Sample records for wireless communication infrastructure

  1. Real-time Identification System using Mobile Hand-held Devices: Mobile Biometrics Evaluation Framework

    DTIC Science & Technology

    2014-04-01

    must be done to determine current infrastructure and capabilities so that necessary updates and changes can be addressed up front. Mobile biometric...with existing satellite communications infrastructure . 20 PSTP 03-427BIOM 4 State of Mobile Biometric Device Market 4.1 Fingerprint...is a wireless information system highlighted by Real-time wireless data collection mobile device independence, wireless infrastructure independence

  2. Installation of secure, always available wireless LAN systems as a component of the hospital communication infrastructure.

    PubMed

    Hanada, Eisuke; Kudou, Takato; Tsumoto, Shusaku

    2013-06-01

    Wireless technologies as part of the data communication infrastructure of modern hospitals are being rapidly introduced. Even though there are concerns about problems associated with wireless communication security, the demand is remarkably large. In addition, insuring that the network is always available is important. Herein, we discuss security countermeasures and points to insure availability that must be taken to insure safe hospital/business use of wireless LAN systems, referring to the procedures introduced at Shimane University Hospital. Security countermeasures differ according to their purpose, such as for preventing illegal use or insuring availability, both of which are discussed. It is our hope that this information will assist others in their efforts to insure safe implementation of wireless LAN systems, especially in hospitals where they have the potential to greatly improve information sharing and patient safety.

  3. Crash data analyses for vehicle-to-infrastructure communications for safety applications.

    DOT National Transportation Integrated Search

    2012-11-01

    This report presents the potential safety benefits of wireless communication between the roadway infrastructure and vehicles, : (i.e., vehicle-to-infrastructure (V2I) safety). Specifically, it identifies the magnitude, characteristics, and cost of cr...

  4. Analysis of Pervasive Mobile Ad Hoc Routing Protocols

    NASA Astrophysics Data System (ADS)

    Qadri, Nadia N.; Liotta, Antonio

    Mobile ad hoc networks (MANETs) are a fundamental element of pervasive networks and therefore, of pervasive systems that truly support pervasive computing, where user can communicate anywhere, anytime and on-the-fly. In fact, future advances in pervasive computing rely on advancements in mobile communication, which includes both infrastructure-based wireless networks and non-infrastructure-based MANETs. MANETs introduce a new communication paradigm, which does not require a fixed infrastructure - they rely on wireless terminals for routing and transport services. Due to highly dynamic topology, absence of established infrastructure for centralized administration, bandwidth constrained wireless links, and limited resources in MANETs, it is challenging to design an efficient and reliable routing protocol. This chapter reviews the key studies carried out so far on the performance of mobile ad hoc routing protocols. We discuss performance issues and metrics required for the evaluation of ad hoc routing protocols. This leads to a survey of existing work, which captures the performance of ad hoc routing algorithms and their behaviour from different perspectives and highlights avenues for future research.

  5. Wireless Communications in Smart Grid

    NASA Astrophysics Data System (ADS)

    Bojkovic, Zoran; Bakmaz, Bojan

    Communication networks play a crucial role in smart grid, as the intelligence of this complex system is built based on information exchange across the power grid. Wireless communications and networking are among the most economical ways to build the essential part of the scalable communication infrastructure for smart grid. In particular, wireless networks will be deployed widely in the smart grid for automatic meter reading, remote system and customer site monitoring, as well as equipment fault diagnosing. With an increasing interest from both the academic and industrial communities, this chapter systematically investigates recent advances in wireless communication technology for the smart grid.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michael Schmitt; Juan Deaton; Curt Papke

    In the event of large-scale natural or manmade catastrophic events, access to reliable and enduring commercial communication systems is critical. Hurricane Katrina provided a recent example of the need to ensure communications during a national emergency. To ensure that communication demands are met during these critical times, Idaho National Laboratory (INL) under the guidance of United States Strategic Command has studied infrastructure issues, concerns, and vulnerabilities associated with an airborne wireless communications capability. Such a capability could provide emergency wireless communications until public/commercial nodes can be systematically restored. This report focuses on the airborne cellular restoration concept; analyzing basic infrastructuremore » requirements; identifying related infrastructure issues, concerns, and vulnerabilities and offers recommended solutions.« less

  7. 77 FR 43416 - ITS Industry Forum on Connected Vehicles: Moving From Research Towards Implementation; Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-24

    ..., Vehicle-to-Infrastructure, and Testing programs; along with a special session discussing lessons learned... evolving in terms of a robust Vehicle-to- Infrastructure environment, and identify what we have learned... wireless communication between vehicles, infrastructure, and personal communications devices to [[Page...

  8. 47 CFR 10.330 - Provider infrastructure requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 1 2014-10-01 2014-10-01 false Provider infrastructure requirements. 10.330 Section 10.330 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL WIRELESS EMERGENCY ALERTS System Architecture § 10.330 Provider infrastructure requirements. This section specifies the general...

  9. 47 CFR 10.330 - Provider infrastructure requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 1 2013-10-01 2013-10-01 false Provider infrastructure requirements. 10.330 Section 10.330 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL WIRELESS EMERGENCY ALERTS System Architecture § 10.330 Provider infrastructure requirements. This section specifies the general...

  10. Weather applications and products enabled through vehicle infrastructure integration (VII) : feasibility and concept development study

    DOT National Transportation Integrated Search

    2007-01-01

    Vehicle Infrastructure Integration (VII) involves the two-way wireless transmission of data from vehicle-to-vehicle and vehicle-to-infrastructure utilizing Dedicated Short Range Communications (DSRC). VII will enable the development of weather-relate...

  11. Real-time communication architecture for connected-vehicle eco-traffic signal system applications.

    DOT National Transportation Integrated Search

    2014-02-01

    Transportation Systems, and thus Intelligent Transportation Systems (ITS), are considered one of the most critical : infrastructures. For wireless communication ITS use communication links based on Dedicated Short Range Communication : (DSRC) in Wire...

  12. Mobility management techniques for the next-generation wireless networks

    NASA Astrophysics Data System (ADS)

    Sun, Junzhao; Howie, Douglas P.; Sauvola, Jaakko J.

    2001-10-01

    The tremendous demands from social market are pushing the booming development of mobile communications faster than ever before, leading to plenty of new advanced techniques emerging. With the converging of mobile and wireless communications with Internet services, the boundary between mobile personal telecommunications and wireless computer networks is disappearing. Wireless networks of the next generation need the support of all the advances on new architectures, standards, and protocols. Mobility management is an important issue in the area of mobile communications, which can be best solved at the network layer. One of the key features of the next generation wireless networks is all-IP infrastructure. This paper discusses the mobility management schemes for the next generation mobile networks through extending IP's functions with mobility support. A global hierarchical framework model for the mobility management of wireless networks is presented, in which the mobility management is divided into two complementary tasks: macro mobility and micro mobility. As the macro mobility solution, a basic principle of Mobile IP is introduced, together with the optimal schemes and the advances in IPv6. The disadvantages of the Mobile IP on solving the micro mobility problem are analyzed, on the basis of which three main proposals are discussed as the micro mobility solutions for mobile communications, including Hierarchical Mobile IP (HMIP), Cellular IP, and Handoff-Aware Wireless Access Internet Infrastructure (HAWAII). A unified model is also described in which the different micro mobility solutions can coexist simultaneously in mobile networks.

  13. Connected vehicle pilot deployment program.

    DOT National Transportation Integrated Search

    2014-01-01

    The U.S. Department of Transportations (USDOTs) connected vehicle research program is a multimodal initiative to enable safe, interoperable, networked wireless communications among vehicles, infrastructure, and personal communications devices. ...

  14. A design of wireless sensor networks for a power quality monitoring system.

    PubMed

    Lim, Yujin; Kim, Hak-Man; Kang, Sanggil

    2010-01-01

    Power grids deal with the business of generation, transmission, and distribution of electric power. Recently, interest in power quality in electrical distribution systems has increased rapidly. In Korea, the communication network to deliver voltage, current, and temperature measurements gathered from pole transformers to remote monitoring centers employs cellular mobile technology. Due to high cost of the cellular mobile technology, power quality monitoring measurements are limited and data gathering intervals are large. This causes difficulties in providing the power quality monitoring service. To alleviate the problems, in this paper we present a communication infrastructure to provide low cost, reliable data delivery. The communication infrastructure consists of wired connections between substations and monitoring centers, and wireless connections between pole transformers and substations. For the wireless connection, we employ a wireless sensor network and design its corresponding data forwarding protocol to improve the quality of data delivery. For the design, we adopt a tree-based data forwarding protocol in order to customize the distribution pattern of the power quality information. We verify the performance of the proposed data forwarding protocol quantitatively using the NS-2 network simulator.

  15. Infrastructure for Integration of Legacy Electrical Equipment into a Smart-Grid Using Wireless Sensor Networks.

    PubMed

    de Araújo, Paulo Régis C; Filho, Raimir Holanda; Rodrigues, Joel J P C; Oliveira, João P C M; Braga, Stephanie A

    2018-04-24

    At present, the standardisation of electrical equipment communications is on the rise. In particular, manufacturers are releasing equipment for the smart grid endowed with communication protocols such as DNP3, IEC 61850, and MODBUS. However, there are legacy equipment operating in the electricity distribution network that cannot communicate using any of these protocols. Thus, we propose an infrastructure to allow the integration of legacy electrical equipment to smart grids by using wireless sensor networks (WSNs). In this infrastructure, each legacy electrical device is connected to a sensor node, and the sink node runs a middleware that enables the integration of this device into a smart grid based on suitable communication protocols. This middleware performs tasks such as the translation of messages between the power substation control centre (PSCC) and electrical equipment in the smart grid. Moreover, the infrastructure satisfies certain requirements for communication between the electrical equipment and the PSCC, such as enhanced security, short response time, and automatic configuration. The paper’s contributions include a solution that enables electrical companies to integrate their legacy equipment into smart-grid networks relying on any of the above mentioned communication protocols. This integration will reduce the costs related to the modernisation of power substations.

  16. Infrastructure for Integration of Legacy Electrical Equipment into a Smart-Grid Using Wireless Sensor Networks

    PubMed Central

    de Araújo, Paulo Régis C.; Filho, Raimir Holanda; Oliveira, João P. C. M.; Braga, Stephanie A.

    2018-01-01

    At present, the standardisation of electrical equipment communications is on the rise. In particular, manufacturers are releasing equipment for the smart grid endowed with communication protocols such as DNP3, IEC 61850, and MODBUS. However, there are legacy equipment operating in the electricity distribution network that cannot communicate using any of these protocols. Thus, we propose an infrastructure to allow the integration of legacy electrical equipment to smart grids by using wireless sensor networks (WSNs). In this infrastructure, each legacy electrical device is connected to a sensor node, and the sink node runs a middleware that enables the integration of this device into a smart grid based on suitable communication protocols. This middleware performs tasks such as the translation of messages between the power substation control centre (PSCC) and electrical equipment in the smart grid. Moreover, the infrastructure satisfies certain requirements for communication between the electrical equipment and the PSCC, such as enhanced security, short response time, and automatic configuration. The paper’s contributions include a solution that enables electrical companies to integrate their legacy equipment into smart-grid networks relying on any of the above mentioned communication protocols. This integration will reduce the costs related to the modernisation of power substations. PMID:29695099

  17. Preparing to use vehicle infrastructure integration in transportation operations : phase I.

    DOT National Transportation Integrated Search

    2007-01-01

    The close integration of vehicles and the infrastructure in the surface transportation system has been envisioned for years, but recent advances in wireless communications has made such integration feasible. Given this feasibility, a coalition of the...

  18. 802.11 Wireless Infrastructure To Enhance Medical Response to Disasters

    PubMed Central

    Arisoylu, Mustafa; Mishra, Rajesh; Rao, Ramesh; Lenert, Leslie A.

    2005-01-01

    802.11 (WiFi) is a well established network communications protocol that has wide applicability in civil infrastructure. This paper describes research that explores the design of 802.11 networks enhanced to support data communications in disaster environments. The focus of these efforts is to create network infrastructure to support operations by Metropolitan Medical Response System (MMRS) units and Federally-sponsored regional teams that respond to mass casualty events caused by a terrorist attack with chemical, biological, nuclear or radiological weapons or by a hazardous materials spill. In this paper, we describe an advanced WiFi-based network architecture designed to meet the needs of MMRS operations. This architecture combines a Wireless Distribution Systems for peer-to-peer multihop connectivity between access points with flexible and shared access to multiple cellular backhauls for robust connectivity to the Internet. The architecture offers a high bandwidth data communications infrastructure that can penetrate into buildings and structures while also supporting commercial off-the-shelf end-user equipment such as PDAs. It is self-configuring and is self-healing in the event of a loss of a portion of the infrastructure. Testing of prototype units is ongoing. PMID:16778990

  19. Vehicle Infrastructure Integration Proof of Concept Executive Summary – Vehicle Submitted

    DOT National Transportation Integrated Search

    2009-05-19

    This report summarizes a program of work resulting from a Cooperative Agreement between USDOT and the VII Consortium to develop and test a Proof of Concept VII system based on DSRC wireless communication between an infrastructure and mobile terminals...

  20. 1ST International Workshop on Managing Interactions in Smart Environments (MANSE 99)

    DTIC Science & Technology

    1999-12-01

    having diverse functionality. It seems likely that eventually the functionality of PDA’s and mobile phones will be integrated into similar sized devices ...The O’Reilly institute is soon to be wired with sensors and detection devices which will allow wireless communication and interaction with the...on wireless short-range communication. The prototypes are functionally self- contained mobile devices that do not rely on any further infrastructure

  1. Body Area Network BAN--a key infrastructure element for patient-centered medical applications.

    PubMed

    Schmidt, Robert; Norgall, Thomas; Mörsdorf, Joachim; Bernhard, Josef; von der Grün, Thomas

    2002-01-01

    The Body Area Network (BAN) concept enables wireless communication between several miniaturized, intelligent Body Sensor (or actor) Units (BSU) and a single Body Central Unit (BCU) worn at the human body. A separate wireless transmission link from the BCU to a network access point--using different technology--provides for online access to BAN data via usual network infrastructure. BAN is expected to become a basic infrastructure element for service-based electronic health assistance: By integrating patient-attached sensors and control of mobile dedicated actor units, the range of medical workflow can be extended by wireless patient monitoring and therapy support. Beyond clinical use, professional disease management environments, and private personal health assistance scenarios (without financial reimbursement by health agencies/insurance companies), BAN enables a wide range of health care applications and related services.

  2. The Economic and Risk Constraints in the Feasibility Analysis of Wireless Communications in Marine Corps Combat Operation Centers

    DTIC Science & Technology

    2013-09-01

    attacker can acquire and use against a wireless infrastructure. Wireless attack tool kits such as the “ Raspberry – PI ” (shown in Figure 10), and...still use a tool such as the Raspberry – PI to perform attacks against a network from outside the controlled area or even inside the controlled area...when considering an insider attack. Figure 10. (From www.howtodocomputing.blogspot.com, n.d.) Wireless – PI is “a collection of pre-configured

  3. Virginia connected vehicle test bed system performance (V2I system performance) : final report.

    DOT National Transportation Integrated Search

    2016-05-01

    This project identified vehicle-to-infrastructure (V2I) communication system limitations on the Northern Virginia Connected Vehicle Test Bed. Real-world historical data were analyzed to determine wireless Dedicated Short Range Communication (DSRC) co...

  4. Interoperability and security in wireless body area network infrastructures.

    PubMed

    Warren, Steve; Lebak, Jeffrey; Yao, Jianchu; Creekmore, Jonathan; Milenkovic, Aleksandar; Jovanov, Emil

    2005-01-01

    Wireless body area networks (WBANs) and their supporting information infrastructures offer unprecedented opportunities to monitor state of health without constraining the activities of a wearer. These mobile point-of-care systems are now realizable due to the convergence of technologies such as low-power wireless communication standards, plug-and-play device buses, off-the-shelf development kits for low-power microcontrollers, handheld computers, electronic medical records, and the Internet. To increase acceptance of personal monitoring technology while lowering equipment cost, advances must be made in interoperability (at both the system and device levels) and security. This paper presents an overview of WBAN infrastructure work in these areas currently underway in the Medical Component Design Laboratory at Kansas State University (KSU) and at the University of Alabama in Huntsville (UAH). KSU efforts include the development of wearable health status monitoring systems that utilize ISO/IEEE 11073, Bluetooth, Health Level 7, and OpenEMed. WBAN efforts at UAH include the development of wearable activity and health monitors that incorporate ZigBee-compliant wireless sensor platforms with hardware-level encryption and the TinyOS development environment. WBAN infrastructures are complex, requiring many functional support elements. To realize these infrastructures through collaborative efforts, organizations such as KSU and UAH must define and utilize standard interfaces, nomenclature, and security approaches.

  5. U29: commercial vehicle secure network for safety and mobility applications final report.

    DOT National Transportation Integrated Search

    2011-09-01

    The main objective of this project is to develop a secure, reliable, high throughput and integrated wireless network for Vehicle-To-Vehicle (V2V), Vehicle-To-Infrastructure (V2I) and intra-vehicle communications. Novel techniques and communication pr...

  6. New approach to enhance and evaluate the performance of vehicle-infrastructure integration and its communication systems, final report.

    DOT National Transportation Integrated Search

    2010-09-01

    Initial research studied the use of wireless local area networks (WLAN) protocols in Inter-Vehicle Communications : (IVC) environments. The protocols performance was evaluated in terms of measuring throughput, jitter time and : delay time. This re...

  7. Body area network--a key infrastructure element for patient-centered telemedicine.

    PubMed

    Norgall, Thomas; Schmidt, Robert; von der Grün, Thomas

    2004-01-01

    The Body Area Network (BAN) extends the range of existing wireless network technologies by an ultra-low range, ultra-low power network solution optimised for long-term or continuous healthcare applications. It enables wireless radio communication between several miniaturised, intelligent Body Sensor (or actor) Units (BSU) and a single Body Central Unit (BCU) worn at the human body. A separate wireless transmission link from the BCU to a network access point--using different technology--provides for online access to BAN components via usual network infrastructure. The BAN network protocol maintains dynamic ad-hoc network configuration scenarios and co-existence of multiple networks.BAN is expected to become a basic infrastructure element for electronic health services: By integrating patient-attached sensors and mobile actor units, distributed information and data processing systems, the range of medical workflow can be extended to include applications like wireless multi-parameter patient monitoring and therapy support. Beyond clinical use and professional disease management environments, private personal health assistance scenarios (without financial reimbursement by health agencies / insurance companies) enable a wide range of applications and services in future pervasive computing and networking environments.

  8. Heterogeneous Wireless Networks for Smart Grid Distribution Systems: Advantages and Limitations.

    PubMed

    Khalifa, Tarek; Abdrabou, Atef; Shaban, Khaled; Gaouda, A M

    2018-05-11

    Supporting a conventional power grid with advanced communication capabilities is a cornerstone to transferring it to a smart grid. A reliable communication infrastructure with a high throughput can lay the foundation towards the ultimate objective of a fully automated power grid with self-healing capabilities. In order to realize this objective, the communication infrastructure of a power distribution network needs to be extended to cover all substations including medium/low voltage ones. This shall enable information exchange among substations for a variety of system automation purposes with a low latency that suits time critical applications. This paper proposes the integration of two heterogeneous wireless technologies (such as WiFi and cellular 3G/4G) to provide reliable and fast communication among primary and secondary distribution substations. This integration allows the transmission of different data packets (not packet replicas) over two radio interfaces, making these interfaces act like a one data pipe. Thus, the paper investigates the applicability and effectiveness of employing heterogeneous wireless networks (HWNs) in achieving the desired reliability and timeliness requirements of future smart grids. We study the performance of HWNs in a realistic scenario under different data transfer loads and packet loss ratios. Our findings reveal that HWNs can be a viable data transfer option for smart grids.

  9. Heterogeneous Wireless Networks for Smart Grid Distribution Systems: Advantages and Limitations

    PubMed Central

    Khalifa, Tarek; Abdrabou, Atef; Gaouda, A. M.

    2018-01-01

    Supporting a conventional power grid with advanced communication capabilities is a cornerstone to transferring it to a smart grid. A reliable communication infrastructure with a high throughput can lay the foundation towards the ultimate objective of a fully automated power grid with self-healing capabilities. In order to realize this objective, the communication infrastructure of a power distribution network needs to be extended to cover all substations including medium/low voltage ones. This shall enable information exchange among substations for a variety of system automation purposes with a low latency that suits time critical applications. This paper proposes the integration of two heterogeneous wireless technologies (such as WiFi and cellular 3G/4G) to provide reliable and fast communication among primary and secondary distribution substations. This integration allows the transmission of different data packets (not packet replicas) over two radio interfaces, making these interfaces act like a one data pipe. Thus, the paper investigates the applicability and effectiveness of employing heterogeneous wireless networks (HWNs) in achieving the desired reliability and timeliness requirements of future smart grids. We study the performance of HWNs in a realistic scenario under different data transfer loads and packet loss ratios. Our findings reveal that HWNs can be a viable data transfer option for smart grids. PMID:29751633

  10. Spectral and spatial characterization of perfluorinated graded-index polymer optical fibers for the distribution of optical wireless communication cells.

    PubMed

    Hajjar, Hani Al; Montero, David S; Lallana, Pedro C; Vázquez, Carmen; Fracasso, Bruno

    2015-02-10

    In this paper, the characterization of a perfluorinated graded-index polymer optical fiber (PF-GIPOF) for a high-bitrate indoor optical wireless system is reported. PF-GIPOF is used here to interconnect different optical wireless access points that distribute optical free-space high-bitrate wireless communication cells. The PF-GIPOF channel is first studied in terms of transmission attenuation and frequency response and, in a second step, the spatial power profile distribution at the fiber output is analyzed. Both characterizations are performed under varying restricted mode launch conditions, enabling us to assess the transmission channel performance subject to potential connectorization errors within an environment where the end users may intervene by themselves on the home network infrastructure.

  11. Transit connected vehicle research program.

    DOT National Transportation Integrated Search

    2011-01-01

    Connected vehicles have the potential to transform the way Americans travel through the creation of a safe, : interoperable wireless communications network that links cars, buses, trucks, trains, transportation infrastructure, : and personal mobile d...

  12. 47 CFR 0.131 - Functions of the Bureau.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... infrastructure and the integration of wireless communications networks into the public telecommunications network...) Exercises such authority as may be assigned, delegated or referred to it by the Commission. (m) Certifies...

  13. Ensuring the security and availability of a hospital wireless LAN system.

    PubMed

    Hanada, Eisuke; Kudou, Takato; Tsumoto, Shusaku

    2013-01-01

    Wireless technologies as part of the data communication infrastructure of modern hospitals are being rapidly introduced. Even though there are concerns about problems associated with wireless communication security, the demand is remarkably large. Herein we discuss security countermeasures that must be taken and issues concerning availability that must be considered to ensure safe hospital/business use of wireless LAN systems, referring to the procedures introduced at a university hospital. Security countermeasures differ according to their purpose, such as preventing illegal use or ensuring availability, both of which are discussed. The main focus of the availability discussion is on signal reach, electromagnetic noise elimination, and maintaining power supply to the network apparatus. It is our hope that this information will assist others in their efforts to ensure safe implementation of wireless LAN systems, especially in hospitals where they have the potential to greatly improve information sharing and patient safety.

  14. Connected vehicles and cybersecurity.

    DOT National Transportation Integrated Search

    2016-01-01

    Connected vehicles are a next-generation technology in vehicles and in infrastructure that will make travel safer, cleaner, and more efficient. The advanced wireless technology enables vehicles to share and communicate information with each other and...

  15. Investigating end-to-end security in the fifth generation wireless capabilities and IoT extensions

    NASA Astrophysics Data System (ADS)

    Uher, J.; Harper, J.; Mennecke, R. G.; Patton, P.; Farroha, B.

    2016-05-01

    The emerging 5th generation wireless network will be architected and specified to meet the vision of allowing the billions of devices and millions of human users to share spectrum to communicate and deliver services. The expansion of wireless networks from its current role to serve these diverse communities of interest introduces new paradigms that require multi-tiered approaches. The introduction of inherently low security components, like IoT devices, necessitates that critical data be better secured to protect the networks and users. Moreover high-speed communications that are meant to enable the autonomous vehicles require ultra reliable and low latency paths. This research explores security within the proposed new architectures and the cross interconnection of the highly protected assets with low cost/low security components forming the overarching 5th generation wireless infrastructure.

  16. Transit aspects of the connected vehicle research program.

    DOT National Transportation Integrated Search

    2014-01-01

    The U.S. Department of Transportations (USDOTs) Connected Vehicle Research Program is examining how wireless technology can enable vehicles to communicate with each other and with the infrastructure around them. This connected vehicle technolog...

  17. Wireless Broadband Communications Systems in Rural Wisconsin. Rural Research Report. Volume 19, Issue 1, Spring 2008

    ERIC Educational Resources Information Center

    Schlager, Kenneth J.

    2008-01-01

    This report describes a communications system engineering planning process that demonstrates an ability to design and deploy cost-effective broadband networks in low density rural areas. The emphasis in on innovative solutions and systems optimization because of the marginal nature of rural telecommunications infrastructure investments. Otherwise,…

  18. High-speed digital wireless battlefield network

    NASA Astrophysics Data System (ADS)

    Dao, Son K.; Zhang, Yongguang; Shek, Eddie C.; van Buer, Darrel

    1999-07-01

    In the past two years, the Digital Wireless Battlefield Network consortium that consists of HRL Laboratories, Hughes Network Systems, Raytheon, and Stanford University has participated in the DARPA TRP program to leverage the efforts in the development of commercial digital wireless products for use in the 21st century battlefield. The consortium has developed an infrastructure and application testbed to support the digitized battlefield. The consortium has implemented and demonstrated this network system. Each member is currently utilizing many of the technology developed in this program in commercial products and offerings. These new communication hardware/software and the demonstrated networking features will benefit military systems and will be applicable to the commercial communication marketplace for high speed voice/data multimedia distribution services.

  19. Modeling, Simulation and Analysis of Public Key Infrastructure

    NASA Technical Reports Server (NTRS)

    Liu, Yuan-Kwei; Tuey, Richard; Ma, Paul (Technical Monitor)

    1998-01-01

    Security is an essential part of network communication. The advances in cryptography have provided solutions to many of the network security requirements. Public Key Infrastructure (PKI) is the foundation of the cryptography applications. The main objective of this research is to design a model to simulate a reliable, scalable, manageable, and high-performance public key infrastructure. We build a model to simulate the NASA public key infrastructure by using SimProcess and MatLab Software. The simulation is from top level all the way down to the computation needed for encryption, decryption, digital signature, and secure web server. The application of secure web server could be utilized in wireless communications. The results of the simulation are analyzed and confirmed by using queueing theory.

  20. High Fidelity Simulations of Large-Scale Wireless Networks (Plus-Up)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Onunkwo, Uzoma

    Sandia has built a strong reputation in scalable network simulation and emulation for cyber security studies to protect our nation’s critical information infrastructures. Georgia Tech has preeminent reputation in academia for excellence in scalable discrete event simulations, with strong emphasis on simulating cyber networks. Many of the experts in this field, such as Dr. Richard Fujimoto, Dr. George Riley, and Dr. Chris Carothers, have strong affiliations with Georgia Tech. The collaborative relationship that we intend to immediately pursue is in high fidelity simulations of practical large-scale wireless networks using ns-3 simulator via Dr. George Riley. This project will have mutualmore » benefits in bolstering both institutions’ expertise and reputation in the field of scalable simulation for cyber-security studies. This project promises to address high fidelity simulations of large-scale wireless networks. This proposed collaboration is directly in line with Georgia Tech’s goals for developing and expanding the Communications Systems Center, the Georgia Tech Broadband Institute, and Georgia Tech Information Security Center along with its yearly Emerging Cyber Threats Report. At Sandia, this work benefits the defense systems and assessment area with promise for large-scale assessment of cyber security needs and vulnerabilities of our nation’s critical cyber infrastructures exposed to wireless communications.« less

  1. Wireless Infrastructure for Performing Monitoring, Diagnostics, and Control HVAC and Other Energy-Using Systems in Small Commercial Buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patrick O'Neill

    This project focused on developing a low-cost wireless infrastructure for monitoring, diagnosing, and controlling building systems and equipment. End users receive information via the Internet and need only a web browser and Internet connection. The system used wireless communications for: (1) collecting data centrally on site from many wireless sensors installed on building equipment, (2) transmitting control signals to actuators and (3) transmitting data to an offsite network operations center where it is processed and made available to clients on the Web (see Figure 1). Although this wireless infrastructure can be applied to any building system, it was tested onmore » two representative applications: (1) monitoring and diagnostics for packaged rooftop HVAC units used widely on small commercial buildings and (2) continuous diagnosis and control of scheduling errors such as lights and equipment left on during unoccupied hours. This project developed a generic infrastructure for performance monitoring, diagnostics, and control, applicable to a broad range of building systems and equipment, but targeted specifically to small to medium commercial buildings (an underserved market segment). The proposed solution is based on two wireless technologies. The first, wireless telemetry, is used for cell phones and paging and is reliable and widely available. This risk proved to be easily managed during the project. The second technology is on-site wireless communication for acquiring data from sensors and transmitting control signals. The technology must enable communication with many nodes, overcome physical obstructions, operate in environments with other electrical equipment, support operation with on-board power (instead of line power) for some applications, operate at low transmission power in license-free radio bands, and be low cost. We proposed wireless mesh networking to meet these needs. This technology is relatively new and has been applied only in research and tests. This proved to be a major challenge for the project and was ultimately abandoned in favor of a directly wired solution for collecting sensor data at the building. The primary reason for this was the relatively short ranges at which we were able to effectively place the sensor nodes from the central receiving unit. Several different mesh technologies were attempted with similar results. Two hardware devices were created during the original performance period of the project. The first device, the WEB-MC, is a master control unit that has two radios, a CPU, memory, and serves as the central communications device for the WEB-MC System (Currently called the 'BEST Wireless HVAC Maintenance System' as a tentative commercial product name). The WEB-MC communicates with the local mesh network system via one of its antennas. Communication with the mesh network enables the WEB-MC to configure the network, send/receive data from individual motes, and serves as the primary mechanism for collecting sensor data at remote locations. The second antenna enables the WEB-MC to connect to a cellular network ('Long-Haul Communications') to transfer data to and from the NorthWrite Network Operations Center (NOC). A third 'all-in-one' hardware solution was created after the project was extended (Phase 2) and additional resources were provided. The project team leveraged a project funded by the State of Washington to develop a hardware solution that integrated the functionality of the original two devices. The primary reason for this approach was to eliminate the mesh network technical difficulties that severely limited the functionality of the original hardware approach. There were five separate software developments required to deliver the functionality needed for this project. These include the Data Server (or Network Operations Center), Web Application, Diagnostic Software, WEB-MC Embedded Software, Mote Embedded Software. Each of these developments was necessarily dependent on the others. This resulted in a challenging management task - requiring high bandwidth communications among all the team members. Fortunately, the project team performed exceptionally well together and was able to work through the various challenges that this presented - for example, when one software tool required a detailed description of the output of a second tool, before that tool had been fully designed.« less

  2. Application of wireless networks-peer-to-peer information sharing

    NASA Astrophysics Data System (ADS)

    ellappan, Vijayan; chaki, suchismita; kumar, avn

    2017-11-01

    Peer to Peer communications and its applications have gotten to be ordinary construction modelling in the wired network environment. But then, they have not been successfully adjusted with the wireless environment. Unlike the traditional client-server framework, in a P2P framework, each node can play the role of client as well as server simultaneously and exchange data or information with others. We aim to design an application which can adapt to the wireless ad-hoc networks. Peer to Peer communication can help people to share their files (information, image, audio, video and so on) and communicate with each other without relying on a particular network infrastructure or limited data usage. Here there is a central server with the help of which, the peers will have the capability to get the information about the other peers in the network. Indeed, even without the Internet, devices have the potential to allow users to connect and communicate in a special way through short range remote protocols such Wi-Fi.

  3. Bluetooth Low Energy: Wireless Connectivity for Medical Monitoring

    PubMed Central

    Omre, Alf Helge

    2010-01-01

    Electronic wireless sensors could cut medical costs by enabling physicians to remotely monitor vital signs such as blood pressure, blood glucose, and blood oxygenation while patients remain at home. According to the IDC report “Worldwide Bluetooth Semiconductor 2008-2012 Forecast,” published November 2008, a forthcoming radio frequency communication (“wireless connectivity”) standard, Bluetooth low energy, will link wireless sensors via radio signals to the 70% of cell phones and computers likely to be fitted with the next generation of Bluetooth wireless technology, leveraging a ready-built infrastructure for data transmission. Analysis of trends indicated by this data can help physicians better manage diseases such as diabetes. The technology also addresses the concerns of cost, compatibility, and interoperability that have previously stalled widespread adoption of wireless technology in medical applications. PMID:20307407

  4. Bluetooth low energy: wireless connectivity for medical monitoring.

    PubMed

    Omre, Alf Helge

    2010-03-01

    Electronic wireless sensors could cut medical costs by enabling physicians to remotely monitor vital signs such as blood pressure, blood glucose, and blood oxygenation while patients remain at home. According to the IDC report "Worldwide Bluetooth Semiconductor 2008-2012 Forecast," published November 2008, a forthcoming radio frequency communication ("wireless connectivity") standard, Bluetooth low energy, will link wireless sensors via radio signals to the 70% of cell phones and computers likely to be fitted with the next generation of Bluetooth wireless technology, leveraging a ready-built infrastructure for data transmission. Analysis of trends indicated by this data can help physicians better manage diseases such as diabetes. The technology also addresses the concerns of cost, compatibility, and interoperability that have previously stalled widespread adoption of wireless technology in medical applications. (c) 2010 Diabetes Technology Society.

  5. Using Wireless Sensor Networks and Trains as Data Mules to Monitor Slab Track Infrastructures.

    PubMed

    Cañete, Eduardo; Chen, Jaime; Díaz, Manuel; Llopis, Luis; Reyna, Ana; Rubio, Bartolomé

    2015-06-26

    Recently, slab track systems have arisen as a safer and more sustainable option for high speed railway infrastructures, compared to traditional ballasted tracks. Integrating Wireless Sensor Networks within these infrastructures can provide structural health related data that can be used to evaluate their degradation and to not only detect failures but also to predict them. The design of such systems has to deal with a scenario of large areas with inaccessible zones, where neither Internet coverage nor electricity supply is guaranteed. In this paper we propose a monitoring system for slab track systems that measures vibrations and displacements in the track. Collected data is transmitted to passing trains, which are used as data mules to upload the information to a remote control center. On arrival at the station, the data is stored in a database, which is queried by an application in order to detect and predict failures. In this paper, different communication architectures are designed and tested to select the most suitable system meeting such requirements as efficiency, low cost and data accuracy. In addition, to ensure communication between the sensing devices and the train, the communication system must take into account parameters such as train speed, antenna coverage, band and frequency.

  6. Using Wireless Sensor Networks and Trains as Data Mules to Monitor Slab Track Infrastructures

    PubMed Central

    Cañete, Eduardo; Chen, Jaime; Díaz, Manuel; Llopis, Luis; Reyna, Ana; Rubio, Bartolomé

    2015-01-01

    Recently, slab track systems have arisen as a safer and more sustainable option for high speed railway infrastructures, compared to traditional ballasted tracks. Integrating Wireless Sensor Networks within these infrastructures can provide structural health related data that can be used to evaluate their degradation and to not only detect failures but also to predict them. The design of such systems has to deal with a scenario of large areas with inaccessible zones, where neither Internet coverage nor electricity supply is guaranteed. In this paper we propose a monitoring system for slab track systems that measures vibrations and displacements in the track. Collected data is transmitted to passing trains, which are used as data mules to upload the information to a remote control center. On arrival at the station, the data is stored in a database, which is queried by an application in order to detect and predict failures. In this paper, different communication architectures are designed and tested to select the most suitable system meeting such requirements as efficiency, low cost and data accuracy. In addition, to ensure communication between the sensing devices and the train, the communication system must take into account parameters such as train speed, antenna coverage, band and frequency. PMID:26131668

  7. Acemind new indoor full duplex optical wireless communication prototype

    NASA Astrophysics Data System (ADS)

    Bouchet, Olivier; Perrufel, Micheline; Topsu, Suat; Guan, Hongyu

    2016-09-01

    For over a century and Mr. Guglielmo Marconi invention, systems using radio waves have controlled over wireless telecommunication solutions; from Amplitude Modulation (AM) radio products to satellite communications for instance. But beyond an increasingly negative opinion face to radio waves and radio spectrum availability more and more reduced; there is an unprecedented opportunity with LED installation in displays and lighting to provide optical wireless communication solutions. As a result, technologically mature solutions are already commercially available for services such as Location Based Services (LBS), broadcast diffusion or Intelligent Transport Services (ITS). Pending finalization of the standard review process IEEE 802.15.7 r1, our paper presents the results of the European collaborative project named "ACEMIND". It offers an indoor bilateral optical wireless communication prototype having the following characteristics: use of the existing electrical infrastructure, through judicious combination with Light Fidelity (LiFi), Power Line Communication (PLC) and Ethernet to reduce the implementation cost. We propose a bilateral optical wireless communication even when the light is switched off by using Visible Light Communication (VLC) and Infra-Red Communication (IRC) combined to a remote optical switch. Dimensionally optimized LiFi module is presented in order to offer the possibility for integration inside a laptop. Finally, there is operational mechanism implementation such as OFDM/DMT to increase throughput. After the introduction, we will present the results of a market study from Orange Labs customers about their opinion on LiFi components. Then we will detail the LiFi prototype, from the physical layer aspect to MAC layer before concluding on commercial development prospects.

  8. SITRUS: Semantic Infrastructure for Wireless Sensor Networks

    PubMed Central

    Bispo, Kalil A.; Rosa, Nelson S.; Cunha, Paulo R. F.

    2015-01-01

    Wireless sensor networks (WSNs) are made up of nodes with limited resources, such as processing, bandwidth, memory and, most importantly, energy. For this reason, it is essential that WSNs always work to reduce the power consumption as much as possible in order to maximize its lifetime. In this context, this paper presents SITRUS (semantic infrastructure for wireless sensor networks), which aims to reduce the power consumption of WSN nodes using ontologies. SITRUS consists of two major parts: a message-oriented middleware responsible for both an oriented message communication service and a reconfiguration service; and a semantic information processing module whose purpose is to generate a semantic database that provides the basis to decide whether a WSN node needs to be reconfigurated or not. In order to evaluate the proposed solution, we carried out an experimental evaluation to assess the power consumption and memory usage of WSN applications built atop SITRUS. PMID:26528974

  9. Wireless technologies for the monitoring of strategic civil infrastructures: an ambient vibration test of the Faith Bridge, Istanbul, Turkey

    NASA Astrophysics Data System (ADS)

    Picozzi, M.; Milkereit, C.; Zulfikar, C.; Ditommaso, R.; Erdik, M.; Safak, E.; Fleming, K.; Ozel, O.; Zschau, J.; Apaydin, N.

    2008-12-01

    The monitoring of strategic civil infrastructures to ensure their structural integrity is a task of major importance, especially in earthquake-prone areas. Classical approaches to such monitoring are based on visual inspections and the use of wired systems. While the former has the drawback that the structure is only superficially examined and discontinuously in time, wired systems are relatively expensive and time consuming to install. Today, however, wireless systems represent an advanced, easily installed and operated tool to be used for monitoring purposes, resulting in a wide and interesting range of possible applications. Within the framework of the earthquake early warning projects SAFER (Seismic eArly warning For EuRope) and EDIM (Earthquake Disaster Information systems for the Marmara Sea region, Turkey), new low-cost wireless sensors with the capability to automatically rearrange their communications scheme are being developed. The reduced sensitivity of these sensors, arising from the use of low-cost components, is compensated by the possibility of deploying high-density self-organizing networks performing real-time data acquisition and analysis. Thanks to the developed system's versatility, it has been possible to perform an experimental ambient vibration test with a network of 24 sensors on the Fatih Sultan Mehmet Bridge, Istanbul (Turkey), a gravity-anchored suspension bridge spanning the Bosphorus Strait with distance between its towers of 1090 m. Preliminary analysis of the data has demonstrated that the main modal properties of the bridge can be retrieved, and may therefore be regularly re-evaluated as part of a long-term monitoring program. Using a multi-hop communications technique, data could be exchanged among groups of sensors over distances of a few hundred meters. Thus, the test showed that, although more work is required to optimize the communication parameters, the performance of the network offers encouragement for us to follow this research direction in developing wireless systems for the monitoring of civil infrastructures.

  10. Eliminating sun glare disturbance at signalized intersections by a vehicle to infrastructure wireless communication : final report.

    DOT National Transportation Integrated Search

    2016-05-01

    Due to sun glare disturbances, drivers may encounter fatal threats on roadways, particularly at signalized intersections. Many studies have attempted to develop applicable solutions, such as avoiding sun positions, road geometric redirections, and we...

  11. Technical consultation on the use of satellite communications for remote monitoring of field instrumentation systems.

    DOT National Transportation Integrated Search

    2011-01-01

    The increasing emphasis on the maintenance of existing infrastructure systems have led to : greater use of advanced sensors and condition monitoring systems. Wireless sensors and : sensor networks are emerging as sensing paradigms that the structural...

  12. Cyber Infrastructure Protection

    DTIC Science & Technology

    2011-05-01

    274 TOWARD A SOLUTION THAT WORKS Building on our long history of involvement in assuring all types of communications networks, Tel- cordia has...wireless, and security areas. He currently has responsibility for a new Tel- cordia software product in IP network management, and has led all product

  13. Wireless Communications Infrastructure for Collaboration in Common Space

    DTIC Science & Technology

    2004-03-01

    creation tools accessible to a broad range of computer graphics professionals in the film, broadcast, industrial design, visualization, game ... development and web design industries. It is one of the leading full 3D production solutions. Maya Complete is available for Windows 2000 Professional

  14. 47 CFR 10.210 - WEA participation election procedures.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Section 10.210 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL WIRELESS EMERGENCY ALERTS... requirements implemented by the Commission; and (2) Commits to support the development and deployment of technology for the “C” interface, the CMS provider Gateway, the CMS provider infrastructure, and mobile...

  15. 47 CFR 10.210 - WEA participation election procedures.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Section 10.210 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL WIRELESS EMERGENCY ALERTS... requirements implemented by the Commission; and (2) Commits to support the development and deployment of technology for the “C” interface, the CMS provider Gateway, the CMS provider infrastructure, and mobile...

  16. Wireless intelligent network: infrastructure before services?

    NASA Astrophysics Data System (ADS)

    Chu, Narisa N.

    1996-01-01

    The Wireless Intelligent Network (WIN) intends to take advantage of the Advanced Intelligent Network (AIN) concepts and products developed from wireline communications. However, progress of the AIN deployment has been slow due to the many barriers that exist in the traditional wireline carriers' deployment procedures and infrastructure. The success of AIN has not been truly demonstrated. The AIN objectives and directions are applicable to the wireless industry although the plans and implementations could be significantly different. This paper points out WIN characteristics in architecture, flexibility, deployment, and value to customers. In order to succeed, the technology driven AIN concept has to be reinforced by the market driven WIN services. An infrastructure suitable for the WIN will contain elements that are foreign to the wireline network. The deployment process is expected to seed with the revenue generated services. Standardization will be achieved by simplifying and incorporating the IS-41C, AIN, and Intelligent Network CS-1 recommendations. Integration of the existing and future systems impose the biggest challenge of all. Service creation has to be complemented with service deployment process which heavily impact the carriers' infrastructure. WIN deployment will likely start from an Intelligent Peripheral, a Service Control Point and migrate to a Service Node when sufficient triggers are implemented in the mobile switch for distributed call control. The struggle to move forward will not be based on technology, but rather on the impact to existing infrastructure.

  17. Impact of network structure on the capacity of wireless multihop ad hoc communication

    NASA Astrophysics Data System (ADS)

    Krause, Wolfram; Glauche, Ingmar; Sollacher, Rudolf; Greiner, Martin

    2004-07-01

    As a representative of a complex technological system, the so-called wireless multihop ad hoc communication networks are discussed. They represent an infrastructure-less generalization of todays wireless cellular phone networks. Lacking a central control authority, the ad hoc nodes have to coordinate themselves such that the overall network performs in an optimal way. A performance indicator is the end-to-end throughput capacity. Various models, generating differing ad hoc network structure via differing transmission power assignments, are constructed and characterized. They serve as input for a generic data traffic simulation as well as some semi-analytic estimations. The latter reveal that due to the most-critical-node effect the end-to-end throughput capacity sensitively depends on the underlying network structure, resulting in differing scaling laws with respect to network size.

  18. Fine-Tuning ADAS Algorithm Parameters for Optimizing Traffic Safety and Mobility in Connected Vehicle Environment

    EPA Science Inventory

    With the development of Connected Vehicle Technology that facilitates wireless communication among vehicles and road-side infrastructure, the Advanced Driver Assistance Systems (ADAS) can be adopted as an effective tool for accelerating traffic safety and mobility optimization at...

  19. Competition in the domain of wireless networks security

    NASA Astrophysics Data System (ADS)

    Bednarczyk, Mariusz

    2017-04-01

    Wireless networks are very popular and have found wide spread usage amongst various segments, also in military environment. The deployment of wireless infrastructures allow to reduce the time it takes to install and dismantle communications networks. With wireless, users are more mobile and can easily get access to the network resources all the time. However, wireless technologies like WiFi or Bluetooth have security issues that hackers have extensively exploited over the years. In the paper several serious security flaws in wireless technologies are presented. Most of them enable to get access to the internal networks and easily carry out man-in-the-middle attacks. Very often, they are used to launch massive denial of service attacks that target the physical infrastructure as well as the RF spectrum. For instance, there are well known instances of Bluetooth connection spoofing in order to steal WiFi password stored in the mobile device. To raise the security awareness and protect wireless networks against an adversary attack, an analysis of attack methods and tools over time is presented in the article. The particular attention is paid to the severity, possible targets as well as the ability to persist in the context of protective measures. Results show that an adversary can take complete control of the victims' mobile device features if the users forget to use simple safety principles.

  20. Next Generation RFID-Based Medical Service Management System Architecture in Wireless Sensor Network

    NASA Astrophysics Data System (ADS)

    Tolentino, Randy S.; Lee, Kijeong; Kim, Yong-Tae; Park, Gil-Cheol

    Radio Frequency Identification (RFID) and Wireless Sensor Network (WSN) are two important wireless technologies that have wide variety of applications and provide unlimited future potentials most especially in healthcare systems. RFID is used to detect presence and location of objects while WSN is used to sense and monitor the environment. Integrating RFID with WSN not only provides identity and location of an object but also provides information regarding the condition of the object carrying the sensors enabled RFID tag. However, there isn't any flexible and robust communication infrastructure to integrate these devices into an emergency care setting. An efficient wireless communication substrate for medical devices that addresses ad hoc or fixed network formation, naming and discovery, transmission efficiency of data, data security and authentication, as well as filtration and aggregation of vital sign data need to be study and analyze. This paper proposed an efficient next generation architecture for RFID-based medical service management system in WSN that possesses the essential elements of each future medical application that are integrated with existing medical practices and technologies in real-time, remote monitoring, in giving medication, and patient status tracking assisted by embedded wearable wireless sensors which are integrated in wireless sensor network.

  1. Handheld portable real-time tracking and communications device

    DOEpatents

    Wiseman, James M [Albuquerque, NM; Riblett, Jr., Loren E.; Green, Karl L [Albuquerque, NM; Hunter, John A [Albuquerque, NM; Cook, III, Robert N.; Stevens, James R [Arlington, VA

    2012-05-22

    Portable handheld real-time tracking and communications devices include; a controller module, communications module including global positioning and mesh network radio module, data transfer and storage module, and a user interface module enclosed in a water-resistant enclosure. Real-time tracking and communications devices can be used by protective force, security and first responder personnel to provide situational awareness allowing for enhance coordination and effectiveness in rapid response situations. Such devices communicate to other authorized devices via mobile ad-hoc wireless networks, and do not require fixed infrastructure for their operation.

  2. Novel Wireless-Communicating Textiles Made from Multi-Material and Minimally-Invasive Fibers

    PubMed Central

    Gorgutsa, Stepan; Bélanger-Garnier, Victor; Ung, Bora; Viens, Jeff; Gosselin, Benoit; LaRochelle, Sophie; Messaddeq, Younes

    2014-01-01

    The ability to integrate multiple materials into miniaturized fiber structures enables the realization of novel biomedical textile devices with higher-level functionalities and minimally-invasive attributes. In this work, we present novel textile fabrics integrating unobtrusive multi-material fibers that communicate through 2.4 GHz wireless networks with excellent signal quality. The conductor elements of the textiles are embedded within the fibers themselves, providing electrical and chemical shielding against the environment, while preserving the mechanical and cosmetic properties of the garments. These multi-material fibers combine insulating and conducting materials into a well-defined geometry, and represent a cost-effective and minimally-invasive approach to sensor fabrics and bio-sensing textiles connected in real time to mobile communications infrastructures, suitable for a variety of health and life science applications. PMID:25325335

  3. Novel wireless-communicating textiles made from multi-material and minimally-invasive fibers.

    PubMed

    Bélanger-Garnier, Victor; Gorgutsa, Stephan; Ung, Bora; Viens, Jeff; Gosselin, Benoit; LaRochelle, Sophie; Messaddeq, Younes

    2014-01-01

    The ability to integrate multiple materials into miniaturized fiber structures enables the realization of novel biomedical textile devices with higher-level functionalities and minimally-invasive attributes. In this work, we present novel textile fabrics integrating unobtrusive multi-material fibers that communicate through 2.4 GHz wireless networks with excellent signal quality. The conductor elements of the textiles are embedded within the fibers themselves, providing electrical and chemical shielding against the environment, while preserving the mechanical and cosmetic properties of the garments. These multi-material fibers combine insulating and conducting materials into a well-defined geometry, and represent a cost-effective and minimally-invasive approach to sensor fabrics and bio-sensing textiles connected in real time to mobile communications infrastructures, suitable for a variety of health and life science applications.

  4. Novel wireless-communicating textiles made from multi-material and minimally-invasive fibers.

    PubMed

    Gorgutsa, Stepan; Bélanger-Garnier, Victor; Ung, Bora; Viens, Jeff; Gosselin, Benoit; LaRochelle, Sophie; Messaddeq, Younes

    2014-10-16

    The ability to integrate multiple materials into miniaturized fiber structures enables the realization of novel biomedical textile devices with higher-level functionalities and minimally-invasive attributes. In this work, we present novel textile fabrics integrating unobtrusive multi-material fibers that communicate through 2.4 GHz wireless networks with excellent signal quality. The conductor elements of the textiles are embedded within the fibers themselves, providing electrical and chemical shielding against the environment, while preserving the mechanical and cosmetic properties of the garments. These multi-material fibers combine insulating and conducting materials into a well-defined geometry, and represent a cost-effective and minimally-invasive approach to sensor fabrics and bio-sensing textiles connected in real time to mobile communications infrastructures, suitable for a variety of health and life science applications.

  5. Survey of Rural Information Infrastructure Technologies.

    ERIC Educational Resources Information Center

    Allen, Kenneth C.; And Others

    Communication and information technologies can reduce the barriers of distance and space that disadvantage rural areas. This report defines a set of distinct voice, computer, and video telecommunication services; describes several rural information applications that make use of these services; and surveys various wireline and wireless systems and…

  6. Frequency Agile Transceiver for Advanced Vehicle Data Links

    NASA Technical Reports Server (NTRS)

    Freudinger, Lawrence C.; Macias, Filiberto; Cornelius, Harold

    2009-01-01

    Emerging and next-generation test instrumentation increasingly relies on network communication to manage complex and dynamic test scenarios, particularly for uninhabited autonomous systems. Adapting wireless communication infrastructure to accommodate challenging testing needs can benefit from reconfigurable radio technology. Frequency agility is one characteristic of reconfigurable radios that to date has seen only limited progress toward programmability. This paper overviews an ongoing project to validate a promising chipset that performs conversion of RF signals directly into digital data for the wireless receiver and, for the transmitter, converts digital data into RF signals. The Software Configurable Multichannel Transceiver (SCMT) enables four transmitters and four receivers in a single unit, programmable for any frequency band between 1 MHz and 6 GHz.

  7. Progress on the Development of Future Airport Surface Wireless Communications Network

    NASA Technical Reports Server (NTRS)

    Kerczewski, Robert J.; Budinger, James M.; Brooks, David E.; Franklin, Morgan; DeHart, Steve; Dimond, Robert P.; Borden, Michael

    2009-01-01

    Continuing advances in airport surface management and improvements in airport surface safety are required to enable future growth in air traffic throughout the airspace, as airport arrival and departure delays create a major system bottleneck. These airport management and safety advances will be built upon improved communications, navigation, surveillance, and weather sensing, creating an information environment supporting system automation. The efficient movement of the digital data generated from these systems requires an underlying communications network infrastructure to connect data sources with the intended users with the required quality of service. Current airport surface communications consists primarily of buried copper or fiber cable. Safety related communications with mobile airport surface assets occurs over 25 kHz VHF voice and data channels. The available VHF spectrum, already congested in many areas, will be insufficient to support future data traffic requirements. Therefore, a broadband wireless airport surface communications network is considered a requirement for the future airport component of the air transportation system. Progress has been made on defining the technology and frequency spectrum for the airport surface wireless communications network. The development of a test and demonstration facility and the definition of required testing and standards development are now underway. This paper will review the progress and planned future work.

  8. Converged Infrastructure for Emerging Regions - A Research Agenda

    NASA Astrophysics Data System (ADS)

    Chevrollier, Nicolas; Zidbeck, Juha; Ntlatlapa, Ntsibane; Simsek, Burak; Marikar, Achim

    In remote parts of Africa, the lack of energy supply, of wired infrastructure, of trained personnel and the limitation in OPEX and CAPEX impose stringent requirements on the network building blocks that support the communication infrastructure. Consequently, in this promising but untapped market, the research aims at designing and implementing energy-efficient, robust, reliable and affordable wide heterogeneous wireless mesh networks to connect geographically very large areas in a challenged environment. This paper proposes a solution that is aimed at enhancing the usability of Internet services in the harsh target environment and especially how the end-users experience the reliability of these services.

  9. DXBC: a long distance wireless broadband communication system for coastal maritime surveillance applications

    NASA Astrophysics Data System (ADS)

    Vastianos, George E.; Argyreas, Nick D.; Xilouris, Chris K.; Thomopoulos, Stelios C. A.

    2015-05-01

    The field of Homeland Security focuses on the air, land, and sea borders surveillance in order to prevent illegal activities while facilitating lawful travel and trade. The achievement of this goal requires collaboration of complex decentralized systems and services, and transfer of huge amount of information between the remote surveillance areas and the command & control centers. It becomes obvious that the effectiveness of the provided security depends highly on the available communication capabilities between the interconnected areas. Although nowadays the broadband communication between remote places is presumed easy because of the extensive infrastructure inside residential areas, it becomes a real challenge when the required information should be acquired from locations where no infrastructure is available such as mountain or sea areas. The Integrated Systems Lab of NCSR Demokritos within the PERSEUS FP7- SEC-2011-261748 project has developed a wireless broadband telecommunication system that combines different communication channels from subGHz to microwave frequencies and provides secure IP connectivity between sea surveillance vessels and the Command and Control Centers (C3). The system was deployed in Fast Patrol Boats of the Hellenic Coast Guard that are used for maritime surveillance in sea boarders and tested successfully in two demonstration exercises for irregular migration and smuggling scenarios in the Aegean Archipelagos. This paper describes in detail the system architecture in terms of hardware and software and the evaluation measurements of the system communication capabilities.

  10. Wireless local area networking for linking a PC reporting system and PACS: clinical feasibility in emergency reporting.

    PubMed

    Yoshihiro, Akiko; Nakata, Norio; Harada, Junta; Tada, Shimpei

    2002-01-01

    Although local area networks (LANs) are commonplace in hospital-based radiology departments today, wireless LANs are still relatively unknown and untried. A linked wireless reporting system was developed to improve work throughput and efficiency. It allows radiologists, physicians, and technologists to review current radiology reports and images and instantly compare them with reports and images from previous examinations. This reporting system also facilitates creation of teaching files quickly, easily, and accurately. It consists of a Digital Imaging and Communications in Medicine 3.0-based picture archiving and communication system (PACS), a diagnostic report server, and portable laptop computers. The PACS interfaces with magnetic resonance imagers, computed tomographic scanners, and computed radiography equipment. The same kind of functionality is achievable with a wireless LAN as with a wired LAN, with comparable bandwidth but with less cabling infrastructure required. This wireless system is presently incorporated into the operations of the emergency and radiology departments, with future plans calling for applications in operating rooms, outpatient departments, all hospital wards, and intensive care units. No major problems have been encountered with the system, which is in constant use and appears to be quite successful. Copyright RSNA, 2002

  11. Software Configurable Multichannel Transceiver

    NASA Technical Reports Server (NTRS)

    Freudinger, Lawrence C.; Cornelius, Harold; Hickling, Ron; Brooks, Walter

    2009-01-01

    Emerging test instrumentation and test scenarios increasingly require network communication to manage complexity. Adapting wireless communication infrastructure to accommodate challenging testing needs can benefit from reconfigurable radio technology. A fundamental requirement for a software-definable radio system is independence from carrier frequencies, one of the radio components that to date has seen only limited progress toward programmability. This paper overviews an ongoing project to validate the viability of a promising chipset that performs conversion of radio frequency (RF) signals directly into digital data for the wireless receiver and, for the transmitter, converts digital data into RF signals. The Software Configurable Multichannel Transceiver (SCMT) enables four transmitters and four receivers in a single unit the size of a commodity disk drive, programmable for any frequency band between 1 MHz and 6 GHz.

  12. Wireless Sensor Network Quality of Service Improvement on Flooding Attack Condition

    NASA Astrophysics Data System (ADS)

    Hartono, R.; Widyawan; Wibowo, S. B.; Purnomo, A.; Hartatik

    2018-03-01

    There are two methods of building communication using wireless media. The first method is building a base infrastructure as an intermediary between users. Problems that arise on this type of network infrastructure is limited space to build any network physical infrastructure and also the cost factor. The second method is to build an ad hoc network between users who will communicate. On ad hoc network, each user must be willing to send data from source to destination for the occurrence of a communication. One of network protocol in Ad Hoc, Ad hoc on demand Distance Vector (AODV), has the smallest overhead value, easier to adapt to dynamic network and has small control message. One AODV protocol’s drawback is route finding process’ security for sending the data. In this research, AODV protocol is optimized by determining Expanding Ring Search (ERS) best value. Random topology is used with variation in the number of nodes: 25, 50, 75, 100, 125 and 150 with node’s speed of 10m/s in the area of 1000m x 1000m on flooding network condition. Parameters measured are Throughput, Packet Delivery Ratio, Average Delay and Normalized Routing Load. From the test results of AODV protocol optimization with best value of Expanding Ring Search (ERS), throughput increased by 5.67%, packet delivery ratio increased by 5.73%, and as for Normalized Routing Load decreased by 4.66%. ERS optimal value for each node’s condition depending on the number of nodes on the network.

  13. An overview of wireless structural health monitoring for civil structures.

    PubMed

    Lynch, Jerome Peter

    2007-02-15

    Wireless monitoring has emerged in recent years as a promising technology that could greatly impact the field of structural monitoring and infrastructure asset management. This paper is a summary of research efforts that have resulted in the design of numerous wireless sensing unit prototypes explicitly intended for implementation in civil structures. Wireless sensing units integrate wireless communications and mobile computing with sensors to deliver a relatively inexpensive sensor platform. A key design feature of wireless sensing units is the collocation of computational power and sensors; the tight integration of computing with a wireless sensing unit provides sensors with the opportunity to self-interrogate measurement data. In particular, there is strong interest in using wireless sensing units to build structural health monitoring systems that interrogate structural data for signs of damage. After the hardware and the software designs of wireless sensing units are completed, the Alamosa Canyon Bridge in New Mexico is utilized to validate their accuracy and reliability. To improve the ability of low-cost wireless sensing units to detect the onset of structural damage, the wireless sensing unit paradigm is extended to include the capability to command actuators and active sensors.

  14. The first 100 feet: New options for Internet and broadband access. Final report, June 1, 1996--January 31, 1998

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Branscomb, L.; Hurley, D.; Keller, J.

    1998-04-01

    This project was undertaken to explore new options for connecting homes and small businesses to high-speed communications networks, such as the Internet. Fundamental to this inquiry was an interest in looking at options which are newly enabled through changes in technology and regulation, and which go beyond the traditional topdown, centralized model for local access. In particular, the authors focused on opportunities for end-user and community-level investment. This project was intended to investigate the opportunities presented by the decreasing cost of computing and networking platforms, the unbundling of local exchange network elements, and the intelligent endpoints model of networking bestmore » exemplified by the Internet. Do these factors, along with communications technologies such as spread spectrum wireless, digital subscriber line services, and the ability to modulate a communications signal over the electric power line infrastructure, enable new models for end-user investment in intelligent infrastructure as a leverage point for accessing the broadband network? This question was first explored through a two-day conference held at the Freedom Forum in Arlington, Virginia, October 29 and 30, 1996. The workshop addressed issues in the consumer adoption of new communications technologies, use of the electric power line infrastructure, the role of municipalities, and the use of alternative technologies, such as XDSL, satellite, spread spectrum wireless, LMDS, and others. The best of these papers have been further developed, with editorial guidance provided by Harvard, and compiled in the form of a book (The First 100 Feet: New Options for Internet and Broadband Access, Deborah Hurley and James Keller, eds., MIT Press, 1998) to be published as part of the MIT Press Spring 1998 catalogue. A summary of topics covered by the book is given in this report.« less

  15. A Power Planning Algorithm Based on RPL for AMI Wireless Sensor Networks.

    PubMed

    Miguel, Marcio L F; Jamhour, Edgard; Pellenz, Marcelo E; Penna, Manoel C

    2017-03-25

    The advanced metering infrastructure (AMI) is an architecture for two-way communication between electric, gas and water meters and city utilities. The AMI network is a wireless sensor network that provides communication for metering devices in the neighborhood area of the smart grid. Recently, the applicability of a routing protocol for low-power and lossy networks (RPL) has been considered in AMI networks. Some studies in the literature have pointed out problems with RPL, including sub-optimal path selection and instability. In this paper, we defend the viewpoint that careful planning of the transmission power in wireless RPL networks can significantly reduce the pointed problems. This paper presents a method for planning the transmission power in order to assure that, after convergence, the size of the parent set of the RPL nodes is as close as possible to a predefined size. Another important feature is that all nodes in the parent set offer connectivity through links of similar quality.

  16. A Power Planning Algorithm Based on RPL for AMI Wireless Sensor Networks

    PubMed Central

    Miguel, Marcio L. F.; Jamhour, Edgard; Pellenz, Marcelo E.; Penna, Manoel C.

    2017-01-01

    The advanced metering infrastructure (AMI) is an architecture for two-way communication between electric, gas and water meters and city utilities. The AMI network is a wireless sensor network that provides communication for metering devices in the neighborhood area of the smart grid. Recently, the applicability of a routing protocol for low-power and lossy networks (RPL) has been considered in AMI networks. Some studies in the literature have pointed out problems with RPL, including sub-optimal path selection and instability. In this paper, we defend the viewpoint that careful planning of the transmission power in wireless RPL networks can significantly reduce the pointed problems. This paper presents a method for planning the transmission power in order to assure that, after convergence, the size of the parent set of the RPL nodes is as close as possible to a predefined size. Another important feature is that all nodes in the parent set offer connectivity through links of similar quality. PMID:28346339

  17. A two-tiered self-powered wireless monitoring system architecture for bridge health management

    NASA Astrophysics Data System (ADS)

    Kurata, Masahiro; Lynch, Jerome P.; Galchev, Tzeno; Flynn, Michael; Hipley, Patrick; Jacob, Vince; van der Linden, Gwendolyn; Mortazawi, Amir; Najafi, Khalil; Peterson, Rebecca L.; Sheng, Li-Hong; Sylvester, Dennis; Thometz, Edward

    2010-04-01

    Bridges are an important societal resource used to carry vehicular traffic within a transportation network. As such, the economic impact of the failure of a bridge is high; the recent failure of the I-35W Bridge in Minnesota (2007) serves as a poignant example. Structural health monitoring (SHM) systems can be adopted to detect and quantify structural degradation and damage in an affordable and real-time manner. This paper presents a detailed overview of a multi-tiered architecture for the design of a low power wireless monitoring system for large and complex infrastructure systems. The monitoring system architecture employs two wireless sensor nodes, each with unique functional features and varying power demand. At the lowest tier of the system architecture is the ultra-low power Phoenix wireless sensor node whose design has been optimized to draw minimal power during standby. These ultra low-power nodes are configured to communicate their measurements to a more functionally-rich wireless sensor node residing on the second-tier of the monitoring system architecture. While the Narada wireless sensor node offers more memory, greater processing power and longer communication ranges, it also consumes more power during operation. Radio frequency (RF) and mechanical vibration power harvesting is integrated with the wireless sensor nodes to allow them to operate freely for long periods of time (e.g., years). Elements of the proposed two-tiered monitoring system architecture are validated upon an operational long-span suspension bridge.

  18. Assessment of the 802.11g Wireless Protocol for Lunar Surface Communications

    NASA Technical Reports Server (NTRS)

    Chelmins, David T.; Bguyen, Hung D.; Foore, Lawrence R.

    2009-01-01

    Future lunar surface missions supporting the NASA Vision for Space Exploration will rely on wireless networks to transmit voice and data. The ad hoc network architecture is of particular interest since it does not require a complex infrastructure. In this report, we looked at data performance over an ad hoc network with varying distances between Apple AirPort wireless cards. We developed a testing program to transmit data packets at precise times and then monitored the receive time to characterize connection delay, packet loss, and data rate. Best results were received for wireless links of less than 75 ft, and marginally acceptable (25-percent) packet loss was received at 150 ft. It is likely that better results will be obtained on the lunar surface because of reduced radiofrequency interference; however, higher power transmitters or receivers will be needed for significant performance gains.

  19. A reliable low cost integrated wireless sensor network for water quality monitoring and level control system in UAE

    NASA Astrophysics Data System (ADS)

    Abou-Elnour, Ali; Khaleeq, Hyder; Abou-Elnour, Ahmad

    2016-04-01

    In the present work, wireless sensor network and real-time controlling and monitoring system are integrated for efficient water quality monitoring for environmental and domestic applications. The proposed system has three main components (i) the sensor circuits, (ii) the wireless communication system, and (iii) the monitoring and controlling unit. LabView software has been used in the implementation of the monitoring and controlling system. On the other hand, ZigBee and myRIO wireless modules have been used to implement the wireless system. The water quality parameters are accurately measured by the present computer based monitoring system and the measurement results are instantaneously transmitted and published with minimum infrastructure costs and maximum flexibility in term of distance or location. The mobility and durability of the proposed system are further enhanced by fully powering via a photovoltaic system. The reliability and effectiveness of the system are evaluated under realistic operating conditions.

  20. A Timing Estimation Method Based-on Skewness Analysis in Vehicular Wireless Networks.

    PubMed

    Cui, Xuerong; Li, Juan; Wu, Chunlei; Liu, Jian-Hang

    2015-11-13

    Vehicle positioning technology has drawn more and more attention in vehicular wireless networks to reduce transportation time and traffic accidents. Nowadays, global navigation satellite systems (GNSS) are widely used in land vehicle positioning, but most of them are lack precision and reliability in situations where their signals are blocked. Positioning systems base-on short range wireless communication are another effective way that can be used in vehicle positioning or vehicle ranging. IEEE 802.11p is a new real-time short range wireless communication standard for vehicles, so a new method is proposed to estimate the time delay or ranges between vehicles based on the IEEE 802.11p standard which includes three main steps: cross-correlation between the received signal and the short preamble, summing up the correlated results in groups, and finding the maximum peak using a dynamic threshold based on the skewness analysis. With the range between each vehicle or road-side infrastructure, the position of neighboring vehicles can be estimated correctly. Simulation results were presented in the International Telecommunications Union (ITU) vehicular multipath channel, which show that the proposed method provides better precision than some well-known timing estimation techniques, especially in low signal to noise ratio (SNR) environments.

  1. Using Public Network Infrastructures for UAV Remote Sensing in Civilian Security Operations

    DTIC Science & Technology

    2011-03-01

    leveraging public wireless communication networks for UAV-based sensor networks with respect to existing constraints and user requirements...Detection with an Autonomous Micro UAV Mesh Network . In the near future police departments, fire brigades and other homeland security ...UAV-based sensor networks with respect to existing constraints and user requirements. 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION

  2. Mobile Agents for Battlespace Information Exchange

    DTIC Science & Technology

    2013-05-01

    autonomously gather information and coordinate activities (e.g. meetings, e - commerce transactions) on behalf of their owners. Sometime in the...operations where consumer -level infrastructure is not available. The report provides an overview of MA characteristics and follows with a description of...detection for security, telecommunications and the military. With the advent of broadband communication (fixed and wireless) a typical consumer is now

  3. Communication analysis for feedback control of civil infrastructure using cochlea-inspired sensing nodes

    NASA Astrophysics Data System (ADS)

    Peckens, Courtney A.; Cook, Ireana; Lynch, Jerome P.

    2016-04-01

    Wireless sensor networks (WSNs) have emerged as a reliable, low-cost alternative to the traditional wired sensing paradigm. While such networks have made significant progress in the field of structural monitoring, significantly less development has occurred for feedback control applications. Previous work in WSNs for feedback control has highlighted many of the challenges of using this technology including latency in the wireless communication channel and computational inundation at the individual sensing nodes. This work seeks to overcome some of those challenges by drawing inspiration from the real-time sensing and control techniques employed by the biological central nervous system and in particular the mammalian cochlea. A novel bio-inspired wireless sensor node was developed that employs analog filtering techniques to perform time-frequency decomposition of a sensor signal, thus encompassing the functionality of the cochlea. The node then utilizes asynchronous sampling of the filtered signal to compress the signal prior to communication. This bio-inspired sensing architecture is extended to a feedback control application in order to overcome the traditional challenges currently faced by wireless control. In doing this, however, the network experiences high bandwidths of low-significance information exchange between nodes, resulting in some lost data. This study considers the impact of this lost data on the control capabilities of the bio-inspired control architecture and finds that it does not significantly impact the effectiveness of control.

  4. Review of optical wireless communications for data centers

    NASA Astrophysics Data System (ADS)

    Arnon, Shlomi

    2017-10-01

    A data center (DC) is a facility either physical or virtual, for running applications, searching, storage, management and dissemination of information known as cloud computing, which consume a huge amount of energy. A DC includes thousands of servers, communication and storage equipment and a support system including an air conditioning system, security, monitoring equipment and electricity regulator units. Data center operators face the challenges of meeting exponentially increasing demands for network bandwidth without unreasonable increases in operation and infrastructure cost. In order to meet the requirements of moderate increase in operation and infrastructure cost technology, a revolution is required. One way to overcome the shortcomings of traditional static (wired) data center architectures is use of a hybrid network based on fiber and optical wireless communication (OWC) or free space optics (FSO). The OWC link could be deployed on top of the existing cable/fiber network layer, so that live migration could be done easily and dynamically. In that case the network topology is flexible and adapts quickly to changes in traffic, heat distribution, power consumption and characteristics of the applications. In addition, OWC could provide an easy way to maintain and scale up data centers. As a result total cost of ownership could be reduced and the return on investment could be increased. In this talk we will review the main OWC technologies applicable for data centers, indicate how energy could be saved using OWC multichannel communication and discuss the issue of OWC pointing accuracy for data center scenario.

  5. Emerging Communication Technologies (ECT) Phase 3 Final Report

    NASA Technical Reports Server (NTRS)

    Bastin, Gary L.; Harris, William G.; Bates, Lakesha D.; Nelson, Richard A.

    2004-01-01

    The Emerging Communication Technology (ECT) project investigated three First Mile communication technologies in support of NASA s Second Generation Reusable Launch Vehicle (2nd Gen RLV), Orbital Space Plane, Advanced Range Technology Working Group (ARTWG) and the Advanced Spaceport Technology Working Group (ASTWG). These First Mile technologies have the purpose of interconnecting mobile users with existing Range Communication infrastructures. ECT was a continuation of the Range Information System Management (RISM) task started in 2002. RISM identified the three advance communication technologies investigated under ECT. These were Wireless Ethernet (Wi-Fi), Free Space Optics (FSO), and Ultra Wideband (UWB). Due to the report s size, it has been broken into three volumes: 1) Main Report 2) Appendices 3) UWB.

  6. 10Gbps 2D MGC OCDMA Code over FSO Communication System

    NASA Astrophysics Data System (ADS)

    Professor Urmila Bhanja, Associate, Dr.; Khuntia, Arpita; Alamasety Swati, (Student

    2017-08-01

    Currently, wide bandwidth signal dissemination along with low latency is a leading requisite in various applications. Free space optical wireless communication has introduced as a realistic technology for bridging the gap in present high data transmission fiber connectivity and as a provisional backbone for rapidly deployable wireless communication infrastructure. The manuscript highlights on the implementation of 10Gbps SAC-OCDMA FSO communications using modified two dimensional Golomb code (2D MGC) that possesses better auto correlation, minimum cross correlation and high cardinality. A comparison based on pseudo orthogonal (PSO) matrix code and modified two dimensional Golomb code (2D MGC) is developed in the proposed SAC OCDMA-FSO communication module taking different parameters into account. The simulative outcome signifies that the communication radius is bounded by the multiple access interference (MAI). In this work, a comparison is made in terms of bit error rate (BER), and quality factor (Q) based on modified two dimensional Golomb code (2D MGC) and PSO matrix code. It is observed that the 2D MGC yields better results compared to the PSO matrix code. The simulation results are validated using optisystem version 14.

  7. Development of Arduino based wireless control system

    NASA Astrophysics Data System (ADS)

    Sun, Zhuoxiong; Dyke, Shirley J.; Pena, Francisco; Wilbee, Alana

    2015-03-01

    Over the past few decades, considerable attention has been given to structural control systems to mitigate structural vibration under natural hazards such as earthquakes and extreme weather conditions. Traditional wired structural control systems often employ a large amount of cables for communication among sensors, controllers and actuators. In such systems, implementation of wired sensors is usually quite complicated and expensive, especially on large scale structures such as bridges and buildings. To reduce the laborious installation and maintenance cost, wireless control systems (WCSs) are considered as a novel approach for structural vibration control. In this work, a WCS is developed based on the open source Arduino platform. Low cost, low power wireless sensing and communication components are built on the Arduino platform. Structural control algorithms are embedded within the wireless sensor board for feedback control. The developed WCS is first validated through a series of tests. Next, numerical simulations are performed simulating wireless control of a 3-story shear structure equipped with a semi-active control device (MR damper). Finally, experimental studies are carried out implementing the WCS on the 3-story shear structure in the Intelligent Infrastructure Systems Lab (IISL). A hydraulic shake table is used to generate seismic ground motions. The control performance is evaluated with the impact of modeling uncertainties, measurement noises as well as time delay and data loss induced by the wireless network. The developed WCS is shown to be effective in controlling structural vibrations under several historical earthquake ground motions.

  8. FPGA implementation cost and performance evaluation of IEEE 802.11 protocol encryption security schemes

    NASA Astrophysics Data System (ADS)

    Sklavos, N.; Selimis, G.; Koufopavlou, O.

    2005-01-01

    The explosive growth of internet and consumer demand for mobility has fuelled the exponential growth of wireless communications and networks. Mobile users want access to services and information, from both internet and personal devices, from a range of locations without the use of a cable medium. IEEE 802.11 is one of the most widely used wireless standards of our days. The amount of access and mobility into wireless networks requires a security infrastructure that protects communication within that network. The security of this protocol is based on the wired equivalent privacy (WEP) scheme. Currently, all the IEEE 802.11 market products support WEP. But recently, the 802.11i working group introduced the advanced encryption standard (AES), as the security scheme for the future IEEE 802.11 applications. In this paper, the hardware integrations of WEP and AES are studied. A field programmable gate array (FPGA) device has been used as the hardware implementation platform, for a fair comparison between the two security schemes. Measurements for the FPGA implementation cost, operating frequency, power consumption and performance are given.

  9. Information infrastructure for emergency medical services.

    PubMed

    Orthner, Helmuth; Mishra, Ninad; Terndrup, Thomas; Acker, Joseph; Grimes, Gary; Gemmill, Jill; Battles, Marcie

    2005-01-01

    The pre-hospital emergency medical and public safety information environment is nearing a threshold of significant change. The change is driven in part by several emerging technologies such as secure, high-speed wireless communication in the local and wide area networks (wLAN, 3G), Geographic Information Systems (GIS), Global Positioning Systems (GPS), and powerful handheld computing and communication services, that are of sufficient utility to be more widely adopted. We propose a conceptual model to enable improved clinical decision making in the pre-hospital environment using these change agents.

  10. Policy and Policy Formulation Considerations for Incorporation of Secure Mobile Devices in USMC Ground Combat Units

    DTIC Science & Technology

    2014-09-01

    power. The wireless infrastructure is an expansion of the current DOD IE which can be leveraged to connect mobile capabilities and technologies. The...DOD must focus on three critical areas central to mobility : the wireless infrastructure , the devices themselves, and the applications the devices use... infrastructure to support mobile devices. – The intent behind this goal is to improve the existing wireless backbone to support secure voice, data, and video

  11. Common MD-IS infrastructure for wireless data technologies

    NASA Astrophysics Data System (ADS)

    White, Malcolm E.

    1995-12-01

    The expansion of global networks, caused by growth and acquisition within the commercial sector, is forcing users to move away from proprietary systems in favor of standards-based, open systems architectures. The same is true in the wireless data communications arena, where operators of proprietary wireless data networks have endeavored to convince users that their particular implementation provides the best service. However, most of the vendors touting these solutions have failed to gain the critical mass that might have lead to their technologies' adoption as a defacto standard, and have been held back by a lack of applications and the high cost of mobile devices. The advent of the cellular digital packet data (CDPD) specification and its support by much of the public cellular service industry has set the stage for the ubiquitous coverage of wireless packet data services across the Unites States. Although CDPD was developed for operation over the advanced mobile phone system (AMPS) cellular network, many of the defined protocols are industry standards that can be applied to the construction of a common infrastructure supporting multiple airlink standards. This approach offers overall cost savings and operation efficiency for service providers, hardware, and software developers and end-users alike, and could be equally advantageous for those service operators using proprietary end system protocols, should they wish to migrate towards an open standard.

  12. Communications device identification methods, communications methods, wireless communications readers, wireless communications systems, and articles of manufacture

    DOEpatents

    Steele, Kerry D [Kennewick, WA; Anderson, Gordon A [Benton City, WA; Gilbert, Ronald W [Morgan Hill, CA

    2011-02-01

    Communications device identification methods, communications methods, wireless communications readers, wireless communications systems, and articles of manufacture are described. In one aspect, a communications device identification method includes providing identification information regarding a group of wireless identification devices within a wireless communications range of a reader, using the provided identification information, selecting one of a plurality of different search procedures for identifying unidentified ones of the wireless identification devices within the wireless communications range, and identifying at least some of the unidentified ones of the wireless identification devices using the selected one of the search procedures.

  13. Emerging Communication Technologies (ECT) Phase 2 Report. Volume 2; Appendices

    NASA Technical Reports Server (NTRS)

    Bastin, Gary L.; Harris, William G.; Chiodini, Robert; Nelson, Richard A.; Huang, PoTien; Kruhm, David A.

    2003-01-01

    The Emerging Communication Technology (ECT) project investigated three First Mile communication technologies in support of NASA s Second Generation Reusable Launch Vehicle (2nd Gen RLV), Orbital Space Plane, Advanced Range Technology Working Group (ARTWG) and the Advanced Spaceport Technology Working Group (ASTWG). These First Mile technologies have the purpose of interconnecting mobile users with existing Range Communication infrastructures. ECT was a continuation of the Range Information System Management (RISM) task started in 2002. RISM identified the three advance communication technologies investigated under ECT. These were Wireless Ethernet (Wi-Fi), Free Space Optics (FSO), and Ultra Wideband (UWB). Due to the report s size, it has been broken into three volumes: 1) Main Report 2) Appendices 3) UWB

  14. Emerging Communication Technologies (ECT) Phase 2 Report. Volume 3; Ultra Wideband (UWB) Technology

    NASA Technical Reports Server (NTRS)

    Bastin, Gary L.; Harris, William G.; Chiodini, Robert; Nelson, Richard A.; Huang, PoTien; Kruhm, David A.

    2003-01-01

    The Emerging Communication Technology (ECT) project investigated three First Mile communication technologies in support of NASA s Second Generation Reusable Launch Vehicle (2nd Gen RLV), Orbital Space Plane, Advanced Range Technology Working Group (ARTWG) and the Advanced Spaceport Technology Working Group (ASTWG). These First Mile technologies have the purpose of interconnecting mobile users with existing Range Communication infrastructures. ECT was a continuation of the Range Information System Management (RISM) task started in 2002. RISM identified the three advance communication technologies investigated under ECT. These were Wireless Ethernet (Wi-Fi), Free Space Optics (FSO), and Ultra Wideband (UWB). Due to the report s size, it has been broken into three volumes: 1) Main Report 2) Appendices 3) UWB

  15. Emerging Communication Technologies (ECT) Phase 2 Report. Volume 1; Main Report

    NASA Technical Reports Server (NTRS)

    Bastin, Gary L.; Harris, William G.; Chiodini, Robert; Nelson, Richard A.; Huang, PoTien; Kruhm, David A.

    2003-01-01

    The Emerging Communication Technology (ECT) project investigated three First Mile communication technologies in support of NASA s Second Generation Reusable Launch Vehicle (2nd Gen RLV), Orbital Space Plane, Advanced Range Technology Working Group (ARTWG) and the Advanced Spaceport Technology Working Group (ASTWG). These First Mile technologies have the purpose of interconnecting mobile users with existing Range Communication infrastructures. ECT was a continuation of the Range Information System Management (RISM) task started in 2002. RISM identified the three advance communication technologies investigated under ECT. These were Wireless Ethernet (Wi-Fi), Free Space Optics (FSO), and Ultra Wideband (UWB). Due to the report s size, it has been broken into three volumes: 1) Main Report 2) Appendices 3) UWB.

  16. Decentralized System Identification Using Stochastic Subspace Identification for Wireless Sensor Networks

    PubMed Central

    Cho, Soojin; Park, Jong-Woong; Sim, Sung-Han

    2015-01-01

    Wireless sensor networks (WSNs) facilitate a new paradigm to structural identification and monitoring for civil infrastructure. Conventional structural monitoring systems based on wired sensors and centralized data acquisition systems are costly for installation as well as maintenance. WSNs have emerged as a technology that can overcome such difficulties, making deployment of a dense array of sensors on large civil structures both feasible and economical. However, as opposed to wired sensor networks in which centralized data acquisition and processing is common practice, WSNs require decentralized computing algorithms to reduce data transmission due to the limitation associated with wireless communication. In this paper, the stochastic subspace identification (SSI) technique is selected for system identification, and SSI-based decentralized system identification (SDSI) is proposed to be implemented in a WSN composed of Imote2 wireless sensors that measure acceleration. The SDSI is tightly scheduled in the hierarchical WSN, and its performance is experimentally verified in a laboratory test using a 5-story shear building model. PMID:25856325

  17. Metadata and network API aspects of a framework for storing and retrieving civil infrastructure monitoring data

    NASA Astrophysics Data System (ADS)

    Wong, John-Michael; Stojadinovic, Bozidar

    2005-05-01

    A framework has been defined for storing and retrieving civil infrastructure monitoring data over a network. The framework consists of two primary components: metadata and network communications. The metadata component provides the descriptions and data definitions necessary for cataloging and searching monitoring data. The communications component provides Java classes for remotely accessing the data. Packages of Enterprise JavaBeans and data handling utility classes are written to use the underlying metadata information to build real-time monitoring applications. The utility of the framework was evaluated using wireless accelerometers on a shaking table earthquake simulation test of a reinforced concrete bridge column. The NEESgrid data and metadata repository services were used as a backend storage implementation. A web interface was created to demonstrate the utility of the data model and provides an example health monitoring application.

  18. Recent advances in near-surface moisture monitoring using commercial microwave links in Tel-Aviv University

    NASA Astrophysics Data System (ADS)

    Alpert, Pinhas; David, Noam; Messer, Hagit

    2015-04-01

    The propagation of electromagnetic radiation in the lower atmosphere, at centimeter wavelengths, is impaired by atmospheric conditions. Absorption and scattering of the radiation, at frequencies of tens of GHz, are directly related to the atmospheric phenomena, primarily precipitation, oxygen, mist, fog and water vapor. As was recently shown, wireless communication networks supply high resolution precipitation measurements at ground level while often being situated in flood prone areas, covering large parts of these hazardous regions. On the other hand, at present, there are no satisfactory real time flash flood warning facilities found to cope well with this phenomenon. I will exemplify the flash flood warning potential of the commercial wireless communication system for two different semi-arid region cases when floods occurred in the Judean desert and in the northern Negev in Israel. In addition, I will review our recent improvements in monitoring rainfall as well as other-than-rain phenomena like, atmospheric moisture. Special focus on fog monitoring potential will be highlighted. References: N. David, O. Sendik, H. Messer and P. Alpert, "Cellular network infrastructure- the future of fog monitoring?", BAMS, (in press, 2015). N. David, P. Alpert and H. Messer, "The potential of cellular network infrastructures for sudden rainfall monitoring in dry climate regions", Atmospheric Research, 131, 13-21, 2013.

  19. A Study of LoRa: Long Range & Low Power Networks for the Internet of Things

    PubMed Central

    Augustin, Aloÿs; Yi, Jiazi; Clausen, Thomas; Townsley, William Mark

    2016-01-01

    LoRa is a long-range, low-power, low-bitrate, wireless telecommunications system, promoted as an infrastructure solution for the Internet of Things: end-devices use LoRa across a single wireless hop to communicate to gateway(s), connected to the Internet and which act as transparent bridges and relay messages between these end-devices and a central network server. This paper provides an overview of LoRa and an in-depth analysis of its functional components. The physical and data link layer performance is evaluated by field tests and simulations. Based on the analysis and evaluations, some possible solutions for performance enhancements are proposed. PMID:27618064

  20. A Study of LoRa: Long Range & Low Power Networks for the Internet of Things.

    PubMed

    Augustin, Aloÿs; Yi, Jiazi; Clausen, Thomas; Townsley, William Mark

    2016-09-09

    LoRa is a long-range, low-power, low-bitrate, wireless telecommunications system, promoted as an infrastructure solution for the Internet of Things: end-devices use LoRa across a single wireless hop to communicate to gateway(s), connected to the Internet and which act as transparent bridges and relay messages between these end-devices and a central network server. This paper provides an overview of LoRa and an in-depth analysis of its functional components. The physical and data link layer performance is evaluated by field tests and simulations. Based on the analysis and evaluations, some possible solutions for performance enhancements are proposed.

  1. Smart City Pilot Projects Using LoRa and IEEE802.15.4 Technologies.

    PubMed

    Pasolini, Gianni; Buratti, Chiara; Feltrin, Luca; Zabini, Flavio; De Castro, Cristina; Verdone, Roberto; Andrisano, Oreste

    2018-04-06

    Information and Communication Technologies (ICTs), through wireless communications and the Internet of Things (IoT) paradigm, are the enabling keys for transforming traditional cities into smart cities, since they provide the core infrastructure behind public utilities and services. However, to be effective, IoT-based services could require different technologies and network topologies, even when addressing the same urban scenario. In this paper, we highlight this aspect and present two smart city testbeds developed in Italy. The first one concerns a smart infrastructure for public lighting and relies on a heterogeneous network using the IEEE 802.15.4 short-range communication technology, whereas the second one addresses smart-building applications and is based on the LoRa low-rate, long-range communication technology. The smart lighting scenario is discussed providing the technical details and the economic benefits of a large-scale (around 3000 light poles) flexible and modular implementation of a public lighting infrastructure, while the smart-building testbed is investigated, through measurement campaigns and simulations, assessing the coverage and the performance of the LoRa technology in a real urban scenario. Results show that a proper parameter setting is needed to cover large urban areas while maintaining the airtime sufficiently low to keep packet losses at satisfactory levels.

  2. Smart City Pilot Projects Using LoRa and IEEE802.15.4 Technologies

    PubMed Central

    Buratti, Chiara; Zabini, Flavio; De Castro, Cristina; Verdone, Roberto; Andrisano, Oreste

    2018-01-01

    Information and Communication Technologies (ICTs), through wireless communications and the Internet of Things (IoT) paradigm, are the enabling keys for transforming traditional cities into smart cities, since they provide the core infrastructure behind public utilities and services. However, to be effective, IoT-based services could require different technologies and network topologies, even when addressing the same urban scenario. In this paper, we highlight this aspect and present two smart city testbeds developed in Italy. The first one concerns a smart infrastructure for public lighting and relies on a heterogeneous network using the IEEE 802.15.4 short-range communication technology, whereas the second one addresses smart-building applications and is based on the LoRa low-rate, long-range communication technology. The smart lighting scenario is discussed providing the technical details and the economic benefits of a large-scale (around 3000 light poles) flexible and modular implementation of a public lighting infrastructure, while the smart-building testbed is investigated, through measurement campaigns and simulations, assessing the coverage and the performance of the LoRa technology in a real urban scenario. Results show that a proper parameter setting is needed to cover large urban areas while maintaining the airtime sufficiently low to keep packet losses at satisfactory levels. PMID:29642391

  3. IoT Applications with 5G Connectivity in Medical Tourism Sector Management: Third-Party Service Scenarios.

    PubMed

    Psiha, Maria M; Vlamos, Panayiotis

    2017-01-01

    5G is the next generation of mobile communication technology. Current generation of wireless technologies is being evolved toward 5G for better serving end users and transforming our society. Supported by 5G cloud technology, personal devices will extend their capabilities to various applications, supporting smart life. They will have significant role in health, medical tourism, security, safety, and social life applications. The next wave of mobile communication is to mobilize and automate industries and industry processes via Machine-Type Communication (MTC) and Internet of Things (IoT). The current key performance indicators for the 5G infrastructure for the fully connected society are sufficient to satisfy most of the technical requirements in the healthcare sector. Thus, 5G can be considered as a door opener for new possibilities and use cases, many of which are as yet unknown. In this paper we present heterogeneous use cases in medical tourism sector, based on 5G infrastructure technologies and third-party cloud services.

  4. Real-time long term measurement using integrated framework for ubiquitous smart monitoring

    NASA Astrophysics Data System (ADS)

    Heo, Gwanghee; Lee, Giu; Lee, Woosang; Jeon, Joonryong; Kim, Pil-Joong

    2007-04-01

    Ubiquitous monitoring combining internet technologies and wireless communication is one of the most promising technologies of infrastructure health monitoring against the natural of man-made hazards. In this paper, an integrated framework of the ubiquitous monitoring is developed for real-time long term measurement in internet environment. This framework develops a wireless sensor system based on Bluetooth technology and sends measured acceleration data to the host computer through TCP/IP protocol. And it is also designed to respond to the request of web user on real time basis. In order to verify this system, real time monitoring tests are carried out on a prototype self-anchored suspension bridge. Also, wireless measurement system is analyzed to estimate its sensing capacity and evaluate its performance for monitoring purpose. Based on the evaluation, this paper proposes the effective strategies for integrated framework in order to detect structural deficiencies and to design an early warning system.

  5. A system for ubiquitous fall monitoring at home via a wireless sensor network.

    PubMed

    Fernandez-Luque, Francisco J; Zapata, Juan; Ruiz, Ramon

    2010-01-01

    Accidental falls of our elderly, and physical injuries resulting, represent a major health and economic. Falls are the most common causes of serious injuries and a major health threats in the stratum of older population. Early detection of a fall is a key factor when trying to provide adequate care to the elderly person who has suffered an accident at home. In this paper, we present a support system for detecting falls of an elder person by a static wireless nonintrusive sensorial infrastructure based on heterogenous sensor nodes. This previous infrastructure, named AID (Alarm Intelligent Device), is an AAL (Ambient Assisted Living) system that allows to infer a potential fall. We have developed, different to other contributions, a specific low-power multi-hop network consists of nodes (Motes) that wirelessly communicate to each other and are capable of hopping radio messages to a base station where they are passed to a PC (or other possible client). The goal of this project is 1) to provide alerts to caregivers in the event of an accident, acute illness or strange (possibly dangerous) activities, and 2) to enable that authorized and authenticated caregivers by means of a itinerant wearable mote can be inserted into mesh and interact with it. In this paper, we describe an ubiquitous assistential monitoring system at home.

  6. ORNL Experience and Challenges Facing Dynamic Wireless Power Charging of EV's

    DOE PAGES

    Miller, John M.; Jones, Perry T.; Li, Jan-Mou; ...

    2015-05-21

    As visionary as dynamic, or in-motion, wireless charging of electric vehicles appears the concept is well over a century old as this paper will show. This is because the concept of magnetic induction dates back to the pioneering work of physicist Michael Faraday in the early 19th century. Today wireless power transfer (WPT) is being standardized for stationary and quasi-stationary charging of electric vehicles (EV). The Society of Automotive Engineers (SAE) has undertaken the standardization of stationary charging and will make this public during 2016. In addition to this the IEEE-SA (Standards Activities) initiated standards development for EV?s in theirmore » EVWPT working group in 2012. This study introduces the many challenges facing EVWPT in not only high power transfer to a moving vehicle and energy management at a utility scale, but communications in a vehicle to infrastructure (V2I) environment and management of high data rates, ultra-low latency, and dealing with communications loss in dense urban areas. Finally, future concepts such as guideway powering of EV?s are presented to illustrate one technical trajectory EVWPT may take.« less

  7. Airborne wireless communication systems, airborne communication methods, and communication methods

    DOEpatents

    Deaton, Juan D [Menan, ID; Schmitt, Michael J [Idaho Falls, ID; Jones, Warren F [Idaho Falls, ID

    2011-12-13

    An airborne wireless communication system includes circuitry configured to access information describing a configuration of a terrestrial wireless communication base station that has become disabled. The terrestrial base station is configured to implement wireless communication between wireless devices located within a geographical area and a network when the terrestrial base station is not disabled. The circuitry is further configured, based on the information, to configure the airborne station to have the configuration of the terrestrial base station. An airborne communication method includes answering a 911 call from a terrestrial cellular wireless phone using an airborne wireless communication system.

  8. Shed a light of wireless technology on portable mobile design of NIRS

    NASA Astrophysics Data System (ADS)

    Sun, Yunlong; Li, Ting

    2016-03-01

    Mobile internet is growing rapidly driven by high-tech companies including the popular Apple and Google. The wireless mini-NIRS is believed to deserve a great spread future, while there is sparse report on wireless NIRS device and even for the reported wireless NIRS, its wireless design is scarcely presented. Here we focused on the wireless design of NIRS devices. The widely-used wireless communication standards and wireless communication typical solutions were employed into our NIRS design and then compared on communication efficiency, distance, error rate, low-cost, power consumption, and stabilities, based on the requirements of NIRS applications. The properly-performed wireless communication methods matched with the characteristics of NIRS are picked out. Finally, we realized one recommended wireless communication in our NIRS, developed a test platform on wireless NIRS and tested the full properties on wireless communication. This study elaborated the wireless communication methods specified for NIRS and suggested one implementation with one example fully illustrated, which support the future mobile design on NIRS devices.

  9. Real-time visual communication to aid disaster recovery in a multi-segment hybrid wireless networking system

    NASA Astrophysics Data System (ADS)

    Al Hadhrami, Tawfik; Wang, Qi; Grecos, Christos

    2012-06-01

    When natural disasters or other large-scale incidents occur, obtaining accurate and timely information on the developing situation is vital to effective disaster recovery operations. High-quality video streams and high-resolution images, if available in real time, would provide an invaluable source of current situation reports to the incident management team. Meanwhile, a disaster often causes significant damage to the communications infrastructure. Therefore, another essential requirement for disaster management is the ability to rapidly deploy a flexible incident area communication network. Such a network would facilitate the transmission of real-time video streams and still images from the disrupted area to remote command and control locations. In this paper, a comprehensive end-to-end video/image transmission system between an incident area and a remote control centre is proposed and implemented, and its performance is experimentally investigated. In this study a hybrid multi-segment communication network is designed that seamlessly integrates terrestrial wireless mesh networks (WMNs), distributed wireless visual sensor networks, an airborne platform with video camera balloons, and a Digital Video Broadcasting- Satellite (DVB-S) system. By carefully integrating all of these rapidly deployable, interworking and collaborative networking technologies, we can fully exploit the joint benefits provided by WMNs, WSNs, balloon camera networks and DVB-S for real-time video streaming and image delivery in emergency situations among the disaster hit area, the remote control centre and the rescue teams in the field. The whole proposed system is implemented in a proven simulator. Through extensive simulations, the real-time visual communication performance of this integrated system has been numerically evaluated, towards a more in-depth understanding in supporting high-quality visual communications in such a demanding context.

  10. Perceptual tools for quality-aware video networks

    NASA Astrophysics Data System (ADS)

    Bovik, A. C.

    2014-01-01

    Monitoring and controlling the quality of the viewing experience of videos transmitted over increasingly congested networks (especially wireless networks) is a pressing problem owing to rapid advances in video-centric mobile communication and display devices that are straining the capacity of the network infrastructure. New developments in automatic perceptual video quality models offer tools that have the potential to be used to perceptually optimize wireless video, leading to more efficient video data delivery and better received quality. In this talk I will review key perceptual principles that are, or could be used to create effective video quality prediction models, and leading quality prediction models that utilize these principles. The goal is to be able to monitor and perceptually optimize video networks by making them "quality-aware."

  11. Free space optical communications: coming of age

    NASA Astrophysics Data System (ADS)

    Stotts, Larry B.; Stadler, Brian; Lee, Gary

    2008-04-01

    Information superiority, where for the military or business, is the decisive advantage of the 21st Century. While business enjoys the information advantage of robust, high-bandwidth fiber optic connectivity that heavily leverages installed commercial infrastructure and service providers, mobile military forces need the wireless equivalent to leverage that advantage. In other words, an ability to deploy anywhere on the globe and maintain a robust, reliable communications and connectivity infrastructure, equivalent to that enjoyed by a CONUS commercial user, will provide US forces with information superiority. Assured high-data-rate connectivity to the tactical user is the biggest gap in developing and truly exploiting the potential of the information superiority weapon. Though information superiority is much discussed and its potential is well understood, a robust communications network available to the lowest military echelons is not yet an integral part of the force structure, although high data rate RF communications relays, e.g., Tactical Common Data Link, and low data SATCOM, e.g, Ku Spread Spectrum, are deployed and used by the military. This may change with recent advances in laser communications technologies created by the fiber optic communications revolution. This paper will provide a high level overview of the various laser communications programs conducted over the last 30 plus years, and proposed efforts to get these systems finally deployed.

  12. Invited Article: Channel performance for indoor and outdoor terahertz wireless links

    NASA Astrophysics Data System (ADS)

    Ma, Jianjun; Shrestha, Rabi; Moeller, Lothar; Mittleman, Daniel M.

    2018-05-01

    One of the most exciting future applications of terahertz technology is in the area of wireless communications. As 5G systems incorporating a standard for millimeter-wave wireless links approach commercial roll-out, it is becoming clear that even this new infrastructure will not be sufficient to keep pace with the rapidly increasing global demand for bandwidth. One favorable solution that is attracting increasing attention for subsequent generations of wireless technology is to use higher frequencies, above 100 GHz. The implementation of such links will require significant advances in hardware, algorithms, and architecture. Although numerous research groups are exploring aspects of this challenging problem, many basic questions remain unaddressed. Here, we present an experimental effort to characterize THz wireless links in both indoor and outdoor environments. We report measurements at 100, 200, 300, and 400 GHz, using a link with a data rate of 1 Gbit/s. We demonstrate both line-of-sight and non-line-of-sight (specular reflection) links off of interior building walls. This work represents a first step to establish the feasibility of using THz carrier waves for data transmission in diverse situations and environments.

  13. Wireless structural monitoring for homeland security applications

    NASA Astrophysics Data System (ADS)

    Kiremidjian, Garo K.; Kiremidjian, Anne S.; Lynch, Jerome P.

    2004-07-01

    This paper addresses the development of a robust, low-cost, low power, and high performance autonomous wireless monitoring system for civil assets such as large facilities, new construction, bridges, dams, commercial buildings, etc. The role of the system is to identify the onset, development, location and severity of structural vulnerability and damage. The proposed system represents an enabling infrastructure for addressing structural vulnerabilities specifically associated with homeland security. The system concept is based on dense networks of "intelligent" wireless sensing units. The fundamental properties of a wireless sensing unit include: (a) interfaces to multiple sensors for measuring structural and environmental data (such as acceleration, displacements, pressure, strain, material degradation, temperature, gas agents, biological agents, humidity, corrosion, etc.); (b) processing of sensor data with embedded algorithms for assessing damage and environmental conditions; (c) peer-to-peer wireless communications for information exchange among units(thus enabling joint "intelligent" processing coordination) and storage of data and processed information in servers for information fusion; (d) ultra low power operation; (e) cost-effectiveness and compact size through the use of low-cost small-size off-the-shelf components. An integral component of the overall system concept is a decision support environment for interpretation and dissemination of information to various decision makers.

  14. A Multifactor Secure Authentication System for Wireless Payment

    NASA Astrophysics Data System (ADS)

    Sanyal, Sugata; Tiwari, Ayu; Sanyal, Sudip

    Organizations are deploying wireless based online payment applications to expand their business globally, it increases the growing need of regulatory requirements for the protection of confidential data, and especially in internet based financial areas. Existing internet based authentication systems often use either the Web or the Mobile channel individually to confirm the claimed identity of the remote user. The vulnerability is that access is based on only single factor authentication which is not secure to protect user data, there is a need of multifactor authentication. This paper proposes a new protocol based on multifactor authentication system that is both secure and highly usable. It uses a novel approach based on Transaction Identification Code and SMS to enforce another security level with the traditional Login/password system. The system provides a highly secure environment that is simple to use and deploy with in a limited resources that does not require any change in infrastructure or underline protocol of wireless network. This Protocol for Wireless Payment is extended as a two way authentications system to satisfy the emerging market need of mutual authentication and also supports secure B2B communication which increases faith of the user and business organizations on wireless financial transaction using mobile devices.

  15. High-throughput and low-latency 60GHz small-cell network architectures over radio-over-fiber technologies

    NASA Astrophysics Data System (ADS)

    Pleros, N.; Kalfas, G.; Mitsolidou, C.; Vagionas, C.; Tsiokos, D.; Miliou, A.

    2017-01-01

    Future broadband access networks in the 5G framework will need to be bilateral, exploiting both optical and wireless technologies. This paper deals with new approaches and synergies on radio-over-fiber (RoF) technologies and how those can be leveraged to seamlessly converge wireless technology for agility and mobility with passive optical networks (PON)-based backhauling. The proposed convergence paradigm is based upon a holistic network architecture mixing mm-wave wireless access with photonic integration, dynamic capacity allocation and network coding schemes to enable high bandwidth and low-latency fixed and 60GHz wireless personal area communications for gigabit rate per user, proposing and deploying on top a Medium-Transparent MAC (MT-MAC) protocol as a low-latency bandwidth allocation mechanism. We have evaluated alternative network topologies between the central office (CO) and the access point module (APM) for data rates up to 2.5 Gb/s and SC frequencies up to 60 GHz. Optical network coding is demonstrated for SCM-based signaling to enhance bandwidth utilization and facilitate optical-wireless convergence in 5G applications, reporting medium-transparent network coding directly at the physical layer between end-users communicating over a RoF infrastructure. Towards equipping the physical layer with the appropriate agility to support MT-MAC protocols, a monolithic InP-based Remote Antenna Unit optoelectronic PIC interface is shown that ensures control over the optical resource allocation assisting at the same time broadband wireless service. Finally, the MT-MAC protocol is analysed and simulation and analytical theoretical results are presented that are found to be in good agreement confirming latency values lower than 1msec for small- to mid-load conditions.

  16. Wireless device monitoring systems and monitoring devices, and associated methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCown, Steven H; Derr, Kurt W; Rohde, Kenneth W

    Wireless device monitoring systems and monitoring devices include a communications module for receiving wireless communications of a wireless device. Processing circuitry is coupled with the communications module and configured to process the wireless communications to determine whether the wireless device is authorized or unauthorized to be present at the monitored area based on identification information of the wireless device. Methods of monitoring for the presence and identity of wireless devices are also provided.

  17. Ubiquitous wireless ECG recording: a powerful tool physicians should embrace.

    PubMed

    Saxon, Leslie A

    2013-04-01

    The use of smart phones has increased dramatically and there are nearly a billion users on 3G and 4G networks worldwide. Nearly 60% of the U.S. population uses smart phones to access the internet, and smart phone sales now surpass those of desktop and laptop computers. The speed of wireless communication technology on 3G and 4G networks and the widespread adoption and use of iOS equipped smart phones (Apple Inc., Cupertino, CA, USA) provide infrastructure for the transmission of wireless biomedical data, including ECG data. These technologies provide an unprecedented opportunity for physicians to continually access data that can be used to detect issues before symptoms occur or to have definitive data when symptoms are present. The technology also greatly empowers and enables the possibility for unprecedented patient participation in their own medical education and health status as well as that of their social network. As patient advocates, physicians and particularly cardiac electrophysiologists should embrace the future and promise of wireless ECG recording, a technology solution that can truly scale across the global population. © 2013 Wiley Periodicals, Inc.

  18. Using inertial measurement units originally developed for biomechanics for modal testing of civil engineering structures

    NASA Astrophysics Data System (ADS)

    Hester, David; Brownjohn, James; Bocian, Mateusz; Xu, Yan; Quattrone, Antonino

    2018-05-01

    This paper explores the use of wireless Inertial Measurement Units (IMU) originally developed for bio-mechanical research applications for modal testing of civil engineering infrastructure. Due to their biomechanics origin, these devices combine a triaxial accelerometer with gyroscopes and magnetometers for orientation, as well as on board data logging capability and wireless communication for optional data streaming and to coordinate synchronisation with other IMUs in a network. The motivation for application to civil structures is that their capabilities and simple operating procedures make them suitable for modal testing of many types of civil infrastructure of limited dimension including footbridges and floors while also enabling recovering of dynamic forces generated and applied to structures by moving humans. To explore their capabilities in civil applications, the IMUs are evaluated through modal tests on three different structures with increasing challenge of spatial and environmental complexity. These are, a full-scale floor mock-up in a laboratory, a short span road bridge and a seven story office tower. For each case, the results from the IMUs are compared with those from a conventional wired system to identify the limitations. The main conclusion is that the relatively high noise floor and limited communication range will not be a serious limitation in the great majority of typical civil modal test applications where convenient operation is a significant advantage over conventional wired systems.

  19. Mobile healthcare informatics.

    PubMed

    Siau, Keng; Shen, Zixing

    2006-06-01

    Advances in wireless technology give pace to the rapid development of mobile applications. The coming mobile revolution will bring dramatic and fundamental changes to our daily life. It will influence the way we live, the way we do things, and the way we take care of our health. For the healthcare industry, mobile applications provide a new frontier in offering better care and services to patients, and a more flexible and mobile way of communicating with suppliers and patients. Mobile applications will provide important real time data for patients, physicians, insurers, and suppliers. In addition, it will revolutionalize the way information is managed in the healthcare industry and redefine the doctor - patient communication. This paper discusses different aspects of mobile healthcare. Specifically, it presents mobile applications in healthcare, and discusses possible challenges facing the development of mobile applications. Obstacles in developing mobile healthcare applications include mobile device limitations, wireless networking problems, infrastructure constraints, security concerns, and user distrust. Research issues in resolving or alleviating these problems are also discussed in the paper.

  20. Next-generation wireless bridge weigh-in-motion (WIM) system integrated with nondestructive evaluation (NDE) capability for transportation infrastructure safety.

    DOT National Transportation Integrated Search

    2014-05-01

    This project seeks to develop a rapidly deployable, low-cost, and wireless system for bridge : weigh-in-motion (BWIM) and nondestructive evaluation (NDE). The system is proposed to : assist in monitoring transportation infrastructure safety, for the ...

  1. Low-Cost, Robust, Threat-aware Wireless Sensor Network for Assuring the Nation's Energy Infrastructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlos H. Rentel

    2007-03-31

    The objective of this project was to create a low-cost, robust anticipatory wireless sensor network (A-WSN) to ensure the security and reliability of the United States energy infrastructure. This document highlights Eaton Corporation's plan to bring these technologies to market.

  2. 76 FR 49333 - Assessment and Collection of Regulatory Fees for Fiscal Year 2011

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-10

    ... ``AAPC'' Raymond Awe ``Raymond Awe'' CTIA--The Wireless Association......... ``CTIA'' PCIA--The Wireless Infrastructure ``PCIA'' Association. The United States Telecom Association.. ``USTelecom'' Verizon Wireless... Competition Bureau's Trends in Telephone Service and the Wireless Telecommunications Bureau's Numbering...

  3. Wireless on Campus.

    ERIC Educational Resources Information Center

    Dominick, Jay

    2000-01-01

    Discussion of wireless technology focuses on whether there is enough value in a wireless infrastructure for schools to justify the cost. Considers issues campuses must face, including access to the Internet, telecommunications, and networking; explains technical details; and describes wireless initiatives at Wake Forest University. (LRW)

  4. 49 CFR 220.37 - Testing radio and wireless communication equipment.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Testing radio and wireless communication equipment... RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD COMMUNICATIONS Radio and Wireless Communication Procedures § 220.37 Testing radio and wireless communication equipment. (a) Each radio, and all...

  5. 49 CFR 220.37 - Testing radio and wireless communication equipment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Testing radio and wireless communication equipment... RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD COMMUNICATIONS Radio and Wireless Communication Procedures § 220.37 Testing radio and wireless communication equipment. (a) Each radio, and all...

  6. 49 CFR 220.37 - Testing radio and wireless communication equipment.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Testing radio and wireless communication equipment... RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD COMMUNICATIONS Radio and Wireless Communication Procedures § 220.37 Testing radio and wireless communication equipment. (a) Each radio, and all...

  7. 49 CFR 220.37 - Testing radio and wireless communication equipment.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Testing radio and wireless communication equipment... RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD COMMUNICATIONS Radio and Wireless Communication Procedures § 220.37 Testing radio and wireless communication equipment. (a) Each radio, and all...

  8. 49 CFR 220.37 - Testing radio and wireless communication equipment.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Testing radio and wireless communication equipment... RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD COMMUNICATIONS Radio and Wireless Communication Procedures § 220.37 Testing radio and wireless communication equipment. (a) Each radio, and all...

  9. Wireless Infrastructure M2M Network For Distributed Power Grid Monitoring

    PubMed Central

    Gharavi, Hamid; Hu, Bin

    2018-01-01

    With the massive integration of distributed renewable energy sources (RESs) into the power system, the demand for timely and reliable network quality monitoring, control, and fault analysis is rapidly growing. Following the successful deployment of Phasor Measurement Units (PMUs) in transmission systems for power monitoring, a new opportunity to utilize PMU measurement data for power quality assessment in distribution grid systems is emerging. The main problem however, is that a distribution grid system does not normally have the support of an infrastructure network. Therefore, the main objective in this paper is to develop a Machine-to-Machine (M2M) communication network that can support wide ranging sensory data, including high rate synchrophasor data for real-time communication. In particular, we evaluate the suitability of the emerging IEEE 802.11ah standard by exploiting its important features, such as classifying the power grid sensory data into different categories according to their traffic characteristics. For performance evaluation we use our hardware in the loop grid communication network testbed to access the performance of the network. PMID:29503505

  10. Wireless Infrastructure M2M Network For Distributed Power Grid Monitoring.

    PubMed

    Gharavi, Hamid; Hu, Bin

    2017-01-01

    With the massive integration of distributed renewable energy sources (RESs) into the power system, the demand for timely and reliable network quality monitoring, control, and fault analysis is rapidly growing. Following the successful deployment of Phasor Measurement Units (PMUs) in transmission systems for power monitoring, a new opportunity to utilize PMU measurement data for power quality assessment in distribution grid systems is emerging. The main problem however, is that a distribution grid system does not normally have the support of an infrastructure network. Therefore, the main objective in this paper is to develop a Machine-to-Machine (M2M) communication network that can support wide ranging sensory data, including high rate synchrophasor data for real-time communication. In particular, we evaluate the suitability of the emerging IEEE 802.11ah standard by exploiting its important features, such as classifying the power grid sensory data into different categories according to their traffic characteristics. For performance evaluation we use our hardware in the loop grid communication network testbed to access the performance of the network.

  11. Acoustic communications for cabled seafloor observatories

    NASA Astrophysics Data System (ADS)

    Freitag, L.; Stojanovic, M.

    2003-04-01

    Cabled seafloor observatories will provide scientists with a continuous presence in both deep and shallow water. In the deep ocean, connecting sensors to seafloor nodes for power and data transfer will require cables and a highly-capable ROV, both of which are potentially expensive. For many applications where very high bandwidth is not required, and where a sensor is already designed to operate on battery power, the use of acoustic links should be considered. Acoustic links are particularly useful for large numbers of low-bandwidth sensors scattered over tens of square kilometers. Sensors used to monitor the chemistry and biology of vent fields are one example. Another important use for acoustic communication is monitoring of AUVs performing pre-programmed or adaptive sampling missions. A high data rate acoustic link with an AUV allows the observer on shore to direct the vehicle in real-time, providing for dynamic event response. Thus both fixed and mobile sensors motivate the development of observatory infrastructure that provides power-efficient, high bandwidth acoustic communication. A proposed system design that can provide the wireless infrastructure, and further examples of its use in networks such as NEPTUNE, are presented.

  12. 75 FR 8400 - In the Matter of Certain Wireless Communications System Server Software, Wireless Handheld...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-24

    ... Communications System Server Software, Wireless Handheld Devices and Battery Packs; Notice of Investigation..., wireless handheld devices and battery packs by reason of infringement of certain claims of U.S. Patent Nos... certain wireless communications system server software, wireless handheld devices or battery packs that...

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurt Derr; Milos Manic

    Time and location data play a very significant role in a variety of factory automation scenarios, such as automated vehicles and robots, their navigation, tracking, and monitoring, to services of optimization and security. In addition, pervasive wireless capabilities combined with time and location information are enabling new applications in areas such as transportation systems, health care, elder care, military, emergency response, critical infrastructure, and law enforcement. A person/object in proximity to certain areas for specific durations of time may pose a risk hazard either to themselves, others, or the environment. This paper presents a novel fuzzy based spatio-temporal risk calculationmore » DSTiPE method that an object with wireless communications presents to the environment. The presented Matlab based application for fuzzy spatio-temporal risk cluster extraction is verified on a diagonal vehicle movement example.« less

  14. An efficient coordination protocol for wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Paruchuri, Vamsi; Durresi, Arjan; Durresi, Mimoza; Barolli, Leonard

    2005-10-01

    Backbones infrastructures in wireless sensor networks reduce the communication overhead and energy consumption. In this paper, we present BackBone Routing (BBR), a fully distributed protocol for construction and rotation of backbone networks. BBR reduces energy consumption without significantly diminishing the capacity or connectivity of the network. Another key feature of BBR is its energy balancing nature by distributing the role of being Backbone Node among all the nodes. BBR builds on the observation that when a region of a shared-channel wireless network has a sufficient density of nodes, only a small number of them need be on at any time to forward traffic for active connections. Improvement in system lifetime due to BBR increases as the ratio of idle-to-sleep energy consumption increases, and increases as the density of the network increases. Our experiments show that BBR is more efficient in saving energy and extending network life without deteriorating network performance when compared with geographical shortest path routing.

  15. Pithy Review on Routing Protocols in Wireless Sensor Networks and Least Routing Time Opportunistic Technique in WSN

    NASA Astrophysics Data System (ADS)

    Salman Arafath, Mohammed; Rahman Khan, Khaleel Ur; Sunitha, K. V. N.

    2018-01-01

    Nowadays due to most of the telecommunication standard development organizations focusing on using device-to-device communication so that they can provide proximity-based services and add-on services on top of the available cellular infrastructure. An Oppnets and wireless sensor network play a prominent role here. Routing in these networks plays a significant role in fields such as traffic management, packet delivery etc. Routing is a prodigious research area with diverse unresolved issues. This paper firstly focuses on the importance of Opportunistic routing and its concept then focus is shifted to prime aspect i.e. on packet reception ratio which is one of the highest QoS Awareness parameters. This paper discusses the two important functions of routing in wireless sensor networks (WSN) namely route selection using least routing time algorithm (LRTA) and data forwarding using clustering technique. Finally, the simulation result reveals that LRTA performs relatively better than the existing system in terms of average packet reception ratio and connectivity.

  16. Unmanned Aerial Vehicle (UAV) Dynamic-Tracking Directional Wireless Antennas for Low Powered Applications that Require Reliable Extended Range Operations in Time Critical Scenarios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scott G. Bauer; Matthew O. Anderson; James R. Hanneman

    2005-10-01

    The proven value of DOD Unmanned Aerial Vehicles (UAVs) will ultimately transition to National and Homeland Security missions that require real-time aerial surveillance, situation awareness, force protection, and sensor placement. Public services first responders who routinely risk personal safety to assess and report a situation for emergency actions will likely be the first to benefit from these new unmanned technologies. ‘Packable’ or ‘Portable’ small class UAVs will be particularly useful to the first responder. They require the least amount of training, no fixed infrastructure, and are capable of being launched and recovered from the point of emergency. All UAVs requiremore » wireless communication technologies for real- time applications. Typically on a small UAV, a low bandwidth telemetry link is required for command and control (C2), and systems health monitoring. If the UAV is equipped with a real-time Electro-Optical or Infrared (EO/Ir) video camera payload, a dedicated high bandwidth analog/digital link is usually required for reliable high-resolution imagery. In most cases, both the wireless telemetry and real-time video links will be integrated into the UAV with unity gain omni-directional antennas. With limited on-board power and payload capacity, a small UAV will be limited with the amount of radio-frequency (RF) energy it transmits to the users. Therefore, ‘packable’ and ‘portable’ UAVs will have limited useful operational ranges for first responders. This paper will discuss the limitations of small UAV wireless communications. The discussion will present an approach of utilizing a dynamic ground based real-time tracking high gain directional antenna to provide extend range stand-off operation, potential RF channel reuse, and assured telemetry and data communications from low-powered UAV deployed wireless assets.« less

  17. 78 FR 1247 - Certain Electronic Devices, Including Wireless Communication Devices, Tablet Computers, Media...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-08

    ... Wireless Communication Devices, Tablet Computers, Media Players, and Televisions, and Components Thereof... devices, including wireless communication devices, tablet computers, media players, and televisions, and... wireless communication devices, tablet computers, media players, and televisions, and components thereof...

  18. Progress In Developing An In-Pile Acoustically Telemetered Sensor Infrastructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, James A.; Garrett, Steven L.; Heibel, Michael D.

    2016-09-01

    A salient grand challenge for a number of Department of Energy programs such as Fuels Cycle Research and Development ( includes Accident Tolerant Fuel research and the Transient Reactor Test Facility Restart experiments), Light Water Sustainability, and Advanced Reactor Technologies is to enhance our fundamental understanding of fuel and materials behavior under irradiation. Robust and accurate in-pile measurements will be instrumental to develop and validate a computationally predictive multi-scale understanding of nuclear fuel and materials. This sensing technology will enable the linking of fundamental micro-structural evolution mechanisms to the macroscopic degradation of fuels and materials. The in situ sensors andmore » measurement systems will monitor local environmental parameters as well as characterize microstructure evolution during irradiation. One of the major road blocks in developing practical robust, and cost effective in-pile sensor systems, are instrument leads. If a wireless telemetry infrastructure can be developed for in-pile use, in-core measurements would become more attractive and effective. Thus to be successful in accomplishing effective in-pile sensing and microstructure characterization an interdisciplinary measurement infrastructure needs to be developed in parallel with key sensing technology. For the discussion in this research, infrastructure is defined as systems, technology, techniques, and algorithms that may be necessary in the delivery of beneficial and robust data from in-pile devices. The architecture of a system’s infrastructure determines how well it operates and how flexible it is to meet future requirements. The limiting path for the effective deployment of the salient sensing technology will not be the sensors themselves but the infrastructure that is necessary to communicate data from in-pile to the outside world in a non-intrusive and reliable manner. This article gives a high level overview of a promising telemetry infrastructure based on acoustic wireless transmission of data that is being developed and tested by the INL, Penn State and Westinghouse.« less

  19. 78 FR 34669 - Certain Electronic Devices, Including Wireless Communication Devices, Portable Music and Data...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-10

    ..., Including Wireless Communication Devices, Portable Music and Data Processing Devices, and Tablet Computers... importing wireless communication devices, portable music and data processing devices, and tablet computers... certain electronic devices, including wireless communication devices, portable music and data processing...

  20. Human initiated cascading failures in societal infrastructures.

    PubMed

    Barrett, Chris; Channakeshava, Karthik; Huang, Fei; Kim, Junwhan; Marathe, Achla; Marathe, Madhav V; Pei, Guanhong; Saha, Sudip; Subbiah, Balaaji S P; Vullikanti, Anil Kumar S

    2012-01-01

    In this paper, we conduct a systematic study of human-initiated cascading failures in three critical inter-dependent societal infrastructures due to behavioral adaptations in response to a crisis. We focus on three closely coupled socio-technical networks here: (i) cellular and mesh networks, (ii) transportation networks and (iii) mobile call networks. In crises, changes in individual behaviors lead to altered travel, activity and calling patterns, which influence the transport network and the loads on wireless networks. The interaction between these systems and their co-evolution poses significant technical challenges for representing and reasoning about these systems. In contrast to system dynamics models for studying these interacting infrastructures, we develop interaction-based models in which individuals and infrastructure elements are represented in detail and are placed in a common geographic coordinate system. Using the detailed representation, we study the impact of a chemical plume that has been released in a densely populated urban region. Authorities order evacuation of the affected area, and this leads to individual behavioral adaptation wherein individuals drop their scheduled activities and drive to home or pre-specified evacuation shelters as appropriate. They also revise their calling behavior to communicate and coordinate among family members. These two behavioral adaptations cause flash-congestion in the urban transport network and the wireless network. The problem is exacerbated with a few, already occurring, road closures. We analyze how extended periods of unanticipated road congestion can result in failure of infrastructures, starting with the servicing base stations in the congested area. A sensitivity analysis on the compliance rate of evacuees shows non-intuitive effect on the spatial distribution of people and on the loading of the base stations. For example, an evacuation compliance rate of 70% results in higher number of overloaded base stations than the evacuation compliance rate of 90%.

  1. Human Initiated Cascading Failures in Societal Infrastructures

    PubMed Central

    Barrett, Chris; Channakeshava, Karthik; Huang, Fei; Kim, Junwhan; Marathe, Achla; Marathe, Madhav V.; Pei, Guanhong; Saha, Sudip; Subbiah, Balaaji S. P.; Vullikanti, Anil Kumar S.

    2012-01-01

    In this paper, we conduct a systematic study of human-initiated cascading failures in three critical inter-dependent societal infrastructures due to behavioral adaptations in response to a crisis. We focus on three closely coupled socio-technical networks here: (i) cellular and mesh networks, (ii) transportation networks and (iii) mobile call networks. In crises, changes in individual behaviors lead to altered travel, activity and calling patterns, which influence the transport network and the loads on wireless networks. The interaction between these systems and their co-evolution poses significant technical challenges for representing and reasoning about these systems. In contrast to system dynamics models for studying these interacting infrastructures, we develop interaction-based models in which individuals and infrastructure elements are represented in detail and are placed in a common geographic coordinate system. Using the detailed representation, we study the impact of a chemical plume that has been released in a densely populated urban region. Authorities order evacuation of the affected area, and this leads to individual behavioral adaptation wherein individuals drop their scheduled activities and drive to home or pre-specified evacuation shelters as appropriate. They also revise their calling behavior to communicate and coordinate among family members. These two behavioral adaptations cause flash-congestion in the urban transport network and the wireless network. The problem is exacerbated with a few, already occurring, road closures. We analyze how extended periods of unanticipated road congestion can result in failure of infrastructures, starting with the servicing base stations in the congested area. A sensitivity analysis on the compliance rate of evacuees shows non-intuitive effect on the spatial distribution of people and on the loading of the base stations. For example, an evacuation compliance rate of 70% results in higher number of overloaded base stations than the evacuation compliance rate of 90%. PMID:23118847

  2. 76 FR 45860 - In the Matter of Certain Electronic Devices, Including Wireless Communication Devices, Portable...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-01

    ..., Including Wireless Communication Devices, Portable Music and Data Processing Devices, and Tablet Computers... electronic devices, including wireless communication devices, portable music and data processing devices, and... electronic devices, including wireless communication devices, portable music and data processing devices, and...

  3. 75 FR 14483 - Third Meeting: RTCA Special Committee 223: Airport Surface Wireless Communications

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-25

    ... 223: Airport Surface Wireless Communications AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of RTCA Special Committee 223: Airport Surface Wireless Communications meeting. SUMMARY...: Airport Surface Wireless Communications. DATES: The meeting will be held April 13-14, 2010 from 9 a.m.-5 p...

  4. 77 FR 55894 - Thirteenth Meeting: RTCA Special Committee 223, Airport Surface Wireless Communications

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-11

    ... Committee 223, Airport Surface Wireless Communications AGENCY: Federal Aviation Administration (FAA), U.S... Wireless Communications. SUMMARY: The FAA is issuing this notice to advise the public of the thirteenth meeting of the RTCA Special Committee 223, Airport Surface Wireless Communications. DATES: The meeting...

  5. Traffic prediction using wireless cellular networks : final report.

    DOT National Transportation Integrated Search

    2016-03-01

    The major objective of this project is to obtain traffic information from existing wireless : infrastructure. : In this project freeway traffic is identified and modeled using data obtained from existing : wireless cellular networks. Most of the prev...

  6. Monitoring devices and systems for monitoring frequency hopping wireless communications, and related methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Derr, Kurt W.; Richardson, John G.

    Monitoring devices and systems comprise a plurality of data channel modules coupled to processing circuitry. Each data channel module of the plurality of data channel modules is configured to capture wireless communications for a selected frequency channel. The processing circuitry is configured to receive captured wireless communications from the plurality of data channel modules and to organize received wireless communications according to at least one parameter. Related methods of monitoring wireless communications are also disclosed.

  7. Securing While Sampling in Wireless Body Area Networks With Application to Electrocardiography.

    PubMed

    Dautov, Ruslan; Tsouri, Gill R

    2016-01-01

    Stringent resource constraints and broadcast transmission in wireless body area network raise serious security concerns when employed in biomedical applications. Protecting data transmission where any minor alteration is potentially harmful is of significant importance in healthcare. Traditional security methods based on public or private key infrastructure require considerable memory and computational resources, and present an implementation obstacle in compact sensor nodes. This paper proposes a lightweight encryption framework augmenting compressed sensing with wireless physical layer security. Augmenting compressed sensing to secure information is based on the use of the measurement matrix as an encryption key, and allows for incorporating security in addition to compression at the time of sampling an analog signal. The proposed approach eliminates the need for a separate encryption algorithm, as well as the predeployment of a key thereby conserving sensor node's limited resources. The proposed framework is evaluated using analysis, simulation, and experimentation applied to a wireless electrocardiogram setup consisting of a sensor node, an access point, and an eavesdropper performing a proximity attack. Results show that legitimate communication is reliable and secure given that the eavesdropper is located at a reasonable distance from the sensor node and the access point.

  8. Demonstration of UAV deployment and control of mobile wireless sensing networks for modal analysis of structures

    NASA Astrophysics Data System (ADS)

    Zhou, Hao; Hirose, Mitsuhito; Greenwood, William; Xiao, Yong; Lynch, Jerome; Zekkos, Dimitrios; Kamat, Vineet

    2016-04-01

    Unmanned aerial vehicles (UAVs) can serve as a powerful mobile sensing platform for assessing the health of civil infrastructure systems. To date, the majority of their uses have been dedicated to vision and laser-based spatial imaging using on-board cameras and LiDAR units, respectively. Comparatively less work has focused on integration of other sensing modalities relevant to structural monitoring applications. The overarching goal of this study is to explore the ability for UAVs to deploy a network of wireless sensors on structures for controlled vibration testing. The study develops a UAV platform with an integrated robotic gripper that can be used to install wireless sensors in structures, drop a heavy weight for the introduction of impact loads, and to uninstall wireless sensors for reinstallation elsewhere. A pose estimation algorithm is embedded in the UAV to estimate the location of the UAV during sensor placement and impact load introduction. The Martlet wireless sensor network architecture is integrated with the UAV to provide the UAV a mobile sensing capability. The UAV is programmed to command field deployed Martlets, aggregate and temporarily store data from the wireless sensor network, and to communicate data to a fixed base station on site. This study demonstrates the integrated UAV system using a simply supported beam in the lab with Martlet wireless sensors placed by the UAV and impact load testing performed. The study verifies the feasibility of the integrated UAV-wireless monitoring system architecture with accurate modal characteristics of the beam estimated by modal analysis.

  9. How Much Longer before It All Works: What Online Searchers Should Know about Wireless Data Communications.

    ERIC Educational Resources Information Center

    Bell, Steven J.

    1994-01-01

    Profiles the major wireless data communications (WDC) systems, provides an overview of how they work, and compares their communication features. Topics addressed include the market for wireless data; applications for WDC; wireless online searching; cellular data communication; packet radio; digital cellular; criteria for evaluating WDC systems;…

  10. Mobilize Your instruction Program with Wireless Technology.

    ERIC Educational Resources Information Center

    Mathias, Molly Susan; Heser, Steven

    2002-01-01

    Describes the use of wireless technology for library bibliographic instruction at the Milwaukee Area Technical College. Highlights include a wireless mobile cart that holds laptop computers; faculty support; future plans; and recommendations, including investigating technology infrastructure and marketing. (LRW)

  11. Sensing Traffic Density Combining V2V and V2I Wireless Communications.

    PubMed

    Sanguesa, Julio A; Barrachina, Javier; Fogue, Manuel; Garrido, Piedad; Martinez, Francisco J; Cano, Juan-Carlos; Calafate, Carlos T; Manzoni, Pietro

    2015-12-16

    Wireless technologies are making the development of new applications and services in vehicular environments possible since they enable mobile communication between vehicles (V2V), as well as communication between vehicles and infrastructure nodes (V2I). Usually, V2V communications are dedicated to the transmission of small messages mainly focused on improving traffic safety. Instead, V2I communications allow users to access the Internet and benefit from higher level applications. The combination of both V2V and V2I, known as V2X communications, can increase the benefits even further, thereby making intelligent transportation systems (ITS) a reality. In this paper, we introduce V2X-d, a novel architecture specially designed to estimate traffic density on the road. In particular, V2X-d exploits the combination of V2V and V2I communications. Our approach is based on the information gathered by sensors (i.e., vehicles and road side units (RSUs)) and the characteristics of the roadmap topology to accurately make an estimation of the instant vehicle density. The combination of both mechanisms improves the accuracy and coverage area of the data gathered, while increasing the robustness and fault tolerance of the overall approach, e.g., using the information offered by V2V communications to provide additional density information in areas where RSUs are scarce or malfunctioning. By using our collaborative sensing scheme, future ITS solutions will be able to establish adequate dissemination protocols or to apply more efficient traffic congestion reduction policies, since they will be aware of the instantaneous density of vehicles.

  12. Tags, wireless communication systems, tag communication methods, and wireless communications methods

    DOEpatents

    Scott,; Jeff W. , Pratt; Richard, M [Richland, WA

    2006-09-12

    Tags, wireless communication systems, tag communication methods, and wireless communications methods are described. In one aspect, a tag includes a plurality of antennas configured to receive a plurality of first wireless communication signals comprising data from a reader, a plurality of rectifying circuits coupled with. respective individual ones of the antennas and configured to provide rectified signals corresponding to the first wireless communication signals, wherein the rectified signals are combined to produce a composite signal, an adaptive reference circuit configured to vary a reference signal responsive to the composite signal, a comparator coupled with the adaptive reference circuit and the rectifying circuits and configured to compare the composite signal with respect to the reference signal and to output the data responsive to the comparison, and processing circuitry configured to receive the data from the comparator and to process the data.

  13. Recent advances in environmental monitoring using commercial microwave links

    NASA Astrophysics Data System (ADS)

    Alpert, Pinhas; David, Noam; Messer-Yaron, Hagit; Samuels, Rana

    2013-04-01

    The propagation of electromagnetic radiation in the lower atmosphere, at centimeter wavelengths, is impaired by atmospheric conditions. Absorption and scattering of the radiation, at frequencies of tens of GHz, are directly related to the atmospheric phenomena, primarily precipitation, oxygen, mist, fog and water vapor. As we have recently shown, commercial wireless communication networks supply high resolution precipitation measurements at ground level while often being situated in flood prone areas, covering large parts of these hazardous regions. On the other hand, at present, there are no satisfactory real time flash flood warning facilities found to cope well with this phenomenon. I will exemplify the flash flood warning potential of the commercial wireless communication system for two different semi-arid region cases when floods occurred in the Judean desert and in the northern Negev in Israel. In addition, I will review our recent improvements in monitoring rainfall as well as other-than-rain phenomena like, atmospheric moisture. Special focus on fog monitoring potential will be discussed. This research was supported by THE ISRAEL SCIENCE FOUNDATION (grant No. 173/08) and the PROCEMA VI coordinated by H. Kunstmann. The research was also supported by the by the United States- Israel BINATIONAL SCIENCE FOUNDATION (BSF, Grant No. 2010342). References: N. David, P. Alpert, and H. Messer, "Technical Note: Novel method for water vapour monitoring using wireless communication networks measurements", Atmos. Chem. Phys., 9, 2413-2418, 2009. A. Rayitsfeld, R. Samuels, A. Zinevich, U. Hadar and P. Alpert,"Comparison of two methodologies for long term rainfall monitoring using a commercial microwave communication system", Atmospheric Research 104-105, 119-127, 2012. N. David, P. Alpert, and H. Messer, "Novel method for fog monitoring using cellular networks infrastructures", Atmos. Meas. Tech. Discuss, 5, 5725-5752, 2012.

  14. Distributive routing and congestion control in wireless multihop ad hoc communication networks

    NASA Astrophysics Data System (ADS)

    Glauche, Ingmar; Krause, Wolfram; Sollacher, Rudolf; Greiner, Martin

    2004-10-01

    Due to their inherent complexity, engineered wireless multihop ad hoc communication networks represent a technological challenge. Having no mastering infrastructure the nodes have to selforganize themselves in such a way that for example network connectivity, good data traffic performance and robustness are guaranteed. In this contribution the focus is on routing and congestion control. First, random data traffic along shortest path routes is studied by simulations as well as theoretical modeling. Measures of congestion like end-to-end time delay and relaxation times are given. A scaling law of the average time delay with respect to network size is revealed and found to depend on the underlying network topology. In the second step, a distributive routing and congestion control is proposed. Each node locally propagates its routing cost estimates and information about its congestion state to its neighbors, which then update their respective cost estimates. This allows for a flexible adaptation of end-to-end routes to the overall congestion state of the network. Compared to shortest-path routing, the critical network load is significantly increased.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, John M.; Jones, Perry T.; Li, Jan-Mou

    As visionary as dynamic, or in-motion, wireless charging of electric vehicles appears the concept is well over a century old as this paper will show. This is because the concept of magnetic induction dates back to the pioneering work of physicist Michael Faraday in the early 19th century. Today wireless power transfer (WPT) is being standardized for stationary and quasi-stationary charging of electric vehicles (EV). The Society of Automotive Engineers (SAE) has undertaken the standardization of stationary charging and will make this public during 2016. In addition to this the IEEE-SA (Standards Activities) initiated standards development for EV?s in theirmore » EVWPT working group in 2012. This study introduces the many challenges facing EVWPT in not only high power transfer to a moving vehicle and energy management at a utility scale, but communications in a vehicle to infrastructure (V2I) environment and management of high data rates, ultra-low latency, and dealing with communications loss in dense urban areas. Finally, future concepts such as guideway powering of EV?s are presented to illustrate one technical trajectory EVWPT may take.« less

  16. The Role of Wireless Computing Technology in the Design of Schools.

    ERIC Educational Resources Information Center

    Nair, Prakash

    This document discusses integrating computers logically and affordably into a school building's infrastructure through the use of wireless technology. It begins by discussing why wireless networks using mobile computers are preferable to desktop machines in each classoom. It then explains the features of a wireless local area network (WLAN) and…

  17. Adaptive Code Division Multiple Access Protocol for Wireless Network-on-Chip Architectures

    NASA Astrophysics Data System (ADS)

    Vijayakumaran, Vineeth

    Massive levels of integration following Moore's Law ushered in a paradigm shift in the way on-chip interconnections were designed. With higher and higher number of cores on the same die traditional bus based interconnections are no longer a scalable communication infrastructure. On-chip networks were proposed enabled a scalable plug-and-play mechanism for interconnecting hundreds of cores on the same chip. Wired interconnects between the cores in a traditional Network-on-Chip (NoC) system, becomes a bottleneck with increase in the number of cores thereby increasing the latency and energy to transmit signals over them. Hence, there has been many alternative emerging interconnect technologies proposed, namely, 3D, photonic and multi-band RF interconnects. Although they provide better connectivity, higher speed and higher bandwidth compared to wired interconnects; they also face challenges with heat dissipation and manufacturing difficulties. On-chip wireless interconnects is one other alternative proposed which doesn't need physical interconnection layout as data travels over the wireless medium. They are integrated into a hybrid NOC architecture consisting of both wired and wireless links, which provides higher bandwidth, lower latency, lesser area overhead and reduced energy dissipation in communication. However, as the bandwidth of the wireless channels is limited, an efficient media access control (MAC) scheme is required to enhance the utilization of the available bandwidth. This thesis proposes using a multiple access mechanism such as Code Division Multiple Access (CDMA) to enable multiple transmitter-receiver pairs to send data over the wireless channel simultaneously. It will be shown that such a hybrid wireless NoC with an efficient CDMA based MAC protocol can significantly increase the performance of the system while lowering the energy dissipation in data transfer. In this work it is shown that the wireless NoC with the proposed CDMA based MAC protocol outperformed the wired counterparts and several other wireless architectures proposed in literature in terms of bandwidth and packet energy dissipation. Significant gains were observed in packet energy dissipation and bandwidth even with scaling the system to higher number of cores. Non-uniform traffic simulations showed that the proposed CDMA-WiNoC was consistent in bandwidth across all traffic patterns. It is also shown that the CDMA based MAC scheme does not introduce additional reliability concerns in data transfer over the on-chip wireless interconnects.

  18. Spatial Characterization of Radio Propagation Channel in Urban Vehicle-to-Infrastructure Environments to Support WSNs Deployment

    PubMed Central

    Granda, Fausto; Azpilicueta, Leyre; Vargas-Rosales, Cesar; Lopez-Iturri, Peio; Aguirre, Erik; Astrain, Jose Javier; Villandangos, Jesus; Falcone, Francisco

    2017-01-01

    Vehicular ad hoc Networks (VANETs) enable vehicles to communicate with each other as well as with roadside units (RSUs). Although there is a significant research effort in radio channel modeling focused on vehicle-to-vehicle (V2V), not much work has been done for vehicle-to-infrastructure (V2I) using 3D ray-tracing tools. This work evaluates some important parameters of a V2I wireless channel link such as large-scale path loss and multipath metrics in a typical urban scenario using a deterministic simulation model based on an in-house 3D Ray-Launching (3D-RL) algorithm at 5.9 GHz. Results show the high impact that the spatial distance; link frequency; placement of RSUs; and factors such as roundabout, geometry and relative position of the obstacles have in V2I propagation channel. A detailed spatial path loss characterization of the V2I channel along the streets and avenues is presented. The 3D-RL results show high accuracy when compared with measurements, and represent more reliably the propagation phenomena when compared with analytical path loss models. Performance metrics for a real test scenario implemented with a VANET wireless sensor network implemented ad-hoc are also described. These results constitute a starting point in the design phase of Wireless Sensor Networks (WSNs) radio-planning in the urban V2I deployment in terms of coverage. PMID:28590429

  19. Spatial Characterization of Radio Propagation Channel in Urban Vehicle-to-Infrastructure Environments to Support WSNs Deployment.

    PubMed

    Granda, Fausto; Azpilicueta, Leyre; Vargas-Rosales, Cesar; Lopez-Iturri, Peio; Aguirre, Erik; Astrain, Jose Javier; Villandangos, Jesus; Falcone, Francisco

    2017-06-07

    Vehicular ad hoc Networks (VANETs) enable vehicles to communicate with each other as well as with roadside units (RSUs). Although there is a significant research effort in radio channel modeling focused on vehicle-to-vehicle (V2V), not much work has been done for vehicle-to-infrastructure (V2I) using 3D ray-tracing tools. This work evaluates some important parameters of a V2I wireless channel link such as large-scale path loss and multipath metrics in a typical urban scenario using a deterministic simulation model based on an in-house 3D Ray-Launching (3D-RL) algorithm at 5.9 GHz. Results show the high impact that the spatial distance; link frequency; placement of RSUs; and factors such as roundabout, geometry and relative position of the obstacles have in V2I propagation channel. A detailed spatial path loss characterization of the V2I channel along the streets and avenues is presented. The 3D-RL results show high accuracy when compared with measurements, and represent more reliably the propagation phenomena when compared with analytical path loss models. Performance metrics for a real test scenario implemented with a VANET wireless sensor network implemented ad-hoc are also described. These results constitute a starting point in the design phase of Wireless Sensor Networks (WSNs) radio-planning in the urban V2I deployment in terms of coverage.

  20. 78 FR 70237 - Operation of Wireless Communications Services in the 2.3 GHz Band; Establishment of Rules and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-25

    ... Docket No. 90-357; RM- 8610; FCC 12-130] Operation of Wireless Communications Services in the 2.3 GHz... Amendment of part 27 of its rules to Govern the Operation of Wireless Communications Services in the 2.3 GHz... FURTHER INFORMATION CONTACT: Linda Chang, Federal Communications Commission, Wireless Telecommunications...

  1. 75 FR 54421 - Sixth Meeting: RTCA Special Committee 223: Airport Surface Wireless Communications

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-07

    ... 223: Airport Surface Wireless Communications AGENCY: Federal Aviation Administration (FAA), Department of Transportation (DOT). ACTION: Notice of RTCA Special Committee 223: Airport Surface Wireless... Committee 223: Airport Surface Wireless Communications. DATES: The meeting will be held September 28-30...

  2. 76 FR 6179 - Eighth Meeting: RTCA Special Committee 223: Airport Surface Wireless Communications

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-03

    ... Committee 223: Airport Surface Wireless Communications AGENCY: Federal Aviation Administration (FAA), Department of Transportation (DOT). ACTION: Notice of RTCA Special Committee 223: Airport Surface Wireless... Committee 223: Airport Surface Wireless Communications. DATES: The meeting will be held February 22-23, 2011...

  3. 75 FR 66423 - Seventh Meeting: RTCA Special Committee 223: Airport Surface Wireless Communications

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-28

    ... Committee 223: Airport Surface Wireless Communications AGENCY: Federal Aviation Administration (FAA), Department of Transportation (DOT). ACTION: Notice of RTCA Special Committee 223: Airport Surface Wireless... Committee 223: Airport Surface Wireless Communications. DATES: The meeting will be held November 16-17, 2010...

  4. 78 FR 33145 - Meeting: RTCA Special Committee 223, Airport Surface Wireless Communications

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-03

    ..., Airport Surface Wireless Communications AGENCY: Federal Aviation Administration (FAA), U.S. Department of Transportation (DOT). ACTION: Meeting Notice of RTCA Special Committee 223, Airport Surface Wireless... Committee 223, Airport Surface Wireless Communications. DATES: The meeting will be held June 26-28, 2013...

  5. Passive, wireless corrosion sensors for transportation infrastructure.

    DOT National Transportation Integrated Search

    2011-07-01

    Many industrial segments including utilities, manufacturing, government and infrastructure have an urgent need for a means to detect corrosion before significant damage occurs. Transportation infrastructure, such as bridges and roads, rely on reinfor...

  6. Energy-efficient rings mechanism for greening multisegment fiber-wireless access networks

    NASA Astrophysics Data System (ADS)

    Gong, Xiaoxue; Guo, Lei; Hou, Weigang; Zhang, Lincong

    2013-07-01

    Through integrating advantages of optical and wireless communications, the Fiber-Wireless (FiWi) has become a promising solution for the "last-mile" broadband access. In particular, greening FiWi has attained extensive attention, because the access network is a main energy contributor in the whole infrastructure. However, prior solutions of greening FiWi shut down or sleep unused/minimally used optical network units for a single segment, where we deploy only one optical linear terminal. We propose a green mechanism referred to as energy-efficient ring (EER) for multisegment FiWi access networks. We utilize an integer linear programming model and a generic algorithm to generate clusters, each having the shortest distance of fully connected segments of its own. Leveraging the backtracking method for each cluster, we then connect segments through fiber links, and the shortest distance fiber ring is constructed. Finally, we sleep low load segments and forward affected traffic to other active segments on the same fiber ring by our sleeping scheme. Experimental results show that our EER mechanism significantly reduces the energy consumption at the slightly additional cost of deploying fiber links.

  7. The investigation of using 5G millimeter-wave communications links for environmental monitoring

    NASA Astrophysics Data System (ADS)

    Han, Congzheng

    2017-04-01

    There has been significantly increasing recognition that millimeter waves from 30 GHz to 300 GHz as carriers for future 5G cellular networks. This is good for high speed, line-of-sight communication, potentially using very densely deployed infrastructure involving many small cells. High resolution, continuous and accurate monitoring of environmental conditions, such as rainfall and water vapor are of great important to meteorology, hydrology (e.g. flood warning), agriculture, environmental policy (e.g. pollution regulation) and weather forecasting. We have built a 28GHz measurement link at our research institute in central Beijing, China. This work will study the potential of using millimeter wave based wireless links to monitor environmental conditions including rainfall and water vapor.

  8. Wireless infrared communications for space and terrestrial applications

    NASA Technical Reports Server (NTRS)

    Crimmins, James W.

    1993-01-01

    Voice and data communications via wireless (and fiberless) optical means has been commonplace for many years. However, continuous advances in optoelectronics and microelectronics have resulted in significant advances in wireless optical communications over the last decade. Wilton has specialized in diffuse infrared voice and data communications since 1979. In 1986, NASA Johnson Space Center invited Wilton to apply its wireless telecommunications and factory floor technology to astronaut voice communications aboard the shuttle. In September, 1988 a special infrared voice communications system flew aboard a 'Discovery' Shuttle mission as a flight experiment. Since then the technology has been further developed, resulting in a general purpose of 2Mbs wireless voice/data LAN which has been tested for a variety of applications including use aboard Spacelab. Funds for Wilton's wireless IR development were provided in part by NASA's Technology Utilization Office and by the NASA Small Business Innovative Research Program. As a consequence, Wilton's commercial product capability has been significantly enhanced to include diffuse infrared wireless LAN's as well as wireless infrared telecommunication systems for voice and data.

  9. POTS to broadband ... cable modems.

    PubMed

    Kabachinski, Jeff

    2003-01-01

    There have been 3 columns talking about broadband communications and now at the very end when it's time to compare using a telco or cableco, I'm asking does it really matter? So what if I can actually get the whole 30 Mbps with a cable network when the website I'm connecting to is running on an ISDN line at 128 Kbps? Broadband offers a lot more bandwidth than the connections many Internet servers have today. Except for the biggest websites, many servers connect to the Internet with a switched 56-Kbps, ISDN, or fractional T1 line. Even with the big websites, my home network only runs a 10 Mbps Ethernet connection to my cable modem. Maybe it doesn't matter that the cable lines are shared or that I can only get 8 Mbps from an ADSL line. Maybe the ISP that I use has a T1 line connection to the Internet so my new ADSL modem has a fatter pipe than my provider! (See table 1). It all makes me wonder what's in store for us in the future. PC technology has increased exponentially in the last 10 years with super fast processor speeds, hard disks of hundreds of gigabytes, and amazing video and audio. Internet connection speeds have failed to keep the same pace. Instead of hundreds of times better or faster--modem speeds are barely 10 times faster. Broadband connections offer some additional speed but still not comparable growth as broadband connections are still in their infancy. Rather than trying to make use of existing communication paths, maybe we need a massive infrastructure makeover of something new. How about national wireless access points so we can connect anywhere, anytime? To use the latest and fastest wireless technology you will simply need to buy another $9.95 WLAN card or download the latest super slick WLAN compression/encryption software. Perhaps it is time for a massive infra-restructuring. Consider the past massive infrastructure efforts. The telcos needed to put in their wiring infrastructure starting in the 1870s before telephones were useful to the masses. CATV was a minor player in the TV broadcast business before they installed their cabling infrastructure and went national. Even automobiles were fairly useless until roads were paved and the highway infrastructure was built!

  10. Wireless Network Communications Overview for Space Mission Operations

    NASA Technical Reports Server (NTRS)

    Fink, Patrick W.

    2009-01-01

    The mission of the On-Board Wireless Working Group (WWG) is to serve as a general CCSDS focus group for intra-vehicle wireless technologies. The WWG investigates and makes recommendations pursuant to standardization of applicable wireless network protocols, ensuring the interoperability of independently developed wireless communication assets. This document presents technical background information concerning uses and applicability of wireless networking technologies for space missions. Agency-relevant driving scenarios, for which wireless network communications will provide a significant return-on-investment benefiting the participating international agencies, are used to focus the scope of the enclosed technical information.

  11. Recent advances in environmental monitoring using commercial microwave links

    NASA Astrophysics Data System (ADS)

    Alpert, Pinhas; Guez, Oded; Messer, Hagit; David, Noam; Harel, Oz; Eshel, Adam; Cohen, Ori

    2016-04-01

    Recent advances in environmental monitoring using commercial microwave links Pinhas Alpert, H. Messer, N. David, O. Guez, O. Cohen, O. Harel, A. Eshel Tel Aviv University, Israel The propagation of electromagnetic radiation in the lower atmosphere, at centimeter wavelengths, is impaired by atmospheric conditions. Absorption and scattering of the radiation, at frequencies of tens of GHz, are directly related to the atmospheric phenomena, primarily precipitation, oxygen, mist, fog and water vapor. As was recently shown, wireless communication networks supply high resolution precipitation measurements at ground level while often being situated in flood prone areas, covering large parts of these hazardous regions. On the other hand, at present, there are no satisfactory real time flash flood warning facilities found to cope well with this phenomenon. I will exemplify the flash flood warning potential of the commercial wireless communication system for semi-arid region cases when floods occurred in the Judean desert in Israel with comparison to hydrological measurements in the Dead Sea area. In addition, I will review our recent improvements in monitoring rainfall as well as other-than-rain phenomena like, fog, dew, atmospheric moisture. References: N. David, P. Alpert, and H. Messer, "Technical Note: Novel method for water vapor monitoring using wireless communication networks measurements", Atmos. Chem. Phys., 9, 2413-2418, 2009. A. Rayitsfeld, R. Samuels, A. Zinevich, U. Hadar and P. Alpert,"Comparison of two methodologies for long term rainfall monitoring using a commercial microwave communication system", Atmospheric Research 104-105, 119-127, 2012. N. David, O. Sendik, H. Messer and P. Alpert, "Cellular network infrastructure-the future of fog monitoring?" BAMS (Oct. issue), 1687-1698, 2015. O. Harel, David, N., Alpert, P. and Messer, H., "The potential of microwave communication networks to detect dew using the GLRT- experimental study", IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015.

  12. Wireless communication devices and movement monitoring methods

    DOEpatents

    Skorpik, James R.

    2006-10-31

    Wireless communication devices and movement monitoring methods are described. In one aspect, a wireless communication device includes a housing, wireless communication circuitry coupled with the housing and configured to communicate wireless signals, movement circuitry coupled with the housing and configured to provide movement data regarding movement sensed by the movement circuitry, and event processing circuitry coupled with the housing and the movement circuitry, wherein the event processing circuitry is configured to process the movement data, and wherein at least a portion of the event processing circuitry is configured to operate in a first operational state having a different power consumption rate compared with a second operational state.

  13. Tradeoff Analysis for Combat Service Support Wireless Communications Alternatives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burnette, John R.; Thibodeau, Christopher C.; Greitzer, Frank L.

    2002-02-28

    As the Army moves toward more mobile and agile forces and continued sustainment of numerous high-cost legacy logistics management systems, the requirement for wireless connectivity and a wireless network to supporting organizations has become ever more critical. There are currently several Army communications initiatives underway to resolve this wireless connectivity issue. However, to fully appreciate and understand the value of these initiatives, a Tradeoff Analysis is needed. The present study seeks to identify and assess solutions. The analysis identified issues that impede Interim Brigade Combat Team (IBCT) communication system integration and outlined core requirements for sharing of logistics data betweenmore » the field and Army battle command systems. Then, the analysis examined wireless communication alternatives as possible solutions for IBCT logistics communications problems. The current baseline system was compared with possible alternatives involving tactical radio systems, wireless/near term digital radio, cellular satellite, and third-generation (3G) wireless technologies. Cellular satellite and 3G wireless technologies offer clear advantages and should be considered for later IBCTs.« less

  14. A User Authentication Scheme Based on Elliptic Curves Cryptography for Wireless Ad Hoc Networks

    PubMed Central

    Chen, Huifang; Ge, Linlin; Xie, Lei

    2015-01-01

    The feature of non-infrastructure support in a wireless ad hoc network (WANET) makes it suffer from various attacks. Moreover, user authentication is the first safety barrier in a network. A mutual trust is achieved by a protocol which enables communicating parties to authenticate each other at the same time and to exchange session keys. For the resource-constrained WANET, an efficient and lightweight user authentication scheme is necessary. In this paper, we propose a user authentication scheme based on the self-certified public key system and elliptic curves cryptography for a WANET. Using the proposed scheme, an efficient two-way user authentication and secure session key agreement can be achieved. Security analysis shows that our proposed scheme is resilient to common known attacks. In addition, the performance analysis shows that our proposed scheme performs similar or better compared with some existing user authentication schemes. PMID:26184224

  15. A User Authentication Scheme Based on Elliptic Curves Cryptography for Wireless Ad Hoc Networks.

    PubMed

    Chen, Huifang; Ge, Linlin; Xie, Lei

    2015-07-14

    The feature of non-infrastructure support in a wireless ad hoc network (WANET) makes it suffer from various attacks. Moreover, user authentication is the first safety barrier in a network. A mutual trust is achieved by a protocol which enables communicating parties to authenticate each other at the same time and to exchange session keys. For the resource-constrained WANET, an efficient and lightweight user authentication scheme is necessary. In this paper, we propose a user authentication scheme based on the self-certified public key system and elliptic curves cryptography for a WANET. Using the proposed scheme, an efficient two-way user authentication and secure session key agreement can be achieved. Security analysis shows that our proposed scheme is resilient to common known attacks. In addition, the performance analysis shows that our proposed scheme performs similar or better compared with some existing user authentication schemes.

  16. Towards a Bio-inspired Security Framework for Mission-Critical Wireless Sensor Networks

    NASA Astrophysics Data System (ADS)

    Ren, Wei; Song, Jun; Ma, Zhao; Huang, Shiyong

    Mission-critical wireless sensor networks (WSNs) have been found in numerous promising applications in civil and military fields. However, the functionality of WSNs extensively relies on its security capability for detecting and defending sophisticated adversaries, such as Sybil, worm hole and mobile adversaries. In this paper, we propose a bio-inspired security framework to provide intelligence-enabled security mechanisms. This scheme is composed of a middleware, multiple agents and mobile agents. The agents monitor the network packets, host activities, make decisions and launch corresponding responses. Middleware performs an infrastructure for the communication between various agents and corresponding mobility. Certain cognitive models and intelligent algorithms such as Layered Reference Model of Brain and Self-Organizing Neural Network with Competitive Learning are explored in the context of sensor networks that have resource constraints. The security framework and implementation are also described in details.

  17. Radiofrequency electromagnetic radiation exposure inside the metro tube infrastructure in Warszawa.

    PubMed

    Gryz, Krzysztof; Karpowicz, Jolanta

    2015-09-01

    Antennas from various wireless communications systems [e.g. mobile phones base transceiver stations (BTS) and handsets used by passengers, public Internet access, staff radiophone transmitters used between engine-drivers and traffic operators] emitting radiofrequency electromagnetic radiation (RF-EMR) are used inside underground metro public transportation. Frequency-selective exposimetric investigations of RF-EMR exposure inside the metro infrastructure in Warsaw (inside metro cars passing between stations and on platforms) were performed. The statistical parameters of exposure to the E-field were analyzed for each frequency range and for a total value (representing the wide-band result of measurements of complex exposure). The recorded exposimetric profiles showed the dominant RF-EMR sources: handsets and BTS of mobile communication systems (GSM 900 and UMTS 2100) and local wireless Internet access (WiFi 2G). Investigations showed that the GSM 900 system is the dominant source of exposure - BTS (incessantly active) on platforms, and handsets - used by passengers present nearby during the tube drive. The recorded E-field varies between sources (for BTS were: medians - 0.22 V/m and 75th percentile - 0.37 V/m; and for handsets: medians - 0.28 V/m and 75th percentile - 0.47 V/m). Maximum levels (peaks) of exposure recorded from mobile handsets exceeded 10 V/m (upper limit of used exposimeters). Broadband measurements of E-field, including the dominant signal emitted by staff radiophones (151 MHz), showed that the level of this exposure of engine-drivers does not exceed 2.5 V/m.

  18. 78 FR 115 - Certain Wireless Communications Equipment and Articles Therein; Notice of Receipt of Complaint...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-02

    ... INTERNATIONAL TRADE COMMISSION [DN 2926] Certain Wireless Communications Equipment and Articles... complaint entitled Certain Wireless Communications Equipment and Articles Therein, DN 2926; the Commission... communications equipment and articles therein. The complaint names as respondents Ericsson Inc. of TX and...

  19. Sensing Traffic Density Combining V2V and V2I Wireless Communications

    PubMed Central

    Sanguesa, Julio A.; Barrachina, Javier; Fogue, Manuel; Garrido, Piedad; Martinez, Francisco J.; Cano, Juan-Carlos; Calafate, Carlos T.; Manzoni, Pietro

    2015-01-01

    Wireless technologies are making the development of new applications and services in vehicular environments possible since they enable mobile communication between vehicles (V2V), as well as communication between vehicles and infrastructure nodes (V2I). Usually, V2V communications are dedicated to the transmission of small messages mainly focused on improving traffic safety. Instead, V2I communications allow users to access the Internet and benefit from higher level applications. The combination of both V2V and V2I, known as V2X communications, can increase the benefits even further, thereby making intelligent transportation systems (ITS) a reality. In this paper, we introduce V2X-d, a novel architecture specially designed to estimate traffic density on the road. In particular, V2X-d exploits the combination of V2V and V2I communications. Our approach is based on the information gathered by sensors (i.e., vehicles and road side units (RSUs)) and the characteristics of the roadmap topology to accurately make an estimation of the instant vehicle density. The combination of both mechanisms improves the accuracy and coverage area of the data gathered, while increasing the robustness and fault tolerance of the overall approach, e.g., using the information offered by V2V communications to provide additional density information in areas where RSUs are scarce or malfunctioning. By using our collaborative sensing scheme, future ITS solutions will be able to establish adequate dissemination protocols or to apply more efficient traffic congestion reduction policies, since they will be aware of the instantaneous density of vehicles. PMID:26694405

  20. Tethered Balloon Technology in Design Solutions for Rescue and Relief Team Emergency Communication Services.

    PubMed

    Alsamhi, Saeed Hamood; Ansari, Mohd Samar; Ma, Ou; Almalki, Faris; Gupta, Sachin Kumar

    2018-05-23

    The actions taken at the initial times of a disaster are critical. Catastrophe occurs because of terrorist acts or natural hazards which have the potential to disrupt the infrastructure of wireless communication networks. Therefore, essential emergency functions such as search, rescue, and recovery operations during a catastrophic event will be disabled. We propose tethered balloon technology to provide efficient emergency communication services and reduce casualty mortality and morbidity for disaster recovery. The tethered balloon is an actively developed research area and a simple solution to support the performance, facilities, and services of emergency medical communication. The most critical requirement for rescue and relief teams is having a higher quality of communication services which enables them to save people's lives. Using our proposed technology, it has been reported that the performance of rescue and relief teams significantly improved. OPNET Modeler 14.5 is used for a network simulated with the help of ad hoc tools (Disaster Med Public Health Preparedness. 2018;page 1 of 8).

  1. Low-earth-orbit Satellite Internet Protocol Communications Concept and Design

    NASA Technical Reports Server (NTRS)

    Slywezak, Richard A.

    2004-01-01

    This report presents a design concept for a low-Earth-orbit end-to-end Internet-Protocol- (IP-) based mission. The goal is to maintain an up-to-date communications infrastructure that makes communications seamless with the protocols used in terrestrial computing. It is based on the premise that the use of IPs will permit greater interoperability while also reducing costs and providing users the ability to retrieve data directly from the satellite. However, implementing an IP-based solution also has a number of challenges, since wireless communications have different characteristics than wired communications. This report outlines the design of a low-Earth-orbit end-to-end IP-based mission; the ideas and concepts of Space Internet architectures and networks are beyond the scope of this document. The findings of this report show that an IP-based mission is plausible and would provide benefits to the user community, but the outstanding issues must be resolved before a design can be implemented.

  2. Real-time synchronization of wireless sensor network by 1-PPS signal

    NASA Astrophysics Data System (ADS)

    Giammarini, Marco; Pieralisi, Marco; Isidori, Daniela; Concettoni, Enrico; Cristalli, Cristina; Fioravanti, Matteo

    2015-05-01

    The use of wireless sensor networks with different nodes is desirable in a smart environment, because the network setting up and installation on preexisting structures can be done without a fixed cabled infrastructure. The flexibility of the monitoring system is fundamental where the use of a considerable quantity of cables could compromise the normal exercise, could affect the quality of acquired signal and finally increase the cost of the materials and installation. The network is composed of several intelligent "nodes", which acquires data from different kind of sensors, and then store or transmit them to a central elaboration unit. The synchronization of data acquisition is the core of the real-time wireless sensor network (WSN). In this paper, we present a comparison between different methods proposed by literature for the real-time acquisition in a WSN and finally we present our solution based on 1-Pulse-Per-Second (1-PPS) signal generated by GPS systems. The sensor node developed is a small-embedded system based on ARM microcontroller that manages the acquisition, the timing and the post-processing of the data. The communications between the sensors and the master based on IEEE 802.15.4 protocol and managed by dedicated software. Finally, we present the preliminary results obtained on a 3 floor building simulator with the wireless sensors system developed.

  3. Wireless remote monitoring of toxic gases in shipbuilding.

    PubMed

    Pérez-Garrido, Carlos; González-Castaño, Francisco J; Chaves-Díeguez, David; Rodríguez-Hernández, Pedro S

    2014-02-14

    Large-scale wireless sensor networks have not achieved market impact, so far. Nevertheless, this technology may be applied successfully to small-scale niche markets. Shipyards are hazardous working environments with many potential risks to worker safety. Toxic gases generated in soldering processes in enclosed spaces (e.g., cargo holds) are one such risk. The dynamic environment of a ship under construction makes it very difficult to plan gas detection fixed infrastructures connected to external monitoring stations via wired links. While portable devices with gas level indicators exist, they require workers to monitor measurements, often in situations where they are focused on other tasks for relatively long periods. In this work, we present a wireless multihop remote gas monitoring system for shipyard environments that has been tested in a real ship under construction. Using this system, we validate IEEE 802.15.4/Zigbee wireless networks as a suitable technology to connect gas detectors to control stations outside the ships. These networks have the added benefit that they reconfigure themselves dynamically in case of network failure or redeployment, for example when a relay is moved to a new location. Performance measurements include round trip time (which determines the alert response time for safety teams) and link quality indicator and packet error rate (which determine communication robustness).

  4. Wireless Remote Monitoring of Toxic Gases in Shipbuilding

    PubMed Central

    Pérez-Garrido, Carlos; González-Castaño, Francisco J.; Chaves-Diéguez, David; Rodríguez-Hernández, Pedro S.

    2014-01-01

    Large-scale wireless sensor networks have not achieved market impact, so far. Nevertheless, this technology may be applied successfully to small-scale niche markets. Shipyards are hazardous working environments with many potential risks to worker safety. Toxic gases generated in soldering processes in enclosed spaces (e.g., cargo holds) are one such risk. The dynamic environment of a ship under construction makes it very difficult to plan gas detection fixed infrastructures connected to external monitoring stations via wired links. While portable devices with gas level indicators exist, they require workers to monitor measurements, often in situations where they are focused on other tasks for relatively long periods. In this work, we present a wireless multihop remote gas monitoring system for shipyard environments that has been tested in a real ship under construction. Using this system, we validate IEEE 802.15.4/Zigbee wireless networks as a suitable technology to connect gas detectors to control stations outside the ships. These networks have the added benefit that they reconfigure themselves dynamically in case of network failure or redeployment, for example when a relay is moved to a new location. Performance measurements include round trip time (which determines the alert response time for safety teams) and link quality indicator and packet error rate (which determine communication robustness). PMID:24534919

  5. Architectural and Mobility Management Designs in Internet-Based Infrastructure Wireless Mesh Networks

    ERIC Educational Resources Information Center

    Zhao, Weiyi

    2011-01-01

    Wireless mesh networks (WMNs) have recently emerged to be a cost-effective solution to support large-scale wireless Internet access. They have numerous applications, such as broadband Internet access, building automation, and intelligent transportation systems. One research challenge for Internet-based WMNs is to design efficient mobility…

  6. A Visual Language for Situational Awareness

    DTIC Science & Technology

    2016-12-01

    listening. The arrival of the information age has delivered the ability to transfer larger volumes of data at far greater rates. Wireless digital... wireless infrastructure for use in large-scale events where domestic power and private wireless networks are overloaded or unavailable. States should...lacking by responders using ANSI INCITS 415 symbols sets.226 When combined with the power of a wireless network, a situational awareness metalanguage is

  7. Processing module operating methods, processing modules, and communications systems

    DOEpatents

    McCown, Steven Harvey; Derr, Kurt W.; Moore, Troy

    2014-09-09

    A processing module operating method includes using a processing module physically connected to a wireless communications device, requesting that the wireless communications device retrieve encrypted code from a web site and receiving the encrypted code from the wireless communications device. The wireless communications device is unable to decrypt the encrypted code. The method further includes using the processing module, decrypting the encrypted code, executing the decrypted code, and preventing the wireless communications device from accessing the decrypted code. Another processing module operating method includes using a processing module physically connected to a host device, executing an application within the processing module, allowing the application to exchange user interaction data communicated using a user interface of the host device with the host device, and allowing the application to use the host device as a communications device for exchanging information with a remote device distinct from the host device.

  8. Photonic sensor opportunities for distributed and wireless systems in security applications

    NASA Astrophysics Data System (ADS)

    Krohn, David

    2006-10-01

    There are broad ranges of homeland security sensing applications that can be facilitated by distributed fiber optic sensors and photonics integrated wireless systems. These applications include [1]: Pipeline, (Monitoring, Security); Smart structures (Bridges, Tunnels, Dams, Public spaces); Power lines (Monitoring, Security); Transportation security; Chemical/biological detection; Wide area surveillance - perimeter; and Port Security (Underwater surveillance, Cargo container). Many vital assets which cover wide areas, such as pipeline and borders, are under constant threat of being attacked or breached. There is a rapidly emerging need to be able to provide identification of intrusion threats to such vital assets. Similar problems exit for monitoring the basic infrastructure such as water supply, power utilities, communications systems as well as transportation. There is a need to develop a coordinated and integrated solution for the detection of threats. From a sensor standpoint, consideration must not be limited to detection, but how does detection lead to intervention and deterrence. Fiber optic sensor technology must be compatible with other surveillance technologies such as wireless mote technology to facilitate integration. In addition, the multi-functionality of fiber optic sensors must be expanded to include bio-chemical detection. There have been a number of barriers for the acceptance and broad use of smart fiber optic sensors. Compared to telecommunications, the volume is low. This fact coupled with proprietary and custom specifications has kept the price of fiber optic sensors high. There is a general lack of a manufacturing infrastructure and lack of standards for packaging and reliability. Also, there are several competing technologies; some photonic based and other approaches based on conventional non-photonic technologies.

  9. The Trauma Patient Tracking System: implementing a wireless monitoring infrastructure for emergency response.

    PubMed

    Maltz, Jonathan; C Ng, Thomas; Li, Dustin; Wang, Jian; Wang, Kang; Bergeron, William; Martin, Ron; Budinger, Thomas

    2005-01-01

    In mass trauma situations, emergency personnel are challenged with the task of prioritizing the care of many injured victims. We propose a trauma patient tracking system (TPTS) where first-responders tag all patients with a wireless monitoring device that continuously reports the location of each patient. The system can be used not only to prioritize patient care, but also to determine the time taken for each patient to receive treatment. This is important in training emergency personnel and in identifying bottlenecks in the disaster response process. In situations where biochemical agents are involved, a TPTS may be employed to determine sites of cross-contamination. In order to track patient location in both outdoor and indoor environments, we employ both Global Positioning System (GPS) and Television/ Radio Frequency (TVRF) technologies. Each patient tag employs IEEE 802.11 (Wi-Fi)/TCP/IP networking to communicate with a central server via any available Wi-Fi basestation. A key component to increase TPTS fault-tolerance is a mobile Wi-Fi basestation that employs redundant Internet connectivity to ensure that tags at the disaster scene can send information to the central server even when local infrastructure is unavailable for use. We demonstrate the robustness of the system in tracking multiple patients in a simulated trauma situation in an urban environment.

  10. Flexible network wireless transceiver and flexible network telemetry transceiver

    DOEpatents

    Brown, Kenneth D.

    2008-08-05

    A transceiver for facilitating two-way wireless communication between a baseband application and other nodes in a wireless network, wherein the transceiver provides baseband communication networking and necessary configuration and control functions along with transmitter, receiver, and antenna functions to enable the wireless communication. More specifically, the transceiver provides a long-range wireless duplex communication node or channel between the baseband application, which is associated with a mobile or fixed space, air, water, or ground vehicle or other platform, and other nodes in the wireless network or grid. The transceiver broadly comprises a communication processor; a flexible telemetry transceiver including a receiver and a transmitter; a power conversion and regulation mechanism; a diplexer; and a phased array antenna system, wherein these various components and certain subcomponents thereof may be separately enclosed and distributable relative to the other components and subcomponents.

  11. An investigation of the safety implications of wireless communications in vehicles

    DOT National Transportation Integrated Search

    1997-11-01

    The extensive growth in the wireless communications industry over the past ten years has been accompanied by growing concern for the potential hazards of drivers using wireless communication devices from moving vehicles. Given the National Highway Tr...

  12. BioNet Digital Communications Framework

    NASA Technical Reports Server (NTRS)

    Gifford, Kevin; Kuzminsky, Sebastian; Williams, Shea

    2010-01-01

    BioNet v2 is a peer-to-peer middleware that enables digital communication devices to talk to each other. It provides a software development framework, standardized application, network-transparent device integration services, a flexible messaging model, and network communications for distributed applications. BioNet is an implementation of the Constellation Program Command, Control, Communications and Information (C3I) Interoperability specification, given in CxP 70022-01. The system architecture provides the necessary infrastructure for the integration of heterogeneous wired and wireless sensing and control devices into a unified data system with a standardized application interface, providing plug-and-play operation for hardware and software systems. BioNet v2 features a naming schema for mobility and coarse-grained localization information, data normalization within a network-transparent device driver framework, enabling of network communications to non-IP devices, and fine-grained application control of data subscription band width usage. BioNet directly integrates Disruption Tolerant Networking (DTN) as a communications technology, enabling networked communications with assets that are only intermittently connected including orbiting relay satellites and planetary rover vehicles.

  13. Bluetooth Communication for Battery Powered Medical Devices

    NASA Astrophysics Data System (ADS)

    Babušiak, Branko; Borik, Štefan

    2016-01-01

    wireless communication eliminates obtrusive cables associated with wearable sensors and considerably increases patient comfort during measurement and collection of medical data. Wireless communication is very popular in recent years and plays a significant role in telemedicine and homecare applications. Bluetooth technology is one of the most commonly used wireless communication types in medicine. This paper describes the design of a universal wireless communication device with excellent price/performance ratio. The said device is based on the low-cost RN4020 Bluetooth module with Microchip Low-energy Data Profile (MLDP) and due to low-power consumption is especially suitable for the transmission of biological signals (ECG, EMG, PPG, etc.) from wearable medical/personal health devices. A unique USB dongle adaptor was developed for wireless communication via UART interface and power consumption was evaluated under various conditions.

  14. DAWN: Dynamic Ad-hoc Wireless Network

    DTIC Science & Technology

    2016-06-19

    DAWN: Dynamic Ad-hoc Wireless Network The DAWN (Dynamic Ad-hoc Wireless Networks) project is developing a general theory of complex and dynamic... wireless communication networks. To accomplish this, DAWN adopts a very different approach than those followed in the past and summarized above. DAWN... wireless communication networks. The members of DAWN investigated difference aspects of wireless mobile ad hoc networks (MANET). The views, opinions and/or

  15. Secure scalable disaster electronic medical record and tracking system.

    PubMed

    Demers, Gerard; Kahn, Christopher; Johansson, Per; Buono, Colleen; Chipara, Octav; Griswold, William; Chan, Theodore

    2013-10-01

    Electronic medical records (EMRs) are considered superior in documentation of care for medical practice. Current disaster medical response involves paper tracking systems and radio communication for mass-casualty incidents (MCIs). These systems are prone to errors, may be compromised by local conditions, and are labor intensive. Communication infrastructure may be impacted, overwhelmed by call volume, or destroyed by the disaster, making self-contained and secure EMR response a critical capability. Report As the prehospital disaster EMR allows for more robust content including protected health information (PHI), security measures must be instituted to safeguard these data. The Wireless Internet Information System for medicAl Response in Disasters (WIISARD) Research Group developed a handheld, linked, wireless EMR system utilizing current technology platforms. Smart phones connected to radio frequency identification (RFID) readers may be utilized to efficiently track casualties resulting from the incident. Medical information may be transmitted on an encrypted network to fellow prehospital team members, medical dispatch, and receiving medical centers. This system has been field tested in a number of exercises with excellent results, and future iterations will incorporate robust security measures. A secure prehospital triage EMR improves documentation quality during disaster drills.

  16. Unmanned Aerial Vehicle Based Wireless Sensor Network for Marine-Coastal Environment Monitoring.

    PubMed

    Trasviña-Moreno, Carlos A; Blasco, Rubén; Marco, Álvaro; Casas, Roberto; Trasviña-Castro, Armando

    2017-02-24

    Marine environments are delicate ecosystems which directly influence local climates, flora, fauna, and human activities. Their monitorization plays a key role in their preservation, which is most commonly done through the use of environmental sensing buoy networks. These devices transmit data by means of satellite communications or close-range base stations, which present several limitations and elevated infrastructure costs. Unmanned Aerial Vehicles (UAV) are another alternative for remote environmental monitoring which provide new types of data and ease of use. These aircraft are mainly used in video capture related applications, in its various light spectrums, and do not provide the same data as sensing buoys, nor can they be used for such extended periods of time. The aim of this research is to provide a flexible, easy to deploy and cost-effective Wireless Sensor Network (WSN) for monitoring marine environments. This proposal uses a UAV as a mobile data collector, low-power long-range communications and sensing buoys as part of a single WSN. A complete description of the design, development, and implementation of the various parts of this system is presented, as well as its validation in a real-world scenario.

  17. Unmanned Aerial Vehicle Based Wireless Sensor Network for Marine-Coastal Environment Monitoring

    PubMed Central

    Trasviña-Moreno, Carlos A.; Blasco, Rubén; Marco, Álvaro; Casas, Roberto; Trasviña-Castro, Armando

    2017-01-01

    Marine environments are delicate ecosystems which directly influence local climates, flora, fauna, and human activities. Their monitorization plays a key role in their preservation, which is most commonly done through the use of environmental sensing buoy networks. These devices transmit data by means of satellite communications or close-range base stations, which present several limitations and elevated infrastructure costs. Unmanned Aerial Vehicles (UAV) are another alternative for remote environmental monitoring which provide new types of data and ease of use. These aircraft are mainly used in video capture related applications, in its various light spectrums, and do not provide the same data as sensing buoys, nor can they be used for such extended periods of time. The aim of this research is to provide a flexible, easy to deploy and cost-effective Wireless Sensor Network (WSN) for monitoring marine environments. This proposal uses a UAV as a mobile data collector, low-power long-range communications and sensing buoys as part of a single WSN. A complete description of the design, development, and implementation of the various parts of this system is presented, as well as its validation in a real-world scenario. PMID:28245587

  18. 78 FR 16865 - Certain Electronic Devices, Including Wireless Communication Devices, Portable Music and Data...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-19

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-794] Certain Electronic Devices, Including Wireless Communication Devices, Portable Music and Data Processing Devices, and Tablet Computers... certain electronic devices, including wireless communication devices, portable music and data processing...

  19. Integration of analytical measurements and wireless communications--current issues and future strategies.

    PubMed

    Diamond, Dermot; Lau, King Tong; Brady, Sarah; Cleary, John

    2008-05-15

    Rapid developments in wireless communications are opening up opportunities for new ways to perform many types of analytical measurements that up to now have been restricted in scope due to the need to have access to centralised facilities. This paper will address both the potential for new applications and the challenges that currently inhibit more widespread integration of wireless communications with autonomous sensors and analytical devices. Key issues are identified and strategies for closer integration of analytical information and wireless communications systems discussed.

  20. A Simulation Environment for the Dynamic Evaluation of Disaster Preparedness Policies and Interventions

    PubMed Central

    Lewis, Bryan; Swarup, Samarth; Bisset, Keith; Eubank, Stephen; Marathe, Madhav; Barrett, Chris

    2013-01-01

    Disasters affect a society at many levels. Simulation based studies often evaluate the effectiveness of one or two response policies in isolation and are unable to represent impact of the policies to coevolve with others. Similarly, most in-depth analyses are based on a static assessment of the “aftermath” rather than capturing dynamics. We have developed a data-centric simulation environment for applying a systems approach to a dynamic analysis of complex combinations of disaster responses. We analyze an improvised nuclear detonation in Washington DC with this environment. The simulated blast affects the transportation system, communications infrastructure, electrical power system, behaviors and motivations of population, and health status of survivors. The effectiveness of partially restoring wireless communications capacity is analyzed in concert with a range of other disaster response policies. Despite providing a limited increase in cell phone communication, overall health was improved. PMID:23903394

  1. Final report : mobile surveillance and wireless communication systems field operational test. Volume 2, FOT objectives, organization, system design, results, conclusions, and recommendations

    DOT National Transportation Integrated Search

    1999-03-01

    The Mobile Surveillance and Wireless Communication Systems Field Operational Test (FOT) evaluated the performance of wireless traffic detection and communications systems in areas where permanent detectors, electrical power, and landline communicatio...

  2. 78 FR 24775 - Certain Wireless Communication Devices, Portable Music and Data Processing Devices, Computers and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-26

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-745] Certain Wireless Communication Devices, Portable Music and Data Processing Devices, Computers and Components Thereof; Commission Decision... importation of certain wireless communication devices, portable music and data processing devices, computers...

  3. 78 FR 12785 - Certain Wireless Communication Devices, Portable Music and Data Processing Devices, Computers and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-25

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-745] Certain Wireless Communication Devices, Portable Music and Data Processing Devices, Computers and Components Thereof; Commission Decision... importation of certain wireless communication devices, portable music and data processing devices, computers...

  4. Structural health monitoring system for bridges based on skin-like sensor

    NASA Astrophysics Data System (ADS)

    Loupos, Konstantinos; Damigos, Yannis; Amditis, Angelos; Gerhard, Reimund; Rychkov, Dmitry; Wirges, Werner; Schulze, Manuel; Lenas, Sotiris-Angelos; Chatziandreoglou, Christos; Malliou, Christina M.; Tsaoussidis, Vassilis; Brady, Ken; Frankenstein, Bernd

    2017-09-01

    Structural health monitoring activities are of primal importance for managing transport infrastructure, however most SHM methodologies are based on point-based sensors that have limitations in terms of their spatial positioning requirements, cost of development and measurement range. This paper describes the progress on the SENSKIN EC project whose objective is to develop a dielectric-elastomer and micro-electronics-based sensor, formed from a large highly extensible capacitance sensing membrane supported by advanced microelectronic circuitry, for monitoring transport infrastructure bridges. Such a sensor could provide spatial measurements of strain in excess of 10%. The actual sensor along with the data acquisition module, the communication module and power electronics are all integrated into a compact unit, the SENSKIN device, which is energy-efficient, requires simple signal processing and it is easy to install over various surface types. In terms of communication, SENSKIN devices interact with each other to form the SENSKIN system; a fully distributed and autonomous wireless sensor network that is able to self-monitor. SENSKIN system utilizes Delay-/Disruption-Tolerant Networking technologies to ensure that the strain measurements will be received by the base station even under extreme conditions where normal communications are disrupted. This paper describes the architecture of the SENSKIN system and the development and testing of the first SENSKIN prototype sensor, the data acquisition system, and the communication system.

  5. High efficiency video coding for ultrasound video communication in m-health systems.

    PubMed

    Panayides, A; Antoniou, Z; Pattichis, M S; Pattichis, C S; Constantinides, A G

    2012-01-01

    Emerging high efficiency video compression methods and wider availability of wireless network infrastructure will significantly advance existing m-health applications. For medical video communications, the emerging video compression and network standards support low-delay and high-resolution video transmission, at the clinically acquired resolution and frame rates. Such advances are expected to further promote the adoption of m-health systems for remote diagnosis and emergency incidents in daily clinical practice. This paper compares the performance of the emerging high efficiency video coding (HEVC) standard to the current state-of-the-art H.264/AVC standard. The experimental evaluation, based on five atherosclerotic plaque ultrasound videos encoded at QCIF, CIF, and 4CIF resolutions demonstrates that 50% reductions in bitrate requirements is possible for equivalent clinical quality.

  6. Characterization of attacks on public telephone networks

    NASA Astrophysics Data System (ADS)

    Lorenz, Gary V.; Manes, Gavin W.; Hale, John C.; Marks, Donald; Davis, Kenneth; Shenoi, Sujeet

    2001-02-01

    The U.S. Public Telephone Network (PTN) is a massively connected distributed information systems, much like the Internet. PTN signaling, transmission and operations functions must be protected from physical and cyber attacks to ensure the reliable delivery of telecommunications services. The increasing convergence of PTNs with wireless communications systems, computer networks and the Internet itself poses serious threats to our nation's telecommunications infrastructure. Legacy technologies and advanced services encumber well-known and as of yet undiscovered vulnerabilities that render them susceptible to cyber attacks. This paper presents a taxonomy of cyber attacks on PTNs in converged environments that synthesizes exploits in computer and communications network domains. The taxonomy provides an opportunity for the systematic exploration of mitigative and preventive strategies, as well as for the identification and classification of emerging threats.

  7. Evaluation of Deployment Challenges of Wireless Sensor Networks at Signalized Intersections

    PubMed Central

    Azpilicueta, Leyre; López-Iturri, Peio; Aguirre, Erik; Martínez, Carlos; Astrain, José Javier; Villadangos, Jesús; Falcone, Francisco

    2016-01-01

    With the growing demand of Intelligent Transportation Systems (ITS) for safer and more efficient transportation, research on and development of such vehicular communication systems have increased considerably in the last years. The use of wireless networks in vehicular environments has grown exponentially. However, it is highly important to analyze radio propagation prior to the deployment of a wireless sensor network in such complex scenarios. In this work, the radio wave characterization for ISM 2.4 GHz and 5 GHz Wireless Sensor Networks (WSNs) deployed taking advantage of the existence of traffic light infrastructure has been assessed. By means of an in-house developed 3D ray launching algorithm, the impact of topology as well as urban morphology of the environment has been analyzed, emulating the realistic operation in the framework of the scenario. The complexity of the scenario, which is an intersection city area with traffic lights, vehicles, people, buildings, vegetation and urban environment, makes necessary the channel characterization with accurate models before the deployment of wireless networks. A measurement campaign has been conducted emulating the interaction of the system, in the vicinity of pedestrians as well as nearby vehicles. A real time interactive application has been developed and tested in order to visualize and monitor traffic as well as pedestrian user location and behavior. Results show that the use of deterministic tools in WSN deployment can aid in providing optimal layouts in terms of coverage, capacity and energy efficiency of the network. PMID:27455270

  8. Evaluation of Deployment Challenges of Wireless Sensor Networks at Signalized Intersections.

    PubMed

    Azpilicueta, Leyre; López-Iturri, Peio; Aguirre, Erik; Martínez, Carlos; Astrain, José Javier; Villadangos, Jesús; Falcone, Francisco

    2016-07-22

    With the growing demand of Intelligent Transportation Systems (ITS) for safer and more efficient transportation, research on and development of such vehicular communication systems have increased considerably in the last years. The use of wireless networks in vehicular environments has grown exponentially. However, it is highly important to analyze radio propagation prior to the deployment of a wireless sensor network in such complex scenarios. In this work, the radio wave characterization for ISM 2.4 GHz and 5 GHz Wireless Sensor Networks (WSNs) deployed taking advantage of the existence of traffic light infrastructure has been assessed. By means of an in-house developed 3D ray launching algorithm, the impact of topology as well as urban morphology of the environment has been analyzed, emulating the realistic operation in the framework of the scenario. The complexity of the scenario, which is an intersection city area with traffic lights, vehicles, people, buildings, vegetation and urban environment, makes necessary the channel characterization with accurate models before the deployment of wireless networks. A measurement campaign has been conducted emulating the interaction of the system, in the vicinity of pedestrians as well as nearby vehicles. A real time interactive application has been developed and tested in order to visualize and monitor traffic as well as pedestrian user location and behavior. Results show that the use of deterministic tools in WSN deployment can aid in providing optimal layouts in terms of coverage, capacity and energy efficiency of the network.

  9. Wireless data communication alternatives for small public safety agencies: how one community cost-effectively solved its expanding field data requirements

    NASA Astrophysics Data System (ADS)

    Canning, Ryan M.; Lefebvre, Eric

    2005-06-01

    A growing number of Public Safety agencies have begun leveraging wireless data communication technology to improve tactical response capabilities as well as overall productivity. For years police departments subscribed to CDPD (Cellular Digital Packet Data) services to provide officers with basic dispatch data and criminal database access. Now as cellular carriers have deactivated CDPD and shifted to 2.5G and 3G data services such as 1xRTT, GPRS and EDGE, police departments are scrambling to fill the void. Not surprisingly, the extraordinary investments cellular carriers made to upgrade their infrastructures have been transferred to the customer, with monthly fees running as high as $80 a month per user. It's no wonder public safety agencies have been reluctant to adopt these services. Lost in the fray are those smaller police departments which account for nearly 90% of the nation's total. This group has increasingly sought out alternative data communication solutions that are not predicated on budget-busting monthly access fees. One such example is the Marco Island Police Department (MIPD) in Southwestern Florida that received a Federal grant to augment its existing voice communications with data. After evaluating several different technologies and vendors, MIPD chose a 900 MHz ad hoc mesh network solution based on its ability to provide reliable, high-speed and secure IP-based data communications over extensive distances. This paper will discuss technical details of Marco Island's mobile mesh network implementation; including: coverage area with 900 MHz spread spectrum radios, strategic repeater tower placement, interference, throughput performance, and the necessity for application-persistence software.

  10. Cell Phones

    MedlinePlus

    ... scientific issues related to RF exposure from wireless communications technology from an international perspective. Specific topics addressed have included: health effects of emerging wireless technologies recent biological ... - Wireless FAQs Federal Communications Commission - Radiofrequency Safety ...

  11. Field application of smart SHM using field programmable gate array technology to monitor an RC bridge in New Mexico

    NASA Astrophysics Data System (ADS)

    Azarbayejani, M.; Jalalpour, M.; El-Osery, A. I.; Reda Taha, M. M.

    2011-08-01

    In this paper, an innovative field application of a structural health monitoring (SHM) system using field programmable gate array (FPGA) technology and wireless communication is presented. The new SHM system was installed to monitor a reinforced concrete (RC) bridge on Interstate 40 (I-40) in Tucumcari, New Mexico. This newly installed system allows continuous remote monitoring of this bridge using solar power. Details of the SHM component design and installation are discussed. The integration of FPGA and solar power technologies make it possible to remotely monitor infrastructure with limited access to power. Furthermore, the use of FPGA technology enables smart monitoring where data communication takes place on-need (when damage warning signs are met) and on-demand for periodic monitoring of the bridge. Such a system enables a significant cut in communication cost and power demands which are two challenges during SHM operation. Finally, a three-dimensional finite element (FE) model of the bridge was developed and calibrated using a static loading field test. This model is then used for simulating damage occurrence on the bridge. Using the proposed automation process for SHM will reduce human intervention significantly and can save millions of dollars currently spent on prescheduled inspection of critical infrastructure worldwide.

  12. A Wireless Communications Systems Laboratory Course

    ERIC Educational Resources Information Center

    Guzelgoz, Sabih; Arslan, Huseyin

    2010-01-01

    A novel wireless communications systems laboratory course is introduced. The course teaches students how to design, test, and simulate wireless systems using modern instrumentation and computer-aided design (CAD) software. One of the objectives of the course is to help students understand the theoretical concepts behind wireless communication…

  13. 47 CFR 2.1091 - Radiofrequency radiation exposure evaluation: mobile devices.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... transmission of a signal. In general, maximum average power levels must be used to determine compliance. (3) If... workers that can be easily re-located, such as wireless devices associated with a personal computer, are... Satellite Communications Services, the General Wireless Communications Service, the Wireless Communications...

  14. Terahertz wireless communications based on photonics technologies.

    PubMed

    Nagatsuma, Tadao; Horiguchi, Shogo; Minamikata, Yusuke; Yoshimizu, Yasuyuki; Hisatake, Shintaro; Kuwano, Shigeru; Yoshimoto, Naoto; Terada, Jun; Takahashi, Hiroyuki

    2013-10-07

    There has been an increasing interest in the application of terahertz (THz) waves to broadband wireless communications. In particular, use of frequencies above 275 GHz is one of the strong concerns among radio scientists and engineers, because these frequency bands have not yet been allocated at specific active services, and there is a possibility to employ extremely large bandwidths for ultra-broadband wireless communications. Introduction of photonics technologies for signal generation, modulation and detection is effective not only to enhance the bandwidth and/or the data rate, but also to combine fiber-optic (wired) and wireless networks. This paper reviews recent progress in THz wireless communications using telecom-based photonics technologies towards 100 Gbit/s.

  15. Wireless microphone communication system telephonics P/N 484D000-1

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The wireless microphone is a lightweight, portable, wireless voice communications device for use by the crew of the space shuttle orbiter. The wireless microphone allows the crew to have normal hands-free voice communication while they are performing various mission activities. The unit is designed to transmit at 455 or 500 kilohertz and employs narrow band FM modulation. Two orthogonally placed antennas are used to insure good reception at the receiver.

  16. Communication devices for network-hopping communications and methods of network-hopping communications

    DOEpatents

    Buttles, John W [Idaho Falls, ID

    2011-12-20

    Wireless communication devices include a software-defined radio coupled to processing circuitry. The processing circuitry is configured to execute computer programming code. Storage media is coupled to the processing circuitry and includes computer programming code configured to cause the processing circuitry to configure and reconfigure the software-defined radio to operate on each of a plurality of communication networks according to a selected sequence. Methods for communicating with a wireless device and methods of wireless network-hopping are also disclosed.

  17. Communication devices for network-hopping communications and methods of network-hopping communications

    DOEpatents

    Buttles, John W

    2013-04-23

    Wireless communication devices include a software-defined radio coupled to processing circuitry. The system controller is configured to execute computer programming code. Storage media is coupled to the system controller and includes computer programming code configured to cause the system controller to configure and reconfigure the software-defined radio to operate on each of a plurality of communication networks according to a selected sequence. Methods for communicating with a wireless device and methods of wireless network-hopping are also disclosed.

  18. Decentralized system identification using stochastic subspace identification on wireless smart sensor networks

    NASA Astrophysics Data System (ADS)

    Sim, Sung-Han; Spencer, Billie F., Jr.; Park, Jongwoong; Jung, Hyungjo

    2012-04-01

    Wireless Smart Sensor Networks (WSSNs) facilitates a new paradigm to structural identification and monitoring for civil infrastructure. Conventional monitoring systems based on wired sensors and centralized data acquisition and processing have been considered to be challenging and costly due to cabling and expensive equipment and maintenance costs. WSSNs have emerged as a technology that can overcome such difficulties, making deployment of a dense array of sensors on large civil structures both feasible and economical. However, as opposed to wired sensor networks in which centralized data acquisition and processing is common practice, WSSNs require decentralized computing algorithms to reduce data transmission due to the limitation associated with wireless communication. Thus, several system identification methods have been implemented to process sensor data and extract essential information, including Natural Excitation Technique with Eigensystem Realization Algorithm, Frequency Domain Decomposition (FDD), and Random Decrement Technique (RDT); however, Stochastic Subspace Identification (SSI) has not been fully utilized in WSSNs, while SSI has the strong potential to enhance the system identification. This study presents a decentralized system identification using SSI in WSSNs. The approach is implemented on MEMSIC's Imote2 sensor platform and experimentally verified using a 5-story shear building model.

  19. Virtual Wireless Sensor Networks: Adaptive Brain-Inspired Configuration for Internet of Things Applications

    PubMed Central

    Toyonaga, Shinya; Kominami, Daichi; Murata, Masayuki

    2016-01-01

    Many researchers are devoting attention to the so-called “Internet of Things” (IoT), and wireless sensor networks (WSNs) are regarded as a critical technology for realizing the communication infrastructure of the future, including the IoT. Against this background, virtualization is a crucial technique for the integration of multiple WSNs. Designing virtualized WSNs for actual environments will require further detailed studies. Within the IoT environment, physical networks can undergo dynamic change, and so, many problems exist that could prevent applications from running without interruption when using the existing approaches. In this paper, we show an overall architecture that is suitable for constructing and running virtual wireless sensor network (VWSN) services within a VWSN topology. Our approach provides users with a reliable VWSN network by assigning redundant resources according to each user’s demand and providing a recovery method to incorporate environmental changes. We tested this approach by simulation experiment, with the results showing that the VWSN network is reliable in many cases, although physical deployment of sensor nodes and the modular structure of the VWSN will be quite important to the stability of services within the VWSN topology. PMID:27548177

  20. Virtual Wireless Sensor Networks: Adaptive Brain-Inspired Configuration for Internet of Things Applications.

    PubMed

    Toyonaga, Shinya; Kominami, Daichi; Murata, Masayuki

    2016-08-19

    Many researchers are devoting attention to the so-called "Internet of Things" (IoT), and wireless sensor networks (WSNs) are regarded as a critical technology for realizing the communication infrastructure of the future, including the IoT. Against this background, virtualization is a crucial technique for the integration of multiple WSNs. Designing virtualized WSNs for actual environments will require further detailed studies. Within the IoT environment, physical networks can undergo dynamic change, and so, many problems exist that could prevent applications from running without interruption when using the existing approaches. In this paper, we show an overall architecture that is suitable for constructing and running virtual wireless sensor network (VWSN) services within a VWSN topology. Our approach provides users with a reliable VWSN network by assigning redundant resources according to each user's demand and providing a recovery method to incorporate environmental changes. We tested this approach by simulation experiment, with the results showing that the VWSN network is reliable in many cases, although physical deployment of sensor nodes and the modular structure of the VWSN will be quite important to the stability of services within the VWSN topology.

  1. Design and deployment of hybrid-telemedicine applications

    NASA Astrophysics Data System (ADS)

    Ikhu-Omoregbe, N. A.; Atayero, A. A.; Ayo, C. K.; Olugbara, O. O.

    2005-01-01

    With advances and availability of information and communication technology infrastructures in some nations and institutions, patients are now able to receive healthcare services from doctors and healthcare centers even when they are physically separated. The availability and transfer of patient data which often include medical images for specialist opinion is invaluable both to the patient and the medical practitioner in a telemedicine session. Two existing approaches to telemedicine are real-time and stored-and-forward. The real-time requires the availability or development of video-conferencing infrastructures which are expensive especially for most developing nations of the world while stored-and-forward could allow data transmission between any hospital with computer and telephone by landline link which is less expensive but with delays. We therefore propose a hybrid design of applications using hypermedia database capable of harnessing the features of real-time and stored-and-forward deployed over a wireless Virtual Private Network for the participating centers and healthcare providers.

  2. 76 FR 21742 - Wireless Telecommunications Bureau Extends Period for Filing Comments and Reply Comments on...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-18

    ... FEDERAL COMMUNICATIONS COMMISSION [WT Docket No. 11-35; DA 11-613] Wireless Telecommunications... Clarify the Scope of Preemption of Wireless Entry Regulation AGENCY: Federal Communications Commission. ACTION: Notice; extension of filing and reply comment period. SUMMARY: In this document, the Wireless...

  3. 47 CFR Appendix B to Part 1 - Nationwide Programmatic Agreement for the Collocation of Wireless Antennas

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Collocation of Wireless Antennas B Appendix B to Part 1 Telecommunication FEDERAL COMMUNICATIONS COMMISSION... the Collocation of Wireless Antennas Nationwide Programmatic Agreement for the Collocation of Wireless Antennas Executed by the Federal Communications Commission, the National Conference of State Historic...

  4. 47 CFR Appendix B to Part 1 - Nationwide Programmatic Agreement for the Collocation of Wireless Antennas

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Collocation of Wireless Antennas B Appendix B to Part 1 Telecommunication FEDERAL COMMUNICATIONS COMMISSION... the Collocation of Wireless Antennas Nationwide Programmatic Agreement for the Collocation of Wireless Antennas Executed by the Federal Communications Commission, the National Conference of State Historic...

  5. 47 CFR Appendix B to Part 1 - Nationwide Programmatic Agreement for the Collocation of Wireless Antennas

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Collocation of Wireless Antennas B Appendix B to Part 1 Telecommunication FEDERAL COMMUNICATIONS COMMISSION... the Collocation of Wireless Antennas Nationwide Programmatic Agreement for the Collocation of Wireless Antennas Executed by the Federal Communications Commission, the National Conference of State Historic...

  6. 47 CFR Appendix B to Part 1 - Nationwide Programmatic Agreement for the Collocation of Wireless Antennas

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Collocation of Wireless Antennas B Appendix B to Part 1 Telecommunication FEDERAL COMMUNICATIONS COMMISSION... the Collocation of Wireless Antennas Nationwide Programmatic Agreement for the Collocation of Wireless Antennas Executed by the Federal Communications Commission, the National Conference of State Historic...

  7. 47 CFR Appendix B to Part 1 - Nationwide Programmatic Agreement for the Collocation of Wireless Antennas

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Collocation of Wireless Antennas B Appendix B to Part 1 Telecommunication FEDERAL COMMUNICATIONS COMMISSION... the Collocation of Wireless Antennas Nationwide Programmatic Agreement for the Collocation of Wireless Antennas Executed by the Federal Communications Commission, the National Conference of State Historic...

  8. 76 FR 30154 - Maritime Communications/Land Mobile, LLC, Licensee of Various Authorizations in the Wireless...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-24

    ... Mobile, LLC, Licensee of Various Authorizations in the Wireless Radio Services, Applicant for Modification of Various Authorizations in the Wireless Radio Services AGENCY: Federal Communications Commission... Confidential Treatment from Patricia J. Paoletta and Jonathan B. Mirsky, Counsel to Wireless Properties of...

  9. Communication protocol in chassis detecting wireless transmission system based on WiFi

    USDA-ARS?s Scientific Manuscript database

    In chassis detecting wireless transmission system, the wireless network communication protocol plays a key role in the information exchange and synchronization between the host and chassis PDA. This paper presents a wireless network transmission protocol based on TCP/IP which makes the rules of info...

  10. Secure dissemination of electronic healthcare records in distributed wireless environments.

    PubMed

    Belsis, Petros; Vassis, Dimitris; Skourlas, Christos; Pantziou, Grammati

    2008-01-01

    A new networking paradigm has emerged with the appearance of wireless computing. Among else ad-hoc networks, mobile and ubiquitous environments can boost the performance of systems in which they get applied. Among else, medical environments are a convenient example of their applicability. With the utilisation of wireless infrastructures, medical data may be accessible to healthcare practitioners, enabling continuous access to medical data. Due to the critical nature of medical information, the design and implementation of these infrastructures demands special treatment in order to meet specific requirements; among else, special care should be taken in order to manage interoperability, security, and in order to deal with bandwidth and hardware resource constraints that characterize the wireless topology. In this paper we present an architecture that attempts to deal with these issues; moreover, in order to prove the validity of our approach we have also evaluated the performance of our platform through simulation in different operating scenarios.

  11. Electromagnetic assessment of embedded micro antenna for a novel sphincter in the human body.

    PubMed

    Zan, Peng; Liu, Jinding; Ai, Yutao; Jiang, Enyu

    2013-05-01

    This paper presents a wireless, miniaturized, bi-directional telemetric artificial anal sphincter system that can be used for controlling patients' anal incontinence. The artificial anal sphincter system is mainly composed of an executive mechanism, a wireless power supply system and a wireless communication system. The wireless communication system consists of an internal RF transceiver, an internal RF antenna, a data transmission pathway, an external RF antenna and an external RF control transceiver. A micro NMHA (Normal Mode Helical Antenna) has been used for the transceiver of the internal wireless communication system and a quarter wave-length whip antenna of 7.75 cm has been used for the external wireless communication system. The RF carrier frequency of wireless communication is located in a license-free 433.1 MHz ISM (Industry, Science, and Medical) band. The radiation characteristics and SAR (Specific Absorption Rate) are evaluated using the finite difference time-domain method and 3D human body model. Results show that the SAR values of the antenna satisfy the ICNIRP (International Commission on Nonionizing Radiation Protection) limitations.

  12. Emergency navigation without an infrastructure.

    PubMed

    Gelenbe, Erol; Bi, Huibo

    2014-08-18

    Emergency navigation systems for buildings and other built environments, such as sport arenas or shopping centres, typically rely on simple sensor networks to detect emergencies and, then, provide automatic signs to direct the evacuees. The major drawbacks of such static wireless sensor network (WSN)-based emergency navigation systems are the very limited computing capacity, which makes adaptivity very difficult, and the restricted battery power, due to the low cost of sensor nodes for unattended operation. If static wireless sensor networks and cloud-computing can be integrated, then intensive computations that are needed to determine optimal evacuation routes in the presence of time-varying hazards can be offloaded to the cloud, but the disadvantages of limited battery life-time at the client side, as well as the high likelihood of system malfunction during an emergency still remain. By making use of the powerful sensing ability of smart phones, which are increasingly ubiquitous, this paper presents a cloud-enabled indoor emergency navigation framework to direct evacuees in a coordinated fashion and to improve the reliability and resilience for both communication and localization. By combining social potential fields (SPF) and a cognitive packet network (CPN)-based algorithm, evacuees are guided to exits in dynamic loose clusters. Rather than relying on a conventional telecommunications infrastructure, we suggest an ad hoc cognitive packet network (AHCPN)-based protocol to adaptively search optimal communication routes between portable devices and the network egress nodes that provide access to cloud servers, in a manner that spares the remaining battery power of smart phones and minimizes the time latency. Experimental results through detailed simulations indicate that smart human motion and smart network management can increase the survival rate of evacuees and reduce the number of drained smart phones in an evacuation process.

  13. Emergency Navigation without an Infrastructure

    PubMed Central

    Gelenbe, Erol; Bi, Huibo

    2014-01-01

    Emergency navigation systems for buildings and other built environments, such as sport arenas or shopping centres, typically rely on simple sensor networks to detect emergencies and, then, provide automatic signs to direct the evacuees. The major drawbacks of such static wireless sensor network (WSN)-based emergency navigation systems are the very limited computing capacity, which makes adaptivity very difficult, and the restricted battery power, due to the low cost of sensor nodes for unattended operation. If static wireless sensor networks and cloud-computing can be integrated, then intensive computations that are needed to determine optimal evacuation routes in the presence of time-varying hazards can be offloaded to the cloud, but the disadvantages of limited battery life-time at the client side, as well as the high likelihood of system malfunction during an emergency still remain. By making use of the powerful sensing ability of smart phones, which are increasingly ubiquitous, this paper presents a cloud-enabled indoor emergency navigation framework to direct evacuees in a coordinated fashion and to improve the reliability and resilience for both communication and localization. By combining social potential fields (SPF) and a cognitive packet network (CPN)-based algorithm, evacuees are guided to exits in dynamic loose clusters. Rather than relying on a conventional telecommunications infrastructure, we suggest an ad hoc cognitive packet network (AHCPN)-based protocol to adaptively search optimal communication routes between portable devices and the network egress nodes that provide access to cloud servers, in a manner that spares the remaining battery power of smart phones and minimizes the time latency. Experimental results through detailed simulations indicate that smart human motion and smart network management can increase the survival rate of evacuees and reduce the number of drained smart phones in an evacuation process. PMID:25196014

  14. The Impact of Hands-On Simulation Laboratories on Teaching of Wireless Communications

    ERIC Educational Resources Information Center

    Chou, Te-Shun; Vanderbye, Aaron

    2017-01-01

    Aim/Purpose: To prepare students with both theoretical knowledge and practical skills in the field of wireless communications. Background: Teaching wireless communications and networking is not an easy task because it involves broad subjects and abstract content. Methodology: A pedagogical method that combined lectures, labs, assignments, exams,…

  15. Communications interface for wireless communications headset

    NASA Technical Reports Server (NTRS)

    Culotta, Jr., Anthony Joseph (Inventor); Seibert, Marc A. (Inventor)

    2004-01-01

    A universal interface adapter circuit interfaces, for example, a wireless communications headset with any type of communications system, including those that require push-to-talk (PTT) signaling. The interface adapter is comprised of several main components, including an RF signaling receiver, a microcontroller and associated circuitry for decoding and processing the received signals, and programmable impedance matching and line interfacing circuitry for interfacing a wireless communications headset system base to a communications system. A signaling transmitter, which is preferably portable (e.g., handheld), is employed by the wireless headset user to send signals to the signaling receiver. In an embodiment of the invention directed specifically to push-to-talk (PTT) signaling, the wireless headset user presses a button on the signaling transmitter when they wish to speak. This sends a signal to the microcontroller which decodes the signal and recognizes the signal as being a PTT request. In response, the microcontroller generates a control signal that closes a switch to complete a voice connection between the headset system base and the communications system so that the user can communicate with the communications system. With this arrangement, the wireless headset can be interfaced to any communications system that requires PTT signaling, without modification of the headset device. In addition, the interface adapter can also be configured to respond to or deliver any other types of signals, such as dual-tone-multiple-frequency (DTMF) tones, and on/off hook signals. The present invention is also scalable, and permits multiple wireless users to operate independently in the same environment through use of a plurality of the interface adapters.

  16. 75 FR 43206 - In the Matter of Certain Wireless Communications System Server Software, Wireless Handheld...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-23

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-706] In the Matter of Certain Wireless Communications System Server Software, Wireless Handheld Devices and Battery Packs: Notice of Commission... handheld devices and battery packs by reason of infringement of certain claims of U.S. Patent Nos. 5,319...

  17. Top 6 Wireless Challenges: How Schools Are Improving Their Mobile Infrastructure

    ERIC Educational Resources Information Center

    Schaffhauser, Dian

    2012-01-01

    Colleges and universities have got a big problem: how to bake a wireless network as good as Mom's. The problem is that enterprise wireless networks "tend to be a little more finicky" than the home ones. While the home devices are plug-and-play, enterprise networks force IT departments to manage client issues such as drivers and settings. It's a…

  18. Scaled position-force tracking for wireless teleoperation of miniaturized surgical robotic system.

    PubMed

    Guo, Jing; Liu, Chao; Poignet, Philippe

    2014-01-01

    Miniaturized surgical robotic system presents promising trend for reducing invasiveness during operation. However, cables used for power and communication may affect its performance. In this paper we chose Zigbee wireless communication as a means to replace communication cables for miniaturized surgical robot. Nevertheless, time delay caused by wireless communication presents a new challenge to performance and stability of the teleoperation system. We proposed a bilateral wireless teleoperation architecture taking into consideration of the effect of position-force scaling between operator and slave. Optimal position-force tracking performance is obtained and the overall system is shown to be passive with a simple condition on the scaling factors satisfied. Simulation studies verify the efficiency of the proposed scaled wireless teleoperation scheme.

  19. Implemented a wireless communication system for VGA capsule endoscope.

    PubMed

    Moon, Yeon-Kwan; Lee, Jyung Hyun; Park, Hee-Joon; Cho, Jin-Ho; Choi, Hyun-Chul

    2014-01-01

    Recently, several medical devices that use wireless communication are under development. In this paper, the small size frequency shift keying (FSK) transmitter and a monofilar antenna for the capsule endoscope, enabling the medical device to transmit VGA-size images of the intestine. To verify the functionality of the proposed wireless communication system, computer simulations and animal experiments were performed with the implemented capsule endoscope that includes the proposed wireless communication system. Several fundamental experiments are carried out using the implemented transmitter and antenna, and animal in-vivo experiments were performed to verify VGA image transmission.

  20. Distributed generation of shared RSA keys in mobile ad hoc networks

    NASA Astrophysics Data System (ADS)

    Liu, Yi-Liang; Huang, Qin; Shen, Ying

    2005-12-01

    Mobile Ad Hoc Networks is a totally new concept in which mobile nodes are able to communicate together over wireless links in an independent manner, independent of fixed physical infrastructure and centralized administrative infrastructure. However, the nature of Ad Hoc Networks makes them very vulnerable to security threats. Generation and distribution of shared keys for CA (Certification Authority) is challenging for security solution based on distributed PKI(Public-Key Infrastructure)/CA. The solutions that have been proposed in the literature and some related issues are discussed in this paper. The solution of a distributed generation of shared threshold RSA keys for CA is proposed in the present paper. During the process of creating an RSA private key share, every CA node only has its own private security. Distributed arithmetic is used to create the CA's private share locally, and that the requirement of centralized management institution is eliminated. Based on fully considering the Mobile Ad Hoc network's characteristic of self-organization, it avoids the security hidden trouble that comes by holding an all private security share of CA, with which the security and robustness of system is enhanced.

  1. Examination of wireless technology to improve nurse communication, response time to bed alarms, and patient safety.

    PubMed

    Guarascio-Howard, Linda

    2011-01-01

    A medical-surgical unit in a southwestern United States hospital examined the results of adding wireless communication technology to assist nurses in identifying patient bed status changes and enhancing team communication. Following the addition of wireless communication, response time to patient calls and the number of nurse-initiated communications were compared to pre-wireless calls and response time sampling period. In the baseline study, nurse-initiated communications and response time to patient calls were investigated for a team nursing model (Guarascio-Howard & Malloch, 2007). At this time, technology consisted of a nurse call system and telephones located at each decentralized nurse station and health unit coordinator (HUC) station. For this follow-up study, a wireless device was given to nurses and their team members following training on device use and privacy issues. Four registered nurses (RNs) were shadowed for 8 hours (32 hours total) before and after the introduction of the wireless devices. Data were collected regarding patient room visits, number of patient calls, bed status calls, response time to calls, and the initiator of the communication episodes. Follow-up study response time to calls significantly decreased (t-test p = .03). RNs and licensed practical nurses responded to bed status calls in less than 1 minute-62% of the 37 calls. Communication results indicated a significant shift (One Proportion Z Test) in RN-initiated communications, suggesting an enhanced ability to communicate with team members and to assist in monitoring patient status. Patient falls trended downward, although not significantly (p > .05), for a 6-month period of wireless technology use compared to the same period the previous year. The addition of a wireless device has advantages in team nursing, namely increasing communication with staff members and decreasing response time to patient and bed status calls. Limitations of the study included a change in caregiver team members and issues regarding wireless device and locator badge compliance. Administrative issues that arose during this field study included bed and cable maintenance, device battery charging, and the training of new and floating team members.

  2. National connected vehicle field infrastructure footprint analysis.

    DOT National Transportation Integrated Search

    2014-06-01

    The fundamental premise of the connected vehicle initiative is that enabling wireless connectivity among vehicles, the infrastructure, and mobile devices will bring about transformative changes in safety, mobility, and the environmental impacts in th...

  3. Wireless Augmented Reality Communication System

    NASA Technical Reports Server (NTRS)

    Agan, Martin (Inventor); Devereaux, Ann (Inventor); Jedrey, Thomas (Inventor)

    2015-01-01

    A portable unit is for video communication to select a user name in a user name network. A transceiver wirelessly accesses a communication network through a wireless connection to a general purpose node coupled to the communication network. A user interface can receive user input to log on to a user name network through the communication network. The user name network has a plurality of user names, at least one of the plurality of user names is associated with a remote portable unit, logged on to the user name network and available for video communication.

  4. Wireless Augmented Reality Communication System

    NASA Technical Reports Server (NTRS)

    Jedrey, Thomas (Inventor); Agan, Martin (Inventor); Devereaux, Ann (Inventor)

    2017-01-01

    A portable unit is for video communication to select a user name in a user name network. A transceiver wirelessly accesses a communication network through a wireless connection to a general purpose node coupled to the communication network. A user interface can receive user input to log on to a user name network through the communication network. The user name network has a plurality of user names, at least one of the plurality of user names is associated with a remote portable unit, logged on to the user name network and available for video communication.

  5. Mobile Support For Logistics

    DTIC Science & Technology

    2016-03-01

    Infrastructure to Support Mobile Devices (Takai, 2012, p. 2). The objectives needed in order to meet this goal are to: evolve spectrum management, expand... infrastructure to support wireless capabilities, and establish a mobile device security architecture (Takai, 2012, p. 2). By expanding infrastructure to...often used on Mobile Ad-Hoc Networks (MANETs). MANETS are infrastructure -less networks that include, but are not limited to, mobile devices. These

  6. Wireless shared resources : sharing of right-of-way for wireless technology : guidance on legal and institutional issues

    DOT National Transportation Integrated Search

    1997-06-06

    Shared resource projects offer an opportunity for public transportation agencies to leverage property assets in exchange for support for transportation programs. Intelligent transportation systems (ITS) require wireline infrastructure in roadway ROW ...

  7. SystemC modelling of wireless communication channel

    NASA Astrophysics Data System (ADS)

    Conti, Massimo; Orcioni, Simone

    2011-05-01

    This paper presents the definition in SystemC of wireless channels at different levels of abstraction. The different levels of description of the wireless channel can be easily interchanged allowing the reuse of the application and baseband layers in a high level analysis of the network or in a deep analysis of the communication between the wireless devices.

  8. 47 CFR 27.1 - Basis and purpose.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES MISCELLANEOUS WIRELESS... rules for miscellaneous wireless communications services (WCS) in this part are promulgated under the... states the conditions under which spectrum is made available and licensed for the provision of wireless...

  9. Mastering the broadband challenge: next-generation SONET in a packet world

    NASA Astrophysics Data System (ADS)

    Farhi, Eyal

    2001-10-01

    The continuing liberalization of the world's telecommunications markets and the progressive convergence of voice, data, video and Internet communication are prompting telecommunication service providers to both expand and enhance their service capabilities. As bandwidth-hungry applications proliferate, and the demand for data and data services grows, the requirement for broadband communications appears to be insatiable. To provide the expected level of service in this environment of rapidly increasing demand, telcos and service providers must invest in an expanded network. However, to remain competitive and profitable, they must also continue to leverage their existing infrastructure investment. This paper will examine the current challenges network operators are facing today with the deployment of broadband technologies as they strive to maintain existing infrastructure investments while providing new services to their customers and developing added value network operations. This paper will explore various broadband technologies (optical/wireless) that operate on the primary SDH/SONET standards, their topologies and inherent benefits, which provide operators with solutions to the broadband challenge. New customer demands, such as high-speed Data transmissions (increased Internet use), coupled with operators' continuous need for network optimization, have thrown a wrench into daily operations. Therefore, the need to modernize existing networks has become paramount.

  10. Distributed Dynamic Host Configuration Protocol (D2HCP)

    PubMed Central

    Villalba, Luis Javier García; Matesanz, Julián García; Orozco, Ana Lucila Sandoval; Díaz, José Duván Márquez

    2011-01-01

    Mobile Ad Hoc Networks (MANETs) are multihop wireless networks of mobile nodes without any fixed or preexisting infrastructure. The topology of these networks can change randomly due to the unpredictable mobility of nodes and their propagation characteristics. In most networks, including MANETs, each node needs a unique identifier to communicate. This work presents a distributed protocol for dynamic node IP address assignment in MANETs. Nodes of a MANET synchronize from time to time to maintain a record of IP address assignments in the entire network and detect any IP address leaks. The proposed stateful autoconfiguration scheme uses the OLSR proactive routing protocol for synchronization and guarantees unique IP addresses under a variety of network conditions, including message losses and network partitioning. Simulation results show that the protocol incurs low latency and communication overhead for IP address assignment. PMID:22163856

  11. Distributed Dynamic Host Configuration Protocol (D2HCP).

    PubMed

    Villalba, Luis Javier García; Matesanz, Julián García; Orozco, Ana Lucila Sandoval; Díaz, José Duván Márquez

    2011-01-01

    Mobile Ad Hoc Networks (MANETs) are multihop wireless networks of mobile nodes without any fixed or preexisting infrastructure. The topology of these networks can change randomly due to the unpredictable mobility of nodes and their propagation characteristics. In most networks, including MANETs, each node needs a unique identifier to communicate. This work presents a distributed protocol for dynamic node IP address assignment in MANETs. Nodes of a MANET synchronize from time to time to maintain a record of IP address assignments in the entire network and detect any IP address leaks. The proposed stateful autoconfiguration scheme uses the OLSR proactive routing protocol for synchronization and guarantees unique IP addresses under a variety of network conditions, including message losses and network partitioning. Simulation results show that the protocol incurs low latency and communication overhead for IP address assignment.

  12. Insecurity of Wireless Networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheldon, Frederick T; Weber, John Mark; Yoo, Seong-Moo

    Wireless is a powerful core technology enabling our global digital infrastructure. Wi-Fi networks are susceptible to attacks on Wired Equivalency Privacy, Wi-Fi Protected Access (WPA), and WPA2. These attack signatures can be profiled into a system that defends against such attacks on the basis of their inherent characteristics. Wi-Fi is the standard protocol for wireless networks used extensively in US critical infrastructures. Since the Wired Equivalency Privacy (WEP) security protocol was broken, the Wi-Fi Protected Access (WPA) protocol has been considered the secure alternative compatible with hardware developed for WEP. However, in November 2008, researchers developed an attack on WPA,more » allowing forgery of Address Resolution Protocol (ARP) packets. Subsequent enhancements have enabled ARP poisoning, cryptosystem denial of service, and man-in-the-middle attacks. Open source systems and methods (OSSM) have long been used to secure networks against such attacks. This article reviews OSSMs and the results of experimental attacks on WPA. These experiments re-created current attacks in a laboratory setting, recording both wired and wireless traffic. The article discusses methods of intrusion detection and prevention in the context of cyber physical protection of critical Internet infrastructure. The basis for this research is a specialized (and undoubtedly incomplete) taxonomy of Wi-Fi attacks and their adaptations to existing countermeasures and protocol revisions. Ultimately, this article aims to provide a clearer picture of how and why wireless protection protocols and encryption must achieve a more scientific basis for detecting and preventing such attacks.« less

  13. Rethinking Mobile Telephony with the IMP

    DTIC Science & Technology

    2011-01-01

    in the telephony industry, and portions of it such as SS7 or SCTP signaling are packet-switched, deployed mobile telephony access infrastructure is...deployment of wireless LAN technology raises the question of how a mobile telephony system might instead be architected to use wireless LAN access ...and wireless access points has made universal Internet access increasingly convenient. There are clearly barriers to this vision of accessing a

  14. Wireless Intra-Spacecraft Communication: The Benefits and the Challenges

    NASA Technical Reports Server (NTRS)

    Zheng, Will H.; Armstrong, John T.

    2010-01-01

    In this paper we present a systematic study of how intra-spacecraft wireless communication can be adopted to various subsystems of the spacecraft including C&DH (Command & Data Handling), Telecom, Power, Propulsion, and Payloads, and the interconnects between them. We discuss the advantages of intra-spacecraft wireless communication and the disadvantages and challenges and a proposal to address them.

  15. Final report : mobile surveillance and wireless communication systems field operational test. Volume 1, Executive summary

    DOT National Transportation Integrated Search

    1999-03-01

    This study focused on assessing the application of traffic monitoring and management systems which use transportable surveillance and ramp meter trailers, video image processors, and wireless communications. The mobile surveillance and wireless commu...

  16. Our Plan for a Wireless Loan Service.

    ERIC Educational Resources Information Center

    Allmang, Nancy

    2003-01-01

    Discusses the planning for wireless technology at the research library of the National Institute of Standards and Technology (NIST). Highlights include computer equipment, including laptops and PDAs; local area networks; equipment loan service; writing a business plan; infrastructure; training programs; and future considerations, including…

  17. 49 CFR 220.38 - Communication equipment failure.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD COMMUNICATIONS Radio and Wireless Communication Procedures § 220.38 Communication equipment failure. (a) Any radio or wireless communication device found not to be... other employee designated by the railroad shall be so notified as soon as practicable. (b) If a radio or...

  18. 49 CFR 220.38 - Communication equipment failure.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD COMMUNICATIONS Radio and Wireless Communication Procedures § 220.38 Communication equipment failure. (a) Any radio or wireless communication device found not to be... other employee designated by the railroad shall be so notified as soon as practicable. (b) If a radio or...

  19. 49 CFR 220.38 - Communication equipment failure.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD COMMUNICATIONS Radio and Wireless Communication Procedures § 220.38 Communication equipment failure. (a) Any radio or wireless communication device found not to be... other employee designated by the railroad shall be so notified as soon as practicable. (b) If a radio or...

  20. A wireless laser displacement sensor node for structural health monitoring.

    PubMed

    Park, Hyo Seon; Kim, Jong Moon; Choi, Se Woon; Kim, Yousok

    2013-09-30

    This study describes a wireless laser displacement sensor node that measures displacement as a representative damage index for structural health monitoring (SHM). The proposed measurement system consists of a laser displacement sensor (LDS) and a customized wireless sensor node. Wireless communication is enabled by a sensor node that consists of a sensor module, a code division multiple access (CDMA) communication module, a processor, and a power module. An LDS with a long measurement distance is chosen to increase field applicability. For a wireless sensor node driven by a battery, we use a power control module with a low-power processor, which facilitates switching between the sleep and active modes, thus maximizing the power consumption efficiency during non-measurement and non-transfer periods. The CDMA mode is also used to overcome the limitation of communication distance, which is a challenge for wireless sensor networks and wireless communication. To evaluate the reliability and field applicability of the proposed wireless displacement measurement system, the system is tested onsite to obtain the required vertical displacement measurements during the construction of mega-trusses and an edge truss, which are the primary structural members in a large-scale irregular building currently under construction. The measurement values confirm the validity of the proposed wireless displacement measurement system and its potential for use in safety evaluations of structural elements.

  1. Analysis of time in establishing synchronization radio communication system with expanded spectrum conditions for communication with mobile robots

    NASA Astrophysics Data System (ADS)

    Latinovic, T. S.; Kalabic, S. B.; Barz, C. R.; Petrica, P. Paul; Pop-Vădean, A.

    2018-01-01

    This paper analyzes the influence of the Doppler Effect on the length of time to establish synchronization pseudorandom sequences in radio communications systems with an expanded spectrum. Also, this paper explores the possibility of using secure wireless communication for modular robots. Wireless communication could be used for local and global communication. We analyzed a radio communication system integrator, including the two effects of the Doppler signal on the duration of establishing synchronization of the received and locally generated pseudorandom sequence. The effects of the impact of the variability of the phase were analyzed between the said sequences and correspondence of the phases of these signals with the interval of time of acquisition of received sequences. An analysis of these impacts is essential in the transmission of signal and protection of the transfer of information in the communication systems with an expanded range (telecommunications, mobile telephony, Global Navigation Satellite System GNSS, and wireless communication). Results show that wireless communication can provide a safety approach for communication with mobile robots.

  2. Wireless Communications

    NASA Astrophysics Data System (ADS)

    1991-01-01

    A technology utilization project led to the commercial adaptation of a Space Shuttle Orbiter wireless infrared voice communications system. The technology was adapted to a LAN system by Wilton Industries, one of the participants. Because the system is cable-free, installation charges are saved, and it can be used where cable is impractical. Resultant products include the IRplex 6000. Transceivers can be located anywhere and can include mobile receivers. The system provides wireless LAN coverage up to 44,000 square feet. applications include stock exchange communications, trade shows, emergency communications, etc.

  3. Implementation Of Secure 6LoWPAN Communications For Tactical Wireless Sensor Networks

    DTIC Science & Technology

    2016-09-01

    wireless sensor networks (WSN) consist of power -constrained devices spread throughout a region-of-interest to provide data extraction in real time...1  A.  LOW POWER WIRELESS SENSOR NETWORKS ............................1  B.  INTRODUCTION TO...communication protocol for low power wireless personal area networks Since the IEEE 802.15.4 standard only defines the first two layers of the Open

  4. Wireless Powered Cooperative Communications: Power-Splitting Relaying With Energy Accumulation (Author’s Manuscript)

    DTIC Science & Technology

    2016-03-21

    2016 2 i.e., wireless power transfer (WPT) and wireless information transfer (WIT), fundamental changes to the designs of green communication networks...simulta- neous wireless information and power transfer ,” IEEE Commun. Mag., vol. 53, no. 4, pp. 86–93, Apr. 2015. [6] H. Tabassum, E. Hossain, A...broadcasting for simultaneous wire- less information and power transfer ,” IEEE Trans. Wireless Commun., vol. 12, no. 5, pp. 1989–2001, May 2013. [9] K. Huang

  5. Range Information Systems Management (RISM) Phase 1 Report

    NASA Technical Reports Server (NTRS)

    Bastin, Gary L.; Harris, William G.; Nelson, Richard A.

    2002-01-01

    RISM investigated alternative approaches, technologies, and communication network architectures to facilitate building the Spaceports and Ranges of the future. RISM started by document most existing US ranges and their capabilities. In parallel, RISM obtained inputs from the following: 1) NASA and NASA-contractor engineers and managers, and; 2) Aerospace leaders from Government, Academia, and Industry, participating through the Space Based Range Distributed System Working Group (SBRDSWG), many of whom are also; 3) Members of the Advanced Range Technology Working Group (ARTWG) subgroups, and; 4) Members of the Advanced Spaceport Technology Working Group (ASTWG). These diverse inputs helped to envision advanced technologies for implementing future Ranges and Range systems that builds on today s cabled and wireless legacy infrastructures while seamlessly integrating both today s emerging and tomorrow s building-block communication techniques. The fundamental key is to envision a transition to a Space Based Range Distributed Subsystem. The enabling concept is to identify the specific needs of Range users that can be solved through applying emerging communication tech

  6. Survey on Monitoring and Quality Controlling of the Mobile Biosignal Delivery.

    PubMed

    Pawar, Pravin A; Edla, Damodar R; Edoh, Thierry; Shinde, Vijay; van Beijnum, Bert-Jan

    2017-10-31

    A Mobile Patient Monitoring System (MPMS) acquires patient's biosignals and transmits them using wireless network connection to the decision-making module or healthcare professional for the assessment of patient's condition. A variety of wireless network technologies such as wireless personal area networks (e.g., Bluetooth), mobile ad-hoc networks (MANET), and infrastructure-based networks (e.g., WLAN and cellular networks) are in practice for biosignals delivery. The wireless network quality-of-service (QoS) requirements of biosignals delivery are mainly specified in terms of required bandwidth, acceptable delay, and tolerable error rate. An important research challenge in the MPMS is how to satisfy QoS requirements of biosignals delivery in the environment characterized by patient mobility, deployment of multiple wireless network technologies, and variable QoS characteristics of the wireless networks. QoS requirements are mainly application specific, while available QoS is largely dependent on QoS provided by wireless network in use. QoS provisioning refers to providing support for improving QoS experience of networked applications. In resource poor conditions, application adaptation may also be required to make maximum use of available wireless network QoS. This survey paper presents a survey of recent developments in the area of QoS provisioning for MPMS. In particular, our contributions are as follows: (1) overview of wireless networks and network QoS requirements of biosignals delivery; (2) survey of wireless networks' QoS performance evaluation for the transmission of biosignals; and (3) survey of QoS provisioning mechanisms for biosignals delivery in MPMS. We also propose integrating end-to-end QoS monitoring and QoS provisioning strategies in a mobile patient monitoring system infrastructure to support optimal delivery of biosignals to the healthcare professionals.

  7. Wireless Coexistence and EMC of Bluetooth and 802.11b Devices in Controlled Laboratory Settings

    PubMed Central

    Seidman, Seth; Kainz, Wolfgang; Ruggera, Paul; Mendoza, Gonzalo

    2011-01-01

    This paper presents experimental testing that has been performed on wireless communication devices as victims of electromagnetic interference (EMI). Wireless victims included universal serial bus (USB) network adapters and personal digital assistants (PDAs) equipped with IEEE 802.11b and Bluetooth technologies. The experimental data in this paper was gathered in an anechoic chamber and a gigahertz transverse electromagnetic (GTEM) cell to ensure reliable and repeatable results. This testing includes: Electromagnetic compatibility (EMC) testing performed in accordance with IEC 60601-1-2, an in-band sweep of EMC testing, and coexistence testing. The tests in this study show that a Bluetooth communication was able to coexist with other Bluetooth devices with no decrease in throughput and no communication breakdowns. However, testing revealed a significant decrease in throughput and increase in communication breakdowns when an 802.11b source is near an 802.11b victim. In a hospital setting decreased throughput and communication breakdowns can cause wireless medical devices to fail. It is therefore vital to have an understanding of the effect EMI can have on wireless communication devices. PMID:22043254

  8. Wireless Coexistence and EMC of Bluetooth and 802.11b Devices in Controlled Laboratory Settings.

    PubMed

    Seidman, Seth; Kainz, Wolfgang; Ruggera, Paul; Mendoza, Gonzalo

    2011-01-01

    This paper presents experimental testing that has been performed on wireless communication devices as victims of electromagnetic interference (EMI). Wireless victims included universal serial bus (USB) network adapters and personal digital assistants (PDAs) equipped with IEEE 802.11b and Bluetooth technologies. The experimental data in this paper was gathered in an anechoic chamber and a gigahertz transverse electromagnetic (GTEM) cell to ensure reliable and repeatable results. This testing includes: Electromagnetic compatibility (EMC) testing performed in accordance with IEC 60601-1-2, an in-band sweep of EMC testing, and coexistence testing. The tests in this study show that a Bluetooth communication was able to coexist with other Bluetooth devices with no decrease in throughput and no communication breakdowns. However, testing revealed a significant decrease in throughput and increase in communication breakdowns when an 802.11b source is near an 802.11b victim. In a hospital setting decreased throughput and communication breakdowns can cause wireless medical devices to fail. It is therefore vital to have an understanding of the effect EMI can have on wireless communication devices.

  9. 3 CFR - Unleashing the Wireless Broadband Revolution

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Internet, as vital infrastructure, has become central to the daily economic life of almost every American..., and improve the quality of our lives as wireless high-speed access to the Internet. Innovative new... applications that will transform Americans' lives. Spectrum and the new technologies it enables also are...

  10. Direct cellular vs. indirect pager communication during orthopaedic surgical procedures: a prospective study.

    PubMed

    Ortega, Gil R; Taksali, Sudeep; Smart, Ryan; Baumgaertner, Michael R

    2009-01-01

    Cellular phone use within the hospital setting has increased as physicians, nurses, and ancillary staff incorporate wireless technologies in improving efficiencies, cost, and maintaining patient safety and high quality healthcare [11]. Through the use of wireless, cellular communication, an overall improvement in communication accuracy and efficiency between intraoperative orthopaedic surgeons and floor nurses may be achieved. Both communication types occurred while the surgeon was scrubbed in the operating room (OR). Indirect communication occurred when the pager call was answered by the OR circulating nurse with communication between the surgeon, circulating nurse, and floor nurse. Direct communication consisted of cell phone and Jabra Bluetooth BT200 wireless ear piece used by the surgeon. The surgeon answered the floor nurse's cellular call by phone ring-activated automatic answering. The study was conducted during scheduled orthopaedic procedures. An independent observer measured time variables with a stop-watch while orthopaedic nurses randomly called via pager or cell phone. The nurses asked for patient caregiver confirmation and answers to 30 different patient-care questions. Sixty trials were performed with 30 cell and 30 page communications. Direct cellular communication showed a better response rate than indirect page (Cell 100%, Page 73%). Indirect page communication allowed a 27% and 33% error rate with patient problem and surgeon solution communications, respectively. There were no reported communication errors while using direct wireless, cellular communication. When compared to page communications, cellular communications showed statistically significant improvements in mean time intervals in response time (Cell = 11s, Page = 211s), correct patient identification (Cell = 5s, Page = 172s), patient problem and solution time (Cell = 13s, Page = 189s), and total communication time (Cell = 32s, Page = 250s) (s = seconds, all P < 0.001). Floor nurse satisfaction ratings (dependent on communication times and/or difficulties) were improved with direct cellular communication (Cell = 29 excellent, Page = 11 excellent). Intraoperative case interruptions (defined as delaying surgical progress) were more frequent with indirect page communication (10 page v. 0 cell). Our study demonstrates that direct wireless communication may be used to improve intraoperative communication and enhance patient safety. Direct wireless, cellular intraoperative communication improves communication times, communication accuracy, communication satisfaction, and minimizes intraoperative case interruption. As a result of this study, we hope to maintain our transition to direct wireless, cellular intraoperative orthopaedic communication to reduce medical errors, improve patient care, and enhance both orthopaedic surgeon and nursing efficiencies.

  11. 75 FR 45058 - Operation of Wireless Communications Services in the 2.3 GHz Band; Establishment of Rules and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-02

    ... the 2310-2360 MHz Frequency Band AGENCY: Federal Communications Commission. ACTION: Final rule... communicate, the frequencies and emission designations of such communications, and the frequencies and...(4). 28. WCS Licensees. The Wireless Communication Service in the 2305- 2360 MHz (2.3 GHz) frequency...

  12. High Throughput via Cross-Layer Interference Alignment for Mobile Ad Hoc Networks

    DTIC Science & Technology

    2013-08-26

    MIMO zero-forcing receiver in the presence of channel estimation error,” IEEE Transactions on Wireless Communications , vol. 6 , no. 3, pp. 805–810, Mar...Robert W. Heath, Nachiappan Valliappan. Antenna Subset Modulation for Secure Millimeter-Wave Wireless Communication , IEEE Transactions on...in MIMO Interference Alignment Networks, IEEE Transactions on Wireless Communications , (02 2012): 0. doi: 10.1109/TWC.2011.120511.111088 TOTAL: 2

  13. Use of consumer wireless devices by South Africans with severe communication disability

    PubMed Central

    Bryen, Diane Nelson; Moolman, Enid; Morris, John

    2016-01-01

    Background Advancements in wireless technology (e.g. cell phones and tablets) have opened new communication opportunities and environments for individuals with severe communication disabilities. The advancement of these technologies poses challenges to ensuring that these individuals enjoy equal access to this increasingly essential technology. However, a paucity of research exists. Objectives To describe the nature and frequency with which South African adults with severe communication disabilities have access to and use wireless devices, as well as the types of activities for which wireless devices are used. Method Survey research was conducted with 30 individuals who use augmentative and alternative communication (AAC) technology using the Survey of User Needs Questionnaire developed in the United States, and localized to the South African context. Results All participants, despite their limited education, unemployment and low economic status, owned and/or used mainstream wireless devices. Slightly more than half of the participants (53.3%) needed adaptations to their wireless devices. Advantages of using wireless devices were highlighted, including connecting with others (through using text messaging, social networking, making plans with others, sharing photos and videos with friends), for leisure activities (e.g. listening to music, watching videos, playing games), and for safety purposes (e.g. to navigate when lost, using the device when in trouble and needing immediate assistance). Conclusion These wireless devices offer substantial benefits and opportunities to individuals with disabilities who rely on AAC in terms of independence, social participation, education and safety/security. However, they still do not enjoy equal opportunity to access and use wireless devices relative to the non-disabled population. PMID:28730045

  14. Use of consumer wireless devices by South Africans with severe communication disability.

    PubMed

    Bornman, Juan; Bryen, Diane Nelson; Moolman, Enid; Morris, John

    2016-01-01

    Advancements in wireless technology (e.g. cell phones and tablets) have opened new communication opportunities and environments for individuals with severe communication disabilities. The advancement of these technologies poses challenges to ensuring that these individuals enjoy equal access to this increasingly essential technology. However, a paucity of research exists. To describe the nature and frequency with which South African adults with severe communication disabilities have access to and use wireless devices, as well as the types of activities for which wireless devices are used. Survey research was conducted with 30 individuals who use augmentative and alternative communication (AAC) technology using the Survey of User Needs Questionnaire developed in the United States, and localized to the South African context. All participants, despite their limited education, unemployment and low economic status, owned and/or used mainstream wireless devices. Slightly more than half of the participants (53.3%) needed adaptations to their wireless devices. Advantages of using wireless devices were highlighted, including connecting with others (through using text messaging, social networking, making plans with others, sharing photos and videos with friends), for leisure activities (e.g. listening to music, watching videos, playing games), and for safety purposes (e.g. to navigate when lost, using the device when in trouble and needing immediate assistance). These wireless devices offer substantial benefits and opportunities to individuals with disabilities who rely on AAC in terms of independence, social participation, education and safety/security. However, they still do not enjoy equal opportunity to access and use wireless devices relative to the non-disabled population.

  15. Reliability and throughput issues for optical wireless and RF wireless systems

    NASA Astrophysics Data System (ADS)

    Yu, Meng

    The fast development of wireless communication technologies has two main trends. On one hand, in point-to-point communications, the demand for higher throughput called for the emergence of wireless broadband techniques including optical wireless (OW). One the other hand, wireless networks are becoming pervasive. New application of wireless networks ask for more flexible system infrastructures beyond the point-to-point prototype to achieve better performance. This dissertation investigates two topics on the reliability and throughput issues of new wireless technologies. The first topic is to study the capacity, and practical forward error control strategies for OW systems. We investigate the performance of OW systems under weak atmospheric turbulence. We first investigate the capacity and power allocation for multi-laser and multi-detector systems. Our results show that uniform power allocation is a practically optimal solution for paralleled channels. We also investigate the performance of Reed Solomon (RS) codes and turbo codes for OW systems. We present RS codes as good candidates for OW systems. The second topic targets user cooperation in wireless networks. We evaluate the relative merits of amplify-forward (AF) and decode-forward (DF) in practical scenarios. Both analysis and simulations show that the overall system performance is critically affected by the quality of the inter-user channel. Following this result, we investigate two schemes to improve the overall system performance. We first investigate the impact of the relay location on the overall system performance and determine the optimal location of relay. A best-selective single-relay 1 system is proposed and evaluated. Through the analysis of the average capacity and outage, we show that a small candidate pool of 3 to 5 relays suffices to reap most of the "geometric" gain available to a selective system. Second, we propose a new user cooperation scheme to provide an effective better inter-user channel. Most user cooperation protocols work in a time sharing manner, where a node forwards others' messages and sends its own message at different sections within a provisioned time slot. In the proposed scheme the two messages are encoded together in a single codework using network coding and transmitted in the given time slot. We also propose a general multiple-user cooperation framework. Under this framework, we show that network coding can achieve better diversity and provide effective better inter-user channels than time sharing. The last part of the dissertation focuses on multi-relay packet transmission. We propose an adaptive and distributive coding scheme for the relay nodes to adaptively cooperate and forward messages. The adaptive scheme shows performance gain over fixed schemes. Then we shift our viewpoint and represent the network as part of encoders and part of decoders.

  16. [Advances in sensor node and wireless communication technology of body sensor network].

    PubMed

    Lin, Weibing; Lei, Sheng; Wei, Caihong; Li, Chunxiang; Wang, Cang

    2012-06-01

    With the development of the wireless communication technology, implantable biosensor technology, and embedded system technology, Body Sensor Network (BSN) as one branch of wireless sensor networks and important part of the Internet of things has caught more attention of researchers and enterprises. This paper offers the basic concept of the BSN and analyses the related research. We focus on sensor node and wireless communication technology from perspectives of technology challenges, research advance and development trend in the paper. Besides, we also present a relative overview of domestic and overseas projects for the BSN.

  17. Modeling, Evaluation and Detection of Jamming Attacks in Time-Critical Wireless Applications

    DTIC Science & Technology

    2014-08-01

    computing, modeling and analysis of wireless networks , network topol- ogy, and architecture design. Dr. Wang has been a Member of the Association for...important, yet open research question is how to model and detect jamming attacks in such wireless networks , where communication traffic is more time...against time-critical wireless networks with applications to the smart grid. In contrast to communication networks where packets-oriented metrics

  18. Wireless communication in health care: who will win the right to send data boldly where no data has gone before?

    PubMed

    Campbell, Robert J; Durigon, Louis

    2003-01-01

    Increasingly, health care professionals will need to retrieve, store, share, and send data using several types of wireless devices. These devices include personal digital assistants, laptops, Web tablets, cell phones, and clothing that monitor heart rate and blood pressure. Regardless of the device, several standards will vie for the right to provide the wireless communications link between the health care professional and the wired data resources located within a health care organization. This article identifies the top three technologies in the wireless communications field: Wireless Fidelity (WiFi), Mobile Communications, and Bluetooth; breaks down each according to its strengths and weaknesses; and makes recommendations for their use by health care professionals located inside and outside a health care facility. Where appropriate the discussion includes an explication of how a specific technology can be made secure from hackers and other security breeches.

  19. 47 CFR 27.1250 - Transition of the 2150-2160/62 MHz band from the Broadband Radio Service to the Advanced Wireless...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... the Broadband Radio Service to the Advanced Wireless Service. 27.1250 Section 27.1250 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES Broadband Radio Service and Educational Broadband Service Relocation Procedures for the...

  20. 47 CFR 27.1250 - Transition of the 2150-2160/62 MHz band from the Broadband Radio Service to the Advanced Wireless...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... the Broadband Radio Service to the Advanced Wireless Service. 27.1250 Section 27.1250 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES Broadband Radio Service and Educational Broadband Service Relocation Procedures for the...

  1. 47 CFR 27.1250 - Transition of the 2150-2160/62 MHz band from the Broadband Radio Service to the Advanced Wireless...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... the Broadband Radio Service to the Advanced Wireless Service. 27.1250 Section 27.1250 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES Broadband Radio Service and Educational Broadband Service Relocation Procedures for the...

  2. 78 FR 2912 - Prohibition on Personal Use of Electronic Devices on the Flight Deck

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-15

    ....C. 332(c)(7)(C)(i). In general, wireless telecommunications is the transfer of information between... personal wireless communications device or laptop computer for personal use while at their duty station on.... Personal Wireless Communications Device IV. Regulatory Notices and Analyses A. Regulatory Evaluation B...

  3. A low power medium access control protocol for wireless medical sensor networks.

    PubMed

    Lamprinos, I; Prentza, A; Sakka, E; Koutsouris, D

    2004-01-01

    The concept of a wireless integrated network of sensors, already applied in several sectors of our everyday life, such as security, transportation and environment monitoring, can as well provide an advanced monitor and control resource for healthcare services. By networking medical sensors wirelessly, attaching them in patient's body, we create the appropriate infrastructure for continuous and real-time monitoring of patient without discomforting him. This infrastructure can improve healthcare by providing the means for flexible acquisition of vital signs, while at the same time it provides more convenience to the patient. Given the type of wireless network, traditional medium access control (MAC) protocols cannot take advantage of the application specific requirements and information characteristics occurring in medical sensor networks, such as the demand for low power consumption and the rather limited and asymmetric data traffic. In this paper, we present the architecture of a low power MAC protocol, designated to support wireless networks of medical sensors. This protocol aims to improve energy efficiency by exploiting the inherent application features and requirements. It is oriented towards the avoidance of main energy wastage sources, such as idle listening, collision and power outspending.

  4. A Wireless MEMS-Based Inclinometer Sensor Node for Structural Health Monitoring

    PubMed Central

    Ha, Dae Woong; Park, Hyo Seon; Choi, Se Woon; Kim, Yousok

    2013-01-01

    This paper proposes a wireless inclinometer sensor node for structural health monitoring (SHM) that can be applied to civil engineering and building structures subjected to various loadings. The inclinometer used in this study employs a method for calculating the tilt based on the difference between the static acceleration and the acceleration due to gravity, using a micro-electro-mechanical system (MEMS)-based accelerometer. A wireless sensor node was developed through which tilt measurement data are wirelessly transmitted to a monitoring server. This node consists of a slave node that uses a short-distance wireless communication system (RF 2.4 GHz) and a master node that uses a long-distance telecommunication system (code division multiple access—CDMA). The communication distance limitation, which is recognized as an important issue in wireless monitoring systems, has been resolved via these two wireless communication components. The reliability of the proposed wireless inclinometer sensor node was verified experimentally by comparing the values measured by the inclinometer and subsequently transferred to the monitoring server via wired and wireless transfer methods to permit a performance evaluation of the wireless communication sensor nodes. The experimental results indicated that the two systems (wired and wireless transfer systems) yielded almost identical values at a tilt angle greater than 1°, and a uniform difference was observed at a tilt angle less than 0.42° (approximately 0.0032° corresponding to 0.76% of the tilt angle, 0.42°) regardless of the tilt size. This result was deemed to be within the allowable range of measurement error in SHM. Thus, the wireless transfer system proposed in this study was experimentally verified for practical application in a structural health monitoring system. PMID:24287533

  5. Heterogeneous Wireless Mesh Network Technology Evaluation for Space Proximity and Surface Applications

    NASA Technical Reports Server (NTRS)

    DeCristofaro, Michael A.; Lansdowne, Chatwin A.; Schlesinger, Adam M.

    2014-01-01

    NASA has identified standardized wireless mesh networking as a key technology for future human and robotic space exploration. Wireless mesh networks enable rapid deployment, provide coverage in undeveloped regions. Mesh networks are also self-healing, resilient, and extensible, qualities not found in traditional infrastructure-based networks. Mesh networks can offer lower size, weight, and power (SWaP) than overlapped infrastructure-perapplication. To better understand the maturity, characteristics and capability of the technology, we developed an 802.11 mesh network consisting of a combination of heterogeneous commercial off-the-shelf devices and opensource firmware and software packages. Various streaming applications were operated over the mesh network, including voice and video, and performance measurements were made under different operating scenarios. During the testing several issues with the currently implemented mesh network technology were identified and outlined for future work.

  6. Wireless Security Within Hastily Formed Networks

    DTIC Science & Technology

    2006-09-01

    WLAN DEVICES (STEP ONE) ............34 1. Personal Firewalls..............................................................................34 2. Anti ...includes client devices , access points, network infrastructure, network management, and delivery of mobility services to maintain network security and...Technology Special Publication 800-48, Wireless Network Security, 802.11, Bluetooth , and Handheld Devices . Available at http://csrc.nist.gov

  7. Pedagogical Applications of Smartphone Integration in Teaching - Lecturers', Students' & Pupils' Perspectives

    ERIC Educational Resources Information Center

    Seifert, Tami

    2014-01-01

    As the disparity between educational standards and reality outside educational institutions is increasing, alternative learning infrastructure such as mobile technologies are becoming more common, and are challenging long held, traditional modes of teaching. Educators' attitudes toward wireless devices are mixed. Wireless devices are perceived by…

  8. Using Cell-Phone Tower Signals for Detecting the Precursors of Fog

    NASA Astrophysics Data System (ADS)

    David, N.; Gao, H. O.

    2018-01-01

    In the last decade, published research has indicated the potential of commercial microwave links that comprise the data transmission infrastructure of cellular communication networks as an environmental monitoring technology. Different weather phenomena cause interference in the wireless communication links that can therefore essentially act as a low-cost sensor network, already deployed worldwide, for atmospheric monitoring. In this study we focus on the attenuation effect caused in commercial microwave networks due to gradients in the atmospheric refractive index with altitude as a result of the combination of temperature inversions and falls in the atmospheric humidity trapped beneath them. These conditions, when combined with high relative humidity near ground level, are precursors to the creation of fog. The current work utilizes this novel approach to demonstrate the potential for detecting these preconditions of fog, a phenomenon associated with severe visibility limitations that can lead to dangerous accidents, injuries, and loss of lives.

  9. Novel method for fog monitoring using cellular networks infrastructures

    NASA Astrophysics Data System (ADS)

    David, N.; Alpert, P.; Messer, H.

    2012-08-01

    A major detrimental effect of fog is visibility limitation which can result in serious transportation accidents, traffic delays and therefore economic damage. Existing monitoring techniques including satellites, transmissometers and human observers - suffer from low spatial resolution, high cost or lack of precision when measuring near ground level. Here we show a novel technique for fog monitoring using wireless communication systems. Communication networks widely deploy commercial microwave links across the terrain at ground level. Operating at frequencies of tens of GHz they are affected by fog and are, effectively, an existing, spatially world-wide distributed sensor network that can provide crucial information about fog concentration and visibility. Fog monitoring potential is demonstrated for a heavy fog event that took place in Israel. The correlation between transmissomters and human eye observations to the visibility estimates from the nearby microwave links was found to be 0.53 and 0.61, respectively. These values indicate the high potential of the proposed method.

  10. Probabilistic monitoring in intrusion detection module for energy efficiency in mobile ad hoc networks

    NASA Astrophysics Data System (ADS)

    De Rango, Floriano; Lupia, Andrea

    2016-05-01

    MANETs allow mobile nodes communicating to each other using the wireless medium. A key aspect of these kind of networks is the security, because their setup is done without an infrastructure, so external nodes could interfere in the communication. Mobile nodes could be compromised, misbehaving during the multi-hop transmission of data, or they could have a selfish behavior to save energy, which is another important constraint in MANETs. The detection of these behaviors need a framework that takes into account the latest interactions among nodes, so malicious or selfish nodes could be detected also if their behavior is changed over time. The monitoring activity increases the energy consumption, so our proposal takes into account this issue reducing the energy required by the monitoring system, keeping the effectiveness of the intrusion detection system. The results show an improvement in the saved energy, improving the detection performance too.

  11. EMF Monitoring—Concepts, Activities, Gaps and Options

    PubMed Central

    Dürrenberger, Gregor; Fröhlich, Jürg; Röösli, Martin; Mattsson, Mats-Olof

    2014-01-01

    Exposure to electromagnetic fields (EMF) is a cause of concern for many people. The topic will likely remain for the foreseeable future on the scientific and political agenda, since emissions continue to change in characteristics and levels due to new infrastructure deployments, smart environments and novel wireless devices. Until now, systematic and coordinated efforts to monitor EMF exposure are rare. Furthermore, virtually nothing is known about personal exposure levels. This lack of knowledge is detrimental for any evidence-based risk, exposure and health policy, management and communication. The main objective of the paper is to review the current state of EMF exposure monitoring activities in Europe, to comment on the scientific challenges and deficiencies, and to describe appropriate strategies and tools for EMF exposure assessment and monitoring to be used to support epidemiological health research and to help policy makers, administrators, industry and consumer representatives to base their decisions and communication activities on facts and data. PMID:25216256

  12. Mobile Crowd Sensing for Traffic Prediction in Internet of Vehicles.

    PubMed

    Wan, Jiafu; Liu, Jianqi; Shao, Zehui; Vasilakos, Athanasios V; Imran, Muhammad; Zhou, Keliang

    2016-01-11

    The advances in wireless communication techniques, mobile cloud computing, automotive and intelligent terminal technology are driving the evolution of vehicle ad hoc networks into the Internet of Vehicles (IoV) paradigm. This leads to a change in the vehicle routing problem from a calculation based on static data towards real-time traffic prediction. In this paper, we first address the taxonomy of cloud-assisted IoV from the viewpoint of the service relationship between cloud computing and IoV. Then, we review the traditional traffic prediction approached used by both Vehicle to Infrastructure (V2I) and Vehicle to Vehicle (V2V) communications. On this basis, we propose a mobile crowd sensing technology to support the creation of dynamic route choices for drivers wishing to avoid congestion. Experiments were carried out to verify the proposed approaches. Finally, we discuss the outlook of reliable traffic prediction.

  13. Mobile Crowd Sensing for Traffic Prediction in Internet of Vehicles

    PubMed Central

    Wan, Jiafu; Liu, Jianqi; Shao, Zehui; Vasilakos, Athanasios V.; Imran, Muhammad; Zhou, Keliang

    2016-01-01

    The advances in wireless communication techniques, mobile cloud computing, automotive and intelligent terminal technology are driving the evolution of vehicle ad hoc networks into the Internet of Vehicles (IoV) paradigm. This leads to a change in the vehicle routing problem from a calculation based on static data towards real-time traffic prediction. In this paper, we first address the taxonomy of cloud-assisted IoV from the viewpoint of the service relationship between cloud computing and IoV. Then, we review the traditional traffic prediction approached used by both Vehicle to Infrastructure (V2I) and Vehicle to Vehicle (V2V) communications. On this basis, we propose a mobile crowd sensing technology to support the creation of dynamic route choices for drivers wishing to avoid congestion. Experiments were carried out to verify the proposed approaches. Finally, we discuss the outlook of reliable traffic prediction. PMID:26761013

  14. 76 FR 26620 - A National Broadband Plan for Our Future

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-09

    ... communications space on utility poles. For wireless attachments above the communications space, we adopt a...-authorized by the utilities to complete survey and make-ready work in the communications space, subject to a... and wireless attachments either in or above the communications space. This required response is...

  15. Performance Evaluation of High Speed Multicarrier System for Optical Wireless Communication

    NASA Astrophysics Data System (ADS)

    Mathur, Harshita; Deepa, T.; Bartalwar, Sophiya

    2018-04-01

    Optical wireless communication (OWC) in the infrared and visible range is quite impressive solution, especially where radio communication face challenges. Visible light communication (VLC) uses visible light over a range of 400 and 800 THz and is a subdivision of OWC technologies. With an increasing demand for use of wireless communications, wireless access via Wi-Fi is facing many challenges especially in terms of capacity, availability, security and efficiency. VLC uses intensity modulation and direct detection (IM/DD) techniques and hence they require the signals to certainly be real valued positive sequences. These constraints pose limitation on digital modulation techniques. These limitations result in spectrum-efficiency or power-efficiency losses. In this paper, we investigate an amplitude shift keying (ASK) based orthogonal frequency division multiplexing (OFDM) signal transmission scheme using LabVIEW for VLC technology.

  16. Toward Reliable and Energy Efficient Wireless Sensing for Space and Extreme Environments

    NASA Technical Reports Server (NTRS)

    Choi, Baek-Young; Boyd, Darren; Wilkerson, DeLisa

    2017-01-01

    Reliability is the critical challenge of wireless sensing in space systems operating in extreme environments. Energy efficiency is another concern for battery powered wireless sensors. Considering the physics of wireless communications, we propose an approach called Software-Defined Wireless Communications (SDC) that dynamically decide a reliable channel(s) avoiding unnecessary redundancy of channels, out of multiple distinct electromagnetic frequency bands such as radio and infrared frequencies.We validate the concept with Android and Raspberry Pi sensors and pseudo extreme experiments. SDC can be utilized in many areas beyond space applications.

  17. Real-time software-based end-to-end wireless visual communications simulation platform

    NASA Astrophysics Data System (ADS)

    Chen, Ting-Chung; Chang, Li-Fung; Wong, Andria H.; Sun, Ming-Ting; Hsing, T. Russell

    1995-04-01

    Wireless channel impairments pose many challenges to real-time visual communications. In this paper, we describe a real-time software based wireless visual communications simulation platform which can be used for performance evaluation in real-time. This simulation platform consists of two personal computers serving as hosts. Major components of each PC host include a real-time programmable video code, a wireless channel simulator, and a network interface for data transport between the two hosts. The three major components are interfaced in real-time to show the interaction of various wireless channels and video coding algorithms. The programmable features in the above components allow users to do performance evaluation of user-controlled wireless channel effects without physically carrying out these experiments which are limited in scope, time-consuming, and costly. Using this simulation platform as a testbed, we have experimented with several wireless channel effects including Rayleigh fading, antenna diversity, channel filtering, symbol timing, modulation, and packet loss.

  18. Using the combination refraction-reflection solid to design omni-directional light source used in underwater wireless optical communication

    NASA Astrophysics Data System (ADS)

    Rao, Jionghui; Yao, Wenming; Wen, Linqiang

    2015-10-01

    Underwater wireless optical communication is a communication technology which uses laser as an information carrier and transmits data through water. Underwater wireless optical communication has some good features such as broader bandwidth, high transmission rate, better security, anti—interference performance. Therefore, it is promising to be widely used in the civil and military communication domains. It is also suitable for high-speed, short-range communication between underwater mobile vehicles. This paper presents a design approach of omni-directional light source used in underwater wireless optical communication, using TRACEPRO simulation tool to help design a combination solid composed of the lens, conical reflector and parabolic reflector, and using the modulated DPSS green laser in the transmitter module to output the laser beam in small divergence angles, after expanded by the combination refraction-reflection solid, the angle turns into a space divergence angle of 2π, achieving the omni-directional light source of hemisphere space, and test in the air and underwater, the result shows that the effect is fine. This paper analyzes the experimental test in the air and water, in order to make further improvement of the uniformity of light distribution, we optimize the reflector surface parameters of combination refraction-reflection solid and test in the air and water. The result shows that omni-directional light source used in underwater wireless optical communication optimized could achieve the uniformity of light distribution of underwater space divergence angle of 2π. Omni-directional light source used in underwater wireless optical communication designed in this paper has the characteristics of small size and uniformity of light distribution, it is suitable for application between UUVs, AUVs, Swimmer Delivery Vehicles (SDVs) and other underwater vehicle fleet, it realizes point-to-multipoint communications.

  19. #WomenInSTEM: Identifying an Opportunity for Change

    ScienceCinema

    Lefkowitz, Karen

    2018-01-16

    Karen Lefkowitz remembers being the only woman in the room thirty years ago at a conference when she started her career off as a computer programmer. Karen is a firm supporter of mentors and states that women, no matter whether they're in science or any other career, should ask for someone to mentor them. Karen is currently Vice President of Business Transformation at Pepco Holdings, Inc. She is responsible for the deployment of Advanced Metering Infrastructure (AMI) meters, a Department of Energy funded project, in Delaware, DC and Maryland. The meters have a two-way wireless communication that provides hourly consumption data at the premise allowing customers to take control of their energy use.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lefkowitz, Karen

    Karen Lefkowitz remembers being the only woman in the room thirty years ago at a conference when she started her career off as a computer programmer. Karen is a firm supporter of mentors and states that women, no matter whether they're in science or any other career, should ask for someone to mentor them. Karen is currently Vice President of Business Transformation at Pepco Holdings, Inc. She is responsible for the deployment of Advanced Metering Infrastructure (AMI) meters, a Department of Energy funded project, in Delaware, DC and Maryland. The meters have a two-way wireless communication that provides hourly consumptionmore » data at the premise allowing customers to take control of their energy use.« less

  1. Understanding Wireless Communications in Public Safety: A Guidebook to Technology, Issues, Planning, and Management

    DOT National Transportation Integrated Search

    2000-08-01

    This guidebook is divided into four parts: Part 1. Planning and Managing a Communications Project: Discusses the overall scope of a project, including planning, funding, procurement, and management. Part 2. Wireless Communications Technology: Discuss...

  2. 78 FR 38975 - Sunshine Act Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-28

    ... FEDERAL COMMUNICATIONS COMMISSION Sunshine Act Meetings Open Commission Meeting Thursday, June 27, 2013 The Federal Communications Commission will hold an Open Meeting on the subjects listed below on... data. 2 WIRELESS TELE- TITLE: Service Rules for COMMUNICATIONS. Advanced Wireless Services H Block...

  3. Implantable radio frequency identification sensors: wireless power and communication.

    PubMed

    Hutchens, Chriswell; Rennaker, Robert L; Venkataraman, Srinivasan; Ahmed, Rehan; Liao, Ran; Ibrahim, Tamer

    2011-01-01

    There are significant technical challenges in the development of a fully implantable wirelessly powered neural interface. Challenges include wireless transmission of sufficient power to the implanted device to ensure reliable operation for decades without replacement, minimizing tissue heating, and adequate reliable communications bandwidth. Overcoming these challenges is essential for the development of implantable closed loop system for the treatment of disorders ranging from epilepsy, incontinence, stroke and spinal cord injury. We discuss the development of the wireless power, communication and control for a Radio-Frequency Identification Sensor (RFIDS) system with targeted power range for a 700 mV, 30 to 40 uA load attained at -2 dBm.

  4. Impact of wireless communication on multimedia application performance

    NASA Astrophysics Data System (ADS)

    Brown, Kevin A.

    1999-01-01

    Multimedia applications and specifically voice and video conferencing tools are widely used in business communications, and are quickly being discovered by the consumer market as well. At the same time, wireless communication services such as PCS voice and cellular data are becoming very popular, leading to the desire to deploy multimedia applications in the wireless environment. Wireless links, however, exhibit several characteristics which are different from traditional wired networks. These include: dynamically changing bandwidth due to mobile host movement in and out of cell where bandwidth is shared, high rates of packet corruption and subsequent loss, and frequent are lengthy disconnections due to obstacles, fading, and movement between cells. In addition, these effects are short-lived and difficult to reproduce, leading to a lack of adequate testing and analysis for applications used in wireless environments.

  5. Understanding wireless communications in public safety : a guidebook to technology, issues, planning, and management. 2nd ed.

    DOT National Transportation Integrated Search

    2003-01-01

    This guidebook was created to help unravel the confusing issues, terms, and options surrounding wireless communications, particularly as it involves commercially available communications services. The target audience consists of those middle and uppe...

  6. NASA Lunar Base Wireless System Propagation Analysis

    NASA Technical Reports Server (NTRS)

    Hwu, Shian U.; Upanavage, Matthew; Sham, Catherine C.

    2007-01-01

    There have been many radio wave propagation studies using both experimental and theoretical techniques over the recent years. However, most of studies have been in support of commercial cellular phone wireless applications. The signal frequencies are mostly at the commercial cellular and Personal Communications Service bands. The antenna configurations are mostly one on a high tower and one near the ground to simulate communications between a cellular base station and a mobile unit. There are great interests in wireless communication and sensor systems for NASA lunar missions because of the emerging importance of establishing permanent lunar human exploration bases. Because of the specific lunar terrain geometries and RF frequencies of interest to the NASA missions, much of the published literature for the commercial cellular and PCS bands of 900 and 1800 MHz may not be directly applicable to the lunar base wireless system and environment. There are various communication and sensor configurations required to support all elements of a lunar base. For example, the communications between astronauts, between astronauts and the lunar vehicles, between lunar vehicles and satellites on the lunar orbits. There are also various wireless sensor systems among scientific, experimental sensors and data collection ground stations. This presentation illustrates the propagation analysis of the lunar wireless communication and sensor systems taking into account the three dimensional terrain multipath effects. It is observed that the propagation characteristics are significantly affected by the presence of the lunar terrain. The obtained results indicate the lunar surface material, terrain geometry and antenna location are the important factors affecting the propagation characteristics of the lunar wireless systems. The path loss can be much more severe than the free space propagation and is greatly affected by the antenna height, surface material and operating frequency. The results from this paper are important for the lunar wireless system link margin analysis in order to determine the limits on the reliable communication range, achievable data rate and RF coverage performance at planned lunar base work sites.

  7. Novel Method for Detection of Air Pollution using Cellular Communication Networks

    NASA Astrophysics Data System (ADS)

    David, N.; Gao, O. H.

    2016-12-01

    Air pollution can lead to a wide spectrum of severe and chronic health impacts. Conventional tools for monitoring the phenomenon do not provide a sufficient monitoring solution in a global scale since they are, for example, not representative of the larger space or due to limited deployment as a result of practical limitations, such as: acquisition, installation, and ongoing maintenance costs. Near ground temperature inversions are directly identified with air pollution events since they suppress vertical atmospheric movement and trap pollutants near the ground. Wireless telecommunication links that comprise the data transfer infrastructure in cellular communication networks operate at frequencies of tens of GHz and are affected by different atmospheric phenomena. These systems are deployed near ground level across the globe, including in developing countries such as India, countries in Africa, etc. Many cellular providers routinely store data regarding the received signal levels in the network for quality assurance needs. Temperature inversions cause atmospheric layering, and change the refractive index of the air when compared to standard conditions. As a result, the ducts that are formed can operate, in essence, as atmospheric wave guides, and cause interference (signal amplification / attenuation) in the microwaves measured by the wireless network. Thus, this network is in effect, an existing system of environmental sensors for monitoring temperature inversions and the episodes of air pollution identified with them. This work presents the novel idea, and demonstrates it, in operation, over several events of air pollution which were detected by a standard cellular communication network during routine operation. Reference: David, N. and Gao, H.O. Using cellular communication networks to detect air pollution, Environmental Science & Technology, 2016 (accepted).

  8. Automated Work Package: Initial Wireless Communication Platform Design, Development, and Evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al Rashdan, Ahmad Yahya Mohammad; Agarwal, Vivek

    The Department of Energy’s Light Water Reactor Sustainability Program is developing the scientific basis to ensure long-term reliability, productivity, safety, and security of the nuclear power industry in the United States. The Instrumentation, Information, and Control (II&C) pathway of the program aims to increase the role of advanced II&C technologies to achieve this objective. One of the pathway efforts at Idaho National Laboratory (INL) is to improve the work packages execution process by replacing the expensive, inefficient, bulky, complex, and error-prone paper-based work orders with automated work packages (AWPs). An AWP is an automated and dynamic presentation of the workmore » package designed to guide the user through the work process. It is loaded on a mobile device, such as a tablet, and is capable of communicating with plant equipment and systems to acquire plant and procedure states. The AWP replaces those functions where a computer is more efficient and reliable than a human. To enable the automatic acquisition of plant data, it is necessary to design and develop a prototype platform for data exchange between the field instruments and the AWP mobile devices. The development of the platform aims to reveal issues and solutions generalizable to large-scale implementation of a similar system. Topics such as bandwidth, robustness, response time, interference, and security are usually associated with wireless communication. These concerns, along with other requirements, are listed in an earlier INL report. Specifically, the targeted issues and performance aspects in this work are relevant to the communication infrastructure from the perspective of promptness, robustness, expandability, and interoperability with different technologies.« less

  9. Design and evaluation of a telemonitoring concept based on NFC-enabled mobile phones and sensor devices.

    PubMed

    Morak, Jürgen; Kumpusch, Hannes; Hayn, Dieter; Modre-Osprian, Robert; Schreier, Günter

    2012-01-01

    Utilization of information and communication technologies such as mobile phones and wireless sensor networks becomes more and more common in the field of telemonitoring for chronic diseases. Providing elderly people with a mobile-phone-based patient terminal requires a barrier-free design of the overall user interface including the setup of wireless communication links to sensor devices. To easily manage the connection between a mobile phone and wireless sensor devices, a concept based on the combination of Bluetooth and near-field communication technology has been developed. It allows us initiating communication between two devices just by bringing them close together for a few seconds without manually configuring the communication link. This concept has been piloted with a sensor device and evaluated in terms of usability and feasibility. Results indicate that this solution has the potential to simplify the handling of wireless sensor networks for people with limited technical skills.

  10. Statewide Cellular Coverage Map

    DOT National Transportation Integrated Search

    2002-02-01

    The role of wireless communications in transportation is becoming increasingly important. Wireless communications are critical for many applications of Intelligent Transportation Systems (ITS) such as Automatic Vehicle Location (AVL) and Automated Co...

  11. LP instrument for "Obstanovka" experiment: use of wireless communication in complex space-borne experiments

    NASA Astrophysics Data System (ADS)

    Kirov, Boian; Batchvarov, Ditchko; Krasteva, Rumiana; Boneva, Ani; Nedkov, Rumen; Klimov, Stanislav; Stainov, Gencho

    The advance of the new wireless communications provides additional opportunities for spaceborne experiments. It is now possible to have one basic instrument collecting information from several sensors without burdensome harnessing among them. Besides, the wireless connection among various elements inside the instrument allows the hardware upgrading to be realized without changing globally the whole instrument. In complex experiments consisting of several instruments, the possibility is provided for continuous communication among the instruments, and for optimal choice of the appropriate mode of operation by the central processor. In the present paper, the LP instrument (electrostatic Langmuir probe) is described - an element of "Obstanovka" experiment designed to operate aboard the International Space Station, emphasizing on the use of wireless communication between the sensors and the main instrument.

  12. Distributed Similarity based Clustering and Compressed Forwarding for wireless sensor networks.

    PubMed

    Arunraja, Muruganantham; Malathi, Veluchamy; Sakthivel, Erulappan

    2015-11-01

    Wireless sensor networks are engaged in various data gathering applications. The major bottleneck in wireless data gathering systems is the finite energy of sensor nodes. By conserving the on board energy, the life span of wireless sensor network can be well extended. Data communication being the dominant energy consuming activity of wireless sensor network, data reduction can serve better in conserving the nodal energy. Spatial and temporal correlation among the sensor data is exploited to reduce the data communications. Data similar cluster formation is an effective way to exploit spatial correlation among the neighboring sensors. By sending only a subset of data and estimate the rest using this subset is the contemporary way of exploiting temporal correlation. In Distributed Similarity based Clustering and Compressed Forwarding for wireless sensor networks, we construct data similar iso-clusters with minimal communication overhead. The intra-cluster communication is reduced using adaptive-normalized least mean squares based dual prediction framework. The cluster head reduces the inter-cluster data payload using a lossless compressive forwarding technique. The proposed work achieves significant data reduction in both the intra-cluster and the inter-cluster communications, with the optimal data accuracy of collected data. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  13. Exponential Arithmetic Based Self-Healing Group Key Distribution Scheme with Backward Secrecy under the Resource-Constrained Wireless Networks

    PubMed Central

    Guo, Hua; Zheng, Yandong; Zhang, Xiyong; Li, Zhoujun

    2016-01-01

    In resource-constrained wireless networks, resources such as storage space and communication bandwidth are limited. To guarantee secure communication in resource-constrained wireless networks, group keys should be distributed to users. The self-healing group key distribution (SGKD) scheme is a promising cryptographic tool, which can be used to distribute and update the group key for the secure group communication over unreliable wireless networks. Among all known SGKD schemes, exponential arithmetic based SGKD (E-SGKD) schemes reduce the storage overhead to constant, thus is suitable for the the resource-constrained wireless networks. In this paper, we provide a new mechanism to achieve E-SGKD schemes with backward secrecy. We first propose a basic E-SGKD scheme based on a known polynomial-based SGKD, where it has optimal storage overhead while having no backward secrecy. To obtain the backward secrecy and reduce the communication overhead, we introduce a novel approach for message broadcasting and self-healing. Compared with other E-SGKD schemes, our new E-SGKD scheme has the optimal storage overhead, high communication efficiency and satisfactory security. The simulation results in Zigbee-based networks show that the proposed scheme is suitable for the resource-restrained wireless networks. Finally, we show the application of our proposed scheme. PMID:27136550

  14. eC3--a modern telecommunications matrix for cervical cancer prevention in Zambia.

    PubMed

    Parham, Groesbeck P; Mwanahamuntu, Mulindi H; Pfaendler, Krista S; Sahasrabuddhe, Vikrant V; Myung, Daniel; Mkumba, Gracilia; Kapambwe, Sharon; Mwanza, Bianca; Chibwesha, Carla; Hicks, Michael L; Stringer, Jeffrey S A

    2010-07-01

    Low physician density, undercapacitated laboratory infrastructures, and limited resources are major limitations to the development and implementation of widely accessible cervical cancer prevention programs in sub-Saharan Africa. We developed a system operated by nonphysician health providers that used widely available and affordable communication technology to create locally adaptable and sustainable public sector cervical cancer prevention program in Zambia, one of the world's poorest countries. Nurses were trained to perform visual inspection with acetic acid aided by digital cervicography using predefined criteria. Electronic digital images (cervigrams) were reviewed with patients, and distance consultation was sought as necessary. Same-visit cryotherapy or referral for further evaluation by a gynecologist was offered. The Zambian system of "electronic cervical cancer control" bypasses many of the historic barriers to the delivery of preventive health care to women in low-resource environments while facilitating monitoring, evaluation, and continued education of primary health care providers, patient education, and medical records documentation. The electronic cervical cancer control system uses appropriate technology to bridge the gap between screening and diagnosis, thereby facilitating the conduct of "screen-and-treat" programs. The inherent flexibility of the system lends itself to the integration with future infrastructures using rapid molecular human papillomavirus-based screening approaches and wireless telemedicine communications.

  15. 77 FR 64446 - Wireless Microphones Proceeding

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-22

    ... FEDERAL COMMUNICATIONS COMMISSION 47 CFR Parts 15, 74, and 90 [WT Docket Nos. 08-166, 08-167, ET Docket No. 10-24; DA 12-1570] Wireless Microphones Proceeding AGENCY: Federal Communications Commission.... [ssquf] Federal Communications Commission's Web site: http://www.fcc.gov/cgb/ecfs2/ . Follow the...

  16. 77 FR 58576 - Certain Wireless Communication Devices, Portable Music and Data Processing Devices, Computers...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-21

    ... Devices, Portable Music and Data Processing Devices, Computers, and Components Thereof; Institution of... communication devices, portable music and data processing devices, computers, and components thereof by reason... certain wireless communication devices, portable music and data processing devices, computers, and...

  17. 47 CFR 1.951 - Duty to respond to official communications.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Wireless Radio Services Applications and Proceedings Application Requirements and Procedures § 1.951 Duty to respond to official communications. Licensees or applicants in the Wireless Radio Services...

  18. 47 CFR 1.951 - Duty to respond to official communications.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Wireless Radio Services Applications and Proceedings Application Requirements and Procedures § 1.951 Duty to respond to official communications. Licensees or applicants in the Wireless Radio Services...

  19. Impact of Various Parameters on the Performance of Inter-aircraft Optical Wireless Communication Link

    NASA Astrophysics Data System (ADS)

    Singh, Mehtab

    2017-12-01

    Optical wireless communication (OWC) systems also known as Free space optics (FSO) are capable of providing high channel bandwidth, high data transmission rates, low power consumption, and high security. OWC links are being considered in different applications such as inter-satellite links, terrestrial links, and inter-aircraft communication links. This paper investigates the impact of different system parameters such as transmission power level, operating wavelength, transmitter pointing error angle, bit transmission rate, atmospheric attenuation, antenna aperture diameter, geometric losses, the responsivity of the photodetector, and link range on the performance of inter-aircraft optical wireless communication link.

  20. Compact mobile-reader system for two-way wireless communication, tracking and status monitoring for transport safety and security

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsai, Han-Chung; Liu, Yung Y.; Lee, Hok L.

    A system for monitoring a plurality radio frequency identification tags is described. The system uses at least one set of radio frequency identification tags. Each tag is attached to a container and includes several sensors for detecting physical conditions of said container. The system includes at least one autonomous intermediate reader in wireless communication with the frequency identification tags. The intermediate reader includes external wireless communication system, intermediate reader logic controller, and a self-contained rechargeable power supply. The system uses a central status reporting system in communication the intermediate reader.

  1. Bluetooth based chaos synchronization using particle swarm optimization and its applications to image encryption.

    PubMed

    Yau, Her-Terng; Hung, Tzu-Hsiang; Hsieh, Chia-Chun

    2012-01-01

    This study used the complex dynamic characteristics of chaotic systems and Bluetooth to explore the topic of wireless chaotic communication secrecy and develop a communication security system. The PID controller for chaos synchronization control was applied, and the optimum parameters of this PID controller were obtained using a Particle Swarm Optimization (PSO) algorithm. Bluetooth was used to realize wireless transmissions, and a chaotic wireless communication security system was developed in the design concept of a chaotic communication security system. The experimental results show that this scheme can be used successfully in image encryption.

  2. Experimental validation of wireless communication with chaos.

    PubMed

    Ren, Hai-Peng; Bai, Chao; Liu, Jian; Baptista, Murilo S; Grebogi, Celso

    2016-08-01

    The constraints of a wireless physical media, such as multi-path propagation and complex ambient noises, prevent information from being communicated at low bit error rate. Surprisingly, it has only recently been shown that, from a theoretical perspective, chaotic signals are optimal for communication. It maximises the receiver signal-to-noise performance, consequently minimizing the bit error rate. This work demonstrates numerically and experimentally that chaotic systems can in fact be used to create a reliable and efficient wireless communication system. Toward this goal, we propose an impulsive control method to generate chaotic wave signals that encode arbitrary binary information signals and an integration logic together with the match filter capable of decreasing the noise effect over a wireless channel. The experimental validation is conducted by inputting the signals generated by an electronic transmitting circuit to an electronic circuit that emulates a wireless channel, where the signals travel along three different paths. The output signal is decoded by an electronic receiver, after passing through a match filter.

  3. Experimental validation of wireless communication with chaos

    NASA Astrophysics Data System (ADS)

    Ren, Hai-Peng; Bai, Chao; Liu, Jian; Baptista, Murilo S.; Grebogi, Celso

    2016-08-01

    The constraints of a wireless physical media, such as multi-path propagation and complex ambient noises, prevent information from being communicated at low bit error rate. Surprisingly, it has only recently been shown that, from a theoretical perspective, chaotic signals are optimal for communication. It maximises the receiver signal-to-noise performance, consequently minimizing the bit error rate. This work demonstrates numerically and experimentally that chaotic systems can in fact be used to create a reliable and efficient wireless communication system. Toward this goal, we propose an impulsive control method to generate chaotic wave signals that encode arbitrary binary information signals and an integration logic together with the match filter capable of decreasing the noise effect over a wireless channel. The experimental validation is conducted by inputting the signals generated by an electronic transmitting circuit to an electronic circuit that emulates a wireless channel, where the signals travel along three different paths. The output signal is decoded by an electronic receiver, after passing through a match filter.

  4. Experimental validation of wireless communication with chaos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Hai-Peng; Bai, Chao; Liu, Jian

    The constraints of a wireless physical media, such as multi-path propagation and complex ambient noises, prevent information from being communicated at low bit error rate. Surprisingly, it has only recently been shown that, from a theoretical perspective, chaotic signals are optimal for communication. It maximises the receiver signal-to-noise performance, consequently minimizing the bit error rate. This work demonstrates numerically and experimentally that chaotic systems can in fact be used to create a reliable and efficient wireless communication system. Toward this goal, we propose an impulsive control method to generate chaotic wave signals that encode arbitrary binary information signals and anmore » integration logic together with the match filter capable of decreasing the noise effect over a wireless channel. The experimental validation is conducted by inputting the signals generated by an electronic transmitting circuit to an electronic circuit that emulates a wireless channel, where the signals travel along three different paths. The output signal is decoded by an electronic receiver, after passing through a match filter.« less

  5. Power Aware Management Middleware for Multiple Radio Interfaces

    NASA Astrophysics Data System (ADS)

    Friedman, Roy; Kogan, Alex

    Modern mobile phones and laptops are equipped with multiple wireless communication interfaces, such as WiFi and Bluetooth (BT), enabling the creation of ad-hoc networks. These interfaces significantly differ from one another in their power requirements, transmission range, bandwidth, etc. For example, BT is an order of magnitude more power efficient than WiFi, but its transmission range is an order of magnitude shorter. This paper introduces a management middleware that establishes a power efficient overlay for such ad-hoc networks, in which most devices can shut down their long range power hungry wireless interface (e.g., WiFi). Yet, the resulting overlay is fully connected, and for capacity and latency needs, no message ever travels more than 2k short range (e.g., BT) hops, where k is an arbitrary parameter. The paper describes the architecture of the solution and the management protocol, as well as a detailed simulations based performance study. The simulations largely validate the ability of the management infrastructure to obtain considerable power savings while keeping the network connected and maintaining reasonable latency. The performance study covers both static and mobile networks.

  6. Innovative Decentralized Decision-Making Enabling Capability on Mobile Edge Devices

    DTIC Science & Technology

    2015-09-01

    feasibility of adapting mobile device infrastructure into a future tactical cloud ecosystem. F. SCOPE The scope of this research is focused on the...critical to mobility : wireless infrastructure , the mobile device itself, and mobile applications” (Office of the Department of Defense Chief Information... Infrastructure to a Cost Effective and Platform Agnostic Environment; 3) Collaborate with DOD and Industry Partners to Develop a Classified Mobile Device

  7. A Long-Distance RF-Powered Sensor Node with Adaptive Power Management for IoT Applications.

    PubMed

    Pizzotti, Matteo; Perilli, Luca; Del Prete, Massimo; Fabbri, Davide; Canegallo, Roberto; Dini, Michele; Masotti, Diego; Costanzo, Alessandra; Franchi Scarselli, Eleonora; Romani, Aldo

    2017-07-28

    We present a self-sustained battery-less multi-sensor platform with RF harvesting capability down to -17 dBm and implementing a standard DASH7 wireless communication interface. The node operates at distances up to 17 m from a 2 W UHF carrier. RF power transfer allows operation when common energy scavenging sources (e.g., sun, heat, etc.) are not available, while the DASH7 communication protocol makes it fully compatible with a standard IoT infrastructure. An optimized energy-harvesting module has been designed, including a rectifying antenna (rectenna) and an integrated nano-power DC/DC converter performing maximum-power-point-tracking (MPPT). A nonlinear/electromagnetic co-design procedure is adopted to design the rectenna, which is optimized to operate at ultra-low power levels. An ultra-low power microcontroller controls on-board sensors and wireless protocol, to adapt the power consumption to the available detected power by changing wake-up policies. As a result, adaptive behavior can be observed in the designed platform, to the extent that the transmission data rate is dynamically determined by RF power. Among the novel features of the system, we highlight the use of nano-power energy harvesting, the implementation of specific hardware/software wake-up policies, optimized algorithms for best sampling rate implementation, and adaptive behavior by the node based on the power received.

  8. A Long-Distance RF-Powered Sensor Node with Adaptive Power Management for IoT Applications

    PubMed Central

    del Prete, Massimo; Fabbri, Davide; Canegallo, Roberto; Dini, Michele; Costanzo, Alessandra

    2017-01-01

    We present a self-sustained battery-less multi-sensor platform with RF harvesting capability down to −17 dBm and implementing a standard DASH7 wireless communication interface. The node operates at distances up to 17 m from a 2 W UHF carrier. RF power transfer allows operation when common energy scavenging sources (e.g., sun, heat, etc.) are not available, while the DASH7 communication protocol makes it fully compatible with a standard IoT infrastructure. An optimized energy-harvesting module has been designed, including a rectifying antenna (rectenna) and an integrated nano-power DC/DC converter performing maximum-power-point-tracking (MPPT). A nonlinear/electromagnetic co-design procedure is adopted to design the rectenna, which is optimized to operate at ultra-low power levels. An ultra-low power microcontroller controls on-board sensors and wireless protocol, to adapt the power consumption to the available detected power by changing wake-up policies. As a result, adaptive behavior can be observed in the designed platform, to the extent that the transmission data rate is dynamically determined by RF power. Among the novel features of the system, we highlight the use of nano-power energy harvesting, the implementation of specific hardware/software wake-up policies, optimized algorithms for best sampling rate implementation, and adaptive behavior by the node based on the power received. PMID:28788084

  9. 77 FR 32033 - Wireless Telecommunications Bureau and Public Safety and Homeland Security Bureau Suspend...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-31

    ... FEDERAL COMMUNICATIONS COMMISSION 47 CFR Parts 22 and 90 [DA 12-643] Wireless Telecommunications... Applications for 470-512 MHz Spectrum AGENCY: Federal Communications Commission. ACTION: Final rule; limited suspension of specific applications. SUMMARY: In this document, the Federal Communications Commission...

  10. 77 FR 52759 - Certain Wireless Communication Devices, Portable Music and Data Processing Devices, Computers and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-30

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-745] Certain Wireless Communication Devices, Portable Music and Data Processing Devices, Computers and Components Thereof; Notice of... communication devices, portable music and data processing devices, computers and components thereof by reason of...

  11. The Challenge of Wireless Reliability and Coexistence.

    PubMed

    Berger, H Stephen

    2016-09-01

    Wireless communication plays an increasingly important role in healthcare delivery. This further heightens the importance of wireless reliability, but quantifying wireless reliability is a complex and difficult challenge. Understanding the risks that accompany the many benefits of wireless communication should be a component of overall risk management. The emerging trend of using sensors and other device-to-device communications, as part of the emerging Internet of Things concept, is evident in healthcare delivery. The trend increases both the importance and complexity of this challenge. As with most system problems, finding a solution requires breaking down the problem into manageable steps. Understanding the operational reliability of a new wireless device and its supporting system requires developing solid, quantified answers to three questions: 1) How well can this new device and its system operate in a spectral environment where many other wireless devices are also operating? 2) What is the spectral environment in which this device and its system are expected to operate? Are the risks and reliability in its operating environment acceptable? 3) How might the new device and its system affect other devices and systems already in use? When operated under an insightful risk management process, wireless technology can be safely implemented, resulting in improved delivery of care.

  12. Wireless communication with implanted medical devices using the conductive properties of the body.

    PubMed

    Ferguson, John E; Redish, A David

    2011-07-01

    Many medical devices that are implanted in the body use wires or wireless radiofrequency telemetry to communicate with circuitry outside the body. However, the wires are a common source of surgical complications, including breakage, infection and electrical noise. In addition, radiofrequency telemetry requires large amounts of power and results in low-efficiency transmission through biological tissue. As an alternative, the conductive properties of the body can be used to enable wireless communication with implanted devices. In this article, several methods of intrabody communication are described and compared. In addition to reducing the complications that occur with current implantable medical devices, intrabody communication can enable novel types of miniature devices for research and clinical applications.

  13. Wireless communication and spectrum sharing for public safety in the United States.

    PubMed

    Kapucu, Naim; Haupt, Brittany; Yuksel, Murat

    2016-01-01

    With the vast number of fragmented, independent public safety wireless communication systems, the United States is encountering major challenges with enhancing interoperability and effectively managing costs while sharing limited availability of critical spectrum. The traditional hierarchical approach of emergency management does not always allow for needed flexibility and is not a mandate. A national system would reduce equipment needs, increase effectiveness, and enrich quality and coordination of response; however, it is dependent on integrating the commercial market. This article discusses components of an ideal national wireless public safety system consists along with key policies in regulating wireless communication and spectrum sharing for public safety and challenges for implementation.

  14. Advanced wireless mobile collaborative sensing network for tactical and strategic missions

    NASA Astrophysics Data System (ADS)

    Xu, Hao

    2017-05-01

    In this paper, an advanced wireless mobile collaborative sensing network will be developed. Through properly combining wireless sensor network, emerging mobile robots and multi-antenna sensing/communication techniques, we could demonstrate superiority of developed sensing network. To be concrete, heterogeneous mobile robots including unmanned aerial vehicle (UAV) and unmanned ground vehicle (UGV) are equipped with multi-model sensors and wireless transceiver antennas. Through real-time collaborative formation control, multiple mobile robots can team the best formation that can provide most accurate sensing results. Also, formatting multiple mobile robots can also construct a multiple-input multiple-output (MIMO) communication system that can provide a reliable and high performance communication network.

  15. Wireless Zigbee strain gage sensor system for structural health monitoring

    NASA Astrophysics Data System (ADS)

    Ide, Hiroshi; Abdi, Frank; Miraj, Rashid; Dang, Chau; Takahashi, Tatsuya; Sauer, Bruce

    2009-05-01

    A compact cell phone size radio frequency (ZigBee) wireless strain measurement sensor system to measure the structural strain deformation was developed. The developed system provides an accurate strain measurement data stream to the Internet for further Diagnostic and Prognostic (DPS) correlation. Existing methods of structural measurement by strain sensors (gauges) do not completely satisfy problems posed by continuous structural health monitoring. The need for efficient health monitoring methods with real-time requirements to bidirectional data flow from sensors and to a commanding device is becoming critical for keeping our daily life safety. The use of full-field strain measurement techniques could reduce costly experimental programs through better understanding of material behavior. Wireless sensor-network technology is a monitoring method that is estimated to grow rapidly providing potential for cost savings over traditional wired sensors. The many of currently available wireless monitoring methods have: the proactive and constant data rate character of the data streams rather than traditional reactive, event-driven data delivery; mostly static node placement on structures with limited number of nodes. Alpha STAR Electronics' wireless sensor network system, ASWN, addresses some of these deficiencies, making the system easier to operate. The ASWN strain measurement system utilizes off-the-shelf sensors, namely strain gauges, with an analog-to-digital converter/amplifier and ZigBee radio chips to keep cost lower. Strain data is captured by the sensor, converted to digital form and delivered to the ZigBee radio chip, which in turn broadcasts the information using wireless protocols to a Personal Data Assistant (PDA) or Laptop/Desktop computers. From here, data is forwarded to remote computers for higher-level analysis and feedback using traditional cellular and satellite communication or the Ethernet infrastructure. This system offers a compact size, lower cost, and temperature insensitivity for critical structural applications, which require immediate monitoring and feedback.

  16. Challenge Study: A Project-Based Learning on a Wireless Communication System at Technical High School

    ERIC Educational Resources Information Center

    Terasawa, Ikuo

    2016-01-01

    The challenge study is a project based learning curriculum at Technical High School aimed at the construction of a wireless communication system. The first period was engineering issues in the construction of an artificial satellite and the second period was a positional locating system based on the general purpose wire-less device--ZigBee device.…

  17. User Needs and Advances in Space Wireless Sensing and Communications

    NASA Technical Reports Server (NTRS)

    Kegege, Obadiah

    2017-01-01

    Decades of space exploration and technology trends for future missions show the need for new approaches in space/planetary sensor networks, observatories, internetworking, and communications/data delivery to Earth. The User Needs to be discussed in this talk includes interviews with several scientists and reviews of mission concepts for the next generation of sensors, observatories, and planetary surface missions. These observatories, sensors are envisioned to operate in extreme environments, with advanced autonomy, whereby sometimes communication to Earth is intermittent and delayed. These sensor nodes require software defined networking capabilities in order to learn and adapt to the environment, collect science data, internetwork, and communicate. Also, some user cases require the level of intelligence to manage network functions (either as a host), mobility, security, and interface data to the physical radio/optical layer. For instance, on a planetary surface, autonomous sensor nodes would create their own ad-hoc network, with some nodes handling communication capabilities between the wireless sensor networks and orbiting relay satellites. A section of this talk will cover the advances in space communication and internetworking to support future space missions. NASA's Space Communications and Navigation (SCaN) program continues to evolve with the development of optical communication, a new vision of the integrated network architecture with more capabilities, and the adoption of CCSDS space internetworking protocols. Advances in wireless communications hardware and electronics have enabled software defined networking (DVB-S2, VCM, ACM, DTN, Ad hoc, etc.) protocols for improved wireless communication and network management. Developing technologies to fulfil these user needs for wireless communications and adoption of standardized communication/internetworking protocols will be a huge benefit to future planetary missions, space observatories, and manned missions to other planets.

  18. Earth Conductivity Estimation from Through-the-Earth Measurements of 94 Coal Mines Using Different Electromagnetic Models

    PubMed Central

    Yan, Lincan; Waynert, Joseph; Sunderman, Carl

    2015-01-01

    Through-the-Earth (TTE) communication systems require minimal infrastructure to operate. Hence, they are assumed to be more survivable and more conventional than other underground mine communications systems. This survivability is a major advantage for TTE systems. In 2006, Congress passed the Mine Improvement and New Emergency Response Act (MINER Act), which requires all underground coal mines to install wireless communications systems. The intent behind this mandate is for trapped miners to be able to communicate with surface personnel after a major accident-hence, the interest in TTE communications. To determine the likelihood of establishing a TTE communication link, it would be ideal to be able to predict the apparent conductivity of the overburden above underground mines. In this paper, all 94 mine TTE measurement data collected by Bureau of Mines in the 1970s and early 1980s, are analyzed for the first time to determine the apparent conductivity of the overburden based on three different models: a homogenous half-space model, a thin sheet model, and an attenuation factor or Q-factor model. A statistical formula is proposed to estimate the apparent earth conductivity for a specific mine based on the TTE modeling results given the mine depth and signal frequency. PMID:26213457

  19. Earth Conductivity Estimation from Through-the-Earth Measurements of 94 Coal Mines Using Different Electromagnetic Models.

    PubMed

    Yan, Lincan; Waynert, Joseph; Sunderman, Carl

    2014-10-01

    Through-the-Earth (TTE) communication systems require minimal infrastructure to operate. Hence, they are assumed to be more survivable and more conventional than other underground mine communications systems. This survivability is a major advantage for TTE systems. In 2006, Congress passed the Mine Improvement and New Emergency Response Act (MINER Act), which requires all underground coal mines to install wireless communications systems. The intent behind this mandate is for trapped miners to be able to communicate with surface personnel after a major accident-hence, the interest in TTE communications. To determine the likelihood of establishing a TTE communication link, it would be ideal to be able to predict the apparent conductivity of the overburden above underground mines. In this paper, all 94 mine TTE measurement data collected by Bureau of Mines in the 1970s and early 1980s, are analyzed for the first time to determine the apparent conductivity of the overburden based on three different models: a homogenous half-space model, a thin sheet model, and an attenuation factor or Q-factor model. A statistical formula is proposed to estimate the apparent earth conductivity for a specific mine based on the TTE modeling results given the mine depth and signal frequency.

  20. Test Plan of the Anticipatory Wirelss Sensor Network for the Critical Energy Infrastructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlos Rentel

    2006-09-01

    The test plan for the performance of the Anticipatory Wireless Sensor Network (A-WSN) is presented. The results of the test campaigns will be obtained after actual measurements are taken in the field with the Wireless Sensor Network developed by The Innovation Center-Eaton Corp., and the Anticipatory algorithms developed by ORNL.

  1. Self-powered wireless sensor networks for telemedicine applications

    NASA Astrophysics Data System (ADS)

    Polk, Todd William

    Technology advances in wireless sensor networks have made it possible for these tiny systems to enter the realm of ubiquitous or pervasive computing which has been forecast for several years. These nodes, or motes as they are known, typically run off of battery power and when used sparingly can operate in excess of one year. When requirements necessitate higher usage, battery monitoring and replacement becomes a major issue. Large systems can quickly become cost prohibitive. To combat this issue, researchers have looked to energy harvesting to power these motes. However, this research has mainly centered on outdoor solar harvesting to take advantage of higher energy levels provided by the sun. Indoor harvesting has been presented in the past as not feasible. In this dissertation, we present a system that utilizes energy harvested from overhead fluorescent lights to power the infrastructure (routing) nodes of an indoor telemedicine based wireless network. The limitations of indoor harvesting are exploited and leveraged through creative hardware design. A unique message routing protocol has been developed to control these routing nodes and allow continual operation. Standard medical devices have been interfaced to the system to allow wireless transmission of patient data to a central collection point where the data is organized, stored and presented to the user via a graphical user interface (GUI). The range of the system has been extended by interfacing a cellular modem to the system to allow two-way communication between the GUI and a remote healthcare provider. Extensive physical testing has been done to determine the robustness of the system, and the boundary conditions for extremely large networks were tested via simulation.

  2. Spin nano–oscillator–based wireless communication

    PubMed Central

    Choi, Hyun Seok; Kang, Sun Yool; Cho, Seong Jun; Oh, Inn-Yeal; Shin, Mincheol; Park, Hyuncheol; Jang, Chaun; Min, Byoung-Chul; Kim, Sang-Il; Park, Seung-Young; Park, Chul Soon

    2014-01-01

    Spin–torque nano–oscillators (STNOs) have outstanding advantages of a high degree of compactness, high–frequency tunability, and good compatibility with the standard complementary metal–oxide–semiconductor process, which offer prospects for future wireless communication. There have as yet been no reports on wireless communication using STNOs, since the STNOs also have notable disadvantages such as lower output power and poorer spectral purity in comparison with those of LC voltage–controlled oscillators. Here we show that wireless communication is achieved by a proper choice of modulation scheme despite these drawbacks of STNOs. By adopting direct binary amplitude shift keying modulation and non–coherent demodulation, we demonstrate STNO–based wireless communication with 200–kbps data rate at a distance of 1 m between transmitter and receiver. It is shown, from the analysis of STNO noise, that the maximum data rate can be extended up to 1.48 Gbps with 1–ns turn–on time. For the fabricated STNO, the maximum data rate is 5 Mbps which is limited by the rise time measured in the total system. The result will provide a viable route to real microwave application of STNOs. PMID:24976064

  3. Network Coding Opportunities for Wireless Grids Formed by Mobile Devices

    NASA Astrophysics Data System (ADS)

    Nielsen, Karsten Fyhn; Madsen, Tatiana K.; Fitzek, Frank H. P.

    Wireless grids have potential in sharing communication, computa-tional and storage resources making these networks more powerful, more robust, and less cost intensive. However, to enjoy the benefits of cooperative resource sharing, a number of issues should be addressed and the cost of the wireless link should be taken into account. We focus on the question how nodes can efficiently communicate and distribute data in a wireless grid. We show the potential of a network coding approach when nodes have the possibility to combine packets thus increasing the amount of information per transmission. Our implementation demonstrates the feasibility of network coding for wireless grids formed by mobile devices.

  4. Research of the key technology in satellite communication networks

    NASA Astrophysics Data System (ADS)

    Zeng, Yuan

    2018-02-01

    According to the prediction, in the next 10 years the wireless data traffic will be increased by 500-1000 times. Not only the wireless data traffic will be increased exponentially, and the demand for diversified traffic will be increased. Higher requirements for future mobile wireless communication system had brought huge market space for satellite communication system. At the same time, the space information networks had been greatly developed with the depth of human exploration of space activities, the development of space application, the expansion of military and civilian application. The core of spatial information networks is the satellite communication. The dissertation presented the communication system architecture, the communication protocol, the routing strategy, switch scheduling algorithm and the handoff strategy based on the satellite communication system. We built the simulation platform of the LEO satellites networks and simulated the key technology using OPNET.

  5. Technology of short-distance wireless communication and its application based on equipment support

    NASA Astrophysics Data System (ADS)

    Yu, Yang; Zheng, Liping; Zhu, Jianjie; Cao, Yingxiu; Hu, Bei

    2018-04-01

    This paper briefly introduces some common short-region wireless communication technologies, comprehensively compares the application characteristics of each technology, and summarizes the application prospect of these technologies in equipment support.

  6. Managing healthcare information using short message service (SMS) in wireless broadband networks

    NASA Astrophysics Data System (ADS)

    Documet, Jorge; Tsao, Sinchai; Documet, Luis; Liu, Brent J.; Zhou, Zheng; Joseph, Anika O.

    2007-03-01

    Due to the ubiquity of cell phones, SMS (Short Message Service) has become an ideal means to wirelessly manage a Healthcare environment and in particular PACS (Picture Archival and Communications System) data. SMS is a flexible and mobile method for real-time access and control of Healthcare information systems such as HIS (Hospital Information System) or PACS. Unlike conventional wireless access methods, SMS' mobility is not limited by the presence of a WiFi network or any other localized signal. It provides a simple, reliable yet flexible method to communicate with an information system. In addition, SMS services are widely available for low costs from cellular phone service providers and allows for more mobility than other services such as wireless internet. This paper aims to describe a use case of SMS as a means of remotely communicating with a PACS server. Remote access to a PACS server and its Query-Retrieve services allows for a more convenient, flexible and streamlined radiology workflow. Wireless access methods such as SMS will increase dedicated PACS workstation availability for more specialized DICOM (Digital Imaging and Communications in Medicine) workflow management. This implementation will address potential security, performance and cost issues of applying SMS as part of a healthcare information management system. This is in an effort to design a wireless communication system with optimal mobility and flexibility at minimum material and time costs.

  7. Broadband and High power Reactive Jamming Resilient Wireless Communication

    DTIC Science & Technology

    2017-10-21

    Broadband and High -power Reactive Jamming Resilient Wireless Communication The views, opinions and/or findings contained in this report are those of... available in extremely hostile environments, where FHSS and DSSS are completely defeated by a broadband and high -power reactive jammer. b. Wireless...SECURITY CLASSIFICATION OF: 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 13. SUPPLEMENTARY NOTES 12. DISTRIBUTION AVAILIBILITY STATEMENT 6. AUTHORS

  8. Optical wireless communication in data centers

    NASA Astrophysics Data System (ADS)

    Arnon, Shlomi

    2018-01-01

    In the last decade data centers have become a crucial element in modern human society. However, to keep pace with internet data rate growth, new technologies supporting data center should develop. Integration of optical wireless communication (OWC) in data centers is one of the proposed technologies as augmented technology to the fiber network. One implementation of the OWC technology is deployment of optical wireless transceiver on top of the existing cable/fiber network as extension to the top of rack (TOR) switch; in this way, a dynamic and flexible network is created. Optical wireless communication could reduce energy consumption, increase the data rate, reduce the communication latency, increase flexibility and scalability, and reduce maintenance time and cost, in comparison to extra fiber network deployment. In this paper we review up to date literature in the field, propose an implementation scheme of OWC network, discuss ways to reduce energy consumption by parallel link communication and report preliminary measurement result of university data center environment.

  9. On a simulation study of cyber attacks on vehicle-to-infrastructure communication (V2I) in Intelligent Transportation System (ITS)

    NASA Astrophysics Data System (ADS)

    Ekedebe, Nnanna; Yu, Wei; Song, Houbing; Lu, Chao

    2015-05-01

    An intelligent transportation system (ITS) is one typical cyber-physical system (CPS) that aims to provide efficient, effective, reliable, and safe driving experiences with minimal congestion and effective traffic flow management. In order to achieve these goals, various ITS technologies need to work synergistically. Nonetheless, ITS's reliance on wireless connectivity makes it vulnerable to cyber threats. Thus, it is critical to understand the impact of cyber threats on ITS. In this paper, using real-world transportation dataset, we evaluated the consequences of cyber threats - attacks against service availability by jamming the communication channel of ITS. In this way, we can have a better understanding of the importance of ensuring adequate security respecting safety and life-critical ITS applications before full and expensive real-world deployments. Our experimental data shows that cyber threats against service availability could adversely affect traffic efficiency and safety performances evidenced by exacerbated travel time, fuel consumed, and other evaluated performance metrics as the communication network is compromised. Finally, we discuss a framework to make ITS secure and more resilient against cyber threats.

  10. Fundamental Technology Development for Gas-Turbine Engine Health Management

    NASA Technical Reports Server (NTRS)

    Mercer, Carolyn R.; Simon, Donald L.; Hunter, Gary W.; Arnold, Steven M.; Reveley, Mary S.; Anderson, Lynn M.

    2007-01-01

    Integrated vehicle health management technologies promise to dramatically improve the safety of commercial aircraft by reducing system and component failures as causal and contributing factors in aircraft accidents. To realize this promise, fundamental technology development is needed to produce reliable health management components. These components include diagnostic and prognostic algorithms, physics-based and data-driven lifing and failure models, sensors, and a sensor infrastructure including wireless communications, power scavenging, and electronics. In addition, system assessment methods are needed to effectively prioritize development efforts. Development work is needed throughout the vehicle, but particular challenges are presented by the hot, rotating environment of the propulsion system. This presentation describes current work in the field of health management technologies for propulsion systems for commercial aviation.

  11. Teledesic Global Wireless Broadband Network: Space Infrastructure Architecture, Design Features and Technologies

    NASA Technical Reports Server (NTRS)

    Stuart, James R.

    1995-01-01

    The Teledesic satellites are a new class of small satellites which demonstrate the important commercial benefits of using technologies developed for other purposes by U.S. National Laboratories. The Teledesic satellite architecture, subsystem design features, and new technologies are described. The new Teledesic satellite manufacturing, integration, and test approaches which use modern high volume production techniques and result in surprisingly low space segment costs are discussed. The constellation control and management features and attendant software architecture features are addressed. After briefly discussing the economic and technological impact on the USA commercial space industries of the space communications revolution and such large constellation projects, the paper concludes with observations on the trend toward future system architectures using networked groups of much smaller satellites.

  12. Wireless Computers: Radio and Light Communications May Bring New Freedom to Computing.

    ERIC Educational Resources Information Center

    Hartmann, Thom

    1984-01-01

    Describes systems which use wireless terminals to communicate with mainframe computers or minicomputers via radio band, discusses their limitations, and gives examples of networks using such systems. The use of communications satellites to increase their range and the possibility of using light beams to transmit data are also discussed. (MBR)

  13. 75 FR 68619 - In the Matter of Certain Wireless Communication Devices, Portable Music and Data Processing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-08

    ... Communication Devices, Portable Music and Data Processing Devices, Computers and Components Thereof; Notice of... within the United States after importation of certain wireless communication devices, portable music and... music and data processing devices, computers and components thereof that infringe one or more of claim...

  14. A hybrid MAC protocol design for energy-efficient very-high-throughput millimeter wave, wireless sensor communication networks

    NASA Astrophysics Data System (ADS)

    Jian, Wei; Estevez, Claudio; Chowdhury, Arshad; Jia, Zhensheng; Wang, Jianxin; Yu, Jianguo; Chang, Gee-Kung

    2010-12-01

    This paper presents an energy-efficient Medium Access Control (MAC) protocol for very-high-throughput millimeter-wave (mm-wave) wireless sensor communication networks (VHT-MSCNs) based on hybrid multiple access techniques of frequency division multiplexing access (FDMA) and time division multiplexing access (TDMA). An energy-efficient Superframe for wireless sensor communication network employing directional mm-wave wireless access technologies is proposed for systems that require very high throughput, such as high definition video signals, for sensing, processing, transmitting, and actuating functions. Energy consumption modeling for each network element and comparisons among various multi-access technologies in term of power and MAC layer operations are investigated for evaluating the energy-efficient improvement of proposed MAC protocol.

  15. Towards secure quantum key distribution protocol for wireless LANs: a hybrid approach

    NASA Astrophysics Data System (ADS)

    Naik, R. Lalu; Reddy, P. Chenna

    2015-12-01

    The primary goals of security such as authentication, confidentiality, integrity and non-repudiation in communication networks can be achieved with secure key distribution. Quantum mechanisms are highly secure means of distributing secret keys as they are unconditionally secure. Quantum key distribution protocols can effectively prevent various attacks in the quantum channel, while classical cryptography is efficient in authentication and verification of secret keys. By combining both quantum cryptography and classical cryptography, security of communications over networks can be leveraged. Hwang, Lee and Li exploited the merits of both cryptographic paradigms for provably secure communications to prevent replay, man-in-the-middle, and passive attacks. In this paper, we propose a new scheme with the combination of quantum cryptography and classical cryptography for 802.11i wireless LANs. Since quantum cryptography is premature in wireless networks, our work is a significant step forward toward securing communications in wireless networks. Our scheme is known as hybrid quantum key distribution protocol. Our analytical results revealed that the proposed scheme is provably secure for wireless networks.

  16. Performance evaluation of reactive and proactive routing protocol in IEEE 802.11 ad hoc network

    NASA Astrophysics Data System (ADS)

    Hamma, Salima; Cizeron, Eddy; Issaka, Hafiz; Guédon, Jean-Pierre

    2006-10-01

    Wireless technology based on the IEEE 802.11 standard is widely deployed. This technology is used to support multiple types of communication services (data, voice, image) with different QoS requirements. MANET (Mobile Adhoc NETwork) does not require a fixed infrastructure. Mobile nodes communicate through multihop paths. The wireless communication medium has variable and unpredictable characteristics. Furthermore, node mobility creates a continuously changing communication topology in which paths break and new one form dynamically. The routing table of each router in an adhoc network must be kept up-to-date. MANET uses Distance Vector or Link State algorithms which insure that the route to every host is always known. However, this approach must take into account the adhoc networks specific characteristics: dynamic topologies, limited bandwidth, energy constraints, limited physical security, ... Two main routing protocols categories are studied in this paper: proactive protocols (e.g. Optimised Link State Routing - OLSR) and reactive protocols (e.g. Ad hoc On Demand Distance Vector - AODV, Dynamic Source Routing - DSR). The proactive protocols are based on periodic exchanges that update the routing tables to all possible destinations, even if no traffic goes through. The reactive protocols are based on on-demand route discoveries that update routing tables only for the destination that has traffic going through. The present paper focuses on study and performance evaluation of these categories using NS2 simulations. We have considered qualitative and quantitative criteria. The first one concerns distributed operation, loop-freedom, security, sleep period operation. The second are used to assess performance of different routing protocols presented in this paper. We can list end-to-end data delay, jitter, packet delivery ratio, routing load, activity distribution. Comparative study will be presented with number of networking context consideration and the results show the appropriate routing protocol for two kinds of communication services (data and voice).

  17. Capacity on wireless quantum cellular communication system

    NASA Astrophysics Data System (ADS)

    Zhou, Xiang-Zhen; Yu, Xu-Tao; Zhang, Zai-Chen

    2018-03-01

    Quantum technology is making excellent prospects in future communication networks. Entanglement generation and purification are two major components in quantum networks. Combining these two techniques with classical cellular mobile communication, we proposed a novel wireless quantum cellular(WQC) communication system which is possible to realize commercial mobile quantum communication. In this paper, the architecture and network topology of WQC communication system are discussed, the mathematical model of WQC system is extracted and the serving capacity, indicating the ability to serve customers, is defined and calculated under certain circumstances.

  18. Multi-carrier transmission for hybrid radio frequency with optical wireless communications

    NASA Astrophysics Data System (ADS)

    Wang, Gang; Chen, Genshe; Shen, Dan; Pham, Khanh; Blasch, Erik; Nguyen, Tien M.

    2015-05-01

    Radio frequency (RF) wireless communication is reaching its capacity to support large data rate transmissions due to hardware constraints (e.g., silicon processes), software strategies (e.g., information theory), and consumer desire for timely large file exchanges (e.g., big data and mobile cloud computing). A high transmission rate performance must keep pace with the generated huge volumes of data for real-time processing. Integrated RF and optical wireless communications (RF/OWC) could be the next generation transmission technology to satisfy both the increased data rate exchange and the communications constraints. However, with the promising benefits of RF/OWC, challenges remain to fully develop hybrid RF with wireless optical communications such as uniform waveform design for information transmission and detection. In this paper, an orthogonal frequency division multiplexing (OFDM) transmission scheme, which widely employed in RF communications, is developed for optical communications. The traditional high peak-to-average power ratio (PAPR) in OFDM is reduced to improve system performance. The proposed multi-carrier waveform is evaluated with a frequency-selective fading channel. The results demonstrate that bit error rate (BER) performance of our proposed optical OFDM transmission technique outperforms the traditional OWC on-off keying (OOK) transmission scheme.

  19. 47 CFR 1.915 - General application requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... all Wireless Radio Services, station licenses, as defined in section 308(a) of the Communications Act... 1.915 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL PRACTICE AND PROCEDURE Wireless Radio Services Applications and Proceedings Application Requirements and Procedures § 1.915 General...

  20. 47 CFR 1.915 - General application requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... all Wireless Radio Services, station licenses, as defined in section 308(a) of the Communications Act... 1.915 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL PRACTICE AND PROCEDURE Wireless Radio Services Applications and Proceedings Application Requirements and Procedures § 1.915 General...

  1. Unattended Ground Sensors for Expeditionary Force 21 Intelligence Collections

    DTIC Science & Technology

    2015-06-01

    tamper. 55  Size: 3 ½ x 3 ½ x 1 ¾ inches.  Wireless RF networked communications.  Built in seismic, acoustic , magnetic, and PIR sensors ...Marine Corps VHF Very High Frequency WSN Wireless Sensor Network xvi THIS PAGE INTENTIONALLY LEFT BLANK xvii ACKNOWLEDGMENTS I want...that allow digital wireless RF communications from each sensor interfaced into a variety of network architectures to relay critical data to a final

  2. Two-way wireless-over-fibre and FSO-over-fibre communication systems with an optical carrier transmission

    NASA Astrophysics Data System (ADS)

    Huang, Xu-Hong; Lu, Hai-Han; Donati, Silvano; Li, Chung-Yi; Wang, Yun-Chieh; Jheng, Yu-Bo; Chang, Jen-Chieh

    2018-07-01

    Two-way wireless-over-fiber and free-space optical (FSO)-over-fiber communication systems, with an optical carrier transmission for a hybrid 10 Gbps baseband data stream, are proposed and practically demonstrated. 10 Gbps/50 GHz and 10 Gbps/100 GHz millimeter-wave data signal transmissions are also proposed and practically demonstrated. An optical carrier with a 10 Gbps baseband data stream is delivered via a 50 km single-mode fiber transportation to effectively lower dispersion-induced limitation due to fiber links and distortion produced by beating among multiple optical sidebands. To our understanding, this experiment is foremost in employing an optical carrier transmission approach to a two-way wireless-over-fiber and FSO-over-fiber communication system to suppress fiber dispersion and distortion effectively. Bit error rate performs well for downlink and uplink deliveries via a 50 km single-mode fiber transportation with a 100 m FSO link/5 m RF wireless delivery. The offered two-way wireless-over-fiber and FSO-over-fiber communication system with an optical carrier transmission is a promising option. It should be interesting for signifying the progress in the integration of long-haul fiber-based trunks and short-range RF/optical wireless link-based branches.

  3. A Review of Wireless Sensor Technologies and Applications in Agriculture and Food Industry: State of the Art and Current Trends

    PubMed Central

    Ruiz-Garcia, Luis; Lunadei, Loredana; Barreiro, Pilar; Robla, Jose Ignacio

    2009-01-01

    The aim of the present paper is to review the technical and scientific state of the art of wireless sensor technologies and standards for wireless communications in the Agri-Food sector. These technologies are very promising in several fields such as environmental monitoring, precision agriculture, cold chain control or traceability. The paper focuses on WSN (Wireless Sensor Networks) and RFID (Radio Frequency Identification), presenting the different systems available, recent developments and examples of applications, including ZigBee based WSN and passive, semi-passive and active RFID. Future trends of wireless communications in agriculture and food industry are also discussed. PMID:22408551

  4. The Coverage Problem in Video-Based Wireless Sensor Networks: A Survey

    PubMed Central

    Costa, Daniel G.; Guedes, Luiz Affonso

    2010-01-01

    Wireless sensor networks typically consist of a great number of tiny low-cost electronic devices with limited sensing and computing capabilities which cooperatively communicate to collect some kind of information from an area of interest. When wireless nodes of such networks are equipped with a low-power camera, visual data can be retrieved, facilitating a new set of novel applications. The nature of video-based wireless sensor networks demands new algorithms and solutions, since traditional wireless sensor networks approaches are not feasible or even efficient for that specialized communication scenario. The coverage problem is a crucial issue of wireless sensor networks, requiring specific solutions when video-based sensors are employed. In this paper, it is surveyed the state of the art of this particular issue, regarding strategies, algorithms and general computational solutions. Open research areas are also discussed, envisaging promising investigation considering coverage in video-based wireless sensor networks. PMID:22163651

  5. [Wireless human body communication technology].

    PubMed

    Sun, Lei; Zhang, Xiaojuan

    2014-12-01

    The Wireless Body Area Network (WBAN) is a key part of the wearable monitoring technologies, which has many communication technologies to choose from, like Bluetooth, ZigBee, Ultra Wideband, and Wireless Human Body Communication (WHBC). As for the WHBC developed in recent years, it is worthy to be further studied. The WHBC has a strong momentum of growth and a natural advantage in the formation of WBAN. In this paper, we first briefly describe the technical background of WHBC, then introduce theoretical model of human-channel communication and digital transmission machine based on human channel. And finally we analyze various of the interference of the WHBC and show the AFH (Adaptive Frequency Hopping) technology which can effectively deal with the interference.

  6. An underwater optical wireless communication network

    NASA Astrophysics Data System (ADS)

    Arnon, Shlomi

    2009-08-01

    The growing need for underwater observation and sub-sea monitoring systems has stimulated considerable interest in advancing the enabling technologies of underwater wireless communication and underwater sensor networks. This communication technology is expected to play an important role in investigating climate change, in monitoring biological, bio-geochemical, evolutionary and ecological changes in the sea, ocean and lake environments and in helping to control and maintain oil production facilities and harbors using unmanned underwater vehicles (UUVs), submarines, ships, buoys, and divers. However, the present technology of underwater acoustic communication cannot provide the high data rate required to investigate and monitor these environments and facilities. Optical wireless communication has been proposed as the best alternative to meet this challenge. We present models of three kinds of optical wireless communication links a) a line-of-sight link, b) a modulating retro-reflector link and c) a reflective link, all of which can provide the required data rate. We analyze the link performance based on these models. From the analysis, it is clear that as the water absorption increases, the communication performance decreases dramatically for the three link types. However, by using the scattered lighted it was possible to mitigate this decrease in some cases. We conclude from the analysis that a high data rate underwater optical wireless network is a feasible solution for emerging applications such as UUV to UUV links and networks of sensors, and extended ranges in these applications could be achieved by applying a multi-hop concept.

  7. Underwater optical wireless communication network

    NASA Astrophysics Data System (ADS)

    Arnon, Shlomi

    2010-01-01

    The growing need for underwater observation and subsea monitoring systems has stimulated considerable interest in advancing the enabling technologies of underwater wireless communication and underwater sensor networks. This communication technology is expected to play an important role in investigating climate change, in monitoring biological, biogeochemical, evolutionary, and ecological changes in the sea, ocean, and lake environments, and in helping to control and maintain oil production facilities and harbors using unmanned underwater vehicles (UUVs), submarines, ships, buoys, and divers. However, the present technology of underwater acoustic communication cannot provide the high data rate required to investigate and monitor these environments and facilities. Optical wireless communication has been proposed as the best alternative to meet this challenge. Models are presented for three kinds of optical wireless communication links: (a) a line-of-sight link, (b) a modulating retroreflector link, and (c) a reflective link, all of which can provide the required data rate. We analyze the link performance based on these models. From the analysis, it is clear that as the water absorption increases, the communication performance decreases dramatically for the three link types. However, by using the scattered light it was possible to mitigate this decrease in some cases. It is concluded from the analysis that a high-data-rate underwater optical wireless network is a feasible solution for emerging applications such as UUV-to-UUV links and networks of sensors, and extended ranges in these applications could be achieved by applying a multi-hop concept.

  8. Selection of bi-level image compression method for reduction of communication energy in wireless visual sensor networks

    NASA Astrophysics Data System (ADS)

    Khursheed, Khursheed; Imran, Muhammad; Ahmad, Naeem; O'Nils, Mattias

    2012-06-01

    Wireless Visual Sensor Network (WVSN) is an emerging field which combines image sensor, on board computation unit, communication component and energy source. Compared to the traditional wireless sensor network, which operates on one dimensional data, such as temperature, pressure values etc., WVSN operates on two dimensional data (images) which requires higher processing power and communication bandwidth. Normally, WVSNs are deployed in areas where installation of wired solutions is not feasible. The energy budget in these networks is limited to the batteries, because of the wireless nature of the application. Due to the limited availability of energy, the processing at Visual Sensor Nodes (VSN) and communication from VSN to server should consume as low energy as possible. Transmission of raw images wirelessly consumes a lot of energy and requires higher communication bandwidth. Data compression methods reduce data efficiently and hence will be effective in reducing communication cost in WVSN. In this paper, we have compared the compression efficiency and complexity of six well known bi-level image compression methods. The focus is to determine the compression algorithms which can efficiently compress bi-level images and their computational complexity is suitable for computational platform used in WVSNs. These results can be used as a road map for selection of compression methods for different sets of constraints in WVSN.

  9. Robust Networking Architecture and Secure Communication Scheme for Heterogeneous Wireless Sensor Networks

    ERIC Educational Resources Information Center

    McNeal, McKenzie, III.

    2012-01-01

    Current networking architectures and communication protocols used for Wireless Sensor Networks (WSNs) have been designed to be energy efficient, low latency, and long network lifetime. One major issue that must be addressed is the security in data communication. Due to the limited capabilities of low cost and small sized sensor nodes, designing…

  10. Peer Coaching with Interactive Wireless Technology between Student Teachers: Satisfaction with Role and Communication

    ERIC Educational Resources Information Center

    Fry, Joan Marian; Hin, Michael Koh Teik

    2006-01-01

    In technology-savvy Singapore, wireless communication devices were used over four weekly lessons to facilitate communication between pairs of student teachers (STs). In the naturalistic setting of a neighbourhood primary school, one ST used the technology to coach the other who was engaged in teaching. (Both were familiar with the lesson plan and…

  11. Energy scavenging system by acoustic wave and integrated wireless communication

    NASA Astrophysics Data System (ADS)

    Kim, Albert

    The purpose of the project was developing an energy-scavenging device for other bio implantable devices. Researchers and scientist have studied energy scavenging method because of the limitation of traditional power source, especially for bio-implantable devices. In this research, piezoelectric power generator that activates by acoustic wave, or music was developed. Follow by power generator, a wireless communication also integrated with the device for monitoring the power generation. The Lead Zirconate Titanate (PZT) bimorph cantilever with a proof mass at the free end tip was studied to convert acoustic wave to power. The music or acoustic wave played through a speaker to vibrate piezoelectric power generator. The LC circuit integrated with the piezoelectric material for purpose of wireless monitoring power generation. However, wireless monitoring can be used as wireless power transmission, which means the signal received via wireless communication also can be used for power for other devices. Size of 74 by 7 by 7cm device could generate and transmit 100mVp from 70 mm distance away with electrical resonant frequency at 420.2 kHz..

  12. Underwater fiber-wireless communication with a passive front end

    NASA Astrophysics Data System (ADS)

    Xu, Jing; Sun, Bin; Lyu, Weichao; Kong, Meiwei; Sarwar, Rohail; Han, Jun; Zhang, Wei; Deng, Ning

    2017-11-01

    We propose and experimentally demonstrate a novel concept on underwater fiber-wireless (Fi-Wi) communication system with a fully passive wireless front end. A low-cost step-index (SI) plastic optical fiber (POF) together with a passive collimating lens at the front end composes the underwater Fi-Wi architecture. We have achieved a 1.71-Gb/s transmission at a mean BER of 4.97 × 10-3 (1.30 × 10-3 when using power loading) over a 50-m SI-POF and 2-m underwater wireless channel using orthogonal frequency division multiplexing (OFDM). Although the wireless part is very short, it actually plays a crucial role in practical underwater implementation, especially in deep sea. Compared with the wired solution (e.g. using a 52-m POF cable without the UWOC part), the proposed underwater Fi-Wi scheme can save optical wet-mate connectors that are sophisticated, very expensive and difficult to install in deep ocean. By combining high-capacity robust POF with the mobility and ubiquity of underwater wireless optical communication (UWOC), the proposed underwater Fi-Wi technology will find wide application in ocean exploration.

  13. Application of the dynamically allocated virtual clustering management system to emulated tactical network experimentation

    NASA Astrophysics Data System (ADS)

    Marcus, Kelvin

    2014-06-01

    The U.S Army Research Laboratory (ARL) has built a "Network Science Research Lab" to support research that aims to improve their ability to analyze, predict, design, and govern complex systems that interweave the social/cognitive, information, and communication network genres. Researchers at ARL and the Network Science Collaborative Technology Alliance (NS-CTA), a collaborative research alliance funded by ARL, conducted experimentation to determine if automated network monitoring tools and task-aware agents deployed within an emulated tactical wireless network could potentially increase the retrieval of relevant data from heterogeneous distributed information nodes. ARL and NS-CTA required the capability to perform this experimentation over clusters of heterogeneous nodes with emulated wireless tactical networks where each node could contain different operating systems, application sets, and physical hardware attributes. Researchers utilized the Dynamically Allocated Virtual Clustering Management System (DAVC) to address each of the infrastructure support requirements necessary in conducting their experimentation. The DAVC is an experimentation infrastructure that provides the means to dynamically create, deploy, and manage virtual clusters of heterogeneous nodes within a cloud computing environment based upon resource utilization such as CPU load, available RAM and hard disk space. The DAVC uses 802.1Q Virtual LANs (VLANs) to prevent experimentation crosstalk and to allow for complex private networks. Clusters created by the DAVC system can be utilized for software development, experimentation, and integration with existing hardware and software. The goal of this paper is to explore how ARL and the NS-CTA leveraged the DAVC to create, deploy and manage multiple experimentation clusters to support their experimentation goals.

  14. Evaluation of peak-free electromechanical piezo-impedance and electromagnetic contact sensing using metamaterial surface plasmons for load monitoring

    NASA Astrophysics Data System (ADS)

    Gopal Madhav Annamdas, Venu; Kiong Soh, Chee

    2017-01-01

    Continuous structural health monitoring (SHM) and delayed SHM techniques can be contact/ contactless, surface bonded/embedded, wired/wireless and active/passive actuator-sensor systems which transfer the recorded condition of the structure to the base station almost instantaneously or with time delay respectively. The time between fatal crack initiation and its propagation leading to the collapse of key infrastructures such as aerospace, nuclear facilities, oil and gas is mostly short. Timely discovery of structural problem depends heavily on the scanning period in well-established techniques like piezoelectric (PZT) based electromechanical impedance (EMI) technique. This often takes much scanning time due to the acquisition of resonant structural peaks at all frequencies in the considered bandwidth; thus poses a challenge for its implementation in practice. On the other hand, recently developed strain sensors based on metamaterials and their breeds such as nested split-ring resonators, localized surface plasmons (LSP), etc, employ measurement of reflected or transmitted signal, with super-fast scanning in the order of at most 1/100th of the time taken by the EMI technique. This paper articulates faster measurements by reducing unnecessary resonant structural peaks and focusing on rapid monitoring using PZT and metamaterial plasmons. Our research adopted wired PZT and wireless LSP communications with impedance analyser and vector network analyser respectively. We present integrated and complementary nature of these techniques, which can be processed rapidly for key infrastructures with great effectiveness. This integration can result in both continuous and delayed SHM techniques based on time or frequency or both domains.

  15. Roadside-based communication system and method

    NASA Technical Reports Server (NTRS)

    Bachelder, Aaron D. (Inventor)

    2007-01-01

    A roadside-based communication system providing backup communication between emergency mobile units and emergency command centers. In the event of failure of a primary communication, the mobile units transmit wireless messages to nearby roadside controllers that may take the form of intersection controllers. The intersection controllers receive the wireless messages, convert the messages into standard digital streams, and transmit the digital streams along a citywide network to a destination intersection or command center.

  16. Applications of Time-Reversal Processing for Planetary Surface Communications

    NASA Technical Reports Server (NTRS)

    Barton, Richard J.

    2007-01-01

    Due to the power constraints imposed on wireless sensor and communication networks deployed on a planetary surface during exploration, energy efficient transfer of data becomes a critical issue. In situations where groups of nodes within a network are located in relatively close proximity, cooperative communication techniques can be utilized to improve the range, data rate, power efficiency, and lifetime of the network. In particular, if the point-to-point communication channels on the network are well modeled as frequency non-selective, distributed or cooperative beamforming can employed. For frequency-selective channels, beamforming itself is not generally appropriate, but a natural generalization of it, time-reversal communication (TRC), can still be effective. Time-reversal processing has been proposed and studied previously for other applications, including acoustical imaging, electromagnetic imaging, underwater acoustic communication, and wireless communication channels. In this paper, we study both the theoretical advantages and the experimental performance of cooperative TRC for wireless communication on planetary surfaces. We give a brief introduction to TRC and present several scenarios where TRC could be profitably employed during planetary exploration. We also present simulation results illustrating the performance of cooperative TRC employed in a complex multipath environment and discuss the optimality of cooperative TRC for data aggregation in wireless sensor networks

  17. Wireless mesh networks.

    PubMed

    Wang, Xinheng

    2008-01-01

    Wireless telemedicine using GSM and GPRS technologies can only provide low bandwidth connections, which makes it difficult to transmit images and video. Satellite or 3G wireless transmission provides greater bandwidth, but the running costs are high. Wireless networks (WLANs) appear promising, since they can supply high bandwidth at low cost. However, the WLAN technology has limitations, such as coverage. A new wireless networking technology named the wireless mesh network (WMN) overcomes some of the limitations of the WLAN. A WMN combines the characteristics of both a WLAN and ad hoc networks, thus forming an intelligent, large scale and broadband wireless network. These features are attractive for telemedicine and telecare because of the ability to provide data, voice and video communications over a large area. One successful wireless telemedicine project which uses wireless mesh technology is the Emergency Room Link (ER-LINK) in Tucson, Arizona, USA. There are three key characteristics of a WMN: self-organization, including self-management and self-healing; dynamic changes in network topology; and scalability. What we may now see is a shift from mobile communication and satellite systems for wireless telemedicine to the use of wireless networks based on mesh technology, since the latter are very attractive in terms of cost, reliability and speed.

  18. Hyperspectral range imaging for transportation systems evaluation

    NASA Astrophysics Data System (ADS)

    Bridgelall, Raj; Rafert, J. B.; Atwood, Don; Tolliver, Denver D.

    2016-04-01

    Transportation agencies expend significant resources to inspect critical infrastructure such as roadways, railways, and pipelines. Regular inspections identify important defects and generate data to forecast maintenance needs. However, cost and practical limitations prevent the scaling of current inspection methods beyond relatively small portions of the network. Consequently, existing approaches fail to discover many high-risk defect formations. Remote sensing techniques offer the potential for more rapid and extensive non-destructive evaluations of the multimodal transportation infrastructure. However, optical occlusions and limitations in the spatial resolution of typical airborne and space-borne platforms limit their applicability. This research proposes hyperspectral image classification to isolate transportation infrastructure targets for high-resolution photogrammetric analysis. A plenoptic swarm of unmanned aircraft systems will capture images with centimeter-scale spatial resolution, large swaths, and polarization diversity. The light field solution will incorporate structure-from-motion techniques to reconstruct three-dimensional details of the isolated targets from sequences of two-dimensional images. A comparative analysis of existing low-power wireless communications standards suggests an application dependent tradeoff in selecting the best-suited link to coordinate swarming operations. This study further produced a taxonomy of specific roadway and railway defects, distress symptoms, and other anomalies that the proposed plenoptic swarm sensing system would identify and characterize to estimate risk levels.

  19. Lunar Surface Propagation Modeling and Effects on Communications

    NASA Technical Reports Server (NTRS)

    Hwu, Shian U.; Upanavage, Matthew; Sham, Catherine C.

    2008-01-01

    This paper analyzes the lunar terrain effects on the signal propagation of the planned NASA lunar wireless communication and sensor systems. It is observed that the propagation characteristics are significantly affected by the presence of the lunar terrain. The obtained results indicate that the terrain geometry, antenna location, and lunar surface material are important factors determining the propagation characteristics of the lunar wireless communication systems. The path loss can be much more severe than the free space propagation and is greatly affected by the antenna height, operating frequency, and surface material. The analysis results from this paper are important for the lunar communication link margin analysis in determining the limits on the reliable communication range and radio frequency coverage performance at planned lunar base worksites. Key Words lunar, multipath, path loss, propagation, wireless.

  20. Evaluation of communication in wireless underground sensor networks

    NASA Astrophysics Data System (ADS)

    Yu, X. Q.; Zhang, Z. L.; Han, W. T.

    2017-06-01

    Wireless underground sensor networks (WUSN) are an emerging area of research that promises to provide communication capabilities to buried sensors. In this paper, experimental measurements have been conducted with commodity sensor motes at the frequency of 2.4GHz and 433 MHz, respectively. Experiments are run to examine the received signal strength of correctly received packets and the packet error rate for a communication link. The tests show the potential feasibility of the WUSN with the use of powerful RF transceivers at 433MHz frequency. Moreover, we also illustrate a classification for wireless underground sensor network communication. Finally, we conclude that the effects of burial depth, inter-node distance and volumetric water content of the soil on the signal strength and packet error rate in communication of WUSN.

  1. Transparent graphene microstrip filters for wireless communications

    NASA Astrophysics Data System (ADS)

    Wang, Jinchen; Guan, Yifei; Yu, Hua; Li, Na; Wang, Shuopei; Shen, Cheng; Dai, Zhijiang; Gan, Decheng; Yang, Rong; He, Songbai; Zhang, Guangyu

    2017-08-01

    A microstrip is an indispensable component for wireless communication circuits. With the development of 5G technology, optically transparent microstrip filters urgently need to be developed. In this work, we have theoretically and experimentally demonstrated the immense potential of graphene microstrips for transparent wireless communication circuits in the 5G era. Both wideband and dual-band transparent graphene microstrip filters have shown more than 80% optical transmissivity in the region from 250 nm to 2000 nm with good frequency responses. S and C band microwave signals can transmit along the graphene microstrip lines effectively while coupling excitations produce relatively large insertion losses. Our results show that transparent microstrips designed with high-quality graphene will largely scale down the size of the wireless devices and thus play an irreplaceable role in the 5G era.

  2. Wireless avionics for space applications of fundamental physics

    NASA Astrophysics Data System (ADS)

    Wang, Linna; Zeng, Guiming

    2016-07-01

    Fundamental physics (FP) research in space relies on a strong support of spacecraft. New types of spacecraft including reusable launch vehicles, reentry space vehicles, long-term on-orbit spacecraft or other new type of spacecraft will pave the way for FP missions. In order to test FP theories in space, flight conditions have to be controlled to a very high precision, data collection and handling abilities have to be improved, real-time and reliable communications in critical environments are needed. These challenge the existing avionics of spacecraft. Avionics consists of guidance, navigation & control, TT&C, the vehicle management, etc. Wireless avionics is one of the enabling technologies to address the challenges. Reasons are expatiated of why it is of great advantage. This paper analyses the demands for wireless avionics by reviewing the FP missions and on-board wireless systems worldwide. Main types of wireless communication are presented. Preliminary system structure of wireless avionics are given. The characteristics of wireless network protocols and wireless sensors are introduced. Key technologies and design considerations for wireless avionics in space applications are discussed.

  3. 76 FR 11781 - Wireless Telecommunications Bureau Seeks Comment on Petition for Declaratory Ruling Asking To...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-03

    ... FEDERAL COMMUNICATIONS COMMISSION [WT Docket No. 11-35; DA 11-353] Wireless Telecommunications... Wireless Telecommunications Bureau seeks comment on a December 3, 2010 petition for declaratory ruling (Petition) filed by CTIA-The Wireless Association (Petitioners). The Petitioners ask the Federal...

  4. Information Assurance in Wireless Networks

    NASA Astrophysics Data System (ADS)

    Kabara, Joseph; Krishnamurthy, Prashant; Tipper, David

    2001-09-01

    Emerging wireless networks will contain a hybrid infrastructure based on fixed, mobile and ad hoc topologies and technologies. In such a dynamic architecture, we define information assurance as the provisions for both information security and information availability. The implications of this definition are that the wireless network architecture must (a) provide sufficient security measures, (b) be survivable under node or link attack or failure and (c) be designed such that sufficient capacity remains for all critical services (and preferably most other services) in the event of attack or component failure. We have begun a research project to investigate the provision of information assurance for wireless networks viz. survivability, security and availability and here discuss the issues and challenges therein.

  5. New paradigms in telemedicine: ambient intelligence, wearable, pervasive and personalized.

    PubMed

    Rubel, Paul; Fayn, Jocelyne; Simon-Chautemps, Lucas; Atoui, Hussein; Ohlsson, Mattias; Telisson, David; Adami, Stefano; Arod, Sébastien; Forlini, Marie Claire; Malossi, Cesare; Placide, Joël; Ziliani, Gian Luca; Assanelli, Deodato; Chevalier, Philippe

    2004-01-01

    After decades of development of information systems dedicated to health professionals, there is an increasing demand for personalized and non-hospital based care. An especially critical domain is cardiology: almost two third of cardiac deaths occur out of hospital, and victims do not survive long enough to benefit from in-hospital treatments. We need to reduce the time before treatment. But symptoms are often interpreted wrongly. The only immediate diagnostic tool to assess the possibility of a cardiac event is the electrocardiogram (ECG). Event and transtelephonic ECG recorders are used to improve decision making but require setting up new infrastructures. The European EPI-MEDICS project has developed an intelligent Personal ECG Monitor (PEM) for the early detection of cardiac events. The PEM embeds advanced decision making techniques, generates different alarm levels and forwards alarm messages to the relevant care providers by means of new generation wireless communication. It is cost saving, involving care provider only if necessary and requiring no specific infrastructure. This solution is a typical example of pervasive computing and ambient intelligence that demonstrates how personalized, wearable, ubiquitous devices could improve healthcare.

  6. Evaluation of Communication Alternatives for Intelligent Transportation Systems

    DOT National Transportation Integrated Search

    2010-08-31

    The primary focus of this study involved developing a process for the evaluation of wireless technologies : for intelligent transportation systems, and for conducting experiments of potential wireless technologies : and topologies. Two wireless techn...

  7. 47 CFR 1.9005 - Included services.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... following services, which include Wireless Radio Services in which commercial or private licensees hold...) The broadband Personal Communications Service (part 24 of this chapter); (h) The Broadband Radio...) The Wireless Communications Service in the 698-746 MHz band (part 27 of this chapter); (k) The...

  8. 77 FR 21996 - Certain Equipment for Communications Networks, Including Switches, Routers, Gateways, Bridges...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-12

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-778] Certain Equipment for Communications Networks, Including Switches, Routers, Gateways, Bridges, Wireless Access Points, Cable Modems, IP Phones... networks, including switches, routers, gateways, bridges, wireless access points, cable modems, IP phones...

  9. 47 CFR 27.1307 - Spectrum use in the network.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ....1307 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES 700 MHz Public/Private Partnership § 27.1307 Spectrum use in the network. (a) Spectrum use. The shared wireless broadband network developed by the 700 MHz Public/Private...

  10. eC3—A Modern Telecommunications Matrix for Cervical Cancer Prevention in Zambia

    PubMed Central

    Parham, Groesbeck P.; Mwanahamuntu, Mulindi H.; Pfaendler, Krista S.; Sahasrabuddhe, Vikrant V.; Myung, Daniel; Mkumba, Gracilia; Kapambwe, Sharon; Mwanza, Bianca; Chibwesha, Carla; Hicks, Michael L.; Stringer, Jeffrey S.A.

    2013-01-01

    Objectives Low physician density, undercapacitated laboratory infrastructures, and limited resources are major limitations to the development and implementation of widely accessible cervical cancer prevention programs in sub-Saharan Africa. Materials and Methods We developed a system operated by nonphysician health providers that used widely available and affordable communication technology to create locally adaptable and sustainable public sector cervical cancer prevention program in Zambia, one of the world’s poorest countries. Results Nurses were trained to perform visual inspection with acetic acid aided by digital cervicography using predefined criteria. Electronic digital images (cervigrams) were reviewed with patients, and distance consultation was sought as necessary. Same-visit cryotherapy or referral for further evaluation by a gynecologist was offered. The Zambian system of “electronic cervical cancer control” bypasses many of the historic barriers to the delivery of preventive health care to women in low-resource environments while facilitating monitoring, evaluation, and continued education of primary health care providers, patient education, and medical records documentation. Conclusions The electronic cervical cancer control system uses appropriate technology to bridge the gap between screening and diagnosis, thereby facilitating the conduct of “screen-and-treat” programs. The inherent flexibility of the system lends itself to the integration with future infrastructures using rapid molecular human papillomavirus–based screening approaches and wireless telemedicine communications. PMID:20592550

  11. Efficient Management of Certificate Revocation Lists in Smart Grid Advanced Metering Infrastructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cebe, Mumin; Akkaya, Kemal

    Advanced Metering Infrastructure (AMI) forms a communication network for the collection of power data from smart meters in Smart Grid. As the communication within an AMI needs to be secure, key management becomes an issue due to overhead and limited resources. While using public-keys eliminate some of the overhead of key management, there is still challenges regarding certificates that store and certify the publickeys. In particular, distribution and storage of certificate revocation list (CRL) is major a challenge due to cost of distribution and storage in AMI networks which typically consist of wireless multi-hop networks. Motivated by the need ofmore » keeping the CRL distribution and storage cost effective and scalable, in this paper, we present a distributed CRL management model utilizing the idea of distributed hash trees (DHTs) from peer-to-peer (P2P) networks. The basic idea is to share the burden of storage of CRLs among all the smart meters by exploiting the meshing capability of the smart meters among each other. Thus, using DHTs not only reduces the space requirements for CRLs but also makes the CRL updates more convenient. We implemented this structure on ns-3 using IEEE 802.11s mesh standard as a model for AMI and demonstrated its superior performance with respect to traditional methods of CRL management through extensive simulations.« less

  12. Terabit Wireless Communication Challenges

    NASA Technical Reports Server (NTRS)

    Hwu, Shian U.

    2012-01-01

    This presentation briefly discusses a research effort on Terabit Wireless communication systems for possible space applications. Recently, terahertz (THz) technology (300-3000 GHz frequency) has attracted a great deal of interest from academia and industry. This is due to a number of interesting features of THz waves, including the nearly unlimited bandwidths available, and the non-ionizing radiation nature which does not damage human tissues and DNA with minimum health threat. Also, as millimeter-wave communication systems mature, the focus of research is, naturally, moving to the THz range. Many scientists regard THz as the last great frontier of the electromagnetic spectrum, but finding new applications outside the traditional niches of radio astronomy, Earth and planetary remote sensing, and molecular spectroscopy particularly in biomedical imaging and wireless communications has been relatively slow. Radiologists find this area of study so attractive because t-rays are non-ionizing, which suggests no harm is done to tissue or DNA. They also offer the possibility of performing spectroscopic measurements over a very wide frequency range, and can even capture signatures from liquids and solids. According to Shannon theory, the broad bandwidth of the THz frequency bands can be used for terabit-per-second (Tb/s) wireless communication systems. This enables several new applications, such as cell phones with 360 degrees autostereoscopic displays, optic-fiber replacement, and wireless Tb/s file transferring. Although THz technology could satisfy the demand for an extremely high data rate, a number of technical challenges need to be overcome before its development. This presentation provides an overview the state-of-the- art in THz wireless communication and the technical challenges for an emerging application in Terabit wireless systems. The main issue for THz wave propagation is the high atmospheric attenuation, which is dominated by water vapor absorption in the THz frequency band. The technical challenges in design such a system and the techniques to overcome the challenges will be discussed in this presentation.

  13. Modeling of Radiowave Propagation in a Forested Environment

    DTIC Science & Technology

    2014-09-01

    is unlimited 12b. DISTRIBUTION CODE 13. ABSTRACT (maximum 200 words) Propagation models used in wireless communication system design play an...domains. Applications in both domains require communication devices and sensors to be operated in forested environments. Various methods have been...wireless communication system design play an important role in overall link performance. Propagation models in a forested environment, in particular

  14. Wireless communication link for capsule endoscope at 600 MHz.

    PubMed

    Khaleghi, A; Balasingham, I

    2015-01-01

    Simulation of a wireless communication link for a capsule endoscopy is presented for monitoring of small intestine in humans. The realized communication link includes the transmitting capsule antenna, the outside body receiving antenna and the model of the human body. The capsule antenna is designed for operating at the frequency band of 600 MHz with an impedance bandwidth of 10 MHz and omnidirectional radiation pattern. The quality of the communication link is improved by using directive antenna outside body inside matching layer for electromagnetic wave tuning to the body. The outside body antenna has circular polarization that guaranteeing the communication link for different orientations of the capsule inside intestine. It is shown that the path loss for the capsule in 60 mm from the abdomen surface varies between 37-47 dB in relation to the antenna orientation. This link can establish high data rate wireless communications for capsule endoscopy.

  15. Study and design on USB wireless laser communication system

    NASA Astrophysics Data System (ADS)

    Wang, Aihua; Zheng, Jiansheng; Ai, Yong

    2004-04-01

    We give the definition of USB wireless laser communication system (WLCS) and the brief introduction to the protocol of USB, the standard of hardware is also given. The paper analyses the hardware and software of USB WLCS. Wireless laser communication part and USB interface circuit part are discussed in detail. We also give the periphery design of the chip AN2131Q, the control circuit to realize the transformation from parallel port to serial bus, and the circuit of laser sending and receiving of laser communication part, which are simply, cheap and workable. And then the four part of software are analyzed as followed. We have consummated the ISR in the firmware frame to develop the periphery device of USB. We have debugged and consummated the 'ezload,' and the GPD of the drivers. Windows application performs functions and schedules the corresponding API functions to let the interface practical and beautiful. The system can realize USB wireless laser communication between computers, which distance is farther than 50 meters, and top speed can be bigger than 8 Mbps. The system is of great practical sense to resolve the issues of high-speed communication among increasing districts without fiber trunk network.

  16. Intelligent self-organization methods for wireless ad hoc sensor networks based on limited resources

    NASA Astrophysics Data System (ADS)

    Hortos, William S.

    2006-05-01

    A wireless ad hoc sensor network (WSN) is a configuration for area surveillance that affords rapid, flexible deployment in arbitrary threat environments. There is no infrastructure support and sensor nodes communicate with each other only when they are in transmission range. To a greater degree than the terminals found in mobile ad hoc networks (MANETs) for communications, sensor nodes are resource-constrained, with limited computational processing, bandwidth, memory, and power, and are typically unattended once in operation. Consequently, the level of information exchange among nodes, to support any complex adaptive algorithms to establish network connectivity and optimize throughput, not only deplete those limited resources and creates high overhead in narrowband communications, but also increase network vulnerability to eavesdropping by malicious nodes. Cooperation among nodes, critical to the mission of sensor networks, can thus be disrupted by the inappropriate choice of the method for self-organization. Recent published contributions to the self-configuration of ad hoc sensor networks, e.g., self-organizing mapping and swarm intelligence techniques, have been based on the adaptive control of the cross-layer interactions found in MANET protocols to achieve one or more performance objectives: connectivity, intrusion resistance, power control, throughput, and delay. However, few studies have examined the performance of these algorithms when implemented with the limited resources of WSNs. In this paper, self-organization algorithms for the initiation, operation and maintenance of a network topology from a collection of wireless sensor nodes are proposed that improve the performance metrics significant to WSNs. The intelligent algorithm approach emphasizes low computational complexity, energy efficiency and robust adaptation to change, allowing distributed implementation with the actual limited resources of the cooperative nodes of the network. Extensions of the algorithms from flat topologies to two-tier hierarchies of sensor nodes are presented. Results from a few simulations of the proposed algorithms are compared to the published results of other approaches to sensor network self-organization in common scenarios. The estimated network lifetime and extent under static resource allocations are computed.

  17. Entanglement routers via a wireless quantum network based on arbitrary two qubit systems

    NASA Astrophysics Data System (ADS)

    Metwally, N.

    2014-12-01

    A wireless quantum network is generated between multi-hops, where each hop consists of two entangled nodes. These nodes share a finite number of entangled two-qubit systems randomly. Different types of wireless quantum bridges (WQBS) are generated between the non-connected nodes. The efficiency of these WQBS to be used as quantum channels between its terminals to perform quantum teleportation is investigated. We suggest a theoretical wireless quantum communication protocol to teleport unknown quantum signals from one node to another, where the more powerful WQBS are used as quantum channels. It is shown that, by increasing the efficiency of the sources that emit the initial partial entangled states, one can increase the efficiency of the wireless quantum communication protocol.

  18. Wireless Local Area Networks: The Next Evolutionary Step.

    ERIC Educational Resources Information Center

    Wodarz, Nan

    2001-01-01

    The Institute of Electrical and Electronics Engineers recently approved a high-speed wireless standard that enables devices from different manufacturers to communicate through a common backbone, making wireless local area networks more feasible in schools. Schools can now use wireless access points and network cards to provide flexible…

  19. 47 CFR 1.1102 - Schedule of charges for applications and other filings in the wireless telecommunications services.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... filings in the wireless telecommunications services. 1.1102 Section 1.1102 Telecommunication FEDERAL... wireless telecommunications services. Those services designated with an asterisk in the payment type code... manual filings and/or payment for these services to the: Federal Communications Commission, Wireless...

  20. 47 CFR 1.1102 - Schedule of charges for applications and other filings in the wireless telecommunications services.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... filings in the wireless telecommunications services. 1.1102 Section 1.1102 Telecommunication FEDERAL... wireless telecommunications services. Those services designated with an asterisk in the payment type code... manual filings and/or payment for these services to the: Federal Communications Commission, Wireless...

  1. 47 CFR 1.1102 - Schedule of charges for applications and other filings in the wireless telecommunications services.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... filings in the wireless telecommunications services. 1.1102 Section 1.1102 Telecommunication FEDERAL... § 1.1102 Schedule of charges for applications and other filings in the wireless telecommunications... for these services to the: Federal Communications Commission, Wireless Bureau Applications, P.O. Box...

  2. 75 FR 56533 - Wireless Telecommunications Bureau Postpones Auction of 218-219 MHz Service and Phase II 220 MHz...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-16

    ... FEDERAL COMMUNICATIONS COMMISSION [AU Docket No. 10-107; DA 10-1630] Wireless Telecommunications... Auction 89. FOR FURTHER INFORMATION CONTACT: Wireless Telecommunications Bureau, Auctions and Spectrum... by the Chief, Wireless Telecommunications Bureau pursuant to authority delegated by 47 CFR 0.131...

  3. Distributed Estimation, Coding, and Scheduling in Wireless Visual Sensor Networks

    ERIC Educational Resources Information Center

    Yu, Chao

    2013-01-01

    In this thesis, we consider estimation, coding, and sensor scheduling for energy efficient operation of wireless visual sensor networks (VSN), which consist of battery-powered wireless sensors with sensing (imaging), computation, and communication capabilities. The competing requirements for applications of these wireless sensor networks (WSN)…

  4. Performance evaluation of complete data transfer of physical layer according to IEEE 802.15.4 standard

    NASA Astrophysics Data System (ADS)

    Raju, Kota Solomon; Merugu, Naresh Babu; Neetu, Babu, E. Ram

    2016-03-01

    ZigBee is well-accepted industrial standard for wireless sensor networks based on IEEE 802.15.4 standard. Wireless Sensor Networks is the major concern of communication these days. These Wireless Sensor Networks investigate the properties of networks of small battery-powered sensors with wireless communication. The communication between any two wireless nodes of wireless sensor networks is carried out through a protocol stack. This protocol stack has been designed by different vendors in various ways. Every custom vendor possesses his own protocol stack and algorithms especially at the MAC layer. But, many applications require modifications in their algorithms at various layers as per their requirements, especially energy efficient protocols at MAC layer that are simulated in Wireless sensor Network Simulators which are not being tested in real time systems because vendors do not allow the programmability of each layer in their protocol stack. This problem can be quoted as Vendor-Interoperability. The solution is to develop the programmable protocol stack where we can design our own application as required. As a part of the task first we tried implementing physical layer and transmission of data using physical layer. This paper describes about the transmission of the total number of bytes of Frame according to the IEEE 802.15.4 standard using Physical Layer.

  5. Integrated wireless sensor network and real time smart controlling and monitoring system for efficient energy management in standalone photovoltaic systems

    NASA Astrophysics Data System (ADS)

    Abou-Elnour, Ali; Thabt, A.; Helmy, S.; Kashf, Y.; Hadad, Y.; Tarique, M.; Abo-Elnor, Ossama

    2014-04-01

    In the present work, wireless sensor network and smart real-time controlling and monitoring system are integrated for efficient energy management of standalone photovoltaic system. The proposed system has two main components namely the monitoring and controlling system and the wireless communication system. LabView software has been used in the implementation of the monitoring and controlling system. On the other hand, ZigBee wireless modules have been used to implement the wireless system. The main functions of monitoring and controlling unit is to efficiently control the energy consumption form the photovoltaic system based on accurate determination of the periods of times at which the loads are required to be operated. The wireless communication system send the data from the monitoring and controlling unit to the loads at which desired switching operations are performed. The wireless communication system also continuously feeds the monitoring and controlling unit with updated input data from the sensors and from the photovoltaic module send to calculate and record the generated, the consumed, and the stored energy to apply load switching saving schemes if necessary. It has to be mentioned that our proposed system is a low cost and low power system because and it is flexible to be upgraded to fulfill additional users' requirements.

  6. Wireless Crew Communication Feasibility Assessment

    NASA Technical Reports Server (NTRS)

    Archer, Ronald D.; Romero, Andy; Juge, David

    2016-01-01

    Ongoing discussions with crew currently onboard the ISS as well as the crew debriefs from completed ISS missions indicate that issues associated with the lack of wireless crew communication results in increased crew task completion times and lower productivity, creates cable management issues, and increases crew frustration.

  7. 78 FR 61203 - Aviation Services

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-03

    ... 4, 2013. FOR FURTHER INFORMATION CONTACT: Tim Maguire, Mobility Division, Wireless... uses the SBA small business size standard for the category Wireless Telecommunications Carriers (except... wireless communications equipment manufacturers. The Census Bureau defines this category as follows: ``This...

  8. Commercial wireless technologies for public safety users

    DOT National Transportation Integrated Search

    2000-07-01

    This report on commercial wireless for public safety addresses the issues associated with the use of commercial services for public safety. It then reviews available wireless services for wide area data services: cellular, personal communication and ...

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hagen Schempf; Daphne D'Zurko

    Under funding from the Department of Energy (DOE) and the Northeast Gas Association (NGA), Carnegie Mellon University (CMU) developed an untethered, wireless remote controlled inspection robot dubbed Explorer. The project entailed the design and prototyping of a wireless self-powered video-inspection robot capable of accessing live 6- and 8-inch diameter cast-iron and steel mains, while traversing turns and Ts and elbows under real-time control with live video feedback to an operator. The design is that of a segmented actively articulated and wheel-leg powered robot design, with fisheye imaging capability and self-powered battery storage and wireless real-time communication link. The prototype wasmore » functionally tested in an above ground pipe-network, in order to debug all mechanical, electrical and software subsystems, and develop the necessary deployment and retrieval, as well as obstacle-handling scripts. A pressurized natural gas test-section was used to certify it for operation in natural gas at up to 60 psig. Two subsequent live-main field-trials in both cast-iron and steel pipe, demonstrated its ability to be safely launched, operated and retrieved under real-world conditions. The system's ability to safely and repeatably exidrecover from angled and vertical launchers, traverse multi-thousand foot long pipe-sections, make T and varied-angle elbow-turns while wirelessly sending live video and handling command and control messages, was clearly demonstrated. Video-inspection was clearly shown to be a viable tool to understand the state of this critical buried infrastructure, irrespective of low- (cast-iron) or high-pressure (steel) conditions. This report covers the different aspects of specifications, requirements, design, prototyping, integration and testing and field-trialing of the Explorer platform.« less

  10. A Reliable Wireless Control System for Tomato Hydroponics

    PubMed Central

    Ibayashi, Hirofumi; Kaneda, Yukimasa; Imahara, Jungo; Oishi, Naoki; Kuroda, Masahiro; Mineno, Hiroshi

    2016-01-01

    Agricultural systems using advanced information and communication (ICT) technology can produce high-quality crops in a stable environment while decreasing the need for manual labor. The system collects a wide variety of environmental data and provides the precise cultivation control needed to produce high value-added crops; however, there are the problems of packet transmission errors in wireless sensor networks or system failure due to having the equipment in a hot and humid environment. In this paper, we propose a reliable wireless control system for hydroponic tomato cultivation using the 400 MHz wireless band and the IEEE 802.15.6 standard. The 400 MHz band, which is lower than the 2.4 GHz band, has good obstacle diffraction, and zero-data-loss communication is realized using the guaranteed time-slot method supported by the IEEE 802.15.6 standard. In addition, this system has fault tolerance and a self-healing function to recover from faults such as packet transmission failures due to deterioration of the wireless communication quality. In our basic experiments, the 400 MHz band wireless communication was not affected by the plants’ growth, and the packet error rate was less than that of the 2.4 GHz band. In summary, we achieved a real-time hydroponic liquid supply control with no data loss by applying a 400 MHz band WSN to hydroponic tomato cultivation. PMID:27164105

  11. A Reliable Wireless Control System for Tomato Hydroponics.

    PubMed

    Ibayashi, Hirofumi; Kaneda, Yukimasa; Imahara, Jungo; Oishi, Naoki; Kuroda, Masahiro; Mineno, Hiroshi

    2016-05-05

    Agricultural systems using advanced information and communication (ICT) technology can produce high-quality crops in a stable environment while decreasing the need for manual labor. The system collects a wide variety of environmental data and provides the precise cultivation control needed to produce high value-added crops; however, there are the problems of packet transmission errors in wireless sensor networks or system failure due to having the equipment in a hot and humid environment. In this paper, we propose a reliable wireless control system for hydroponic tomato cultivation using the 400 MHz wireless band and the IEEE 802.15.6 standard. The 400 MHz band, which is lower than the 2.4 GHz band, has good obstacle diffraction, and zero-data-loss communication is realized using the guaranteed time-slot method supported by the IEEE 802.15.6 standard. In addition, this system has fault tolerance and a self-healing function to recover from faults such as packet transmission failures due to deterioration of the wireless communication quality. In our basic experiments, the 400 MHz band wireless communication was not affected by the plants' growth, and the packet error rate was less than that of the 2.4 GHz band. In summary, we achieved a real-time hydroponic liquid supply control with no data loss by applying a 400 MHz band WSN to hydroponic tomato cultivation.

  12. A Survey on Simultaneous Wireless Information and Power Transfer

    NASA Astrophysics Data System (ADS)

    Perera, T. D. P.; Jayakody, D. N. K.; De, S.; Ivanov, M. A.

    2017-01-01

    This paper presents a comprehensive study related to simultaneous wireless information and power transfer (SWIPT) in different types of wireless communication setups. Harvesting energy using SWIPT is an appealing solution in the context of extending battery life of wireless devices for a fully sustainable communication system. Strong signal power increases power transfer, but also causes more interference in information transfer, causing realization of the SWIPT challenging problem. This article provides an overview of technical evolution of SWIPT. A survey and qualitative comparison of the existing SWIPT schemes is provided to demonstrate their limitations in the current and 5G networks. Open challenges are emphasized and guidelines are provided to adapt the existing schemes in order to overcome these limitations and make them fit for integrating with the modern and emerging next generation communication networks, such as 5G systems.

  13. New Applications for the Testing and Visualization of Wireless Networks

    NASA Technical Reports Server (NTRS)

    Griffin, Robert I.; Cauley, Michael A.; Pleva, Michael A.; Seibert, Marc A.; Lopez, Isaac

    2005-01-01

    Traditional techniques for examining wireless networks use physical link characteristics such as Signal-to-Noise (SNR) ratios to assess the performance of wireless networks. Such measurements may not be reliable indicators of available bandwidth. This work describes two new software applications developed at NASA Glenn Research Center for the investigation of wireless networks. GPSIPerf combines measurements of Transmission Control Protocol (TCP) throughput with Global Positioning System (GPS) coordinates to give users a map of wireless bandwidth for outdoor environments where a wireless infrastructure has been deployed. GPSIPerfView combines the data provided by GPSIPerf with high-resolution digital elevation maps (DEM) to help users visualize and assess the impact of elevation features on wireless networks in a given sample area. These applications were used to examine TCP throughput in several wireless network configurations at desert field sites near Hanksville, Utah during May of 2004. Use of GPSIPerf and GPSIPerfView provides a geographically referenced picture of the extent and deterioration of TCP throughput in tested wireless network configurations. GPSIPerf results from field-testing in Utah suggest that it can be useful in assessing other wireless network architectures, and may be useful to future human-robotic exploration missions.

  14. Efficiently sphere-decodable physical layer transmission schemes for wireless storage networks

    NASA Astrophysics Data System (ADS)

    Lu, Hsiao-Feng Francis; Barreal, Amaro; Karpuk, David; Hollanti, Camilla

    2016-12-01

    Three transmission schemes over a new type of multiple-access channel (MAC) model with inter-source communication links are proposed and investigated in this paper. This new channel model is well motivated by, e.g., wireless distributed storage networks, where communication to repair a lost node takes place from helper nodes to a repairing node over a wireless channel. Since in many wireless networks nodes can come and go in an arbitrary manner, there must be an inherent capability of inter-node communication between every pair of nodes. Assuming that communication is possible between every pair of helper nodes, the newly proposed schemes are based on various smart time-sharing and relaying strategies. In other words, certain helper nodes will be regarded as relays, thereby converting the conventional uncooperative multiple-access channel to a multiple-access relay channel (MARC). The diversity-multiplexing gain tradeoff (DMT) of the system together with efficient sphere-decodability and low structural complexity in terms of the number of antennas required at each end is used as the main design objectives. While the optimal DMT for the new channel model is fully open, it is shown that the proposed schemes outperform the DMT of the simple time-sharing protocol and, in some cases, even the optimal uncooperative MAC DMT. While using a wireless distributed storage network as a motivating example throughout the paper, the MAC transmission techniques proposed here are completely general and as such applicable to any MAC communication with inter-source communication links.

  15. NASA Bluetooth Wireless Communications

    NASA Technical Reports Server (NTRS)

    Miller, Robert D.

    2007-01-01

    NASA has been interested in wireless communications for many years, especially when the crew size of the International Space Station (ISS) was reduced to two members. NASA began a study to find ways to improve crew efficiency to make sure the ISS could be maintained with limited crew capacity and still be a valuable research testbed in Low-Earth Orbit (LEO). Currently the ISS audio system requires astronauts to be tethered to the audio system, specifically a device called the Audio Terminal Unit (ATU). Wireless communications would remove the tether and allow astronauts to freely float from experiment to experiment without having to worry about moving and reconnecting the associated cabling or finding the space equivalent of an extension cord. A wireless communication system would also improve safety and reduce system susceptibility to Electromagnetic Interference (EMI). Safety would be improved because a crewmember could quickly escape a fire while maintaining communications with the ground and other crewmembers at any location. In addition, it would allow the crew to overcome the volume limitations of the ISS ATU. This is especially important to the Portable Breathing Apparatus (PBA). The next generation of space vehicles and habitats also demand wireless attention. Orion will carry up to six crewmembers in a relatively small cabin. Yet, wireless could become a driving factor to reduce launch weight and increase habitable volume. Six crewmembers, each tethered to a panel, could result in a wiring mess even in nominal operations. In addition to Orion, research is being conducted to determine if Bluetooth is appropriate for Lunar Habitat applications.

  16. Usage of Wireless Sensor Networks in a service based spatial data infrastructure for Landslide Monitoring and Early Warning

    NASA Astrophysics Data System (ADS)

    Arnhardt, C.; Fernandez-Steeger, T. M.; Walter, K.; Kallash, A.; Niemeyer, F.; Azzam, R.; Bill, R.

    2007-12-01

    The joint project Sensor based Landslide Early Warning System (SLEWS) aims at a systematic development of a prototyping alarm- and early warning system for the detection of mass movements by application of an ad hoc wireless sensor network (WSN). Next to the development of suitable sensor setups, sensor fusion and network fusion are applied to enhance data quality and reduce false alarm rates. Of special interest is the data retrieval, processing and visualization in GI-Systems. Therefore a suitable serviced based Spatial Data Infrastructure (SDI) will be developed with respect to existing and upcoming Open Geospatial Consortium (OGC) standards.The application of WSN provides a cheap and easy to set up solution for special monitoring and data gathering in large areas. Measurement data from different low-cost transducers for deformation observation (acceleration, displacement, tilting) is collected by distributed sensor nodes (motes), which interact separately and connect each other in a self-organizing manner. Data are collected and aggregated at the beacon (transmission station) and further operations like data pre-processing and compression can be performed. The WSN concept provides next to energy efficiency, miniaturization, real-time monitoring and remote operation, but also new monitoring strategies like sensor and network fusion. Since not only single sensors can be integrated at single motes either cross-validation or redundant sensor setups are possible to enhance data quality. The planned monitoring and information system will include a mobile infrastructure (information technologies and communication components) as well as methods and models to estimate surface deformation parameters (positioning systems). The measurements result in heterogeneous observation sets that have to be integrated in a common adjustment and filtering approach. Reliable real-time information will be obtained using a range of sensor input and algorithms, from which early warnings and prognosis may be derived. Implementation of sensor algorithms is an important task to form the business logic. This will be represented in self-contained web-based processing services (WPS). In the future different types of sensor networks can communicate via an infrastructure of OGC services using an interoperable way by standardized protocols as the Sensor Markup Language (SensorML) and Observations & Measurements Schema (O&M). Synchronous and asynchronous information services as the Sensor Alert Service (SAS) and the Web Notification Services (WNS) will provide defined users and user groups with time-critical readings from the observation site. Techniques using services for visualizing mapping data (WMS), meta data (CSW), vector (WFS) and raster data (WCS) will range from high detailed expert based output to fuzzy graphical warning elements.The expected results will be an advancement regarding classical alarm and early warning systems as the WSN are free scalable, extensible and easy to install.

  17. Wireless security in mobile health.

    PubMed

    Osunmuyiwa, Olufolabi; Ulusoy, Ali Hakan

    2012-12-01

    Mobile health (m-health) is an extremely broad term that embraces mobile communication in the health sector and data packaging. The four broad categories of wireless networks are wireless personal area network, wireless metropolitan area network, wireless wide area network, and wireless local area network. Wireless local area network is the most notable of the wireless networking tools obtainable in the health sector. Transfer of delicate and critical information on radio frequencies should be secure, and the right to use must be meticulous. This article covers the business opportunities in m-health, threats faced by wireless networks in hospitals, and methods of mitigating these threats.

  18. Cost-Effectiveness Analysis of Aerial Platforms and Suitable Communication Payloads

    DTIC Science & Technology

    2014-03-01

    High altitude long endurance (HALE) platforms for tactical wireless communications and sensor use in military operations. (Master’s thesis, Naval...the ground, which can offer near limitless endurance. Additionally, running data over wired networks reduces wireless congestion. The most...system that utilizes different wind speeds and wind directions at different altitudes in an attempt to position the balloons for optimal communications

  19. 75 FR 17349 - Operations of Wireless Communications Services in the 2.3 GHz Band

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-06

    ...The Federal Communications Commission (Commission) seeks comment on revising the performance requirements for the 2.3 GHz Wireless Communications Service (WCS) band. The Commission is seeking comment on possible revision of the performance requirements (also known as buildout or construction requirements) for the 2.3 GHz WCS band to ensure that that the spectrum is used intensively in the public interest.

  20. 77 FR 24738 - Certain Wireless Communication Devices and Systems, Components Thereof, and Products Containing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-25

    ... Devices and Systems, Components Thereof, and Products Containing Same; Notice of Commission Determination... certain wireless communication devices and systems, components thereof, and products containing the same..., California; Apple Inc. of Cupertino, California; Aruba Networks, Inc. of Sunnyvale, California; Meru Networks...

  1. 77 FR 28621 - Certain Wireless Communication Devices, Portable Music and Data Processing Devices, Computers and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-15

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-745] Certain Wireless Communication Devices, Portable Music and Data Processing Devices, Computers and Components Thereof; Notice of Request for Statements on the Public Interest AGENCY: U.S. International Trade Commission. ACTION: Notice...

  2. 77 FR 65580 - Certain Wireless Communication Devices, Portable Music and Data Processing Devices, Computers...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-29

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-856] Certain Wireless Communication Devices, Portable Music and Data Processing Devices, Computers, and Components Thereof AGENCY: U.S. International Trade Commission. ACTION: Notice. SUMMARY: Notice is hereby given that the U.S. International...

  3. 77 FR 51571 - Certain Wireless Communication Devices, Portable Music and Data Processing Devices, Computers...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-24

    ... Music and Data Processing Devices, Computers, and Components Thereof; Notice of Receipt of Complaint... complaint entitled Wireless Communication Devices, Portable Music and Data Processing Devices, Computers..., portable music and data processing devices, computers, and components thereof. The complaint names as...

  4. WEB - A Wireless Experiment Box for the Dextre Pointing Package ELC Payload

    NASA Technical Reports Server (NTRS)

    Bleier, Leor Z.; Marrero-Fontanez, Victor J.; Sparacino, Pietro A.; Moreau, Michael C.; Mitchell, Jason William

    2012-01-01

    The Wireless Experiment Box (WEB) was proposed to work with the International Space Station (ISS) External Wireless Communication (EWC) system to support high-definition video from the Dextre Pointing Package (DPP). DPP/WEB was a NASA GSFC proposed ExPRESS Logistics Carrier (ELC) payload designed to flight test an integrated suite of Autonomous Rendezvous and Docking (AR&D) technologies to enable a wide spectrum of future missions across NASA and other US Government agencies. The ISS EWC uses COTS Wireless Access Points (WAPs) to provide high-rate bi-directional communications to ISS. In this paper, we discuss WEB s packaging, operation, antenna development, and performance testing.

  5. Web: A Wireless Experiment Box for the Dextre Pointing Package ELC Payload

    NASA Technical Reports Server (NTRS)

    Bleier, Leor Z.; Marrero-Fontanez, Victor J.; Sparacino, Pietro A.; Moreau, Michael C.; Mitchell, Jason W.

    2012-01-01

    The Wireless Experiment Box (WEB) was proposed to work with the International Space Station (ISS) External Wireless Communication (EWC) system to support high-definition video from the Dextre Pointing Package (DPP). DPP/WEB was a NASA GSFC proposed ExPRESS Logistics Carrier (ELC) payload designed to flight test an integrated suite of Autonomous Rendezvous and Docking (AR&D) technologies to enable a wide spectrum of future missions across NASA and other US Government agencies. The ISS EWC uses COTS Wireless Access Points (WAPs) to provide high-rate bi-directional communications to ISS. In this paper, we discuss WEB s packaging, operation, antenna development, and performance testing.

  6. Scalable Architecture for Multihop Wireless ad Hoc Networks

    NASA Technical Reports Server (NTRS)

    Arabshahi, Payman; Gray, Andrew; Okino, Clayton; Yan, Tsun-Yee

    2004-01-01

    A scalable architecture for wireless digital data and voice communications via ad hoc networks has been proposed. Although the details of the architecture and of its implementation in hardware and software have yet to be developed, the broad outlines of the architecture are fairly clear: This architecture departs from current commercial wireless communication architectures, which are characterized by low effective bandwidth per user and are not well suited to low-cost, rapid scaling in large metropolitan areas. This architecture is inspired by a vision more akin to that of more than two dozen noncommercial community wireless networking organizations established by volunteers in North America and several European countries.

  7. 47 CFR 1.946 - Construction and coverage requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Wireless Radio Services, requirements for construction and commencement of service or commencement of... certain Wireless Radio Services, licensees must comply with geographic coverage requirements or... Section 1.946 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL PRACTICE AND PROCEDURE Wireless...

  8. 47 CFR 1.933 - Public notices.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL PRACTICE AND PROCEDURE Wireless Radio Services.... Periodically, the Commission issues Public Notices in the Wireless Radio Services listing information of public... for filing prior to grant: (1) Wireless Telecommunications Services. (2) Industrial radiopositioning...

  9. 47 CFR 1.933 - Public notices.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL PRACTICE AND PROCEDURE Wireless Radio Services.... Periodically, the Commission issues Public Notices in the Wireless Radio Services listing information of public... for filing prior to grant: (1) Wireless Telecommunications Services. (2) Industrial radiopositioning...

  10. 47 CFR 1.946 - Construction and coverage requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Wireless Radio Services, requirements for construction and commencement of service or commencement of... certain Wireless Radio Services, licensees must comply with geographic coverage requirements or... Section 1.946 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL PRACTICE AND PROCEDURE Wireless...

  11. Wireless Technologies in Support of ISS Experimentation and Operations

    NASA Technical Reports Server (NTRS)

    Wagner, Raymond; Fink, Patrick

    2012-01-01

    Presentation reviews: (1) Wireless Communications (a) Internal (b) External (2) RFID (Radio Frequency Identification) (a) Existing and R&D (3) Wireless Sensor Networks (a) Existing and R&D (4) Ultra-Wide Band (UWB) (a) R&D

  12. Wireless data transmission for high energy physics applications

    NASA Astrophysics Data System (ADS)

    Dittmeier, Sebastian; Brenner, Richard; Dancila, Dragos; Dehos, Cedric; De Lurgio, Patrick; Djurcic, Zelimir; Drake, Gary; Gonzalez Gimenez, Jose Luis; Gustafsson, Leif; Kim, Do-Won; Locci, Elizabeth; Pfeiffer, Ullrich; Röhrich, Dieter; Rydberg, Anders; Schöning, André; Siligaris, Alexandre; Soltveit, Hans Kristian; Ullaland, Kjetil; Vincent, Pierre; Rodriguez Vazquez, Pedro; Wiedner, Dirk; Yang, Shiming

    2017-08-01

    Silicon tracking detectors operated at high luminosity collider experiments pose a challenge for current and future readout systems regarding bandwidth, radiation, space and power constraints. With the latest developments in wireless communications, wireless readout systems might be an attractive alternative to commonly used wired optical and copper based readout architectures. The WADAPT group (Wireless Allowing Data and Power Transmission) has been formed to study the feasibility of wireless data transmission for future tracking detectors. These proceedings cover current developments focused on communication in the 60 GHz band. This frequency band offers a high bandwidth, a small form factor and an already mature technology. Motivation for wireless data transmission for high energy physics application and the developments towards a demonstrator prototype are summarized. Feasibility studies concerning the construction and operation of a wireless transceiver system have been performed. Data transmission tests with a transceiver prototype operating at even higher frequencies in the 240 GHz band are described. Data transmission at rates up to 10 Gb/s have been obtained successfully using binary phase shift keying.

  13. Communication on SWIPT and EH Using Electromagnetic Behaviour for Power Allocation in Wireless Networks

    NASA Astrophysics Data System (ADS)

    Khan, Sohel Rana; Ajij, Sayyad

    2017-12-01

    This review paper focuses on the basic relations between wireless power transfer, wireless information transfer and combined phenomenon of simultaneous wireless information and power transfer. The authors reviewed and discussed electromagnetic fields behaviour (EMB) for enhancing the power allocation strategies (PAS) in energy harvesting (EH) wireless communication systems. Further, this paper presents relations between Friis transmission equation and Maxwell's equations to be used in propagation models for reduction in specific absorption rate (SAR). This paper provides a review of various methods and concepts reported in earlier works. This paper also reviews Poynting vector and power densities along with boundary conditions for antennas and human body. Finally, this paper explores the usage of electromagnetic behaviour for the possible enhancement in power saving methods for electromagnetic behaviour centered-wireless energy harvesting (EMBC-WEH). At the same time, possibilities of PAS for reduction in SAR are discussed.

  14. Better protecting staff working alone.

    PubMed

    Swindlehurst, Darren

    2016-08-01

    Established four and a half years ago as a wholly-owned subsidiary of Dutch-headquartered personal security and critical communications solutions provider, Atus BV, Hereford-based Atus Systems has since established a strong UK-wide client base supplying personal pagers, wireless personal alarm units, and the associated infrastructure, predominantly to high secure mental health facilities, prisons, and detention centres. Recent months, however, mark a new chapter for it, with the launch of a 'unique' lone worker protection system able to identify such personnel's location even when they are indoors and out of range of GPS coverage, and a sophisticated two-way enterprise critical messaging system. As HEJ editor, Jonathan Baillie, discovered from MD, Darren Swindlehurst, the company will target both systems squarely at the NHS and private healthcare providers, as well as at its more 'traditional' customers.

  15. Mobile robotic sensors for perimeter detection and tracking.

    PubMed

    Clark, Justin; Fierro, Rafael

    2007-02-01

    Mobile robot/sensor networks have emerged as tools for environmental monitoring, search and rescue, exploration and mapping, evaluation of civil infrastructure, and military operations. These networks consist of many sensors each equipped with embedded processors, wireless communication, and motion capabilities. This paper describes a cooperative mobile robot network capable of detecting and tracking a perimeter defined by a certain substance (e.g., a chemical spill) in the environment. Specifically, the contributions of this paper are twofold: (i) a library of simple reactive motion control algorithms and (ii) a coordination mechanism for effectively carrying out perimeter-sensing missions. The decentralized nature of the methodology implemented could potentially allow the network to scale to many sensors and to reconfigure when adding/deleting sensors. Extensive simulation results and experiments verify the validity of the proposed cooperative control scheme.

  16. Bluetooth Roaming for Sensor Network System in Clinical Environment.

    PubMed

    Kuroda, Tomohiro; Noma, Haruo; Takase, Kazuhiko; Sasaki, Shigeto; Takemura, Tadamasa

    2015-01-01

    A sensor network is key infrastructure for advancing a hospital information system (HIS). The authors proposed a method to provide roaming functionality for Bluetooth to realize a Bluetooth-based sensor network, which is suitable to connect clinical devices. The proposed method makes the average response time of a Bluetooth connection less than one second by making the master device repeat the inquiry process endlessly and modifies parameters of the inquiry process. The authors applied the developed sensor network for daily clinical activities in an university hospital, and confirmed the stabilitya and effectiveness of the sensor network. As Bluetooth becomes a quite common wireless interface for medical devices, the proposed protocol that realizes Bluetooth-based sensor network enables HIS to equip various clinical devices and, consequently, lets information and communication technologies advance clinical services.

  17. Impact Goals of Research and Development Technology on the Business Strategy of NTT's Fiber-to-the-Home Deployment

    NASA Astrophysics Data System (ADS)

    Kimura, Hideaki

    2013-03-01

    Huge investment is needed for introducing a fiber-to-the-home system, so research and development strategy is very important. Requirements for fiber-to-the-home systems have been increased because communication systems have been recognized as one of the lifelines along with water, electricity, and gas. Furthermore, low energy consumption and recyclable eco-friendliness are required for products. NTT has been challenged to reduce capital expenditure, reduce operational expenditure, and create new applications for expanding the number of fiber-to-the-home subscribers from the viewpoint of a technological approach, including access infrastructure, fiber, transmission, and wireless technologies. Due to continuous and strategic technological development, the number of NTT's fiber-to-the-home subscribers is now over 17 million.

  18. Modeling and Performance Analysis of 10 Gbps Inter-satellite Optical Wireless Communication Link

    NASA Astrophysics Data System (ADS)

    Singh, Mehtab

    2017-12-01

    Free-space optical (FSO) communication has the advantages of two of the most predominant data transmission technologies - optical fiber communication and wireless communication. Most of the technical aspects of FSO are similar to that of optical fiber communication, with major difference in the information signal propagation medium which is free space in case of FSO rather than silica glass in optical fiber communication. One of the most important applications of FSO is inter-satellite optical wireless communication (IsOWC) links which will be deployed in the future in space. The IsOWC links have many advantages over the previously existing microwave satellite communication technologies such as higher bandwidth, lower power consumption, low cost of implementation, light size, and weight. In this paper, modeling and performance analysis of a 10-Gbps inter-satellite communication link with two satellites separated at a distance of 1,200 km has been done using OPTISYSTEM simulation software. Performance has been analyzed on the basis of quality factor, signal to noise ratio (SNR), and total power of the received signal.

  19. Ultra Wideband (UWB) communication vulnerability for security applications.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cooley, H. Timothy

    2010-07-01

    RF toxicity and Information Warfare (IW) are becoming omnipresent posing threats to the protection of nuclear assets, and within theatres of hostility or combat where tactical operation of wireless communication without detection and interception is important and sometimes critical for survival. As a result, a requirement for deployment of many security systems is a highly secure wireless technology manifesting stealth or covert operation suitable for either permanent or tactical deployment where operation without detection or interruption is important The possible use of ultra wideband (UWB) spectrum technology as an alternative physical medium for wireless network communication offers many advantages overmore » conventional narrowband and spread spectrum wireless communication. UWB also known as fast-frequency chirp is nonsinusoidal and sends information directly by transmitting sub-nanosecond pulses without the use of mixing baseband information upon a sinusoidal carrier. Thus UWB sends information using radar-like impulses by spreading its energy thinly over a vast spectrum and can operate at extremely low-power transmission within the noise floor where other forms of RF find it difficult or impossible to operate. As a result UWB offers low probability of detection (LPD), low probability of interception (LPI) as well as anti-jamming (AJ) properties in signal space. This paper analyzes and compares the vulnerability of UWB to narrowband and spread spectrum wireless network communication.« less

  20. Design and Implementation of Secure Area Expansion Scheme for Public Wireless LAN Services

    NASA Astrophysics Data System (ADS)

    Watanabe, Ryu; Tanaka, Toshiaki

    Recently, wireless LAN (WLAN) technology has become a major wireless communication method. The communication bandwidth is increasing and speeds have attained rates exceeding 100 Mbps. Therefore, WLAN technology is regarded as one of the promising communication methods for future networks. In addition, public WLAN connection services can be used in many locations. However, the number of the access points (AP) is insufficient for seamless communication and it cannot be said that users can use the service ubiquitously. An ad-hoc network style connection can be used to expand the coverage area of a public WLAN service. By relaying the user messages among the user nodes, a node can obtain an Internet connection via an AP, even though the node is located outside the AP's direct wireless connection area. Such a coverage area extending technology has many advantages thanks to the feature that no additional infrastructure is required. Therefore, there is a strong demand for this technology as it allows the cost-effective construction of future networks. When a secure ad-hoc routing protocol is used for message exchange in the WLAN service, the message routes are protected from malicious behavior such as route forging and can be maintained appropriately. To do this, however, a new node that wants to join the WLAN service has to obtain information such as the public key certificate and IP address in order to start secure ad-hoc routing. In other words, an initial setup is required for every network node to join the WLAN service properly. Ordinarily, such information should be assigned from the AP. However, new nodes cannot always contact an AP directly. Therefore, there are problems about information delivery in the initial setup of a network node. These problems originate in the multi hop connection based on the ad-hoc routing protocols. In order to realize an expanded area WLAN service, in this paper, the authors propose a secure public key certificate and address provision scheme during the initial setup phase on mobile nodes for the service. The proposed scheme also considers the protection of user privacy. Accordingly, none of the user nodes has to reveal their unique and persistent information to other nodes. Instead of using such information, temporary values are sent by an AP to mobile nodes and used for secure ad-hoc routing operations. Therefore, our proposed scheme prevents tracking by malicious parties by avoiding the use of unique information. Moreover, a test bed was also implemented based on the proposal and an evaluation was carried out in order to confirm performance. In addition, the authors describe a countermeasure against denial of service (DoS) attacks based on the approach to privacy protection described in our proposal.

  1. 76 FR 59614 - Facilitating the Use of Microwave for Wireless Backhaul and Other Uses and Providing Additional...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-27

    ...] Facilitating the Use of Microwave for Wireless Backhaul and Other Uses and Providing Additional Flexibility To... 101 rules to promote wireless backhaul. We seek comment on certain proposals offered by parties in... America. In addition, we address a petition for rulemaking filed by Fixed Wireless Communications...

  2. 76 FR 59559 - Facilitating the Use of Microwave for Wireless Backhaul and Other Uses and Providing Additional...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-27

    ...] Facilitating the Use of Microwave for Wireless Backhaul and Other Uses and Providing Additional Flexibility To... FS licensees to reduce operational costs, increase reliability, and facilitate the use of wireless... for wireless backhaul and other point-to-point and point-to-multipoint communications. We also make...

  3. Interference Drop Scheme: Enhancing QoS Provision in Multi-Hop Ad Hoc Networks

    NASA Astrophysics Data System (ADS)

    Luo, Chang-Yi; Komuro, Nobuyoshi; Takahashi, Kiyoshi; Kasai, Hiroyuki; Ueda, Hiromi; Tsuboi, Toshinori

    Ad hoc networking uses wireless technologies to construct networks with no physical infrastructure and so are expected to provide instant networking in areas such as disaster recovery sites and inter-vehicle communication. Unlike conventional wired networks services, services in ad hoc networks are easily disrupted by the frequent changes in traffic and topology. Therefore, solutions to assure the Quality of Services (QoS) in ad hoc networks are different from the conventional ones used in wired networks. In this paper, we propose a new queue management scheme, Interference Drop Scheme (IDS) for ad hoc networks. In the conventional queue management approaches such as FIFO (First-in First-out) and RED (Random Early Detection), a queue is usually managed by a queue length limit. FIFO discards packets according to the queue limit, and RED discards packets in an early and random fashion. IDS, on the other hand, manages the queue according to wireless interference time, which increases as the number of contentions in the MAC layer increases. When there are many MAC contentions, IDS discards TCP data packets. By observing the interference time and discarding TCP data packets, our simulation results show that IDS improves TCP performance and reduces QoS violations in UDP in ad hoc networks with chain, grid, and random topologies. Our simulation results also demonstrate that wireless interference time is a better metric than queue length limit for queue management in multi-hop ad hoc networks.

  4. Characterization of Industrial Coolant Fluids and Continuous Ageing Monitoring by Wireless Node-Enabled Fiber Optic Sensors.

    PubMed

    Sachat, Alexandros El; Meristoudi, Anastasia; Markos, Christos; Sakellariou, Andreas; Papadopoulos, Aggelos; Katsikas, Serafim; Riziotis, Christos

    2017-03-11

    Environmentally robust chemical sensors for monitoring industrial processes or infrastructures are lately becoming important devices in industry. Low complexity and wireless enabled characteristics can offer the required flexibility for sensor deployment in adaptable sensing networks for continuous monitoring and management of industrial assets. Here are presented the design, development and operation of a class of low cost photonic sensors for monitoring the ageing process and the operational characteristics of coolant fluids used in an industrial heavy machinery infrastructure. The chemical, physical and spectroscopic characteristics of specific industrial-grade coolant fluids were analyzed along their entire life cycle range, and proper parameters for their efficient monitoring were identified. Based on multimode polymer or silica optical fibers, wide range (3-11) pH sensors were developed by employing sol-gel derived pH sensitive coatings. The performances of the developed sensors were characterized and compared, towards their coolants' ageing monitoring capability, proving their efficiency in such a demanding application scenario and harsh industrial environment. The operating characteristics of this type of sensors allowed their integration in an autonomous wireless sensing node, thus enabling the future use of the demonstrated platform in wireless sensor networks for a variety of industrial and environmental monitoring applications.

  5. Characterization of Industrial Coolant Fluids and Continuous Ageing Monitoring by Wireless Node—Enabled Fiber Optic Sensors

    PubMed Central

    El Sachat, Alexandros; Meristoudi, Anastasia; Markos, Christos; Sakellariou, Andreas; Papadopoulos, Aggelos; Katsikas, Serafim; Riziotis, Christos

    2017-01-01

    Environmentally robust chemical sensors for monitoring industrial processes or infrastructures are lately becoming important devices in industry. Low complexity and wireless enabled characteristics can offer the required flexibility for sensor deployment in adaptable sensing networks for continuous monitoring and management of industrial assets. Here are presented the design, development and operation of a class of low cost photonic sensors for monitoring the ageing process and the operational characteristics of coolant fluids used in an industrial heavy machinery infrastructure. The chemical, physical and spectroscopic characteristics of specific industrial-grade coolant fluids were analyzed along their entire life cycle range, and proper parameters for their efficient monitoring were identified. Based on multimode polymer or silica optical fibers, wide range (3–11) pH sensors were developed by employing sol-gel derived pH sensitive coatings. The performances of the developed sensors were characterized and compared, towards their coolants’ ageing monitoring capability, proving their efficiency in such a demanding application scenario and harsh industrial environment. The operating characteristics of this type of sensors allowed their integration in an autonomous wireless sensing node, thus enabling the future use of the demonstrated platform in wireless sensor networks for a variety of industrial and environmental monitoring applications. PMID:28287488

  6. 49 CFR 220.9 - Requirements for trains.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... locomotive in the consist or other means of working wireless communications. (b) On and after July 1, 2000, the following requirements apply to a railroad that has fewer than 400,000 annual employee work hours... controlling locomotive and with redundant working wireless communications capability in the same manner as...

  7. 78 FR 13895 - Certain Wireless Communications Base Stations and Components Thereof; Institution of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-01

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-871] Certain Wireless Communications Base.... International Trade Commission. ACTION: Notice. SUMMARY: Notice is hereby given that a complaint was filed with the U.S. International Trade Commission on January 24, 2013, under section 337 of the Tariff Act of...

  8. 75 FR 10502 - In the Matter of Certain Electronic Devices, Including Handheld Wireless Communications Devices...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-08

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-667; Investigation No. 337-TA-673] In the Matter of Certain Electronic Devices, Including Handheld Wireless Communications Devices; Notice of... Entirety AGENCY: U.S. International Trade Commission. ACTION: Notice. SUMMARY: Notice is hereby given that...

  9. 76 FR 37049 - Improving Wireless Coverage Through the Use of Signal Boosters

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-24

    ... FEDERAL COMMUNICATIONS COMMISSION 47 CFR Parts 1, 2, 22, 24, 27, 90 and 95 [WT Docket No. 10-4; DA 11-1078] Improving Wireless Coverage Through the Use of Signal Boosters AGENCY: Federal Communications Commission. ACTION: Proposed rule; extension of comment period. SUMMARY: The Federal...

  10. 75 FR 55488 - Electronic On-Board Recorders for Hours-of-Service Compliance

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-13

    ... additional alternative for the data transfer between an EOBR and a roadside safety official's portable... [deg]F), although some components of wireless communications systems are specified to operate in a -20... Engineers (IEEE) 802.11 wireless communications requirement. Agency's Assessment and Decision The -40 [deg]C...

  11. 78 FR 31472 - Wireless Telecommunications Bureau Seeks To Supplement the Record on the 600 MHz Band Plan

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-24

    ... Telecommunications Bureau Seeks To Supplement the Record on the 600 MHz Band Plan AGENCY: Federal Communications... Telecommunications Bureau seeks further comment on how certain band plan approaches can best accommodate market... issued. Federal Communications Commission. Ruth Milkman, Chief. Wireless Telecommunications Bureau. [FR...

  12. Active Cooperation Between Primary Users and Cognitive Radio Users in Heterogeneous Ad-Hoc Networks

    DTIC Science & Technology

    2012-04-01

    processing to wireless communications and networking, including space-time coding and modulation for MIMO wireless communications, MIMO - OFDM systems, and...multiinput-multioutput ( MIMO ) system that can significantly increase the link capacity and realize a new form of spatial diversity which has been termed

  13. Transport Protocols for Wireless Mesh Networks

    NASA Astrophysics Data System (ADS)

    Eddie Law, K. L.

    Transmission control protocol (TCP) provides reliable connection-oriented services between any two end systems on the Internet. With TCP congestion control algorithm, multiple TCP connections can share network and link resources simultaneously. These TCP congestion control mechanisms have been operating effectively in wired networks. However, performance of TCP connections degrades rapidly in wireless and lossy networks. To sustain the throughput performance of TCP connections in wireless networks, design modifications may be required accordingly in the TCP flow control algorithm, and potentially, in association with other protocols in other layers for proper adaptations. In this chapter, we explain the limitations of the latest TCP congestion control algorithm, and then review some popular designs for TCP connections to operate effectively in wireless mesh network infrastructure.

  14. Sensor Network Architectures for Monitoring Underwater Pipelines

    PubMed Central

    Mohamed, Nader; Jawhar, Imad; Al-Jaroodi, Jameela; Zhang, Liren

    2011-01-01

    This paper develops and compares different sensor network architecture designs that can be used for monitoring underwater pipeline infrastructures. These architectures are underwater wired sensor networks, underwater acoustic wireless sensor networks, RF (Radio Frequency) wireless sensor networks, integrated wired/acoustic wireless sensor networks, and integrated wired/RF wireless sensor networks. The paper also discusses the reliability challenges and enhancement approaches for these network architectures. The reliability evaluation, characteristics, advantages, and disadvantages among these architectures are discussed and compared. Three reliability factors are used for the discussion and comparison: the network connectivity, the continuity of power supply for the network, and the physical network security. In addition, the paper also develops and evaluates a hierarchical sensor network framework for underwater pipeline monitoring. PMID:22346669

  15. Sensor network architectures for monitoring underwater pipelines.

    PubMed

    Mohamed, Nader; Jawhar, Imad; Al-Jaroodi, Jameela; Zhang, Liren

    2011-01-01

    This paper develops and compares different sensor network architecture designs that can be used for monitoring underwater pipeline infrastructures. These architectures are underwater wired sensor networks, underwater acoustic wireless sensor networks, RF (radio frequency) wireless sensor networks, integrated wired/acoustic wireless sensor networks, and integrated wired/RF wireless sensor networks. The paper also discusses the reliability challenges and enhancement approaches for these network architectures. The reliability evaluation, characteristics, advantages, and disadvantages among these architectures are discussed and compared. Three reliability factors are used for the discussion and comparison: the network connectivity, the continuity of power supply for the network, and the physical network security. In addition, the paper also develops and evaluates a hierarchical sensor network framework for underwater pipeline monitoring.

  16. Application of spinal code for performance improvement in free-space optical communications

    NASA Astrophysics Data System (ADS)

    Saiki, Naoya; Okamoto, Eiji; Takenaka, Hideki; Toyoshima, Morio

    2017-09-01

    In recent years, the demand for high-capacity communication has grown, and fiber-optic transmission is being used in wired communications to meet this demand. Similarly, free-space optics (FSO), which is an optical wireless communication technology that uses laser light, has attracted much attention and has been considered as a suitable alternative to satisfy this demand in wireless communications. Free-space optical communication uses a hundred THz frequency band and allows for high-speed and radio-regulation free transmission, which may provide a solution for the current shortage of radio frequency bands.

  17. Adaptive Wavelet Coding Applied in a Wireless Control System.

    PubMed

    Gama, Felipe O S; Silveira, Luiz F Q; Salazar, Andrés O

    2017-12-13

    Wireless control systems can sense, control and act on the information exchanged between the wireless sensor nodes in a control loop. However, the exchanged information becomes susceptible to the degenerative effects produced by the multipath propagation. In order to minimize the destructive effects characteristic of wireless channels, several techniques have been investigated recently. Among them, wavelet coding is a good alternative for wireless communications for its robustness to the effects of multipath and its low computational complexity. This work proposes an adaptive wavelet coding whose parameters of code rate and signal constellation can vary according to the fading level and evaluates the use of this transmission system in a control loop implemented by wireless sensor nodes. The performance of the adaptive system was evaluated in terms of bit error rate (BER) versus E b / N 0 and spectral efficiency, considering a time-varying channel with flat Rayleigh fading, and in terms of processing overhead on a control system with wireless communication. The results obtained through computational simulations and experimental tests show performance gains obtained by insertion of the adaptive wavelet coding in a control loop with nodes interconnected by wireless link. These results enable the use of this technique in a wireless link control loop.

  18. Energy Efficient IoT Data Collection in Smart Cities Exploiting D2D Communications.

    PubMed

    Orsino, Antonino; Araniti, Giuseppe; Militano, Leonardo; Alonso-Zarate, Jesus; Molinaro, Antonella; Iera, Antonio

    2016-06-08

    Fifth Generation (5G) wireless systems are expected to connect an avalanche of "smart" objects disseminated from the largest "Smart City" to the smallest "Smart Home". In this vision, Long Term Evolution-Advanced (LTE-A) is deemed to play a fundamental role in the Internet of Things (IoT) arena providing a large coherent infrastructure and a wide wireless connectivity to the devices. However, since LTE-A was originally designed to support high data rates and large data size, novel solutions are required to enable an efficient use of radio resources to convey small data packets typically exchanged by IoT applications in "smart" environments. On the other hand, the typically high energy consumption required by cellular communications is a serious obstacle to large scale IoT deployments under cellular connectivity as in the case of Smart City scenarios. Network-assisted Device-to-Device (D2D) communications are considered as a viable solution to reduce the energy consumption for the devices. The particular approach presented in this paper consists in appointing one of the IoT smart devices as a collector of all data from a cluster of objects using D2D links, thus acting as an aggregator toward the eNodeB. By smartly adapting the Modulation and Coding Scheme (MCS) on the communication links, we will show it is possible to maximize the radio resource utilization as a function of the total amount of data to be sent. A further benefit that we will highlight is the possibility to reduce the transmission power when a more robust MCS is adopted. A comprehensive performance evaluation in a wide set of scenarios will testify the achievable gains in terms of energy efficiency and resource utilization in the envisaged D2D-based IoT data collection.

  19. Energy Efficient IoT Data Collection in Smart Cities Exploiting D2D Communications

    PubMed Central

    Orsino, Antonino; Araniti, Giuseppe; Militano, Leonardo; Alonso-Zarate, Jesus; Molinaro, Antonella; Iera, Antonio

    2016-01-01

    Fifth Generation (5G) wireless systems are expected to connect an avalanche of “smart” objects disseminated from the largest “Smart City” to the smallest “Smart Home”. In this vision, Long Term Evolution-Advanced (LTE-A) is deemed to play a fundamental role in the Internet of Things (IoT) arena providing a large coherent infrastructure and a wide wireless connectivity to the devices. However, since LTE-A was originally designed to support high data rates and large data size, novel solutions are required to enable an efficient use of radio resources to convey small data packets typically exchanged by IoT applications in “smart” environments. On the other hand, the typically high energy consumption required by cellular communications is a serious obstacle to large scale IoT deployments under cellular connectivity as in the case of Smart City scenarios. Network-assisted Device-to-Device (D2D) communications are considered as a viable solution to reduce the energy consumption for the devices. The particular approach presented in this paper consists in appointing one of the IoT smart devices as a collector of all data from a cluster of objects using D2D links, thus acting as an aggregator toward the eNodeB. By smartly adapting the Modulation and Coding Scheme (MCS) on the communication links, we will show it is possible to maximize the radio resource utilization as a function of the total amount of data to be sent. A further benefit that we will highlight is the possibility to reduce the transmission power when a more robust MCS is adopted. A comprehensive performance evaluation in a wide set of scenarios will testify the achievable gains in terms of energy efficiency and resource utilization in the envisaged D2D-based IoT data collection. PMID:27338385

  20. Design and Implementation of Secure and Reliable Communication using Optical Wireless Communication

    NASA Astrophysics Data System (ADS)

    Saadi, Muhammad; Bajpai, Ambar; Zhao, Yan; Sangwongngam, Paramin; Wuttisittikulkij, Lunchakorn

    2014-11-01

    Wireless networking intensify the tractability in the home and office environment to connect the internet without wires but at the cost of risks associated with stealing the data or threat of loading malicious code with the intention of harming the network. In this paper, we proposed a novel method of establishing a secure and reliable communication link using optical wireless communication (OWC). For security, spatial diversity based transmission using two optical transmitters is used and the reliability in the link is achieved by a newly proposed method for the construction of structured parity check matrix for binary Low Density Parity Check (LDPC) codes. Experimental results show that a successful secure and reliable link between the transmitter and the receiver can be achieved by using the proposed novel technique.

  1. An open-source wireless sensor stack: from Arduino to SDI-12 to Water One Flow

    NASA Astrophysics Data System (ADS)

    Hicks, S.; Damiano, S. G.; Smith, K. M.; Olexy, J.; Horsburgh, J. S.; Mayorga, E.; Aufdenkampe, A. K.

    2013-12-01

    Implementing a large-scale streaming environmental sensor network has previously been limited by the high cost of the datalogging and data communication infrastructure. The Christina River Basin Critical Zone Observatory (CRB-CZO) is overcoming the obstacles to large near-real-time data collection networks by using Arduino, an open source electronics platform, in combination with XBee ZigBee wireless radio modules. These extremely low-cost and easy-to-use open source electronics are at the heart of the new DIY movement and have provided solutions to countless projects by over half a million users worldwide. However, their use in environmental sensing is in its infancy. At present a primary limitation to widespread deployment of open-source electronics for environmental sensing is the lack of a simple, open-source software stack to manage streaming data from heterogeneous sensor networks. Here we present a functioning prototype software stack that receives sensor data over a self-meshing ZigBee wireless network from over a hundred sensors, stores the data locally and serves it on demand as a CUAHSI Water One Flow (WOF) web service. We highlight a few new, innovative components, including: (1) a versatile open data logger design based the Arduino electronics platform and ZigBee radios; (2) a software library implementing SDI-12 communication protocol between any Arduino platform and SDI12-enabled sensors without the need for additional hardware (https://github.com/StroudCenter/Arduino-SDI-12); and (3) 'midStream', a light-weight set of Python code that receives streaming sensor data, appends it with metadata on the fly by querying a relational database structured on an early version of the Observations Data Model version 2.0 (ODM2), and uses the WOFpy library to serve the data as WaterML via SOAP and REST web services.

  2. Systems and methods for performing wireless financial transactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCown, Steven Harvey

    2012-07-03

    A secure computing module (SCM) is configured for connection with a host device. The SCM includes a processor for performing secure processing operations, a host interface for coupling the processor to the host device, and a memory connected to the processor wherein the processor logically isolates at least some of the memory from access by the host device. The SCM also includes a proximate-field wireless communicator connected to the processor to communicate with another SCM associated with another host device. The SCM generates a secure digital signature for a financial transaction package and communicates the package and the signature tomore » the other SCM using the proximate-field wireless communicator. Financial transactions are performed from person to person using the secure digital signature of each person's SCM and possibly message encryption. The digital signatures and transaction details are communicated to appropriate financial organizations to authenticate the transaction parties and complete the transaction.« less

  3. Transfer Error and Correction Approach in Mobile Network

    NASA Astrophysics Data System (ADS)

    Xiao-kai, Wu; Yong-jin, Shi; Da-jin, Chen; Bing-he, Ma; Qi-li, Zhou

    With the development of information technology and social progress, human demand for information has become increasingly diverse, wherever and whenever people want to be able to easily, quickly and flexibly via voice, data, images and video and other means to communicate. Visual information to the people direct and vivid image, image / video transmission also been widespread attention. Although the third generation mobile communication systems and the emergence and rapid development of IP networks, making video communications is becoming the main business of the wireless communications, however, the actual wireless and IP channel will lead to error generation, such as: wireless channel multi- fading channels generated error and blocking IP packet loss and so on. Due to channel bandwidth limitations, the video communication compression coding of data is often beyond the data, and compress data after the error is very sensitive to error conditions caused a serious decline in image quality.

  4. A Wireless Monitoring Sub-nA Resolution Test Platform for Nanostructure Sensors

    PubMed Central

    Jang, Chi Woong; Byun, Young Tae; Lee, Taikjin; Woo, Deok Ha; Lee, Seok; Jhon, Young Min

    2013-01-01

    We have constructed a wireless monitoring test platform with a sub-nA resolution signal amplification/processing circuit (SAPC) and a wireless communication network to test the real-time remote monitoring of the signals from carbon nanotube (CNT) sensors. The operation characteristics of the CNT sensors can also be measured by the ISD-VSD curve with the SAPC. The SAPC signals are transmitted to a personal computer by Bluetooth communication and the signals from the computer are transmitted to smart phones by Wi-Fi communication, in such a way that the signals from the sensors can be remotely monitored through a web browser. Successful remote monitoring of signals from a CNT sensor was achieved with the wireless monitoring test platform for detection of 0.15% methanol vapor with 0.5 nA resolution and 7 Hz sampling rate. PMID:23783735

  5. Feasibility of Using Distributed Wireless Mesh Networks for Medical Emergency Response

    PubMed Central

    Braunstein, Brian; Trimble, Troy; Mishra, Rajesh; Manoj, B. S.; Rao, Ramesh; Lenert, Leslie

    2006-01-01

    Achieving reliable, efficient data communications networks at a disaster site is a difficult task. Network paradigms, such as Wireless Mesh Network (WMN) architectures, form one exemplar for providing high-bandwidth, scalable data communication for medical emergency response activity. WMNs are created by self-organized wireless nodes that use multi-hop wireless relaying for data transfer. In this paper, we describe our experience using a mesh network architecture we developed for homeland security and medical emergency applications. We briefly discuss the architecture and present the traffic behavioral observations made by a client-server medical emergency application tested during a large-scale homeland security drill. We present our traffic measurements, describe lessons learned, and offer functional requirements (based on field testing) for practical 802.11 mesh medical emergency response networks. With certain caveats, the results suggest that 802.11 mesh networks are feasible and scalable systems for field communications in disaster settings. PMID:17238308

  6. A secure and easy-to-implement web-based communication framework for caregiving robot teams

    NASA Astrophysics Data System (ADS)

    Tuna, G.; Daş, R.; Tuna, A.; Örenbaş, H.; Baykara, M.; Gülez, K.

    2016-03-01

    In recent years, robots have started to become more commonplace in our lives, from factory floors to museums, festivals and shows. They have started to change how we work and play. With an increase in the population of the elderly, they have also been started to be used for caregiving services, and hence many countries have been investing in the robot development. The advancements in robotics and wireless communications has led to the emergence of autonomous caregiving robot teams which cooperate to accomplish a set of tasks assigned by human operators. Although wireless communications and devices are flexible and convenient, they are vulnerable to many risks compared to traditional wired networks. Since robots with wireless communication capability transmit all data types, including sensory, coordination, and control, through radio frequencies, they are open to intruders and attackers unless protected and their openness may lead to many security issues such as data theft, passive listening, and service interruption. In this paper, a secure web-based communication framework is proposed to address potential security threats due to wireless communication in robot-robot and human-robot interaction. The proposed framework is simple and practical, and can be used by caregiving robot teams in the exchange of sensory data as well as coordination and control data.

  7. Power allocation strategies to minimize energy consumption in wireless body area networks.

    PubMed

    Kailas, Aravind

    2011-01-01

    The wide scale deployment of wireless body area networks (WBANs) hinges on designing energy efficient communication protocols to support the reliable communication as well as to prolong the network lifetime. Cooperative communications, a relatively new idea in wireless communications, offers the benefits of multi-antenna systems, thereby improving the link reliability and boosting energy efficiency. In this short paper, the advantages of resorting to cooperative communications for WBANs in terms of minimized energy consumption are investigated. Adopting an energy model that encompasses energy consumptions in the transmitter and receiver circuits, and transmitting energy per bit, it is seen that cooperative transmission can improve energy efficiency of the wireless network. In particular, the problem of optimal power allocation is studied with the constraint of targeted outage probability. Two strategies of power allocation are considered: power allocation with and without posture state information. Using analysis and simulation-based results, two key points are demonstrated: (i) allocating power to the on-body sensors making use of the posture information can reduce the total energy consumption of the WBAN; and (ii) when the channel condition is good, it is better to recruit less relays for cooperation to enhance energy efficiency.

  8. 76 FR 23713 - Wireless E911 Location Accuracy Requirements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-28

    ... Location Accuracy Requirements AGENCY: Federal Communications Commission. ACTION: Final rule; announcement... contained in regulations concerning wireless E911 location accuracy requirements. The information collection... standards for wireless Enhanced 911 (E911) Phase II location accuracy and reliability to satisfy these...

  9. D-MSR: a distributed network management scheme for real-time monitoring and process control applications in wireless industrial automation.

    PubMed

    Zand, Pouria; Dilo, Arta; Havinga, Paul

    2013-06-27

    Current wireless technologies for industrial applications, such as WirelessHART and ISA100.11a, use a centralized management approach where a central network manager handles the requirements of the static network. However, such a centralized approach has several drawbacks. For example, it cannot cope with dynamicity/disturbance in large-scale networks in a real-time manner and it incurs a high communication overhead and latency for exchanging management traffic. In this paper, we therefore propose a distributed network management scheme, D-MSR. It enables the network devices to join the network, schedule their communications, establish end-to-end connections by reserving the communication resources for addressing real-time requirements, and cope with network dynamicity (e.g., node/edge failures) in a distributed manner. According to our knowledge, this is the first distributed management scheme based on IEEE 802.15.4e standard, which guides the nodes in different phases from joining until publishing their sensor data in the network. We demonstrate via simulation that D-MSR can address real-time and reliable communication as well as the high throughput requirements of industrial automation wireless networks, while also achieving higher efficiency in network management than WirelessHART, in terms of delay and overhead.

  10. D-MSR: A Distributed Network Management Scheme for Real-Time Monitoring and Process Control Applications in Wireless Industrial Automation

    PubMed Central

    Zand, Pouria; Dilo, Arta; Havinga, Paul

    2013-01-01

    Current wireless technologies for industrial applications, such as WirelessHART and ISA100.11a, use a centralized management approach where a central network manager handles the requirements of the static network. However, such a centralized approach has several drawbacks. For example, it cannot cope with dynamicity/disturbance in large-scale networks in a real-time manner and it incurs a high communication overhead and latency for exchanging management traffic. In this paper, we therefore propose a distributed network management scheme, D-MSR. It enables the network devices to join the network, schedule their communications, establish end-to-end connections by reserving the communication resources for addressing real-time requirements, and cope with network dynamicity (e.g., node/edge failures) in a distributed manner. According to our knowledge, this is the first distributed management scheme based on IEEE 802.15.4e standard, which guides the nodes in different phases from joining until publishing their sensor data in the network. We demonstrate via simulation that D-MSR can address real-time and reliable communication as well as the high throughput requirements of industrial automation wireless networks, while also achieving higher efficiency in network management than WirelessHART, in terms of delay and overhead. PMID:23807687

  11. Wireless Cooperative Networks: Self-Configuration and Optimization

    DTIC Science & Technology

    2011-09-09

    TERMS wireless sensor networks , wireless cooperative networks, resource optimization, ultra-wideband, localization, ranging 16. SECURITY...Communications We consider two prevalent relay protocols for wireless sensor networks : decode-and-forward (DF) and amplify-and-forward (AF). To... sensor networks where each node may have its own sensing data to transmit, since they can maximally conserve energy while helping others as relays

  12. Design and Development of Multi-Transceiver Lorafi Board consisting LoRa and ESP8266-Wifi Communication Module

    NASA Astrophysics Data System (ADS)

    Azmi, Noraini; Sudin, Sukhairi; Munirah Kamarudin, Latifah; Zakaria, Ammar; Visvanathan, Retnam; Chew Cheik, Goh; Mamduh Syed Zakaria, Syed Muhammad; Abdullah Alfarhan, Khudhur; Badlishah Ahmad, R.

    2018-03-01

    The advancement of Micro-Electro-Mechanical-Systems (MEMS), microcontroller technologies and the idea of Internet of Things (IoT) motivates the development of wireless modules (e.g. WiFi, Bluetooth, Zigbee, and LoRa) that are small and affordable. This paper aims to provide detailed information on the development of the LoRaFi board. The LoRaFi 1.0 is a multi-protocol communication board developed by Centre of Excellence for Advanced Sensor Technology (CEASTech). The board was developed for but not limited to monitor the indoor air quality. The board comprises two different wireless communication modules namely, Long-range technology (LoRa) and WiFi (using ESP8266). The board can be configured to communicate either using LoRa or WiFi or both. The board has been tested and the wireless communication operates successfully. Apart from LoRa, WiFi enables data to be forwarded to the cloud/server where the data can be stored for further data analysis. This helps provide users with real-time information on their smartphones or other applications. In the future, researchers will conduct tests to investigate the communication link quality. Newer version with reduced board size and additional wireless communication module will be developed in the future as to increase board flexibility and widen the range of applications that can use the board.

  13. Removal of eye blink artifacts in wireless EEG sensor networks using reduced-bandwidth canonical correlation analysis.

    PubMed

    Somers, Ben; Bertrand, Alexander

    2016-12-01

    Chronic, 24/7 EEG monitoring requires the use of highly miniaturized EEG modules, which only measure a few EEG channels over a small area. For improved spatial coverage, a wireless EEG sensor network (WESN) can be deployed, consisting of multiple EEG modules, which interact through short-distance wireless communication. In this paper, we aim to remove eye blink artifacts in each EEG channel of a WESN by optimally exploiting the correlation between EEG signals from different modules, under stringent communication bandwidth constraints. We apply a distributed canonical correlation analysis (CCA-)based algorithm, in which each module only transmits an optimal linear combination of its local EEG channels to the other modules. The method is validated on both synthetic and real EEG data sets, with emulated wireless transmissions. While strongly reducing the amount of data that is shared between nodes, we demonstrate that the algorithm achieves the same eye blink artifact removal performance as the equivalent centralized CCA algorithm, which is at least as good as other state-of-the-art multi-channel algorithms that require a transmission of all channels. Due to their potential for extreme miniaturization, WESNs are viewed as an enabling technology for chronic EEG monitoring. However, multi-channel analysis is hampered in WESNs due to the high energy cost for wireless communication. This paper shows that multi-channel eye blink artifact removal is possible with a significantly reduced wireless communication between EEG modules.

  14. Removal of eye blink artifacts in wireless EEG sensor networks using reduced-bandwidth canonical correlation analysis

    NASA Astrophysics Data System (ADS)

    Somers, Ben; Bertrand, Alexander

    2016-12-01

    Objective. Chronic, 24/7 EEG monitoring requires the use of highly miniaturized EEG modules, which only measure a few EEG channels over a small area. For improved spatial coverage, a wireless EEG sensor network (WESN) can be deployed, consisting of multiple EEG modules, which interact through short-distance wireless communication. In this paper, we aim to remove eye blink artifacts in each EEG channel of a WESN by optimally exploiting the correlation between EEG signals from different modules, under stringent communication bandwidth constraints. Approach. We apply a distributed canonical correlation analysis (CCA-)based algorithm, in which each module only transmits an optimal linear combination of its local EEG channels to the other modules. The method is validated on both synthetic and real EEG data sets, with emulated wireless transmissions. Main results. While strongly reducing the amount of data that is shared between nodes, we demonstrate that the algorithm achieves the same eye blink artifact removal performance as the equivalent centralized CCA algorithm, which is at least as good as other state-of-the-art multi-channel algorithms that require a transmission of all channels. Significance. Due to their potential for extreme miniaturization, WESNs are viewed as an enabling technology for chronic EEG monitoring. However, multi-channel analysis is hampered in WESNs due to the high energy cost for wireless communication. This paper shows that multi-channel eye blink artifact removal is possible with a significantly reduced wireless communication between EEG modules.

  15. Development of wireless sensor network for landslide monitoring system

    NASA Astrophysics Data System (ADS)

    Suryadi; Puranto, Prabowo; Adinanta, Hendra; Tohari, Adrin; Priambodo, Purnomo S.

    2017-05-01

    A wireless sensor network has been developed to monitor soil movement of some observed areas periodically. The system consists of four nodes and one gateway which installed on a scope area of 0.2 Km2. Each of nodehastwo types of sensor,an inclinometer and an extensometer. An inclinometer sensor is used to measure the tilt of a structure while anextensometer sensor is used to measure the displacement of soil movement. Each of nodeisalso supported by awireless communication device, a solar power supply unit, and a microcontroller unit called sensor module. In this system, there is also gateway module as a main communication system consistinga wireless communication device, power supply unit, and rain gauge to measure the rainfall intensity of the observed area. Each sensor of inclinometer and extensometer isconnected to the sensor module in wiring system but sensor module iscommunicating with gateway in a wireless system. Those four nodes are alsoconnectedeach other in a wireless system collecting the data from inclinometer and extensometer sensors. Module Gateway istransmitting the instruction code to each sensor module one by one and collecting the data from them. Gateway module is an important part to communicate with not only sensor modules but also to the server. This wireless system wasdesigned toreducethe electric consumption powered by 80 WP solar panel and 55Ah battery. This system has been implemented in Pangalengan, Bandung, which has high intensity of rainfall and it can be seen on the website.

  16. 5G: The Convergence of Wireless Communications.

    PubMed

    Chávez-Santiago, Raúl; Szydełko, Michał; Kliks, Adrian; Foukalas, Fotis; Haddad, Yoram; Nolan, Keith E; Kelly, Mark Y; Masonta, Moshe T; Balasingham, Ilangko

    As the rollout of 4G mobile communication networks takes place, representatives of industry and academia have started to look into the technological developments toward the next generation (5G). Several research projects involving key international mobile network operators, infrastructure manufacturers, and academic institutions, have been launched recently to set the technological foundations of 5G. However, the architecture of future 5G systems, their performance, and mobile services to be provided have not been clearly defined. In this paper, we put forth the vision for 5G as the convergence of evolved versions of current cellular networks with other complementary radio access technologies. Therefore, 5G may not be a single radio access interface but rather a "network of networks". Evidently, the seamless integration of a variety of air interfaces, protocols, and frequency bands, requires paradigm shifts in the way networks cooperate and complement each other to deliver data rates of several Gigabits per second with end-to-end latency of a few milliseconds. We provide an overview of the key radio technologies that will play a key role in the realization of this vision for the next generation of mobile communication networks. We also introduce some of the research challenges that need to be addressed.

  17. Wireless Instrumentation System and Power Management Scheme Therefore

    NASA Technical Reports Server (NTRS)

    Perotti, Jose (Inventor); Lucena, Angel (Inventor); Eckhoff, Anthony (Inventor); Mata, Carlos T. (Inventor); Blalock, Norman N. (Inventor); Medelius, Pedro J. (Inventor)

    2007-01-01

    A wireless instrumentation system enables a plurality of low power wireless transceivers to transmit measurement data from a plurality of remote station sensors to a central data station accurately and reliably. The system employs a relay based communications scheme where remote stations that cannot communicate directly with the central station due to interference, poor signal strength, etc., are instructed to communicate with other of the remote stations that act as relays to the central station. A unique power management scheme is also employed to minimize power usage at each remote station and thereby maximize battery life. Each of the remote stations prefembly employs a modular design to facilitate easy reconfiguration of the stations as required.

  18. Infrastructure sensing.

    PubMed

    Soga, Kenichi; Schooling, Jennifer

    2016-08-06

    Design, construction, maintenance and upgrading of civil engineering infrastructure requires fresh thinking to minimize use of materials, energy and labour. This can only be achieved by understanding the performance of the infrastructure, both during its construction and throughout its design life, through innovative monitoring. Advances in sensor systems offer intriguing possibilities to radically alter methods of condition assessment and monitoring of infrastructure. In this paper, it is hypothesized that the future of infrastructure relies on smarter information; the rich information obtained from embedded sensors within infrastructure will act as a catalyst for new design, construction, operation and maintenance processes for integrated infrastructure systems linked directly with user behaviour patterns. Some examples of emerging sensor technologies for infrastructure sensing are given. They include distributed fibre-optics sensors, computer vision, wireless sensor networks, low-power micro-electromechanical systems, energy harvesting and citizens as sensors.

  19. Infrastructure sensing

    PubMed Central

    Soga, Kenichi; Schooling, Jennifer

    2016-01-01

    Design, construction, maintenance and upgrading of civil engineering infrastructure requires fresh thinking to minimize use of materials, energy and labour. This can only be achieved by understanding the performance of the infrastructure, both during its construction and throughout its design life, through innovative monitoring. Advances in sensor systems offer intriguing possibilities to radically alter methods of condition assessment and monitoring of infrastructure. In this paper, it is hypothesized that the future of infrastructure relies on smarter information; the rich information obtained from embedded sensors within infrastructure will act as a catalyst for new design, construction, operation and maintenance processes for integrated infrastructure systems linked directly with user behaviour patterns. Some examples of emerging sensor technologies for infrastructure sensing are given. They include distributed fibre-optics sensors, computer vision, wireless sensor networks, low-power micro-electromechanical systems, energy harvesting and citizens as sensors. PMID:27499845

  20. Development of a Wireless Unified-Maintenance System for the Structural Health Monitoring of Civil Structures

    PubMed Central

    Son, Byungjik; Jeon, Seunggon

    2018-01-01

    A disaster preventive structural health monitoring (SHM) system needs to be equipped with the following abilities: First, it should be able to simultaneously measure diverse types of data (e.g., displacement, velocity, acceleration, strain, load, temperature, humidity, etc.) for accurate diagnosis. Second, it also requires standalone power supply to guarantee its immediate response in crisis (e.g., sudden interruption of normal AC power in disaster situations). Furthermore, it should be capable of prompt processing and realtime wireless communication of a huge amount of data. Therefore, this study is aimed at developing a wireless unified-maintenance system (WUMS) that would satisfy all the requirements for a disaster preventive SHM system of civil structures. The WUMS is designed to measure diverse types of structural responses in realtime based on wireless communication, allowing users to selectively use WiFi RF band and finally working in standalone mode by means of the field-programmable gate array (FPGA) technology. To verify its performance, the following tests were performed: (i) A test to see how far communication is possible in open field, (ii) a test on a shaker to see how accurate responses are, (iii) a modal test on a bridge to see how exactly characteristic real-time dynamic responses are of structures. The test results proved that the WUMS was able to secure stable communication far up to nearly 800 m away by acquiring wireless responses in realtime accurately, when compared to the displacement and acceleration responses which were acquired through wired communication. The analysis of dynamic characteristics also showed that the wireless acceleration responses in real-time represented satisfactorily the dynamic properties of structures. Therefore, the WUMS is proved valid as a SHM, and its outstanding performance is also proven. PMID:29747403

  1. Development of a Wireless Unified-Maintenance System for the Structural Health Monitoring of Civil Structures.

    PubMed

    Heo, Gwanghee; Son, Byungjik; Kim, Chunggil; Jeon, Seunggon; Jeon, Joonryong

    2018-05-09

    A disaster preventive structural health monitoring (SHM) system needs to be equipped with the following abilities: First, it should be able to simultaneously measure diverse types of data (e.g., displacement, velocity, acceleration, strain, load, temperature, humidity, etc.) for accurate diagnosis. Second, it also requires standalone power supply to guarantee its immediate response in crisis (e.g., sudden interruption of normal AC power in disaster situations). Furthermore, it should be capable of prompt processing and realtime wireless communication of a huge amount of data. Therefore, this study is aimed at developing a wireless unified-maintenance system (WUMS) that would satisfy all the requirements for a disaster preventive SHM system of civil structures. The WUMS is designed to measure diverse types of structural responses in realtime based on wireless communication, allowing users to selectively use WiFi RF band and finally working in standalone mode by means of the field-programmable gate array (FPGA) technology. To verify its performance, the following tests were performed: (i) A test to see how far communication is possible in open field, (ii) a test on a shaker to see how accurate responses are, (iii) a modal test on a bridge to see how exactly characteristic real-time dynamic responses are of structures. The test results proved that the WUMS was able to secure stable communication far up to nearly 800 m away by acquiring wireless responses in realtime accurately, when compared to the displacement and acceleration responses which were acquired through wired communication. The analysis of dynamic characteristics also showed that the wireless acceleration responses in real-time represented satisfactorily the dynamic properties of structures. Therefore, the WUMS is proved valid as a SHM, and its outstanding performance is also proven.

  2. Wifi-friendly building, enabling wifi signal indoor: an initial study

    NASA Astrophysics Data System (ADS)

    Suherman; Mubarakah, Naemah; Sagala, Romulo S.; Prayitno, Hendra

    2018-03-01

    The 802.11 network (wireless fidelity/WiFi) is the most common wireless infrastructure applied for internet access indoor. Widespread devices and installation simplicity make it better than similar technologies such as 802.16 and other 802.xx series. The access points are the most influential devices for indoor access. However, building indoor architectures contribute to the signal quality. Since WiFi installation in buildings becomes prevalent, the architecture should consider WiFi-friendliness into consideration. The more friendly the building to WiFi signal, the more efficient the 802.11 based wireless infrastructure. This paper present preliminary study how the building, specially the obstacle material, effects the WiFi signal propagation indoor. The study was performed by using ESP8266-based WiFi signal reader, to determine the impact indoor obstacles to WiFi signal propagation. The initial study shows that simple reflecting materials increase signal level about 1.14 dBm. WiFi-friendly building can be achieved by transforming building properties into signal interconnector. A simple photo frame with aluminium sheet insertion increase signal level on the second floor up to 6.56dBm.

  3. Low Frequency Radioastronomy at Moon: possible approach and architecture

    NASA Astrophysics Data System (ADS)

    Skalsky, A.; Mogilevsky, M.; Nazarov, V.; Nazirov, R.; Batanov, O.; Sadovski, A.

    2009-04-01

    The Moon, the Earth's neighbor, attracts an attention as a celestial body, as a source for mineral and other resources and as a possible base for fundamental scientific researches. The conducting ionosphere of Earth completely shields radioemissions coming from outer space and propagating at frequencies below a few MHz. In contrary, the Moon possessing a week atmosphereionosphere around its surface seems to be a perfect base for carrying out measurements of low frequency radio emissions originated from the space. The radio facility deployed at Moon's surface seems to be a powerful tool for various fundamental space researches related to astrophysics, solar system and magnetospheric investigations. The most intriguing objective is a search of terrestrial-like planets in the exosolar system, i.e. planets possessing the intrinsic magnetic fields and developed magnetospheres which interaction with the star wind results in generation of radioemissions (similar to AKR radiation of the terrestrial magnetosphere). Creating the infrastructure of antennas (sensors) on Moon's surface is planned for reaching the described goals. Ideology of such infrastructure (which may be treated as macro-instrument) is closely to SensorWeb approach. The different sensors are collected to unified platforms (PODs in terms of SensorWeb) which provide omni-and bidirectional information flows between PODs. Thus a set of sensors is integrated self-organizing amorphous organism on the base of wireless network. It increases reliability of the research complex and allows quick reconfiguring and adopting it for different investigation tasks. For additional redundancy and openness of the complex at least some PODs will support not only inter-PODs protocol but IEEE 802.16 Wireless LAN standard used in NASA Lunar Communication and Navigation Architecture also. The paper presents a possible approach to the development of the radio facility deployed at Moon's surface, its implementation for various fundamental researches

  4. Compressive sensing based wireless sensor for structural health monitoring

    NASA Astrophysics Data System (ADS)

    Bao, Yuequan; Zou, Zilong; Li, Hui

    2014-03-01

    Data loss is a common problem for monitoring systems based on wireless sensors. Reliable communication protocols, which enhance communication reliability by repetitively transmitting unreceived packets, is one approach to tackle the problem of data loss. An alternative approach allows data loss to some extent and seeks to recover the lost data from an algorithmic point of view. Compressive sensing (CS) provides such a data loss recovery technique. This technique can be embedded into smart wireless sensors and effectively increases wireless communication reliability without retransmitting the data. The basic idea of CS-based approach is that, instead of transmitting the raw signal acquired by the sensor, a transformed signal that is generated by projecting the raw signal onto a random matrix, is transmitted. Some data loss may occur during the transmission of this transformed signal. However, according to the theory of CS, the raw signal can be effectively reconstructed from the received incomplete transformed signal given that the raw signal is compressible in some basis and the data loss ratio is low. This CS-based technique is implemented into the Imote2 smart sensor platform using the foundation of Illinois Structural Health Monitoring Project (ISHMP) Service Tool-suite. To overcome the constraints of limited onboard resources of wireless sensor nodes, a method called random demodulator (RD) is employed to provide memory and power efficient construction of the random sampling matrix. Adaptation of RD sampling matrix is made to accommodate data loss in wireless transmission and meet the objectives of the data recovery. The embedded program is tested in a series of sensing and communication experiments. Examples and parametric study are presented to demonstrate the applicability of the embedded program as well as to show the efficacy of CS-based data loss recovery for real wireless SHM systems.

  5. Simultaneous Wireless Power Transfer and Data Communication Using Synchronous Pulse-Controlled Load Modulation.

    PubMed

    Mao, Shitong; Wang, Hao; Zhu, Chunbo; Mao, Zhi-Hong; Sun, Mingui

    2017-10-01

    Wireless Power Transfer (WPT) and wireless data communication are both important problems of research with various applications, especially in medicine. However, these two problems are usually studied separately. In this work, we present a joint study of both problems. Most medical electronic devices, such as smart implants, must have both a power supply to allow continuous operation and a communication link to pass information. Traditionally, separate wireless channels for power transfer and communication are utilized, which complicate the system structure, increase power consumption and make device miniaturization difficult. A more effective approach is to use a single wireless link with both functions of delivering power and passing information. We present a design of such a wireless link in which power and data travel in opposite directions. In order to aggressively miniaturize the implant and reduce power consumption, we eliminate the traditional multi-bit Analog-to-Digital Converter (ADC), digital memory and data transmission circuits all together. Instead, we use a pulse stream, which is obtained from the original biological signal, by a sigma-delta converter and an edge detector, to alter the load properties of the WPT channel. The resulting WPT signal is synchronized with the load changes therefore requiring no memory elements to record inter-pulse intervals. We take advantage of the high sensitivity of the resonant WPT to the load change, and the system dynamic response is used to transfer each pulse. The transient time of the WPT system is analyzed using the coupling mode theory (CMT). Our experimental results show that the memoryless approach works well for both power delivery and data transmission, providing a new wireless platform for the design of future miniaturized medical implants.

  6. An Ultra Low Cost Wireless Communications Laboratory for Education and Research

    ERIC Educational Resources Information Center

    Linn, Y.

    2012-01-01

    This paper presents an ultra-low-cost wireless communications laboratory that is based on a commercial off-the-shelf field programmable gate array (FPGA) development board that is both inexpensive and available worldwide. The total cost of the laboratory is under USD $200, but it includes complete transmission, channel emulation, reception…

  7. 76 FR 36154 - In the Matter of Certain Equipment for Communications Networks, Including Switches, Routers...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-21

    ... Communications Networks, Including Switches, Routers, Gateways, Bridges, Wireless Access Points, Cable Modems, IP... networks, including switches, routers, gateways, bridges, wireless access points, cable modems, IP phones... points, cable modems, IP phones, and products containing same that infringe one or more of claims 1, 5, 9...

  8. Construction of a wireless communication contact closure system for liquid chromatography with multiple parallel mass spectrometers and other detectors

    USDA-ARS?s Scientific Manuscript database

    A contact closure system has been constructed and implemented that utilizes two contact closure sender boards that communicate wirelessly to four contact closure receiver boards to distribute start signals from two or three liquid chromatographs to fourteen instruments, pumps, detectors, or other co...

  9. 76 FR 65970 - Facilitating the use of Microwave for Wireless Backhaul and Other Uses and Providing Additional...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-25

    ... FEDERAL COMMUNICATIONS COMMISSION 47 CFR Part 101 [WT Docket No. 10-153; RM-11602; DA 11-1674] Facilitating the use of Microwave for Wireless Backhaul and Other Uses and Providing Additional Flexibility To Broadcast Auxiliary Service and Operational Fixed Microwave Licensees AGENCY: Federal Communications...

  10. Wireless Data Communications Prototyping: A Flexible, High-Quality, and Cost-Effective Information System for Education.

    ERIC Educational Resources Information Center

    Juliano, Benjoe A.; Sheel, Stephen J.

    In this paper, potential applications of wireless data communications and mobile satellite technology are described which aim at improving education. The motivation behind this work is that the technology now exists for providing today's teachers and students with not only better access to educational facilities, but also instantaneous…

  11. KeyWare: an open wireless distributed computing environment

    NASA Astrophysics Data System (ADS)

    Shpantzer, Isaac; Schoenfeld, Larry; Grindahl, Merv; Kelman, Vladimir

    1995-12-01

    Deployment of distributed applications in the wireless domain lack equivalent tools, methodologies, architectures, and network management that exist in LAN based applications. A wireless distributed computing environment (KeyWareTM) based on intelligent agents within a multiple client multiple server scheme was developed to resolve this problem. KeyWare renders concurrent application services to wireline and wireless client nodes encapsulated in multiple paradigms such as message delivery, database access, e-mail, and file transfer. These services and paradigms are optimized to cope with temporal and spatial radio coverage, high latency, limited throughput and transmission costs. A unified network management paradigm for both wireless and wireline facilitates seamless extensions of LAN- based management tools to include wireless nodes. A set of object oriented tools and methodologies enables direct asynchronous invocation of agent-based services supplemented by tool-sets matched to supported KeyWare paradigms. The open architecture embodiment of KeyWare enables a wide selection of client node computing platforms, operating systems, transport protocols, radio modems and infrastructures while maintaining application portability.

  12. Streetlight Control System Based on Wireless Communication over DALI Protocol

    PubMed Central

    Bellido-Outeiriño, Francisco José; Quiles-Latorre, Francisco Javier; Moreno-Moreno, Carlos Diego; Flores-Arias, José María; Moreno-García, Isabel; Ortiz-López, Manuel

    2016-01-01

    Public lighting represents a large part of the energy consumption of towns and cities. Efficient management of public lighting can entail significant energy savings. This work presents a smart system for managing public lighting networks based on wireless communication and the DALI protocol. Wireless communication entails significant economic savings, as there is no need to install new wiring and visual impacts and damage to the facades of historical buildings in city centers are avoided. The DALI protocol uses bidirectional communication with the ballast, which allows its status to be controlled and monitored at all times. The novelty of this work is that it tackles all aspects related to the management of public lighting: a standard protocol, DALI, was selected to control the ballast, a wireless node based on the IEEE 802.15.4 standard with a DALI interface was designed, a network layer that considers the topology of the lighting network has been developed, and lastly, some user-friendly applications for the control and maintenance of the system by the technical crews of the different towns and cities have been developed. PMID:27128923

  13. 47 CFR 1.903 - Authorization required.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL PRACTICE AND PROCEDURE Wireless Radio Services... the Wireless Radio Services must be used and operated only in accordance with the rules applicable to... operate mobile or fixed stations in the Wireless Radio Services, except for certain stations in the Rural...

  14. 47 CFR 1.945 - License grants.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL PRACTICE AND PROCEDURE Wireless Radio Services... be conducted by the Commission or by the Chief of the Wireless Telecommunications Bureau, or, in the..., such burdens shall be as determined by the Commission or the Chief of the Wireless Telecommunications...

  15. Sinkhole Avoidance Routing in Wireless Sensor Networks

    DTIC Science & Technology

    2011-05-09

    sensor network consists of individual sensor nodes that work cooperatively to collect and communicate environmental data. In a surveillance role, a WSN...Wireless sensor networks, or WSNs, are an emerging commercial technology that may have practical applications on the modern battlefield. A wireless

  16. Robust optical wireless links over turbulent media using diversity solutions

    NASA Astrophysics Data System (ADS)

    Moradi, Hassan

    Free-space optic (FSO) technology, i.e., optical wireless communication (OWC), is widely recognized as superior to radio frequency (RF) in many aspects. Visible and invisible optical wireless links solve first/last mile connectivity problems and provide secure, jam-free communication. FSO is license-free and delivers high-speed data rates in the order of Gigabits. Its advantages have fostered significant research efforts aimed at utilizing optical wireless communication, e.g. visible light communication (VLC), for high-speed, secure, indoor communication under the IEEE 802.15.7 standard. However, conventional optical wireless links demand precise optical alignment and suffer from atmospheric turbulence. When compared with RF, they suffer a low degree of reliability and lack robustness. Pointing errors cause optical transceiver misalignment, adversely affecting system reliability. Furthermore, atmospheric turbulence causes irradiance fluctuations and beam broadening of transmitted light. Innovative solutions to overcome limitations on the exploitation of high-speed optical wireless links are greatly needed. Spatial diversity is known to improve RF wireless communication systems. Similar diversity approaches can be adapted for FSO systems to improve its reliability and robustness; however, careful diversity design is needed since FSO apertures typically remain unbalanced as a result of FSO system sensitivity to misalignment. Conventional diversity combining schemes require persistent aperture monitoring and repetitive switching, thus increasing FSO implementation complexities. Furthermore, current RF diversity combining schemes may not be optimized to address the issue of unbalanced FSO receiving apertures. This dissertation investigates two efficient diversity combining schemes for multi-receiving FSO systems: switched diversity combining and generalized selection combining. Both can be exploited to reduce complexity and improve combining efficiency. Unlike maximum ratio combing, equal gain combining, and selective combining, switched diversity simplifies receiver design by avoiding unnecessary switching among receiving apertures. The most significant advantage of generalized combining is its ability to exclude apertures with low quality that could potentially affect the resultant output signal performance. This dissertation also investigates mobile FSO by considering a multi-receiving system in which all receiving FSO apertures are circularly placed on a platform. System mobility and performance are analyzed. Performance results confirm improvements when using angular diversity and generalized selection combining. The precis of this dissertation establishes the foundation of reliable FSO communications using efficient diversity-based solutions. Performance parameters are analyzed mathematically, and then evaluated using computer simulations. A testbed prototype is developed to facilitate the evaluation of optical wireless links via lab experiments.

  17. SparkMed: a framework for dynamic integration of multimedia medical data into distributed m-Health systems.

    PubMed

    Constantinescu, Liviu; Kim, Jinman; Feng, David Dagan

    2012-01-01

    With the advent of 4G and other long-term evolution (LTE) wireless networks, the traditional boundaries of patient record propagation are diminishing as networking technologies extend the reach of hospital infrastructure and provide on-demand mobile access to medical multimedia data. However, due to legacy and proprietary software, storage and decommissioning costs, and the price of centralization and redevelopment, it remains complex, expensive, and often unfeasible for hospitals to deploy their infrastructure for online and mobile use. This paper proposes the SparkMed data integration framework for mobile healthcare (m-Health), which significantly benefits from the enhanced network capabilities of LTE wireless technologies, by enabling a wide range of heterogeneous medical software and database systems (such as the picture archiving and communication systems, hospital information system, and reporting systems) to be dynamically integrated into a cloud-like peer-to-peer multimedia data store. Our framework allows medical data applications to share data with mobile hosts over a wireless network (such as WiFi and 3G), by binding to existing software systems and deploying them as m-Health applications. SparkMed integrates techniques from multimedia streaming, rich Internet applications (RIA), and remote procedure call (RPC) frameworks to construct a Self-managing, Pervasive Automated netwoRK for Medical Enterprise Data (SparkMed). Further, it is resilient to failure, and able to use mobile and handheld devices to maintain its network, even in the absence of dedicated server devices. We have developed a prototype of the SparkMed framework for evaluation on a radiological workflow simulation, which uses SparkMed to deploy a radiological image viewer as an m-Health application for telemedical use by radiologists and stakeholders. We have evaluated our prototype using ten devices over WiFi and 3G, verifying that our framework meets its two main objectives: 1) interactive delivery of medical multimedia data to mobile devices; and 2) attaching to non-networked medical software processes without significantly impacting their performance. Consistent response times of under 500 ms and graphical frame rates of over 5 frames per second were observed under intended usage conditions. Further, overhead measurements displayed linear scalability and low resource requirements.

  18. Chaos-based wireless communication resisting multipath effects.

    PubMed

    Yao, Jun-Liang; Li, Chen; Ren, Hai-Peng; Grebogi, Celso

    2017-09-01

    In additive white Gaussian noise channel, chaos has been shown to be the optimal coherent communication waveform in the sense of using a very simple matched filter to maximize the signal-to-noise ratio. Recently, Lyapunov exponent spectrum of the chaotic signals after being transmitted through a wireless channel has been shown to be unaltered, paving the way for wireless communication using chaos. In wireless communication systems, inter-symbol interference caused by multipath propagation is one of the main obstacles to achieve high bit transmission rate and low bit-error rate (BER). How to resist the multipath effect is a fundamental problem in a chaos-based wireless communication system (CWCS). In this paper, a CWCS is built to transmit chaotic signals generated by a hybrid dynamical system and then to filter the received signals by using the corresponding matched filter to decrease the noise effect and to detect the binary information. We find that the multipath effect can be effectively resisted by regrouping the return map of the received signal and by setting the corresponding threshold based on the available information. We show that the optimal threshold is a function of the channel parameters and of the information symbols. Practically, the channel parameters are time-variant, and the future information symbols are unavailable. In this case, a suboptimal threshold is proposed, and the BER using the suboptimal threshold is derived analytically. Simulation results show that the CWCS achieves a remarkable competitive performance even under inaccurate channel parameters.

  19. Chaos-based wireless communication resisting multipath effects

    NASA Astrophysics Data System (ADS)

    Yao, Jun-Liang; Li, Chen; Ren, Hai-Peng; Grebogi, Celso

    2017-09-01

    In additive white Gaussian noise channel, chaos has been shown to be the optimal coherent communication waveform in the sense of using a very simple matched filter to maximize the signal-to-noise ratio. Recently, Lyapunov exponent spectrum of the chaotic signals after being transmitted through a wireless channel has been shown to be unaltered, paving the way for wireless communication using chaos. In wireless communication systems, inter-symbol interference caused by multipath propagation is one of the main obstacles to achieve high bit transmission rate and low bit-error rate (BER). How to resist the multipath effect is a fundamental problem in a chaos-based wireless communication system (CWCS). In this paper, a CWCS is built to transmit chaotic signals generated by a hybrid dynamical system and then to filter the received signals by using the corresponding matched filter to decrease the noise effect and to detect the binary information. We find that the multipath effect can be effectively resisted by regrouping the return map of the received signal and by setting the corresponding threshold based on the available information. We show that the optimal threshold is a function of the channel parameters and of the information symbols. Practically, the channel parameters are time-variant, and the future information symbols are unavailable. In this case, a suboptimal threshold is proposed, and the BER using the suboptimal threshold is derived analytically. Simulation results show that the CWCS achieves a remarkable competitive performance even under inaccurate channel parameters.

  20. An Implantable Wireless Neural Interface System for Simultaneous Recording and Stimulation of Peripheral Nerve with a Single Cuff Electrode.

    PubMed

    Shon, Ahnsei; Chu, Jun-Uk; Jung, Jiuk; Kim, Hyungmin; Youn, Inchan

    2017-12-21

    Recently, implantable devices have become widely used in neural prostheses because they eliminate endemic drawbacks of conventional percutaneous neural interface systems. However, there are still several issues to be considered: low-efficiency wireless power transmission; wireless data communication over restricted operating distance with high power consumption; and limited functionality, working either as a neural signal recorder or as a stimulator. To overcome these issues, we suggest a novel implantable wireless neural interface system for simultaneous neural signal recording and stimulation using a single cuff electrode. By using widely available commercial off-the-shelf (COTS) components, an easily reconfigurable implantable wireless neural interface system was implemented into one compact module. The implantable device includes a wireless power consortium (WPC)-compliant power transmission circuit, a medical implant communication service (MICS)-band-based radio link and a cuff-electrode path controller for simultaneous neural signal recording and stimulation. During in vivo experiments with rabbit models, the implantable device successfully recorded and stimulated the tibial and peroneal nerves while communicating with the external device. The proposed system can be modified for various implantable medical devices, especially such as closed-loop control based implantable neural prostheses requiring neural signal recording and stimulation at the same time.

Top