the mechanism of cold hardiness in most of its tissues from leaves to rhizomes. The breakdown of supercooling in leaf blades has been shown to proceed in a random and scattered manner with a small piece of tissue surrounded by longitudinal and transverse veins serving as the unit of freezing. The unique cold hardiness mechanism of this plant was further characterized using current year leaf blades. Cold hardiness levels (LT20: the lethal temperature at which 20% of the leaf blades are injured) seasonally increased from August (-11°C) to December (-20°C). This coincided with the increases in supercooling capability of the leaf blades as expressed by the initiation temperature of low temperature exotherms (LTE) detected in differential thermal analyses (DTA). When leaf blades were stored at -5°C for 1-14 days, there was no nucleation of the supercooled tissue units either in summer or winter. However, only summer leaf blades suffered significant injury after prolonged supercooling of the tissue units. This may be a novel type of low temperature-induced injury in supercooled state at subfreezing temperatures. When winter leaf blades were maintained at the threshold temperature (-20°C), a longer storage period (1-7 days) increased lethal freezing of the supercooled tissue units. Within a wintering shoot, the second or third leaf blade from the top was most cold hardy and leaf blades at lower positions tended to suffer more injury due to lethal freezing of the supercooled units. LTE were shifted to higher temperatures (2-5°C) after a lethal freeze-thaw cycle. The results demonstrate that the tissue unit compartmentalized with longitudinal and transverse veins serves as the unit of supercooling and temperature- and time-dependent freezing of the units is lethal both in laboratory freeze tests and in the field. To establish such supercooling in the unit, structural ice barriers such as development of sclerenchyma and biochemical mechanisms to increase the stability of supercooling are considered important. These mechanisms are discussed in regard to ecological and physiological significance in winter survival.
Evaluation of Hydrometeor Classification for Winter Mixed-Phase Precipitation Events
NASA Astrophysics Data System (ADS)
Hickman, B.; Troemel, S.; Ryzhkov, A.; Simmer, C.
2016-12-01
Hydrometeor classification algorithms (HCL) typically discriminate radar echoes into several classes including rain (light, medium, heavy), hail, dry snow, wet snow, ice crystals, graupel and rain-hail mixtures. Despite the strength of HCL for precipitation dominated by a single phase - especially warm-season classification - shortcomings exist for mixed-phase precipitation classification. Properly identifying mixed-phase can lead to more accurate precipitation estimates, and better forecasts for aviation weather and ground warnings. Cold season precipitation classification is also highly important due to their potentially high impact on society (e.g. black ice, ice accumulation, snow loads), but due to the varying nature of the hydrometeor - density, dielectric constant, shape - reliable classification via radar alone is not capable. With the addition of thermodynamic information of the atmosphere, either from weather models or sounding data, it has been possible to extend more and more into winter time precipitation events. Yet, inaccuracies still exist in separating more benign (ice pellets) from more the more hazardous (freezing rain) events. We have investigated winter mixed-phase precipitation cases which include freezing rain, ice pellets, and rain-snow transitions from several events in Germany in order to move towards a reliable nowcasting of winter precipitation in hopes to provide faster, more accurate winter time warnings. All events have been confirmed to have the specified precipitation from ground reports. Classification of the events is achieved via a combination of inputs from a bulk microphysics numerical weather prediction model and the German dual-polarimetric C-band radar network, into a 1D spectral bin microphysical model (SBC) which explicitly treats the processes of melting, refreezing, and ice nucleation to predict four near-surface precipitation types: rain, snow, freezing rain, ice pellets, rain/snow mixture, and freezing rain/pellet mixture. Evaluation of the classification is performed by means of disdrometer data, in-situ ground observations, and eye-witness reports from the European Severe Weather Database (ESWD). Additionally, a comparison to an existing radar based HCL is performed as a sanity check and a performance evaluator.
Summer syncope syndrome redux.
Huang, Jennifer Juxiang; Desai, Chirag; Singh, Nirmal; Sharda, Natasha; Fernandes, Aaron; Riaz, Irbaz Bin; Alpert, Joseph S
2015-10-01
While antihypertensive therapy is known to reduce the risk for heart failure, myocardial infarction, and stroke, it can often cause orthostatic hypotension and syncope, especially in the setting of polypharmacy and possibly, a hot and dry climate. The objective of the present study was to investigate whether the results of our prior study involving continued use of antihypertensive drugs at the same dosage in the summer as in the winter months for patients living in the Sonoran desert resulted in an increase in syncopal episodes during the hot summer months. All hypertensive patients who were treated with medications and admitted with International Classification of Diseases, 9th Revision code diagnosis of syncope were included. This is a 3-year retrospective chart review study. They were defined as "cases" if they presented during the summer months (May to September) and "controls" if they presented during the winter months (November to March). The primary outcome measure was the presence of clinical dehydration. The statistical significance was determined using the 2-sided Fisher's exact test. A total of 834 patients with an International Classification of Diseases, 9th Revision code diagnosis of syncope were screened: 477 in the summer months and 357 in the winter months. In patients taking antihypertensive medications, there was a significantly higher number of cases of syncope secondary to dehydration during the summer months (40.5%) compared with the winter months (29%) (P = .04). No difference was observed in the type of antihypertensive medication used and syncope rate. The number of antihypertensives used did not increase the cases of syncope in either summer or winter. An increased number of syncope events was observed in the summer months among people who reside in a dry desert climate and who are taking antihypertensive medications. The data confirm our earlier observations that demonstrated a greater number of cases of syncope among people who reside in a dry desert climate who were taking antihypertensive medications during summer months. We recommend judicious reduction of antihypertensive therapy in patients residing in a hot and dry climate, particularly during the summer months. Copyright © 2015 Elsevier Inc. All rights reserved.
Buma, Brian; Hennon, Paul E; Harrington, Constance A; Popkin, Jamie R; Krapek, John; Lamb, Melinda S; Oakes, Lauren E; Saunders, Sari; Zeglen, Stefan
2017-07-01
Climate change is causing rapid changes to forest disturbance regimes worldwide. While the consequences of climate change for existing disturbance processes, like fires, are relatively well studied, emerging drivers of disturbance such as snow loss and subsequent mortality are much less documented. As the climate warms, a transition from winter snow to rain in high latitudes will cause significant changes in environmental conditions such as soil temperatures, historically buffered by snow cover. The Pacific coast of North America is an excellent test case, as mean winter temperatures are currently at the snow-rain threshold and have been warming for approximately 100 years post-Little Ice Age. Increased mortality in a widespread tree species in the region has been linked to warmer winters and snow loss. Here, we present the first high-resolution range map of this climate-sensitive species, Callitropsis nootkatensis (yellow-cedar), and document the magnitude and location of observed mortality across Canada and the United States. Snow cover loss related mortality spans approximately 10° latitude (half the native range of the species) and 7% of the overall species range and appears linked to this snow-rain transition across its range. Mortality is commonly >70% of basal area in affected areas, and more common where mean winter temperatures is at or above the snow-rain threshold (>0 °C mean winter temperature). Approximately 50% of areas with a currently suitable climate for the species (<-2 °C) are expected to warm beyond that threshold by the late 21st century. Regardless of climate change scenario, little of the range which is expected to remain suitable in the future (e.g., a climatic refugia) is in currently protected landscapes (<1-9%). These results are the first documentation of this type of emerging climate disturbance and highlight the difficulties of anticipating novel disturbance processes when planning for conservation and management. © 2016 John Wiley & Sons Ltd.
Southwell, Colin; Emmerson, Louise; Lunn, Daniel
2018-01-01
Polar seabirds adopt different over-wintering strategies to survive and build condition during the critical winter period. Penguin species either reside at the colony during the winter months or migrate long distances. Tracking studies and survey methods have revealed differences in winter migration routes among penguin species and colonies, dependent on both biotic and abiotic factors present. However, scan sampling methods are rarely used to reveal non-breeding behaviors during winter and little is known about presence at the colony site over this period. Here we show that Adélie penguins on the Yalour Islands in the Western Antarctic Peninsula (WAP) are present year-round at the colony and undergo a mid-winter peak in abundance during winter. We found a negative relationship between daylight hours and penguin abundance when either open water or compact ice conditions were present, suggesting that penguins return to the breeding colony when visibility is lowest for at-sea foraging and when either extreme low or high levels of sea ice exist offshore. In contrast, Adélie penguins breeding in East Antarctica were not observed at the colonies during winter, suggesting that Adélie penguins undergo differential winter strategies in the marginal ice zone on the WAP compared to those in East Antarctica. These results demonstrate that cameras can successfully monitor wildlife year-round in areas that are largely inaccessible during winter. PMID:29561876
NASA Astrophysics Data System (ADS)
Dong, J.; Liu, W.; Han, W.; Lei, T.; Xia, J.; Yuan, W.
2017-12-01
Winter wheat is a staple food crop for most of the world's population, and the area and spatial distribution of winter wheat are key elements in estimating crop production and ensuring food security. However, winter wheat planting areas contain substantial spatial heterogeneity with mixed pixels for coarse- and moderate-resolution satellite data, leading to significant errors in crop acreage estimation. This study has developed a phenology-based approach using moderate-resolution satellite data to estimate sub-pixel planting fractions of winter wheat. Based on unmanned aerial vehicle (UAV) observations, the unique characteristics of winter wheat with high vegetation index values at the heading stage (May) and low values at the harvest stage (June) were investigated. The differences in vegetation index between heading and harvest stages increased with the planting fraction of winter wheat, and therefore the planting fractions were estimated by comparing the NDVI differences of a given pixel with those of predetermined pure winter wheat and non-winter wheat pixels. This approach was evaluated using aerial images and agricultural statistical data in an intensive agricultural region, Shandong Province in North China. The method explained 60% and 85% of the spatial variation in county- and municipal-level statistical data, respectively. More importantly, the predetermined pure winter wheat and non-winter wheat pixels can be automatically identified using MODIS data according to their NDVI differences, which strengthens the potential to use this method at regional and global scales without any field observations as references.
NASA Astrophysics Data System (ADS)
Wang, Rong; Chen, Jing M.; Pavlic, Goran; Arain, Altaf
2016-09-01
Winter leaf area index (LAI) of evergreen coniferous forests exerts strong control on the interception of snow, snowmelt and energy balance. Simulation of winter LAI and associated winter processes in land surface models is challenging. Retrieving winter LAI from remote sensing data is difficult due to cloud contamination, poor illumination, lower solar elevation and higher radiation reflection by snow background. Underestimated winter LAI in evergreen coniferous forests is one of the major issues limiting the application of current remote sensing LAI products. It has not been fully addressed in past studies in the literature. In this study, we used needle lifespan to correct winter LAI in a remote sensing product developed by the University of Toronto. For the validation purpose, the corrected winter LAI was then used to calculate land surface albedo at five FLUXNET coniferous forests in Canada. The RMSE and bias values for estimated albedo were 0.05 and 0.011, respectively, for all sites. The albedo map over coniferous forests across Canada produced with corrected winter LAI showed much better agreement with the GLASS (Global LAnd Surface Satellites) albedo product than the one produced with uncorrected winter LAI. The results revealed that the corrected winter LAI yielded much greater accuracy in simulating land surface albedo, making the new LAI product an improvement over the original one. Our study will help to increase the usability of remote sensing LAI products in land surface energy budget modeling.
Increasing frequency and duration of Arctic winter warming events
NASA Astrophysics Data System (ADS)
Graham, R. M.; Cohen, L.; Petty, A.; Boisvert, L.; Rinke, A.; Hudson, S. R.; Nicolaus, M.; Granskog, M. A.
2017-12-01
Record low Arctic sea ice extents were observed during the last three winter seasons (March). During each of these winters, near-surface air temperatures close to 0°C were observed, in situ, over sea ice in the central Arctic. Recent media reports and scientific studies suggest that such winter warming events were unprecedented for the Arctic. Here we use in situ winter (December-March) temperature observations, such as those from Soviet North Pole drifting stations and ocean buoys, to determine how common Arctic winter warming events are. The earliest record we find of a winter warming event was in March 1896, where a temperature of -3.7˚C was observed at 84˚N during the Fram expedition. Observations of winter warming events exist over most of the Arctic Basin. Despite a limited observational network, temperatures exceeding -5°C were measured in situ during more than 30% of winters from 1954 to 2010, by either North Pole drifting stations or ocean buoys. Correlation coefficients between the atmospheric reanalysis, ERA-Interim, and these in-situ temperature records are shown to be on the order of 0.90. This suggests that ERA-Interim is a suitable tool for studying Arctic winter warming events. Using the ERA-Interim record (1979-2016), we show that the North Pole (NP) region typically experiences 10 warming events (T2m > -10°C) per winter, compared with only five in the Pacific Central Arctic (PCA). We find a positive trend in the overall duration of winter warming events for both the NP region (4.25 days/decade) and PCA (1.16 days/decade), due to an increased number of events of longer duration.
Winter precipitation change in South China in recent decades
NASA Astrophysics Data System (ADS)
Cai, Jingning
2013-04-01
Precipitation change is one of important climate researches in China, but winter precipitation variation in South China has not been studied so frequently. In China, it is rainy when hot; so summer precipitation is usually one focus in research, esp. in South China. However, winter precipitation and its change influence people profoundly in South China, also. The most recent example is what happened over South China in winter 2008. In this winter, millions of people suffered from the unusual cold and snowy winter. It led to huge loss in economy and traffic as well. Roads closed and railway stations were jammed and crowded with people; many planes were grounded for heavy snow and bad weather. Transmission lines faulted in the mountains. The ommunication signals were affected. Everyday food supply including vegetables and meats had to be delayed or interrupted. In some city even water supply was interrupted. And garbage in the city was piled up. Just in this winter the snow depth and coverage area in many places in South China broke or equaled the historical records. In fact, it isn't the only one unusual winter precipitation event in South China. Since 1950s, several freezing and snowy winters struck the South in China. In this research, winter precipitation change in recent years in South China has been discussed based on the precipitation observations. The associated large scale atmospheric circulation change is also analyzed. It is found that snowy winter in South China hardly comes in most periods of 2000s, but in recent decades this heavy snow in winter has appeared several times as observations shows. This phenomenon could be related to the large scale atmospheric circulation change.
van Dooremalen, Coby; Gerritsen, Lonne; Cornelissen, Bram; van der Steen, Jozef J. M.; van Langevelde, Frank; Blacquière, Tjeerd
2012-01-01
Background Recent elevated winter loss of honey bee colonies is a major concern. The presence of the mite Varroa destructor in colonies places an important pressure on bee health. V. destructor shortens the lifespan of individual bees, while long lifespan during winter is a primary requirement to survive until the next spring. We investigated in two subsequent years the effects of different levels of V. destructor infestation during the transition from short-lived summer bees to long-lived winter bees on the lifespan of individual bees and the survival of bee colonies during winter. Colonies treated earlier in the season to reduce V. destructor infestation during the development of winter bees were expected to have longer bee lifespan and higher colony survival after winter. Methodology/Principal Findings Mite infestation was reduced using acaricide treatments during different months (July, August, September, or not treated). We found that the number of capped brood cells decreased drastically between August and November, while at the same time, the lifespan of the bees (marked cohorts) increased indicating the transition to winter bees. Low V. destructor infestation levels before and during the transition to winter bees resulted in an increase in lifespan of bees and higher colony survival compared to colonies that were not treated and that had higher infestation levels. A variety of stress-related factors could have contributed to the variation in longevity and winter survival that we found between years. Conclusions/Significance This study contributes to theory about the multiple causes for the recent elevated colony losses in honey bees. Our study shows the correlation between long lifespan of winter bees and colony loss in spring. Moreover, we show that colonies treated earlier in the season had reduced V. destructor infestation during the development of winter bees resulting in longer bee lifespan and higher colony survival after winter. PMID:22558421
NASA Astrophysics Data System (ADS)
Dorrepaal, E.; Signarbieux, C.; Jassey, V.; Mills, R.; Buttler, A.; Robroek, B.
2014-12-01
Winter seasonality with extensive frost, snow cover and low incoming radiation characterise large areas at mid- and high latitudes, especially in mountain ranges and in the arctic. Given these adverse conditions, it is often assumed that ecosystem processes, such as plant photosynthesis, nutrient uptake and microbial activities, cease, or at best diminish to marginal rates compared to summer. However, snow is a good thermal insulator and a sufficiently thick snow cover might enable temperature-limited processes to continue in winter, especially belowground. Changes in winter precipitation may alter these conditions, yet, relative to the growing season, winter ecosystem processes remain poorly understood. We performed a snow-removal experiment on an ombrotrophic bog in the Swiss Jura mountains (1036 m.a.s.l.) to compare above- and belowground ecosystem processes with and without snow cover during mid- and late-winter (February and April) with the subsequent spring (June) and summer (July). The presence of 1m snow in mid-winter and 0.4m snow in late-winter strongly reduced the photosynthetic capacity (Amax) of Eriophorum vaginatum as well as the total microbial biomass compared to spring and summer values. Amax of Sphagnum magellanicum and uptake of 15N-labelled ammonium-nitrate by vascular plants were, however, almost as high or higher in mid- and late-winter as in summer. Snow removal increased the number of freeze-thaw cycles in mid-winter but also increased the minimum soil temperature in late-winter before ambient snow-melt. This strongly reduced all measured ecosystem processes in mid-winter compared to control and to spring and summer values. Plant 15N-uptake, Amax of Eriophorum and total microbial biomass returned to, or exceeded, control values soon before or after snowmelt. However, Sphagnum Amax and its length growth, as well as the structure of the microbial community showed clear carry-over effects of the reduced winter snow cover into next summer. Altogether, our data indicate that peatlands are active in winter. However, a continuous snow cover is crucial for ecosystem processes both in winter and in the subsequent summer and a reduction of snow thickness or duration due to climate change may impact on peatland ecosystem functioning at various levels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manty, R.E.
Seasonal counts of frontal-wave cyclones forming over the Gulf of Mexico and its coastal plain show more storms in the five El Nino winters and fewer storms in the eight La Nina winters, from 1960 to 1989, significant at the .01 level by a rank sum test. This is corroborated by two results. First, during the same period, the frequency of frontal-overrunning weather conditions in the region, indicative of storms, was higher in El Nino winters and lower in La Nina winters. Second, 100 years of precipitation and temperature records show wetter, cooler El Nino winters and drier, warmer Lamore » Nina winters at gulf-region land stations and climatic divisions. A threefold explanation, based on National Meteorological Center, upper-air data, is offered for the greater frequency of gulf-region cyclogenesis during El Nino winters between 1960 and 1989. (1) The winter, mean, 250-mb jet over the southern US is intensified by 5 to 10 ms[sup [minus]1] and displaced southward between 110[degrees] and 75[degrees]W by an average of 200 to 285 km during the five El Nino winters. This implies stronger and more frequent episodes of jet-associated, upper-level troughing and divergence over the region, reinforcing surface, frontal-wave cyclones. (2) In the five El Nino winters between 1963 and 1989, seasonal average heights and temperatures of the 850-, 700-, 500-, and 200-mb surfaces are lower over the region than they are in non-El Nino winters. This implies more-common presence of cold, low-pressure troughs at upper levels, reinforcing surface cyclones. (3) A 10[degrees] eastward shift, at sea level, of the western edge of the Bermuda high during the eight El Nino winters, changes normally due-easterly trades in the northwestern Caribbean Sea to slightly south of east, allowing greater advection of moisture and heat into the gulf from the tropics, preconditioning the area for development of surface cyclones. Only winter season shows all three conditions and an increase in cyclogenesis.« less
European seasonal mortality and influenza incidence due to winter temperature variability
NASA Astrophysics Data System (ADS)
Rodó, X.; Ballester, J.; Robine, J. M.; Herrmann, F. R.
2017-12-01
Recent studies have vividly emphasized the lack of consensus on the degree of vulnerability (sensu IPCC) of European societies to current and future winter temperatures. Here we consider several climate factors, influenza incidence and daily numbers of deaths to characterize the relationship between winter temperature and mortality in a very large ensemble of European regions representing more than 400 million people. Analyses highlight the strong association between the year-to-year fluctuations in winter mean temperature and mortality, with higher seasonal cases during harsh winters, in all of the countries except the United Kingdom, the Netherlands and Belgium. This spatial distribution contrasts with the well-documented latitudinal orientation of the dependency between daily temperature and mortality within the season. A theoretical framework is proposed to reconcile the apparent contradictions between recent studies, offering an interpretation to regional differences in the vulnerability to daily, seasonal and long-term winter temperature variability. Despite the lack of a strong year-to-year association between winter mean values in some countries, it can be concluded that warmer winters will contribute to the decrease in winter mortality everywhere in Europe. More information in Ballester J, et al. (2016) Nature Climate Change 6, 927-930, doi:10.1038/NCLIMATE3070.
The influence of winter swimming on the rheological properties of blood.
Teległów, Aneta; Dąbrowski, Zbigniew; Marchewka, Anna; Tyka, Aleksander; Krawczyk, Marcin; Głodzik, Jacek; Szyguła, Zbigniew; Mleczko, Edward; Bilski, Jan; Tyka, Anna; Tabarowski, Zbigniew; Czepiel, Jacek; Filar-Mierzwa, Katarzyna
2014-01-01
The aim of this study was to analyze the changes in blood rheology resulting from regular winter swimming. The study was carried out on 12 male winter swimmers. Venous blood for morphological, biochemical and rheological analysis was sampled twice from each winter swimmer - at the beginning of the season and after its completion. There were no significant changes detected in the median values of most blood morphological parameters. The only exception pertained to MCHC which was significantly lower after the season. Winter swimming entailed significant decrease in median elongation index values at shear stress levels of 0.30 Pa and 0.58 Pa, and significant increase in median values of this parameter at shear stress levels ≥1.13 Pa. No significant changes were observed in winter swimmers' median values of aggregation indices and plasma viscosity. The median level of glucose was lower post winter swimming in comparison to the pre-seasonal values. In contrast, one season of winter swimming did not influence swimmers' median value of fibrinogen concentration. In summary, this study revealed positive effects of winter swimming on the rheological properties of blood, manifested by an increase in erythrocyte deformability without accompanying changes in erythrocyte aggregation.
Teległów, Aneta; Marchewka, Jakub; Tabarowski, Zbigniew; Rembiasz, Konrad; Głodzik, Jacek; Scisłowska-Czarnecka, Anna
2015-01-01
The aim of the study was to examine potential differences in the morphological, rheological and biochemical blood parameters of winter swimmers who remained physically active during the period between the end of one winter swimming season and the beginning of another. The study included a group of healthy winter swimmers (n = 17, all between 30 and 60 years of age). Six months following the end of winter season, the levels of mean corpuscular hemoglobin concentration and mean corpuscular hemoglobin turned out to be significantly higher, while erythrocyte count and hematocrit level significantly lower than at the baseline. Moreover, the break in winter swimming was reflected by a significant increase in median erythrocyte elongation index at all shear stress levels ≥ 1.13 Pa. The only significant changes in biochemical parameters of the blood pertained to an increase in the concentration of transferrin and to a decrease in the total protein, albumin and beta-1 globulin concentrations. Seasonal effort of winter swimmers between the end of one winter swimming season and the beginning of another has a positive influence on morphological, rheological and biochemical blood parameters.
Assessing winter cover crop nutrient uptake efficiency using a water quality simulation model
Yeo, In-Young; Lee, Sangchui; Sadeghi, Ali M.; Beeson, Peter C.; Hively, W. Dean; McCarty, Greg W.; Lang, Megan W.
2013-01-01
Winter cover crops are an effective conservation management practice with potential to improve water quality. Throughout the Chesapeake Bay Watershed (CBW), which is located in the Mid-Atlantic US, winter cover crop use has been emphasized and federal and state cost-share programs are available to farmers to subsidize the cost of winter cover crop establishment. The objective of this study was to assess the long-term effect of planting winter cover crops at the watershed scale and to identify critical source areas of high nitrate export. A physically-based watershed simulation model, Soil and Water Assessment Tool (SWAT), was calibrated and validated using water quality monitoring data and satellite-based estimates of winter cover crop species performance to simulate hydrological processes and nutrient cycling over the period of 1991–2000. Multiple scenarios were developed to obtain baseline information on nitrate loading without winter cover crops planted and to investigate how nitrate loading could change with different winter cover crop planting scenarios, including different species, planting times, and implementation areas. The results indicate that winter cover crops had a negligible impact on water budget, but significantly reduced nitrate leaching to groundwater and delivery to the waterways. Without winter cover crops, annual nitrate loading was approximately 14 kg ha−1, but it decreased to 4.6–10.1 kg ha−1 with winter cover crops resulting in a reduction rate of 27–67% at the watershed scale. Rye was most effective, with a potential to reduce nitrate leaching by up to 93% with early planting at the field scale. Early planting of winter cover crops (~30 days of additional growing days) was crucial, as it lowered nitrate export by an additional ~2 kg ha−1 when compared to late planting scenarios. The effectiveness of cover cropping increased with increasing extent of winter cover crop implementation. Agricultural fields with well-drained soils and those that were more frequently used to grow corn had a higher potential for nitrate leaching and export to the waterways. This study supports the effective implement of winter cover crop programs, in part by helping to target critical pollution source areas for winter cover crop implementation.
Winter fidelity and apparent survival of lesser snow goose populations in the Pacific flyway
Williams, C.K.; Samuel, M.D.; Baranyuk, Vasily V.; Cooch, E.G.; Kraege, Donald K.
2008-01-01
The Beringia region of the Arctic contains 2 colonies of lesser snow geese (Chen caerulescens caerulescens) breeding on Wrangel Island, Russia, and Banks Island, Canada, and wintering in North America. The Wrangel Island population is composed of 2 subpopulations from a sympatric breeding colony but separate wintering areas, whereas the Banks Island population shares a sympatric wintering area in California, USA, with one of the Wrangel Island subpopulations. The Wrangel Island colony represents the last major snow goose population in Russia and has fluctuated considerably since 1970, whereas the Banks Island population has more than doubled. The reasons for these changes are unclear, but hypotheses include independent population demographics (survival and recruitment) and immigration and emigration among breeding or wintering populations. These demographic and movement patterns have important ecological and management implications for understanding goose population structure, harvest of admixed populations, and gene flow among populations with separate breeding or wintering areas. From 1993 to 1996, we neckbanded molting birds at their breeding colonies and resighted birds on the wintering grounds. We used multistate mark-recapture models to evaluate apparent survival rates, resighting rates, winter fidelity, and potential exchange among these populations. We also compared the utility of face stain in Wrangel Island breeding geese as a predictor of their wintering area. Our results showed similar apparent survival rates between subpopulations of Wrangel Island snow geese and lower apparent survival, but higher emigration, for the Banks Island birds. Males had lower apparent survival than females, most likely due to differences in neckband loss. Transition between wintering areas was low (<3%), with equal movement between northern and southern wintering areas for Wrangel Island birds and little evidence of exchange between the Banks and northern Wrangel Island populations. Face staining was an unreliable indicator of wintering area. Our findings suggest that northern and southern Wrangel Island subpopulations should be considered a metapopulation in better understanding and managing Pacific Flyway lesser snow geese. Yet the absence of a strong population connection between Banks Island and Wrangel Island geese suggests that these breeding colonies can be managed as separate but overlapping populations. Additionally, winter population fidelity may be more important in lesser snow geese than in other species, and both breeding and wintering areas are important components of population management for sympatric wintering populations.
Winter cover crops influence Amaranthus palmeri establishment
USDA-ARS?s Scientific Manuscript database
Winter cover crops were evaluated for their effect on Palmer amaranth (PA) suppression in cotton production. Cover crops examined included rye and four winter legumes: narrow-leaf lupine, crimson clover, Austrian winter pea, and cahaba vetch. Each legume was evaluated alone and in a mixture with rye...
NASA Technical Reports Server (NTRS)
Lim, Young-Kwon; Ham, Yoo-Geun; Jeong, Jee-Hoon; Kug, Jong-Seong
2012-01-01
The present study investigates how much a realistic Arctic sea ice condition can contribute to improve simulation of the winter climate variation over the Eurasia region. Model experiments are set up using different sea ice boundary conditions over the past 24 years (i.e., 1988-2011). One is an atmospheric model inter-comparison (AMIP) type of run forced with observed sea-surface temperature (SST), sea ice, and greenhouse gases (referred to as Exp RSI), and the other is the same as Exp RSI except for the sea ice forcing, which is a repeating climatological annual cycle (referred to as Exp CSI). Results show that Exp RSI produces the observed dominant pattern of Eurasian winter temperatures and their interannual variation better than Exp CSI (correlation difference up to approx. 0.3). Exp RSI captures the observed strong relationship between the sea ice concentration near the Barents and Kara seas and the temperature anomaly across Eurasia, including northeastern Asia, which is not well captured in Exp CSI. Lagged atmospheric responses to sea ice retreat are examined using observations to understand atmospheric processes for the Eurasian cooling response including the Arctic temperature increase, sea-level pressure increase, upper-level jet weakening and cold air outbreak toward the mid-latitude. The reproducibility of these lagged responses by Exp RSI is also evaluated.
NASA Astrophysics Data System (ADS)
Hoppe, Franziska; Zhusui Kyzy, Taalaigul; Usupbaev, Adilet; Schickoff, Udo
2017-04-01
At least 30% of Kyrgyz pasture areas are considered to be subject to vegetation and soil degradation. Since animal husbandry is the economic basis to sustain people's livelihoods, rangeland degradation presents a threat for the majority of the population. Recently, the usage of plant functional traits as a powerful tool for the characterization of vegetation dynamics in response to anthropogenic and natural disturbances has been put forward. Grazing is one of the most severe disturbances on vegetation, which concerns equally the loss of area and biomass. Because grazing is both depending on and affecting plant functional traits, important insights can be generated, based on this codependency. We hypothesized that the contrasting grazing intensity of summer and winter pastures is reflected by the chosen traits. We used traits such as plant height, flowering start, growth form as well as SLA (Specific Leaf Area) and LMA (Leaf Mass per Area). Based on former phytosociological classification of the main pasture types (summer and winter pastures), community structure and the traits of dominant plant species were analyzed. Our results showed that on winter pastures grazing decreased plant height and SLA and favored plants with an earlier flowering start as well as rosette plants and ascending plants. We conclude that the study of trait composition in relation to anthropogenic disturbances can provide important insights into the mechanism of plant response to grazing in high-altitude rangelands.
NASA Astrophysics Data System (ADS)
Teira, Eva; Hernando-Morales, Víctor; Martínez-García, Sandra; Figueiras, Francisco G.; Arbones, Belén; Álvarez-Salgado, Xosé Antón
2013-03-01
Although recognized as a potentially important source of both inorganic and organic nutrients, the impact of rainwater on microbial populations from marine planktonic systems has been poorly assessed. The effect of rainwater additions on bacterioplankton metabolism and community composition was evaluated in microcosm experiments enclosing natural marine plankton populations from the Ría de Vigo (NW Spain). The experiments were conducted during three different seasons (spring, autumn and winter) using rainwater collected at three different locations: marine, urban and rural sites. Bacterial abundance and production significantly increased up to 1.3 and 1.8-fold, respectively, after urban rainwater additions in spring, when ambient nutrient concentration was very low. Overall, the increments in bacterial production were higher than those in bacterial respiration, which implies that a higher proportion of carbon consumed by bacteria would be available to higher trophic levels. The response of the different bacterial groups to distinct rainwater types differed between seasons. The most responsive bacterial groups were Betaproteobacteria which significantly increased their abundance after urban (in spring and winter) and marine (in spring) rainwater additions, and Bacteroidetes which positively responded to all rainwater treatments in spring and to urban rainwater in autumn. Gammaproteobacteria and Roseobacter responded only to urban (in spring) and marine (in winter) rainwater treatment, respectively. The responses to rainwater additions were moderate and transient, and the resulting bacterial community structure was not importantly altered.
NASA Astrophysics Data System (ADS)
Marichev, V. N.; Samokhvalov, I. V.
2014-11-01
In the article the lidar observations of the winter stratosphere warming manifestations of (SW) 2011-13 over Tomsk are considered. In 2010/11 the winter warming took place in January with insignificant positive temperature deviations from the mean monthly values in its first decade and then two maxima on the 14th and 15th of January at the altitude of 30-40 km with a deviation to 45K. In 2011/12 the beginning of the SW was recorded from lidar measurements on December 26 and lasted for two decades of January. The maximum development of SW was at the end of December 2011 - the first decade of January. The biggest temperature deviations were at the 40-60K level in the height interval of 35-45 km. In 2012/13 the SW began on December 25. The phase of its maximum development fell on the 1-4th of January when the stratopause altitude dropped on 30 km and the maximum temperature deviation from the model at this level reached 70K. In contrast to the first two warming (minor), the last was referred to the major type wherein air mass circulation change happened in the upper stratosphere over Tomsk ((http://www.geo.fu-berlin.de/en/met/ag/strat/index.html).).
Morabito, Marco; Crisci, Alfonso; Grifoni, Daniele; Orlandini, Simone; Cecchi, Lorenzo; Bacci, Laura; Modesti, Pietro Amedeo; Gensini, Gian Franco; Maracchi, Giampiero
2006-09-01
The aim of this study was to evaluate the relationship between the risk of hospital admission for myocardial infarction (MI) and the daily weather conditions during the winters of 1998-2003, according to an air-mass-based synoptic climatological approach. The effects of time lag and 2-day sequences with specific air mass types were also investigated. Studies concerning the relationship between atmospheric conditions and human health need to take into consideration simultaneous effects of many weather variables. At the moment few studies have surveyed these effects on hospitalizations for MI. Analyses were concentrated on winter, when the maximum peak of hospitalization occurred. An objective daily air mass classification by means of statistical analyses based on ground meteorological data was carried out. A comparison between air mass classification and hospital admissions was made by the calculation of a MI admission index, and to detect significant relationships the Mann-Whitney U test, the analysis of variance, and the Bonferroni test were used. Significant increases in hospital admissions for MI were evident 24h after a day characterized by an anticyclonic continental air mass and 6 days after a day characterized by a cyclonic air mass. Increased risk of hospitalization was found even when specific 2-day air mass sequences occurred. These results represent an important step in identifying reliable linkages between weather and health.
Tapp, Jessica L.; Webb, Elisabeth B.
2015-01-01
Migratory waterbirds depend on invertebrates as a key source of dietary protein, but few studies have quantified aquatic invertebrates or their response to management on privately owned wetlands. Our objectives were to quantify the effects of wetland management provided through the Migratory Bird Habitat Initiative (MBHI) on invertebrate biomass, family richness, and secondary production at Wetland Reserve Program (WRP) easements in Arkansas and Missouri. We collected core and sweep-net samples bi-weekly in autumn 2011 and sweep samples in winter 2012 at WRP easements enrolled in MBHI (n = 13), WRP easements not enrolled in MBHI (n = 12), and intensively managed public wetlands (n = 7) in Arkansas and Missouri. Overall mean (±SE) invertebrate biomass and production during autumn were 11.96 (±1.29) kg/ha and 1.57 (±1.09) kg/ha*season, and during winter were 3.96 (±0.55) kg/ha and 1.38 (±0.11), respectively. Macroinvertebrate biomass and family richness did not differ among wetland types or management practices, including inundation and mowing. Secondary macroinvertebrate production during autumn was 200 % greater on MBHI contracts compared to WRP easements. During winter, production was 40 % greater on MBHI and WRP easements compared to public wetlands. Our results suggest that with management, wetlands enrolled in conservation easement programs can be an important source of invertebrate production for migratory waterbirds.
Data Mining for Forecasting Mississippi Cropland Data Layers
NASA Astrophysics Data System (ADS)
Shore, F. L.; Gregory, T. L.
2011-12-01
In 1999, Mississippi became an early adopter of the National Agricultural Statistics Service (NASS) Cropland Data Layer (CDL) program. With the support of the NASS Spatial Analysis Research Section (SARS), we have progressed from an annual crop picture to a pixel by pixel history of Mississippi farming. Much of our early work for Mississippi agriculture is now easily provided from the web based application CropScape, released by SARS in 2011. In this study, pixel history data from CDLs has been mined to give forecasts of Mississippi crop acres. Traditionally, such agricultural data mining emphasizes the trends of early adopters driven by factors such as global warming, technology, practices, or the marketplace. These studies provide forecasted CDL products produced using See5° and Imagine°, the same software used in Mississippi CDL production since 2006. Mississippi CDL forecasts were made using historical information available as soon as the CDL for the previous year was completed. For example, the CDL forecast for winter wheat, produced at a date when winter wheat was planted but not most crops, gave results of 104.6 +/- 5.4% of the official NASS estimates for winter wheat for the years 2009-2011. In 2012, all of the states of the contiguous US will have the historical CDL data to do this type of study. A CDL forecast is proposed as a useful addition to CropScape.
Pomilla, Cristina; Rosenbaum, Howard C
2006-08-01
Group formation in humpback whales has been described in relation to different components of the migratory cycle, yet it is debated whether such groups represent real social bonding or ephemeral aggregations. Cooperative behaviours are exhibited during feeding activities, and it has been suggested that males may cooperate during competition for mates. Since most cooperative behaviours are expected to originate among kin, genetic relatedness represents a critical variable in the understanding of any social phenomenon, especially when cooperation cannot be confirmed unequivocally. Using an approach combining multi-locus microsatellite genotyping and several genetic relatedness estimators, we analyzed whale associations for two different wintering grounds in the Southern Hemisphere. The analyses included 648 whales sampled from 292 groups off the coast of Gabon and Northeast Madagascar, and screened for eleven microsatellite loci. Through simulations, we assessed the performance of three pairwise relatedness estimators. The individuals were molecularly sexed and their associations were investigated in the context of sex and group type. No significant association among relatives was found with the exception of mother-offspring pairs, supporting previous indications of extended maternal care. The analysis from the Gabon population also suggests that related males may avoid each other during competitive activities. Our results demonstrate that if cooperative behaviours occur on wintering grounds they are not favoured by kin selection.
The value of agricultural wetlands as invertebrate resources for wintering shorebirds
Taft, Oriane W.; Haig, Susan M.
2005-01-01
Agricultural landscapes have received little recognition for the food resources they provide to wintering waterbirds. In the Willamette Valley of Oregon, modest yet significant populations of wintering shorebirds (Charadriiformes) regularly use hundreds of dispersed wetlands on agricultural lands. Benthic invertebrates are a critical resource for the survival of overwintering shorebirds, yet the abundance of invertebrate resources in agricultural wetlands such as these has not been quantified. To evaluate the importance of agricultural wetlands to a population of wintering shorebirds, the density, biomass, and general community composition of invertebrates available to birds were quantified at a sample of Willamette Valley sites during a wet (1999–2000) and a dry winter (2000–2001). Invertebrate densities ranged among wetlands from 173 to 1925 (mean ± S.E.: 936 ± 106) individuals/m2 in the wet winter, and from 214 to 3484 (1028 ± 155) individuals/m2 in the dry winter. Total invertebrate estimated biomass among wetlands ranged from 35 to 652 (mean ± S.E.: 364 ± 35) mg/m2 in the wet winter, and from 85 to 1405 (437 ± 62) mg/m2 in the dry winter. These estimates for food abundance were comparable to that observed in some other important freshwater wintering regions in North America.
Physiological processes during winter dormancy and their ecological significance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Havranek, W.M.; Tranquillini, W.
1995-07-01
Lengthy and severe winters require that trees in the forests of boreal and mountain zones undergo winter dormancy. Physiologically, a high resistance to subfreezing temperatures and concomitant dehydration are necessary. To accomplish this dormancy, both physiological and structural changes are needed at the cellular level that require induction by endogenous and photoperiodic control early in autumn. Endogenous rhythmicity promotes cold hardening in early autumn and the persistence of hardiness throughout the winter. Numerous physiological functions are maintained at a reduced level, or become completely inhibited during true winter dormancy. Winter hardiness also includes the capability to minimize water loss effectivelymore » when water uptake is severely impeded or impossible. Anatomical features such as tracheids act to minimize xylem embolism during frequent freeze-thaw cycles, and {open_quotes}crown{close_quotes} tissues enable buds to stay in a dehydrated and, thus, more resistant state during winter. Both these structural features are adaptations that contribute to the dominance of conifers in cold climates. Interestingly, deciduous tree species rather than evergreen conifers dominate in the most severe winter climates, although it is not clear whether limitations during winter, during the summer growth period, or during both are most limiting to conifer tree ecology. Additional work that evaluates the importance of winter and summer growth restriction, and their interaction, is needed before a comprehensive understanding of conifer tree ecophysiology will be possible.« less
Current range of the eastern population of Painted Bunting (Passerina ciris). Part II: Winter range
Sykes, P.W.; Holzman, S.; Iñigo-Elias, Eduardo E.
2007-01-01
The importance of wintering areas for Neotropical migrants is well established. The wintering range of the eastern population of Painted Bunting (Passerina ciris) is described in detail and presented in maps. The paper also discusses extralimital records from islands in the Caribbean Basin as well as scattered wintering individuals outside the winter range. The possibility of eastern birds wintering on the Yucatan Peninsula and adjacent Central America is considered. An extensive treatment of the protected areas of Peninsular Florida, the northern Bahamas, and Cuba describes the importance of upland habitats within these protected areas for wintering buntings. This information should be useful to land management agencies, conservation organizations, and private landholders for the welfare of the bunting and biodiversity in general and may also be of interest to ornithologists, other biological disciplines, naturalists, and birders.
Nichols, James D.; Hines, James E.
1987-01-01
In the present report we address questions about winter distribution patterns and survival rates of North American mallards Anas platyrhynchos. Inferences are based on analyses of banding and recovery data from both winter and preseason banding period. The primary wintering range of the mallard was dividded into 45 minor reference areas and 15 major reference areas which were used to summarize winter banding data. Descriptive tables and figures on the recovery distributions of winter-banded mallards are presented. Using winter recoveries of preseason-banded mallards, we found apparent differences between recovery distribution of young versus adult birds from the same breeding ground reference areas. However, we found no sex-specific differences in winter recovery distribution patterns. Winter recovery distributions of preseason-banded birds also provided evidence that mallards exhibited some degree of year-to-year variation in wintering ground location. The age- and sex-specificity of such variation was tested using winter recoveries of winter-banded birds, and results indicated that subadult (first year) birds were less likely to return to the same wintering grounds the following year than adults. Winter recovery distributions of preseason-banded mallards during 1950-58 differed from distributions in 1966-76. These differences could have resulted from either true distributional shifts or geographic changes in hunting pressure. Survival and recovery rates were estimated from winter banding data. We found no evidence of differences in survival or recovery rates between subadult and adult mallards. Thus, the substantial difference between survival rates of preseason-banded young and adult mallards must result almost entirely from higher mortality of young birds during the approximate period, August-January. Male mallards showed higher survival than females, corroborating inferences based on preseason data. Tests with winter banding and band recovery data indicated some degree of year-to-year variation in both survival and recovery rates, a result again consistent with inference from preseason data. Some evidence indication geographic variation in survival rates; however, there were no consistent directional differences between survival rates of mallards from adjacent northern versus southern areas, or eastern versus western areas. In some comparisons, Central Flyway mallards exhibited slightly higher survival rates than mallards from other flyways. Weighted mean estimates of continental survival rates were computed for the period 1960-77 from both winter banding data and preseason banding of adults. Resulting estimates differed significantly for males, but not for females, and the magnitude of the difference between point estimates was relatively small, even for males. The direction of the difference between these estimates was predicted correctly from previous work on the effects of heterogeneous survival an d recovery rates on band recovery model estimates. The similarity of survival estimates from these two independent data sets supports the believe that biases in these estimates are relatively small.
Winter feeding, growth and condition of brown trout Salmo trutta in a groundwater-dominated stream
French, William E.; Vondracek, Bruce C.; Ferrington, Leonard C.; Finlay, Jacques C.; Dieterman, Douglas J.
2014-01-01
Winter can be a stressful period for stream-dwelling salmonid populations, often resulting in reduced growth and survival. Stream water temperatures have been identified as a primary mechanism driving reductions in fitness during winter. However, groundwater inputs can moderate water temperature and may reduce winter severity. Additionally, seasonal reductions in prey availability may contribute to decreased growth and survival, although few studies have examined food webs supporting salmonids under winter conditions. This study employed diet, stable isotope, and mark-recapture techniques to examine winter (November through March) feeding, growth, and condition of brown troutSalmo trutta in a groundwater-dominated stream (Badger Creek, Minnesota, USA). Growth was greater for fish ≤ 150 mm (mean = 4.1 mg g−1 day−1) than for those 151–276 mm (mean = 1.0 mg g−1 day−1) during the winter season. Overall condition from early winter to late winter did not vary for fish ≤150 mm (mean relative weight (Wr) = 89.5) and increased for those 151–276 mm (mean Wr = 85.8 early and 89.4 late). Although composition varied both temporally and by individual, brown trout diets were dominated by aquatic invertebrates, primarily Amphipods, Dipterans, and Trichopterans. Stable isotope analysis supported the observations of the dominant prey taxa in stomach contents and indicated the winter food web was supported by a combination of allochthonous inputs and aquatic macrophytes. Brown trout in Badger Creek likely benefited from the thermal regime and increased prey abundance present in this groundwater-dominated stream during winter.
Proteomics with Mass Spectrometry Imaging: Beyond Amyloid Typing.
Lavatelli, Francesca; Merlini, Giampaolo
2018-04-01
Detection and typing of amyloid deposits in tissues are two crucial steps in the management of systemic amyloidoses. The presence of amyloid deposits is routinely evaluated through Congo red staining, whereas proteomics is now a mainstay in the identification of the deposited proteins. In article number 1700236, Winter et al. [Proteomics 2017, 17, Issue 22] describe a novel method based on MALDI-MS imaging coupled to ion mobility separation and peptide filtering, to detect the presence of amyloid in histology samples and to identify its composition, while preserving the spatial distribution of proteins in tissues. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Seasonal thermal storage: Swedish practice, developments and cost projections
NASA Astrophysics Data System (ADS)
Margen, P.
1981-06-01
The types of heat store being developed in Sweden for seasonal storage of heat are discussed. This type of storage allows summer excess heat from industrial waste heat plants, garbage burning plants and future central solar heat stations to be stored for winter use on district heating networks. Whereas above ground steel or concrete tanks are usually too expensive insulated earth pits, uninsulated rock caverns and deep ground schemes using rock or clay promise to achieve sufficiently low costs to justify storage when supplied with free or cheap summer treat. For all these concepts demonstration plants were or are being built in Sweden.
The Health Impacts of Energy Policy Pathways in Ulaanbaatar, Mongolia: A Total Exposure Assessment
NASA Astrophysics Data System (ADS)
Hill, L. A.; Damdinsuren, Y.; Olkhanud, P. B.; Smith, K. R.; Turner, J. R.; Edwards, R.; Odsuren, M.; Ochir, C.
2015-12-01
Ulaanbaatar is home to nearly half of Mongolia's 2.8 million residents. The city's rapid growth, frigid winters, valley topography, and reliance on coal-fired stoves have led to some of the worst winter pollution levels in the world. To better understand this issue, we modeled integrated PM2.5exposures and related health impacts for various city-wide heating policies through 2024. This assessment is one of the first to employ a total exposure approach and results of the 2014 Comparative Risk Assessments of the Global Burden of Disease Project (CRA/GBD) in a policy-relevant energy study. Emissions related to heating, traffic, and power generation were considered under Business as Usual, Moderate Improvement, and Max Improvement scenarios. Calibrated outdoor models were combined with indoor models, local infiltration and time activity estimates, and demographic projections to estimate PM2.5exposures in 2014 and 2024. Indoor exposures were assigned by heating type, home type, and smoking status; outdoor exposures were assigned through geocoding. Population average annual exposures were calculated and applied to local disease rates and integrated exposure-response curves (2014 CRA/GBD) to arrive at annual projections of premature deaths and DALYs. We estimate 2014 annual average exposures at 68 μg/m3, dictated almost exclusively by indoor winter exposures. Under current trends, annual exposures increase 10% to 75 μg/m3 in 2024. This is in stark contrast to the moderate and max improvement scenarios, which lead to 2024 annual exposures that are 31%, and 68% lower, respectively. Under the Moderate scenario, 2024 per capita annual DALY and death burdens drop 26% and 22%, respectively, from 2014 levels. Under the Max scenario, 2024 per capita annual DALY and death burdens drop 71% and 66%, respectively, from 2014. SHS becomes a major contributor as emissions from other sectors decrease. Reductions are dominated by cardiovascular and lower respiratory diseases in children.
A time series study on the effects of cold temperature on road traffic injuries in Seoul, Korea.
Lee, Won-Kyung; Lee, Hye-Ah; Hwang, Seung-sik; Kim, Ho; Lim, Youn-Hee; Hong, Yun-Chul; Ha, Eun-Hee; Park, Hyesook
2014-07-01
Although traffic accidents are associated with weather, the influence of temperature on injuries from traffic accidents has not been evaluated sufficiently. The objective of this study was to evaluate the effect of temperature, especially cold temperatures, on injuries from traffic accidents in Seoul, Korea. We also explored the relationship of temperature with different types of traffic accident. The daily frequencies of injuries from traffic accidents in Seoul were summarized from the integrated database established by the Korea Road Traffic Authority. Weather data included temperature, barometric pressure, rainfall, snow, and fog from May 2007 to December 2011. The qualitative relationship between daily mean temperature and injuries from traffic accidents was evaluated using a generalized additive model with Poisson distribution. Further analysis was performed using piecewise linear regression if graph the showed non-linearity with threshold. The incidence of injuries was 216 per 100,000 person-months in Seoul. The effect of temperature on injuries from traffic accidents was minimal during spring and summer. However, injuries showed a more striking relationship with temperature in winter than in other seasons. In winter, the number of injuries increased as the temperature decreased to <0°C. The injuries increased by 2.1% per 1°C decrease under the threshold of the daily average temperature -5.7°C, which is 10-fold greater than the effect of temperature above the threshold. Some groups were more susceptible to injuries, such as young and male drivers, according to the types of traffic accident when the temperature decreased to below the freezing temperature. The incidence of injuries increased sharply when the temperature decreased below freezing temperature in winter. Temperature can be effectively used to inform high risk of road traffic injuries, thus helping to prevent road traffic injuries. Copyright © 2014 Elsevier Inc. All rights reserved.
Evidence for range contraction of snowshoe hare in Pennsylvania
Diefenbach, Duane R.; Rathbun, Stephen L.; Vreeland, J.K.; Grove, Deborah; Kanapaux, William J.
2016-01-01
In Pennsylvania, Lepus americanus (Snowshoe Hare) is near the southern limits of its range and at risk of range contraction because of loss of early-successional forest and impacts of climate change. We used hunter-harvest data to investigate changes in the distribution of Snowshoe Hare in Pennsylvania (1983–2011), forest inventory and land-use data to assess changes in amount and distribution of early-successional forest (1988–2011), and occupancy modeling (2004) to identify habitat and climate variables that explain the current distribution of Snowshoe Hare. We determined presence of Snowshoe Hare based on visual sightings, observations of tracks, and DNA analysis of fecal pellets, and used repeated visits to sampling sites and occupancy models to estimate occupancy rates (Ψ). Hunter-harvest data indicated the range of Snowshoe Hare in Pennsylvania contracted towards northwestern and northeastern portions of the state. Based on occupancy modeling, Snowshoe Hare were most likely to occupy early-successional and mixed deciduous-coniferous forest types and areas with colder winter temperatures, which coincided with the distribution of hunter harvests. Among the 4 forest types, we estimated Ψ = 0.52-0.79 and Ψ = 0.10-0.32 where winter temperatures were coldest and warmest, respectively. Total forest loss was <1% during 1988-2011, and the loss of early-successional forest in the current and former range of Snowshoe Hares was similar as were mean patch size and a fragmentation metric of early-successional habitat. Thus, changes in forest characteristics did not explain the range contraction we observed. We used climate-model predictions and our occupancy model to predict that average occupancy probability across northern Pennsylvania may decline from 0.27 in 2004 to 0.10–0.18 by 2050–2059, depending on the climate model. The range of Snowshoe Hare in Pennsylvania has contracted to regions of Pennsylvania with the coldest winter temperatures and most persistent snowpack, and based on projected climate change, our results suggest further range contraction of Snowshoe Hare in Pennsylvania.
Winter habitat selection patterns of Merriam's turkeys in the southern Black Hills, South Dakota
Chad P. Lehman; Mark A. Rumble; Lester D. Flake
2007-01-01
In northern areas of their expanded range, information on Merriam's turkeys (Meleagris gallopavo merriami) is lacking, specifically pertaining to wintering behavior and factors associated with winter habitat selection. Forest managers need detailed quantification of the effects of logging and other management practices on wintering habitats...
Production of ethanol from newly developed and improved winter barley cultivars
USDA-ARS?s Scientific Manuscript database
Winter barley has attracted strong interest as a potential feedstock for fuel ethanol production in regions with mild winter climates such as the mid-Atlantic and northeastern United States. Ten recently developed and improved winter barley cultivars and breeding lines, including five hulled and fiv...
Winter camelina: Crop growth, seed yield and quality response to genotype and sowing rate
USDA-ARS?s Scientific Manuscript database
Winter camelina [Camelina sativa (L.) Crantz] is a freeze-hardy, early maturing, winter annual crop that allows potential for dual cropping options in short-season temperate environments. However, little is known about genotypic variation of winter camelina or best management for its production. Tra...
Livable Winter Cities--Leisure Attitudes and Activities.
ERIC Educational Resources Information Center
Neal, Larry; Coles, Roger, Ed.
1989-01-01
The nine articles included in this feature emphasize how leisure, recreation, health and physical activities make winter cities more livable. Specific topics include techniques for teaching about cold weather safety and cold related injuries, Arctic Winter Games, and results of a study on winter recreation in large North American communities. (IAH)
The Aleutian Low and Winter Climatic Conditions in the Bering Sea. Part I: Classification
NASA Astrophysics Data System (ADS)
Rodionov, S. N.; Overland, J. E.; Bond, N. A.
2005-01-01
The Aleutian low is examined as a primary determinant of surface air temperature (SAT) variability in the Bering Sea during the winter (December-January-February-March (DJFM)) months. The Classification and Regression Tree (CART) method is used to classify five types of atmospheric circulation for anomalously warm months (W1-W5) and cold months (C1-C5). For the Bering Sea, changes in the position of the Aleutian low are shown to be more important than changes in its central pressure. The first two types, W1 and C1, account for 51% of the "warm" and 37% of the "cold" months. The W1-type pattern is characterized by the anomalously deep Aleutian low shifted west and north of its mean position. In this situation, an increased cyclonic activity occurs in the western Bering Sea. The C1-type pattern represents a split Aleutian low with one center in the northwestern Pacific and the other in the Gulf of Alaska. The relative frequency of the W1 to C1 types of atmospheric circulation varies on decadal time scales, which helps to explain the predominance of fluctuations on these time scales in the weather of the Bering Sea. Previous work has noted the prominence of multidecadal variability in the North Pacific. The present study finds multidecadal variations in frequencies of the W3 and C3 patterns, both of which are characterized by increased cyclonic activity south of 51°N. In general, the CART method is found to be a suitable means for characterizing the wintertime atmospheric circulation of the North Pacific in terms of its impact on the Bering Sea. The results show that similar pressure anomaly patterns for the North Pacific as a whole can actually result in different conditions for the Bering Sea, and that similar weather conditions in the Bering Sea can arise from decidedly different large-scale pressure patterns.
Akins, M S; Kegley, E B; Coffey, K P; Caldwell, J D; Lusby, K S; Moore, J C; Coblentz, W K
2009-10-01
Some aspects of wheat pasture bloat have been researched extensively, but few studies have evaluated the effect of wheat type or variety on bloat. Eight Gelbvieh x Angus ruminally cannulated heifers (515 +/- 49 kg of BW) and 48 Angus heifers (238 +/- 12 kg of BW) grazed 1-ha pastures of hard-red or soft-red winter wheat (Triticum aestivum L.) to evaluate the effect of wheat variety on bloat potential. In Exp. 1, cattle grazed from November 11 to 22 and from November 26 to December 7, 2006, in a crossover design. In Exp. 2, cattle were shrunk for 20 h and then grazed from December 19 to 20, 2006, and from January 19 to 20, 2007. In both experiments, bloat was scored at 1000 and 1600 h daily. Rumen samples were collected at 0600, 1200, and 1800 h during each of the last 2 d of each period in Exp. 1 and during both days of each period of Exp. 2. Rumen samples were evaluated for pH, foam production and strength, and viscosity. In Exp. 1, cannulated heifers grazing soft-red had a greater (P < 0.01) percentage of observed bloat (21.9 vs. 5.6%) than those grazing hard-red winter wheat, but bloat incidence was low (2.1%) for the stocker cattle, with no difference between hard-red and soft-red winter wheat (P = 0.52). Viscosity of the rumen fluid was affected (P = 0.03) by the wheat variety x time interaction, with soft-red at 1200 and 1800 h being more viscous than soft-red at 0600 h and hard-red at all times. Foam strength, as determined by bubbling CO(2) gas through rumen fluid, had a wheat variety x time interaction (P = 0.02) with both wheat varieties similar at 0600 h but soft-red having greater foam strength at 1200 and 1800 h. In Exp. 2, no bloat was observed, and no differences between wheat varieties were observed for any of the rumen foam measures. Therefore, for these 2 varieties, the soft-red winter wheat had a greater bloat potential than the hard-red winter wheat based on results from the cannulated heifers, but no differences were observed in the frequency of bloat in stocker cattle. In this study, shrinking of cattle before grazing wheat pasture did not induce bloat.
NASA Astrophysics Data System (ADS)
Karandana Gamalathge, T. D.; Green, M.
2017-12-01
Consequences of air pollution is known to majority of the global population. Small particles or aerosols play a significant role in global climate change, and increasing the number of people suffer from poor health. Specially during winter seasons, people live in valleys or close to mountains experience hazy conditions and severe health problems. As a result, aerosol related research works have gained more attention over the last couple of decades. We considered PM2.5-particulate matter less than 2.5 µm of aerodynamic diameter, to see how PM2.5 varies with different atmospheric conditions during winter seasons over two different regions of the world. We selected five winter seasons from November to February from 2011 to 2015 both in Beijing and in Fairbanks. Both locations can be considered as complex terrains, as those regions are surrounded by or close to mountains. Using University of Wyoming's sounding data, we calculated a parameter called Heat Deficit (HD). Higher HD is associated with less turbulence, thus high PM2.5 concentration. On the other hand, low HD is associated with high turbulence, thus low PM2.5 concentration. So, we considered HD as a measure of stability in the region of interest. Despite geographical differences, Fairbanks was covered by snow every day over the study period while Beijing had almost no snow cover. Analysis was done in two ways, with and without paying attention to precipitation. HD was also evaluated with different levels of PM2.5, set up to multiples of average PM2.5 concentration. This was done to check whether HD correlates well with a particular range of PM2.5. A day of precipitation for Fairbanks was considered to be when the daily snowfall >1 inch, while for Beijing when any type of daily precipitation >0.1 inch. Precipitation for Beijing was rare and only 9 days were met even with the 0.1 inch criteria while Fairbanks had 61 days of exceeding the 1 inch criteria. Results revealed that precipitation doesn't impact the strength of the relationship between HD and PM2.5 either yearly or all winters combined. However, it varied from Beijing to Fairbanks. Fairbanks had a r2 of 0.3 while Beijing had a r2 of 0.4. The same was true for HD in a given range of PM2.5 for combined winters. While the precipitation didn't show an influence, strength of the relationship for Fairbanks was lower than that of Beijing.
Phenological Metrics Extraction for Agricultural Land-use Types Using RapidEye and MODIS
NASA Astrophysics Data System (ADS)
Xu, Xingmei; Doktor, Daniel; Conrad, Christopher
2016-04-01
Crop phenology involves the various agricultural events, such as planting, emergence, flowering, development of fruit and harvest. These phenological stages of a crop contain essential information for practical agricultural management, crop productivity estimation, investigations of crop-weather relationships, and also play an important role in improving agricultural land-use classification. In this study, we used MODIS and RapidEye images to extract phenological metrics in central Germany between 2010 and 2014. The Best Index Slope Extraction algorithm was used to remove undesirable data noise from Normalized Difference Vegetation Index (NDVI) time series of both satellite data before fast Fourier transformation was applied. Metrics optimization for phenology of major crops in the study area (winter wheat, winter barley, winter oilseed rape and sugar beet) and validation were performed with intensive ground observations from the German Weather Service (2010-2014) and our own measurements of BBCH code (Biologische Bundesanstalt für Land- und Forstwirtschaft, Bundessortenamt und CHemische Industrie) (in 2014). We found that the dates with maximum NDVI have a close link to the heading stage of cereals (RMSE = 9.48 days for MODIS and RMSE = 13.55 days for RapidEye), and the dates of local half maximum during senescence period of winter crops was strongly related to ripeness stage (BBCH: 87) (RMSE = 8.87 days for MODIS and RMSE = 9.62 days for RapidEye). The root-mean-square errors (RMSE) of derived green up dates for both winter and summer crops were larger than 2 weeks, which was caused by limited number of good quality images during the winter season. Comparison between RapidEye and homogeneous MODIS pixels indicated that phenological metrics derived from both satellites were similar to the crop calendar in this region. We also investigated the influence of spatial aggregation of RapidEye-scale phenology to MODIS scale as well as the effect of decreasing the temporal resolution of MODIS to RapidEye scale. Our method to smooth and construct NDVI time-series works well in monitoring agricultural phenology and can be applied to other areas with daily MODIS data coverage. High spatial resolution data provides us with a unique opportunity to explore within-field phenology variation, and reduce effects of spatial heterogeneity. We suggest that further studies might not have to consider daily or composite-daily observations as first criteria for selection of remote sensing product in terms of phenology extraction, if the crop calendar is reliable.
Meteorological conditions influencing the formation of level ice within the Baltic Sea
NASA Astrophysics Data System (ADS)
Mazur, A. K.; Krezel, A.
2012-12-01
The Baltic Sea is covered by ice every winter and on average, the ice-covered area is 45% of the total area of the Baltic Sea. The beginning of ice season usually starts in the end of November, ice extent is the largest between mid-February and mid-March and sea ice disappears completely in May. The ice covered areas during a typical winter are the Gulf of Bothnia, the Gulf of Finland and the Gulf of Riga. The studies of sea ice in the Baltic Sea are related to two aspects: climate and marine transport. Depending on the local weather conditions during the winter different types of sea ice can be formed. From the point of winter shipping it is important to locate level and deformed ice areas (rafted ice, ridged ice, and hummocked ice). Because of cloud and daylight independency as well as good spatial resolution, SAR data seems to be the most suitable source of data for sea ice observation in the comparatively small area of the Baltic Sea. We used ASAR Wide Swath Mode data with spatial resolution 150 m. We analyzed data from the three winter seasons which were examples of severe, typical and mild winters. To remove the speckle effect the data were resampled to 250 m pixel size and filtred using Frost filter 5x5. To detect edges we used Sobel filter. The data were also converted into grayscale. Sea ice classification was based on Object-Based Image Analysis (OBIA). Object-based methods are not a common tool in sea ice studies but they seem to accurately separate level ice within the ice pack. The data were segmented and classified using eCognition Developer software. Level ice were classified based on texture features defined by Haralick (Grey Level Co-Occurrence Matrix homogeneity, GLCM contrast, GLCM entropy and GLCM correlation). The long-term changes of the Baltic Sea ice conditions have been already studied. They include date of freezing, date of break-up, sea ice extent and some of work also ice thickness. There is a little knowledge about the relationship of short term changes in sea ice cover and meteorological conditions. In following studies we analyzed the formation of level sea ice depending on some weather conditions (temperature, humidity, pressure at sea level, 10 meter wind). It can be clearly seen that the most important factors influencing formation of level ice are the temperature and wind.
NASA Astrophysics Data System (ADS)
Pflaumann, Uwe; Duprat, Josette; Pujol, Claude; Labeyrie, Laurent D.
1996-02-01
We present a data set of 738 planktonic foraminiferal species counts from sediment surface samples of the eastern North Atlantic and the South Atlantic between 87°N and 40°S, 35°E and 60°W including published Climate: Long-Range Investigation, Mapping, and Prediction (CLIMAP) data. These species counts are linked to Levitus's [1982] modern water temperature data for the four caloric seasons, four depth ranges (0, 30, 50, and 75 m), and the combined means of those depth ranges. The relation between planktonic foraminiferal assemblages and sea surface temperature (SST) data is estimated using the newly developed SIMMAX technique, which is an acronym for a modern analog technique (MAT) with a similarity index, based on (1) the scalar product of the normalized faunal percentages and (2) a weighting procedure of the modern analog's SSTs according to the inverse geographical distances of the most similar samples. Compared to the classical CLIMAP transfer technique and conventional MAT techniques, SIMMAX provides a more confident reconstruction of paleo-SSTs (correlation coefficient is 0.994 for the caloric winter and 0.993 for caloric summer). The standard deviation of the residuals is 0.90°C for caloric winter and 0.96°C for caloric summer at 0-m water depth. The SST estimates reach optimum stability (standard deviation of the residuals is 0.88°C) at the average 0- to 75-m water depth. Our extensive database provides SST estimates over a range of -1.4 to 27.2°C for caloric winter and 0.4 to 28.6°C for caloric summer, allowing SST estimates which are especially valuable for the high-latitude Atlantic during glacial times. An electronic supplement of this material may be obtained on adiskette or Anonymous FTP from KOSMOS.AGU.ORG. (LOGIN toAGU's FTP account using ANONYMOUS as the username and GUESTas the password. Go to the right directory by typing CD APPEND. TypeLS to see what files are available. Type GET and the name of the file toget it. Finally type EXIT to leave the system.) (Paper 95PA01743,SIMMAX: A modern analog technique to deduce Atlantic sea surfacetemperatures from planktonic foraminifera in deep-sea sediments, UwePflaumann, Josette Duprat, Claude Pujol, and Laurent D. Labeyrie).Diskette may be ordered from American Geophysical Union, 2000Florida Avenue, N.W., Washington, DC 20009; Payment mustaccompany order.
The Journal of Public Inquiry. Fall/Winter 2009-2010
2010-01-01
this exception permits an agency to retain that portion of the recovery that represents its “direct loss,” or what is often referred to as “single...twenty years old, and what im- pact medical ailments have on handwrit- ing. this research may provide insight into examinations supporting criminal... what to say.”21 this type of e-mail correspondence could be indicative of a problem. terms: “au- dit,” “auditor
Yüksel, Rabia Nazik; Altunsoy, Neslihan; Tikir, Baise; Cingi Külük, Merve; Unal, Kubranur; Goka, Sema; Aydemir, Cigdem; Goka, Erol
2014-12-01
Vitamin D deficiency is one of the implicated factors in ethio-pathogenesis of schizophrenia. Low serum vitamin D levels have been reported in many schizophrenia studies. However, the question is still not answered: Is there a correlation between disease activity and serum vitamin D levels? This is the first study evaluating the relationship between serum total vitamin D levels and disease activity, by comparing total vitamin D levels in two schizophrenia groups abruptly different in terms of disease activity. 41 patients with schizophrenia in remission, 40 patients with schizophrenia those in an acute episode and 40 age- and sex -matched controls with no major psychopatology were recruited in this study. Positive and Negative Syndrome Scale (PANSS) and the Clinical Global Impression - Severety scale (CGI-S) were used to evaluate disease activity. A demographic data form that included entries on age, gender, ethnicity, weight, skin color, daily duration of sun exposure and nutritional assessment were used. Blood samples were taken from all patients and controls. Total vitamin D (D2+D3), calcium, phosphor, parathyroid hormone values were measured. Patients in an acute episode had significantly lower vitamin D levels compared to patients in remission and to healthy controls (in terms of median values respectively, 7.18, 15.03, 15.02, p < 0.001). We observed negative and moderate correlations between vitamin D levels and CGI scores (r = -0.624, p < 0.001), vitamin D levels and PANNS scores (r = -0.508, p < 0.001). There were no significant differences between groups in terms of serum P, Ca and PTH levels (p = 0.099, p = 0.943, p = 0.762). We could not detect any significant impact of weekly duration of sun exposure, skin color, ethnicity or nutrition on total vitamin D levels. Even though important factors for vitamin D synthesis were similar, there was severe vitamin D deficiency in patients presenting with an acute episode, significantly different from those in remission. Is vitamin D deficiency the result or the cause of an acute episode? Our results contribute to the idea that vitamin D deficiency and schizophrenia may have interactions with an unknown pathway. Present data points out a possible influence at a genomic level. Future trials may investigate this association with longer follow up. We recommend that, serum vitamin D levels should be measured in patients with schizophrenia especially in long term care. Appropriate further treatment with add-on vitamin D supplements and diets that are rich in vitamin D should be considered.
Variability in winter climate and winter extremes reduces population growth of an alpine butterfly.
Roland, Jens; Matter, Stephen F
2013-01-01
We examined the long-term, 15-year pattern of population change in a network of 21 Rocky Mountain populations of Parnassius smintheus butterflies in response to climatic variation. We found that winter values of the broadscale climate variable, the Pacific Decadal Oscillation (PDO) index, were a strong predictor of annual population growth, much more so than were endogenous biotic factors related to population density. The relationship between PDO and population growth was nonlinear. Populations declined in years with extreme winter PDO values, when there were either extremely warm or extremely cold sea surface temperatures in the eastern Pacific relative to that in the western Pacific. Results suggest that more variable winters, and more frequent extremely cold or warm winters, will result in more frequent decline of these populations, a pattern exacerbated by the trend for increasingly variable winters seen over the past century.
Snow cover and temperature relationships in North America and Eurasia
NASA Technical Reports Server (NTRS)
Foster, J.; Owe, M.; Rango, A.
1983-01-01
In this study the snow cover extent during the autumn months in both North America and Eurasia has been related to the ensuing winter temperature as measured at several locations near the center of each continent. The relationship between autumn snow cover and the ensuing winter temperatures was found to be much better for Eurasia than for North America. For Eurasia the average snow cover extent during the autumn explained as much as 52 percent of the variance in the winter (December-February) temperatures compared to only 12 percent for North America. However, when the average winter snow cover was correlated with the average winter temperature it was found that the relationship was better for North America than for Eurasia. As much as 46 percent of the variance in the winter temperature was explained by the winter snow cover in North America compared to only 12 percent in Eurasia.
Winter fog is decreasing in the fruit growing region of the Central Valley of California
NASA Astrophysics Data System (ADS)
Baldocchi, Dennis; Waller, Eric
2014-05-01
The Central Valley of California is home to a variety of fruit and nut trees. These trees account for 95% of the U.S. production, but they need a sufficient amount of winter chill to achieve rest and quiescence for the next season's buds and flowers. In prior work, we reported that the accumulation of winter chill is declining in the Central Valley. We hypothesize that a reduction in winter fog is cooccurring and is contributing to the reduction in winter chill. We examined a 33 year record of satellite remote sensing to develop a fog climatology for the Central Valley. We find that the number of winter fog events, integrated spatially, decreased 46%, on average, over 32 winters, with much year to year variability. Less fog means warmer air and an increase in the energy balance on buds, which amplifies their warming, reducing their chill accumulation more.
USDA-ARS?s Scientific Manuscript database
Annual cool-season grasses, primarily winter wheat, provide high quality forage for stocker calves during the fall, winter and spring grazing seasons for stocker enterprises in the southern Great Plains. The crude protein (CP) content of winter wheat pasture exceeds the stocker calf’s daily CP requi...
ERIC Educational Resources Information Center
Bjork, Janna
2005-01-01
Warm days, cold nights, melting snow-signs winter is waning and spring is nearing. Though winter may just be getting started in some areas, it's always fun to appreciate the good things about winter, including the special time at the end of winter in New England known as "sugaring time." The sap starts flowing in the sugar maples, and…
USDA-ARS?s Scientific Manuscript database
Winter cover cropping has many agronomic benefits and can provide forages base for spring livestock grazing. Winter cover crop grazing has shown immediate economic benefits through increased animal production. Winter wheat pasture grazing is common in beef cow-calf production and stocker operations....
Winter Wilderness Travel and Camping.
ERIC Educational Resources Information Center
Gilchrest, Norman
Knowledge and skill are needed for safe and enjoyable travel and camping in the wilderness in winter. The beauty of snow and ice, reduced human use, and higher tolerance of animals toward humans make the wilderness attractive during winter. The uniqueness of winter travel presents several challenges that are not present in other seasons. Safety is…
The cumulative effect of consecutive winters' snow depth on moose and deer populations: a defence
McRoberts, R.E.; Mech, L.D.; Peterson, R.O.
1995-01-01
1. L. D. Mech et al. presented evidence that moose Alces alces and deer Odocoileus virginianus population parameters re influenced by a cumulative effect of three winters' snow depth. They postulated that snow depth affects adult ungulates cumulatively from winter to winter and results in measurable offspring effects after the third winter. 2. F. Messier challenged those findings and claimed that the population parameters studied were instead affected by ungulate density and wolf indexes. 3. This paper refutes Messier's claims by demonstrating that his results were an artifact of two methodological errors. The first was that, in his main analyses, Messier used only the first previous winter's snow depth rather than the sum of the previous three winters' snow depth, which was the primary point of Mech et al. Secondly, Messier smoothed the ungulate population data, which removed 22-51% of the variability from the raw data. 4. When we repeated Messier's analyses on the raw data and using the sum of the previous three winter's snow depth, his findings did not hold up.
NASA Technical Reports Server (NTRS)
Michimoto, K.; Shimura, T.; Suzuki, T.
1999-01-01
In winter, active convective clouds frequently form along the coastline of the Hokuriku district, in association with strong advection of Siberian air masses over the Sea of Japan. On the other hand, in summer, many thunderclouds form in the Kanto region in the afternoon every day. Summer and winter thunderclouds were investigated by field works, operation of the C- and X-band weather radars and a car-borne fieldmill. The investigation found a very close relation between the temporal variation of 3-dimensional radar echo and surface electric field magnitude detected by a car-borne fieldmill in the case of summer thunderclouds and winter convective clouds or thunderclouds. The study probed the close relation among radar echoes, quantity of thunderclouds and surface electric field magnitude in the summer and winter seasons. We think that summer thundercloud activity can basically be equated with winter thundercloud lightning activity, except that the magnitude of surface electric field under summer thunderclouds in the case of the Kanto region cannot be equated with that under winter thunderclouds in the case of the Hokuriku district in winter.
Sage-grouse habitat selection during winter in Alberta
Carpenter, Jennifer L.; Aldridge, Cameron L.; Boyce, Mark S.
2010-01-01
Greater sage-grouse (Centrocercus urophasianus) are dependent on sagebrush (Artemisia spp.) for food and shelter during winter, yet few studies have assessed winter habitat selection, particularly at scales applicable to conservation planning. Small changes to availability of winter habitats have caused drastic reductions in some sage-grouse populations. We modeled winter habitat selection by sage-grouse in Alberta, Canada, by using a resource selection function. Our purpose was to 1) generate a robust winter habitat-selection model for Alberta sage-grouse; 2) spatially depict habitat suitability in a Geographic Information System to identify areas with a high probability of selection and thus, conservation importance; and 3) assess the relative influence of human development, including oil and gas wells, in landscape models of winter habitat selection. Terrain and vegetation characteristics, sagebrush cover, anthropogenic landscape features, and energy development were important in top Akaike's Information Criterionselected models. During winter, sage-grouse selected dense sagebrush cover and homogenous less rugged areas, and avoided energy development and 2-track truck trails. Sage-grouse avoidance of energy development highlights the need for comprehensive management strategies that maintain suitable habitats across all seasons. ?? 2010 The Wildlife Society.
Re-emerging ocean temperature anomalies in late-2010 associated with a repeat negative NAO
NASA Astrophysics Data System (ADS)
Taws, Sarah L.; Marsh, Robert; Wells, Neil C.; Hirschi, Joël
2011-10-01
Northern Europe was influenced by consecutive episodes of extreme winter weather at the start and end of the 2010 calendar year. A tripole pattern in North Atlantic sea surface temperature anomalies (SSTAs), associated with an exceptionally negative phase of the North Atlantic Oscillation (NAO), characterized both winter periods. This pattern was largely absent at the surface during the 2010 summer season; however equivalent sub-surface temperature anomalies were preserved within the seasonal thermocline throughout the year. Here, we present evidence for the re-emergence of late-winter 2009/10 SSTAs during the following early winter season of 2010/11. The observed re-emergence contributes toward the winter-to-winter persistence of the anomalous tripole pattern. Considering the active influence of the oceans upon leading modes of atmospheric circulation over seasonal timescales, associated with the memory of large-scale sea surface temperature anomaly patterns, the re-emergence of remnant temperature anomalies may have also contributed toward the persistence of a negative winter NAO, and the recurrence of extreme wintry conditions over the initial 2010/11 winter season.
McCabe, G.J.; Clark, M.P.
2006-01-01
Previous research has suggested that a general inverse relation exists between winter precipitation in the southwestern United states (US) and summer monsoon precipitation. In addition, it has been suggested that this inverse relation between winter precipitation and the magnitude of the southwestern US monsoon breaks down under certain climatic conditions that override the regional winter/monsoon precipitation relations. Results from this new study indicate that the winter/monsoon precipitation relations do not break down, but rather shift location through time. The strength of winter/monsoon precipitation relations, as indexed by 20-year moving correlations between winter precipitation and monsoon precipitation, decreased in Arizona after about 1970, but increased in New Mexico. The changes in these correlations appear to be related to an eastward shift in the location of monsoon precipitation in the southwestern US. This eastward shift in monsoon precipitation and the changes in correlations with winter precipitation also appear to be related to an eastward shift in July/August atmospheric circulation over the southwestern US that resulted in increased monsoon precipitation in New Mexico. Results also indicate that decreases in sea-surface temperatures (SSTs) in the central North Pacific Ocean also may be associated with th changes in correlations between winter and monsoon precipitation. Copyright ?? 2006 Royal Meteorological Society.
NASA Astrophysics Data System (ADS)
Lu, Y.
2017-12-01
Winter wheat is a staple crop for global food security, and is the dominant vegetation cover for a significant fraction of earth's croplands. As such, it plays an important role in soil carbon balance, and land-atmosphere interactions in these key regions. Accurate simulation of winter wheat growth is not only crucial for future yield prediction under changing climate, but also for understanding the energy and water cycles for winter wheat dominated regions. A winter wheat growth model has been developed in the Community Land Model 4.5 (CLM4.5), but its responses to irrigation and nitrogen fertilization have not been validated. In this study, I will validate winter wheat growth response to irrigation and nitrogen fertilization at five winter wheat field sites (TXLU, KSMA, NESA, NDMA, and ABLE) in North America, which were originally designed to understand winter wheat response to nitrogen fertilization and water treatments (4 nitrogen levels and 3 irrigation regimes). I also plan to further update the linkages between winter wheat yield and cold hazards. The previous cold damage function only indirectly affects yield through reduction on leaf area index (LAI) and hence photosynthesis, such approach could sometimes produce an unwanted higher yield when the reduced LAI saved more nutrient in the grain fill stage.
Sex-specific differences in winter distribution patterns of canvasbacks
Nichols, J.D.; Haramis, G.M.
1980-01-01
Winter band recovery distributions of North American Canvasbacks (Aythya valisineria) suggested that males and females exhibit comparable degrees of fidelity to general wintering areas. Of birds banded during the winter, the proportion of males was found to be higher in northern than in southern areas. Winter band recovery distributions of birds banded in particular areas during the summer were found to differ significantly between sexes, with females being recovered farther south. Factors that may have affected the evolution of sex-specific wintering distributions include: (1) possible reproductive benefits derived by males who winter in the north and thus reach northerly breeding areas early; (2) sexual dimorphism in body size, which may render the smaller females especially susceptible to periods of inclement weather and food shortages; and (3) interactions between sexes in which males may control food supply when food is scarce. Two lines of evidence from field data on Canvasbacks in the Chesapeake Bay suggest the existence of competition between males and females. First, Canvasbacks trapped during winter in smaller bodies of water tended to have higher proportions of females and weigh less than birds trapped in large open bodies of water. Second, analysis of aerial photographs of wintering rafts of Canvasbacks showed patterns of intersexual segregation, with females being found more frequently on peripheral areas of rafts.
NASA Astrophysics Data System (ADS)
Spellman, Greg
2017-05-01
A weather-type catalogue based on the Jenkinson and Collison method was developed for an area in south-west Russia for the period 1961-2010. Gridded sea level pressure data was obtained from the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis. The resulting catalogue was analysed for frequency of individual types and groups of weather types to characterise long-term atmospheric circulation in this region. Overall, the most frequent type is anticyclonic (A) (23.3 %) followed by cyclonic (C) (11.9 %); however, there are some key seasonal patterns with westerly circulation being significantly more common in winter than summer. The utility of this synoptic classification is evaluated by modelling daily rainfall amounts. A low level of error is found using a simple model based on the prevailing weather type. Finally, characteristics of the circulation classification are compared to those for the original JC British Isles catalogue and a much more equal distribution of flow types is seen in the former classification.
NASA Astrophysics Data System (ADS)
Elmore, K. L.
2016-12-01
The Metorological Phenomemna Identification NeartheGround (mPING) project is an example of a crowd-sourced, citizen science effort to gather data of sufficeint quality and quantity needed by new post processing methods that use machine learning. Transportation and infrastructure are particularly sensitive to precipitation type in winter weather. We extract attributes from operational numerical forecast models and use them in a random forest to generate forecast winter precipitation types. We find that random forests applied to forecast soundings are effective at generating skillful forecasts of surface ptype with consideralbly more skill than the current algorithms, especuially for ice pellets and freezing rain. We also find that three very different forecast models yuield similar overall results, showing that random forests are able to extract essentially equivalent information from different forecast models. We also show that the random forest for each model, and each profile type is unique to the particular forecast model and that the random forests developed using a particular model suffer significant degradation when given attributes derived from a different model. This implies that no single algorithm can perform well across all forecast models. Clearly, random forests extract information unavailable to "physically based" methods because the physical information in the models does not appear as we expect. One intersting result is that results from the classic "warm nose" sounding profile are, by far, the most sensitive to the particular forecast model, but this profile is also the one for which random forests are most skillful. Finally, a method for calibrarting probabilties for each different ptype using multinomial logistic regression is shown.
Wing, Y K; Chen, L; Fong, S Y Y; Ng, M H L; Ho, C K W; Cheng, S H; Tang, N L S; Li, A M
2008-11-01
To report clinical characteristics, human leukocyte antigen (HLA) typing and seasonality of birth of a series of 54 Southern Chinese patients suffering from narcolepsy. All subjects underwent detailed medical and psychiatric interviews and a standardised nocturnal polysomnogram followed by a daytime Multiple Sleep Latency Test. Each subject also completed a set of sleep questionnaires. HLA typing was performed in 91% of subjects. A total of 78% and 22% of patients were diagnosed with suffering from cataplectic and non-cataplectic narcolepsy, respectively. The majority (n = 47, 87%) of patients were referred to our sleep clinic for excessive daytime sleepiness (EDS). The cataplectic narcolepsy differed from non-cataplectic narcolepsy by having more rapid eye movement (REM)-related clinical symptoms (more sleep paralysis and sleep-related hallucination) and sleep disturbances (shorter REM latency), as well as tighter association with HLA DQB1*0602. A bi-modal peak pattern was observed at 11 and 39 years old. A similar bi-modal pattern also occurred for EDS and cataplexy. Excess winter births were observed for this series of patients. 81% of patients with cataplectic narcolepsy were DQB1*0602-positive. There were no differences between early- and late-onset cases in the association with positive DQB1*0602 (71.4% vs 60%). Narcolepsy had prominent pernicious effects on various social, academic, family and mental aspects in our patients. In our Southern Chinese narcolepsy series, bi-modal peak pattern of age of onset, excess winter birth and tight association of HLA DQB1*0602 with cataplectic narcolepsy were found.
Connections of urban and rural mortality with daily weather in Hungary (1971-2005)
NASA Astrophysics Data System (ADS)
Mika, J.; Fülöp, A.; Dunkel, Z.
2009-04-01
Possible effects of weather anomalies on mortality in cardiovascular and respiratory illnesses are investigated in Hungary. Long-term (1971-2005) archives of ca. 2.8 million fatalities are analysed. The mortality data are compared with seven diurnal meteorological parameters. They are the mean, maxima and minima of temperature, cloudiness, wind speed, relative humidity and sea-level pressure. Since the statistical connections between the mortality frequencies and the latter variables are weak and non-linear in some cases, we also applied four different circulation types in comparison with the diurnal fatalities. All investigations are performed for Budapest, with its ca. 2 million urban dwellers (the 'city') and for the other parts of the county (the ‘rural control'), populated by over 8 million inhabitants. Our results support the well-known decreasing effect of temperature in winter) and increasing effect (in summer) on cardiovascular mortality in the rural environment. On the other hand, however, this latter effect for summer is not at all evident in Budapest. Higher temperature in winter statistically coincides with lower number of respiratory fatalities both in the urban and the rural communities. Connections with the different circulation types are less unequivocal, but proportion of significant effects is 2-3 times higher than a random occurrence. Majority of these significant connections fit our a priori guess relations, but it is still not clear why these significant effects of macro-circulation are so hectically changing between significant and non-significant effects, both in the city and out of it. Key words: mortality, cardiovascular and respiratory illnesses, weather effect, macro-synoptic types, Hungary
Heldbjerg, Henning; Fox, Anthony D; Thellesen, Peder V; Dalby, Lars; Sunde, Peter
2017-01-01
The abundant and widespread Common Starling (Sturnus vulgaris) is currently declining across much of Europe due to landscape changes caused by agricultural intensification. The proximate mechanisms causing adverse effects to breeding Starlings are unclear, hampering our ability to implement cost-efficient agri-environmental schemes to restore populations to former levels. This study aimed to show how this central foraging farmland bird uses and selects land cover types in general and how use of foraging habitat changes in relation to distance from the nest. We attached GPS-loggers to 17 breeding Starlings at a Danish dairy cattle farm in 2015 and 2016 and analysed their use of different land cover types as a function of distance intervals from the nest and their relative availability. As expected for a central place forager, Starlings increasingly avoided potential foraging areas with greater distance-to-nest: areas ≥ 500 m were selected > 100 times less frequently than areas within 100 m. On average, Starlings selected the land cover category Grazed most frequently, followed by Short Grass, Bare Ground, Meadow and Winter Crops. Starlings compensated for elevated travel costs by showing increasing habitat selection the further they foraged from the nest. Our results highlight the importance of Grazed foraging habitats close to the nest site of breeding Starlings. The ecological capacity of intensively managed farmlands for insectivorous birds like the Starling is decreasing through conversion of the most strongly selected land cover type (Grazed) to the least selected (Winter Crops) which may be further exacerbated through spatial segregation of foraging and breeding habitats.
Fox, Anthony D.; Thellesen, Peder V.; Dalby, Lars; Sunde, Peter
2017-01-01
The abundant and widespread Common Starling (Sturnus vulgaris) is currently declining across much of Europe due to landscape changes caused by agricultural intensification. The proximate mechanisms causing adverse effects to breeding Starlings are unclear, hampering our ability to implement cost-efficient agri-environmental schemes to restore populations to former levels. This study aimed to show how this central foraging farmland bird uses and selects land cover types in general and how use of foraging habitat changes in relation to distance from the nest. We attached GPS-loggers to 17 breeding Starlings at a Danish dairy cattle farm in 2015 and 2016 and analysed their use of different land cover types as a function of distance intervals from the nest and their relative availability. As expected for a central place forager, Starlings increasingly avoided potential foraging areas with greater distance-to-nest: areas ≥ 500 m were selected > 100 times less frequently than areas within 100 m. On average, Starlings selected the land cover category Grazed most frequently, followed by Short Grass, Bare Ground, Meadow and Winter Crops. Starlings compensated for elevated travel costs by showing increasing habitat selection the further they foraged from the nest. Our results highlight the importance of Grazed foraging habitats close to the nest site of breeding Starlings. The ecological capacity of intensively managed farmlands for insectivorous birds like the Starling is decreasing through conversion of the most strongly selected land cover type (Grazed) to the least selected (Winter Crops) which may be further exacerbated through spatial segregation of foraging and breeding habitats. PMID:28771556
Sedinger, James S.; Schamber, Jason L.; Ward, David H.; Nicolai, Christopher A.; Conant, Bruce
2011-01-01
We used observations of individually marked female black brant geese (Branta bernicla nigricans; brant) at three wintering lagoons on the Pacific coast of Baja California—Laguna San Ignacio (LSI), Laguna Ojo de Liebre (LOL), and Bahía San Quintín (BSQ)—and the Tutakoke River breeding colony in Alaska to assess hypotheses about carryover effects on breeding and distribution of individuals among wintering areas. We estimated transition probabilities from wintering locations to breeding and nonbreeding by using multistratum robust-design capture-mark-recapture models. We also examined the effect of breeding on migration to wintering areas to assess the hypothesis that individuals in family groups occupied higher-quality wintering locations. We used 4,538 unique female brant in our analysis of the relationship between winter location and breeding probability. All competitive models of breeding probability contained additive effects of wintering location and the 1997–1998 El Niño–Southern Oscillation (ENSO) event on probability of breeding. Probability of breeding in non-ENSO years was 0.98 ± 0.02, 0.68 ± 0.04, and 0.91 ± 0.11 for females wintering at BSQ, LOL, and LSI, respectively. After the 1997–1998 ENSO event, breeding probability was between 2% (BSQ) and 38% (LOL) lower than in other years. Individuals that bred had the highest probability of migrating the next fall to the wintering area producing the highest probability of breeding.
Projecting the impact of climate change on phenology of winter wheat in northern Lithuania
NASA Astrophysics Data System (ADS)
Juknys, Romualdas; Velička, Rimantas; Kanapickas, Arvydas; Kriaučiūnienė, Zita; Masilionytė, Laura; Vagusevičienė, Ilona; Pupalienė, Rita; Klepeckas, Martynas; Sujetovienė, Gintarė
2017-10-01
Climate warming and a shift in the timing of phenological phases, which lead to changes in the duration of the vegetation period may have an essential impact on the productivity of winter crops. The main purpose of this study is to examine climate change-related long-term (1961-2015) changes in the duration of both initial (pre-winter) and main (post-winter) winter wheat vegetation seasons and to present the projection of future phenological changes until the end of this century. Delay and shortening of pre-winter vegetation period, as well as the advancement and slight extension of the post-winter vegetation period, resulted in the reduction of whole winter wheat vegetation period by more than 1 week over the investigated 55 years. Projected changes in the timing of phenological phases which define limits of a main vegetation period differ essentially from the observed period. According to pessimistic (Representative Concentration Pathways 8.5) scenario, the advancement of winter wheat maturity phase by almost 30 days and the shortening of post-winter vegetation season by 15 days are foreseen for a far (2071-2100) projection. An increase in the available chilling amount is specific not only to the investigated historical period (1960-2015) but also to the projected period according to the climate change scenarios of climate warming for all three projection periods. Consequently, the projected climate warming does not pose a threat of plant vernalization shortage in the investigated geographical latitudes.
Winter active bumblebees (Bombus terrestris) achieve high foraging rates in urban Britain.
Stelzer, Ralph J; Chittka, Lars; Carlton, Marc; Ings, Thomas C
2010-03-05
Foraging bumblebees are normally associated with spring and summer in northern Europe. However, there have been sightings of the bumblebee Bombus terrestris during the warmer winters in recent years in southern England. But what floral resources are they relying upon during winter and how much winter forage can they collect? To test if urban areas in the UK provide a rich foraging niche for bees we set up colonies of B. terrestris in the field during two late winter periods (2005/6 & 2006/7) in London, UK, and measured their foraging performance. Fully automatic radio-frequency identification (RFID) technology was used in 2006/7 to enable us to record the complete foraging activity of individually tagged bees. The number of bumblebees present during winter (October 2007 to March 2008) and the main plants they visited were also recorded during transect walks. Queens and workers were observed throughout the winter, suggesting a second generation of bee colonies active during the winter months. Mass flowering shrubs such as Mahonia spp. were identified as important food resources. The foraging experiments showed that bees active during the winter can attain nectar and pollen foraging rates that match, and even surpass, those recorded during summer. B. terrestris in the UK are now able to utilise a rich winter foraging resource in urban parks and gardens that might at present still be under-exploited, opening up the possibility of further changes in pollinator phenology.