Sample records for wipp waste isolation

  1. Technical basis for external dosimetry at the Waste Isolation Pilot Plant (WIPP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bradley, E.W.; Wu, C.F.; Goff, T.E.

    1993-12-31

    The WIPP External Dosimetry Program, administered by Westinghouse Electric Corporation, Waste Isolation Division, for the US Department of Energy (DOE), provides external dosimetry support services for operations at the Waste Isolation Pilot Plant (WIPP) Site. These operations include the receipt, experimentation with, storage, and disposal of transuranic (TRU) wastes. This document describes the technical basis for the WIPP External Radiation Dosimetry Program. The purposes of this document are to: (1) provide assurance that the WIPP External Radiation Dosimetry Program is in compliance with all regulatory requirements, (2) provide assurance that the WIPP External Radiation Dosimetry Program is derived from amore » sound technical base, (3) serve as a technical reference for radiation protection personnel, and (4) aid in identifying and planning for future needs. The external radiation exposure fields are those that are documented in the WIPP Final Safety Analysis Report.« less

  2. Analysis of Waste Isolation Pilot Plant Samples: Integrated Summary Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Britt, Phillip F

    2015-03-01

    Analysis of Waste Isolation Pilot Plant Samples: Integrated Summary Report. Summaries of conclusions, analytical processes, and analytical results. Analysis of samples taken from the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico in support of the WIPP Technical Assessment Team (TAT) activities to determine to the extent feasible the mechanisms and chemical reactions that may have resulted in the breach of at least one waste drum and release of waste material in WIPP Panel 7 Room 7 on February 14, 2014. This report integrates and summarizes the results contained in three separate reports, described below, and draws conclusions basedmore » on those results. Chemical and Radiochemical Analyses of WIPP Samples R-15 C5 SWB and R16 C-4 Lip; PNNL-24003, Pacific Northwest National Laboratory, December 2014 Analysis of Waste Isolation Pilot Plant (WIPP) Underground and MgO Samples by the Savannah River National Laboratory (SRNL); SRNL-STI-2014-00617; Savannah River National Laboratory, December 2014 Report for WIPP UG Sample #3, R15C5 (9/3/14); LLNL-TR-667015; Lawrence Livermore National Laboratory, January 2015 This report is also contained in the Waste Isolation Pilot Plant Technical Assessment Team Report; SRNL-RP-2015-01198; Savannah River National Laboratory, March 17, 2015, as Appendix C: Analysis Integrated Summary Report.« less

  3. Waste Isolation Pilot Plant (WIPP) conceptual design report. Part I: executive summary. Part II: facilities and system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1977-06-01

    The pilot plant is developed for ERDA low-level contact-handled transuranic waste, ERDA remote-handled intermediate-level transuranic waste, and for high-level waste experiments. All wastes placed in the WIPP arrive at the site processed and packaged; no waste processing is done at the WIPP. All wastes placed into the WIPP are retrievable. The proposed site for WIPP lies 26 miles east of Carlsbad, New Mexico. This document includes the executive summary and a detailed description of the facilities and systems. (DLC)

  4. WIPP conceptual design report. Addendum A. Design calculations for Waste Isolation Pilot Plant (WIPP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1977-04-01

    The design calculations for the Waste Isolation Pilot Plant (WIPP) are presented. The following categories are discussed: general nuclear calculations; radwaste calculations; structural calculations; mechanical calculations; civil calculations; electrical calculations; TRU waste surface facility time and motion analysis; shaft sinking procedures; hoist time and motion studies; mining system analysis; mine ventilation calculations; mine structural analysis; and miscellaneous underground calculations.

  5. Regulatory basis for the Waste Isolation Pilot Plant performance assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    HOWARD,BRYAN A.; CRAWFORD,M.B.; GALSON,D.A.

    2000-05-22

    The Waste Isolation Pilot Plant (WIPP) is the first operational repository designed for the safe disposal of transuranic (TRU) radioactive waste from the defense programs of the US Department of Energy (DOE). The US Environmental Protection Agency (EPA) is responsible for certifications and regulation of the WIPP facility for the radioactive components of the waste. The EPA has promulgated general radioactive waste disposal standards at 40 CFR Part 191. and WIPP-specific criteria to implement and interpret the generic disposal standards at 40 CFR Part 194. In October 1996. the DOE submitted its Compliance Certification Application (CCA) to the EPA tomore » demonstrate compliance with the disposal standards at Subparts B and C of 40 CFR Part 191. This paper summarizes the development of the overall legal framework for radioactive waste disposal at the WIPP, the parallel development of the WIPP performance assessment (PA), and how the EPA disposal standards and implementing criteria formed the basis for the CCA WIPP PA. The CCA resulted in a certification in May 1998 by the EPA of the WIPP'S compliance with the EPA's disposal standard, thus enabling the WIPP to begin radioactive waste disposal.« less

  6. Environmental Assessment for the Above Ground Storage Capability at the Waste Isolation Pilot Plant Draft

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    The Waste Isolation Pilot Plant (WIPP) is the nation’s only approved repository for the disposal of defense related/defense generated transuranic (TRU) and mixed hazardous TRU waste (henceforth called TRU waste). The mission of the WIPP Project is to realize the safe disposal of TRU waste from TRU waste generator sites in the Department of Energy waste complex. The WIPP Project was authorized by Title II, Section 213(a) of Public Law 96-164 (U. S. Congress 1979). Congress designated the WIPP facility “for the express purpose of providing a research and development facility to demonstrate the safe disposal of radioactive wastes resultingmore » from the defense activities and programs of the United States exempted from regulation by the Nuclear Regulatory Commission (NRC).” The WIPP facility is operated by the U. S. Department of Energy (DOE). Transuranic waste that is disposed in the WIPP facility is defined by Section 2(18) the WIPP Land Withdrawal Act of 1992 (LWA) (U. S. Congress, 1992) as: “waste containing more than 100 nanocuries of alpha-emitting transuranic isotopes per gram of waste, with half-lives greater than 20 years, except for: (A) high-level radioactive waste; (B) waste that the Secretary has determined, with the concurrence of the Administrator, does not need the degree of isolation required by the disposal regulations; or (C) waste that the NRC has approved for disposal on a case-by-case basis in accordance with part 61 of title 10, Code of Federal Regulations (CFR).« less

  7. Information brochure on the Department of Energy's proposed Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico. Project overview

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This project overview comprises the following: project history; WIPP fact sheet; legal actions required; major WIPP milestones; low-level waste volumes; nuclear waste transportation; WIPP site selection; and questions and answers from the Department of Energy request for public input prior to public meetings in Roswell and Hobbs, New Mexico.

  8. Criteria for the Certification and Recertification of the Waste Isolation Pilot Plant's Compliance with the 40 CFR Part 191 Disposal Regulations (40 CFR Part 194)

    EPA Pesticide Factsheets

    EPA is responsible for certifying that DOE’s Waste Isolation Pilot Plant (WIPP) remains in compliance with environmental standards for the disposal of transuranic waste. 40 CFR Part 194 specifies criteria for certification or recertification of WIPP.

  9. 77 FR 1920 - Second Amended Notice of Intent To Modify the Scope of the Surplus Plutonium Disposition...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-12

    ... suitable for MOX fuel fabrication is disposal at the Waste Isolation Pilot Plant (WIPP) in New Mexico... Waste Processing Facility at SRS or disposal at the Waste Isolation Pilot Plant (WIPP) in New Mexico. On... are safety (criticality) limits on how much plutonium can be sent to the Defense Waste Processing...

  10. Environmental analysis Waste Isolation Pilot Plant (WIPP) cost reduction proposals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The Waste Isolation Pilot Plant (WIPP) is a research and development facility to demonstrate the safe disposal of radioactive wastes resulting from the defense activities and programs of the United States government. The facility is planned to be developed in bedded salt at the Los Medanos site in southeastern New Mexico. The environmental consequences of contruction and operation of the WIPP facility are documented in ''Final Environmental Impact Statement, Waste Isolation Pilot Plant''. The proposed action addressed by this environmental analysis is to simplify and reduce the scope of the WIPP facility as it is currently designed. The proposed changesmore » to the existing WIPP design are: limit the waste storage rate to 500,000 cubic feet per year; eliminate one shaft and revise the underground ventilation system; eliminate the underground conveyor system; combine the Administration Building, the Underground Personnel Building and the Waste Handling Building office area; simplify the central monitoring system; simplify the security control systems; modify the Waste Handling Building; simplify the storage exhaust system; modify the above ground salt handling logistics; simplify the power system; reduce overall site features; simplify the Warehouse/Shops Building and eliminate the Vehicle Maintenance Building; and allow resource recovery in Control Zone IV.« less

  11. Project Management Plan for the Idaho National Engineering Laboratory Waste Isolation Pilot Plant Experimental Test Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Connolly, M.J.; Sayer, D.L.

    1993-11-01

    EG&G Idaho, Inc. and Argonne National Laboratory-West (ANL-W) are participating in the Idaho National Engineering Laboratory`s (INEL`s) Waste Isolation Pilot Plant (WIPP) Experimental Test Program (WETP). The purpose of the INEL WET is to provide chemical, physical, and radiochemical data on transuranic (TRU) waste to be stored at WIPP. The waste characterization data collected will be used to support the WIPP Performance Assessment (PA), development of the disposal No-Migration Variance Petition (NMVP), and to support the WIPP disposal decision. The PA is an analysis required by the Code of Federal Regulations (CFR), Title 40, Part 191 (40 CFR 191), whichmore » identifies the processes and events that may affect the disposal system (WIPP) and examines the effects of those processes and events on the performance of WIPP. A NMVP is required for the WIPP by 40 CFR 268 in order to dispose of land disposal restriction (LDR) mixed TRU waste in WIPP. It is anticipated that the detailed Resource Conservation and Recovery Act (RCRA) waste characterization data of all INEL retrievably-stored TRU waste to be stored in WIPP will be required for the NMVP. Waste characterization requirements for PA and RCRA may not necessarily be identical. Waste characterization requirements for the PA will be defined by Sandia National Laboratories. The requirements for RCRA are defined in 40 CFR 268, WIPP RCRA Part B Application Waste Analysis Plan (WAP), and WIPP Waste Characterization Program Plan (WWCP). This Project Management Plan (PMP) addresses only the characterization of the contact handled (CH) TRU waste at the INEL. This document will address all work in which EG&G Idaho is responsible concerning the INEL WETP. Even though EG&G Idaho has no responsibility for the work that ANL-W is performing, EG&G Idaho will keep a current status and provide a project coordination effort with ANL-W to ensure that the INEL, as a whole, is effectively and efficiently completing the requirements for WETP.« less

  12. U.S. Department of Energy Implementation of Chemical Evaluation Requirements for Transuranic Waste Disposal at the Waste Isolation Pilot Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moon, Alison; Barkley, Michelle; Poppiti, James

    This report summarizes new controls designed to ensure that transuranic waste disposed at the Waste Isolation Pilot Plant (WIPP) does not contain incompatible chemicals. These new controls include a Chemical Compatibility Evaluation, an evaluation of oxidizing chemicals, and a waste container assessment to ensure that waste is safe for disposal. These controls are included in the Chapter 18 of the Documented Safety Analysis for WIPP (1).

  13. 78 FR 34380 - Biennial Determination of the Waste Isolation Pilot Plant's Compliance With Applicable Federal...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-07

    ... documentation submitted by the U.S. Department of Energy (DOE) for the Waste Isolation Pilot Plant (WIPP), the U... requirements designated in Section 9(a)(1) of the WIPP Land Withdrawal Act, as amended. The Secretary of Energy... Act; (3) the Solid Waste Disposal Act; (4) the Safe Drinking Water Act; (5) the Toxic Substances...

  14. 75 FR 70584 - Criteria for the Certification and Recertification of the Waste Isolation Pilot Plant's...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-18

    ...With this document, the Environmental Protection Agency (EPA) recertifies that the U.S. Department of Energy's (DOE) Waste Isolation Pilot Plant (WIPP) continues to comply with the ``Environmental Standards for the Management and Disposal of Spent Nuclear Fuel, High- Level and Transuranic (TRU) Radioactive Waste.'' EPA initially certified that WIPP met applicable regulatory requirements on May 18, 1998, and the first shipment of waste was received at WIPP on March 26, 1999. The first Compliance Recertification Application (CRA) was submitted by DOE to EPA on March 26, 2004, and the Agency's first recertification decision was issued on March 29, 2006.

  15. Resource conservation and recovery act draft hazardous waste facility permit: Waste Isolation Pilot Plant (WIPP). Attachments: Volume 4 of 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-08-01

    Volume IV contains the following attachments for Module IV: VOC monitoring plan for bin-room tests (Appendix D12); bin emission control and VOC monitoring system drawings; bin scale test room ventilation drawings; WIPP supplementary roof support system, underground storage area, room 1, panel 1, DOE/WIPP 91-057; and WIPP supplementary roof support system, room 1, panel 1, geotechnical field data analysis bi-annual report, DOE/WIPP 92-024.

  16. WASTE ISOLATION PILOT PLANT (WIPP): THE NATIONS' SOLUTION TO NUCLEAR WASTE STORAGE AND DISPOSAL ISSUES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopez, Tammy Ann

    2014-07-17

    In the southeastern portion of my home state of New Mexico lies the Chihuahauan desert, where a transuranic (TRU), underground disposal site known as the Waste Isolation Pilot Plant (WIPP) occupies 16 square miles. Full operation status began in March 1999, the year I graduated from Los Alamos High School, in Los Alamos, NM, the birthplace of the atomic bomb and one of the nation’s main TRU waste generator sites. During the time of its development and until recently, I did not have a full grasp on the role Los Alamos was playing in regards to WIPP. WIPP is usedmore » to store and dispose of TRU waste that has been generated since the 1940s because of nuclear weapons research and testing operations that have occurred in Los Alamos, NM and at other sites throughout the United States (U.S.). TRU waste consists of items that are contaminated with artificial, man-made radioactive elements that have atomic numbers greater than uranium, or are trans-uranic, on the periodic table of elements and it has longevity characteristics that may be hazardous to human health and the environment. Therefore, WIPP has underground rooms that have been carved out of 2,000 square foot thick salt formations approximately 2,150 feet underground so that the TRU waste can be isolated and disposed of. WIPP has operated safely and successfully until this year, when two unrelated events occurred in February 2014. With these events, the safety precautions and measures that have been operating at WIPP for the last 15 years are being revised and improved to ensure that other such events do not occur again.« less

  17. No-migration variance petition. Appendices A--B: Volume 2, Revision 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-03-01

    Volume II contains Appendix A, emergency plan and Appendix B, waste analysis plan. The Waste Isolation Pilot Plant (WIPP) Emergency plan and Procedures (WP 12-9, Rev. 5, 1989) provides an organized plan of action for dealing with emergencies at the WIPP. A contingency plan is included which is in compliance with 40 CFR Part 265, Subpart D. The waste analysis plan provides a description of the chemical and physical characteristics of the wastes to be emplaced in the WIPP underground facility. A detailed discussion of the WIPP Waste Acceptance Criteria and the rationale for its established units are also included.

  18. 76 FR 31611 - Biennial Determination of the Waste Isolation Pilot Plant's Compliance with Applicable Federal...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-01

    ... documentation submitted by the U.S. Department of Energy (DOE) for the Waste Isolation Pilot Plant (WIPP), the U... requirements designated in Section 9(a)(1) of the WIPP Land Withdrawal Act, as amended. The Secretary of Energy...) the Clean Air Act; (3) the Solid Waste Disposal Act; (4) the Safe Drinking Water Act; (5) the Toxic...

  19. Pretest characterization of WIPP experimental waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, J.; Davis, H.; Drez, P.E.

    The Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico, is an underground repository designed for the storage and disposal of transuranic (TRU) wastes from US Department of Energy (DOE) facilities across the country. The Performance Assessment (PA) studies for WIPP address compliance of the repository with applicable regulations, and include full-scale experiments to be performed at the WIPP site. These experiments are the bin-scale and alcove tests to be conducted by Sandia National Laboratories (SNL). Prior to conducting these experiments, the waste to be used in these tests needs to be characterized to provide data on the initial conditionsmore » for these experiments. This characterization is referred to as the Pretest Characterization of WIPP Experimental Waste, and is also expected to provide input to other programmatic efforts related to waste characterization. The purpose of this paper is to describe the pretest waste characterization activities currently in progress for the WIPP bin-scale waste, and to discuss the program plan and specific analytical protocols being developed for this characterization. The relationship between different programs and documents related to waste characterization efforts is also highlighted in this paper.« less

  20. The Waste Isolation Pilot Plant transuranic waste repository: A sleeping beauty

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eriksson, L.G.

    On May 13, 1998, crowning a 24-year United States Department of Energy effort, the US Environmental Protection Agency certified that the deep geological repository for safe disposal of long-lived, transuranic radioactive waste proposed by the DOE at the Waste Isolation Pilot Plant site in New Mexico complied with all applicable environmental radiation protection standards and compliance criteria. Pursuant to the applicable law, the WIPP Land Withdrawal Act of 1992, as amended in 1997, at the decision of the secretary of energy, the WIPP repository could open 30 calendar days after receiving the EPA certification. The secretary of energy announced Maymore » 13, 1998, that he intended to open the WIPP TRUW repository by June 14, 1998. However, at the end of 1998, the opening of the WIPP TRUW repository remains hostage to time-consuming, hazardous-waste-permitting procedures by the state of New Mexico Environment Department and two legal actions. Based on the EPA-verified high safety and the demonstrated risk reduction to both current and future generations offered by the WIPP TRUW repository, it is concluded that the WIPP TRUW repository is a sleeping beauty that will awake, perhaps in stages, and begin its important mission in 1999.« less

  1. An overview of EPA regulation of the safe disposal of transuranic waste at the Waste Isolation Pilot Plant.

    PubMed

    Wolbarst, A B; Forinash, E K; Byrum, C O; Peake, R T; Marcinowski, F; Kruger, M U

    2001-02-01

    In March of 1999, the Waste Isolation Pilot Plant (WIPP) in southeast New Mexico, the world's first deep geological repository for radioactive materials, began receiving defense-related transuranic waste. The WIPP was designed and constructed by the U.S. Department of Energy, but critical to its opening was certification by the U.S. Environmental Protection Agency that the repository complies with the radioactive waste disposal regulations set forth as environmental radiation protection standards (40 CFR Part 191) and compliance criteria (40 CFR Part 194). This paper provides a summary of the regulatory process, including the Environmental Protection Agency's waste containment, groundwater protection, and individual dose regulations for the WIPP; the Department of Energy's performance assessment and the other parts of its compliance certification application; and the Environmental Protection Agency's review and analysis of the compliance certification application and related documentation.

  2. Final environmental impact statement. Waste Isolation Pilot Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1980-10-01

    This volume contains the appendices for the Final Environmental Impact Statement for the Waste Isolation Pilot Plant (WIPP). Alternative geologic environs are considered. Salt, crystalline rock, argillaceous rock, and tuff are discussed. Studies on alternate geologic regions for the siting of WIPP are reviewed. President Carter's message to Congress on the management of radioactive wastes and the findings and recommendations of the interagency review group on nuclear waste management are included. Selection criteria for the WIPP site including geologic, hydrologic, tectonic, physicochemical compatability, and socio-economic factors are presented. A description of the waste types and the waste processing procedures aremore » given. Methods used to calculate radiation doses from radionuclide releases during operation are presented. A complete description of the Los Medanos site, including archaeological and historic aspects is included. Environmental monitoring programs and long-term safety analysis program are described. (DMC)« less

  3. Analysis of hydraulic tests of the Culebra and Magenta Dolomites and Dewey Lake Redbeds conducted at the Waste Isolation Pilot Plant Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beauheim, R.L.; Ruskauff, G.J.

    1998-09-01

    This report presents interpretations of hydraulic tests conducted at 15 well locations in the vicinity of the Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico between 1980 and 1996. The WIPP is a US Department of Energy (DOE) facility to demonstrate safe disposal of transuranic wastes arising form the nation`s defense programs. The WIPP repository lies within bedded halite of the Salado Formation, 2,155 ft below ground surface. The tests reported herein were, with two exceptions, conducted in the Culebra Dolomite member of the Rustler Formation, which overlies the Salado Formation. The remaining tests were conducted in the Magentamore » Member of the Rustler and in the overlying formation, the Dewey Lake Redbeds. This report completes the documentation of hydraulic-test interpretations used as input to the WIPP Compliance Certification Application (US DOE, 1996).« less

  4. Resource Conservation and Recovery Act, Part B Permit Application [for the Waste Isolation Pilot Plant (WIPP)]. Volume 6, Chapter D, Appendices D4--D13: Revision 1.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-12-31

    This report (Vol. 6) for the WIPP facility contains appendices on the following information: Site characterization; general geology; ecological monitoring; and chemical compatibility of waste forms and container materials.

  5. TRU waste absorbent addition project at the Idaho National Engineering and Environmental Laboratory.

    PubMed

    Colson, R Griff; Auman, Laurence E

    2003-08-01

    ABSTRACT In order to meet a commitment to ship 3,100 m3 of transuranic waste to the Waste Isolation Pilot Plant (WIPP), the Idaho National Engineering and Environmental Laboratory (INEEL) developed a process to add absorbent to TRU waste drums that did not meet WIPP waste acceptance criteria. The development, implementation, and safe completion of this project contributed to the INEEL's success in meeting the commitment three months early.

  6. New Mexicans debate nuclear waste disposal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lepkowski, W.

    1979-01-01

    A brief survey of the background of the Waste Isolation Plant (WIPP) at Carlsbad, New Mexico and the forces at play around WIPP is presented. DOE has plans to establish by 1988 an underground repository for nuclear wastes in the salt formations near Carlsbad. Views of New Mexicans, both pro and con, are reviewed. It is concluded that DOE will have to practice public persuasion to receive approval for the burial of wastes in New Mexico.

  7. Environmental assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-08-01

    The proposed overhead power line construction project (Sand Dunes to Ochoa, in Eddy and Lea Counties, New Mexico) will supply additional electric power to the Waste Isolation Pilot Plant (WIPP) and involve construction of a new electric substation at WIPP. This would provide a redundant electrical power source to WIPP. A finding of no significant impact is made.

  8. Waste Isolation Pilot Plant No-migration variance petition. Addendum: Volume 7, Revision 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-03-01

    This report describes various aspects of the Waste Isolation Pilot Plant (WIPP) including design data, waste characterization, dissolution features, ground water hydrology, natural resources, monitoring, general geology, and the gas generation/test program.

  9. Alternative Radiological Characterization of Sealed Source TRU Waste for WIPP Disposal (LAUR-05-8776)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whitworth, J.; Pearson, M.; Feldman, A.

    2006-07-01

    The Offsite Source Recovery (OSR) Project at Los Alamos National Laboratory is now shipping transuranic (TRU) waste containers to the Waste Isolation Pilot Plant (WIPP) in New Mexico for disposal. Sealed source waste disposal has become possible in part because OSR personnel were able to obtain Environmental Protection Agency (EPA) and DOE-CBFO approval for an alternative radiological characterization procedure relying on acceptable knowledge (AK) and modeling, rather than on non-destructive assay (NDA) of each container. This is the first successful qualification of an 'alternate methodology' under the radiological characterization requirements of the WIPP Waste Acceptance Criteria (WAC) by any TRUmore » waste generator site. This paper describes the approach OSR uses to radiologically characterize its sealed source waste and the process by which it obtained certification of this approach. (authors)« less

  10. Assessment of potential doses to workers during postulated accident conditions at the Waste Isolation Pilot Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoover, M.D.; Farrell, R.F.; Newton, G.J.

    1995-12-01

    The recent 1995 WIPP Safety Analysis Report (SAR) Update provided detailed analyses of potential radiation doses to members of the public at the site boundary during postulated accident scenarios at the U.S. Department of Energy`s Waste Isolation Pilot Plant (WIPP). The SAR Update addressed the complete spectrum of potential accidents associated with handling and emplacing transuranic waste at WIPP, including damage to waste drums from fires, punctures, drops, and other disruptions. The report focused on the adequacy of the multiple layers of safety practice ({open_quotes}defense-in-depth{close_quotes}) at WIPP, which are designed to (1) reduce the likelihood of accidents and (2) limitmore » the consequences of those accidents. The safeguards which contribute to defense-in-depth at WIPP include a substantial array of inherent design features, engineered controls, and administrative procedures. The SAR Update confirmed that the defense-in-depth at WIPP is adequate to assure the protection of the public and environment. As a supplement to the 1995 SAR Update, we have conducted additional analyses to confirm that these controls will also provide adequate protection to workers at the WIPP. The approaches and results of the worker dose assessment are summarized here. In conformance with the guidance of DOE Standard 3009-94, we emphasize that use of these evaluation guidelines is not intended to imply that these numbers constitute acceptable limits for worker exposures under accident conditions. However, in conjunction with the extensive safety assessment in the 1995 SAR Update, these results indicate that the Carlsbad Area Office strategy for the assessment of hazards and accidents assures the protection of workers, members of the public, and the environment.« less

  11. Atmospheric Dispersion Modeling of the February 2014 Waste Isolation Pilot Plant Release

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nasstrom, John; Piggott, Tom; Simpson, Matthew

    2015-07-22

    This report presents the results of a simulation of the atmospheric dispersion and deposition of radioactivity released from the Waste Isolation Pilot Plant (WIPP) site in New Mexico in February 2014. These simulations were made by the National Atmospheric Release Advisory Center (NARAC) at Lawrence Livermore National Laboratory (LLNL), and supersede NARAC simulation results published in a previous WIPP report (WIPP, 2014). The results presented in this report use additional, more detailed data from WIPP on the specific radionuclides released, radioactivity release amounts and release times. Compared to the previous NARAC simulations, the new simulation results in this report aremore » based on more detailed modeling of the winds, turbulence, and particle dry deposition. In addition, the initial plume rise from the exhaust vent was considered in the new simulations, but not in the previous NARAC simulations. The new model results show some small differences compared to previous results, but do not change the conclusions in the WIPP (2014) report. Presented are the data and assumptions used in these model simulations, as well as the model-predicted dose and deposition on and near the WIPP site. A comparison of predicted and measured radionuclide-specific air concentrations is also presented.« less

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayes, Timothy; Nelson, Roger

    The Department of Energy (DOE) and the National Nuclear Security Administration (NNSA) manages defense nuclear material that has been determined to be excess to programmatic needs and declared waste. When these wastes contain plutonium, they almost always meet the definition of defense transuranic (TRU) waste and are thus eligible for disposal at the Waste Isolation Pilot Plant (WIPP). The DOE operates the WIPP in a manner that physical protections for attractiveness level D or higher special nuclear material (SNM) are not the normal operating condition. Therefore, there is currently a requirement to terminate safeguards before disposal of these wastes atmore » the WIPP. Presented are the processes used to terminate safeguards, lessons learned during the termination process, and how these approaches might be useful for future defense TRU waste needing safeguards termination prior to shipment and disposal at the WIPP. Also described is a new criticality control container, which will increase the amount of fissile material that can be loaded per container, and how it will save significant taxpayer dollars. Retrieval, compliant packaging and shipment of retrievably stored legacy TRU waste has dominated disposal operations at WIPP since it began operations 12 years ago. But because most of this legacy waste has successfully been emplaced in WIPP, the TRU waste clean-up focus is turning to newly-generated TRU materials. A major component will be transuranic SNM, currently managed in safeguards-protected vaults around the weapons complex. As DOE and NNSA continue to consolidate and shrink the weapons complex footprint, it is expected that significant quantities of transuranic SNM will be declared surplus to the nation's needs. Safeguards termination of SNM varies due to the wide range of attractiveness level of the potential material that may be directly discarded as waste. To enhance the efficiency of shipping waste with high TRU fissile content to WIPP, DOE designed an over-pack container, similar to the pipe component, called the criticality control over-pack, which will significantly enhance the efficiency of disposal. Hundreds of shipments of transuranic SNM, suitably packaged to meet WIPP waste acceptance criteria and with safeguards terminated have been successfully emplaced at WIPP (primarily from the Rocky Flats site clean-up) since WIPP opened. DOE expects that thousands more may eventually result from SNM consolidation efforts throughout the weapons complex. (authors)« less

  13. Basic data report for drillhole WIPP 30 (Waste Isolation Pilot Plant - WIPP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1980-04-01

    WIPP 30 was drilled in east-central Eddy County, New Mexico, in NW 1/4, Sec. 33, T21S, R31E, to obtain drill core for the study of dissolution of near-surface rocks. The borehole encountered from top to bottom, the Dewey Lake Red Beds (449' including artificial fill for drill pad), Rustler Formation (299'), and the upper 160' of the Salado Formation. Continuous core was cut from the surface to total depth. Geophysical logs were taken the full length of the borehole to measure acoustic velocities, density, and distribution of potassium and other radioactive elements. Information from this borehole will be included inmore » an interpretive report on dissolution in Nash Draw based on combined borehole data, surface mapping and laboratory analyses of rocks and fluids. The WIPP is to demonstrate (through limited operations) disposal technology for transuranic defense wastes and to then be converted to a repository. The WIPP will also provide research facilities for interactions between high-level waste and salt. Administration policy as of February 1980 is to hold the WIPP site in reserve until the first disposal site can be chosen from several potential sites, including the WIPP.« less

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weaver, Douglas James

    The mission of Waste Isolation Pilot Plant (WIPP) is to demonstrate the safe, environmentally sound, cost effective, permanent disposal of Transuranic (TRU) waste left from production of nuclear weapons.

  15. Waste Isolation Pilot Plant Annual Site Environmental Report for 2014. Emended

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    none,

    2015-09-01

    The purpose of the Waste Isolation Pilot Plant (WIPP) Annual Site Environmental Report for 2014 (ASER) is to provide information required by U.S. Department of Energy (DOE) Order 231.1B, Environment, Safety, and Health Reporting. Specifically, the ASER presents summary environmental data to: Characterize site environmental management performance; Summarize environmental occurrences and responses reported during the calendar year (CY); Confirm compliance with environmental standards and requirements; Highlight significant environmental accomplishments, including progress toward the DOE environmental sustainability goals made through implementation of the WIPP Environmental Management System (EMS).

  16. Effects of microbial processes on gas generation under expected WIPP repository conditions: Annual report through 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Francis, A.J.; Gillow, J.B.

    1993-09-01

    Microbial processes involved in gas generation from degradation of the organic constituents of transuranic waste under conditions expected at the Waste Isolation Pilot Plant (WIPP) repository are being investigated at Brookhaven National Laboratory. These laboratory studies are part of the Sandia National Laboratories -- WIPP Gas Generation Program. Gas generation due to microbial degradation of representative cellulosic waste was investigated in short-term (< 6 months) and long-term (> 6 months) experiments by incubating representative paper (filter paper, paper towels, and tissue) in WIPP brine under initially aerobic (air) and anaerobic (nitrogen) conditions. Samples from the WIPP surficial environment and undergroundmore » workings harbor gas-producing halophilic microorganisms, the activities of which were studied in short-term experiments. The microorganisms metabolized a variety of organic compounds including cellulose under aerobic, anaerobic, and denitrifying conditions. In long-term experiments, the effects of added nutrients (trace amounts of ammonium nitrate, phosphate, and yeast extract), no nutrients, and nutrients plus excess nitrate on gas production from cellulose degradation.« less

  17. Background Underground at WIPP

    NASA Astrophysics Data System (ADS)

    Esch, Ernst-Ingo; Hime, A.; Bowles, T. J.

    2001-04-01

    Recent interest to establish a dedicated underground laboratory in the United States prompted an experimental program at to quantify the enviromental backgrounds underground at the Waste Isolation Pilot Plant (WIPP) in Carlsbad, New Mexico. An outline of this program is provided along with recent experimental data on the cosmic ray muon flux at the 650 meter level of WIPP. The implications of the cosmic ray muon and fast neutron background at WIPP will be discussed in the context of new generation, low background experiments envisioned in the future.

  18. Waste Isolation Pilot Plant Biennial Environmental Compliance Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Westinghouse TRU Solutions

    This Biennial Environmental Compliance Report (BECR) documents environmental regulatory compliance at the Waste Isolation Pilot Plant (WIPP), a facility designed for the safe disposal of transuranic (TRU) radioactive waste, for the reporting period of April 1, 1998, to March 31, 2000. As required by the WIPP Land Withdrawal Act (LWA)(Public Law [Pub. L.] 102-579, and amended by Pub. L. 104-201), the BECR documents U.S. Department of Energy (DOE) Carlsbad Area Office's (hereinafter the ''CAO'') compliance with applicable environmental protection laws and regulations implemented by agencies of the federal government and the state of New Mexico. An issue was identified inmore » the 1998 BECR relating to a potential cross-connection between the fire-water systems and the site domestic water system. While the CAO and its managing and operating contractor (hereinafter the ''MOC'') believe the site was always in compliance with cross-connection control requirements, hardware and procedural upgrades w ere implemented in March 1999 to strengthen its compliance posture. Further discussion of this issue is presented in section 30.2.2 herein. During this reporting period WIPP received two letters and a compliance order alleging violation of certain requirements outlined in section 9(a)(1) of the LWA. With the exception of one item, pending a final decision by the New Mexico Environment Department (NMED), all alleged violations have been resolved without the assessment of fines or penalties. Non-mixed TRU waste shipments began on March 26, 1999. Shipments continued through November 26, 1999, the effective date of the Waste Isolation Pilot Plant Hazardous Waste Facility Permit (NM4890139088-TSDF). No shipments regulated under the Hazardous Waste Facility Permit were received at WIPP during this BECR reporting period.« less

  19. Development of Pflotran Code for Waste Isolation Pilot Plant Performance Assessment

    NASA Astrophysics Data System (ADS)

    Zeitler, T.; Day, B. A.; Frederick, J.; Hammond, G. E.; Kim, S.; Sarathi, R.; Stein, E.

    2017-12-01

    The Waste Isolation Pilot Plant (WIPP) has been developed by the U.S. Department of Energy (DOE) for the geologic (deep underground) disposal of transuranic (TRU) waste. Containment of TRU waste at the WIPP is regulated by the U.S. Environmental Protection Agency (EPA). The DOE demonstrates compliance with the containment requirements by means of performance assessment (PA) calculations. WIPP PA calculations estimate the probability and consequence of potential radionuclide releases from the repository to the accessible environment for a regulatory period of 10,000 years after facility closure. The long-term performance of the repository is assessed using a suite of sophisticated computational codes. There is a current effort to enhance WIPP PA capabilities through the further development of the PFLOTRAN software, a state-of-the-art massively parallel subsurface flow and reactive transport code. Benchmark testing of the individual WIPP-specific process models implemented in PFLOTRAN (e.g., gas generation, chemistry, creep closure, actinide transport, and waste form) has been performed, including results comparisons for PFLOTRAN and existing WIPP PA codes. Additionally, enhancements to the subsurface hydrologic flow mode have been made. Repository-scale testing has also been performed for the modified PFLTORAN code and detailed results will be presented. Ultimately, improvements to the current computational environment will result in greater detail and flexibility in the repository model due to a move from a two-dimensional calculation grid to a three-dimensional representation. The result of the effort will be a state-of-the-art subsurface flow and transport capability that will serve WIPP PA into the future for use in compliance recertification applications (CRAs) submitted to the EPA. Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525. This research is funded by WIPP programs administered by the Office of Environmental Management (EM) of the U.S. Department of Energy.SAND2017-8198A.

  20. EPA's Review of DOE's Inventory Tracking for TRU Wastes at Waste Control Specialists

    EPA Pesticide Factsheets

    On April 9, 2014, EPA's Waste Isolation Pilot Plant (WIPP) waste characterization team visited Waste Control Specialists (WCS) to determine whether DOE was meeting EPA's waste inventory tracking requirements at 40 CFR 194.24(c)(4).

  1. 75 FR 41421 - Notification of Completeness of the Department of Energy's Compliance Recertification Application...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-16

    ... (CRA or ``application'') for the Waste Isolation Pilot Plant (WIPP) is complete. EPA provided written... disposal regulations. EPA is now engaged in the full technical review that will determine if WIPP remains... technical difficulties and cannot contact [[Page 41422

  2. DOE's Remote-Handled TRU Waste Characterization Program: Implementation Plan

    EPA Pesticide Factsheets

    Remote-handled (RH) transuranic (TRU) waste characterization, which involves obtaining chemical, radiological, and physical data, is a primary component of ensuring compliance of the Waste Isolation Pilot Plant (WIPP) with regulatory requirements.

  3. Historical Background on Assessment the Performance of the Waste Isolation Pilot Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rechard, R.P.

    1999-06-01

    In 1979, six years after selecting the Delaware Basin as a potential disposal area, Congress authorized the US Department of Energy to build the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico, as a research and development facility for the safe management, storage, and disposal of waste contaminated with transuranic radioisotopes. In 1998, 19 years after authorization and 25 years after site selection, the US Environmental Protection Agency (EPA) certified that the WIPP disposal system complied with its regulations. The EPA's decision was primarily based on the results from a performance assessment conducted in 1996. This performance assessment wasmore » the culmination of four preliminary performance assessments conducted between 1989 and 1992. This report provides a historical setting and context for how the performance of the deep geologic repository at the WIPP was analyzed. Also included is background on political forces acting on the project. For example, the federal requirement to provide environmental impact statements and negotiated agreements with the State of New Mexico influenced the type of scientific areas that were investigated and the engineering analysis prior to 1989 for the WIPP.« less

  4. Biogeochemical Investigations to Evaluate the Performance of the Waste Isolation Pilot Plant (WIPP) (Invited)

    NASA Astrophysics Data System (ADS)

    Gillow, J. B.

    2009-12-01

    The Waste Isolation Pilot Plant (WIPP) is a U.S. Department of Energy facility located in southeastern New Mexico, approximately 655 m (2150 ft.) below ground surface in a bedded salt, Permian evaporite formation. This mined geologic repository has been receiving transuranic (TRU) waste from defense-related and environmental-management activities since March 1999. TRU waste contains alpha-emitting transuranic nuclides with half-lives greater than twenty years at concentrations greater than 100 nCi/gram. These actinide-contaminated wastes were generated from nuclear-weapons production and related processing activities. They include various organics, adsorbed liquids, sludges, cellulosics, plastics, rubber, and a variety of metals and cemented materials. An extensive set of investigations were performed to establish the basis for TRU waste disposal at WIPP and to support initial certification from the U.S. Environmental Protection Agency. A significant element of the conceptual geochemical model for WIPP is the microbiologically-driven reactions leading to biodegradation of organic constituents in TRU wastes, as well as interactions with actinides present in the waste. This presentation will discuss the biogeochemical investigations that were performed to evaluate microbiological activity at WIPP, including studies of gas generation due to biodegradation of cellulose, plastic, and rubber materials and actinide-microbe interactions leading to changes in actinide chemical speciation. Highlights of this work are discussed here. Cellulose biodegradation in salt-brine systems results in the generation of carbon dioxide and hydrogen, and aqueous fermentation products (low molecular weight organic acids). Hypersaline brine can limit the range of microbial metabolic pathways, due to the energetic stresses of maintaining osmotic balance compatible with metabolic processes. Methanogenesis yields the lowest free energy per mole of carbon and as such is often not detected in microorganisms that thrive in salt-brine environments (halophilic bacteria). However, laboratory tests performed over a period of 10 years demonstrated the production of methane gas from cellulose metabolism. Studies of actinide-microbe interactions revealed the bioaccumulation of uranium in phosphate-rich intracellular granules. These studies advanced the understanding of the metabolism of bacteria in salt-brine systems and the influence of halophilic microbiological activity on WIPP geochemistry.

  5. DOE's Notification of Planned Change to the EPA 40 CFR Part 194 Certification of the Waste Isolation Pilot Plant: Remote-Handled Transuranic Waste Characterization Plan

    EPA Pesticide Factsheets

    The U.S. Department of Energy's Carlsbad Field Office (DOE/CBFO) provided the U.S. Environmental Protection Agency (EPA) this Notification of Planned Change to accept remote-handled (RH) transuranic (TRU) waste at the Waste Isolation Pilot Plant (WIPP).

  6. An introduction to the mechanics of performance assessment using examples of calculations done for the Waste Isolation Pilot Plant between 1990 and 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rechard, R.P.

    1995-10-01

    This document provides an overview of the process used to assess the performance of the Waste Isolation Pilot Plant (WIPP), a proposed repository for transuranic wastes that is located in southeastern New Mexico. The quantitative metrics used in the performance-assessment (PA) process are those put forward in the Environmental Protection Agency`s Environmental Standards for the Management and Disposal of Spent Nuclear Fuel, High-Level and Transuranic Radioactive flasks (40 CFR 191). Much has been written about the individual building blocks that comprise the foundation of PA theory and practice, and that WIPP literature is well cited herein. However, the present approachmore » is to provide an accurate, well documented overview of the process, from the perspective of the mechanical steps used to perform the actual PA calculations. Specifically, the preliminary stochastic simulations that comprise the WIPP PAs of 1990, 1991. and 1992 are summarized.« less

  7. Brine and Gas Flow Patterns Between Excavated Areas and Disturbed Rock Zone in the 1996 Performance Assessment for the Waste Isolation Pilot Plant for a Single Drilling Intrusion that Penetrates Repository and Castile Brine Reservoir

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ECONOMY,KATHLEEN M.; HELTON,JON CRAIG; VAUGHN,PALMER

    1999-10-01

    The Waste Isolation Pilot Plant (WIPP), which is located in southeastern New Mexico, is being developed for the geologic disposal of transuranic (TRU) waste by the U.S. Department of Energy (DOE). Waste disposal will take place in panels excavated in a bedded salt formation approximately 2000 ft (610 m) below the land surface. The BRAGFLO computer program which solves a system of nonlinear partial differential equations for two-phase flow, was used to investigate brine and gas flow patterns in the vicinity of the repository for the 1996 WIPP performance assessment (PA). The present study examines the implications of modeling assumptionsmore » used in conjunction with BRAGFLO in the 1996 WIPP PA that affect brine and gas flow patterns involving two waste regions in the repository (i.e., a single waste panel and the remaining nine waste panels), a disturbed rock zone (DRZ) that lies just above and below these two regions, and a borehole that penetrates the single waste panel and a brine pocket below this panel. The two waste regions are separated by a panel closure. The following insights were obtained from this study. First, the impediment to flow between the two waste regions provided by the panel closure model is reduced due to the permeable and areally extensive nature of the DRZ adopted in the 1996 WIPP PA, which results in the DRZ becoming an effective pathway for gas and brine movement around the panel closures and thus between the two waste regions. Brine and gas flow between the two waste regions via the DRZ causes pressures between the two to equilibrate rapidly, with the result that processes in the intruded waste panel are not isolated from the rest of the repository. Second, the connection between intruded and unintruded waste panels provided by the DRZ increases the time required for repository pressures to equilibrate with the overlying and/or underlying units subsequent to a drilling intrusion. Third, the large and areally extensive DRZ void volumes is a significant source of brine to the repository, which is consumed in the corrosion of iron and thus contributes to increased repository pressures. Fourth, the DRZ itself lowers repository pressures by providing storage for gas and access to additional gas storage in areas of the repository. Fifth, given the pathway that the DRZ provides for gas and brine to flow around the panel closures, isolation of the waste panels by the panel closures was not essential to compliance with the U.S. Environment Protection Agency's regulations in the 1996 WIPP PA.« less

  8. Ten Thousand Years of Solitude

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benford, G.; Kirkwood, C.W.; Harry, O.

    1991-03-01

    This report documents the authors work as an expert team advising the US Department of Energy on modes of inadvertent intrusion over the next 10,000 years into the Waste Isolation Pilot Project (WIPP) nuclear waste repository. Credible types of potential future accidental intrusion into the WIPP are estimated as a basis for creating warning markers to prevent inadvertent intrusion. A six-step process is used to structure possible scenarios for such intrusion, and it is concluded that the probability of inadvertent intrusion into the WIPP repository over the next ten thousand years lies between one and twenty-five percent. 3 figs., 5more » tabs.« less

  9. Adequacy of a Small Quantity Site RH-TRU Waste Program in Meeting Proposed WIPP Characterization Objectives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biedscheid, J.; Stahl, S.; Devarakonda, M.

    2002-02-26

    The first remote-handled transuranic (RH-TRU) waste is expected to be permanently disposed of at the Waste Isolation Pilot Plant (WIPP) during Fiscal Year (FY) 2003. The first RH-TRU waste shipments are scheduled from the Battelle Columbus Laboratories (BCL) to WIPP in order to facilitate compliance with BCL Decommissioning Project (BCLDP) milestones. Milestones requiring RH-TRU waste containerization and removal from the site by 2004 in order to meet a 2006 site closure goal, established by Congress in the Defense Facilities Closure Projects account, necessitated the establishment and implementation of a site-specific program to direct the packaging of BCLDP RH-TRU waste priormore » to the finalization of WIPP RH-TRU waste characterization requirements. The program was designed to collect waste data, including audio and videotape records of waste packaging, such that upon completion of waste packaging, comprehensive data records exist from which compliance with final WIPP RH-TRU waste characterization requirements can be demonstrated. With the BCLDP data records generated to date and the development by the U.S. Department of Energy (DOE)-Carlsbad Field Office (CBFO) of preliminary documents proposing the WIPP RH-TRU waste characterization program, it is possible to evaluate the adequacy of the BCLDP program with respect to meeting proposed characterization objectives. The BCLDP characterization program uses primarily acceptable knowledge (AK) and visual examination (VE) during waste packaging to characterize RH-TRU waste. These methods are used to estimate physical waste parameters, including weight percentages of metals, cellulosics, plastics, and rubber in the waste, and to determine the absence of prohibited items, including free liquids. AK combined with computer modeling is used to estimate radiological waste parameters, including total activity on a waste container basis, for the majority of BCLDP RH-TRU waste. AK combined with direct analysis is used to characterize radiological parameters for the small populations of the RH-TRU waste generated by the BCLDP. All characterization based on AK is verified. Per its design for comprehensive waste data collection, the BCLDP characterization program using AK and waste packaging procedures, including VE during packaging, meets the proposed WIPP RH-TRU waste characterization objectives. The conservative program design implemented generates certification data that will be adequate to meet any additional program requirements that may be imposed by the CBFO.« less

  10. Department of Energy Operational Readiness Review for the Waste Isolation Pilot Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    The U.S. Department of Energy (DOE) has completed an Operational Readiness Review (ORR) for the restart of Contact Handled (CH) waste emplacement at the Waste Isolation Pilot Plant (WIPP) located near Carlsbad, New Mexico. The ORR team assessed the readiness of Nuclear Waste Partnership, LLC (NWP) to manage and perform receipt through CH waste emplacement, and associated waste handling and management activities, including the ability of the National TRU Program (NTP) to evaluate the waste currently stored at the WIPP site against the revised and enhanced Waste Acceptance Criteria (WAC). Field work for this review began on November 14, 2015more » and was completed on November 30, 2016. The DOE ORR was conducted in accordance with the Department of Energy Operational Readiness Review Implementation Plan for the Waste Isolation Pilot Plant, dated November 8, 2016, and DOE Order 425.1D, Verification of Readiness to Start Up or Restart Nuclear Facilities. The review activities included personnel interviews, record reviews, direct observation of operations and maintenance demonstrations, and observation of multiple operational and emergency drills/exercises. The DOE ORR also evaluated the adequacy of the contractor’s ORR (CORR) and the readiness of the DOE Carlsbad field Office (CBFO) to oversee the startup and execution of CH waste emplacement activities at the WIPP facility. The WIPP facility is categorized as a Hazard Category 2 DOE Nonreactor Nuclear Facility for all surface and Underground (UG) operations per DOE-STD-1027-92, Hazard Categorization and Accident Analysis Techniques for Compliance with DOE Order 5480.23, Nuclear Safety Analysis Reports. In addition, the WIPP experienced two events in February, 2014 that resulted in Accident Investigations being performed in accordance with the requirements of DOE Order 225.1B, Accident Investigations. Based upon the results of the accident investigations and hazard categorization of the facility, the team placed significant emphasis on the following areas: fire protection, emergency preparedness, radiological protection, nuclear safety, and operations. The identification of specific focus areas was not intended to diminish the importance of other areas of the review, but to ensure that these areas received a particularly thorough and in-depth evaluation due to their significance with respect to the safe operation of the facility.« less

  11. Waste Isolation Pilot Plant Biennial Environmental Compliance Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Washinton TRU Solutions LLC

    This Biennial Environmental Compliance Report (BECR) documents environmental regulatory compliance at the Waste Isolation Pilot Plant (WIPP), a facility designed for the safe disposal of transuranic (TRU) radioactive waste, for the reporting period of April 1, 2000, to March 31, 2002. As required by the WIPP Land Withdrawal Act (LWA)(Public Law [Pub. L.] 102-579, as amended by Pub. L. 104-201), the BECR documents U.S. Department of Energy (DOE) Carlsbad Field Office's (CBFO) compliance with applicable environmental protection laws and regulations implemented by agencies of the federal government and the state of New Mexico. In the prior BECR, the CBFO andmore » the management and operating contractor (MOC)committed to discuss resolution of a Letter of Violation that had been issued by the New Mexico Environment Department (NMED) in August 1999, which was during the previous BECR reporting period. This Letter of Violation alleged noncompliance with hazardous waste aisle spacing, labeling, a nd tank requirements. At the time of publication of the prior BECR, resolution of the Letter of Violation was pending. On July 7, 2000, the NMED issued a letter noting that the aisle spacing and labeling concerns had been adequately addressed and that they were rescinding the violation alleging that the Exhaust Shaft Catch Basin failed to comply with the requirements for a hazardous waste tank. During the current reporting period, WIPP received a Notice of Violation and a compliance order alleging the violation of the New Mexico Hazardous Waste Regulations and the WIPP Hazardous Waste Facility Permit (HWFP).« less

  12. The magnitude and relevance of the February 2014 radiation release from the Waste Isolation Pilot Plant repository in New Mexico, USA.

    PubMed

    Thakur, P; Lemons, B G; White, C R

    2016-09-15

    After almost fifteen years of successful waste disposal operations, the first unambiguous airborne radiation release from the Waste Isolation Pilot Plant (WIPP) was detected beyond the site boundary on February 14, 2014. It was the first accident of its kind in the 15-year operating history of the WIPP. The accident released moderate levels of radioactivity into the underground air. A small but measurable amount of radioactivity also escaped to the surface through the ventilation system and was detected above ground. The dominant radionuclides released were americium and plutonium, in a ratio consistent with the known content of a breached drum. The radiation release was caused by a runaway chemical reaction inside a transuranic (TRU) waste drum which experienced a seal and lid failure, spewing radioactive materials into the repository. According to source-term estimation, approximately 2 to 10Ci of radioactivity was released from the breached drum into the underground, and an undetermined fraction of that source term became airborne, setting off an alarm and triggering the closure of seals designed to force exhausting air through a system of filters including high-efficiency-particulate-air (HEPA) filters. Air monitoring across the WIPP site intensified following the first reports of radiation detection underground to determine the extent of impact to WIPP personnel, the public, and the environment, if any. This article attempts to compile and interpret analytical data collected by an independent monitoring program conducted by the Carlsbad Environmental Monitoring & Research Center (CEMRC) and by a compliance-monitoring program conducted by the WIPP's management and operating contractor, the Nuclear Waste Partnership (NWP), LLC., in response to the accident. Both the independent and the WIPP monitoring efforts concluded that the levels detected were very low and localized, and no radiation-related health effects among local workers or the public would be expected. Published by Elsevier B.V.

  13. Idaho National Engineering Laboratory code assessment of the Rocky Flats transuranic waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-07-01

    This report is an assessment of the content codes associated with transuranic waste shipped from the Rocky Flats Plant in Golden, Colorado, to INEL. The primary objective of this document is to characterize and describe the transuranic wastes shipped to INEL from Rocky Flats by item description code (IDC). This information will aid INEL in determining if the waste meets the waste acceptance criteria (WAC) of the Waste Isolation Pilot Plant (WIPP). The waste covered by this content code assessment was shipped from Rocky Flats between 1985 and 1989. These years coincide with the dates for information available in themore » Rocky Flats Solid Waste Information Management System (SWIMS). The majority of waste shipped during this time was certified to the existing WIPP WAC. This waste is referred to as precertified waste. Reassessment of these precertified waste containers is necessary because of changes in the WIPP WAC. To accomplish this assessment, the analytical and process knowledge available on the various IDCs used at Rocky Flats were evaluated. Rocky Flats sources for this information include employee interviews, SWIMS, Transuranic Waste Certification Program, Transuranic Waste Inspection Procedure, Backlog Waste Baseline Books, WIPP Experimental Waste Characterization Program (headspace analysis), and other related documents, procedures, and programs. Summaries are provided of: (a) certification information, (b) waste description, (c) generation source, (d) recovery method, (e) waste packaging and handling information, (f) container preparation information, (g) assay information, (h) inspection information, (i) analytical data, and (j) RCRA characterization.« less

  14. RH-TRU Waste Inventory Characterization by AK and Proposed WIPP RH-TRU Waste Characterization Objectives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Most, W. A.; Kehrman, R.; Gist, C.

    2002-02-26

    The U.S. Department of Energy (DOE)-Carlsbad Field Office (CBFO) has developed draft documentation to present the proposed Waste Isolation Pilot Plant (WIPP) remote-handled (RH-) transuranic (TRU) waste characterization program to its regulators, the U.S. Environmental Protection Agency and the New Mexico Environment Department. Compliance with Title 40, Code of Federal Regulations, Parts 191 and 194; the WIPP Land Withdrawal Act (PL 102-579); and the WIPP Hazardous Waste Facility Permit, as well as the Certificates of Compliance for the 72-B and 10-160B Casks, requires that specific waste parameter limits be imposed on DOE sites disposing of TRU waste at WIPP. Themore » DOE-CBFO must control the sites' compliance with the limits by specifying allowable characterization methods. As with the established WIPP contact handled TRU waste characterization program, the DOE-CBFO has proposed a Remote-Handled TRU Waste Acceptance Criteria (RH-WAC) document consolidating the requirements from various regulatory drivers and proposed allowable characterization methods. These criteria are consistent with the recommendation of a recent National Academy Sciences/National Research Council to develop an RH-TRU waste characterization approach that removes current self imposed requirements that lack a legal or safety basis. As proposed in the draft RH-WAC and other preliminary documents, the DOE-CBFO RH-TRU waste characterization program proposes the use of acceptable knowledge (AK) as the primary method for obtaining required characterization information. The use of AK involves applying knowledge of the waste in light of the materials or processes used to generate the waste. Documentation, records, or processes providing information about various attributes of a waste stream, such as chemical, physical, and radiological properties, may be used as AK and may be applied to individual waste containers either independently or in conjunction with radiography, visual examination, assay, and other sampling and analytical data. RH-TRU waste cannot be shipped to WIPP on the basis of AK alone if documentation demonstrating that all of the prescribed limits in the RH-WAC are met is not available, discrepancies exist among AK source documents describing the same waste stream and the most conservative assumptions regarding those documents indicates that a limit will not be met, or all required data are not available for a given waste stream.« less

  15. EPA's Response to the February 2014 Release of Radioactive Material from the Waste Isolation Pilot Plant (WIPP): EPA's WIPP Air Sampling Data from April 2014

    EPA Pesticide Factsheets

    In April 2014, U.S. Environmental Protection Agency (EPA) environmental monitoring and assessment team members reviewed DOE's air sampling plan, visited DOE's air samplers and placed air samplers onsite near existing DOE samplers to corroborate results.

  16. 78 FR 72612 - Criteria for the Certification and Recertification of the Waste Isolation Pilot Plant's...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-03

    ... WIPP PA process culminates in a series of computer simulations that model the physical attributes of... and Processes LWA Land Withdrawal Act MSHA Mine Safety and Health Administration NMED New Mexico... Agency's technical review process was to determine whether, with the new design, the WIPP adequately...

  17. WIPP waste characterization program sampling and analysis guidance manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-01-01

    The Waste Isolation Pilot Plant (WIPP) Waste Characterization Program Sampling and Analysis Guidance Manual (Guidance Manual) provides a unified source of information on the sampling and analytical techniques that enable Department of Energy (DOE) facilities to comply with the requirements established in the current revision of the Quality Assurance Program Plan (QAPP) for the WIPP Experimental-Waste Characterization Program (the Program). This Guidance Manual includes all of the sampling and testing methodologies accepted by the WIPP Project Office (DOE/WPO) for use in implementing the Program requirements specified in the QAPP. This includes methods for characterizing representative samples of transuranic (TRU) wastesmore » at DOE generator sites with respect to the gas generation controlling variables defined in the WIPP bin-scale and alcove test plans, as well as waste container headspace gas sampling and analytical procedures to support waste characterization requirements under the WIPP test program and the Resource Conservation and Recovery Act (RCRA). The procedures in this Guidance Manual are comprehensive and detailed and are designed to provide the necessary guidance for the preparation of site specific procedures. The use of these procedures is intended to provide the necessary sensitivity, specificity, precision, and comparability of analyses and test results. The solutions to achieving specific program objectives will depend upon facility constraints, compliance with DOE Orders and DOE facilities' operating contractor requirements, and the knowledge and experience of the TRU waste handlers and analysts. With some analytical methods, such as gas chromatography/mass spectrometry, the Guidance Manual procedures may be used directly. With other methods, such as nondestructive/destructive characterization, the Guidance Manual provides guidance rather than a step-by-step procedure.« less

  18. Characterization of the MVST waste tanks located at ORNL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keller, J.M.; Giaquinto, J.M.; Meeks, A.M.

    During the fall of 1996 there was a major effort to sample and analyze the Active Liquid Low-Level Waste (LLLW) tanks at ORNL which include the Melton Valley Storage Tanks (MVST) and the Bethel Valley Evaporator Service Tanks (BVEST). The characterization data summarized in this report was needed to address waste processing options, address concerns of the performance assessment (PA) data for the Waste Isolation Pilot Plant (WIPP), evaluate the characteristics with respect to the waste acceptance criteria (WAC) for WIPP and Nevada Test Site (NTS), address criticality concerns, and meet DOT requirements for transporting the waste. This report onlymore » discusses the analytical characterization data for the MVST waste tanks. The isotopic data presented in this report support the position that fissile isotopes of uranium and plutonium were ``denatured`` as required by administrative controls. In general, MVST sludge was found to be both hazardous by RCRA characteristics and the transuranic alpha activity was well about the limit for TRU waste. The characteristics of the MVST sludge relative to the WIPP WAC limits for fissile gram equivalent, plutonium equivalent activity, and thermal power from decay heat, were estimated from the data in this report and found to be far below the upper boundary for any of the remote-handled transuranic waste requirements for disposal of the waste in WIPP.« less

  19. Resource Conservation and Recovery Act, Part B Permit Application [for the Waste Isolation Pilot Plant (WIPP)]. Volume 5, Chapter D, Appendix D1 (conclusion), Revision 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cook, Neville G.W.; Heuze, Francois E.; Miller, Hamish D.S.

    1993-03-01

    The reference design for the underground facilities at the Waste Isolation Pilot Plant was developed using the best criteria available at initiation of the detailed design effort. These design criteria are contained in the US Department of Energy document titled Design Criteria, Waste Isolation Pilot Plant (WIPP). Revised Mission Concept-IIA (RMC-IIA), Rev. 4, dated February 1984. The validation process described in the Design Validation Final Report has resulted in validation of the reference design of the underground openings based on these criteria. Future changes may necessitate modification of the Design Criteria document and/or the reference design. Validation of the referencemore » design as presented in this report permits the consideration of future design or design criteria modifications necessitated by these changes or by experience gained at the WIPP. Any future modifications to the design criteria and/or the reference design will be governed by a DOE Standard Operation Procedure (SOP) covering underground design changes. This procedure will explain the process to be followed in describing, evaluating and approving the change.« less

  20. Uranium (VI) solubility in carbonate-free ERDA-6 brine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lucchini, Jean-francois; Khaing, Hnin; Reed, Donald T

    2010-01-01

    When present, uranium is usually an element of importance in a nuclear waste repository. In the Waste Isolation Pilot Plant (WIPP), uranium is the most prevalent actinide component by mass, with about 647 metric tons to be placed in the repository. Therefore, the chemistry of uranium, and especially its solubility in the WIPP conditions, needs to be well determined. Long-term experiments were performed to measure the solubility of uranium (VI) in carbonate-free ERDA-6 brine, a simulated WIPP brine, at pC{sub H+} values between 8 and 12.5. These data, obtained from the over-saturation approach, were the first repository-relevant data for themore » VI actinide oxidation state. The solubility trends observed pointed towards low uranium solubility in WIPP brines and a lack of amphotericity. At the expected pC{sub H+} in the WIPP ({approx} 9.5), measured uranium solubility approached 10{sup -7} M. The objective of these experiments was to establish a baseline solubility to further investigate the effects of carbonate complexation on uranium solubility in WIPP brines.« less

  1. Command and Control. Radiological Transportation Emergencies Course. Revision Three.

    ERIC Educational Resources Information Center

    Westinghouse Electric Corp., Carlsbad, NM.

    This 12-section course is designed to explain the responsibilities of an incident commander at the scene of a Waste Isolation Pilot Plant (WIPP) transportation incident. It was created for the U.S. Department of Energy WIPP located near Carlsbad, New Mexico, which receives radioactive shipments. The course has two purposes: (1) to provide first…

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Funk, David John

    The inadvertent creation of transuranic waste carrying hazardous waste codes D001 and D002 requires the treatment of the material to eliminate the hazardous characteristics and allow its eventual shipment and disposal at the Waste Isolation Pilot Plant (WIPP). This report briefly summarizes the surrogate testing that was done in support of our understanding of this waste form.

  3. Evaluation of the U.S. Environmental Protection Agency's Public Outreach Program during the Certification Process at the Waste Isolation Pilot Plant in New Mexico

    EPA Pesticide Factsheets

    The EPA Office of Radiation and Indoor Air (ORIA) contracted with Phoenix Environmental and EnviroIssues to evaluate the effectiveness of its public outreach program during its certification of the Waste Isolation Pilot Plant (WIPP) in Carlsbad, NM.

  4. No-migration variance petition. Appendices C--J: Volume 5, Revision 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-03-01

    Volume V contains the appendices for: closure and post-closure plans; RCRA ground water monitoring waver; Waste Isolation Division Quality Program Manual; water quality sampling plan; WIPP Environmental Procedures Manual; sample handling and laboratory procedures; data analysis; and Annual Site Environmental Monitoring Report for the Waste Isolation Pilot Plant.

  5. Waste Isolation Pilot Plant Technical Assessment Team Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    This report provides the results of the Waste Isolation Pilot Plant (WIPP) technical assessment led by the Savannah River National Laboratory and conducted by a team of experts in pertinent disciplines from SRNL and Lawrence Livermore National Laboratory (LLNL), Oak Ridge National Laboratory (ORNL), Pacific Northwest National Laboratory (PNNL), and Sandia National Laboratories (SNL).

  6. Report of biological investigations at the Los Medanos Waste Isolation Pilot Plant (WIPP) area of New Mexico during FY 1978

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Best, T.L.; Neuhauser, S.

    The US Department of Energy is considering the construction of a Waste Isolation Pilot Plant (WIPP) in Eddy County, NM. This location is approximately 40 km east of Carlsbad, NM. Biological studies during FY 1978 were concentrated within a 5-mi radius of drill hole ERDA 9. Additional study areas have been established at other sites in the vicinity, e.g., the Gnome site, the salt lakes and several stations along the Pecos River southward from Carlsbad, NM, to the dam at Red Bluff Reservoir in Texas. The precise locations of all study areas are presented and their biology discussed.

  7. Issues in establishing an aerosol radiological baseline for the waste isolation pilot plant near Carlsbad, New Mexico.

    PubMed

    Rodgers, J C; Kenney, J W

    1997-02-01

    The Department of Energy has constructed a deep geologic repository for defense transuranic waste disposal. The Waste Isolation Pilot Plant, located in Southeastern New Mexico, is slated to receive transuranic waste by truck delivery beginning in 1998. The Environmental Evaluation Group (EEG) provides an independent evaluation of the impact on the health and environment in New Mexico of the WIPP project. Since 1985, the EEG has operated a network of air monitoring sites around WIPP and in nearby communities. The radionuclide concentration data from these air samples have been assembled into a useful baseline data base after resolution of a number of methodological and quality assurance issues. Investigation thresholds for the principal radionuclides have been calculated from combined data collected from several sites. These action levels will provide a critical quantitative basis for decisions of whether future airborne radionuclide measurements are attributable to accidental releases.

  8. Hanford solid-waste handling facility strategy

    NASA Astrophysics Data System (ADS)

    Albaugh, J. F.

    1982-05-01

    Prior to 1970, transuranic (TRU) solid waste was disposed of at Hanford by shallow land burial. Since 1970, TRU solid waste has been stored in near surface trenches designed to facilitate retrieval after twenty year storage period. Current strategy calls for final disposal in a geologic repository. Funding permitting, in 1983, certification of newly generated TRU waste to the Waste Isolation Pilot Plant (WIPP) criteria for geologic disposal will be initiated. Certified and uncertified waste will continue to be stored at Hanford in retrievable storage until a firm schedule for shipment to WIPP is developed. Previously stored wastes retrieved for geologic disposal and newly generated uncertified waste requires processing to assure compliance with disposal criteria. A facility to perform this function is being developed. A study to determine the requirements of this Waste Receiving and Processing (WRAP) Facility is currently being conducted.

  9. CSER-98-002: Criticality analysis for the storage of special nuclear material sources and standards in the WRAP facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    GOLDBERG, H.J.

    1999-05-18

    The Waste Receiving and Processing (WRAP) Facility will store uranium and transuranic (TRU) sources and standards for certification that WRAP meets the requirements of the Quality Assurance Program Plan (QAPP) for the Waste Isolation Pilot Plant (WIPP). In addition, WRAP must meet internal requirements for testing and validation of measuring instruments for nondestructive assay (NDA). In order to be certified for WIPP, WRAP will participate in the NDA Performance Demonstration Program (PDP). This program is a blind test of the NDA capabilities for TRU waste. It is intended to ensure that the NDA capabilities of this facility satisfy the requirementsmore » of the quality assurance program plan for the WIPP. The PDP standards have been provided by the Los Alamos National Laboratory (LANL) for this program. These standards will be used in the WRAP facility.« less

  10. AIR DISPERSION MODELING AT THE WASTE ISOLATION PILOT PLANT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rucker, D.F.

    2000-08-01

    One concern at the Waste Isolation Pilot Plant (WIPP) is the amount of alpha-emitting radionuclides or hazardous chemicals that can become airborne at the facility and reach the Exclusive Use Area boundary as the result of a release from the Waste Handling Building (WHB) or from the underground during waste emplacement operations. The WIPP Safety Analysis Report (SAR), WIPP RCRA Permit, and WIPP Emergency Preparedness Hazards Assessments include air dispersion calculations to address this issue. Meteorological conditions at the WIPP facility will dictate direction, speed, and dilution of a contaminant plume of respirable material due to chronic releases or duringmore » an accident. Due to the paucity of meteorological information at the WIPP site prior to September 1996, the Department of Energy (DOE) reports had to rely largely on unqualified climatic data from the site and neighboring Carlsbad, which is situated approximately 40 km (26 miles) to the west of the site. This report examines the validity of the DOE air dispersion calculations using new meteorological data measured and collected at the WIPP site since September 1996. The air dispersion calculations in this report include both chronic and acute releases. Chronic release calculations were conducted with the EPA-approved code, CAP88PC and the calculations showed that in order for a violation of 40 CFR61 (NESHAPS) to occur, approximately 15 mCi/yr of 239Pu would have to be released from the exhaust stack or from the WHB. This is an extremely high value. Hence, it is unlikely that NESHAPS would be violated. A site-specific air dispersion coefficient was evaluated for comparison with that used in acute dose calculations. The calculations presented in Section 3.2 and 3.3 show that one could expect a slightly less dispersive plume (larger air dispersion coefficient) given greater confidence in the meteorological data, i.e. 95% worst case meteorological conditions. Calculations show that dispersion will decrease slightly if a more stable wind class is assumed, where very little vertical mixing occurs. It is recommended that previous reports which used fixed values for calculating the air dispersion coefficient be updated to reflect the new meteorological data, such as the WIPP Safety Analysis Report and the WIPP Emergency Preparedness Hazards Assessment. It is also recommended that uncertainty be incorporated into the calculations so that a more meaningful assessment of risk during accidents can be achieved.« less

  11. Overview of actinide chemistry in the WIPP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borkowski, Marian; Lucchini, Jean - Francois; Richmann, Michael K

    2009-01-01

    The year 2009 celebrates 10 years of safe operations at the Waste Isolation Pilot Plant (WIPP), the only nuclear waste repository designated to dispose defense-related transuranic (TRU) waste in the United States. Many elements contributed to the success of this one-of-the-kind facility. One of the most important of these is the chemistry of the actinides under WIPP repository conditions. A reliable understanding of the potential release of actinides from the site to the accessible environment is important to the WIPP performance assessment (PA). The environmental chemistry of the major actinides disposed at the WIPP continues to be investigated as partmore » of the ongoing recertification efforts of the WIPP project. This presentation provides an overview of the actinide chemistry for the WIPP repository conditions. The WIPP is a salt-based repository; therefore, the inflow of brine into the repository is minimized, due to the natural tendency of excavated salt to re-seal. Reducing anoxic conditions are expected in WIPP because of microbial activity and metal corrosion processes that consume the oxygen initially present. Should brine be introduced through an intrusion scenario, these same processes will re-establish reducing conditions. In the case of an intrusion scenario involving brine, the solubilization of actinides in brine is considered as a potential source of release to the accessible environment. The following key factors establish the concentrations of dissolved actinides under subsurface conditions: (1) Redox chemistry - The solubility of reduced actinides (III and IV oxidation states) is known to be significantly lower than the oxidized forms (V and/or VI oxidation states). In this context, the reducing conditions in the WIPP and the strong coupling of the chemistry for reduced metals and microbiological processes with actinides are important. (2) Complexation - For the anoxic, reducing and mildly basic brine systems in the WIPP, the most important inorganic complexants are expected to be carbonate/bicarbonate and hydroxide. There are also organic complexants in TRU waste with the potential to strongly influence actinide solubility. (3) Intrinsic and pseudo-actinide colloid formation - Many actinide species in their expected oxidation states tend to form colloids or strongly associate with non actinide colloids present (e.g., microbial, humic and organic). In this context, the relative importance of actinides, based on the TRU waste inventory, with respect to the potential release of actinides from the WIPP, is greater for plutonium and americium, and to less extent for uranium and thorium. The most important oxidation states for WIPP-relevant conditions are III and IV. We will present an update of the literature on WIPP-specific data, and a summary of the ongoing research related to actinide chemistry in the WIPP performed by the Los Alamos National Laboratory (LANL) Actinide Chemistry and Repository Science (ACRSP) team located in Carlsbad, NM [Reed 2007, Lucchini 2007, and Reed 2006].« less

  12. Biennial Environmental Compliance Report (2010-2012)

    EPA Pesticide Factsheets

    This Biennial Environmental Compliance Report (BECR) documents United States (U.S.) Department of Energy (DOE) compliance with environmental regulations applicable to the Waste Isolation Pilot Plant (WIPP) facility.

  13. Creep of salt from the ERDA-9 borehole and the WIPP (Waste Isolation Pilot Plant) workings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Senseny, P.E.

    1990-01-01

    Six triaxial compression creep tests were performed to measure the creep deformation of salt from the ERDA-9 borehole and salt from the underground workings at the Waste Isolation Pilot Plant (WIPP). Even though the test matrix is quite limited, important results were obtained that added to existing data from previous test matrices. The WIPP salt was annealed to reduce the hardening that occurred as the openings deformed after mining. Five tests were performed at a temperature of 25{degree}C, a confining pressure of 15 MPa, and stress differences of either 10.0 or 15.0 MPa. The sixth test was performed at amore » temperature of 22{degree}C, a confining pressure of 20.7 MPa, and a stress difference of 11.7 MPa. Test duration ranged from approximately 160 to 335 days. Deformation of these six specimens is compared with that obtained previously under identical test conditions for specimens from other horizons of the ERDA-9 borehole and from unannealed specimens from the WIPP workings. Results suggest that the magnitude of the transient deformation depends on the horizon from which the specimen was taken and whether or not the specimen hardened in situ as the mined openings deformed. 9 refs., 7 figs., 3 tabs.« less

  14. Development of Modern Performance Assessment Tools and Capabilities for Underground Disposal of Transuranic Waste at WIPP

    NASA Astrophysics Data System (ADS)

    Zeitler, T.; Kirchner, T. B.; Hammond, G. E.; Park, H.

    2014-12-01

    The Waste Isolation Pilot Plant (WIPP) has been developed by the U.S. Department of Energy (DOE) for the geologic (deep underground) disposal of transuranic (TRU) waste. Containment of TRU waste at the WIPP is regulated by the U.S. Environmental Protection Agency (EPA). The DOE demonstrates compliance with the containment requirements by means of performance assessment (PA) calculations. WIPP PA calculations estimate the probability and consequence of potential radionuclide releases from the repository to the accessible environment for a regulatory period of 10,000 years after facility closure. The long-term performance of the repository is assessed using a suite of sophisticated computational codes. In a broad modernization effort, the DOE has overseen the transfer of these codes to modern hardware and software platforms. Additionally, there is a current effort to establish new performance assessment capabilities through the further development of the PFLOTRAN software, a state-of-the-art massively parallel subsurface flow and reactive transport code. Improvements to the current computational environment will result in greater detail in the final models due to the parallelization afforded by the modern code. Parallelization will allow for relatively faster calculations, as well as a move from a two-dimensional calculation grid to a three-dimensional grid. The result of the modernization effort will be a state-of-the-art subsurface flow and transport capability that will serve WIPP PA into the future. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. This research is funded by WIPP programs administered by the Office of Environmental Management (EM) of the U.S Department of Energy.

  15. Milestones for disposal of radioactive waste at the Waste Isolation Pilot Plant (WIPP) in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rechard, R.P.

    1998-04-01

    Since its identification as a potential deep geologic repository in about 1973, the regulatory assessment process for the Waste Isolation Pilot Plant (WIPP) in New Mexico has developed over the past 25 years. National policy issues, negotiated agreements, and court settlements over the first half of the project had a strong influence on the amount and type of scientific data collected. Assessments and studies before the mid 1980s were undertaken primarily (1) to satisfy needs for environmental impact statements, (2) to develop general understanding of selected natural phenomena associated with nuclear waste disposal, or (3) to satisfy negotiated agreements withmore » the State of New Mexico. In the last third of the project, federal compliance policy and actual regulations were sketched out, but continued to evolve until 1996. During this eight-year period, four preliminary performance assessments, one compliance performance assessment, and one verification performance assessment were performed.« less

  16. Source term estimation and the isotopic ratio of radioactive material released from the WIPP repository in New Mexico, USA.

    PubMed

    Thakur, P

    2016-01-01

    After almost 15 years of operations, the Waste Isolation Pilot Plant (WIPP) had one of its waste drums breach underground as a result of a runaway chemical reaction in the waste it contained. This incident occurred on February 14, 2014. Moderate levels of radioactivity were released into the underground air. A small portion of the contaminated underground air also escaped to the surface through the ventilation system and was detected approximately 1 km away from the facility. According to the source term estimation, the actual amount of radioactivity released from the WIPP site was less than 1.5 mCi. The highest activity detected on the surface was 115.2 μBq/m(3) for (241)Am and 10.2 μBq/m(3) for (239+240)Pu at a sampling station located 91 m away from the underground air exhaust point and 81.4 μBq/m(3) of (241)Am and 5.8 μBq/m(3) of (239+240)Pu at a monitoring station located approximately 1 km northwest of the WIPP facility. The dominant radionuclides released were americium and plutonium, in a ratio that matches the content of the breached drum. Air monitoring across the WIPP site intensified following the first reports of radiation detection underground to determine the extent of impact to WIPP personnel, the public, and the environment. In this paper, the early stage monitoring data collected by an independent monitoring program conducted by the Carlsbad Environmental Monitoring & Research Center (CEMRC) and an oversight monitoring program conducted by the WIPP's management and operating contractor, the Nuclear Waste Partnership (NWP) LLC were utilized to estimate the actual amount of radioactivity released from the WIPP underground. The Am and Pu isotope ratios were measured and used to support the hypothesis that the release came from one drum identified as having breached that represents a specific waste stream with this radionuclide ratio in its inventory. This failed drum underwent a heat and gas producing reaction that overpowered its vent and lifted its lid to allow release of waste into the underground air. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlsbad Field Office

    The Performance Demonstration Program (PDP) for headspace gases distributes blind audit samples in a gas matrix for analysis of volatile organic compounds (VOCs). Participating measurement facilities (i.e., fixed laboratories, mobile analysis systems, and on-line analytical systems) are located across the United States. Each sample distribution is termed a PDP cycle. These evaluation cycles provide an objective measure of the reliability of measurements performed for transuranic (TRU) waste characterization. The primary documents governing the conduct of the PDP are the Quality Assurance Program Document (QAPD) (DOE/CBFO-94-1012) and the Waste Isolation Pilot Plant (WIPP) Waste Analysis Plan (WAP) contained in the Hazardousmore » Waste Facility Permit (NM4890139088-TSDF) issued by the New Mexico Environment Department (NMED). The WAP requires participation in the PDP; the PDP must comply with the QAPD and the WAP. This plan implements the general requirements of the QAPD and the applicable requirements of the WAP for the Headspace Gas (HSG) PDP. Participating measurement facilities analyze blind audit samples of simulated TRU waste package headspace gases according to the criteria set by this PDP Plan. Blind audit samples (hereafter referred to as PDP samples) are used as an independent means to assess each measurement facility’s compliance with the WAP quality assurance objectives (QAOs). To the extent possible, the concentrations of VOC analytes in the PDP samples encompass the range of concentrations anticipated in actual TRU waste package headspace gas samples. Analyses of headspace gases are required by the WIPP to demonstrate compliance with regulatory requirements. These analyses must be performed by measurement facilities that have demonstrated acceptable performance in this PDP. These analyses are referred to as WIPP analyses and the TRU waste package headspace gas samples on which they are performed are referred to as WIPP samples in this document. Participating measurement facilities must analyze PDP samples using the same procedures used for routine waste characterization analyses of WIPP samples.« less

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlsbad Field Office

    The Performance Demonstration Program (PDP) for headspace gases distributes sample gases of volatile organic compounds (VOCs) for analysis. Participating measurement facilities (i.e., fixed laboratories, mobile analysis systems, and on-line analytical systems) are located across the United States. Each sample distribution is termed a PDP cycle. These evaluation cycles provide an objective measure of the reliability of measurements performed for transuranic (TRU) waste characterization. The primary documents governing the conduct of the PDP are the Quality Assurance Program Document (QAPD) (DOE/CBFO-94-1012) and the Waste Isolation Pilot Plant (WIPP) Waste Analysis Plan (WAP) contained in the Hazardous Waste Facility Permit (NM4890139088-TSDF) issuedmore » by the New Mexico Environment Department (NMED). The WAP requires participation in the PDP; the PDP must comply with the QAPD and the WAP. This plan implements the general requirements of the QAPD and the applicable requirements of the WAP for the Headspace Gas (HSG) PDP. Participating measurement facilities analyze blind audit samples of simulated TRU waste package headspace gases according to the criteria set by this PDP Plan. Blind audit samples (hereafter referred to as PDP samples) are used as an independent means to assess each measurement facility’s compliance with the WAP quality assurance objectives (QAOs). To the extent possible, the concentrations of VOC analytes in the PDP samples encompass the range of concentrations anticipated in actual TRU waste package headspace gas samples. Analyses of headspace gases are required by the WIPP to demonstrate compliance with regulatory requirements. These analyses must be performed by measurement facilities that have demonstrated acceptable performance in this PDP. These analyses are referred to as WIPP analyses and the TRU waste package headspace gas samples on which they are performed are referred to as WIPP samples in this document. Participating measurement facilities must analyze PDP samples using the same procedures used for routine waste characterization analyses of WIPP samples.« less

  19. Alternative disposal options for transuranic waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loomis, G.G.

    1994-12-31

    Three alternative concepts are proposed for the final disposal of stored and retrieved buried transuranic waste. These proposed options answer criticisms of the existing U.S. Department of Energy strategy of directly disposing of stored transuranic waste in deep, geological salt formations at the Waste Isolation Pilot Plant (WIPP) in Carlsbad, New Mexico. The first option involves enhanced stabilization of stored waste by thermal treatment followed by convoy transportation and internment in the existing WIPP facility. This concept could also be extended to retrieved buried waste with proper permitting. The second option involves in-state, in situ internment using an encapsulating lensmore » around the waste. This concept applies only to previously buried transuranic waste. The third option involves sending stored and retrieved waste to the Nevada Test Site and configuring the waste around a thermonuclear device from the U.S. or Russian arsenal in a specially designed underground chamber. The thermonuclear explosion would transmute plutonium and disassociate hazardous materials while entombing the waste in a national sacrifice area.« less

  20. Resource Conservation and Recovery Act, Part B permit application [of the Waste Isolation Pilot Plant (WIPP)]. Volume 11, Chapter D, Appendix D4--Chapter D, Appendix D17: Revision 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-03-01

    This volume contains appendices D4 through D17 which cover the following: Waste Isolation Pilot Plant site environmental report; ecological monitoring program at the Waste Isolation Pilot Plant; site characterization; regional and site geology and hydrology; general geology; dissolution features; ground water hydrology; typical carbon sorption bed efficiency; VOC monitoring plan for bin-room tests; chemical compatibility analysis of waste forms and container materials; probable maximum precipitation; WHIP supplementary roof support system room 1, panel 1; and corrosion risk assessment of the Waste Isolation Pilot Plant ``humid`` test bins.

  1. Pit 9 Category of Transuranic Waste Stored Below Ground within Area G

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hargis, Kenneth M.

    2014-01-08

    A large wildfire called the Las Conchas Fire burned large areas near Los Alamos National Laboratory (LANL) in 2011 and heightened public concern and news media attention over transuranic (TRU) waste stored at LANL’s Technical Area 54 (TA-54) Area G waste management facility. The removal of TRU waste from Area G had been placed at a lower priority in budget decisions for environmental cleanup at LANL because TRU waste removal is not included in the March 2005 Compliance Order on Consent (Reference 1) that is the primary regulatory driver for environmental cleanup at LANL. The Consent Order is an agreementmore » between LANL and the New Mexico Environment Department (NMED) that contains specific requirements and schedules for cleaning up historical contamination at the LANL site. After the Las Conchas Fire, discussions were held by the U.S. Department of Energy (DOE) with the NMED on accelerating TRU waste removal from LANL and disposing it at the Waste Isolation Pilot Plant (WIPP).This report summarizes available information on the origin, configuration, and composition of the waste containers within Pit 9, their physical and radiological characteristics, and issues that may be encountered in their retrieval and processing. Review of the available information indicates that Pit 9 should present no major issues in retrieval and processing, and most drums contain TRU waste that can be shipped to WIPP. The primary concern in retrieval is the integrity of containers that have been stored below-ground for 35 to 40 years. The most likely issue that will be encountered in processing containers retrieved from Pit 9 is the potential for items that are prohibited at WIPP such as sealed containers greater than four liters in size and free liquids that exceed limits for WIPP.« less

  2. Pretest reference calculation for the overtest for simulated defense high level waste (WIPP) Room B in situ experiment)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morgan, H.S.; Stone, C.M.

    A pretest reference calculation for the Overtest for Simulated Defense High-Level Waste (DHLW) or Room B experiment is presented in this report. The overtest is one of several large-scale, in-situ experiments currently under construction near Carlsbad, New Mexico at the site of the Waste Isolation Pilot Plant (WIPP). Room B, a single isolated room in the underground salt formation, is to be subjected to a thermal load of approximately four times the areal heat output anticipated for a future repository with DHLW. The load will be supplied 3 years by canister heaters placed in the floor. Room B is heavilymore » instrumented for monitoring both temperature increases due to the thermal loading and deformations due to creep of the salt. Data from the experiment are not available at the present time, but the measurements will eventually be compared to the results presented to assess and improve thermal and mechanical modeling capabilities for the WIPP. The thermal/structural model used here represents the state of the art at the present time. A large number of plots are included since an appropriate result is presented for every Room B gauge location. 81 figs., 4 tabs.« less

  3. Test Plan: WIPP bin-scale CH TRU waste tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Molecke, M.A.

    1990-08-01

    This WIPP Bin-Scale CH TRU Waste Test program described herein will provide relevant composition and kinetic rate data on gas generation and consumption resulting from TRU waste degradation, as impacted by synergistic interactions due to multiple degradation modes, waste form preparation, long-term repository environmental effects, engineered barrier materials, and, possibly, engineered modifications to be developed. Similar data on waste-brine leachate compositions and potentially hazardous volatile organic compounds released by the wastes will also be provided. The quantitative data output from these tests and associated technical expertise are required by the WIPP Performance Assessment (PA) program studies, and for the scientificmore » benefit of the overall WIPP project. This Test Plan describes the necessary scientific and technical aspects, justifications, and rational for successfully initiating and conducting the WIPP Bin-Scale CH TRU Waste Test program. This Test Plan is the controlling scientific design definition and overall requirements document for this WIPP in situ test, as defined by Sandia National Laboratories (SNL), scientific advisor to the US Department of Energy, WIPP Project Office (DOE/WPO). 55 refs., 16 figs., 19 tabs.« less

  4. 1979 New Mexico legislative session: energy issues and legislation. [WIPP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barsumian, L.; Vandevender, S.G.

    1979-10-01

    This report is an account of the energy legislation and associated issues considered during the 1979 session of the 34th New Mexico Legislature. The session's major issue was the federal study of a proposed nuclear Waste Isolation Pilot Plant (WIPP) in New Mexico. A large proportion of time and effort was spent on resolving the state's formal position toward the federal project. However, other energy concerns were also significant even though they were neither as controversial nor as visible as the primary issue. The two most important laws enacted were the Radioactive Waste Consultation Act and the Radioactive Waste Transportationmore » Act. The Legislature considered 47 other energy-related bills, of which 17 were enacted.« less

  5. Plutonium in the WIPP environment: its detection, distribution and behavior.

    PubMed

    Thakur, P; Ballard, S; Nelson, R

    2012-05-01

    The Waste Isolation Pilot Plant (WIPP) is the only operating deep underground geologic nuclear repository in the United States. It is located in southeastern New Mexico, approximately 655 m (2150 ft) below the surface of the Earth in a bedded Permian evaporite salt formation. This mined geologic repository is designed for the safe disposal of transuranic (TRU) wastes generated from the US defense program. Aerosol and soil samples have been collected near the WIPP site to investigate the sources of plutonium in the WIPP environment since the late 1990s, well before WIPP received its first shipment. Activities of (238)Pu, (239+240)Pu and (241)Am were determined by alpha spectrometry following a series of chemical separations. The concentrations of Al and U were determined in a separate set of samples by inductively coupled plasma mass spectrometry. The annual airborne concentrations of (239+240)Pu during the period from 1998 to 2010 show no systematic interannual variations. However, monthly (239+240)Pu particulate concentrations show a typical seasonal variation with a maximum in spring, the time when strong and gusty winds frequently give rise to blowing dust. Resuspension of soil particles containing weapons fallout is considered to be the predominant source of plutonium in the WIPP area. Further, this work characterizes the source, temporal variation and its distribution with depth in a soil profile to evaluate the importance of transport mechanisms affecting the fate of these radionuclides in the WIPP environment. The mean (137)Cs/(239+240)Pu, (241)Am/(239+240)Pu activity ratio and (240)Pu/(239)Pu atom ratio observed in the WIPP samples are consistent with the source being largely global fallout. There is no evidence of any release from the WIPP contributing to radionuclide concentrations in the environment.

  6. Pretest reference calculation for the 6. 1 meter (20 ft) wide drifts of the Geomechanical Evaluation (WIPP Room G in situ experiment)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morgan, H.S.; Stone, C.M.

    A pretest reference calculation for the Geomechanical Evaluation or Room G experiment is presented. The Geomechanical Evaluation is one of several large-scale in situ tests currently under construction near Carlsbad, New Mexico, at the site of the Waste Isolation Pilot Plant (WIPP). The Room G experiment consists of isolated, two-dimensional drifts with different room spans, an isolated drift intersection, and a wedge pillar. The primary purpose of the experiment is to provide data for validating computational modeling capabilities used in analyzing nuclear waste repositories in salt. The calculation presented here addresses only one portion of the test, namely isolated driftmore » configurations which are initially 6.1 m (20 ft) wide by 3.05 m (10 ft) high. The Geomechanical Evaluation is heavily instrumented for monitoring deformations due to creep of the salt. Data from the experiment are not available at the present time, but the measurements for Room G will eventually be compared to the results presented in this report to assess and improve structural modeling capabilities for the WIPP. The model used for this calculation represents the state of the art at the present time. A large number of plots are included since an appropriate result is presented for every gage location associated with the 6.1 m wide drifts. 53 refs., 53 figs., 3 tabs.« less

  7. WIPP (Waste Isolation Pilot Plant) intermediate scale borehole test: A pretest analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Argueello, J.G.

    A three-dimensional finite element structural analysis of the Intermediate Scale Borehole Test at the Waste Isolation Pilot Plant (WIPP) has been performed. The analysis provides insight into how a relatively new excavation in a creeping medium responds when introduced into an existing pillar which has been undergoing stress redistribution for 5.7 years. The stress field of the volume of material in the immediate vicinity of the borehole changes significantly when the hole is drilled. Closure of the hole is predicted to be larger in the vertical direction than in the horizontal direction, leading to an ovaling of the hole. Themore » relatively high stresses near the hole persist even at the end of the simulation, 2 years after the hole is drilled. 12 ref., 10 figs.« less

  8. WIPP

    Science.gov Websites

    waste Semi Truck with trailer hauling two TRUPACT-II containers Safely disposed of more than 170,000 waste containers WIPP has been disposing of legacy transuranic (TRU) waste since 1999, cleaning up 22 once waste... [January 17, 2018] read more... Semi Truck hauling three TRUPACT-II containers THE WIPP

  9. Hazards Associated with Legacy Nitrate Salt Waste Drums Managed under the Container Isolation Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Funk, David John; Clark, David Lewis

    At present, there are 29 drums of nitrate waste salts (oxidizers with potentially acidic liquid bearing RCRA characteristics D001 and D002) that are awaiting processing, specifically to eliminate these characteristics and to allow for ultimate disposition at WIPP. As a result of the Feb. 14th, 2014 drum breach at WIPP, and the subsequent identification of the breached drum as a product ofLANL TRU waste disposition on May 15th, 2014, these 29 containers were moved into the Perrnacon in Dome 231 at TA-54 Area G, as part of the New Mexico Environment Department (NMED) approved container isolation plan. The plan ismore » designed to mitigate hazards associated with the nitrate salt bearing waste stream. The purpose of this document is to articulate the hazards associated with un-remediated nitrate salts while in storage at LANL. These hazards are distinctly different from the Swheat-remediated nitrate salt bearing drums, and this document is intended to support the request to remove the un-remediated drums from management under the container isolation plan. Plans to remediate and/or treat both of these waste types are being developed separately, and are beyond the scope of this document.« less

  10. Options Assessment Report: Treatment of Nitrate Salt Waste at Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, Bruce Alan; Stevens, Patrice Ann

    2015-12-17

    This report documents the methodology used to select a method of treatment for the remediated nitrate salt (RNS) and unremediated nitrate salt (UNS) waste containers at Los Alamos National Laboratory (LANL). The method selected should treat the containerized waste in a manner that renders the waste safe and suitable for transport and final disposal in the Waste Isolation Pilot Plant (WIPP) repository, under specifications listed in the WIPP Waste Acceptance Criteria (DOE/CBFO, 2013). LANL recognizes that the results must be thoroughly vetted with the New Mexico Environment Department (NMED) and that a modification to the LANL Hazardous Waste Facility Permitmore » is a necessary step before implementation of this or any treatment option. Likewise, facility readiness and safety basis approvals must be received from the Department of Energy (DOE). This report presents LANL’s preferred option, and the documentation of the process for reaching the recommended treatment option for RNS and UNS waste, and is presented for consideration by NMED and DOE.« less

  11. Final Inventory Work-Off Plan for ORNL transuranic wastes (1986 version)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dickerson, L.S.

    1988-05-01

    The Final Inventory Work-Off Plan (IWOP) for ORNL Transuranic Wastes addresses ORNL's strategy for retrieval, certification, and shipment of its stored and newly generated contact-handled (CH) and remote-handled (RH) transuranic (TRU) wastes to the Waste Isolation Pilot Plant (WIPP), the proposed geologic repository near Carlsbad, New Mexico. This document considers certification compliance with the WIPP waste acceptance criteria (WAC) and is consistent with the US Department of Energy's Long-Range Master Plan for Defense Transuranic Waste Management. This document characterizes Oak Ridge National Laboratory's (ORNL's) TRU waste by type and estimates the number of shipments required to dispose of it; describesmore » the methods, facilities, and systems required for its certification and shipment; presents work-off strategies and schedules for retrieval, certification, and transportation; discusses the resource needs and additions that will be required for the effort and forecasts costs for the long-term TRU waste management program; and lists public documentation required to support certification facilities and strategies. 22 refs., 6 figs., 10 tabs.« less

  12. Milestones for disposal of radioactive waste at the Waste Isolation Pilot Plant (WIPP) in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    RECHARD,ROBERT P.

    The opening of the Waste Isolation Pilot Plant on March 26, 1999, was the culmination of a regulatory assessment process that had taken 25 years. National policy issues, negotiated agreements, and court settlements during the first 15 years of the project had a strong influence on the amount and type of scientific data collected up to this point. Assessment activities before the mid 1980s were undertaken primarily (1) to satisfy needs for environmental impact statements, (2) to satisfy negotiated agreements with the State of New Mexico, or (3) to develop general understanding of selected natural phenomena associated with nuclear wastemore » disposal. In the last 10 years, federal compliance policy and actual regulations were sketched out, and continued to evolve until 1996. During this period, stochastic simulations were introduced as a tool for the assessment of the WIPP's performance, and four preliminary performance assessments, one compliance performance assessment, and one verification performance assessment were performed.« less

  13. WIPP Remote-Handled TRU Waste Program Update

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Most, W.; Kehrman, B.

    2006-07-01

    There are two major regulatory approval milestones necessary in order to commence disposal operations for remote-handled transuranic (RH TRU) waste at the Waste Isolation Pilot Plant (WIPP)-the RH TRU hazardous waste permit modification request [1] and the radiological characterization plan [2]. One of those milestones has been achieved. The US Environmental Protection Agency (EPA) issued its final decision to approve the Department of Energy's (DOE) RH TRU radiological characterization plan along with the RH TRU Waste Characterization Program Implementation Plan [3], on March 26, 2004. The RH TRU hazardous waste permit modification request still awaits agency approval. In EPA's decisionmore » to approve the DOE's RH TRU radiological characterization plan, the EPA also set forth the process for approving site-specific RH TRU waste characterization programs. Included in the March 29, 2005, RH TRU second Notice of Deficiency [4] (NOD) on the Class 3 Permit Modification Request for RH TRU Waste, the New Mexico Environment Department (NMED) requested that the Permittees combine their responses for the RH TRU Waste NOD with the Section 311 permit modification request NOD. The Combined Response Document was submitted April 28, 2005 [5]. Another NOD [6] was issued by the NMED on September 1, 2005, to clarify the Permittees' proposal and submit these clarifications to the administrative record. Combining both the chap. 311 [7] and RH TRU waste permit modification requests allows for both the regulator and Permittees to expedite action on the modification requests. The Combined Response Document preserves human resources and costs by having only one administrative process for both modification requests. Facility readiness requirements of the RH TRU waste final permit [8] must be implemented to declare that the WIPP is ready to receive RH TRU waste for storage and disposal. To demonstrate readiness, the WIPP is preparing for an Operational Readiness Review (ORR) of the RH TRU waste management equipment, system, and procedures. Required by DOE Order, the ORR demonstrates the capability of managing RH TRU waste. The Management and Operating Contractor (MOC) for the WIPP must first perform a Line Management Assessment. Upon successful completion of the Line Management Assessment, the MOC performs the Contractor ORR and presents the results to the local DOE office. At that time, the local DOE office performs its own ORR to declare readiness to DOE Headquarters. (authors)« less

  14. The role of acceptable knowledge in transuranic waste disposal operations - 11117

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chancellor, Christopher John; Nelson, Roger

    2010-11-08

    The Acceptable Knowledge (AK) process plays a key role in the delineation of waste streams destined for the Waste Isolation Pilot Plant (WIPP). General Electric's Vallecitos Nuclear Center (GEVNC) provides for an ideal case study of the application of AK in a multiple steward environment. In this review we will elucidate the pivotal role Acceptable Knowledge played in segregating Department of Energy (DOE) responsibilities from a commercial facility. The Acceptable Knowledge process is a necessary component of waste characterization that determines whether or not a waste stream may be considered for disposal at the WIPP site. This process may bemore » thought of as an effort to gain a thorough understanding of the waste origin, chemical content, and physical form gleaned by the collection of documentation that concerns generator/storage site history, mission, and operations; in addition to waste stream specific information which includes the waste generation process, the waste matrix, the quantity of waste concerned, and the radiological and chemical make up of the waste. The collection and dissemination of relevant documentation is the fundamental requirement for the AK process to work. Acceptable Knowledge is the predominant process of characterization and, therefore, a crucial part of WIPP's transuranic waste characterization program. This characterization process, when conducted to the standards set forth in WIPP's operating permit, requires confirmation/verification by physical techniques such as Non-Destructive Examination (NDE), Visual Examination (VE), and Non-Destructive Assay (NDA). These physical characterization techniques may vary in their appropriateness for a given waste stream; however, nothing will allow the substitution or exclusion of AK. Beyond the normal scope of operations, AK may be considered, when appropriate, a surrogate for the physical characterization techniques in a procedure that appeals to concepts such As Low As Reasonably Achievable (ALARA) and budgetary savings. This substitution is referred to as an Acceptable Knowledge Sufficiency Determination. With a Sufficiency Determination Request, AK may supplant the need for one or all of the physical analysis methods. This powerful procedure may be used on a scale as small as a single container to that of a vast waste stream. Only under the most stringent requirements will an AK Sufficiency Determination be approved by the regulators and, to date, only six such Sufficiency Determinations have been approved. Although Acceptable Knowledge is legislated into the operational procedures of the WIPP facility there is more to it than compliance. AK is not merely one of a long list of requirements in the characterization and verification of transuranic (TRU) waste destined for the WIPP. Acceptable Knowledge goes beyond the regulatory threshold by offering a way to reduce risk, cost, time, and uncertainty on its own laurels. Therefore, AK alone can be argued superior to any other waste characterization technique.« less

  15. Final voluntary release assessment/corrective action report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-11-12

    The US Department of Energy, Carlsbad Area Office (DOE-CAO) has completed a voluntary release assessment sampling program at selected Solid Waste Management Units (SWMUs) at the Waste Isolation Pilot Plant (WIPP). This Voluntary Release Assessment/Corrective Action (RA/CA) report has been prepared for final submittal to the Environmental protection Agency (EPA) Region 6, Hazardous Waste Management Division and the New Mexico Environment Department (NMED) Hazardous and Radioactive Materials Bureau to describe the results of voluntary release assessment sampling and proposed corrective actions at the SWMU sites. The Voluntary RA/CA Program is intended to be the first phase in implementing the Resourcemore » Conservation and Recovery Act (RCRA) Facility Investigation (RFI) and corrective action process at the WIPP. Data generated as part of this sampling program are intended to update the RCRA Facility Assessment (RFA) for the WIPP (Assessment of Solid Waste Management Units at the Waste Isolation Pilot Plant), NMED/DOE/AIP 94/1. This Final Voluntary RA/CA Report documents the results of release assessment sampling at 11 SWMUs identified in the RFA. With this submittal, DOE formally requests a No Further Action determination for these SWMUs. Additionally, this report provides information to support DOE`s request for No Further Action at the Brinderson and Construction landfill SWMUs, and to support DOE`s request for approval of proposed corrective actions at three other SWMUs (the Badger Unit Drill Pad, the Cotton Baby Drill Pad, and the DOE-1 Drill Pad). This information is provided to document the results of the Voluntary RA/CA activities submitted to the EPA and NMED in August 1995.« less

  16. Numerical Modeling of ROM Panel Closures at WIPP

    NASA Astrophysics Data System (ADS)

    Herrick, C. G.

    2016-12-01

    The Waste Isolation Pilot Plant (WIPP) in New Mexico is a U.S. DOE geologic repository for permanent disposal of defense-related transuranic (TRU) waste. Waste is emplaced in panels excavated in a bedded salt formation (Salado Fm.) at 655 m bgs. In 2014 the U.S. EPA approved the new Run-of-Mine Panel Closure System (ROMPCS) for WIPP. The closure system consists of 100 feet of run-of-mine (ROM) salt sandwiched between two barriers. Nuclear Waste Partnership LLC (the M&O contractor for WIPP) initiated construction of the ROMPCS. The design calls for three horizontal ROM salt layers at different compaction levels ranging from 70-85% intact salt density. Due to panel drift size constraints and equipment availability the design was modified. Three prototype panel closures were constructed: two having two layers of compacted ROM salt (one closure had 1% water added) and a third consisting of simply ROM salt with no layering or added water. Sampling of the prototype ROMPCS layers was conducted to determine the following ROM salt parameters: thickness, moisture content, emplaced density, and grain-size distribution. Previous modeling efforts were performed without knowledge of these ROM salt parameters. This modeling effort incorporates them. The program-accepted multimechanism deformation model is used to model intact salt room creep closure. An advanced crushed salt model is used to model the ROM salt. Comparison of the two models' results with the prototypes' behavior is given. Our goal is to develop a realistic, reliable model that can be used for ROM salt applications at WIPP. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U. S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. This research is funded by WIPP programs administered by the Office of Environmental Management (EM) of the U.S Department of Energy SAND2016-7259A

  17. Environmental and health impacts of February 14, 2014 radiation release from the nation's only deep geologic nuclear waste repository.

    PubMed

    Thakur, P; Lemons, B G; Ballard, S; Hardy, R

    2015-08-01

    The environmental impact of the February 14, 2014 radiation release from the nation's only deep geologic nuclear waste repository, the Waste Isolation Pilot Plant (WIPP) was assessed using monitoring data from an independent monitoring program conducted by the Carlsbad Environmental Monitoring & Research Center (CEMRC). After almost 15 years of safe and efficient operations, the WIPP had one of its waste drums rupture underground resulting in the release of moderate levels of radioactivity into the underground air. A small amount of radioactivity also escaped to the surface through the ventilation system and was detected above ground. It was the first unambiguous release from the WIPP repository. The dominant radionuclides released were americium and plutonium, in a ratio that matches the content of the breached drum. The accelerated air monitoring campaign, which began following the accident, indicates that releases were low and localized, and no radiation-related health effects among local workers or the public would be expected. The highest activity detected was 115.2 μBq/m(3) for (241)Am and 10.2 μBq/m(3) for (239+240)Pu at a sampling station located 91 m away from the underground air exhaust point and 81.4 μBq/m(3) of (241)Am and 5.8 μBq/m(3) of (239+240)Pu at a monitoring station located approximately one kilometer northwest of the WIPP facility. CEMRC's recent monitoring data show that the concentration levels of these radionuclides have returned to normal background levels and in many instances, are not even detectable, demonstrating no long-term environmental impacts of the recent radiation release event at the WIPP. This article presents an evaluation of almost one year of environmental monitoring data that informed the public that the levels of radiation that got out to the environment were very low and did not, and will not harm anyone or have any long-term environmental consequence. In terms of radiological risk at or in the vicinity of the WIPP site, the increased risk from the WIPP releases is exceedingly small, approaching zero. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Evaluation of the WIPP Project`s compliance with the EPA radiation protection standards for disposal of transuranic waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neill, R.H.; Chaturvedi, L.; Rucker, D.F.

    The US Environmental Protection Agency`s (EPA) proposed rule to certify that the Waste Isolation Pilot Plant (WIPP) meets compliance with the long-term radiation protection standards for geologic repositories (40CFR191 Subparts B and C), is one of the most significant milestones to date for the WIPP project in particular, and for the nuclear waste issue in general. The Environmental Evaluation Group (EEG) has provided an independent technical oversight for the WIPP project since 1978, and is responsible for many improvements in the location, design, and testing of various aspects of the project, including participation in the development of the EPA standardsmore » since the early 1980s. The EEG reviewed the development of documentation for assessing the WIPP`s compliance by the Sandia National Laboratories following the 1985 promulgation by EPA, and provided many written and verbal comments on various aspects of this effort, culminating in the overall review of the 1992 performance assessment. For the US Department of Energy`s (DOE) compliance certification application (CCA), the EEG provided detailed comments on the draft CCA in March, 1996, and additional comments through unpublished letters in 1997 (included as Appendices 8.1 and 8.2 in this report). Since the October 30, 1997, publication of the EPA`s proposed rule to certify WIPP, the EEG gave presentations on important issues to the EPA on December 10, 1997, and sent a December 31, 1997 letter with attachments to clarify those issues (Appendix 8.3). The EEG has raised a number of questions that may have an impact on compliance. In spite of the best efforts by the EEG, the EPA reaction to reviews and suggestions has been slow and apparently driven by legal considerations. This report discusses in detail the questions that have been raised about containment requirements. Also discussed are assurance requirements, groundwater protection, individual protection, and an evaluation of EPA`s responses to EEG`s comments.« less

  19. Source and long-term behavior of transuranic aerosols in the WIPP environment.

    PubMed

    Thakur, P; Lemons, B G

    2016-10-01

    Source and long-term behavior transuranic aerosols ((239+240)Pu, (238)Pu, and (241)Am) in the ambient air samples collected at and near the Waste Isolation Pilot Plant (WIPP) deep geologic repository site were investigated using historical data from an independent monitoring program conducted by the Carlsbad Environmental Monitoring and Research Center and an oversight monitoring program conducted by the management and operating contractor for WIPP at and near the facility. An analysis of historical data indicates frequent detections of (239+240)Pu and (241)Am, whereas (238)Pu is detected infrequently. Peaks in (239+240)Pu and (241)Am concentrations in ambient air generally occur from March to June timeframe, which is when strong and gusty winds in the area frequently give rise to blowing dust. Long-term measurements of plutonium isotopes (1985-2015) in the WIPP environment suggest that the resuspension of previously contaminated soils is likely the primary source of plutonium in the ambient air samples from WIPP and its vicinity. There is no evidence that WIPP is a source of environmental contamination that can be considered significant by any health-based standard.

  20. The Advancement of Public Awareness, Concerning TRU Waste Characterization, Using a Virtual Document

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    West, T. B.; Burns, T. P.; Estill, W. G.

    2002-02-28

    Building public trust and confidence through openness is a goal of the DOE Carlsbad Field Office for the Waste Isolation Pilot Plant (WIPP). The objective of the virtual document described in this paper is to give the public an overview of the waste characterization steps, an understanding of how waste characterization instrumentation works, and the type and amount of data generated from a batch of drums. The document is intended to be published on a web page and/or distributed at public meetings on CDs. Users may gain as much information as they desire regarding the transuranic (TRU) waste characterization program,more » starting at the highest level requirements (drivers) and progressing to more and more detail regarding how the requirements are met. Included are links to: drivers (which include laws, permits and DOE Orders); various characterization steps required for transportation and disposal under WIPP's Hazardous Waste Facility Permit; physical/chemical basis for each characterization method; types of data produced; and quality assurance process that accompanies each measurement. Examples of each type of characterization method in use across the DOE complex are included. The original skeleton of the document was constructed in a PowerPoint presentation and included descriptions of each section of the waste characterization program. This original document had a brief overview of Acceptable Knowledge, Non-Destructive Examination, Non-Destructive Assay, Small Quantity sites, and the National Certification Team. A student intern was assigned the project of converting the document to a virtual format and to discuss each subject in depth. The resulting product is a fully functional virtual document that works in a web browser and functions like a web page. All documents that were referenced, linked to, or associated, are included on the virtual document's CD. WIPP has been engaged in a variety of Hazardous Waste Facility Permit modification activities. During the public meetings, discussion centered on proposed changes to the characterization program. The philosophy behind the virtual document is to show the characterization process as a whole, rather than as isolated parts. In addition to public meetings, other uses for the information might be as a training tool for new employees at the WIPP facility to show them where their activities fit into the overall scheme, as well as an employee review to help prepare for waste certification audits.« less

  1. Waste Generator Instructions: Key to Successful Implementation of the US DOE's 435.1 for Transuranic Waste Packaging Instructions (LA-UR-12-24155) - 13218

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    French, David M.; Hayes, Timothy A.; Pope, Howard L.

    In times of continuing fiscal constraints, a management and operation tool that is straightforward to implement, works as advertised, and virtually ensures compliant waste packaging should be carefully considered and employed wherever practicable. In the near future, the Department of Energy (DOE) will issue the first major update to DOE Order 435.1, Radioactive Waste Management. This update will contain a requirement for sites that do not have a Waste Isolation Pilot Plant (WIPP) waste certification program to use two newly developed technical standards: Contact-Handled Defense Transuranic Waste Packaging Instructions and Remote-Handled Defense Transuranic Waste Packaging Instructions. The technical standards aremore » being developed from the DOE O 435.1 Notice, Contact-Handled and Remote-Handled Transuranic Waste Packaging, approved August 2011. The packaging instructions will provide detailed information and instruction for packaging almost every conceivable type of transuranic (TRU) waste for disposal at WIPP. While providing specificity, the packaging instructions leave to each site's own discretion the actual mechanics of how those Instructions will be functionally implemented at the floor level. While the Technical Standards are designed to provide precise information for compliant packaging, the density of the information in the packaging instructions necessitates a type of Rosetta Stone that translates the requirements into concise, clear, easy to use and operationally practical recipes that are waste stream and facility specific for use by both first line management and hands-on operations personnel. The Waste Generator Instructions provide the operator with step-by-step instructions that will integrate the sites' various operational requirements (e.g., health and safety limits, radiological limits or dose limits) and result in a WIPP certifiable waste and package that can be transported to and emplaced at WIPP. These little known but widely productive Waste Generator Instructions (WGIs) have been used occasionally in the past at large sites for treatment and packaging of TRU waste. The WGIs have resulted in highly efficient waste treatment, packaging and certification for disposal of TRU waste at WIPP. For example, a single WGI at LANL, combined with an increase in gram loading, resulted in a mind boggling 6,400% increase in waste loading for {sup 238}Pu heat source waste. In fact, the WGI combined with a new Contact Handled (CH) TRU Waste Content (TRUCON) Code provided a massive increase in shippable wattage per Transuranic Package Transporter-II (TRUPACT-II) over the previously used and more restrictive TRUCON Code that have been used previously for the heat source waste. In fact, the use of the WGI process at LANL's TA-55 facility reduced non-compliant drums for WIPP certification and disposal from a 13% failure rate down to a 0.5% failure rate and is expected to further reduce the failure rate to zero drums per year. The inherent value of the WGI is that it can be implemented in a site's current procedure issuance process and it provides documented proof of what actions were taken for each waste stream packaged. The WGI protocol provides a key floor-level operational component to achieve goal alignment between actual site operations, the WIPP TRU waste packaging instructions, and DOE O 435.1. (authors)« less

  2. CsIX/TRU Grout Feasibility Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S. J. Losinski; C. M. Barnes; B. K. Grover

    A settlement agreement between the Department of Energy (DOE) and the State of Idaho mandates that liquid waste now stored at the Idaho Nuclear Technology Engineering Center (INTEC - formerly the Idaho Chemical Processing Plant, ICPP) will be calcined by the end of year 2012. This study investigates an alternative treatment of the liquid waste that removes undissolved solids (UDS) by filtration and removes cesium by ion exchange followed by cement-based grouting of the remaining liquid into 55-gal drums. Operations are assumed to be from January 2008 through December 2012. The grouted waste will be contact-handled and will be shippedmore » to the Waste Isolation Pilot Plant (WIPP) in New Mexico for disposal. The small volume of secondary wastes such as the filtered solids and cesium sorbent (resin) would remain in storage at the Idaho National Engineering and Environmental Laboratory for treatment and disposal under another project, with an option to dispose of the filtered solids as a r emote-handled waste at WIPP.« less

  3. Coupled Biological-Geomechanical-Geochemical Effects of the Disturbed Rock Zone on the Performance of the Waste Isolation Pilot Plant

    NASA Astrophysics Data System (ADS)

    Dunagan, S. C.; Herrick, C. G.; Lee, M. Y.

    2008-12-01

    The Waste Isolation Pilot Plant (WIPP) is located at a depth of 655 m in bedded salt in southeastern New Mexico and is operated by the U.S. Department of Energy as a deep underground disposal facility for transuranic (TRU) waste. The WIPP must comply with the EPA's environmental regulations that require a probabilistic risk analysis of releases of radionuclides due to inadvertent human intrusion into the repository at some time during the 10,000-year regulatory period. Sandia National Laboratories conducts performance assessments (PAs) of the WIPP using a system of computer codes representing the evolution of underground repository and emplaced TRU waste in order to demonstrate compliance. One of the important features modeled in a PA is the disturbed rock zone (DRZ) surrounding the emplacement rooms in the repository. The extent and permeability of DRZ play a significant role in the potential radionuclide release scenarios. We evaluated the phenomena occurring in the repository that affect the DRZ and their potential effects on the extent and permeability of the DRZ. Furthermore, we examined the DRZ's role in determining the performance of the repository. Pressure in the completely sealed repository will be increased by creep closure of the salt and degradation of TRU waste contents by microbial activity in the repository. An increased pressure in the repository will reduce the extent and permeability of the DRZ. The reduced DRZ extent and permeability will decrease the amount of brine that is available to interact with the waste. Furthermore, the potential for radionuclide release from the repository is dependent on the amount of brine that enters the repository. As a result of these coupled biological-geomechanical-geochemical phenomena, the extent and permeability of the DRZ has a significant impact on the potential radionuclide releases from the repository and, in turn, the repository performance. Sandia is a multi program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04- 94AL85000. This research is funded by WIPP programs administered by the Office of Environmental Management (EM) of the U.S. Department of Energy.

  4. Deteriorated Concrete from Liner of WIPP Waste Shaft

    DTIC Science & Technology

    1992-06-01

    for US Department of Energy. Bensted, J. 1989. "Novel Cements - Sorel and Related Chemical Cements," il Cemento , Vol 86, No. 4, pp 217-228. Ben-Yair, M...Waste Isolation Pilot Plant. Massazza, F. 1985. "Concrete Resistance to Sea Water and Marine Environment," il Cemento , Vol 82, No. 1, pp 3-26. Mather

  5. Vertical Flume Testing of WIPP Surrogate Waste Materials

    NASA Astrophysics Data System (ADS)

    Herrick, C. G.; Schuhen, M.; Kicker, D.

    2012-12-01

    The Waste Isolation Pilot Plant (WIPP) is a U.S. Department of Energy geological repository for the permanent disposal of defense-related transuranic (TRU) waste. The waste is emplaced in rooms excavated in the bedded Salado salt formation at a depth of 655 m below ground surface. After emplacement of the waste, the repository will be sealed and decommissioned. The DOE demonstrates compliance with 40 CFR 194 by means of performance assessment (PA) calculations conducted by Sandia National Laboratories. WIPP PA calculations estimate the probability and consequences of radionuclide releases for a 10,000 year regulatory period. Human intrusion scenarios include cases in which a future borehole is drilled through the repository. Drilling mud flowing up the borehole will apply a hydrodynamic shear stress to the borehole wall which could result in erosion of the waste and radionuclides being carried up the borehole. WIPP PA uses the parameter TAUFAIL to represent the shear strength of the degraded waste. The hydrodynamic shear strength can only be measured experimentally by flume testing. Flume testing is typically performed horizontally, mimicking stream or ocean currents. However, in a WIPP intrusion event, the drill bit would penetrate the degraded waste and drilling mud would flow up the borehole in a predominantly vertical direction. In order to simulate this, a flume was designed and built so that the eroding fluid enters an enclosed vertical channel from the bottom and flows up past a specimen of surrogate waste material. The sample is pushed into the current by a piston attached to a step motor. A qualified data acquisition system controls and monitors the fluid's flow rate, temperature, pressure, and conductivity and the step motor's operation. The surrogate materials used correspond to a conservative estimate of degraded TRU waste at the end of the regulatory period. The recipes were previously developed by SNL based on anticipated future states of the waste considering inventory, changes in the underground environment, and theoretical and experimental results. The recipes represent the degraded waste in its weakest condition; simulating 50, 75, and 100% degradation by weight. The percent degradation indicates the anticipated amount of iron corrosion and decomposition of cellulosics, plastics, and rubbers. Samples were die compacted to two pressures, 2.3 and 5.0 MPa. Testing has established that the less degraded the surrogate material is and the higher the compaction stress it undergoes, the stronger the sample is. The 50% degraded surrogate waste material was accepted for use in obtaining input parameters for another WIPP PA model by a conceptual model peer review panel and the EPA. The use of a 50% degraded surrogate waste in vertical flume testing would provide an improved estimate of the waste shear strength and establish consistency between PA models in the approach used to obtain input parameters. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. This research is funded by WIPP programs administered by the Office of Environmental Management (EM) of the U.S Department of Energy.

  6. Vertical Flume Testing of WIPP Surrogate Waste Materials

    NASA Astrophysics Data System (ADS)

    Herrick, C. G.; Schuhen, M.; Kicker, D.

    2013-12-01

    The Waste Isolation Pilot Plant (WIPP) is a U.S. Department of Energy geological repository for the permanent disposal of defense-related transuranic (TRU) waste. The waste is emplaced in rooms excavated in the bedded Salado salt formation at a depth of 655 m below ground surface. After emplacement of the waste, the repository will be sealed and decommissioned. The DOE demonstrates compliance with 40 CFR 194 by means of performance assessment (PA) calculations conducted by Sandia National Laboratories. WIPP PA calculations estimate the probability and consequences of radionuclide releases for a 10,000 year regulatory period. Human intrusion scenarios include cases in which a future borehole is drilled through the repository. Drilling mud flowing up the borehole will apply a hydrodynamic shear stress to the borehole wall which could result in erosion of the waste and radionuclides being carried up the borehole. WIPP PA uses the parameter TAUFAIL to represent the shear strength of the degraded waste. The hydrodynamic shear strength can only be measured experimentally by flume testing. Flume testing is typically performed horizontally, mimicking stream or ocean currents. However, in a WIPP intrusion event, the drill bit would penetrate the degraded waste and drilling mud would flow up the borehole in a predominantly vertical direction. In order to simulate this, a flume was designed and built so that the eroding fluid enters an enclosed vertical channel from the bottom and flows up past a specimen of surrogate waste material. The sample is pushed into the current by a piston attached to a step motor. A qualified data acquisition system controls and monitors the fluid's flow rate, temperature, pressure, and conductivity and the step motor's operation. The surrogate materials used correspond to a conservative estimate of degraded TRU waste at the end of the regulatory period. The recipes were previously developed by SNL based on anticipated future states of the waste considering inventory, changes in the underground environment, and theoretical and experimental results. The recipes represent the degraded waste in its weakest condition; simulating 50, 75, and 100% degradation by weight. The percent degradation indicates the anticipated amount of iron corrosion and decomposition of cellulosics, plastics, and rubbers. Samples were die compacted to two pressures, 2.3 and 5.0 MPa. Testing has established that the less degraded the surrogate material is and the higher the compaction stress it undergoes, the stronger the sample is. The 50% degraded surrogate waste material was accepted for use in obtaining input parameters for another WIPP PA model by a conceptual model peer review panel and the EPA. The use of a 50% degraded surrogate waste in vertical flume testing would provide an improved estimate of the waste shear strength and establish consistency between PA models in the approach used to obtain input parameters. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. This research is funded by WIPP programs administered by the Office of Environmental Management (EM) of the U.S Department of Energy.

  7. Ongoing environmental monitoring and assessment of the long-term impacts of the February 2014 radiological release from the waste isolation pilot plant.

    PubMed

    Thakur, Punam; Runyon, Tim

    2018-04-09

    Three years ago, the Waste Isolation Pilot Plant (WIPP) experienced its first minor accident involving a radiological release. Late in the evening on February 14, 2014, a waste container in the repository underwent a chemical reaction that caused the container to overheat and breach, releasing its contents into the underground. Following a lengthy recovery process, the facility recently resumed waste disposal operations. The accident released significant levels of radioactivity into the disposal room and adjacent exhaust drifts, and although no one was present in the underground at the time of the release, a total of 22 workers tested positive for very low level of radiation, presumably from some of the radioactive material that was released above ground through a small leak in the HEPA filtration system. The dominant radionuclides released were 241 Am and 239 + 240 Pu in a ratio that matched the content of the drum from Los Alamos National Laboratory (LANL) that was eventually identified as the breached container. From the air particulate monitoring and plume modeling, it was concluded that the dose, at the nearest location accessible to the general public, from this radiation release event would have been less than 0.01 mSv (< 1 mrem/year). This level is well below the 0.1 mSv/year (10 mrem/year) regulatory limit for DOE facilities established by the US Environmental Protection Agency (EPA).While no long-term impacts to public health or the environment are expected as a result of the WIPP radiation release, the limited ventilation and residual contamination levels in the underground are still a concern and pose a major challenge for the full recovery of WIPP. This article provides an up-to-date overview of environmental monitoring results through the WIPP recovery and an estimate of the long-term impacts of the accident on the natural and human environment.

  8. Quality quandaries: Statistical detective work to understand the isotopic ratios in Drum 68660 and the radioactive release at WIPP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelly, Elizabeth J.; Weaver, Brian Phillip; Veirs, Douglas Kirk

    An incident at the Department of Energy's Waste Isolation Pilot Plant (WIPP) in 2014 resulted in the release of radioactive material into the environment. Initially, it was known that at least one drum in WIPP, identified as drum 68660, was involved. However, questions remained. Could the air-monitor isotopic ratios measured in WIPP at the time of the release be explained by materials in drum 68660 or were other drums involved? Could internal conditions in drum 68660 have caused the breach? What were the implications for 68660's sister drum? These questions needed to be answered as quickly as possible. Here, thismore » analysis, which was completed in three weeks, combined combinatorics and uncertainty analysis to provide scientists with the timely evidence they needed to either answer these important questions or to design experiments to answer them.« less

  9. Quality quandaries: Statistical detective work to understand the isotopic ratios in Drum 68660 and the radioactive release at WIPP

    DOE PAGES

    Kelly, Elizabeth J.; Weaver, Brian Phillip; Veirs, Douglas Kirk

    2017-08-09

    An incident at the Department of Energy's Waste Isolation Pilot Plant (WIPP) in 2014 resulted in the release of radioactive material into the environment. Initially, it was known that at least one drum in WIPP, identified as drum 68660, was involved. However, questions remained. Could the air-monitor isotopic ratios measured in WIPP at the time of the release be explained by materials in drum 68660 or were other drums involved? Could internal conditions in drum 68660 have caused the breach? What were the implications for 68660's sister drum? These questions needed to be answered as quickly as possible. Here, thismore » analysis, which was completed in three weeks, combined combinatorics and uncertainty analysis to provide scientists with the timely evidence they needed to either answer these important questions or to design experiments to answer them.« less

  10. Radiation release at the nation's only operating deep geological repository--an independent monitoring perspective.

    PubMed

    Thakur, P; Ballard, S; Hardy, R

    2014-11-04

    Recent incidents at the nation's only operating deep geologic nuclear waste repository, the Waste Isolation Pilot Plant (WIPP), resulted in the release of americium and plutonium from one or more defense-related transuranic (TRU) waste containers into the environment. WIPP is a U.S. Department of Energy mined geologic repository that has been in operation since March, 1999. Over 85,000 m3 of waste in various vented payload containers have been emplaced in the repository. The primary radionuclides within the disposed waste are 239+240Pu and 241Am, which account for more than 99% of the total TRU radioactivity disposed and scheduled for disposal in the repository. For the first time in its 15 years of operation, there was an airborne radiation release from the WIPP at approximately 11:30 PM Mountain Standard Time (MST) on Friday, February 14, 2014. The radiation release was likely caused by a chemical reaction inside a TRU waste drum that contained nitrate salts and organic sorbent materials. In a recent news release, DOE announced that photos taken of the waste underground showed evidence of heat and gas pressure resulting in a deformed lid, in material expelled through that deformation, and in melted plastic and rubber and polyethylene in the vicinity of that drum. Recent entries into underground Panel 7 have confirmed that at least one waste drum containing a nitrate salt bearing waste stream from Los Alamos National Laboratory was breached underground and was the most likely source of the release. Further investigation is underway to determine if other containers contributed to the release. Air monitoring across the WIPP site intensified following the first reports of radiation detection underground to ascertain whether or not there were releases to the ground surface. Independent analytical results of air filters from sampling stations on and near the WIPP facility have been released by us at the Carlsbad Environmental Monitoring & Research Center and confirmed trace amounts of 241Am and 239+240Pu, at ratios reflecting the suspect waste stream. The highest activity detected offsite was 115.2 μBq/m3 for 241Am and 10.2 μBq/m3 for 239+240 Pu. These concentrations in air were very small, localized, and below any level of public health or environmental concern.

  11. Preliminary performance assessment for the Waste Isolation Pilot Plant, December 1992. Volume 5, Uncertainty and sensitivity analyses of gas and brine migration for undisturbed performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-08-01

    Before disposing of transuranic radioactive waste in the Waste Isolation Pilot Plant (WIPP), the United States Department of Energy (DOE) must evaluate compliance with applicable long-term regulations of the United States Environmental Protection Agency (EPA). Sandia National Laboratories is conducting iterative performance assessments (PAs) of the WIPP for the DOE to provide interim guidance while preparing for a final compliance evaluation. This volume of the 1992 PA contains results of uncertainty and sensitivity analyses with respect to migration of gas and brine from the undisturbed repository. Additional information about the 1992 PA is provided in other volumes. Volume 1 containsmore » an overview of WIPP PA and results of a preliminary comparison with 40 CFR 191, Subpart B. Volume 2 describes the technical basis for the performance assessment, including descriptions of the linked computational models used in the Monte Carlo analyses. Volume 3 contains the reference data base and values for input parameters used in consequence and probability modeling. Volume 4 contains uncertainty and sensitivity analyses with respect to the EPA`s Environmental Standards for the Management and Disposal of Spent Nuclear Fuel, High-Level and Transuranic Radioactive Wastes (40 CFR 191, Subpart B). Finally, guidance derived from the entire 1992 PA is presented in Volume 6. Results of the 1992 uncertainty and sensitivity analyses indicate that, conditional on the modeling assumptions and the assigned parameter-value distributions, the most important parameters for which uncertainty has the potential to affect gas and brine migration from the undisturbed repository are: initial liquid saturation in the waste, anhydrite permeability, biodegradation-reaction stoichiometry, gas-generation rates for both corrosion and biodegradation under inundated conditions, and the permeability of the long-term shaft seal.« less

  12. Status and Growth of Underground Science at WIPP

    NASA Astrophysics Data System (ADS)

    Rempe, Norbert T.

    2008-10-01

    The science community is increasingly taking advantage of research opportunities in the government-owned Waste Isolation Pilot Plant (WIPP), 655m underground near Carlsbad, NM. Discoveries so far include viable bacteria, cellulose, and DNA in 250 million-year old salt, preserved in an ultra-low background-radiation setting. Supplementing the overburden's shielding against cosmic radiation, terrestrial background from the host formation is less than five percent that of average crustal rock. In the past, WIPP accommodated development and testing of neutral current detectors for the Sudbury Neutrino Observatory and dark matter research, and it currently hosts two experiments pursuing neutrino-less double-beta decay. That scientists can listen to whispers from the universe in proximity to megacuries of radioactive waste lends, of course, credibility to the argument that WIPP itself is very safe. Almost a century of regional petroleum and potash extraction history and more than three decades of WIPP studies have generated a comprehensive body of knowledge on geology, mining technology, rock mechanics, geochemistry, and other disciplines relevant to underground science. Existing infrastructure is being used and can be expanded to fit experimental needs. WIPP's exemplary safety and regulatory compliance culture, low excavating and operating cost, and the high probability of the repository operating at least another 40 years make its available underground space attractive for future research and development. Recent proposals include low-photon energy counting to study internal dose received decades ago, investigations into ultra-low radiation dose response in cell cultures and laboratory animals (e.g., hormesis vs. linear no-threshold) and detectors for dark matter, solar and supernova neutrinos, and proton decay. Additional proposals compatible with WIPP's primary mission are welcome.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poppiti, James; Nelson, Roger; MacMillan, Walter J.

    The Waste Isolation Pilot Plant (WIPP) is a 655-meter deep mine near Carlsbad, New Mexico, used to dispose the nation’s defense transuranic waste. Limited airborne radioactivity was released from a container of radioactive waste in WIPP on 14 February, 2014. As designed, a mine ventilation filtration system prevented the large scale release of contamination from the underground. However, isolation dampers leaked, which allowed the release of low levels of contaminants after the event until they were sealed. None of the exposed individuals received any recordable dose. While surface contamination was limited, contamination in the ventilation system and portions of themore » underground was substantial. High efficiency particulate air (HEPA) filters in the operating ventilation system ensure continued containment during recovery and resumption of disposal operations. However, ventilation flow is restricted since the incident, with all exhaust air directed through the filters. Decontamination and natural fixation by the hygroscopic nature of the salt host rock has reduced the likelihood of further contamination spread. Contamination control and ventilation system operability are crucial for resumption of operations. This article provides an operational assessment and evaluation of these two key areas.« less

  14. Krypton-81 in groundwater of the Culebra Dolomite near the Waste Isolation Pilot Plant, New Mexico

    NASA Astrophysics Data System (ADS)

    Sturchio, Neil C.; Kuhlman, Kristopher L.; Yokochi, Reika; Probst, Peter C.; Jiang, Wei; Lu, Zheng-Tian; Mueller, Peter; Yang, Guo-Min

    2014-05-01

    The Waste Isolation Pilot Plant (WIPP) in New Mexico is the first geologic repository for disposal of transuranic nuclear waste from defense-related programs of the US Department of Energy. It is constructed within halite beds of the Permian-age Salado Formation. The Culebra Dolomite, confined within Rustler Formation evaporites overlying the Salado Formation, is a potential pathway for radionuclide transport from the repository to the accessible environment in the human-disturbed repository scenario. Although extensive subsurface characterization and numerical flow modeling of groundwater has been done in the vicinity of the WIPP, few studies have used natural isotopic tracers to validate the flow models and to better understand solute transport at this site. The advent of Atom-Trap Trace Analysis (ATTA) has enabled routine measurement of cosmogenic 81Kr (half-life 229,000 yr), a near-ideal tracer for long-term groundwater transport. We measured 81Kr in saline groundwater sampled from two Culebra Dolomite monitoring wells near the WIPP site, and compared 81Kr model ages with reverse particle-tracking results of well-calibrated flow models. The 81Kr model ages are ~ 130,000 and ~ 330,000 yr for high-transmissivity and low-transmissivity portions of the formation, respectively. Compared with flow model results which indicate a relatively young mean hydraulic age (~ 32,000 yr), the 81Kr model ages imply substantial physical attenuation of conservative solutes in the Culebra Dolomite and provide limits on the effective diffusivity of contaminants into the confining aquitards.

  15. Defense Remote Handled Transuranic Waste Cost/Schedule Optimization Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pierce, G.D.; Beaulieu, D.H.; Wolaver, R.W.

    1986-11-01

    The purpose of this study is to provide the DOE information with which it can establish the most efficient program for the long management and disposal, in the Waste Isolation Pilot Plant (WIPP), of remote handled (RH) transuranic (TRU) waste. To fulfill this purpose, a comprehensive review of waste characteristics, existing and projected waste inventories, processing and transportation options, and WIPP requirements was made. Cost differences between waste management alternatives were analyzed and compared to an established baseline. The result of this study is an information package that DOE can use as the basis for policy decisions. As part ofmore » this study, a comprehensive list of alternatives for each element of the baseline was developed and reviewed with the sites. The principle conclusions of the study follow. A single processing facility for RH TRU waste is both necessary and sufficient. The RH TRU processing facility should be located at Oak Ridge National Laboratory (ORNL). Shielding of RH TRU to contact handled levels is not an economic alternative in general, but is an acceptable alternative for specific waste streams. Compaction is only cost effective at the ORNL processing facility, with a possible exception at Hanford for small compaction of paint cans of newly generated glovebox waste. It is more cost effective to ship certified waste to WIPP in 55-gal drums than in canisters, assuming a suitable drum cask becomes available. Some waste forms cannot be packaged in drums, a canister/shielded cask capability is also required. To achieve the desired disposal rate, the ORNL processing facility must be operational by 1996. Implementing the conclusions of this study can save approximately $110 million, compared to the baseline, in facility, transportation, and interim storage costs through the year 2013. 10 figs., 28 tabs.« less

  16. Potash ore reserves in the proposed Waste Isolation Pilot Plant area, Eddy County, southeastern New Mexico

    USGS Publications Warehouse

    John, Charles B.; Cheeseman, R.J.; Lorenz, J.C.; Millgate, M.L.

    1978-01-01

    The proposed Waste Isolation Pilot Plant (WIPP) area includes about 18,960 acres in Tps. 22 and 23 S., Rs. 30 and 31 E., New Mexico Principal Meridian, Eddy County, southeastern New Mexico. It is located within the Carlsbad Mining District about 25 miles east of Carlsbad. The WIPP area is immediately south of the Capitan Limestone subcrop, which formed the northern margin of the Delaware basin in Permian time. During Late Permian (Ochoan) time, gypsum, anhydrite, and halite were deposited in the seas of the Delaware basin to form the Castile Formation. These deposits have a maximum thickness of about 2,000 feet and grade upward into the more argillaceous beds of the Salado Formation. The Salado Formation contains abundant sulfate minerals, notably anhydrite and polyhalite. The potash ore minerals, langbeinite and sylvite, occur in the upper part of the Salado Formation in the McNutt potash zone, a local name applied to a potassium-rich zone.

  17. Continuous Improvement and the Safety Case for the Waste Isolation Pilot Plant Geologic Repository - 13467

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Luik, Abraham; Patterson, Russell; Nelson, Roger

    2013-07-01

    The Waste Isolation Pilot Plant (WIPP) is a geologic repository 2150 feet (650 m) below the surface of the Chihuahuan desert near Carlsbad, New Mexico. WIPP permanently disposes of transuranic waste from national defense programs. Every five years, the U.S. Department of Energy (DOE) submits an application to the U.S. Environmental Protection Agency (EPA) to request regulatory-compliance re-certification of the facility for another five years. Every ten years, DOE submits an application to the New Mexico Environment Department (NMED) for the renewal of its hazardous waste disposal permit. The content of the applications made by DOE to the EPA formore » re-certification, and to the NMED for permit-renewal, reflect any optimization changes made to the facility, with regulatory concurrence if warranted by the nature of the change. DOE points to such changes as evidence for its having taken seriously its 'continuous improvement' operations and management philosophy. Another opportunity for continuous improvement is to look at any delta that may exist between the re-certification and re-permitting cases for system safety and the consensus advice on the nature and content of a safety case as being developed and published by the Nuclear Energy Agency's Integration Group for the Safety Case (IGSC) expert group. DOE at WIPP, with the aid of its Science Advisor and teammate, Sandia National Laboratories, is in the process of discerning what can be done, in a reasonably paced and cost-conscious manner, to continually improve the case for repository safety that is being made to the two primary regulators on a recurring basis. This paper will discuss some aspects of that delta and potential paths forward to addressing them. (authors)« less

  18. Geohydrology of the proposed Waste Isolation Pilot Plant site, Los Medanos area, southeastern New Mexico

    USGS Publications Warehouse

    Mercer, Jerry W.

    1983-01-01

    Geohydrologic data have been collected in the Los Medanos area at the U.S. Department of Energy 's proposed Waste Isolation Pilot Plant (WIPP) site in southeastern New Mexico since 1975 as part of an intensive study evaluating the feasibility of storing defense-associated nuclear wastes within the bedded salt of the Salado Formation of Permian age. Drilling and hydrologic testing have identified three principal water-producing zones above the salt, including the Rustler-Salado Formational contact and the Culebra and Magenta Dolomite Members of the Permian Rustler Formation. Below the bedded salt there is another water-bearing zone, the channel sandstones of the Bell Canyon formation of the Permian Delaware Mountain Group. Most data collected from 33 hydrologic test holes indicate that the water-bearing zones are characterized by low transmissivities and contain slightly saline to briny water. Data collected from drill-stem tests in the Bell Canyon Formation indicate the channel sandstones have hydraulic conductivities ranging from 0.02 to 0.36 feet per day grade vertically and laterally into siltstones and shales of very low permeability. The Rustler Formation contains the principal water-producing zones identified at the WIPP site. The Rustler-Salado formational contact has the least transmissivity, ranging from 0.00003 to 0.003 feet squared per day. The Culebra Dolomite is the most productive unit at the WIPP site with transmissivities ranging from 0.001 to 73 feet squared per day; the greater values result from fracturing in the dolomite created by dissolution of underlying halite. Minute vertical permeabilities prevent movement of water between hydrologic units. (USGS)

  19. Krypton-81 in groundwater of the Culebra Dolomite near the Waste Isolation Pilot Plant, New Mexico.

    PubMed

    Sturchio, Neil C; Kuhlman, Kristopher L; Yokochi, Reika; Probst, Peter C; Jiang, Wei; Lu, Zheng-Tian; Mueller, Peter; Yang, Guo-Min

    2014-05-01

    The Waste Isolation Pilot Plant (WIPP) in New Mexico is the first geologic repository for disposal of transuranic nuclear waste from defense-related programs of the US Department of Energy. It is constructed within halite beds of the Permian-age Salado Formation. The Culebra Dolomite, confined within Rustler Formation evaporites overlying the Salado Formation, is a potential pathway for radionuclide transport from the repository to the accessible environment in the human-disturbed repository scenario. Although extensive subsurface characterization and numerical flow modeling of groundwater has been done in the vicinity of the WIPP, few studies have used natural isotopic tracers to validate the flow models and to better understand solute transport at this site. The advent of Atom-Trap Trace Analysis (ATTA) has enabled routine measurement of cosmogenic (81)Kr (half-life 229,000 yr), a near-ideal tracer for long-term groundwater transport. We measured (81)Kr in saline groundwater sampled from two Culebra Dolomite monitoring wells near the WIPP site, and compared (81)Kr model ages with reverse particle-tracking results of well-calibrated flow models. The (81)Kr model ages are ~130,000 and ~330,000 yr for high-transmissivity and low-transmissivity portions of the formation, respectively. Compared with flow model results which indicate a relatively young mean hydraulic age (~32,000 yr), the (81)Kr model ages imply substantial physical attenuation of conservative solutes in the Culebra Dolomite and provide limits on the effective diffusivity of contaminants into the confining aquitards. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Adjunct laboratory tests in support of US/German salt characterization program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buchholz, Stuart A.

    2014-07-01

    In summary, the goal of this activity is to complete a subset of a test matrix on salt from the Waste Isolation Pilot Plant (WIPP) undertaken by German research groups. The work will be performed at RESPEC in Rapid City, South Dakota, and is divided into three tasks.

  1. 40 CFR 194.8 - Approval process for waste shipment from waste generator sites for disposal at the WIPP.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... waste generator site will be conveyed in a letter from the Administrator's authorized representative to... transmittal to the WIPP Waste Information System database of waste characterization data, in accordance with... will be conveyed in a letter from the Administrator's authorized representative to DOE. EPA will not...

  2. 40 CFR 194.8 - Approval process for waste shipment from waste generator sites for disposal at the WIPP.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... waste generator site will be conveyed in a letter from the Administrator's authorized representative to... transmittal to the WIPP Waste Information System database of waste characterization data, in accordance with... will be conveyed in a letter from the Administrator's authorized representative to DOE. EPA will not...

  3. 40 CFR 194.8 - Approval process for waste shipment from waste generator sites for disposal at the WIPP.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... waste generator site will be conveyed in a letter from the Administrator's authorized representative to... transmittal to the WIPP Waste Information System database of waste characterization data, in accordance with... will be conveyed in a letter from the Administrator's authorized representative to DOE. EPA will not...

  4. 40 CFR 194.8 - Approval process for waste shipment from waste generator sites for disposal at the WIPP.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... waste generator site will be conveyed in a letter from the Administrator's authorized representative to... transmittal to the WIPP Waste Information System database of waste characterization data, in accordance with... will be conveyed in a letter from the Administrator's authorized representative to DOE. EPA will not...

  5. Characterization of the Old Hydrofracture Facility (OHF) waste tanks located at ORNL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keller, J.M.; Giaquinto, J.M.; Meeks, A.M.

    1997-04-01

    The Old Hydrofracture Facility (OHF) is located in Melton Valley within Waste Area Grouping (WAG) 5 and includes five underground storage tanks (T1, T2, T3, T4, and T9) ranging from 13,000 to 25,000 gal. capacity. During the period of 1996--97 there was a major effort to re-sample and characterize the contents of these inactive waste tanks. The characterization data summarized in this report was needed to address waste processing options, examine concerns dealing with the performance assessment (PA) data for the Waste Isolation Pilot Plant (WIPP), evaluate the waste characteristics with respect to the waste acceptance criteria (WAC) for WIPPmore » and Nevada Test Site (NTS), address criticality concerns, and to provide the data needed to meet DOT requirements for transporting the waste. This report discusses the analytical characterization data collected on both the supernatant and sludge samples taken from three different locations in each of the OHF tanks. The isotopic data presented in this report supports the position that fissile isotopes of uranium ({sup 233}U and {sup 235}U) do not satisfy the denature ratios required by the administrative controls stated in the ORNL LLLW waste acceptance criteria (WAC). The fissile isotope of plutonium ({sup 239}Pu and {sup 241}Pu) are diluted with thorium far above the WAC requirements. In general, the OHF sludge was found to be hazardous (RCRA) based on total metal content and the transuranic alpha activity was well above the 100 nCi/g limit for TRU waste. The characteristics of the OHF sludge relative to the WIPP WAC limits for fissile gram equivalent, plutonium equivalent activity, and thermal power from decay heat were estimated from the data in this report and found to be far below the upper boundary for any of the remote-handled transuranic waste (RH-TRU) requirements for disposal of the waste in WIPP.« less

  6. An x-ray absorption spectroscopy study of Cd binding onto a halophilic archaeon

    NASA Astrophysics Data System (ADS)

    Showalter, Allison R.; Szymanowski, Jennifer E. S.; Fein, Jeremy B.; Bunker, Bruce A.

    2016-05-01

    X-ray absorption spectroscopy (XAS) and cadmium (Cd) isotherm experiments determine how Cd adsorbs to the surface of halophilic archaeon Halobacterium noricense. This archaeon, isolated from the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico could be involved with the transport of toxic metals stored in the transuranic waste in the salt mine. The isotherm experiments show that adsorption is relatively constant across the tolerable pH range for H. noricense. The XAS results indicate that Cd adsorption occurs predominately via a sulfur site, most likely sulfhydryl, with the same site dominating all measured pH values.

  7. Uncertainty and sensitivity analysis for two-phase flow in the vicinity of the repository in the 1996 performance assessment for the Waste Isolation Pilot Plant: Disturbed conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    HELTON,JON CRAIG; BEAN,J.E.; ECONOMY,K.

    2000-05-22

    Uncertainty and sensitivity analysis results obtained in the 1996 performance assessment (PA) for the Waste Isolation Pilot Plant (WIPP) are presented for two-phase flow in the vicinity of the repository under disturbed conditions resulting from drilling intrusions. Techniques based on Latin hypercube sampling, examination of scatterplots, stepwise regression analysis, partial correlation analysis and rank transformations are used to investigate brine inflow, gas generation repository pressure, brine saturation and brine and gas outflow. Of the variables under study, repository pressure and brine flow from the repository to the Culebra Dolomite are potentially the most important in PA for the WIPP. Subsequentmore » to a drilling intrusion repository pressure was dominated by borehole permeability and generally below the level (i.e., 8 MPa) that could potentially produce spallings and direct brine releases. Brine flow from the repository to the Culebra Dolomite tended to be small or nonexistent with its occurrence and size also dominated by borehole permeability.« less

  8. Predictions of Actinide Solubilities under Near-Field Conditions Expected in the WIPP

    NASA Astrophysics Data System (ADS)

    Brush, L. H.; Xiong, Y.

    2009-12-01

    The Waste Isolation Pilot Plant (WIPP) is a U.S. Department of Energy (DOE) repository in southeast New Mexico for defense-related transuranic (TRU) waste. The repository, which opened in March 1999, is located at a subsurface depth of 655 m (2150 ft) in the Salado Fm., a Permian bedded-salt formation. The repository will eventually contain the equivalent of 844,000 208 L (55 gal) drums of TRU waste. After filling the rooms and access drifts and installing panel closures, creep closure of the salt will crush the steel waste containers in most cases and encapsulate the waste. The WIPP actinide source term model used for long-term performance assessment (PA) of the repository comprises dissolved and suspended submodels (solubilities and colloids). This presentation will describe the solubilities. From the standpoint of long-term PA, the order of importance of the radioelements in the TRU waste to be emplaced in the WIPP is Pu ~ Am >> U > Th >> Np ~ Cm and fission products. The DOE has included all of these actinides, but not fission products, in the WIPP Actinide Source Term Program (ASTP). Anoxic corrosion of Fe- and Al-base metals and microbial consumption of cellulosic, plastic, and rubber materials will produce gas and create strongly reducing conditions in the WIPP after closure. The use of MgO as an engineered barrier to consume microbially produced CO2 will result in low fCO2 and basic pH. Under these conditions, Th, U, Np, Pu, and Am will speciate essentially entirely as Th(IV), U(IV), Np(IV), Pu(III), and Am(III); or Th(IV), U(VI), Np(V), Pu(IV), and Am(III). The DOE has developed thermodynamic speciation-and-solubility models for +III, +IV, and +V actinides in brines. Experimental data for Nd, Am, and Cm species were used to parameterize the +III Pitzer activity-coefficient model; data for Th species were used for the +IV model; and data for Np(V) species were used for the +V model. These models include the effects of the organic ligands acetate, citrate, EDTA, and oxalate in TRU waste. The oxidation-state analogy was then used to extend the +III model to Pu(III), and the +IV model to Pu(IV), U(IV), and Np(IV). The solubility of U(VI) was estimated. For the recent WIPP Compliance Recertification Application PA Baseline Calculations, we calculated actinide solubilities with fCO2 buffered at 3.14 × 10-6 atm by the brucite-hydromagnesite carbonation reaction, with pH maintained at ~9 by the brucite dissolution-precipitation reaction, and with estimated concentrations of the organic ligands in brines from the Salado and the Castile Fm., which underlies the Salado. The calculated +III, +IV, and +V solubilities are 1.56 × 10-6, 5.64 × 10-8, and 4.07 × 10-7 M, respectively, in Salado brine; and 1.51 × 10-6, 6.98 × 10-8, and 8.75 × 10-7 M in Castile brine. The U(VI) solubility estimated for both brines is 1 × 10-3 M. This research is funded by WIPP programs administered by the U.S. Department of Energy. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

  9. EVALUATION OF RISKS AND WASTE CHARACTERIZATION REQUIREMENTS FOR THE TRANSURANIC WASTE EMPLACED IN WIPP DURING 1999

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Channell, J.K.; Walker, B.A.

    2000-05-01

    Specifically this report: 1. Compares requirements of the WAP that are pertinent from a technical viewpoint with the WIPP pre-Permit waste characterization program, 2. Presents the results of a risk analysis of the currently emplaced wastes. Expected and bounding risks from routine operations and possible accidents are evaluated; and 3. Provides conclusions and recommendations.

  10. RH-TRU Waste Shipments from Battelle Columbus Laboratories to the Hanford Nuclear Facility for Interim Storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eide, J.; Baillieul, T. A.; Biedscheid, J.

    2003-02-26

    Battelle Columbus Laboratories (BCL), located in Columbus, Ohio, must complete decontamination and decommissioning (D&D) activities for nuclear research buildings and grounds by 2006, as directed by Congress. Most of the resulting waste (approximately 27 cubic meters [m3]) is remote-handled (RH) transuranic (TRU) waste destined for disposal at the Waste Isolation Pilot Plant (WIPP). The BCL, under a contract to the U.S. Department of Energy (DOE) Ohio Field Office, has initiated a plan to ship the TRU waste to the DOE Hanford Nuclear Facility (Hanford) for interim storage pending the authorization of WIPP for the permanent disposal of RH-TRU waste. Themore » first of the BCL RH-TRU waste shipments was successfully completed on December 18, 2002. This BCL shipment of one fully loaded 10-160B Cask was the first shipment of RH-TRU waste in several years. Its successful completion required a complex effort entailing coordination between different contractors and federal agencies to establish necessary supporting agreements. This paper discusses the agreements and funding mechanisms used in support of the BCL shipments of TRU waste to Hanford for interim storage. In addition, this paper presents a summary of the efforts completed to demonstrate the effectiveness of the 10-160B Cask system. Lessons learned during this process are discussed and may be applicable to other TRU waste site shipment plans.« less

  11. Project Plan: Salt in Situ Heater Test.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuhlman, Kristopher L.; Mills, Melissa Marie; Herrick, Courtney G.

    This project plan gives a high-level description of the US Department of Energy Office of Nuclear Energy (DOE-NE) Spent Fuel and Waste Disposition (SFWD) campaign in situ borehole heater test project being planned for the Waste Isolation Pilot Plant (WIPP) site This plan provides an overview of the schedule and responsibilities of the parties involved. This project is a collaborative effort by Sandia, Los Alamos, and Lawrence Berkeley National Laboratories to execute a series of small-diameter borehole heater tests in salt for the DOE-NE SFWD campaign. Design of a heater test in salt at WIPP has evolved over several years.more » The current design was completed in fiscal year 2017 (FY17), an equipment shakedown experiment is underway in April FY18, and the test implementation will begin in summer of FY18. The project comprises a suite of modular tests, which consist of a group of nearby boreholes in the wall of drifts at WIPP. Each test is centered around a packer-isolated heated borehole (5" diameter) containing equipment for water-vapor collection and brine sampling, surrounded by smaller-diameter (2" diameter) satellite observation boreholes. Observation boreholes will contain temperature sensors, tracer release points, electrical resistivity tomography (ERT) sensors, fiber optic sensing, and acoustic emission (AE) measurements, and sonic velocity sources and sensors. These satellite boreholes will also be used for plugging/sealing tests. The first two tests to be implemented will have the packer-isolated borehole heated to 120°C, with one observation borehole used to monitor changes. Follow-on tests will be designed using information gathered from the first two tests, will be conducted at other temperatures, will use multiple observation boreholes, and may include other measurement types and test designs.« less

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klein, Thomas; Patterson, Russell; Camphouse, Chris

    There are two primary regulatory requirements for Panel Closures at the Waste Isolation Pilot Plant (WIPP), the nation's only deep geologic repository for defense related Transuranic (TRU) and Mixed TRU waste. The Federal requirement is through 40 CFR 191 and 194, promulgated by the U.S. Environmental Protection Agency (EPA). The state requirement is regulated through the authority of the Secretary of the New Mexico Environment Department (NMED) under the New Mexico Hazardous Waste Act (HWA), New Mexico Statutes Annotated (NMSA) 1978, chap. 74-4-1 through 74-4-14, in accordance with the New Mexico Hazardous Waste Management Regulations (HWMR), 20.4.1 New Mexico Annotatedmore » Code (NMAC). The state regulations are implemented for the operational period of waste emplacement plus 30 years whereas the federal requirements are implemented from the operational period through 10,000 years. The 10,000 year federal requirement is related to the adequate representation of the panel closures in determining long-term performance of the repository. In Condition 1 of the Final Certification Rulemaking for 40 CFR Part 194, the EPA required a specific design for the panel closure system. The U.S. Department of Energy (DOE) Carlsbad Field Office (CBFO) has requested, through the Planned Change Request (PCR) process, that the EPA modify Condition 1 via its rulemaking process. The DOE has also requested, through the Permit Modification Request (PMR) process, that the NMED modify the approved panel closure system specified in Permit Attachment G1. The WIPP facility is carved out of a bedded salt formation 655 meters below the surface of southeast New Mexico. Condition 1 of the Final Certification Rulemaking specifies that the waste panels be closed using Option D which is a combination of a Salado mass concrete (SMC) monolith and an isolation/explosion block wall. The Option D design was also accepted as the panel closure of choice by the NMED. After twelve years of waste handling operations and a greater understanding of the waste and the behavior of the underground salt formation, the DOE has established a revised panel closure design. This revised design meets both the short-term NMED Permit requirements for the operational period, and also the Federal requirements for long-term repository performance. This new design is simpler, easier to construct and has less of an adverse impact on waste disposal operations than the originally approved Option D design. The Panel Closure Redesign is based on: (1) the results of in-situ constructability testing performed to determine run-of-mine salt reconsolidation parameters and how the characteristics of the bedded salt formation affect these parameters and, (2) the results of air flow analysis of the new design to determine that the limit for the migration of Volatile Organic Compounds (VOCs) will be met at the compliance point. Waste panel closures comprise a repository feature that has been represented in WIPP performance assessment (PA) since the original Compliance Certification Application of 1996. Panel closures are included in WIPP PA models principally because they are a part of the disposal system, not because they play a substantive role in inhibiting the release of radionuclides to the outside environment. The 1998 rulemaking that certified WIPP to receive transuranic waste placed conditions on the panel closure design to be implemented in the repository. The revised panel closure design, termed the Run-of-Mine (ROM) Panel Closure System (ROMPCS), is comprised of 30.48 meters of ROM salt with barriers at each end. The ROM salt is generated from ongoing mining operations at the WIPP and may be compacted and/or moistened as it is emplaced in a panel entry. The barriers consist of bulkheads, similar to those currently used in the panels as room closures. A WIPP performance assessment has been completed that incorporates the ROMPCS design into the representation of the repository, and compares repository performance to that achieved with the approved Option D design. Several key physical processes and rock mechanics principles are incorporated into the performance assessment. First, creep closure of the salt rock surrounding a panel entry results in consolidation of the ROM salt emplaced in the entry. Eventually, the ROM salt comprising the ROMPCS will approach a condition similar to intact salt. As the ROM salt reaches higher fractional densities during consolidation, back stress will be imposed on the surrounding rock mass leading to eventual healing of the disturbed rock zone above and below the panel closure. Healing of the disturbed rock zone above and below the ROMPCS reduces the porosity and permeability in those areas. Analysis of the new design demonstrates that: (1) the WIPP continues to meet regulatory compliance requirements when the ROMPCS design is implemented instead of Option D, and (2) there is no impact on the short-term effectiveness of the panel closure to limit the concentration of VOCs at the WIPP site boundary to a fraction of the health-based exposure limits (HBLs) during the operational period. (authors)« less

  13. Using 3D Geologic Models to Synthesize Large and Disparate Datasets for Site Characterization and Verification Purposes

    NASA Astrophysics Data System (ADS)

    Hillesheim, M. B.; Rautman, C. A.; Johnson, P. B.; Powers, D. W.

    2008-12-01

    As we are all aware, increases in computing power and efficiency have allowed for the development of many modeling codes capable of processing large and sometimes disparate datasets (e.g., geological, hydrological, geochemical, etc). Because people sometimes have difficulty visualizing in three dimensions (3D) or understanding how multiple figures of various geologic features relate as a whole, 3D geologic models can be excellent tools to illustrate key concepts and findings, especially to lay persons, such as stakeholders, customers, and other concerned parties. In this presentation, we will show examples of 3D geologic modeling efforts using data collected during site characterization and verification work at the Waste Isolation Pilot Plant (WIPP). The WIPP is a U.S. Department of Energy (DOE) facility located in southeastern New Mexico, designed for the safe disposal of transuranic wastes resulting from U.S. defense programs. The 3D geologic modeling efforts focused on refining our understanding of the WIPP site by integrating a variety of geologic data. Examples include: overlaying isopach surfaces of unit thickness and overburden thickness, a map of geologic facies changes, and a transmissivity field onto a 3D structural map of a geologic unit of interest. In addition, we also present a 4D hydrogeologic model of the effects of a large-scale pumping test on water levels. All these efforts have provided additional insights into the controls on transmissivity and flow in the WIPP vicinity. Ultimately, by combining these various types of data we have increased our understanding of the WIPP site's hydrogeologic system, which is a key aspect of continued certification. Sandia is a multi program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04- 94AL85000. This research is funded by WIPP programs administered by the Office of Environmental Management (EM) of the U.S Department of Energy.

  14. OE-WIPP Event Presentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erickson, Randall Mark

    Information is given on waste generation at TA-55 and remediation needed to meet WIPP acceptance criteria, including the role of nitrate salts. Breaching of a particular waste-filled drum is reviewed, along with an accident analysis and steps for corrective actions and improved process management.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Humphrey, Betty; Bland, Jesse John

    This paper documents the history of the TRU program at Sandia, previous and current activities associated with TRU material and waste, interfaces with other TRU waste generator sites and the Waste Isolation Pilot Plan (WIPP), and paths forward for TRU material and waste. This document is a snapshot in time of the TRU program and should be updated as necessary, or when significant changes have occurred in the Sandia TRU program or in the TRU regulatory environment. This paper should serve as a roadmap to capture past TRU work so that efforts are not repeated and ground is not lostmore » due to future inactivity and personnel changes.« less

  16. Pretest 3-D finite element modeling of the wedge pillar portion of the WIPP (Waste Isolation Pilot Plant) Geomechanical Evaluation (Room G) in situ experiment. [Waste Isolation Pilot Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Preece, D.S.

    Pretest 3-D finite element calculations have been performed on the wedge pillar portion of the WIPP Geomechanical Evaluation Experiment. The wedge pillar separates two drifts that intersect at an angle of 7.5/sup 0/. Purpose of the experiment is to provide data on the creep behavior of the wedge and progressive failure at the tip. The first set of calculations utilized a symmetry plane on the center-line of the wedge which allowed treatment of the entire configuration by modeling half of the geometry. Two 3-D calculations in this first set were performed with different drift widths to study the influence ofmore » drift size on closure and maximum stress. A cross-section perpendicular to the wedge was also analyzed with 2-D finite element models and the results compared to the 3-D results. In another set of 3-D calculations both drifts were modeled but with less distance between the drifts and the outer boundaries. Results of these calculations are compared with results from the other calculations to better understand the influence of boundary conditions.« less

  17. Waste Isolation Pilot Plant Salt Decontamination Testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demmer, Ricky Lynn; Reese, Stephen Joseph

    2015-03-01

    On February 14, 2014, americium and plutonium contamination was released in the Waste Isolation Pilot Plant (WIPP) salt caverns. Several practical, easily deployable methods of decontaminating WIPP salt, using a surrogate contaminant and americium (241Am), were developed and tested. The effectiveness of the methods is evaluated qualitatively, and to the extent practical, quantitatively. Of the methods tested (dry brushing, vacuum cleaning, water washing, mechanical grinding, strippable coatings, and fixative barriers), the most practical seems to be water washing. Effectiveness is very high, and water washing is easy and rapid to deploy. The amount of wastewater produced (~2 L/m2) would bemore » substantial and may not be easy to manage, but the method is the clear winner from a usability perspective. Removable surface contamination levels (smear results) from water washed coupons found no residual removable contamination. Thus, whatever contamination is left is likely adhered to (or trapped within) the salt. The other option that shows promise is the use of a fixative barrier. Bartlett Nuclear, Inc.’s Polymeric Barrier System proved the most durable of the coatings tested. The coatings were not tested for contaminant entrapment, only for coating integrity and durability.« less

  18. Environmental assessment of the Carlsbad Environmental Monitoring and Research Center Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-10-01

    This Environmental Assessment has been prepared to determine if the Carlsbad Environmental Monitoring and Research Center (the Center), or its alternatives would have significant environmental impacts that must be analyzed in an Environmental Impact Statement. DOE`s proposed action is to continue funding the Center. While DOE is not funding construction of the planned Center facility, operation of that facility is dependent upon continued funding. To implement the proposed action, the Center would initially construct a facility of approximately 2,300 square meters (25,000 square feet). The Phase 1 laboratory facilities and parking lot will occupy approximately 1.2 hectares (3 acres) ofmore » approximately 8.9 hectares (22 acres) of land which were donated to New Mexico State University (NMSU) for this purpose. The facility would contain laboratories to analyze chemical and radioactive materials typical of potential contaminants that could occur in the environment in the vicinity of the DOE Waste Isolation Pilot Plant (WIPP) site or other locations. The facility also would have bioassay facilities to measure radionuclide levels in the general population and in employees of the WIPP. Operation of the Center would meet the DOE requirement for independent monitoring and assessment of environmental impacts associated with the planned disposal of transuranic waste at the WIPP.« less

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buchholz, Stuart A.

    This memorandum documents laboratory thermomechanical triaxial strength testing of Waste Isolation Pilot Plant (WIPP) clean salt. The limited study completed independent, adjunct laboratory tests in the United States to assist in validating similar testing results being provided by the German facilities. The testing protocol consisted of completing confined triaxial, constant strain rate strength tests of intact WIPP clean salt at temperatures of 25°C and 100°C and at multiple confining pressures. The stratigraphy at WIPP also includes salt that has been labeled “argillaceous.” The much larger test matrix conducted in Germany included both the so-called clean and argillaceous salts. When combined,more » the total database of laboratory results will be used to develop input parameters for models, assess adequacy of existing models, and predict material behavior. These laboratory studies are also consistent with the goals of the international salt repository research program. The goal of this study was to complete a subset of a test matrix on clean salt from the WIPP undertaken by German research groups. The work was performed at RESPEC in Rapid City, South Dakota. A rigorous Quality Assurance protocol was applied, such that corroboration provides the potential of qualifying all of the test data gathered by German research groups.« less

  20. Development of an alternate pathway for materials destined for disposition to WIPP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ayers, Georgette Y; Mckerley, Bill; Veazey, Gerald W

    2010-01-01

    The Los Alamos National Laboratory currently has an inventory of process residues that may be viable candidates for disposition to the Waste Isolation Pilot Project (WIPP) located at Carlsbad, New Mexico. A recent 'Attractiveness Level D' exemption allows for the discard of specified intractable materials regardless of the percent plutonium. However, the limits with respect to drum loadings must be met. Cementation is a key component of the aqueous nitrate flowsheet and serves as a 'bleed-off' stream for impurities separated from the plutonium during processing operations. The main 'feed' to the cementation operations are the 'bottoms' from the evaporation process.more » In the majority of cases, the cemented bottoms contain less than the allowed amount per drum for WIPP acceptance. This project would expand the route to WIPP for items that have no defined disposition path, are difficult to process, have been through multiple passes, have no current recovery operations available to recover the plutonium and that are amenable to cementation. This initial work will provide the foundation for a full scale disposition pathway of the candidate materials. Once the pathway has been expanded and a cementation matrix developed, routine discard activities will be initiated.« less

  1. Innovations in the Assay of Un-Segregated Multi-Isotopic Grade TRU Waste Boxes with SuperHENC and FRAM Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simpson, A. P.; Barber, S.; Abdurrahman, N. M.

    2006-07-01

    The Super High Efficiency Neutron Coincidence Counter (SuperHENC) was originally developed by BIL Solutions Inc., Los Alamos National Laboratory (LANL) and Rocky Flats Environmental Technology Site (RFETS) for assay of transuranic (TRU) waste in Standard Waste Boxes (SWB) at Rocky Flats. This mobile system was a key component in the shipment of over 4,000 SWBs to the Waste Isolation Pilot Plant (WIPP) in Carlsbad, New Mexico. The system was WIPP certified in 2001 and operated at the site for four years. The success of this system, a passive neutron coincidence counter combined with high resolution gamma spectroscopy, led to themore » order of two new units, delivered to Hanford in 2004. Several new challenges were faced at Hanford: For example, the original RFETS system was calibrated for segregated waste streams such that metals, plastics, wet combustibles and dry combustibles were separated by 'Item Description Codes' prior to assay. Furthermore, the RFETS mission of handling only weapons grade plutonium, enabled the original SuperHENC to benefit from the use of known Pu isotopics. Operations at Hanford, as with most other DOE sites, generate un-segregated waste streams, with a wide diversity of Pu isotopics. Consequently, the new SuperHENCs are required to deal with new technical challenges. The neutron system's software and calibration methodology have been modified to encompass these new requirements. In addition, PC-FRAM software has been added to the gamma system, providing a robust isotopic measurement capability. Finally a new software package has been developed that integrates the neutron and gamma data to provide a final assay results and analysis report. The new system's performance has been rigorously tested and validated against WIPP quality requirements. These modifications, together with the mobile platform, make the new SuperHENC far more versatile in handling diverse waste streams and allow for rapid redeployment around the DOE complex. (authors)« less

  2. Comparative study of Waste Isolation Pilot Plant (WIPP) transportation alternatives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    WIPP transportation studies in the Final Supplement Environmental Impact Statement for WIPP are the baseline for this report. In an attempt to present the most current analysis, this study incorporates the most relevant data available. The following three transportation options are evaluated for the Disposal Phase, which is assumed to be 20 years: Truck shipments, consisting of a tractor and trailer, with three TRUPACT-IIs or one RH-72B; Regular commercial train shipments consisting of up to three railcars carrying up to 18 TRUPACT-IIs or up to six RH-72Bs; Dedicated train shipments consisting of a locomotive, an idle car, railcars carrying 18more » TRUPACT-IIs or six RH-72Bs, another idle car, and a caboose or passenger car with an emergency response specialist. No other cargo is carried. This report includes: A consideration of occupational and public risks and exposures, and other environmental impacts; A consideration of emergency response capabilities; and An extimation of comparative costs.« less

  3. WIPP Hazardous Waste Facility Permit Update

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kehrman, B.; Most, W.

    2006-07-01

    The Waste Isolation Pilot Plant (WIPP) Hazardous Waste Facility Permit (HWFP) was issued on October 27, 1999 [1]. Since that time, the WIPP has sought modifications to clarify the permit language, provide alternative methods for meeting permit requirements and to update permit conditions. Significant advancements have been made in transuranic (TRU) waste management as the result of modifications to the HWFP. Among these advancements is a modification to obtain a drum age criteria (DAC) value to perform headspace gas sampling on drums to be super-compacted and placed in a 100-gallon overpack drum. In addition, the Section 311 permit modification requestmore » that would allow for more efficient waste characterization, and the modification to authorize the shipment and disposal of Remote-Handled (RH) TRU waste were merged together and submitted to the regulator as the Consolidated Permit Modification Request (PMR). The submittal of the Consolidated PMR came at the request of the regulator as part of responses to Notices of Deficiency (NODs) for the separate PMRs which had been submitted in previous years. Section 311 of the fiscal year 2004 Energy and Water Developments Appropriations Act (Public Law 108-137) [2] directs the Department of Energy to submit a permit modification that limits waste confirmation to radiography or visual examination of a statistical subpopulation of containers. Section 311 also specifically directs that disposal room performance standards be to be met by monitoring for volatile organic compounds in the underground disposal rooms. This statute translates into the elimination of other waste confirmation methods such as headspace gas sampling and analysis and solids sampling and analysis. These methods, as appropriate, will continue to be used by the generator sites during hazardous waste determinations or characterization activities. This modification is expected to reduce the overall cost of waste analysis by hundreds of millions of dollars [3]. Combining both the chap. 311 and RH TRU waste permit modification requests allows for both the regulator and DOE to expedite action on the modification requests. The Combined PMR reduces costs by having only one administrative process for both modification requests. (authors)« less

  4. Roadmap for disposal of Electrorefiner Salt as Transuranic Waste.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rechard, Robert P.; Trone, Janis R.; Kalinina, Elena Arkadievna

    The experimental breeder reactor (EBR-II) used fuel with a layer of sodium surrounding the uranium-zirconium fuel to improve heat transfer. Disposing of EBR-II fuel in a geologic repository without treatment is not prudent because of the potentially energetic reaction of the sodium with water. In 2000, the US Department of Energy (DOE) decided to treat the sodium-bonded fuel with an electrorefiner (ER), which produces metallic uranium product, a metallic waste, mostly from the cladding, and the salt waste in the ER, which contains most of the actinides and fission products. Two waste forms were proposed for disposal in a minedmore » repository; the metallic waste, which was to be cast into ingots, and the ER salt waste, which was to be further treated to produce a ceramic waste form. However, alternative disposal pathways for metallic and salt waste streams may reduce the complexity. For example, performance assessments show that geologic repositories can easily accommodate the ER salt waste without treating it to form a ceramic waste form. Because EBR-II was used for atomic energy defense activities, the treated waste likely meets the definition of transuranic waste. Hence, disposal at the Waste Isolation Pilot Plant (WIPP) in southern New Mexico, may be feasible. This report reviews the direct disposal pathway for ER salt waste and describes eleven tasks necessary for implementing disposal at WIPP, provided space is available, DOE decides to use this alternative disposal pathway in an updated environmental impact statement, and the State of New Mexico grants permission.« less

  5. Sandia Review of High Bridge Associates Report: Comparison of Plutonium Disposition Alternatives: WIPP Diluted Plutonium Storage and MOX Fuel Irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shoemaker, Paul E.; Hardin, Ernest; Park, HeeHo Daniel

    The subject report from High Bridge Associates (HBA) was issued on March 2, 2016, in reaction to a U.S. Department of Energy (DOE) program decision to pursue down-blending of surplus Pu and geologic disposal at the Waste Isolation Pilot Plant (WIPP). Sandia National Laboratories was requested by the DOE to review the technical arguments presented in the HBA report. Specifically, this review is organized around three technical topics: criticality safety, radiological release limits, and thermal impacts. Questions raised by the report pertaining to legal and regulatory requirements, safeguards and security, international agreements, and costing of alternatives, are beyond the scopemore » of this review.« less

  6. Leveraging Radioactive Waste Disposal at WIPP for Science

    NASA Astrophysics Data System (ADS)

    Rempe, N. T.

    2008-12-01

    Salt mines are radiologically much quieter than other underground environments because of ultra-low concentrations of natural radionuclides (U, Th, and K) in the host rock; therefore, the Waste Isolation Pilot Plant (WIPP), a government-owned, 655m deep geologic repository that disposes of radioactive waste in thick salt near Carlsbad, New Mexico, has for the last 15 years hosted highly radiation-sensitive experiments. Incidentally, Nature started her own low background experiment 250ma ago, preserving viable bacteria, cellulose, and DNA in WIPP salt. The Department of Energy continues to make areas of the WIPP underground available for experiments, freely offering its infrastructure and access to this unique environment. Even before WIPP started disposing of waste in 1999, the Room-Q alcove (25m x 10m x 4m) housed a succession of small experiments. They included development and calibration of neutral-current detectors by Los Alamos National Laboratory (LANL) for the Sudbury Neutrino Observatory, a proof-of-concept by Ohio State University of a flavor-sensitive neutrino detector for supernovae, and research by LANL on small solid- state dark matter detectors. Two currently active experiments support the search for neutrino-less double beta decay as a tool to better define the nature and mass of the neutrino. That these delicate experiments are conducted in close vicinity to, but not at all affected by, megacuries of radioactive waste reinforces the safety argument for the repository. Since 2003, the Majorana collaboration is developing and testing various detector designs inside a custom- built clean room in the Room-Q alcove. Already low natural background readings are reduced further by segmenting the germanium detectors, which spatially and temporally discriminates background radiation. The collaboration also demonstrated safe copper electro-forming underground, which minimizes cosmogenic background in detector assemblies. The largest currently used experimental space (100m x 10m x 6m) is the North Experimental Area (NExA). There, Enriched Xenon Observatory (EXO) collaborators have since mid-2007 been assembling and outfitting six modules and associated structures that were pre-assembled at Stanford University, then dismantled, and shipped to WIPP. Transporting the modules underground presented several interesting challenges, all of which were overcome. Access through increasingly cleaner joined modules leads to the class-100 clean room detector module. Inside, a time projection chamber (TPC) contains 200kg liquid Xe- 136 (the largest non-defense related stockpile of an enriched isotope ever assembled for research). After the experiment starts in early 2009, it is expected to run for 3-5 years. University of Pennsylvania researchers recently sampled WIPP salt to attempt measuring stable Ne-22, resulting from the interaction of cosmogenic muons with Na-23 and preserved in the halite lattice, to determine variations in the cosmic-radiation flux. They in turn could reveal the history of nearby supernovae. University of Chicago/Fermilab researchers evaluate whether to install a superheated-fluid bubble-chamber to search for weakly interacting massive particles (WIMPs). A helium-filled solar neutrino TPC, dark matter and neutron detectors, and proton-decay and supernova-neutrino detectors are other projects that were and are under discussion. Rounding out the spectrum of possibilities are experiments to investigate the effects of long-term ultra-low-dose radiation on cell cultures and laboratory animals to verify or falsify the linear, no- threshold hypothesis. WIPP welcomes additional proposals and projects.

  7. Waste Isolation Pilot Plant Materials Interface Interactions Test: Papers presented at the Commission of European Communities workshop on in situ testing of radioactive waste forms and engineered barriers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Molecke, M.A.; Sorensen, N.R.; Wicks, G.G.

    The three papers in this report were presented at the second international workshop to feature the Waste Isolation Pilot Plant (WIPP) Materials Interface Interactions Test (MIIT). This Workshop on In Situ Tests on Radioactive Waste Forms and Engineered Barriers was held in Corsendonk, Belgium, on October 13--16, 1992, and was sponsored by the Commission of the European Communities (CEC). The Studiecentrum voor Kernenergie/Centre D`Energie Nucleaire (SCK/CEN, Belgium), and the US Department of Energy (via Savannah River) also cosponsored this workshop. Workshop participants from Belgium, France, Germany, Sweden, and the United States gathered to discuss the status, results and overviews ofmore » the MIIT program. Nine of the twenty-five total workshop papers were presented on the status and results from the WIPP MIIT program after the five-year in situ conclusion of the program. The total number of published MIIT papers is now up to almost forty. Posttest laboratory analyses are still in progress at multiple participating laboratories. The first MIIT paper in this document, by Wicks and Molecke, provides an overview of the entire test program and focuses on the waste form samples. The second paper, by Molecke and Wicks, concentrates on technical details and repository relevant observations on the in situ conduct, sampling, and termination operations of the MIIT. The third paper, by Sorensen and Molecke, presents and summarizes the available laboratory, posttest corrosion data and results for all of the candidate waste container or overpack metal specimens included in the MIIT program.« less

  8. WIPP Pecos Management Reports

    EPA Pesticide Factsheets

    These reviews and evaluations compiled by Pecos Management Services, Inc. encompass the current and future WIPP activities in the program areas of TRU waste characterization, transportation, and disposal.

  9. PROBABILISTIC SAFETY ASSESSMENT OF OPERATIONAL ACCIDENTS AT THE WASTE ISOLATION PILOT PLANT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rucker, D.F.

    2000-09-01

    This report presents a probabilistic safety assessment of radioactive doses as consequences from accident scenarios to complement the deterministic assessment presented in the Waste Isolation Pilot Plant (WIPP) Safety Analysis Report (SAR). The International Council of Radiation Protection (ICRP) recommends both assessments be conducted to ensure that ''an adequate level of safety has been achieved and that no major contributors to risk are overlooked'' (ICRP 1993). To that end, the probabilistic assessment for the WIPP accident scenarios addresses the wide range of assumptions, e.g. the range of values representing the radioactive source of an accident, that could possibly have beenmore » overlooked by the SAR. Routine releases of radionuclides from the WIPP repository to the environment during the waste emplacement operations are expected to be essentially zero. In contrast, potential accidental releases from postulated accident scenarios during waste handling and emplacement could be substantial, which necessitates the need for radiological air monitoring and confinement barriers (DOE 1999). The WIPP Safety Analysis Report (SAR) calculated doses from accidental releases to the on-site (at 100 m from the source) and off-site (at the Exclusive Use Boundary and Site Boundary) public by a deterministic approach. This approach, as demonstrated in the SAR, uses single-point values of key parameters to assess the 50-year, whole-body committed effective dose equivalent (CEDE). The basic assumptions used in the SAR to formulate the CEDE are retained for this report's probabilistic assessment. However, for the probabilistic assessment, single-point parameter values were replaced with probability density functions (PDF) and were sampled over an expected range. Monte Carlo simulations were run, in which 10,000 iterations were performed by randomly selecting one value for each parameter and calculating the dose. Statistical information was then derived from the 10,000 iteration batch, which included 5%, 50%, and 95% dose likelihood, and the sensitivity of each assumption to the calculated doses. As one would intuitively expect, the doses from the probabilistic assessment for most scenarios were found to be much less than the deterministic assessment. The lower dose of the probabilistic assessment can be attributed to a ''smearing'' of values from the high and low end of the PDF spectrum of the various input parameters. The analysis also found a potential weakness in the deterministic analysis used in the SAR, a detail on drum loading was not taken into consideration. Waste emplacement operations thus far have handled drums from each shipment as a single unit, i.e. drums from each shipment are kept together. Shipments typically come from a single waste stream, and therefore the curie loading of each drum can be considered nearly identical to that of its neighbor. Calculations show that if there are large numbers of drums used in the accident scenario assessment, e.g. 28 drums in the waste hoist failure scenario (CH5), then the probabilistic dose assessment calculations will diverge from the deterministically determined doses. As it is currently calculated, the deterministic dose assessment assumes one drum loaded to the maximum allowable (80 PE-Ci), and the remaining are 10% of the maximum. The effective average of drum curie content is therefore less in the deterministic assessment than the probabilistic assessment for a large number of drums. EEG recommends that the WIPP SAR calculations be revisited and updated to include a probabilistic safety assessment.« less

  10. Thermodynamic Properties of Magnesium Chloride Hydroxide Hydrate (Mg3Cl(OH)5:4H2O, Phase 5), and Its importance to Nuclear Waste Isolation in Geological Repositories in Salt Formations

    NASA Astrophysics Data System (ADS)

    Xiong, Y.; Deng, H.; Nemer, M. B.; Johnsen, S.

    2009-12-01

    MgO (bulk, pure MgO corresponding to the mineral periclase) is the only engineered barrier certified by the Environmental Protection Agency for emplacement in the Waste Isolation Pilot Plant (WIPP) in the US, and an Mg(OH)2-based engineered barrier (bulk, pure Mg(OH)2 corresponding to brucite) is to be employed in the Asse repository in Germany. Both the WIPP and the Asse are located in salt formations. The WIPP is a U.S. Department of Energy geological repository being used for the permanent disposal of defense-related transuranic waste (TRU waste). The repository is 655 m below the surface, and is situated in the Salado Formation, a Permian salt bed mainly composed of halite, and of lesser amounts of polyhalite, anhydrite, gypsum, magnesite, clays and quartz. The WIPP Generic Weep Brine (GWB), a Na-Mg-Cl dominated brine, is associated with the Salado Formation. The previous vendor for MgO for the WIPP was Premier Chemicals and the current vendor is Martin Marietta Materials. Experimental studies of both Premier MgO and Martin Marietta MgO with the GWB at SNL indicate the formation of magnesium chloride hydroxide hydrate, Mg3Cl(OH)5:4H2O, termed as phase 5. However, this important phase is lacking in the existing thermodynamic database. In this study, the solubility constant of phase 5 is determined from a series of solubility experiments in MgCl2-NaCl solutions. The solubility constant at 25 oC for the following reaction, Mg3Cl(OH)5:4H2O + 5H+ = 3Mg2+ + 9H2O(l) + Cl- is recommended as 43.21±0.33 (2σ) based on the Specific Interaction Theory (SIT) model for extrapolation to infinite dilution. The log K obtained via the Pitzer equations is identical to the above value within the quoted uncertainty. The Gibbs free energy and enthalpy of formation for phase 5 at 25 oC are derived as -3384±2 (2σ) kJ mol-1 and -3896±6 (2σ) kJ mol-1, respectively. The standard entropy and heat capacity of phase 5 at 25 oC are estimated as 393±20 J mol-1 K-1 and 374±19 J mol-1 K-1, respectively. Phase 5, and its similar phase, phase 3 (Mg2Cl(OH)3:4H2O), could have a significant role in influencing the geochemical conditions in geological repositories for nuclear waste in salt formations where MgO or brucite is employed as engineered barriers, when Na-Mg-Cl dominated brines react with MgO or brucite. Based on our solubility constant for phase 5 in combination with the literature value for phase 3, we predict that the composition for the invariant point of phase 5 and phase 3 would be mMg = 1.70 and pmH = 8.93 in the Mg-Cl binary system. The recent WIPP Compliance Recertification Application PA Baseline Calculations indicate that phase 5 instead of phase 3 is indeed a stable phase when GWB equilibrates with actinide-source-term phases, brucite, magnesium carbonates, halite and anhydrite. 1. This research is funded by WIPP programs administered by the U.S. Department of Energy. 2. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

  11. Cf-252 Characterization Documents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feldman, Alexander

    2014-03-14

    Six documents were written by Vance and Associates under contract to the Off-Site Source Recovery Project of Los Alamos National Laboratory. These Six documents provided the basis for characterization of Californium-252 sealed sources and for the packaging and manifesting of this material for disposal at the Waste Isolation Pilot Project. The Six documents are: 1. VA-OSR-10, Development of radionuclide distributions for Cf-252 sealed sources. 2. VA-OSR-11, Uncertainty analysis for Cf-252 sealed sources. 3. VA-OSR-12, To determine the radionuclides in the waste drums containing Cf-252 sealed source waste that are required to be reported under the requirements of the WIPP WACmore » and the TRAMPAC. 4. VA-OSR-13, Development of the spreadsheet for the radiological calculations for the characterization of Cf-252 sources. 5. VA-OSR-14, Relative importance of neutron-induced fission in Cf-252 sources. 6. VA-OSR-15, Determine upper bound of decay product inventories from a drum of Cf-252 sources. These six documents provide the technical basis for the characterization of Cf-252 sources and will be part of the AK documentation required for submittal to the Central Characterization Project (CCP) of WIPP.« less

  12. Pretest reference calculation for the Heated Axisymmetric Pillar (WIPP Room H in situ experiment)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morgan, H.S.; Stone, C.M.

    A pretest reference calculation for the Heated Axisymmetric Pillar or Room H experiment is presented in this report. The Heated Axisymmetric Pillar is one of several large scale in situ experiments currently under construction near Carlsbad, New Mexico, at the site of the Waste Isolation Pilot Plant (WIPP). This test is an intermediate step in validating numerical techniques for design and performance calculations for radioactive waste repositories in salt. The test consists of a cylindrically shaped pillar, centrally located in an annular drift, which is uniformly heated by blanket heaters. These heaters produce a thermal output of 135 W/m/sup 2/.more » This load will be supplied for a period of three years. Room H is heavily instrumented for monitoring both temperature increases due to the thermal loading and deformations due to creep of the salt. Data from the experiment are not available at the present time, but the measurements for Room H will eventually be compared to the calculation presented in this report to assess and improve thermal and mechanical modeling capabilities for the WIPP. The thermal/structural model used in the calculation represents the state of the art at the present time. A large number of plots are included since an appropriate result is required for every Room H gauge location. 56 refs., 97 figs., 4 tabs.« less

  13. Waste Isolation Pilot Plant site environmental report, for calendar year 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The U.S. Department of Energy (DOE) Order 5400.1 General Environmental Protection Program, requires DOE facilities, that conduct environmental protection programs, to annually prepare a Site Environmental Report (SER). The purpose of the SER is to provide an abstract of environmental assessments conducted in order to characterize site environmental management performance, to confirm compliance with environmental standards and requirements, and to highlight significant programs and efforts of environmental merit. The content of this SER is not restricted to a synopsis of the required data, in addition, information pertaining to new and continued monitoring and compliance activities during the 1995 calendar yearmore » are also included. Data contained in this report are derived from those monitoring programs directed by the Waste Isolation Pilot Plant (WIPP) Environmental Monitoring Plan (EMP). The EMP provides inclusive guidelines implemented to detect potential impacts to the environment and to establish baseline measurements for future environmental evaluations. Surface water, groundwater. air, soil, and biotic matrices are monitored for an array of radiological and nonradiological factors. The baseline radiological surveillance program encompasses a broader geographic area that includes nearby ranches, villages, and cities. Most elements of nonradiological assessments are conducted within the geographic vicinity of the WIPP site.« less

  14. Condensed listing of surface boreholes at the Waste Isolation Pilot Plant Project through 31 December 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hill, L.R.; Aguilar, R.; Mercer, J.W.

    This report contains a condensed listing of Waste Isolation Pilot Plant (WIPP) project surface boreholes drilled for the purpose of site selection and characterization through 31 December 1995. The US Department of Energy (DOE) sponsored the drilling activities, which were conducted primarily by Sandia National Laboratories. The listing provides physical attributes such as location (township, range, section, and state-plane coordinates), elevation, and total borehole depth, as well as the purpose for the borehole, drilling dates, and information about extracted cores. The report also presents the hole status (plugged, testing, monitoring, etc.) and includes salient findings and references. Maps with boreholemore » locations and times-of-drilling charts are included.« less

  15. Interpretation of data obtained from non-destructive and destructive post-test analyses of an intact-core column of culebra dolomite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lucero, Daniel L.; Perkins, W. George

    The U.S. Department of Energy (DOE) has been developing a nuclear waste disposal facility, the Waste Isolation Pilot Plant (WIPP), located approximately 42 km east of Carlsbad, New Mexico. The WIPP is designed to demonstrate the safe disposal of transuranic wastes produced by the defense nuclear-weapons program. Pefiormance assessment analyses (U.S. DOE, 1996) indicate that human intrusion by inadvertent and intermittent drilling for resources provide the only credible mechanisms for significant releases of radionuclides horn the disposal system. These releases may occur by five mechanisms: (1) cuttings, (2) cavings, (3) spallings, (4) direct brine releases, and (5) long- term brinemore » releases. The first four mechanisms could result in immediate release of contaminant to the accessible environment. For the last mechanisq migration pathways through the permeable layers of rock above the Salado are important, and major emphasis is placed on the Culebra Member of the Rustler Formation because this is the most transmissive geologic layer in the disposal system. For reasons of initial quantity, half-life, and specific radioactivity, certain isotopes of T~ U, Am, and Pu would dominate calculated releases from the WIPP. In order to help quantifi parameters for the calculated releases, radionuclide transport experiments have been carried out using five intact-core columns obtained from the Culebra dolomite member of the Rustler Formation within the Waste Isolation Pilot Pknt (WIPP) site in southeastern New Mexico. This report deals primarily with results of analyses for 241Pu and 241Am distributions developed during transport experiments in one of these cores. All intact-core column transport experiments were done using Culebra-simukmt brine relevant to the core recovery location (the WIPP air-intake shaft - AK). Hydraulic characteristics (i.e., apparent porosity and apparent dispersion coefficient) for intact-core columns were obtained via experiments using conservative tracer `Na. Elution experiments carried out over periods of a few days with tracers `2U and `?Np indicated that these tracers were weakly retarded as indicated by delayed elution of these species. Elution experiments with tracers 24% and 24*Arn were performed, but no elution of either species was observed in any flow experiment to date, including experiments of many months' duration. In order to quanti~ retardation of the non-eluted species 24*Pu and 241Arn afler a period of brine flow, non-destructive and destructive analyses of an intact-core column were carried out to determine distribution of these actinides in the rock. Analytical results indicate that the majority of the 241Am is present very near the top (injection) surface of the core (possibly as a precipitate), and that the majority of the 241Pu is dispersed with a very high apparent retardation value. The 24]Pu distribution is interpreted using a single-porosity advection-dispersion model, and an approximate retardation value is reported for this actinide. The specific radionuclide isotopes used in these experiments were chosen to facilitate analysis. Even though these isotopes are not necessarily the same as those that are most important to WIPP performance, they are isotopes of the same elements, and their chemical and transport properties are therefore identical to those of isotopes in the inventory.« less

  16. Role of Brine Chemistry and Sorption in Potential Long-Term Storage of Radioactive Waste in Geologic Salt Formations: Experimental Evaluation of Sorption Parameters

    NASA Astrophysics Data System (ADS)

    Dittrich, T. M.; Emerson, H. P.; Michael, D. P.; Reed, D. T.

    2016-12-01

    Bedded geologic salt formations have been shown to have many favorable properties for the disposal of radioactive waste (i.e., reducing conditions, fracture healing). Performance assessment (PA) modeling for a 10,000 year period for the Waste Isolation Pilot Plant (WIPP) near Carlsbad, NM have predicted an extremely low risk of radioactive material reaching the surrounding environment after the 100 year period required for creep to seal the waste panels and access shafts. Human intrusion caused by drilling operations for oil and gas exploration is the main pathway of concern for environmental release of radioactive material due to pressurized brine pockets located within the salt formation below the repository. Our work focuses on the long-term capability of salt repositories and the associated geologic media to safely isolate stored radioactive waste from the surrounding environment, even in the event of a human intrusion scenario such as a direct brine release (DBR) due to a drilling operation intersecting a brine pocket. In particular, we are revisiting the degree of conservatism in the estimated sorption partition coefficients (Kds) used in the PA model based on complementary batch and column experimental methods (Dittrich and Reimus, 2016). The main focus of this work is to investigate the role of ionic strength, solution chemistry, and oxidation state (III-VI) in actinide sorption to dolomite rock. Based on redox conditions and solution chemistry expected in the WIPP, possible actinide species include Pu(III), Pu(IV), U(IV), U(VI), Np(IV), Np(V), Am(III), and Th(IV). We will present (1) a conceptual overview of Kd use in the PA model, (2) background and evolution of the Kd ranges used, and (3) results from batch and column experiments and model predictions for Kds with WIPP-relevant geologic media. We will also briefly discuss the challenges of upscaling from lab experiments to field scale predictions, the presence of ligands (e.g., acetate, citrate, EDTA), the role of colloids and microbes, and the effect of engineered barrier materials (e.g., MgO) on sorption and transport conditions. References: Dittrich, T.M., Reimus, P.W. 2016. Reactive transport of uranium in fractured crystalline rock: Upscaling in time and distance. J Environ Manage 165, 124-132.

  17. Expert System for Building TRU Waste Payloads - 13554

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruemmer, Heather; Slater, Bryant

    2013-07-01

    The process for grouping TRU waste drums into payloads for shipment to the Waste Isolation Pilot Plant (WIPP) for disposal is a very complex process. Transportation and regulatory requirements must be met, along with striving for the goals of shipment efficiency: maximize the number of waste drums in a shipment and minimize the use of empty drums which take up precious underground storage space. The restrictions on payloads range from weight restrictions, to limitations on flammable gas in the headspace, to minimum TRU alpha activity concentration requirements. The Overpack and Payload Assistant Tool (OPAT) has been developed as a mixed-initiativemore » intelligent system within the WIPP Waste Data System (WDS) to guide the construction of multiple acceptable payloads. OPAT saves the user time while at the same time maximizes the efficiency of shipments for the given drum population. The tool provides the user with the flexibility to tune critical factors that guide OPAT's operation based on real-time feedback concerning the results of the execution. This feedback complements the user's external knowledge of the drum population (such as location of drums, known challenges, internal shipment goals). This work demonstrates how software can be utilized to complement the unique domain knowledge of the users. The mixed-initiative approach combines the insight and intuition of the human expert with the proficiency of automated computational algorithms. The result is the ability to thoroughly and efficiently explore the search space of possible solutions and derive the best waste management decision. (authors)« less

  18. Waste Isolation Pilot Plant (WIPP) fact sheet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-10-01

    Pursuant to the Solid Waste Disposal Act, as amended by the Resource Conservation and Recovery Act (RCRA), as amended (42 USC 6901, et seq.), and the New Mexico Hazardous Waste Act (Section 74-4-1 et seq., NMSA 1978), Permit is issued to the owner and operator of the US DOE, WIPP site (hereafter called the Permittee(s)) to operate a hazardous waste storage facility consisting of a container storage unit (Waste Handling Building) and two Subpart X miscellaneous below-ground storage units (Bin Scale Test Rooms 1 and 3), all are located at the above location. The Permittee must comply with all termsmore » and conditions of this Permit. This Permit consists of the conditions contained herein, including the attachments. Applicable regulations cited are the New Mexico Hazardous Waste Management Regulations, as amended 1992 (HWMR-7), the regulations that are in effect on the date of permit issuance. This Permit shall become effective upon issuance by the Secretary of the New Mexico Environment Department and shall be in effect for a period of ten (10) years from issuance. This Permit is also based on the assumption that all information contained in the Permit application and the administrative record is accurate and that the activity will be conducted as specified in the application and the administrative record. The Permit application consists of Revision 3, as well as associated attachments and clarifying information submitted on January 25, 1993, and May 17, 1993.« less

  19. TRU waste lead organization -- WIPP Project Office Interface Management semi-annual report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guerrero, J.V.; Gorton, J.M.

    1985-05-01

    The Charter establishing the Interface Control Board and the administrative organization to manage the interface of the TRU Waste Lead Organization and the WIPP Project Office also requires preparation of a summary report describing significant interface activities.'' This report includes a discussion of Interface Working Group (IWG) recommendations and resolutions considered and implemented'' over the reporting period October 1984 to March 1985.

  20. Effects of Heat Generation on Nuclear Waste Disposal in Salt

    NASA Astrophysics Data System (ADS)

    Clayton, D. J.

    2008-12-01

    Disposal of nuclear waste in salt is an established technology, as evidenced by the successful operations of the Waste Isolation Pilot Plant (WIPP) since 1999. The WIPP is located in bedded salt in southeastern New Mexico and is a deep underground facility for transuranic (TRU) nuclear waste disposal. There are many advantages for placing radioactive wastes in a geologic bedded-salt environment. One desirable mechanical characteristic of salt is that it flows plastically with time ("creeps"). The rate of salt creep is a strong function of temperature and stress differences. Higher temperatures and deviatoric stresses increase the creep rate. As the salt creeps, induced fractures may be closed and eventually healed, which then effectively seals the waste in place. With a backfill of crushed salt emplaced around the waste, the salt creep can cause the crushed salt to reconsolidate and heal to a state similar to intact salt, serving as an efficient seal. Experiments in the WIPP were conducted to investigate the effects of heat generation on the important phenomena and processes in and around the repository (Munson et al. 1987; 1990; 1992a; 1992b). Brine migration towards the heaters was induced from the thermal gradient, while salt creep rates showed an exponential dependence on temperature. The project "Backfill and Material Behavior in Underground Salt Repositories, Phase II" (BAMBUS II) studied the crushed salt backfill and material behavior with heat generation at the Asse mine located near Remlingen, Germany (Bechthold et al. 2004). Increased salt creep rates and significant reconsolidation of the crushed salt were observed at the termination of the experiment. Using the data provided from both projects, exploratory modeling of the thermal-mechanical response of salt has been conducted with varying thermal loading and waste spacing. Increased thermal loading and decreased waste spacing drive the system to higher temperatures, while both factors are desired to reduce costs, as well as decrease the overall footprint of the repository. Higher temperatures increase the rate of salt creep which then effectively seals the waste quicker. Data of the thermal-mechanical response of salt at these higher temperatures is needed to further validate the exploratory modeling and provide meaningful constraints on the repository design. Sandia is a multi program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04- 94AL85000.

  1. Column Experiments for Radionuclide Adsorption Studies of the Culebra Dolomite: Retardation Parameter Estimation for Non-Eluted Actinide Species

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, G.O.; Lucero, D.A.; Perkins, W.G.

    The U.S. Department of Energy (DOE) has been developing a nuclear waste disposal facility, the Waste Isolation Pilot Plant (WIPP), located approximately 42 km east of Carlsbad, New Mexico. The WIPP is designed to demonstrate the safe disposal of transuranic wastes produced by the defense nuclear-weapons program. Performance assessment analyses (U.S. DOE, 1996) indicate that human intrusion by inadvertent and intermittent drilling for resources provide the only credible mechanisms for significant releases of radionuclides horn the disposal system. These releases may occur by five mechanisms: (1) cuttings, (2) cavings, (3) spallings, (4) direct brine releases, and (5) long-term brine releases.more » The first four mechanisms could result in immediate release of contaminant to the accessible environment. For the last mechanism, migration pathways through the permeable layers of rock above the Salado are important, and major emphasis is placed on the Culebra Member of the Rustler Formation because this is the most transmissive geologic layer in the disposal system. For reasons of initial quantity, half-life, and specific radioactivity, certain isotopes of Th, U, Am, and Pu would dominate calculated releases from the WIPP. In order to help quanti~ parameters for the calculated releases, radionuclide transport experiments have been carried out using five intact-core columns obtained from the Culebra dolomite member of the Rustler Formation within the Waste Isolation Pilot Plant (WIPP) site in southeastern New Mexico. This report deals primarily with results of mathematical analyses related to the retardation of %J%, 24%, and 24'Am in two of these cores (B-Core - VPX26-11A and C-Core - VPX28-6C). All B-Core transport experiments were done using Culebra-simukmt brine relevant to the core recovery location (the WIPP air-intake shaft - AIS). Most experiments with C-Core were done with AIS brine with some admixture of a brine composition (ERDA-6) that simulated deeper formation brines. No significant changes in transport behavior were observed for changes in brine. Hydraulic characteristics (i.e., apparent porosity and apparent dispersion coefficient) for the cores were obtained via experiments using conservative tracer `Na. Elution experiments carried out over periods of a few days with tracers `*U and %Np indicated that these tracers were weakly retarded as indicated by delayed elution of these species. Elution experiments with tracers `%, 24'Pu, and 24'Ani were performed, but no elution of any of these species was observed in any flow experiment to date, including experiments of up to two years duration. However, B-Core was subjected to tomographic analysis from which a retardation factor can be inferred for%. Moreover, the fact of non- elution for 24*Pu and 24'Am after more than two years brine flow through C-Core can be coupled with the minimum detectable activity for each of these species to compute minimum retardation factors in C-Core. The retardation factors for all three species can then be coupled with the apparent hydraulic characteristics to estimate an apparent minimum solutionhock distribution coefficient, &, for each actinide. The specific radionuclide isotopes used in these experiments were chosen to facilitate analysis. Even though these isotopes are not necessarily the same as those that are most important to WIPP performance, they are isotopes of the same elements, and . their chemical and transport properties are therefore identical to those of isotopes in the WIPP inventory. The retardation factors and & values deduced from experimental results strongly support the contention that sorption in the Culebra provides an effective barrier to release of Th, Pu, and Am during the regulatory period.« less

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, Anderson; Basabilvazo, George T.

    The purpose of the Waste Isolation Pilot Plant (WIPP) Annual Site Environmental Report for 2016 (ASER) is to provide the information required by U.S. Department of Energy (DOE) Order 231.1B, Environment, Safety, and Health Reporting. The DOE Carlsbad Field Office (CBFO) and the management and operating contractor (MOC) maintain and preserve the environmental resources at the WIPP facility. DOE Order 231.1B; DOE Order 436.1, Departmental Sustainability; and DOE Order 458.1, Radiation Protection of the Public and the Environment, require that the affected environment at and near DOE facilities be monitored to ensure the safety and health of the public andmore » workers, and preservation of the environment. This report was prepared in accordance with DOE Order 231.1B, which requires DOE facilities to submit an ASER to the DOE Headquarters Chief Health, Safety, and Security Officer.« less

  3. Sandia and the Waste Isolation Pilot Plant, 1974--1999

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MORA,CARL J.

    2000-04-11

    Engineers have learned to design and build big projects, which certainly describes the WIPP project, but also includes defense projects, highway networks, space exploration, the Internet, etc., through what has been called a messily complex embracing of contradictions. When something massive and complicated has to be built these days, it leads to a protracted political process in which every special interest makes a stand, lobbyists exert what influence they can, lawmakers bicker, contractors change things, Congress struggles with costs, environmentalists hold things up--and this is good. It may seem amazing that anything gets done, but when it does, everyone hasmore » had their say. It's an intensely democratic, even if expensive and time-consuming, process. The corporate historian of Sandia National Laboratories presents a unique background of the WIPP project and Sandia's part in it.« less

  4. Actinide Sorption in a Brine/Dolomite Rock System: Evaluating the Degree of Conservatism in Kd Ranges used in Performance Assessment Modeling for the WIPP Nuclear Waste Repository

    NASA Astrophysics Data System (ADS)

    Dittrich, T. M.; Reed, D. T.

    2015-12-01

    The Waste Isolation Pilot Plant (WIPP) near Carlsbad, NM is the only operating nuclear waste repository in the US and has been accepting transuranic (TRU) waste since 1999. The WIPP is located in a salt deposit approximately 650 m below the surface and performance assessment (PA) modeling for a 10,000 year period is required to recertify the operating license with the US EPA every five years. The main pathway of concern for environmental release of radioactivity is a human intrusion caused by drilling into a pressurized brine reservoir below the repository. This could result in the flooding of the repository and subsequent transport in the high transmissivity layer (dolomite-rich Culebra formation) above the waste disposal rooms. We evaluate the degree of conservatism in the estimated sorption partition coefficients (Kds) ranges used in the PA based on an approach developed with granite rock and actinides (Dittrich and Reimus, 2015; Dittrich et al., 2015). Sorption onto the waste storage material (Fe drums) may also play a role in mobile actinide concentrations. We will present (1) a conceptual overview of how Kds are used in the PA model, (2) technical background of the evolution of the ranges and (3) results from batch and column experiments and model predictions for Kds with WIPP dolomite and clays, brine with various actinides, and ligands (e.g., acetate, citrate, EDTA) that could promote transport. The current Kd ranges used in performance models are based on oxidation state and are 5-400, 0.5-10,000, 0.03-200, and 0.03-20 mL g-1 for elements with oxidation states of III, IV, V, and VI, respectively. Based on redox conditions predicted in the brines, possible actinide species include Pu(III), Pu(IV), U(IV), U(VI), Np(IV), Np(V), Am(III), and Th(IV). We will also discuss the challenges of upscaling from lab experiments to field scale predictions, the role of colloids, and the effect of engineered barrier materials (e.g., MgO) on transport conditions. Dittrich, T.M., Reimus, P.W. 2015. Uranium transport in a crushed granodiorite: experiments and reactive transport modeling. J Contam Hydrol 175-176: 44-59. Dittrich, T.M., Boukhalfa, H., Ware, S.D., Reimus, P.W. 2015. Laboratory investigation of the role of desorption kinetics on americium transport associated with bentonite colloids. J Environ Radioactiv 148: 170-182.

  5. Anthropogenic influences on groundwater in the vicinity of a long-lived radioactive waste repository: Anthropogenic influences on groundwater

    DOE PAGES

    Thomas, Matthew A.; Kuhlman, Kristopher L.; Ward, Anderson L.

    2017-04-25

    The groundwater flow system in the Culebra Dolomite Member (Culebra) of the Permian Rustler Formation is a potential radionuclide release pathway from the Waste Isolation Pilot Plant (WIPP), the only deep geological repository for transuranic waste in the United States. We did not expect that early conceptual models of the Culebra, groundwater levels would fluctuate markedly, except in response to long-term climatic changes, with response times on the order of hundreds to thousands of years. Recent groundwater pressures measured in monitoring wells record more than 25 m of drawdown. The fluctuations are attributed to pumping activities at a privately-owned wellmore » that may be associated with the demand of the Permian Basin hydrocarbon industry for water. Furthermore, the unprecedented magnitude of drawdown provides an opportunity to quantitatively assess the influence of unplanned anthropogenic forcings near the WIPP. Spatially variable realizations of Culebra saturated hydraulic conductivity and storativity were used to develop groundwater flow models to estimate a pumping rate for the private well and investigate its effect on advective transport. Simulated drawdown shows reasonable agreement with observations (average Model Efficiency coefficient = 0.7). Steepened hydraulic gradients associated with the pumping reduce estimates of conservative particle travel times across the domain by one-half and shift the intersection of the average particle track with the compliance boundary by more than two kilometers. Finally, the value of the transient simulations conducted for this study lie in their ability to (i) improve understanding of the Culebra groundwater flow system and (ii) challenge the notion of time-invariant land use in the vicinity of the WIPP.« less

  6. Pretest reference calculation for the 18-W/m/sup 2/ Mockup for Defense High-Level Waste (WIPP Room A in situ experiment)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morgan, H.S.; Stone, C.M.

    A pretest reference calculation for the 18-W/m/sup 2/ Mockup for Defense High-Level Waste (DHLW) or Room A experiment is presented in this report. The mockup is one of several large scale in situ experiments currently under construction near Carlsbad, New Mexico, at the site of the Waste Isolation Pilot Plant (WIPP). The 18-W/m/sup 2/ test is an in situ experiment developed to simulate closely the Reference Repository Conditions (RRC) for DHLW in salt. The test consists of three long, parallel rooms (A1, A2, A3) which are heated by canister heaters placed in the floor of each room. These heaters producemore » thermal loading which simulates an areal heat output of 18-W/m/sup 2/ for Room A2, which is the focus of the experiment. This load will be supplied for a period of three years. Rooms A1, A2, and A3 are heavily instrumented for monitoring both temperature increases due to the thermal loading and deformations due to creep of the salt. Data from the experiment are not available at the present time, but the measurements for Room A2 will eventually be compared to the results for Room A2 presented here to assess and improve thermal and mechanical modeling capabilities for the WIPP. The thermal/structural model used here represents the state-of-the-art at the present time. A large number of plots are included since an appropriate result is presented for every Room A2 gauge location. 55 refs., 70 figs., 4 tabs.« less

  7. Anthropogenic influences on groundwater in the vicinity of a long-lived radioactive waste repository: Anthropogenic influences on groundwater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, Matthew A.; Kuhlman, Kristopher L.; Ward, Anderson L.

    The groundwater flow system in the Culebra Dolomite Member (Culebra) of the Permian Rustler Formation is a potential radionuclide release pathway from the Waste Isolation Pilot Plant (WIPP), the only deep geological repository for transuranic waste in the United States. We did not expect that early conceptual models of the Culebra, groundwater levels would fluctuate markedly, except in response to long-term climatic changes, with response times on the order of hundreds to thousands of years. Recent groundwater pressures measured in monitoring wells record more than 25 m of drawdown. The fluctuations are attributed to pumping activities at a privately-owned wellmore » that may be associated with the demand of the Permian Basin hydrocarbon industry for water. Furthermore, the unprecedented magnitude of drawdown provides an opportunity to quantitatively assess the influence of unplanned anthropogenic forcings near the WIPP. Spatially variable realizations of Culebra saturated hydraulic conductivity and storativity were used to develop groundwater flow models to estimate a pumping rate for the private well and investigate its effect on advective transport. Simulated drawdown shows reasonable agreement with observations (average Model Efficiency coefficient = 0.7). Steepened hydraulic gradients associated with the pumping reduce estimates of conservative particle travel times across the domain by one-half and shift the intersection of the average particle track with the compliance boundary by more than two kilometers. Finally, the value of the transient simulations conducted for this study lie in their ability to (i) improve understanding of the Culebra groundwater flow system and (ii) challenge the notion of time-invariant land use in the vicinity of the WIPP.« less

  8. FY15 Report on Thermomechanical Testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, Francis D.; Buchholz, Stuart

    2015-08-01

    Sandia is participating in the third phase of a United States (US)-German Joint Project that compares constitutive models and simulation procedures on the basis of model calculations of the thermomechanical behavior and healing of rock salt (Salzer et al. 2015). The first goal of the project is to evaluate the ability of numerical modeling tools to correctly describe the relevant deformation phenomena in rock salt under various influences. Among the numerical modeling tools required to address this are constitutive models that are used in computer simulations for the description of the thermal, mechanical, and hydraulic behavior of the host rockmore » under various influences and for the long-term prediction of this behavior. Achieving this goal will lead to increased confidence in the results of numerical simulations related to the secure disposal of radioactive wastes in rock salt. Results of the Joint Project may ultimately be used to make various assertions regarding stability analysis of an underground repository in salt during the operating phase as well as long-term integrity of the geological barrier in the post-operating phase A primary evaluation of constitutive model capabilities comes by way of predicting large-scale field tests. The Joint Project partners decided to model Waste Isolation Pilot Plant (WIPP) Rooms B & D which are full-scale rooms having the same dimensions. Room D deformed under natural, ambient conditions while Room B was thermally driven by an array of waste-simulating heaters (Munson et al. 1988; 1990). Existing laboratory test data for WIPP salt were carefully scrutinized and the partners decided that additional testing would be needed to help evaluate advanced features of the constitutive models. The German partners performed over 140 laboratory tests on WIPP salt at no charge to the US Department of Energy (DOE).« less

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, J.; Ajo, H.; Brown, L.

    Analysis of the recent WIPP samples are summarized in this report; WIPP Cam Filters 4, 6, 9 (3, 7, 11 were analyzed with FAS-118 in a separate campaign); WIPP Drum Lip R16 C4; WIPP Standard Waste Box R15 C5; WIPP MgO R16 C2; WIPP MgO R16 C4; WIPP MgO R16 C6; LANL swipes of parent drum; LANL parent drum debris; LANL parent drum; IAEA Swipe; Unused “undeployed” Swheat; Unused “undeployed” MgO; and Masselin cloth “smears”. Analysis showed that the MgO samples were very pure with low carbonate and water content. Other samples showed the expected dominant presence of Mg, Namore » and Pb. Parent drum debris sample was mildly acidic. Interpretation of results is not provided in this document, but rather to present and preserve the analytical work that was performed. The WIPP Technical Analysis Team is responsible for result interpretation which will be written separately.« less

  10. Durability of concrete materials in high-magnesium brine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wakeley, L.D.; Poole, T.S.; Burkes, J.P.

    1994-03-01

    Cement pastes and mortars representing 11 combinations of candidate concrete materials were cast in the laboratory and monitored for susceptibility to chemical deterioration in high-magnesium brine. Mixtures were selected to include materials included in the current leading candidate concrete for seals at the Waste Isolation Pilot Plant (WIPP). Some materials were included in the experimental matrix to answer questions that had arisen during study of the concrete used for construction of the liner of the WIPP waste-handling shaft. Mixture combinations compared Class C and Class F fly ashes, presence or absence of an expansive component, and presence or absence ofmore » salt as a mixture component. Experimental conditions exposed the pastes and mortars to extreme conditions, those being very high levels of Mg ion and an effectively unlimited supply of brine. All pastes and mortars showed deterioration with brine exposure. In general, mortars deteriorated more extensively than the corresponding pastes. Two-inch cube specimens of mortar were not uniformly deteriorated, but showed obvious zoning even after a year in the brine, with a relatively unreacted zone remaining at the center of each cube. Loss of calcium from the calcium hydroxide of paste/aggregate interfaces caused measurable strength loss in the reacted zone comprising the outer portion of every mortar specimen. The current candidate mass concrete for WIPP seals includes salt as an initial component, and has a relatively closed initial microstructure. Both of these features contribute to its suitability for use in large placements within the Salado Formation.« less

  11. Benchmarking transportation logistics practices for effective system planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thrower, A.W.; Dravo, A.N.; Keister, M.

    2007-07-01

    This paper presents preliminary findings of an Office of Civilian Radioactive Waste Management (OCRWM) benchmarking project to identify best practices for logistics enterprises. The results will help OCRWM's Office of Logistics Management (OLM) design and implement a system to move spent nuclear fuel (SNF) and high-level radioactive waste (HLW) to the Yucca Mountain repository for disposal when that facility is licensed and built. This report suggests topics for additional study. The project team looked at three Federal radioactive material logistics operations that are widely viewed to be successful: (1) the Waste Isolation Pilot Plant (WIPP) in Carlsbad, New Mexico; (2)more » the Naval Nuclear Propulsion Program (NNPP); and (3) domestic and foreign research reactor (FRR) SNF acceptance programs. (authors)« less

  12. Anoxic Corrosion of Steel and Lead in Na - Cl ± Mg-Dominated Brines in Atmospheres Containing CO2

    NASA Astrophysics Data System (ADS)

    Roselle, G. T.; Johnsen, S.; Allen, C.; Roselle, R.

    2009-12-01

    The Waste Isolation Pilot Plant (WIPP) is a deep geologic repository developed by the U.S. Department of Energy for the disposal of transuranic radioactive waste in bedded salt (Permian Salado Fm.). In order to minimize radionuclide release from the repository it is desirable to maintain these species in their least-soluble form (i.e., low oxidation states). Post-closure conditions in the WIPP will control the speciation and solubility of radionuclides in the waste. Microbially-produced CO2 from cellulosic, plastic and rubber materials in the waste may acidify any brine present and increase the actinide solubilities. Thus, the DOE emplaces MgO in the repository to buffer fCO2 and pH within ranges favoring lower actinide solubilities. Large quantities of low-C steel and Pb present in the WIPP may also consume CO2. We present initial results from a series of multiyear experiments investigating the corrosion of steel and Pb alloys under WIPP-relevant conditions. The objective is to determine the extent to which these alloys consume CO2 via the formation of carbonates or other phases, potentially supporting MgO in CO2 sequestration. In these experiments steel and Pb coupons are immersed in brines under WIPP-relevant conditions using a continuous gas flow-through system. The experimental apparatus maintains the following conditions: pO2 < 5 ppm; temperature of 26 °C; relative humidity at 78%±10%; and a range of pCO2 values (0, 350, 1500 and 3500 ppm, balance N2). Four high-ionic-strength-brines are used: Generic Weep Brine (GWB), a Na-Mg-Cl dominated brine associated with the Salado Fm.; Energy Research and Development Administration WIPP Well 6 (ERDA-6), a predominately Na-Cl brine; GWB with organic ligands (EDTA, acetate, citrate, and oxalate); and ERDA-6 with the same organic ligands. Steel coupons removed after 6 months show formation of several phases dependent on the pCO2. SEM analysis with EDS shows the presence of a green Fe (±Mg)-chlori-hydroxide phase at pCO2 values <1500 ppm. At higher pCO2 the dominant corrosion product is a Fe-Mg-Ca hydroxicarbonate phase. Lead coupons show no corrosion products at lower pCO2 values but significant formation of a Pb-Ca hydroxicarbonate phase at pCO2 > 350 ppm. Multiple cleaning cycles were used to remove all corrosion products from the coupons, which were then weighed to determine corrosive mass loss. These data are used to calculate average corrosion rates for each experimental condition. The data show that steel corrosion rates are a strong function of pCO2 for all brine types. ERDA-6 brines appear to be more corrosive than GWB brines. Steel corrosion rates vary from 0.08 ± 0.07 µm/yr at 0 ppm CO2 to 1.20 ± 0.25 µm/yr at 3500 ppm CO2. Corrosion rates for Pb coupons show no consistent trend as a function of pCO2 or brine type. Lead corrosion rates range from 0.18 ± 0.22 to 0.95 ± 0.56 µm/yr. This research is funded by WIPP programs administered by the U.S. Department of Energy. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

  13. Deep Geologic Nuclear Waste Disposal - No New Taxes - 12469

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conca, James; Wright, Judith

    2012-07-01

    To some, the perceived inability of the United States to dispose of high-level nuclear waste justifies a moratorium on expansion of nuclear power in this country. Instead, it is more an example of how science yields to social pressure, even on a subject as technical as nuclear waste. Most of the problems, however, stem from confusion on the part of the public and their elected officials, not from a lack of scientific knowledge. We know where to put nuclear waste, how to put it there, how much it will cost, and how well it will work. And it's all aboutmore » the geology. The President's Blue Ribbon Commission on America's Nuclear Future has drafted a number of recommendations addressing nuclear energy and waste issues (BRC 2011) and three recommendations, in particular, have set the stage for a new strategy to dispose of high-level nuclear waste and to manage spent nuclear fuel in the United States: 1) interim storage for spent nuclear fuel, 2) resumption of the site selection process for a second repository, and 3) a quasi-government entity to execute the program and take control of the Nuclear Waste Fund in order to do so. The first two recommendations allow removal and storage of spent fuel from reactor sites to be used in the future, and allows permanent disposal of actual waste, while the third controls cost and administration. The Nuclear Waste Policy Act of 1982 (NPWA 1982) provides the second repository different waste criteria, retrievability, and schedule, so massive salt returns as the candidate formation of choice. The cost (in 2007 dollars) of disposing of 83,000 metric tons of heavy metal (MTHM) high-level waste (HLW) is about $ 83 billion (b) in volcanic tuff, $ 29 b in massive salt, and $ 77 b in crystalline rock. Only in salt is the annual revenue stream from the Nuclear Waste Fund more than sufficient to accomplish this program without additional taxes or rate hikes. The cost is determined primarily by the suitability of the geologic formation, i.e., how well it performs on its own for millions of years with little engineering assistance from humans. It is critical that the states most affected by this issue (WA, SC, ID, TN, NM and perhaps others) develop an independent multi-state agreement in order for a successful program to move forward. Federal approval would follow. Unknown to most, the United States has a successful operating deep permanent geologic nuclear repository for high and low activity waste, called the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico. Its success results from several factors, including an optimal geologic and physio-graphic setting, a strong scientific basis, early regional community support, frequent interactions among stakeholders at all stages of the process, long-term commitment from the upper management of the U.S. Department of Energy (DOE) over several administrations, strong New Mexico State involvement and oversight, and constant environmental monitoring from before nuclear waste was first emplaced in the WIPP underground (in 1999) to the present. WIPP is located in the massive bedded salts of the Salado Formation, whose geological, physical, chemical, redox, thermal, and creep-closure properties make it an ideal formation for long-term disposal, long-term in this case being greater than 200 million years. These properties also mean minimal engineering requirements as the rock does most of the work of isolating the waste. WIPP has been operating for twelve years, and as of this writing, has disposed of over 80,000 m{sup 3} of nuclear weapons waste, called transuranic or TRU waste (>100 nCurie/g but <23 Curie/1000 cm{sup 3}) including some high activity waste from reprocessing of spent fuel from old weapons reactors. All nuclear waste of any type from any source can be disposed in this formation better, safer and cheaper than in any other geologic formation. At the same time, it is critical that we complete the Yucca Mountain license application review so as not to undermine the credibility of the Nuclear Regulatory Commission and the scientific community. (authors)« less

  14. Compaction behavior of surrogate degraded emplaced WIPP waste.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Broome, Scott Thomas; Bronowski, David R.; Kuthakun, Souvanny James

    The present study results are focused on laboratory testing of surrogate waste materials. The surrogate wastes correspond to a conservative estimate of degraded Waste Isolation Pilot Plant (WIPP) containers and TRU waste materials at the end of the 10,000 year regulatory period. Testing consists of hydrostatic, triaxial, and uniaxial strain tests performed on surrogate waste recipes that were previously developed by Hansen et al. (1997). These recipes can be divided into materials that simulate 50% and 100% degraded waste by weight. The percent degradation indicates the anticipated amount of iron corrosion, as well as the decomposition of cellulosics, plastics, andmore » rubbers (CPR). Axial, lateral, and volumetric strain and axial, lateral, and pore stress measurements were made. Two unique testing techniques were developed during the course of the experimental program. The first involves the use of dilatometry to measure sample volumetric strain under a hydrostatic condition. Bulk moduli of the samples measured using this technique were consistent with those measured using more conventional methods. The second technique involved performing triaxial tests under lateral strain control. By limiting the lateral strain to zero by controlling the applied confining pressure while loading the specimen axially in compression, one can maintain a right-circular cylindrical geometry even under large deformations. This technique is preferred over standard triaxial testing methods which result in inhomogeneous deformation or (3z(Bbarreling(3y. (BManifestations of the inhomogeneous deformation included non-uniform stress states, as well as unrealistic Poissons ratios (> 0.5) or those that vary significantly along the length of the specimen. Zero lateral strain controlled tests yield a more uniform stress state, and admissible and uniform values of Poissons ratio.« less

  15. A New Concept: Use of Negotiations in the Hazardous Waste Facility Permitting Process in New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, G.J.; Rose, W.M.; Domenici, P.V.

    This paper describes a unique negotiation process leading to authorization of the U.S. Department of Energy (DOE) to manage and dispose remote-handled (RH) transuranic (TRU) mixed wastes at the Waste Isolation Pilot Plant (WIPP). The negotiation process involved multiple entities and individuals brought together under authority of the New Mexico Environment Department (NMED) to discuss and resolve technical and facility operational issues flowing from an NMED-issued hazardous waste facility Draft Permit. The novel negotiation process resulted in numerous substantive changes to the Draft Permit, which were ultimately memorialised in a 'Draft Permit as Changed'. This paper discusses various aspects ofmore » the negotiation process, including events leading to the negotiations, regulatory basis for the negotiations, negotiation participants, and benefits of the process. (authors)« less

  16. Mixed-layered bismuth-oxygen-iodine materials for capture and waste disposal of radioactive iodine

    DOEpatents

    Krumhansl, James L; Nenoff, Tina M

    2013-02-26

    Materials and methods of synthesizing mixed-layered bismuth oxy-iodine materials, which can be synthesized in the presence of aqueous radioactive iodine species found in caustic solutions (e.g. NaOH or KOH). This technology provides a one-step process for both iodine sequestration and storage from nuclear fuel cycles. It results in materials that will be durable for repository conditions much like those found in Waste Isolation Pilot Plant (WIPP) and estimated for Yucca Mountain (YMP). By controlled reactant concentrations, optimized compositions of these mixed-layered bismuth oxy-iodine inorganic materials are produced that have both a high iodine weight percentage and a low solubility in groundwater environments.

  17. Waste Isolation Pilot Plant Salt Decontamination Testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rick Demmer; Stephen Reese

    2014-09-01

    On February 14, 2014, americium and plutonium contamination was released in the Waste Isolation Pilot Plant (WIPP) salt caverns. At the request of WIPP’s operations contractor, Idaho National Laboratory (INL) personnel developed several methods of decontaminating WIPP salt, using surrogate contaminants and also americium (241Am). The effectiveness of the methods is evaluated qualitatively, and to the extent possible, quantitatively. One of the requirements of this effort was delivering initial results and recommendations within a few weeks. That requirement, in combination with the limited scope of the project, made in-depth analysis impractical in some instances. Of the methods tested (dry brushing,more » vacuum cleaning, water washing, strippable coatings, and mechanical grinding), the most practical seems to be water washing. Effectiveness is very high, and it is very easy and rapid to deploy. The amount of wastewater produced (2 L/m2) would be substantial and may not be easy to manage, but the method is the clear winner from a usability perspective. Removable surface contamination levels (smear results) from the strippable coating and water washing coupons found no residual removable contamination. Thus, whatever is left is likely adhered to (or trapped within) the salt. The other option that shows promise is the use of a fixative barrier. Bartlett Nuclear, Inc.’s Polymeric Barrier System (PBS) proved the most durable of the coatings tested. The coatings were not tested for contaminant entrapment, only for coating integrity and durability.« less

  18. Thermal/structural modeling of a large scale in situ overtest experiment for defense high level waste at the Waste Isolation Pilot Plant Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morgan, H.S.; Stone, C.M.; Krieg, R.D.

    Several large scale in situ experiments in bedded salt formations are currently underway at the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico, USA. In these experiments, the thermal and creep responses of salt around several different underground room configurations are being measured. Data from the tests are to be compared to thermal and structural responses predicted in pretest reference calculations. The purpose of these comparisons is to evaluate computational models developed from laboratory data prior to fielding of the in situ experiments. In this paper, the computational models used in the pretest reference calculation for one of themore » large scale tests, The Overtest for Defense High Level Waste, are described; and the pretest computed thermal and structural responses are compared to early data from the experiment. The comparisons indicate that computed and measured temperatures for the test agree to within ten percent but that measured deformation rates are between two and three times greater than corresponsing computed rates. 10 figs., 3 tabs.« less

  19. Integration of Thirty Years of Hydrogeological Investigations at the Waste Isolation Pilot Plant Site

    NASA Astrophysics Data System (ADS)

    Beauheim, R. L.; Domski, P. S.; Holt, R. M.; Powers, D. W.

    2008-12-01

    Hydrogeological research has been going on at the Waste Isolation Pilot Plant (WIPP), the U.S. Department of Energy's deep geologic repository for transuranic and mixed waste in southeastern New Mexico, for over thirty years. The main focus of the research has been on the Culebra Dolomite Member of the Rustler Formation, a 7-m-thick fractured unit that would be the primary groundwater transport pathway for radionuclides released from the WIPP repository by inadvertent human intrusion. Since 1977, 90 wells have been completed to the Culebra on 63 drilling pads. Hydraulic tests have been performed in all of the wells, ranging from single-well slug and pumping tests to long-term (19-121 days) pumping tests with observation wells up to 9.5 km away. These tests have shown that Culebra transmissivity (T) varies over 10 orders of magnitude. Single-well injection-withdrawal, two-well recirculating, and multiwell convergent-flow tracer tests have been performed at six locations. Fluid electrical conductivity logging has been performed to identify the most transmissive sections of the Culebra, and a colloidal borescope has been used to identify specific flowing fractures. In addition to studies focused on groundwater flow and transport, geological, sedimentological, hydrogeochemical, and geophysical investigations have also been performed. Variations in Culebra T have been related to dissolution of the underlying Salado Formation, the presence/absence of gypsum cements, the presence or absence of halite in Rustler members above and below the Culebra, and overburden thickness. Different types of porosity (fractures, vugs, interparticle, intercrystalline) have been found to be significant for both flow and transport. Culebra water chemistry shows significant spatial variation, with total dissolved solids ranging from 3,000 to 300,000 mg/L. Five distinct hydrochemical facies have been identified, ranging from high ionic strength syndepositional Na-Mg Cl brines to low ionic strength CaSO4 waters, thought to represent relatively recent recharge through gypsum karst, to brines contaminated with potash-processing effluent. Geophysical logs from an abundance of oil and gas wells around the WIPP site have been used to map facies boundaries within other Rustler members that can be related to Culebra hydrology. The results of these three decades of study have been integrated into a conceptual model for Culebra hydrology. Some of these studies have been carried out in collaboration with university researchers, and all of the data from these investigations are freely available. *Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04- 94AL85000. This research is funded by WIPP programs administered by the Office of Environmental Management (EM) of the U.S DOE.

  20. Report of Class II Survey and Testing of Cultural Resources at the WIPP (Waste Isolation Pilot Plant) Site at Carlsbad, New Mexico,

    DTIC Science & Technology

    1987-05-01

    a ;-A.act! ye Cune led mcl.t. a Iong I l’ nlortheasternf p i- tcr of ; e s~ e e uA n it w,’a 0 .;Taq"eI t1bf td o tie re:’ p. *, a. ~: t I..c() rvf ...just starting so they maue extra money selling milk to the Lniners. Thv-y kept eight or ten dairy cows and a small hierd of cattle. Th-e famrilly herded

  1. TRU Waste Management Program cost/schedule optimization analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Detamore, J.A.; Raudenbush, M.H.; Wolaver, R.W.

    1985-10-01

    The cost/schedule optimization task is a necessary function to insure that program goals and plans are optimized from a cost and schedule aspect. Results of this study will offer DOE information with which it can establish, within institutional constraints, the most efficient program for the long-term management and disposal of contact handled transuranic waste (CH-TRU). To this end, a comprehensive review of program cost/schedule tradeoffs has been made, to identify any major cost saving opportunities that may be realized by modification of current program plans. It was decided that all promising scenarios would be explored, and institutional limitations to implementationmore » would be described. Since a virtually limitless number of possible scenarios can be envisioned, it was necessary to distill these possibilities into a manageable number of alternatives. The resultant scenarios were described in the cost/schedule strategy and work plan document. Each scenario was compared with the base case: waste processing at the originating site; transport of CH-TRU wastes in TRUPACT; shipment of drums in 6-Packs; 25 year stored waste workoff; WIPP operational 10/88, with all sites shipping to WIPP beginning 10/88; and no processing at WIPP. Major savings were identified in two alternate scenarios: centralize waste processing at INEL and eliminate rail shipment of TRUPACT. No attempt was made to calculate savings due to combination of scenarios. 1 ref., 5 figs., 1 tab. (MHB)« less

  2. Development and application of an analysis methodology for interpreting ambiguous historical pressure data in the WIPP gas-generation experiments.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Felicione, F. S.

    2006-01-23

    The potential for generation of gases in transuranic (TRU) waste by microbial activity, chemical interactions, corrosion, and radiolysis was addressed in the Argonne National Laboratory-West (ANL-West) Gas-Generation Experiments (GGE). Data was collected over several years by simulating the conditions in the Waste Isolation Pilot Plant (WIPP) after the eventual intrusion of brine into the repository. Fourteen test containers with various actual TRU waste immersed in representative brine were inoculated with WIPP-relevant microbes, pressurized with inert gases, and kept in an inert-atmosphere environment for several years to provide estimates of the gas-generation rates that will be used in computer models formore » future WIPP Performance Assessments. Modest temperature variations occurred during the long-term ANL-West experiments. Although the experiment temperatures always remained well within the experiment specifications, the small temperature variation was observed to affect the test container pressure far more than had been anticipated. In fact, the pressure variations were so large, and seemingly erratic, that it was impossible to discern whether the data was even valid and whether the long-term pressure trend was increasing, decreasing, or constant. The result was that no useful estimates of gas-generation rates could be deduced from the pressure data. Several initial attempts were made to quantify the pressure fluctuations by relating these to the measured temperature variation, but none was successful. The work reported here carefully analyzed the pressure measurements to determine if these were valid or erroneous data. It was found that a thorough consideration of the physical phenomena that were occurring can, in conjunction with suitable gas laws, account quite accurately for the pressure changes that were observed. Failure of the earlier attempts to validate the data was traced to the omission of several phenomena, the most important being the variation in the headspace volume caused by thermal expansion and contraction within the brine and waste. A further effort was directed at recovering useful results from the voluminous archived pressure data. An analytic methodology to do this was developed. This methodology was applied to each archived pressure measurement to nullify temperature and other effects to yield an adjusted pressure, from which gas-generation rates could be calculated. A review of the adjusted-pressure data indicated that generated-gas concentrations among these containers after approximately 3.25 years of test operation ranged from zero to over 17,000 ppm by volume. Four test containers experienced significant gas generation. All test containers that showed evidence of significant gas generation contained carbon-steel in the waste, indicating that corrosion was the predominant source of gas generation.« less

  3. Derivation of Pitzer Interaction Parameters for an Aqueous Species Pair of Sodium and Iron(II)-Citrate Complex

    NASA Astrophysics Data System (ADS)

    Jang, J. H.; Nemer, M.

    2015-12-01

    The U.S. DOE Waste Isolation Pilot Plant (WIPP) is a deep underground repository for the permanent disposal of transuranic (TRU) radioactive waste. The WIPP is located in the Permian Delaware Basin near Carlsbad, New Mexico, U.S.A. The TRU waste includes, but is not limited to, iron-based alloys and the complexing agent, citric acid. Iron is also present from the steel used in the waste containers. The objective of this analysis is to derive the Pitzer activity coefficients for the pair of Na+ and FeCit- complex to expand current WIPP thermodynamic database. An aqueous model for the dissolution of Fe(OH)2(s) in a Na3Cit solution was fitted to the experimentally measured solubility data. The aqueous model consists of several chemical reactions and related Pitzer interaction parameters. Specifically, Pitzer interaction parameters for the Na+ and FeCit- pair (β(0), β(1), and Cφ) plus the stability constant for species of FeCit- were fitted to the experimental data. Anoxic gloveboxes were used to keep the oxygen level low (<1 ppm) throughout the experiments due to redox sensitivity. EQ3NR, a computer program for geochemical aqueous speciation-solubility calculations, packaged in EQ3/6 v.8.0a, calculates the aqueous speciation and saturation index using an aqueous model addressed in EQ3/6's database. The saturation index indicates how far the system is from equilibrium with respect to the solid of interest. Thus, the smaller the sum of squared saturation indices that the aqueous model calculates for the given number of experiments, the more closely the model attributes equilibrium to each individual experiment with respect to the solid of interest. The calculation of aqueous speciation and saturation indices was repeated by adjusting stability constant of FeCit-, β(0), β(1), and Cφ in the database until the values are found that make the sum of squared saturation indices the smallest for the given number of experiments. Results will be presented at the time of conference.

  4. Waste Isolation Pilot Plant Site Environmental Report for 1998

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hooda, Balwan S.; Allen, Vivian L.

    This 1998 annual Site Environmental Report (SER) was prepared in accordance with U.S. Department of Energy (DOE) Order 5400.1, ''General Environmental Protection Program''; DOE Order 231.1, ''Environmental Safety and Health Reporting''; the ''Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance'' (DOE/EH-0173T); and the Environmental Protection Implementation Plan (DOE/WIPP 96-2199). The above orders and guidance documents require that DOE facilities submit an SER to DOE Headquarters, Office of the Assistant Secretary for Environment, Safety, and Health. The purpose of the SER is to provide a comprehensive description of operational environmental monitoring activities, an abstract of environmental activities conducted tomore » characterize site environmental management performance, to confirm compliance with environmental standards and requirements, and to highlight significant programs and efforts of environmental merit at WIPP during calendar year ( CY) 1998. The content of this SER is not restricted to a synopsis of the required data. Information pertaining to new and continued monitoring and compliance activities during CY 1998 are also included.« less

  5. Mixed-layered bismuth--oxygen--iodine materials for capture and waste disposal of radioactive iodine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krumhansl, James L; Nenoff, Tina M

    2015-01-06

    Materials and methods of synthesizing mixed-layered bismuth oxy-iodine materials, which can be synthesized in the presence of aqueous radioactive iodine species found in caustic solutions (e.g. NaOH or KOH). This technology provides a one-step process for both iodine sequestration and storage from nuclear fuel cycles. It results in materials that will be durable for repository conditions much like those found in Waste Isolation Pilot Plant (WIPP) and estimated for Yucca Mountain (YMP). By controlled reactant concentrations, optimized compositions of these mixed-layered bismuth oxy-iodine inorganic materials are produced that have both a high iodine weight percentage and a low solubility inmore » groundwater environments.« less

  6. Determination of the Porosity Surfaces of the Disposal Room Containing Various Waste Inventories for WIPP PA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Byoung Yoon; Hansen, Francis D.

    2005-07-01

    This report develops a series of porosity surfaces for the Waste Isolation Pilot Plant. The concept of a porosity surface was developed for performance assessment and comprises calculation of room closure as salt creep processes are mitigated by gas generation and back stress created by the waste packages within the rooms. The physical and mechanical characteristics of the waste packaging that has already been disposed--such as the pipe overpack--and new waste packaging--such as the advanced mixed waste compaction--are appreciably different than the waste form upon which the original compliance was based and approved. This report provides structural analyses of roommore » closure with various waste inventories. All of the underlying assumptions pertaining to the original compliance certification including the same finite element code are implemented; only the material parameters describing the more robust waste packages are changed from the certified baseline. As modeled, the more rigid waste tends to hold open the rooms and create relatively more void space in the underground than identical calculations run on the standard waste packages, which underpin the compliance certification. The several porosity surfaces quantified within this report provide possible ranges of pressure and porosity for performance assessment analyses.3 Intentionally blank4 AcknowledgementsThis research is funded by WIPP programs administered by the U.S. Department of Energy. The authors would like to acknowledge the valuable contributions to this work provided by others. Dr. Joshua S. Stein helped explain the hand off between these finite element porosity surfaces and implementation in the performance calculations. Dr. Leo L. Van Sambeek of RESPEC Inc. helped us understand the concepts of room closure under the circumstances created by a rigid waste inventory. Dr. T. William Thompson and Tom W. Pfeifle provided technical review and Mario J. Chavez provided a Quality Assurance review. The paper has been improved by these individuals.Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-AC04-94Al850005 Intentionally Blank6« less

  7. Draft Title 40 CFR 191 compliance certification application for the Waste Isolation Pilot Plant. Volume 8: Appendices HYDRO, IRD, LTM, NUTS, PAR, PMR, QAPD, RBP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    Geohydrologic data have been collected in the Los Medanos area at the US Department of Energy`s proposed Waste Isolation Pilot Plant (WIPP) site in southeastern New Mexico since 1975 as part of a study evaluating the feasibility of storing defense-associated nuclear wastes within the bedded salt of the Salado Formation of Permian age. Drilling and hydrologic testing have identified three principal water-bearing zones above the Salado Formation and one below that could potentially transport wastes to the biosphere if the proposed facility were breached. The zones above the Salado are the contact between the Rustler and Salado Formations and themore » Culebra and Magenta Dolomite Members of the Rustler Formation of Permian age. The zone below the Salado Formation consists of channel sandstones in the Bell Canyon Formation of the Permian Delaware Mountain Group. Determinations of hydraulic gradients, directions of flow, and hydraulic properties were hindered because of the negligible permeability of the water-bearing zones. Special techniques in drilling, well completion, and hydraulic testing have been developed to determine the hydrologic characteristics of these water-producing zones.« less

  8. Complications Associated with Long-Term Disposition of Newly-Generated Transuranic Waste: A National Laboratory Perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    B.J. Orchard; L.A. Harvego; T.L. Carlson

    The Idaho National Laboratory (INL) is a multipurpose national laboratory delivering specialized science and engineering solutions for the U.S. Department of Energy (DOE). Sponsorship of INL was formally transferred to the DOE Office of Nuclear Energy, Science and Technology (NE) by Secretary Spencer Abraham in July 2002. The move to NE, and designation as the DOE lead nuclear energy laboratory for reactor technology, supports the nation’s expanding nuclear energy initiatives, placing INL at the center of work to develop advanced Generation IV nuclear energy systems; nuclear energy/hydrogen coproduction technology; advanced nuclear energy fuel cycle technologies; and providing national security answersmore » to national infrastructure needs. As a result of the Laboratory’s NE mission, INL generates both contact-handled and remote-handled transuranic (TRU) waste from ongoing operations. Generation rates are relatively small and fluctuate based on specific programs and project activities being conducted; however, the Laboratory will continue to generate TRU waste well into the future in association with the NE mission. Currently, plans and capabilities are being established to transfer INL’s contact-handled TRU waste to the Advanced Mixed Waste Treatment Plant (AMWTP) for certification and disposal to the Waste Isolation Pilot Plant (WIPP). Remote-handled TRU waste is currently placed in storage at the Materials and Fuels Complex (MFC). In an effort to minimize future liabilities associated with the INL NE mission, INL is evaluating and assessing options for the management and disposition of all its TRU waste on a real-time basis at time of generation. This paper summarizes near-term activities to minimize future re handling of INL’s TRU waste, as well as, potential complications associated with the long-term disposition of newly-generated TRU waste. Potential complications impacting the disposition of INL newly-generated TRU waste include, but are not limited to: 1) required remote-handled TRU packaging configuration(s) vs. current facility capabilities, 2) long-term NE mission activities, 3) WIPP certification requirements, and 4) budget considerations.« less

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spangler, Lorenz R.; Most, Wm. A.

    The Waste Isolation Pilot Plant (WIPP) Hazardous Waste Facility Permit (HWFP) limits the allowable emissions of volatile organic compounds (VOCs) from contact handled (CH) transuranic (TRU) waste. The environmental Performance standard within the HWFP, Module IV, Table IV.D.1, prescribes the allowed VOC emissions from the waste to ensure protection of human health and the environment. Compliance with the performance standard to ensure control of VOC emissions is based on VOC concentrations and monitoring in the underground. One of the mechanisms used to ensure compliance with the emissions standards is measuring the VOC concentration in the headspace gas of waste containersmore » prior to disposal. Headspace gas sampling and analysis is the waste characterization activity used to determine the concentration of VOCs in the headspace of waste containers. In addition to being used to demonstrate compliance with the emissions standards of Module IV, Table IV.D.1, the results of the headspace gas sampling and analysis are used to confirm the hazardous wastes identified in the acceptable knowledge (AK) process. Headspace gas sampling and analysis has been an ongoing part of the CH TRU waste characterization program and therefore data are now available concerning its use and applicability. The information from approved Waste Stream Profile Forms (WSPFs) and the headspace gas sampling and analysis results for over 16,000 containers of CH TRU waste were considered as part of this study. The headspace gas sampling and analysis results are based on data from the WIPP Waste Information System (WWIS). These results were evaluated to determine the usefulness of headspace gas sampling and analysis for confirming AK information. The evaluation shows that the reliability of using the results of headspace gas sampling and analysis to confirm AK information can be grouped by mixed and non-mixed waste streams. In general, for mixed waste streams due to VOCs (i.e., carrying VOC-related hazardous waste numbers), there is no reliable comparison that can be made for the detection of a particular target analyte and its associated hazardous waste number(s) based on the AK information on a compound by compound basis. However, for non-mixed waste streams, the results of headspace gas sampling and analysis show a better correlation to the AK information.« less

  10. Posttest analysis of a laboratory-cast monolith of salt-saturated concrete. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wakeley, L.D.; Poole, T.S.

    A salt-saturated concrete was formulated for laboratory testing of cementitious mixtures with potential for use in disposal of radioactive wastes in a geologic repository in halite rock. Cores were taken from a laboratory-cast concrete monolith on completion of tests of permeability, strain, and stress. The cores were analyzed for physical and chemical evidence of brine migration through the concrete, and other features with potential impact on installation of crete plugs at the Waste Isolation Pilot Plant (WIPP) in New Mexico. The posttest analyses of the cores provided evidence of brine movement along the interface between concrete and pipe, and littlemore » indication of permeability through the monolith itself. There may also have been diffusion of chloride into the monolith without actual brine flow.« less

  11. The second iteration of the Systems Prioritization Method: A systems prioritization and decision-aiding tool for the Waste Isolation Pilot Plant: Volume 2, Summary of technical input and model implementation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prindle, N.H.; Mendenhall, F.T.; Trauth, K.

    1996-05-01

    The Systems Prioritization Method (SPM) is a decision-aiding tool developed by Sandia National Laboratories (SNL). SPM provides an analytical basis for supporting programmatic decisions for the Waste Isolation Pilot Plant (WIPP) to meet selected portions of the applicable US EPA long-term performance regulations. The first iteration of SPM (SPM-1), the prototype for SPM< was completed in 1994. It served as a benchmark and a test bed for developing the tools needed for the second iteration of SPM (SPM-2). SPM-2, completed in 1995, is intended for programmatic decision making. This is Volume II of the three-volume final report of the secondmore » iteration of the SPM. It describes the technical input and model implementation for SPM-2, and presents the SPM-2 technical baseline and the activities, activity outcomes, outcome probabilities, and the input parameters for SPM-2 analysis.« less

  12. Experiments and Modeling to Support Field Test Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Peter Jacob; Bourret, Suzanne Michelle; Zyvoloski, George Anthony

    Disposition of heat-generating nuclear waste (HGNW) remains a continuing technical and sociopolitical challenge. We define HGNW as the combination of both heat generating defense high level waste (DHLW) and civilian spent nuclear fuel (SNF). Numerous concepts for HGNW management have been proposed and examined internationally, including an extensive focus on geologic disposal (c.f. Brunnengräber et al., 2013). One type of proposed geologic material is salt, so chosen because of its viscoplastic deformation that causes self-repair of damage or deformation induced in the salt by waste emplacement activities (Hansen and Leigh, 2011). Salt as a repository material has been tested atmore » several sites around the world, notably the Morsleben facility in Germany (c.f. Fahland and Heusermann, 2013; Wollrath et al., 2014; Fahland et al., 2015) and at the Waste Isolation Pilot Plant (WIPP) near Carlsbad, NM. Evaluating the technical feasibility of a HGNW repository in salt is an ongoing process involving experiments and numerical modeling of many processes at many facilities.« less

  13. Revised Earthquake Catalog and Relocated Hypocenters Near Fluid Injection Wells and the Waste Isolation Pilot Plant (WIPP) in Southeastern New Mexico

    NASA Astrophysics Data System (ADS)

    Edel, S.; Bilek, S. L.; Garcia, K.

    2014-12-01

    Induced seismicity is a class of crustal earthquakes resulting from human activities such as surface and underground mining, impoundment of reservoirs, withdrawal of fluids and gas from the subsurface, and injection of fluids into underground cavities. Within the Permian basin in southeastern New Mexico lies an active area of oil and gas production, as well as the Waste Isolation Pilot Plant (WIPP), a geologic nuclear waste repository located just east of Carlsbad, NM. Small magnitude earthquakes have been recognized in the area for many years, recorded by a network of short period vertical component seismometers operated by New Mexico Tech. However, for robust comparisons between the seismicity patterns and the injection well locations and rates, improved locations and a more complete catalog over time are necessary. We present results of earthquake relocations for this area by using data from the 3-component broadband EarthScope Flexible Array SIEDCAR experiment that operated in the area between 2008-2011. Relocated event locations tighten into a small cluster of ~38 km2, approximately 10 km from the nearest injection wells. The majority of events occurred at 10-12 km depth, given depth residuals of 1.7-3.6 km. We also present a newly developed more complete catalog of events from this area by using a waveform cross-correlation algorithm and the relocated events as templates. This allows us to detect smaller magnitude events that were previously undetected with the short period network data. The updated earthquake catalog is compared with geologic maps and cross sections to identify possible fault locations. The catalog is also compared with available well data on fluid injection and production. Our preliminary results suggest no obvious connection between seismic moment release, fluid injection, or production given the available monthly industry data. We do see evidence in the geologic and well data of previously unidentified faults in the area.

  14. Geologic and well-construction data for the H-9 borehole complex near the proposed Waste Isolation Pilot Plant site, southeastern New Mexico

    USGS Publications Warehouse

    Drellack, S.L.; Wells, J.G.

    1982-01-01

    The H-9 complex, a group of three closely spaced boreholes, is located 5.5 miles south of the proposed Waste Isolation Pilot Plant (WIPP) site in east-central Eddy County, New Mexico. The holes were drilled during July, August, and September 1979 to obtain geologic and hydrologic data to better define the regional ground-water-flow system. The geologic data presented in this report are part of a site-characterization study for the possible storage of defense-associated radioactive wastes within salt beds of the Salado Formation of Permian age. The geologic data include detailed descriptions of cores, cuttings, and geophysical logs. Each borehole was designed to penetrate a distinct water-bearing zone: H-9a (total depth 559 feet) was completed just below the Magenta Dolomite Member of the Rustler Formation; H-9b (total depth 708 feet) was completed just below the Culebra Dolomite Member of the Rustler Formation; H-9c (total depth 816 feet) was completed below the Rustler Formation-Salado Formation contact. The geologic units penetrated in borehole H-9c are eolian sand of Holocene age (0-5 feet); the Gatuna Formation of Pleistocene age; (5-25 feet); and the Dewey Lake Red Beds (25-455 feet), the Rustler Formation (455.791 feet), and part of the Salado Formation (791-816 feet), all of Permian age. Three sections (494-501 feet, 615-625 feet, 692-712 feet) in the Rustler Formation penetrated by borehole H-9c are composed of remnant anhydrite (locally altered to gypsum) and clay and silt residue from the dissolution of much thicker seams of argillaceous and silty halite. This indicates that the eastward-moving dissolution within the Rustler Formation, found just to the west of the WIPP site, is present at the H-9 site. (USGS)

  15. Geochemical evolution of groundwater in the Culebra dolomite near the Waste Isolation Pilot Plant, southeastern New Mexico, USA

    USGS Publications Warehouse

    Siegel, M.D.; Anderholm, S.

    1994-01-01

    The Culebra Dolomite Member of the Rustler Formation, a thin (10 m) fractured dolomite aquifer, lies approximately 450 m above the repository horizon of the Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico, USA. Salinities of water in the Culebra range roughly from 10,000 to 200,000 mg/L within the WIPP site. A proposed model for the post-Pleistocene hydrochemical evolution of the Culebra tentatively identifies the major sources and sinks for many of the groundwater solutes. Reaction-path simulations with the PHRQPITZ code suggest that the Culebra dolomite is a partial chemical equilibrium system whose composition is controlled by an irreversible process (dissolution of evaporites) and equilibrium with gypsum and calcite. Net geochemical reactions along postulated modern flow paths, calculated with the NETPATH code, include dissolution of halite, carbonate and evaporite salts, and ion exchange. R-mode principal component analysis revealed correlations among the concentrations of Si, Mg, pH, Li, and B that are consistent with several clay-water reactions. The results of the geochemical calculations and mineralogical data are consistent with the following hydrochemical model: 1. (1) solutes are added to the Culebra by dissolution of evaporite minerals 2. (2) the solubilities of gypsum and calcite increase as the salinity increases; these minerals dissolve as chemical equilibrium is maintained between them and the groundwater 3. (3) equilibrium is not maintained between the waters and dolomite; sufficient Mg is added to the waters by dissolution of accessory carnallite or polyhalite such that the degree of dolomite supersaturation increases with ionic strength 4. (4) clays within the fractures and rock matrix exert some control on the distribution of Li, B, Mg, and Si via sorption, ion exchange, and dissolution. ?? 1994.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swanson, Juliet S.; Reed, Donald T.; Ams, David A.

    This report summarizes the progress made in the ongoing task of characterizing the microbial community structures within the WIPP repository and in surrounding groundwaters. Through cultivation and DNA-based identification, the potential activity of these organisms is being inferred, thus leading to a better understanding of their impact on WIPP performance. Members of the three biological domains - Bacteria, Archaea, and Eukarya (in this case, Fungi) - that are associated with WIPP halite have been identified. Thus far, their activity has been limited to aerobic respiration; anaerobic incubations are underway. WIPP halite constitutes the near-field microbial environment. We expect that microbialmore » activity in this setting will proceed from aerobic respiration, through nitrate reduction to focus on sulfate reduction. This is also the current WIPP performance assessment (PA) position. Sulfate reduction can occur at extremely high ionic strengths, and sulfate is available in WIPP brines and in the anhydrite interbeds. The role of methanogenesis in the WIPP remains unclear, due to both energetic constraints imposed by a high-salt environment and substrate selectivity, and it is no longer considered in PA. Archaea identified in WIPP halite thus far fall exclusively within the family Halobacteriaceae. These include Halobacterium noricense, cultivated from both low- and high-salt media, and a Halorubrum-like species. The former has also been detected in other salt mines worldwide; the latter likely constitutes a new species. Little is known of its function, but it was prevalent in experiments investigating the biodegradation of organic complexing agents in WIPP brines. Bacterial signatures associated with WIPP halite include members of the phylum Proteobacteria - Halomonas, Pelomonas, Limnobacter, and Chromohalobacter - but only the latter has been isolated. Also detected and cultivated were Salinicoccus and Nesterenkonia spp. Fungi were also isolated from halite. Although these were most likely introduced into the WIPP as contaminants from above-ground, their survival and potential role in the WIPP (e.g., cellulose degradation) is under investigation. WIPP groundwaters comprise the far-field microbial environment. Bacteria cultivated and identified from the overlying Culebra and nearby borehole groundwater are capable of aerobic respiration, denitrification, fermentation, metal reduction, and sulfate reduction and are distributed across many different phyla. Two of the Bacteria found in groundwater were also found in WIPP halite (Chromohalobacter sp. and Virgibacillus sp.). Archaea identified in groundwater include Halococcus saccharolyticus, Haloferax sp., and Natrinema sp. The differences in the microbial communities detected thus far in halite and groundwater suggest that there will be significant differences in the associated metabolic potential of the near- and far-field environments. Whereas the near-field is dominated by Archaea with more limited metabolic capabilities, the far-field is dominated by Bacteria with extremely broad capabilities. Because the majority of the repository's lifetime will be anoxic, ongoing and future work focuses on the presence and role of anaerobic organisms in WIPP. Further tasks on biosorption, cellulose degradation, and bioreduction are being performed using organisms obtained from this characterization work.« less

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This permit application (Vol. 7) for the WIPP facility contains appendices related to the following information: Ground water protection; personnel; solid waste management; and memorandums concerning environmental protection standards.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, Francis D.; Leigh, Christi; Stein, Walter

    The 5th US/German Workshop on Salt Repository Research, Design, and Operation was held in Santa Fe New Mexico September 8-10, 2014. The forty seven registered participants were equally divided between the United States (US) and Germany, with one participant from The Netherlands. The agenda for the 2014 workshop was under development immediately upon finishing the 4th Workshop. Ongoing, fundamental topics such as thermomechanical behavior of salt, plugging and sealing, the safety case, and performance assessment continue to advance the basis for disposal of heat-generating nuclear waste in salt formations. The utility of a salt underground research laboratory (URL) remains anmore » intriguing concept engendering discussion of testing protocol. By far the most interest in this years’ workshop pertained to operational safety. Given events at the Waste Isolation Pilot Plant (WIPP), this discussion took on a new sense of relevance and urgency.« less

  19. Improved statistical assessment of a long-term groundwater-quality dataset with a non-parametric permutation method

    NASA Astrophysics Data System (ADS)

    Thomas, M. A.

    2016-12-01

    The Waste Isolation Pilot Plant (WIPP) is the only deep geological repository for transuranic waste in the United States. As the Science Advisor for the WIPP, Sandia National Laboratories annually evaluates site data against trigger values (TVs), metrics whose violation is indicative of conditions that may impact long-term repository performance. This study focuses on a groundwater-quality dataset used to redesign a TV for the Culebra Dolomite Member (Culebra) of the Permian-age Rustler Formation. Prior to this study, a TV violation occurred if the concentration of a major ion fell outside a range defined as the mean +/- two standard deviations. The ranges were thought to denote conditions that 95% of future values would fall within. Groundwater-quality data used in evaluating compliance, however, are rarely normally distributed. To create a more robust Culebra groundwater-quality TV, this study employed the randomization test, a non-parametric permutation method. Recent groundwater compositions considered TV violations under the original ion concentration ranges are now interpreted as false positives in light of the insignificant p-values calculated with the randomization test. This work highlights that the normality assumption can weaken as the size of a groundwater-quality dataset grows over time. Non-parametric permutation methods are an attractive option because no assumption about the statistical distribution is required and calculating all combinations of the data is an increasingly tractable problem with modern workstations. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. This research is funded by WIPP programs administered by the Office of Environmental Management (EM) of the U.S. Department of Energy. SAND2016-7306A

  20. Consensus on Intermediate Scale Salt Field Test Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuhlman, Kristopher L.; Mills, Melissa Marie; Matteo, Edward N.

    This report summarizes the first stage in a collaborative effort by Sandia, Los Alamos, and Lawrence Berkeley National Laboratories to design a small-diameter borehole heater test in salt at the Waste Isolation Pilot Plant (WIPP) for the US Department of Energy Office of Nuclear Energy (DOE-NE). The intention is to complete test design during the remainder of fiscal year 2017 (FY17), and the implementation of the test will begin in FY18. This document is the result of regular meetings between the three national labs and the DOE-NE, and is intended to represent a consensus of these meetings and discussions.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Green, D.W.; Heinrich, R.R.; Graczyk, D.G.

    The ACL activities covered IFR fuel reprocessing, corium-concrete interactions, environmental samples, wastes, WIPP support, Advanced Photon Source, H-Tc superconductors, EBWR vessel, soils, illegal drug detection, quality control, etc.

  2. Determination of Uncertainties for +III and +IV Actinide Solubilities in the WIPP Geochemistry Model for the 2009 Compliance Recertification Application

    NASA Astrophysics Data System (ADS)

    Ismail, A. E.; Xiong, Y.; Nowak, E. J.; Brush, L. H.

    2009-12-01

    The Waste Isolation Pilot Plant (WIPP) is a U.S. Department of Energy (DOE) repository in southeast New Mexico for defense-related transuranic (TRU) waste. Every five years, the DOE is required to submit an application to the Environmental Protection Agency (EPA) demonstrating the WIPP’s continuing compliance with the applicable EPA regulations governing the repository. Part of this recertification effort involves a performance assessment—a probabilistic evaluation of the repository performance with respect to regulatory limits on the amount of releases from the repository to the accessible environment. One of the models used as part of the performance assessment process is a geochemistry model, which predicts solubilities of the radionuclides in the brines that may enter the repository in the different scenarios considered by the performance assessment. The dissolved actinide source term comprises actinide solubilities, which are input parameters for modeling the transport of radionuclides as a result of brine flow through and from the repository. During a performance assessment, the solubilities are modeled as the product of a “base” solubility determined from calculations based on the chemical conditions expected in the repository, and an uncertainty factor that describes the potential deviations of the model from expected behavior. We will focus here on a discussion of the uncertainties. To compute a cumulative distribution function (CDF) for the uncertainties, we compare published, experimentally measured solubility data to predictions made using the established WIPP geochemistry model. The differences between the solubilities observed for a given experiment and the calculated solubilities from the model are used to form the overall CDF, which is then sampled as part of the performance assessment. We will discuss the methodology used to update the CDF’s for the +III actinides, obtained from data for Nd, Am, and Cm, and the +IV actinides, obtained from data for Th, and present results for the calculations of the updated CDF’s. We compare the CDF’s to the distributions computed for the previous recertification, and discuss the potential impact of the changes on the geochemistry model. This research is funded by WIPP programs administered by the U.S. Department of Energy. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

  3. Interpretation of actinide-distribution data obtained from non-destructive and destructive post-test analyses of an intact-core column of Culebra dolomite.

    PubMed

    Perkins, W G; Lucero, D A

    2001-02-01

    The US Department of Energy (DOE), with technical assistance from Sandia National Laboratories, has successfully received EPA certification and opened the Waste Isolation Pilot Plant (WIPP), a nuclear waste disposal facility located approximately 42 km east of Carlsbad, NM. Performance assessment (PA) analyses indicate that human intrusions by inadvertent, intermittent drilling for resources provide the only credible mechanisms for significant releases of radionuclides from the disposal system. For long-term brine releases, migration pathways through the permeable layers of rock above the Salado formation are important. Major emphasis is placed on the Culebra Member of the Rustler Formation because this is the most transmissive geologic layer overlying the WIPP site. In order to help quantify parameters for the calculated releases, radionuclide transport experiments have been carried out using intact-core columns obtained from the Culebra dolomite member of the Rustler Formation within the WIPP site. This paper deals primarily with results of analyses for 241Pu and 241Am distributions developed during transport experiments in one of these cores. Transport experiments were done using a synthetic brine that simulates Culebra brine at the core recovery location (the WIPP air-intake shaft (AIS)). Hydraulic characteristics (i.e., apparent porosity and apparent dispersion coefficient) for intact-core columns were obtained via experiments using the conservative tracer 22Na. Elution experiments carried out over periods of a few days with tracers 232U and 239Np indicated that these tracers were weakly retarded as indicated by delayed elution of the species. Elution experiments with tracers 241Pu and 241Am were attempted but no elution of either species has been observed to date, including experiments of many months' duration. In order to quantify retardation of the non-eluted species 241Pu and 241Am after a period of brine flow, non-destructive and destructive analyses of one intact-core column were carried out to determine distribution of these actinides in the rock. Analytical results indicate that the majority of the 241Am remained very near the injection surface of the core (possibly as a precipitate), and that the majority of the 241Pu was dispersed with a very high apparent retardation value. The 241Pu distribution is interpreted using a single-porosity advection-dispersion model, and an approximate retardation value is reported.

  4. Use of acceptable knowledge to demonstrate TRAMPAC compliance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whitworth, J.; Becker, B.; Guerin, D.

    2004-01-01

    Recently, Los Alamos National Laboratory-Carlsbad Operations (LANL-CO) has supported the Central Characterization Project (CCP) managed by the U.S. Department of Energy (DOE) in the shipment of transuranic (TRU) waste from various small-quantity TRU waste generators to hub sites or other DOE sites in TRUPACT-II shipping containers. This support has involved using acceptable knowledge (AK) to demonstrate compliance with various requirements of Revision 19 of the TRUPACT-II Authorized Methods of Payload Compliance (TRAMPAC). LANL-CO has worked to facilitate TRUPACT-II shipments from the University of Missouri Research Reactor (MURR) and Lovelace Respiratory Research Institute (LRRI) to Argonne National Laboratory-East (ANL-E) and Losmore » Alamos National Laboratory (LANL), respectively. The latter two sites have TRU waste certification programs approved to ship waste to the Waste Isolation Pilot Plant (WIPP) for disposal. In each case, AK was used to satisfy the necessary information to ship the waste to other DOE facilities. For the purposes of intersite shipment, AK provided data to WIPP Waste Information System (WWIS) transportation modules to ensure that required information was obtained prior to TRUPACT-II shipments. The WWIS modules were used for the intersite shipments, not to enter certification data into WWIS, but rather to take advantage of a validated system to ensure that the containers to be shipped were compliant with TRAMPAC requirements, particularly in the evaluation of quantitative criteria. LANL-CO also assisted with a TRAMPAC compliance demonstration for homogeneous waste containers shipped in TRUPACT-II containers from ANL-E to Idaho National Engineering and Environmental Laboratory (INEEL) for the purpose of core sampling. The basis for the TRAMPAC compliance determinations was AK regarding radiological composition, chemical composition, TRU waste container packaging, and absence of prohibited items. Also, even in the case where AK is not used to fully demonstrate TRAMPAC compliance, it may be used to identify problem areas for shippability of different waste streams. An example is the case of Pu-238-contaminated waste from the Savannah River Site that had a low probability of meeting decay heat limits and aspiration times due to several factors including large numbers of confinement layers. This paper will outline 17 TRAMPAC compliance criteria assessed and the types of information used to show compliance with all criteria other than dose rate and container weight, which are normally easily measured at load preparation.« less

  5. 40 CFR 194.24 - Waste characterization.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... other information and methods. (b) The Department shall submit in the compliance certification... proposed for disposal in the disposal system, WIPP complies with the numeric requirements of § 194.34 and... release. (2) Identify and describe the method(s) used to quantify the limits of waste components...

  6. The Revised WIPP Passive Institutional Controls Program - A Conceptual Plan - 13145

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patterson, Russ; Klein, Thomas; Van Luik, Abraham

    2013-07-01

    The Department of Energy/Carlsbad Field Office (DOE/CBFO) is responsible for managing all activities related to the disposal of TRU and TRU-mixed waste in the geologic repository, 650 m below the land surface, at WIPP, near Carlsbad, New Mexico. The main function of the Passive Institutional Controls (PIC's) program is to inform future generations of the long-lived radioactive wastes buried beneath their feet in the desert. For the first 100 years after cessation of disposal operations, the rooms are closed and the shafts leading underground sealed, WIPP is mandated by law to institute Active Institutional Controls (AIC's) with fences, gates, andmore » armed guards on patrol. At this same time a plan must be in place of how to warn/inform the future, after the AIC's are gone, of the consequences of intrusion into the geologic repository disposal area. A plan was put into place during the 1990's with records management and storage, awareness triggers, permanent marker design concepts and testing schedules. This work included the thoughts of expert panels and individuals. The plan held up under peer review and met the requirements of the U.S. Environmental Protection Agency (EPA). Today the NEA is coordinating a study called the 'Preservation of Records, Knowledge and Memory (RK and M) Across Generations' to provide the international nuclear waste repository community with a guide on how a nuclear record archive programs should be approached and developed. CBFO is cooperating and participating in this project and will take what knowledge is gained and apply that to the WIPP program. At the same time CBFO is well aware that the EPA and others are expecting DOE to move forward with planning for the future WIPP PIC's program; so a plan will be in place in time for WIPP's closure slated for the early 2030's. The DOE/CBFO WIPP PIC's program in place today meets the regulatory criteria, but complete feasibility of implementation is questionable, and may not be in conformance with the international guidance being developed. International guidance currently under development may suggest that the inter-generational equity principle strives to warn the future, however, in doing so not to unduly burden present generations. Building markers and monuments that are out of proportion to the risk being presented to the future is not in keeping with generational equity. With this in mind the DOE/CBFO is developing conceptual plans for re-evaluating and revising the current WIPP PIC's program. These conceptual plans will suggest scientific and technical work that must be completed to develop a 'new' PICs program that takes the best ideas of the present plan, blended with new ideas from the RK and M project, and proposed alternative permanent markers designs and materials in consideration. (authors)« less

  7. Hot Cell Liners Category of Transuranic Waste Stored Below Ground within Area G

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, Robert Wesley; Hargis, Kenneth Marshall

    2014-09-01

    A large wildfire called the Las Conchas Fire burned large areas near Los Alamos National Laboratory (LANL) in 2011 and heightened public concern and news media attention over transuranic (TRU) waste stored at LANL’s Technical Area 54 (TA-54) Area G waste management facility. The removal of TRU waste from Area G had been placed at a lower priority in budget decisions for environmental cleanup at LANL because TRU waste removal is not included in the March 2005 Compliance Order on Consent (Reference 1) that is the primary regulatory driver for environmental cleanup at LANL. The Consent Order is an agreementmore » between LANL and the New Mexico Environment Department (NMED) that contains specific requirements and schedules for cleaning up historical contamination at the LANL site. After the Las Conchas Fire, discussions were held by the U.S. Department of Energy (DOE) with the NMED on accelerating TRU waste removal from LANL and disposing it at the Waste Isolation Pilot Plant (WIPP). This report summarizes available information on the origin, configuration, and composition of the waste containers within the Hot Cell Liners category; their physical and radiological characteristics; the results of the radioassays; and the justification to reclassify the five containers as LLW rather than TRU waste.« less

  8. Tritium Packages and 17th RH Canister Categories of Transuranic Waste Stored Below Ground within Area G

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hargis, Kenneth Marshall

    A large wildfire called the Las Conchas Fire burned large areas near Los Alamos National Laboratory (LANL) in 2011 and heightened public concern and news media attention over transuranic (TRU) waste stored at LANL’s Technical Area 54 (TA-54) Area G waste management facility. The removal of TRU waste from Area G had been placed at a lower priority in budget decisions for environmental cleanup at LANL because TRU waste removal is not included in the March 2005 Compliance Order on Consent (Reference 1) that is the primary regulatory driver for environmental cleanup at LANL. The Consent Order is a settlementmore » agreement between LANL and the New Mexico Environment Department (NMED) that contains specific requirements and schedules for cleaning up historical contamination at the LANL site. After the Las Conchas Fire, discussions were held by the U.S. Department of Energy (DOE) with the NMED on accelerating TRU waste removal from LANL and disposing it at the Waste Isolation Pilot Plant (WIPP). This report summarizes available information on the origin, configuration, and composition of the waste containers within the Tritium Packages and 17th RH Canister categories; their physical and radiological characteristics; the results of the radioassays; and potential issues in retrieval and processing of the waste containers.« less

  9. Enclosure from DOE letter dated 7/20/07 - Table 5-2, Isotopic Compositions of Rocky Flats Plutonium and Uranium

    EPA Pesticide Factsheets

    This enclosure from a DOE letter to EPA regarding a waste container disposed at the WIPP from the Advanced Mixed Waste Treatment Project includes Table 5-2, Isotopic Compositions of Rocky Flats Plutonium and Uranium.

  10. The Direct Path To WIPP - 12471

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spoerner, M.T.; Burger, M.J.; Garcia, J.

    2012-07-01

    Sandia National Laboratories/New Mexico (SNL/NM), designated as a small quantity site (SQS) by the National TRU Program (NTP), generated contact-handled (CH) and remote-handled (RH) transuranic (TRU) waste primarily from the decontamination and clean-out of glove boxes at the Hot Cell Facility (HCF) at Technical Area (TA) V. All of the waste required repackaging, with the CH TRU waste being repackaged from late 2007 through 2011. Three shipments of CH were completed in October 2011, which de-inventoried SNL/NM's legacy TRU waste. In FY11, RH TRU waste was repackaged at the Auxiliary Hot Cell Facility (AHCF) located in TAV with the supportmore » of the Central Characterization Project (CCP). The waste was originally packaged in SNL/NM fabricated casks, cement or lead-lined 55-gallon drums, or 30-gallon drums. The AHCF is a small hot cell, with access only through a roof port which presented challenges for inserting and removing waste from the hot cell. The CCP provided visual examination operators (VEOs) to observe and document each waste item repackaged, removal of prohibited items, and radiological sampling. Dose-to-Curie measurements were calculated by CCP after a radiological report was prepared using scaling factors determined by the analysis of swipe samples. Finally, headspace gas samples were taken and sent to the Advanced Mixed Waste Treatment Project (AMWTP) for analysis. Despite the challenges, the RH waste is on track to be shipped to WIPP in early FY12. The processes used and procedures developed to conduct the repackaging operations, the issues identified and mitigated were challenging but the cooperation between SNL/NM and the Central Characterization Program (CCP) enabled SNL/NM to complete the repackaging and support the characterization and shipment. An inventory list, identification of the campaigns, discussion of the challenges and mitigations, and the final loading of the RH 72-B casks at TA-V for direct shipment to the Waste Isolation Pilot Plant (WIPP) will be discussed. Lessons learned from the RH campaigns are: - Some containers that were originally identified as HC-3 have been re-evaluated and became < HC-3 due to the conservative estimates made by the original generators - Operators at the AHCF were not accustomed to the detail required by the VE operators. However, they worked well together and the repackaging was completed ahead of schedule. - The AK was not always accurate as was demonstrated by the solid waste found in the drum during the first visit by EPA. That waste has since been determined to be low-level. - Two drums originally thought to be RH turned out to be CH and arrangement for RTR had to be made quickly. - Six of the original RH repacked drums became low level. - Lessons learned from the CH campaigns were helpful in avoiding many issues. The RH repackaging effort has been a success due to the expertise of the AHCF operators, supervisor, and manager, the conscientious attention to detail of the CCP VE operators, the experience of the CCP DTC and headspace gas sampling staff, and the guidance and support from CCP and CBFO. Sometimes schedules had to be adjusted, processes updated, and issues discussed, but the communication between CCP and SNL/NM was good. SNL/NM hopes to have the legacy RH TRU waste shipped off-site by early 2012. (authors)« less

  11. Irradiated Beryllium Disposal Workshop, Idaho Falls, ID, May 29-30, 2002

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Longhurst, Glen Reed; Anderson, Gail; Mullen, Carlan K

    2002-07-01

    In 2001, while performing routine radioactive decay heat rate calculations for beryllium reflector blocks for the Advanced Test Reactor (ATR), it became evident that there may be sufficient concentrations of transuranic isotopes to require classification of this irradiated beryllium as transuranic waste. Measurements on samples from ATR reflector blocks and further calculations confirmed that for reflector blocks and outer shim control cylinders now in the ATR canal, transuranic activities are about five times the threshold for classification. That situation implies that there is no apparent disposal pathway for this material. The problem is not unique to the ATR. The Highmore » Flux Isotope Reactor at Oak Ridge National Laboratory, the Missouri University Research Reactor at Columbia, Missouri and other reactors abroad must also deal with this issue. A workshop was held in Idaho Falls Idaho on May 29-30, 2002 to acquaint stakeholders with these findings and consider a path forward in resolving the issues attendant to disposition of irradiated material. Among the findings from this workshop were (1) there is a real potential for the US to be dependent on foreign sources for metallic beryllium within about a decade; (2) there is a need for a national policy on beryllium utilization and disposition and for a beryllium coordinating committee to be assembled to provide guidance on that policy; (3) it appears it will be difficult to dispose of this material at the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico due to issues of Defense classification, facility radioactivity inventory limits, and transportation to WIPP; (4) there is a need for a funded DOE program to seek resolution of these issues including research on processing techniques that may make this waste acceptable in an existing disposal pathway or allow for its recycle.« less

  12. Technical Basis for the Removal of Unremediated Nitrate Salt Sampling (UNS) to Support LANL Treatment Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Funk, David John

    2016-05-05

    The sampling of unremediated nitrate salts (UNS) was originally proposed by the U.S. Department of Energy (DOE) and Los Alamos National Security, LLC (LANS) (collectively, the Permittees) as a means to ensure adequate understanding and characterization of the problematic waste stream created when the Permittees remediated these nitrate salts-bearing waste with an organic absorbent. The proposal to sample the UNS was driven by a lack of understanding with respect to the radioactive contamination release that occurred within the underground repository at the Waste Isolation Pilot Plant (WIPP) in February 14, 2014, as well as recommendations made by a Peer Reviewmore » Team. As discussed, the Permittees believe that current knowledge and understanding of the waste has sufficiently matured such that this additional sampling is not required. Perhaps more importantly, the risk of both chemical and radiological exposure to the workers sampling the UNS drum material is unwarranted. This memo provides the technical justification and rationale for excluding the UNS sampling from the treatment studies.« less

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Xiaofeng; Xu, Hongwu

    Polyhalite is an important coexisting mineral with halite in salt repositories for nuclear waste disposal, such as Waste Isolation Pilot Plant (WIPP) in Carlsbad, New Mexico. The thermal stability of this mineral is a key knowledge in evaluating the integrity of a salt repository in the long term, as water may release due to thermal decomposition of polyhalite. Previous studies on structural evolution of polyhalite at elevated temperatures laid the basis for detailed calorimetric measurements. Using high-temperature oxide-melt drop-solution calorimetry at 975 K with sodium molybdate as the solvent, we have determined the standard enthalpies of formation from constituent sulfatesmore » (ΔH° f,sul), oxides (ΔH° f,ox) and elements (ΔH° f,ele) of a polyhalite sample with the composition of K 2Ca 2Mg(SO 4) 4·1.95H 2O from the Salado formation at the WIPP site. The obtained results are: ΔH° f,sul = -152.5 ± 5.3 kJ/mol, ΔH° f,ox = -1926.1 ± 10.5 kJ/mol, and ΔH° f,ele = -6301.2 ± 9.9 kJ/mol. Furthermore, based on the estimated formation entropies of polyhalite, its standard Gibbs free energy of formation has been derived to be in the range of -5715.3 ± 9.9 kJ/mol to -5739.3 ± 9.9 kJ/mol. In conclusion, these determined thermodynamic properties provide fundamental parameters for modeling the stability behavior of polyhalite in salt repositories.« less

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hurd, J.R.

    The active-passive shuffler installed and certified a few years ago in Los Alamos National Laboratory`s plutonium facility has now been calibrated for different matrices to measure Waste Isolation Pilot Plant (WIPP)-destined transuranic (TRU)-waste. Little or no data presently exist for these types of measurements in plant environments where there may be sudden large changes in the neutron background radiation which causes distortions in the results. Measurements and analyses of twenty-two 55-gallon drums, consisting of mixtures of varying quantities of uranium and plutonium, have been recently completed at the plutonium facility. The calibration and measurement techniques, including the method used tomore » separate out the plutonium component, will be presented and discussed. Particular attention will be directed to those problems identified as arising from the plant environment. The results of studies to quantify the distortion effects in the data will be presented. Various solution scenarios will be indicated, along with those adopted here.« less

  15. Processing Plan for Potentially Reactive/Ignitable Remote Handled Transuranic Waste at the Idaho Cleanup Project - 12090

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Troescher, Patrick D.; Hobbes, Tammy L.; Anderson, Scott A.

    Remote Handle Transuranic (RH-TRU) Waste generated at Argonne National Laboratory - East, from the examination of irradiated and un-irradiated fuel pins and other reactor materials requires a detailed processing plan to ensure reactive/ignitable material is absent to meet WIPP Waste Acceptance Criteria prior to shipping and disposal. The Idaho Cleanup Project (ICP) approach to repackaging Lot 2 waste and how we ensure prohibited materials are not present in waste intended for disposal at Waste Isolation Pilot Plant 'WIPP' uses an Argon Repackaging Station (ARS), which provides an inert gas blanket. Opening of the Lot 2 containers under an argon gasmore » blanket is proposed to be completed in the ARS. The ARS is an interim transition repackaging station that provides a mitigation technique to reduce the chances of a reoccurrence of a thermal event prior to rendering the waste 'Safe'. The consequences, should another thermal event be encountered, (which is likely) is to package the waste, apply the reactive and or ignitable codes to the container, and store until the future treatment permit and process are available. This is the same disposition that the two earlier containers in the 'Thermal Events' were assigned. By performing the initial handling under an inert gas blanket, the waste can sorted and segregate the fines and add the Met-L-X to minimize risk before it is exposed to air. The 1-gal cans that are inside the ANL-E canister will be removed and each can is moved to the ARS for repackaging. In the ARS, the 1-gal can is opened in the inerted environment. The contained waste is sorted, weighed, and visually examined for non compliant items such as unvented aerosol cans and liquids. The contents of the paint cans are transferred into a sieve and manipulated to allow the fines, if any, to be separated into the tray below. The fines are weighed and then blended with a minimum 5:1 mix of Met-L-X. Other debris materials found are segregated from the cans into containers for later packaging. Recoverable fissile waste material (Fuel and fuel-like pieces) suspected of containing sodium bonded pieces) are segregated and will remain in the sieve or transferred to a similar immersion basket in the ARS. The fuel like pieces will be placed into a container with sufficient water to cover the recoverable fissile waste. If a 'reactive characteristic' is present the operator will be able to observe the formation of 'violent' hydrogen gas bubbles. When sodium bonded fuel-like pieces are placed in water the expected reaction is a non-violent reaction that does not meet the definition of reactivity. It is expected that there will be a visible small stream of bubbles present if there is any sodium-bonded fuel-like piece placed in the water. The test will be completed when there is no reaction or the expected reaction is observed..At that point, the fuel like pieces complete the processing cycle in preparation for characterization and shipment to WIPP. If a violent reaction occurs, the fuel-like pieces will be removed from the water, split into the required fissile material content, placed into a screened basket in a 1 gallon drum and drummed out of the hot cell with appropriate RCRA codes applied and placed into storage until sodium treatment is available. These 'violent' reactions will be evidenced by gas bubbles being evolved at the specimen surface where sodium metal is present. The operators will be trained to determine if the reaction is 'violent' or 'mild'. If a 'violent' reaction occurs, the sieve will be immediately removed from the water, placed in a 1 gallon paint can, canned in the argon cover gas and removed from the hot cell to await a future treatment. If the reaction is 'mild', the sieve will then be removed from the water; the material weighed for final packaging and allowed to dry by air exposure. Lot 2 waste cans can be opened, sorted, processed, and weighed while mitigating the potential of thermal events that could occur prior to exposing to air. Exposure to air is a WIPP compliance step demonstrating the absence of reactive or ignitable characteristics. (authors)« less

  16. Dangerous Waste Characteristics of Contact-Handled Transuranic Mixed Wastes from Hanford Tanks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tingey, Joel M.; Bryan, Garry H.; Deschane, Jaquetta R.

    2004-10-05

    This report summarizes existing analytical data gleaned from samples taken from the Hanford tanks designated as potentially containing transuranic mixed process wastes. Process knowledge of the wastes transferred to these tanks has been reviewed to determine whether the dangerous waste characteristics now assigned to all Hanford underground storage tanks are applicable to these particular wastes. Supplemental technologies are being examined to accelerate the Hanford tank waste cleanup mission and accomplish waste treatment safely and efficiently. To date, 11 Hanford waste tanks have been designated as potentially containing contact-handled (CH) transuranic mixed (TRUM) wastes. The CH-TRUM wastes are found in single-shellmore » tanks B-201 through B-204, T-201 through T-204, T-104, T-110, and T-111. Methods and equipment to solidify and package the CH-TRUM wastes are part of the supplemental technologies being evaluated. The resulting packages and wastes must be acceptable for disposal at the Waste Isolation Pilot Plant (WIPP). The dangerous waste characteristics being considered include ignitability, corrosivity, reactivity, and toxicity arising from the presence of 2,4,5-trichlorophenol at levels above the dangerous waste threshold. The analytical data reviewed include concentrations of sulfur, sulfate, cyanide, 2,4,5-trichlorophenol, total organic carbon, and oxalate; the composition of the tank headspace, pH, and mercury. Differential scanning calorimetry results were used to determine the energetics of the wastes as a function of temperature. This report supercedes and replaces PNNL-14832.« less

  17. Dangerous Waste Characteristics of Contact-Handled Transuranic Mixed Wastes from the Hanford Tanks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tingey, Joel M.; Bryan, Garry H.; Deschane, Jaquetta R.

    2004-08-31

    This report summarizes existing analytical data from samples taken from the Hanford tanks designated as potentially containing transuranic mixed process wastes. Process knowledge of the wastes transferred to these tanks has been reviewed to determine whether the dangerous waste characteristics now assigned to all Hanford underground storage tanks are applicable to these particular wastes. Supplemental technologies are being examined to accelerate the Hanford tank waste cleanup mission and accomplish waste treatment safely and efficiently. To date, 11 Hanford waste tanks have been designated as potentially containing contact-handled (CH) transuranic mixed (TRUM) wastes. The CH-TRUM wastes are found in single-shell tanksmore » B-201 through B-204, T-201 through T-204, T-104, T-110, and T-111. Methods and equipment to solidify and package the CH-TRUM wastes are part of the supplemental technologies being evaluated. The resulting packages and wastes must be acceptable for disposal at the Waste Isolation Pilot Plant (WIPP). The dangerous waste characteristics being considered include ignitability, corrosivity, reactivity, and toxicity arising from the presence of 2,4,5-trichlorophenol at levels above the dangerous waste threshold. The analytical data reviewed include concentrations of sulfur, sulfate, cyanide, 2,4,5-trichlorophenol, total organic carbon, and oxalate; the composition of the tank headspace, pH, and mercury. Differential scanning calorimetry results were used to determine the energetics of the wastes as a function of temperature.« less

  18. Developing an institutional strategy for transporting defense transuranic waste materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guerrero, J.V.; Kresny, H.S.

    In late 1988, the US Department of Energy (DOE) expects to begin emplacing transuranic waste materials in the Waste Isolation Pilot Plant (WIPP), an R and D facility to demonstrate the safe disposal of radioactive wastes resulting from defense program activities. Transuranic wastes are production-related materials, e.g., clothes, rags, tools, and similar items. These materials are contaminated with alpha-emitting transuranium radionuclides with half-lives of > 20 yr and concentrations > 100 nCi/g. Much of the institutional groundwork has been done with local communities and the State of New Mexico on the siting and construction of the facility. A key tomore » the success of the emplacement demonstration, however, will be a qualified transportation system together with institutional acceptance of the proposed shipments. The DOE's Defense Transuranic Waste Program, and its contractors, has lead responsibility for achieving this goal. The Joint Integration Office (JIO) of the DOE, located in Albuquerque, New Mexico, is taking the lead in implementing an integrated strategy for assessing nationwide institutional concerns over transportation of defense transuranic wastes and in developing ways to resolve or mitigate these concerns. Parallel prototype programs are under way to introduce both the new packaging systems and the institutional strategy to interested publics and organizations.« less

  19. Assessment of the potential for karst in the Rustler Formation at the WIPP site.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lorenz, John Clay

    2006-01-01

    This report is an independent assessment of the potential for karst dissolution in evaporitic strata of the Rustler Formation at the Waste Isolation Pilot Plant (WIPP) site. Review of the available data suggests that the Rustler strata thicken and thin across the area in depositional patterns related to lateral variations in sedimentary accommodation space and normal facies changes. Most of the evidence that has been offered for the presence of karst in the subsurface has been used out of context, and the different pieces are not mutually supporting. Outside of Nash Draw, definitive evidence for the development of karst inmore » the Rustler Formation near the WIPP site is limited to the horizon of the Magenta Member in drillhole WIPP-33. Most of the other evidence cited by the proponents of karst is more easily interpreted as primary sedimentary structures and the localized dissolution of evaporitic strata adjacent to the Magenta and Culebra water-bearing units. Some of the cited evidence is invalid, an inherited baggage from studies made prior to the widespread knowledge of modern evaporite depositional environments and prior to the existence of definitive exposures of the Rustler Formation in the WIPP shafts. Some of the evidence is spurious, has been taken out of context, or is misquoted. Lateral lithologic variations from halite to mudstone within the Rustler Formation under the WIPP site have been taken as evidence for the dissolution of halite such as that seen in Nash Draw, but are more rationally explained as sedimentary facies changes. Extrapolation of the known karst features in Nash Draw eastward to the WIPP site, where conditions are and have been significantly different for half a million years, is unwarranted. The volumes of insoluble material that would remain after dissolution of halite would be significantly less than the observed bed thicknesses, thus dissolution is an unlikely explanation for the lateral variations from halite to mudstone and siltstone. Several surficial depressions at WIPP, suggested to be sinkholes, do not have enough catchment area to form a sinkhole, and holes drilled to investigate the subsurface strata do not support a sinkhole interpretation. Surface drainage across the WIPP site is poorly developed because it has been disrupted by migrating sand dunes and because precipitation is not focused by defined catchment areas in this region of low precipitation and low-dip bedding, not because it has been captured by sinkholes. There are no known points of discharge from the Rustler Formation at WIPP that would indicate the presence of a subsurface karst drainage system. The existing drillholes across the WIPP site, though small in diameter, are sufficient to assess the probability of karst development along the horizontal fractures that are common in the Rustler Formation, and the area of investigation has been augmented significantly by the mapping of four large-diameter shafts excavated into the WIPP repository. The general absence of dissolution, karsting, and related conduits is corroborated by the pumping tests which have interrogated large volumes of the Rustler Formation between drillholes. Diffusion calculations suggest that separate isotopic signatures for the water found in the fractures and the water found in the pores of the matrix rock between fractures are unlikely, thus the isotopic evidence for ancient Rustler formation waters is valid. Geophysical techniques show a number of anomalies, but the anomalies do not overlap to portray consistent and mutually supporting patterns that can be definitively related to karst void space at any given location. The coincidence of the Culebra and Magenta potentiometric heads between Nash Draw and the WIPP site is the inevitable intersection of two non-parallel surfaces rather than an indication of karst-related hydraulic communication between the two units. The proponents of karst in the Rustler Formation at the WIPP site tend to mix data, to take data out of context, and to offer theory as fact. They do not analyze the data or synthesize it into a rigorous, mutually supporting framework. They assume that the existence of an anomaly rather than the specific characteristics of that anomaly proves the existence of intra-stratal karst in the Rustler Formation. In most cases, the interpretations of karst offered are non-unique interpretations of data for which more plausible interpretations exist.« less

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gruetzmacher, Kathleen M.; Bustos, Roland M.; Ferran, Scott G.

    Los Alamos National Laboratory (LANL) uses the Nevada National Security Site (NNSS) as an off-site disposal facility for low-level waste (LLW), including sludge waste. NNSS has issued a position paper that indicates that systems that are not certified by the Carlsbad Field Office (CBFO) for Waste Isolation Pilot Plant (WIPP) disposal of Transuranic (TRU) waste must demonstrate equivalent practices to the CBFO certified systems in order to assign activity concentration values to assayed items without adding in the Total Measurement Uncertainty (TMU) when certifying waste for NNSS disposal. Efforts have been made to meet NNSS requirements to accept sludge wastemore » for disposal at their facility. The LANL LLW Characterization Team uses portable high purity germanium (HPGe) detector systems for the nondestructive assay (NDA) of both debris and sludge LLW. A number of performance studies have been conducted historically by LANL to support the efficacy and quality of assay results generated by the LANL HPGe systems, and, while these detector systems are supported by these performance studies and used with LANL approved procedures and processes, they are not certified by CBFO for TRU waste disposal. Beginning in 2009, the LANL LLW Characterization Team undertook additional NDA measurements of both debris and sludge simulated waste containers to supplement existing studies and procedures to demonstrate full compliance with the NNSS position paper. Where possible, Performance Demonstration Project (PDP) drums were used for the waste matrix and PDP sources were used for the radioactive sources. Sludge drums are an example of a matrix with a uniform distribution of contaminants. When attempting to perform a gamma assay of a sludge drum, it is very important to adequately simulate this uniform distribution of radionuclides in order to accurately model the assay results. This was accomplished by using a spiral radial source tube placement in a sludge drum rather than the standard three source tubes seen in debris PDP drums. Available line sources (Eu-152) were placed in the spiral tubes to further accomplish the desired uniform distribution of radionuclides. The standard PDP drum (PDP matrix drum 005) and PDP sources were used to determine the lower limits of detection (LLD) and TMU. Analysis results for the sludge drum matrix case for two HPGe detectors were tabulated and evaluated. NNSS has accepted the methodology and results of the measurements towards demonstrating equivalence to CBFO certified systems. In conclusion, the WES-WGS and CMR-OPS gamma spectroscopy teams at LANL have defined and performed measurements that serve to establish and demonstrate equivalency with the processes used by CBFO certified NDA systems. The supplemental measurements address four key areas in Appendix A of DOE/WIPP-02-3122: Annual Calibration Confirmation and Performance Check measurements; LLD determination; and TMU definition. For these measurements the containers, matrices and activity loadings are selected to represent items being assayed in real LLW cases. The LLD and the TMU bounding measurements are to be performed one time and will not be required to be repeated in future campaigns. The annual calibration and performance check measurements were performed initially and planned to repeat in annual campaigns in order to maintain NNSS certification. PDP sources and a PDP sludge drum as well as Eu-152 line sources and a spiral sludge drum were used for the measurements. In all cases, the results for accuracy and precision (%R and %RSD, respectively) were within allowable ranges as defined by the WIPP PDP program. LLD (or MDC) results were established for all the ten WIPP reportable radionuclides and U-235, and the MDC for Pu-239 was established in all cases to be well under 100 nCi/g. Useful results for reducing estimated uncertainties were established and an interesting unexpected case of high bias was observed and will be applied toward this end. (authors)« less

  1. Actinide Solubility and Speciation in the WIPP [PowerPoint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reed, Donald T.

    2015-11-02

    The presentation begins with the role and need for nuclear repositories (overall concept, international updates (Sweden, Finland, France, China), US approach and current status), then moves on to the WIPP TRU repository concept (design, current status--safety incidents of February 5 and 14, 2014, path forward), and finally considers the WIPP safety case: dissolved actinide concentrations (overall approach, oxidation state distribution and redox control, solubility of actinides, colloidal contribution and microbial effects). The following conclusions are set forth: (1) International programs are moving forward, but at a very slow and somewhat sporadic pace. (2) In the United States, the Salt repositorymore » concept, from the perspective of the long-term safety case, remains a viable option for nuclear waste management despite the current operational issues/concerns. (3) Current model/PA prediction (WIPP example) are built on redundant conservatisms. These conservatisms are being addressed in the ongoing and future research to fill existing data gaps--redox control of plutonium by Fe(0, II), thorium (analog) solubility studies in simulated brine, contribution of intrinsic and biocolloids to the mobile concentration, and clarification of microbial ecology and effects.« less

  2. Waste-form development for conversion to portland cement at Los Alamos National Laboratory (LANL) Technical Area 55 (TA-55)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veazey, G.W.; Schake, A.R.; Shalek, P.D.

    1996-10-01

    The process used at TA-55 to cement transuranic (TRU) waste has experienced several problems with the gypsum-based cement currently being used. Specifically, the waste form could not reliably pass the Waste Isolation Pilot Plant (WIPP) prohibition for free liquid and the Environmental Protection Agency (EPA)-Toxicity Characteristic Leaching Procedure (TCLP) standard for chromium. This report describes the project to develop a portland cement-based waste form that ensures compliance to these standards, as well as other performance standards consisting of homogeneous mixing, moderate hydration temperature, timely initial set, and structural durability. Testing was conducted using the two most common waste streams requiringmore » cementation as of February 1994, lean residue (LR)- and oxalate filtrate (OX)-based evaporator bottoms (EV). A formulation with a pH of 10.3 to 12.1 and a minimum cement-to-liquid (C/L) ratio of 0.80 kg/l for OX-based EV and 0.94 kg/L for LR-based EV was found to pass the performance standards chosen for this project. The implementation of the portland process should result in a yearly cost savings for raw materials of approximately $27,000 over the gypsum process.« less

  3. Laboratory Testing of Waste Isolation Pilot Plant Surrogate Waste Materials

    NASA Astrophysics Data System (ADS)

    Broome, S.; Bronowski, D.; Pfeifle, T.; Herrick, C. G.

    2011-12-01

    The Waste Isolation Pilot Plant (WIPP) is a U.S. Department of Energy geological repository for the permanent disposal of defense-related transuranic (TRU) waste. The waste is emplaced in rooms excavated in the bedded Salado salt formation at a depth of 655 m below the ground surface. After emplacement of the waste, the repository will be sealed and decommissioned. WIPP Performance Assessment modeling of the underground material response requires a full and accurate understanding of coupled mechanical, hydrological, and geochemical processes and how they evolve with time. This study was part of a broader test program focused on room closure, specifically the compaction behavior of waste and the constitutive relations to model this behavior. The goal of this study was to develop an improved waste constitutive model. The model parameters are developed based on a well designed set of test data. The constitutive model will then be used to realistically model evolution of the underground and to better understand the impacts on repository performance. The present study results are focused on laboratory testing of surrogate waste materials. The surrogate wastes correspond to a conservative estimate of the degraded containers and TRU waste materials after the 10,000 year regulatory period. Testing consists of hydrostatic, uniaxial, and triaxial tests performed on surrogate waste recipes that were previously developed by Hansen et al. (1997). These recipes can be divided into materials that simulate 50% and 100% degraded waste by weight. The percent degradation indicates the anticipated amount of iron corrosion, as well as the decomposition of cellulosics, plastics, and rubbers. Axial, lateral, and volumetric strain and axial and lateral stress measurements were made. Two unique testing techniques were developed during the course of the experimental program. The first involves the use of dilatometry to measure sample volumetric strain under a hydrostatic condition. Bulk moduli of the samples measured using this technique were consistent with those measured using more conventional methods. The second technique involved performing triaxial tests under lateral strain control. By limiting the lateral strain to zero by controlling the applied confining pressure while loading the specimen axially in compression, one can maintain a right-circular cylindrical geometry even under large deformations. This technique is preferred over standard triaxial testing methods which result in inhomogeneous deformation or "barreling". Manifestations of the inhomogeneous deformation included non-uniform stress states, as well as unrealistic Poisson's ratios (> 0.5) or those that vary significantly along the length of the specimen. Zero lateral strain controlled tests yield a more uniform stress state, and admissible and uniform values of Poisson's ratio. Hansen, F.D., Knowles, M.K., et al. 1997. Description and Evaluation of a Mechanistically Based Conceptual Model for Spall. SAND97-1369. Sandia National Laboratories, Albuquerque. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  4. Enthalpies of formation of polyhalite: A mineral relevant to salt repository

    DOE PAGES

    Guo, Xiaofeng; Xu, Hongwu

    2017-06-02

    Polyhalite is an important coexisting mineral with halite in salt repositories for nuclear waste disposal, such as Waste Isolation Pilot Plant (WIPP) in Carlsbad, New Mexico. The thermal stability of this mineral is a key knowledge in evaluating the integrity of a salt repository in the long term, as water may release due to thermal decomposition of polyhalite. Previous studies on structural evolution of polyhalite at elevated temperatures laid the basis for detailed calorimetric measurements. Using high-temperature oxide-melt drop-solution calorimetry at 975 K with sodium molybdate as the solvent, we have determined the standard enthalpies of formation from constituent sulfatesmore » (ΔH° f,sul), oxides (ΔH° f,ox) and elements (ΔH° f,ele) of a polyhalite sample with the composition of K 2Ca 2Mg(SO 4) 4·1.95H 2O from the Salado formation at the WIPP site. The obtained results are: ΔH° f,sul = -152.5 ± 5.3 kJ/mol, ΔH° f,ox = -1926.1 ± 10.5 kJ/mol, and ΔH° f,ele = -6301.2 ± 9.9 kJ/mol. Furthermore, based on the estimated formation entropies of polyhalite, its standard Gibbs free energy of formation has been derived to be in the range of -5715.3 ± 9.9 kJ/mol to -5739.3 ± 9.9 kJ/mol. In conclusion, these determined thermodynamic properties provide fundamental parameters for modeling the stability behavior of polyhalite in salt repositories.« less

  5. Evaluation of methods for measuring relative permeability of anhydride from the Salado Formation: Sensitivity analysis and data reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christiansen, R.L.; Kalbus, J.S.; Howarth, S.M.

    This report documents, demonstrates, evaluates, and provides theoretical justification for methods used to convert experimental data into relative permeability relationships. The report facilities accurate determination of relative permeabilities of anhydride rock samples from the Salado Formation at the Waste Isolation Pilot Plant (WIPP). Relative permeability characteristic curves are necessary for WIPP Performance Assessment (PA) predictions of the potential for flow of waste-generated gas from the repository and brine flow into repository. This report follows Christiansen and Howarth (1995), a comprehensive literature review of methods for measuring relative permeability. It focuses on unsteady-state experiments and describes five methods for obtaining relativemore » permeability relationships from unsteady-state experiments. Unsteady-state experimental methods were recommended for relative permeability measurements of low-permeability anhydrite rock samples form the Salado Formation because these tests produce accurate relative permeability information and take significantly less time to complete than steady-state tests. Five methods for obtaining relative permeability relationships from unsteady-state experiments are described: the Welge method, the Johnson-Bossler-Naumann method, the Jones-Roszelle method, the Ramakrishnan-Cappiello method, and the Hagoort method. A summary, an example of the calculations, and a theoretical justification are provided for each of the five methods. Displacements in porous media are numerically simulated for the calculation examples. The simulated product data were processed using the methods, and the relative permeabilities obtained were compared with those input to the numerical model. A variety of operating conditions were simulated to show sensitivity of production behavior to rock-fluid properties.« less

  6. RH-TRU Waste Characterization by Acceptable Knowledge at the Idaho National Engineering and Environmental Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schulz, C.; Givens, C.; Bhatt, R.

    2003-02-24

    Idaho National Engineering and Environmental Laboratory (INEEL) is conducting an effort to characterize approximately 620 drums of remote-handled (RH-) transuranic (TRU) waste currently in its inventory that were generated at the Argonne National Laboratory-East (ANL-E) Alpha Gamma Hot Cell Facility (AGHCF) between 1971 and 1995. The waste was generated at the AGHCF during the destructive examination of irradiated and unirradiated fuel pins, targets, and other materials from reactor programs at ANL-West (ANL-W) and other Department of Energy (DOE) reactors. In support of this effort, Shaw Environmental and Infrastructure (formerly IT Corporation) developed an acceptable knowledge (AK) collection and management programmore » based on existing contact-handled (CH)-TRU waste program requirements and proposed RH-TRU waste program requirements in effect in July 2001. Consistent with Attachments B-B6 of the Waste Isolation Pilot Plant (WIPP) Hazardous Waste Facility Permit (HWFP) and th e proposed Class 3 permit modification (Attachment R [RH-WAP] of this permit), the draft AK Summary Report prepared under the AK procedure describes the waste generating process and includes determinations in the following areas based on AK: physical form (currently identified at the Waste Matrix Code level); waste stream delineation; applicability of hazardous waste numbers for hazardous waste constituents; and prohibited items. In addition, the procedure requires and the draft summary report contains information supporting determinations in the areas of defense relationship and radiological characterization.« less

  7. Extent of the Disturbed Rock Zone Around a WIPP Disposal Room

    NASA Astrophysics Data System (ADS)

    Herrick, C. G.; Park, B. Y.; Holcomb, D. J.

    2008-12-01

    The Waste Isolation Pilot Plant (WIPP), located in southeastern New Mexico, is operated by the U.S. Department of Energy (DOE) as the underground disposal facility for transuranic (TRU) nuclear waste. It is located in a bedded salt formation at a depth of about 650 m. Salt at this depth behaves as a viscous material having an initially lithostatic state of stress. Mining of an opening disturbs the static equilibrium to a degree where fracturing of the rock surrounding a room occurs, changing its mechanical and hydrologic properties. This disturbed rock zone (DRZ) is an important geomechanical feature included in the performance assessment process models used to predict future repository conditions as a part of certification by the EPA as meeting regulatory compliance. Based on ongoing scientific investigations and evaluation of published data since the original certification in 1998, our understanding of the DRZ has continued to progress. Three deformation processes are activated as deviatoric stresses are induced upon excavation of a room in a salt formation: (1) elastic response, (2) inelastic viscoplastic flow, and (3) inelastic- damage induced flow. Damage, the least understood of these processes, is manifested by the time- dependent initiation, growth, coalescence, and healing of microfractures with a deviatoric stress state. Since the ability to model the spatial and temporal changes in salt damage is not available at this time, various means to measure it have been attempted. At the WIPP, for this study, we used sonic velocity measurements obtained over a 12 year period as the principal field method to describe the extent of the DRZ. Predictions of the DRZ extent based on these experimental results are substantiated by permeability measurements and microfracture density analysis from other places in the repository. Extensive laboratory salt creep data demonstrate that damage can be assessed in terms of volumetric strain and principal stresses. Stress states that cause dilatant damage can be defined in terms of the ratio of stress invariants, which allow reasonable models of DRZ evolution and devolution. The change of DRZ extent with time is calculated based on a dilatant damage potential criterion: D = (C · I1) / √J2 where D is the damage potential, I1 is the first invariant of the stress tensor, and J2 is the second invariant of the deviatoric stress tensor. When D < 1, damage is predicted. The proportionality constant C in the damage criterion is determined by comparing the numerical analysis results with the sonic velocity field data obtained in the Room Q access drift of WIPP. The most extensive DRZ exists during early times, within the first ten years after a room is mined. As the creeping salt tries to fill the excavation, back stresses from the waste and gas pressure within the repository resist its deformation and damage to the salt decreases. The maximum extents of the DRZ calculated below and above a room reach approximately 2.25 m and 4.75 m, respectively. The maximum lateral DRZ extent in the side of the room is estimated to be roughly 2 m. Sandia is a multi program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. This research is funded by WIPP programs administered by the Office of Environmental Management (EM) of the U.S. Department of Energy.

  8. No-migration variance petition. Appendices K--O, Response to notice of deficiencies: Volume 6, Revision 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fischer, N.T.

    1990-03-01

    This document reports data collected as part of the Ecological Monitoring Program (EMP) at the Waste Isolation Pilot Plant near Carlsbad, New Mexico, for Calendar Year 1987. Also included are data from the last quarter (October through December) of 1986. This report divides data collection activities into two parts. Part A covers general environmental monitoring which includes meteorology, aerial photography, air quality monitoring, water quality monitoring, and wildlife population surveillance. Part B focuses on the special studies being performed to evaluate the impacts of salt dispersal from the site on the surrounding ecosystem. The fourth year of salt impact monitoringmore » was completed in 1987. These studies involve the monitoring of soil chemistry, soil microbiota, and vegetation in permanent study plots. None of the findings indicate that the WIPP project is adversely impacting environmental quality at the site. As in 1986, breeding bird censuses completed this year indicate changes in the local bird fauna associated with the WIPP site. The decline in small mammal populations noted in the 1986 census is still evident in the 1987 data; however, populations are showing signs of recovery. There is no indication that this decline is related to WIPP activities. Rather, the evidence indicates that natural population fluctuations may be common in this ecosystem. The salt impact studies continue to reveal some short-range transport of salt dust from the saltpiles. This material accumulates at or near the soil surface during the dry seasons in areas near the saltpiles, but is flushed deeper into the soil during the rainy season. Microbial activity does not appear to be affected by this salt importation. Vegetation coverage and density data from 1987 also do not show any detrimental effect associated with aerial dispersal of salt.« less

  9. WIPP Waste Information Systems (WWIS)

    EPA Pesticide Factsheets

    EPA approved the INL-CCP and ANL-CCP RH TRU WC programs based on a demonstration of the sites’ capabilities, with conditions and limitations as documented in the INL Baseline Final Inspection Report and the ANL Baseline Final Inspection Report.

  10. Reconstructing the Chronology of Supernovae: Determining Major Variations in the History of the Cosmic-ray Flux Incident on the Earth's Surface by Measuring the Concentration of 22Ne in Halite

    NASA Astrophysics Data System (ADS)

    Nahill, N. D.; Giegengack, R.; Lande, K.; Omar, G.

    2008-12-01

    We plan to measure the inventory of cosmogenically produced 22Ne atoms preserved in the mineral lattice of halite in deposits of rock salt, and to use that inventory to measure variations in the cosmic-ray flux to enable us to reconstruct the history of supernovae. Bedded rock salt consists almost entirely of the mineral halite (NaCl). Any neon trapped in the halite crystals during precipitation is primarily 20Ne, with a 22Ne concentration of 9% or less. Any neon resulting from cosmic-ray interactions with 23Na is solely 22Ne; therefore, 22Ne atoms in excess of 9% of the total neon are cosmogenic in origin. Measurement of the 22Ne inventory in halite from deposits covering a range of geologic ages may enable us to document the systematic growth of 22Ne through geologic time and, thus, establish the cosmic-ray flux and a chronology of supernovae. The cosmic-ray flux is attenuated in direct proportion to the mass of material overlying a halite deposit. To adjust the 22Ne inventory to account for that attenuation, we must reconstruct the post-depositional history of accumulation and removal of superjacent sediment for each halite deposit we study. As an example of our procedure, we reconstruct here the shielding history of the Permian halite deposit, the Salado Formation, Delaware Basin, New Mexico. The stratigraphy of the Delaware Basin has been well documented via exploration and production wells drilled in search of oil and gas, exploration boreholes associated with potash mining, and comprehensive geologic site assessment of the DOE Waste Isolation Pilot Plant (WIPP). WIPP is a subsurface repository for the permanent disposal of transuranic wastes, located in southeastern New Mexico, 42 km east of Carlsbad and approximately 655 m beneath the surface in the Salado Fm. The Salado Fm is part of the Late Permian Ochoan Series, and consists of 1) a lower member, 2) the McNutt Potash Zone, and 3) an upper member. WIPP lies between marker bed (MB)139 and MB136 in the lower member of the Salado Fm. MB139 forms the floor of WIPP. At WIPP, the Rustler Fm and the Dewey Lake Red Beds, both Ochoan in age, directly overlie the Salado Fm. The Dewey Lake marks the end of Permian deposition. The Santa Rosa Fm of the Late Triassic (late Carnian) Chinle Group lies unconformably over the Ochoan series. The unconformity represents a depositional gap of at least 25 million years. Another major unconformity, representing at least 210 million years, separates the Santa Rosa Fm from the overlying Miocene-Pliocene Ogallala Fm. The Pleistocene Gatuña Fm conformably overlies the Ogallala, but in many places it unconformably overlies Ochoan Permian rocks. Strata from the Jurassic to Late Tertiary do not occur at WIPP. The stratigraphic section at WIPP is well documented, but we must account for the column of rock that was deposited over the site and subsequently removed by erosion since deposition of the Salado halite. From hydrocarbon maturation-data, Hills (1984) estimated the missing overburden as 1,200 m. From stratigraphic inferences, Powers and Holt (1995) estimated that 400 m of rock have been removed by erosion since deposition of the Salado Fm. Using thermal indicators such as vitrinite reflectance, fission-track analysis, U/Th-He, 40Ar/39Ar, and fluid-inclusion analysis, we plan to constrain the thermal history at the site. We will reconstruct the mass of material that accumulated above the Salado Formation, and the period of time during which that cover remained in place.

  11. Remote Handled WIPP Canisters at Los Alamos National Laboratory Characterized for Retrieval

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Griffin, J.; Gonzales, W.

    2007-07-01

    The Los Alamos National Laboratory (LANL) is pursuing retrieval, transportation, and disposal of 16 remote handled transuranic waste canisters stored below ground in shafts since 1994. These canisters were retrievably stored in the shafts to await Nuclear Regulatory Commission certification of the Model Number RH-TRU 72B transportation cask and authorization of the Waste Isolation Pilot Plant (WIPP) to accept the canisters for disposal. Retrieval planning included radiological characterization and visual inspection of the canisters to confirm historical records, verify container integrity, determine proper personnel protection for the retrieval operations, provide radiological dose and exposure rate data for retrieval operations, andmore » to provide exterior radiological contamination data. The radiological characterization and visual inspection of the canisters was performed in May 2006. The effort required the development of remote techniques and equipment due to the potential for personnel exposure to radiological doses approaching 300 R/hr. Innovations included the use of two nested 1.5 meter (m) (5-feet [ft]) long concrete culvert pipes (1.1-m [42 inch (in.)] and 1.5-m [60-in] diameter, respectively) as radiological shielding and collapsible electrostatic dusting wands to collect radiological swipe samples from the annular space between the canister and shaft wall. Visual inspection indicated that the canisters are in good condition with little or no rust, the welded seams are intact, and ten of the canisters include hydrogen gas sampling equipment on the pintle that will have to be removed prior to retrieval. The visual inspection also provided six canister identification numbers that matched historical storage records. The exterior radiological data indicated alpha and beta contamination below LANL release criteria and radiological dose and exposure rates lower than expected based upon historical data and modeling of the canister contents. (authors)« less

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weaver, Brian Phillip

    The purpose of this document is to describe the statistical modeling effort for gas concentrations in WIPP storage containers. The concentration (in ppm) of CO 2 in the headspace volume of standard waste box (SWB) 68685 is shown. A Bayesian approach and an adaptive Metropolis-Hastings algorithm were used.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jensen, A.L.; Howard, C.L.; Jones, R.L.

    Pore-pressure and fluid-flow tests were performed in 15 boreholes drilled into the bedded evaporites of the Salado Formation from within the Waste Isolation Pilot Plant (WIPP). The tests measured fluid flow and pore pressure within the Salado. The boreholes were drilled into the previously undisturbed host rock around a proposed cylindrical test room, Room Q, located on the west side of the facility about 655 m below ground surface. The boreholes were about 23 m deep and ranged over 27.5 m of stratigraphy. They were completed and instrumented before excavation of Room Q. Tests were conducted in isolated zones atmore » the end of each borehole. Three groups of 5 isolated zones extend above, below, and to the north of Room Q at increasing distances from the room axis. Measurements recorded before, during, and after the mining of the circular test room provided data about borehole closure, pressure, temperature, and brine seepage into the isolated zones. The effects of the circular excavation were recorded. This data report presents the data collected from the borehole test zones between April 25, 1989 and November 25, 1991. The report also describes test development, test equipment, and borehole drilling operations.« less

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sailer, S.J.

    This Quality Assurance Project Plan (QAPJP) specifies the quality of data necessary and the characterization techniques employed at the Idaho National Engineering Laboratory (INEL) to meet the objectives of the Department of Energy (DOE) Waste Isolation Pilot Plant (WIPP) Transuranic Waste Characterization Quality Assurance Program Plan (QAPP) requirements. This QAPJP is written to conform with the requirements and guidelines specified in the QAPP and the associated documents referenced in the QAPP. This QAPJP is one of a set of five interrelated QAPjPs that describe the INEL Transuranic Waste Characterization Program (TWCP). Each of the five facilities participating in the TWCPmore » has a QAPJP that describes the activities applicable to that particular facility. This QAPJP describes the roles and responsibilities of the Idaho Chemical Processing Plant (ICPP) Analytical Chemistry Laboratory (ACL) in the TWCP. Data quality objectives and quality assurance objectives are explained. Sample analysis procedures and associated quality assurance measures are also addressed; these include: sample chain of custody; data validation; usability and reporting; documentation and records; audits and 0385 assessments; laboratory QC samples; and instrument testing, inspection, maintenance and calibration. Finally, administrative quality control measures, such as document control, control of nonconformances, variances and QA status reporting are described.« less

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldston, W.

    On April 21, 2009, the Energy Facilities Contractors Group (EFCOG) Waste Management Working Group (WMWG) provided a recommendation to the Department of Energy's Environmental Management program (DOE-EM) concerning supplemental guidance on blending methodologies to use to classify waste forms to determine if the waste form meets the definition of Transuranic (TRU) Waste or can be classified as Low-Level Waste (LLW). The guidance provides specific examples and methods to allow DOE and its Contractors to properly classify waste forms while reducing the generation of TRU wastes. TRU wastes are much more expensive to characterize at the generator's facilities, ship, and thenmore » dispose at the Waste Isolation Pilot Plant (WIPP) than Low-Level Radioactive Waste's disposal. Also the reduction of handling and packaging of LLW is inherently less hazardous to the nuclear workforce. Therefore, it is important to perform the characterization properly, but in a manner that minimizes the generation of TRU wastes if at all possible. In fact, the generation of additional volumes of radioactive wastes under the ARRA programs, this recommendation should improve the cost effective implementation of DOE requirements while properly protecting human health and the environment. This paper will describe how the message of appropriate, less expensive, less hazardous blending of radioactive waste is the 'right' thing to do in many cases, but can be confused with inappropriate 'dilution' that is frowned upon by regulators and stakeholders in the public. A proposal will be made in this paper on how to communicate this very complex and confusing technical issue to regulatory bodies and interested stakeholders to gain understanding and approval of the concept. The results of application of the proposed communication method and attempt to change the regulatory requirements in this area will be discussed including efforts by DOE and the NRC on this very complex subject.« less

  16. Sorbent Scoping Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chancellor, Christopher John

    2016-11-14

    The Los Alamos National Laboratory–Carlsbad Operations (LANL-CO) office was tasked by the DOE CBFO, Office of the Manager to perform a review of the acceptable knowledge (AK) to identify the oxidizers and sorbents in transuranic (TRU) waste streams, to conduct scoping studies on the oxidizers and sorbents identified in AK review to inform the Quality Level 1 (QL1) testing, and to conduct a series of QL1 tests to provide the scientific data to support a basis of knowledge document for determining the criteria for (1) accepting waste at the Waste Isolation Pilot Plant (WIPP) without treatment, (2) determining waste thatmore » will require treatment, and (3) if treatment is required, how the treatment must be performed. The purpose of this report is to present the results of the AK review of sorbents present in active waste streams, provide a technical analysis of the sorbent list, report the results of the scoping studies for the fastest-burning organic sorbent, and provide the list of organic and inorganic sorbents to be used in the development of a Test Plan for Preparation and Testing of Sorbents Mixed with Oxidizer found in Transuranic Waste (DWT-TP-001). The companion report, DWT-RPT-001, Oxidizer Scoping Studies, has similar information for oxidizers identified during the AK review of TRU waste streams. The results of the oxidizer and sorbent scoping studies will be used to inform the QL1 test plan. The QL1 test results will support the development of a basis of knowledge document that will evaluate oxidizing chemicals and sorbents in TRU waste and provide guidance for treatment.« less

  17. Nuclear energy and radioactive waste disposal in the age of recycling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conca, James L.; Apted, Michael

    2007-07-01

    The magnitude of humanity's energy needs requires that we embrace a multitude of various energy sources and applications. For a variety of reasons, nuclear energy must be a major portion of the distribution, at least one third. The often-cited strategic hurdle to this approach is nuclear waste disposal. Present strategies concerning disposal of nuclear waste need to be changed if the world is to achieve both a sustainable energy distribution by 2040 and solve the largest environmental issue of the 21. century - global warming. It is hoped that ambitious proposals to replace fossil fuel power generation by alternatives willmore » drop the percentage of fossil fuel use substantially, but the absolute amount of fossil fuel produced electricity must be kept at or below its present 10 trillion kW-hrs/year. Unfortunately, the rapid growth in consumption to over 30 trillion kW-hrs/year by 2040, means that 20 trillion kW-hrs/yr of non-fossil fuel generated power has to come from other sources. If half of that comes from alternative non-nuclear, non-hydroelectric sources (an increase of 3000%), then nuclear still needs to increase by a factor of four worldwide to compensate. Many of the reasons nuclear energy did not expand after 1970 in North America (proliferation, capital costs, operational risks, waste disposal, and public fear) are no longer a problem. The WIPP site in New Mexico, an example of a solution to the nuclear waste disposal issue, and also to public fear, is an operating deep geologic nuclear waste repository in the massive bedded salt of the Salado Formation. WIPP has been operating for eight years, and as of this writing, has disposed of over 50,000 m{sup 3} of transuranic waste (>100 nCi/g but <23 Curie/liter) including high activity waste. The Salado Formation is an ideal host for any type of nuclear waste, especially waste from recycled spent fuel. (authors)« less

  18. Sodium Bearing Waste Processing Alternatives Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murphy, James Anthony; Palmer, Brent J; Perry, Keith Joseph

    2003-12-01

    A multidisciplinary team gathered to develop a BBWI recommendation to DOE-ID on the processing alternatives for the sodium bearing waste in the INTEC Tank Farm. Numerous alternatives were analyzed using a rigorous, systematic approach. The data gathered were evaluated through internal and external peer reviews for consistency and validity. Three alternatives were identified to be top performers: Risk-based Calcination, MACT to WIPP Calcination and Cesium Ion Exchange. A dual-path through early Conceptual design is recommended for MACT to WIPP Calcination and Cesium Ion Exchange since Risk-based Calcination does not require design. If calcination alternatives are not considered based on givingmore » Type of Processing criteria significantly greater weight, the CsIX/TRUEX alternative follows CsIX in ranking. However, since CsIX/TRUEX shares common uncertainties with CsIX, reasonable backups, which follow in ranking, are the TRUEX and UNEX alternatives. Key uncertainties must be evaluated by the decision-makers to choose one final alternative. Those key uncertainties and a path forward for the technology roadmapping of these alternatives is provided.« less

  19. Pretest 3D finite element analysis of the WIPP Intermediate Scale Borehole Test

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arguello, J.G.

    A three dimensional pretest finite element analysis of the Intermediate Scale Borehole Test has been performed. In the analysis, the 7.7 years simulation period includes the mining of Rooms C1 and C2, and the N1420 cross drift, at time zero; drilling of the borehole between the two rooms at 5.7 years; and 2 years of post-drilling response. An all salt configuration was used in the calculation. The 1984 Waste Isolation Pilot Plant (WIPP) reference elastic-secondary creep law, with reduced elastic moduli, was used to model the creeping response of the salt. Results show that after mining of the rooms andmore » cross drift a relatively high von Mises stress state exists around the perimeter of the pillar. However, by 5.7 years, or immediately prior to drilling of the borehole, the pillar has relaxed to an almost uniform von Mises stress of about 7--8 MPa. After the borehole is drilled, a relatively high von Mises stress field is once again set up in the immediate vicinity of the hole. This drives the creep closure of the borehole. The hole closes more in the vertical direction than in the horizontal direction, resulting in ovalling of the hole. At the end of the simulation, the von Mises stress around the borehole is still higher than that in the remained of the pillar. Thus, the closure rates are relatively high at the end of the simulation time.« less

  20. Pretest parametric calculations for the heated pillar experiment in the WIPP In-Situ Experimental Area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Branstetter, L.J.

    Results are presented for a pretest parametric study of several configurations and heat loads for the heated pillar experiment (Room H) in the Waste Isolation Pilot Plant (WIPP) In Situ Experimental Area. The purpose of this study is to serve as a basis for selection of a final experiment geometry and heat load. The experiment consists of a pillar of undisturbed rock salt surrounded by an excavated annular room. The pillar surface is covered by a blanket heat source which is externally insulated. A total of five thermal and ten structural calculations are described in a four to five yearmore » experimental time frame. Results are presented which include relevant temperature-time histories, deformations, rock salt stress component and effective stress profiles, and maximum stresses in anhydrite layers which are in close proximity to the room. Also included are predicted contours of a conservative post-processed measure of potential salt failure. Observed displacement histories are seen to be highly dependent on pillar and room height, but insensitive to other geometrical variations. The use of a tensile cutoff across slidelines is seen to produce more accurate predictions of anhydrite maximum stress, but to have little effect on rock salt stresses. The potential for salt failure is seen to be small in each case for the time frame of interest, and is only seen at longer times in the center of the room floor.« less

  1. Waste isolation pilot plant (WIPP) borehole plugging program description

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christensen, C.L.; Hunter, T.O.

    1979-08-01

    The tests and experiments described attempt to provide a mix of borehole (with limited access) and in-mine (with relatively unlimited access) environments in which assessment of the various issues involved can be undertaken. The Bell Canyon Test provides the opportunity to instrument and analyze a plug in a high pressure region. The Shallow Hole Test permits application of best techniques for plugging and then access to both the top and bottom of the plug for further analysis. The Diagnostic Test Hole permits recovery of bench scale size samples for analysis and establishes an in-borehole laboratory in which to conduct testingmore » and analysis in all strata from the surface into the salt horizon. The additional in mine experiments provide the opportunity to investigate in more detail specific effects on plugs in the salt region and allows evaluation of instrumentation systems.« less

  2. Development of consistent hazard controls for DOE transuranic waste operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woody, W.J.

    2007-07-01

    This paper describes the results of a re-engineering initiative undertaken with the Department of Energy's (DOE) Office of Environmental Management (EM) in order to standardize hazard analysis assumptions and methods and resulting safety controls applied to multiple transuranic (TRU) waste operations located across the United States. A wide range of safety controls are historically applied to transuranic waste operations, in spite of the fact that these operations have similar operational characteristics and hazard/accident potential. The re-engineering effort supported the development of a DOE technical standard with specific safety controls designated for accidents postulated during waste container retrieval, staging/storage, venting, onsitemore » movements, and characterization activities. Controls cover preventive and mitigative measures; include both hardware and specific administrative controls; and provide protection to the facility worker, onsite co-located workers and the general public located outside of facility boundaries. The Standard development involved participation from all major DOE sites conducting TRU waste operations. Both safety analysts and operations personnel contributed to the re-engineering effort. Acknowledgment is given in particular to the following individuals who formed a core working group: Brenda Hawks, (DOE Oak Ridge Office), Patrice McEahern (CWI-Idaho), Jofu Mishima (Consultant), Louis Restrepo (Omicron), Jay Mullis (DOE-ORO), Mike Hitchler (WSMS), John Menna (WSMS), Jackie East (WSMS), Terry Foppe (CTAC), Carla Mewhinney (WIPP-SNL), Stephie Jennings (WIPP-LANL), Michael Mikolanis (DOESRS), Kraig Wendt (BBWI-Idaho), Lee Roberts (Fluor Hanford), and Jim Blankenhorn (WSRC). Additional acknowledgment is given to Dae Chung (EM) and Ines Triay (EM) for leadership and management of the re-engineering effort. (authors)« less

  3. NDA Batch 2002-13

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hollister, R

    QC sample results (daily background check drum and 100-gram SGS check drum) were within acceptance criteria established by WIPP's Quality Assurance Objectives for TRU Waste Characterization. Replicate runs were performed on drum LL85501243TRU. Replicate measurement results are identical at the 95% confidence level as established by WIPP criteria. HWM NCAR No. 02-1000168 issued on 17-Oct-2002 regarding a partially dislodged Cd sheet filter on the HPGe coaxial detector. This physical geometry occurred on 01-Oct-2002 and was not corrected until 10-Oct-2002, during which period is inclusive of the present batch run of drums. Per discussions among the Independent Technical Reviewer, Expert Reviewermore » and the Technical QA Supervisor, as well as in consultation with John Fleissner, Technical Point of Contact from Canberra, the analytical results are technically reliable. All QC standard runs during this period were in control. Data packet for SGS Batch 2002-13 generated using passive gamma-ray spectroscopy with the Pu Facility SGS unit is technically reasonable. All QC samples are in compliance with establiShed control limits. The batch data packet has been reviewed for correctness, completeness, consistency and compliance with WIPP's Quality Assurance Objectives and determined to be acceptable.« less

  4. Summary Report of Laboratory Testing to Establish the Effectiveness of Proposed Treatment Methods for Unremediated and Remediated Nitrate Salt Waste Streams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anast, Kurt Roy; Funk, David John

    The inadvertent creation of transuranic waste carrying hazardous waste codes D001 and D002 requires the treatment of the material to eliminate the hazardous characteristics and allow its eventual shipment and disposal at the Waste Isolation Pilot Plant (WIPP). This report documents the effectiveness of two treatment methods proposed to stabilize both the unremediated and remediated nitrate salt waste streams (UNS and RNS, respectively). The two technologies include the addition of zeolite (with and without the addition of water as a processing aid) and cementation. Surrogates were developed to evaluate both the solid and liquid fractions expected from parent waste containers,more » and both the solid and liquid fractions were tested. Both technologies are shown to be effective at eliminating the characteristic of ignitability (D001), and the addition of zeolite was determined to be effective at eliminating corrosivity (D002), with the preferred option1 of zeolite addition currently planned for implementation at the Waste Characterization, Reduction, and Repackaging Facility. During the course of this work, we established the need to evaluate and demonstrate the effectiveness of the proposed remedy for debris material, if required. The evaluation determined that Wypalls absorbed with saturated nitrate salt solutions exhibit the ignitability characteristic (all other expected debris is not classified as ignitable). Follow-on studies will be developed to demonstrate the effectiveness of stabilization for ignitable Wypall debris. Finally, liquid surrogates containing saturated nitrate salts did not exhibit the characteristic of ignitability in their pure form (those neutralized with Kolorsafe and mixed with sWheat did exhibit D001). As a result, additional nitrate salt solutions (those exhibiting the oxidizer characteristic) will be tested to demonstrate the effectiveness of the remedy.« less

  5. Radiological Characterization Methodology of INEEL Stored RH-TRU Waste from ANL-E

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rajiv N. Bhatt

    2003-02-01

    An Acceptable Knowledge (AK)-based radiological characterization methodology is being developed for RH TRU waste generated from ANL-E hot cell operations performed on fuel elements irradiated in the EBR-II reactor. The methodology relies on AK for composition of the fresh fuel elements, their irradiation history, and the waste generation and collection processes. Radiological characterization of the waste involves the estimates of the quantities of significant fission products and transuranic isotopes in the waste. Methods based on reactor and physics principles are used to achieve these estimates. Because of the availability of AK and the robustness of the calculation methods, the AK-basedmore » characterization methodology offers a superior alternative to traditional waste assay techniques. Using this methodology, it is shown that the radiological parameters of a test batch of ANL-E waste is well within the proposed WIPP Waste Acceptance Criteria limits.« less

  6. Radiological Characterization Methodology for INEEL-Stored Remote-Handled Transuranic (RH TRU) Waste from Argonne National Laboratory-East

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuan, P.; Bhatt, R.N.

    2003-01-14

    An Acceptable Knowledge (AK)-based radiological characterization methodology is being developed for RH TRU waste generated from ANL-E hot cell operations performed on fuel elements irradiated in the EBR-II reactor. The methodology relies on AK for composition of the fresh fuel elements, their irradiation history, and the waste generation and collection processes. Radiological characterization of the waste involves the estimates of the quantities of significant fission products and transuranic isotopes in the waste. Methods based on reactor and physics principles are used to achieve these estimates. Because of the availability of AK and the robustness of the calculation methods, the AK-basedmore » characterization methodology offers a superior alternative to traditional waste assay techniques. Using the methodology, it is shown that the radiological parameters of a test batch of ANL-E waste is well within the proposed WIPP Waste Acceptance Criteria limits.« less

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bauer, Stephen J.; Urquhart, Alexander

    Reconsolidated crushed salt is being considered as a backfilling material placed upon nuclear waste within a salt repository environment. In-depth knowledge of thermal and mechanical properties of the crushed salt as it reconsolidates is critical to thermal/mechanical modeling of the reconsolidation process. An experimental study was completed to quantitatively evaluate the thermal conductivity of reconsolidated crushed salt as a function of porosity and temperature. The crushed salt for this study came from the Waste Isolation Pilot Plant (WIPP). In this work the thermal conductivity of crushed salt with porosity ranging from 1% to 40% was determined from room temperature upmore » to 300°C, using two different experimental methods. Thermal properties (including thermal conductivity, thermal diffusivity and specific heat) of single-crystal salt were determined for the same temperature range. The salt was observed to dewater during heating; weight loss from the dewatering was quantified. The thermal conductivity of reconsolidated crushed salt decreases with increasing porosity; conversely, thermal conductivity increases as the salt consolidates. The thermal conductivity of reconsolidated crushed salt for a given porosity decreases with increasing temperature. A simple mixture theory model is presented to predict and compare to the data developed in this study.« less

  8. Geotechnical Field Data and Analysis Report, July 1991--June 1992. Volume 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-09-01

    The Geotechnical Field Data and Analysis Report documents the geotechnical data from the underground excavations at the Waste Isolation Pilot Plant (WIPP) located near Carlsbad, New Mexico. The data are used to characterize conditions, confirm design assumptions, and understand and predict the performance of the underground excavations during operations. The data are obtained as part of a routine monitoring program and do not include data from tests performed by Sandia National Laboratories (SNL), the Scientific Advisor to the project, in support of performance assessment studies. The purpose of the geomechanical monitoring program is to provide in situ data to supportmore » continuing assessments of the design for the underground facilities. Specifically, the program provides: Early detection of conditions that could compromise operational safety; evaluation of room closure to ensure retrievability of waste; guidance for design modifications and remedial actions; and data for interpreting the actual behavior of underground openings, in comparison with established design criteria. This Geotechnical Field Data and Analysis Report covers the period July 1, 1991 to June 30, 1992. Volume 1 provides an interpretation of the field data while Volume 2 describes and presents the data itself.« less

  9. VITRIFICATION SYSTEM FOR THE TREATMENT OF PLUTONIUM-BEARING WASTE AT LOS ALAMOS NATIONAL LABORATORY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R. NAKAOKA; G. VEAZEY; ET AL

    2001-05-01

    A glove box vitrification system is being fabricated to process aqueous evaporator bottom waste generated at the Plutonium Facility (TA-55) at Los Alamos National Laboratory (LANL). The system will be the first within the U.S. Department of Energy Complex to routinely convert Pu{sup 239}-bearing transuranic (TRU) waste to a glass matrix for eventual disposal at the Waste Isolation Pilot Plant (WIPP). Currently at LANL, this waste is solidified in Portland cement. Radionuclide loading in the cementation process is restricted by potential radiolytic degradation (expressed as a wattage limit), which has been imposed to prevent the accumulation of flammable concentrations ofmore » H{sub 2} within waste packages. Waste matrixes with a higher water content (e.g., cement) are assigned a lower permissible wattage limit to compensate for their potential higher generation of H{sub 2}. This significantly increases the number of waste packages that must be prepared and shipped, thus driving up the costs of waste handling and disposal. The glove box vitrification system that is under construction will address this limitation. Because the resultant glass matrix produced by the vitrification process is non-hydrogenous, no H{sub 2} can be radiolytically evolved, and drums could be loaded to the maximum allowable limit of 40 watts. In effect, the glass waste form shifts the limiting constraint for loading disposal drums from wattage to the criticality limit of 200 fissile gram equivalents, thus significantly reducing the number of drums generated from this waste stream. It is anticipated that the number of drums generated from treatment of evaporator bottoms will be reduced by a factor of 4 annually when the vitrification system is operational. The system is currently undergoing non-radioactive operability testing, and will be fully operational in the year 2003.« less

  10. Geologic and well-construction data for the H-8 borehole complex near the proposed Waste Isolation Pilot Plant site, southeastern New Mexico

    USGS Publications Warehouse

    Wells, J.G.; Drellack, S.L.

    1982-01-01

    The H-8 complex, a group of three closely-spaced boreholes, is located 9 miles south of the proposed Waste Isolation Pilot Plant site in southeastern Eddy County, New Mexico. The holes were drilled during July, August, and September of 1979 to obtain geologic and hydrologic data to better define the regional ground-water-flow system. The geologic data presented in this report are part of a site-characterization study for the possible disposal of defense-associated radioactive wastes within salt beds of the Salado Formation of Permian age. The geologic data include detailed descriptions of cores, cuttings, and geophysical logs. Each borehole was designed to penetrate a distinct water-bearing zone: H-8a (total depth 505 feet) was completed just below the Magenta Dolomite Member of the Rustler Formation of Permian Age; H-8b (total depth 624 feet) was completed just belows the Culebra Dolomite Member of the Rustler Formation; and H-8c (total depth 808 feet) was completed just below the Rustler Formation-Salado Formation contact. The geologic units penetrated in borehole H-8c are surficial alluvium and eolian sand of Holocene age (0-4 feet); the Mescalero caliche (4-10 feet) and Gatuna Formation (10-153 feet) , both of Pleistocene age; and the Dewey Lake Red Beds (153-399 feet), the Rustler Formation (399-733 feet), and part of the Salado Formation penetrated by borehole H-8c is composed of residue from dissolution of halite and associated rocks, and the hydration of anhydrite to gypsum, indicating that the eastward-moving dissolution front on top of the Salado, found just to the west of the WIPP site, has reached the H-8 site. (USGS)

  11. Geologic and well-construction data for the H-10 borehole complex near the proposed Waste Isolation Pilot Plant site, southeastern New Mexico

    USGS Publications Warehouse

    Wells, J.G.; Drellack, S.L.

    1983-01-01

    The H-10 borehole complex, a group of three closely spaced boreholes, is located 3 1/2 miles southeast of the proposed Waste Isolation Pilot Plant site in west-central Lea County, New Mexico. The geological data presented in this report are part of a site-characterization study for the possible storage of defense-associated radioactive wastes within salt beds of the Salado Formation of Permian age. Each borehole was designated to penetrate a distinct water-bearing zone: H-10a (total depth 1 ,318 feet) was completed just below the Magenta Dolomite Member of the Rustler Formation of Permian age; H-10b (total depth 1 ,398 feet) was completed just below the Culebra Dolomite Member of the Rustler Formation; and H-10c (total depth 1,538 feet) was completed below the Rustler Formation-Salado Formation contact. The geologic units penetrated in borehole H-10c are surficial alluvium and eolian sand of Holocene age (0-5 feet); the Mescalero caliche (5-9 feet) and the Gatuna Formation (9-90 feet) of Pleistocene age; formation in the Dockum Group (Chinle Formation, 90-482 feet and Santa Rosa Sandstone, 482-658 feet) of Late Triassic age; and the Dewey Lake Red Beds (658-1,204 feet), the Rustler Formation (1,204-1,501 feet), and part of the Salado Formation (1,501-1,538 feet), all of Permian age. The sections of the Rustler and Salado Formations penetrated by borehole H-10c are complete and contain little or no evidence of dissolution of halite and associated rocks, indicating that the eastward-moving dissolution on top of the Salado, found just to the west of the WIPP site, has not reached the H-10 site. (USGS)

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singledecker, Steven John

    The purpose of this document is to describe the waste stream from Z-Pinch Residual Waste Project that due to worker safety concerns and operational efficiency is a candidate for blending Transuranic and low level waste together and can be safely packaged as low-level waste consistent with DOE Order 435.1 requirements and NRC guidance 10 CFR 61.42. This waste stream consists of the Pu-ICE post-shot containment systems, including plutonium targets, generated from the Z Machine experiments requested by LANL and conducted by SNL/NM. In the past, this TRU waste was shipped back to LANL after Sandia sends the TRU data packagemore » to LANL to certify the characterization (by CCP), transport and disposition at WIPP (CBFO) per LANL MOU-0066. The Low Level Waste is managed, characterized, shipped and disposed of at NNSS by SNL/NM per Sandia MOU # 11-S-560.« less

  13. NDA BATCH 2002-02

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawrence Livermore National Laboratory

    2009-12-09

    QC sample results (daily background checks, 20-gram and 100-gram SGS drum checks) were within acceptable criteria established by WIPP's Quality Assurance Objectives for TRU Waste Characterization. Replicate runs were performed on 5 drums with IDs LL85101099TRU, LL85801147TRU, LL85801109TRU, LL85300999TRU and LL85500979TRU. All replicate measurement results are identical at the 95% confidence level as established by WIPP criteria. Note that the batch covered 5 weeks of SGS measurements from 23-Jan-2002 through 22-Feb-2002. Data packet for SGS Batch 2002-02 generated using gamma spectroscopy with the Pu Facility SGS unit is technically reasonable. All QC samples are in compliance with established control limits.more » The batch data packet has been reviewed for correctness, completeness, consistency and compliance with WIPP's Quality Assurance Objectives and determined to be acceptable. An Expert Review was performed on the data packet between 28-Feb-02 and 09-Jul-02 to check for potential U-235, Np-237 and Am-241 interferences and address drum cases where specific scan segments showed Se gamma ray transmissions for the 136-keV gamma to be below 0.1 %. Two drums in the batch showed Pu-238 at a relative mass ratio more than 2% of all the Pu isotopes.« less

  14. Status and Prospects for the EXO-200 and nEXO Experiments

    NASA Astrophysics Data System (ADS)

    Yang, Liang; ">EXO-200, Simultaneous Thermal Analysis of WIPP and LANL Waste Drum Samples: A Preliminary Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wayne, David M.

    2015-10-19

    On Friday, February 14, 2014, an incident in P7R7 of the WIPP underground repository released radioactive material into the environment. The direct cause of the event was a breached transuranic (TRU) waste container, subsequently identified as Drum 68660. Photographic and other evidence indicates that the breach of 68660 was caused by an exothermic event. Subsequent investigations (Britt, 2015; Clark and Funk, 2015; Wilson et al., 2015; Clark, 2015) indicate that the combination of nitrate salts, pH neutralizing chemicals, and organic-based adsorbent represented a potentially energetic mixture. The materials inside the breached steel drum consisted of remediated, 30- to 40-year old,more » Pu processing wastes from LANL. The contents were processed and repackaged in 2014. Processing activities at LANL included: 1) neutralization of acidic liquid contents, 2) sorption of the neutralized liquid, and 3) mixing of acidic nitrate salts with an absorber to meet waste acceptance criteria. The contents of 68660 and its sibling, 68685, were derived from the same parent drum, S855793. Drum S855793 originally contained ten plastic bags of acidic nitrate salts, and four bags of mixed nitrate and oxalate salts generated in 1985 by Pu recovery operations. These salts were predominantly oxalic acid, hydrated nitrate salts of Mg, Ca, and Fe, anhydrous Na(NO 3), and minor amounts of anhydrous and hydrous nitrate salts of Pb, Al, K, Cr, and Ni. Other major components include sorbed water, nitric acid, dissolved nitrates, an absorbent (Swheat Scoop®) and a neutralizer (KolorSafe®). The contents of 68660 are described in greater detail in Appendix E of Wilson et al. (2015)« less

  15. Experimental Work Conducted on MgO Inundated Hydration in WIPP-Relevant Brines

    NASA Astrophysics Data System (ADS)

    Deng, H.; Xiong, Y.; Nemer, M. B.; Johnsen, S.

    2009-12-01

    Magnesium oxide (MgO) is being emplaced in the Waste Isolation Pilot Plant (WIPP) as an engineered barrier to mitigate the effect of microbial CO2 generation on actinide mobility in a postclosure repository environment. MgO will sequester CO2 and consume water in brine or water vapor in the gaseous phase. Martin Marietta (MM) MgO is currently being emplaced in the WIPP. A fractional-factorial experiment has been performed to study the inundated-hydration of MM MgO as a function of its particle size, solid-to-liquid ratio, and brine type. MgO hydration experiments have been carried out with three MgO particle sizes and two solid-to-liquid ratios in three WIPP-related brines: ERDA-6, GWB and simplified GWB. ERDA-6 is a synthetic NaCl-rich brine typical of a Castile brine reservoir below the repository. GWB is a synthetic MgCl2- and NaCl-rich brine representative of intergranular brines from the Salado Formation at or near the stratigraphic horizon of the repository. Simplified GWB contains amounts of Mg, Na, and Cl similar to those in GWB without other minor constituents. The hydration products include brucite (Mg(OH)2) and phase 5 (Mg3(OH)5Cl4H2O). In addition to phase 5, MgO hydration in GWB or simplified GWB produces brucite, whereas MgO hydrated in ERDA-6 only produces brucite. The MgO particle size has had a significant effect on the formation of hydration products: small MgO particles have hydrated before the large particles. MgO has hydrated faster in simplified GWB than in the other two brines. In ERDA-6, the solid-to-liquid ratio has affected the brine pH due to the presence of CaO (~1 wt %) as an impurity in MM MgO. GWB has sufficient dissolved Mg to buffer pH despite small amounts of CaO. Both our results and thermodynamic modeling indicate that phase-5 is the stable Mg-OH-Cl phase in Mg-Na-Cl-dominated brines with ionic strengths and chemical compositions similar to that of GWB. In contrast, phase-3 (Mg2(OH)3Cl4H2O) is the stable phase in the MgCl2-saturated Q-brine, a high-ionic-strength (up to 15 m) brine from Asse, Germany. We used EQ3/6 to simulate MgO hydration and carbonation in a closed system containing brine and CO2 at atmospheric concentration by titrating periclase into the system. (EQ3/6 is a geochemical software package for speciation, solubility calculations and reaction path modeling.) EQ3/6 predicted Mg and Cl concentrations and pH similar to the experimentally observed values. EQ3/6 also predicted hydration products similar to thsoe observed experimentally. * This research is funded by WIPP programs administered by the U.S. Department of Energy. ** Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

  16. Savannah River Site Operating Experience with Transuranic (TRU) Waste Retrieval

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stone, K.A.; Milner, T.N.

    2006-07-01

    Drums of TRU Waste have been stored at the Savannah River Site (SRS) on concrete pads from the 1970's through the 1980's. These drums were subsequently covered with tarpaulins and then mounded over with dirt. Between 1996 and 2000 SRS ran a successful retrieval campaign and removed some 8,800 drums, which were then available for venting and characterization for WIPP disposal. Additionally, a number of TRU Waste drums, which were higher in activity, were stored in concrete culverts, as required by the Safety Analysis for the Facility. Retrieval of drums from these culverts has been ongoing since 2002. This papermore » will describe the operating experience and lessons learned from the SRS retrieval activities. (authors)« less

  17. The cement solidification systems at LANL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veazey, G.W.

    1990-01-01

    There are two major cement solidification systems at Los Alamos National Laboratory. Both are focused primarily around treating waste from the evaporator at TA-55, the Plutonium Processing Facility. The evaporator receives the liquid waste stream from TA-55's nitric acid-based, aqueous-processing operations and concentrates the majority of the radionuclides in the evaporator bottoms solution. This is sent to the TA-55 cementation system. The evaporator distillate is sent to the TA-50 facility, where the radionuclides are precipitated and then cemented. Both systems treat TRU-level waste, and so are operated according to the criteria for WIPP-destined waste, but they differ in both cementmore » type and mixing method. The TA-55 systems uses Envirostone, a gypsum-based cement and in-drum prop mixing; the TA-50 systems uses Portland cement and drum tumbling for mixing.« less

  18. RH Packaging Program Guidance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Washington TRU Solutions, LLC

    The purpose of this program guidance document is to provide technical requirements for use, operation, inspection, and maintenance of the RH-TRU 72-B Waste Shipping Package and directly related components. This document complies with the requirements as specified in the RH-TRU 72-B Safety Analysis Report for Packaging (SARP), and Nuclear Regulatory Commission (NRC) Certificate of Compliance (C of C) 9212. If there is a conflict between this document and the SARP and/or C of C, the SARP and/or C of C shall govern. The C of C states: ''...each package must be prepared for shipment and operated in accordance with themore » procedures described in Chapter 7.0, ''Operating Procedures,'' of the application.'' It further states: ''...each package must be tested and maintained in accordance with the procedures described in Chapter 8.0, ''Acceptance Tests and Maintenance Program of the Application.'' Chapter 9.0 of the SARP tasks the Waste Isolation Pilot Plant (WIPP) Management and Operating (M&O) contractor with assuring the packaging is used in accordance with the requirements of the C of C. Because the packaging is NRC approved, users need to be familiar with 10 CFR {section} 71.11, ''Deliberate Misconduct.'' Any time a user suspects or has indications that the conditions of approval in the C of C were not met, the Carlsbad Field Office (CBFO) shall be notified immediately. CBFO will evaluate the issue and notify the NRC if required. This document details the instructions to be followed to operate, maintain, and test the RH-TRU 72-B packaging. This Program Guidance standardizes instructions for all users. Users shall follow these instructions. Following these instructions assures that operations are safe and meet the requirements of the SARP. This document is available on the Internet at: ttp://www.ws/library/t2omi/t2omi.htm. Users are responsible for ensuring they are using the current revision and change notices. Sites may prepare their own document using the word-for-word steps in th is document, in sequence, including Notes and cautions. Site specific information may be included as necessary. The document, and revisions, must then be submitted to CBFO at sitedocuments@wipp.ws for approval. A copy of the approval letter from CBFO shall be available for audit purposes. Users may develop site-specific procedures addressing preoperational activities, quality assurance (QA), hoisting and rigging, and radiation health physics to be used with the instructions contained in this document. Users may recommend changes to this document by submitting their recommendations (in writing) to the WIPP M&O Contractor RH Packaging Maintenance Engineer for evaluation. If approved, the change(s) will be incorporated into this document for use by ALL users. Before first use and every 12 months after, user sites will be audited to this document to ensure compliance. They will also be audited within one year from the effective date of revisions to this document.« less

  19. Associate Directorate Environmental Management Infrastructure Plan for Area G and Area L Domes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stevens, Patrice Ann; Baumer, Andrew Ronald

    Technical Area 54, at Los Alamos National Laboratory (LANL) is situated in the east-central portion of the Laboratory on the Mesita del Buey between Pajarito Canyon to the south and Cañada del Buey to the north. TA-54 includes four MDAs designated as G, H, J, and L; a waste characterization, container storage, and transfer facility; active TRU waste and MLLW waste storage and low-level waste (LLW) disposal operations at Area G; active hazardous and mixed low-level (MLLW) waste storage operations at Area L; and administrative and support areas. MDA J has previously under-gone closure. Area G is a waste managementmore » and disposal area, used for the disposal and storage of radioactive wastes since 1957. Since August 2015, Area G has been in warm standby and provides minimal operations to support safety, compliance, and nitrate salt remediation. Located within Area G, MDA G covers 63-acres. MDA G contains 334 active and inactive waste management units, which include 36 pits, 294 shafts, and 4 trenches. In 1971, Area G began use for the retrievable storage of TRU waste. There are two pits, four trenches and 60 shafts that contain retrievable TRU waste. Thirty-three of the shafts contain TRU waste that may present unique problems for retrieval. In 1986, segregation of MLLW was initiated at Area G for treatment and temporary storage or for off-site disposal. Area G is the only active LLW disposal facility at the Laboratory. Current operations at Area G include storage and characterization of TRU and mixed TRU waste destined for off-site disposal at the Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico and the storage of MLLW destined for off-site treatment and/or disposal. Several above-ground container storage units (CSUs) are currently used for storage of containerized MLLW and/or mixed TRU wastes. These consist of asphalt pads and associated fabric domes or other structures. As defined by the Consent Order, MDA G contains 229 of the 334 subsurface waste management units at Area G. These MDA G disposal units include 32 pits, 193 shafts, and 4 trenches and contain LLW, MLLW and TRU waste. The remaining 105 solid waste management units (SWMUs) include RCRA-regulated landfill and storage units and DOE-regulated LLW disposal units. The TA-54 closure project must ensure that continuing waste operations at Area G and their transition to an interim or enduring facility are coordinated with closure activities.« less

  1. WIPP Magnesium Oxide (MgO) - Planned Change Request

    EPA Pesticide Factsheets

    On April 10, 2006, the DOE submitted a planned change request pertaining to the amount of MgO emplaced in the WIPP repository. MgO is an engineered barrier that DOE included as part of the original WIPP Certification Decision.

  2. L-3 Com AVISYS civil aviation self-protection system

    NASA Astrophysics Data System (ADS)

    Carey, Jim

    2006-05-01

    In early 2004, L-3 Com AVISYS Corporation (hereinafter referred to as L-3 AVISYS or AVISYS) completed a contract for the integration and deployment of an advanced Infrared Countermeasures self-protection suite for a Head of State Airbus A340 aircraft. This initial L-3 AVISYS IRCM Suite was named WIPPS (Widebody Integrated Platform Protection System). The A340 WIPPS installation provisions were FAA certified with the initial deployment of the modified aircraft. WIPPS is unique in that it utilizes a dual integrated missile warning subsystem to produce a robust, multi-spectral, ultra-low false alarm rate threat warning capability. WIPPS utilizes the Thales MWS-20 Pulsed Doppler Radar Active MWS and the EADS AN/AAR-60 Ultraviolet Passive MWS. These MWS subsystems are integrated through an L-3 AVISYS Electronic Warfare Control Set (EWCS). The EWCS also integrates the WIPPS MWS threat warning information with the A340 flight computer data to optimize ALE-47 Countermeasure Dispensing System IR decoy dispensing commands, program selection and timing. WIPPS utilizes standard and advanced IR Decoys produced by ARMTEC Defense and Alloy Surfaces. WIPPS demonstrated that when IR decoy dispensing is controlled by threat range and time-to-go information provided by an Active MWS, unsurpassed self protection levels are achievable. Recognizing the need for high volume civil aviation protection, L-3 AVISYS configured a variant of WIPPS optimized for commercial airline reliability requirements, safety requirements, supportability and most importantly, affordability. L-3 AVISYS refers to this IRCM suite as CAPS (Commercial Airliner Protection System). CAPS has been configured for applications to all civil aircraft ranging from the small Regional Jets to the largest Wide-bodies. This presentation and paper will provide an overview of the initial WIPPS IRCM Suite and the important factors that were considered in defining the CAPS configuration.

  3. The Challenges of Creating a Real-Time Data Management System for TRU-Mixed Waste at the Advanced Mixed Waste Treatment Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paff, S. W; Doody, S.

    2003-02-25

    This paper discusses the challenges associated with creating a data management system for waste tracking at the Advanced Mixed Waste Treatment Plant (AMWTP) at the Idaho National Engineering Lab (INEEL). The waste tracking system combines data from plant automation systems and decision points. The primary purpose of the system is to provide information to enable the plant operators and engineers to assess the risks associated with each container and determine the best method of treating it. It is also used to track the transuranic (TRU) waste containers as they move throughout the various processes at the plant. And finally, themore » goal of the system is to support paperless shipments of the waste to the Waste Isolation Pilot Plant (WIPP). This paper describes the approach, methodologies, the underlying design of the database, and the challenges of creating the Data Management System (DMS) prior to completion of design and construction of a major plant. The system was built utilizing an Oracle database platform, and Oracle Forms 6i in client-server mode. The underlying data architecture is container-centric, with separate tables and objects for each type of analysis used to characterize the waste, including real-time radiography (RTR), non-destructive assay (NDA), head-space gas sampling and analysis (HSGS), visual examination (VE) and coring. The use of separate tables facilitated the construction of automatic interfaces with the analysis instruments that enabled direct data capture. Movements are tracked using a location system describing each waste container's current location and a history table tracking the container's movement history. The movement system is designed to interface both with radio-frequency bar-code devices and the plant's integrated control system (ICS). Collections of containers or information, such as batches, were created across the various types of analyses, which enabled a single, cohesive approach to be developed for verification and validation activities. The DMS includes general system functions, including task lists, electronic signature, non-conformance reports and message systems, that cut vertically across the remaining subsystems. Oracle's security features were utilized to ensure that only authorized users were allowed to log in, and to restrict access to system functionality according to user role.« less

  4. RESULTS OF THE ENVIRONMENTAL MANAGEMENT (EM) CORPORATE PROJECT TEAM DISPOSING WASTE & REDUCING RISK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    SHRADER, T.A.; KNERR, R.

    2005-01-31

    In 2002, the US Department of Energy's (DOE) Office of Environmental Management (EM) released the Top-To-Bottom Review of cognizant clean-up activities around the DOE Complex. The review contained a number of recommendations for changing the way EM operates in order to reduce environmental risk by significantly accelerating clean-up at the DOE-EM sites. In order to develop and implement these recommendations, a number of corporate project teams were formed to identify, evaluate, and initiate implementation of alternatives for the different aspects of clean-up. In August 2002, a corporate team was formed to review all aspects of the management, treatment, and disposalmore » of low level radioactive waste (LLW), mixed low level radioactive waste (MLLW), transuranic waste (TRU), and hazardous waste (HW). Over the next 21 months, the Corporate Project Team: Disposing Waste, Reducing Risk, developed a number of alternatives for implementing the recommendations of the Top-To-Bottom Review based on information developed during numerous site visits and interviews with complex and industry personnel. With input from over a dozen EM sites at various stages of clean-up, the team identified the barriers to the treatment and disposal of low level waste, mixed low level waste, and transuranic waste. Once identified, preliminary design alternatives were developed and presented to the Acquisition Authority (for this project, the Assistant Secretary for Environmental Management) for review and approval. Once the preliminary design was approved, the team down selected to seven key alternatives which were subsequently fully developed in the Project Execution Plan. The seven most viable alternatives were: (1) creation of an Executive Waste Disposal Board; (2) projectizing the disposal of low level waste and mixed low level waste; (3) creation of a National Consolidation and Acceleration Facility for waste; (4) improvements to the Broad Spectrum contract; (5) improvements to the Toxic Substance Control Act (TSCA) Incinerator contract and operations; (6) development of a policy for load management of waste shipments to the Waste Isolation Pilot Plant (WIPP); and (7) development of a complex-wide fee incentive for transuranic waste disposal. The alternatives were further refined and a plan developed for institutionalizing the alternatives in various site contracts. In order to focus the team's efforts, all team activities were conducted per the principles of DOE Order 413.3, Program and Project Management for the Acquisition of Capital Assets. Although the Order was developed for construction projects, the principles were adapted for use on this ''soft'' project in which the deliverables were alternatives for the way work was performed. The results of the team's investigation and the steps taken during the project are presented along with lessons learned.« less

  5. A Safety Case Approach for Deep Geologic Disposal of DOE HLW and DOE SNF in Bedded Salt - 13350

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sevougian, S. David; MacKinnon, Robert J.; Leigh, Christi D.

    2013-07-01

    The primary objective of this study is to investigate the feasibility and utility of developing a defensible safety case for disposal of United States Department of Energy (U.S. DOE) high-level waste (HLW) and DOE spent nuclear fuel (SNF) in a conceptual deep geologic repository that is assumed to be located in a bedded salt formation of the Delaware Basin [1]. A safety case is a formal compilation of evidence, analyses, and arguments that substantiate and demonstrate the safety of a proposed or conceptual repository. We conclude that a strong initial safety case for potential licensing can be readily compiled bymore » capitalizing on the extensive technical basis that exists from prior work on the Waste Isolation Pilot Plant (WIPP), other U.S. repository development programs, and the work published through international efforts in salt repository programs such as in Germany. The potential benefits of developing a safety case include leveraging previous investments in WIPP to reduce future new repository costs, enhancing the ability to effectively plan for a repository and its licensing, and possibly expediting a schedule for a repository. A safety case will provide the necessary structure for organizing and synthesizing existing salt repository science and identifying any issues and gaps pertaining to safe disposal of DOE HLW and DOE SNF in bedded salt. The safety case synthesis will help DOE to plan its future R and D activities for investigating salt disposal using a risk-informed approach that prioritizes test activities that include laboratory, field, and underground investigations. It should be emphasized that the DOE has not made any decisions regarding the disposition of DOE HLW and DOE SNF. Furthermore, the safety case discussed herein is not intended to either site a repository in the Delaware Basin or preclude siting in other media at other locations. Rather, this study simply presents an approach for accelerated development of a safety case for a potential DOE HLW and DOE SNF repository using the currently available technical basis for bedded salt. This approach includes a summary of the regulatory environment relevant to disposal of DOE HLW and DOE SNF in a deep geologic repository, the key elements of a safety case, the evolution of the safety case through the successive phases of repository development and licensing, and the existing technical basis that could be used to substantiate the safety of a geologic repository if it were to be sited in the Delaware Basin. We also discuss the potential role of an underground research laboratory (URL). (authors)« less

  6. The densities of halite-saturated WIPP-A and NBT-6 brines and their NaCl contents in weight percent, molal, and molar units from 20 to 100 degrees C

    USGS Publications Warehouse

    Chou, I-Ming; Buizinga, B.; Clynne, M.A.; Potter, R.W.

    1982-01-01

    A series of density measurements has been performed at 30?, 50?, 70?, and 90?C for halite-undersaturated WIPP-A and NBT-6 brines with various NaCl contents approaching saturation. The densities of halite-saturated WIPP-A and NBT-6 brines were obtained by extrapolating these measured densities to halite saturation points. The maximum difference between the densities obtained in this Fashion and those calculated from the model of Potter and Haas is 0.015 g/cm3. The NaCl contents in halite-saturated WIPP-A and NBT-6 brines are reported in wt %, molal, and molar units from 20? to 100?C.

  7. Cookoff Modeling of a WIPP waste drum (68660)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hobbs, Michael L.

    2014-11-24

    A waste drum located 2150 feet underground may have been the root cause of a radiation leak on February 14, 2014. Information provided to the WIPP Technical Assessment Team (TAT) was used to describe the approximate content of the drum, which included an organic cat litter (Swheat Scoop®, or Swheat) composed of 100% wheat products. The drum also contained various nitrate salts, oxalic acid, and a nitric acid solution that was neutralized with triethanolamine (TEA). CTH-TIGER was used with the approximate drum contents to specify the products for an exothermic reaction for the drum. If an inorganic adsorbent such asmore » zeolite had been used in lieu of the kitty litter, the overall reaction would have been endothermic. Dilution with a zeolite adsorbent might be a useful method to remediate drums containing organic kitty litter. SIERRA THERMAL was used to calculate the pressurization and ignition of the drum. A baseline simulation of drum 68660 was performed by assuming a background heat source of 0.5-10 W of unknown origin. The 0.5 W source could be representative of heat generated by radioactive decay. The drum ignited after about 70 days. Gas generation at ignition was predicted to be 300-500 psig with a sealed drum (no vent). At ignition, the wall temperature increases modestly by about 1°C, demonstrating that heating would not be apparent prior to ignition. The ignition location was predicted to be about 0.43 meters above the bottom center portion of the drum. At ignition only 3-5 kg (out of 71.6 kg total) has been converted into gas, indicating that most of the material remained available for post-ignition reaction.« less

  8. Mitigation of Hydrogen Gas Generation from the Reaction of Uranium Metal with Water in K Basin Sludge and Sludge Waste Forms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sinkov, Sergey I.; Delegard, Calvin H.; Schmidt, Andrew J.

    2011-06-08

    Prior laboratory testing identified sodium nitrate and nitrite to be the most promising agents to minimize hydrogen generation from uranium metal aqueous corrosion in Hanford Site K Basin sludge. Of the two, nitrate was determined to be better because of higher chemical capacity, lower toxicity, more reliable efficacy, and fewer side reactions than nitrite. The present lab tests were run to determine if nitrate’s beneficial effects to lower H2 generation in simulated and genuine sludge continued for simulated sludge mixed with agents to immobilize water to help meet the Waste Isolation Pilot Plant (WIPP) waste acceptance drainable liquid criterion. Testsmore » were run at ~60°C, 80°C, and 95°C using near spherical high-purity uranium metal beads and simulated sludge to emulate uranium-rich KW containerized sludge currently residing in engineered containers KW-210 and KW-220. Immobilization agents tested were Portland cement (PC), a commercial blend of PC with sepiolite clay (Aquaset II H), granulated sepiolite clay (Aquaset II G), and sepiolite clay powder (Aquaset II). In all cases except tests with Aquaset II G, the simulated sludge was mixed intimately with the immobilization agent before testing commenced. For the granulated Aquaset II G clay was added to the top of the settled sludge/solution mixture according to manufacturer application directions. The gas volumes and compositions, uranium metal corrosion mass losses, and nitrite, ammonia, and hydroxide concentrations in the interstitial solutions were measured. Uranium metal corrosion rates were compared with rates forecast from the known uranium metal anoxic water corrosion rate law. The ratios of the forecast to the observed rates were calculated to find the corrosion rate attenuation factors. Hydrogen quantities also were measured and compared with quantities expected based on non-attenuated H2 generation at the full forecast anoxic corrosion rate to arrive at H2 attenuation factors. The uranium metal corrosion rates in water alone and in simulated sludge were near or slightly below the metal-in-water rate while nitrate-free sludge/Aquaset II decreased rates by about a factor of 3. Addition of 1 M nitrate to simulated sludge decreased the corrosion rate by a factor of ~5 while 1 M nitrate in sludge/Aquaset II mixtures decreased the corrosion rate by ~2.5 compared with the nitrate-free analogues. Mixtures of simulated sludge with Aquaset II treated with 1 M nitrate had uranium corrosion rates about a factor of 8 to 10 lower than the water-only rate law. Nitrate was found to provide substantial hydrogen mitigation for immobilized simulant sludge waste forms containing Aquaset II or Aquaset II G clay. Hydrogen attenuation factors of 1000 or greater were determined at 60°C for sludge-clay mixtures at 1 M nitrate. Hydrogen mitigation for tests with PC and Aquaset II H (which contains PC) were inconclusive because of suspected failure to overcome induction times and fully enter into anoxic corrosion. Lessening of hydrogen attenuation at ~80°C and ~95°C for simulated sludge and Aquaset II was observed with attenuation factors around 100 to 200 at 1 M nitrate. Valuable additional information has been obtained on the ability of nitrate to attenuate hydrogen gas generation from solution, simulant K Basin sludge, and simulant sludge with immobilization agents. Details on characteristics of the associated reactions were also obtained. The present testing confirms prior work which indicates that nitrate is an effective agent to attenuate hydrogen from uranium metal corrosion in water and simulated K Basin sludge to show that it is also effective in potential candidate solidified K Basin waste forms for WIPP disposal. The hydrogen mitigation afforded by nitrate appears to be sufficient to meet the hydrogen generation limits for shipping various sludge waste streams based on uranium metal concentrations and assumed waste form loadings.« less

  9. Discussion of the paper ``the use of conditional simulation in nuclear waste site performance assessment,`` by Carol A. Gotway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilbert, R.O.; Doctor, P.G.

    1993-08-01

    First, we applaud Dr. Gotway for seeking via her paper to expose a wider audience of statisticians to the many interesting and challenging modeling and statistical problems in the environmental area. This well-written paper effective explains the WIPP and the context of the analysis. Dr. Gotway`s paper describes a geostatistical conditional simulation approach combined with deterministic modeling to estimate the cumulative distribution function (cdf) of groundwater travel time (GWTT), information that is needed for estimating the cumulative release of nuclear waste from the repository. We begin our discussion with comments and questions on modeling aspects of Dr. Gotway`s paper. Thenmore » we discuss uncertainty and sensitivity analyses and some of the problems inherent with implementing those techniques including correlations, elicitation of expert opinion, and planning to achieve specified Data Quality Objectives (DQOs).« less

  10. Solubility Model for Ferrous Iron Hydroxide, Hibbingite, Siderite, and Chukanovite in High Saline Solutions of Sodium Chloride, Sodium Sulfate, and Sodium Carbonate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Sungtae; Marrs, Cassandra; Nemer, Martin

    Here, a solubility model is presented for ferrous iron hydroxide (Fe(OH) 2(s)), hibbingite (Fe 2Cl(OH) 3(s)), siderite (FeCO 3(s)), and chukanovite (Fe 2CO 3(OH) 2(s)). The Pitzer activity coefficient equation was utilized in developing the model to account for the excess free energies of aqueous species in the background solutions of high ionic strength. Solubility limiting minerals were analyzed before and after experiments using X-ray diffraction. Formation of Fe(OH) 2(s) was observed in the experiments that were initiated with Fe 2Cl(OH) 3(s) in Na 2SO 4 solution. Coexistence of siderite and chukanovite was observed in the experiments in Na 2COmore » 3 + NaCl solutions. Two equilibrium constants that had been reported by us for the dissolution of Fe(OH) 2(s) and Fe 2Cl(OH) 3(s) (Nemer et al.) were rederived in this paper, using newer thermodynamic data selected from the literature to maintain internal consistency of the series of our data analyses in preparation, including this paper. Three additional equilibrium constants for the following reactions were determined in this paper: dissolution of siderite and chukanovite and dissociation of the aqueous species Fe(CO 3) 2 –2. Five Pitzer interaction parameters were derived in this paper: β (0), β (1), and C φ parameters for the species pair Fe +2/SO 4 –2; β (0) and β (1) parameters for the species pair Na+/Fe(CO3)2–2. Our model predicts that, among the four inorganic ferrous iron minerals, siderite is the stable mineral in two WIPP-related brines (WIPP: Waste Isolation Pilot Plant), i.e., GWB and ERDA6 (Brush and Domski), and the electrochemical equilibrium between elemental iron and siderite provides a low oxygen fugacity (10 –91.2 atm) that can keep the actinides at their lowest oxidation states. (Nemer et al., Brush and Domski; references numbered 1 and 2 in the main text).« less

  11. Solubility Model for Ferrous Iron Hydroxide, Hibbingite, Siderite, and Chukanovite in High Saline Solutions of Sodium Chloride, Sodium Sulfate, and Sodium Carbonate

    DOE PAGES

    Kim, Sungtae; Marrs, Cassandra; Nemer, Martin; ...

    2017-11-20

    Here, a solubility model is presented for ferrous iron hydroxide (Fe(OH) 2(s)), hibbingite (Fe 2Cl(OH) 3(s)), siderite (FeCO 3(s)), and chukanovite (Fe 2CO 3(OH) 2(s)). The Pitzer activity coefficient equation was utilized in developing the model to account for the excess free energies of aqueous species in the background solutions of high ionic strength. Solubility limiting minerals were analyzed before and after experiments using X-ray diffraction. Formation of Fe(OH) 2(s) was observed in the experiments that were initiated with Fe 2Cl(OH) 3(s) in Na 2SO 4 solution. Coexistence of siderite and chukanovite was observed in the experiments in Na 2COmore » 3 + NaCl solutions. Two equilibrium constants that had been reported by us for the dissolution of Fe(OH) 2(s) and Fe 2Cl(OH) 3(s) (Nemer et al.) were rederived in this paper, using newer thermodynamic data selected from the literature to maintain internal consistency of the series of our data analyses in preparation, including this paper. Three additional equilibrium constants for the following reactions were determined in this paper: dissolution of siderite and chukanovite and dissociation of the aqueous species Fe(CO 3) 2 –2. Five Pitzer interaction parameters were derived in this paper: β (0), β (1), and C φ parameters for the species pair Fe +2/SO 4 –2; β (0) and β (1) parameters for the species pair Na+/Fe(CO3)2–2. Our model predicts that, among the four inorganic ferrous iron minerals, siderite is the stable mineral in two WIPP-related brines (WIPP: Waste Isolation Pilot Plant), i.e., GWB and ERDA6 (Brush and Domski), and the electrochemical equilibrium between elemental iron and siderite provides a low oxygen fugacity (10 –91.2 atm) that can keep the actinides at their lowest oxidation states. (Nemer et al., Brush and Domski; references numbered 1 and 2 in the main text).« less

  12. 33 Shafts Category of Transuranic Waste Stored Below Ground within Area G

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hargis, Kenneth Marshall; Monk, Thomas H

    This report compiles information to support the evaluation of alternatives and analysis of regulatory paths forward for the 33 shafts. The historical information includes a form completed by waste generators for each waste package (Reference 6) that included a waste description, estimates of Pu-239 and uranium-235 (U-235) based on an accounting technique, and calculations of mixed fission products (MFP) based on radiation measurements. A 1979 letter and questionnaire (Reference 7) provides information on waste packaging of hot cell waste and the configuration of disposal shafts as storage in the 33 Shafts was initiated. Tables of data by waste package weremore » developed during a review of historical documents that was performed in 2005 (Reference 8). Radiological data was coupled with material-type data to estimate the initial isotopic content of each waste package and an Oak Ridge National Laboratory computer code was used to calculate 2009 decay levels. Other sources of information include a waste disposal logbook for the 33 shafts (Reference 9), reports that summarize remote-handled waste generated at the CMR facility (Reference 10) and placement of waste in the 33 shafts (Reference 11), a report on decommissioning of the LAMPRE reactor (Reference 12), interviews with an employee and manager involved in placing waste in the 33 shafts (References 13 and 14), an interview with a long-time LANL employee involved in waste operations (Reference 15), a 2002 plan for disposition of remote-handled TRU waste (Reference 16), and photographs obtained during field surveys of several shafts in 2007. The WIPP Central Characterization Project (CCP) completed an Acceptable Knowledge (AK) summary report for 16 canisters of remote-handled waste from the CMR Facility that contains information relevant to the 33 Shafts on hot-cell operations and timeline (Reference 17).« less

  13. Analysis of EPA and DOE WIPP Air Sampling Data

    EPA Pesticide Factsheets

    During the April 2014 EPA visit to WIPP, EPA co-located four ambient air samplers with existing Department of Energy (DOE) ambient air samplers to independently corroborate DOE's reported air sampling results.

  14. Pipe Overpack Container Fire Testing: Phase I II & III.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Figueroa, Victor G.; Ammerman, Douglas J.; Lopez, Carlos

    The Pipe Overpack Container (POC) was developed at Rocky Flats to transport plutonium residues with higher levels of plutonium than standard transuranic (TRU) waste to the Waste Isolation Pilot Plant (WIPP) for disposal. In 1996 Sandia National Laboratories (SNL) conducted a series of tests to determine the degree of protection POCs provided during storage accident events. One of these tests exposed four of the POCs to a 30-minute engulfing pool fire, resulting in one of the 7A drum overpacks generating sufficient internal pressure to pop off its lid and expose the top of the pipe container (PC) to the firemore » environment. The initial contents of the POCs were inert materials, which would not generate large internal pressure within the PC if heated. POCs are now being used to store combustible TRU waste at Department of Energy (DOE) sites. At the request of DOE’s Office of Environmental Management (EM) and National Nuclear Security Administration (NNSA), starting in 2015 SNL conducted a series of fire tests to examine whether PCs with combustibles would reach a temperature that would result in (1) decomposition of inner contents and (2) subsequent generation of sufficient gas to cause the PC to over-pressurize and release its inner content. Tests conducted during 2015 and 2016 were done in three phases. The goal of the first phase was to see if the PC would reach high enough temperatures to decompose typical combustible materials inside the PC. The goal of the second test phase was to determine under what heating loads (i.e., incident heat fluxes) the 7A drum lid pops off from the POC drum. The goal of the third phase was to see if surrogate aerosol gets released from the PC when the drum lid is off. This report will describe the various tests conducted in phase I, II, and III, present preliminary results from these tests, and discuss implications for the POCs.« less

  15. Pipe Overpack Container Fire Testing: Phase I & II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Figueroa, Victor G.; Ammerman, Douglas J.; Lopez, Carlos

    The Pipe Overpack Container (POC) was developed at Rocky Flats to transport plutonium residues with higher levels of plutonium than standard transuranic (TRU) waste to the Waste Isolation Pilot Plant (WIPP) for disposal. In 1996 Sandia National Laboratories (SNL) conducted a series of tests to determine the degree of protection POCs provided during storage accident events. One of these tests exposed four of the POCs to a 30-minute engulfing pool fire, resulting in one of the 7A drum overpacks generating sufficient internal pressure to pop off its lid and expose the top of the pipe container (PC) to the firemore » environment. The initial contents of the POCs were inert materials, which would not generate large internal pressure within the PC if heated. However, POCs are now being used to store combustible TRU waste at Department of Energy (DOE) sites. At the request of DOE’s Office of Environmental Management (EM) and National Nuclear Security Administration (NNSA), starting in 2015 SNL conducted a new series of fire tests to examine whether PCs with combustibles would reach a temperature that would result in (1) decomposition of inner contents and (2) subsequent generation of sufficient gas to cause the PC to over-pressurize and release its inner content. Tests conducted during 2015 and 2016, and described herein, were done in two phases. The goal of the first phase was to see if the PC would reach high enough temperatures to decompose typical combustible materials inside the PC. The goal of the second test phase was to determine under what heating loads (i.e., incident heat fluxes) the 7A drum lid pops off from the POC drum. This report will describe the various tests conducted in phase I and II, present preliminary results from these tests, and discuss implications for the POCs.« less

  16. Neptunium(V) Adsorption to Bacteria at Low and High Ionic Strength

    NASA Astrophysics Data System (ADS)

    Ams, D.; Swanson, J. S.; Reed, D. T.

    2010-12-01

    Np(V) is expected to be the predominant oxidation state of neptunium in aerobic natural waters. Np(V), as the NpO2+ aquo and associated complexed species, is readily soluble, interacts weakly with geologic media, and has a high redox stability under a relatively wide range of subsurface conditions. These chemical properties, along with a long half-life make it a primary element of concern regarding long-term nuclear waste storage and subsurface containment. The fate and transport of neptunium in the environment may be influenced by adsorption onto bacterial surfaces. The adsorption of neptunium to bacterial surfaces ties the mobility of the contaminant to the mobility of the bacterium. In this study, the adsorption of the neptunyl (NpO2+) ion was evaluated at low ionic strength on a common soil bacterium and at high ionic strength on a halophilic bacterium isolated from a briny groundwater near the Waste Isolation Pilot Plant (WIPP) in southeast New Mexico. Adsorption experiments were performed in batch reactors as a function of pH, ionic strength, and bacteria/Np mass ratio. Np(V) adsorption was modeled using a surface complexation approach with the mathematical program FITEQL to determine functional group specific binding constants. The data from acid and base titrations of the bacteria used were also modeled to estimate the concentrations and deprotonation constants of discrete bacterial surface functional groups. Bacterial functional group characteristics and Np(V) adsorption behavior between the soil bacterium and the halophilic bacterium were compared. These results highlight key similarities and differences in actinide adsorption behavior in environments of significantly different ionic strength. The observed adsorption behavior may be linked to similarities and differences in the characteristics of the moieties between the cell walls of common gram-negative soil and halophilic bacteria. Moreover, differences in adsorption behavior may also reflect ionic strength effects as the electronic double layer is compressed with increasing ionic strength. These results further highlight the importance of electrostatic interactions in the adsorption process between dissolved metals and bacterial surfaces. This work expands the understanding of actinide-bacteria adsorption phenomena to high ionic strength environmental conditions that are relevant as an aid to predicting Np(V) fate and transport behavior in areas such as the vicinity of salt-based nuclear waste repositories and high ionic-strength groundwaters at DOE sites.

  17. Summary Report of Comprehensive Laboratory Testing to Establish the Effectiveness of Proposed Treatment Methods for Unremediated and Remediated Nitrate Salt Waste Streams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anast, Kurt Roy; Funk, David John; Hargis, Kenneth Marshall

    The inadvertent creation of transuranic waste carrying hazardous waste codes D001 and D002 requires the treatment of the material to eliminate the hazardous characteristics and allow its eventual shipment and disposal at the Waste Isolation Pilot Plant (WIPP). This report documents the effectiveness of two treatment methods proposed to stabilize both the unremediated and remediated nitrate salt waste streams (UNS and RNS, respectively) at Los Alamos National Laboratory (LANL). The two technologies include the addition of zeolite (with and without the addition of water as a processing aid) and cementation. Surrogates were developed to evaluate both the solid and liquidmore » fractions expected from parent waste containers, and both the solid and liquid fractions were tested. Both technologies are shown to be effective at eliminating the characteristic of ignitability (D001), and the addition of zeolite was determined to be effective at eliminating corrosivity (D002), with the preferred option1 of adding zeolite currently planned for implementation at LANL’s Waste Characterization, Reduction, and Repackaging Facility (WCRRF). The course of this work verified the need to evaluate and demonstrate the effectiveness of the proposed remedy for debris material, if required. The evaluation determined that WypAlls, cheesecloth, and Celotex absorbed with saturated nitrate salt solutions exhibit the ignitability characteristic (all other expected debris is not classified as ignitable). Finally, liquid surrogates containing saturated nitrate salts did not exhibit the characteristic of ignitability in their pure form (those neutralized with Kolorsafe and mixed with sWheat did exhibit D001). Sensitivity testing and an analysis were conducted to evaluate the waste form for reactivity. Tests included subjecting surrogate material to mechanical impact, friction, electrostatic discharge and thermal insults. The testing confirmed that the waste does not exhibit the characteristic of reactivity (D003). Follow-on testing was conducted to demonstrate the effectiveness of zeolite stabilization for ignitable WypAll and cheesecloth debris and additional nitrate salt solutions (those exhibiting the oxidizer characteristic) to demonstrate the effectiveness of the remedy. Follow-on testing also included testing of surrogate materials containing Waste Lock 770, which is present in four of the RNS containers, and potential items of debris such as plywood and Celotex material. Testing to evaluate the effectiveness of the remedy was performed using the specific remediation processes that are planned for use at the WCRRF. Finally, testing was also performed to evaluate the holding capacity of zeolite using a highly acidic surrogate solution and to characterize the composition of gases generated during mixing of zeolite with surrogate solutions. All these tests demonstrated the effectiveness of adding zeolite as the planned remedy.« less

  18. WIPP Repository Reconfiguration

    EPA Pesticide Factsheets

    On August 30, 2011, the U.S. Department of Energy (DOE) provided a proposed planned change request that will relocate Panels 9 and 10 from the main north-south access drifts to south of the existing Panels 4 and 5 in the WIPP repository.

  19. WIPP Docket A-93-02

    EPA Pesticide Factsheets

    WIPP Docket No. A-93-02 contains information that EPA considered in making its 1998 decision to certify that the Department of Energy had met the compliance criteria established by 40 CFR Part 194 and disposal regulations set by 40 CFR Part 191.

  20. Salt Composition Derived from Veazey Composition by Thermodynamic Modeling and Predicted Composition of Drum Contents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weisbrod, Kirk Ryan; Veirs, Douglas Kirk; Funk, David John

    This report describes the derivation of the salt composition from the Veazey salt stream analysis. It also provides an estimate of the proportions of the kitty litter, nitrate salt and neutralizer that was contained in drum 68660. While the actinide content of waste streams was judiciously followed in the 1980s in TA-55, no record of the salt composition could be found. Consequently, a salt waste stream produced from 1992 to 1994 and reported by Gerry Veazey provided the basis for this study. While chemical analysis of the waste stream was highly variable, an average analysis provided input to the Streammore » Analyzer software to calculate a composition for a concentrated solid nitrate salt and liquid waste stream. The calculation predicted the gas / condensed phase compositions as well as solid salt / saturated liquid compositions. The derived composition provides an estimate of the nitrate feedstream to WIPP for which kinetic measurements can be made. The ratio of salt to Swheat in drum 68660 contents was estimated through an overall mass balance on the parent and sibling drums. The RTR video provided independent confirmation concerning the volume of the mixture. The solid salt layer contains the majority of the salt at a ratio with Swheat that potentially could become exothermic.« less

  1. Stable-isotope geochemistry of groundwaters in the Delaware Basin of southeastern New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lambert, S.J.; Harvey, D.M.

    /sup 18/O//sup 16/O and D/H ratio measurements have been made on groundwaters sampled from the Rustler Formation (Ochoan, Permian) and related rocks in the northern Delaware Basin of southeastern New Mexico. Most confined Rustler waters at the Waste Isolation Pilot Plant (WIPP) site and to the west in Nash Draw and confined waters from the Capitan limestone constitute one population in deltaD/delta/sup 18/O space, while unconfined groundwaters inferred to originate as modern surface recharge to alluvium, sandstones in the Ogallala Formation, the near-surface Rustler in southwestern Nash Draw, and the Capitan vadose zone in the Guadalupe Mountains (Carlsbad Caverns) constitutemore » a distinctly different population; the two do not overlap. A likely explanation for this distinction is that meteoric recharge to most of the Rustler and Capitan took place in the geologic past under climatic conditions significantly different from the present. Available tritium and radiocarbon data are consistent with this hypothesis, and the apparent age of confined groundwaters is in excess of 12,000 radiocarbon years, suggesting that recharge took place under wetter conditions in the late Pleistocene. Processes governing recharge in the Delaware Basin are significantly different from those in the nearby Roswell Artesian Basin, but may be similar to those previously described for the Albuquerque (New Mexico) and Murray (South Australia) Basins. 133 refs.« less

  2. Neptunium(V) and neptunium(VI) solubilities in synthetic brines of interest to the Waste Isolation Pilot Plant (WIPP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Novak, C.F.; Nitsche, H.; Silber, H.B.

    1996-12-31

    The solubility of Np(V) and Np(VI) has been measured in three synthetic Na-K-Mg-Cl brines in the presence of CO{sub 2}(g). Experiments were prepared from oversaturation by adding an excess of NpO{sub 2}{sup +} or NpO{sub 2}{sup 2+} to the brines and allowing the neptunium solids to precipitate. Vessels were maintained in contact with fixed CO{sub 2}(g) partial pressures at constant pH and 24 {+-} 1 C. Dissolved Np(V) concentrations decreased several orders of magnitude within the first 100 days of the experiment, while dissolved Np(VI) concentrations decreased initially but then remained relatively constant for more than 400 days. The solidmore » phases formed in all experiments were identified by X-ray powder diffraction as KNpO{sub 2}CO{sub 3}{center_dot}xH{sub 2}O(s). Steady state concentrations for Np(V) are similar to those observed for Pu(V) in the same brines under the same conditions, where Pu occurs predominantly as Pu(V). Similarly, steady state concentrations for Np(VI), which was not reduced over a two year period, compare well with measured Pu(VI) concentrations in the same brines before the Pu(VI) was reduced to Pu(V).« less

  3. New Brunswick Laboratory. Progress report, October 1995--September 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    Fiscal year (FY) 1996 was a very good year for New Brunswick Laboratory (NBL), whose major sponsor is the Office of Safeguards and Security (NN-51) in the US Department of Energy (DOE), Office of Nonproliferation and National Security, Office of Security Affairs. Several projects pertinent to the NBL mission were completed, and NBL`s interactions with partners and customers were encouraging. Among the partners with which NBL interacted in this report period were the International Atomic Energy Agency (IAEA), NN-51. Environmental Program Group of the DOE Chicago Operations Office, International Safeguards Project Office, Waste Isolation Pilot Plant (WIPP), Ukraine Working Group,more » Fissile Materials Assurance Working Group, National Institute of Standards and Technology (NIST), Nuclear Regulatory Commission (NRC), Institute for Reference Materials and Measurements (IRMM) in Belgium, Brazilian/Argentine Agency for Accounting and Control of Nuclear Materials (ABACC), Lockheed Idaho Technologies Company, and other DOE facilities and laboratories. NBL staff publications, participation in safeguards assistance and other nuclear programs, development of new reference materials, involvement in the updating and refinement of DOE documents, service in enhancing the science education of others, and other related activities enhanced NBL`s status among DOE laboratories and facilities. Noteworthy are the facts that NBL`s small inventory of nuclear materials is accurately accounted for, and, as in past years, its materials and human resources were used in peaceful nuclear activities worldwide.« less

  4. Small-Scale Experiments.10-gallon drum experiment summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosenberg, David M.

    2015-02-05

    A series of sub-scale (10-gallon) drum experiments were conducted to characterize the reactivity, heat generation, and gas generation of mixtures of chemicals believed to be present in the drum (68660) known to have breached in association with the radiation release event at the Waste Isolation Pilot Plant (WIPP) on February 14, 2014, at a scale expected to be large enough to replicate the environment in that drum but small enough to be practical, safe, and cost effective. These tests were not intended to replicate all the properties of drum 68660 or the event that led to its breach, or tomore » validate a particular hypothesis of the release event. They were intended to observe, in a controlled environment and with suitable diagnostics, the behavior of simple mixtures of chemicals in order to determine if they could support reactivity that could result in ignition or if some other ingredient or event would be necessary. There is a significant amount of uncertainty into the exact composition of the barrel; a limited sub-set of known components was identified, reviewed with Technical Assessment Team (TAT) members, and used in these tests. This set of experiments was intended to provide a framework to postulate realistic, data-supported hypotheses for processes that occur in a “68660-like” configuration, not definitively prove what actually occurred in 68660.« less

  5. Weatherization Innovation Pilot Program (WIPP): Technical Assistance Summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hollander, A.

    2014-09-01

    The U.S. Department of Energy (DOE) Energy Efficiency and Renewable Energy (EERE) Weatherization and Intergovernmental Programs Office (WIPO) launched the Weatherization Innovation Pilot Program (WIPP) to accelerate innovations in whole-house weatherization and advance DOE's goal of increasing the energy efficiency and health and safety of low-income residences without the utilization of additional taxpayer funding. Sixteen WIPP grantees were awarded a total of $30 million in Weatherization Assistance Program (WAP) funds in September 2010. These projects focused on: including nontraditional partners in weatherization service delivery; leveraging significant non-federal funding; and improving the effectiveness of low-income weatherization through the use of newmore » materials, technologies, behavior-change models, and processes.« less

  6. Evaluation of the US Department of Energy Weatherization Innovation Pilot Program (2010-2014)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tonn, Bruce Edward; Rose, Erin M.; Hawkins, Beth A.

    This report contains results from analysis conducted on each of the Weatherization Innovation Pilot Program (WIPP) grants awarded to 16 organizations by the US Department of Energy (DOE) in 2010. The purpose of WIPP was to explore the potential adoptability or replicability of innovative processes or technologies for the enhancement of DOE’s Weatherization Assistance Program (WAP). DOE initiated the WIPP grant to accelerate effective innovations in home energy efficiency and other WAP mission-related goals for income-qualifying households of low socioeconomic status. This study was performed alongside a broader, national evaluation of WAP conducted by Oak Ridge National Laboratory (ORNL) formore » DOE.« less

  7. MARC calculations for the second WIPP structural benchmark problem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morgan, H.S.

    1981-05-01

    This report describes calculations made with the MARC structural finite element code for the second WIPP structural benchmark problem. Specific aspects of problem implementation such as element choice, slip line modeling, creep law implementation, and thermal-mechanical coupling are discussed in detail. Also included are the computational results specified in the benchmark problem formulation.

  8. Treatability Variance for Containerised Liquids in Mixed Debris Waste - 12101

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alstatt, Catherine M.

    2012-07-01

    The TRU Waste Processing Center (TWPC) is a Department of Energy facility whose mission is to receive and process for appropriate disposal legacy Contact Handled (CH) and Remote Handled (RH) waste, including debris waste stored at various DOE Oak Ridge facilities. Acceptable Knowledge (AK) prepared for the waste characterizes the waste as mixed waste, meaning it is both radioactive and regulated under the Resource Conservation and Recovery Act (RCRA). The AK also indicates that a number of the debris waste packages contain small amounts of containerised liquids. The documentation indicates liquid wastes generated in routine lab operations were typically collectedmore » for potential recovery of valuable isotopes. However, during activities associated with decontamination and decommissioning (D and D), some containers with small amounts of liquids were placed into the waste containers with debris waste. Many of these containers now hold from 2.5 milliliters (ml) to 237 ml of liquid; a few contain larger volumes. At least some of these containers were likely empty at the time of generation, but documentation of this condition is lacking. Since WIPP compliant AK is developed on a waste stream basis, rather than an individual container basis, and includes every potential RCRA hazardous constituent within the waste stream, it is insufficient for the purpose of characterizing individual containers of liquid. Debris waste is defined in 40 CFR 268.2(g) as 'solid material exceeding a 60 mm particle size that is intended for disposal and that is: a manufactured object; or plant or animal matter; or natural geologic material'. The definition further states that intact containers of hazardous waste that are not ruptured and that retain at least 75% of their original volume are not debris. The prescribed treatment is removal of intact containers from the debris waste, and treatment of their contents to meet specific Land Disposal Restrictions (LDR) standards. This is true for containers with incidental amounts of liquids, even if the liquid is less than 50% of the total waste volume. Under the proposed variance, all free or containerised liquids (up to 3.8 liters(L)) found in the debris would be treated and returned in solid form to the debris waste stream from which they originated. The waste would then be macro-encapsulated. (author)« less

  9. Abyssal seafloor waste isolation: the concept

    NASA Astrophysics Data System (ADS)

    Valent, Philip J.; Young, David K.; Sawyer, William B.; Wright, Thomas D.

    1998-05-01

    The Naval Research Laboratory (NRL), with industry and university participation, conducted an assessment of the concept of isolating certain wastes (i.e., sewage sludge, fly ash from municipal incinerators, and contaminated dredged material) on the oceans' abyssal seafloor. In this assessment the advantages, disadvantages, and economic and environmental viability of potential engineering methods for achieving abyssal waste isolation were identified and compared. This paper presents background to the Abyssal Plains Waste Isolation (APWI) Project, describes the characteristics of the waste streams and quantities potentially available for disposal via the abyssal isolation concept, summarizes regulations affecting use of the abyssal seafloor for disposal of wastes, and introduces the technical and scientific premises underlying implementation of the concept.

  10. Evaluation of the long-term performance of six alternative disposal methods for LLRW

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kossik, R.; Sharp, G.; Chau, T.

    1995-12-31

    The State of New York has carried out a comparison of six alternative disposal methods for low-level radioactive waste (LLRW). An important part of these evaluations involved quantitatively analyzing the long-term (10,000 yr) performance of the methods with respect to dose to humans, radionuclide concentrations in the environment, and cumulative release from the facility. Four near-surface methods (covered above-grade vault, uncovered above-grade vault, below-grade vault, augered holes) and two mine methods (vertical shaft mine and drift mine) were evaluated. Each method was analyzed for several generic site conditions applicable for the state. The evaluations were carried out using RIP (Repositorymore » Integration Program), an integrated, total system performance assessment computer code which has been applied to radioactive waste disposal facilities both in the U.S. (Yucca Mountain, WIPP) and worldwide. The evaluations indicate that mines in intact low-permeability rock and near-surface facilities with engineered covers generally have a high potential to perform well (within regulatory limits). Uncovered above-grade vaults and mines in highly fractured crystalline rock, however, have a high potential to perform poorly, exceeding regulatory limits.« less

  11. Geohydrologic aspects for siting and design of low-level radioactive-waste disposal

    USGS Publications Warehouse

    Bedinger, M.S.

    1989-01-01

    The objective for siting and design of low-level radioactive-waste repository sites is to isolate the waste from the biosphere until the waste no longer poses an unacceptable hazard as a result of radioactive decay. Low-level radioactive waste commonly is isolated at shallow depths with various engineered features to stabilize the waste and to reduce its dissolution and transport by ground water. The unsaturated zone generally is preferred for isolating the waste. Low-level radioactive waste may need to be isolated for 300 to 500 years. Maintenance and monitoring of the repository site are required by Federal regulations for only the first 100 years. Therefore, geohydrology of the repository site needs to provide natural isolation of the waste for the hazardous period following maintenance of the site. Engineering design of the repository needs to be compatible with the natural geohydrologic conditions at the site. Studies at existing commercial and Federal waste-disposal sites provide information on the problems encountered and the basis for establishing siting guidelines for improved isolation of radioactive waste, engineering design of repository structures, and surveillance needs to assess the effectiveness of the repositories and to provide early warning of problems that may require remedial action.Climate directly affects the hydrology of a site and probably is the most important single factor that affects the suitability of a site for shallow-land burial of low-level radioactive waste. Humid and subhumid regions are not well suited for shallow isolation of low-level radioactive waste in the unsaturated zone; arid regions with zero to small infiltration from precipitation, great depths to the water table, and long flow paths to natural discharge areas are naturally well suited to isolation of the waste. The unsaturated zone is preferred for isolation of low-level radioactive waste. The guiding rationale is to minimize contact of water with the waste and to minimize transport of waste from the repository. The hydrology of a flow system containing a repository is greatly affected by the engineering of the repository site. Prediction of the performance of the repository is a complex problem, hampered by problems of characterizing the natural and manmade features of the flow system and by the limitations of models to predict flow and geochemical processes in the saturated and unsaturated zones. Disposal in low-permeability unfractured clays in the saturated zone may be feasible where the radionuclide transport is controlled by diffusion rather than advection.

  12. Geomechanical Simulation of Bayou Choctaw Strategic Petroleum Reserve - Model Calibration.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Byoung

    2017-02-01

    A finite element numerical analysis model has been constructed that consists of a realistic mesh capturing the geometries of Bayou Choctaw (BC) Strategic Petroleum Reserve (SPR) site and multi - mechanism deformation ( M - D ) salt constitutive model using the daily data of actual wellhead pressure and oil - brine interface. The salt creep rate is not uniform in the salt dome, and the creep test data for BC salt is limited. Therefore, the model calibration is necessary to simulate the geomechanical behavior of the salt dome. The cavern volumetric closures of SPR caverns calculated from CAVEMAN aremore » used for the field baseline measurement. The structure factor, A 2 , and transient strain limit factor, K 0 , in the M - D constitutive model are used for the calibration. The A 2 value obtained experimentally from the BC salt and K 0 value of Waste Isolation Pilot Plant (WIPP) salt are used for the baseline values. T o adjust the magnitude of A 2 and K 0 , multiplication factors A2F and K0F are defined, respectively. The A2F and K0F values of the salt dome and salt drawdown skins surrounding each SPR cavern have been determined through a number of back fitting analyses. The cavern volumetric closures calculated from this model correspond to the predictions from CAVEMAN for six SPR caverns. Therefore, this model is able to predict past and future geomechanical behaviors of the salt dome, caverns, caprock , and interbed layers. The geological concerns issued in the BC site will be explained from this model in a follow - up report .« less

  13. High-Temperature Oxidation of Plutonium Surrogate Metals and Alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sparks, Joshua C.; Krantz, Kelsie E.; Christian, Jonathan H.

    The Plutonium Management and Disposition Agreement (PMDA) is a nuclear non-proliferation agreement designed to remove 34 tons of weapons-grade plutonium from Russia and the United States. While several removal options have been proposed since the agreement was first signed in 2000, processing the weapons-grade plutonium to mixed-oxide (MOX) fuel has remained the leading candidate for achieving the goals of the PMDA. However, the MOX program has received its share of criticisms, which causes its future to be uncertain. One alternative pathway for plutonium disposition would involve oxidizing the metal followed by impurity down blending and burial in the Waste Isolationmore » Pilot Plant (WIPP) in Carlsbad, New Mexico. This pathway was investigated by use of a hybrid microwave and a muffle furnace with Fe and Al as surrogate materials. Oxidation occurred similarly in the microwave and muffle furnace; however, the microwave process time was significantly faster.« less

  14. Weatherization Innovation Pilot Program: Program Overview and Philadelphia Project Highlight (Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2012-01-01

    Case Study with WIPP program overview, information regarding eligibility, and successes from Pennsylvania's Commission on Economic Opportunity (CEO) that demonstrate innovative approaches that maximize the benefit of the program. The Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) recently launched the Weatherization Innovation Pilot Program (WIPP) to accelerate innovations in whole-house weatherization and advance DOE's goal of increasing the energy efficiency and health and safety of homes of low-income families. Since 2010, WIPP has helped weatherization service providers as well as new and nontraditional partners leverage non-federal financial resources to supplement federal grants, saving taxpayer money.more » WIPP complements the Weatherization Assistance program (WAP), which operates nation-wide, in U.S. territories and in three Native American tribes. 16 grantees are implementing weatherization innovation projects using experimental approaches to find new and better ways to weatherize homes. They are using approaches such as: (1) Financial tools - by understanding a diverse range of financing mechanisms, grantees can maximize the impact of the federal grant dollars while providing high-quality work and benefits to eligible low-income clients; (2) Green and healthy homes - in addition to helping families reduce their energy costs, grantees can protect their health and safety. Two WIPP projects (Connecticut and Maryland) will augment standard weatherization services with a comprehensive green and healthy homes approach; (3) New technologies and techniques - following the model of continuous improvement in weatherization, WIPP grantees will continue to use new and better technologies and techniques to improve the quality of work; (4) Residential energy behavior change - Two grantees are rigorously testing home energy monitors (HEMs) that display energy used in kilowatt-hours, allowing residents to monitor and reduce their energy use, and another is examining best-practices for mobile home energy efficiency; (5) Workforce development and volunteers - with a goal of creating a self-sustaining weatherization model that does not require future federal investment, three grantees are adapting business models successful in other sectors of the home performance business to perform weatherization work. Youthbuild is training youth to perform home energy upgrades to eligible clients and Habitat for Humanity is developing a model for how to incorporate volunteer labor in home weatherization. These innovative approaches will improve key weatherization outcomes, such as: Increasing the total number of homes that are weatherized; Reducing the weatherization cost per home; Increasing the energy savings in each weatherized home; Increasing the number of weatherization jobs created and retained; and Reducing greenhouse gas emissions.« less

  15. Waste Isolation Safety Assessment Program. Technical progress report for FY-1978

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brandstetter, A.; Harwell, M.A.; Howes, B.W.

    1979-07-01

    Associated with commercial nuclear power production in the United States is the generation of potentially hazardous radioactive wastes. The Department of Energy (DOE) is seeking to develop nuclear waste isolation systems in geologic formations that will preclude contact with the biosphere of waste radionuclides in concentrations which are sufficient to cause deleterious impact on humans or their environments. Comprehensive analyses of specific isolation systems are needed to assess the expectations of meeting that objective. The Waste Isolation Safety Assessment Program (WISAP) has been established at the Pacific Northwest Laboratory (operated by Battelle Memorial Institute) for developing the capability of makingmore » those analyses. Progress on the following tasks is reported: release scenario analysis, waste form release rate analysis, release consequence analysis, sorption-desorption analysis, and societal acceptance analysis. (DC)« less

  16. Effects of salt loading and flow blockage on the WIPP shrouded probe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chandra, S.; Ortiz, C.A.; McFarland, A.R.

    1993-08-01

    The shrouded probes at the WIPP site operate in a salt aerosol environment that can cause a buildup of salt deposits on exposed surfaces of the probes that, in turn, could produce changes in the sampling performance of the probes. At Station A, three probes had been operated for a period of approximately 2 1/2 years when they were inspected with a remote television camera. There were visible deposits of unknown thickness on the probes, so WIPP removed the probes for inspection and cleanup. Measurements were made on the probes and they showed the buildups to be approximately 2.5 mmmore » thick on the most critical dimension of a shrouded probe, which is the inside diameter of the inner probe. For reference, the diameter of a clean probe is 30 mm. The sampling performance of this particular shrouded probe had been previously evaluated in a wind tunnel at Aerosol Technology Laboratory (ATL) of Texas A&M University for two free stream velocities (14 and 21 m/s) and three particle sizes (5, 10 and 15 {mu}m AED).« less

  17. Isolation and characterization of potential lactic acid bacteria (LAB) from freshwater fish processing wastes for application in fermentative utilisation of fish processing waste

    PubMed Central

    R, Jini; HC, Swapna; Rai, Amit Kumar; R, Vrinda; PM, Halami; NM, Sachindra; N, Bhaskar

    2011-01-01

    Proteolytic and/or lipolytic lactic acid bacteria (LAB) were isolated from visceral wastes of different fresh water fishes. LAB count was found to be highest in case of visceral wastes of Mrigal (5.88 log cfu/g) and lowest in that of tilapia (4.22 log cfu/g). Morphological, biochemical and molecular characterization of the selected LAB isolates were carried out. Two isolates FJ1 (E. faecalis NCIM5367) and LP3 (P. acidilactici NCIM5368) showed both proteolytic and lipolytic properties. All the six native isolates selected for characterization showed antagonistic properties against several human pathogens. All the native isolates were sensitive to antibiotics cephalothin and clindamycin; and, resistant to cotrimoxazole and vancomycin. Considering individually, P. acidilactici FM37, P. acidilactici MW2 and E. faecalis FD3 were sensitive to erythromycin. The two strains FJ1 (E. faecalis NCIM 5367) and LP3 (P. acidilactici NCIM 5368) that had both proteolytic and lipolytic properties have the potential for application in fermentative recovery of lipids and proteins from fish processing wastes. PMID:24031786

  18. Obituary: Charles Latif Hyder, 1930-2004

    NASA Astrophysics Data System (ADS)

    White, Oran Richard

    2004-12-01

    My friend and colleague, Charles Hyder, was a true physicist with a sound intuitive grasp of fundamentals in modern physics and the underlying mathematics. I admired his knowledge of the history of modern physics and quantum mechanics when we discussed contemporary problems in interpreting solar observations. He had the ability to present his ideas clearly and persuasively to both students and his colleagues. His insatiable curiosity about life in general led him to consider the effects of nuclear weapons development on the human race. Appreciation of the biological effects of radioactive materials produced in the course of weapons and power reactor development led him to a more public career beyond traditional research. Charles Hyder was born April 18, 1930 in Albuquerque, New Mexico. He graduated from Albuquerque High School and served in the Air Force during the Korean War. He received a BS and MS in physics from the University of New Mexico (1958, 1960) and a PhD in astrogeophysics at the University of Colorado (1964). His positions included the Department of Astronomy and Institute of Geophysics at UCLA (1964-65), Sacramento Peak Solar Observatory (1965-1970) and the Goddard Space Flight Center (1970-1977). He also taught at the University of New Mexico (1970-1977) and was active on the Solar Maximum Mission science team (1970-1977, 1980-1984). He was married twice with both marriages ending in divorce. He and his first wife Ann had three children (Paul, Roxanne and Querida) and he and his second wife Laurie had a son Niels. Charles Hyder's professional career in solar physics began in 1961 during his graduate studies at the Department of AstroGeophysics of the University of Colorado and continued until 1983 when he chose to follow his convictions to expose the threat of nuclear proliferation. His early research was in the study of the quantum mechanics of polarized light produced in the presence of magnetic fields. Application of this work to interpretation of solar spectra was a basic theme in fifty-one papers published between 1963 and 1983. Charles' interest in solar prominences and flares led him to study the physics of in-falling plasma in solar active regions and the production of the so-called "two ribbon" flares associated with active region prominences. His final work in solar physics was done on the Solar Maximum Mission (SMM) in collaboration with colleagues at Goddard Space Flight Center and Marshall Space Flight Center. After 1983, Charles' devoted his full energy to exposing the threat of nuclear weapons and reactor by-products in the biosphere. His was a very public crusade with a seven month fast in Lafayette Park, Washington D.C. and a vigorous opposition to the Waste Isolation Pilot Plant (WIPP) at Carlsbad, New Mexico. His analysis emphasized the need to understand convection of "hot" containers of radioactive waste in the WIPP salt bed. He concluded that the containers would eventually emerge at the surface and be a biological threat. His greatest fear was that dispersal of plutonium in small amounts worldwide was inevitably leading to biological mutation and destruction of life as we know it. We all remember his imposing stature and the strength of his arguments in discussions of life, physics, and the dangers of radioactive materials dispersed on the Earth. He led an unconventional life where he truly reveled in learning and earnestly worked to make a difference.

  19. Hydrothermal Testing of K Basin Sludge and N Reactor Fuel at Sludge Treatment Project Operating Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delegard, Calvin H.; Schmidt, Andrew J.; Thornton, Brenda M.

    The Sludge Treatment Project (STP), managed for the U. S. DOE by Fluor Hanford (FH), was created to design and operate a process to eliminate uranium metal from K Basin sludge prior to packaging for Waste Isolation Pilot Plant (WIPP). The STP process uses high temperature liquid water to accelerate the reaction, produce uranium dioxide from the uranium metal, and safely discharge the hydrogen. Under nominal process conditions, the sludge will be heated in pressurized water at 185°C for as long as 72 hours to assure the complete reaction (corrosion) of up to 0.25-inch diameter uranium metal pieces. Under contractmore » to FH, the Pacific Northwest National Laboratory (PNNL) conducted bench-scale testing of the STP hydrothermal process in November and December 2006. Five tests (~50 ml each) were conducted in sealed, un-agitated reaction vessels under the hydrothermal conditions (e.g., 7 to 72 h at 185°C) of the STP corrosion process using radioactive sludge samples collected from the K East Basin and particles/coupons of N Reactor fuel also taken from the K Basins. The tests were designed to evaluate and understand the chemical changes that may be occurring and the effects that any changes would have on sludge rheological properties. The tests were not designed to evaluate engineering aspects of the process. The hydrothermal treatment affected the chemical and physical properties of the sludge. In each test, significant uranium compound phase changes were identified, resulting from dehydration and chemical reduction reactions. Physical properties of the sludge were significantly altered from their initial, as-settled sludge values, including, shear strength, settled density, weight percent water, and gas retention.« less

  20. Coupling of Nuclear Waste Form Corrosion and Radionuclide Transports in Presence of Relevant Repository Sediments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wall, Nathalie A.; Neeway, James J.; Qafoku, Nikolla P.

    2015-09-30

    Assessments of waste form and disposal options start with the degradation of the waste forms and consequent mobilization of radionuclides. Long-term static tests, single-pass flow-through tests, and the pressurized unsaturated flow test are often employed to study the durability of potential waste forms and to help create models that predict their durability throughout the lifespan of the disposal site. These tests involve the corrosion of the material in the presence of various leachants, with different experimental designs yielding desired information about the behavior of the material. Though these tests have proved instrumental in elucidating various mechanisms responsible for material corrosion,more » the chemical environment to which the material is subject is often not representative of a potential radioactive waste repository where factors such as pH and leachant composition will be controlled by the near-field environment. Near-field materials include, but are not limited to, the original engineered barriers, their resulting corrosion products, backfill materials, and the natural host rock. For an accurate performance assessment of a nuclear waste repository, realistic waste corrosion experimental data ought to be modeled to allow for a better understanding of waste form corrosion mechanisms and the effect of immediate geochemical environment on these mechanisms. Additionally, the migration of radionuclides in the resulting chemical environment during and after waste form corrosion must be quantified and mechanisms responsible for migrations understood. The goal of this research was to understand the mechanisms responsible for waste form corrosion in the presence of relevant repository sediments to allow for accurate radionuclide migration quantifications. The rationale for this work is that a better understanding of waste form corrosion in relevant systems will enable increased reliance on waste form performance in repository environments and potentially decrease the need for expensive engineered barriers.Our current work aims are 1) quantifying and understanding the processes associated with glass alteration in contact with Fe-bearing materials; 2) quantifying and understanding the processes associated with glass alteration in presence of MgO (example of engineered barrier used in WIPP); 3) identifying glass alteration suppressants and the processes involved to reach glass alteration suppression; 4) quantifying and understanding the processes associated with Saltstone and Cast Stone (SRS and Hanford cementitious waste forms) in various representative groundwaters; 5) investigating positron annihilation as a new tool for the study of glass alteration; and 6) quantifying and understanding the processes associated with glass alteration under gamma irradiation.« less

  1. K-Basins Sludge Treatment and Packaging at the Hanford Site - 13585

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fogwell, Thomas W.; Honeyman, James O.; Stegen, Gary

    Highly radioactive sludge resulting from the storage of degraded spent nuclear fuel has been consolidated in Engineered Containers (ECs) in the 105-K West Storage Basin located on the Hanford site near the Columbia River in Washington State. CH2M Hill Plateau Remediation Company (CHPRC) is proceeding with a project to retrieve the sludge, place it in Sludge Transport and Storage Containers (STSCs) and store those filled containers within the T Plant Canyon facility on the Hanford Site Central Plateau (Phase 1). Retrieval and transfer of the sludge material will enable removal of the 105-K West Basin and allow remediation of themore » subsurface contamination plumes under the basin. The U.S. Department of Energy (DOE) plans to treat and dispose of this K Basins sludge (Phase 2) as Remote Handled Transuranic Waste (RH TRU) at the Waste Isolation Pilot Plant (WIPP) located in New Mexico. The K Basin sludge currently contains uranium metal which reacts with water present in the stored slurry, generating hydrogen and other byproducts. The established transportation and disposal requirements require the transformation of the K Basins sludge to a chemically stable, liquid-free, packaged waste form. The Treatment and Packaging Project includes removal of the containerised sludge from T Plant, the treatment of the sludge as required, and packaging of all the sludge into a form that is certifiable for transportation to and disposal at WIPP. Completion of this scope will require construction and operation of a Sludge Treatment and Packaging Facility (STPF), which could be either a completely new facility or a modification of an existing Hanford Site facility. A Technology Evaluation and Alternatives Analysis (TEAA) for the STP Phase 2 was completed in 2011. A Request for Technology Information (RFI) had been issued in October 2009 to solicit candidate technologies for use in Phase 2. The RFI also included a preliminary definition of Phase 2 functions and requirements. Potentially applicable technologies were identified through a commercial procurement process, technical workshops, and review of the numerous previous sludge treatment technology studies. The identified technology approaches were screened using the criteria established in the Decision Plan, and focused bench top feasibility testing was conducted. Engineering evaluations of the costs, schedules, and technical maturity were developed and evaluated. Recommendations were developed based on technical evaluations. The criteria used in the evaluation process were as follows: (1) Safety, (2) Regulatory/stakeholder acceptance, (3) Technical maturity, (4) Operability and maintainability, (5) Life cycle cost and schedule, (6) Potential for beneficial integration with ongoing STP-Phase 1 activities, and (7) Integration with Site-wide RH-TRU processing/packaging, planning, schedule, and approach. The TEAA recommended Warm Water Oxidation (WWO) as the baseline treatment technology and two risk reduction enhancement options for further consideration during development of the process - size reduction and chemical oxidation (Fenton's reagent). The enhancement options would potentially allow a useful reduction in the total operating time required to process the K Basins sludge. The U.S. Department of Energy's Richland Field Office (DOE-RL) has approved this recommended technical approach. The baseline process can be broken down into the following main process steps: (1) STSC transfer from T Plant to the Sludge Treatment and Packaging Facility (STPF). (2) Retrieval of sludge from the STSCs and transfer to the Receipt and Reaction Tank (RRT). (3) Preparation for immobilization by oxidation using heated water (i.e., WWO) for those batches that require it and concentration by evaporating water at about atmospheric pressure in the RRT. (4) Immobilization by using additives to eliminate free liquids and packaging of the treated sludge into drums. (5) Inspection and handling of the filled drums prior to transfer to a separate storage and shipping facility. (6) Handling of vapor, condensate, and other waste streams generated by the process. Each of these steps is discussed in the paper, together with the current state of progress in developing the technology and requirements for continued development. A schematic of the recommended baseline WWO treatment process is given below. (authors)« less

  2. Whole genome and transcriptome analyses of environmental antibiotic sensitive and multi-resistant Pseudomonas aeruginosa isolates exposed to waste water and tap water

    PubMed Central

    Schwartz, Thomas; Armant, Olivier; Bretschneider, Nancy; Hahn, Alexander; Kirchen, Silke; Seifert, Martin; Dötsch, Andreas

    2015-01-01

    The fitness of sensitive and resistant Pseudomonas aeruginosa in different aquatic environments depends on genetic capacities and transcriptional regulation. Therefore, an antibiotic-sensitive isolate PA30 and a multi-resistant isolate PA49 originating from waste waters were compared via whole genome and transcriptome Illumina sequencing after exposure to municipal waste water and tap water. A number of different genomic islands (e.g. PAGIs, PAPIs) were identified in the two environmental isolates beside the highly conserved core genome. Exposure to tap water and waste water exhibited similar transcriptional impacts on several gene clusters (antibiotic and metal resistance, genetic mobile elements, efflux pumps) in both environmental P. aeruginosa isolates. The MexCD-OprJ efflux pump was overexpressed in PA49 in response to waste water. The expression of resistance genes, genetic mobile elements in PA49 was independent from the water matrix. Consistently, the antibiotic sensitive strain PA30 did not show any difference in expression of the intrinsic resistance determinants and genetic mobile elements. Thus, the exposure of both isolates to polluted waste water and oligotrophic tap water resulted in similar expression profiles of mentioned genes. However, changes in environmental milieus resulted in rather unspecific transcriptional responses than selected and stimuli-specific gene regulation. PMID:25186059

  3. Chem I Supplement. Chemistry Related to Isolation of High-Level Nuclear Waste.

    ERIC Educational Resources Information Center

    Hoffman, Darleane C.; Choppin, Gregory R.

    1986-01-01

    Discusses some of the problems associated with the safe disposal of high-level nuclear wastes. Describes several waste disposal plans developed by various nations. Outlines the multiple-barrier concept of isolation in deep geological questions associated with the implementation of such a method. (TW)

  4. 10 CFR 63.102 - Concepts.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... appropriate; and the sealing of shafts, ramps, and boreholes. (d) Areas related to isolation. Although the... geologic setting that provides isolation of the radioactive waste, make up the geologic repository. (e... will be capable of contributing to the isolation of radioactive waste and thus be a barrier important...

  5. 10 CFR 63.102 - Concepts.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... appropriate; and the sealing of shafts, ramps, and boreholes. (d) Areas related to isolation. Although the... geologic setting that provides isolation of the radioactive waste, make up the geologic repository. (e... will be capable of contributing to the isolation of radioactive waste and thus be a barrier important...

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dewers, Thomas; Heath, Jason E.; Leigh, Christi D.

    The nature of geologic disposal of nuclear waste in salt formations requires validated and verified two - phase flow models of transport of brine and gas through intact, damaged, and consolidating crushed salt. Such models exist in oth er realms of subsurface engineering for other lithologic classes (oil and gas, carbon sequestration etc. for clastics and carbonates) but have never been experimentally validated and parameterized for salt repository scenarios or performance assessment. Mo dels for waste release scenarios in salt back - fill require phenomenological expressions for capillary pressure and relative permeability that are expected to change with degree ofmore » consolidation, and require experimental measurement to parameterize and vali date. This report describes a preliminary assessment of the influence of consolidation (i.e. volume strain or porosity) on capillary entry pressure in two phase systems using mercury injection capillary pressure (MICP). This is to both determine the potent ial usefulness of the mercury intrusion porosimetry method, but also to enable a better experimental design for these tests. Salt consolidation experiments are performed using novel titanium oedometers, or uniaxial compression cells often used in soil mech anics, using sieved run - of - mine salt from the Waste Isolation Pilot Plant (WIPP) as starting material. Twelve tests are performed with various starting amounts of brine pore saturation, with axial stresses up to 6.2 MPa (%7E900 psi) and temperatures to 90 o C. This corresponds to UFD Work Package 15SN08180211 milestone "FY:15 Transport Properties of Run - of - Mine Salt Backfill - Unconsolidated to Consolidated". Samples exposed to uniaxial compression undergo time - dependent consolidation, or creep, to various deg rees. Creep volume strain - time relations obey simple log - time behavior through the range of porosities (%7E50 to 2% as measured); creep strain rate increases with temperature and applied stress as expected. Mercury porosimetry is used to determine characteri stic capillary pressure curves from a series of consolidation tests and show characteristic saturation - capillary pressure curves that follow the common van Genuchten (1978, 1980) formulation at low stresses. Higher capillary pressure data are suspect due t o the large potential for sample damage, including fluid inclusion decrepitation and pore collapse. Data are supportive of use of the Leverett "J" function (Leverett, 1941) to use for scaling characteristic curves at different degrees of consolidation, but better permeability determinations are needed to support this hypothesis. Recommendations for further and refined testing are made with the goal of developing a self - consistent set of constitutive laws for granular salt consolidation and multiphase (brin e - air) flow.« less

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dewers, Thomas; Heath, Jason E.; Leigh, Christi D.

    The nature of geologic disposal of nuclear waste in salt formations requires validated and verified two-phase flow models of transport of brine and gas through intact, damaged, and consolidating crushed salt. Such models exist in other realms of subsurface engineering for other lithologic classes (oil and gas, carbon sequestration etc. for clastics and carbonates) but have never been experimentally validated and parameterized for salt repository scenarios or performance assessment. Models for waste release scenarios in salt back-fill require phenomenological expressions for capillary pressure and relative permeability that are expected to change with degree of consolidation, and require experimental measurement tomore » parameterize and validate. This report describes a preliminary assessment of the influence of consolidation (i.e. volume strain or porosity) on capillary entry pressure in two phase systems using mercury injection capillary pressure (MICP). This is to both determine the potential usefulness of the mercury intrusion porosimetry method, but also to enable a better experimental design for these tests. Salt consolidation experiments are performed using novel titanium oedometers, or uniaxial compression cells often used in soil mechanics, using sieved run-of-mine salt from the Waste Isolation Pilot Plant (WIPP) as starting material. Twelve tests are performed with various starting amounts of brine pore saturation, with axial stresses up to 6.2 MPa (~900 psi) and temperatures to 90°C. This corresponds to UFD Work Package 15SN08180211 milestone “FY:15 Transport Properties of Run-of-Mine Salt Backfill – Unconsolidated to Consolidated”. Samples exposed to uniaxial compression undergo time-dependent consolidation, or creep, to various degrees. Creep volume strain-time relations obey simple log-time behavior through the range of porosities (~50 to 2% as measured); creep strain rate increases with temperature and applied stress as expected. Mercury porosimetry is used to determine characteristic capillary pressure curves from a series of consolidation tests and show characteristic saturation-capillary pressure curves that follow the common van Genuchten (1978, 1980) formulation at low stresses. Higher capillary pressure data are suspect due to the large potential for sample damage, including fluid inclusion decrepitation and pore collapse. Data are supportive of use of the Leverett “J” function (Leverett, 1941) to use for scaling characteristic curves at different degrees of consolidation, but better permeability determinations are needed to support this hypothesis. Recommendations for further and refined testing are made with the goal of developing a self- consistent set of constitutive laws for granular salt consolidation and multiphase (brine-air) flow.« less

  8. Whole genome and transcriptome analyses of environmental antibiotic sensitive and multi-resistant Pseudomonas aeruginosa isolates exposed to waste water and tap water.

    PubMed

    Schwartz, Thomas; Armant, Olivier; Bretschneider, Nancy; Hahn, Alexander; Kirchen, Silke; Seifert, Martin; Dötsch, Andreas

    2015-01-01

    The fitness of sensitive and resistant Pseudomonas aeruginosa in different aquatic environments depends on genetic capacities and transcriptional regulation. Therefore, an antibiotic-sensitive isolate PA30 and a multi-resistant isolate PA49 originating from waste waters were compared via whole genome and transcriptome Illumina sequencing after exposure to municipal waste water and tap water. A number of different genomic islands (e.g. PAGIs, PAPIs) were identified in the two environmental isolates beside the highly conserved core genome. Exposure to tap water and waste water exhibited similar transcriptional impacts on several gene clusters (antibiotic and metal resistance, genetic mobile elements, efflux pumps) in both environmental P. aeruginosa isolates. The MexCD-OprJ efflux pump was overexpressed in PA49 in response to waste water. The expression of resistance genes, genetic mobile elements in PA49 was independent from the water matrix. Consistently, the antibiotic sensitive strain PA30 did not show any difference in expression of the intrinsic resistance determinants and genetic mobile elements. Thus, the exposure of both isolates to polluted waste water and oligotrophic tap water resulted in similar expression profiles of mentioned genes. However, changes in environmental milieus resulted in rather unspecific transcriptional responses than selected and stimuli-specific gene regulation. © 2014 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  9. Resolving Past Liabilities for Future Reduction in Greenhouse Gases; Nuclear Energy and the Outstanding Federal Liability of Spent Nuclear Fuel

    NASA Astrophysics Data System (ADS)

    Donohue, Jay

    This thesis will: (1) examine the current state of nuclear power in the U.S.; (2) provide a comparison of nuclear power to both existing alternative/renewable sources of energy as well as fossil fuels; (3) dissect Standard Contracts created pursuant to the National Waste Policy Act (NWPA), Congress' attempt to find a solution for Spent Nuclear Fuel (SNF), and the designation of Yucca Mountain as a repository; (4) the anticipated failure of Yucca Mountain; (5) explore WIPP as well as attempts to build a facility on Native American land in Utah; (6) examine reprocessing as a solution for SNF used by France and Japan; and, finally, (7) propose a solution to reduce GHG's by developing new nuclear energy plants with financial support from the U.S. government and a solution to build a storage facility for SNF through the sitting of a repository based on a "bottom-up" cooperative federalism approach.

  10. Testing of candidate waste-package backfill and canister materials for basalt

    NASA Astrophysics Data System (ADS)

    Wood, M. I.; Anderson, W. J.; Aden, G. D.

    1982-09-01

    The Basalt Waste Isolation Project (BWIP) is developing a multiple-barrier waste package to contain high-level nuclear waste as part of an overall system (e.g., waste package, repository sealing system, and host rock) designed to isolate the waste in a repository located in basalt beneath the Hanford Site, Richland, Washington. The three basic components of the waste package are the waste form, the canister, and the backfill. An extensive testing program is under way to determine the chemical, physical, and mechanical properties of potential canister and backfill materials. The data derived from this testing program will be used to recommend those materials that most adequately perform the functions assigned to the canister and backfill.

  11. 10 CFR 63.44 - Changes, tests, and experiments.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... waste isolation that are described in the SAR (as updated); and (ii) The design and performance... isolation, are operated or controlled. (6) Tests or experiments not described in the SAR (as updated) means... components important to safety, or important to waste isolation, are utilized, controlled, or altered in a...

  12. 10 CFR 63.44 - Changes, tests, and experiments.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... waste isolation that are described in the SAR (as updated); and (ii) The design and performance... isolation, are operated or controlled. (6) Tests or experiments not described in the SAR (as updated) means... components important to safety, or important to waste isolation, are utilized, controlled, or altered in a...

  13. Radiation-resistant microorganism

    DOEpatents

    Fliermans, Carl B.

    2007-01-09

    An isolated and purified bacterium is provided which was isolated from a high-level radioactive waste site of mixed waste. The isolate has the ability to degrade a wide variety of organic contaminants while demonstrating high tolerance to ionizing radiation. The organism is uniquely suited to bioremediation of a variety or organic contaminants while in the presence of ionizing radiation.

  14. Radiation-resistant microorganism

    DOEpatents

    Fliermans, Carl B.

    2010-06-15

    An isolated and purified bacterium is provided which was isolated from a high-level radioactive waste site of mixed waste. The isolate has the ability to degrade a wide variety of organic contaminants while demonstrating high tolerance to ionizing radiation. The organism is uniquely suited to bioremediation of a variety or organic contaminants while in the presence of ionizing radiation.

  15. TRUPACT-II 157 Examination Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barry H. O'Brien; Jeffrey M. Lacy; Kip E. Archibald

    2003-12-01

    This report presents the results of examination and recovery activities performed on the TRUPACT-II 157 shipping container. The container was part of a contact-handled transuranic waste shipment being transported on a truck to the Waste Isolation Pilot Plant in New Mexico when an accident occurred. Although the transport vehicle sustained only minor damage, airborne transuranic contamination was detected in air samples extracted from inside TRUPACT-II 157 at the Waste Isolation Pilot Plant. Consequently, the shipping container was rejected, resealed, and returned to the Idaho National Engineering and Environmental Laboratory where the payload was disassembled, examined, and recovered for subsequent reshipmentmore » to the Waste Isolation Pilot Plant. This report documents the results of those activities.« less

  16. The project De Caldas International Project: An example of a large-scale radwaste isolation natural analogue study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shea, M.

    1995-09-01

    The proper isolation of radioactive waste is one of today`s most pressing environmental issues. Research is being carried out by many countries around the world in order to answer critical and perplexing questions regarding the safe disposal of radioactive waste. Natural analogue studies are an increasingly important facet of this international research effort. The Pocos de Caldas Project represents a major effort of the international technical and scientific community towards addressing one of modern civilization`s most critical environmental issues - radioactive waste isolation.

  17. Chemical and Biological Investigation of Olive Mill Waste Water - OMWW Secoiridoid Lactones.

    PubMed

    Vougogiannopoulou, Konstantina; Angelopoulou, Maria T; Pratsinis, Harris; Grougnet, Raphaël; Halabalaki, Maria; Kletsas, Dimitris; Deguin, Brigitte; Skaltsounis, Leandros A

    2015-08-01

    Olive mill waste water is the major byproduct of the olive oil industry containing a range of compounds related to Olea europaea and olive oil constituents. Olive mill waste water comprises an important environmental problem in olive oil producing countries, but it is also a valuable material for the isolation of high added value compounds. In this study, an attempt to investigate the secoiridoid content of olive mill waste water is described with the aid of ultrahigh-performance liquid chromatography-electrospray ionization (±)-high-resolution mass spectrometry and centrifugal partition chromatography methods. In total, seven secoiridoid lactones were isolated, four of which are new natural products. This is the first time that a conjugate of hydroxytyrosol and a secoiridoid lactone has been isolated from olive mill waste water and structurally characterized. Furthermore, the range of isolated compounds allowed for the proposal of a hypothesis for the biotransformation of olive secoiridoids during the production of olive mill waste water. Finally, the ability of the representative compounds to reduce the intracellular reactive oxygen species was assessed with the dichlorofluorescein assay in conjunction with the known antioxidant agent hydroxytyrosol. Georg Thieme Verlag KG Stuttgart · New York.

  18. Solid wastes from nuclear power production.

    PubMed Central

    Soule, H F

    1978-01-01

    Radioactivity in nuclear power effluents is negligible compared to that in retained wastes to be disposed of as solids. Two basic waste categories are those for which shallow disposal is accepted and those for which more extreme isolation is desired. The latter includes "high level" wastes and others contaminated with radionuclides with the unusual combined properties of long radioactive half-life and high specific radiotoxicity. The favored method for extreme isolation is emplacement in a deep stable geologic formation. Necessary technologies for waste treatment and disposal are considered available. The present program to implement these technologies is discussed, including the waste management significance of current policy on spent nuclear fuel reprocessing. Recent difficulties with shallow disposal of waste are summarized. PMID:738244

  19. Degradation and depolymerization of plastic waste by local bacterial isolates and bubble column reactor

    NASA Astrophysics Data System (ADS)

    Hussein, Amal A.; Alzuhairi, Mohammed; Aljanabi, Noor H.

    2018-05-01

    Accumulation of plastics, especially Polyethylene terephthalate (PET), is an ever increasing ecological threat due to its excessive usage in everyday human life. Nowadays, there are many methods to get rid of plastic wastes including burning, recycling and burying. However, these methods are not very active since their long period, anaerobic conditions that increase the rate of toxic materials released into the environment. This work aims to study the biological degradation of PET microorganism isolated from soil sample. Thirty eight (38) bacterial isolates were isolated from ten soil and plastic waste sample collected from four different waste disposal sites in Baghdad city during different periods between December 2016 and March 2017. Isolation was performed using enrichment culture method (flasks method) by culturing the soil samples in flasks with MSM medium where there is no carbon source only PET. Results showed that Al-Za'farania sample gave a higher number of isolates (13 isolates), while other samples gave less number of isolates. Screening was performed depending on their ability to grow in liquid MSM which contains PET powder and pieces and change the color of the PET-emulsified liquid medium as well as their ability to form the clear zone on PET-MSM agar. The results showed that NH-D-1 isolate has the higher ability to degrade DPET and PET pieces. According to morphological, biochemical characterization and Vitek-2 technique, the most active isolate was identified as Acinetobacter baumannii.

  20. The speciation and subtyping of campylobacter isolates from sewage plants and waste water from a connected poultry abattoir using molecular techniques.

    PubMed Central

    Koenraad, P. M.; Ayling, R.; Hazeleger, W. C.; Rombouts, F. M.; Newell, D. G.

    1995-01-01

    In this study the distribution of phenotypes of campylobacter strains in sewage and surface waters was investigated by subtyping and by speciation of isolates from various aquatic environments. These environments included two municipal sewage plants (SPA and SPB) and waste water from a poultry abattoir (WWA). Both the sewage plants SPA and SPB collected domestic and industrial waste, and SPA received drain water from WWA. SPB received no waste water from any meat-processing plant. The isolates were speciated by PCR and subtyped by PCR/RFLP based on the flagellin PCR products. From all three reservoirs, no Campylobacter lari was isolated, and approximately 80% of the isolates could be identified as C. jejuni and the rest belonged to the C. coli species. The PCR/RFLP typing technique has a high discrimination level and was reproducible between two separate laboratories. The 182 isolates tested yielded 22 distinct Dde I profiles. The results indicate that strains with profiles found in poultry are also detectable in waste water presumed to be solely from domestic and human sources. In addition some strains were unique to the known poultry-related sources, suggesting that avian-specific strains, non-pathogenic to man, may exist in the environment. In contrast some strains were unique to human waste indicating the potential importance of non-poultry sources of infection. No seasonality was observed in the profile distribution. So, at least in the Netherlands, it is unlikely that infections caused by contaminated surface waters contribute to the seasonality of human campylobacteriosis. Images Fig. 1 PMID:8557080

  1. Integrated Waste Treatment Unit (IWTU) Input Coal Analyses and Off-Gass Filter (OGF) Content Analyses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jantzen, Carol M.; Missimer, David M.; Guenther, Chris P.

    A full engineering scale Fluidized Bed Steam Reformer (FBSR) system is being used at the Idaho Nuclear Technology and Engineering Center (INTEC) to stabilize acidic Low Activity Waste (LAW) known as Sodium Bearing Waste (SBW). The INTEC facility, known as the Integrated Waste Treatment Unit (IWTU), underwent an Operational Readiness Review (ORR) and a Technology Readiness Assessment (TRA) in March 2014. The IWTU began non-radioactive simulant processing in late 2014 and by January, 2015 ; the IWTU had processed 62,000 gallons of simulant. The facility is currently in a planned outage for inspection of the equipment and will resume processingmore » simulated waste feed before commencing to process 900,000 gallons of radioactive SBW. The SBW acidic waste will be made into a granular FBSR product (carbonate based) for disposal in the Waste Isolation Pilot Plant (WIPP). In the FBSR process calcined coal is used to create a CO2 fugacity to force the waste species to convert to carbonate species. The quality of the coal, which is a feed input, is important because the reactivity, moisture, and volatiles (C,H,N,O, and S) in the coal impact the reactions and control of the mineralizing process in the primary steam reforming vessel, the Denitration and Mineralizing Reformer (DMR). Too much moisture in the coal can require that additional coal be used. However since moisture in the coal is only a small fraction of the moisture from the fluidizing steam this can be self-correcting. If the coal reactivity or heating value is too low then the coal feedrate needs to be adjusted to achieve the desired heat generation. Too little coal and autothermal heat generation in the DMR cannot be sustained and/or the carbon dioxide fugacity will be too low to create the desired carbonate mineral species. Too much coal and excess S and hydroxide species can form. Excess sulfur from coal that (1) is too rich in sulfur or (2) from overfeeding coal can promote wall scale and contribute to corrosion in process piping and materials, in excessive off-gas absorbent loading, and in undesired process emissions. The ash content of the coal is important as the ash adds to the DMR and other vessel products which affect the final waste product mass and composition. The amount and composition of the ash also affects the reaction kinetics. Thus ash content and composition contributes to the mass balance. In addition, sodium, potassium, calcium, sulfur, and maybe silica and alumina in the ash may contribute to wall-scale formation. Sodium, potassium, and alumina in the ash will be overwhelmed by the sodium, potassium, and alumina from the feed but the impact from the other ash components needs to be quantified. A maximum coal particle size is specified so the feed system does not plug and a minimum particle size is specified to prevent excess elutriation from the DMR to the Process Gas Filter (PGF). A vendor specification was used to procure the calcined coal for IWTU processing. While the vendor supplied a composite analysis for the 22 tons of coal (Appendix A), this study compares independent analyses of the coal performed at the Savannah River National Laboratory (SRNL) and at the National Energy Technology Laboratory (NETL). Three supersacks a were sampled at three different heights within the sack in order to determine within bag variability and between bag variability of the coal. These analyses were also compared to the vendor’s composite analyses and to the coal specification. These analyses were also compared to historic data on Bestac coal analyses that had been performed at Hazen Research Inc. (HRI) between 2004-2011.« less

  2. Diversity and antibiotic resistance of Aeromonas spp. in drinking and waste water treatment plants.

    PubMed

    Figueira, Vânia; Vaz-Moreira, Ivone; Silva, Márcia; Manaia, Célia M

    2011-11-01

    The taxonomic diversity and antibiotic resistance phenotypes of aeromonads were examined in samples from drinking and waste water treatment plants (surface, ground and disinfected water in a drinking water treatment plant, and raw and treated waste water) and tap water. Bacteria identification and intra-species variation were determined based on the analysis of the 16S rRNA, gyrB and cpn60 gene sequences. Resistance phenotypes were determined using the disc diffusion method. Aeromonas veronii prevailed in raw surface water, Aeromonas hydrophyla in ozonated water, and Aeromonas media and Aeromonas puntacta in waste water. No aeromonads were detected in ground water, after the chlorination tank or in tap water. Resistance to ceftazidime or meropenem was detected in isolates from the drinking water treatment plant and waste water isolates were intrinsically resistant to nalidixic acid. Most of the times, quinolone resistance was associated with the gyrA mutation in serine 83. The gene qnrS, but not the genes qnrA, B, C, D or qepA, was detected in both surface and waste water isolates. The gene aac(6')-ib-cr was detected in different waste water strains isolated in the presence of ciprofloxacin. Both quinolone resistance genes were detected only in the species A. media. This is the first study tracking antimicrobial resistance in aeromonads in drinking, tap and waste water and the importance of these bacteria as vectors of resistance in aquatic environments is discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Isolation of bacterial cellulose nanocrystalline from pineapple peel waste: Optimization of acid concentration in the hydrolysis method

    NASA Astrophysics Data System (ADS)

    Anwar, Budiman; Rosyid, Nurul Huda; Effendi, Devi Bentia; Nandiyanto, Asep Bayu Dani; Mudzakir, Ahmad; Hidayat, Topik

    2016-02-01

    Isolation of needle-shaped bacterial cellulose nanocrystalline with a diameter of 16-64 nm, a fiber length of 258-806 nm, and a degree of crystallinity of 64% from pineapple peel waste using an acid hydrolysis process was investigated. Experimental showed that selective concentration of acid played important roles in isolating the bacterial cellulose nanocrystalline from the cellulose source. To achieve the successful isolation of bacterial cellulose nanocrystalline, various acid concentrations were tested. To confirm the effect of acid concentration on the successful isolation process, the reaction conditions were fixed at a temperature of 50°C, a hydrolysis time of 30 minutes, and a bacterial cellulose-to-acid ratio of 1:50. Pineapple peel waste was used as a model for a cellulose source because to the best of our knowledge, there is no report on the use of this raw material for producing bacterial cellulose nanocrystalline. In fact, this material can be used as an alternative for ecofriendly and cost-free cellulose sources. Therefore, understanding in how to isolate bacterial cellulose nanocrystalline from pineapple peel waste has the potential for large-scale production of inexpensive cellulose nanocrystalline.

  4. WIPP Intermediate Scale Borehole Test. A pretest analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Argueello, J.G.

    A three-dimensional finite element structural analysis of the Intermediate Scale Borehole Test at the WIPP has been performed. The analysis provides insight into how a relatively new excavation in a creeping medium responds when introduced into an existing pillar which has been undergoing stress redistribution for 5.7 years. The stress field of the volume of material in the immediate vicinity of the borehole changes significantly when the hole is drilled. Closure of the hole is predicted to be larger in the vertical direction than in the horizontal direction, leading to an ovaling of the hole. The relatively high stresses nearmore » the hole persist even at the end of the simulation, 2 years after the hole is drilled.« less

  5. CH-TRU Waste Content Codes (CH-TRUCON)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Washington TRU Solutions LLC

    2007-08-15

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container.more » Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments" (10-day shipping period).« less

  6. CH-TRU Waste Content Codes (CH-TRUCON)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Washington TRU Solutions LLC

    2007-06-15

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container.more » Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments" (10-day shipping period).« less

  7. CH-TRU Waste Content Codes (CH-TRUCON)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Washington TRU Solutions LLC

    2007-09-20

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container.more » Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments" (10-day shipping period).« less

  8. CH-TRU Waste Content Codes (CH-TRUCON)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Washington TRU Solutions LLC

    2006-06-20

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container.more » Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments" (10-day shipping period).« less

  9. CH-TRU Waste Content Codes (CH-TRUCON)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Washington TRU Solutions LLC

    2006-01-18

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container.more » Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments" (10-day shipping period).« less

  10. CH-TRU Waste Content Codes (CH-TRUCON)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Washington TRU Solutions LLC

    2006-08-15

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container.more » Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments" (10-day shipping period).« less

  11. CH-TRU Waste Content Codes (CH-TRUCON)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Washington TRU Solutions LLC

    2006-12-20

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container.more » Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments" (10-day shipping period).« less

  12. CH-TRU Waste Content Codes (CH-TRUCON)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Washington TRU Solutions LLC

    2007-02-15

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container.more » Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments" (10-day shipping period).« less

  13. CH-TRU Waste Content Codes (CH-TRUCON)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Washington TRU Solutions LLC

    2006-09-15

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container.more » Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments" (10-day shipping period).« less

  14. CH-TRU Waste Content Codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Washington TRU Solutions LLC

    2008-01-16

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container.more » Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments" (10-day shipping period).« less

  15. RH Packaging Program Guidance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Washington TRU Solutions LLC

    The purpose of this program guidance document is to provide the technical requirements for use, operation, inspection, and maintenance of the RH-TRU 72-B Waste Shipping Package (also known as the "RH-TRU 72-B cask") and directly related components. This document complies with the requirements as specified in the RH-TRU 72-B Safety Analysis Report for Packaging (SARP), and Nuclear Regulatory Commission (NRC) Certificate of Compliance (C of C) 9212. If there is a conflict between this document and the SARP and/or C of C, the C of C shall govern. The C of C states: "...each package must be prepared for shipmentmore » and operated in accordance with the procedures described in Chapter 7.0, Operating Procedures, of the application." It further states: "...each package must be tested and maintained in accordance with the procedures described in Chapter 8.0, Acceptance Tests and Maintenance Program of the Application." Chapter 9.0 of the SARP tasks the Waste Isolation Pilot Plant (WIPP) Management and Operating (M&O) Contractor with assuring the packaging is used in accordance with the requirements of the C of C. Because the packaging is NRC-approved, users need to be familiar with Title 10 Code of Federal Regulations (CFR) §71.8, "Deliberate Misconduct." Any time a user suspects or has indications that the conditions of approval in the C of C were not met, the U.S. Department of Energy (DOE) Carlsbad Field Office (CBFO) shall be notified immediately. The CBFO will evaluate the issue and notify the NRC if required.In accordance with 10 CFR Part 71, "Packaging and Transportation of Radioactive Material," certificate holders, packaging users, and contractors or subcontractors who use, design, fabricate, test, maintain, or modify the packaging shall post copies of (1) 10 CFR Part 21, "Reporting of Defects and Noncompliance," regulations, (2) Section 206 of the Energy Reorganization Act of 1974, and (3) NRC Form 3, Notice to Employees. These documents must be posted in a conspicuous location where the activities subject to these regulations are conducted. This document details the instructions to be followed to operate, maintain, and test the RH-TRU 72-B packaging. This Program Guidance standardizes instructions for all users. Users shall follow these instructions or equivalent approved instructions. Following these instructions assures that operations meet the requirements of the SARP.« less

  16. RH Packaging Program Guidance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Washington TRU Solutions LLC

    The purpose of this program guidance document is to provide the technical requirements for use, operation, inspection, and maintenance of the RH-TRU 72-B Waste Shipping Package and directly related components. This document complies with the requirements as specified in the RH-TRU 72-B Safety Analysis Report for Packaging (SARP), and Nuclear Regulatory Commission (NRC) Certificate of Compliance (C of C) 9212. If there is a conflict between this document and the SARP and/or C of C, the C of C shall govern. The C of C states: "...each package must be prepared for shipment and operated in accordance with the proceduresmore » described in Chapter 7.0, Operating Procedures, of the application." It further states: "...each package must be tested and maintained in accordance with the procedures described in Chapter 8.0, Acceptance Tests and Maintenance Program of the Application." Chapter 9.0 of the SARP tasks the Waste Isolation Pilot Plant (WIPP) Management and Operating (M&O) Contractor with assuring the packaging is used in accordance with the requirements of the C of C. Because the packaging is NRC-approved, users need to be familiar with 10 Code of Federal Regulations (CFR) §71.8, "Deliberate Misconduct." Any time a user suspects or has indications that the conditions of approval in the C of C were not met, the U.S. Department of Energy (DOE) Carlsbad Field Office (CBFO) shall be notified immediately. CBFO will evaluate the issue and notify the NRC if required. In accordance with 10 CFR Part 71, "Packaging and Transportation of Radioactive Material," certificate holders, packaging users, and contractors or subcontractors who use, design, fabricate, test, maintain, or modify the packaging shall post copies of (1) 10 CFR Part 21, "Reporting of Defects and Noncompliance," regulations, (2) Section 206 of the Energy Reorganization Act of 1974, and (3) NRC Form 3, Notice to Employees. These documents must be posted in a conspicuous location where the activities subject to these regulations are conducted. This document details the instructions to be followed to operate, maintain, and test the RH-TRU 72-B packaging. This Program Guidance standardizes instructions for all users. Users shall follow these instructions or equivalent approved instructions. Following these instructions assures that operations meet the requirements of the SARP.« less

  17. Solid and Liquid Waste Drying Bag

    NASA Technical Reports Server (NTRS)

    Litwiller, Eric (Inventor); Hogan, John A. (Inventor); Fisher, John W. (Inventor)

    2009-01-01

    Method and system for processing waste from human activities, including solids, liquids and vapors. A fluid-impermeable bag, lined with a liquid-impermeable but vapor-permeable membrane, defining an inner bag, is provided. A vacuum force is provided to extract vapors so that the waste is moved toward a selected region in the inner bag, extracted vapors, including the waste vapors and vaporized portions of the waste liquids are transported across the membrane, and most or all of the solids remain within the liner. Extracted vapors are filtered, and sanitized components thereof are isolated and optionally stored. The solids remaining within the liner are optionally dried and isolated for ultimate disposal.

  18. Criteria: waste tank isolation and stabilization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Metz, W.P.; Ogren, W.E.

    1976-09-01

    The crystallized Hanford high-level wastes stored in single-shell underground tanks consist of sludges and salt cakes covered with supernatural liquor. Purpose of stabilization and isolation is to reduce the releases and losses as a result of a loss of tank integrity. The tanks will be modified so that no inadvertent liquid additions can be made. Criteria for the isolation and stabilization are given and discussed briefly. (DLC)

  19. CONTAINMENT TECHNOLOGIES

    EPA Science Inventory

    Hazardous waste containment's primary objective is to isolate wastes deemed as hazardous from man and environmental systems of air, soil, and water. Hazardous wastes differ from other waste classifications due to their increased potential to cause human health effects or environ...

  20. Modeling of transport phenomena in concrete porous media.

    PubMed

    Plecas, Ilija

    2014-02-01

    Two fundamental concerns must be addressed when attempting to isolate low-level waste in a disposal facility on land. The first concern is isolating the waste from water, or hydrologic isolation. The second is preventing movement of the radionuclides out of the disposal facility, or radionuclide migration. Particularly, we have investigated here the latter modified scenario. To assess the safety for disposal of radioactive waste-concrete composition, the leakage of 60Co from a waste composite into a surrounding fluid has been studied. Leakage tests were carried out by the original method, developed at the Vinča Institute. Transport phenomena involved in the leaching of a radioactive material from a cement composite matrix are investigated using three methods based on theoretical equations. These are: the diffusion equation for a plane source: an equation for diffusion coupled to a first-order equation, and an empirical method employing a polynomial equation. The results presented in this paper are from a 25-y mortar and concrete testing project that will influence the design choices for radioactive waste packaging for a future Serbian radioactive waste disposal center.

  1. 40 CFR 194.24 - Waste characterization.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... system. (e) Waste may be emplaced in the disposal system only if the emplaced components of such waste... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Waste characterization. 194.24 Section... PROGRAMS CRITERIA FOR THE CERTIFICATION AND RE-CERTIFICATION OF THE WASTE ISOLATION PILOT PLANT'S...

  2. 40 CFR 194.24 - Waste characterization.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... system. (e) Waste may be emplaced in the disposal system only if the emplaced components of such waste... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Waste characterization. 194.24 Section... PROGRAMS CRITERIA FOR THE CERTIFICATION AND RE-CERTIFICATION OF THE WASTE ISOLATION PILOT PLANT'S...

  3. 40 CFR 194.24 - Waste characterization.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... system. (e) Waste may be emplaced in the disposal system only if the emplaced components of such waste... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Waste characterization. 194.24 Section... PROGRAMS CRITERIA FOR THE CERTIFICATION AND RE-CERTIFICATION OF THE WASTE ISOLATION PILOT PLANT'S...

  4. 40 CFR 194.24 - Waste characterization.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... system. (e) Waste may be emplaced in the disposal system only if the emplaced components of such waste... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Waste characterization. 194.24 Section... PROGRAMS CRITERIA FOR THE CERTIFICATION AND RE-CERTIFICATION OF THE WASTE ISOLATION PILOT PLANT'S...

  5. Yucca Mountain, Nevada - A proposed geologic repository for high-level radioactive waste

    USGS Publications Warehouse

    Levich, R.A.; Stuckless, J.S.

    2006-01-01

    Yucca Mountain in Nevada represents the proposed solution to what has been a lengthy national effort to dispose of high-level radioactive waste, waste which must be isolated from the biosphere for tens of thousands of years. This chapter reviews the background of that national effort and includes some discussion of international work in order to provide a more complete framework for the problem of waste disposal. Other chapters provide the regional geologic setting, the geology of the Yucca Mountain site, the tectonics, and climate (past, present, and future). These last two chapters are integral to prediction of long-term waste isolation. ?? 2007 Geological Society of America. All rights reserved.

  6. Reconsolidated Salt as a Geotechnical Barrier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, Francis D.; Gadbury, Casey

    Salt as a geologic medium has several attributes favorable to long-term isolation of waste placed in mined openings. Salt formations are largely impermeable and induced fractures heal as stress returns to equilibrium. Permanent isolation also depends upon the ability to construct geotechnical barriers that achieve nearly the same high-performance characteristics attributed to the native salt formation. Salt repository seal concepts often include elements of reconstituted granular salt. As a specific case in point, the Waste Isolation Pilot Plant recently received regulatory approval to change the disposal panel closure design from an engineered barrier constructed of a salt-based concrete to onemore » that employs simple run-of-mine salt and temporary bulkheads for isolation from ventilation. The Waste Isolation Pilot Plant is a radioactive waste disposal repository for defense-related transuranic elements mined from the Permian evaporite salt beds in southeast New Mexico. Its approved shaft seal design incorporates barrier components comprising salt-based concrete, bentonite, and substantial depths of crushed salt compacted to enhance reconsolidation. This paper will focus on crushed salt behavior when applied as drift closures to isolate disposal rooms during operations. Scientific aspects of salt reconsolidation have been studied extensively. The technical basis for geotechnical barrier performance has been strengthened by recent experimental findings and analogue comparisons. The panel closure change was accompanied by recognition that granular salt will return to a physical state similar to the halite surrounding it. Use of run-of-mine salt ensures physical and chemical compatibility with the repository environment and simplifies ongoing disposal operations. Our current knowledge and expected outcome of research can be assimilated with lessons learned to put forward designs and operational concepts for the next generation of salt repositories. Mined salt repositories have the potential to isolate permanently vast inventories of radioactive and hazardous wastes.« less

  7. Advanced instrumental methods for analyzing organics in solid waste: The use of gas chromatography/matrix isolation infrared spectroscopy (GC/MIIR) and supercritical fluid chromatography (SFC) for waste characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raphaelian, L.A.; Boparai, A.S.; Schneider, J.F.

    1987-01-01

    Objectives of this research project were: (1) to enhance the capabilities of analyzing the complex mixtures found in coal wastes by using gas chromatography/matrix isolation infrared spectroscopy (GC/MIIR); (2) to separate, by supercritical fluid chromatography (SFC), the complex mixtures found in coal wastes into a few, less-complex mixtures so that analysis by gas chromatography (GC/MS) and GC/MIIR would be simplified. Preliminary results are presented for the mass spectra and infrared spectra of xylene isomers, gas chromatogram of 12 C/sub 2/-Napthalenes, averaged IR spectrum and a comparison of matrix isolation with light-pipe infrared spectra. A SFC chromatogram of polynuclear aromatic hydrocarbonsmore » is also presented. 2 refs., 5 figs.« less

  8. Testimony of Dr. Raul A. Deju, Basalt Waste Isolation Project, before the Subcommittee on Energy Research and Production, Committee on Sceince and Technology, United States House of Representatives, March 2, 1983

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1983-01-01

    Status of the Basalt Waste Isolation Project is given. Three key concerns have been identified that need to be resolved to either confirm or eliminate the basalts as a potential nuclear waste repository host medium. They are: A thorough understanding of the groundwater hydrology beneath the Hanford Site is needed to assure that a repository in basalt will not contribute unacceptable amounts of contaminants to the accessible environment. Our ability to construct a repository shaft and a network of underground tunnels needs to be fully demonstrated through an exploratory shaft program. Our ability to ultimately seal a repository, such thatmore » its integrity and the isolation of the waste are guaranteed, needs to be demonstrated.« less

  9. The Use of Basalt, Basalt Fibers and Modified Graphite for Nuclear Waste Repository - 12150

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gulik, V.I.; Biland, A.B.

    2012-07-01

    New materials enhancing the isolation of radioactive waste and spent nuclear fuel are continuously being developed.. Our research suggests that basalt-based materials, including basalt roving chopped basalt fiber strands, basalt composite rebar and materials based on modified graphite, could be used for enhancing radioactive waste isolation during the storage and disposal phases and maintaining it during a significant portion of the post-closure phase. The basalt vitrification process of nuclear waste is a viable alternative to glass vitrification. Basalt roving, chopped basalt fiber strands and basalt composite rebars can significantly increase the strength and safety characteristics of nuclear waste and spentmore » nuclear fuel storages. Materials based on MG are optimal waterproofing materials for nuclear waste containers. (authors)« less

  10. Nuclear waste management. Semiannual progress report, October 1982-March 1983

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chikalla, T.D.; Powell, J.A.

    1983-06-01

    This document is one of a series of technical progress reports designed to report radioactive waste management programs at the Pacific Northwest Laboratory. Accomplishments in the following programs are reported: waste stabilization; Materials Characterization Center; waste isolation; low-level waste management; remedial action; and supporting studies.

  11. Genome Sequence of Lysinibacillus sphaericus, a Lignin-Degrading Bacterium Isolated from Municipal Solid Waste Soil.

    PubMed

    Persinoti, Gabriela F; Paixão, Douglas A A; Bugg, Timothy D H; Squina, Fabio M

    2018-05-03

    We report here the draft genome sequence of Lysinibacillus sphaericus strain A1, a potential lignin-degrading bacterium isolated from municipal solid waste (MSW) soil and capable of enhancing gas release from lignocellulose-containing soil. Copyright © 2018 Persinoti et al.

  12. 10 CFR 63.21 - Content of application.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... design bases and their relation to the design criteria. (4) A description of the kind, amount, and... extent to which they affect waste isolation. Investigations must extend from the surface to a depth... barriers important to waste isolation as required by § 63.115. (15) An explanation of measures used to...

  13. 10 CFR 63.21 - Content of application.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... design bases and their relation to the design criteria. (4) A description of the kind, amount, and... extent to which they affect waste isolation. Investigations must extend from the surface to a depth... barriers important to waste isolation as required by § 63.115. (15) An explanation of measures used to...

  14. Chemistry of transuranium elements in salt-base repository

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borkowski, Marian; Reed, Donald T; Lucchini, Jean - Francois

    2010-12-02

    The mobility and potential release of actinides into the accessible environment continues to be the key performance assessment concern of nuclear repositories. Actinide, in particular plutonium speciation under the wide range of conditions that can exist in the subsurface is complex and depends strongly on the coupled effects of redox conditions, inorganic/organic complexation, and the extent/nature of aggregation. Understanding the key factors that define the potential for actinide migration is, in this context, an essential and critical part of making and sustaining a licensing case for a nuclear repository. Herein we report on recent progress in a concurrent modeling andmore » experimental study to determine the speciation of plutonium, uranium and americium in high ionic strength Na-CI-Mg brines. This is being done as part of the ongomg recertification effort m the Waste Isolation Pilot Plant (WIPP). The oxidation-state specific solubility of actinides were established in brine as function of pC{sub H+}, brine composition and the presence and absence of organic chelating agents and carbonate. An oxidation-state invariant analog approach using Nd{sup 3+} and Th{sup 4+} was used for An{sup 3+} and An{sup 4+} respectively. These results show that organic ligands and hydrolysis are key factors for An(III) solubility, hydrolysis at pC{sub H+} above 8 is predominate for An(IV) and carbonates are the key factor for U(VI) solubility. The effect of high ionic strength and brine components measured in absence of carbonates leads to measurable increased in overall solubility over analogous low ionic strength groundwater. Less is known about the bioreduction of actinides by halo-tolerant microorganisms, but there is now evidence that bioreduction does occur and is analogous, in many ways, to what occurs with soil bacteria. Results of solubility studies that focus on Pitzer parameter corrections, new species (e.g. borate complexation), and the thermodynamic parameters for modeling are discussed.« less

  15. Contained recovery of oily waste

    DOEpatents

    Johnson, Jr., Lyle A.; Sudduth, Bruce C.

    1989-01-01

    A method is provided for recovering oily waste from oily waste accumulations underground comprising sweeping the oily waste accumulation with hot water to recover said oily waste, wherein said area treated is isolated from surrounding groundwater hydraulically. The hot water may be reinjected after the hot-water displacement or may be treated to conform to any discharge requirements.

  16. Isolation and characterization of onion degrading bacteria from onion waste produced in South Buenos Aires province, Argentina.

    PubMed

    Rinland, María Emilia; Gómez, Marisa Anahí

    2015-03-01

    Onion production in Argentina generates a significant amount of waste. Finding an effective method to recycle it is a matter of environmental concern. Among organic waste reuse techniques, anaerobic digestion could be a valuable alternative to current practices. Substrate inoculation with appropriate bacterial strains enhances the rate-limiting step (hydrolysis) of anaerobic digestion of biomass wastes. Selection of indigenous bacteria with the ability to degrade onion waste could be a good approach to find a suitable bioaugmentation or pretreatment agent. We isolated bacterial strains from onion waste in different degradation stages and from different localities. In order to characterize and select the best candidates, we analyzed the growth patterns of the isolates in a medium prepared with onion juice as the main source of nutrients and we evaluated carbon source utilization. Nine strains were selected to test their ability to grow using onion tissue and the five most remarkable ones were identified by 16S rRNA gene sequencing. Strains belonged to the genera Pseudoxanthomonas, Bacillus, Micrococcus and Pseudomonas. Two strains, Bacillus subtilis subsp. subtillis MB2-62 and Pseudomonas poae VE-74 have characteristics that make them promising candidates for bioaugmentation or pretreatment purposes.

  17. Agricultural waste from the tequila industry as substrate for the production of commercially important enzymes.

    PubMed

    Huitron, C; Perez, R; Sanchez, A E; Lappe, P; Rocha Zavaleta, L

    2008-01-01

    Approximately 1 million tons of Agave tequilana plants are processed annually by the Mexican Tequila industry generating vast amounts of agricultural waste. The aim of this study was to investigate the potential use of Agave tequilana waste as substrate for the production of commercially important enzymes. Two strains of Aspergillus niger (CH-A-2010 and CH-A-2016), isolated from agave fields, were found to grow and propagate in submerged cultures using Agave tequilana waste as substrate. Isolates showed simultaneous extracellular inulinase, xylanase, pectinase, and cellulase activities. Aspergillus CH-A-2010 showed the highest production of inulinase activity (1.48 U/ml), whereas Aspergillus niger CH-A-2016 produced the highest xylanase (1.52 U/ml) and endo-pectinase (2.7U/ml) activities. In both cases production of enzyme activities was significantly higher on Agave tequilana waste than that observed on lemon peel and specific polymeric carbohydrates. Enzymatic hydrolysis of raw A. tequilana stems and leaves, by enzymes secreted by the isolates yielded maximum concentrations of reducing sugars of 28.2 g/l, and 9.9 g/l respectively. In conclusion, Agave tequilana waste can be utilized as substrate for the production of important biotechnological enzymes.

  18. Conduct of Operations. MAS-121. Waste Isolation Division (WID). Management and Supervisor Training (MAST) Program.

    ERIC Educational Resources Information Center

    Westinghouse Electric Corp., Carlsbad, NM.

    This learning module, which is part of a management and supervisor training program for managers and supervisors employed at the Department of Energy's Waste Isolation Division, is designed to teach trainees to apply conduct of operations principles to their area(s) of responsibility. The following topics are covered in the module's individual…

  19. Regulatory Organizations and Their Requirements. MAS-113. Waste Isolation Division (WID). Management and Supervisor Training (MAST) Program.

    ERIC Educational Resources Information Center

    Westinghouse Electric Corp., Carlsbad, NM.

    This learning module, which is part of a management and supervisor training program for managers and supervisors employed at the Department of Energy's Waste Isolation Division, is designed to enable trainees to identify regulatory organizations and oversight groups and monitor and provide guidance in the implementation of the requirements of…

  20. Organizing. MAS-108. Waste Isolation Division (WID). Management and Supervisor Training (MAST) Program.

    ERIC Educational Resources Information Center

    Westinghouse Electric Corp., Carlsbad, NM.

    This module is part of a set of management and supervisor training (MAST) materials developed by the Department of Energy for the Waste Isolation Division. Its stated purpose is to enable trainees to organize work activities efficiently and effectively. The first section of the module is an introduction that includes a terminal objective and…

  1. Industrial Safety. MAS-123. Waste Isolation Division (WID). Management and Supervisor Training (MAST) Program.

    ERIC Educational Resources Information Center

    Westinghouse Electric Corp., Carlsbad, NM.

    This learning module, which is part of a management and supervisor training program for managers and supervisors employed at the Department of Energy's Waste Isolation Division, is designed to prepare trainees to promote and monitor the industrial safety program at their plant. The following topics are covered in the module's individual sections:…

  2. Purchasing and Accounting. MAS-116. Waste Isolation Division (WID). Management and Supervisor Training (MAST) Program.

    ERIC Educational Resources Information Center

    Westinghouse Electric Corp., Carlsbad, NM.

    This learning module, which is part of a management and supervisor training program for managers and supervisors employed at the Department of Energy's Waste Isolation Division, is designed to prepare trainees to perform purchasing and accounting tasks efficiently and effectively. The first section is an introduction to the module. The next three…

  3. Penicillium pedernalense sp. nov., isolated from whiteleg shrimp heads waste compost.

    PubMed

    Laich, Federico; Andrade, Jacinto

    2016-11-01

    Novel Penicillium-like strains were isolated during the characterization of the mycobiota community dynamics associated with shrimp waste composting. Phylogenetic analysis of the partial β-tubulin (BenA) gene and the ribosomal DNA internal transcribed spacer region (ITS1-5.8S-ITS2) sequences revealed that the novel strains were members of section Lanata-Divaricata and were closely related to Penicillium infrabuccalum DAOMC 250537T. On the basis of morphological and physiological characterization, and phylogenetic analysis, a novel Penicillium species, Penicillium pedernalense sp. nov., is proposed. The type strain is F01-11T (=CBS 140770T=CECT 20949T), which was isolated from whiteleg shrimp (Litopenaeus vannamei) heads waste compost in the Pedernales region (Manabí province, Ecuador).

  4. Biodegradation of nicotine by a newly isolated Pseudomonas stutzeri JZD

    NASA Astrophysics Data System (ADS)

    Petricevic, Jelena; Gujanicic, Vera; Radic, Danka; Jovicic Petrovic, Jelena; Jovic, Jelena; Raicevic, Vera

    2013-04-01

    The tobacco-manufacturing process and all activities that use tobacco, produce solid or liquid wastes with high concentrations of nicotine. Nicotine is a significant toxic waste product in tobacco industry. This waste is classified as 'toxic and hazardous' by European Union regulations when the nicotine content exceeds 500 milligrams per kilogram dry weight. Therefore, there is a major environmental requirement to remove nicotine from tobacco wastes. Bioremediation techniques which involve nicotine degradation by microorganisms have attracted attention during the last years, because microorganisms have the potential to reduce nicotine levels in tobacco and to detoxify tobacco wastes. The aim of this study is isolation and identification of nicotine degraded bacteria and optimization of nicotine degradation in laboratory conditions. An aerobic bacterial strain capable of effectively degrading nicotine was isolated from the tobacco industry waste, Serbia. After isolation, the liquid culture was spread onto the solid plates of the nicotine inorganic salt medium using the dilution plate method. Cell morphology of strain was observed by a light microscope and physiological characteristics were determined by Api technique and sequence analyzes of 16S rDNA. This isolate was identified as Pseudomonas stutzeri based on morphology, physiological characteristics, and Apiweb technique. Comparison with sequences available in data library showed the 99% similarity with 16S rDNA gene sequence of the species Pseudomonas stutzeri ( GenBank Acc. No. CP003725). We analyzed the effect of initial nicotine concentration (1g/L, 1.5 g/L, 2.5 g/L) on microbial activity in aim to optimize biodegradation. The effect of cultivation temperature (25°C; 30°C; 37°C) on nicotine degradation by P. stutzeri was evaluated after 24 h of cultivation, with 1.5 g/L nicotine added as the sole carbon source. Effect of biodegradation has depended on initial concentration. During incubation, number of bacteria was increased in all variants of initial concentrations. Nicotine degradation rate increased with increasing cultivation temperature. The optimal temperature was 37°C. The results suggest that the P. stutzeri may be useful for bioremediation of nicotine-polluted waste and confirms its possible application in solving of nicotine contamination problems. Key words: Pseudomonas stutzeri, biodegradation; nicotine; waste

  5. Geohydrology of the near-surface unsaturated zone adjacent to the disposal site for low-level radioactive waste near Beatty, Nevada: A section in Safe disposal of radionuclides in low-level radioactive-waste repository sites; Low-level radioactive-waste disposal workshop, U.S. Geological Survey, July 11-16, 1987, Big Bear Lake, Calif., Proceedings (Circular 1036)

    USGS Publications Warehouse

    Fisher, Jeffrey M.; Bedinger, Marion S.; Stevens, Peter R.

    1990-01-01

    Shallow-land burial in arid areas is considered the best method for isolating low-level radioactive waste from the environment (Nichols and Goode, this report; Mercer and others, 1983). A major threat to waste isolation in shallow trenches is ground-water percolation. Repository sites in arid areas are believed to minimize the risk of ground-water contamination because such sites receive minimal precipitation and are underlain by thick unsaturated zones. Unfortunately, few data are available on rates of water percolation in an arid environment.

  6. Dose rate prediction methodology for remote handled transuranic waste workers at the waste isolation pilot plant.

    PubMed

    Hayes, Robert

    2002-10-01

    An approach is described for estimating future dose rates to Waste Isolation Pilot Plant workers processing remote handled transuranic waste. The waste streams will come from the entire U.S. Department of Energy complex and can take on virtually any form found from the processing sequences for defense-related production, radiochemistry, activation and related work. For this reason, the average waste matrix from all generator sites is used to estimate the average radiation fields over the facility lifetime. Innovative new techniques were applied to estimate expected radiation fields. Non-linear curve fitting techniques were used to predict exposure rate profiles from cylindrical sources using closed form equations for lines and disks. This information becomes the basis for Safety Analysis Report dose rate estimates and for present and future ALARA design reviews when attempts are made to reduce worker doses.

  7. Isolation, identification and characterization of indigenous fungi for bioremediation of hexavalent chromium, nickel and cobalt

    NASA Astrophysics Data System (ADS)

    Hernahadini, Nelis; Suhandono, Sony; Choesin, Devi N.; Chaerun, Siti K.; Kadarusman, Ade

    2014-03-01

    Waste from nickel mining of Sorowako in South Sulawesi contains hexavalent chromium, nickel and cobalt metals in high concentration and may have a negative impact to the environment. Common waste treatment systems such as chemical treatment using a reducing reagent may still have a negative impact. Bioremediation using fungi or bacteria becomes more popular because it is an environmentally friendly alternative. The purposes of this study are to isolate and identify indigenous fungi that are resistant to heavy metals (hexavalent chromium, nickel, and cobalt) and are capable of reducing the concentration of metals in mining wastes. Ten fungal isolates were successfully isolated from the soils and pond sediments in the area of nickel mining in Sorowako. Selection of superior isolate was carried out by growing all the isolates on PDA medium, which contained all of the three metals. One superior isolate was identified to be able to grow on medium with concentrations of 6400 ppm hexavalent chromium, 200 ppm nickel and 50 ppm cobalt. Molecular identification and phylogenetic studies of the isolate using fungal PCR primers developed to amplify the ITS (internal transcribed spacer) region showed that the isolate sequence was very close to Trichoderma atroviride with 99.8% similarity. Optimum incubation time for the uptake of hexavalent chromium was 3 days, nickel and cobalt was 5 days, respectively, with an optimum pH of 4.

  8. Isolation of clinically relevant fungal species from solid waste and environment of dental health services.

    PubMed

    Vieira, C D; de Carvalho, M A R; de Resende, M A; de Menezes Cussiol, N A; Alvarez-Leite, M E; dos Santos, S G; de Oliveira, M B; de Magalhães, T F F; Silva, M X; Nicoli, J R; de Macêdo Farias, L

    2010-10-01

    This study was undertaken to detect, identify and determine antifungal susceptibility of yeast strains isolated from dental solid waste and to evaluate airborne fungi in the Brazilian dental health care environment and in the waste storage room. A group of 17 yeast strains were identified by macroscopic and microscopic characteristics, API 20C Aux system and Multiplex PCR. All 104 airborne fungal colonies were identified by macroscopic and microscopic morphology. The CLSI broth microdilution method was utilized as the susceptibility test. Candida parapsilosis was the prevailing yeast species recovered from waste, followed by Rhodotorula glutinis. Three strains of Candida guilliermondii presented minimal inhibitory concentration values considered to be susceptible dose dependent (2 μg ml(-1)) to voriconazole. Of all airborne fungal species, 69% were recovered from the waste storage room and 31% were recovered from the clinical/surgical environment. Most of them were identified as Cladosporium spp. These findings reinforce the potential risk of waste handling and point out the need for safe management to minimize the spread of these agents to the environment. Filamentous fungi isolation in almost all sampled environments indicates that a periodic monitoring of airborne microbiota in the dental health care service environment is required. The survival of yeast strains for 48 h suggests that dental waste should be carefully controlled and monitored. © 2010 The Authors. Journal compilation © 2010 The Society for Applied Microbiology.

  9. Bacteria isolated from amoebae/bacteria consortium

    DOEpatents

    Tyndall, R.L.

    1995-05-30

    New protozoan derived microbial consortia and method for their isolation are provided. Consortia and bacteria isolated therefrom are useful for treating wastes such as trichloroethylene and trinitrotoluene. Consortia, bacteria isolated therefrom, and dispersants isolated therefrom are useful for dispersing hydrocarbons such as oil, creosote, wax, and grease.

  10. Bacteria isolated from amoebae/bacteria consortium

    DOEpatents

    Tyndall, Richard L.

    1995-01-01

    New protozoan derived microbial consortia and method for their isolation are provided. Consortia and bacteria isolated therefrom are useful for treating wastes such as trichloroethylene and trinitrotoluene. Consortia, bacteria isolated therefrom, and dispersants isolated therefrom are useful for dispersing hydrocarbons such as oil, creosote, wax, and grease.

  11. Plant and Industry Experience. MAS-122. Waste Isolation Division (WID). Management and Supervisor Training (MAST) Program.

    ERIC Educational Resources Information Center

    Westinghouse Electric Corp., Carlsbad, NM.

    This learning module, which is part of a management and supervisor training program for managers and supervisors employed at the Department of Energy's Waste Isolation Division, is designed to prepare trainees to use plant and industry experience to improve plant safety and reliability. The following topics are covered in the module's individual…

  12. Communications. MAS-106. Waste Isolation Division (WID). Management and Supervisor Training (MAST) Program.

    ERIC Educational Resources Information Center

    Westinghouse Electric Corp., Carlsbad, NM.

    This module is part of a set of management and supervisor training (MAST) materials developed by the Department of Energy for the Waste Isolation Division. Its stated purpose is to enable trainees to communicate effectively in the workplace. The first section of the module is an introduction that includes a terminal objective and opening remarks…

  13. Introduction to the MAST Program. MAS-100. Waste Isolation Division (WID). Management and Supervisor Training (MAST) Program.

    ERIC Educational Resources Information Center

    Westinghouse Electric Corp., Carlsbad, NM.

    This module is part of a set of management and supervisor training (MAST) materials developed by the Department of Energy for the Waste Isolation Division. Its stated purpose is to provide participants with knowledge and skills necessary to take full advantage of the MAST learning experience. The module contains program guidelines, sample…

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Witherspoon, P.A.

    The problem of isolating radioactive wastes from the biosphere presents specialists in the fields of earth sciences with some of the most complicated problems they have ever encountered. This is especially true for high level waste (HLW) which must be isolated in the underground and away from the biosphere for thousands of years. Essentially every country that is generating electricity in nuclear power plants is faced with the problem of isolating the radioactive wastes that are produced. The general consensus is that this can be accomplished by selecting an appropriate geologic setting and carefully designing the rock repository. Much newmore » technology is being developed to solve the problems that have been raised and there is a continuing need to publish the results of new developments for the benefit of all concerned. The 28th International Geologic Congress that was held July 9--19, 1989 in Washington, DC provided an opportunity for earth scientists to gather for detailed discussions on these problems. Workshop W3B on the subject, Geological Problems in Radioactive Waste Isolation -- A World Wide Review'' was organized by Paul A Witherspoon and Ghislain de Marsily and convened July 15--16, 1989 Reports from 19 countries have been gathered for this publication. Individual papers have been cataloged separately.« less

  15. Nucleic acid isolation

    DOEpatents

    Longmire, J.L.; Lewis, A.K.; Hildebrand, C.E.

    1988-01-21

    A method is provided for isolating DNA from eukaryotic cell and flow sorted chromosomes. When DNA is removed from chromosome and cell structure, detergent and proteolytic digestion products remain with the DNA. These products can be removed with organic extraction, but the process steps associated with organic extraction reduces the size of DNA fragments available for experimental use. The present process removes the waste products by dialyzing a solution containing the DNA against a solution containing polyethylene glycol (PEG). The waste products dialyze into the PEG leaving isolated DNA. The remaining DNA has been prepared with fragments containing more than 160 kb. The isolated DNA has been used in conventional protocols without effect on the protocol.

  16. Comparison of isolate dadih with yeast dadih in improving nutrition quality of Cassava Waste (CW)

    NASA Astrophysics Data System (ADS)

    Ginting, N.

    2018-03-01

    The cassava industry in North Sumatra Province was one of the most significant agricultural industries. Waste from the cassava industry which was called cassava waste/CW/Onggok was used as feed for ruminants such as cattle, sheep and monogastric such as pigs. The low nutrients in CW caused the need to find a way for improving the nutrients quality. This research was conducted with the aim to help livestockers to ferment their livestock feed. This study compared the ability of fermentation between dadih isolate with dadih yeast. Dadih is traditional food in Indonesia where milk is fermented in bamboo tube. Dadih yeast was made by mixing dadih and whey with flour, made in around shape and sun dried. The results showed that pH of CW by dadih isolate was the lowest while crude protein, crude fiber and fat in CW treated with dadih isolate were improved significantly compared either to control or to dadih starter while fermented CW was better than non-fermented CW. It was recommended livestockers to ferment CW by using either by dadih isolate or dadih starter.

  17. 10 CFR 61.13 - Technical analyses.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Licenses § 61... characteristics and design features in isolating and segregating the wastes. The analyses must clearly demonstrate... inadvertent intrusion must include demonstration that there is reasonable assurance the waste classification...

  18. 10 CFR 61.13 - Technical analyses.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Licenses § 61... characteristics and design features in isolating and segregating the wastes. The analyses must clearly demonstrate... inadvertent intrusion must include demonstration that there is reasonable assurance the waste classification...

  19. 10 CFR 61.13 - Technical analyses.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Licenses § 61... characteristics and design features in isolating and segregating the wastes. The analyses must clearly demonstrate... inadvertent intrusion must include demonstration that there is reasonable assurance the waste classification...

  20. 10 CFR 61.13 - Technical analyses.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Licenses § 61... characteristics and design features in isolating and segregating the wastes. The analyses must clearly demonstrate... inadvertent intrusion must include demonstration that there is reasonable assurance the waste classification...

  1. Summary of Uranium Solubility Studies in Concrete Waste Forms and Vadose Zone Environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Golovich, Elizabeth C.; Wellman, Dawn M.; Serne, R. Jeffrey

    2011-09-30

    One of the methods being considered for safely disposing of Category 3 low-level radioactive wastes is to encase the waste in concrete. Concrete encasement would contain and isolate the waste packages from the hydrologic environment and act as an intrusion barrier. The current plan for waste isolation consists of stacking low-level waste packages on a trench floor, surrounding the stacks with reinforced steel, and encasing these packages in concrete. These concrete-encased waste stacks are expected to vary in size with maximum dimensions of 6.4 m long, 2.7 m wide, and 4 m high. The waste stacks are expected to havemore » a surrounding minimum thickness of 15 cm of concrete encasement. These concrete-encased waste packages are expected to withstand environmental exposure (solar radiation, temperature variations, and precipitation) until an interim soil cover or permanent closure cover is installed and to remain largely intact thereafter. Any failure of concrete encasement may result in water intrusion and consequent mobilization of radionuclides from the waste packages. This report presents the results of investigations elucidating the uranium mineral phases controlling the long-term fate of uranium within concrete waste forms and the solubility of these phases in concrete pore waters and alkaline, circum-neutral vadose zone environments.« less

  2. Phenotypic and genotypic characterization of clinically relevant bacteria isolated from dental waste and waste workers' hands, mucosas and coats.

    PubMed

    Tagliaferri, T L; Vieira, C D; de Carvalho, M A R; Ladeira, L C D; Magalhães, P P; de Macêdo Farias, L; Dos Santos, S G

    2017-10-01

    Infectious wastes are potential sources of pathogenic micro-organisms, which may represent a risk to the professionals who manage them. In this study, we aimed to characterize the infectious bacteria present in dental waste and waste workers. The dental waste produced over 24 h was collected and waste workers were sampled by swabbing. Isolate resistance profiles were characterized by Vitek ® and PCR and biofilm formation by Congo Red agar, string test and microtitre assay. To assess similarity between the waste and the workers' samples, a random amplified polymorphic DNA test was used. Twenty-eight bacteria were identified as clinically relevant. The most frequent gene was bla TEM present in five Gram-negative micro-organisms, and one bla SHV in Klebsiella pneumoniae. All Pseudomonas aeruginosa were positive to extracellular polymeric substances formation, except one isolated from a worker. Klebsiella pneumoniae had negative results for the string test. Pseudomonas aeruginosa showed better adherence at 25°C after 48 h of incubation and K. pneumonia had the best biofilm formation at the same temperature, after 24 h. The similarity between P. aeruginosa recovered from dental waste and from workers was low, however, it is important to note that a pathogen was found on a worker's hands and that improvements in biosafety are required. Infectious dental waste can contain clinically relevant bacteria with important resistance and biofilm profiles. These micro-organisms could be transmitted to waste workers, other professionals and patients if the principles of biosafety measures are neglected. To our knowledge, no study has ever evaluated the microbial characterization and the potential contamination risk of dental infectious waste and waste handlers. The presence of clinically relevant bacteria in the hands and nasal mucosa of waste workers highlights the need for studies in this field to clarify the risk of these pathogens in dental healthcare services, and to stress the need for an efficient waste management. © 2017 The Society for Applied Microbiology.

  3. Bioleaching of Gold and Silver from Waste Printed Circuit Boards by Pseudomonas balearica SAE1 Isolated from an e-Waste Recycling Facility.

    PubMed

    Kumar, Anil; Saini, Harvinder Singh; Kumar, Sudhir

    2018-02-01

    Indigenous bacterial strain Pseudomonas balearica SAE1, tolerant to e-waste toxicity was isolated from an e-waste recycling facility Exigo Recycling Pvt. Ltd., India. Toxicity tolerance of bacterial strain was analyzed using crushed (particle size ≤150 µm) waste computer printed circuit boards (PCBs)/liter (L) of culture medium. The EC 50 value for SAE1 was 325.7 g/L of the e-waste pulp density. Two-step bioleaching was then applied to achieve the dissolution of gold (Au) and silver (Ag) from the e-waste. To maximize precious metal dissolution, factors including pulp density, glycine concentration, pH level, and temperature were optimized. The optimization resulted in 68.5 and 33.8% of Au and Ag dissolution, respectively, at a pH of 9.0, a pulp density of 10 g/L, a temperature of 30 °C, and a glycine concentration of 5 g/L. This is the first study of Au and Ag bioleaching using indigenous e-waste bacteria and its analysis to determine e-waste toxicity tolerance.

  4. Utilization of Solid Waste as a Substrate for Production of Oil from Oleaginous Microorganisms.

    PubMed

    Laker, Fortunate; Agaba, Arnold; Akatukunda, Andrew; Gazet, Robert; Barasa, Joshua; Nanyonga, Sarah; Wendiro, Deborah; Wacoo, Alex Paul

    2018-01-01

    The overwhelming demand of oil and fats to meet the ever increasing needs for biofuel, cosmetics production, and other industrial purposes has enhanced a number of innovations in this industry. One such innovation is the use of microorganisms as alternative sources of oil and fats. Organic solid waste that is causing a big challenge of disposal worldwide is biodegradable and can be utilized as substrate for alternative oil production. The study evaluated the potential of isolated yeast-like colonies to grow and accumulate oil by using organic solid waste as substrate. Of the 25 yeast-like colonies isolated from the soil samples collected from three different suburbs in Kampala district, Uganda, 20 were screened positive for accumulation of lipid but only 2 were oleaginous. The NHC isolate with the best oil accumulation potential of 48.8% was used in the central composite design (CCD) experiments. The CCD experimental results revealed a maximum oil yield of 61.5% from 1.25 g/L cell biomass at 10 g/L of solid waste and temperature of 25°C. The study revealed that organic solid waste could be used as a substrate for microbial oil production.

  5. Problem Solving and Decision Making. MAS-105. Waste Isolation Division (WID). Management and Supervisor Training (MAST) Program.

    ERIC Educational Resources Information Center

    Westinghouse Electric Corp., Carlsbad, NM.

    This module is part of a set of management and supervisor training (MAST) materials developed by the Department of Energy for the Waste Isolation Division. Its stated purpose is to enable trainees to solve problems and make decisions in an efficient and effective manner. The first section of the module is an introduction that includes a terminal…

  6. Discussion [of ``The use of conditional simulation in nuclear-waste-site performance assessment`` by Carol A. Gotway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Downing, D.J.

    1994-05-01

    EPA 40 CFR 191.16 (EPA 1985) states in part that the disposal systems should be designed to provide reasonable expectation that for 1,000 years after disposal, undisturbed performance of the disposal system shall not cause radionuclide concentrations to exceed specified limits. The question is how can one, with the tools that one has today, establish with some degree of confidence that a requirement like that just given will be achieved? Over the last several years, this has been demonstrated through the use of simulation analysis of the system being studied. An example of such a study on nuclear reactor criticalitymore » is described. Then the author discusses Carol Gotway`s study on WIPP. The author believes that work on computer simulation models is extremely important. These are primary tools one has for investigating many complex problems--for example, groundwater contamination, molecular dynamics, climate modeling, and nuclear-reactor accidents. Many of these models are being investigated at the national laboratories but unfortunately often without any help from statisticians. The article by Gotway shows another example of how statistics can be applied to a complicated process to yield practical results.« less

  7. Assessment for the management of NORM wastes in conventional hazardous and nonhazardous waste landfills.

    PubMed

    Mora, Juan C; Baeza, Antonio; Robles, Beatriz; Sanz, Javier

    2016-06-05

    Naturally Occurring Radioactive Materials (NORM) wastes are generated in huge quantities in several industries and their management has been carried out under considerations of industrial non-radioactive wastes, before the concern on the radioactivity content was included in the legislation. Therefore these wastes were conditioned using conventional methods and the waste disposals were designed to isolate toxic elements from the environment for long periods of time. Spanish regulation for these conventional toxic waste disposals includes conditions that assure adequate isolation to minimize the impact of the wastes to the environment in present and future conditions. After 1996 the radiological impact of the management of NORM wastes is considered and all the aspects related with natural radiations and the radiological control regarding the management of residues from NORM industries were developed in the new regulation. One option to be assessed is the disposal of NORM wastes in hazardous and non-hazardous waste disposals, as was done before this new regulation. This work analyses the management of NORM wastes in these landfills to derive the masses that can be disposed without considerable radiological impact. Generic dose assessments were carried out under highly conservative hypothesis and a discussion on the uncertainty and variability sources was included to provide consistency to the calculations. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Biotechnological potential of Bacillus salmalaya 139SI: a novel strain for remediating water polluted with crude oil waste.

    PubMed

    Ismail, Salmah; Dadrasnia, Arezoo

    2015-01-01

    Environmental contamination by petroleum hydrocarbons, mainly crude oil waste from refineries, is becoming prevalent worldwide. This study investigates the bioremediation of water contaminated with crude oil waste. Bacillus salamalaya 139SI, a bacterium isolated from a private farm soil in the Kuala Selangor in Malaysia, was found to be a potential degrader of crude oil waste. When a microbial population of 108 CFU ml-1 was used, the 139SI strain degraded 79% and 88% of the total petroleum hydrocarbons after 42 days of incubation in mineral salt media containing 2% and 1% of crude oil waste, respectively, under optimum conditions. In the uninoculated medium containing 1% crude oil waste, 6% was degraded. Relative to the control, the degradation was significantly greater when a bacteria count of 99 × 108 CFU ml-1 was added to the treatments polluted with 1% oil. Thus, this isolated strain is useful for enhancing the biotreatment of oil in wastewater.

  9. Biotechnological Potential of Bacillus salmalaya 139SI: A Novel Strain for Remediating Water Polluted with Crude Oil Waste

    PubMed Central

    2015-01-01

    Environmental contamination by petroleum hydrocarbons, mainly crude oil waste from refineries, is becoming prevalent worldwide. This study investigates the bioremediation of water contaminated with crude oil waste. Bacillus salamalaya 139SI, a bacterium isolated from a private farm soil in the Kuala Selangor in Malaysia, was found to be a potential degrader of crude oil waste. When a microbial population of 108 CFU ml-1 was used, the 139SI strain degraded 79% and 88% of the total petroleum hydrocarbons after 42 days of incubation in mineral salt media containing 2% and 1% of crude oil waste, respectively, under optimum conditions. In the uninoculated medium containing 1% crude oil waste, 6% was degraded. Relative to the control, the degradation was significantly greater when a bacteria count of 99 × 108 CFU ml-1 was added to the treatments polluted with 1% oil. Thus, this isolated strain is useful for enhancing the biotreatment of oil in wastewater. PMID:25875763

  10. Nucleic acid isolation process

    DOEpatents

    Longmire, Jonathan L.; Lewis, Annette K.; Hildebrand, Carl E.

    1990-01-01

    A method is provided for isolating DNA from eukaryotic cell and flow sorted chromosomes. When DNA is removed from chromosome and cell structure, detergent and proteolytic digestion products remain with the DNA. These products can be removed with organic extraction, but the process steps associated with organic extraction reduce the size of DNA fragments available for experimental use. The present process removes the waste products by dialyzing a solution containing the DNA against a solution containing polyethylene glycol (PEG). The waste products dialyze into the PEG leaving isolated DNA. The remaining DNA has been prepared with fragments containing more than 160 kb. The isolated DNA has been used in conventional protocols without affect on the protocol.

  11. Biodegradation of low-density polyethylene (LDPE) by isolated fungi in solid waste medium.

    PubMed

    Zahra, Sahebnazar; Abbas, Shojaosadati Seyed; Mahsa, Mohammad-Taheri; Mohsen, Nosrati

    2010-03-01

    In this study, biodegradation of low-density polyethylene (LDPE) by isolated landfill-source fungi was evaluated in a controlled solid waste medium. The fungi, including Aspergillus fumigatus, Aspergillus terreus and Fusarium solani, were isolated from samples taken from an aerobic aged municipal landfill in Tehran. These fungi could degrade LDPE via the formation of a biofilm in a submerged medium. In the sterilized solid waste medium, LPDE films were buried for 100 days in a 1-L flask containing 400 g sterile solid waste raw materials at 28 degrees C. Each fungus was added to a separate flask. The moisture content and pH of the media were maintained at the optimal levels for each fungus. Photo-oxidation (25 days under UV-irradiation) was used as a pretreatment of the LDPE samples. The progress of the process was monitored by measurement of total organic carbon (TOC), pH, temperature and moisture. The results obtained from monitoring the process using isolated fungi under sterile conditions indicate that these fungi are able to grow in solid waste medium. The results of FT-IR and SEM analyses show that A. terreus and A. fumigatus, despite the availability of other organic carbon of materials, could utilize LDPE as carbon source. While there has been much research in the field of LDPE biodegradation under solid conditions, this is the first report of degradation of LDPE by A. fumigatus. Copyright 2009 Elsevier Ltd. All rights reserved.

  12. Biodegradation of low-density polyethylene (LDPE) by isolated fungi in solid waste medium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zahra, Sahebnazar; Abbas, Shojaosadati Seyed, E-mail: sa_shoja@modares.ac.i; Mahsa, Mohammad-Taheri

    In this study, biodegradation of low-density polyethylene (LDPE) by isolated landfill-source fungi was evaluated in a controlled solid waste medium. The fungi, including Aspergillus fumigatus, Aspergillus terreus and Fusarium solani, were isolated from samples taken from an aerobic aged municipal landfill in Tehran. These fungi could degrade LDPE via the formation of a biofilm in a submerged medium. In the sterilized solid waste medium, LPDE films were buried for 100 days in a 1-L flask containing 400 g sterile solid waste raw materials at 28 deg. C. Each fungus was added to a separate flask. The moisture content and pHmore » of the media were maintained at the optimal levels for each fungus. Photo-oxidation (25 days under UV-irradiation) was used as a pretreatment of the LDPE samples. The progress of the process was monitored by measurement of total organic carbon (TOC), pH, temperature and moisture. The results obtained from monitoring the process using isolated fungi under sterile conditions indicate that these fungi are able to grow in solid waste medium. The results of FT-IR and SEM analyses show that A. terreus and A. fumigatus, despite the availability of other organic carbon of materials, could utilize LDPE as carbon source. While there has been much research in the field of LDPE biodegradation under solid conditions, this is the first report of degradation of LDPE by A. fumigatus.« less

  13. Waste isolation safety assessment program. Task 4. Third contractor information meeting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1980-06-01

    The Contractor Information Meeting (October 14 to 17, 1979) was part of the FY-1979 effort of Task 4 of the Waste Isolation Safety Assessment Program (WISAP): Sorption/Desorption Analysis. The objectives of this task are to: evaluate sorption/desorption measurement methods and develop a standardized measurement procedure; produce a generic data bank of nuclide-geologic interactions using a wide variety of geologic media and groundwaters; perform statistical analysis and synthesis of these data; perform validation studies to compare short-term laboratory studies to long-term in situ behavior; develop a fundamental understanding of sorption/desorption processes; produce x-ray and gamma-emitting isotopes suitable for the study ofmore » actinides at tracer concentrations; disseminate resulting information to the international technical community; and provide input data support for repository safety assessment. Conference participants included those subcontracted to WISAP Task 4, representatives and independent subcontractors to the Office of Nuclear Waste Isolation, representatives from other waste disposal programs, and experts in the area of waste/geologic media interaction. Since the meeting, WISAP has been divided into two programs: Assessment of Effectiveness of Geologic Isolation Systems (AEGIS) (modeling efforts) and Waste/Rock Interactions Technology (WRIT) (experimental work). The WRIT program encompasses the work conducted under Task 4. This report contains the information presented at the Task 4, Third Contractor Information Meeting. Technical Reports from the subcontractors, as well as Pacific Northwest Laboratory (PNL), are provided along with transcripts of the question-and-answer sessions. The agenda and abstracts of the presentations are also included. Appendix A is a list of the participants. Appendix B gives an overview of the WRIT program and details the WRIT work breakdown structure for 1980.« less

  14. Radioactive waste isolation in salt: special advisory report on the status of the Office of Nuclear Waste Isolation's plans for repository performance assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ditmars, J.D.; Walbridge, E.W.; Rote, D.M.

    1983-10-01

    Repository performance assessment is analysis that identifies events and processes that might affect a repository system for isolation of radioactive waste, examines their effects on barriers to waste migration, and estimates the probabilities of their occurrence and their consequences. In 1983 Battelle Memorial Institute's Office of Nuclear Waste Isolation (ONWI) prepared two plans - one for performance assessment for a waste repository in salt and one for verification and validation of performance assessment technology. At the request of the US Department of Energy's Salt Repository Project Office (SRPO), Argonne National Laboratory reviewed those plans and prepared this report to advisemore » SRPO of specific areas where ONWI's plans for performance assessment might be improved. This report presents a framework for repository performance assessment that clearly identifies the relationships among the disposal problems, the processes underlying the problems, the tools for assessment (computer codes), and the data. In particular, the relationships among important processes and 26 model codes available to ONWI are indicated. A common suggestion for computer code verification and validation is the need for specific and unambiguous documentation of the results of performance assessment activities. A major portion of this report consists of status summaries of 27 model codes indicated as potentially useful by ONWI. The code summaries focus on three main areas: (1) the code's purpose, capabilities, and limitations; (2) status of the elements of documentation and review essential for code verification and validation; and (3) proposed application of the code for performance assessment of salt repository systems. 15 references, 6 figures, 4 tables.« less

  15. Draft Genome Sequence of a Tetrabromobisphenol A–Degrading Strain, Ochrobactrum sp. T, Isolated from an Electronic Waste Recycling Site

    PubMed Central

    Liang, Zhishu; Li, Guiying; Zhang, Guoxia; Das, Ranjit

    2016-01-01

    Ochrobactrum sp. T was previously isolated from a sludge sample collected from an electronic waste recycling site and characterized as a unique tetrabromobisphenol A (TBBPA)–degrading bacterium. Here, the draft genome sequence (3.9 Mb) of Ochrobactrum sp. T is reported to provide insights into its diversity and its TBBPA biodegradation mechanism in polluted environments. PMID:27445374

  16. Recovery and characterization of proteins from pangas (Pangasius pangasius) processing waste obtained through pH shift processing.

    PubMed

    Surasani, Vijay Kumar Reddy; Kudre, Tanaji; Ballari, Rajashekhar V

    2018-04-01

    Study was conducted to recover proteins from pangas (Pangasius pangasius) processing waste (fillet frames) using pH shift method and to characterize the recovered isolates. pH 2.0 from acidic range and pH 13.0 from alkaline range were found to have maximum protein recovery (p < 0.05). During the recovery process, acidic pH (pH 2.0) was found to have minimal effect on proteins resulting in more stable isolates and strong protein gels. Alkaline pH (pH 13.0) caused protein denaturation resulting in less stable proteins and poor gel network. Both acidic and alkaline-aided processing caused significant (p < 0.05) reductions in total lipid, myoglobin, and pigment content thus by resulting in whiter protein isolates and gels. The content of total essential amino acids increased during pH shift processing, indicating the enrichment of essential amino acids. No microbial counts were detected in any of the isolates prepared using acid and alkaline extraction methods. pH shift processing was found to be promising in the utilization of fish processing waste for the recovery of functional proteins from pangas processing waste thus by reducing the supply demand gap as well pollution problems.

  17. Inter-disciplinary Interactions in Underground Laboratories

    NASA Astrophysics Data System (ADS)

    Wang, J. S.; Bettini, A.

    2010-12-01

    Many of underground facilities, ranging from simple cavities to fully equipped laboratories, have been established worldwide (1) to evaluate the impacts of emplacing nuclear wastes in underground research laboratories (URLs) and (2) to measure rare physics events in deep underground laboratories (DULs). In this presentation, we compare similarities and differences between URLs and DULs in focus of site characterization, in quantification of quietness, and in improvement of signal to noise ratios. The nuclear waste URLs are located primarily in geological medium with potentials for slow flow/transport and long isolation. The URL medium include plastic salt, hard rock, soft clay, volcanic tuff, basalt and shale, at over ~500 m where waste repositories are envisioned to be excavated. The majority of URLs are dedicated facilities excavated after extensive site characterization. The focuses are on fracture distributions, heterogeneity, scaling, coupled processes, and other fundamental issues of earth sciences. For the physics DULs, the depth/overburden thickness is the main parameter that determines the damping of cosmic rays, and that, consequently, should be larger than, typically, 800m. Radioactivity from rocks, neutron flux, and radon gas, depending on local rock and ventilation conditions (largely independent of depth), are also characterized at different sites to quantify the background level for physics experiments. DULs have been constructed by excavating dedicated experimental halls and service cavities near to a road tunnel (horizontal access) or in a mine (vertical access). Cavities at shallower depths are suitable for experiments on neutrinos from artificial source, power reactors or accelerators. Rocks stability (depth dependent), safe access, and utility supply are among factors of main concerns for DULs. While the focuses and missions of URLs and DULs are very different, common experience and lessons learned may be useful for ongoing development of new facilities needed for next generation of underground assessments and experiments. There are growing interests in developing multi-disciplinary programs in DULs and some URLs have rooms set aside for physics experiments. Examples of DULs and URLs with interactions between earth sciences and physics include Gran Sasso in Italy, Kaimioka in Japan, Canfranc in Spain, LSBB in France, WIPP in New Mexico, DUSEL in South Dakota, and Jing Ping deep tunnel underground laboratory proposal in China. Instruments of common interests include interferometers, laser strain meters, seismic networks, tiltmeters, gravimeters, magnetometers, and other sensors to detect signals over different frequencies and water chemical analyses, including radon concentrations. Radon emissions are of concern for physics experiments and are studied as possible precursors of earthquakes. Measuring geoneutrino flux and energy spectrum in different locations is of interests to both physics and earth sciences. The contributions of U and Th in the crust and the mantle to the energy production in the Earth can be studied. One final note is that our ongoing reviews are aimed to contribute to technological innovations anticipated through inter-disciplinary interactions.

  18. Method of separating bacteria from free living amoebae

    DOEpatents

    Tyndall, Richard L.

    1994-01-01

    New protozoan derived microbial consortia and method for their isolation are provided. Consortia and bacteria isolated therefrom are useful for treating wastes such as trichloroethylene and trinitrotoluene. Consortia, bacteria isolated therefrom, and dispersants isolated therefrom are useful for dispersing hydrocarbons such as oil, creosote, wax, and grease.

  19. Method of dispersing a hydrocarbon using bacteria

    DOEpatents

    Tyndall, Richard L.

    1996-01-01

    New protozoan derived microbial consortia and method for their isolation are provided. Consortia and bacteria isolated therefrom are useful for treating wastes such as trichloroethylene and trinitrotoluene. Consortia, bacteria isolated therefrom, and dispersants isolated therefrom are useful for dispersing hydrocarbons such as oil, creosote, wax, and grease.

  20. Project characteristics monitoring report: BWIP (Basalt Waste Isolation Program) repository project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friedli, E.A.; Herborn, D.I.; Taylor, C.D.

    1988-03-01

    This monitoring report has been prepared to show compliance with provisions of the Nuclear Waste Policy Act of 1982 (NWPA) and to provide local and state government agencies with information concerning the Basalt Waste Isolation Program (BWIP). This report contains data for the time period May 26, 1986 to February 1988. The data include employment figures, salaries, project purchases, taxes and fees paid, worker survey results, and project closedown personal interview summaries. This information has become particularly important since the decision in December 1987 to stop all BWIP activities except those for site reclamation. The Nuclear Waste Policy Amendments Actmore » of 1987 requires nonreclamation work at the Hanford Site to stop as of March 22, 1988. 7 refs., 6 figs., 28 tabs.« less

  1. In vitro functional properties of crude extracts and isolated compounds from banana pseudostem and rhizome.

    PubMed

    Kandasamy, Saravanan; Ramu, Sasikala; Aradhya, Somaradhya Mallikarjuna

    2016-03-15

    Pseudostem and rhizome are the significant bio-waste generated (43.48%) from the banana plant post fruit harvest, which are usually left in the plantation or incinerated and wasted. Amounts used in production for consumption are negligible. However, the material has an important part to play in indigenous systems of medicine. Based on the huge volume of bio-waste generated and its traditional medicinal use, it is worth exploiting it as a source of natural bioactive compounds. In the current study, sequential extracts from banana pseudostem (BPS) and rhizome (BR), and isolated compounds including chlorogenic acid, 4-epicyclomusalenone and cycloeucalenol acetate, were tested for their antimicrobial activity, antiplatelet aggregation and cytotoxicity. Isolated compounds and crude extracts exhibited strong antimicrobial activity against a wide range of bacterial and fungal strains, platelet aggregation induced by collagen and cytotoxicity towards human liver cancer (HepG2) cells. Banana plant bio-waste, pseudostem and rhizome may serve as a potential source of multifunctional bioactive compounds and functional ingredient in food and other allied industries. © 2015 Society of Chemical Industry.

  2. Environmental Sciences Division annual progress report for period ending September 30, 1981

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Auerbach, S.I.; Reichle, D.E.

    1982-04-01

    Research programs from the following sections and programs are summarized: aquatic ecology, environmental resources, earth sciences, terrestrial ecology, advanced fossil energy program, toxic substances program, environmental impacts program, biomass, low-level waste research and development program, US DOE low-level waste management program, and waste isolation program.

  3. Production and Optimization of Physicochemical Parameters of Cellulase Using Untreated Orange Waste by Newly Isolated Emericella variecolor NS3.

    PubMed

    Srivastava, Neha; Srivastava, Manish; Manikanta, Ambepu; Singh, Pardeep; Ramteke, P W; Mishra, P K; Malhotra, Bansi D

    2017-10-01

    Cellulase enzymes have versatile industrial applications. This study was directed towards the isolation, production, and characterization of cellulase enzyme system. Among the five isolated fungal cultures, Emericella variecolor NS3 showed maximum cellulase production using untreated orange peel waste as substrate using solid-state fermentation (SSF). Maximum enzyme production of 31 IU/gds (per gram of dry substrate) was noticed at 6.0 g concentration of orange peel. Further, 50 °C was recorded as the optimum temperature for cellulase activity and the thermal stability for 240 min was observed at this temperature. In addition, the crude enzyme was stable at pH 5.0 and held its complete relative activity in presence of Mn 2+ and Fe 3+ . This study explored the production of crude enzyme system using biological waste with future potential for research and industrial applications.

  4. Geologic isolation of nuclear waste at high latitudes: the role of ice sheets

    USGS Publications Warehouse

    Person, M.; McIntosh, J.; Iverson, N.; Neuzil, C.E.; Bense, V.

    2012-01-01

    Geologic isolation of high-level nuclear waste from the biosphere requires special consideration in countries at high latitudes (>40°N) owing to the possibility of future episodes of continental glaciation (Talbot 1999). It is now widely recognized that Pleistocene continental glaciations have had a profound effect on rates of sediment erosion (Cuffey & Paterson 2010) and deformation including tectonic thrusting (Pedersen 2005) as well as groundwater flow (Person et al. 2007; Lemieux et al. 2008a,b,c). In addition, glacial mechanical loads may have generated anomalous, or fossil, pore pressures within certain clay-rich confining units (e.g. Vinard et al. 2001). Because high-level nuclear wastes must be isolated from the biosphere as long as 1 million years (McMurry et al. 2003), the likelihood of one or more continental ice sheets overrunning high-latitude sites must be considered.

  5. Assessment study for multi-barrier system used in radioactive borate waste isolation based on Monte Carlo simulations.

    PubMed

    Bayoumi, T A; Reda, S M; Saleh, H M

    2012-01-01

    Radioactive waste generated from the nuclear applications should be properly isolated by a suitable containment system such as, multi-barrier container. The present study aims to evaluate the isolation capacity of a new multi-barrier container made from cement and clay and including borate waste materials. These wastes were spiked by (137)Cs and (60)Co radionuclides to simulate that waste generated from the primary cooling circuit of pressurized water reactors. Leaching of both radionuclides in ground water was followed and calculated during ten years. Monte Carlo (MCNP5) simulations computed the photon flux distribution of the multi-barrier container, including radioactive borate waste of specific activity 11.22KBq/g and 4.18KBq/g for (137)Cs and (60)Co, respectively, at different periods of 0, 15.1, 30.2 and 302 years. The average total flux for 100cm radius of spherical cell was 0.192photon/cm(2) at initial time and 2.73×10(-4)photon/cm(2) after 302 years. Maximum waste activity keeping the surface radiation dose within the permissible level was calculated and found to be 56KBq/g with attenuation factors of 0.73cm(-1) and 0.6cm(-1) for cement and clay, respectively. The average total flux was 1.37×10(-3)photon/cm(2) after 302 years. Monte Carlo simulations revealed that the proposed multi-barrier container is safe enough during transportation, evacuation or rearrangement in the disposal site for more than 300 years. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. 33 CFR 158.120 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., London, SE1 7SR, England. Medical waste means isolation wastes, infectious agents, human blood and blood... or facility which is a base of operations for ships serving the mineral and oil industry. Noxious...

  7. 33 CFR 158.120 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., London, SE1 7SR, England. Medical waste means isolation wastes, infectious agents, human blood and blood... or facility which is a base of operations for ships serving the mineral and oil industry. Noxious...

  8. Draft Genome Sequence of Bacillus sp. GZT, a 2,4,6-Tribromophenol-Degrading Strain Isolated from the River Sludge of an Electronic Waste-Dismantling Region

    PubMed Central

    Liang, Zhishu; Li, Guiying; Das, Ranjit

    2016-01-01

    Here, we report the draft genome sequence of Bacillus sp. strain GZT, a 2,4,6-tribromophenol (TBP)-degrading bacterium previously isolated from an electronic waste-dismantling region. The draft genome sequence is 5.18 Mb and has a G+C content of 35.1%. This is the first genome report of a brominated flame retardant-degrading strain. PMID:27257197

  9. A process for complete biodegradation of shrimp waste by a novel marine isolate Paenibacillus sp. AD with simultaneous production of chitinase and chitin oligosaccharides.

    PubMed

    Kumar, Aditya; Kumar, Deepak; George, Nancy; Sharma, Prince; Gupta, Naveen

    2018-04-01

    Disposal of chitinaceous waste is a major problem of seafood industry. Most of the known chitinolytic organisms have been studied with respect to pure chitin as substrate. Use of these organisms for degradation of seafood waste has not been explored much. In present study a marine bacterium capable of proficiently degrading shrimp waste with co-production of value added products like chitinase and chitin oligosaccharides was isolated from seafood waste dumping sites. On 16s rRNA and biochemical analysis bacterium was found to be a novel species of genus Paenibacillus.Under optimized condition complete shrimp waste degradation (99%) was achieved along with chitinase yield of 20.01 IUml -1 . SEM and FTIR showed the structural changes and breakage of bonds typical to that of chitin, which indicated that this process can be used for the degradation of other chitinaceous material also. Thin layer chromatography revealed the presence of chitin oligosaccharides of various degree of polymerization in the hydrolysate. Complete degradation of shrimp waste by Paenibacillus sp. AD makes it a potential candidate for the bioremediation of seafood waste at large scale. Concomitant production of chitinase and chitin oligosaccharides further makes the process economical and commercially viable. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Characterization of Volume F Trash from the Three FY11 STS Missions: Trash Weights and Categorization and Microbial Characterization

    NASA Technical Reports Server (NTRS)

    Strayer, Richard F.; Hummerick, Mary E.; Richards, Jeffrey T.; McCoy, LaShelle E.; Roberts, Michael S.; Wheller, Raymond M.

    2011-01-01

    The project reported here provides microbial characterization support to the Waste Management Systems (WMS) element of NASA's Life Support and Habitation Systems (LSHS) program. Conventional microbiological methods were used to detect and enumerate microorganisms in STS Volume F Compartment trash for three shuttle missions: STS 133, 134, and 135. This trash was usually made available within 2 days of landing at KSC. The Volume F bag was weighed, opened and the contents were cataloged and placed into categories: personal hygiene items - inclUding EVA maximum absorbent garments (MAGs) and Elbow packs (daily toilet wipes, etc), drink containers, food waste (and containers), office waste (paper), and packaging materials - plastic film and duct tape. The average wet trash generation rate for the three STS missions was 0.362 % 0.157 kgwet crew 1 d-1 . This was considerably lower and more variable than the average rate for 4 STS missions reported for FY10. Trash subtotals by category: personal hygiene wastes, 56%; drink items, 11 %; food wastes, 18%; office waste, 3%; and plastic film, 12%. These wastes have an abundance of easily biodegraded compounds that can support the growth of microorganisms. Microbial characterization of trash showed that large numbers of bacteria and fungi have taken advantage of this readily available nutrient source to proliferate. Exterior and interior surfaces of plastic film bags containing trash were sampled and counts of cultivatable microbes were generally low and mostly occurred on trash bundles within the exterior trash bags. Personal hygiene wastes, drink containers, and food wastes and packaging all contained high levels of, mostly, aerobic heterotrophic bacteria and lower levels of yeasts and molds. Isolates from plate count media were obtained and identified .and were mostly aerobic heterotrophs with some facultative anaerobes. These are usually considered common environmental isolates on Earth. However, several pathogens were also isolated: Staphylococcus aureus and Escherichia coli.

  11. International Approaches for Nuclear Waste Disposal in Geological Formations: Report on Fifth Worldwide Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faybishenko, Boris; Birkholzer, Jens; Persoff, Peter

    2016-08-01

    An important issue for present and future generations is the final disposal of spent nuclear fuel. Over the past over forty years, the development of technologies to isolate both spent nuclear fuel (SNF) and other high-level nuclear waste (HLW) generated at nuclear power plants and from production of defense materials, and low- and intermediate-level nuclear waste (LILW) in underground rock and sediments has been found to be a challenging undertaking. Finding an appropriate solution for the disposal of nuclear waste is an important issue for protection of the environment and public health, and it is a prerequisite for the futuremore » of nuclear power. The purpose of a deep geological repository for nuclear waste is to provide to future generations, protection against any harmful release of radioactive material, even after the memory of the repository may have been lost, and regardless of the technical knowledge of future generations. The results of a wide variety of investigations on the development of technology for radioactive waste isolation from 19 countries were published in the First Worldwide Review in 1991 (Witherspoon, 1991). The results of investigations from 26 countries were published in the Second Worldwide Review in 1996 (Witherspoon, 1996). The results from 32 countries were summarized in the Third Worldwide Review in 2001 (Witherspoon and Bodvarsson, 2001). The last compilation had results from 24 countries assembled in the Fourth Worldwide Review (WWR) on radioactive waste isolation (Witherspoon and Bodvarsson, 2006). Since publication of the last report in 2006, radioactive waste disposal approaches have continued to evolve, and there have been major developments in a number of national geological disposal programs. Significant experience has been obtained both in preparing and reviewing cases for the operational and long-term safety of proposed and operating repositories. Disposal of radioactive waste is a complex issue, not only because of the nature of the waste, but also because of the detailed regulatory structure for dealing with radioactive waste, the variety of stakeholders involved, and (in some cases) the number of regulatory entities involved.« less

  12. Water-level data from wells in the vicinity of the Waste Isolation Pilot Plant, southeastern New Mexico

    USGS Publications Warehouse

    Richey, S.F.

    1987-01-01

    The U.S. Geological Survey monitored water levels in wells in the vicinity of the Waste Isolation Pilot Plant, a storage facility constructed in bedded salts in which defense-associated transuranic wastes will be deposited, in southeastern New Mexico during 1977 to 1985. A variety of methods was used to measure water levels. The particular method utilized at a given time depended on several factors, including the amount of condensation in the well, well-head configuration, depth to water, rate of water level change, and availability of equipment. The five methods utilized were: air line, Lynes pressure sentry system, M-scope, steel tape, and winch. (Lantz-PTT)

  13. 40 CFR 194.2 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... pursuant to section 213 of the Department of Energy National Security and Military Applications of Nuclear.... Department means the United States Department of Energy. Disposal regulations means part 191, subparts B and... section 8(d)(1) of the WIPP LWA. Secretary means the Secretary of Energy. Shallow drilling means those...

  14. 40 CFR 194.2 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... pursuant to section 213 of the Department of Energy National Security and Military Applications of Nuclear.... Department means the United States Department of Energy. Disposal regulations means part 191, subparts B and... section 8(d)(1) of the WIPP LWA. Secretary means the Secretary of Energy. Shallow drilling means those...

  15. 40 CFR 194.2 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... pursuant to section 213 of the Department of Energy National Security and Military Applications of Nuclear.... Department means the United States Department of Energy. Disposal regulations means part 191, subparts B and... section 8(d)(1) of the WIPP LWA. Secretary means the Secretary of Energy. Shallow drilling means those...

  16. 40 CFR 194.2 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... pursuant to section 213 of the Department of Energy National Security and Military Applications of Nuclear.... Department means the United States Department of Energy. Disposal regulations means part 191, subparts B and... section 8(d)(1) of the WIPP LWA. Secretary means the Secretary of Energy. Shallow drilling means those...

  17. 40 CFR 194.2 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... pursuant to section 213 of the Department of Energy National Security and Military Applications of Nuclear.... Department means the United States Department of Energy. Disposal regulations means part 191, subparts B and... section 8(d)(1) of the WIPP LWA. Secretary means the Secretary of Energy. Shallow drilling means those...

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Hongwu; Guo, Xiaofeng; Bai, Jianming

    As an accessory mineral in marine evaporites, polyhalite, K 2MgCa 2(SO 4) 4·2H 2O, coexists with halite (NaCl) in salt formations, which have been considered as potential repositories for permanent storage of high-level nuclear wastes. However, because of the heat generated by radioactive decays in the wastes, polyhalite may dehydrate, and the released water will dissolve its neighboring salt, potentially affecting the repository integrity. Thus, studying the thermal behavior of polyhalite is important. In this paper, a polyhalite sample containing a small amount of halite was collected from the Salado formation at the WIPP site in Carlsbad, New Mexico. Tomore » determine its thermal behavior, in situ high-temperature synchrotron X-ray diffraction was conducted from room temperature to 1066 K with the sample powders sealed in a silica-glass capillary. At about 506 K, polyhalite started to decompose into water vapor, anhydrite (CaSO 4) and two langbeinite-type phases, K 2Ca x Mg 2-x (SO 4) 3, with different Ca/Mg ratios. XRD peaks of the minor halite disappeared, presumably due to its dissolution by water vapor. With further increasing temperature, the two langbeinite solid solution phases displayed complex variations in crystallinity, composition and their molar ratio and then were combined into the single-phase triple salt, K 2CaMg(SO 4) 3, at ~919 K. Rietveld analyses of the XRD data allowed determination of structural parameters of polyhalite and its decomposed anhydrite and langbeinite phases as a function of temperature. Finally, from the results, the thermal expansion coefficients of these phases have been derived, and the structural mechanisms of their thermal behavior been discussed.« less

  19. Thermal behavior of polyhalite: a high-temperature synchrotron XRD study

    DOE PAGES

    Xu, Hongwu; Guo, Xiaofeng; Bai, Jianming

    2016-09-17

    As an accessory mineral in marine evaporites, polyhalite, K 2MgCa 2(SO 4) 4·2H 2O, coexists with halite (NaCl) in salt formations, which have been considered as potential repositories for permanent storage of high-level nuclear wastes. However, because of the heat generated by radioactive decays in the wastes, polyhalite may dehydrate, and the released water will dissolve its neighboring salt, potentially affecting the repository integrity. Thus, studying the thermal behavior of polyhalite is important. In this paper, a polyhalite sample containing a small amount of halite was collected from the Salado formation at the WIPP site in Carlsbad, New Mexico. Tomore » determine its thermal behavior, in situ high-temperature synchrotron X-ray diffraction was conducted from room temperature to 1066 K with the sample powders sealed in a silica-glass capillary. At about 506 K, polyhalite started to decompose into water vapor, anhydrite (CaSO 4) and two langbeinite-type phases, K 2Ca x Mg 2-x (SO 4) 3, with different Ca/Mg ratios. XRD peaks of the minor halite disappeared, presumably due to its dissolution by water vapor. With further increasing temperature, the two langbeinite solid solution phases displayed complex variations in crystallinity, composition and their molar ratio and then were combined into the single-phase triple salt, K 2CaMg(SO 4) 3, at ~919 K. Rietveld analyses of the XRD data allowed determination of structural parameters of polyhalite and its decomposed anhydrite and langbeinite phases as a function of temperature. Finally, from the results, the thermal expansion coefficients of these phases have been derived, and the structural mechanisms of their thermal behavior been discussed.« less

  20. Method of dispersing a hydrocarbon using bacteria

    DOEpatents

    Tyndall, R.L.

    1996-09-24

    A new protozoan derived microbial consortia and method for their isolation are provided. The isolated consortia and bacteria are useful for treating wastes such as trichloroethylene and trinitrotoluene. The isolated consortia, bacteria, and dispersants are useful for dispersing hydrocarbons such as oil, creosote, wax, and grease.

  1. Alkaline bioleaching of municipal solid waste incineration fly ash by autochthonous extremophiles.

    PubMed

    Ramanathan, Thulasya; Ting, Yen-Peng

    2016-10-01

    The increasing demand for energy and the generation of solid waste have caused an alarming rise in fly ash production globally. Since heavy metals continue to be in demand for the production of materials, resource recovery from the recycling of these wastes has the potential to delay the depletion of natural ores. The use of microorganisms for the leaching of metals, in a process called bioleaching, is an eco-friendly and economical way to treat the metal-laden wastes. Bioleaching of fly ash is challenging due largely to the alkaline nature and toxic levels of heavy metals which are detrimental to microbial growth and bioleaching activity. The present work reports the isolation of indigenous bacteria from a local landfill site and their bioleaching performance [corrected]. 38 autochthonous strains of bacteria were isolated from eight samples collected and plated on five different media. 18 of the isolates showed bioleaching potential, with significant alkaline pH or fly ash tolerance. Genetic characterization of the strains revealed a dominance of Firmicutes, with Alkalibacterium sp. TRTYP6 showing highest fly ash tolerance of up to 20% w/v fly ash, and growth over a pH range 8-12.5. The organism selectively recovered about 52% Cu from the waste. To the best of our knowledge, this is the first time a study on bioleaching with extreme alkaliphiles is reported. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Improving methane yield and quality via co-digestion of cow dung mixed with food waste.

    PubMed

    Awasthi, Sanjeev Kumar; Joshi, Rutu; Dhar, Hiya; Verma, Shivpal; Awasthi, Mukesh Kumar; Varjani, Sunita; Sarsaiya, Surendra; Zhang, Zengqiang; Kumar, Sunil

    2018-03-01

    Methane (CH 4 ) production and quality were enhanced by the co-digestion of cow dung and food waste (FW) mixed with organic fraction of municipal solid waste (OFMSW) under optimized conditions in bench and semi continuous-scale mode for a period of 30 days. A bacterium capable of high yield of CH 4 was enriched and isolated by employing activated sewage sludge as the inoculums. The thirteen bacterial isolates were identified through morphological and biochemical tests. Gas chromatography was used to analyze the chemical compositions of the generated biogas. CH 4 yields were significantly higher during co-digestion of Run II (7.59 L) than Run I (3.7 L). Therefore, the co-digestion of FW with OFMSW and Run II was observed to be a competent method for biogas conversion from organic waste resources. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Mapping isolated wetlands in a Karst landscape: GIS and remote sensing methods

    EPA Science Inventory

    Isolated wetlands occur in many areas of the United States, and although they are relatively common, they are a resource not yet thoroughly understood by the scientific community. Isolated wetlands have received increased attention recently, due to the 2001 Solid Waste Agency of ...

  4. Isolation and characterization of multiple drug resistance bacterial pathogens from waste water in hospital and non-hospital environments, Northwest Ethiopia

    PubMed Central

    2014-01-01

    Background The importance of bacterial isolates from waste water environment as a reservoir of antibiotic resistance and a potential source of novel resistance genes to clinical pathogens is underestimated. This study is aimed at to isolate and characterize public health important bacteria from waste water in hospital and non- hospital environments and evaluate the distribution of multiple drug resistance bacteria in the study area. Methods A cross-sectional study was conducted at Gondar from January-June 2012. The hospital waste water was taken from different sections of the Gondar University Teaching Hospital. Non- hospital environment samples were taken at different sites of the university campuses, Gondar College of Teachers education, and soft drink factory in Gondar. Samples were aseptically collected, transported and processed with in two hours following standard procedure. Identified organisms were assessed for different antibiotics following Kirby-Bauer disk diffusion method. All data was registered and entered in to SPSS version 16 computer program. P-values less than 0.05 were taken as statistically significant. Result A total of 60 waste water samples were processed for the presence of drug resistance pathogens. Among the total samples 113 bacterial isolates were recovered and of these 65 (57.5%) were from hospital environment and 48 (42.5%) were from non-hospital environment. The most frequently identified bacterium was Klebsiella spp. 30 (26.6%) followed by Pseudomonas spp. 19(16.8%), E. coli (11.5%) and Citrobacter spp (11.5%), and Staphylococcus aureus (8.2%). The over all prevalence of multiple drug resistance (MDR) in this study was 79/113 (69.9%). MDR in hospital environment was found to be 53/68 (81.5%) while in non hospital environment was found to be 26/48 (54.2%). Conclusions Multiple drug resistance to the commonly used antibiotics is high in the study area. The contamination of waste water by antibiotics or other pollutants lead to the rise of resistance due to selection pressure. The presence of antibiotic resistance organisms in this waste water should not be overlooked. Since this organisms may be vital to the safety and well-being of patients who are hospitalized and individual susceptible to infection. Therefore, proper waste water treatment plant should be established and improved sanitary measure should be practice. PMID:24708553

  5. Isolation and characterization of multiple drug resistance bacterial pathogens from waste water in hospital and non-hospital environments, Northwest Ethiopia.

    PubMed

    Moges, Feleke; Endris, Mengistu; Belyhun, Yeshambel; Worku, Walelegn

    2014-04-05

    The importance of bacterial isolates from waste water environment as a reservoir of antibiotic resistance and a potential source of novel resistance genes to clinical pathogens is underestimated. This study is aimed at to isolate and characterize public health important bacteria from waste water in hospital and non- hospital environments and evaluate the distribution of multiple drug resistance bacteria in the study area. A cross-sectional study was conducted at Gondar from January-June 2012. The hospital waste water was taken from different sections of the Gondar University Teaching Hospital. Non- hospital environment samples were taken at different sites of the university campuses, Gondar College of Teachers education, and soft drink factory in Gondar. Samples were aseptically collected, transported and processed with in two hours following standard procedure. Identified organisms were assessed for different antibiotics following Kirby-Bauer disk diffusion method. All data was registered and entered in to SPSS version 16 computer program. P-values less than 0.05 were taken as statistically significant. A total of 60 waste water samples were processed for the presence of drug resistance pathogens. Among the total samples 113 bacterial isolates were recovered and of these 65 (57.5%) were from hospital environment and 48 (42.5%) were from non-hospital environment. The most frequently identified bacterium was Klebsiella spp. 30 (26.6%) followed by Pseudomonas spp. 19(16.8%), E. coli (11.5%) and Citrobacter spp (11.5%), and Staphylococcus aureus (8.2%). The over all prevalence of multiple drug resistance (MDR) in this study was 79/113 (69.9%). MDR in hospital environment was found to be 53/68 (81.5%) while in non hospital environment was found to be 26/48 (54.2%). Multiple drug resistance to the commonly used antibiotics is high in the study area. The contamination of waste water by antibiotics or other pollutants lead to the rise of resistance due to selection pressure. The presence of antibiotic resistance organisms in this waste water should not be overlooked. Since this organisms may be vital to the safety and well-being of patients who are hospitalized and individual susceptible to infection. Therefore, proper waste water treatment plant should be established and improved sanitary measure should be practice.

  6. Microbial desalination cell for enhanced biodegradation of waste engine oil using a novel bacterial strain Bacillus subtilis moh3.

    PubMed

    Sabina, K; Fayidh, Mohammed A; Archana, G; Sivarajan, M; Babuskin, S; Babu, P Azhagu Saravana; Radha, K Krishnan; Sukumar, M

    2014-01-01

    Microbial desalination cell (MDC) is a bioelectrochemical system developed recently from microbial fuel cells (MFCs), for producing green energy from organic wastes along with desalination of saltwater. MDC is proved to be a better performer than MFC in terms of power output and chemical oxygen demand removal, with desalination as an additional feature. This study investigates the application potential of MDC for integrated biodegradation of waste engine oil. This study showed, for the first time, that waste engine oil could be used as an organic substrate in MDC, achieving biodegradation of engine oil along with considerable desalination and power production. Utilization of these wastes in MDC can protect the environment from waste engine oil contamination. Indigenous oil-degrading bacteria were isolated and identified from engine oil contaminated sludge. Degradation of waste engine oil by these novel isolates was studied in batch cultures and optimized the growth conditions. The same cultures when used in MDC, gave enhanced biodegradation (70.1 +/- 0.5%) along with desalination (68.3 +/- 0.6%) and power production (3.1 +/- 0.3 mW/m2). Fourier transform-infrared spectroscopy and gas chromatography-mass spectrometry analyses were performed to characterize the degradation metabolites in the anolyte of MDC which clearly indicated the biodegradation of long chain, branched and cyclic hydrocarbons present in waste engine oil.

  7. Growth dynamics of Salmonella enterica strains on alfalfa sprouts and in waste seed irrigation water.

    PubMed

    Howard, Michael B; Hutcheson, Steven W

    2003-01-01

    Alfalfa sprouts and other seed sprouts have been implicated in numerous outbreaks of salmonellosis. The source of these epidemics appears to have been low-level contamination of seeds by Salmonella bacteria that developed into clinically significant populations during the seed germination process. To test the possibility that Salmonella enterica strains carry host range determinants that allow them to grow on alfalfa, strains isolated from alfalfa or other sources were surveyed for their ability to grow on germinating alfalfa seeds. An S. enterica serovar Cubana strain originally isolated from contaminated alfalfa sprouts multiplied most rapidly during the initial 24 h of the seed germination process. Germinating alfalfa seeds supported the multiplication of S. enterica cells prior to the emergence of the root radicle at 72 h. Thereafter, much lower rates of multiplication were apparent. The ability of S. enterica to grow on germinating alfalfa seeds was independent of the serovar, isolation source, or virulence of the strain. Isolates obtained from alfalfa attained population levels similar to those observed for strains isolated from contaminated meat products or stools. Each of the strains could be detected in the waste irrigation water, with populations being strongly correlated with those detected on the germinating alfalfa seeds. The S. enterica strains were capable of utilizing the waste irrigation water as a sole carbon and nitrogen source. S. enterica strains thus appear to grow saprophytically on soluble organics released from seeds during early phases of germination. The ability to detect S. enterica in the waste irrigation water early in the germination process indicates that this method may be used as a simple way to monitor the contamination of sprouts during commercial operations.

  8. Evaluation of copper resistant bacteria from vineyard soils and mining waste for copper biosorption

    PubMed Central

    Andreazza, R.; Pieniz, S.; Okeke, B.C.; Camargo, F.A.O

    2011-01-01

    Vineyard soils are frequently polluted with high concentrations of copper due application of copper sulfate in order to control fungal diseases. Bioremediation is an efficient process for the treatment of contaminated sites. Efficient copper sorption bacteria can be used for bioremoval of copper from contaminated sites. In this study, a total of 106 copper resistant bacteria were examined for resistance to copper toxicity and biosorption of copper. Eighty isolates (45 from vineyard Mollisol, 35 from Inceptisol) were obtained from EMBRAPA (Empresa Brasileira de Pesquisa Agropecuária) experimental station, Bento Gonçalves, RS, Brazil (29°09′53.92″S and 51°31′39.40″W) and 26 were obtained from copper mining waste from Caçapava do Sul, RS, Brazil (30°29′43.48″S and 53′32′37.87W). Based on resistance to copper toxicity and biosorption, 15 isolates were identified by 16S rRNA gene sequencing. Maximal copper resistance and biosorption at high copper concentration were observed with isolate N2 which removed 80 mg L−1 in 24 h. Contrarily isolate N11 (Bacillus pumilus) displayed the highest specific copper biosorption (121.82 mg/L/OD unit in 24 h). GenBank MEGABLAST analysis revealed that isolate N2 is 99% similar to Staphylococcus pasteuri. Results indicate that several of our isolates have potential use for bioremediation treatment of vineyards soils and mining waste contaminated with high copper concentration. PMID:24031606

  9. Tracking pathogen transmission at the human-wildlife interface: banded mongoose and Escherichia coli.

    PubMed

    Pesapane, R; Ponder, M; Alexander, K A

    2013-06-01

    A primary challenge to managing emerging infectious disease is identifying pathways that allow pathogen transmission at the human-wildlife interface. Using Escherichia coli as a model organism, we evaluated fecal bacterial transmission between banded mongoose (Mungos mungo) and humans in northern Botswana. Fecal samples were collected from banded mongoose living in protected areas (n = 87, 3 troops) and surrounding villages (n = 92, 3 troops). Human fecal waste was collected from the same environment (n = 46). Isolates were evaluated for susceptibility to 10 antibiotics. Resistant E. coli isolates from mongoose were compared to human isolates using rep-PCR fingerprinting and MLST-PCR. Antimicrobial resistant isolates were identified in 57 % of the mongoose fecal samples tested (range 31-78% among troops). At least one individual mongoose fecal sample demonstrated resistance to each tested antibiotic, and multidrug resistance was highest in the protected areas (40.9%). E. coli isolated from mongoose and human sources in this study demonstrated an extremely high degree of genetic similarity on rep-PCR (AMOVA, F ST = 0.0027, p = 0.18) with a similar pattern identified on MLST-PCR. Human waste may be an important source of microbial exposure to wildlife. Evidence of high levels of antimicrobial resistance even within protected areas identifies an emerging health threat and highlights the need for improved waste management in these systems.

  10. Hospital waste management in Brazil: a case study.

    PubMed

    Mattoso, V D; Schalch, V

    2001-12-01

    The evaluation of the current definition, classification and quantification of hospital waste being carried out by hospitals in different countries is extremely important to avoid improper waste management practices. In this work, the waste management from a 400-bed Brazilian hospital which generates about 386 kg per day of hospital waste was studied. The generation rate of just over one kg per bed per day was considered small, although more than 50% of the waste from non-isolation wards consisted of food waste. It was also interesting to note that the highest generation rate per patient per day was found in private rooms and the lowest rate in the public ones. The waste practices used in this hospital are discussed in terms of current Brazilian legislation.

  11. Statement by Dr. Raul A. Deju to the Subcommittee on Radioactive Waste, Energy and Utilities Committee, Washington State Senate, Richland, Washington, October 21, 1982

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deju, R.A.

    1982-10-01

    The Basalt Waste Isolation Project's mission is to assess whether or not a nuclear waste repository can be sited in the basalts beneath the Hanford Site. Dr. Deju summarizes the results of the siting studies, the activities connected with waste package development, and ongoing engineering studies. In addition, he gives a glimpse of past technical reviews of the project and comments on major technical activities planned in the near future.

  12. Archaeological Investigations of Three Sites within the Wipp Core Area, Eddy County, New Mexico.

    DTIC Science & Technology

    1985-06-01

    soils occasionally contain small playas, which hold water, generally quite saline , for short periods of time. Soils of this association are used for...be substituted for rhubarb (Castetter 1935:50). Portulacaceae Po 1*Maca. gZr Small purslane .E. Le Retose purslane Portulaca is a very important

  13. Analysis of rockbolt performance at the Waste Isolation Pilot Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terrill, L.J.; Francke, C.T.; Saeb, S.

    Rockbolt failures at the Waste Isolation Pilot Plant have been recorded since 1990 and are categorized in terms of mode of failure. The failures are evaluated in terms of physical location of installation within the mine, local excavation geometry and stratigraphy, proximity to other excavations or shafts, and excavation age. The database of failures has revealed discrete ares of the mine containing relatively large numbers of failures. The results of metallurgical analyses and standard rockbolt load testing have generally been in agreement with the in situ evaluations.

  14. Impact of Corrections to the Spallings Volume Calculation on Waste Isolation Pilot Plant Performance Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kicker, Dwayne Curtis; Herrick, Courtney G; Zeitler, Todd

    2015-11-01

    The numerical code DRSPALL (from direct release spallings) is written to calculate the volume of Waste Isolation Pilot Plant solid waste subject to material failure and transport to the surface (i.e., spallings) as a result of a hypothetical future inadvertent drilling intrusion into the repository. An error in the implementation of the DRSPALL finite difference equations was discovered and documented in a software problem report in accordance with the quality assurance procedure for software requirements. This paper describes the corrections to DRSPALL and documents the impact of the new spallings data from the modified DRSPALL on previous performance assessment calculations.more » Updated performance assessments result in more simulations with spallings, which generally translates to an increase in spallings releases to the accessible environment. Total normalized radionuclide releases using the modified DRSPALL data were determined by forming the summation of releases across each potential release pathway, namely borehole cuttings and cavings releases, spallings releases, direct brine releases, and transport releases. Because spallings releases are not a major contributor to the total releases, the updated performance assessment calculations of overall mean complementary cumulative distribution functions for total releases are virtually unchanged. Therefore, the corrections to the spallings volume calculation did not impact Waste Isolation Pilot Plant performance assessment calculation results.« less

  15. Genetic heterogeneity in familial renal magnesium wasting.

    PubMed

    Kantorovich, Vitaly; Adams, John S; Gaines, Jade E; Guo, Xiuqing; Pandian, Murugan R; Cohn, Daniel H; Rude, Robert K

    2002-02-01

    Isolated hereditary renal magnesium (Mg) wasting may result from mutations in the renal tubular epithelial cell tight junction protein paracellin-1 gene or the tubular Na(+),K(+)-ATPase gamma-subunit gene FXYD2. The FXYD2 gene mutation was discovered in two Dutch families as an autosomal dominant disorder. It is characterized by isolated renal Mg wasting with resultant symptomatic hypomagnesemia. The defective FXYD2 gene in these families mapped to chromosome 11q23. Here, we describe an American family with a similar phenotype but without linkage to the 11q23 locus; in testing 22 individuals in the pedigree multipoint LOD scores for five different loci from the 11q23 region were equal to -2.97. Compared with unaffected family members and normal controls, affected family members harbored significant reductions in the serum and lymphocyte Mg concentrations and in the serum immunoreactive PTH level with a 4-fold increase in the mean fractional urinary Mg excretion rate during a normomagnesemic clamp. Bone mineral density at the lumbar spine and proximal femur was significantly reduced in affected family members. In conclusion, our data demonstrate locus heterogeneity for the phenotype of isolated renal Mg wasting with hypomagnesemia and suggest that hypomagnesemia, at least in this pedigree, may be associated with low bone mass.

  16. Biodegradation of waste lubricants by a newly isolated Ochrobactrum sp. C1.

    PubMed

    Bhattacharya, Munna; Biswas, Dipa; Sana, Santanu; Datta, Sriparna

    2015-10-01

    A potential degrader of paraffinic and aromatic hydrocarbons was isolated from oil-contaminated soil from steel plant effluent area in Burnpur, India. The strain was investigated for degradation of waste lubricants (waste engine oil and waste transformer oil) that often contain EPA (Environmental Protection Agency, USA) classified priority pollutants and was identified as Ochrobactrum sp. C1 by 16S rRNA gene sequencing. The strain C1 was found to tolerate unusually high waste lubricant concentration along with emulsification capability of the culture broth, and its degradation efficiency was 48.5 ± 0.5 % for waste engine oil and 30.47 ± 0.25 % for waste transformer oil during 7 days incubation period. In order to get optimal degradation efficiency, a three level Box-Behnken design was employed to optimize the physical parameters namely pH, temperature and waste oil concentration. The results indicate that at temperature 36.4 °C, pH 7.3 and with 4.6 % (v/v) oil concentration, the percentage degradation of waste engine oil will be 57 % within 7 days. At this optimized condition, the experimental values (56.7 ± 0.25 %) are in a good agreement with the predicted values with a calculated R 2 to be 0.998 and significant correlation between biodegradation and emulsification activity (E 24  = 69.42 ± 0.32 %) of the culture broth toward engine oil was found with a correlation coefficient of 0.972. This is the first study showing that an Ochrobactrum sp. strain is capable of degrading waste lubricants, which might contribute to the bioremediation of waste lubricating oil-contaminated soil.

  17. Constraint-Based Routing Models for the Transport of Radioactive Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, Steven K

    2015-01-01

    The Department of Energy (DOE) has a historic programmatic interest in the safe and secure routing, tracking, and transportation risk analysis of radiological materials in the United States. In order to address these program goals, DOE has funded the development of several tools and related systems designed to provide insight to planners and other professionals handling radioactive materials shipments. These systems include the WebTRAGIS (Transportation Routing Analysis Geographic Information System) platform. WebTRAGIS is a browser-based routing application developed at Oak Ridge National Laboratory (ORNL) focused primarily on the safe transport of spent nuclear fuel from US nuclear reactors via railway,more » highway, or waterway. It is also used for the transport planning of low-level radiological waste to depositories such as the Waste Isolation Pilot Plant (WIPP) facility. One particular feature of WebTRAGIS is its coupling with high-resolution population data from ORNL s LandScan project. This allows users to obtain highly accurate population count and density information for use in route planning and risk analysis. To perform the routing and risk analysis WebTRAGIS incorporates a basic routing model methodology, with the additional application of various constraints designed to mimic US Department of Transportation (DOT), DOE, and Nuclear Regulatory Commission (NRC) regulations. Aside from the routing models available in WebTRAGIS, the system relies on detailed or specialized modal networks for the route solutions. These include a highly detailed network model of the US railroad system, the inland and coastal waterways, and a specialized highway network that focuses on the US interstate system and the designated hazardous materials and Highway Route Controlled Quantity (HRCQ) -designated roadways. The route constraints in WebTRAGIS rely upon a series of attributes assigned to the various components of the different modal networks. Routes are determined via a constrained shortest-path Dijkstra algorithm that has an assigned impedance factor. The route constraints modify the various impedance weights to bias or prefer particular network characteristics as desired by the user. Both the basic route model and the constrained impedance function calculations are determined by a series of network characteristics and shipment types. The study examines solutions under various constraints modeled by WebTRAGIS including possible routes from select shut-down reactor sites in the US to specific locations in the US. For purposes of illustration, the designated destinations are Oak Ridge National Laboratory in Tennessee and the Savannah River Site in South Carolina. To the degree that routes express sameness or variety under constraints serves to illustrate either a) the determinism of particular transport modes by either configuration or regulatory compliance, and/or b) the variety of constrained routes that are regulation compliant but may not be operationally feasible.« less

  18. Reconsolidation of Crushed Salt to 250°C Under Hydrostatic and Shear Stress Conditions Scott Broome, Frank Hansen, and SJ Bauer Sandia National Laboratories, Geomechanics Department

    NASA Astrophysics Data System (ADS)

    Broome, S. T.

    2012-12-01

    Design, analysis and performance assessment of potential salt repositories for heat-generating nuclear waste require knowledge of thermal, mechanical, and fluid transport properties of reconsolidating granular salt. Mechanical properties, Bulk (K) and Elastic (E) Moduli and Poisson's ratio (ν) are functions of porosity which decreases as the surrounding salt creeps inward and compresses granular salt within the rooms, drifts or shafts. To inform salt repository evaluations, we have undertaken an experimental program to determine K, E, and ν of reconsolidated granular salt as a function of porosity and temperature and to establish the deformational processes by which the salt reconsolidates. The experiments will be used to populate the database used in the reconsolidation model developed by Callahan (1999) which accounts for the effects of moisture through pressure solution and dislocation creep, with both terms dependent on effective stress to account for the effects of porosity. Mine-run salt from the Waste Isolation Pilot Program (WIPP) was first dried at 105 °C for a few days. Undeformed right-circular cylindrical sample assemblies of unconsolidated granular salt with an initial porosity of ~ 40%, nominally 10 cm in diameter and 17.5 cm in length, are jacketed in lead. Samples are placed in a pressure vessel and kept at test temperatures of 100, 175 or 250 °C; samples are vented to the atmosphere during the entire test procedure. At these test conditions the consolidating salt is always creeping, the creep rate increases with increasing temperature and stress and decreases as porosity decreases. In hydrostatic tests, confining pressure is increased to 20 MPa with periodic unload/reload loops to determine K. Volume strain increases with increasing temperature. In shear tests at 2.5 and 5 MPa confining pressure, after confining pressure is applied, the crushed salt is subjected to a differential stress, with periodic unload/reload loops to determine E and ν. At predetermined differential stress levels the stress is held constant and the salt consolidates. Displacement gages mounted on the samples show little lateral deformation until the samples reach a porosity of ~10%. Interestingly, vapor is vented in tests at 250°C and condenses at the vent port. Release of water is not observed in the lower two test temperatures. It is hypothesized that the water originates from fluid inclusions, which were made accessible by intragranular deformational processes including decrepitation. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  19. APPLICATION OF A GEOGRAPHIC INFORMATION SYSTEM FOR A CONTAINMENT SYSTEM LEAK DETECTION

    EPA Science Inventory

    The use of physical and hydraulic containment systems for the isolation of contaminated ground water associated with hazardous waste sites has increased during the last decade. Existing methodologies for monitoring and evaluating leakage from hazardous waste containment systems ...

  20. Autecological Study of the Chemoautotroph Nitrobacter by Immunofluorescence

    PubMed Central

    Fliermans, C. B.; Bohlool, B. B.; Schmidt, E. L.

    1974-01-01

    Fluorescent antibodies (FA) prepared for Nitrobacter agilis and N. winogradskyi were highly reactive in homologous staining. Low-level cross-reactions between the two species were removed by adsorption. All 15 pure-culture isolates of Nitrobacter tested reacted strongly with either N. agilis FA or N. winogradskyi FA. All pure-culture isolates from soils were determined to be N. winogradskyi; those from Mammoth Cave sediments and a cattle waste oxidation ditch were N. agilis. No cross-reaction was found in extensive tests that included five isolates of Nitrosomonas europaea and 668 heterotrophic aerobic and anaerobic bacteria isolated from soil, sewage, and cave sites. The FA preparations were used to detect Nitrobacter species in Mammoth Cave sediments, in a cattle waste oxidation ditch, and in surface waters and sediments of a river and to observe that N. winogradskyi can outgrow N. agilis in enrichment culture. Images PMID:4589121

  1. Metabolic and Genetic Properties of Petriella setifera Precultured on Waste

    PubMed Central

    Oszust, Karolina; Panek, Jacek; Pertile, Giorgia; Siczek, Anna; Oleszek, Marta; Frąc, Magdalena

    2018-01-01

    Although fungi that belong to Petriella genus are considered to be favorable agents in the process of microbial decomposition or as plant endophytes, they may simultaneously become plant pests. Hence, nutrition factors are supposed to play an important role. Therefore, it was hypothesized that Petriella setifera compost isolates, precultured on three different waste-based media containing oak sawdust, beet pulp (BP) and wheat bran (WB) will subsequently reveal different metabolic properties and shifts in genetic fingerprinting. In fact, the aim was to measure the influence of selected waste on the properties of P. setifera. The metabolic potential was evaluated by the ability of five P. setifera strains to decompose oak sawdust, BP and WB following the MT2 plate® method and the catabolic abilities of the fungus to utilize the carbon compounds located on filamentous fungi (FF) plates®. Genetic diversity was evaluated using Amplified Fragment Length Polymorphism analysis performed both on DNA sequences and on transcript-derived fragments. P. setifera isolates were found to be more suitable for decomposing waste materials rich in protein, N, P, K and easily accessible sugars (as found in WB and BP), than those rich in lignocellulose (oak sawdust). Surprisingly, among the different waste media, lignocellulose-rich sawdust-based culture chiefly triggered changes in the metabolic and genetic features of P. setifera. Most particularly, it contributed to improvements in the ability of the fungus to utilize waste-substrates in MT2 plate® and two times increase the ability to catabolize carbon compounds located in FF plates®. Expressive metabolic properties resulting from being grown in sawdust-based substrate were in accordance with differing genotype profiles but not transcriptome. Intraspecific differences among P. setifera isolates are described. PMID:29472904

  2. EVALUATION OF MUNICIPAL SOLID WASTE LANDFILL COVER DESIGNS

    EPA Science Inventory

    The HELP (Hydrologic Evaluation of Landfill Performance) Model was used to evaluate the hydrologic behavior of a series of one-, two-, and three-layer cover designs for municipal solid waste landfill cover designs were chosen to isolate the effects of features such as surface veg...

  3. PRELIMINARY ASSESSMENT OF LIFE-CYCLE COSTS OF PROTECTIVE CLOTHING

    EPA Science Inventory

    Many different types of chemical protective clothing (CPC) are used to isolate workers at hazardous waste sites from contact with the potential hazards posed by chemical wastes. he goal in selecting the appropriate clothing for a particular occupational situation is to optimize w...

  4. Autosomal recessive hyponatremia due to isolated salt wasting in sweat associated with a mutation in the active site of Carbonic Anhydrase 12.

    PubMed

    Muhammad, Emad; Leventhal, Neta; Parvari, Galit; Hanukoglu, Aaron; Hanukoglu, Israel; Chalifa-Caspi, Vered; Feinstein, Yael; Weinbrand, Jenny; Jacoby, Harel; Manor, Esther; Nagar, Tal; Beck, John C; Sheffield, Val C; Hershkovitz, Eli; Parvari, Ruti

    2011-04-01

    Genetic disorders of excessive salt loss from sweat glands have been observed in pseudohypoaldosteronism type I (PHA) and cystic fibrosis that result from mutations in genes encoding epithelial Na+ channel (ENaC) subunits and the transmembrane conductance regulator (CFTR), respectively. We identified a novel autosomal recessive form of isolated salt wasting in sweat, which leads to severe infantile hyponatremic dehydration. Three affected individuals from a small Bedouin clan presented with failure to thrive, hyponatremic dehydration and hyperkalemia with isolated sweat salt wasting. Using positional cloning, we identified the association of a Glu143Lys mutation in carbonic anhydrase 12 (CA12) with the disease. Carbonic anhydrase is a zinc metalloenzyme that catalyzes the reversible hydration of carbon dioxide to form a bicarbonate anion and a proton. Glu143 in CA12 is essential for zinc coordination in this metalloenzyme and lowering of the protein-metal affinity reduces its catalytic activity. This is the first presentation of an isolated loss of salt from sweat gland mimicking PHA, associated with a mutation in the CA12 gene not previously implicated in human disorders. Our data demonstrate the importance of bicarbonate anion and proton production on salt concentration in sweat and its significance for sodium homeostasis.

  5. Characterizing the proposed geologic repository for high-level radioactive waste at Yucca Mountain, Nevada--hydrology and geochemistry

    USGS Publications Warehouse

    Stuckless, John S.; Levich, Robert A.

    2012-01-01

    This hydrology and geochemistry volume is a companion volume to the 2007 Geological Society of America Memoir 199, The Geology and Climatology of Yucca Mountain and Vicinity, Southern Nevada and California, edited by Stuckless and Levich. The work in both volumes was originally reported in the U.S. Department of Energy regulatory document Yucca Mountain Site Description, for the site characterization study of Yucca Mountain, Nevada, as the proposed U.S. geologic repository for high-level radioactive waste. The selection of Yucca Mountain resulted from a nationwide search and numerous committee studies during a period of more than 40 yr. The waste, largely from commercial nuclear power reactors and the government's nuclear weapons programs, is characterized by intense penetrating radiation and high heat production, and, therefore, it must be isolated from the biosphere for tens of thousands of years. The extensive, unique, and often innovative geoscience investigations conducted at Yucca Mountain for more than 20 yr make it one of the most thoroughly studied geologic features on Earth. The results of these investigations contribute extensive knowledge to the hydrologic and geochemical aspects of radioactive waste disposal in the unsaturated zone. The science, analyses, and interpretations are important not only to Yucca Mountain, but also to the assessment of other sites or alternative processes that may be considered for waste disposal in the future. Groundwater conditions, processes, and geochemistry, especially in combination with the heat from radionuclide decay, are integral to the ability of a repository to isolate waste. Hydrology and geochemistry are discussed here in chapters on unsaturated zone hydrology, saturated zone hydrology, paleohydrology, hydrochemistry, radionuclide transport, and thermally driven coupled processes affecting long-term waste isolation. This introductory chapter reviews some of the reasons for choosing to study Yucca Mountain as a repository site.

  6. Characterizing the proposed geologic repository for high-level radioactive waste at Yucca Mountain, Nevada: hydrology and geochemistry

    USGS Publications Warehouse

    Stuckless, John S.; Levich, Robert A.

    2012-01-01

    This hydrology and geochemistry volume is a companion volume to the 2007 Geological Society of America Memoir 199, The Geology and Climatology of Yucca Mountain and Vicinity, Southern Nevada and California, edited by Stuckless and Levich. The work in both volumes was originally reported in the U.S. Department of Energy regulatory document Yucca Mountain Site Description, for the site characterization study of Yucca Mountain, Nevada, as the proposed U.S. geologic repository for high-level radioactive waste. The selection of Yucca Mountain resulted from a nationwide search and numerous committee studies during a period of more than 40 yr. The waste, largely from commercial nuclear power reactors and the government's nuclear weapons programs, is characterized by intense penetrating radiation and high heat production, and, therefore, it must be isolated from the biosphere for tens of thousands of years. The extensive, unique, and often innovative geoscience investigations conducted at Yucca Mountain for more than 20 yr make it one of the most thoroughly studied geologic features on Earth. The results of these investigations contribute extensive knowledge to the hydrologic and geochemical aspects of radioactive waste disposal in the unsaturated zone. The science, analyses, and interpretations are important not only to Yucca Mountain, but also to the assessment of other sites or alternative processes that may be considered for waste disposal in the future. Groundwater conditions, processes, and geochemistry, especially in combination with the heat from radionuclide decay, are integral to the ability of a repository to isolate waste. Hydrology and geochemistry are discussed here in chapters on unsaturated zone hydrology, saturated zone hydrology, paleohydrology, hydrochemistry, radionuclide transport, and thermally driven coupled processes affecting long-term waste isolation. This introductory chapter reviews some of the reasons for choosing to study Yucca Mountain as a repository site.

  7. Effective remediation of fish processing waste using mixed culture biofilms capable of simultaneous nitrification and denitrification.

    PubMed

    Markande, Anoop R; Kapagunta, Chandrika; Patil, Pooja S; Nayak, Binaya B

    2016-09-01

    Fish processing waste water causes pollution and eutrophication of water bodies when released untreated. Use of bacteria capable of simultaneous nitrification and denitrification (SND) as biofilms on carriers in a moving bed bioreactor (MBBR) is a popular approach but seldom used for fish processing waste water remediation. Here, we studied the variations in biofilm formation and application activities by isolates Lysinibacillus sp. HT13, Alcaligenes sp. HT15 and Proteus sp. HT37 previously reported by us. While HT13 and HT15 formed significantly higher biofilms in polystyrene microtitre plates than on carriers, HT37 exhibited highest on carriers. A consortium of the three selected bacteria grown as biofilm on MBBR carriers exhibited better remediation of ammonia (200-600 ppm and 50 mM) than the individual isolates on carriers. The mixed biofilm set on the carriers was used for nitrogenous waste removal from fish processing waste water in 2 and 20 L setups. The total nitrogen estimated by elemental analysis showed complete remediation from 250 ppm in both 2 and 20 L waste water systems within 48 h. The usual toxic nitrogenous components-ammonia, nitrite and nitrate were also remediated efficiently. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Progress and challenges to the global waste management system.

    PubMed

    Singh, Jagdeep; Laurenti, Rafael; Sinha, Rajib; Frostell, Björn

    2014-09-01

    Rapid economic growth, urbanization and increasing population have caused (materially intensive) resource consumption to increase, and consequently the release of large amounts of waste to the environment. From a global perspective, current waste and resource management lacks a holistic approach covering the whole chain of product design, raw material extraction, production, consumption, recycling and waste management. In this article, progress and different sustainability challenges facing the global waste management system are presented and discussed. The study leads to the conclusion that the current, rather isolated efforts, in different systems for waste management, waste reduction and resource management are indeed not sufficient in a long term sustainability perspective. In the future, to manage resources and wastes sustainably, waste management requires a more systems-oriented approach that addresses the root causes for the problems. A specific issue to address is the development of improved feedback information (statistics) on how waste generation is linked to consumption. © The Author(s) 2014.

  9. Potential metal recovery from waste streams

    USGS Publications Warehouse

    Smith, Kathleen S.; Hageman, Philip L.; Plumlee, Geoffrey S.; Budahn, James R.; Bleiwas, Donald I.

    2015-01-01

    ‘Waste stream’ is a general term that describes the total flow of waste from homes, businesses, industrial facilities, and institutions that are recycled, burned or isolated from the environment in landfills or other types of storage, or dissipated into the environment. The recovery and reuse of chemical elements from waste streams have the potential to decrease U.S. reliance on primary resources and imports, and to lessen unwanted dispersion of some potentially harmful elements into the environment. Additional benefits might include reducing disposal or treatment costs and decreasing the risk of future environmental liabilities for waste generators. Elemental chemistry and mineralogical residences of the elements are poorly documented for many types of waste streams.

  10. Effect of waste milk pasteurization on fecal shedding of Salmonella in pre-weaned calves

    USDA-ARS?s Scientific Manuscript database

    To determine if pasteurization of non-saleable waste milk influences fecal Salmonella concentrations, prevalence, or antimicrobial susceptibility and serotype of cultured isolates, 211 Holstein dairy calves were housed on a single commercial dairy in the southwestern United States and randomly allot...

  11. 10 CFR 960.4-2-5 - Erosion.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY... exhumation would not be expected to occur during the first one million years after repository closure. (c... the ability of the geologic repository to isolate the waste. (d) Disqualifying condition. The site...

  12. Methods of degrading napalm B

    DOEpatents

    Tyndall, Richard L.; Vass, Arpad

    1995-01-01

    Methods of degrading napalm and/or trinitrotoluene involve contacting the waste with specific intra-amoebic isolates of ATCC 40908 and/or dispersants derived therefrom. Useful isolates include is deposited as ATCC 77529, NAP-1 deposited as ATCC 77526 and 13 deposited as ATCC 77527.

  13. Methods of degrading napalm B

    DOEpatents

    Tyndall, R.L.; Vass, A.

    1995-09-12

    Methods of degrading napalm and/or trinitrotoluene involve contacting the waste with specific intra-amoebic isolates of ATCC 40908 and/or dispersants derived therefrom. Useful isolates are deposited as ATCC 77529, NAP-1 deposited as ATCC 77526 and 13 deposited as ATCC 77527.

  14. Foaming and emulsifying properties of pectin isolated from different plant materials

    NASA Astrophysics Data System (ADS)

    Yancheva, Nikoleta; Markova, Daniela; Murdzheva, Dilyana; Vasileva, Ivelina; Slavov, Anton

    2016-03-01

    The foaming and emulsifying properties of pectins obtained from waste rose petals, citrus pressings, grapefruit peels and celery were studied. It was found that the highest foaming capacity showed pectin derived from celery. The effect of pectin concentration on the foaming capacity of pectin solutions was investigated. For all the investigated pectins increasing the concentration led to increase of the foaming capacity. Emulsifying activity and emulsion stability of model emulsion systems (50 % oil phase) with 0.6 % pectic solutions were determined. The highest emulsifying activity and stability showed pectin isolated by dilute acid extraction from waste rose petals.

  15. Isolation of Metals from Liquid Wastes: Reactive Scavenging in Turbulent Thermal Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jost O.L. Wendt; Alan R. Kerstein; Alexander Scheeline

    2003-08-06

    The Overall project demonstrated that toxic metals (cesium Cs and strontium Sr) in aqueous and organic wastes can be isolated from the environment through reaction with kaolinite based sorbent substrates in high temperature reactor environments. In addition, a state-of-the art laser diagnostic tool to measure droplet characteristic in practical 'dirty' laboratory environments was developed, and was featured on the cover of a recent edition of the scientific journal ''applied Spectroscopy''. Furthermore, great strides have been made in developing a theoretical model that has the potential to allow prediction of the position and life history of every particle of waste inmore » a high temperature, turbulent flow field, a very challenging problem involving as it does, the fundamentals of two phase turbulence and of particle drag physics.« less

  16. Acoustic Behavior of Hollow Blocks and Bricks Made of Concrete Doped with Waste-Tire Rubber.

    PubMed

    Fraile-Garcia, Esteban; Ferreiro-Cabello, Javier; Defez, Beatriz; Peris-Fajanes, Guillermo

    2016-11-26

    In this paper, we investigate the acoustic behaviour of building elements made of concrete doped with waste-tire rubber. Three different mixtures were created, with 0%, 10%, and 20% rubber in their composition. Bricks, lattice joists, and hollow blocks were manufactured with each mixture, and three different cells were built and tested against aerial and impact noise. The values of the global acoustic isolation and the reduction of the sound pressure level of impacts were measured. Results proved that highly doped elements are an excellent option to isolate low frequency sounds, whereas intermediate and standard elements constitute a most interesting option to block middle and high frequency sounds. In both cases, the considerable amount of waste-tire rubber recycled could justify the employment of the doped materials for the sake of the environment.

  17. Acoustic Behavior of Hollow Blocks and Bricks Made of Concrete Doped with Waste-Tire Rubber

    PubMed Central

    Fraile-Garcia, Esteban; Ferreiro-Cabello, Javier; Defez, Beatriz; Peris-Fajanes, Guillermo

    2016-01-01

    In this paper, we investigate the acoustic behaviour of building elements made of concrete doped with waste-tire rubber. Three different mixtures were created, with 0%, 10%, and 20% rubber in their composition. Bricks, lattice joists, and hollow blocks were manufactured with each mixture, and three different cells were built and tested against aerial and impact noise. The values of the global acoustic isolation and the reduction of the sound pressure level of impacts were measured. Results proved that highly doped elements are an excellent option to isolate low frequency sounds, whereas intermediate and standard elements constitute a most interesting option to block middle and high frequency sounds. In both cases, the considerable amount of waste-tire rubber recycled could justify the employment of the doped materials for the sake of the environment. PMID:28774084

  18. Fate of selected microorganisms when introduced as cross-contamination inocula into simulated food trash compartment waste

    NASA Astrophysics Data System (ADS)

    Strayer, Richard; Hummerick, Mary; Richards, Jeffrey; Birmele, Michele; Roberts, Michael

    AdHocReviewCycleID-309796538 NewReviewCycle EmailSubjectPlease review this (?today?) AuthorEm Richard F. (KSC)[DYNAMAC CORP] ReviewingToolsShownOnceurn:schemas-microsoft-com:office:smart One goal of Exploration Life Support solid waste processing is to stabilize wastes for storage, mitigate crew risks, and enable resource recovery. Food and crew fecal wastes contain easily biodegraded organic components that support microbial growth. Our objective is to determine a baseline for the fate of selected microbes in wastes prior to processing treatments. Challenge microbes, including human-associated pathogens, were added to unsterilized, simulated food trash solid waste containing a mixed microbial community. The fate of the microbial community and challenge microbes was determined over a 6 week time course of waste storage. Challenge microbes were selected from a list of microorganisms common to residual food or fecal wastes and included: Escherichia coli, Salmonella enterica serovar typhimurium, Staphylococcus aureus, Pseudomonas aeruginosa, Aspergillus niger (a common mold), and Bacillus pumilus SAFR-032, a spore-forming bacterium previously isolated from spacecraft assembly facilities selected for its resistance to heat, uv, and desiccation. The trash model simulant contained 80% food trash (food waste and containers) and 20% hygiene wipes. Cultures of challenge microbes were grown overnight on Nutrient Agar (Difco), harvested, re-suspended in physiological saline, and diluted to achieve the desired optical density for inoculation. The six organisms were pooled and inoculated into the simulated food wastes and packaging before manual mixing. Inoculated simulated waste was stored in custom FlexfoilTM gas sampling bags (SKC, Inc.) which were then connected to a gas analysis system designed to supply fresh air to each bag to maintain O2 above 1%. Bag headspace was monitored for CO2 (PP Systems) and O2 (Maxtec). Total microbes were quantified by microscopic direct counts and general cultivation-based methods. Detection and enumeration of challenge microbes was accomplished by cultivation-based microbiological methods with specific selective media and by molecular methods using quantitative stocktickerPCR (qPCR) with stocktickerDNA primers specific for each challenge organism. stocktickerDNA was extracted and purified from residual wastes with a stocktickerDNA isolation kit (Mo Bio), and quantified (NanoDrop) from standard curves prepared from pure culture isolates of each challenge organism. QPCR was conducted on a Roche LightCycler 480 using the Roche stocktickerSYBR Green Master Mix Kit. The identity of all challenge microbes in recovered isolates was verified by stocktickerDNA sequencing (stocktickerABI 3130 Genetic Analyzer - Applied Biosystems). To date, concentrations of challenge microbial populations at concentrations ranging from ˜107 - 108 have been added to simulated food waste and extracted either immediately after mixing or after 1 week of storage. Cultivation-based counts indicated that 5 of 6 challenge microbes could be recovered from simulated food wastes after inoculation for both concentrations. Only S. enterica serovar typhimurium could not be detected at week 0 for the 107 inoculum. Between week 0 and 1, challenge microbes increased in density: S. aureus, E. coli, and P. aeruginosa increasing up to 4 orders of magnitude from the 107 inoculum. Molecular results for the week 0 and week 1 stored samples indicated that the relative concentrations of target stocktickerDNA for the challenge microbes had increased between 1 and 3 orders of magnitude. These preliminary studies demonstrate that potential problems regarding pathogens as cross-contaminants from other waste streams could develop during storage of space mission solid wastes. Ongoing studies are examining longer storage times up to 6 weeks. The results can be used to determine requirements and criteria for waste treatment prior to storage and provides a means of testing the ability of treatment technologies to limit contaminant survival and proliferation.

  19. Isolation and characterization of two novel ethanol-tolerant facultative-anaerobic thermophilic bacteria strains from waste compost.

    PubMed

    Fong, Jiunn C N; Svenson, Charles J; Nakasugi, Kenlee; Leong, Caine T C; Bowman, John P; Chen, Betty; Glenn, Dianne R; Neilan, Brett A; Rogers, Peter L

    2006-10-01

    In a search for potential ethanologens, waste compost was screened for ethanol-tolerant thermophilic microorganisms. Two thermophilic bacterial strains, M5EXG and M10EXG, with tolerance of 5 and 10% (v/v) ethanol, respectively, were isolated. Both isolates are facultative anaerobic, non-spore forming, non-motile, catalase-positive, oxidase-negative, Gram-negative rods that are capable of utilizing a range of carbon sources including arabinose, galactose, mannose, glucose and xylose and produce low amounts of ethanol, acetate and lactate. Growth of both isolates was observed in fully defined minimal media within the temperature range 50-80 degrees C and pH 6.0-8.0. Phylogenetic analysis of the 16S rDNA sequences revealed that both isolates clustered with members of subgroup 5 of the genus Bacillus. G+C contents and DNA-DNA relatedness of M5EXG and M10EXG revealed that they are strains belonging to Geobacillus thermoglucosidasius. However, physiological and biochemical differences were evident when isolates M5EXG and M10EXG were compared with G. thermoglucosidasius type strain (DSM 2542(T)). The new thermophilic, ethanol-tolerant strains of G. thermoglucosidasius may be candidates for ethanol production at elevated temperatures.

  20. Decreased Phototoxic Effects of TiO₂ Nanoparticles in Consortium of Bacterial Isolates from Domestic Waste Water

    PubMed Central

    Mathur, Ankita; Kumari, Jyoti; Parashar, Abhinav; T., Lavanya; Chandrasekaran, N.; Mukherjee, Amitava

    2015-01-01

    This study is aimed to explore the toxicity of TiO2 nanoparticles at low concentrations (0.25, 0.50 & 1.00 μg/ml); on five bacterial isolates and their consortium in waste water medium both in dark and UVA conditions. To critically examine the toxic effects of nanoparticles and the response mechanism(s) offered by microbes, several aspects were monitored viz. cell viability, ROS generation, SOD activity, membrane permeability, EPS release and biofilm formation. A dose and time dependent loss in viability was observed for treated isolates and the consortium. At the highest dose, after 24h, oxidative stress was examined which conclusively showed more ROS generation & cell permeability and less SOD activity in single isolates as compared to the consortium. As a defense mechanism, EPS release was enhanced in case of the consortium against the single isolates, and was observed to be dose dependent. Similar results were noticed for biofilm formation, which substantially increased at highest dose of nanoparticle exposure. Concluding, the consortium showed more resistance against the toxic effects of the TiO2 nanoparticles compared to the individual isolates. PMID:26496250

  1. Analogues to features and processes of a high-level radioactive waste repository proposed for Yucca Mountain, Nevada

    USGS Publications Warehouse

    Simmons, Ardyth M.; Stuckless, John S.; with a Foreword by Abraham Van Luik, U.S. Department of Energy

    2010-01-01

    Natural analogues are defined for this report as naturally occurring or anthropogenic systems in which processes similar to those expected to occur in a nuclear waste repository are thought to have taken place over time periods of decades to millennia and on spatial scales as much as tens of kilometers. Analogues provide an important temporal and spatial dimension that cannot be tested by laboratory or field-scale experiments. Analogues provide one of the multiple lines of evidence intended to increase confidence in the safe geologic disposal of high-level radioactive waste. Although the work in this report was completed specifically for Yucca Mountain, Nevada, as the proposed geologic repository for high-level radioactive waste under the U.S. Nuclear Waste Policy Act, the applicability of the science, analyses, and interpretations is not limited to a specific site. Natural and anthropogenic analogues have provided and can continue to provide value in understanding features and processes of importance across a wide variety of topics in addressing the challenges of geologic isolation of radioactive waste and also as a contribution to scientific investigations unrelated to waste disposal. Isolation of radioactive waste at a mined geologic repository would be through a combination of natural features and engineered barriers. In this report we examine analogues to many of the various components of the Yucca Mountain system, including the preservation of materials in unsaturated environments, flow of water through unsaturated volcanic tuff, seepage into repository drifts, repository drift stability, stability and alteration of waste forms and components of the engineered barrier system, and transport of radionuclides through unsaturated and saturated rock zones.

  2. Development of an Integrated Raman and Turbidity Fiber Optic Sensor for the In-Situ Analysis of High Level Nuclear Waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gasbarro, Christina; Bello, Job M.; Bryan, Samuel A.

    2013-02-24

    Stored nuclear waste must be retrieved from storage, treated, separated into low- and high-level waste streams, and finally put into a disposal form that effectively encapsulates the waste and isolates it from the environment for a long period of time. Before waste retrieval can be done, waste composition needs to be characterized so that proper safety precautions can be implemented during the retrieval process. In addition, there is a need for active monitoring of the dynamic chemistry of the waste during storage since the waste composition can become highly corrosive. This work describes the development of a novel, integrated fibermore » optic Raman and light scattering probe for in situ use in nuclear waste solutions. The dual Raman and turbidity sensor provides simultaneous chemical identification of nuclear waste as well as information concerning the suspended particles in the waste using a common laser excitation source.« less

  3. Development of an Integrated Raman and Turbidity Fiber Optic Sensor for the In-Situ Analysis of High Level Nuclear Waste - 13532

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gasbarro, Christina; Bello, Job; Bryan, Samuel

    2013-07-01

    Stored nuclear waste must be retrieved from storage, treated, separated into low- and high-level waste streams, and finally put into a disposal form that effectively encapsulates the waste and isolates it from the environment for a long period of time. Before waste retrieval can be done, waste composition needs to be characterized so that proper safety precautions can be implemented during the retrieval process. In addition, there is a need for active monitoring of the dynamic chemistry of the waste during storage since the waste composition can become highly corrosive. This work describes the development of a novel, integrated fibermore » optic Raman and light scattering probe for in situ use in nuclear waste solutions. The dual Raman and turbidity sensor provides simultaneous chemical identification of nuclear waste as well as information concerning the suspended particles in the waste using a common laser excitation source. (authors)« less

  4. YUCCA MOUNTAIN PROJECT - A BRIEFING --

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NA

    2003-08-05

    This report has the following articles: Nuclear waste--a long-term national problem; Spent nuclear fuel; High-level radioactive waste; Radioactivity and the environment; Current storage methods; Disposal options; U.S. policy on nuclear waste; The focus on Yucca Mountain; The purpose and scope of the Yucca Mountain Project; The approach for permanently disposing of waste; The scientific studies at Yucca Mountain; The proposed design for a repository at Yucca Mountain; Natural and engineered barriers would work together to isolate waste; Meticulous science and technology to protect people and the environment; Licensing a repository; Transporting waste to a permanent repository; The Environmental Impact Statementmore » for a repository; Current status of the Yucca Mountain Project; and Further information available on the Internet.« less

  5. Geomicrobiology of High-Level Nuclear Waste-Contaminated Vadose Sediments at the Hanford Site, Washington State

    PubMed Central

    Fredrickson, James K.; Zachara, John M.; Balkwill, David L.; Kennedy, David; Li, Shu-mei W.; Kostandarithes, Heather M.; Daly, Michael J.; Romine, Margaret F.; Brockman, Fred J.

    2004-01-01

    Sediments from a high-level nuclear waste plume were collected as part of investigations to evaluate the potential fate and migration of contaminants in the subsurface. The plume originated from a leak that occurred in 1962 from a waste tank consisting of high concentrations of alkali, nitrate, aluminate, Cr(VI), 137Cs, and 99Tc. Investigations were initiated to determine the distribution of viable microorganisms in the vadose sediment samples, probe the phylogeny of cultivated and uncultivated members, and evaluate the ability of the cultivated organisms to survive acute doses of ionizing radiation. The populations of viable aerobic heterotrophic bacteria were generally low, from below detection to ∼104 CFU g−1, but viable microorganisms were recovered from 11 of 16 samples, including several of the most radioactive ones (e.g., >10 μCi of 137Cs/g). The isolates from the contaminated sediments and clone libraries from sediment DNA extracts were dominated by members related to known gram-positive bacteria. Gram-positive bacteria most closely related to Arthrobacter species were the most common isolates among all samples, but other phyla high in G+C content were also represented, including Rhodococcus and Nocardia. Two isolates from the second-most radioactive sample (>20 μCi of 137Cs g−1) were closely related to Deinococcus radiodurans and were able to survive acute doses of ionizing radiation approaching 20 kGy. Many of the gram-positive isolates were resistant to lower levels of gamma radiation. These results demonstrate that gram-positive bacteria, predominantly from phyla high in G+C content, are indigenous to Hanford vadose sediments and that some are effective at surviving the extreme physical and chemical stress associated with radioactive waste. PMID:15240306

  6. Archaeology and public perception of a trans-scientific problem; disposal of toxic wastes in the unsaturated zone

    USGS Publications Warehouse

    Winograd, Isaac Judah

    1986-01-01

    Predicting the effects of toxic-waste disposal on the environment over periods of millenia to hundreds of millenia is a transscientific problem; that is, one not fully addressed by quantitative scientific and engineering endeavors. Archaeology is a pertinent adjunct to such predictions in several ways. First, and foremost, archaeological records demonstrate that delicate, as well as durable, objects buried in thick unsaturated zones of arid and semiarid environments may survive intact for millenia to tens of millenia. This successful preservation of Late Paleolithic to Iron Age artifacts provides independent support for the tentative favorable conclusions of earth scientists regarding the general utility of thick unsaturated zones for toxic-waste isolation. By analogy with the archaeological record, solidified toxic wastes of low solubility that are buried in arid unsaturated zones should remain isolated from the environment indefinitely; modern man presumably should be able to improve upon the techniques used by his ancestors to isolate and preserve their sacred and utilitarian objects. Second, archaeological evidence pertinent to the fate of objects buried in unsaturated zones-although qualitative in nature and subject to the limitations of arguments by analogy-is meaningful to the public and to the courts who, with some scientists and engineers, are reluctant to rely exclusively on computer-generated predictions of the effects of buried toxic wastes on the environment. Third, the archaeological record issues a warning that our descendants may intrude into our waste disposal sites and that we must therefore take special measures to minimize such entry and, if it occurs, to warn of the dangers by a variety of symbols. And fourth, archaeology provides a record of durable natural and manmade materials that may prove to be suitable for encapsulation of our wastes and from which we can construct warning markers that will last for millenia. For these four reasons, archaeologists must join with earth scientists, and other scientists and engineers, in addressing the likely fate of solidfied toxic wastes buried in the thick (200-600 m) unsaturated zones of arid and semiarid regions. Indeed, the input of archaeology might be crucial to public acceptance of even the most carefully chosen and technically sound waste repository.

  7. Engineering concepts for the placement of wastes on the abyssal seafloor

    NASA Astrophysics Data System (ADS)

    Valent, Philip J.; Palowitch, Andrew W.; Young, David K.

    1998-05-01

    The Naval Research Laboratory (NRL), with industry and academic participation, has completed a study of the concept of isolating industrial wastes (i.e., sewage sludge, fly ash from municipal incinerators, and dredged material) on the abyssal seafloor. This paper presents results of the technical and economic assessment of this waste management concept. The results of the environmental impacts portion of the study are presented in a companion paper. The technical assessment began with identification of 128 patents addressing waste disposal in the ocean. From these 128 patents, five methods for transporting wastes through the water column and emplacing wastes within an easily monitored area on the abyssal seafloor were synthesized for technical assessment. In one method waste is lowered to the seafloor in a bucket of 190 m 3. In a second method waste is pumped down to the seafloor in pipes, 1.37 m in diameter and 6100 m in length. In a third method waste is free-fallen from the ocean surface in 380-m 3 geosynthetic fabric containers (GFCs). In the fourth and fifth methods, waste is carried to near the seafloor in GFCs transported in (a) a 20,000 metric ton displacement (loaded), unpowered, unmanned submersible glider, or (b) a 2085 metric ton displacement (loaded) disk-shaped transporter traversing to and from the seafloor much like an untethered elevator. In the last two methods the transporter releases the GFCs to free-fall the last few hundred meters to the seafloor. Two reliability analyses, a Fault Tree Analysis (FTA), and a Failure Modes, Effects, and Criticality Analysis (FMECA), showed that the free-fall GFC method posed the least overall relative risk, provided that fabric container and transporter designs eliminate the potential for tearing of the containers on release from the surface transporter. Of the five methods, the three GFC methods were shown to offer cost-effective waste management options when compared with present-day waste management techniques in higher-priced areas, such as the New York-New Jersey area. In conclusion, the abyssal seafloor waste isolation concept is technically feasible and cost-effective for many waste sources.

  8. Sustainable Approaches for Materials Management in Remote ...

    EPA Pesticide Factsheets

    Remote, economically challenged areas in the Commonwealth of the Northern Marianas Islands (CNMI) and American Samoa in the US Pacific island territories face unique challenges with respect to solid waste management. These islands are remote and isolated, with some islands supporting only small populations, thus limiting options for pooling resources among communities in the form of regional waste management facilities, as is common on the US mainland. This isolation also results in greater costs for waste management compared to those encountered in the mainland US, a consequence of, among other factors, more expensive construction and maintenance costs because of the necessary transport of facility components (e.g., landfill liner materials) and the decreased attractiveness of waste recovery for recycling because of lower commodity prices after off-island transportation. Adding to these economic limitations, the gross domestic product and per capita income of the Pacific territories is less than half what it is in parts of the US. The first section of this report outlines a snapshot of the current state of solid waste management overall in the US Pacific island territories, primarily based on site visits.. Steps involved in this work included a review of selected existing published information related to the subject; site visits to Guam, Saipan, Tinian, Rota, Tutuila, and Apia; an assessment of the technical and economic feasibility of different solid waste

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chace, D.A.; Roberts, R.M.; Palmer, J.B.

    WIPP Salado Hydrology Program Data Report {number_sign}3 presents hydrologic data collected during permeability testing, coupled permeability and hydrofracture testing, and gas-threshold-pressure testing of the Salado Formation performed from November 1991 through October 1995. Fluid-pressure monitoring data representing August 1989 through May 1995 are also included. The report presents data from the drilling and testing of three boreholes associated with the permeability testing program, nine boreholes associated with the coupled permeability and hydrofracture testing program, and three boreholes associated with the gas-threshold-pressure testing program. The purpose of the permeability testing program was to provide data with which to interpret the disturbedmore » and undisturbed permeability and pore pressure characteristics of the different Salado Formation lithologies. The purpose of the coupled permeability and hydrofracture testing program was to provide data with which to characterize the occurrence, propagation, and direction of pressure induced fractures in the Salado Formation lithologies, especially MB139. The purpose of the gas-threshold-pressure testing program was to provide data with which to characterize the conditions under which pressurized gas displaces fluid in the brine-saturated Salado Formation lithologies. All of the holes were drilled from the WIPP underground facility 655 m below ground surface in the Salado Formation.« less

  10. Indigenous Halomonas spp., the Potential Nitrifying Bacteria for Saline Ammonium Waste Water Treatment.

    PubMed

    Sangnoi, Yutthapong; Chankaew, Sunipa; O-Thong, Sompong

    2017-01-01

    Toxic nitrogen compounds are one cause decreasing of shrimp production and water pollution. Indigenous Halomonas spp., isolated from Pacific white shrimp farm are benefitted for saline ammonium waste water treatment. This study aimed to isolate the heterotrophic-halophilic Halomonas spp. and investigate their ammonium removal efficiency. Halomonas spp., were isolated by culturing of samples collected from shrimp farm into modified Pep-Beef-AOM medium. Ammonium converting ability was tested and monitored by nitrite reagent. Ammonium removal efficiency was measured by the standard colorimetric method. Identification and classification of Halomonas spp., were studied by morphological, physiological and biochemical characteristics as well as molecular information. There were 5 strains of heterotrophic-halophilic nitrifying bacteria including SKNB2, SKNB4, SKNB17, SKNB20 and SKNB22 were isolated. The identification result based on 16S rRNA sequence analysis indicated that all 5 strains were Halomonas spp., with sequence similarity values of 91-99 %. Ammonium removal efficiency of all strains showed a range of 23-71%. The production of nitrite was low detected of 0.01-0.15 mg-N L-1, while the amount of nitrate was almost undetectable. This might suggest that the indigenous Halomonas spp., as nitrifying bacteria involved biological nitrification process for decreasing and transforming of ammonia. Due to being heterotrophic, halophilic and ammonium removing bacteria, these Halomonas spp., could be developed for use in treatment of saline ammonium waste water.

  11. Enumeration and identification of gram negative bacteria present in soil underlying urban waste-sites in southwestern Nigeria.

    PubMed

    Achudume, A C; Olawale, J T

    2010-09-01

    Samples of soils underlying wastes were collected from four sites representing four demographic regions of a medium sized town in southwestern Nigeria. Standard methods and reference strains of isolated bacteria were employed for identification. Evaluation of the enzymatic and biochemical reactions showed that all isolated and identified microbes were non-fermenting heterotrophic (HTB). For example, Klebsiella pnemuniae may be involved in wound infections, particularly following bowel surgery. Similarly Pseudomonas aeruginosa can produce serious nosocomial infections if it gains access to the body through wounds or intravenous lines. From the 15 culure plates, 88 colonies with various characteristics were enumerated. They differed in aspect of viscosity and color. The bacterial species were identified by percent positive reactions while oxidative and sugar fermentation tests revealed various characteristics among the isolated strains. All of the isolates were negative for citrate utilization, gelatin liquefaction, nitrate reduction, methyl red and Voges Proskaur, motility and hydrogen sulphate production. The quantity of HTB present in an area serves as an index of the general sanitary conditions of that area. The presence of a large number of HTB, in an ecological area may be considered a liability as it can enhance the spread of diseases and on a larger scale may enable epidemics to arise. Therefore, there is need for control of waste sites by recovery and regular germicidal sanitation.

  12. Le concept suédois pour stockage définitif des déchets nucléaires

    NASA Astrophysics Data System (ADS)

    Hedman, Tommy; Nyström, Anders; Thegerström, Claes

    2002-10-01

    The purpose of a disposal is to isolate the radioactive waste from man and the environment. If the isolation is broken, the leakage and transport of radioactive substances must be retarded. The package is one of several barriers, used to achieve these two main functions. For short-lived, low and intermediate level waste four standard containers of steel and concrete are used. Spent fuel will be placed in a canister consisting of a pressure-bearing insert of cast nodular iron and an outer corrosion barrier of copper before it is deposited in a deep geological repository. In particular, the development of a high integrity copper canister for the isolation of spent nuclear fuel is described in this paper. To cite this article: T. Hedman et al., C. R. Physique 3 (2002) 903-913.

  13. 10 CFR 960.4-2-6 - Dissolution.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Dissolution. 960.4-2-6 Section 960.4-2-6 Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE... structural collapse—such that a hydraulic interconnection leading to a loss of waste isolation could occur...

  14. 10 CFR 960.4-2-6 - Dissolution.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Dissolution. 960.4-2-6 Section 960.4-2-6 Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE... structural collapse—such that a hydraulic interconnection leading to a loss of waste isolation could occur...

  15. 10 CFR 960.4-2-6 - Dissolution.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Dissolution. 960.4-2-6 Section 960.4-2-6 Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE... structural collapse—such that a hydraulic interconnection leading to a loss of waste isolation could occur...

  16. 10 CFR 960.4-2-6 - Dissolution.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Dissolution. 960.4-2-6 Section 960.4-2-6 Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE... structural collapse—such that a hydraulic interconnection leading to a loss of waste isolation could occur...

  17. Restoration of areas disturbed by site studies for a mined commercial radioactive waste repository: The Basalt Waste Isolation Project (BWIP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brandt, C.A.; Rickard, W.H. Jr.; Biehert, R.W.

    1989-01-01

    The Basalt Waste Isolation Project (BWIP) was undertaken to environmentally characterize a portion of the US Department of Energy's Hanford Site in Washington State as a potential host for the nation's first mined commercial nuclear waste repository. Studies were terminated by Congress in 1987. Between 1976 and 1987, 72 areas located across the Hanford Site were disturbed by the BWIP. These areas include borehole pads, a large Exploratory Shaft Facility, and the Near Surface Test Facility. Most boreholes were cleared of vegetation, leveled, and stabilized with a thick layer of compacted pit-run gravel and sand. The Near Surface Test Facilitymore » consists of three mined adits, a rock-spoils bench, and numerous support facilities. Restoration began in 1988 with the objective of returning sites to pre-existing conditions using native species. The Hanford Site retains some of the last remnants of the shrub-steppe ecosystem in Washington. The primary constraints to restoring native vegetation at Hanford are low precipitation and the presence of cheatgrass, an extremely capable alien competitor. 5 figs.« less

  18. Waste isolation and contaminant migration - Tools and techniques for monitoring the saturated zone-unsaturated zone-plant-atmosphere continuum

    USGS Publications Warehouse

    Andraski, Brian J.; Stonestrom, David A.; Nicholson, T.J.; Arlt, H.D.

    2011-01-01

    In 1976 the U.S. Geological Survey (USGS) began studies of unsaturated zone hydrology next to the Nation’s first commercial disposal facility for low-level radioactive waste (LLRW) near Beatty, NV. Recognizing the need for long-term data collection, the USGS in 1983 established research management areas in the vicinity of the waste-burial facility through agreements with the Bureau of Land Management and the State of Nevada. Within this framework, the Amargosa Desert Research Site (ADRS; http://nevada.usgs.gov/adrs/) is serving as a field laboratory for the sustained study of water-, gas-, and contaminant-transport processes, and the development of models and methods to characterize flow and transport. The research is built on multiple lines of data that include: micrometeorology; evapotranspiration; plant metrics; soil and sediment properties; unsaturated-zone moisture, temperature, and gas composition; geology and geophysics; and groundwater. Contaminant data include tritium, radiocarbon, volatile-organic compounds (VOCs), and elemental mercury. Presented here is a summary of monitoring tools and techniques that are being applied in studies of waste isolation and contaminant migration.

  19. Optimization of the Medium for the Production of Extracellular Amylase by the Pseudomonas stutzeri ISL B5 Isolated from Municipal Solid Waste

    PubMed Central

    Dutta, Prajesh; Deb, Akash

    2016-01-01

    The management of municipal solid waste is one of the major problems of the present world. The use of microbial enzymes for sustainable management of the solid waste is the need of the time. In the present study, we have isolated a potent amylase producing strain (ISL B5) from municipal solid waste. The strain was identified as Pseudomonas stutzeri (P. stutzeri) both biochemically and by 16S rDNA sequencing. The optimization studies revealed that the strain ISL B5 exhibited maximum activity in the liquid media containing 2% starch (2.77 U/ml), 0.8% peptone (2.77 U/ml), and 0.001% Ca2+ ion (2.49 U/ml) under the pH 7.5 (2.59 U/ml), temperature 40°C (2.63 U/ml), and 25 h of incubation period (2.49 U/ml). The highest activity of crude enzyme has also been optimized at the pH 8 (2.49 U/ml). PMID:28096816

  20. An analysis of the technical status of high level radioactive waste and spent fuel management systems

    NASA Technical Reports Server (NTRS)

    English, T.; Miller, C.; Bullard, E.; Campbell, R.; Chockie, A.; Divita, E.; Douthitt, C.; Edelson, E.; Lees, L.

    1977-01-01

    The technical status of the old U.S. mailine program for high level radioactive nuclear waste management, and the newly-developing program for disposal of unreprocessed spent fuel was assessed. The method of long term containment for both of these waste forms is considered to be deep geologic isolation in bedded salt. Each major component of both waste management systems is analyzed in terms of its scientific feasibility, technical achievability and engineering achievability. The resulting matrix leads to a systematic identification of major unresolved technical or scientific questions and/or gaps in these programs.

  1. Microbial activity of trench leachates from shallow-land, low-level radioactive waste disposal sites.

    PubMed Central

    Francis, A J; Dobbs, S; Nine, B J

    1980-01-01

    Trench leachate samples collected anoxically from shallow-land, low-level radioactive waste disposal sites were analyzed for total aerobic and anaerobic populations, sulfate reducers, denitrifiers, and methanogens. Among the several aerobic and anaerobic bacteria isolated, only Bacillus sp., Pseudomonas sp., Citrobacter sp., and Clostridium sp. were identified. Mixed bacterial cultures isolated from the trench leachates were able to grow anaerobically in trench leachates, which indicates that the radionuclides and organic chemicals present were not toxic to these bacteria. Changes in concentrations of several of the organic constituents of the waste leachate samples were observed due to anaerobic microbial activity. Growth of a mixed culture of trench-water bacteria in media containing a mixture of radionuclides, 60Co, 85Sr, and 134,137Cs, was not affected at total activity concentrations of 2.6 X 10(2) and 2.7 X 10(3) pCi/ml. PMID:7406490

  2. Epidemiological investigation of the first human brucellosis case in Spain due to Brucella suis biovar 1 strain 1330.

    PubMed

    Compés Dea, Cecilia; Guimbao Bescós, Joaquín; Alonso Pérez de Ágreda, Juan Pablo; Muñoz Álvaro, Pilar María; Blasco Martínez, José María; Villuendas Usón, María Cruz

    2017-03-01

    No cases of human brucellosis caused by Brucella suis has been reported in Spain. This study involved interviews with the case and his co-workers, inspection of their workplace, checking infection control measures, and typing the Brucella strain isolated in the blood culture. Brucella suis biovar 1 strain 1330 was isolated from a patient who worked in a waste treatment plant. Food borne transmission, contact with animals, and risk jobs were ruled out. An accidental inoculation with a contaminated needle from a research laboratory waste container was identified as the most probable mode of transmission. There should be controls to ensure that waste containers are sealed. Copyright © 2016 Elsevier España, S.L.U. and Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  3. Studies on cellulose nanocrystals isolated from groundnut shells.

    PubMed

    Bano, Saleheen; Negi, Yuvraj Singh

    2017-02-10

    Today, various renewable biomass resources are accepted as waste material and are mostly burnt or used as cattle feed. The commercial value of these wastes can be increased by utilising them in production of nanomaterials. So, the present work was conducted for isolation of cellulose nanocrystals (CNCs) from groundnut shells which are produced annually as waste in large quantity (∼7 million tons). The structural, thermal, morphological & elemental analyses were assessed through corresponding techniques. Light Scattering studies were performed to analyse more likely weight average molecular weight (M w ) & radius of radius (R g ). The high M w ∼10 5 g/mol obtained for CNCs in lithium chloride (LiCl)/N,N-dimethylacetamide (DMAc) system, was an interesting feature which gets affected by LiCl and polymer concentrations. Solution with high polymer and low LiCl concentration was found to show higher values of M w & R g . Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Topic I: Induced changes in hydrology at low-level radioactive waste repository sites: A section in Safe disposal of radionuclides in low-level radioactive-waste repository sites; Low-level radioactive-waste disposal workshop, U.S. Geological Survey, July 11-16, 1987, Big Bear Lake, Calif., Proceedings (Circular 1036)

    USGS Publications Warehouse

    Prudic, David E.; Dennehy, Kevin F.; Bedinger, Marion S.; Stevens, Peter R.

    1990-01-01

    Engineering practices, including the excavation of trenches, placement of waste, nature of waste forms, backfilling procedures and materials, and trench-cover construction and materials at low-level radioactive-waste repository sites greatly affect the geohydrology of the sites. Engineering practices are dominant factors in eventual stability and isolation of the waste. The papers presented relating to Topic I were discussions of the hydrogeologic setting at existing low-level radioactive-waste repository sites and changes in the hydrology induced by site operations. Papers summarizing detailed studies presented at this workshop include those at sites near Sheffield, Ill.; Oak Ridge National Laboratory, Tenn.; West Valley, N.Y.; Maxey Flats, Ky.; Barnwell, S.C.; and Beatty, Nev. 

  5. Thermal and enzymatic recovering of proteins from untanned leather waste.

    PubMed

    Bajza, Z; Vrucek, V

    2001-01-01

    The laboratory trials of a process to treat untanned leather waste to isolate valuable protein products are presented. In this comparative study, both thermal and enzymatic treatments of leather waste were performed. The enzymatic method utilizes commercially available alkaline protease at moderate temperatures and for short periods of time. The concentration of the enzyme was 500 units per gram of leather waste which makes the method cost-effective. Amino acid composition in the hydrolysate obtained by the enzyme hydrolysis of untanned leather waste is determined. Chemical and physical properties of protein powder products from untanned leather waste were evaluated by spectrophotometric and chromatographic methods and by use of electron microscope. The results of microbiological assays confirm that these products agree to food safety standards. This relatively simple treatment of untanned leather waste may provide a practical and economical solution to the disposal of potentially dangerous waste.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carter, E.

    A new class of grout material based on molten wax offers a dramatic improvement in permeation grouting performance. This new material makes a perfect in situ containment of buried radioactive waste both feasible and cost effective. This paper describes various ways the material can be used to isolate buried waste in situ. Potential applications described in the paper include buried radioactive waste in deep trenches, deep shafts, Infiltration trenches, and large buried objects. Use of molten wax for retrieval of waste is also discussed. Wax can also be used for retrieval of air sensitive materials or drummed waste. This papermore » provides an analysis of the methods of application and the expected performance and cost of several potential projects. (authors)« less

  7. Final closure of a low level waste disposal facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Potier, J.M.

    1995-12-31

    The low-level radioactive waste disposal facility operated by the Agence Nationale pour la Gestion des Dechets Radioactifs near La Hague, France was opened in 1969 and is scheduled for final closure in 1996. The last waste package was received in June 1994. The total volume of disposed waste is approximately 525,000 m{sup 3}. The site closure consists of covering the disposal structures with a multi-layer impervious cap system to prevent rainwater from infiltrating the waste isolation system. A monitoring system has been set up to verify the compliance of infiltration rates with hydraulic performance objectives (less than 10 liters permore » square meter and per year).« less

  8. Isolation of a lead tolerant novel bacterial species, Achromobacter sp. TL-3: assessment of bioflocculant activity.

    PubMed

    Batta, Neha; Subudhi, Sanjukta; Lal, Banwari; Devi, Arundhuti

    2013-11-01

    Lead is one of the four heavy metals that has a profound damaging effects on human health. In the recent past there has been an increasing global concern for development of sustainable bioremediation technologies for detoxification of lead contaminant. Present investigation highlights for lead biosorption by a newly isolated novel bacterial species; Achromobacter sp. TL-3 strain, isolated from activated sludge samples contaminated with heavy metals (collected from oil refinery, Assam, North-East India). For isolation of lead tolerant bacteria, sludge samples were enriched into Luria Broth medium supplemented separately with a range of lead nitrate; 250, 500, 750, 1000, 1250 and 1500 ppm respectively. The bacterial consortium that could tolerate 1500 ppm of lead nitrate was selected further for purification of lead tolerant bacterial isolates. Purified lead tolerant bacterial isolates were then eventually inoculated into production medium supplemented with ethanol and glycerol as carbon and energy source to investigate for bioflocculant production. Bioflocculant production was estimated by monitoring the potential of lead tolerant bacterial isolate to flocculate Kaolin clay in presence of 1% CaCl2. Compared to other isolates, TL-3 isolate demonstrated for maximum bioflocculant activity of 95% and thus was identified based on 16S rRNA gene sequence analysis. TL3 isolate revealed maximum homology (98%) with Achromobacter sp. and thus designated as Achromobacter sp. TL-3. Bioflocculant activity of TL-3 isolate was correlated with the change in pH and growth. Achromobacter sp. TL-3 has significant potential for lead biosorption and can be effectively employed for detoxification of lead contaminated waste effluents/waste waters.

  9. ISOLATED WETLANDS AND THEIR FUNCTIONS: AN ECOLOGICAL PERSPECTIVE

    EPA Science Inventory

    The recent U.S. Supreme Court case of Solid Waste Agency of Northern Cook County v. U.S. Army Corps of Engineers (SWANCC) has had profound implications on the legal status of isolated wetlands. As a result of this decision, policymakers need ecological information on the definit...

  10. Production and characterization of rhamnolipid biosurfactant from waste frying coconut oil using a novel Pseudomonas aeruginosa D.

    PubMed

    George, S; Jayachandran, K

    2013-02-01

    To improve biosurfactant production economics by the utilization of potential low-cost materials. In an attempt to utilize cost-effective carbon sources in the fermentative production of biosurfactants, various pure and waste frying oils were screened by a standard biosurfactant producing strain. Considering the regional significance, easy availability and the economical advantages, waste frying coconut oil was selected as the substrate for further studies. On isolation of more competent strains that could use waste frying coconut oil efficiently as a carbon source, six bacterial strains were isolated on cetyltrimethyl ammonium bromide-methylene blue agar plate, from a soil sample collected from the premises of a coconut oil mill. Among these, Pseudomonas aeruginosa D was selected as the potential producer of rhamnolipid. Spectrophotometric method, TLC, methylene blue active substance assay, drop collapse technique, surface tension measurement by Du Nouy ring method and emulsifying test confirmed the rhamnolipid producing ability of the selected strain and various process parameters were optimized for the production of maximum amount of biosurfactant. Rhamnolipid components purified and separated by ethyl acetate extraction, preparative silica gel column chromatography, HPLC and TLC were characterized by fast atom bombardment mass spectrometry as a mixture of dirhamnolipids and monorhamnolipids. The rhamnolipid homologues detected were Rha-Rha-C(10) -C(10) , Rha-C(12) -C(10) and Rha-C(10) -C(8) /Rha-C(8) -C(10) . These results indicated the possibility of waste frying coconut oil to be used as a very effective alternate substrate for the economic production of rhamnolipid by a newly isolated Ps. aeruginosa D. Results of this study throws light on the alternate use of already used cooking oil as high-energy source for producing a high value product like rhamnolipid. This would provide options for the food industry other than the recycling and reuse of waste frying oils in cooking and also furthering the value of oil nuts. © 2012 The Society for Applied Microbiology.

  11. Landfill disposal systems.

    PubMed

    Slimak, K M

    1978-12-01

    The current status of landfill disposal of hazardous wastes in the United States is indicated by presenting descriptions of six operating landfills. These landfills illustrate the variety of techniques that exist in landfill disposal of hazardous wastes. Although some landfills more effectively isolate hazardous waste than others, all landfills must deal with the following problems. Leachate from hazardous waste landfills is generally highly polluted. Most landfills attempt to contain leachate at the site and prevent its discharge to surface or groundwaters. To retain leachate within a disposal area, subsurface barriers of materials such as concrete, asphalt, butyl rubber, vinyl, and clay are used. It is difficult to assure that these materials can seal a landfill indefinitely. When a subsurface barrier fails, the leachate enters the groundwater in a concentrated, narrow band which may bypass monitoring wells. Once a subsurface barrier has failed, repairs are time-consuming and costly, since the waste above the repair site may have to be removed. The central problem in landfill disposal is leachate control. Recent emphasis has been on developing subsurface barriers to contain the wastes and any leachate. Future emphasis should also be on techniques for removing water from hazardous wastes before they are placed in landfills, and on methods for preventing contact of the wastes with water during and after disposal operations. When leachate is eliminated, the problems of monitoring, and subsurface barrier failure and repair can be addressed, and a waste can be effectively isolated.A surface seal landfill design is recommended for maintaining the dry state of solid hazardous wastes and for controlling leachate. Any impervious liner is utilized over the top of the landfill to prevent surface water from seeping into the waste. The surface barrier is also the site where monitoring and maintenance activities are focused. Barrier failure can be detected by visual inspections and any repairs can be made without disturbing the waste. The surface seal landfill does not employ a subsurface barrier. The surface seal landfill successfully addresses each of the four environmental problems listed above, provided that this landfill design is utilized for dry wastes only and is located at a site which provides protection from groundwater and temporary perched water tables.

  12. Methane production from kitchen waste using Escherichia coli.

    PubMed

    Jayalakshmi, S; Joseph, Kurian; Sukumaran, V

    2007-04-01

    Escherichia coli (E. coli) strain isolated from biogas plant sludge was examined for its ability to enhance biogas from kitchen waste during solid phase anaerobic digestion. The laboratory experiments were conducted for total solid concentrations of 20% and 22%. Kitchen waste was characterized for physico-chemical parameters and laboratory experiments were conducted with and without E. coli strain. It was found that the reactor with E. coli produced 17% more biogas than the reactors that are operated without E. coli strain.

  13. Prospecting Agro-waste Cocktail: Supplementation for Cellulase Production by a Newly Isolated Thermophilic B. licheniformis 2D55.

    PubMed

    Kazeem, Muinat Olanike; Shah, Umi Kalsom Md; Baharuddin, Azhari Samsu; AbdulRahman, Nor' Aini

    2017-08-01

    Bacteria isolated from thermophilic environment that can produce cellulase as well as utilise agro-waste biomass have a high potential for developing thermostable cellulase required in the biofuel industry. The cost for cellulase represents a significant challenge in converting lignocellulose to fermentable sugars for biofuel production. Among three potential bacteria examined, Bacillus licheniformis 2D55 (accession no. KT799651) was found to produce the highest cellulolytic activity (CMCase 0.33 U/mL and FPase 0.09 U/mL) at 18-24 h fermentation when grown on microcrystalline cellulose (MCC) as a carbon source in shake flask at 50 °C. Cellulase production process was further conducted on the untreated and NaOH pretreated rice straw (RS), rice husk (RH), sugarcane bagasse (BAG) and empty fruit bunch (EFB). Untreated BAG produced the highest FPase (0.160 U/mL), while the highest CMCase (0.150 U/mL) was supported on the pretreated RH. The mixture of untreated BAG and pretreated RH as agro-waste cocktail has remarkably improved CMCase (3.7- and 1.4-fold) and FPase (2.5- and 11.5-fold) compared to the untreated BAG and pretreated RH, respectively. The mechanism of cellulase production explored through SEM analysis and the location of cellulase enzymes of the isolate was also presented. Agro-waste cocktail supplementation provides an alternative method for an efficient production of cellulase.

  14. ISOLATED WETLANDS: STATE-OF-THE-SCIENCE AND FUTURE DIRECTIONS

    EPA Science Inventory

    The U.S. Supreme Court case of Solid Waste Agency of Northern Cook County v. U.S. Army Corps of Engineers (SWANCC) has had profound implications on the legal status of isolated wetlands. As a result of this decision, policymakers and regulators need information on the ecological...

  15. ISOLATED WETLANDS: STATE-OF-THE-SCIENCE AND FUTURE DIRECTIONS

    EPA Science Inventory

    In Solid Waste Agency of Northern Cook County v. U.S. Army Corps of Engineers (SWANCC), the U.S. Supreme Court held that isolated, intrastate, non-navigable waters could not be protected under the Clean Water Act based solely on their use by migratory birds. The SWANCC decision ...

  16. Chronic wasting disease in bank voles: characterisation of the shortest incubation time model for prion diseases

    USDA-ARS?s Scientific Manuscript database

    In order to assess the susceptibility of bank voles to chronic wasting disease (CWD), we inoculated voles carrying isoleucine or methionine at codon 109 (Bv109I and Bv109M, respectively) with CWD isolates from elk, mule deer and white-tailed deer. Efficient transmission rate (100%) was observed with...

  17. Isolation and Characterization of Phosphate-Solubilizing Bacteria from Mushroom Residues and their Effect on Tomato Plant Growth Promotion.

    PubMed

    Zhang, Jian; Wang, Peng Cheng; Fang, Ling; Zhang, Qi-An; Yan, Cong Sheng; Chen, Jing Yi

    2017-03-30

    Phosphorus is a major essential macronutrient for plant growth, and most of the phosphorus in soil remains in insoluble form. Highly efficient phosphate-solubilizing bacteria can be used to increase phosphorus in the plant rhizosphere. In this study, 13 isolates were obtained from waste mushroom residues, which were composed of cotton seed hulls, corn cob, biogas residues, and wood flour. NBRIP solid medium was used for isolation according to the dissolved phosphorus halo. Eight isolates produced indole acetic acid (61.5%), and six isolates produced siderophores (46.2%). Three highest phosphate-dissolving bacterial isolates, namely, M01, M04, and M11, were evaluated for their beneficial effects on the early growth of tomato plants (Solanum lycopersicum L. Wanza 15). Strains M01, M04, and M11 significantly increased the shoot dry weight by 30.5%, 32.6%, and 26.2%, and root dry weight by 27.1%, 33.1%, and 25.6%, respectively. Based on 16S rRNA gene sequence comparisons and phylogenetic positions, strains M01 and M04 belonged to the genus Acinetobacter, and strain M11 belonged to the genus Ochrobactrum. The findings suggest that waste mushroom residues are a potential resource of plant growth-promoting bacteria exhibiting satisfactory phosphate-solubilizing for sustainable agriculture.

  18. Potential of bacteria isolated from landfill soil in degrading low density polyethylene plastic

    NASA Astrophysics Data System (ADS)

    Munir, E.; Sipayung, F. C.; Priyani, N.; Suryanto, D.

    2018-03-01

    Plastic is an important material and used for many purposes. It is returned to the environment as a waste which is recently considered as the second largest solid waste. The persistency of plastic in the environment has been attracted researchers from a different point of view. The study of the degradation of plastic using bacteria isolated from local landfill soil was conducted. Low density polyethylene (LDPE) plastic was used as tested material. Potential isolates were obtained by culturing the candidates in mineral salt medium broth containing LDPE powder. Two of ten exhibited better growth response in the selection media and were used in degradation study. Results showed that isolate SP2 and SP4 reduced the weight of LDPE film significantly to a weight loss of 10.16% and 12.06%, respectively after four weeks of incubation. Scanning electron micrograph analyses showed the surface of LDPE changed compared to the untreated film. It looked rough and cracked, and bacteria cells attached to the surface was also noticed. Fourier transform infrared spectroscopy analyses confirmed the degradation of LDPE film. These results indicated that bacteria isolated from landfill might play an important role in degrading plastic material in the landfill.

  19. I-WASTE: EPA's Suite of Homeland Security Decision Support ...

    EPA Pesticide Factsheets

    In the U.S., a single comprehensive approach to all-hazards domestic incident management has been established by the Department of Homeland Security through the National Response Framework. This helps prevent, prepare for, respond to, and recover from terrorist attacks, major disasters, and other emergencies. A significant component of responding to and recovering from wide-area or isolated events, whether natural, accidental, or intentional, is the management of waste resulting from the incident itself or from activities cleaning up after the incident. To facilitate the proper management of incident-derived waste, EPA developed the Incident Waste Assessment and Tonnage Estimator (I-WASTE). I-WASTE was developed by the U.S. EPA’s Homeland Security Research Program in partnership with EPA program and regional offices, other U.S. government agencies, industry, and state and local emergency response programs. Presenting the disaster waste tool at the ORD Tools Café held in EPA Region 7th on Dec 9th.

  20. Fiber reinforced concrete: An advanced technology for LL/ML radwaste conditioning and disposal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tchemitcheff, E.; Verdier, A.

    Radioactive waste immobilization is an integral part of operations in nuclear facilities. The goal of immobilization is to contain radioactive materials in a waste form which can maintain its integrity over very long periods of time, thus effectively isolating the materials from the environment and hence from the public. This is true regardless of the activity of the waste, including low-, and medium-level waste (LLW, MLW). A multiple-year research effort by Cogema culminated in the development of a new process to immobilize nuclear waste in concrete containers reinforced with metal fibers. The fiber concrete containers satisfy all French safety requirementsmore » relating to waste immobilization and disposal, and have been certified by ANDRA, the national radioactive waste management agency. The fiber concrete containers have been fabricated on a production scale since July 1990 by Sogefibre, a jointly-owned subsidiary of SGN and Compagnie Generale des Eaux.« less

Top