Optical wireless connected objects for healthcare.
Toumieux, Pascal; Chevalier, Ludovic; Sahuguède, Stéphanie; Julien-Vergonjanne, Anne
2015-10-01
In this Letter the authors explore the communication capabilities of optical wireless technology for a wearable device dedicated to healthcare application. In an indoor environment sensible to electromagnetic perturbations such as a hospital, the use of optical wireless links can permit reducing the amount of radio frequencies in the patient environment. Moreover, this technology presents the advantage to be secure, low-cost and easy to deploy. On the basis of commercially available components, a custom-made wearable device is presented, which allows optical wireless transmission of accelerometer data in the context of physical activity supervision of post-stroke patients in hospital. Considering patient mobility, the experimental performance is established in terms of packet loss as a function of the number of receivers fixed to the ceiling. The results permit to conclude that optical wireless links can be used to perform such mobile remote monitoring applications. Moreover, based on the measurements obtained with one receiver, it is possible to theoretically determine the performance according to the number of receivers to be deployed.
49 CFR 220.29 - Statement of letters and numbers in radio communications.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 4 2010-10-01 2010-10-01 false Statement of letters and numbers in radio...) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD COMMUNICATIONS Radio and Wireless Communication Procedures § 220.29 Statement of letters and numbers in radio communications. (a) If necessary for...
49 CFR 220.29 - Statement of letters and numbers in radio communications.
Code of Federal Regulations, 2013 CFR
2013-10-01
...) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD COMMUNICATIONS Radio and Wireless Communication Procedures § 220.29 Statement of letters and numbers in radio communications. (a) If necessary for... 49 Transportation 4 2013-10-01 2013-10-01 false Statement of letters and numbers in radio...
49 CFR 220.29 - Statement of letters and numbers in radio communications.
Code of Federal Regulations, 2014 CFR
2014-10-01
...) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD COMMUNICATIONS Radio and Wireless Communication Procedures § 220.29 Statement of letters and numbers in radio communications. (a) If necessary for... 49 Transportation 4 2014-10-01 2014-10-01 false Statement of letters and numbers in radio...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bonior, Jason D; Hu, Zhen; Guo, Terry N.
This letter presents an experimental demonstration of software-defined-radio-based wireless tomography using computer-hosted radio devices called Universal Software Radio Peripheral (USRP). This experimental brief follows our vision and previous theoretical study of wireless tomography that combines wireless communication and RF tomography to provide a novel approach to remote sensing. Automatic data acquisition is performed inside an RF anechoic chamber. Semidefinite relaxation is used for phase retrieval, and the Born iterative method is utilized for imaging the target. Experimental results are presented, validating our vision of wireless tomography.
Cardiac ultrasonography over 4G wireless networks using a tele-operated robot
Panayides, Andreas S.; Jossif, Antonis P.; Christoforou, Eftychios G.; Vieyres, Pierre; Novales, Cyril; Voskarides, Sotos; Pattichis, Constantinos S.
2016-01-01
This Letter proposes an end-to-end mobile tele-echography platform using a portable robot for remote cardiac ultrasonography. Performance evaluation investigates the capacity of long-term evolution (LTE) wireless networks to facilitate responsive robot tele-manipulation and real-time ultrasound video streaming that qualifies for clinical practice. Within this context, a thorough video coding standards comparison for cardiac ultrasound applications is performed, using a data set of ten ultrasound videos. Both objective and subjective (clinical) video quality assessment demonstrate that H.264/AVC and high efficiency video coding standards can achieve diagnostically-lossless video quality at bitrates well within the LTE supported data rates. Most importantly, reduced latencies experienced throughout the live tele-echography sessions allow the medical expert to remotely operate the robot in a responsive manner, using the wirelessly communicated cardiac ultrasound video to reach a diagnosis. Based on preliminary results documented in this Letter, the proposed robotised tele-echography platform can provide for reliable, remote diagnosis, achieving comparable quality of experience levels with in-hospital ultrasound examinations. PMID:27733929
The Language of Glove: Wireless gesture decoder with low-power and stretchable hybrid electronics.
O'Connor, Timothy F; Fach, Matthew E; Miller, Rachel; Root, Samuel E; Mercier, Patrick P; Lipomi, Darren J
2017-01-01
This communication describes a glove capable of wirelessly translating the American Sign Language (ASL) alphabet into text displayable on a computer or smartphone. The key components of the device are strain sensors comprising a piezoresistive composite of carbon particles embedded in a fluoroelastomer. These sensors are integrated with a wearable electronic module consisting of digitizers, a microcontroller, and a Bluetooth radio. Finite-element analysis predicts a peak strain on the sensors of 5% when the knuckles are fully bent. Fatigue studies suggest that the sensors successfully detect the articulation of the knuckles even when bent to their maximal degree 1,000 times. In concert with an accelerometer and pressure sensors, the glove is able to translate all 26 letters of the ASL alphabet. Lastly, data taken from the glove are used to control a virtual hand; this application suggests new ways in which stretchable and wearable electronics can enable humans to interface with virtual environments. Critically, this system was constructed of components costing less than $100 and did not require chemical synthesis or access to a cleanroom. It can thus be used as a test bed for materials scientists to evaluate the performance of new materials and flexible and stretchable hybrid electronics.
The Language of Glove: Wireless gesture decoder with low-power and stretchable hybrid electronics
O’Connor, Timothy F.; Fach, Matthew E.; Miller, Rachel; Root, Samuel E.; Mercier, Patrick P.
2017-01-01
This communication describes a glove capable of wirelessly translating the American Sign Language (ASL) alphabet into text displayable on a computer or smartphone. The key components of the device are strain sensors comprising a piezoresistive composite of carbon particles embedded in a fluoroelastomer. These sensors are integrated with a wearable electronic module consisting of digitizers, a microcontroller, and a Bluetooth radio. Finite-element analysis predicts a peak strain on the sensors of 5% when the knuckles are fully bent. Fatigue studies suggest that the sensors successfully detect the articulation of the knuckles even when bent to their maximal degree 1,000 times. In concert with an accelerometer and pressure sensors, the glove is able to translate all 26 letters of the ASL alphabet. Lastly, data taken from the glove are used to control a virtual hand; this application suggests new ways in which stretchable and wearable electronics can enable humans to interface with virtual environments. Critically, this system was constructed of components costing less than $100 and did not require chemical synthesis or access to a cleanroom. It can thus be used as a test bed for materials scientists to evaluate the performance of new materials and flexible and stretchable hybrid electronics. PMID:28700603
Low-power wireless micromanometer system for acute and chronic bladder-pressure monitoring.
Majerus, Steve J A; Fletter, Paul C; Damaser, Margot S; Garverick, Steven L
2011-03-01
This letter describes the design, fabrication, and testing of a wireless bladder-pressure-sensing system for chronic, point-of-care applications, such as urodynamics or closed-loop neuromodulation. The system consists of a miniature implantable device and an external RF receiver and wireless battery charger. The implant is small enough to be cystoscopically implanted within the bladder wall, where it is securely held and shielded from the urine stream. The implant consists of a custom application-specific integrated circuit (ASIC), a pressure transducer, a rechargeable battery, and wireless telemetry and recharging antennas. The ASIC includes instrumentation, wireless transmission, and power-management circuitry, and on an average draws less than 9 μA from the 3.6-V battery. The battery charge can be wirelessly replenished with daily 6-h recharge periods that can occur during the periods of sleep. Acute in vivo evaluation of the pressure-sensing system in canine models has demonstrated that the system can accurately capture lumen pressure from a submucosal implant location.
Opportunistic Beamforming with Wireless Powered 1-bit Feedback Through Rectenna Array
NASA Astrophysics Data System (ADS)
Krikidis, Ioannis
2015-11-01
This letter deals with the opportunistic beamforming (OBF) scheme for multi-antenna downlink with spatial randomness. In contrast to conventional OBF, the terminals return only 1-bit feedback, which is powered by wireless power transfer through a rectenna array. We study two fundamental topologies for the combination of the rectenna elements; the direct-current combiner and the radio-frequency combiner. The beam outage probability is derived in closed form for both combination schemes, by using high order statistics and stochastic geometry.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-23
.... 1337, on behalf of Eastman Kodak Company of Rochester, New York. A letter supplementing the complaint... parties upon which this notice of investigation shall be served: (a) The complainant is: Eastman Kodak...
76 FR 27745 - Wireless Innovation for Transportation; Request for Information
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-12
... claim to be confidential commercial information. When you submit information containing information identified as confidential commercial information, you should include a cover letter setting forth the reasons you believe the information qualifies as ``confidential commercial information.'' (49 CFR 7.13(c...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-08
... Wireless Communication Devices, Tablet Computers, Media Players, and Televisions, and Components Thereof... devices, including wireless communication devices, tablet computers, media players, and televisions, and... wireless communication devices, tablet computers, media players, and televisions, and components thereof...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-24
... Electronics Devices and Components Thereof; Institution of Investigation Pursuant to 19 U.S.C. 1337 AGENCY: U... importation of certain wireless consumer electronics devices and components thereof by reason of infringement... wireless consumer electronics devices and components thereof that infringe one or more of claims 1, 6, 7, 9...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-21
... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-770] Certain Video Game Systems and Wireless Controllers and Components Thereof; Notice of Request for Statements on the Public Interest AGENCY... desist order against certain video game systems and wireless controllers and components thereof, imported...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-10
... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-800] Certain Wireless Devices With 3G Capabilities and Components Thereof Commission Determination To Review the Final Initial Determination Finding... importation of certain wireless devices with 3G capabilities and components thereof by reason of infringement...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-12
...) also requires Eligible Telecommunications Carriers (ETCs) to submit to the Universal Service.... Prior to 2009, USAC provided sample certification and verification letters on its website to assist ETCs... check box to accommodate wireless ETCs serving non-federal default states that do not assert...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-15
... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-800] Certain Wireless Devices With 3G Capabilities and Components Thereof; Notice of Request for Statements on the Public Interest AGENCY: U.S..., specifically a limited exclusion order against certain wireless devices with 3G capabilities and components...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-07
... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-800] Certain Wireless Devices With 3G Capabilities and Components Thereof Determination Not To Review Initial Determination To Amend the Notice of... importation of certain wireless devices with 3G capabilities and components thereof by reason of infringement...
Ultrafast all-optical technologies for bidirectional optical wireless communications.
Jin, Xian; Hristovski, Blago A; Collier, Christopher M; Geoffroy-Gagnon, Simon; Born, Brandon; Holzman, Jonathan F
2015-04-01
In this Letter, a spherical retro-modulator architecture is introduced for operation as a bidirectional transceiver in passive optical wireless communication links. The architecture uses spherical retroreflection to enable retroreflection with broad directionality (2π steradians), and it uses all-optical beam interaction to enable modulation on ultrafast timescales (120 fs duration). The spherical retro-modulator is investigated from a theoretical standpoint and is fabricated for testing with three glasses, N-BK7, N-LASF9, and S-LAH79. It is found that the S-LAH79 structure provides the optimal refraction and nonlinearity for the desired retroreflection and modulation capabilities.
Real-time software-based end-to-end wireless visual communications simulation platform
NASA Astrophysics Data System (ADS)
Chen, Ting-Chung; Chang, Li-Fung; Wong, Andria H.; Sun, Ming-Ting; Hsing, T. Russell
1995-04-01
Wireless channel impairments pose many challenges to real-time visual communications. In this paper, we describe a real-time software based wireless visual communications simulation platform which can be used for performance evaluation in real-time. This simulation platform consists of two personal computers serving as hosts. Major components of each PC host include a real-time programmable video code, a wireless channel simulator, and a network interface for data transport between the two hosts. The three major components are interfaced in real-time to show the interaction of various wireless channels and video coding algorithms. The programmable features in the above components allow users to do performance evaluation of user-controlled wireless channel effects without physically carrying out these experiments which are limited in scope, time-consuming, and costly. Using this simulation platform as a testbed, we have experimented with several wireless channel effects including Rayleigh fading, antenna diversity, channel filtering, symbol timing, modulation, and packet loss.
Wearable, multimodal, vitals acquisition unit for intelligent field triage.
Beck, Christoph; Georgiou, Julius
2016-09-01
In this Letter, the authors describe the characterisation design and development of the authors' wearable, multimodal vitals acquisition unit for intelligent field triage. The unit is able to record the standard electrocardiogram, blood oxygen and body temperature parameters and also has the unique capability to record up to eight custom designed acoustic streams for heart and lung sound auscultation. These acquisition channels are highly synchronised to fully maintain the time correlation of the signals. The unit is a key component enabling systematic and intelligent field triage to continuously acquire vital patient information. With the realised unit a novel data-set with highly synchronised vital signs was recorded. The new data-set may be used for algorithm design in vital sign analysis or decision making. The monitoring unit is the only known body worn system that records standard emergency parameters plus eight multi-channel auscultatory streams and stores the recordings and wirelessly transmits them to mobile response teams.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-27
... INTERNATIONAL TRADE COMMISSION [Inv. No. 337-TA-770] In the Matter of Certain Video Game Systems... importation of certain video game systems and wireless controllers and components thereof by reason of... sale within the United States after importation of certain video game systems and wireless controllers...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-28
... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-800] Certain Wireless Devices with 3G Capabilities and Components Thereof; Determination Not to Review Initial Determination Granting Motion for... importation, and the sale within the United States after importation of certain wireless devices with 3G...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-31
... With 3G Capabilities and Components Thereof; Notice of Institution of Investigation Institution of... States after importation of certain wireless devices with 3G capabilities and components thereof by... after [[Page 54253
Additively Manufactured IN718 Components with Wirelessly Powered and Interrogated Embedded Sensing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Attridge, Paul; Bajekal, Sanjay; Klecka, Michael
A methodology is described for embedding commercial-off-the-shelf sensors together with wireless communication and power circuit elements using direct laser metal sintered additively manufactured components. Physics based models of the additive manufacturing processes and sensor/wireless level performance models guided the design and embedment processes. A combination of cold spray deposition and laser engineered net shaping was used to fashion the transmitter/receiving elements and embed the sensors, thereby providing environmental protection and component robustness/survivability for harsh conditions. By design, this complement of analog and digital sensors were wirelessly powered and interrogated using a health and utilization monitoring system; enabling real-time, in situmore » prognostics and diagnostics.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-25
... Devices and Systems, Components Thereof, and Products Containing Same; Notice of Commission Determination... certain wireless communication devices and systems, components thereof, and products containing the same..., California; Apple Inc. of Cupertino, California; Aruba Networks, Inc. of Sunnyvale, California; Meru Networks...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-05
... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-868] Certain Wireless Devices With 3G and... importation, and the sale within the United States after importation of certain wireless devices with 3G and... devices with 3G and/or 4G capabilities and components thereof by reason of infringement of one or more of...
Ruamviboonsuk, Paisan; Sudsakorn, Napitchareeya; Somkijrungroj, Thanapong; Engkagul, Chayanee; Tiensuwan, Montip
2012-03-01
Electronic measurement of visual acuity (VA) has been proposed and adopted as a method of determining VA scores in clinical research. Characters (optotypes) are displayed on a monitor screen and the examinee selects a match and inputs his choice to another electronic device. Unfortunately, the optotypes, called Sloan letters, in the standard protocol are 10 Roman characters. This limits their practicabilityfor measuring VA of patients who are illiterate to these characters. The authors introduced a method of displaying the Sloan letters one by one on a notebook and all 10 Sloan letters on a tablet computer screen. The former is for testing the patients whereas the latter is for them to input their responses by tapping on a letter that matches the one on the notebook screen. To assess test-retest reliability of VA scores determined with this method. Participants without ocular abnormality were recruited to have their right eyes measured with the same VA measurement method twice, one week apart. Those who were illiterate to Roman characters were enrolled for the aforementioned method for measuring their VA (Tablet group). A 15-inch display notebook computer and a 9-inch display tablet computer (iPad) communicated via a local wireless data network provided by a Wi-Fi router. Those who understood Roman characters were enrolled to have measurements with a 17-inch desktop computer and an infrared wireless keyboard (Keyboard group). Both methods used the same protocols and software for VA measurements. Reliability of VA scores obtained from each group was assessed by the confidence interval (CI) of the difference of the scores from the test and retest. The t test was used to analyze differences in mean VA scores between the test and retest in each group with p < 0.05 determined as statistically significant. There were 49 and 50 participants in the Tablet and Keyboard group respectively. The 95% CI of the difference between the scores from the test and retest in each group was 2 letters. Approximately 95% of participants in each group had an absolute difference of the scores between the test and retest of 7 letters. The mean of VA scores from the first test was significantly different from that of the second test in the Keyboard group (one-letter difference, p = 0.049); there was no significant difference between these scores in the Tablet group (0.1-letter difference, p = 0.86). Tablet computers may be used to assist patients who are illiterate to Roman characters in having their VA measured with the standard electronic protocol. This preliminary study suggested that the proposed method should be useful for reliable measuring VA outcome in multicenter international clinical trials without encountering a language barrier
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-30
... INTERNATIONAL TRADE COMMISSION [Docket No. 2904] Certain Wireless Consumer Electronics Devices and.... International Trade Commission has received a complaint entitled Certain Wireless Consumer Electronics Devices... importation, and the sale within the United States after importation of certain wireless consumer electronics...
Flexible network wireless transceiver and flexible network telemetry transceiver
Brown, Kenneth D.
2008-08-05
A transceiver for facilitating two-way wireless communication between a baseband application and other nodes in a wireless network, wherein the transceiver provides baseband communication networking and necessary configuration and control functions along with transmitter, receiver, and antenna functions to enable the wireless communication. More specifically, the transceiver provides a long-range wireless duplex communication node or channel between the baseband application, which is associated with a mobile or fixed space, air, water, or ground vehicle or other platform, and other nodes in the wireless network or grid. The transceiver broadly comprises a communication processor; a flexible telemetry transceiver including a receiver and a transmitter; a power conversion and regulation mechanism; a diplexer; and a phased array antenna system, wherein these various components and certain subcomponents thereof may be separately enclosed and distributable relative to the other components and subcomponents.
Jamming Attack in Wireless Sensor Network: From Time to Space
NASA Astrophysics Data System (ADS)
Sun, Yanqiang; Wang, Xiaodong; Zhou, Xingming
Classical jamming attack models in the time domain have been proposed, such as constant jammer, random jammer, and reactive jammer. In this letter, we consider a new problem: given k jammers, how does the attacker minimize the pair-wise connectivity among the nodes in a Wireless Sensor Network (WSN)? We call this problem k-Jammer Deployment Problem (k-JDP). To the best of our knowledge, this is the first attempt at considering the position-critical jamming attack against wireless sensor network. We mainly make three contributions. First, we prove that the decision version of k-JDP is NP-complete even in the ideal situation where the attacker has full knowledge of the topology information of sensor network. Second, we propose a mathematical formulation based on Integer Programming (IP) model which yields an optimal solution. Third, we present a heuristic algorithm HAJDP, and compare it with the IP model. Numerical results show that our heuristic algorithm is computationally efficient.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-12
... Electronics Devices and Components Thereof; Notice of Request for Statements on the Public Interest AGENCY: U... wireless consumer electronics devices and components thereof imported by respondents Acer, Inc. of Taipei... Communications, Inc. of San Diego, California; LG Electronics, Inc. of Seoul, Korea; LG Electronics U.S.A., Inc...
Towards sparse characterisation of on-body ultra-wideband wireless channels.
Yang, Xiaodong; Ren, Aifeng; Zhang, Zhiya; Ur Rehman, Masood; Abbasi, Qammer Hussain; Alomainy, Akram
2015-06-01
With the aim of reducing cost and power consumption of the receiving terminal, compressive sensing (CS) framework is applied to on-body ultra-wideband (UWB) channel estimation. It is demonstrated in this Letter that the sparse on-body UWB channel impulse response recovered by the CS framework fits the original sparse channel well; thus, on-body channel estimation can be achieved using low-speed sampling devices.
Towards sparse characterisation of on-body ultra-wideband wireless channels
Ren, Aifeng; Zhang, Zhiya; Ur Rehman, Masood; Abbasi, Qammer Hussain; Alomainy, Akram
2015-01-01
With the aim of reducing cost and power consumption of the receiving terminal, compressive sensing (CS) framework is applied to on-body ultra-wideband (UWB) channel estimation. It is demonstrated in this Letter that the sparse on-body UWB channel impulse response recovered by the CS framework fits the original sparse channel well; thus, on-body channel estimation can be achieved using low-speed sampling devices. PMID:26609409
Multimodal Alexia: Neuropsychological Mechanisms and Implications for Treatment
ERIC Educational Resources Information Center
Kim, Esther S.; Rapcsak, Steven Z.; Andersen, Sarah; Beeson, Pelagie M.
2011-01-01
Letter-by-letter (LBL) reading is the phenomenon whereby individuals with acquired alexia decode words by sequential identification of component letters. In cases where letter recognition or letter naming is impaired, however, a LBL reading approach is obviated, resulting in a nearly complete inability to read, or global alexia. In some such…
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-22
... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-853] Certain Wireless Consumer Electronics Devices and Components Thereof; Commission Determination Concerning an Initial Determination Granting a Motion To Amend Complaint and Notice of Investigation AGENCY: U.S. International Trade...
NASA Astrophysics Data System (ADS)
Balouchestani, Mohammadreza
2017-05-01
Network traffic or data traffic in a Wireless Local Area Network (WLAN) is the amount of network packets moving across a wireless network from each wireless node to another wireless node, which provide the load of sampling in a wireless network. WLAN's Network traffic is the main component for network traffic measurement, network traffic control and simulation. Traffic classification technique is an essential tool for improving the Quality of Service (QoS) in different wireless networks in the complex applications such as local area networks, wireless local area networks, wireless personal area networks, wireless metropolitan area networks, and wide area networks. Network traffic classification is also an essential component in the products for QoS control in different wireless network systems and applications. Classifying network traffic in a WLAN allows to see what kinds of traffic we have in each part of the network, organize the various kinds of network traffic in each path into different classes in each path, and generate network traffic matrix in order to Identify and organize network traffic which is an important key for improving the QoS feature. To achieve effective network traffic classification, Real-time Network Traffic Classification (RNTC) algorithm for WLANs based on Compressed Sensing (CS) is presented in this paper. The fundamental goal of this algorithm is to solve difficult wireless network management problems. The proposed architecture allows reducing False Detection Rate (FDR) to 25% and Packet Delay (PD) to 15 %. The proposed architecture is also increased 10 % accuracy of wireless transmission, which provides a good background for establishing high quality wireless local area networks.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-05
...] Facilitating the Use of Microwave for Wireless Backhaul and Other Uses and Providing Additional Flexibility To... regulatory barriers and lowering costs for the wireless microwave backhaul facilities that are an important component of many mobile wireless networks. The steps we take will remove regulatory barriers that today...
Wearable, multimodal, vitals acquisition unit for intelligent field triage
Georgiou, Julius
2016-01-01
In this Letter, the authors describe the characterisation design and development of the authors’ wearable, multimodal vitals acquisition unit for intelligent field triage. The unit is able to record the standard electrocardiogram, blood oxygen and body temperature parameters and also has the unique capability to record up to eight custom designed acoustic streams for heart and lung sound auscultation. These acquisition channels are highly synchronised to fully maintain the time correlation of the signals. The unit is a key component enabling systematic and intelligent field triage to continuously acquire vital patient information. With the realised unit a novel data-set with highly synchronised vital signs was recorded. The new data-set may be used for algorithm design in vital sign analysis or decision making. The monitoring unit is the only known body worn system that records standard emergency parameters plus eight multi-channel auscultatory streams and stores the recordings and wirelessly transmits them to mobile response teams. PMID:27733926
Aging effects on selective attention-related electroencephalographic patterns during face encoding.
Deiber, M-P; Rodriguez, C; Jaques, D; Missonnier, P; Emch, J; Millet, P; Gold, G; Giannakopoulos, P; Ibañez, V
2010-11-24
Previous electrophysiological studies revealed that human faces elicit an early visual event-related potential (ERP) within the occipito-temporal cortex, the N170 component. Although face perception has been proposed to rely on automatic processing, the impact of selective attention on N170 remains controversial both in young and elderly individuals. Using early visual ERP and alpha power analysis, we assessed the influence of aging on selective attention to faces during delayed-recognition tasks for face and letter stimuli, examining 36 elderly and 20 young adults with preserved cognition. Face recognition performance worsened with age. Aging induced a latency delay of the N1 component for faces and letters, as well as of the face N170 component. Contrasting with letters, ignored faces elicited larger N1 and N170 components than attended faces in both age groups. This counterintuitive attention effect on face processing persisted when scenes replaced letters. In contrast with young, elderly subjects failed to suppress irrelevant letters when attending faces. Whereas attended stimuli induced a parietal alpha band desynchronization within 300-1000 ms post-stimulus with bilateral-to-right distribution for faces and left lateralization for letters, ignored and passively viewed stimuli elicited a central alpha synchronization larger on the right hemisphere. Aging delayed the latency of this alpha synchronization for both face and letter stimuli, and reduced its amplitude for ignored letters. These results suggest that due to their social relevance, human faces may cause paradoxical attention effects on early visual ERP components, but they still undergo classical top-down control as a function of endogenous selective attention. Aging does not affect the face bottom-up alerting mechanism but reduces the top-down suppression of distracting letters, possibly impinging upon face recognition, and more generally delays the top-down suppression of task-irrelevant information. Copyright © 2010 IBRO. Published by Elsevier Ltd. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-21
... Devices, Portable Music and Data Processing Devices, Computers, and Components Thereof; Institution of... communication devices, portable music and data processing devices, computers, and components thereof by reason... certain wireless communication devices, portable music and data processing devices, computers, and...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-12
... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-770] Certain Video Game Systems and Wireless Controllers and Components Thereof; Commission Determination To Review-In-Part a Remand Initial Determination; Schedule for Filing Written Submissions on Review for Remand Initial Determination and Final...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-18
... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-770] Certain Video Game Systems and Wireless Controllers and Components Thereof, Commission Determination Finding No Violation of the Tariff Act of 1930 AGENCY: U.S. International Trade Commission. ACTION: Notice. SUMMARY: Notice is hereby...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-30
... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-745] Certain Wireless Communication Devices, Portable Music and Data Processing Devices, Computers and Components Thereof; Notice of... communication devices, portable music and data processing devices, computers and components thereof by reason of...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-24
... Music and Data Processing Devices, Computers, and Components Thereof; Notice of Receipt of Complaint... complaint entitled Wireless Communication Devices, Portable Music and Data Processing Devices, Computers..., portable music and data processing devices, computers, and components thereof. The complaint names as...
Traffic Profiling in Wireless Sensor Networks
2006-12-01
components, that can be used for traffic profiling and monitoring of a wireless sensor network . The work demostrates how the IDS should capture and...observed and analyzed. Finally, initial indications from basic analysis of wireless sensor network traffic demonstrated a high degree of self-similarity.
A system-level view of optimizing high-channel-count wireless biosignal telemetry.
Chandler, Rodney J; Gibson, Sarah; Karkare, Vaibhav; Farshchi, Shahin; Marković, Dejan; Judy, Jack W
2009-01-01
In this paper we perform a system-level analysis of a wireless biosignal telemetry system. We perform an analysis of each major system component (e.g., analog front end, analog-to-digital converter, digital signal processor, and wireless link), in which we consider physical, algorithmic, and design limitations. Since there are a wide range applications for wireless biosignal telemetry systems, each with their own unique set of requirements for key parameters (e.g., channel count, power dissipation, noise level, number of bits, etc.), our analysis is equally broad. The net result is a set of plots, in which the power dissipation for each component and as the system as a whole, are plotted as a function of the number of channels for different architectural strategies. These results are also compared to existing implementations of complete wireless biosignal telemetry systems.
Reichenbach, Mark; Frederick, Tom; Cubrich, Lou; Bircher, Walter; Bills, Nathan; Morien, Marsha; Farritor, Shane; Oleynikov, Dmitry
2017-03-01
This study aimed to evaluate the capability of performing telesurgery via radio transmission for military arenas where wired internet connections may not be practical. Most existing robotic surgery systems are too large to effectively deploy with first responders. The miniature surgical platform in this study consists of a multifunctional robot suite that can fit easily into a briefcase. The focus of this study is to explore the implications of radio control of the robot. The hypothesis is that an in vivo robot and its control boards can be controlled using off-the-shelf wireless components. An experiment was designed with off-the-shelf wireless components to test the capability of our newest generation of miniature surgical robot to become battery-operated and wireless. Wireless transmission of control signals has provided proof of concept and has exposed areas of the software that can be built upon to improve responsiveness. Wireless transmission of the video feed can be adequately performed with basic off-the-shelf components. Reprint & Copyright © 2017 Association of Military Surgeons of the U.S.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-29
... Electronics Devices and Components Thereof; Commission Determination To Review in Part A Final Initial... sale within the United States after importation of certain wireless consumer electronics devices and... Electronics, Inc. of Seoul, Korea and LG Electronics U.S.A., Inc. of Englewood Cliffs, New Jersey...
Radio/antenna mounting system for wireless networking under row-crop agriculture conditions
USDA-ARS?s Scientific Manuscript database
Interest in and deployment of wireless monitoring systems is increasing in many diverse environments, including row-crop agricultural fields. While many studies have been undertaken to evaluate various aspects of wireless monitoring and networking, such as electronic hardware components, data-colle...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-26
... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-745] Certain Wireless Communication Devices, Portable Music and Data Processing Devices, Computers and Components Thereof; Commission Decision... importation of certain wireless communication devices, portable music and data processing devices, computers...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-25
... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-745] Certain Wireless Communication Devices, Portable Music and Data Processing Devices, Computers and Components Thereof; Commission Decision... importation of certain wireless communication devices, portable music and data processing devices, computers...
2016-06-01
therefore did not implement or test actual sensors or electronic components (analog-to-digital conversion, power , and the wireless transmission ...ARL-TR-7703 ● JUNE 2016 US Army Research Laboratory Evaluation of a Prototype Low-Cost, Modular, Wireless Electroencephalography...originator. ARL-TR-7703 ● JUNE 2016 US Army Research Laboratory Evaluation of a Prototype Low-Cost, Modular, Wireless
Heterogeneous wireless/wireline optical access networks with the R-EAT as backend component
NASA Astrophysics Data System (ADS)
Hagedorn, Klaus; Gindera, Ralf; Stohr, Andreas; Jager, Dieter
2004-09-01
A heterogeneous wireless/wireline optical transmission link using a reflection type electroabsorption transceiver (R-EAT) is presented. Simultaneous transmission of full-duplex broadband wireless LAN (WLAN) channels and 1Gb/s base band data is experimentally demonstrated. The system link employs sub-carrier multiplexing (SCM) and two optical channels for full duplex transmission of various analog WLAN channels and downlink digital base band data. The developed link architecture is suitable for simultaneous transmission of broadband wireline and wireless signals, it enables the coexistence and interoperability between wireline and wireless access technologies. The developed R-EAT component employed in this wireline/wireless access system, features "single-chip-component" base stations in access networks with star type topology where only a single optical fiber is used for bidirectional optical transmission. The R-EAT can be used within the optical C-band (1530- 1560nm) and is suitable for (D)WDM networks. Bit error rate measurements demonstrate the capabilities of the R-EAT for 1Gb/s base band transmission. The analog performance for WLAN transmission is characterised by a spurious free dynamic range (SFDR) of more than 75dB and 90dB for uplink and downlink transmission, respectively. The link gain for uplink and downlink transmission is -42dB and -37dB, respectively. The demonstrates the analog performances of the R-EAT for being used in wireless access networks such as W-LAN.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-08
... Communication Devices, Portable Music and Data Processing Devices, Computers and Components Thereof; Notice of... within the United States after importation of certain wireless communication devices, portable music and... music and data processing devices, computers and components thereof that infringe one or more of claim...
Age Changes in the Missing-Letter Effect Revisited
ERIC Educational Resources Information Center
Saint-Aubin, J.; Klein, R.M.; Landry, T.
2005-01-01
When participants search for a target letter while reading, they make more omissions if the target letter is embedded in frequent function words than in less frequent content words. Reflecting developmental changes in component language and literacy skills, the size of this effect increases with age. With adults, the missing-letter effect is due…
Wireless power transfer magnetic couplers
Wu, Hunter; Gilchrist, Aaron; Sealy, Kylee
2016-01-19
A magnetic coupler is disclosed for wireless power transfer systems. A ferrimagnetic component is capable of guiding a magnetic field. A wire coil is wrapped around at least a portion of the ferrimagnetic component. A screen is capable of blocking leakage magnetic fields. The screen may be positioned to cover at least one side of the ferrimagnetic component and the coil. A distance across the screen may be at least six times an air gap distance between the ferrimagnetic component and a receiving magnetic coupler.
Automated alignment system for optical wireless communication systems using image recognition.
Brandl, Paul; Weiss, Alexander; Zimmermann, Horst
2014-07-01
In this Letter, we describe the realization of a tracked line-of-sight optical wireless communication system for indoor data distribution. We built a laser-based transmitter with adaptive focus and ray steering by a microelectromechanical systems mirror. To execute the alignment procedure, we used a CMOS image sensor at the transmitter side and developed an algorithm for image recognition to localize the receiver's position. The receiver is based on a self-developed optoelectronic integrated chip with low requirements on the receiver optics to make the system economically attractive. With this system, we were able to set up the communication link automatically without any back channel and to perform error-free (bit error rate <10⁻⁹) data transmission over a distance of 3.5 m with a data rate of 3 Gbit/s.
NASA Astrophysics Data System (ADS)
Sharma, Manish; Awasthi, Y. K.; Singh, Himanshu; Kumar, Raj; Kumari, Sarita
2016-11-01
In this letter, a compact monopole antenna for ultra wideband (UWB) applications is proposed with small size of 18×20=360 mm2. Antenna consist of a flower shape radiating patch with a pair of C-shaped slots which offer two notch bands for WiMAX (3.04-3.68 GHz) & WLAN (4.73-5.76 GHz) and two rectangular shaped slots in the ground plane which provides a wide measured usable fractional extended bandwidth of 163 % (2.83-14.0 GHz) with improved VSWR. Moreover, it is also convenient for other wireless application as close range radar, 8-12 GHz in X-band. Measured radiation patterns exhibits nearly omnidirectional in H-plane and dipole like pattern in E-plane across the bandwidth and furthermore exhibits good time domain performance.
Media Access Time-Rearrangement of Wireless LAN for a Multi-Radio Collocated Platform
NASA Astrophysics Data System (ADS)
Shin, Sang-Heon; Kim, Chul; Park, Sang Kyu
With the advent of new Radio Access Technologies (RATs), it is inevitable that several RATs will co-exist, especially in the license-exempt band. In this letter, we present an in-depth adaptation of the proactive time-rearrangement (PATRA) scheme for IEEE 802.11 WLAN. The PATRA is a time division approach for reducing interference from a multi-radio device. Because IEEE 802.11 is based on carrier sensing and contention mechanism, it is the most suitable candidate to adapt the PATRA.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-07
... INTERNATIONAL TRADE COMMISSION [DN 2929] Certain Wireless Devices With 3G and/or 4G Capabilities... Interest AGENCY: U.S. International Trade Commission. ACTION: Notice. SUMMARY: Notice is hereby given that the U.S. International Trade Commission has received a complaint entitled Certain Wireless Devices...
2004-09-01
MESH VS . SIMPLE AD HOC AND MANET..............................................5 B. DESIRABLE CHARACTERISTICS OF WIRELESS MESH NETWORKS...Comparison of Mesh (top) vs . Traditional Wireless (bottom) .............26 Figure 7. UML Model of SensorML Components (From SenorML Models Paper) ......30...50 Figure 17. Latency Difference Example – OLSR vs . AODV
NASA Technical Reports Server (NTRS)
Hang, Richard
2015-01-01
The presentation will overview NASA Armstrong Flight Research Centers flight test capabilities, which can provide various means for flight testing of passive and active wireless sensor systems, also, it will address the needs of the wireless data acquisition solutions for the centers flight instrumentation issues such as additional weight caused by added instrumentation wire bundles, connectors, wire cables routing, moving components, etc., that the Passive Wireless Sensor Technology Workshop may help. The presentation shows the constraints and requirements that the wireless sensor systems will face in the flight test applications.
NASA Astrophysics Data System (ADS)
Kim, Do Hyun; Choi, Kyoung Ho; Kim, Kyeong Tae; Li, Ki Joune
In this letter, we propose a novel approach using wireless sensor networks (WSNs) to enhance the safety and efficiency of four-way stop-sign-controlled (FWSC) intersections. The proposed algorithm provides right of way (RoW) and crash avoidance information by means of an intelligent WSN system. The system is composed of magnetic sensors, embedded in the center of a lane, with relay nodes and a base station placed on the side of the road. The experimental results show that the vehicle detection accuracy is over 99% and the sensor node battery life expectancy is over 3 years for traffic of 5, 800 vehicles per day. For the traffic application we consider, a strong effect is observed as the projected conflict rate was reduced by 72% compared to an FWSC intersection operated with only driver perception.
Investigating end-to-end security in the fifth generation wireless capabilities and IoT extensions
NASA Astrophysics Data System (ADS)
Uher, J.; Harper, J.; Mennecke, R. G.; Patton, P.; Farroha, B.
2016-05-01
The emerging 5th generation wireless network will be architected and specified to meet the vision of allowing the billions of devices and millions of human users to share spectrum to communicate and deliver services. The expansion of wireless networks from its current role to serve these diverse communities of interest introduces new paradigms that require multi-tiered approaches. The introduction of inherently low security components, like IoT devices, necessitates that critical data be better secured to protect the networks and users. Moreover high-speed communications that are meant to enable the autonomous vehicles require ultra reliable and low latency paths. This research explores security within the proposed new architectures and the cross interconnection of the highly protected assets with low cost/low security components forming the overarching 5th generation wireless infrastructure.
Flexible quality of service model for wireless body area sensor networks.
Liao, Yangzhe; Leeson, Mark S; Higgins, Matthew D
2016-03-01
Wireless body area sensor networks (WBASNs) are becoming an increasingly significant breakthrough technology for smart healthcare systems, enabling improved clinical decision-making in daily medical care. Recently, radio frequency ultra-wideband technology has developed substantially for physiological signal monitoring due to its advantages such as low-power consumption, high transmission data rate, and miniature antenna size. Applications of future ubiquitous healthcare systems offer the prospect of collecting human vital signs, early detection of abnormal medical conditions, real-time healthcare data transmission and remote telemedicine support. However, due to the technical constraints of sensor batteries, the supply of power is a major bottleneck for healthcare system design. Moreover, medium access control (MAC) needs to support reliable transmission links that allow sensors to transmit data safely and stably. In this Letter, the authors provide a flexible quality of service model for ad hoc networks that can support fast data transmission, adaptive schedule MAC control, and energy efficient ubiquitous WBASN networks. Results show that the proposed multi-hop communication ad hoc network model can balance information packet collisions and power consumption. Additionally, wireless communications link in WBASNs can effectively overcome multi-user interference and offer high transmission data rates for healthcare systems.
NASA Technical Reports Server (NTRS)
Hunter, Gary W.; Behbahani, Alireza
2012-01-01
Smart Sensor Systems with wireless capability operational in high temperature, harsh environments are a significant component in enabling future propulsion systems to meet a range of increasingly demanding requirements. These propulsion systems must incorporate technology that will monitor engine component conditions, analyze the incoming data, and modify operating parameters to optimize propulsion system operations. This paper discusses the motivation towards the development of high temperature, smart wireless sensor systems that include sensors, electronics, wireless communication, and power. The challenges associated with the use of traditional wired sensor systems will be reviewed and potential advantages of Smart Sensor Systems will be discussed. A brief review of potential applications for wireless smart sensor networks and their potential impact on propulsion system operation, with emphasis on Distributed Engine Control and Propulsion Health Management, will be given. A specific example related to the development of high temperature Smart Sensor Systems based on silicon carbide electronics will be discussed. It is concluded that the development of a range of robust smart wireless sensor systems are a foundation for future development of intelligent propulsion systems with enhanced capabilities.
ERIC Educational Resources Information Center
Richards, Todd L.; Berninger, Virginia W.; Stock, Pat; Altemeier, Leah; Trivedi, Pamala; Maravilla, Kenneth R.
2011-01-01
During fMRI imaging, 12 good and 8 poor writers aged 11 wrote a newly taught pseudoletter and a highly practiced letter. Both letters were formed from the same components, but the pseudoletter had a novel configuration not corresponding to a written English letter form. On the first fMRI contrast between the newly taught pseudoletter and highly…
Letter Knowledge in Parent–Child Conversations
Robins, Sarah; Treiman, Rebecca; Rosales, Nicole
2014-01-01
Learning about letters is an important component of emergent literacy. We explored the possibility that parent speech provides information about letters, and also that children’s speech reflects their own letter knowledge. By studying conversations transcribed in CHILDES (MacWhinney, 2000) between parents and children aged one to five, we found that alphabetic order influenced use of individual letters and letter sequences. The frequency of letters in children’s books influenced parent utterances throughout the age range studied, but children’s utterances only after age two. Conversations emphasized some literacy-relevant features of letters, such as their shapes and association with words, but not letters’ sounds. Describing these patterns and how they change over the preschool years offers important insight into the home literacy environment. PMID:25598577
ERIC Educational Resources Information Center
Al-Ali, Mohammed N.
2006-01-01
This study reports an investigation of the genre components and pragmatic strategies of letters of applications written by Jordanian Arabic--English bilinguals. Specifically it is set up to trace how far novice non-native speakers of English are able to utilise the generic components and politeness strategies of the target language that strongly…
Continuous, Wireless Monitoring of Sediment Flux within Streams on Military Installations
2013-10-17
2.2.1.3.2 Voltage Regulation ...................................................................................... 14 2.2.1.3.3 Mote and Data...components are: A. PCB board; B. Suspended sediment sensor; C. MDA300; D. Crossbow mote (not in the picture); E. Rain gauge; F. Two solenoid valves...wireless mote (MICA2, Crossbow Technology), a rechargeable battery, and a mounting structure. The exact configuration of the wireless sensor node
30 CFR 27.5 - Letter of certification.
Code of Federal Regulations, 2010 CFR
2010-07-01
... APPROVAL OF MINING PRODUCTS METHANE-MONITORING SYSTEMS General Provisions § 27.5 Letter of certification. (a) Upon completion of investigation of a methane-monitoring system, or component or subassembly...
30 CFR 27.5 - Letter of certification.
Code of Federal Regulations, 2011 CFR
2011-07-01
... APPROVAL OF MINING PRODUCTS METHANE-MONITORING SYSTEMS General Provisions § 27.5 Letter of certification. (a) Upon completion of investigation of a methane-monitoring system, or component or subassembly...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-01
... Certain Video Game Systems and Wireless Controller and Components Thereof, DN 2791; the Commission is... sale within the United States after importation of certain video game systems and wireless controller...
ERIC Educational Resources Information Center
Yunxia, Zhu
1997-01-01
Examines the different attitudes of native speakers in understanding a written genre of Modern Standard Chinese--sales letters. The study focuses on the use of formulaic components appearing in real Chinese sales letters and compares these components with the advice given in textbooks. Findings reveal a gap between business teaching and business…
2004-09-01
identification of the lettered features. 2.2 BFIT Sampling Chip The BFIT sampling chip is a flexible patch-like chip with a multilayer polymeric metal...PPy) and glucose oxidase (GOD). The BFIT fabrication process uses SU8 as a principal structural material consisting of five steps (Figure 2). This...process is a subset of an earlier technology developed for the polymer material PDMS.11,12,13,14,15 The first step was the deposition of a Teflon
Study of RF Propagation Characteristics for Wireless Sensor Networks in Railroad Environments
DOT National Transportation Integrated Search
2010-01-01
The freight railroad industry in North America is exerting efforts to leverage Wireless Sensor Networks to monitor systems and components on railcars. This allows fault detection and accident prevention even while a train is moving. Railcars, constru...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-29
... Certain Wireless Devices with 3G Capabilities and Components Thereof, DN 2835; the Commission is... importation, and the sale within the United States after importation of certain wireless devices with 3g...
The distributed neural system for top-down letter processing: an fMRI study
NASA Astrophysics Data System (ADS)
Liu, Jiangang; Feng, Lu; Li, Ling; Tian, Jie
2011-03-01
This fMRI study used Psychophysiological interaction (PPI) to investigate top-down letter processing with an illusory letter detection task. After an initial training that became increasingly difficult, participant was instructed to detect a letter from pure noise images where there was actually no letter. Such experimental paradigm allowed for isolating top-down components of letter processing and minimizing the influence of bottom-up perceptual input. A distributed cortical network of top-down letter processing was identified by analyzing the functional connectivity patterns of letter-preferential area (LA) within the left fusiform gyrus. Such network extends from the visual cortex to high level cognitive cortexes, including the left middle frontal gyrus, left medial frontal gyrus, left superior parietal gyrus, bilateral precuneus, and left inferior occipital gyrus. These findings suggest that top-down letter processing contains not only regions for processing of letter phonology and appearance, but also those involved in internal information generation and maintenance, and attention and memory processing.
Monitoring of atopic dermatitis using leaky coaxial cable.
Dong, Binbin; Ren, Aifeng; Shah, Syed Aziz; Hu, Fangming; Zhao, Nan; Yang, Xiaodong; Haider, Daniyal; Zhang, Zhiya; Zhao, Wei; Abbasi, Qammer Hussain
2017-12-01
In our daily life, inadvertent scratching may increase the severity of skin diseases (such as atopic dermatitis etc.). However, people rarely pay attention to this matter, so the known measurement behaviour of the movement is also very little. Nevertheless, the behaviour and frequency of scratching represent the degree of itching, and the analysis of scratching frequency is helpful to the doctor's clinical dosage. In this Letter, a novel system is proposed to monitor the scratching motion of a sleeping human body at night. The core device of the system is just a leaky coaxial cable (LCX) and a router. Commonly, LCX is used in the blind field or semi-blindfield in wireless communication. The new idea is that the leaky cable is placed on the bed, and then the state information of physical layer of wireless communication channels is acquired to identify the scratching motion and other small body movements in the human sleep process. The results show that it can be used to detect the movement and its duration. Channel state information (CSI) packet is collected by card installed in the computer based on the 802.11n protocol. The characterisation of the scratch motion in the collected CSI is unique, so it can be distinguished from the wireless channel amplitude variation trend.
Monitoring of atopic dermatitis using leaky coaxial cable
Dong, Binbin; Ren, Aifeng; Shah, Syed Aziz; Hu, Fangming; Zhao, Nan; Haider, Daniyal; Zhang, Zhiya; Zhao, Wei; Abbasi, Qammer Hussain
2017-01-01
In our daily life, inadvertent scratching may increase the severity of skin diseases (such as atopic dermatitis etc.). However, people rarely pay attention to this matter, so the known measurement behaviour of the movement is also very little. Nevertheless, the behaviour and frequency of scratching represent the degree of itching, and the analysis of scratching frequency is helpful to the doctor's clinical dosage. In this Letter, a novel system is proposed to monitor the scratching motion of a sleeping human body at night. The core device of the system is just a leaky coaxial cable (LCX) and a router. Commonly, LCX is used in the blind field or semi-blindfield in wireless communication. The new idea is that the leaky cable is placed on the bed, and then the state information of physical layer of wireless communication channels is acquired to identify the scratching motion and other small body movements in the human sleep process. The results show that it can be used to detect the movement and its duration. Channel state information (CSI) packet is collected by card installed in the computer based on the 802.11n protocol. The characterisation of the scratch motion in the collected CSI is unique, so it can be distinguished from the wireless channel amplitude variation trend. PMID:29383259
Daffner, Kirk R; Alperin, Brittany R; Mott, Katherine K; Holcomb, Phillip J
2014-01-22
Older adults exhibit diminished ability to inhibit the processing of visual stimuli that are supposed to be ignored. The extent to which age-related changes in early visual processing contribute to impairments in selective attention remains to be determined. Here, 103 adults, 18-85 years of age, completed a color selective attention task in which they were asked to attend to a specified color and respond to designated target letters. An optimal approach would be to initially filter according to color and then process letter forms in the attend color to identify targets. An asymmetric N170 ERP component (larger amplitude over left posterior hemisphere sites) was used as a marker of the early automatic processing of letter forms. Young and middle-aged adults did not generate an asymmetric N170 component. In contrast, young-old and old-old adults produced a larger N170 over the left hemisphere. Furthermore, older adults generated a larger N170 to letter than nonletter stimuli over the left, but not right hemisphere. More asymmetric N170 responses predicted greater allocation of late selection resources to target letters in the ignore color, as indexed by P3b amplitude. These results suggest that unlike their younger counterparts, older adults automatically process stimuli as letters early in the selection process, when it would be more efficient to attend to color only. The inability to ignore letters early in the processing stream helps explain the age-related increase in subsequent processing of target letter forms presented in the ignore color.
Wireless structural monitoring for homeland security applications
NASA Astrophysics Data System (ADS)
Kiremidjian, Garo K.; Kiremidjian, Anne S.; Lynch, Jerome P.
2004-07-01
This paper addresses the development of a robust, low-cost, low power, and high performance autonomous wireless monitoring system for civil assets such as large facilities, new construction, bridges, dams, commercial buildings, etc. The role of the system is to identify the onset, development, location and severity of structural vulnerability and damage. The proposed system represents an enabling infrastructure for addressing structural vulnerabilities specifically associated with homeland security. The system concept is based on dense networks of "intelligent" wireless sensing units. The fundamental properties of a wireless sensing unit include: (a) interfaces to multiple sensors for measuring structural and environmental data (such as acceleration, displacements, pressure, strain, material degradation, temperature, gas agents, biological agents, humidity, corrosion, etc.); (b) processing of sensor data with embedded algorithms for assessing damage and environmental conditions; (c) peer-to-peer wireless communications for information exchange among units(thus enabling joint "intelligent" processing coordination) and storage of data and processed information in servers for information fusion; (d) ultra low power operation; (e) cost-effectiveness and compact size through the use of low-cost small-size off-the-shelf components. An integral component of the overall system concept is a decision support environment for interpretation and dissemination of information to various decision makers.
Lee, Youngbum; Kim, Jinkwon; Son, Muntak; Lee, Myoungho
2007-01-01
This research implements wireless accelerometer sensor module and algorithm to determine wearer's posture, activity and fall. Wireless accelerometer sensor module uses ADXL202, 2-axis accelerometer sensor (Analog Device). And using wireless RF module, this module measures accelerometer signal and shows the signal at ;Acceloger' viewer program in PC. ADL algorithm determines posture, activity and fall that activity is determined by AC component of accelerometer signal and posture is determined by DC component of accelerometer signal. Those activity and posture include standing, sitting, lying, walking, running, etc. By the experiment for 30 subjects, the performance of implemented algorithm was assessed, and detection rate for postures, motions and subjects was calculated. Lastly, using wireless sensor network in experimental space, subject's postures, motions and fall monitoring system was implemented. By the simulation experiment for 30 subjects, 4 kinds of activity, 3 times, fall detection rate was calculated. In conclusion, this system can be application to patients and elders for activity monitoring and fall detection and also sports athletes' exercise measurement and pattern analysis. And it can be expected to common person's exercise training and just plaything for entertainment.
IR wireless cluster synapses of HYDRA very large neural networks
NASA Astrophysics Data System (ADS)
Jannson, Tomasz; Forrester, Thomas
2008-04-01
RF/IR wireless (virtual) synapses are critical components of HYDRA (Hyper-Distributed Robotic Autonomy) neural networks, already discussed in two earlier papers. The HYDRA network has the potential to be very large, up to 10 11-neurons and 10 18-synapses, based on already established technologies (cellular RF telephony and IR-wireless LANs). It is organized into almost fully connected IR-wireless clusters. The HYDRA neurons and synapses are very flexible, simple, and low-cost. They can be modified into a broad variety of biologically-inspired brain-like computing capabilities. In this third paper, we focus on neural hardware in general, and on IR-wireless synapses in particular. Such synapses, based on LED/LD-connections, dominate the HYDRA neural cluster.
Cross-Layer Algorithms for QoS Enhancement in Wireless Multimedia Sensor Networks
NASA Astrophysics Data System (ADS)
Saxena, Navrati; Roy, Abhishek; Shin, Jitae
A lot of emerging applications like advanced telemedicine and surveillance systems, demand sensors to deliver multimedia content with precise level of QoS enhancement. Minimizing energy in sensor networks has been a much explored research area but guaranteeing QoS over sensor networks still remains an open issue. In this letter we propose a cross-layer approach combining Network and MAC layers, for QoS enhancement in wireless multimedia sensor networks. In the network layer a statistical estimate of sensory QoS parameters is performed and a nearoptimal genetic algorithmic solution is proposed to solve the NP-complete QoS-routing problem. On the other hand the objective of the proposed MAC algorithm is to perform the QoS-based packet classification and automatic adaptation of the contention window. Simulation results demonstrate that the proposed protocol is capable of providing lower delay and better throughput, at the cost of reasonable energy consumption, in comparison with other existing sensory QoS protocols.
Writing more informative letters of reference.
Wright, Scott M; Ziegelstein, Roy C
2004-05-01
Writing a meaningful and valuable letter of reference is not an easy task. Several factors influence the quality of any letter of reference. First, the accuracy and reliability of the writer's impressions and judgment depend on how well he knows the individual being described. Second, the writer's frame of reference, which is determined by the number of persons at the same level that he has worked with, will impact the context and significance of his beliefs and estimations. Third, the letter-writing skills of the person composing the letter will naturally affect the letter. To support the other components of a candidate's application, a letter of reference should provide specific examples of how an individual's behavior or attitude compares to a reference group and should assess "intangibles" that are hard to glean from a curriculum vitae or from test scores. This report offers suggestions that should help physicians write more informative letters of reference.
Writing More Informative Letters of Reference
Wright, Scott M; Ziegelstein, Roy C
2004-01-01
Writing a meaningful and valuable letter of reference is not an easy task. Several factors influence the quality of any letter of reference. First, the accuracy and reliability of the writer's impressions and judgment depend on how well he knows the individual being described. Second, the writer's frame of reference, which is determined by the number of persons at the same level that he has worked with, will impact the context and significance of his beliefs and estimations. Third, the letter-writing skills of the person composing the letter will naturally affect the letter. To support the other components of a candidate's application, a letter of reference should provide specific examples of how an individual's behavior or attitude compares to a reference group and should assess “intangibles” that are hard to glean from a curriculum vitae or from test scores. This report offers suggestions that should help physicians write more informative letters of reference. PMID:15109330
Materials for bioresorbable radio frequency electronics.
Hwang, Suk-Won; Huang, Xian; Seo, Jung-Hun; Song, Jun-Kyul; Kim, Stanley; Hage-Ali, Sami; Chung, Hyun-Joong; Tao, Hu; Omenetto, Fiorenzo G; Ma, Zhenqiang; Rogers, John A
2013-07-12
Materials, device designs and manufacturing approaches are presented for classes of RF electronic components that are capable of complete dissolution in water or biofluids. All individual passive/active components as well as system-level examples such as wireless RF energy harvesting circuits exploit active materials that are biocompatible. The results provide diverse building blocks for physically transient forms of electronics, of particular potential value in bioresorbable medical implants with wireless power transmission and communication capabilities. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-15
... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-745] Certain Wireless Communication Devices, Portable Music and Data Processing Devices, Computers and Components Thereof; Notice of Request for Statements on the Public Interest AGENCY: U.S. International Trade Commission. ACTION: Notice...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-29
... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-856] Certain Wireless Communication Devices, Portable Music and Data Processing Devices, Computers, and Components Thereof AGENCY: U.S. International Trade Commission. ACTION: Notice. SUMMARY: Notice is hereby given that the U.S. International...
Toward Wireless Health Monitoring via an Analog Signal Compression-Based Biosensing Platform.
Zhao, Xueyuan; Sadhu, Vidyasagar; Le, Tuan; Pompili, Dario; Javanmard, Mehdi
2018-06-01
Wireless all-analog biosensor design for the concurrent microfluidic and physiological signal monitoring is presented in this paper. The key component is an all-analog circuit capable of compressing two analog sources into one analog signal by the analog joint source-channel coding (AJSCC). Two circuit designs are discussed, including the stacked-voltage-controlled voltage source (VCVS) design with the fixed number of levels, and an improved design, which supports a flexible number of AJSCC levels. Experimental results are presented on the wireless biosensor prototype, composed of printed circuit board realizations of the stacked-VCVS design. Furthermore, circuit simulation and wireless link simulation results are presented on the improved design. Results indicate that the proposed wireless biosensor is well suited for sensing two biological signals simultaneously with high accuracy, and can be applied to a wide variety of low-power and low-cost wireless continuous health monitoring applications.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-01
... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-871] Certain Wireless Communications Base.... International Trade Commission. ACTION: Notice. SUMMARY: Notice is hereby given that a complaint was filed with the U.S. International Trade Commission on January 24, 2013, under section 337 of the Tariff Act of...
75 FR 55488 - Electronic On-Board Recorders for Hours-of-Service Compliance
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-13
... additional alternative for the data transfer between an EOBR and a roadside safety official's portable... [deg]F), although some components of wireless communications systems are specified to operate in a -20... Engineers (IEEE) 802.11 wireless communications requirement. Agency's Assessment and Decision The -40 [deg]C...
Dependable Wireless Sensor Networks for Prognostics and Health Management: A Survey
2014-10-02
sensor network has many advantages. First of all, the absence of wires gives sensor networks the ability to cover a large scale surveillance area...system/component health state. Usually, this information is gathered through independent sensors or a wired network of sensors. The use of a wireless
NASA Astrophysics Data System (ADS)
Zhuravska, Iryna M.; Koretska, Oleksandra O.; Musiyenko, Maksym P.; Surtel, Wojciech; Assembay, Azat; Kovalev, Vladimir; Tleshova, Akmaral
2017-08-01
The article contains basic approaches to develop the self-powered information measuring wireless networks (SPIM-WN) using the distribution of tasks within multicore processors critical applying based on the interaction of movable components - as in the direction of data transmission as wireless transfer of energy coming from polymetric sensors. Base mathematic model of scheduling tasks within multiprocessor systems was modernized to schedule and allocate tasks between cores of one-crystal computer (SoC) to increase energy efficiency SPIM-WN objects.
Attacks and intrusion detection in wireless sensor networks of industrial SCADA systems
NASA Astrophysics Data System (ADS)
Kamaev, V. A.; Finogeev, A. G.; Finogeev, A. A.; Parygin, D. S.
2017-01-01
The effectiveness of automated process control systems (APCS) and supervisory control and data acquisition systems (SCADA) information security depends on the applied protection technologies of transport environment data transmission components. This article investigates the problems of detecting attacks in wireless sensor networks (WSN) of SCADA systems. As a result of analytical studies, the authors developed the detailed classification of external attacks and intrusion detection in sensor networks and brought a detailed description of attacking impacts on components of SCADA systems in accordance with the selected directions of attacks.
Giovanni, Mazza G; Shenvi, Rohit; Battles, Marcie; Orthner, Helmuth F
2008-11-06
The eMonitor is a component of the ePatient system; a prototype system used by emergency medical services (EMS) personnel in the field to record and transmits electronic patient care report (ePCR) information interactively. The eMonitor component allows each Mobile Data Terminal (MDT) on an unreliable Cisco MobileIP wireless network to securely send and received XML messages used to update patient information to and from the MDT before, during and after the transport of a patient.
Wireless communication and spectrum sharing for public safety in the United States.
Kapucu, Naim; Haupt, Brittany; Yuksel, Murat
2016-01-01
With the vast number of fragmented, independent public safety wireless communication systems, the United States is encountering major challenges with enhancing interoperability and effectively managing costs while sharing limited availability of critical spectrum. The traditional hierarchical approach of emergency management does not always allow for needed flexibility and is not a mandate. A national system would reduce equipment needs, increase effectiveness, and enrich quality and coordination of response; however, it is dependent on integrating the commercial market. This article discusses components of an ideal national wireless public safety system consists along with key policies in regulating wireless communication and spectrum sharing for public safety and challenges for implementation.
A simple miniature device for wireless stimulation of neural circuits in small behaving animals.
Zhang, Yisi; Langford, Bruce; Kozhevnikov, Alexay
2011-10-30
The use of wireless neural stimulation devices offers significant advantages for neural stimulation experiments in behaving animals. We demonstrate a simple, low-cost and extremely lightweight wireless neural stimulation device which is made from off-the-shelf components. The device has low power consumption and does not require a high-power RF preamplifier. Neural stimulation can be carried out in either a voltage source mode or a current source mode. Using the device, we carry out wireless stimulation in the premotor brain area HVC of a songbird and demonstrate that such stimulation causes rapid perturbations of the acoustic structure of the song. Published by Elsevier B.V.
Information Assurance in Wireless Networks
NASA Astrophysics Data System (ADS)
Kabara, Joseph; Krishnamurthy, Prashant; Tipper, David
2001-09-01
Emerging wireless networks will contain a hybrid infrastructure based on fixed, mobile and ad hoc topologies and technologies. In such a dynamic architecture, we define information assurance as the provisions for both information security and information availability. The implications of this definition are that the wireless network architecture must (a) provide sufficient security measures, (b) be survivable under node or link attack or failure and (c) be designed such that sufficient capacity remains for all critical services (and preferably most other services) in the event of attack or component failure. We have begun a research project to investigate the provision of information assurance for wireless networks viz. survivability, security and availability and here discuss the issues and challenges therein.
Implications for a Wireless, External Device System to Study Electrocorticography
Rotermund, David; Pistor, Jonas; Hoeffmann, Janpeter; Schellenberg, Tim; Boll, Dmitriy; Tolstosheeva, Elena; Gauck, Dieter; Stemmann, Heiko; Peters-Drolshagen, Dagmar; Kreiter, Andreas Kurt; Schneider, Martin; Paul, Steffen; Lang, Walter; Pawelzik, Klaus Richard
2017-01-01
Implantable neuronal interfaces to the brain are an important keystone for future medical applications. However, entering this field of research is difficult since such an implant requires components from many different areas of technology. Since the complete avoidance of wires is important due to the risk of infections and other long-term problems, means for wirelessly transmitting data and energy are a necessity which adds to the requirements. In recent literature, many high-tech components for such implants are presented with remarkable properties. However, these components are typically not freely available for such a system. Every group needs to re-develop their own solution. This raises the question if it is possible to create a reusable design for an implant and its external base-station, such that it allows other groups to use it as a starting point. In this article, we try to answer this question by presenting a design based exclusively on commercial off-the-shelf components and studying the properties of the resulting system. Following this idea, we present a fully wireless neuronal implant for simultaneously measuring electrocorticography signals at 128 locations from the surface of the brain. All design files are available as open source. PMID:28375161
Hanada, Eisuke; Kudou, Takato; Tsumoto, Shusaku
2013-06-01
Wireless technologies as part of the data communication infrastructure of modern hospitals are being rapidly introduced. Even though there are concerns about problems associated with wireless communication security, the demand is remarkably large. In addition, insuring that the network is always available is important. Herein, we discuss security countermeasures and points to insure availability that must be taken to insure safe hospital/business use of wireless LAN systems, referring to the procedures introduced at Shimane University Hospital. Security countermeasures differ according to their purpose, such as for preventing illegal use or insuring availability, both of which are discussed. It is our hope that this information will assist others in their efforts to insure safe implementation of wireless LAN systems, especially in hospitals where they have the potential to greatly improve information sharing and patient safety.
The Challenge of Wireless Reliability and Coexistence.
Berger, H Stephen
2016-09-01
Wireless communication plays an increasingly important role in healthcare delivery. This further heightens the importance of wireless reliability, but quantifying wireless reliability is a complex and difficult challenge. Understanding the risks that accompany the many benefits of wireless communication should be a component of overall risk management. The emerging trend of using sensors and other device-to-device communications, as part of the emerging Internet of Things concept, is evident in healthcare delivery. The trend increases both the importance and complexity of this challenge. As with most system problems, finding a solution requires breaking down the problem into manageable steps. Understanding the operational reliability of a new wireless device and its supporting system requires developing solid, quantified answers to three questions: 1) How well can this new device and its system operate in a spectral environment where many other wireless devices are also operating? 2) What is the spectral environment in which this device and its system are expected to operate? Are the risks and reliability in its operating environment acceptable? 3) How might the new device and its system affect other devices and systems already in use? When operated under an insightful risk management process, wireless technology can be safely implemented, resulting in improved delivery of care.
NASA Technical Reports Server (NTRS)
Alexandrov, Natalia; Holmes, Bruce J.; Hahn, Andrew S.
2016-01-01
We report on an examination of potential benefits of infusing wireless technologies into various areas of aircraft and airspace operations. The analysis is done in support of a NASA seedling project Efficient Reconfigurable Cockpit Design and Fleet Operations Using Software Intensive, Network Enabled Wireless Architecture (ECON). The study has two objectives. First, we investigate one of the main benefit hypotheses of the ECON proposal: that the replacement of wired technologies with wireless would lead to significant weight reductions on an aircraft, among other benefits. Second, we advance a list of wireless technology applications and discuss their system benefits. With regard to the primary hypothesis, we conclude that the promise of weight reduction is premature. Specificity of the system domain and aircraft, criticality of components, reliability of wireless technologies, the weight of replacement or augmentation equipment, and the cost of infusion must all be taken into account among other considerations, to produce a reliable estimate of weight savings or increase.
A Silicon Carbide Wireless Temperature Sensing System for High Temperature Applications
Yang, Jie
2013-01-01
In this article, an extreme environment-capable temperature sensing system based on state-of-art silicon carbide (SiC) wireless electronics is presented. In conjunction with a Pt-Pb thermocouple, the SiC wireless sensor suite is operable at 450 °C while under centrifugal load greater than 1,000 g. This SiC wireless temperature sensing system is designed to be non-intrusively embedded inside the gas turbine generators, acquiring the temperature information of critical components such as turbine blades, and wirelessly transmitting the information to the receiver located outside the turbine engine. A prototype system was developed and verified up to 450 °C through high temperature lab testing. The combination of the extreme temperature SiC wireless telemetry technology and integrated harsh environment sensors will allow for condition-based in-situ maintenance of power generators and aircraft turbines in field operation, and can be applied in many other industries requiring extreme environment monitoring and maintenance. PMID:23377189
Wireless data transfer with mm-waves for future tracking detectors
NASA Astrophysics Data System (ADS)
Pelikan, D.; Bingefors, N.; Brenner, R.; Dancila, D.; Gustafsson, L.
2014-11-01
Wireless data transfer has revolutionized the consumer market for the last decade generating many products equipped with transmitters and receivers for wireless data transfer. Wireless technology opens attractive possibilities for data transfer in future tracking detectors. The reduction of wires and connectors for data links is certainly beneficial both for the material budget and the reliability of the system. An advantage of wireless data transfer is the freedom of routing signals which today is particularly complicated when bringing the data the first 50 cm out of the tracker. With wireless links intelligence can be built into a tracker by introducing communication between tracking layers within a region of interest which would allow the construction of track primitives in real time. The wireless technology used in consumer products is however not suitable for tracker readouts. The low data transfer capacity of current 5 GHz transceivers and the relatively large feature sizes of the components is a disadvantage.Due to the requirement of high data rates in tracking detectors high bandwidth is required. The frequency band around 60 GHz turns out to be a very promising candidate for data transfer in a detector system. The high baseband frequency allows for data transfer in the order of several Gbit/s. Due to the small wavelength in the mm range only small structures are needed for the transmitting and receiving electronics. The 60 GHz frequency band is a strong candidate for future WLAN applications hence components are already starting to be available on the market.Patch antennas produced on flexible Printed Circuit Board substrate that can be used for wireless communication in future trackers are presented in this article. The antennas can be connected to transceivers for data transmission/reception or be connected by wave-guides to structures capable of bringing the 60 GHz signal behind boundaries. Results on simulation and fabrication of these antennas are presented as well as studies on the sensitivity of production tolerances.
Adapting Wireless Technology to Lighting Control and Environmental Sensing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dana Teasdale; Francis Rubinstein; Dave Watson
The high cost of retrofitting buildings with advanced lighting control systems is a barrier to adoption of this energy-saving technology. Wireless technology, however, offers a solution to mounting installation costs since it requires no additional wiring to implement. To demonstrate the feasibility of such a system, a prototype wirelessly-controlled advanced lighting system was designed and built. The system includes the following components: a wirelessly-controllable analog circuit module (ACM), a wirelessly-controllable electronic dimmable ballast, a T8 3-lamp fixture, an environmental multi-sensor, a current transducer, and control software. The ACM, dimmable ballast, multi-sensor, and current transducer were all integrated with SmartMesh{trademark} wirelessmore » mesh networking nodes, called motes, enabling wireless communication, sensor monitoring, and actuator control. Each mote-enabled device has a reliable communication path to the SmartMesh Manager, a single board computer that controls network functions and connects the wireless network to a PC running lighting control software. The ACM is capable of locally driving one or more standard 0-10 Volt electronic dimmable ballasts through relay control and a 0-10 Volt controllable output. The mote-integrated electronic dimmable ballast is designed to drive a standard 3-lamp T8 light fixture. The environmental multi-sensor measures occupancy, light level and temperature. The current transducer is used to measure the power consumed by the fixture. Control software was developed to implement advanced lighting algorithms, including daylight ramping, occupancy control, and demand response. Engineering prototypes of each component were fabricated and tested in a bench-scale system. Based on standard industry practices, a cost analysis was conducted. It is estimated that the installation cost of a wireless advanced lighting control system for a retrofit application is at least 30% lower than a comparable wired system for a typical 16,000 square-foot office building, with a payback period of less than 3 years.« less
1989-06-01
letters on one line and several letters on the next line, there is no accurate way to credit these extra letters for statistical analysis. The decimal and...contains the descriptive statistics of the objective refractive error components of infantrymen. Figures 8-11 show the frequency distributions for sphere...equivalents. Nonspectacle wearers Table 12 contains the idescriptive statistics for non- spectacle wearers. Based or these refractive error data, about 30
Protru: Leveraging Provenance to Enhance Network Trust in a Wireless Sensor Network
ERIC Educational Resources Information Center
Dogan, Gulustan
2013-01-01
Trust can be an important component of wireless sensor networks for believability of the produced data and historical value is a crucial asset in deciding trust of the data. A node's trust can change over time after its initial deployment due to various reasons such as energy loss, environmental conditions or exhausting sources. Provenance can…
Four Commandments for Writing Policies for Public-Access Wireless Networks
ERIC Educational Resources Information Center
Sauers, Michael
2006-01-01
In this article, the author describes what components should be included in a comprehensive policy for public wireless usage in a library. He lists four basic steps, which include: (1) Introduce the service; (2) List the technical requirements; (3) Spell out disclaimers on access, assistance, and liability; and (4) Alert users to security concerns.
Multisensory Associative Guided Instruction Components-Spelling
ERIC Educational Resources Information Center
Hamilton, Harley
2016-01-01
This article describes a multisensory presentation and response system for enhancing the spelling ability of dyslexic children. The unique aspect of MAGICSpell is its system of finger-letter associations and simplified keyboard configuration. Sixteen 10- and 11-year-old dyslexic students practiced the finger-letter associations via various typing…
Adapting Wireless Technology to Lighting Control and Environmental Sensing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dana Teasdale; Francis Rubinstein; David S. Watson
Although advanced lighting control systems offer significant energy savings, the high cost of retrofitting buildings with advanced lighting control systems is a barrier to adoption of this energy-saving technology. Wireless technology, however, offers a solution to mounting installation costs since it requires no additional wiring to implement. To demonstrate the feasibility of such a system, a prototype wirelessly-controlled advanced lighting system was designed and built. The system includes the following components: a wirelessly-controllable analog circuit module (ACM), a wirelessly-controllable electronic dimmable ballast, a T8 3-lamp fixture, an environmental multi-sensor, a current transducer, and control software. The ACM, dimmable ballast, multi-sensor,more » and current transducer were all integrated with SmartMesh{trademark} wireless mesh networking nodes, called motes, enabling wireless communication, sensor monitoring, and actuator control. Each mote-enabled device has a reliable communication path to the SmartMesh Manager, a single board computer that controls network functions and connects the wireless network to a PC running lighting control software. The ACM is capable of locally driving one or more standard 0-10 Volt electronic dimmable ballasts through relay control and a 0-10 Volt controllable output, in addition to 0-24 Volt and 0-10 Volt inputs. The mote-integrated electronic dimmable ballast is designed to drive a standard 3-lamp T8 light fixture. The environmental multisensor measures occupancy, light level and temperature. The current transducer is used to measure the power consumed by the fixture. Control software was developed to implement advanced lighting algorithms, including open and closed-loop daylight ramping, occupancy control, and demand response. Engineering prototypes of each component were fabricated and tested in a bench-scale system. Based on standard industry practices, a cost analysis was conducted. It is estimated that the installation cost of a wireless advanced lighting control system for a retrofit application is at least 20% lower than a comparable wired system for a typical 16,000 square-foot office building, with a payback period of less than 3 years. At 30% market penetration saturation, a cumulative 695 Billion kWh of energy could be saved through 2025, a cost savings of $52 Billion.« less
Low power sensor network for wireless condition monitoring
NASA Astrophysics Data System (ADS)
Richter, Ch.; Frankenstein, B.; Schubert, L.; Weihnacht, B.; Friedmann, H.; Ebert, C.
2009-03-01
For comprehensive fatigue tests and surveillance of large scale structures, a vibration monitoring system working in the Hz and sub Hz frequency range was realized and tested. The system is based on a wireless sensor network and focuses especially on the realization of a low power measurement, signal processing and communication. Regarding the development, we met the challenge of synchronizing the wireless connected sensor nodes with sufficient accuracy. The sensor nodes ware realized by compact, sensor near signal processing structures containing components for analog preprocessing of acoustic signals, their digitization, algorithms for data reduction and network communication. The core component is a digital micro controller which performs the basic algorithms necessary for the data acquisition synchronization and the filtering. As a first application, the system was installed in a rotor blade of a wind power turbine in order to monitor the Eigen modes over a longer period of time. Currently the sensor nodes are battery powered.
NASA Astrophysics Data System (ADS)
Sinha, Dhiraj
2017-04-01
We report on a novel technique of wireless actuation of a micromembrane mounted on a piezoelectric stack using radio frequency magnetic fields. The magnetic field component of the radio frequency field induces time varying voltage across the leads of the piezoelectric stack which results in vibrations of the piezoelectric stack which are eventually transferred to a micromembrane of silicon nitride mounted on top of it. Thus, wireless actuation of micromembranes is achieved which is measured using a laser-photodetector system. Wireless actuation of micromembranes has applications in controlled drug delivery with rates of the order of tens of nanolitres per second. It can also be used in controlling capsule endoscopes, in vivo sensors, and micromachines for biomedical applications.
Neural Correlates of Letter Reversal in Children and Adults
Kalra, Priya; Yee, Debbie; Sinha, Pawan; Gabrieli, John D. E.
2014-01-01
Children often make letter reversal errors when first learning to read and write, even for letters whose reversed forms do not appear in normal print. However, the brain basis of such letter reversal in children learning to read is unknown. The present study compared the neuroanatomical correlates (via functional magnetic resonance imaging) and the electrophysiological correlates (via event-related potentials or ERPs) of this phenomenon in children, ages 5–12, relative to young adults. When viewing reversed letters relative to typically oriented letters, adults exhibited widespread occipital, parietal, and temporal lobe activations, including activation in the functionally localized visual word form area (VWFA) in left occipito-temporal cortex. Adults exhibited significantly greater activation than children in all of these regions; children only exhibited such activation in a limited frontal region. Similarly, on the P1 and N170 ERP components, adults exhibited significantly greater differences between typical and reversed letters than children, who failed to exhibit significant differences between typical and reversed letters. These findings indicate that adults distinguish typical and reversed letters in the early stages of specialized brain processing of print, but that children do not recognize this distinction during the early stages of processing. Specialized brain processes responsible for early stages of letter perception that distinguish between typical and reversed letters may develop slowly and remain immature even in older children who no longer produce letter reversals in their writing. PMID:24859328
Components of Attention in Grapheme-Color Synesthesia: A Modeling Approach.
Ásgeirsson, Árni Gunnar; Nordfang, Maria; Sørensen, Thomas Alrik
2015-01-01
Grapheme-color synesthesia is a condition where the perception of graphemes consistently and automatically evokes an experience of non-physical color. Many have studied how synesthesia affects the processing of achromatic graphemes, but less is known about the synesthetic processing of physically colored graphemes. Here, we investigated how the visual processing of colored letters is affected by the congruence or incongruence of synesthetic grapheme-color associations. We briefly presented graphemes (10-150 ms) to 9 grapheme-color synesthetes and to 9 control observers. Their task was to report as many letters (targets) as possible, while ignoring digit (distractors). Graphemes were either congruently or incongruently colored with the synesthetes' reported grapheme-color association. A mathematical model, based on Bundesen's (1990) Theory of Visual Attention (TVA), was fitted to each observer's data, allowing us to estimate discrete components of visual attention. The models suggested that the synesthetes processed congruent letters faster than incongruent ones, and that they were able to retain more congruent letters in visual short-term memory, while the control group's model parameters were not significantly affected by congruence. The increase in processing speed, when synesthetes process congruent letters, suggests that synesthesia affects the processing of letters at a perceptual level. To account for the benefit in processing speed, we propose that synesthetic associations become integrated into the categories of graphemes, and that letter colors are considered as evidence for making certain perceptual categorizations in the visual system. We also propose that enhanced visual short-term memory capacity for congruently colored graphemes can be explained by the synesthetes' expertise regarding their specific grapheme-color associations.
Miniaturized LTCC elliptic-function lowpass filters with side stopbands
Hsieh, Lung -Hwa; Dai, Steve Xunhu
2015-05-28
A compact, high-selectivity, and wide stopband lowpass filter is highly demanded in wireless communication systems to suppress adjacent harmonics and unwanted signals. In this letter, a new miniaturized lowpass filter with elliptic-function frequency response is introduced. The filter is fabricated in multilayer low temperature cofired ceramics. The size of the miniaturized filter is 5.5 × 3.9 × 1.72 mm3. As a result, the measured insertion loss of the filter is better than 0.37 dB from DC to 1.28 GHz and the measured stopband of the filter is great than 22 dB from 2.3 to 7.5 GHz.
Cyclic additional optical true time delay for microwave beam steering with spectral filtering.
Cao, Z; Lu, R; Wang, Q; Tessema, N; Jiao, Y; van den Boom, H P A; Tangdiongga, E; Koonen, A M J
2014-06-15
Optical true time delay (OTTD) is an attractive way to realize microwave beam steering (MBS) due to its inherent features of broadband, low-loss, and compactness. In this Letter, we propose a novel OTTD approach named cyclic additional optical true time delay (CAO-TTD). It applies additional integer delays of the microwave carrier frequency to achieve spectral filtering but without disturbing the spatial filtering (beam steering). Based on such concept, a broadband MBS scheme for high-capacity wireless communication is proposed, which allows the tuning of both spectral filtering and spatial filtering. The experimental results match well with the theoretical analysis.
Unpowered wireless ultrasound tomography system
NASA Astrophysics Data System (ADS)
Zahedi, Farshad; Huang, Haiying
2016-04-01
In this paper, an unpowered wireless ultrasound tomography system is presented. The system consists of two subsystems; the wireless interrogation unit (WIU) and three wireless nodes installed on the structure. Each node is designed to work in generation and sensing modes, but operates at a specific microwave frequency. Wireless transmission of the ultrasound signals between the WIU and the wireless nodes is achieved by converting ultrasound signals to microwave signals and vice versa, using a microwave carrier signal. In the generation mode, both a carrier signal and an ultrasound modulated microwave signal are transmitted to the sensor nodes. Only the node whose operating frequency matches the carrier signal will receive these signals and demodulate them to recover the original ultrasound signal. In the sensing mode, a microwave carrier signal with two different frequency components matching the operating frequencies of the sensor nodes is broadcasted by the WIU. The sensor nodes, in turn, receive the corresponding carrier signals, modulate it with the ultrasound sensing signal, and wirelessly transmit the modulated signal back to the WIU. The demodulation of the sensing signals is performed in the WIU using a digital signal processing. Implementing a software receiver significantly reduces the complexity and the cost of the WIU. A wireless ultrasound tomography system is realized by interchanging the carrier frequencies so that the wireless transducers can take turn to serve as the actuator and sensors.
T-SENSE a millimeter wave scanner for letters
NASA Astrophysics Data System (ADS)
Nüßler, Dirk; Heinen, Sven; Sprenger, Thorsten; Hübsch, Daniel; Würschmidt, Tobais
2013-10-01
Letter bombs are an increasing problem for public authorities, companies and public persons. Nowadays every big company uses in his headquarters inspection system to check the incoming correspondence. Generally x-ray systems are used to inspect complete baskets or bags of letters. This concept which works very fine in big company with a large postal center is not usable for small companies or private persons. For an office environment with a small number of letters x-ray systems are too expensive and oversized. X-ray systems visualize the wires and electric circuits inside the envelope. If a letter contains no metallic components but hazard materials or drugs, the dangerous content is invisible for the most low-cost x-ray systems. Millimeter wave imagining systems offer the potential to close this gap.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-08
... INTERNATIONAL TRADE COMMISSION [Inv. No. 337-TA-775] In the Matter of Certain Wireless... Investigation; Institution of Investigation Pursuant to 19 U.S.C. 1337 AGENCY: U.S. International Trade.... International Trade Commission on May 6, 2011, under section 337 of the Tariff Act of 1930, as amended, 19 U.S.C...
Compact Modules for Wireless Communication Systems in the E-Band (71-76 GHz)
NASA Astrophysics Data System (ADS)
Montero-de-Paz, Javier; Oprea, Ion; Rymanov, Vitaly; Babiel, Sebastian; García-Muñoz, Luis Enrique; Lisauskas, Alvydas; Hoefle, Matthias; Jimenez, Álvaro; Cojocari, Oleg; Segovia-Vargas, Daniel; Palandöken, Merih; Tekin, Tolga; Stöhr, Andreas; Carpintero, Guillermo
2013-04-01
The millimeter-wave spectrum above 70 GHz provides a cost-effective solution to increase the wireless communications data rates by increasing the carrier wave frequencies. We report on the development of two key components of a wireless transmission system, a high-speed photodiode (HS-PD) and a Schottky Barrier Diode (SBD). Both components operate uncooled, a key issue in the development of compact modules. On the transmitter side, an improved design of the HS-PD allows it to deliver an output RF power exceeding 0 dBm (1 mW). On the receiver side, we present the design process and achieved results on the development of a compact direct envelope detection receiver based on a quasi-optical SDB module. Different resonant (meander dipole) and broadband (Log-Spiral and Log-Periodic) planar antenna solutions are designed, matching the antenna and Schottky diode impedances at high frequency. Impedance matching at baseband is also provided by means of an impedance transition to a 50 Ohm output. From this comparison, we demonstrate the excellent performance of the broadband antennas over the entire E-band by setting up a short-range wireless link transmitting a 1 Gbps data signal.
A Hermetic Wireless Subretinal Neurostimulator for Vision Prostheses
Shire, Douglas B.; Chen, Jinghua; Doyle, Patrick; Gingerich, Marcus D.; Cogan, Stuart F.; Drohan, William A.; Behan, Sonny; Theogarajan, Luke; Wyatt, John L.; Rizzo, Joseph F.
2016-01-01
A miniaturized, hermetically encased, wirelessly operated retinal prosthesis has been developed for preclinical studies in the Yucatan minipig, and includes several design improvements over our previously reported device. The prosthesis attaches conformally to the outside of the eye and electrically drives a microfabricated thin-film polyimide array of sputtered iridium oxide film electrodes. This array is implanted into the subretinal space using a customized ab externo surgical technique. The implanted device includes a hermetic titanium case containing a 15-channel stimulator chip and discrete circuit components. Feedthroughs in the case connect the stimulator chip to secondary power and data receiving coils on the eye and to the electrode array under the retina. Long-term in vitro pulse testing of the electrodes projected a lifetime consistent with typical devices in industry. The final assembly was tested in vitro to verify wireless operation of the system in physiological saline using a custom RF transmitter and primary coils. Stimulation pulse strength, duration, and frequency were programmed wirelessly from a Peripheral Component Interconnect eXtensions for Instrumentation (PXI) computer. Operation of the retinal implant has been verified in two pigs for up to five and a half months by detecting stimulus artifacts generated by the implanted device. PMID:21859595
A Wireless MEMS-Based Inclinometer Sensor Node for Structural Health Monitoring
Ha, Dae Woong; Park, Hyo Seon; Choi, Se Woon; Kim, Yousok
2013-01-01
This paper proposes a wireless inclinometer sensor node for structural health monitoring (SHM) that can be applied to civil engineering and building structures subjected to various loadings. The inclinometer used in this study employs a method for calculating the tilt based on the difference between the static acceleration and the acceleration due to gravity, using a micro-electro-mechanical system (MEMS)-based accelerometer. A wireless sensor node was developed through which tilt measurement data are wirelessly transmitted to a monitoring server. This node consists of a slave node that uses a short-distance wireless communication system (RF 2.4 GHz) and a master node that uses a long-distance telecommunication system (code division multiple access—CDMA). The communication distance limitation, which is recognized as an important issue in wireless monitoring systems, has been resolved via these two wireless communication components. The reliability of the proposed wireless inclinometer sensor node was verified experimentally by comparing the values measured by the inclinometer and subsequently transferred to the monitoring server via wired and wireless transfer methods to permit a performance evaluation of the wireless communication sensor nodes. The experimental results indicated that the two systems (wired and wireless transfer systems) yielded almost identical values at a tilt angle greater than 1°, and a uniform difference was observed at a tilt angle less than 0.42° (approximately 0.0032° corresponding to 0.76% of the tilt angle, 0.42°) regardless of the tilt size. This result was deemed to be within the allowable range of measurement error in SHM. Thus, the wireless transfer system proposed in this study was experimentally verified for practical application in a structural health monitoring system. PMID:24287533
A simple sensing mechanism for wireless, passive pressure sensors.
Drazan, John F; Wassick, Michael T; Dahle, Reena; Beardslee, Luke A; Cady, Nathaniel C; Ledet, Eric H
2016-08-01
We have developed a simple wireless pressure sensor that consists of only three electrically isolated components. Two conductive spirals are separated by a closed cell foam that deforms when exposed to changing pressures. This deformation changes the capacitance and thus the resonant frequency of the sensors. Prototype sensors were submerged and wirelessly interrogated while being exposed to physiologically relevant pressures from 10 to 130 mmHg. Sensors consistently exhibited a sensitivity of 4.35 kHz/mmHg which is sufficient for resolving physiologically relevant pressure changes in vivo. These simple sensors have the potential for in vivo pressure sensing.
Seamless integration of 57.2-Gb/s signal wireline transmission and 100-GHz wireless delivery.
Li, Xinying; Yu, Jianjun; Dong, Ze; Cao, Zizheng; Chi, Nan; Zhang, Junwen; Shao, Yufeng; Tao, Li
2012-10-22
We experimentally demonstrated the seamless integration of 57.2-Gb/s signal wireline transmission and 100-GHz wireless delivery adopting polarization-division-multiplexing quadrature-phase-shift-keying (PDM-QPSK) modulation with 400-km single-mode fiber-28 (SMF-28) transmission and 1-m wireless delivery. The X- and Y-polarization components of optical PDM-QPSK baseband signal are simultaneously up-converted to 100 GHz by optical polarization-diversity heterodyne beating, and then independently transmitted and received by two pairs of transmitter and receiver antennas, which make up a 2x2 multiple-input multiple-output (MIMO) wireless link based on microwave polarization multiplexing. At the wireless receiver, a two-stage down conversion is firstly done in analog domain based on balanced mixer and sinusoidal radio frequency (RF) signal, and then in digital domain based on digital signal processing (DSP). Polarization de-multiplexing is realized by constant modulus algorithm (CMA) based on DSP in heterodyne coherent detection. Our experimental results show that more taps are required for CMA when the X- and Y-polarization antennas have different wireless distance.
Wireless neural recording with single low-power integrated circuit.
Harrison, Reid R; Kier, Ryan J; Chestek, Cynthia A; Gilja, Vikash; Nuyujukian, Paul; Ryu, Stephen; Greger, Bradley; Solzbacher, Florian; Shenoy, Krishna V
2009-08-01
We present benchtop and in vivo experimental results from an integrated circuit designed for wireless implantable neural recording applications. The chip, which was fabricated in a commercially available 0.6- mum 2P3M BiCMOS process, contains 100 amplifiers, a 10-bit analog-to-digital converter (ADC), 100 threshold-based spike detectors, and a 902-928 MHz frequency-shift-keying (FSK) transmitter. Neural signals from a selected amplifier are sampled by the ADC at 15.7 kSps and telemetered over the FSK wireless data link. Power, clock, and command signals are sent to the chip wirelessly over a 2.765-MHz inductive (coil-to-coil) link. The chip is capable of operating with only two off-chip components: a power/command receiving coil and a 100-nF capacitor.
Transparent graphene microstrip filters for wireless communications
NASA Astrophysics Data System (ADS)
Wang, Jinchen; Guan, Yifei; Yu, Hua; Li, Na; Wang, Shuopei; Shen, Cheng; Dai, Zhijiang; Gan, Decheng; Yang, Rong; He, Songbai; Zhang, Guangyu
2017-08-01
A microstrip is an indispensable component for wireless communication circuits. With the development of 5G technology, optically transparent microstrip filters urgently need to be developed. In this work, we have theoretically and experimentally demonstrated the immense potential of graphene microstrips for transparent wireless communication circuits in the 5G era. Both wideband and dual-band transparent graphene microstrip filters have shown more than 80% optical transmissivity in the region from 250 nm to 2000 nm with good frequency responses. S and C band microwave signals can transmit along the graphene microstrip lines effectively while coupling excitations produce relatively large insertion losses. Our results show that transparent microstrips designed with high-quality graphene will largely scale down the size of the wireless devices and thus play an irreplaceable role in the 5G era.
Oberauer, Klaus; Lange, Elke B
2009-02-01
The article presents a mathematical model of short-term recognition based on dual-process models and the three-component theory of working memory [Oberauer, K. (2002). Access to information in working memory: Exploring the focus of attention. Journal of Experimental Psychology: Learning, Memory, and Cognition, 28, 411-421]. Familiarity arises from activated representations in long-term memory, ignoring their relations; recollection retrieves bindings in the capacity-limited component of working memory. In three experiments participants encoded two short lists of nonwords for immediate recognition, one of which was then cued as irrelevant. Probes from the irrelevant list were rejected more slowly than new probes; this was also found with probes recombining letters of irrelevant nonwords, suggesting that familiarity arises from individual letters independent of their relations. When asked to accept probes whose letters were all in the relevant list, regardless of their conjunction, participants accepted probes preserving the original conjunctions faster than recombinations, showing that recollection accessed feature bindings automatically. The model fit the data best when familiarity depended only on matching letters, whereas recollection used binding information.
Components of Attention in Grapheme-Color Synesthesia: A Modeling Approach
Ásgeirsson, Árni Gunnar; Nordfang, Maria; Sørensen, Thomas Alrik
2015-01-01
Grapheme-color synesthesia is a condition where the perception of graphemes consistently and automatically evokes an experience of non-physical color. Many have studied how synesthesia affects the processing of achromatic graphemes, but less is known about the synesthetic processing of physically colored graphemes. Here, we investigated how the visual processing of colored letters is affected by the congruence or incongruence of synesthetic grapheme-color associations. We briefly presented graphemes (10–150 ms) to 9 grapheme-color synesthetes and to 9 control observers. Their task was to report as many letters (targets) as possible, while ignoring digit (distractors). Graphemes were either congruently or incongruently colored with the synesthetes’ reported grapheme-color association. A mathematical model, based on Bundesen’s (1990) Theory of Visual Attention (TVA), was fitted to each observer’s data, allowing us to estimate discrete components of visual attention. The models suggested that the synesthetes processed congruent letters faster than incongruent ones, and that they were able to retain more congruent letters in visual short-term memory, while the control group’s model parameters were not significantly affected by congruence. The increase in processing speed, when synesthetes process congruent letters, suggests that synesthesia affects the processing of letters at a perceptual level. To account for the benefit in processing speed, we propose that synesthetic associations become integrated into the categories of graphemes, and that letter colors are considered as evidence for making certain perceptual categorizations in the visual system. We also propose that enhanced visual short-term memory capacity for congruently colored graphemes can be explained by the synesthetes’ expertise regarding their specific grapheme-color associations. PMID:26252019
Why is Light Text Harder to Read Than Dark Text?
NASA Technical Reports Server (NTRS)
Scharff, Lauren V.; Ahumada, Albert J.
2005-01-01
Scharff and Ahumada (2002, 2003) measured text legibility for light text and dark text. For paragraph readability and letter identification, responses to light text were slower and less accurate for a given contrast. Was this polarity effect (1) an artifact of our apparatus, (2) a physiological difference in the separate pathways for positive and negative contrast or (3) the result of increased experience with dark text on light backgrounds? To rule out the apparatus-artifact hypothesis, all data were collected on one monitor. Its luminance was measured at all levels used, and the spatial effects of the monitor were reduced by pixel doubling and quadrupling (increasing the viewing distance to maintain constant angular size). Luminances of vertical and horizontal square-wave gratings were compared to assess display speed effects. They existed, even for 4-pixel-wide bars. Tests for polarity asymmetries in display speed were negative. Increased experience might develop full letter templates for dark text, while recognition of light letters is based on component features. Earlier, an observer ran all conditions at one polarity and then switched. If dark and light letters were intermixed, the observer might use component features on all trials and do worse on the dark letters, reducing the polarity effect. We varied polarity blocking (completely blocked, alternating smaller blocks, and intermixed blocks). Letter identification responses times showed polarity effects at all contrasts and display resolution levels. Observers were also more accurate with higher contrasts and more pixels per degree. Intermixed blocks increased the polarity effect by reducing performance on the light letters, but only if the randomized block occurred prior to the nonrandomized block. Perhaps observers tried to use poorly developed templates, or they did not work as hard on the more difficult items. The experience hypothesis and the physiological gain hypothesis remain viable explanations.
Li, Xinying; Dong, Ze; Yu, Jianjun; Chi, Nan; Shao, Yufeng; Chang, G K
2012-12-15
We experimentally demonstrate a seamlessly integrated fiber-wireless system that delivers a 108 Gb/s signal through 80 km fiber and 1 m wireless transport over free space at 100 GHz adopting polarization-division-multiplexing quadrature-phase-shift-keying (PDM-QPSK) modulation and heterodyning coherent detection. The X- and Y-polarization components of the optical PDM-QPSK baseband signal are simultaneously upconverted to 100 GHz wireless carrier by optical polarization-diversity heterodyne beating, and then independently transmitted and received by two pairs of transmitter and receiver antennas, which form a 2×2 multiple-input multiple-output wireless link. At the wireless receiver, two-stage downconversion is performed firstly in the analog domain based on balanced mixer and sinusoidal radio frequency signal, and then in the digital domain based on digital signal processing (DSP). Polarization demultiplexing is realized by the constant modulus algorithm in the DSP part at the receiver. The bit-error ratio for the 108 Gb/s PDM-QPSK signal is less than the pre-forward-error-correction threshold of 3.8×10(-3) after both 1 m wireless delivery at 100 GHz and 80 km single-mode fiber-28 transmission. To our knowledge, this is the first demonstration to realize 100 Gb/s signal delivery through both fiber and wireless links at 100 GHz.
Frequency-division multiplexer and demultiplexer for terahertz wireless links.
Ma, Jianjun; Karl, Nicholas J; Bretin, Sara; Ducournau, Guillaume; Mittleman, Daniel M
2017-09-28
The development of components for terahertz wireless communications networks has become an active and growing research field. However, in most cases these components have been studied using a continuous or broadband-pulsed terahertz source, not using a modulated data stream. This limitation may mask important aspects of the performance of the device in a realistic system configuration. We report the characterization of one such device, a frequency multiplexer, using modulated data at rates up to 10 gigabits per second. We also demonstrate simultaneous error-free transmission of two signals at different carrier frequencies, with an aggregate data rate of 50 gigabits per second. We observe that the far-field spatial variation of the bit error rate is different from that of the emitted power, due to a small nonuniformity in the angular detection sensitivity. This is likely to be a common feature of any terahertz communication system in which signals propagate as diffracting beams not omnidirectional broadcasts.There is growing interest in the development of components to facilitate wireless communications in the terahertz but the characterization of these systems involve an unmodulated input. Here the authors demonstrate multiplexing and demultiplexing of data streams in the terahertz range using a real data link.
Development and application of a modified wireless tracer for disaster prevention
NASA Astrophysics Data System (ADS)
Chung Yang, Han; Su, Chih Chiang
2016-04-01
Typhoon-induced flooding causes water overflow in a river channel, which results in general and bridge scour and soil erosion, thus leading to bridge failure, debris flow and landslide collapse. Therefore, dynamic measurement technology should be developed to assess scour in channels and landslide as a disaster-prevention measure against bridge failure and debris flow. This paper presents a wireless tracer that enables monitoring general scour in river channels and soil erosion in hillsides. The wireless tracer comprises a wireless high-power radio modem, various electronic components, and a self-designed printed circuit board that are all combined with a 9-V battery pack and an auto switch. The entire device is sealed in a jar by silicon. After it was modified, the wireless tracer underwent the following tests for practical applications: power continuation and durability, water penetration, and signal transmission during floating. A regression correlation between the wireless tracer's transmission signal and distance was also established. This device can be embedded at any location where scouring is monitored, and, in contrast to its counterparts that detect scour depth by identifying and analyzing received signals, it enables real-time observation of the scouring process. In summary, the wireless tracer developed in this study provides a dynamic technology for real-time monitoring of scouring (or erosion) and forecasting of landslide hazards. Keywords: wireless tracer; scour; real-time monitoring; landslide hazard.
NASA Astrophysics Data System (ADS)
Abou-Elnour, Ali; Khaleeq, Hyder; Abou-Elnour, Ahmad
2016-04-01
In the present work, wireless sensor network and real-time controlling and monitoring system are integrated for efficient water quality monitoring for environmental and domestic applications. The proposed system has three main components (i) the sensor circuits, (ii) the wireless communication system, and (iii) the monitoring and controlling unit. LabView software has been used in the implementation of the monitoring and controlling system. On the other hand, ZigBee and myRIO wireless modules have been used to implement the wireless system. The water quality parameters are accurately measured by the present computer based monitoring system and the measurement results are instantaneously transmitted and published with minimum infrastructure costs and maximum flexibility in term of distance or location. The mobility and durability of the proposed system are further enhanced by fully powering via a photovoltaic system. The reliability and effectiveness of the system are evaluated under realistic operating conditions.
ERP correlates of letter identity and letter position are modulated by lexical frequency
Vergara-Martínez, Marta; Perea, Manuel; Gómez, Pablo; Swaab, Tamara Y.
2013-01-01
The encoding of letter position is a key aspect in all recently proposed models of visual-word recognition. We analyzed the impact of lexical frequency on letter position assignment by examining the temporal dynamics of lexical activation induced by pseudowords extracted from words of different frequencies. For each word (e.g., BRIDGE), we created two pseudowords: A transposed-letter (TL: BRIGDE) and a replaced-letter pseudoword (RL: BRITGE). ERPs were recorded while participants read words and pseudowords in two tasks: Semantic categorization (Experiment 1) and lexical decision (Experiment 2). For high-frequency stimuli, similar ERPs were obtained for words and TL-pseudowords, but the N400 component to words was reduced relative to RL-pseudowords, indicating less lexical/semantic activation. In contrast, TL- and RL-pseudowords created from low-frequency stimuli elicited similar ERPs. Behavioral responses in the lexical decision task paralleled this asymmetry. The present findings impose constraints on computational and neural models of visual-word recognition. PMID:23454070
Working memory component processes: isolating BOLD signal changes.
Motes, Michael A; Rypma, Bart
2010-01-15
The chronology of the component processes subserving working memory (WM) and hemodynamic response lags has hindered the use of fMRI for exploring neural substrates of WM. In the present study, however, participants completed full trials that involved encoding two or six letters, maintaining the memory set over a delay, and then deciding whether a probe was in the memory set or not. Additionally, they completed encode-only, encode-and-maintain, and encode-and-decide partial trials intermixed with the full trials. The inclusion of partial trials allowed for the isolation of BOLD signal changes to the different trial periods. The results showed that only lateral and medial prefrontal cortex regions differentially responded to the 2- and 6-letter memory sets over the trial periods, showing greater activation to 6-letter sets during the encode and maintain trial periods. Thus, the data showed the differential involvement of PFC in the encoding and maintenance of supra- and sub-capacity memory sets and show the efficacy of using fMRI partial trial methods to study WM component processes.
Working Memory Component Processes: Isolating BOLD Signal-Changes
Motes, Michael A.; Rypma, Bart
2009-01-01
The chronology of the component processes subserving working memory (WM) and hemodynamic response lags have hindered the use of fMRI for exploring neural substrates of WM. In the present study, however, participants completed full trials that involved encoding two or six letters, maintaining the memory-set over a delay, and then deciding whether a probe was in the memory-set or not. Additionally, they completed encode only, encode and maintain, and encode and decide partial-trials intermixed with the full-trials. The inclusion of partial-trials allowed for the isolation of BOLD signal-changes to the different trial-periods. The results showed that only lateral and medial prefrontal cortex regions differentially responded to the 2- and 6-letter memory-sets over the trial-periods, showing greater activation to 6-letter sets during the encode and maintain trial-periods. Thus, the data showed the differential involvement of PFC in the encoding and maintenance of supra- and sub-capacity memory-sets and show the efficacy of using fMRI partial-trial methods to study WM component processes. PMID:19732840
ERIC Educational Resources Information Center
Stockall, Linnaea; Stringfellow, Andrew; Marantz, Alec
2004-01-01
Visually presented letter strings consistently yield three MEG response components: the M170, associated with letter-string processing (Tarkiainen, Helenius, Hansen, Cornelissen, & Salmelin, 1999); the M250, affected by phonotactic probability, (Pylkkanen, Stringfellow, & Marantz, 2002); and the M350, responsive to lexical frequency (Embick,…
Analysis and Testing of Mobile Wireless Networks
NASA Technical Reports Server (NTRS)
Alena, Richard; Evenson, Darin; Rundquist, Victor; Clancy, Daniel (Technical Monitor)
2002-01-01
Wireless networks are being used to connect mobile computing elements in more applications as the technology matures. There are now many products (such as 802.11 and 802.11b) which ran in the ISM frequency band and comply with wireless network standards. They are being used increasingly to link mobile Intranet into Wired networks. Standard methods of analyzing and testing their performance and compatibility are needed to determine the limits of the technology. This paper presents analytical and experimental methods of determining network throughput, range and coverage, and interference sources. Both radio frequency (BE) domain and network domain analysis have been applied to determine wireless network throughput and range in the outdoor environment- Comparison of field test data taken under optimal conditions, with performance predicted from RF analysis, yielded quantitative results applicable to future designs. Layering multiple wireless network- sooners can increase performance. Wireless network components can be set to different radio frequency-hopping sequences or spreading functions, allowing more than one sooner to coexist. Therefore, we ran multiple 802.11-compliant systems concurrently in the same geographical area to determine interference effects and scalability, The results can be used to design of more robust networks which have multiple layers of wireless data communication paths and provide increased throughput overall.
Wireless Sensors and Networks for Advanced Energy Management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hardy, J.E.
Numerous national studies and working groups have identified low-cost, very low-power wireless sensors and networks as a critical enabling technology for increasing energy efficiency, reducing waste, and optimizing processes. Research areas for developing such sensor and network platforms include microsensor arrays, ultra-low power electronics and signal conditioning, data/control transceivers, and robust wireless networks. A review of some of the research in the following areas will be discussed: (1) Low-cost, flexible multi-sensor array platforms (CO{sub 2}, NO{sub x}, CO, humidity, NH{sub 3}, O{sub 2}, occupancy, etc.) that enable energy and emission reductions in applications such as buildings and manufacturing; (2) Modelingmore » investments (energy usage and savings to drive capital investment decisions) and estimated uptime improvements through pervasive gathering of equipment and process health data and its effects on energy; (3) Robust, self-configuring wireless sensor networks for energy management; and (4) Quality-of-service for secure and reliable data transmission from widely distributed sensors. Wireless communications is poised to support technical innovations in the industrial community, with widespread use of wireless sensors forecasted to improve manufacturing production and energy efficiency and reduce emissions. Progress being made in wireless system components, as described in this paper, is helping bring these projected improvements to reality.« less
NASA Astrophysics Data System (ADS)
Abou-Elnour, Ali; Thabt, A.; Helmy, S.; Kashf, Y.; Hadad, Y.; Tarique, M.; Abo-Elnor, Ossama
2014-04-01
In the present work, wireless sensor network and smart real-time controlling and monitoring system are integrated for efficient energy management of standalone photovoltaic system. The proposed system has two main components namely the monitoring and controlling system and the wireless communication system. LabView software has been used in the implementation of the monitoring and controlling system. On the other hand, ZigBee wireless modules have been used to implement the wireless system. The main functions of monitoring and controlling unit is to efficiently control the energy consumption form the photovoltaic system based on accurate determination of the periods of times at which the loads are required to be operated. The wireless communication system send the data from the monitoring and controlling unit to the loads at which desired switching operations are performed. The wireless communication system also continuously feeds the monitoring and controlling unit with updated input data from the sensors and from the photovoltaic module send to calculate and record the generated, the consumed, and the stored energy to apply load switching saving schemes if necessary. It has to be mentioned that our proposed system is a low cost and low power system because and it is flexible to be upgraded to fulfill additional users' requirements.
Wireless Neural Recording With Single Low-Power Integrated Circuit
Harrison, Reid R.; Kier, Ryan J.; Chestek, Cynthia A.; Gilja, Vikash; Nuyujukian, Paul; Ryu, Stephen; Greger, Bradley; Solzbacher, Florian; Shenoy, Krishna V.
2010-01-01
We present benchtop and in vivo experimental results from an integrated circuit designed for wireless implantable neural recording applications. The chip, which was fabricated in a commercially available 0.6-μm 2P3M BiCMOS process, contains 100 amplifiers, a 10-bit analog-to-digital converter (ADC), 100 threshold-based spike detectors, and a 902–928 MHz frequency-shift-keying (FSK) transmitter. Neural signals from a selected amplifier are sampled by the ADC at 15.7 kSps and telemetered over the FSK wireless data link. Power, clock, and command signals are sent to the chip wirelessly over a 2.765-MHz inductive (coil-to-coil) link. The chip is capable of operating with only two off-chip components: a power/command receiving coil and a 100-nF capacitor. PMID:19497825
Wireless Sensor Networks for Ambient Assisted Living
Aquino-Santos, Raúl; Martinez-Castro, Diego; Edwards-Block, Arthur; Murillo-Piedrahita, Andrés Felipe
2013-01-01
This paper introduces wireless sensor networks for Ambient Assisted Living as a proof of concept. Our workgroup has developed an arrhythmia detection algorithm that we evaluate in a closed space using a wireless sensor network to relay the information collected to where the information can be registered, monitored and analyzed to support medical decisions by healthcare providers. The prototype we developed is then evaluated using the TelosB platform. The proposed architecture considers very specific restrictions regarding the use of wireless sensor networks in clinical situations. The seamless integration of the system architecture enables both mobile node and network configuration, thus providing the versatile and robust characteristics necessary for real-time applications in medical situations. Likewise, this system architecture efficiently permits the different components of our proposed platform to interact efficiently within the parameters of this study. PMID:24351665
Formal specification and design techniques for wireless sensor and actuator networks.
Martínez, Diego; González, Apolinar; Blanes, Francisco; Aquino, Raúl; Simo, José; Crespo, Alfons
2011-01-01
A current trend in the development and implementation of industrial applications is to use wireless networks to communicate the system nodes, mainly to increase application flexibility, reliability and portability, as well as to reduce the implementation cost. However, the nondeterministic and concurrent behavior of distributed systems makes their analysis and design complex, often resulting in less than satisfactory performance in simulation and test bed scenarios, which is caused by using imprecise models to analyze, validate and design these systems. Moreover, there are some simulation platforms that do not support these models. This paper presents a design and validation method for Wireless Sensor and Actuator Networks (WSAN) which is supported on a minimal set of wireless components represented in Colored Petri Nets (CPN). In summary, the model presented allows users to verify the design properties and structural behavior of the system.
Bayou Choctaw Well Integrity Grading Component Based on Geomechanical Simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Byoung
2016-09-08
This letter report provides a Bayou Choctaw (BC) Strategic Petroleum Reserve (SPR) well grading system based on the geomechanical simulation. The analyses described in this letter were used to evaluate the caverns’ geomechanical effect on wellbore integrity, which is an important component in the well integrity grading system recently developed by Roberts et al. [2015]. Using these analyses, the wellbores for caverns BC-17 and 20 are expected to be significantly impacted by cavern geomechanics, BC-18 and 19 are expected to be medium impacted; and the other caverns are expected to be less impacted.
Wen, Tzai-Hung; Jiang, Joe-Air; Sun, Chih-Hong; Juang, Jehn-Yih; Lin, Tzu-Shiang
2013-01-01
Air pollution has become a severe environmental problem due to urbanization and heavy traffic. Monitoring street-level air quality is an important issue, but most official monitoring stations are installed to monitor large-scale air quality conditions, and their limited spatial resolution cannot reflect the detailed variations in air quality that may be induced by traffic jams. By deploying wireless sensors on crossroads and main roads, this study established a pilot framework for a wireless sensor network (WSN)-based real-time monitoring system to understand street-level spatial-temporal changes of carbon monoxide (CO) in urban settings. The system consists of two major components. The first component is the deployment of wireless sensors. We deployed 44 sensor nodes, 40 transmitter nodes and four gateway nodes in this study. Each sensor node includes a signal processing module, a CO sensor and a wireless communication module. In order to capture realistic human exposure to traffic pollutants, all sensors were deployed at a height of 1.5 m on lampposts and traffic signs. The study area covers a total length of 1.5 km of Keelung Road in Taipei City. The other component is a map-based monitoring platform for sensor data visualization and manipulation in time and space. Using intensive real-time street-level monitoring framework, we compared the spatial-temporal patterns of air pollution in different time periods. Our results capture four CO concentration peaks throughout the day at the location, which was located along an arterial and nearby traffic sign. The hourly average could reach 5.3 ppm from 5:00 pm to 7:00 pm due to the traffic congestion. The proposed WSN-based framework captures detailed ground information and potential risk of human exposure to traffic-related air pollution. It also provides street-level insights into real-time monitoring for further early warning of air pollution and urban environmental management. PMID:24287859
Wen, Tzai-Hung; Jiang, Joe-Air; Sun, Chih-Hong; Juang, Jehn-Yih; Lin, Tzu-Shiang
2013-11-27
Air pollution has become a severe environmental problem due to urbanization and heavy traffic. Monitoring street-level air quality is an important issue, but most official monitoring stations are installed to monitor large-scale air quality conditions, and their limited spatial resolution cannot reflect the detailed variations in air quality that may be induced by traffic jams. By deploying wireless sensors on crossroads and main roads, this study established a pilot framework for a wireless sensor network (WSN)-based real-time monitoring system to understand street-level spatial-temporal changes of carbon monoxide (CO) in urban settings. The system consists of two major components. The first component is the deployment of wireless sensors. We deployed 44 sensor nodes, 40 transmitter nodes and four gateway nodes in this study. Each sensor node includes a signal processing module, a CO sensor and a wireless communication module. In order to capture realistic human exposure to traffic pollutants, all sensors were deployed at a height of 1.5 m on lampposts and traffic signs. The study area covers a total length of 1.5 km of Keelung Road in Taipei City. The other component is a map-based monitoring platform for sensor data visualization and manipulation in time and space. Using intensive real-time street-level monitoring framework, we compared the spatial-temporal patterns of air pollution in different time periods. Our results capture four CO concentration peaks throughout the day at the location, which was located along an arterial and nearby traffic sign. The hourly average could reach 5.3 ppm from 5:00 pm to 7:00 pm due to the traffic congestion. The proposed WSN-based framework captures detailed ground information and potential risk of human exposure to traffic-related air pollution. It also provides street-level insights into real-time monitoring for further early warning of air pollution and urban environmental management.
A fully implantable pacemaker for the mouse: from battery to wireless power.
Laughner, Jacob I; Marrus, Scott B; Zellmer, Erik R; Weinheimer, Carla J; MacEwan, Matthew R; Cui, Sophia X; Nerbonne, Jeanne M; Efimov, Igor R
2013-01-01
Animal models have become a popular platform for the investigation of the molecular and systemic mechanisms of pathological cardiovascular physiology. Chronic pacing studies with implantable pacemakers in large animals have led to useful models of heart failure and atrial fibrillation. Unfortunately, molecular and genetic studies in these large animal models are often prohibitively expensive or not available. Conversely, the mouse is an excellent species for studying molecular mechanisms of cardiovascular disease through genetic engineering. However, the large size of available pacemakers does not lend itself to chronic pacing in mice. Here, we present the design for a novel, fully implantable wireless-powered pacemaker for mice capable of long-term (>30 days) pacing. This design is compared to a traditional battery-powered pacemaker to demonstrate critical advantages achieved through wireless inductive power transfer and control. Battery-powered and wireless-powered pacemakers were fabricated from standard electronic components in our laboratory. Mice (n = 24) were implanted with endocardial, battery-powered devices (n = 14) and epicardial, wireless-powered devices (n = 10). Wireless-powered devices were associated with reduced implant mortality and more reliable device function compared to battery-powered devices. Eight of 14 (57.1%) mice implanted with battery-powered pacemakers died following device implantation compared to 1 of 10 (10%) mice implanted with wireless-powered pacemakers. Moreover, device function was achieved for 30 days with the wireless-powered device compared to 6 days with the battery-powered device. The wireless-powered pacemaker system presented herein will allow electrophysiology studies in numerous genetically engineered mouse models as well as rapid pacing-induced heart failure and atrial arrhythmia in mice.
Lontis, Eugen R; Lund, Morten E; Christensen, Henrik V; Bentsen, Bo; Gaihede, Michael; Caltenco, Hector A; Andreasen Struijk, Lotte N S
2010-01-01
Typing performance of a full alphabet keyboard and a joystick type of mouse (with on-screen keyboard) provided by a wireless integrated tongue control system (TCS) has been investigated. The speed and accuracy have been measured in a form of a throughput defining the true correct words per minute [cwpm]. Training character sequences were typed in a dedicated interface that provided visual feedback of activated sensors, a map of the alphabet associated, and the task character. Testing sentences were typed in Word, with limited visual feedback, using non-predictive typing (map of characters in alphabetic order associated to sensors) and predictive typing (LetterWise) for TCS keyboard, and non-predictive typing for TCS mouse. Two subjects participated for four and three consecutive days, respectively, two sessions per day. Maximal throughput of 2.94, 2.46, and 2.06, 1.68 [cwpm] were obtained with TCS keyboard by subject 1 and 2 with predictive and non-predictive typing respectively. Maximal throughput of 2.09 and 1.71 [cwpm] was obtained with TCS mouse by subject 1 and 2, respectively. Same experimental protocol has been planned for a larger number of subjects.
Componential skills of beginning writing: An exploratory study
Kim, Young-Suk; Al Otaiba, Stephanie; Puranik, Cynthia; Folsom, Jessica Sidler; Greulich, Luana; Wagner, Richard K.
2011-01-01
The present study examined the components of end of kindergarten writing, using data from 242 kindergartners. Specifically of interest was the importance of spelling, letter writing fluency, reading, and word- and syntax-level oral language skills in writing. The results from structural equation modeling revealed that oral language, spelling, and letter writing fluency were positively and uniquely related to writing skill after accounting for reading skills. Reading skill was not uniquely related to writing once oral language, spelling, and letter writing fluency were taken into account. These findings are discussed from a developmental perspective. PMID:22267897
2014-09-01
prevention system (IPS), capable of performing real-time traffic analysis and packet logging on IP networks [25]. Snort’s features include protocol... analysis and content searching/matching. Snort can detect a variety of attacks and network probes, such as buffer overflows, port scans and OS...www.digitalbond.com/tools/the- rack/jtr-s7-password-cracking/ Kismet Mike Kershaw Cross- platform Open source wireless network detector and wireless sniffer
Formal Specification and Design Techniques for Wireless Sensor and Actuator Networks
Martínez, Diego; González, Apolinar; Blanes, Francisco; Aquino, Raúl; Simo, José; Crespo, Alfons
2011-01-01
A current trend in the development and implementation of industrial applications is to use wireless networks to communicate the system nodes, mainly to increase application flexibility, reliability and portability, as well as to reduce the implementation cost. However, the nondeterministic and concurrent behavior of distributed systems makes their analysis and design complex, often resulting in less than satisfactory performance in simulation and test bed scenarios, which is caused by using imprecise models to analyze, validate and design these systems. Moreover, there are some simulation platforms that do not support these models. This paper presents a design and validation method for Wireless Sensor and Actuator Networks (WSAN) which is supported on a minimal set of wireless components represented in Colored Petri Nets (CPN). In summary, the model presented allows users to verify the design properties and structural behavior of the system. PMID:22344203
Teng, Kok-Hin; Wu, Tong; Liu, Xiayun; Yang, Zhi; Heng, Chun-Huat
2017-06-01
An 8-channel wireless neural signal processing IC, which can perform real-time spike detection, alignment, and feature extraction, and wireless data transmission is proposed. A reconfigurable BFSK/QPSK transmitter (TX) at MICS/MedRadio band is incorporated to support different data rate requirement. By using an Exponential Component-Polynomial Component (EC-PC) spike processing unit with an incremental principal component analysis (IPCA) engine, the detection of neural spikes with poor SNR is possible while achieving 625× data reduction. For the TX, a dual-channel at 401 MHz and 403.8 MHz are supported by applying sequential injection locked techniques while attaining phase noise of -102 dBc/Hz at 100 kHz offset. From the measurement, error vector magnitude (EVM) of 4.60%/9.55% with power amplifier (PA) output power of -15 dBm is achieved for the QPSK at 8 Mbps and the BFSK at 12.5 kbps. Fabricated in 65 nm CMOS with an active area of 1 mm 2 , the design consumes a total current of 5 ∼ 5.6 mA with a maximum energy efficiency of 0.7 nJ/b.
Performance analysis of wireless sensor networks in geophysical sensing applications
NASA Astrophysics Data System (ADS)
Uligere Narasimhamurthy, Adithya
Performance is an important criteria to consider before switching from a wired network to a wireless sensing network. Performance is especially important in geophysical sensing where the quality of the sensing system is measured by the precision of the acquired signal. Can a wireless sensing network maintain the same reliability and quality metrics that a wired system provides? Our work focuses on evaluating the wireless GeoMote sensor motes that were developed by previous computer science graduate students at Mines. Specifically, we conducted a set of experiments, namely WalkAway and Linear Array experiments, to characterize the performance of the wireless motes. The motes were also equipped with the Sticking Heartbeat Aperture Resynchronization Protocol (SHARP), a time synchronization protocol developed by a previous computer science graduate student at Mines. This protocol should automatically synchronize the mote's internal clocks and reduce time synchronization errors. We also collected passive data to evaluate the response of GeoMotes to various frequency components associated with the seismic waves. With the data collected from these experiments, we evaluated the performance of the SHARP protocol and compared the performance of our GeoMote wireless system against the industry standard wired seismograph system (Geometric-Geode). Using arrival time analysis and seismic velocity calculations, we set out to answer the following question. Can our wireless sensing system (GeoMotes) perform similarly to a traditional wired system in a realistic scenario?
Kothari, Mihir; Kothari, Kedar; Kadam, Sanjay; Mota, Poonam; Chipade, Snehal
2015-01-01
To report the "do it yourself" method of converting an existing wired-halogen indirect ophthalmoscope (IO) to a wireless-light emitting diode (LED) IO and report the preferences of the patients and the ophthalmologists. In this prospective observational study, a conventional IO was converted to wireless-LED IO using easily available, affordable electrical components. Conventional and the converted IO were then used to perform photo-stress test and take the feedback of subjects and the ophthalmologists regarding its handling and illumination characteristics. The cost of conversion to wireless-LED was 815/- rupees. Twenty-nine subjects, mean age 34.3 [formula in text] 10 years with normal eyes were recruited in the study. Between the two illumination systems, there was no statistical difference in the magnitude of the visual acuity loss and the time to recovery of acuity and the bleached vision on photo-stress test, although the visual recovery was clinically faster with LED illumination. The heat sensation was more with halogen illumination than the LED (P = 0.009). The ophthalmologists rated wireless-LED IO higher than wired-halogen IO on the handling, examination comfort, patient's visual comfort and quality of the image. Twenty-two (81%) ophthalmologists wanted to change over to wireless-LED IO. Converting to wireless-LED IO is easy, cost-effective and preferred over a wired-halogen indirect ophthalmoscope.
Terahertz (THz) Wireless Systems for Space Applications
NASA Technical Reports Server (NTRS)
Hwu, Shian U.; deSilva, Kanishka B.; Jih, Cindy T.
2013-01-01
NASA has been leading the Terahertz (THz) technology development for the sensors and instruments in astronomy in the past 20 years. THz technologies are expanding into much broader applications in recent years. Due to the vast available multiple gigahertz (GHz) broad bandwidths, THz radios offer the possibility for wireless transmission of high data rates. Multi-Gigabits per second (MGbps) broadband wireless access based on THz waves are closer to reality. The THz signal high atmosphere attenuation could significantly decrease the communication ranges and transmittable data rates for the ground systems. Contrary to the THz applications on the ground, the space applications in the atmosphere free environment do not suffer the atmosphere attenuation. The manufacturing technologies for the THz electronic components are advancing and maturing. There is great potential for the NASA future high data wireless applications in environments with difficult cabling and size/weight constraints. In this study, the THz wireless systems for potential space applications were investigated. The applicability of THz systems for space applications was analyzed. The link analysis indicates that MGbps data rates are achievable with compact sized high gain antennas.
A Fully Implantable Pacemaker for the Mouse: From Battery to Wireless Power
Zellmer, Erik R.; Weinheimer, Carla J.; MacEwan, Matthew R.; Cui, Sophia X.; Nerbonne, Jeanne M.; Efimov, Igor R.
2013-01-01
Animal models have become a popular platform for the investigation of the molecular and systemic mechanisms of pathological cardiovascular physiology. Chronic pacing studies with implantable pacemakers in large animals have led to useful models of heart failure and atrial fibrillation. Unfortunately, molecular and genetic studies in these large animal models are often prohibitively expensive or not available. Conversely, the mouse is an excellent species for studying molecular mechanisms of cardiovascular disease through genetic engineering. However, the large size of available pacemakers does not lend itself to chronic pacing in mice. Here, we present the design for a novel, fully implantable wireless-powered pacemaker for mice capable of long-term (>30 days) pacing. This design is compared to a traditional battery-powered pacemaker to demonstrate critical advantages achieved through wireless inductive power transfer and control. Battery-powered and wireless-powered pacemakers were fabricated from standard electronic components in our laboratory. Mice (n = 24) were implanted with endocardial, battery-powered devices (n = 14) and epicardial, wireless-powered devices (n = 10). Wireless-powered devices were associated with reduced implant mortality and more reliable device function compared to battery-powered devices. Eight of 14 (57.1%) mice implanted with battery-powered pacemakers died following device implantation compared to 1 of 10 (10%) mice implanted with wireless-powered pacemakers. Moreover, device function was achieved for 30 days with the wireless-powered device compared to 6 days with the battery-powered device. The wireless-powered pacemaker system presented herein will allow electrophysiology studies in numerous genetically engineered mouse models as well as rapid pacing-induced heart failure and atrial arrhythmia in mice. PMID:24194832
NASA Astrophysics Data System (ADS)
Arndt, Josua; Krystofiak, Lukas; Bonehi, Vahid; Wunderlich, Ralf; Heinen, Stefan
2017-09-01
Power consumption in wireless networks is crucial. In most scenarios the transmission time is short compared to the idle listening time for data transmission, the most power is consumed by the receiver. In low latency systems there is a need for low power wake-up receivers (WuRx) that reduce the power consumption when the node is idle, but keep it responsive. This work presents a WuRx designed out of commercial components to investigate the needs of a WuRx when it is embedded in a Wireless Personal Area Network (WPAN) system in a real environment setup including WLAN and LTE communication and considering interferer rejection. The calculation necessary for the attenuation of those interferers is explained in detail. Furthermore, a system design is presented that fulfills the requirements for this environment and is build from off-the-shelf components.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bevly, III, Alex J.; McConkey, Joshua S.
In a telemetry system (100) in a high-temperature environment of a combustion turbine engine (10), a wireless power-receiving coil assembly (116) may be affixed to a movable component (104) of the turbine engine. Power-receiving coil assembly (116) may include a radio-frequency transparent housing (130) having an opening (132). A lid (134) may be provided to close the opening of the housing. Lid (134) may be positioned to provide support against a surface (120) of the movable component. An induction coil (133) is disposed in the housing distally away from the lid and encased between a first layer (136) and amore » last layer (140) of a potting adhesive. Lid (134) is arranged to provide vibrational buffering between the surface (120) of the movable component (104) and the layers encasing the induction coil.« less
Intelligent Control in Automation Based on Wireless Traffic Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurt Derr; Milos Manic
2007-09-01
Wireless technology is a central component of many factory automation infrastructures in both the commercial and government sectors, providing connectivity among various components in industrial realms (distributed sensors, machines, mobile process controllers). However wireless technologies provide more threats to computer security than wired environments. The advantageous features of Bluetooth technology resulted in Bluetooth units shipments climbing to five million per week at the end of 2005 [1, 2]. This is why the real-time interpretation and understanding of Bluetooth traffic behavior is critical in both maintaining the integrity of computer systems and increasing the efficient use of this technology in controlmore » type applications. Although neuro-fuzzy approaches have been applied to wireless 802.11 behavior analysis in the past, a significantly different Bluetooth protocol framework has not been extensively explored using this technology. This paper presents a new neurofuzzy traffic analysis algorithm of this still new territory of Bluetooth traffic. Further enhancements of this algorithm are presented along with the comparison against the traditional, numerical approach. Through test examples, interesting Bluetooth traffic behavior characteristics were captured, and the comparative elegance of this computationally inexpensive approach was demonstrated. This analysis can be used to provide directions for future development and use of this prevailing technology in various control type applications, as well as making the use of it more secure.« less
Intelligent Control in Automation Based on Wireless Traffic Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurt Derr; Milos Manic
Wireless technology is a central component of many factory automation infrastructures in both the commercial and government sectors, providing connectivity among various components in industrial realms (distributed sensors, machines, mobile process controllers). However wireless technologies provide more threats to computer security than wired environments. The advantageous features of Bluetooth technology resulted in Bluetooth units shipments climbing to five million per week at the end of 2005 [1, 2]. This is why the real-time interpretation and understanding of Bluetooth traffic behavior is critical in both maintaining the integrity of computer systems and increasing the efficient use of this technology in controlmore » type applications. Although neuro-fuzzy approaches have been applied to wireless 802.11 behavior analysis in the past, a significantly different Bluetooth protocol framework has not been extensively explored using this technology. This paper presents a new neurofuzzy traffic analysis algorithm of this still new territory of Bluetooth traffic. Further enhancements of this algorithm are presented along with the comparison against the traditional, numerical approach. Through test examples, interesting Bluetooth traffic behavior characteristics were captured, and the comparative elegance of this computationally inexpensive approach was demonstrated. This analysis can be used to provide directions for future development and use of this prevailing technology in various control type applications, as well as making the use of it more secure.« less
Design of a miniature wind turbine for powering wireless sensors
NASA Astrophysics Data System (ADS)
Xu, F. J.; Yuan, F. G.; Hu, J. Z.; Qiu, Y. P.
2010-04-01
In this paper, a miniature wind turbine (MWT) system composed of commercially available off-the-shelf components was designed and tested for harvesting energy from ambient airflow to power wireless sensors. To make MWT operate at very low air flow rates, a 7.6 cm thorgren plastic Propeller blade was adopted as the wind turbine blade. A sub watt brushless DC motor was used as generator. To predict the performance of the MWT, an equivalent circuit model was employed for analyzing the output power and the net efficiency of the MWT system. In theory, the maximum net efficiency 14.8% of the MWT system was predicted. Experimental output power of the MWT versus resistive loads ranging from 5 ohms to 500 ohms under wind speeds from 3 m/s to 4.5 m/s correlates well with those from the predicted model, which means that the equivalent circuit model provides a guideline for optimizing the performance of the MWT and can be used for fulfilling the design requirements by selecting specific components for powering wireless sensors.
Shon, Ahnsei; Chu, Jun-Uk; Jung, Jiuk; Kim, Hyungmin; Youn, Inchan
2017-12-21
Recently, implantable devices have become widely used in neural prostheses because they eliminate endemic drawbacks of conventional percutaneous neural interface systems. However, there are still several issues to be considered: low-efficiency wireless power transmission; wireless data communication over restricted operating distance with high power consumption; and limited functionality, working either as a neural signal recorder or as a stimulator. To overcome these issues, we suggest a novel implantable wireless neural interface system for simultaneous neural signal recording and stimulation using a single cuff electrode. By using widely available commercial off-the-shelf (COTS) components, an easily reconfigurable implantable wireless neural interface system was implemented into one compact module. The implantable device includes a wireless power consortium (WPC)-compliant power transmission circuit, a medical implant communication service (MICS)-band-based radio link and a cuff-electrode path controller for simultaneous neural signal recording and stimulation. During in vivo experiments with rabbit models, the implantable device successfully recorded and stimulated the tibial and peroneal nerves while communicating with the external device. The proposed system can be modified for various implantable medical devices, especially such as closed-loop control based implantable neural prostheses requiring neural signal recording and stimulation at the same time.
Shon, Ahnsei; Chu, Jun-Uk; Jung, Jiuk; Youn, Inchan
2017-01-01
Recently, implantable devices have become widely used in neural prostheses because they eliminate endemic drawbacks of conventional percutaneous neural interface systems. However, there are still several issues to be considered: low-efficiency wireless power transmission; wireless data communication over restricted operating distance with high power consumption; and limited functionality, working either as a neural signal recorder or as a stimulator. To overcome these issues, we suggest a novel implantable wireless neural interface system for simultaneous neural signal recording and stimulation using a single cuff electrode. By using widely available commercial off-the-shelf (COTS) components, an easily reconfigurable implantable wireless neural interface system was implemented into one compact module. The implantable device includes a wireless power consortium (WPC)-compliant power transmission circuit, a medical implant communication service (MICS)-band-based radio link and a cuff-electrode path controller for simultaneous neural signal recording and stimulation. During in vivo experiments with rabbit models, the implantable device successfully recorded and stimulated the tibial and peroneal nerves while communicating with the external device. The proposed system can be modified for various implantable medical devices, especially such as closed-loop control based implantable neural prostheses requiring neural signal recording and stimulation at the same time. PMID:29267230
Effect of feeders in 3D modeling of low impedance multilayer CPW transmission line
NASA Astrophysics Data System (ADS)
Zaini, R. I.; Kyabaggu, P. B. K.; Sinulingga, E. P.
2018-02-01
Improved characteristics with low dissipation loss MMICs are highly desirable for wireless communications. However, the current industrial MMIC design is mainly based on microstrip concept which suffered from parasitic and unwanted phenomenon especially at higher frequency (>20 GHz). On the other hand, for future wireless technology, higher frequency operation is required and on-wafer microwave characterizations as well as precise modeling of 3D Multilayer CPW components are vital. This project concerns with understanding of the microwave characteristics behavior of Multilayer CPW components in MMIC applications. Feeder effect as unwanted parts in the characteristics has been investigated to determine its relation with the half wavelength resonance of the Multilayer CPW Low Impedance Transmission Line.
Two-dimensional optical phased array antenna on silicon-on-insulator.
Van Acoleyen, Karel; Rogier, Hendrik; Baets, Roel
2010-06-21
Optical wireless links can offer a very large bandwidth and can act as a complementary technology to radiofrequency links. Optical components nowadays are however rather bulky. Therefore, we have investigated the potential of silicon photonics to fabricated integrated components for wireless optical communication. This paper presents a two-dimensional phased array antenna consisting of grating couplers that couple light off-chip. Wavelength steering of $0.24 degrees /nm is presented reducing the need of active phase modulators. The needed steering range is $1.5 degrees . The 3dB angular coverage range of these antennas is about $0.007pi sr with a directivity of more than 38dBi and antenna losses smaller than 3dB.
Component Processes Subserving Rapid Automatized Naming in Dyslexic and Non-Dyslexic Readers
ERIC Educational Resources Information Center
Araujo, Susana; Inacio, Filomena; Francisco, Ana; Faisca, Luis; Petersson, Karl Magnus; Reis, Alexandra
2011-01-01
The current study investigated which time components of rapid automatized naming (RAN) predict group differences between dyslexic and non-dyslexic readers (matched for age and reading level), and how these components relate to different reading measures. Subjects performed two RAN tasks (letters and objects), and data were analyzed through a…
Cosmanescu, Alin; Miller, Benjamin; Magno, Terence; Ahmed, Assad; Kremenic, Ian
2006-01-01
A portable, multi-purpose Bio-instrumentation Amplifier and Data AcQuisition device (BADAQ) capable of measuring and transmitting EMG and EKG signals wirelessly via Bluetooth is designed and implemented. Common topologies for instrumentation amplifiers and filters are used and realized with commercially available, low-voltage, high precision operational amplifiers. An 8-bit PIC microcontroller performs 10-bit analog-to-digital conversion of the amplified and filtered signals and controls a Bluetooth transceiver capable of wirelessly transmitting the data to any Bluetooth enabled device. Electrical isolation between patient/subject, circuitry, and ancillary equipment is achieved by optocoupling components. The design focuses on simplicity, portability, and affordability.
ERIC Educational Resources Information Center
Ministry of Advanced Education and Labour Market Development, 2008
2008-01-01
Every year, the ministry writes to the public post-secondary institutions outlining operating budget allocations, service delivery targets and priority issues. The letters are a component of ministry planning, as identified in the accountability framework. Goals and objectives are identified in the annual ministry service plan. Each institution…
ERIC Educational Resources Information Center
Ministry of Advanced Education and Labour Market Development, 2008
2008-01-01
Every year, the ministry writes to the public post-secondary institutions outlining operating budget allocations, service delivery targets and priority issues. The letters are a component of ministry planning, as identified in the accountability framework. Goals and objectives are identified in the annual ministry service plan. Each institution…
ERIC Educational Resources Information Center
Ministry of Advanced Education and Labour Market Development, 2008
2008-01-01
Every year, the ministry writes to the public post-secondary institutions outlining operating budget allocations, service delivery targets and priority issues. The letters are a component of ministry planning, as identified in the accountability framework. Goals and objectives are identified in the annual ministry service plan. Each institution…
Richards, Todd L; Abbott, Robert D; Yagle, Kevin; Peterson, Dan; Raskind, Wendy; Berninger, Virginia W
2017-01-01
To understand mental self-government of the developing reading and writing brain, correlations of clustering coefficients on fMRI reading or writing tasks with BASC 2 Adaptivity ratings (time 1 only) or working memory components (time 1 before and time 2 after instruction previously shown to improve achievement and change magnitude of fMRI connectivity) were investigated in 39 students in grades 4 to 9 who varied along a continuum of reading and writing skills. A Philips 3T scanner measured connectivity during six leveled fMRI reading tasks (subword-letters and sounds, word-word-specific spellings or affixed words, syntax comprehension-with and without homonym foils or with and without affix foils, and text comprehension) and three fMRI writing tasks-writing next letter in alphabet, adding missing letter in word spelling, and planning for composing. The Brain Connectivity Toolbox generated clustering coefficients based on the cingulo-opercular (CO) network; after controlling for multiple comparisons and movement, significant fMRI connectivity clustering coefficients for CO were identified in 8 brain regions bilaterally (cingulate gyrus, superior frontal gyrus, middle frontal gyrus, inferior frontal gyrus, superior temporal gyrus, insula, cingulum-cingulate gyrus, and cingulum-hippocampus). BASC2 Parent Ratings for Adaptivity were correlated with CO clustering coefficients on three reading tasks (letter-sound, word affix judgments and sentence comprehension) and one writing task (writing next letter in alphabet). Before instruction, each behavioral working memory measure (phonology, orthography, morphology, and syntax coding, phonological and orthographic loops for integrating internal language and output codes, and supervisory focused and switching attention) correlated significantly with at least one CO clustering coefficient. After instruction, the patterning of correlations changed with new correlations emerging. Results show that the reading and writing brain's mental government, supported by both CO Adaptive Control and multiple working memory components, had changed in response to instruction during middle childhood/early adolescence.
Group Work in a Technology-Rich Environment
ERIC Educational Resources Information Center
Penner, Nikolai; Schulze, Mathias
2010-01-01
This paper addresses several components of successful language-learning methodologies--group work, task-based instruction, and wireless computer technologies--and examines how the interplay of these three was perceived by students in a second-year university foreign-language course. The technology component of our learning design plays a central…
NASA Astrophysics Data System (ADS)
Dragos, Kosmas; Smarsly, Kay
2016-04-01
System identification has been employed in numerous structural health monitoring (SHM) applications. Traditional system identification methods usually rely on centralized processing of structural response data to extract information on structural parameters. However, in wireless SHM systems the centralized processing of structural response data introduces a significant communication bottleneck. Exploiting the merits of decentralization and on-board processing power of wireless SHM systems, many system identification methods have been successfully implemented in wireless sensor networks. While several system identification approaches for wireless SHM systems have been proposed, little attention has been paid to obtaining information on the physical parameters (e.g. stiffness, damping) of the monitored structure. This paper presents a hybrid system identification methodology suitable for wireless sensor networks based on the principles of component mode synthesis (dynamic substructuring). A numerical model of the monitored structure is embedded into the wireless sensor nodes in a distributed manner, i.e. the entire model is segmented into sub-models, each embedded into one sensor node corresponding to the substructure the sensor node is assigned to. The parameters of each sub-model are estimated by extracting local mode shapes and by applying the equations of the Craig-Bampton method on dynamic substructuring. The proposed methodology is validated in a laboratory test conducted on a four-story frame structure to demonstrate the ability of the methodology to yield accurate estimates of stiffness parameters. Finally, the test results are discussed and an outlook on future research directions is provided.
A low-cost, portable, high-throughput wireless sensor system for phonocardiography applications.
Sa-Ngasoongsong, Akkarapol; Kunthong, Jakkrit; Sarangan, Venkatesh; Cai, Xinwei; Bukkapatnam, Satish T S
2012-01-01
This paper presents the design and testing of a wireless sensor system developed using a Microchip PICDEM developer kit to acquire and monitor human heart sounds for phonocardiography applications. This system can serve as a cost-effective option to the recent developments in wireless phonocardiography sensors that have primarily focused on Bluetooth technology. This wireless sensor system has been designed and developed in-house using off-the-shelf components and open source software for remote and mobile applications. The small form factor (3.75 cm × 5 cm × 1 cm), high throughput (6,000 Hz data streaming rate), and low cost ($13 per unit for a 1,000 unit batch) of this wireless sensor system make it particularly attractive for phonocardiography and other sensing applications. The experimental results of sensor signal analysis using several signal characterization techniques suggest that this wireless sensor system can capture both fundamental heart sounds (S1 and S2), and is also capable of capturing abnormal heart sounds (S3 and S4) and heart murmurs without aliasing. The results of a denoising application using Wavelet Transform show that the undesirable noises of sensor signals in the surrounding environment can be reduced dramatically. The exercising experiment results also show that this proposed wireless PCG system can capture heart sounds over different heart conditions simulated by varying heart rates of six subjects over a range of 60-180 Hz through exercise testing.
A Low-Cost, Portable, High-Throughput Wireless Sensor System for Phonocardiography Applications
Sa-ngasoongsong, Akkarapol; Kunthong, Jakkrit; Sarangan, Venkatesh; Cai, Xinwei; Bukkapatnam, Satish T. S.
2012-01-01
This paper presents the design and testing of a wireless sensor system developed using a Microchip PICDEM developer kit to acquire and monitor human heart sounds for phonocardiography applications. This system can serve as a cost-effective option to the recent developments in wireless phonocardiography sensors that have primarily focused on Bluetooth technology. This wireless sensor system has been designed and developed in-house using off-the-shelf components and open source software for remote and mobile applications. The small form factor (3.75 cm × 5 cm × 1 cm), high throughput (6,000 Hz data streaming rate), and low cost ($13 per unit for a 1,000 unit batch) of this wireless sensor system make it particularly attractive for phonocardiography and other sensing applications. The experimental results of sensor signal analysis using several signal characterization techniques suggest that this wireless sensor system can capture both fundamental heart sounds (S1 and S2), and is also capable of capturing abnormal heart sounds (S3 and S4) and heart murmurs without aliasing. The results of a denoising application using Wavelet Transform show that the undesirable noises of sensor signals in the surrounding environment can be reduced dramatically. The exercising experiment results also show that this proposed wireless PCG system can capture heart sounds over different heart conditions simulated by varying heart rates of six subjects over a range of 60–180 Hz through exercise testing. PMID:23112633
Capacity on wireless quantum cellular communication system
NASA Astrophysics Data System (ADS)
Zhou, Xiang-Zhen; Yu, Xu-Tao; Zhang, Zai-Chen
2018-03-01
Quantum technology is making excellent prospects in future communication networks. Entanglement generation and purification are two major components in quantum networks. Combining these two techniques with classical cellular mobile communication, we proposed a novel wireless quantum cellular(WQC) communication system which is possible to realize commercial mobile quantum communication. In this paper, the architecture and network topology of WQC communication system are discussed, the mathematical model of WQC system is extracted and the serving capacity, indicating the ability to serve customers, is defined and calculated under certain circumstances.
Multimodal Alexia: Neuropsychological Mechanisms and Implications for Treatment
Kim, Esther S.; Rapcsak, Steven Z.; Andersen, Sarah; Beeson, Pélagie M.
2011-01-01
Letter-by-letter (LBL) reading is the phenomenon whereby individuals with acquired alexia decode words by sequential identification of component letters. In cases where letter recognition or letter naming is impaired, however, a LBL reading approach is obviated, resulting in a nearly complete inability to read, or global alexia. In some such cases, a treatment strategy wherein letter tracing is used to provide tactile and/or kinesthetic input has resulted in improved letter identification. In this study, a kinesthetic treatment approach was implemented with an individual who presented with severe alexia in the context of relatively preserved recognition of orally spelled words, and mildly impaired oral/written spelling. Eight weeks of kinesthetic treatment resulted in improved letter identification accuracy and oral reading of trained words; however, the participant remained unable to successfully decode untrained words. Further testing revealed that, in addition to the visual-verbal disconnection that resulted in impaired word reading and letter naming, her limited ability to derive benefit from the kinesthetic strategy was attributable to a disconnection that prevented access to letter names from kinesthetic input. We propose that this kinesthetic-verbal disconnection resulted from damage to the left parietal lobe and underlying white matter, a neuroanatomical feature that is not typically observed in patients with global alexia or classic LBL reading. This unfortunate combination of visual-verbal and kinesthetic-verbal disconnections demonstrated in this individual resulted in a persistent multimodal alexia syndrome that was resistant to behavioral treatment. To our knowledge, this is the first case in which the nature of this form of multimodal alexia has been fully characterized, and our findings provide guidance regarding the requisite cognitive skills and lesion profiles that are likely to be associated with a positive response to tactile/kinesthetic treatment. PMID:21952194
Multimodal alexia: neuropsychological mechanisms and implications for treatment.
Kim, Esther S; Rapcsak, Steven Z; Andersen, Sarah; Beeson, Pélagie M
2011-11-01
Letter-by-letter (LBL) reading is the phenomenon whereby individuals with acquired alexia decode words by sequential identification of component letters. In cases where letter recognition or letter naming is impaired, however, a LBL reading approach is obviated, resulting in a nearly complete inability to read, or global alexia. In some such cases, a treatment strategy wherein letter tracing is used to provide tactile and/or kinesthetic input has resulted in improved letter identification. In this study, a kinesthetic treatment approach was implemented with an individual who presented with severe alexia in the context of relatively preserved recognition of orally spelled words, and mildly impaired oral/written spelling. Eight weeks of kinesthetic treatment resulted in improved letter identification accuracy and oral reading of trained words; however, the participant remained unable to successfully decode untrained words. Further testing revealed that, in addition to the visual-verbal disconnection that resulted in impaired word reading and letter naming, her limited ability to derive benefit from the kinesthetic strategy was attributable to a disconnection that prevented access to letter names from kinesthetic input. We propose that this kinesthetic-verbal disconnection resulted from damage to the left parietal lobe and underlying white matter, a neuroanatomical feature that is not typically observed in patients with global alexia or classic LBL reading. This unfortunate combination of visual-verbal and kinesthetic-verbal disconnections demonstrated in this individual resulted in a persistent multimodal alexia syndrome that was resistant to behavioral treatment. To our knowledge, this is the first case in which the nature of this form of multimodal alexia has been fully characterized, and our findings provide guidance regarding the requisite cognitive skills and lesion profiles that are likely to be associated with a positive response to tactile/kinesthetic treatment. Copyright © 2011 Elsevier Ltd. All rights reserved.
Low-power cryptographic coprocessor for autonomous wireless sensor networks
NASA Astrophysics Data System (ADS)
Olszyna, Jakub; Winiecki, Wiesław
2013-10-01
The concept of autonomous wireless sensor networks involves energy harvesting, as well as effective management of system resources. Public-key cryptography (PKC) offers the advantage of elegant key agreement schemes with which a secret key can be securely established over unsecure channels. In addition to solving the key management problem, the other major application of PKC is digital signatures, with which non-repudiation of messages exchanges can be achieved. The motivation for studying low-power and area efficient modular arithmetic algorithms comes from enabling public-key security for low-power devices that can perform under constrained environment like autonomous wireless sensor networks. This paper presents a cryptographic coprocessor tailored to the autonomous wireless sensor networks constraints. Such hardware circuit is aimed to support the implementation of different public-key cryptosystems based on modular arithmetic in GF(p) and GF(2m). Key components of the coprocessor are described as GEZEL models and can be easily transformed to VHDL and implemented in hardware.
A wirelessly programmable actuation and sensing system for structural health monitoring
NASA Astrophysics Data System (ADS)
Long, James; Büyüköztürk, Oral
2016-04-01
Wireless sensor networks promise to deliver low cost, low power and massively distributed systems for structural health monitoring. A key component of these systems, particularly when sampling rates are high, is the capability to process data within the network. Although progress has been made towards this vision, it remains a difficult task to develop and program 'smart' wireless sensing applications. In this paper we present a system which allows data acquisition and computational tasks to be specified in Python, a high level programming language, and executed within the sensor network. Key features of this system include the ability to execute custom application code without firmware updates, to run multiple users' requests concurrently and to conserve power through adjustable sleep settings. Specific examples of sensor node tasks are given to demonstrate the features of this system in the context of structural health monitoring. The system comprises of individual firmware for nodes in the wireless sensor network, and a gateway server and web application through which users can remotely submit their requests.
A monitoring system for vegetable greenhouses based on a wireless sensor network.
Li, Xiu-hong; Cheng, Xiao; Yan, Ke; Gong, Peng
2010-01-01
A wireless sensor network-based automatic monitoring system is designed for monitoring the life conditions of greenhouse vegetables. The complete system architecture includes a group of sensor nodes, a base station, and an internet data center. For the design of wireless sensor node, the JN5139 micro-processor is adopted as the core component and the Zigbee protocol is used for wireless communication between nodes. With an ARM7 microprocessor and embedded ZKOS operating system, a proprietary gateway node is developed to achieve data influx, screen display, system configuration and GPRS based remote data forwarding. Through a Client/Server mode the management software for remote data center achieves real-time data distribution and time-series analysis. Besides, a GSM-short-message-based interface is developed for sending real-time environmental measurements, and for alarming when a measurement is beyond some pre-defined threshold. The whole system has been tested for over one year and satisfactory results have been observed, which indicate that this system is very useful for greenhouse environment monitoring.
Wireless monitoring of structural components of wind turbines including tower and foundations
NASA Astrophysics Data System (ADS)
Wondra, B.; Botz, M.; Grosse, C. U.
2016-09-01
Only few large wind turbines contain an extensive structural health monitoring (SHM) system. Such SHM systems could provide deeper insight into the real load history of a wind turbine along its standard lifetime of 20 years and support a justified extension of operation beyond the original intended period. This paper presents a new concept of a wireless SHM system based on acceleration measurement sensor nodes to permanently record acceleration of the tower structure at different heights. Exploitation of acceleration data and its referring position on the turbine tower enables calculation of vibration frequencies, their amplitudes and subsequently eigenmodes. Tower heights of 100 m and more are within the transmission range of wireless nodes, enabling a complete surveillance of the tower in three dimensions without the need for long cabling or electric signal amplification. Mounting of the sensor nodes on the tower is not limited to a few positions by the presence of an electric cable anymore. Still a comparison between data recorded by wireless sensors and data recorded by high-resolution wire-based sensors shows that the present resolution of the wireless sensors has to be improved to record accelerations more accurately and thus analyze vibration frequencies more precisely.
Adaptive Transcutaneous Power Transfer to Implantable Devices: A State of the Art Review
Bocan, Kara N.; Sejdić, Ervin
2016-01-01
Wireless energy transfer is a broad research area that has recently become applicable to implantable medical devices. Wireless powering of and communication with implanted devices is possible through wireless transcutaneous energy transfer. However, designing wireless transcutaneous systems is complicated due to the variability of the environment. The focus of this review is on strategies to sense and adapt to environmental variations in wireless transcutaneous systems. Adaptive systems provide the ability to maintain performance in the face of both unpredictability (variation from expected parameters) and variability (changes over time). Current strategies in adaptive (or tunable) systems include sensing relevant metrics to evaluate the function of the system in its environment and adjusting control parameters according to sensed values through the use of tunable components. Some challenges of applying adaptive designs to implantable devices are challenges common to all implantable devices, including size and power reduction on the implant, efficiency of power transfer and safety related to energy absorption in tissue. Challenges specifically associated with adaptation include choosing relevant and accessible parameters to sense and adjust, minimizing the tuning time and complexity of control, utilizing feedback from the implanted device and coordinating adaptation at the transmitter and receiver. PMID:26999154
Adaptive Transcutaneous Power Transfer to Implantable Devices: A State of the Art Review.
Bocan, Kara N; Sejdić, Ervin
2016-03-18
Wireless energy transfer is a broad research area that has recently become applicable to implantable medical devices. Wireless powering of and communication with implanted devices is possible through wireless transcutaneous energy transfer. However, designing wireless transcutaneous systems is complicated due to the variability of the environment. The focus of this review is on strategies to sense and adapt to environmental variations in wireless transcutaneous systems. Adaptive systems provide the ability to maintain performance in the face of both unpredictability (variation from expected parameters) and variability (changes over time). Current strategies in adaptive (or tunable) systems include sensing relevant metrics to evaluate the function of the system in its environment and adjusting control parameters according to sensed values through the use of tunable components. Some challenges of applying adaptive designs to implantable devices are challenges common to all implantable devices, including size and power reduction on the implant, efficiency of power transfer and safety related to energy absorption in tissue. Challenges specifically associated with adaptation include choosing relevant and accessible parameters to sense and adjust, minimizing the tuning time and complexity of control, utilizing feedback from the implanted device and coordinating adaptation at the transmitter and receiver.
ERIC Educational Resources Information Center
Ministry of Advanced Education and Labour Market Development, 2008
2008-01-01
Every year, the ministry writes to the public post-secondary institutions outlining operating budget allocations, service delivery targets and priority issues. The letters are a component of ministry planning, as identified in the accountability framework. Goals and objectives are identified in the annual ministry service plan. Each institution…
ERIC Educational Resources Information Center
Ministry of Advanced Education and Labour Market Development, 2008
2008-01-01
Every year, the ministry writes to the public post-secondary institutions outlining operating budget allocations, service delivery targets and priority issues. The letters are a component of ministry planning, as identified in the accountability framework. Goals and objectives are identified in the annual ministry service plan. Each institution…
ERIC Educational Resources Information Center
Ministry of Advanced Education and Labour Market Development, 2008
2008-01-01
Every year, the ministry writes to the public post-secondary institutions outlining operating budget allocations, service delivery targets and priority issues. The letters are a component of ministry planning, as identified in the accountability framework. Goals and objectives are identified in the annual ministry service plan. Each institution…
ERIC Educational Resources Information Center
Ministry of Advanced Education, 2008
2008-01-01
Every year, the ministry writes to the public post-secondary institutions outlining operating budget allocations, service delivery targets and priority issues. The letters are a component of ministry planning, as identified in the accountability framework. Goals and objectives are identified in the annual ministry service plan. Each institution…
ERIC Educational Resources Information Center
Ministry of Advanced Education and Labour Market Development, 2008
2008-01-01
Every year, the ministry writes to the public post-secondary institutions outlining operating budget allocations, service delivery targets and priority issues. The letters are a component of ministry planning, as identified in the accountability framework. Goals and objectives are identified in the annual ministry service plan. Each institution…
ERIC Educational Resources Information Center
Ministry of Advanced Education and Labour Market Development, 2008
2008-01-01
Every year, the ministry writes to the public post-secondary institutions outlining operating budget allocations, service delivery targets and priority issues. The letters are a component of ministry planning, as identified in the accountability framework. Goals and objectives are identified in the annual ministry service plan. Each institution…
ERIC Educational Resources Information Center
Ministry of Advanced Education and Labour Market Development, 2008
2008-01-01
Every year, the ministry writes to the public post-secondary institutions outlining operating budget allocations, service delivery targets and priority issues. The letters are a component of ministry planning, as identified in the accountability framework. Goals and objectives are identified in the annual ministry service plan. Each institution…
ERIC Educational Resources Information Center
Ministry of Advanced Education and Labour Market Development, 2008
2008-01-01
Every year, the ministry writes to the public post-secondary institutions outlining operating budget allocations, service delivery targets and priority issues. The letters are a component of ministry planning, as identified in the accountability framework. Goals and objectives are identified in the annual ministry service plan. Each institution…
ERIC Educational Resources Information Center
Ministry of Advanced Education and Labour Market Development, 2008
2008-01-01
Every year, the ministry writes to the public post-secondary institutions outlining operating budget allocations, service delivery targets and priority issues. The letters are a component of ministry planning, as identified in the accountability framework. Goals and objectives are identified in the annual ministry service plan. Each institution…
Using a Wireless Electroencephalography Device to Evaluate E-Health and E-Learning Interventions.
Mailhot, Tanya; Lavoie, Patrick; Maheu-Cadotte, Marc-André; Fontaine, Guillaume; Cournoyer, Alexis; Côté, José; Dupuis, France; Karsenti, Thierry; Cossette, Sylvie
Measuring engagement and other reactions of patients and health professionals to e-health and e-learning interventions remains a challenge for researchers. The aim of this pilot study was to assess the feasibility and acceptability of using a wireless electroencephalography (EEG) device to measure affective (anxiety, enjoyment, relaxation) and cognitive (attention, engagement, interest) reactions of patients and healthcare professionals during e-health or e-learning interventions. Using a wireless EEG device, we measured patient (n = 6) and health professional (n = 7) reactions during a 10-minute session of an e-health or e-learning intervention. The following feasibility and acceptability indicators were assessed and compared for patients and healthcare professionals: number of eligible participants who consented to participate, reasons for refusal, time to install and calibrate the wireless EEG device, number of participants who completed the full 10-minute sessions, participant comfort when wearing the device, signal quality, and number of observations obtained for each reaction. The wireless EEG readings were compared to participant self-rating of their reactions. We obtained at least 75% of possible observations for attention, engagement, enjoyment, and interest. EEG scores were similar to self-reported scores, but they varied throughout the sessions, which gave information on participants' real-time reactions to the e-health/e-learning interventions. Results on the other indicators support the feasibility and acceptability of the wireless EEG device for both patients and professionals. Using the wireless EEG device was feasible and acceptable. Future studies must examine its use in other contexts of care and explore which components of the interventions affected participant reactions by combining wireless EEG and eye tracking.
Lonigan, Christopher J.; Purpura, David J.; Wilson, Shauna B.; Walker, Patricia M.; Clancy-Menchetti, Jeanine
2013-01-01
Many preschool children are at risk for reading problems because of inadequate emergent literacy skills. Evidence supports the effectiveness of interventions to promote these skills, but questions remain about which intervention components work and whether combining intervention components will result in larger gains. In this study, 324 preschoolers (mean age = 54.32 months, SD = 5.88) from low-income backgrounds (46% girls and 54% boys; 82% African American, 14% White, and 4% other) were randomized to combinations of meaning-focused (dialogic reading or shared reading) and code-focused (phonological awareness, letter knowledge, or both) interventions or a control group. Interventions had statistically significant positive impacts only on measures of their respective skill domains. Combinations of interventions did not enhance outcomes across domains, indicating instructional needs in all areas of weakness for young children at risk for later reading difficulties. Less time for each intervention in the combined phonological awareness and letter knowledge intervention conditions, however, did not result in reduced effects relative to nearly twice as much time for each intervention when children received either only the phonological awareness intervention or only the letter knowledge intervention. This finding suggests that a relatively compact code-focused intervention can address the needs of children with weaknesses in both domains. PMID:23073367
Enabling MEMS technologies for communications systems
NASA Astrophysics Data System (ADS)
Lubecke, Victor M.; Barber, Bradley P.; Arney, Susanne
2001-11-01
Modern communications demands have been steadily growing not only in size, but sophistication. Phone calls over copper wires have evolved into high definition video conferencing over optical fibers, and wireless internet browsing. The technology used to meet these demands is under constant pressure to provide increased capacity, speed, and efficiency, all with reduced size and cost. Various MEMS technologies have shown great promise for meeting these challenges by extending the performance of conventional circuitry and introducing radical new systems approaches. A variety of strategic MEMS structures including various cost-effective free-space optics and high-Q RF components are described, along with related practical implementation issues. These components are rapidly becoming essential for enabling the development of progressive new communications systems technologies including all-optical networks, and low cost multi-system wireless terminals and basestations.
Broadcast of four HD videos with LED ceiling lighting: optical-wireless MAC
NASA Astrophysics Data System (ADS)
Bouchet, Olivier; Porcon, Pascal; Gueutier, Eric
2011-09-01
The European project "hOME Gigabit Access Network" (OMEGA) targeted various wireless and wired solutions for 1 Gbit/s connectivity in Home Area Networks (HANs). One objective was to evaluate the suitability of optical wireless technologies in two spectral regions: visible light (visible-light communications - VLC) and near infrared (infrared communications - IRC). Several demonstrators have been built, all of them largely relying on overthe- shelf components. The demonstrators included a "wide-area" VLC broadcast link based on LED ceiling lighting and a laser-based high-data-rate "wide-area" IRC prototype. In this paper we discuss an adapted optical-wireless media-access-control (OWMAC) sublayer, which was developed and implemented during the project. It is suitable for both IRC and VLC. The VLC prototype is based on DMT signal processing and provides broadcasting at { 100 Mbit/s over an area of approximately 5 m2. The IRC prototype provides {300 Mbit/s half-duplex communication over an area of approximately 30 m2. The IRC mesh network, composed of one base station and two terminals, is based on OOK modulation, multi-sector transceivers, and an ultra-fast sector switch. After a brief discussion about the design of the optical-wireless data link layer and the optical-wireless switch (OWS) card, we address the card development and implementation. We also present applications for the VLC and IRC prototypes and measurement results regarding the MAC layer.
ERIC Educational Resources Information Center
Deng, Yi-Chan; Lin, Taiyu; Kinshuk; Chan, Tak-Wai
2006-01-01
"One-to-one" technology enhanced learning research refers to the design and investigation of learning environments and learning activities where every learner is equipped with at least one portable computing device enabled by wireless capability. G1:1 is an international research community coordinated by a network of laboratories conducting…
Fault Tolerance in ZigBee Wireless Sensor Networks
NASA Technical Reports Server (NTRS)
Alena, Richard; Gilstrap, Ray; Baldwin, Jarren; Stone, Thom; Wilson, Pete
2011-01-01
Wireless sensor networks (WSN) based on the IEEE 802.15.4 Personal Area Network standard are finding increasing use in the home automation and emerging smart energy markets. The network and application layers, based on the ZigBee 2007 PRO Standard, provide a convenient framework for component-based software that supports customer solutions from multiple vendors. This technology is supported by System-on-a-Chip solutions, resulting in extremely small and low-power nodes. The Wireless Connections in Space Project addresses the aerospace flight domain for both flight-critical and non-critical avionics. WSNs provide the inherent fault tolerance required for aerospace applications utilizing such technology. The team from Ames Research Center has developed techniques for assessing the fault tolerance of ZigBee WSNs challenged by radio frequency (RF) interference or WSN node failure.
Modeling, Real-Time Estimation, and Identification of UWB Indoor Wireless Channels
Olama, Mohammed M.; Djouadi, Seddik M.; Li, Yanyan; ...
2013-01-01
Stochastic differential equations (SDEs) are used to model ultrawideband (UWB) indoor wireless channels. We show that the impulse responses for time-varying indoor wireless channels can be approximated in a mean-square sense as close as desired by impulse responses that can be realized by SDEs. The state variables represent the inphase and quadrature components of the UWB channel. The expected maximization and extended Kalman filter are employed to recursively identify and estimate the channel parameters and states, respectively, from online received signal strength measured data. Both resolvable and nonresolvable multipath received signals are considered and represented as small-scaled Nakagami fading. Themore » proposed models together with the estimation algorithm are tested using UWB indoor measurement data demonstrating the method’s viability and the results are presented.« less
Power Consumption Analysis of Operating Systems for Wireless Sensor Networks
Lajara, Rafael; Pelegrí-Sebastiá, José; Perez Solano, Juan J.
2010-01-01
In this paper four wireless sensor network operating systems are compared in terms of power consumption. The analysis takes into account the most common operating systems—TinyOS v1.0, TinyOS v2.0, Mantis and Contiki—running on Tmote Sky and MICAz devices. With the objective of ensuring a fair evaluation, a benchmark composed of four applications has been developed, covering the most typical tasks that a Wireless Sensor Network performs. The results show the instant and average current consumption of the devices during the execution of these applications. The experimental measurements provide a good insight into the power mode in which the device components are running at every moment, and they can be used to compare the performance of different operating systems executing the same tasks. PMID:22219688
Power consumption analysis of operating systems for wireless sensor networks.
Lajara, Rafael; Pelegrí-Sebastiá, José; Perez Solano, Juan J
2010-01-01
In this paper four wireless sensor network operating systems are compared in terms of power consumption. The analysis takes into account the most common operating systems--TinyOS v1.0, TinyOS v2.0, Mantis and Contiki--running on Tmote Sky and MICAz devices. With the objective of ensuring a fair evaluation, a benchmark composed of four applications has been developed, covering the most typical tasks that a Wireless Sensor Network performs. The results show the instant and average current consumption of the devices during the execution of these applications. The experimental measurements provide a good insight into the power mode in which the device components are running at every moment, and they can be used to compare the performance of different operating systems executing the same tasks.
Blood detection in wireless capsule endoscope images based on salient superpixels.
Iakovidis, Dimitris K; Chatzis, Dimitris; Chrysanthopoulos, Panos; Koulaouzidis, Anastasios
2015-08-01
Wireless capsule endoscopy (WCE) enables screening of the gastrointestinal (GI) tract with a miniature, optical endoscope packed within a small swallowable capsule, wirelessly transmitting color images. In this paper we propose a novel method for automatic blood detection in contemporary WCE images. Blood is an alarming indication for the presence of pathologies requiring further treatment. The proposed method is based on a new definition of superpixel saliency. The saliency of superpixels is assessed upon their color, enabling the identification of image regions that are likely to contain blood. The blood patterns are recognized by their color features using a supervised learning machine. Experiments performed on a public dataset using automatically selected first-order statistical features from various color components indicate that the proposed method outperforms state-of-the-art methods.
50 CFR 217.178 - Renewal of Letters of Authorization and adaptive management.
Code of Federal Regulations, 2013 CFR
2013-10-01
... appropriate pursuant to the adaptive management component of these regulations, provided that: (1) NMFS is... pursuant to the adaptive management component of these regulations indicates that a substantial... modify or augment the existing mitigation or monitoring measures (after consulting with Neptune regarding...
50 CFR 217.88 - Renewal of Letters of Authorization and adaptive management.
Code of Federal Regulations, 2014 CFR
2014-10-01
... to the adaptive management component of these regulations, provided that: (1) NMFS is notified that... that modifications are appropriate pursuant to the adaptive management component of these regulations...) Adaptive Management—NMFS may modify or augment the existing mitigation or monitoring measures (after...
50 CFR 217.88 - Renewal of Letters of Authorization and adaptive management.
Code of Federal Regulations, 2012 CFR
2012-10-01
... to the adaptive management component of these regulations, provided that: (1) NMFS is notified that... that modifications are appropriate pursuant to the adaptive management component of these regulations...) Adaptive Management—NMFS may modify or augment the existing mitigation or monitoring measures (after...
50 CFR 217.178 - Renewal of Letters of Authorization and adaptive management.
Code of Federal Regulations, 2014 CFR
2014-10-01
... appropriate pursuant to the adaptive management component of these regulations, provided that: (1) NMFS is... pursuant to the adaptive management component of these regulations indicates that a substantial... modify or augment the existing mitigation or monitoring measures (after consulting with Neptune regarding...
50 CFR 217.88 - Renewal of Letters of Authorization and adaptive management.
Code of Federal Regulations, 2013 CFR
2013-10-01
... to the adaptive management component of these regulations, provided that: (1) NMFS is notified that... that modifications are appropriate pursuant to the adaptive management component of these regulations...) Adaptive Management—NMFS may modify or augment the existing mitigation or monitoring measures (after...
50 CFR 217.178 - Renewal of Letters of Authorization and adaptive management.
Code of Federal Regulations, 2012 CFR
2012-10-01
... appropriate pursuant to the adaptive management component of these regulations, provided that: (1) NMFS is... pursuant to the adaptive management component of these regulations indicates that a substantial... modify or augment the existing mitigation or monitoring measures (after consulting with Neptune regarding...
Communications interface for wireless communications headset
NASA Technical Reports Server (NTRS)
Culotta, Jr., Anthony Joseph (Inventor); Seibert, Marc A. (Inventor)
2004-01-01
A universal interface adapter circuit interfaces, for example, a wireless communications headset with any type of communications system, including those that require push-to-talk (PTT) signaling. The interface adapter is comprised of several main components, including an RF signaling receiver, a microcontroller and associated circuitry for decoding and processing the received signals, and programmable impedance matching and line interfacing circuitry for interfacing a wireless communications headset system base to a communications system. A signaling transmitter, which is preferably portable (e.g., handheld), is employed by the wireless headset user to send signals to the signaling receiver. In an embodiment of the invention directed specifically to push-to-talk (PTT) signaling, the wireless headset user presses a button on the signaling transmitter when they wish to speak. This sends a signal to the microcontroller which decodes the signal and recognizes the signal as being a PTT request. In response, the microcontroller generates a control signal that closes a switch to complete a voice connection between the headset system base and the communications system so that the user can communicate with the communications system. With this arrangement, the wireless headset can be interfaced to any communications system that requires PTT signaling, without modification of the headset device. In addition, the interface adapter can also be configured to respond to or deliver any other types of signals, such as dual-tone-multiple-frequency (DTMF) tones, and on/off hook signals. The present invention is also scalable, and permits multiple wireless users to operate independently in the same environment through use of a plurality of the interface adapters.
ERIC Educational Resources Information Center
Ministry of Advanced Education and Labour Market Development, 2008
2008-01-01
Every year, the ministry writes to the public post-secondary institutions outlining operating budget allocations, service delivery targets and priority issues. The letters are a component of ministry planning, as identified in the accountability framework. Goals and objectives are identified in the annual ministry service plan. Each institution…
ERIC Educational Resources Information Center
Ministry of Advanced Education and Labour Market Development, 2008
2008-01-01
Every year, the ministry writes to the public post-secondary institutions outlining operating budget allocations, service delivery targets and priority issues. The letters are a component of ministry planning, as identified in the accountability framework. Goals and objectives are identified in the annual ministry service plan. Each institution…
ERIC Educational Resources Information Center
Ministry of Advanced Education and Labour Market Development, 2008
2008-01-01
Every year, the ministry writes to the public post-secondary institutions outlining operating budget allocations, service delivery targets and priority issues. The letters are a component of ministry planning, as identified in the accountability framework. Goals and objectives are identified in the annual ministry service plan. Each institution…
Evaluation of Ammunition Data Cards (REDACTED)
2016-04-29
Procuring Contracting Officer ( PCO ), the manufacturer shall include, in the components sections on ADC representing the munition, all assemblies...lot components or evidence of PCO waiver approval. As a result, ADCs did not consistently include component items that make up the ammunition, and...Energetics PCO Procuring Contract Officer PQM Product Quality Manager QALI Quality Assurance Letter of Instruction QAR Quality Assurance Representative
Very large phase shift of microwave signals in a 6 nm Hf x Zr1-x O2 ferroelectric at ±3 V
NASA Astrophysics Data System (ADS)
Dragoman, Mircea; Modreanu, Mircea; Povey, Ian M.; Iordanescu, Sergiu; Aldrigo, Martino; Romanitan, Cosmin; Vasilache, Dan; Dinescu, Adrian; Dragoman, Daniela
2017-09-01
In this letter, we report for the first time very large phase shifts of microwaves in the 1-10 GHz range, in a 1 mm long gold coplanar interdigitated structure deposited over a 6 nm Hf x Zr1-x O2 ferroelectric grown directly on a high resistivity silicon substrate. The phase shift is larger than 60° at 1 GHz and 13° at 10 GHz at maximum applied DC voltages of ±3 V, which can be supplied by a simple commercial battery. In this way, we demonstrate experimentally that the new ferroelectrics based on HfO2 could play an important role in the future development of wireless communication systems for very low power applications.
Menychtas, Andreas; Tsanakas, Panayiotis
2016-01-01
The proper acquisition of biosignals data from various biosensor devices and their remote accessibility are still issues that prevent the wide adoption of point-of-care systems in the routine of monitoring chronic patients. This Letter presents an advanced framework for enabling patient monitoring that utilises a cloud computing infrastructure for data management and analysis. The framework introduces also a local mechanism for uniform biosignals collection from wearables and biosignal sensors, and decision support modules, in order to enable prompt and essential decisions. A prototype smartphone application and the related cloud modules have been implemented for demonstrating the value of the proposed framework. Initial results regarding the performance of the system and the effectiveness in data management and decision-making have been quite encouraging. PMID:27222731
A Novel Piggyback Selection Scheme in IEEE 802.11e HCCA
NASA Astrophysics Data System (ADS)
Lee, Hyun-Jin; Kim, Jae-Hyun
A control frame can be piggybacked onto a data frame to increase channel efficiency in wireless communication. However, if the control frame including global control information is piggybacked, the delay of the data frame from a access point will be increased even though there is only one station with low physical transmission rate. It is similar to the anomaly phenomenon in a network which supports multi-rate transmission. In this letter, we define this phenomenon as “the piggyback problem at low physical transmission rate” and evaluate the effect of this problem with respect to physical transmission rate and normalized traffic load. Then, we propose a delay-based piggyback scheme. Simulations show that the proposed scheme reduces average frame transmission delay and improves channel utilization about 24% and 25%, respectively.
Menychtas, Andreas; Tsanakas, Panayiotis; Maglogiannis, Ilias
2016-03-01
The proper acquisition of biosignals data from various biosensor devices and their remote accessibility are still issues that prevent the wide adoption of point-of-care systems in the routine of monitoring chronic patients. This Letter presents an advanced framework for enabling patient monitoring that utilises a cloud computing infrastructure for data management and analysis. The framework introduces also a local mechanism for uniform biosignals collection from wearables and biosignal sensors, and decision support modules, in order to enable prompt and essential decisions. A prototype smartphone application and the related cloud modules have been implemented for demonstrating the value of the proposed framework. Initial results regarding the performance of the system and the effectiveness in data management and decision-making have been quite encouraging.
Connected motorcycle system performance.
DOT National Transportation Integrated Search
2016-01-15
This project characterized the performance of Connected Vehicle Systems (CVS) on motorcycles based on two key components: global positioning and wireless communication systems. Considering that Global Positioning System (GPS) and 5.9 GHz Dedicated Sh...
46 CFR 50.25-10 - Acceptance of piping components by specific letter or approved plan.
Code of Federal Regulations, 2014 CFR
2014-10-01
...) MARINE ENGINEERING GENERAL PROVISIONS Acceptance of Material and Piping Components § 50.25-10 Acceptance... approved plan must do the following: (1) Submit an engineering type catalog or representative drawings of... specifications by comparing details of the materials' chemical composition, mechanical properties, method of...
46 CFR 50.25-10 - Acceptance of piping components by specific letter or approved plan.
Code of Federal Regulations, 2011 CFR
2011-10-01
...) MARINE ENGINEERING GENERAL PROVISIONS Acceptance of Material and Piping Components § 50.25-10 Acceptance... approved plan must do the following: (1) Submit an engineering type catalog or representative drawings of... specifications by comparing details of the materials' chemical composition, mechanical properties, method of...
46 CFR 50.25-10 - Acceptance of piping components by specific letter or approved plan.
Code of Federal Regulations, 2012 CFR
2012-10-01
...) MARINE ENGINEERING GENERAL PROVISIONS Acceptance of Material and Piping Components § 50.25-10 Acceptance... approved plan must do the following: (1) Submit an engineering type catalog or representative drawings of... specifications by comparing details of the materials' chemical composition, mechanical properties, method of...
46 CFR 50.25-10 - Acceptance of piping components by specific letter or approved plan.
Code of Federal Regulations, 2010 CFR
2010-10-01
...) MARINE ENGINEERING GENERAL PROVISIONS Acceptance of Material and Piping Components § 50.25-10 Acceptance... approved plan must do the following: (1) Submit an engineering type catalog or representative drawings of... specifications by comparing details of the materials' chemical composition, mechanical properties, method of...
46 CFR 50.25-10 - Acceptance of piping components by specific letter or approved plan.
Code of Federal Regulations, 2013 CFR
2013-10-01
...) MARINE ENGINEERING GENERAL PROVISIONS Acceptance of Material and Piping Components § 50.25-10 Acceptance... approved plan must do the following: (1) Submit an engineering type catalog or representative drawings of... specifications by comparing details of the materials' chemical composition, mechanical properties, method of...
Written case formulations in the treatment of anorexia nervosa: Evidence for therapeutic benefits.
Allen, Karina L; O'Hara, Caitlin B; Bartholdy, Savani; Renwick, Beth; Keyes, Alexandra; Lose, Anna; Kenyon, Martha; DeJong, Hannah; Broadbent, Hannah; Loomes, Rachel; McClelland, Jessica; Serpell, Lucy; Richards, Lorna; Johnson-Sabine, Eric; Boughton, Nicky; Whitehead, Linette; Treasure, Janet; Wade, Tracey; Schmidt, Ulrike
2016-09-01
Case formulation is a core component of many psychotherapies and formulation letters may provide an opportunity to enhance the therapeutic alliance and improve treatment outcomes. This study aimed to determine if formulation letters predict treatment satisfaction, session attendance, and symptom reductions in anorexia nervosa (AN). It was hypothesized that higher quality formulation letters would predict greater treatment satisfaction, a greater number of attended sessions, and greater improvement in eating disorder symptoms. Patients were adult outpatients with AN (n = 46) who received Maudsley Anorexia Nervosa Treatment for Adults (MANTRA) in the context of a clinical trial. A Case Formulation Rating Scheme was used to rate letters for adherence to the MANTRA model and use of a collaborative, reflective, affirming stance. Analyses included linear regression and mixed models. Formulation letters that paid attention to the development of the AN predicted greater treatment acceptability ratings (p = 0.002). More reflective and respectful letters predicted greater reductions in Eating Disorder Examination scores (p = 0.003). Results highlight the potential significance of a particular style of written formulation as part of treatment for AN. Future research should examine applicability to other psychiatric disorders. © 2016 Wiley Periodicals, Inc.(Int J Eat Disord 2016; 49:874-882). © 2016 Wiley Periodicals, Inc.
Conformal and embedded IDT microsensors for health monitoring of structures
NASA Astrophysics Data System (ADS)
Varadan, Vijay K.; Varadan, Vasundara V.
2000-06-01
MEMS are currently being applied to the structural health monitoring of critical aircraft components and composites. The approach integrates acoustic emission, strain gauges, MEMS accelerometers and vibration monitoring aircraft components with a known history of catastrophic failure due to fracture. Recently a combination of the need for safety in the air and the desire to control costs is encouraging the use of in-flight monitoring of aircraft components and systems using light-weight, wireless and cost effective microsensors and MEMS. An in-situ aircraft structural health monitoring system, with sensors embedded in the composite structure or surface-mounted on the structure, would permit the timely detection of damage in aircraft. Micromachining offers the potential for fabricating a range of microsensor and MEMS for structural applications including load, vibration and acoustics characterization and monitoring. Such microsensors are extremely small; they can be embedded into structural materials, can be mass-produced and are therefore potentially cheap. The smart sensors are being developed using the standard microelectronics and micromachining in conjunction with novel Penn State wireless communication systems suitable for condition monitoring of aircraft structures in-flight. The main application areas of this investigation include continuos monitoring of a) structural integrity of aging aircraft, b) fatigue cracking, c) corrosion, d) deflection and strain of aircraft structures, wings, and rotorblades, e) impact damage, f) delamination and g) location and propagation of cracks. In this paper we give an overview of wireless programmable microsensors and MEMS and their associated driving electronics for such applications.
Enabling IoT: Integration of wireless sensor network for healthcare application using Waspmote
NASA Astrophysics Data System (ADS)
Azmi, Noraini; Kamarudin, Latifah Munirah
2017-03-01
The number of patients that require medical assistance is increasing each day while staff-patient ratio is not balanced causing issues such as treatment delay and often leads to patient dissatisfaction. Besides that, healthcare devices are getting complex and challenging for it to be handled and interpreted personally by patient. Lack of staff and challenges in operating the medical devices not only affect patient in hospital but also caused problem to home care patients that require full attention and constant monitoring. This urges for a development of new method or technology. At present, Wireless Sensor Network (WSN) is gaining interest as one of the major components in enabling Internet of Things (IoT) since it offers low cost, low power monitoring besides reducing devices dependency on wires or cable. Although, WSN is initially developed for military application, nowadays, it is being integrated into various applications such as environmental monitoring, smart monitoring and agricultural monitoring. The idea of wireless monitoring with low power consumption motivates researchers to discover the possibility of deploying wireless sensor network for mission critical application such as in healthcare applications. This paper presents the details on the design and development of wireless sensor network using Waspmote from Libelium Inc. for mission critical applications such as healthcare applications.
Performance Analysis of Receive Diversity in Wireless Sensor Networks over GBSBE Models
Goel, Shivali; Abawajy, Jemal H.; Kim, Tai-hoon
2010-01-01
Wireless sensor networks have attracted a lot of attention recently. In this paper, we develop a channel model based on the elliptical model for multipath components involving randomly placed scatterers in the scattering region with sensors deployed on a field. We verify that in a sensor network, the use of receive diversity techniques improves the performance of the system. Extensive performance analysis of the system is carried out for both single and multiple antennas with the applied receive diversity techniques. Performance analyses based on variations in receiver height, maximum multipath delay and transmit power have been performed considering different numbers of antenna elements present in the receiver array, Our results show that increasing the number of antenna elements for a wireless sensor network does indeed improve the BER rates that can be obtained. PMID:22163510
A Wireless Biomedical Signal Interface System-on-Chip for Body Sensor Networks.
Lei Wang; Guang-Zhong Yang; Jin Huang; Jinyong Zhang; Li Yu; Zedong Nie; Cumming, D R S
2010-04-01
Recent years have seen the rapid development of biosensor technology, system-on-chip design, wireless technology. and ubiquitous computing. When assembled into an autonomous body sensor network (BSN), the technologies become powerful tools in well-being monitoring, medical diagnostics, and personal connectivity. In this paper, we describe the first demonstration of a fully customized mixed-signal silicon chip that has most of the attributes required for use in a wearable or implantable BSN. Our intellectual-property blocks include low-power analog sensor interface for temperature and pH, a data multiplexing and conversion module, a digital platform based around an 8-b microcontroller, data encoding for spread-spectrum wireless transmission, and a RF section requiring very few off-chip components. The chip has been fully evaluated and tested by connection to external sensors, and it satisfied typical system requirements.
Chatrchyan, S.
2015-07-10
In our Letter, there was a component of the statistical uncertainty from the simulated PbPb Monte Carlo samples. This uncertainty was not propagated to all of the results. Figures 3 and 4 have been updated to reflect this source of uncertainty. In this case, the statistical uncertainties remain smaller than the systematic uncertainties in all cases such that the conclusions of the Letter are unaltered.
Development of Arduino based wireless control system
NASA Astrophysics Data System (ADS)
Sun, Zhuoxiong; Dyke, Shirley J.; Pena, Francisco; Wilbee, Alana
2015-03-01
Over the past few decades, considerable attention has been given to structural control systems to mitigate structural vibration under natural hazards such as earthquakes and extreme weather conditions. Traditional wired structural control systems often employ a large amount of cables for communication among sensors, controllers and actuators. In such systems, implementation of wired sensors is usually quite complicated and expensive, especially on large scale structures such as bridges and buildings. To reduce the laborious installation and maintenance cost, wireless control systems (WCSs) are considered as a novel approach for structural vibration control. In this work, a WCS is developed based on the open source Arduino platform. Low cost, low power wireless sensing and communication components are built on the Arduino platform. Structural control algorithms are embedded within the wireless sensor board for feedback control. The developed WCS is first validated through a series of tests. Next, numerical simulations are performed simulating wireless control of a 3-story shear structure equipped with a semi-active control device (MR damper). Finally, experimental studies are carried out implementing the WCS on the 3-story shear structure in the Intelligent Infrastructure Systems Lab (IISL). A hydraulic shake table is used to generate seismic ground motions. The control performance is evaluated with the impact of modeling uncertainties, measurement noises as well as time delay and data loss induced by the wireless network. The developed WCS is shown to be effective in controlling structural vibrations under several historical earthquake ground motions.
A Middleware Solution for Wireless IoT Applications in Sparse Smart Cities
Lanzone, Stefano; Riberto, Giulio; Stefanelli, Cesare; Tortonesi, Mauro
2017-01-01
The spread of off-the-shelf mobile devices equipped with multiple wireless interfaces together with sophisticated sensors is paving the way to novel wireless Internet of Things (IoT) environments, characterized by multi-hop infrastructure-less wireless networks where devices carried by users act as sensors/actuators as well as network nodes. In particular, the paper presents Real Ad-hoc Multi-hop Peer-to peer-Wireless IoT Application (RAMP-WIA), a novel solution that facilitates the development, deployment, and management of applications in sparse Smart City environments, characterized by users willing to collaborate by allowing new applications to be deployed on their smartphones to remotely monitor and control fixed/mobile devices. RAMP-WIA allows users to dynamically configure single-hop wireless links, to manage opportunistically multi-hop packet dispatching considering that the network topology (together with the availability of sensors and actuators) may abruptly change, to actuate reliably sensor nodes specifically considering that only part of them could be actually reachable in a timely manner, and to upgrade dynamically the nodes through over-the-air distribution of new software components. The paper also reports the performance of RAMP-WIA on simple but realistic cases of small-scale deployment scenarios with off-the-shelf Android smartphones and Raspberry Pi devices; these results show not only the feasibility and soundness of the proposed approach, but also the efficiency of the middleware implemented when deployed on real testbeds. PMID:29099745
A Middleware Solution for Wireless IoT Applications in Sparse Smart Cities.
Bellavista, Paolo; Giannelli, Carlo; Lanzone, Stefano; Riberto, Giulio; Stefanelli, Cesare; Tortonesi, Mauro
2017-11-03
The spread of off-the-shelf mobile devices equipped with multiple wireless interfaces together with sophisticated sensors is paving the way to novel wireless Internet of Things (IoT) environments, characterized by multi-hop infrastructure-less wireless networks where devices carried by users act as sensors/actuators as well as network nodes. In particular, the paper presents Real Ad-hoc Multi-hop Peer-to peer-Wireless IoT Application (RAMP-WIA), a novel solution that facilitates the development, deployment, and management of applications in sparse Smart City environments, characterized by users willing to collaborate by allowing new applications to be deployed on their smartphones to remotely monitor and control fixed/mobile devices. RAMP-WIA allows users to dynamically configure single-hop wireless links, to manage opportunistically multi-hop packet dispatching considering that the network topology (together with the availability of sensors and actuators) may abruptly change, to actuate reliably sensor nodes specifically considering that only part of them could be actually reachable in a timely manner, and to upgrade dynamically the nodes through over-the-air distribution of new software components. The paper also reports the performance of RAMP-WIA on simple but realistic cases of small-scale deployment scenarios with off-the-shelf Android smartphones and Raspberry Pi devices; these results show not only the feasibility and soundness of the proposed approach, but also the efficiency of the middleware implemented when deployed on real testbeds.
Wireless AE Event and Environmental Monitoring for Wind Turbine Blades at Low Sampling Rates
NASA Astrophysics Data System (ADS)
Bouzid, Omar M.; Tian, Gui Y.; Cumanan, K.; Neasham, J.
Integration of acoustic wireless technology in structural health monitoring (SHM) applications introduces new challenges due to requirements of high sampling rates, additional communication bandwidth, memory space, and power resources. In order to circumvent these challenges, this chapter proposes a novel solution through building a wireless SHM technique in conjunction with acoustic emission (AE) with field deployment on the structure of a wind turbine. This solution requires a low sampling rate which is lower than the Nyquist rate. In addition, features extracted from aliased AE signals instead of reconstructing the original signals on-board the wireless nodes are exploited to monitor AE events, such as wind, rain, strong hail, and bird strike in different environmental conditions in conjunction with artificial AE sources. Time feature extraction algorithm, in addition to the principal component analysis (PCA) method, is used to extract and classify the relevant information, which in turn is used to classify or recognise a testing condition that is represented by the response signals. This proposed novel technique yields a significant data reduction during the monitoring process of wind turbine blades.
Body area network--a key infrastructure element for patient-centered telemedicine.
Norgall, Thomas; Schmidt, Robert; von der Grün, Thomas
2004-01-01
The Body Area Network (BAN) extends the range of existing wireless network technologies by an ultra-low range, ultra-low power network solution optimised for long-term or continuous healthcare applications. It enables wireless radio communication between several miniaturised, intelligent Body Sensor (or actor) Units (BSU) and a single Body Central Unit (BCU) worn at the human body. A separate wireless transmission link from the BCU to a network access point--using different technology--provides for online access to BAN components via usual network infrastructure. The BAN network protocol maintains dynamic ad-hoc network configuration scenarios and co-existence of multiple networks.BAN is expected to become a basic infrastructure element for electronic health services: By integrating patient-attached sensors and mobile actor units, distributed information and data processing systems, the range of medical workflow can be extended to include applications like wireless multi-parameter patient monitoring and therapy support. Beyond clinical use and professional disease management environments, private personal health assistance scenarios (without financial reimbursement by health agencies / insurance companies) enable a wide range of applications and services in future pervasive computing and networking environments.
A Monitoring System for Vegetable Greenhouses based on a Wireless Sensor Network
Li, Xiu-hong; Cheng, Xiao; Yan, Ke; Gong, Peng
2010-01-01
A wireless sensor network-based automatic monitoring system is designed for monitoring the life conditions of greenhouse vegetatables. The complete system architecture includes a group of sensor nodes, a base station, and an internet data center. For the design of wireless sensor node, the JN5139 micro-processor is adopted as the core component and the Zigbee protocol is used for wireless communication between nodes. With an ARM7 microprocessor and embedded ZKOS operating system, a proprietary gateway node is developed to achieve data influx, screen display, system configuration and GPRS based remote data forwarding. Through a Client/Server mode the management software for remote data center achieves real-time data distribution and time-series analysis. Besides, a GSM-short-message-based interface is developed for sending real-time environmental measurements, and for alarming when a measurement is beyond some pre-defined threshold. The whole system has been tested for over one year and satisfactory results have been observed, which indicate that this system is very useful for greenhouse environment monitoring. PMID:22163391
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-12
... Certain Wireless Communication Devices, Portable Music and Data Processing Devices, Computers and..., portable music and data processing devices, computers and components thereof. The complaint names as...
Left neglect dyslexia and the effect of stimulus duration.
Arduino, Lisa S; Vallar, Giuseppe; Burani, Cristina
2006-01-01
The present study investigated the effects of the duration of the stimulus on the reading performance of right-brain-damaged patients with left neglect dyslexia. Three Italian patients read aloud words and nonwords, under conditions of unlimited time of stimulus exposure and of timed presentation. In the untimed condition, the majority of the patients' errors involved the left side of the letter string (i.e., neglect dyslexia errors). Conversely, in the timed condition, although the overall level of performance decreased, errors were more evenly distributed across the whole letter string (i.e., visual - nonlateralized - errors). This reduction of neglect errors with a reduced time of presentation of the stimulus may reflect the read out of elements of the letter string from a preserved visual storage component, such as iconic memory. Conversely, a time-unlimited presentation of the stimulus may bring about the rightward bias that characterizes the performance of neglect patients, possibly by a capture of the patients' attention by the final (rightward) letters of the string.
[Neurophysiological correlates of learning disabilities in Japan].
Miyao, M
1999-05-01
In the present study, we developed a new event-related potentials (ERPs) stimulator system applicable to simultaneous audio visual stimuli, and tested it clinically on healthy adults and patients with learning disabilities (LD), using Japanese language task stimuli: hiragana letters, kanji letters, and kanji letters with spoken words. (1) The origins of the P300 component were identified in these tasks. The sources in the former two tasks were located in different areas. In the simultaneous task stimuli, a combination of the two P300 sources was observed with dominance in the left posterior inferior temporal area. (2) In patients with learning disabilities, those with reading and writing disability showed low amplitudes in the left hemisphere in response to visual language task stimuli with kanji and hiragana letters, in contrast to healthy children and LD patients with arithmetic disability. (3) To evaluate the effect of methylphenidate (10 mg) on ADD, paired-associate ERPs were recorded. Methylphenidate increased the amplitude of P300.
Compression Strength of Composite Primary Structural Components
NASA Technical Reports Server (NTRS)
Johnson, Eric R.
1998-01-01
Research conducted under NASA Grant NAG-1-537 focussed on the response and failure of advanced composite material structures for application to aircraft. Both experimental and analytical methods were utilized to study the fundamental mechanics of the response and failure of selected structural components subjected to quasi-static loads. Most of the structural components studied were thin-walled elements subject to compression, such that they exhibited buckling and postbuckling responses prior to catastrophic failure. Consequently, the analyses were geometrically nonlinear. Structural components studied were dropped-ply laminated plates, stiffener crippling, pressure pillowing of orthogonally stiffened cylindrical shells, axisymmetric response of pressure domes, and the static crush of semi-circular frames. Failure of these components motivated analytical studies on an interlaminar stress postprocessor for plate and shell finite element computer codes, and global/local modeling strategies in finite element modeling. These activities are summarized in the following section. References to literature published under the grant are listed on pages 5 to 10 by a letter followed by a number under the categories of journal publications, conference publications, presentations, and reports. These references are indicated in the text by their letter and number as a superscript.
Localized radio frequency communication using asynchronous transfer mode protocol
Witzke, Edward L [Edgewood, NM; Robertson, Perry J [Albuquerque, NM; Pierson, Lyndon G [Albuquerque, NM
2007-08-14
A localized wireless communication system for communication between a plurality of circuit boards, and between electronic components on the circuit boards. Transceivers are located on each circuit board and electronic component. The transceivers communicate with one another over spread spectrum radio frequencies. An asynchronous transfer mode protocol controls communication flow with asynchronous transfer mode switches located on the circuit boards.
New strategies for SHM based on a multichannel wireless AE node
NASA Astrophysics Data System (ADS)
Godinez-Azcuaga, Valery; Ley, Obdulia
2014-03-01
This paper discusses the development of an Acoustic Emission (AE) wireless node and its application for SHM (Structural Health Monitoring). The instrument development was planned for applications monitoring steel and concrete bridges components. The final product, now commercially available, is a sensor node which includes multiple sensing elements, on board signal processing and analysis capabilities, signal conditioning electronics, power management circuits, wireless data transmission element and energy harvesting unit. The sensing elements are capable of functioning in both passive and active modes, while the multiple parametric inputs are available for connecting various sensor types to measure external characteristics affecting the performance of the structure under monitoring. The output of all these sensors are combined and analyzed at the node in order to minimize the data transmission rate, which consumes significant amount of power. Power management circuits are used to reduce the data collection intervals through selective data acquisition strategies and minimize the sensor node power consumption. This instrument, known as the 1284, is an excellent platform to deploy SHM in the original bridge applications, but initial prototypes has shown significant potential in monitoring composite wind turbine blades and composites mockups of Unmanned Autonomous Vehicles (UAV) components; currently we are working to extend the use of this system to fields such as coal flow, power transformer, and off-shore platform monitoring.
An overview of recent end-to-end wireless medical video telemedicine systems using 3G.
Panayides, A; Pattichis, M S; Pattichis, C S; Schizas, C N; Spanias, A; Kyriacou, E
2010-01-01
Advances in video compression, network technologies, and computer technologies have contributed to the rapid growth of mobile health (m-health) systems and services. Wide deployment of such systems and services is expected in the near future, and it's foreseen that they will soon be incorporated in daily clinical practice. This study focuses in describing the basic components of an end-to-end wireless medical video telemedicine system, providing a brief overview of the recent advances in the field, while it also highlights future trends in the design of telemedicine systems that are diagnostically driven.
Aiello, Marilena; Merola, Sheila; Lasaponara, Stefano; Pinto, Mario; Tomaiuolo, Francesco; Doricchi, Fabrizio
2018-01-31
The possibility of allocating attentional resources to the "global" shape or to the "local" details of pictorial stimuli helps visual processing. Investigations with hierarchical Navon letters, that are large "global" letters made up of small "local" ones, consistently demonstrate a right hemisphere advantage for global processing and a left hemisphere advantage for local processing. Here we investigated how the visual and phonological features of the global and local components of Navon letters influence these hemispheric advantages. In a first study in healthy participants, we contrasted the hemispheric processing of hierarchical letters with global and local items competing for response selection, to the processing of hierarchical letters in which a letter, a false-letter conveying no phonological information or a geometrical shape presented at the unattended level did not compete for response selection. In a second study, we investigated the hemispheric processing of hierarchical stimuli in which global and local letters were both visually and phonologically congruent (e.g. large uppercase G made of smaller uppercase G), visually incongruent and phonologically congruent (e.g. large uppercase G made of small lowercase g) or visually incongruent and phonologically incongruent (e.g. large uppercase G made of small lowercase or uppercase M). In a third study, we administered the same tasks to a right brain damaged patient with a lesion involving pre-striate areas engaged by global processing. The results of the first two experiments showed that the global abilities of the left hemisphere are limited because of its strong susceptibility to interference from local letters even when these are irrelevant to the task. Phonological features played a crucial role in this interference because the interference was entirely maintained also when letters at the global and local level were presented in different uppercase vs. lowercase formats. In contrast, when local features conveyed no phonological information, the left hemisphere showed preserved global processing abilities. These findings were supported by the study of the right brain damaged patient. These results offer a new look at the hemispheric dominance in the attentional processing of the global and local levels of hierarchical stimuli. Copyright © 2017 Elsevier Ltd. All rights reserved.
Communications and radar-supported transportation operations and planning : final report.
DOT National Transportation Integrated Search
2017-03-01
This project designs a conceptual framework to harness and mature wireless technology to improve : transportation safety, with a focus on frontal collision warning/collision avoidance (CW/CA) systems. The : framework identifies components of the tech...
Information Fusion in Ad hoc Wireless Sensor Networks for Aircraft Health Monitoring
NASA Astrophysics Data System (ADS)
Fragoulis, Nikos; Tsagaris, Vassilis; Anastassopoulos, Vassilis
In this paper the use of an ad hoc wireless sensor network for implementing a structural health monitoring system is discussed. The network is consisted of sensors deployed throughout the aircraft. These sensors being in the form of a microelectronic chip and consisted of sensing, data processing and communicating components could be easily embedded in any mechanical aircraft component. The established sensor network, due to its ad hoc nature is easily scalable, allowing adding or removing any number of sensors. The position of the sensor nodes need not necessarily to be engineered or predetermined, giving this way the ability to be deployed in inaccessible points. Information collected from various sensors of different modalities throughout the aircraft is then fused in order to provide a more comprehensive image of the aircraft structural health. Sensor level fusion along with decision quality information is used, in order to enhance detection performance.
End-to-end network models encompassing terrestrial, wireless, and satellite components
NASA Astrophysics Data System (ADS)
Boyarko, Chandler L.; Britton, John S.; Flores, Phil E.; Lambert, Charles B.; Pendzick, John M.; Ryan, Christopher M.; Shankman, Gordon L.; Williams, Ramon P.
2004-08-01
Development of network models that reflect true end-to-end architectures such as the Transformational Communications Architecture need to encompass terrestrial, wireless and satellite component to truly represent all of the complexities in a world wide communications network. Use of best-in-class tools including OPNET, Satellite Tool Kit (STK), Popkin System Architect and their well known XML-friendly definitions, such as OPNET Modeler's Data Type Description (DTD), or socket-based data transfer modules, such as STK/Connect, enable the sharing of data between applications for more rapid development of end-to-end system architectures and a more complete system design. By sharing the results of and integrating best-in-class tools we are able to (1) promote sharing of data, (2) enhance the fidelity of our results and (3) allow network and application performance to be viewed in the context of the entire enterprise and its processes.
Study on efficiency of different topologies of magnetic coupled resonant wireless charging system
NASA Astrophysics Data System (ADS)
Cui, S.; Liu, Z. Z.; Hou, Y. J.; Zeng, H.; Yue, Z. K.; Liang, L. H.
2017-11-01
This paper analyses the relationship between the output power, the transmission efficiency and the frequency, load and coupling coefficient of the four kinds of magnetic coupled resonant wireless charging system topologies. Based on mutual inductance principle, four kinds of circuit models are established, and the expressions of output power and transmission efficiency of different structures are calculated. The difference between the two power characteristics and efficiency characteristics is compared by simulating the SS (series-series) and SP (series-parallel) type wireless charging systems. With the same parameters of circuit components, the SS structure is usually suitable for small load resistance. The SP structure can be applied to large load resistors, when the transmission efficiency of the system is required to keep high. If the operating frequency deviates from the system resonance frequency, the SS type system has higher transmission efficiency than the SP type system.
Angelo, Peter [Oak Ridge, TN; Younkin, James [Oak Ridge, TN; DeMint, Paul [Kingston, TN
2011-01-25
A personal annunciation device (PAD) providing, in an area of interest, compensatory annunciation of the presence of an abnormal condition in a hazardous area and accountability of the user of the PAD. Compensatory annunciation supplements primary annunciation provided by an emergency notification system (ENS). A detection system detects an abnormal condition, and a wireless transmission system transmits a wireless transmission to the PAD. The PAD has a housing enclosing the components of the PAD including a communication module for receiving the wireless transmission, a power supply, processor, memory, annunciation system, and RFID module. The RFID module has an RFID receiver that listens for an RFID transmission from an RFID reader disposed in a portal of an area of interest. The PAD identifies the transmission and changes its operating state based on the transmission. The RFID readers recognize, record, and transmit the state of the PAD to a base station providing accountability of the wearer.
Grand, Laszlo; Ftomov, Sergiu; Timofeev, Igor
2012-01-01
Parallel electrophysiological recording and behavioral monitoring of freely moving animals is essential for a better understanding of the neural mechanisms underlying behavior. In this paper we describe a novel wireless recording technique, which is capable of synchronously recording in vivo multichannel electrophysiological (LFP, MUA, EOG, EMG) and activity data (accelerometer, video) from freely moving cats. The method is based on the integration of commercially available components into a simple monitoring system and is complete with accelerometers and the needed signal processing tools. LFP activities of freely moving group-housed cats were recorded from multiple intracortical areas and from the hippocampus. EMG, EOG, accelerometer and video were simultaneously acquired with LFP activities 24-h a day for 3 months. These recordings confirm the possibility of using our wireless method for 24-h long-term monitoring of neurophysiological and behavioral data of freely moving experimental animals such as cats, ferrets, rabbits and other large animals. PMID:23099345
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Philip
The research objective of this project is to design and demonstrate a low-cost, compact, easy-to-deploy, maintenance-free sensor node technology, and a network of such sensors, which enable the monitoring of multiphysical parameters and can transform today’s ordinary buildings into smart buildings with environmental awareness. We develop the sensor node and network via engineering and integration of existing technologies, including high-efficiency mechanical energy harvesting, and ultralow-power integrated circuits (ICs) for sensing and wireless communication. Through integration and innovative power management via specifically designed low-power control circuits for wireless sensing applications, and tailoring energy-harvesting components to indoor applications, the target products willmore » have smaller volume, higher efficiency, and much lower cost (in both manufacturing and maintenance) than the baseline technology. Our development and commercialization objective is to create prototypes for our target products under the CWRU-Intwine collaboration.« less
Srivastava, Viranjay M
2015-01-01
In the present technological expansion, the radio frequency integrated circuits in the wireless communication technologies became useful because of the replacement of increasing number of functions, traditional hardware components by modern digital signal processing. The carrier frequencies used for communication systems, now a day, shifted toward the microwave regime. The signal processing for the multiple inputs multiple output wireless communication system using the Metal- Oxide-Semiconductor Field-Effect-Transistor (MOSFET) has been done a lot. In this research the signal processing with help of nano-scaled Cylindrical Surrounding Double Gate (CSDG) MOSFET by means of Double- Pole Four-Throw Radio-Frequency (DP4T RF) switch, in terms of Insertion loss, Isolation, Reverse isolation and Inter modulation have been analyzed. In addition to this a channel model has been presented. Here, we also discussed some patents relevant to the topic.
A Secure Trust Establishment Scheme for Wireless Sensor Networks
Ishmanov, Farruh; Kim, Sung Won; Nam, Seung Yeob
2014-01-01
Trust establishment is an important tool to improve cooperation and enhance security in wireless sensor networks. The core of trust establishment is trust estimation. If a trust estimation method is not robust against attack and misbehavior, the trust values produced will be meaningless, and system performance will be degraded. We present a novel trust estimation method that is robust against on-off attacks and persistent malicious behavior. Moreover, in order to aggregate recommendations securely, we propose using a modified one-step M-estimator scheme. The novelty of the proposed scheme arises from combining past misbehavior with current status in a comprehensive way. Specifically, we introduce an aggregated misbehavior component in trust estimation, which assists in detecting an on-off attack and persistent malicious behavior. In order to determine the current status of the node, we employ previous trust values and current measured misbehavior components. These components are combined to obtain a robust trust value. Theoretical analyses and evaluation results show that our scheme performs better than other trust schemes in terms of detecting an on-off attack and persistent misbehavior. PMID:24451471
Yin, Yihang; Liu, Fengzheng; Zhou, Xiang; Li, Quanzhong
2015-08-07
Wireless sensor networks (WSNs) have been widely used to monitor the environment, and sensors in WSNs are usually power constrained. Because inner-node communication consumes most of the power, efficient data compression schemes are needed to reduce the data transmission to prolong the lifetime of WSNs. In this paper, we propose an efficient data compression model to aggregate data, which is based on spatial clustering and principal component analysis (PCA). First, sensors with a strong temporal-spatial correlation are grouped into one cluster for further processing with a novel similarity measure metric. Next, sensor data in one cluster are aggregated in the cluster head sensor node, and an efficient adaptive strategy is proposed for the selection of the cluster head to conserve energy. Finally, the proposed model applies principal component analysis with an error bound guarantee to compress the data and retain the definite variance at the same time. Computer simulations show that the proposed model can greatly reduce communication and obtain a lower mean square error than other PCA-based algorithms.
High Temperature Wireless Communication And Electronics For Harsh Environment Applications
NASA Technical Reports Server (NTRS)
Hunter, G. W.; Neudeck, P. G.; Beheim, G. M.; Ponchak, G. E.; Chen, L.-Y
2007-01-01
In order for future aerospace propulsion systems to meet the increasing requirements for decreased maintenance, improved capability, and increased safety, the inclusion of intelligence into the propulsion system design and operation becomes necessary. These propulsion systems will have to incorporate technology that will monitor propulsion component conditions, analyze the incoming data, and modify operating parameters to optimize propulsion system operations. This implies the development of sensors, actuators, and electronics, with associated packaging, that will be able to operate under the harsh environments present in an engine. However, given the harsh environments inherent in propulsion systems, the development of engine-compatible electronics and sensors is not straightforward. The ability of a sensor system to operate in a given environment often depends as much on the technologies supporting the sensor element as the element itself. If the supporting technology cannot handle the application, then no matter how good the sensor is itself, the sensor system will fail. An example is high temperature environments where supporting technologies are often not capable of operation in engine conditions. Further, for every sensor going into an engine environment, i.e., for every new piece of hardware that improves the in-situ intelligence of the components, communication wires almost always must follow. The communication wires may be within or between parts, or from the engine to the controller. As more hardware is added, more wires, weight, complexity, and potential for unreliability is also introduced. Thus, wireless communication combined with in-situ processing of data would significantly improve the ability to include sensors into high temperature systems and thus lead toward more intelligent engine systems. NASA Glenn Research Center (GRC) is presently leading the development of electronics, communication systems, and sensors capable of prolonged stable operation in harsh 500C environments. This has included world record operation of SiC-based transistor technology (including packaging) that has demonstrated continuous electrical operation at 500C for over 2000 hours. Based on SiC electronics, development of high temperature wireless communication has been on-going. This work has concentrated on maturing the SiC electronic devices for communication purposes as well as the passive components such as resistors and capacitors needed to enable a high temperature wireless system. The objective is to eliminate wires associated with high temperature sensors which add weight to a vehicle and can be a cause of sensor unreliability. This paper discusses the development of SiC based electronics and wireless communications technology for harsh environment applications such as propulsion health management systems and in Venus missions. A brief overview of the future directions in sensor technology is given including maturing of near-room temperature "Lick and Stick" leak sensor technology for possible implementation in the Crew Launch Vehicle program. Then an overview of high temperature electronics and the development of high temperature communication systems is presented. The maturity of related technologies such as sensor and packaging will also be discussed. It is concluded that a significant component of efforts to improve the intelligence of harsh environment operating systems is the development and implementation of high temperature wireless technology
From Micro to Nano: The Evolution of Wireless Sensor-Based Health Care.
Sarkar, Subhadeep; Misra, Sudip
2016-01-01
Over the past decade, embedded systems and microelectromechanical systems have evolved in a radical way, redefining our standard of living and enhancing the quality of life. Health care, among various other fields, has benefited vastly from this technological development. The concept of using sensors for health care purposes originated in the late 1980s when sensors were developed to measure certain physiological parameters associated with the human body. In traditional sensor nodes, the signal sources are mostly different environmental phenomena (such as temperature, vibration, and luminosity) or man-made events (such as intrusion and mobile target tracking), whereas in case of the physiological sensors, the signal source is living human tissue. These sensor nodes, as their primary sensing element, have a diaphragm that converts pressure into displacement. This displacement, in turn, is subsequently transformed into an electrical signal. The concept of wireless physiological sensor nodes, however, gained popularity in the mid-2000s, with the sensed data from the nodes transmitted to the hub via a wireless medium. The network formed by this heterogeneous set of wireless body sensor nodes is termed a wireless body-area network (WBAN). Each WBAN is essentially a composition of multiple wireless body sensor nodes and a single hub. The hub is primarily responsible for acquisition of the raw sensed data from all the component sensor nodes and first-level aggregation of the data before transmitting the aggregated data for further analysis to a remote data acquisition center. Here, we outline the evolution of WBANs in the context of modern health care and its convergence with nanotechnology.
Xu, Fei; Yan, Guozheng; Zhao, Kai; Lu, Li; Gao, Jinyang; Liu, Gang
2014-12-01
This paper presents the design of a wireless capsule system for monitoring the physiological signals of the human gastrointestinal (GI) tract. The primary components of the system include a wireless capsule, a portable data recorder, and a workstation. Temperature, pH, and pressure sensors; an RF transceiver; a controlling and processing application specific integrated circuit (ASIC); and batteries were applied in a wireless capsule. Decreasing capsule size, improving sensor precision, and reducing power needs were the primary challenges; these were resolved by employing micro sensors, optimized architecture, and an ASIC design that include power management, clock management, a programmable gain amplifier (PGA), an A/D converter (ADC), and a serial peripheral interface (SPI) communication unit. The ASIC has been fabricated in 0.18- μm CMOS technology with a die area of 5.0 mm × 5.0 mm. The wireless capsule integrating the ASIC controller measures Φ 11 mm × 26 mm. A data recorder and a workstation were developed, and 20 cases of human experiments were conducted in hospitals. Preprocessing in the workstation can significantly improve the quality of the data, and 76 original features were determined by mathematical statistics. Based on the 13 optimal features achieved in the evaluation of the features, the clustering algorithm can identify the patients who lack GI motility with a recognition rate reaching 83.3%.
NASA Astrophysics Data System (ADS)
Khursheed, Khursheed; Imran, Muhammad; Ahmad, Naeem; O'Nils, Mattias
2012-06-01
Wireless Visual Sensor Network (WVSN) is an emerging field which combines image sensor, on board computation unit, communication component and energy source. Compared to the traditional wireless sensor network, which operates on one dimensional data, such as temperature, pressure values etc., WVSN operates on two dimensional data (images) which requires higher processing power and communication bandwidth. Normally, WVSNs are deployed in areas where installation of wired solutions is not feasible. The energy budget in these networks is limited to the batteries, because of the wireless nature of the application. Due to the limited availability of energy, the processing at Visual Sensor Nodes (VSN) and communication from VSN to server should consume as low energy as possible. Transmission of raw images wirelessly consumes a lot of energy and requires higher communication bandwidth. Data compression methods reduce data efficiently and hence will be effective in reducing communication cost in WVSN. In this paper, we have compared the compression efficiency and complexity of six well known bi-level image compression methods. The focus is to determine the compression algorithms which can efficiently compress bi-level images and their computational complexity is suitable for computational platform used in WVSNs. These results can be used as a road map for selection of compression methods for different sets of constraints in WVSN.
Leveraging Energy Harvesting and Wake-Up Receivers for Long-Term Wireless Sensor Networks.
Ait Aoudia, Fayçal; Gautier, Matthieu; Magno, Michele; Berder, Olivier; Benini, Luca
2018-05-15
Wireless sensor nodes are traditionally powered by individual batteries, and a significant effort has been devoted to maximizing the lifetime of these devices. However, as the batteries can only store a finite amount of energy, the network is still doomed to die, and changing the batteries is not always possible. A promising solution is to enable each node to harvest energy directly in its environment, using individual energy harvesters. Moreover, novel ultra-low power wake-up receivers, which allow continuous listening of the channel with negligible power consumption, are emerging. These devices enable asynchronous communication, further reducing the power consumption related to communication, which is typically one the most energy-consuming tasks in wireless sensor networks. Energy harvesting and wake-up receivers can be combined to significantly increase the energy efficiency of sensor networks. In this paper, we propose an energy manager for energy harvesting wireless sensor nodes and an asynchronous medium access control protocol, which exploits ultra-low power wake-up receivers. The two components are designed to work together and especially to fit the stringent constraints of wireless sensor nodes. The proposed approach has been implemented on a real hardware platform and tested in the field. Experimental results demonstrate the benefits of the proposed approach in terms of energy efficiency, power consumption and throughput, which can be up to more than two-times higher compared to traditional schemes.
Leveraging Energy Harvesting and Wake-Up Receivers for Long-Term Wireless Sensor Networks
Ait Aoudia, Fayçal; Gautier, Matthieu; Magno, Michele; Benini, Luca
2018-01-01
Wireless sensor nodes are traditionally powered by individual batteries, and a significant effort has been devoted to maximizing the lifetime of these devices. However, as the batteries can only store a finite amount of energy, the network is still doomed to die, and changing the batteries is not always possible. A promising solution is to enable each node to harvest energy directly in its environment, using individual energy harvesters. Moreover, novel ultra-low power wake-up receivers, which allow continuous listening of the channel with negligible power consumption, are emerging. These devices enable asynchronous communication, further reducing the power consumption related to communication, which is typically one the most energy-consuming tasks in wireless sensor networks. Energy harvesting and wake-up receivers can be combined to significantly increase the energy efficiency of sensor networks. In this paper, we propose an energy manager for energy harvesting wireless sensor nodes and an asynchronous medium access control protocol, which exploits ultra-low power wake-up receivers. The two components are designed to work together and especially to fit the stringent constraints of wireless sensor nodes. The proposed approach has been implemented on a real hardware platform and tested in the field. Experimental results demonstrate the benefits of the proposed approach in terms of energy efficiency, power consumption and throughput, which can be up to more than two-times higher compared to traditional schemes. PMID:29762535
Selimis, Georgios; Huang, Li; Massé, Fabien; Tsekoura, Ioanna; Ashouei, Maryam; Catthoor, Francky; Huisken, Jos; Stuyt, Jan; Dolmans, Guido; Penders, Julien; De Groot, Harmke
2011-10-01
In order for wireless body area networks to meet widespread adoption, a number of security implications must be explored to promote and maintain fundamental medical ethical principles and social expectations. As a result, integration of security functionality to sensor nodes is required. Integrating security functionality to a wireless sensor node increases the size of the stored software program in program memory, the required time that the sensor's microprocessor needs to process the data and the wireless network traffic which is exchanged among sensors. This security overhead has dominant impact on the energy dissipation which is strongly related to the lifetime of the sensor, a critical aspect in wireless sensor network (WSN) technology. Strict definition of the security functionality, complete hardware model (microprocessor and radio), WBAN topology and the structure of the medium access control (MAC) frame are required for an accurate estimation of the energy that security introduces into the WBAN. In this work, we define a lightweight security scheme for WBAN, we estimate the additional energy consumption that the security scheme introduces to WBAN based on commercial available off-the-shelf hardware components (microprocessor and radio), the network topology and the MAC frame. Furthermore, we propose a new microcontroller design in order to reduce the energy consumption of the system. Experimental results and comparisons with other works are given.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-11
..., Components Thereof and Products Containing Same; Notice of Institution of Investigation AGENCY: U.S... the U.S. International Trade Commission on December 5, 2011, under section 337 of the Tariff Act of 1930, as amended, 19 U.S.C. 1337, on behalf of Walker Digital, LLC, of Stamford, Connecticut. Letters...
ERIC Educational Resources Information Center
Torppa, Minna; Georgiou, George K.; Lerkkanen, Marja-Kristiina; Niemi, Pekka; Poikkeus, Anna-Maija
2016-01-01
This study examined the dynamic relationships among the components of the Simple View of Reading (SVR) in a transparent orthography (Finnish) and the predictive value of cognitive skills (phonological awareness, letter knowledge, rapid naming, and vocabulary) on the SVR components. Altogether, 1,815 Finnish children were followed from kindergarten…
Harper, Doreen C; Davey, Kimberly S; Fordham, Pamela N
2014-03-01
This article analyzes the components of Florence Nightingale's visionary leadership for global health and nursing within the historical context of Great Britain's colonization of India. The descriptive study used the qualitative approach of narrative analysis to analyze selected letters in the Nightingale Letter Collection at the University of Alabama at Birmingham that Nightingale wrote to or about Dr. Thomas Gillham Hewlett, a physician and health officer in Bombay, India. The authors sought to increase understanding of Nightingale's visionary leadership for global nursing and health through a study of the form and content of the letters analyzed as temporally contextualized data, focusing on how the narratives are composed and what is conveyed. Several recurring themes central to Nightingale's leadership on global nursing and health emerge throughout these letters, including health and sanitation reform, collaborative partnerships, data-driven policy development, and advocacy for public health. These themes are illustrated through her letters to and testimony about Dr. Thomas Gillham Hewlett in her vivid descriptions of health education and promotion, data-driven policy documents, public health and sanitation advice, and collaboration with citizens, medicine, policy makers, and governments to improve the health and welfare of the people of India. The focus on leadership in nursing as a global construct highlights the lessons learned from University of Alabama at Birmingham's Nightingale Letter Collection that has relevance for the future of nursing and health care, particularly Nightingale's collaboration with policy leaders, her analysis of data to set policy agendas, and public health reform centered on improving the health and well-being of underserved populations.
Railway cognitive radio to enhance safety, security, and performance of positive train control.
DOT National Transportation Integrated Search
2013-02-01
Robust and interoperable wireless communications are vital to Positive Train Control (PTC). The railway industry has started adopting software-defined radios (SDRs) for packet-data transmission. SDR systems realize previously fixed components as reco...
Micro transport machine and methods for using same
Stalford, Harold
2015-10-13
A micro transport machine may include a substrate and a movable device comprising a drive component responsive to a wireless power source. The movable device is operable to move between a plurality of disparate areas on the substrate.
A low-cost multichannel wireless neural stimulation system for freely roaming animals.
Alam, Monzurul; Chen, Xi; Fernandez, Eduardo
2013-12-01
Electrical stimulation of nerve tissue and recording of neural activity are the basis of many therapies and neural prostheses. Conventional stimulation systems have a number of practical limitations, especially in experiments involving freely roaming subjects. Our main objective was to develop a modular, versatile and inexpensive multichannel wireless system able to overcome some of these constraints. We have designed and implemented a new multichannel wireless neural stimulator based on commercial components. The system is small (2 cm × 4 cm × 0.5 cm) and light in weight (9 g) which allows it to be easily carried in a small backpack. To test and validate the performance and reliability of the whole system we conducted several bench tests and in vivo experiments. The performance and accuracy of the stimulator were comparable to commercial threaded systems. Stimulation sequences can be constructed on-the-fly with 251 selectable current levels (from 0 to 250 µA) with 1 µA step resolution. The pulse widths and intervals can be as long as 65 ms in 2 µs time resolution. The system covers approximately 10 m of transmission range in a regular laboratory environment and 100 m in free space (line of sight). Furthermore it provides great flexibility for experiments since it allows full control of the stimulator and the stimulation parameters in real time. When there is no stimulation, the device automatically goes into low-power sleep mode to preserve battery power. We introduce the design of a powerful multichannel wireless stimulator assembled from commercial components. Key features of the system are their reliability, robustness and small size. The system has a flexible design that can be modified straightforwardly to tailor it to any specific experimental need. Furthermore it can be effortlessly adapted for use with any kind of multielectrode arrays.
Time Domain and Frequency Domain Deterministic Channel Modeling for Tunnel/Mining Environments.
Zhou, Chenming; Jacksha, Ronald; Yan, Lincan; Reyes, Miguel; Kovalchik, Peter
2017-01-01
Understanding wireless channels in complex mining environments is critical for designing optimized wireless systems operated in these environments. In this paper, we propose two physics-based, deterministic ultra-wideband (UWB) channel models for characterizing wireless channels in mining/tunnel environments - one in the time domain and the other in the frequency domain. For the time domain model, a general Channel Impulse Response (CIR) is derived and the result is expressed in the classic UWB tapped delay line model. The derived time domain channel model takes into account major propagation controlling factors including tunnel or entry dimensions, frequency, polarization, electrical properties of the four tunnel walls, and transmitter and receiver locations. For the frequency domain model, a complex channel transfer function is derived analytically. Based on the proposed physics-based deterministic channel models, channel parameters such as delay spread, multipath component number, and angular spread are analyzed. It is found that, despite the presence of heavy multipath, both channel delay spread and angular spread for tunnel environments are relatively smaller compared to that of typical indoor environments. The results and findings in this paper have application in the design and deployment of wireless systems in underground mining environments.
Time Domain and Frequency Domain Deterministic Channel Modeling for Tunnel/Mining Environments
Zhou, Chenming; Jacksha, Ronald; Yan, Lincan; Reyes, Miguel; Kovalchik, Peter
2018-01-01
Understanding wireless channels in complex mining environments is critical for designing optimized wireless systems operated in these environments. In this paper, we propose two physics-based, deterministic ultra-wideband (UWB) channel models for characterizing wireless channels in mining/tunnel environments — one in the time domain and the other in the frequency domain. For the time domain model, a general Channel Impulse Response (CIR) is derived and the result is expressed in the classic UWB tapped delay line model. The derived time domain channel model takes into account major propagation controlling factors including tunnel or entry dimensions, frequency, polarization, electrical properties of the four tunnel walls, and transmitter and receiver locations. For the frequency domain model, a complex channel transfer function is derived analytically. Based on the proposed physics-based deterministic channel models, channel parameters such as delay spread, multipath component number, and angular spread are analyzed. It is found that, despite the presence of heavy multipath, both channel delay spread and angular spread for tunnel environments are relatively smaller compared to that of typical indoor environments. The results and findings in this paper have application in the design and deployment of wireless systems in underground mining environments.† PMID:29457801
EMG amplifier with wireless data transmission
NASA Astrophysics Data System (ADS)
Kowalski, Grzegorz; Wildner, Krzysztof
2017-08-01
Wireless medical diagnostics is a trend in modern technology used in medicine. This paper presents a concept of realization, architecture of hardware and software implementation of an elecromyography signal (EMG) amplifier with wireless data transmission. This amplifier consists of three components: analogue processing of bioelectric signal module, micro-controller circuit and an application enabling data acquisition via a personal computer. The analogue bioelectric signal processing circuit receives electromyography signals from the skin surface, followed by initial analogue processing and preparation of the signals for further digital processing. The second module is a micro-controller circuit designed to wirelessly transmit the electromyography signals from the analogue signal converter to a personal computer. Its purpose is to eliminate the need for wired connections between the patient and the data logging device. The third block is a computer application designed to display the transmitted electromyography signals, as well as data capture and analysis. Its purpose is to provide a graphical representation of the collected data. The entire device has been thoroughly tested to ensure proper functioning. In use, the device displayed the captured electromyography signal from the arm of the patient. Amplitude- frequency characteristics were set in order to investigate the bandwidth and the overall gain of the device.
Wireless microwave acoustic sensor system for condition monitoring in power plant environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pereira da Cunha, Mauricio
This project successfully demonstrated novel wireless microwave acoustic temperature and pressure sensors that can be embedded into equipment and structures located in fossil fuel power plant environments to monitor the condition of components such as steam headers, re-heat lines, water walls, burner tubes, and power turbines. The wireless microwave acoustic sensor technology researched and developed through a collaborative partnership between the University of Maine and Environetix Technologies Corporation can provide a revolutionary impact in the power industry since it is anticipated that the wireless sensors will deliver reliable real-time sensing information in harsh power plant conditions that involve temperatures upmore » to 1100oC and pressures up to 750 psi. The work involved the research and development of novel high temperature harsh environment thin film electrodes, piezoelectric smart microwave acoustic sensing elements, sensor encapsulation materials that were engineered to function over long times up to 1100oC, and a radio-frequency (RF) wireless interrogation electronics unit that are located both inside and outside the high temperature harsh environment. The UMaine / Environetix team have interacted with diverse power plant facilities, and identified as a testbed a local power generation facility, which burns municipal solid waste (MSW), the Penobscot Energy Recovery Company (PERC), Orrington, Maine. In this facility Environetix / UMaine successfully implemented and tested multiple wireless temperature sensor systems within the harsh-environment of the economizer chamber and at the boiler tubes, transferring the developed technology to the power plant environment to perform real-time sensor monitoring experiments under typical operating conditions, as initially targeted in the project. The wireless microwave acoustic sensor technology developed under this project for power plant applications offers several significant advantages including wireless, battery-free, maintenance-free operation, and operation in the harsh-environment of power plant equipment up to about 1100 oC. Their small size and configuration allows flexible sensor placement and embedding of multiple sensor arrays into a variety of components within power systems that can be interrogated by a single RF unit. The outcomes of this project and technological transfer respond to a DOE analysis need, which indicated that if one percent efficiency in coal burning is achieved, an additional 2 gigawatt-hours of energy per year is generated and the resulting coal cost savings is $300 million per year, also accompanied by a reduction of more than 10 million metric tons of CO2 per year emitted into the atmosphere. Therefore, the developed harsh environment wireless microwave acoustic sensor technology and the technological transfer achievements that resulted from the execution of this project have significant impact for power plant equipment and systems and are well-positioned to contribute to the cost reduction in power generation, the increase in power plant efficiency, the improvement in maintenance, the reduction in down-time, and the decrease in environmental pollution. The technology is also in a position to be extended to address other types of high-temperature harsh-environment power plant and energy sector sensing needs.« less
DOT National Transportation Integrated Search
2013-10-01
In this work, a previously developed structural health monitoring (SHM) system was advanced toward a ready-for-implementation : system. Improvements were made with respect to automated data reduction/analysis, data acquisition hardware, sensor types,...
The semantic component of the evoked potential of differentiation.
Izmailov, Chingis A; Korshunova, Svetlana G; Sokolov, Yevgeniy N
2008-05-01
This work analyzes data from recordings of (occipital and temporal) cortical evoked potentials (called evoked potentials of differentiation (EPD) occurring in humans in response to an abrupt substitution of stimuli. As stimuli we used three groups of words: the names of the ten basic colors taken from Newton's color circle; the names of seven basic emotions forming Shlossberg's circle of emotions; and seven nonsense words comprised of random combinations of letters. Within each group of word stimuli we constructed a matrix of the differences between the amplitudes of mid-latency components of EPD for each pair of words. This matrix was analyzed using the method of multidimensional scaling. As a result of this analysis we were able to distinguish the semantic and configurational components of EPD amplitude. The semantic component of EPD amplitude was evaluated by comparing structure of the data obtained to the circular structures of emotion and color names. The configurational component was evaluated on the basis of the attribute of word length (number of letters). It was demonstrated that the semantic component of the EPD can only be detected in the left occipital lead at an interpeak amplitude of P120-N180. The configurational component is reflected in the occipital and temporal leads to an identical extent, but only in the amplitude of a later (N180-P230) component of the EPD. The results obtained are discussed in terms of the coding of categorized, configurational, and semantic attributes of a visual stimulus.
Seeing Jesus in toast: Neural and behavioral correlates of face pareidolia
Liu, Jiangang; Li, Jun; Feng, Lu; Li, Ling; Tian, Jie; Lee, Kang
2014-01-01
Face pareidolia is the illusory perception of non-existent faces. The present study, for the first time, contrasted behavioral and neural responses of face pareidolia with those of letter pareidolia to explore face-specific behavioral and neural responses during illusory face processing. Participants were shown pure-noise images but were led to believe that 50% of them contained either faces or letters; they reported seeing faces or letters illusorily 34% and 38% of the time, respectively. The right fusiform face area (rFFA) showed a specific response when participants “saw” faces as opposed to letters in the pure-noise images. Behavioral responses during face pareidolia produced a classification image that resembled a face, whereas those during letter pareidolia produced a classification image that was letter-like. Further, the extent to which such behavioral classification images resembled faces was directly related to the level of face-specific activations in the right FFA. This finding suggests that the right FFA plays a specific role not only in processing of real faces but also in illusory face perception, perhaps serving to facilitate the interaction between bottom-up information from the primary visual cortex and top-down signals from the prefrontal cortex (PFC). Whole brain analyses revealed a network specialized in face pareidolia, including both the frontal and occipito-temporal regions. Our findings suggest that human face processing has a strong top-down component whereby sensory input with even the slightest suggestion of a face can result in the interpretation of a face. PMID:24583223
Edwards, R; White, M; Gray, J; Fischbacher, C
2001-07-01
There is growing interest in methods of teaching critical appraisal skills at undergraduate and postgraduate levels. We describe an approach using a journal club and subsequent letter writing to teach critical appraisal and writing skills to medical undergraduates. The exercise occurs during a 3-week public health medicine attachment in the third year of the undergraduate curriculum. Students work in small groups to appraise a recently published research paper, present their findings to their peers in a journal club, and draft a letter to the journal editor. Evaluation took place through: informal and formal feedback from students; number of letters written, submitted and published, and a comparison of marks obtained by students submitting a literature review assignment with and without critical appraisal teaching during the public health attachment. Feedback from students was overwhelmingly positive. In the first 3(1/2) years, 26 letters have been published or accepted for publication, and 58 letters published on the Internet. There were no significant differences in overall marks or marks for the critical appraisal component of the literature review assignments between the two student groups. We believe our approach is an innovative and enjoyable method for teaching critical appraisal and writing skills to medical students. Lack of difference in marks in the literature review between the student groups may reflect its insensitivity as an outcome measure, contamination by other critical appraisal teaching, or true ineffectiveness.
Montgomery, Catharine; Fisk, John E; Newcombe, Russell; Murphy, Phillip N
2005-10-01
Recent theoretical models suggest that the central executive may not be a unified structure. The present study explored the nature of central executive deficits in ecstasy users. In study 1, 27 ecstasy users and 34 non-users were assessed using tasks to tap memory updating (computation span; letter updating) and access to long-term memory (a semantic fluency test and the Chicago Word Fluency Test). In study 2, 51 ecstasy users and 42 non-users completed tasks that assess mental set switching (number/letter and plus/minus) and inhibition (random letter generation). MANOVA revealed that ecstasy users performed worse on both tasks used to assess memory updating and on tasks to assess access to long-term memory (C- and S-letter fluency). However, notwithstanding the significant ecstasy group-related effects, indices of cocaine and cannabis use were also significantly correlated with most of the executive measures. Unexpectedly, in study 2, ecstasy users performed significantly better on the inhibition task, producing more letters than non-users. No group differences were observed on the switching tasks. Correlations between indices of ecstasy use and number of letters produced were significant. The present study provides further support for ecstasy/polydrug-related deficits in memory updating and in access to long-term memory. The surplus evident on the inhibition task should be treated with some caution, as this was limited to a single measure and has not been supported by our previous work.
Development of a handheld smart dental instrument for root canal imaging
NASA Astrophysics Data System (ADS)
Okoro, Chukwuemeka; Vartanian, Albert; Toussaint, , Kimani C., Jr.
2016-11-01
Ergonomics and ease of visualization play a major role in the effectiveness of endodontic therapy. Using only commercial off-the-shelf components, we present the pulpascope-a prototype of a compact, handheld, wireless dental instrument for pulp cavity imaging. This instrument addresses the current limitations of occupational injuries, size, and cost that exist with current endodontic microscopes used for root canal procedures. Utilizing a 15,000 coherent, imaging fiber bundle along with an integrated illumination source and wireless CMOS sensor, we demonstrate images of various teeth with resolution of ˜48 μm and angular field-of-view of 70 deg.
High-Rate Wireless Airborne Network Demonstration (HiWAND) Flight Test Results
NASA Technical Reports Server (NTRS)
Franz, Russell
2008-01-01
An increasing number of flight research and airborne science experiments now contain network-ready systems that could benefit from a high-rate bidirectional air-to-ground network link. A prototype system, the High-Rate Wireless Airborne Network Demonstration, was developed from commercial off-the-shelf components while leveraging the existing telemetry infrastructure on the Western Aeronautical Test Range. This approach resulted in a cost-effective, long-range, line-of-sight network link over the S and the L frequency bands using both frequency modulation and shaped-offset quadrature phase-shift keying modulation. This report discusses system configuration and the flight test results.
Tsiourlis, Georgios; Andreadakis, Stamatis; Konstantinidis, Pavlos
2009-01-01
The SITHON system, a fully wireless optical imaging system, integrating a network of in-situ optical cameras linking to a multi-layer GIS database operated by Control Operating Centres, has been developed in response to the need for early detection, notification and monitoring of forest fires. This article presents in detail the architecture and the components of SITHON, and demonstrates the first encouraging results of an experimental test with small controlled fires over Sithonia Peninsula in Northern Greece. The system has already been scheduled to be installed in some fire prone areas of Greece. PMID:22408536
NASA Astrophysics Data System (ADS)
Awai, Ikuo
A wireless power transfer system based on two coupled resonators is analyzed by the filter design theory. Many useful relations between the equivalent circuit components are derived to comply with the change of power transfer condition along with the basic design of the system. Some design examples are given to deepen understanding of the theory and thus to stimulate using it for the system design. The effect of the resonator losses is also addressed to show the robustness of the theory, indicating the circuit loss of almost 10 dB does not deteriorate the matching condition too much.
High-Rate Wireless Airborne Network Demonstration (HiWAND) Flight Test Results
NASA Technical Reports Server (NTRS)
Franz, Russell
2007-01-01
An increasing number of flight research and airborne science experiments now contain network-ready systems that could benefit from a high-rate bidirectional air-to-ground network link. A prototype system, the High-Rate Wireless Airborne Network Demonstration, was developed from commercial off-the-shelf components while leveraging the existing telemetry infrastructure on the Western Aeronautical Test Range. This approach resulted in a cost-effective, long-range, line-of-sight network link over the S and the L frequency bands using both frequency modulation and shaped-offset quadrature phase-shift keying modulation. This paper discusses system configuration and the flight test results.
Embedded Data Acquisition Tools for Rotorcraft Diagnostic Sensors
NASA Technical Reports Server (NTRS)
Wagoner, Robert
2014-01-01
Rotorcraft drive trains must withstand enormous pressure while operating continuously in extreme temperature and vibration environments. Captive components, such as planetary and spiral bevel gears, see enormous strain but are not accessible to fixed instrumentation, such as a piezoelectric transducer. Thus, it is difficult to directly monitor components that are most susceptible to damage. This innovation is a self-contained data processing unit within a specialized fixture that installs directly inside the rotating pinion gear in the gearbox. From this location, it detects and transmits high-resolution prognostic data to a fixed transceiver. The sensor is based on microelectromechanical systems (MEMS) technology and uses innovative circuit designs to capture high-bandwidth data and transmit it wirelessly from inside an operational helicopter transmission. With Ridgetop's advanced MEMS-based sensor, researchers have, for the first time, been able to extract high-resolution acoustic signatures wirelessly from sensors within the transmission that would otherwise be muffled by background gear noises. Ridgetop's innovative instrument will help researchers perform dynamic analysis of gear interaction and develop improved designs for gear components. In addition, data from this instrument can be used to validate new algorithms that detect and predict faults based on external acoustic signatures, for prognostic purposes. The result of this work will be an improvement in safety, performance, and cost for future generations of rotating components.
Parasuraman, Ramviyas; Fabry, Thomas; Molinari, Luca; Kershaw, Keith; Di Castro, Mario; Masi, Alessandro; Ferre, Manuel
2014-12-12
The reliability of wireless communication in a network of mobile wireless robot nodes depends on the received radio signal strength (RSS). When the robot nodes are deployed in hostile environments with ionizing radiations (such as in some scientific facilities), there is a possibility that some electronic components may fail randomly (due to radiation effects), which causes problems in wireless connectivity. The objective of this paper is to maximize robot mission capabilities by maximizing the wireless network capacity and to reduce the risk of communication failure. Thus, in this paper, we consider a multi-node wireless tethering structure called the "server-relay-client" framework that uses (multiple) relay nodes in between a server and a client node. We propose a robust stochastic optimization (RSO) algorithm using a multi-sensor-based RSS sampling method at the relay nodes to efficiently improve and balance the RSS between the source and client nodes to improve the network capacity and to provide redundant networking abilities. We use pre-processing techniques, such as exponential moving averaging and spatial averaging filters on the RSS data for smoothing. We apply a receiver spatial diversity concept and employ a position controller on the relay node using a stochastic gradient ascent method for self-positioning the relay node to achieve the RSS balancing task. The effectiveness of the proposed solution is validated by extensive simulations and field experiments in CERN facilities. For the field trials, we used a youBot mobile robot platform as the relay node, and two stand-alone Raspberry Pi computers as the client and server nodes. The algorithm has been proven to be robust to noise in the radio signals and to work effectively even under non-line-of-sight conditions.
Parasuraman, Ramviyas; Fabry, Thomas; Molinari, Luca; Kershaw, Keith; Di Castro, Mario; Masi, Alessandro; Ferre, Manuel
2014-01-01
The reliability of wireless communication in a network of mobile wireless robot nodes depends on the received radio signal strength (RSS). When the robot nodes are deployed in hostile environments with ionizing radiations (such as in some scientific facilities), there is a possibility that some electronic components may fail randomly (due to radiation effects), which causes problems in wireless connectivity. The objective of this paper is to maximize robot mission capabilities by maximizing the wireless network capacity and to reduce the risk of communication failure. Thus, in this paper, we consider a multi-node wireless tethering structure called the “server-relay-client” framework that uses (multiple) relay nodes in between a server and a client node. We propose a robust stochastic optimization (RSO) algorithm using a multi-sensor-based RSS sampling method at the relay nodes to efficiently improve and balance the RSS between the source and client nodes to improve the network capacity and to provide redundant networking abilities. We use pre-processing techniques, such as exponential moving averaging and spatial averaging filters on the RSS data for smoothing. We apply a receiver spatial diversity concept and employ a position controller on the relay node using a stochastic gradient ascent method for self-positioning the relay node to achieve the RSS balancing task. The effectiveness of the proposed solution is validated by extensive simulations and field experiments in CERN facilities. For the field trials, we used a youBot mobile robot platform as the relay node, and two stand-alone Raspberry Pi computers as the client and server nodes. The algorithm has been proven to be robust to noise in the radio signals and to work effectively even under non-line-of-sight conditions. PMID:25615734
Kéri, Szabolcs; Nagy, Helga; Levy-Gigi, Einat; Kelemen, Oguz
2013-12-01
There is widespread evidence that dopamine is implicated in the regulation of reward and salience. However, it is less known how these processes interact with attention and recognition memory. To explore this question, we used the attentional boost test in patients with Parkinson's disease (PD) before and after the administration of dopaminergic medications. Participants performed a visual letter detection task (remembering rewarded target letters and ignoring distractor letters) while also viewing a series of photos of natural and urban scenes in the background of the letters. The aim of the game was to retrieve the target letter after each trial and to win as much virtual money as possible. The recognition of background scenes was not rewarded. We enrolled 26 drug-naïve, newly diagnosed patients with PD and 25 healthy controls who were evaluated at baseline and follow-up. Patients with PD received dopamine agonists (pramipexole, ropinirole, rotigotine) during the 12-week follow-up period. At baseline, we found intact attentional boost in patients with PD: they were able to recognize target-associated scenes similarly to controls. At follow-up, patients with PD outperformed controls for both target- and distractor-associated scenes, but not when scenes were presented without letters. The alerting, orienting and executive components of attention were intact in PD. Enhanced attentional boost was replicated in a smaller group of patients with PD (n = 15) receiving l-3,4-dihydroxyphenylalanine (L-DOPA). These results suggest that dopaminergic medications facilitate attentional boost for background information regardless of whether the central task (letter detection) is rewarded or not. © 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Reactivity to stress and the cognitive components of math disability in grade 1 children.
MacKinnon McQuarrie, Maureen A; Siegel, Linda S; Perry, Nancy E; Weinberg, Joanne
2014-01-01
This study investigated the relationship among working memory, processing speed, math performance, and reactivity to stress in 83 Grade 1 children. Specifically, 39 children with math disability (MD) were compared to 44 children who are typically achieving (TA) in mathematics. It is the first study to use a physiological index of stress (salivary cortisol levels) to measure children's reactivity while completing tasks that assess the core components of MD: working memory for numbers, working memory for words, digits backward, letter number sequence, digit span forward, processing speed for numbers and words, block rotation, and math tasks. Grade 1 children with MD obtained significantly lower scores on the letter number sequence and quantitative concepts tasks. Higher levels of reactivity significantly predicted poorer performance on the working memory for numbers, working memory for words, and quantitative concepts tasks for Grade 1 children, regardless of math ability. Grade 1 children with MD and higher reactivity had significantly lower scores on the letter number sequence task than the children with MD and low reactivity. The findings suggest that high reactivity impairs performance in working memory and math tasks in Grade 1 children, and young children with high reactivity may benefit from interventions aimed at lowering anxiety in stressful situations, which may improve learning. © Hammill Institute on Disabilities 2012.
Reactivity to Stress and the Cognitive Components of Math Disability in Grade 1 Children
MacKinnon McQuarrie, Maureen A.; Siegel, Linda S.; Perry, Nancy E.; Weinberg, Joanne
2016-01-01
This study investigated the relationship among working memory, processing speed, math performance, and reactivity to stress in 83 Grade 1 children. Specifically, 39 children with math disability (MD) were compared to 44 children who are typically achieving (TA) in mathematics. It is the first study to use a physiological index of stress (salivary cortisol levels) to measure children’s reactivity while completing tasks that assess the core components of MD: working memory for numbers, working memory for words, digits backward, letter number sequence, digit span forward, processing speed for numbers and words, block rotation, and math tasks. Grade 1 children with MD obtained significantly lower scores on the letter number sequence and quantitative concepts tasks. Higher levels of reactivity significantly predicted poorer performance on the working memory for numbers, working memory for words, and quantitative concepts tasks for Grade 1 children, regardless of math ability. Grade 1 children with MD and higher reactivity had significantly lower scores on the letter number sequence task than the children with MD and low reactivity. The findings suggest that high reactivity impairs performance in working memory and math tasks in Grade 1 children, and young children with high reactivity may benefit from interventions aimed at lowering anxiety in stressful situations, which may improve learning. PMID:23124381
Taha, Haitham; Khateb, Asaid
2013-01-01
The Arabic alphabetical orthographic system has various unique features that include the existence of emphatic phonemic letters. These represent several pairs of letters that share a phonological similarity and use the same parts of the articulation system. The phonological and articulatory similarities between these letters lead to spelling errors where the subject tends to produce a pseudohomophone (PHw) instead of the correct word. Here, we investigated whether or not the unique orthographic features of the written Arabic words modulate early orthographic processes. For this purpose, we analyzed event-related potentials (ERPs) collected from adult skilled readers during an orthographic decision task on real words and their corresponding PHw. The subjects' reaction times (RTs) were faster in words than in PHw. ERPs analysis revealed significant response differences between words and the PHw starting during the N170 and extending to the P2 component, with no difference during processing steps devoted to phonological and lexico-semantic processing. Amplitude and latency differences were found also during the P6 component which peaked earlier for words and where source localization indicated the involvement of the classical left language areas. Our findings replicate some of the previous findings on PHw processing and extend them to involve early orthographical processes. PMID:24348367
Review of Literature for Model Assisted Probability of Detection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meyer, Ryan M.; Crawford, Susan L.; Lareau, John P.
This is a draft technical letter report for NRC client documenting a literature review of model assisted probability of detection (MAPOD) for potential application to nuclear power plant components for improvement of field NDE performance estimations.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-27
.... 1337, on behalf of Eastman Kodak Company of Rochester, New York. Letters supplementing the complaint...: Eastman Kodak Company, 343 State Street Rochester, NY 14650. (b) The respondent is the following entity...
Exploiting bistable oscillator subharmonics for magnified broadband vibration energy harvesting
NASA Astrophysics Data System (ADS)
Huguet, Thomas; Badel, Adrien; Lallart, Mickaël
2017-10-01
Recent research on primary battery alternatives for supplying autonomous wireless devices has recently highlighted the advantages of nonlinear oscillators' dynamics and more particularly bistable oscillators' behavior for ambient vibration harvesting. The key property of bistable oscillators compared to linear ones is their enhanced operational frequency bandwidth under harmonic excitation, potentially leading to a better adaptation to the environment. However, the classical frequency response characterization of such devices does not reveal all the possible dynamic behaviors offered by bistable oscillators. Thus, subharmonic motions are experimentally investigated in this letter, and their energy harvesting potential as well as their ability to enhance the bistable generator bandwidth is evaluated. The results obtained with a generator integrating buckled beams for the bistability feature show that, in addition to the commonly considered harmonic behavior, subharmonics allow widening of the useful operating frequency band of the bistable microgenerator by 180% compared to the sole exploitation of the first harmonic motion.
Secured remote health monitoring system
Ganesh Kumar, Pugalendhi
2017-01-01
Wireless medical sensor network is used in healthcare applications that have the collections of biosensors connected to a human body or emergency care unit to monitor the patient's physiological vital status. The real-time medical data collected using wearable medical sensors are transmitted to a diagnostic centre. The data generated from the sensors are aggregated at this centre and transmitted further to the doctor's personal digital assistant for diagnosis. The unauthorised access of one's health data may lead to misuse and legal complications while unreliable data transmission or storage may lead to life threatening risk to patients. So, this Letter combines the symmetric algorithm and attribute-based encryption to secure the data transmission and access control system for medical sensor network. In this work, existing systems and their algorithm are compared for identifying the best performance. The work also shows the graphical comparison of encryption time, decryption time and total computation time of the existing and the proposed systems. PMID:29383257
Antenna Design Considerations for the Advanced Extravehicular Mobility Unit
NASA Technical Reports Server (NTRS)
Bakula, Casey J.; Theofylaktos, Onoufrios
2015-01-01
NASA is designing an Advanced Extravehicular Mobility Unit (AEMU)to support future manned missions beyond low-Earth orbit (LEO). A key component of the AEMU is the communications assembly that allows for the wireless transfer of voice, video, and suit telemetry. The Extravehicular Mobility Unit (EMU) currently used on the International Space Station (ISS) contains a radio system with a single omni-directional resonant cavity antenna operating slightly above 400 MHz capable of transmitting and receiving data at a rate of about 125 kbps. Recent wireless communications architectures are calling for the inclusion of commercial wireless standards such as 802.11 that operate in higher frequency bands at much higher data rates. The current AEMU radio design supports a 400 MHz band for low-rate mission-critical data and a high-rate band based on commercial wireless local area network (WLAN) technology to support video, communication with non-extravehicular activity (EVA) assets such as wireless sensors and robotic assistants, and a redundant path for mission-critical EVA data. This paper recommends the replacement of the existing EMU antenna with a new antenna that maintains the performance characteristics of the current antenna but with lower weight and volume footprints. NASA has funded several firms to develop such an antenna over the past few years, and the most promising designs are variations on the basic patch antenna. This antenna technology at UHF is considered by the authors to be mature and ready for infusion into NASA AEMU technology development programs.
Minimally-Invasive Neural Interface for Distributed Wireless Electrocorticogram Recording Systems
Chang, Sun-Il
2018-01-01
This paper presents a minimally-invasive neural interface for distributed wireless electrocorticogram (ECoG) recording systems. The proposed interface equips all necessary components for ECoG recording, such as the high performance front-end integrated circuits, a fabricated flexible microelectrode array, and wireless communication inside a miniaturized custom-made platform. The multiple units of the interface systems can be deployed to cover a broad range of the target brain region and transmit signals via a built-in intra-skin communication (ISCOM) module. The core integrated circuit (IC) consists of 16-channel, low-power push-pull double-gated preamplifiers, in-channel successive approximation register analog-to-digital converters (SAR ADC) with a single-clocked bootstrapping switch and a time-delayed control unit, an ISCOM module for wireless data transfer through the skin instead of a power-hungry RF wireless transmitter, and a monolithic voltage/current reference generator to support the aforementioned analog and mixed-signal circuit blocks. The IC was fabricated using 250 nm CMOS processes in an area of 3.2 × 0.9 mm2 and achieved the low-power operation of 2.5 µW per channel. Input-referred noise was measured as 5.62 µVrms for 10 Hz to 10 kHz and ENOB of 7.21 at 31.25 kS/s. The implemented system successfully recorded multi-channel neural activities in vivo from a primate and demonstrated modular expandability using the ISCOM with power consumption of 160 µW. PMID:29342103
Minimally-Invasive Neural Interface for Distributed Wireless Electrocorticogram Recording Systems.
Chang, Sun-Il; Park, Sung-Yun; Yoon, Euisik
2018-01-17
This paper presents a minimally-invasive neural interface for distributed wireless electrocorticogram (ECoG) recording systems. The proposed interface equips all necessary components for ECoG recording, such as the high performance front-end integrated circuits, a fabricated flexible microelectrode array, and wireless communication inside a miniaturized custom-made platform. The multiple units of the interface systems can be deployed to cover a broad range of the target brain region and transmit signals via a built-in intra-skin communication (ISCOM) module. The core integrated circuit (IC) consists of 16-channel, low-power push-pull double-gated preamplifiers, in-channel successive approximation register analog-to-digital converters (SAR ADC) with a single-clocked bootstrapping switch and a time-delayed control unit, an ISCOM module for wireless data transfer through the skin instead of a power-hungry RF wireless transmitter, and a monolithic voltage/current reference generator to support the aforementioned analog and mixed-signal circuit blocks. The IC was fabricated using 250 nm CMOS processes in an area of 3.2 × 0.9 mm² and achieved the low-power operation of 2.5 µW per channel. Input-referred noise was measured as 5.62 µV rms for 10 Hz to 10 kHz and ENOB of 7.21 at 31.25 kS/s. The implemented system successfully recorded multi-channel neural activities in vivo from a primate and demonstrated modular expandability using the ISCOM with power consumption of 160 µW.
Reader Architectures for Wireless Surface Acoustic Wave Sensors.
Lurz, Fabian; Ostertag, Thomas; Scheiner, Benedict; Weigel, Robert; Koelpin, Alexander
2018-05-28
Wireless surface acoustic wave (SAW) sensors have some unique features that make them promising for industrial metrology. Their decisive advantage lies in their purely passive operation and the wireless readout capability allowing the installation also at particularly inaccessible locations. Furthermore, they are small, low-cost and rugged components on highly stable substrate materials and thus particularly suited for harsh environments. Nevertheless, a sensor itself does not carry out any measurement but always requires a suitable excitation and interrogation circuit: a reader. A variety of different architectures have been presented and investigated up to now. This review paper gives a comprehensive survey of the present state of reader architectures such as time domain sampling (TDS), frequency domain sampling (FDS) and hybrid concepts for both SAW resonators and reflective SAW delay line sensors. Furthermore, critical performance parameters such as measurement accuracy, dynamic range, update rate, and hardware costs of the state of the art in science and industry are presented, compared and discussed.
Wireless Amperometric Neurochemical Monitoring Using an Integrated Telemetry Circuit
Roham, Masoud; Halpern, Jeffrey M.; Martin, Heidi B.; Chiel, Hillel J.
2015-01-01
An integrated circuit for wireless real-time monitoring of neurochemical activity in the nervous system is described. The chip is capable of conducting high-resolution amperometric measurements in four settings of the input current. The chip architecture includes a first-order ΔΣ modulator (ΔΣM) and a frequency-shift-keyed (FSK) voltage-controlled oscillator (VCO) operating near 433 MHz. It is fabricated using the AMI 0.5 μm double-poly triple-metal n-well CMOS process, and requires only one off-chip component for operation. Measured dc current resolutions of ~250 fA, ~1.5 pA, ~4.5 pA, and ~17 pA were achieved for input currents in the range of ±5, ±37, ±150, and ±600 nA, respectively. The chip has been interfaced with a diamond-coated, quartz-insulated, microneedle, tungsten electrode, and successfully recorded dopamine concentration levels as low as 0.5 μM wirelessly over a transmission distance of ~0.5 m in flow injection analysis experiments. PMID:18990633
Wireless amperometric neurochemical monitoring using an integrated telemetry circuit.
Roham, Masoud; Halpern, Jeffrey M; Martin, Heidi B; Chiel, Hillel J; Mohseni, Pedram
2008-11-01
An integrated circuit for wireless real-time monitoring of neurochemical activity in the nervous system is described. The chip is capable of conducting high-resolution amperometric measurements in four settings of the input current. The chip architecture includes a first-order Delta Sigma modulator (Delta Sigma M) and a frequency-shift-keyed (FSK) voltage-controlled oscillator (VCO) operating near 433 MHz. It is fabricated using the AMI 0.5 microm double-poly triple-metal n-well CMOS process, and requires only one off-chip component for operation. Measured dc current resolutions of approximately 250 fA, approximately 1.5 pA, approximately 4.5 pA, and approximately 17 pA were achieved for input currents in the range of +/-5, +/-37, +/-150, and +/-600 nA, respectively. The chip has been interfaced with a diamond-coated, quartz-insulated, microneedle, tungsten electrode, and successfully recorded dopamine concentration levels as low as 0.5 microM wirelessly over a transmission distance of approximately 0.5 m in flow injection analysis experiments.
NASA Astrophysics Data System (ADS)
Kato, Fumihito; Noguchi, Hiroyuki; Kodaka, Yukinari; Oshida, Naoya; Ogi, Hirotsugu
2018-07-01
We developed a quartz-crystal-microbalance (QCM) biosensor chip that operates wirelessly via electromagnetic waves, using poly(dimethylsiloxane) (PDMS). An AT-cut quartz oscillator (22–30 µm) is packaged in a microchannel, where it is supported by micropillars without mechanical fixing. As a result, the quartz oscillator is little affected by the thermal stress caused by the difference in the thermal expansion coefficients of the components, and the leakage of the vibration energy of the quartz oscillator is reduced. Consequently, high-frequency (∼56 MHz) measurement with a stable baseline (±∼2 ppm) is realized. We succeeded in repeatedly monitoring the binding reaction between immunoglobulin G (IgG) and Staphylococcus aureus protein A (SPA) with the quartz oscillator on which SPA molecules were immobilized nonspecifically. In addition, the affinity between SPA and IgG was calculated from the association and dissociation curves, and the usefulness of our wireless PDMS QCM biosensor was demonstrated.
Aceros, Juan; Yin, Ming; Borton, David A; Patterson, William R; Nurmikko, Arto V
2011-01-01
We present a fully implantable, wireless, neurosensor for multiple-location neural interface applications. The device integrates two independent 16-channel intracortical microelectrode arrays and can simultaneously acquire 32 channels of broadband neural data from two separate cortical areas. The system-on-chip implantable sensor is built on a flexible Kapton polymer substrate and incorporates three very low power subunits: two cortical subunits connected to a common subcutaneous subunit. Each cortical subunit has an ultra-low power 16-channel preamplifier and multiplexer integrated onto a cortical microelectrode array. The subcutaneous epicranial unit has an inductively coupled power supply, two analog-to-digital converters, a low power digital controller chip, and microlaser-based infrared telemetry. The entire system is soft encapsulated with biocompatible flexible materials for in vivo applications. Broadband neural data is conditioned, amplified, and analog multiplexed by each of the cortical subunits and passed to the subcutaneous component, where it is digitized and combined with synchronization data and wirelessly transmitted transcutaneously using high speed infrared telemetry.
Fully Integrated On-Chip Coil in 0.13 μm CMOS for Wireless Power Transfer Through Biological Media.
Zargham, Meysam; Gulak, P Glenn
2015-04-01
Delivering milliwatts of wireless power at centimeter distances is advantageous to many existing and emerging biomedical applications. It is highly desirable to fully integrate the receiver on a single chip in standard CMOS with no additional post-processing steps or external components. This paper presents a 2 × 2.18 mm(2) on-chip wireless power transfer (WPT) receiver (Rx) coil fabricated in 0.13 μm CMOS. The WPT system utilizes a 14.5 × 14.5 mm(2) transmitter (Tx) coil that is fabricated on a standard FR4 substrate. The on-chip power harvester demonstrates a peak WPT efficiency of -18.47 dB , -20.96 dB and -20.15 dB at 10 mm of separation through air, bovine muscle and 0.2 molar NaCl, respectively. The achieved efficiency enables the delivery of milliwatts of power to application circuits while staying below safe power density and electromagnetic (EM) exposure limits.
Magnetic metamaterial superlens for increased range wireless power transfer.
Lipworth, Guy; Ensworth, Joshua; Seetharam, Kushal; Huang, Da; Lee, Jae Seung; Schmalenberg, Paul; Nomura, Tsuyoshi; Reynolds, Matthew S; Smith, David R; Urzhumov, Yaroslav
2014-01-10
The ability to wirelessly power electrical devices is becoming of greater urgency as a component of energy conservation and sustainability efforts. Due to health and safety concerns, most wireless power transfer (WPT) schemes utilize very low frequency, quasi-static, magnetic fields; power transfer occurs via magneto-inductive (MI) coupling between conducting loops serving as transmitter and receiver. At the "long range" regime - referring to distances larger than the diameter of the largest loop - WPT efficiency in free space falls off as (1/d)(6); power loss quickly approaches 100% and limits practical implementations of WPT to relatively tight distances between power source and device. A "superlens", however, can concentrate the magnetic near fields of a source. Here, we demonstrate the impact of a magnetic metamaterial (MM) superlens on long-range near-field WPT, quantitatively confirming in simulation and measurement at 13-16 MHz the conditions under which the superlens can enhance power transfer efficiency compared to the lens-less free-space system.
An Efficient Wireless Sensor Network for Industrial Monitoring and Control.
Aponte-Luis, Juan; Gómez-Galán, Juan Antonio; Gómez-Bravo, Fernando; Sánchez-Raya, Manuel; Alcina-Espigado, Javier; Teixido-Rovira, Pedro Miguel
2018-01-10
This paper presents the design of a wireless sensor network particularly designed for remote monitoring and control of industrial parameters. The article describes the network components, protocol and sensor deployment, aimed to accomplish industrial constraint and to assure reliability and low power consumption. A particular case of study is presented. The system consists of a base station, gas sensing nodes, a tree-based routing scheme for the wireless sensor nodes and a real-time monitoring application that operates from a remote computer and a mobile phone. The system assures that the industrial safety quality and the measurement and monitoring system achieves an efficient industrial monitoring operations. The robustness of the developed system and the security in the communications have been guaranteed both in hardware and software level. The system is flexible and can be adapted to different environments. The testing of the system confirms the feasibility of the proposed implementation and validates the functional requirements of the developed devices, the networking solution and the power consumption management.
An Efficient Wireless Sensor Network for Industrial Monitoring and Control
Aponte-Luis, Juan; Gómez-Bravo, Fernando; Sánchez-Raya, Manuel; Alcina-Espigado, Javier; Teixido-Rovira, Pedro Miguel
2018-01-01
This paper presents the design of a wireless sensor network particularly designed for remote monitoring and control of industrial parameters. The article describes the network components, protocol and sensor deployment, aimed to accomplish industrial constraint and to assure reliability and low power consumption. A particular case of study is presented. The system consists of a base station, gas sensing nodes, a tree-based routing scheme for the wireless sensor nodes and a real-time monitoring application that operates from a remote computer and a mobile phone. The system assures that the industrial safety quality and the measurement and monitoring system achieves an efficient industrial monitoring operations. The robustness of the developed system and the security in the communications have been guaranteed both in hardware and software level. The system is flexible and can be adapted to different environments. The testing of the system confirms the feasibility of the proposed implementation and validates the functional requirements of the developed devices, the networking solution and the power consumption management. PMID:29320466
No iconic memory without attention.
Mack, Arien; Erol, Muge; Clarke, Jason; Bert, John
2016-02-01
The experiments reported extend the findings of our earlier paper, (Mack, Erol, & Clarke, 2015) and allow us to reject Bachmann and Aru's critique of our conclusion (2015) that IM requires attention. They suggested our manipulations, which diverted attention from a letter reporting task in a dual task procedure where the task-cue occurred after the array disappeared, might only have affected access to IM and not the "existence of the phenomenal experience". By further decreasing the probability of reporting letters to only 10% and adding a final trial in which the letter matrix was either completely absent or distorted, we found more than half our subjects were unaware of its absence, or distortion i.e., were inattentionally blind. We take this as powerful evidence against the existence of any phenomenal experience component of iconic memory and consistent with the view that iconic memory demands attention and that conscious perception does as well. Copyright © 2015 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Liu, Xiongyi; Li, Lan; Zhang, Zhihong
2018-01-01
The purpose of this study is to examine the effect of online assessment training, with synchronous group discussion as a key component, on subsequent web-based peer assessment results. Participants included 81 college students, mostly women, taking a business writing class. After initial submission of a draft counter-offer letter, they completed…
Wireless acceleration sensor of moving elements for condition monitoring of mechanisms
NASA Astrophysics Data System (ADS)
Sinitsin, Vladimir V.; Shestakov, Aleksandr L.
2017-09-01
Comprehensive analysis of the angular and linear accelerations of moving elements (shafts, gears) allows an increase in the quality of the condition monitoring of mechanisms. However, existing tools and methods measure either linear or angular acceleration with postprocessing. This paper suggests a new construction design of an angular acceleration sensor for moving elements. The sensor is mounted on a moving element and, among other things, the data transfer and electric power supply are carried out wirelessly. In addition, the authors introduce a method for processing the received information which makes it possible to divide the measured acceleration into the angular and linear components. The design has been validated by the results of laboratory tests of an experimental model of the sensor. The study has shown that this method provides a definite separation of the measured acceleration into linear and angular components, even in noise. This research contributes an advance in the range of methods and tools for condition monitoring of mechanisms.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-31
... Request ACTION: 30-Day Notice of Information Collection for Review; File No. G- 146, Non-Immigrant...: Non-Immigrant Checkout Letter. (3) Agency form number, if any, and the applicable component of the...
DOTD customer satisfaction survey frequency responses and cross-tabulations.
DOT National Transportation Integrated Search
2004-01-01
The Louisiana Department of Transportation and Development (DOTD) conducted this customer satisfaction survey to determine levels of satisfaction overall and with select components of the state maintained highway system. An A, B, C, D and F letter ga...
Wireless multichannel biopotential recording using an integrated FM telemetry circuit.
Mohseni, Pedram; Najafi, Khalil; Eliades, Steven J; Wang, Xiaoqin
2005-09-01
This paper presents a four-channel telemetric microsystem featuring on-chip alternating current amplification, direct current baseline stabilization, clock generation, time-division multiplexing, and wireless frequency-modulation transmission of microvolt- and millivolt-range input biopotentials in the very high frequency band of 94-98 MHz over a distance of approximately 0.5 m. It consists of a 4.84-mm2 integrated circuit, fabricated using a 1.5-microm double-poly double-metal n-well standard complementary metal-oxide semiconductor process, interfaced with only three off-chip components on a custom-designed printed-circuit board that measures 1.7 x 1.2 x 0.16 cm3, and weighs 1.1 g including two miniature 1.5-V batteries. We characterize the microsystem performance, operating in a truly wireless fashion in single-channel and multichannel operation modes, via extensive benchtop and in vitro tests in saline utilizing two different micromachined neural recording microelectrodes, while dissipating approximately 2.2 mW from a 3-V power supply. Moreover, we demonstrate successful wireless in vivo recording of spontaneous neural activity at 96.2 MHz from the auditory cortex of an awake marmoset monkey at several transmission distances ranging from 10 to 50 cm with signal-to-noise ratios in the range of 8.4-9.5 dB.
Green survivability in Fiber-Wireless (FiWi) broadband access network
NASA Astrophysics Data System (ADS)
Liu, Yejun; Guo, Lei; Gong, Bo; Ma, Rui; Gong, Xiaoxue; Zhang, Lincong; Yang, Jiangzi
2012-03-01
Fiber-Wireless (FiWi) broadband access network is a promising "last mile" access technology, because it integrates wireless and optical access technologies in terms of their respective merits, such as high capacity and stable transmission from optical access technology, and easy deployment and flexibility from wireless access technology. Since FiWi is expected to carry a large amount of traffic, numerous traffic flows may be interrupted by the failure of network components. Thus, survivability in FiWi is a key issue aiming at reliable and robust service. However, the redundant deployment of backup resource required for survivability usually causes huge energy consumption, which aggravates the global warming and accelerates the incoming of energy crisis. Thus, the energy-saving issue should be considered when it comes to survivability design. In this paper, we focus on the green survivability in FiWi, which is an innovative concept and remains untouched in the previous works to our best knowledge. We first review and discuss some challenging issues about survivability and energy-saving in FiWi, and then we propose some instructive solutions for its green survivability design. Therefore, our work in this paper will provide the technical references and research motivations for the energy-efficient and survivable FiWi development in the future.
NASA Astrophysics Data System (ADS)
Godinez-Azcuaga, Valery F.; Inman, Daniel J.; Ziehl, Paul H.; Giurgiutiu, Victor; Nanni, Antonio
2011-04-01
This paper presents the most recent advances in the development of a self powered wireless sensor network for steel and concrete bridges monitoring and prognosis. This five-year cross-disciplinary project includes development and deployment of a 4-channel acoustic emission wireless node powered by structural vibration and wind energy harvesting modules. In order to accomplish this ambitious goal, the project includes a series of tasks that encompassed a variety of developments such as ultra low power AE systems, energy harvester hardware and especial sensors for passive and active acoustic wave detection. Key studies on acoustic emission produced by corrosion on reinforced concrete and by crack propagation on steel components to develop diagnosis tools and models for bridge prognosis are also a part of the project activities. It is important to mention that the impact of this project extends beyond the area of bridge health monitoring. Several wireless prototype nodes have been already requested for applications on offshore oil platforms, composite ships, combat deployable bridges and wind turbines. This project was awarded to a joint venture formed by Mistras Group Inc, Virginia Tech, University of South Carolina and University of Miami and is sponsored through the NIST-TIP Grant #70NANB9H007.
Low-power circuits design for the wireless force measurement system of the total knee arthroplasty.
Chen, Hong; Liu, Ming; Wan, Weiyi; Jia, Chen; Zhang, Chun; Wang, Zihua
2010-01-01
This paper proposes a novel wireless force measurement system for the Total Knee Arthroplasty (TKA) to improve the ligament balancing procedure during TKA. The force measurement system is comprised of a Wireless Force Measurement Spacer (WFMS) and the display part. They communicate with each other by the Radio Frequency (RF) signal. The WFMS is designed to measure the force between the WFMS and the femoral component of the artificial implants and to transmit the force data wirelessly by a low power transceiver. The display part demonstrates the force data in 3D images in real time. The WFMS composes of a sensors array, a Universal Transducer Interfaces (UTIs) array, a low-power sub-threshold microprocessor and a transceiver. The sub-threshold 8-bit microprocessor is taped out with 0.18 microm CMOS technology. The testing results of the microprocessor show that the leakage power of 46nW and the dynamic power of 385nW@165kHz are achieved with the operating voltage of 350 mV. The test results of the system are given and the errors of the system are analyzed. The results verified the reliability of the system. The future work is to design the microprocessor and a lower power transceiver within a single chip.
Interoperability and security in wireless body area network infrastructures.
Warren, Steve; Lebak, Jeffrey; Yao, Jianchu; Creekmore, Jonathan; Milenkovic, Aleksandar; Jovanov, Emil
2005-01-01
Wireless body area networks (WBANs) and their supporting information infrastructures offer unprecedented opportunities to monitor state of health without constraining the activities of a wearer. These mobile point-of-care systems are now realizable due to the convergence of technologies such as low-power wireless communication standards, plug-and-play device buses, off-the-shelf development kits for low-power microcontrollers, handheld computers, electronic medical records, and the Internet. To increase acceptance of personal monitoring technology while lowering equipment cost, advances must be made in interoperability (at both the system and device levels) and security. This paper presents an overview of WBAN infrastructure work in these areas currently underway in the Medical Component Design Laboratory at Kansas State University (KSU) and at the University of Alabama in Huntsville (UAH). KSU efforts include the development of wearable health status monitoring systems that utilize ISO/IEEE 11073, Bluetooth, Health Level 7, and OpenEMed. WBAN efforts at UAH include the development of wearable activity and health monitors that incorporate ZigBee-compliant wireless sensor platforms with hardware-level encryption and the TinyOS development environment. WBAN infrastructures are complex, requiring many functional support elements. To realize these infrastructures through collaborative efforts, organizations such as KSU and UAH must define and utilize standard interfaces, nomenclature, and security approaches.
Seeing Jesus in toast: neural and behavioral correlates of face pareidolia.
Liu, Jiangang; Li, Jun; Feng, Lu; Li, Ling; Tian, Jie; Lee, Kang
2014-04-01
Face pareidolia is the illusory perception of non-existent faces. The present study, for the first time, contrasted behavioral and neural responses of face pareidolia with those of letter pareidolia to explore face-specific behavioral and neural responses during illusory face processing. Participants were shown pure-noise images but were led to believe that 50% of them contained either faces or letters; they reported seeing faces or letters illusorily 34% and 38% of the time, respectively. The right fusiform face area (rFFA) showed a specific response when participants "saw" faces as opposed to letters in the pure-noise images. Behavioral responses during face pareidolia produced a classification image (CI) that resembled a face, whereas those during letter pareidolia produced a CI that was letter-like. Further, the extent to which such behavioral CIs resembled faces was directly related to the level of face-specific activations in the rFFA. This finding suggests that the rFFA plays a specific role not only in processing of real faces but also in illusory face perception, perhaps serving to facilitate the interaction between bottom-up information from the primary visual cortex and top-down signals from the prefrontal cortex (PFC). Whole brain analyses revealed a network specialized in face pareidolia, including both the frontal and occipitotemporal regions. Our findings suggest that human face processing has a strong top-down component whereby sensory input with even the slightest suggestion of a face can result in the interpretation of a face. Copyright © 2014 Elsevier Ltd. All rights reserved.
Automated selection of brain regions for real-time fMRI brain-computer interfaces
NASA Astrophysics Data System (ADS)
Lührs, Michael; Sorger, Bettina; Goebel, Rainer; Esposito, Fabrizio
2017-02-01
Objective. Brain-computer interfaces (BCIs) implemented with real-time functional magnetic resonance imaging (rt-fMRI) use fMRI time-courses from predefined regions of interest (ROIs). To reach best performances, localizer experiments and on-site expert supervision are required for ROI definition. To automate this step, we developed two unsupervised computational techniques based on the general linear model (GLM) and independent component analysis (ICA) of rt-fMRI data, and compared their performances on a communication BCI. Approach. 3 T fMRI data of six volunteers were re-analyzed in simulated real-time. During a localizer run, participants performed three mental tasks following visual cues. During two communication runs, a letter-spelling display guided the subjects to freely encode letters by performing one of the mental tasks with a specific timing. GLM- and ICA-based procedures were used to decode each letter, respectively using compact ROIs and whole-brain distributed spatio-temporal patterns of fMRI activity, automatically defined from subject-specific or group-level maps. Main results. Letter-decoding performances were comparable to supervised methods. In combination with a similarity-based criterion, GLM- and ICA-based approaches successfully decoded more than 80% (average) of the letters. Subject-specific maps yielded optimal performances. Significance. Automated solutions for ROI selection may help accelerating the translation of rt-fMRI BCIs from research to clinical applications.
Highly Stretchable Electrodes on Wrinkled Polydimethylsiloxane Substrates
Tang, Jun; Guo, Hao; Zhao, Miaomiao; Yang, Jiangtao; Tsoukalas, Dimitris; Zhang, Binzhen; Liu, Jun; Xue, Chenyang; Zhang, Wendong
2015-01-01
This paper demonstrates a fabrication technology of Ag wrinkled electrodes with application in highly stretchable wireless sensors. Ag wrinkled thin films that were formed by vacuum deposition on top of pre-strained and relaxed polydimethylsiloxane (PDMS) substrates which have been treated using an O2 plasma and a surface chemical functionalization process can reach a strain limit up to 200%, while surface adhesion area can reach 95%. The electrical characteristics of components such as resistors, inductors and capacitors made from such Ag conductors have remained stable under stretching exhibiting low temperature and humidity coefficients. This technology was then demonstrated for wireless wearable electronics using compatible processing with established micro/nano fabrication technology. PMID:26585636
Low-power wireless medical sensor platform.
Dolgov, Arseny B; Zane, Regan
2006-01-01
Long-term, low duty cycle monitoring of patients with a variety of disabilities or health concerns is often required. In this paper, we discuss the design considerations and implementation of an ultra-low power wireless medical sensor platform, suitable for a wide range of medical and sports applications. A hardware demonstration prototype based on readily available components is presented with sensors for 3-axis acceleration, temperature and galvanic skin response. Detailed power measurements and operation results are shown, demonstrating a sensor life span of more than 10 years on a single 200 mAh lithium watch battery using low current standby techniques with an average power of less than 5 muW and a 10 second sample interval.
A Study of LoRa: Long Range & Low Power Networks for the Internet of Things
Augustin, Aloÿs; Yi, Jiazi; Clausen, Thomas; Townsley, William Mark
2016-01-01
LoRa is a long-range, low-power, low-bitrate, wireless telecommunications system, promoted as an infrastructure solution for the Internet of Things: end-devices use LoRa across a single wireless hop to communicate to gateway(s), connected to the Internet and which act as transparent bridges and relay messages between these end-devices and a central network server. This paper provides an overview of LoRa and an in-depth analysis of its functional components. The physical and data link layer performance is evaluated by field tests and simulations. Based on the analysis and evaluations, some possible solutions for performance enhancements are proposed. PMID:27618064
A Study of LoRa: Long Range & Low Power Networks for the Internet of Things.
Augustin, Aloÿs; Yi, Jiazi; Clausen, Thomas; Townsley, William Mark
2016-09-09
LoRa is a long-range, low-power, low-bitrate, wireless telecommunications system, promoted as an infrastructure solution for the Internet of Things: end-devices use LoRa across a single wireless hop to communicate to gateway(s), connected to the Internet and which act as transparent bridges and relay messages between these end-devices and a central network server. This paper provides an overview of LoRa and an in-depth analysis of its functional components. The physical and data link layer performance is evaluated by field tests and simulations. Based on the analysis and evaluations, some possible solutions for performance enhancements are proposed.
Secure and Authenticated Data Communication in Wireless Sensor Networks.
Alfandi, Omar; Bochem, Arne; Kellner, Ansgar; Göge, Christian; Hogrefe, Dieter
2015-08-10
Securing communications in wireless sensor networks is increasingly important as the diversity of applications increases. However, even today, it is equally important for the measures employed to be energy efficient. For this reason, this publication analyzes the suitability of various cryptographic primitives for use in WSNs according to various criteria and, finally, describes a modular, PKI-based framework for confidential, authenticated, secure communications in which most suitable primitives can be employed. Due to the limited capabilities of common WSN motes, criteria for the selection of primitives are security, power efficiency and memory requirements. The implementation of the framework and the singular components have been tested and benchmarked in our testbed of IRISmotes.
Secure and Authenticated Data Communication in Wireless Sensor Networks
Alfandi, Omar; Bochem, Arne; Kellner, Ansgar; Göge, Christian; Hogrefe, Dieter
2015-01-01
Securing communications in wireless sensor networks is increasingly important as the diversity of applications increases. However, even today, it is equally important for the measures employed to be energy efficient. For this reason, this publication analyzes the suitability of various cryptographic primitives for use in WSNs according to various criteria and, finally, describes a modular, PKI-based framework for confidential, authenticated, secure communications in which most suitable primitives can be employed. Due to the limited capabilities of common WSN motes, criteria for the selection of primitives are security, power efficiency and memory requirements. The implementation of the framework and the singular components have been tested and benchmarked in our testbed of IRISmotes. PMID:26266413
Large Strain Transparent Magneto-Active Polymer Nanocomposites
NASA Technical Reports Server (NTRS)
Yoonessi, Mitra (Inventor); Meador, Michael A (Inventor)
2016-01-01
A large strain polymer nanocomposite actuator is provided that upon subjected to an external stimulus, such as a magnetic field (static or electromagnetic field), an electric field, thermal energy, light, etc., will deform to thereby enable mechanical manipulations of structural components in a remote and wireless manner.
Optical Structural Health Monitoring Device
NASA Technical Reports Server (NTRS)
Buckner, Benjamin D.; Markov, Vladimir; Earthman, James C.
2010-01-01
This non-destructive, optical fatigue detection and monitoring system relies on a small and unobtrusive light-scattering sensor that is installed on a component at the beginning of its life in order to periodically scan the component in situ. The method involves using a laser beam to scan the surface of the monitored component. The device scans a laser spot over a metal surface to which it is attached. As the laser beam scans the surface, disruptions in the surface cause increases in scattered light intensity. As the disruptions in the surface grow, they will cause the light to scatter more. Over time, the scattering intensities over the scanned line can be compared to detect changes in the metal surface to find cracks, crack precursors, or corrosion. This periodic monitoring of the surface can be used to indicate the degree of fatigue damage on a component and allow one to predict the remaining life and/or incipient mechanical failure of the monitored component. This wireless, compact device can operate for long periods under its own battery power and could one day use harvested power. The prototype device uses the popular open-source TinyOS operating system on an off-the-shelf Mica2 sensor mote, which allows wireless command and control through dynamically reconfigurable multi-node sensor networks. The small size and long life of this device could make it possible for the nodes to be installed and left in place over the course of years, and with wireless communication, data can be extracted from the nodes by operators without physical access to the devices. While a prototype has been demonstrated at the time of this reporting, further work is required in the system s development to take this technology into the field, especially to improve its power management and ruggedness. It should be possible to reduce the size and sensitivity as well. Establishment of better prognostic methods based on these data is also needed. The increase of surface roughness with fatigue is closely connected to the microstructure of the metal, and ongoing research is seeking to connect this observed evidence of the fatigue state with microstructural theories of fatigue evolution to allow more accurate prognosis of remaining component life. Plans are also being discussed for flight testing, perhaps on NASA s SOFIA platform.
Radio-frequency flexible and stretchable electronics: the need, challenges and opportunities
NASA Astrophysics Data System (ADS)
Jung, Yei Hwan; Seo, Jung-Hun; Zhang, Huilong; Lee, Juhwan; Cho, Sang June; Chang, Tzu-Hsuan; Ma, Zhenqiang
2017-05-01
Successful integration of ultrathin flexible or stretchable systems with new applications, such as medical devices and biodegradable electronics, have intrigued many researchers and industries around the globe to seek materials and processes to create high-performance, non-invasive and cost-effective electronics to match those of state-of-the-art devices. Nevertheless, the crucial concept of transmitting data or power wirelessly for such unconventional devices has been difficult to realize due to limitations of radio-frequency (RF) electronics in individual components that form a wireless circuitry, such as antenna, transmission line, active devices, passive devices etc. To overcome such challenges, these components must be developed in a step-by-step manner, as each component faces a number of different challenges in ultrathin formats. Here, we report on materials and design considerations for fabricating flexible and stretchable electronics systems that operate in the microwave level. High-speed flexible active devices, including cost effective Si-based strained MOSFETs, GaAs-based HBTs and GaN-based HEMTs, performing at multi-gigahertz frequencies are presented. Furthermore, flexible or stretchable passive devices, including capacitors, inductors and transmission lines that are vital parts of a microwave circuitry are also demonstrated. We also present unique applications using the presented flexible or stretchable RF components, including wearable RF electronics and biodegradable RF electronics, which were impossible to achieve using conventional rigid, wafer-based technology. Further opportunities like implantable systems exist utilizing such ultrathin RF components, which are discussed in this report as well.
Embedded wireless sensors for turbomachine component defect monitoring
Tralshawala, Nilesh; Sexton, Daniel White
2015-11-24
Various embodiments include detection systems adapted to monitor at least one physical property of a component in a turbomachine. In some embodiments a detection system includes at least one sensor configured to be affixed to a component of a turbomachine, the at least one sensor for sensing information regarding at least one physical property of the turbomachine component during operation of the turbomachine, a signal converter communicatively coupled to the at least one sensor and at least one RF communication device configured to be affixed to a stationary component of the turbomachine, the radio frequency communication device configured to communicate with the at least one signal converter via an RF antenna coupled to the signal converter.
Goldstein, Ayelet; Shahar, Yuval
2016-06-01
Design and implement an intelligent free-text summarization system: The system's input includes large numbers of longitudinal, multivariate, numeric and symbolic clinical raw data, collected over varying periods of time, and in different complex contexts, and a suitable medical knowledge base. The system then automatically generates a textual summary of the data. We aim to prove the feasibility of implementing such a system, and to demonstrate its potential benefits for clinicians and for enhancement of quality of care. We have designed a new, domain-independent, knowledge-based system, the CliniText system, for automated summarization in free text of longitudinal medical records of any duration, in any context. The system is composed of six components: (1) A temporal abstraction module generates all possible abstractions from the patient's raw data using a temporal-abstraction knowledge base; (2) The abductive reasoning module infers abstractions or events from the data, which were not explicitly included in the database; (3) The pruning module filters out raw or abstract data based on predefined heuristics; (4) The document structuring module organizes the remaining raw or abstract data, according to the desired format; (5) The microplanning module, groups the raw or abstract data and creates referring expressions; (6) The surface realization module, generates the text, and applies the grammar rules of the chosen language. We have performed an initial technical evaluation of the system in the cardiac intensive-care and diabetes domains. We also summarize the results of a more detailed evaluation study that we have performed in the intensive-care domain that assessed the completeness, correctness, and overall quality of the system's generated text, and its potential benefits to clinical decision making. We assessed these measures for 31 letters originally composed by clinicians, and for the same letters when generated by the CliniText system. We have successfully implemented all of the components of the CliniText system in software. We have also been able to create a comprehensive temporal-abstraction knowledge base to support its functionality, mostly in the intensive-care domain. The initial technical evaluation of the system in the cardiac intensive-care and diabetes domains has shown great promise, proving the feasibility of constructing and operating such systems. The detailed results of the evaluation in the intensive-care domain are out of scope of the current paper, and we refer the reader to a more detailed source. In all of the letters composed by clinicians, there were at least two important items per letter missed that were included by the CliniText system. The clinicians' letters got a significantly better grade in three out of four measured quality parameters, as judged by an expert; however, the variance in the quality was much higher in the clinicians' letters. In addition, three clinicians answered questions based on the discharge letter 40% faster, and answered four out of the five questions equally well or significantly better, when using the CliniText-generated letters, than when using the clinician-composed letters. Constructing a working system for automated summarization in free text of large numbers of varying periods of multivariate longitudinal clinical data is feasible. So is the construction of a large knowledge base, designed to support such a system, in a complex clinical domain, such as the intensive-care domain. The integration of the quality and functionality results suggests that the optimal discharge letter should exploit both human and machine, possibly by creating a machine-generated draft that will be polished by a human clinician. Copyright © 2016 Elsevier Inc. All rights reserved.
Harrison, John D.; Leggett, Richard Wayne
2016-01-01
This letter to the editor of Journal of Radiological Protection is in response to a letter to the editor from G. M. Smith and M. C. Thorne of Great Britain concerning the appropriate selection of dose coefficients for ingested carbon-14 and chlorine-36, two of the most important long-lived components of radioactive wastes. Smith and Thorne argue that current biokinetic models of the International Commission on Radiological Protection (ICRP) for carbon and chlorine are overly cautious models from the standpoint of radiation dose estimates for C-14 and Cl-36, and that more realistic models are needed for evaluation of the hazards ofmore » these radionuclides in nuclear wastes. We (Harrison and Leggett) point out that new biokinetic models for these and other elements (developed at ORNL) will soon appear in ICRP Publications. These new models generally are considerably more realistic than current ICRP models. Here, examples are given for C-14 inhaled as carbon dioxide or ingested in water as bicarbonate, carbonate, or carbon dioxide.« less
Nuclear power plant Generic Aging Lessons Learned (GALL). Main report and appendix A
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaza, K.E.; Diercks, D.R.; Holland, J.W.
The purpose of this generic aging lessons learned (GALL) review is to provide a systematic review of plant aging information in order to assess materials and component aging issues related to continued operation and license renewal of operating reactors. Literature on mechanical, structural, and thermal-hydraulic components and systems reviewed consisted of 97 Nuclear Plant Aging Research (NPAR) reports, 23 NRC Generic Letters, 154 Information Notices, 29 Licensee Event Reports (LERs), 4 Bulletins, and 9 Nuclear Management and Resources Council Industry Reports (NUMARC IRs) and literature on electrical components and systems reviewed consisted of 66 NPAR reports, 8 NRC Generic Letters,more » 111 Information Notices, 53 LERs, 1 Bulletin, and 1 NUMARC IR. More than 550 documents were reviewed. The results of these reviews were systematized using a standardized GALL tabular format and standardized definitions of aging-related degradation mechanisms and effects. The tables are included in volume s 1 and 2 of this report. A computerized data base has also been developed for all review tables and can be used to expedite the search for desired information on structures, components, and relevant aging effects. A survey of the GALL tables reveals that all ongoing significant component aging issues are currently being addressed by the regulatory process. However, the aging of what are termed passive components has been highlighted for continued scrutiny. This document is Volume 1, consisting of the executive summary, summary and observations, and an appendix listing the GALL literature review tables.« less
30 pJ/b, 67 Mbps, Centimeter-to-Meter Range Data Telemetry With an IR-UWB Wireless Link.
Ebrazeh, Ali; Mohseni, Pedram
2015-06-01
This paper reports an energy-efficient, impulse radio ultra wideband (IR-UWB) wireless link operating in 3-5 GHz for data telemetry over centimeter-to-meter range distances at rates extended to tens of Mbps. The link comprises an all-digital, integrated transmitter (TX) fabricated in 90 nm 1P/9M CMOS that incorporates a waveform-synthesis pulse generator and a timing generator for on-off-keying (OOK) pulse modulation and phase scrambling. The link also incorporates an energy-detection receiver (RX) realized with commercial off-the-shelf (COTS) components that performs radio-frequency (RF) filtering, amplification, logarithmic power detection for data demodulation and automatic level control for robust operation in the presence of distance variations. Employing a miniaturized, UWB, chip antenna for the TX and RX, wireless transmission of pseudo-random binary sequence (PRBS) data at rates up to 50 Mbps over 10 cm-1 m is shown. Further, employing a high-gain horn antenna for the RX, wireless transmission of PRBS data at rates up to 67 Mbps over 50 cm-4 m is shown with a TX energy consumption of 30 pJ/b (i.e., power consumption of 2 mW) from 1.2 V. The measured bit error rate (BER) in both cases is < 10(-7) . Results from wireless recording of the background current of a carbon-fiber microelectrode (CFM) in one fast-scan cyclic voltammetry (FSCV) scan using the IR-UWB link are also included, exhibiting excellent match with those obtained from a conventional frequency-shift-keyed (FSK) link at ~433 MHz.
Acemind new indoor full duplex optical wireless communication prototype
NASA Astrophysics Data System (ADS)
Bouchet, Olivier; Perrufel, Micheline; Topsu, Suat; Guan, Hongyu
2016-09-01
For over a century and Mr. Guglielmo Marconi invention, systems using radio waves have controlled over wireless telecommunication solutions; from Amplitude Modulation (AM) radio products to satellite communications for instance. But beyond an increasingly negative opinion face to radio waves and radio spectrum availability more and more reduced; there is an unprecedented opportunity with LED installation in displays and lighting to provide optical wireless communication solutions. As a result, technologically mature solutions are already commercially available for services such as Location Based Services (LBS), broadcast diffusion or Intelligent Transport Services (ITS). Pending finalization of the standard review process IEEE 802.15.7 r1, our paper presents the results of the European collaborative project named "ACEMIND". It offers an indoor bilateral optical wireless communication prototype having the following characteristics: use of the existing electrical infrastructure, through judicious combination with Light Fidelity (LiFi), Power Line Communication (PLC) and Ethernet to reduce the implementation cost. We propose a bilateral optical wireless communication even when the light is switched off by using Visible Light Communication (VLC) and Infra-Red Communication (IRC) combined to a remote optical switch. Dimensionally optimized LiFi module is presented in order to offer the possibility for integration inside a laptop. Finally, there is operational mechanism implementation such as OFDM/DMT to increase throughput. After the introduction, we will present the results of a market study from Orange Labs customers about their opinion on LiFi components. Then we will detail the LiFi prototype, from the physical layer aspect to MAC layer before concluding on commercial development prospects.
Metal oxide coating of carbon supports for supercapacitor applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boyle, Timothy J.; Tribby, Louis, J; Lakeman, Charles D. E.
2008-07-01
The global market for wireless sensor networks in 2010 will be valued close to $10 B, or 200 M units. TPL, Inc. is a small Albuquerque based business that has positioned itself to be a leader in providing uninterruptible power supplies in this growing market with projected revenues expected to exceed $26 M in 5 years. This project focused on improving TPL, Inc.'s patent-pending EnerPak{trademark} device which converts small amounts of energy from the environment (e.g., vibrations, light or temperature differences) into electrical energy that can be used to charge small energy storage devices. A critical component of the EnerPak{trademark}more » is the supercapacitor that handles high power delivery for wireless communications; however, optimization and miniaturization of this critical component is required. This proposal aimed to produce prototype microsupercapacitors through the integration of novel materials and fabrication processes developed at New Mexico Technology Research Collaborative (NMTRC) member institutions. In particular, we focused on developing novel ruthenium oxide nanomaterials and placed them into carbon supports to significantly increase the energy density of the supercapacitor. These improvements were expected to reduce maintenance costs and expand the utility of the TPL, Inc.'s device, enabling New Mexico to become the leader in the growing global wireless power supply market. By dominating this niche, new customers were expected to be attracted to TPL, Inc. yielding new technical opportunities and increased job opportunities for New Mexico.« less
Supporting Classroom Activities with the BSUL System
ERIC Educational Resources Information Center
Ogata, Hiroaki; Saito, Nobuji A.; Paredes J., Rosa G.; San Martin, Gerardo Ayala; Yano, Yoneo
2008-01-01
This paper presents the integration of ubiquitous computing systems into classroom settings, in order to provide basic support for classrooms and field activities. We have developed web application components using Java technology and configured a classroom with wireless network access and a web camera for our purposes. In this classroom, the…
DOT National Transportation Integrated Search
2013-12-01
This study aims to integrate commercial measurement and communication components into a scour : monitoring system with magnets or electronics embedded in smart rocks, and evaluate and improve its : performance in laboratory and field conditions for t...
NASA Astrophysics Data System (ADS)
Shahab, S.; Erturk, A.
2014-12-01
There are several applications of wireless electronic components with little or no ambient energy available to harvest, yet wireless battery charging for such systems is still of great interest. Example applications range from biomedical implants to sensors located in hazardous environments. Energy transfer based on the propagation of acoustic waves at ultrasonic frequencies is a recently explored alternative that offers increased transmitter-receiver distance, reduced loss and the elimination of electromagnetic fields. As this research area receives growing attention, there is an increased need for fully coupled model development to quantify the energy transfer characteristics, with a focus on the transmitter, receiver, medium, geometric and material parameters. We present multiphysics modeling and case studies of the contactless ultrasonic energy transfer for wireless electronic components submerged in fluid. The source is a pulsating sphere, and the receiver is a piezoelectric bar operating in the 33-mode of piezoelectricity with a fundamental resonance frequency above the audible frequency range. The goal is to quantify the electrical power delivered to the load (connected to the receiver) in terms of the source strength. Both the analytical and finite element models have been developed for the resulting acoustic-piezoelectric structure interaction problem. Resistive and resistive-inductive electrical loading cases are presented, and optimality conditions are discussed. Broadband power transfer is achieved by optimal resistive-reactive load tuning for performance enhancement and frequency-wise robustness. Significant enhancement of the power output is reported due to the use of a hard piezoelectric receiver (PZT-8) instead of a soft counterpart (PZT-5H) as a result of reduced material damping. The analytical multiphysics modeling approach given in this work can be used to predict and optimize the coupled system dynamics with very good accuracy and dramatically improved computational efficiency compared to the use of commercial finite element packages.
A low-cost multichannel wireless neural stimulation system for freely roaming animals
NASA Astrophysics Data System (ADS)
Alam, Monzurul; Chen, Xi; Fernandez, Eduardo
2013-12-01
Objectives. Electrical stimulation of nerve tissue and recording of neural activity are the basis of many therapies and neural prostheses. Conventional stimulation systems have a number of practical limitations, especially in experiments involving freely roaming subjects. Our main objective was to develop a modular, versatile and inexpensive multichannel wireless system able to overcome some of these constraints. Approach. We have designed and implemented a new multichannel wireless neural stimulator based on commercial components. The system is small (2 cm × 4 cm × 0.5 cm) and light in weight (9 g) which allows it to be easily carried in a small backpack. To test and validate the performance and reliability of the whole system we conducted several bench tests and in vivo experiments. Main results. The performance and accuracy of the stimulator were comparable to commercial threaded systems. Stimulation sequences can be constructed on-the-fly with 251 selectable current levels (from 0 to 250 µA) with 1 µA step resolution. The pulse widths and intervals can be as long as 65 ms in 2 µs time resolution. The system covers approximately 10 m of transmission range in a regular laboratory environment and 100 m in free space (line of sight). Furthermore it provides great flexibility for experiments since it allows full control of the stimulator and the stimulation parameters in real time. When there is no stimulation, the device automatically goes into low-power sleep mode to preserve battery power. Significance. We introduce the design of a powerful multichannel wireless stimulator assembled from commercial components. Key features of the system are their reliability, robustness and small size. The system has a flexible design that can be modified straightforwardly to tailor it to any specific experimental need. Furthermore it can be effortlessly adapted for use with any kind of multielectrode arrays.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-20
... history, standardized examination scores, reference information, resume components, employment history, employment interests, dissertation research details, letters of recommendation, financial aid history... information technology. FOR FURTHER INFORMATION CONTACT: To request more information on the proposed project...
Similarly shaped letters evoke similar colors in grapheme-color synesthesia.
Brang, David; Rouw, Romke; Ramachandran, V S; Coulson, Seana
2011-04-01
Grapheme-color synesthesia is a neurological condition in which viewing numbers or letters (graphemes) results in the concurrent sensation of color. While the anatomical substrates underlying this experience are well understood, little research to date has investigated factors influencing the particular colors associated with particular graphemes or how synesthesia occurs developmentally. A recent suggestion of such an interaction has been proposed in the cascaded cross-tuning (CCT) model of synesthesia, which posits that in synesthetes connections between grapheme regions and color area V4 participate in a competitive activation process, with synesthetic colors arising during the component-stage of grapheme processing. This model more directly suggests that graphemes sharing similar component features (lines, curves, etc.) should accordingly activate more similar synesthetic colors. To test this proposal, we created and regressed synesthetic color-similarity matrices for each of 52 synesthetes against a letter-confusability matrix, an unbiased measure of visual similarity among graphemes. Results of synesthetes' grapheme-color correspondences indeed revealed that more similarly shaped graphemes corresponded with more similar synesthetic colors, with stronger effects observed in individuals with more intense synesthetic experiences (projector synesthetes). These results support the CCT model of synesthesia, implicate early perceptual mechanisms as driving factors in the elicitation of synesthetic hues, and further highlight the relationship between conceptual and perceptual factors in this phenomenon. Copyright © 2011 Elsevier Ltd. All rights reserved.
Assessing Arthroscopic Skills Using Wireless Elbow-Worn Motion Sensors.
Kirby, Georgina S J; Guyver, Paul; Strickland, Louise; Alvand, Abtin; Yang, Guang-Zhong; Hargrove, Caroline; Lo, Benny P L; Rees, Jonathan L
2015-07-01
Assessment of surgical skill is a critical component of surgical training. Approaches to assessment remain predominantly subjective, although more objective measures such as Global Rating Scales are in use. This study aimed to validate the use of elbow-worn, wireless, miniaturized motion sensors to assess the technical skill of trainees performing arthroscopic procedures in a simulated environment. Thirty participants were divided into three groups on the basis of their surgical experience: novices (n = 15), intermediates (n = 10), and experts (n = 5). All participants performed three standardized tasks on an arthroscopic virtual reality simulator while wearing wireless wrist and elbow motion sensors. Video output was recorded and a validated Global Rating Scale was used to assess performance; dexterity metrics were recorded from the simulator. Finally, live motion data were recorded via Bluetooth from the wireless wrist and elbow motion sensors and custom algorithms produced an arthroscopic performance score. Construct validity was demonstrated for all tasks, with Global Rating Scale scores and virtual reality output metrics showing significant differences between novices, intermediates, and experts (p < 0.001). The correlation of the virtual reality path length to the number of hand movements calculated from the wireless sensors was very high (p < 0.001). A comparison of the arthroscopic performance score levels with virtual reality output metrics also showed highly significant differences (p < 0.01). Comparisons of the arthroscopic performance score levels with the Global Rating Scale scores showed strong and highly significant correlations (p < 0.001) for both sensor locations, but those of the elbow-worn sensors were stronger and more significant (p < 0.001) than those of the wrist-worn sensors. A new wireless assessment of surgical performance system for objective assessment of surgical skills has proven valid for assessing arthroscopic skills. The elbow-worn sensors were shown to achieve an accurate assessment of surgical dexterity and performance. The validation of an entirely objective assessment of arthroscopic skill with wireless elbow-worn motion sensors introduces, for the first time, a feasible assessment system for the live operating theater with the added potential to be applied to other surgical and interventional specialties. Copyright © 2015 by The Journal of Bone and Joint Surgery, Incorporated.
Using stimulus shaping and fading to establish stimulus control in normal and retarded children.
Smeets, P M; Lancioni, G E; Hoogeveen, F R
1984-09-01
The present study was an effort to investigate whether, in addition to his IQ level, the child's ability to identify all relevant stimulus components would affect the frequency of overselective responding. Children of different IQ levels (i.e. normal, educably retarded, and trainable retarded children) participated. Subjects were trained to learn the meanings of four sets of fictitious words, i.e. two sets containing words printed in Roman letters (Roman words), and two sets containing words printed in Hebrew letters (Hebrew words). All subjects could identify the words of each set. The normal and educably retarded subjects could read aloud the Roman words, whereas the trainable retarded subjects could not. None of the subjects could read the Hebrew words. Two training procedures were used, one requiring transfer of stimulus control (fading), and one which did not (stimulus shaping). The results indicated that, firstly, the discrimination learning of the normal and educably retarded subjects covaried with the IQ level and their ability to read the words. The learning rate was not affected by the training procedures. Secondly, the trainable retarded subjects learned much better through stimulus shaping than through fading. Their acquisition rates were slow and not affected by the types of letters. Thirdly, the training procedures had no effect on the breadth of stimulus control. Instead, it covaried as a function of the IQ level (all groups) and of the child's ability to read the words (normal and educably retarded subjects). Fourthly, the training procedures had, however, considerable effect on which letters controlled the discriminations. When overselective selective responding was evident, the letters that had been associated with the prompts were more often functional than the other letters, but only for the words trained through stimulus shaping.
Decision algorithm for data center vortex beam receiver
NASA Astrophysics Data System (ADS)
Kupferman, Judy; Arnon, Shlomi
2017-12-01
We present a new scheme for a vortex beam communications system which exploits the radial component p of Laguerre-Gauss modes in addition to the azimuthal component l generally used. We derive a new encoding algorithm which makes use of the spatial distribution of intensity to create an alphabet dictionary for communication. We suggest an application of the scheme as part of an optical wireless link for intra data center communication. We investigate the probability of error in decoding, for several detector options.
NASA Astrophysics Data System (ADS)
Kerkez, B.; Zhang, Z.; Oroza, C.; Glaser, S. D.; Bales, R. C.
2012-12-01
We describe our improved, robust, and scalable architecture by which to rapidly instrument large-scale watersheds, while providing the resulting data in real-time. Our system consists of more than twenty wireless sensor networks and thousands of sensors, which will be deployed in the American River basin (5000 sq. km) of California. The core component of our system is known as a mote, a tiny, ultra-low-power, embedded wireless computer that can be used for any number of sensing applications. Our new generation of motes is equipped with IPv6 functionality, effectively giving each sensor in the field its own unique IP address, thus permitting users to remotely interact with the devices without going through intermediary services. Thirty to fifty motes will be deployed across 1-2 square kilometer regions to form a mesh-based wireless sensor network. Redundancy of local wireless links will ensure that data will always be able to traverse the network, even if hash wintertime conditions adversely affect some network nodes. These networks will be used to develop spatial estimates of a number of hydrologic parameters, focusing especially on snowpack. Each wireless sensor network has one main network controller, which is responsible with interacting with an embedded Linux computer to relay information across higher-powered, long-range wireless links (cell modems, satellite, WiFi) to neighboring networks and remote, offsite servers. The network manager is also responsible for providing an Internet connection to each mote. Data collected by the sensors can either be read directly by remote hosts, or stored on centralized servers for future access. With 20 such networks deployed in the American River, our system will comprise an unprecedented cyber-physical architecture for measuring hydrologic parameters in large-scale basins. The spatiotemporal density and real-time nature of the data is also expected to significantly improve operational hydrology and water resource management in the basin.
Injectable, cellular-scale optoelectronics with applications for wireless optogenetics.
Kim, Tae-il; McCall, Jordan G; Jung, Yei Hwan; Huang, Xian; Siuda, Edward R; Li, Yuhang; Song, Jizhou; Song, Young Min; Pao, Hsuan An; Kim, Rak-Hwan; Lu, Chaofeng; Lee, Sung Dan; Song, Il-Sun; Shin, Gunchul; Al-Hasani, Ream; Kim, Stanley; Tan, Meng Peun; Huang, Yonggang; Omenetto, Fiorenzo G; Rogers, John A; Bruchas, Michael R
2013-04-12
Successful integration of advanced semiconductor devices with biological systems will accelerate basic scientific discoveries and their translation into clinical technologies. In neuroscience generally, and in optogenetics in particular, the ability to insert light sources, detectors, sensors, and other components into precise locations of the deep brain yields versatile and important capabilities. Here, we introduce an injectable class of cellular-scale optoelectronics that offers such features, with examples of unmatched operational modes in optogenetics, including completely wireless and programmed complex behavioral control over freely moving animals. The ability of these ultrathin, mechanically compliant, biocompatible devices to afford minimally invasive operation in the soft tissues of the mammalian brain foreshadow applications in other organ systems, with potential for broad utility in biomedical science and engineering.
In-network processing of joins in wireless sensor networks.
Kang, Hyunchul
2013-03-11
The join or correlated filtering of sensor readings is one of the fundamental query operations in wireless sensor networks (WSNs). Although the join in centralized or distributed databases is a well-researched problem, join processing in WSNs has quite different characteristics and is much more difficult to perform due to the lack of statistics on sensor readings and the resource constraints of sensor nodes. Since data transmission is orders of magnitude more costly than processing at a sensor node, in-network processing of joins is essential. In this paper, the state-of-the-art techniques for join implementation in WSNs are surveyed. The requirements and challenges, join types, and components of join implementation are described. The open issues for further research are identified.
In-Network Processing of Joins in Wireless Sensor Networks
Kang, Hyunchul
2013-01-01
The join or correlated filtering of sensor readings is one of the fundamental query operations in wireless sensor networks (WSNs). Although the join in centralized or distributed databases is a well-researched problem, join processing in WSNs has quite different characteristics and is much more difficult to perform due to the lack of statistics on sensor readings and the resource constraints of sensor nodes. Since data transmission is orders of magnitude more costly than processing at a sensor node, in-network processing of joins is essential. In this paper, the state-of-the-art techniques for join implementation in WSNs are surveyed. The requirements and challenges, join types, and components of join implementation are described. The open issues for further research are identified. PMID:23478603
Polymeric Packaging for Fully Implantable Wireless Neural Microsensors
Aceros, Juan; Yin, Ming; Borton, David A.; Patterson, William R.; Bull, Christopher; Nurmikko, Arto V.
2014-01-01
We present polymeric packaging methods used for subcutaneous, fully implantable, broadband, and wireless neurosensors. A new tool for accelerated testing and characterization of biocompatible polymeric packaging materials and processes is described along with specialized test units to simulate our fully implantable neurosensor components, materials and fabrication processes. A brief description of the implantable systems is presented along with their current encapsulation methods based on polydimethylsiloxane (PDMS). Results from in-vivo testing of multiple implanted neurosensors in swine and non-human primates are presented. Finally, a novel augmenting polymer thin film material to complement the currently employed PDMS is introduced. This thin layer coating material is based on the Plasma Enhanced Chemical Vapor Deposition (PECVD) process of Hexamethyldisiloxane (HMDSO) and Oxygen (O2). PMID:23365999
Software Configurable Multichannel Transceiver
NASA Technical Reports Server (NTRS)
Freudinger, Lawrence C.; Cornelius, Harold; Hickling, Ron; Brooks, Walter
2009-01-01
Emerging test instrumentation and test scenarios increasingly require network communication to manage complexity. Adapting wireless communication infrastructure to accommodate challenging testing needs can benefit from reconfigurable radio technology. A fundamental requirement for a software-definable radio system is independence from carrier frequencies, one of the radio components that to date has seen only limited progress toward programmability. This paper overviews an ongoing project to validate the viability of a promising chipset that performs conversion of radio frequency (RF) signals directly into digital data for the wireless receiver and, for the transmitter, converts digital data into RF signals. The Software Configurable Multichannel Transceiver (SCMT) enables four transmitters and four receivers in a single unit the size of a commodity disk drive, programmable for any frequency band between 1 MHz and 6 GHz.
32 CFR Appendix to Part 162 - Reporting Procedures
Code of Federal Regulations, 2010 CFR
2010-07-01
... PECI reporting requirements provide the OSD with summary information required to provide program accountability, and satisfy the congressional concerns on program management. Information may be submitted in memorandum, letter, or other acceptable form. B. Information Requirements 1. PIF. Each DoD Component that has...
Individual and Developmental Differences in Cognitive-Processing Components of Mental Ability
ERIC Educational Resources Information Center
Keating, Daniel P.; Bobbitt, Bruce L.
1978-01-01
Three experiments (simple versus choice reaction time, Posner letter identification, and Sternberg memory scanning) attempted to determine whether reliable individual differences in cognitive processing exist in children and, if so, whether these differences are systematically related to age and ability. (Author/JMB)
32 CFR 21.560 - Must DoD Components assign numbers uniformly to awards?
Code of Federal Regulations, 2010 CFR
2010-07-01
... nonprocurement instrument. (c) The 9th position must be a number: (1) “1” for grants. (2) “2” for cooperative... assigning these numbers and may create multiple series of letters and numbers to meet internal needs for...
A Biological-Plausable Architecture for Shape Recognition
2006-06-30
between curves. Information Processing Letters, 64, 1997. [4] Irving Biederman . Recognition-by-components: A theory of human image understanding...Psychological Review, 94(2):115–147, 1987 . 43 [5] C. Cadieu, M. Kouh, M. Riesenhuber, and T. Poggio. Shape representation in v4: Investi- gating position
NASA Astrophysics Data System (ADS)
Wang, Shengling; Cui, Yong; Koodli, Rajeev; Hou, Yibin; Huang, Zhangqin
Due to the dynamics of topology and resources, Call Admission Control (CAC) plays a significant role for increasing resource utilization ratio and guaranteeing users' QoS requirements in wireless/mobile networks. In this paper, a dynamic multi-threshold CAC scheme is proposed to serve multi-class service in a wireless/mobile network. The thresholds are renewed at the beginning of each time interval to react to the changing mobility rate and network load. To find suitable thresholds, a reward-penalty model is designed, which provides different priorities between different service classes and call types through different reward/penalty policies according to network load and average call arrival rate. To speed up the running time of CAC, an Optimized Genetic Algorithm (OGA) is presented, whose components such as encoding, population initialization, fitness function and mutation etc., are all optimized in terms of the traits of the CAC problem. The simulation demonstrates that the proposed CAC scheme outperforms the similar schemes, which means the optimization is realized. Finally, the simulation shows the efficiency of OGA.
Defence against Black Hole and Selective Forwarding Attacks for Medical WSNs in the IoT †
Mathur, Avijit; Newe, Thomas; Rao, Muzaffar
2016-01-01
Wireless sensor networks (WSNs) are being used to facilitate monitoring of patients in hospital and home environments. These systems consist of a variety of different components/sensors and many processes like clustering, routing, security, and self-organization. Routing is necessary for medical-based WSNs because it allows remote data delivery and it facilitates network scalability in large hospitals. However, routing entails several problems, mainly due to the open nature of wireless networks, and these need to be addressed. This paper looks at two of the problems that arise due to wireless routing between the nodes and access points of a medical WSN (for IoT use): black hole and selective forwarding (SF) attacks. A solution to the former can readily be provided through the use of cryptographic hashes, while the latter makes use of a neighbourhood watch and threshold-based analysis to detect and correct SF attacks. The scheme proposed here is capable of detecting a selective forwarding attack with over 96% accuracy and successfully identifying the malicious node with 83% accuracy. PMID:26797620
Mobile and static sensors in a citizen-based observatory of water
NASA Astrophysics Data System (ADS)
Brauchli, Tristan; Weijs, Steven V.; Lehning, Michael; Huwald, Hendrik
2014-05-01
Understanding and forecasting water resources and components of the water cycle require spatially and temporally resolved observations of numerous water-related variables. Such observations are often obtained from wireless networks of automated weather stations. The "WeSenseIt" project develops a citizen- and community-based observatory of water to improve the water and risk management at the catchment scale and to support decision-making of stakeholders. It is implemented in three case studies addressing various questions related to flood, drought, water resource management, water quality and pollution. Citizens become potential observers and may transmit water-related measurements and information. Combining the use of recent technologies (wireless communication, internet, smartphone) with the development of innovative low cost sensors enables the implementation of heterogeneous observatories, which (a) empower citizens and (b) expand and complement traditional operational sensing networks. With the goal of increasing spatial coverage of observations and decreasing cost for sensors, this study presents the examples of measuring (a) flow velocity in streams using smartphones and (b) sensible heat flux using simple sensors at the nodes of wireless sensor networks.
A wireless integrated circuit for 100-channel charge-balanced neural stimulation.
Thurgood, B K; Warren, D J; Ledbetter, N M; Clark, G A; Harrison, R R
2009-12-01
The authors present the design of an integrated circuit for wireless neural stimulation, along with benchtop and in - vivo experimental results. The chip has the ability to drive 100 individual stimulation electrodes with constant-current pulses of varying amplitude, duration, interphasic delay, and repetition rate. The stimulation is performed by using a biphasic (cathodic and anodic) current source, injecting and retracting charge from the nervous system. Wireless communication and power are delivered over a 2.765-MHz inductive link. Only three off-chip components are needed to operate the stimulator: a 10-nF capacitor to aid in power-supply regulation, a small capacitor (< 100 pF) for tuning the coil to resonance, and a coil for power and command reception. The chip was fabricated in a commercially available 0.6- mum 2P3M BiCMOS process. The chip was able to activate motor fibers to produce muscle twitches via a Utah Slanted Electrode Array implanted in cat sciatic nerve, and to activate sensory fibers to recruit evoked potentials in somatosensory cortex.
Defence against Black Hole and Selective Forwarding Attacks for Medical WSNs in the IoT.
Mathur, Avijit; Newe, Thomas; Rao, Muzaffar
2016-01-19
Wireless sensor networks (WSNs) are being used to facilitate monitoring of patients in hospital and home environments. These systems consist of a variety of different components/sensors and many processes like clustering, routing, security, and self-organization. Routing is necessary for medical-based WSNs because it allows remote data delivery and it facilitates network scalability in large hospitals. However, routing entails several problems, mainly due to the open nature of wireless networks, and these need to be addressed. This paper looks at two of the problems that arise due to wireless routing between the nodes and access points of a medical WSN (for IoT use): black hole and selective forwarding (SF) attacks. A solution to the former can readily be provided through the use of cryptographic hashes, while the latter makes use of a neighbourhood watch and threshold-based analysis to detect and correct SF attacks. The scheme proposed here is capable of detecting a selective forwarding attack with over 96% accuracy and successfully identifying the malicious node with 83% accuracy.
Indoor detection of passive targets recast as an inverse scattering problem
NASA Astrophysics Data System (ADS)
Gottardi, G.; Moriyama, T.
2017-10-01
The wireless local area networks represent an alternative to custom sensors and dedicated surveillance systems for target indoor detection. The availability of the channel state information has opened the exploitation of the spatial and frequency diversity given by the orthogonal frequency division multiplexing. Such a fine-grained information can be used to solve the detection problem as an inverse scattering problem. The goal of the detection is to reconstruct the properties of the investigation domain, namely to estimate if the domain is empty or occupied by targets, starting from the measurement of the electromagnetic perturbation of the wireless channel. An innovative inversion strategy exploiting both the frequency and the spatial diversity of the channel state information is proposed. The target-dependent features are identified combining the Kruskal-Wallis test and the principal component analysis. The experimental validation points out the detection performance of the proposed method when applied to an existing wireless link of a WiFi architecture deployed in a real indoor scenario. False detection rates lower than 2 [%] have been obtained.
Swallowable fluorometric capsule for wireless triage of gastrointestinal bleeding.
Nemiroski, A; Ryou, M; Thompson, C C; Westervelt, R M
2015-12-07
Real-time detection of gastrointestinal bleeding remains a major challenge because there does not yet exist a minimally invasive technology that can both i) monitor for blood from an active hemorrhage and ii) uniquely distinguish it from blood left over from an inactive hemorrhage. Such a device would be an important tool for clinical triage. One promising solution, which we have proposed previously, is to inject a fluorescent dye into the blood stream and to use it as a distinctive marker of active bleeding by monitoring leakage into the gastrointestinal tract with a wireless fluorometer. This paper reports, for the first time to our knowledge, the development of a swallowable, wireless capsule with a built-in fluorometer capable of detecting fluorescein in blood, and intended for monitoring gastrointestinal bleeding in the stomach. The embedded, compact fluorometer uses pinholes to define a microliter sensing volume and to eliminate bulky optical components. The proof-of-concept capsule integrates optics, low-noise analog sensing electronics, a microcontroller, battery, and low power Zigbee radio, all into a cylindrical package measuring 11 mm × 27 mm and weighing 10 g. Bench-top experiments demonstrate wireless fluorometry with a limit-of-detection of 20 nM aqueous fluorescein. This device represents a major step towards a technology that would enable simple, rapid detection of active gastrointestinal bleeding, a capability that would save precious time and resources and, ultimately, reduce complications in patients.
Augmenting forearm crutches with wireless sensors for lower limb rehabilitation
NASA Astrophysics Data System (ADS)
Merrett, Geoff V.; Ettabib, Mohamed A.; Peters, Christian; Hallett, Georgina; White, Neil M.
2010-12-01
Forearm crutches are frequently used in the rehabilitation of an injury to the lower limb. The recovery rate is improved if the patient correctly applies a certain fraction of their body weight (specified by a clinician) through the axis of the crutch, referred to as partial weight bearing (PWB). Incorrect weight bearing has been shown to result in an extended recovery period or even cause further damage to the limb. There is currently no minimally invasive tool for long-term monitoring of a patient's PWB in a home environment. This paper describes the research and development of an instrumented forearm crutch that has been developed to wirelessly and autonomously monitor a patient's weight bearing over the full period of their recovery, including its potential use in a home environment. A pair of standard forearm crutches are augmented with low-cost off-the-shelf wireless sensor nodes and electronic components to provide indicative measurements of the applied weight, crutch tilt and hand position on the grip. Data are wirelessly transmitted between crutches and to a remote computer (where they are processed and visualized in LabVIEW), and the patient receives biofeedback by means of an audible signal when they put too much or too little weight through the crutch. The initial results obtained highlight the capability of the instrumented crutch to support physiotherapists and patients in monitoring usage.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-30
... Practice and Procedure (19 CFR 210.8(b)). FOR FURTHER INFORMATION CONTACT: Lisa R. Barton, Acting Secretary to the Commission, U.S. International Trade Commission, 500 E Street SW., Washington, DC 20436... E Street SW., Washington, DC 20436, telephone (202) 205-2000. General information concerning the...
A SiC MOSFET Based Inverter for Wireless Power Transfer Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Onar, Omer C; Chinthavali, Madhu Sudhan; Campbell, Steven L
2014-01-01
In a wireless power transfer (WPT) system, efficiency of the power conversion stages is crucial so that the WPT technology can compete with the conventional conductive charging systems. Since there are 5 or 6 power conversion stages, each stage needs to be as efficient as possible. SiC inverters are crucial in this case; they can handle high frequency operation and they can operate at relatively higher temperatures resulting in reduces cost and size for the cooling components. This study presents the detailed power module design, development, and fabrication of a SiC inverter. The proposed inverter has been tested at threemore » center frequencies that are considered for the WPT standardization. Performance of the inverter at the same target power transfer level is analyzed along with the other system components. In addition, another SiC inverter has been built in authors laboratory by using the ORNL designed and developed SiC modules. It is shown that the inverter with ORNL packaged SiC modules performs simular to that of the inverter having commercially available SiC modules.« less
Review on energy harvesting for structural health monitoring in aeronautical applications
NASA Astrophysics Data System (ADS)
Le, Minh Quyen; Capsal, Jean-Fabien; Lallart, Mickaël; Hebrard, Yoann; Van Der Ham, Andre; Reffe, Nicolas; Geynet, Lionel; Cottinet, Pierre-Jean
2015-11-01
This paper reviews recent developments in energy harvesting technologies for structural health monitoring (SHM) in aeronautical applications. Aeronautical industries show a great deal of interest in obtaining technologies that can be used to monitor the health of machinery and structures. In particular, the need for self-sufficient monitoring of structures has been ever-increasing in recent years. Autonomous SHM systems typically include embedded sensors, and elements for data acquisition, wireless communication, and energy harvesting. Among all of these components, this paper focuses on energy harvesting technologies. Actually, low-power sensors and wireless communication components are used in newer SHM systems, and a number of researchers have recently investigated such techniques to extract energy from the local environment to power these stand-alone systems. The first part of the paper is dedicated to the different energy sources available in aeronautical applications, i.e., for airplanes and helicopters. The second part gives a presentation of the various devices developed for converting ambient energy into electric power. The last part is dedicated to a comparison of the different technologies and the future development of energy harvesting for aeronautical applications.
Achromatic synesthesias - a functional magnetic resonance imaging study.
Melero, H; Ríos-Lago, M; Peña-Melián, A; Álvarez-Linera, J
2014-09-01
Grapheme-color synesthetes experience consistent, automatic and idiosyncratic colors associated with specific letters and numbers. Frequently, these specific associations exhibit achromatic synesthetic qualities (e.g. white, black or gray). In this study, we have investigated for the first time the neural basis of achromatic synesthesias, their relationship to chromatic synesthesias and the achromatic congruency effect in order to understand not only synesthetic color but also other components of the synesthetic experience. To achieve this aim, functional magnetic resonance imaging experiments were performed in a group of associator grapheme-color synesthetes and matched controls who were stimulated with real chromatic and achromatic stimuli (Mondrians), and with letters and numbers that elicited different types of grapheme-color synesthesias (i.e. chromatic and achromatic inducers which elicited chromatic but also achromatic synesthesias, as well as congruent and incongruent ones). The information derived from the analysis of Mondrians and chromatic/achromatic synesthesias suggests that real and synesthetic colors/achromaticity do not fully share neural mechanisms. The whole-brain analysis of BOLD signals in response to the complete set of synesthetic inducers revealed that the functional peculiarities of the synesthetic brain are distributed, and reflect different components of the synesthetic experience: a perceptual component, an (attentional) feature binding component, and an emotional component. Additionally, the inclusion of achromatic experiences has provided new evidence in favor of the emotional binding theory, a line of interpretation which constitutes a bridge between grapheme-color synesthesia and other developmental modalities of the phenomenon. Copyright © 2014 Elsevier Inc. All rights reserved.
Hybrid networking sensing system for structural health monitoring of a concrete cable-stayed bridge
NASA Astrophysics Data System (ADS)
Torbol, Marco; Kim, Sehwan; Chien, Ting-Chou; Shinozuka, Masanobu
2013-04-01
The purpose of this study is the remote structural health monitoring to identify the torsional natural frequencies and mode shapes of a concrete cable-stayed bridge using a hybrid networking sensing system. The system consists of one data aggregation unit, which is daisy-chained to one or more sensing nodes. A wireless interface is used between the data aggregation units, whereas a wired interface is used between a data aggregation unit and the sensing nodes. Each sensing node is equipped with high-precision MEMS accelerometers with adjustable sampling frequency from 0.2 Hz to 1.2 kHz. The entire system was installed inside the reinforced concrete box-girder deck of Hwamyung Bridge, which is a cable stayed bridge in Busan, South Korea, to protect the system from the harsh environmental conditions. This deployment makes wireless communication a challenge due to the signal losses and the high levels of attenuation. To address these issues, the concept of hybrid networking system is introduced with the efficient local power distribution technique. The theoretical communication range of Wi-Fi is 100m. However, inside the concrete girder, the peer to peer wireless communication cannot exceed about 20m. The distance is further reduced by the line of sight between the antennas. However, the wired daisy-chained connection between sensing nodes is useful because the data aggregation unit can be placed in the optimal location for transmission. To overcome the limitation of the wireless communication range, we adopt a high-gain antenna that extends the wireless communication distance to 50m. Additional help is given by the multi-hopping data communication protocol. The 4G modem, which allows remote access to the system, is the only component exposed to the external environment.
Developing novel 3D antennas using advanced additive manufacturing technology
NASA Astrophysics Data System (ADS)
Mirzaee, Milad
In today's world of wireless communication systems, antenna engineering is rapidly advancing as the wireless services continue to expand in support of emerging commercial applications. Antennas play a key role in the performance of advanced transceiver systems where they serve to convert electric power to electromagnetic waves and vice versa. Researchers have held significant interest in developing this crucial component for wireless communication systems by employing a variety of design techniques. In the past few years, demands for electrically small antennas continues to increase, particularly among portable and mobile wireless devices, medical electronics and aerospace systems. This trend toward smaller electronic devices makes the three dimensional (3D) antennas very appealing, since they can be designed in a way to use every available space inside the devise. Additive Manufacturing (AM) method could help to find great solutions for the antennas design for next generation of wireless communication systems. In this thesis, the design and fabrication of 3D printed antennas using AM technology is studied. To demonstrate this application of AM, different types of antennas structures have been designed and fabricated using various manufacturing processes. This thesis studies, for the first time, embedded conductive 3D printed antennas using PolyLactic Acid (PLA) and Acrylonitrile Butadiene Styrene (ABS) for substrate parts and high temperature carbon paste for conductive parts which can be a good candidate to overcome the limitations of direct printing on 3D surfaces that is the most popular method to fabricate conductive parts of the antennas. This thesis also studies, for the first time, the fabrication of antennas with 3D printed conductive parts which can contribute to the new generation of 3D printed antennas.
Wireless Telemetry and Command (T and C) Program
NASA Technical Reports Server (NTRS)
Jiang, Hui; Horan, Stephen
2000-01-01
The Wireless Telemetry and Command (T&C) program is to investigate methods of using commercial telecommunications service providers to support command and telemetry services between a remote user and a base station. While the initial development is based on ground networks, the development is being done with an eye towards future space communications needs. Both NASA and the Air Force have indicated a plan to consider the use of commercial telecommunications providers to support their space missions. To do this, there will need to be an understanding of the requirements and limitations of interfacing with the commercial providers. The eventual payoff will be the reduced operations cost and the ability to tap into commercial services being developed by the commercial networks. This should enable easier realization of EP services to the end points, commercial routing of data, and quicker integration of new services into the space mission operations. Therefore, the ultimate goal of this program is not just to provide wireless radio communications for T&C services but to enhance those services through wireless networking and provider enhancements that come with the networks. In the following chapters, the detailed technical procedure will be showed step by step. Chapter 2 will talk about the general idea of simulation as well as the implementation of data acquisition including sensor array data and GPS data. Chapter 3 will talk about how to use LabVEEW and Component Works to do wireless communication simulation and how to distribute the real-time information over the Internet by using Visual Basic and ActiveX controls. Also talk about the test configuration and validation. Chapter 4 will show the test results both from In-Lab test and Networking Test. Chapter 5 will summarize the whole procedure and give the perspective for the future consideration.
78 FR 54951 - Petition for Waiver of Compliance
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-06
.... The subject cars and their type, capacities, reporting marks, and other features are listed in an enclosure with the petition letter. Also included in the enclosure are the design, type, components, or... tourist attractions and historical purposes and will not be interchanged in regular freight operations...
CTEPP STANDARD OPERATING PROCEDURE FOR TELEPHONE SAMPLE SUBJECTS RECRUITMENT (SOP-1.12)
The subject recruitment procedures for the telephone sample component are described in the SOP. A random telephone sample list is ordered from a commercial survey sampling firm. Using this list, introductory letters are sent to targeted homes prior to making initial telephone c...
A state-wide information campaign during a pertussis epidemic in New South Wales, 2010.
Spokes, Paula J; Rosewell, Alexander E; Stephens, Alex S; McAnulty, Jeremy M
2014-09-30
Pertussis notifications increased dramatically in New South Wales in 2008, exceeding the rates in previous epidemic years. A state-wide, multi-faceted campaign was launched in March 2009 to provide information about pertussis prevention. A population-based survey was conducted using a Computer Assisted Telephone Interviewing facility to assess the effectiveness of sending letters to households with young infants. A representative sample of 1,200 adults across all 8 area health services was interviewed between July 2009 and September 2010, with responses weighted against the state population. Many respondents (39.7%) reported receiving the letter, while fewer (29.6%) reported receiving an adult pertussis booster in the last year, mostly in response to General Practitioner advice (40.4%). Letter receipt was associated with the uptake of an adult pertussis booster in the past 12 months by respondents (OR 5.8; 95%CI 4.1, 8.2) and other adults in the household (OR 5.1; 95%CI 3.5, 7.5), as well as knowledge about pertussis prevention. Health providers remain crucial for vaccination decision making; however letters may have contributed to an increased uptake of pertussis booster vaccination and knowledge. Health authorities may consider mailing households in future pertussis epidemics as a component of a wider communication strategy.
Wireless microsensors for health monitoring of aircraft structures
NASA Astrophysics Data System (ADS)
Varadan, Vijay K.
2003-01-01
The integration of MEMS, IDTs (interdigital transducers) and required microelectronics and conformal antennas to realize programmable, robust and low cost passive microsensors suitable for many military structures and systems including aircraft, missiles and munitions is presented in this paper. The technology is currently being applied to the structural health monitoring of critical aircraft components. The approach integrates acoustic emission, strain gauges, MEMS accelerometers, gyroscopes and vibration monitoring devices with signal processing electronics to provide real-time indicators of incipient failure of aircraft components with a known history of catastrophic failure due to fracture. Recently a combination of the need for safety in the air and the desire to control costs is encouraging the use of in-flight monitoring of aircraft components and systems using light-weight, wireless and cost effective microsensors and MEMS. An in-situ Aircraft structural health monitoring (ASHM) system, with sensors embedded in the composite structure or surface-mounted on the structure, would permit the timely detection of damage in aircraft. Micromachining offers the potential for fabricating a range of microsensors and MEMS for structural applications including load, vibration and acoustics characterization and monitoring. Such microsensors are extremely small; they can be embedded into structural materials, can be mass-produced and are therefore potentially cheap. Additionally a range of sensor types can be integrated onto a single chip with built-in electronics and ASIC (Application Specific Integrated Circuit), providing a low power Microsystems. The smart sensors are being developed using the standard microelectronics and micromachining in conjunction with novel Penn State smart electronics or wireless communication systems suitable for condition monitoring of aircraft structures in-flight. A hybrid accelerometer and gyroscope in a single chip suitable for inertial navigation system and other microsensors for health monitoring and condition-based maintenance of structures, drag sensing and control of aircraft, strain and deflection of structures and systems, ice sensing on aircraft, remote temperature and humidity measurement of propellant in munitions, chemical sensing, etc. are discussed.
Alphatome--Enhancing Spatial Reasoning: A Simulation in Two and Three Dimensions
ERIC Educational Resources Information Center
LeClair, Elizabeth E.
2003-01-01
Using refrigerator magnets, foam blocks, ink pads, and modeling clay, students manipulate the letters of the alphabet at multiple angles, reconstructing three-dimensional forms from two-dimensional data. This exercise increases students' spatial reasoning ability, an important component in many scientific disciplines. (Contains 5 figures.)
An Expert System for On-Site Instructional Advice.
ERIC Educational Resources Information Center
Martindale, Elizabeth S.; Hofmeister, Alan M.
1988-01-01
Describes Written Language Consultant, an expert system designed to help teachers teach special education students how to write business letters. Three main components of the system are described, including entry of students' test scores; analysis of teachers' uses of classroom time and management techniques; and suggestions for improving test…
High efficiency carbon nanotube thread antennas
NASA Astrophysics Data System (ADS)
Amram Bengio, E.; Senic, Damir; Taylor, Lauren W.; Tsentalovich, Dmitri E.; Chen, Peiyu; Holloway, Christopher L.; Babakhani, Aydin; Long, Christian J.; Novotny, David R.; Booth, James C.; Orloff, Nathan D.; Pasquali, Matteo
2017-10-01
Although previous research has explored the underlying theory of high-frequency behavior of carbon nanotubes (CNTs) and CNT bundles for antennas, there is a gap in the literature for direct experimental measurements of radiation efficiency. These measurements are crucial for any practical application of CNT materials in wireless communication. In this letter, we report a measurement technique to accurately characterize the radiation efficiency of λ/4 monopole antennas made from the CNT thread. We measure the highest absolute values of radiation efficiency for CNT antennas of any type, matching that of copper wire. To capture the weight savings, we propose a specific radiation efficiency metric and show that these CNT antennas exceed copper's performance by over an order of magnitude at 1 GHz and 2.4 GHz. We also report direct experimental observation that, contrary to metals, the radiation efficiency of the CNT thread improves significantly at higher frequencies. These results pave the way for practical applications of CNT thread antennas, particularly in the aerospace and wearable electronics industries where weight saving is a priority.
NASA Astrophysics Data System (ADS)
Shao, Yufeng
2016-03-01
In this letter, we present the generation, the peak-to average power ratio (PAPR) reduction, the heterodyne detection, the self-mixing reception, and the transmission performance evaluation of 16QAM-OFDM signals in 60 GHz radio over fiber (RoF) system using Discrete multitone (DMT) modulation and Better Than Nyquist pulse shaping (BTN-PS) technique. DMT modulation is introduced in the RoF system, in-phase and quadrature (IQ) will not be required using BTN-PS method, and the computation complexity is much lower than other published techniques for reduced PAPR in the RoF system. In the experiment, 5 Gb/s 16QAM-OFDM downlink signals are transmitted over 42 km SMF-28 and a 0.4 m wireless channel. The experimental results show that the receiver sensitivity is effectively enhanced using this method. Therefore, the introduced BTN-PS technique and its application is a competitive scheme for reducing PAPR, and enhancing the receiver sensitivity in future RoF system.
156 Mbps Ultrahigh-Speed Wireless LAN Prototype in the 38 GHz Band
NASA Astrophysics Data System (ADS)
Wu, Gang; Inoue, Masugi; Murakami, Homare; Hase, Yoshihiro
2001-12-01
This paper describes a 156 Mbps ultrahigh-speed wireless LAN operating in the 38 GHz millimeter (mm)-wave band. The system is a third prototype developed at the Communications Research Laboratory since 1998. Compared with the previous prototypes, the system is faster (156 Mbps) and smaller (volume of radio transceiver less than 1000 cc), it has a larger service area (two overlapping basic service sets), and a longer transmission distance (the protocol can support a distance of more than two hundred meters). The development is focused on the physical layer and the data link control layer, and thus a GMSK-based mm-wave transceiver and an enhanced RS-ISMA (reservation-based slotted idle signal multiple access) protocol are key development components. This paper describes the prototype system's design, configuration, and implementation.
Emmerton, Lynne; Rizk, Mariam F S; Bedford, Graham; Lalor, Daniel
2015-02-01
Confusion between similar drug names can cause harmful medication errors. Similar drug names can be visually differentiated using a typographical technique known as Tall Man lettering. While international conventions exist to derive Tall Man representation for drug names, there has been no national standard developed in Australia. This paper describes the derivation of a risk-based, standardized approach for use of Tall Man lettering in Australia, and known as National Tall Man Lettering. A three-stage approach was applied. An Australian list of similar drug names was systematically compiled from the literature and clinical error reports. Secondly, drug name pairs were prioritized using a risk matrix based on the likelihood of name confusion (a four-component score) vs. consensus ratings of the potential severity of the confusion by 31 expert reviewers. The mid-type Tall Man convention was then applied to derive the typography for the highest priority drug pair names. Of 250 pairs of confusable Australian drug names, comprising 341 discrete names, 35 pairs were identified by the matrix as an 'extreme' risk if confused. The mid-type Tall Man convention was successfully applied to the majority of the prioritized drugs; some adaption of the convention was required. This systematic process for identification of confusable drug names and associated risk, followed by application of a convention for Tall Man lettering, has produced a standard now endorsed for use in clinical settings in Australia. Periodic updating is recommended to accommodate new drug names and error reports. © 2014 John Wiley & Sons, Ltd.
Synchrosqueezing an effective method for analyzing Doppler radar physiological signals.
Yavari, Ehsan; Rahman, Ashikur; Jia Xu; Mandic, Danilo P; Boric-Lubecke, Olga
2016-08-01
Doppler radar can monitor vital sign wirelessly. Respiratory and heart rate have time-varying behavior. Capturing the rate variability provides crucial physiological information. However, the common time-frequency methods fail to detect key information. We investigate Synchrosqueezing method to extract oscillatory components of the signal with time varying spectrum. Simulation and experimental result shows the potential of the proposed method for analyzing signals with complex time-frequency behavior like physiological signals. Respiration and heart signals and their components are extracted with higher resolution and without any pre-filtering and signal conditioning.
Enhanced efficiency of the second harmonic inhomogeneous component in an opaque cavity.
Roppo, V; Raineri, F; Raj, R; Sagnes, I; Trull, J; Vilaseca, R; Scalora, M; Cojocaru, C
2011-05-15
In this Letter, we experimentally demonstrate the enhancement of the inhomogeneous second harmonic conversion in the opaque region of a GaAs cavity with efficiencies of the order of 0.1% at 612 nm, using 3 ps pump pulses having peak intensities of the order of 10 MW/cm(2). We show that the conversion efficiency of the inhomogeneous, phase-locked second harmonic component is a quadratic function of the cavity factor Q. © 2011 Optical Society of America
A New Approach to Design Autonomous Wireless Sensor Node Based on RF Energy Harvesting System.
Mouapi, Alex; Hakem, Nadir
2018-01-05
Energy Harvesting techniques are increasingly seen as the solution for freeing the wireless sensor nodes from their battery dependency. However, it remains evident that network performance features, such as network size, packet length, and duty cycle, are influenced by the sum of recovered energy. This paper proposes a new approach to defining the specifications of a stand-alone wireless node based on a Radio-frequency Energy Harvesting System (REHS). To achieve adequate performance regarding the range of the Wireless Sensor Network (WSN), techniques for minimizing the energy consumed by the sensor node are combined with methods for optimizing the performance of the REHS. For more rigor in the design of the autonomous node, a comprehensive energy model of the node in a wireless network is established. For an equitable distribution of network charges between the different nodes that compose it, the Low-Energy Adaptive Clustering Hierarchy (LEACH) protocol is used for this purpose. The model considers five energy-consumption sources, most of which are ignored in recently used models. By using the hardware parameters of commercial off-the-shelf components (Mica2 Motes and CC2520 of Texas Instruments), the energy requirement of a sensor node is quantified. A miniature REHS based on a judicious choice of rectifying diodes is then designed and developed to achieve optimal performance in the Industrial Scientific and Medical (ISM) band centralized at 2.45 GHz . Due to the mismatch between the REHS and the antenna, a band pass filter is designed to reduce reflection losses. A gradient method search is used to optimize the output characteristics of the adapted REHS. At 1 mW of input RF power, the REHS provides an output DC power of 0.57 mW and a comparison with the energy requirement of the node allows the Base Station (BS) to be located at 310 m from the wireless nodes when the Wireless Sensor Network (WSN) has 100 nodes evenly spread over an area of 300 × 300 m 2 and when each round lasts 10 min . The result shows that the range of the autonomous WSN increases when the controlled physical phenomenon varies very slowly. Having taken into account all the dissipation sources coexisting in a sensor node and using actual measurements of an REHS, this work provides the guidelines for the design of autonomous nodes based on REHS.
In vivo wireless biodiagnosis system for long-term bioactivity monitoring network
NASA Astrophysics Data System (ADS)
Chen, Chun-Kuang; Wu, Wen-Jong; Yu, Shih-An; Huang, Jhen-Gang; Lin, Yun-Han; Chen, Yih-Fan; Jin, Ming-Hui; Wen, Chih-Min; Kao, Cheng-Yan; Lin, Shi-Ming; Lu, Shey-Shi; Lin, Chii-Wann; Yen, Jia-Yush; Jaw, Fu-Shan; Chen, Chi-An; Liao, Fang-Jen; Chiu, Nan-Fu; Chien, Chia-Nan; Lee, Chih-Kung
2004-07-01
Attempts to develop a
Wirelessly powered microfluidic dielectrophoresis devices using printable RF circuits.
Qiao, Wen; Cho, Gyoujin; Lo, Yu-Hwa
2011-03-21
We report the first microfluidic device integrated with a printed RF circuit so the device can be wirelessly powered by a commercially available RFID reader. For conventional dielectrophoresis devices, electrical wires are needed to connect the electric components on the microchip to external equipment such as power supplies, amplifiers, function generators, etc. Such a procedure is unfamiliar to most clinicians and pathologists who are used to working with a microscope for examination of samples on microscope slides. The wirelessly powered device reported here eliminates the entire need for wire attachments and external instruments so the operators can use the device in essentially the same manner as they do with microscope slides. The integrated circuit can be fabricated on a flexible plastic substrate at very low cost using a roll-to-roll printing method. Electrical power at 13.56 MHz transmitted by a radio-frequency identification (RFID) reader is inductively coupled to the printed RFIC and converted into 10 V DC (direct current) output, which provides sufficient power to drive a microfluidic device to manipulate biological particles such as beads and proteins via the DC dielectrophoresis (DC-DEP) effect. To our best knowledge, this is the first wirelessly powered microfluidic dielectrophoresis device. Although the work is preliminary, the device concept, the architecture, and the core technology are expected to stimulate many efforts in the future and transform the technology to a wide range of clinical and point-of-care applications. This journal is © The Royal Society of Chemistry 2011
A mobile field-work data collection system for the wireless era of health surveillance.
Forsell, Marianne; Sjögren, Petteri; Renard, Matthew; Johansson, Olle
2011-03-01
In many countries or regions the capacity of health care resources is below the needs of the population and new approaches for health surveillance are needed. Innovative projects, utilizing wireless communication technology, contribute to reliable methods for field-work data collection and reporting to databases. The objective was to describe a new version of a wireless IT-support system for field-work data collection and administration. The system requirements were drawn from the design objective and translated to system functions. The system architecture was based on fieldwork experiences and administrative requirements. The Smartphone devices were HTC Touch Diamond2s, while the system was based on a platform with Microsoft .NET components, and a SQL Server 2005 with Microsoft Windows Server 2003 operating system. The user interfaces were based on .NET programming, and Microsoft Windows Mobile operating system. A synchronization module enabled download of field data to the database, via a General Packet Radio Services (GPRS) to a Local Area Network (LAN) interface. The field-workers considered the here-described applications user-friendly and almost self-instructing. The office administrators considered that the back-office interface facilitated retrieval of health reports and invoice distribution. The current IT-support system facilitates short lead times from fieldwork data registration to analysis, and is suitable for various applications. The advantages of wireless technology, and paper-free data administration need to be increasingly emphasized in development programs, in order to facilitate reliable and transparent use of limited resources.
Takao, Hiroyuki; Yeh, Yu Chih; Arita, Hiroyuki; Obatake, Takumi; Sakano, Teppei; Kurihara, Minoru; Matsuki, Akira; Ishibashi, Toshihiro; Murayama, Yuichi
2016-10-01
Use of mobile phones has become a standard reality of everyday living for many people worldwide, including medical professionals, as data sharing has drastically helped to improve quality of care. This increase in the use of mobile phones within hospitals and medical facilities has raised concern regarding the influence of radio waves on medical equipment. Although comprehensive studies have examined the effects of electromagnetic interference from 2G wireless communication and personal digital cellular systems on medical equipment, similar studies on more recent wireless technologies such as Long Term Evolution, wideband code division multiple access, and high-speed uplink access have yet to be published. Numerous tests targeting current wireless technologies were conducted between December 2012 and March 2013 in an anechoic chamber, shielded from external radio signals, with a dipole antenna to assess the effects of smartphone interference on several types of medical equipment. The interference produced by electromagnetic waves across five frequency bands from four telecommunication standards was assessed on 49 components from 22 pieces of medical equipment. Of the 22 pieces of medical equipment tested, 13 experienced interference at maximum transmission power. In contrast, at minimum transmission power, the maximum interference distance varied from 2 to 5 cm for different wireless devices. Four machines were affected at the minimum transmission power, and the maximum interference distance at the maximum transmission power was 38 cm. Results show that the interference from smartphones on medical equipment is very controllable.
Soft, smart contact lenses with integrations of wireless circuits, glucose sensors, and displays
Park, Jihun; Kim, Joohee; Kim, So-Yun; Cheong, Woon Hyung; Jang, Jiuk; Park, Young-Geun; Na, Kyungmin; Kim, Yun-Tae; Heo, Jun Hyuk; Lee, Chang Young; Lee, Jung Heon; Bien, Franklin; Park, Jang-Ung
2018-01-01
Recent advances in wearable electronics combined with wireless communications are essential to the realization of medical applications through health monitoring technologies. For example, a smart contact lens, which is capable of monitoring the physiological information of the eye and tear fluid, could provide real-time, noninvasive medical diagnostics. However, previous reports concerning the smart contact lens have indicated that opaque and brittle components have been used to enable the operation of the electronic device, and this could block the user’s vision and potentially damage the eye. In addition, the use of expensive and bulky equipment to measure signals from the contact lens sensors could interfere with the user’s external activities. Thus, we report an unconventional approach for the fabrication of a soft, smart contact lens in which glucose sensors, wireless power transfer circuits, and display pixels to visualize sensing signals in real time are fully integrated using transparent and stretchable nanostructures. The integration of this display into the smart lens eliminates the need for additional, bulky measurement equipment. This soft, smart contact lens can be transparent, providing a clear view by matching the refractive indices of its locally patterned areas. The resulting soft, smart contact lens provides real-time, wireless operation, and there are in vivo tests to monitor the glucose concentration in tears (suitable for determining the fasting glucose level in the tears of diabetic patients) and, simultaneously, to provide sensing results through the contact lens display. PMID:29387797
Soft, smart contact lenses with integrations of wireless circuits, glucose sensors, and displays.
Park, Jihun; Kim, Joohee; Kim, So-Yun; Cheong, Woon Hyung; Jang, Jiuk; Park, Young-Geun; Na, Kyungmin; Kim, Yun-Tae; Heo, Jun Hyuk; Lee, Chang Young; Lee, Jung Heon; Bien, Franklin; Park, Jang-Ung
2018-01-01
Recent advances in wearable electronics combined with wireless communications are essential to the realization of medical applications through health monitoring technologies. For example, a smart contact lens, which is capable of monitoring the physiological information of the eye and tear fluid, could provide real-time, noninvasive medical diagnostics. However, previous reports concerning the smart contact lens have indicated that opaque and brittle components have been used to enable the operation of the electronic device, and this could block the user's vision and potentially damage the eye. In addition, the use of expensive and bulky equipment to measure signals from the contact lens sensors could interfere with the user's external activities. Thus, we report an unconventional approach for the fabrication of a soft, smart contact lens in which glucose sensors, wireless power transfer circuits, and display pixels to visualize sensing signals in real time are fully integrated using transparent and stretchable nanostructures. The integration of this display into the smart lens eliminates the need for additional, bulky measurement equipment. This soft, smart contact lens can be transparent, providing a clear view by matching the refractive indices of its locally patterned areas. The resulting soft, smart contact lens provides real-time, wireless operation, and there are in vivo tests to monitor the glucose concentration in tears (suitable for determining the fasting glucose level in the tears of diabetic patients) and, simultaneously, to provide sensing results through the contact lens display.
Early commercial demonstration of space solar power using ultra-lightweight arrays
NASA Astrophysics Data System (ADS)
Reed, Kevin; Willenberg, Harvey J.
2009-11-01
Space solar power shows great promise for future energy sources worldwide. Most central power stations operate with power capacity of 1000 MW or greater. Due to launch size limitations and specific power of current, rigid solar arrays, the largest solar arrays that have flown in space are around 50 kW. Thin-film arrays offer the promise of much higher specific power and deployment of array sizes up to several MW with current launch vehicles. An approach to early commercial applications for space solar power to distribute power to charge hand-held, mobile battery systems by wireless power transmission (WPT) from thin-film solar arrays in quasi-stationary orbits will be presented. Four key elements to this prototype will be discussed: (1) Space and near-space testing of prototype wireless power transmission by laser and microwave components including WPT space to space and WPT space to near-space HAA transmission demonstrations; (2) distributed power source for recharging hand-held batteries by wireless power transmission from MW space solar power systems; (3) use of quasi-geostationary satellites to generate electricity and distribute it to targeted areas; and (4) architecture and technology for ultra-lightweight thin-film solar arrays with specific energy exceeding 1 kW/kg. This approach would yield flight demonstration of space solar power and wireless power transmission of 1.2 MW. This prototype system will be described, and a roadmap will be presented that will lead to still higher power levels.
Body Implanted Medical Device Communications
NASA Astrophysics Data System (ADS)
Yazdandoost, Kamya Yekeh; Kohno, Ryuji
The medical care day by day and more and more is associated with and reliant upon concepts and advances of electronics and electromagnetics. Numerous medical devices are implanted in the body for medical use. Tissue implanted devices are of great interest for wireless medical applications due to the promising of different clinical usage to promote a patient independence. It can be used in hospitals, health care facilities and home to transmit patient measurement data, such as pulse and respiration rates to a nearby receiver, permitting greater patient mobility and increased comfort. As this service permits remote monitoring of several patients simultaneously it could also potentially decrease health care costs. Advancement in radio frequency communications and miniaturization of bioelectronics are supporting medical implant applications. A central component of wireless implanted device is an antenna and there are several issues to consider when designing an in-body antenna, including power consumption, size, frequency, biocompatibility and the unique RF transmission challenges posed by the human body. The radiation characteristics of such devices are important in terms of both safety and performance. The implanted antenna and human body as a medium for wireless communication are discussed over Medical Implant Communications Service (MICS) band in the frequency range of 402-405MHz.
Integrated digital printing of flexible circuits for wireless sensing (Conference Presentation)
NASA Astrophysics Data System (ADS)
Mei, Ping; Whiting, Gregory L.; Schwartz, David E.; Ng, Tse Nga; Krusor, Brent S.; Ready, Steve E.; Daniel, George; Veres, Janos; Street, Bob
2016-09-01
Wireless sensing has broad applications in a wide variety of fields such as infrastructure monitoring, chemistry, environmental engineering and cold supply chain management. Further development of sensing systems will focus on achieving light weight, flexibility, low power consumption and low cost. Fully printed electronics provide excellent flexibility and customizability, as well as the potential for low cost and large area applications, but lack solutions for high-density, high-performance circuitry. Conventional electronics mounted on flexible printed circuit boards provide high performance but are not digitally fabricated or readily customizable. Incorporation of small silicon dies or packaged chips into a printed platform enables high performance without compromising flexibility or cost. At PARC, we combine high functionality c-Si CMOS and digitally printed components and interconnects to create an integrated platform that can read and process multiple discrete sensors. Our approach facilitates customization to a wide variety of sensors and user interfaces suitable for a broad range of applications including remote monitoring of health, structures and environment. This talk will describe several examples of printed wireless sensing systems. The technologies required for these sensor systems are a mix of novel sensors, printing processes, conventional microchips, flexible substrates and energy harvesting power solutions.
Sekitani, Tsuyoshi; Takamiya, Makoto; Noguchi, Yoshiaki; Nakano, Shintaro; Kato, Yusaku; Sakurai, Takayasu; Someya, Takao
2007-06-01
The electronics fields face serious problems associated with electric power; these include the development of ecologically friendly power-generation systems and ultralow-power-consuming circuits. Moreover, there is a demand for developing new power-transmission methods in the imminent era of ambient electronics, in which a multitude of electronic devices such as sensor networks will be used in our daily life to enhance security, safety and convenience. We constructed a sheet-type wireless power-transmission system by using state-of-the-art printing technologies using advanced electronic functional inks. This became possible owing to recent progress in organic semiconductor technologies; the diversity of chemical syntheses and processes on organic materials has led to a new class of organic semiconductors, dielectric layers and metals with excellent electronic functionalities. The new system directly drives electronic devices by transmitting power of the order of tens of watts without connectors, thereby providing an easy-to-use and reliable power source. As all of the components are manufactured on plastic films, it is easy to place the wireless power-transmission sheet over desks, floors, walls and any other location imaginable.
Wireless acquisition of multi-channel seismic data using the Seismobile system
NASA Astrophysics Data System (ADS)
Isakow, Zbigniew
2017-11-01
This paper describes the wireless acquisition of multi-channel seismic data using a specialized mobile system, Seismobile, designed for subsoil diagnostics for transportation routes. The paper presents examples of multi-channel seismic records obtained during system tests in a configuration with 96 channels (4 landstreamers of 24-channel) and various seismic sources. Seismic waves were generated at the same point using different sources: a 5-kg hammer, a Gisco's source with a 90-kg pile-driver, and two other the pile-drivers of 45 and 70 kg. Particular attention is paid to the synchronization of source timing, the measurement of geometry by autonomous GPS systems, and the repeatability of triggering measurements constrained by an accelerometer identifying the seismic waveform. The tests were designed to the registration, reliability, and range of the wireless transmission of survey signals. The effectiveness of the automatic numbering of measuring modules was tested as the system components were arranged and fixed to the streamers. After measurements were completed, the accuracy and speed of data downloading from the internal memory (SDHC 32GB WiFi) was determined. Additionally, the functionality of automatic battery recharging, the maximum survey duration, and the reliability of battery discharge signalling were assessed.
NASA Astrophysics Data System (ADS)
Soeharwinto; Sinulingga, Emerson; Siregar, Baihaqi
2017-01-01
An accurate information can be useful for authorities to make good policies for preventive and mitigation after volcano eruption disaster. Monitoring of environmental parameters of post-eruption volcano provides an important information for authorities. Such monitoring system can be develop using the Wireless Network Sensor technology. Many application has been developed using the Wireless Sensor Network technology, such as floods early warning system, sun radiation mapping, and watershed monitoring. This paper describes the implementation of a remote environment monitoring system of mount Sinabung post-eruption. The system monitor three environmental parameters: soil condition, water quality and air quality (outdoor). Motes equipped with proper sensors, as components of the monitoring system placed in sample locations. The measured value from the sensors periodically sends to data server using 3G/GPRS communication module. The data can be downloaded by the user for further analysis.The measurement and data analysis results generally indicate that the environmental parameters in the range of normal/standard condition. The sample locations are safe for living and suitable for cultivation, but awareness is strictly required due to the uncertainty of Sinabung status.
Measurement of motion detection of wireless capsule endoscope inside large intestine.
Zhou, Mingda; Bao, Guanqun; Pahlavan, Kaveh
2014-01-01
Wireless Capsule Endoscope (WCE) provides a noninvasive way to inspect the entire Gastrointestinal (GI) tract, including large intestine, where intestinal diseases most likely occur. As a critical component of capsule endoscopic examination, physicians need to know the precise position of the endoscopic capsule in order to identify the position of detected intestinal diseases. Knowing how the capsule moves inside the large intestine would greatly complement the existing wireless localization systems by providing the motion information. Since the most recently released WCE can take up to 6 frames per second, it's possible to estimate the movement of the capsule by processing the successive image sequence. In this paper, a computer vision based approach without utilizing any external device is proposed to estimate the motion of WCE inside the large intestine. The proposed approach estimate the displacement and rotation of the capsule by calculating entropy and mutual information between frames using Fibonacci method. The obtained results of this approach show its stability and better performance over other existing approaches of motion measurements. Meanwhile, findings of this paper lay a foundation for motion pattern of WCEs inside the large intestine, which will benefit other medical applications.
Enhancing Literacy Instruction for Grade Level Readers in the Early Elementary Grades
ERIC Educational Resources Information Center
Warren, Marie
2010-01-01
Local school districts are under pressure to have elementary reading teachers understand how phonics, during teacher-led small group literacy instruction, can help students who read below grade level. Elementary teachers need research-based strategies regarding which reading instructions of letter-sound components are necessary to help students…
Reading Second. Brown Letters on Education
ERIC Educational Resources Information Center
Whitehurst, Grover
2009-01-01
Former President George W. Bush finished his tenure without having won congressional renewal of his No Child Left Behind (NCLB) policy. With President Barack Obama now at the helm, NCLB is up for debate. Brown Center Director Grover "Russ" Whitehurst examines Reading First, a key component of NCLB, that aims to ensure that all children…
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-15
... proper performance of the functions of the agency, including whether the information will have practical.../Collection: Non-Immigrant Checkout Letter. (3) Agency form number, if any, and the applicable component of... abstract: Primary: Individual or Households. When an alien (other than one who is required to depart under...
DOT National Transportation Integrated Search
1982-01-01
This study sought to evaluate the impact of the four basic treatment combinations of the rehabilitation component of the Virginia driver improvement program. It was found that receipt of a warning letter from the Division of Motor Vehicles had no eff...
Components of Attention Modulated by Temporal Expectation
ERIC Educational Resources Information Center
Sørensen, Thomas Alrik; Vangkilde, Signe; Bundesen, Claus
2015-01-01
By varying the probabilities that a stimulus would appear at particular times after the presentation of a cue and modeling the data by the theory of visual attention (Bundesen, 1990), Vangkilde, Coull, and Bundesen (2012) provided evidence that the speed of encoding a singly presented stimulus letter into visual short-term memory (VSTM) is…
Low molecular weight squash trypsin inhibitors from Sechium edule seeds.
Laure, Hélen J; Faça, Vítor M; Izumi, Clarice; Padovan, Júlio C; Greene, Lewis J
2006-02-01
Nine chromatographic components containing trypsin inhibitor activity were isolated from Sechium edule seeds by acetone fractionation, gel filtration, affinity chromatography and RP-HPLC in an overall yield of 46% of activity and 0.05% of protein. The components obtained with highest yield of total activity and highest specific activity were sequenced by Edman degradation and their molecular masses determined by mass spectrometry. The inhibitors contained 31, 32 and 27 residues per molecule and their sequences were: SETI-IIa, EDRKCPKILMRCKRDSDCLAKCTCQESGYCG; SETI-IIb, EEDRKCPKILMRCKRDSDCLAKCTCQESGYCG and SETI-V, CPRILMKCKLDTDCFPTCTCRPSGFCG. SETI-IIa and SETI-IIb, which differed by an amino-terminal E in the IIb form, were not separable under the conditions employed. The sequences are consistent with consensus sequences obtained from 37 other inhibitors: CPriI1meCk_DSDCla_C_C_G_CG, where capital letters are invariant amino acid residues and lower case letters are the most preserved in this position. SETI-II and SETI-V form complexes with trypsin with a 1:1 stoichiometry and have dissociation constants of 5.4x10(-11)M and 1.1x10(-9)M, respectively.
Microwave Photonic Filters for Interference Cancellation and Adaptive Beamforming
NASA Astrophysics Data System (ADS)
Chang, John
Wireless communication has experienced an explosion of growth, especially in the past half- decade, due to the ubiquity of wireless devices, such as tablets, WiFi-enabled devices, and especially smartphones. Proliferation of smartphones with powerful processors and graphic chips have given an increasing amount of people the ability to access anything from anywhere. Unfortunately, this ease of access has greatly increased mobile wireless bandwidth and have begun to stress carrier networks and spectra. Wireless interference cancellation will play a big role alongside the popularity of wire- less communication. In this thesis, we will investigate optical signal processing methods for wireless interference cancellation methods. Optics provide the perfect backdrop for interference cancellation. Mobile wireless data is already aggregated and transported through fiber backhaul networks in practice. By sandwiching the signal processing stage between the receiver and the fiber backhaul, processing can easily be done locally in one location. Further, optics offers the advantages of being instantaneously broadband and size, weight, and power (SWAP). We are primarily concerned with two methods for interference cancellation, based on microwave photonic filters, in this thesis. The first application is for a co-channel situation, in which a transmitter and receiver are co-located and transmitting at the same frequency. A novel analog optical technique extended for multipath interference cancellation of broadband signals is proposed and experimentally demonstrated in this thesis. The proposed architecture was able to achieve a maximum of 40 dB of cancellation over 200 MHz and 50 dB of cancellation over 10 MHz. The broadband nature of the cancellation, along with its depth, demonstrates both the precision of the optical components and the validity of the architecture. Next, we are interested in a scenario with dynamically changing interference, which requires an adaptive photonic beamformer. The solution is two-part. A novel highly-scalable photonic beamformer is first proposed and experimentally verified. A "blind" search algorithm called the guided accelerated random search (GARS) algorithm is then shown. A maximum cancellation of 37 dB is achieved within 50 iterations, a real-world time of 1-3 seconds, while the presence of a signal of interest (SOI) is maintained.
Elastomeric Sensing of Pressure with Liquid Metal and Wireless Inductive Coupling
NASA Technical Reports Server (NTRS)
Dick, Jacob; Zou, Xiyue; Hogan, Ben; Tumalle, Jonathan; Etikyala, Sowmith; Fung, Diego; Charles, Watley; Gu, Tianye; Hull, Patrick V.; Mazzeo, Aaron D.
2017-01-01
This project describes resistance-based soft sensors filled with liquid metal, which permit measurements of large strains (0 percent to 110 percent), associated with small forces of less than 30 Newtons. This work also demonstrates a methodology for wireless transfer of these strain measurements without connected electrodes. These sensors allow intermittent detection of pressure on soft membranes with low force. Adapting these sensors for passive wireless pressure sensing will eliminate the need for embedded batteries, and will allow the sensors to transmit pressure data through non-conductive materials including glass and acrylic. The absence of batteries allows us to embed these sensors into materials for long-term use because the sensors only use passive analog circuit elements. We found the oxidation of the liquid metal (eutectic gallium indium) plays a role in the repeatability of the soft sensors. We investigated how the oxidation layer affected the behavior of the sensor by encapsulating materials (silicone, fluorosilicone, and PVC) with varied permeabilities to oxygen. We measured the effects of mechanical loading on the oxidation layer and the effects of wireless inductive coupling on the oxidation layer. We concluded our research by investigating the effects of embedding self-resonant circuits into polydimethylsiloxane (PDMS). Efforts to design engineered systems with soft materials are a growing field with progress in soft robotics, epidermal electronics, and wearable electronics. In the field of soft robotics, PDMS-based grippers are capable of picking up delicate objects because their form-fitting properties allow them to conform to the shape of objects more easily than conventional robotic grippers. Epidermal devices also use PDMS as a substrate to hold electronic components such as radios, sensors, and power supply circuits. Additionally, PDMS-based soft sensors can monitor human motion with liquid metal embedded within micro-channels. Passive wireless sensors have applications in structural health monitoring and medical health monitoring. Doctors can take wireless blood pressure measurements inside arteries to monitor the progression of heart disease. Glaucoma patients can use this technology to monitor the pressure in their eyes to track the progression of the disease.
Seamonster: A Smart Sensor Web in Southeast Alaska
NASA Astrophysics Data System (ADS)
Fatland, D. R.; Heavner, M. J.; Hood, E.; Connor, C.; Nagorski, S.
2006-12-01
The NASA Research Opportunities in Space and Earth Science (ROSES) program is supporting a wireless sensor network project as part of its Advanced Information Systems Technology "Smart Sensor Web" initiative. The project, entitled Seamonster (for SouthEast Alaska MONitoring Network for Science, Telecomm, and Education Research) is led by the University of Alaska Southeast (Juneau) in collaboration with Microsoft- Vexcel in Boulder Colorado. This paper describes both the data acquisition components and science research objectives of Seamonster. The underlying data acquisition concept is to facilitate geophysics data acquisition by providing a wireless backbone for data recovery. Other researchers would be encouraged to emplace their own sensors together with short-range wireless (ZigBee, Bluetooth, etc). Through a common protocol the backbone will receive data from these sensors and relay them to a wired server. This means that the investigator can receive their data via email on a daily basis thereby cutting cost and monitoring sensor health. With environmental hardening and fairly high bandwidth and long range (100kbps/50km to 5mpbs/15km per hop) the network is intended to cover large areas and operate in harsh environments. Low power sensors and intelligent power management within the backbone are the dual ideas to contend with typical power/cost/data dilemmas. Seamonster science will focus over the next three years on hydrology and glaciology in a succession of valleys near Juneau in various stages of deglaciation, in effect providing a synopsis of a millennium-timescale process in a single moment. The instrumentation will include GPS, geophones, digital photography, met stations, and a suite of stream state and water quality sensors. Initial focus is on the Lemon Creek watershed with expansion to follow in subsequent years. The project will ideally expand to include marine and biological monitoring components.
NASA Technical Reports Server (NTRS)
Woodward, Stanley E.; Taylor, Bryant D.
2010-01-01
A system for wirelessly measuring the volume of fluid in tanks at non-horizontal orientation is predicated upon two technologies developed at Langley Research Center. The first is a magnetic field response recorder that powers and interrogates magnetic field response sensors [ Magnetic Field Response Measurement Acquisition System, (LAR-16908), NASA Tech Briefs, Vol. 30, No. 6 (June 2006), page 28]. Magnetic field response sensors are a class of sensors that are powered via oscillating magnetic fields and when electrically active respond with their own magnetic fields whose attributes are dependent upon the magnitude of the physical quantity being measured. The response recorder facilitates the use of the second technology, which is a magnetic field response fluid-level sensor ["Wireless Fluid- Level Sensors for Harsh Environments," (LAR-17155), NASA Tech Briefs, Vol. 33, No. 4 (April 2009), page 30]. The method for powering and interrogating the sensors allows them to be completely encased in materials (Fig. 1) that are chemically resilient to the fluid being measured, thereby facilitating measurement of substances (e.g., acids, petroleum, cryogenic, caustic, and the like) that would normally destroy electronic circuitry. When the sensors are encapsulated, no fluid (or fluid vapor) is exposed to any electrical component of the measurement system. There is no direct electrical line from the vehicle or plant power into a fuel container. The means of interrogating and powering the sensors can be completely physically and electrically isolated from the fuel and vapors by placing the sensor on the other side of an electrically non-conductive bulkhead (Fig. 2). These features prevent the interrogation system and its electrical components from becoming an ignition source.
Wu, Haoyi; Chiang, Sum Wai; Yang, Cheng; Lin, Ziyin; Liu, Jingping; Moon, Kyoung-Sik; Kang, Feiyu; Li, Bo; Wong, Ching Ping
2015-01-01
Electrically small antennas (ESAs) are becoming one of the key components in the compact wireless devices for telecommunications, defence, and aerospace systems, especially for the spherical one whose geometric layout is more closely approaching Chu's limit, thus yielding significant bandwidth improvements relative to the linear and planar counterparts. Yet broad applications of the volumetric ESAs are still hindered since the low cost fabrication has remained a tremendous challenge. Here we report a state-of-the-art technology to transfer electrically conductive composites (ECCs) from a planar mould to a volumetric thermoplastic substrate by using pad-printing technology without pattern distortion, benefit from the excellent properties of the ECCs as well as the printing-calibration method that we developed. The antenna samples prepared in this way meet the stringent requirement of an ESA (ka is as low as 0.32 and the antenna efficiency is as high as 57%), suggesting that volumetric electronic components i.e. the antennas can be produced in such a simple, green, and cost-effective way. This work can be of interest for the development of studies on green and high performance wireless communication devices.
Electromechanically Actuated Multifunctional Wireless Auxetic Device for Wound Management.
Mir, Mariam; Ansari, Umar; Ali, Murtaza Najabat; Iftikhar, Muhammad Hassan Ul; Qayyum, Faisal
2017-01-01
The design and fabrication of a wound healing device for chronic wounds, with multiple functions for controlled drug delivery and exudate removal, has been described in this paper. The structural features have been machined and modified through laser cutting in a biocompatible polymer cast. Miniaturized versions of electronically actuated (lead-screw and pulley) mechanisms are used for the specific purpose of controlled drug delivery. These mechanisms have been studied and tested, being controlled through a microcontroller setup. An auxetic polymeric barrier membrane has been used for restricting the drug quantities administered. Drug delivery mechanisms are powered wirelessly, through an external, active RF component; this communicates with a passive component that is buried inside the wound healing device. The exudate removal efficiency of the device has been assessed through several simple tests using simulated wound exudate. It has been found that reasonably precise quantities of drug dosages to be administered to the wound site can be controlled through both drug delivery mechanisms; however, the lead-screw mechanism provides a better control of auxetic barrier membrane actuation and hence controlled drug delivery. We propose that this device can have potential clinical significance in controlled drug delivery and exudate removal in the management of chronic wounds.
Homomorphic Filtering for Improving Time Synchronization in Wireless Networks
Castillo-Secilla, José María; Palomares, José Manuel; León, Fernando; Olivares, Joaquín
2017-01-01
Wireless sensor networks are used to sample the environment in a distributed way. Therefore, it is mandatory for all of the measurements to be tightly synchronized in order to guarantee that every sensor is sampling the environment at the exact same instant of time. The synchronization drift gets bigger in environments suffering from temperature variations. Thus, this work is focused on improving time synchronization under deployments with temperature variations. The working hypothesis demonstrated in this work is that the clock skew of two nodes (the ratio of the real frequencies of the oscillators) is composed of a multiplicative combination of two main components: the clock skew due to the variations between the cut of the crystal of each oscillator and the clock skew due to the different temperatures affecting the nodes. By applying a nonlinear filtering, the homomorphic filtering, both components are separated in an effective way. A correction factor based on temperature, which can be applied to any synchronization protocol, is proposed. For testing it, an improvement of the FTSP synchronization protocol has been developed and physically tested under temperature variation scenarios using TelosB motes flashed with the IEEE 802.15.4 implementation supplied by TinyOS. PMID:28425955
Simeoni, Ricardo
2015-06-11
This paper presents the configuration and digital signal processing details of a tablet-based hearing aid transmitting wirelessly to standard earphones, whereby the tablet performs full sound processing rather than solely providing a means of setting adjustment by streaming to conventional digital hearing aids. The presented device confirms the recognized advantages of this tablet-based approach (e.g., in relation to cost, frequency domain processing, amplification range, versatility of functionality, component battery rechargeability), and flags the future wider-spread availability of such hearing solutions within mainstream healthcare. The use of a relatively high sampling frequency was found to be beneficial for device performance, while the use of optional off-the-shelf add-on components (e.g., data acquisition device, high fidelity microphone, compact wireless transmitter/receiver, wired headphones) are also discussed in relation to performance optimization. The easy-to-follow configuration utilized is well suited to student learning/research instrumentation projects within the health and biomedical sciences. In this latter regard, the presented device was pedagogically integrated into a flipped classroom approach for the teaching of bioinstrumentation within an Allied Health Sciences School, with the subsequent establishment of positive student engagement outcomes.
Homomorphic Filtering for Improving Time Synchronization in Wireless Networks.
Castillo-Secilla, José María; Palomares, José Manuel; León, Fernando; Olivares, Joaquín
2017-04-20
Wireless sensor networks are used to sample the environment in a distributed way. Therefore, it is mandatory for all of the measurements to be tightly synchronized in order to guarantee that every sensor is sampling the environment at the exact same instant of time. The synchronization drift gets bigger in environments suffering from temperature variations. Thus, this work is focused on improving time synchronization under deployments with temperature variations. The working hypothesis demonstrated in this work is that the clock skew of two nodes (the ratio of the real frequencies of the oscillators) is composed of a multiplicative combination of two main components: the clock skew due to the variations between the cut of the crystal of each oscillator and the clock skew due to the different temperatures affecting the nodes. By applying a nonlinear filtering, the homomorphic filtering, both components are separated in an effective way. A correction factor based on temperature, which can be applied to any synchronization protocol, is proposed. For testing it, an improvement of the FTSP synchronization protocol has been developed and physically tested under temperature variation scenarios using TelosB motes flashed with the IEEE 802.15.4 implementation supplied by TinyOS.
State-trait decomposition of Name Letter Test scores and relationships with global self-esteem.
Perinelli, Enrico; Alessandri, Guido; Donnellan, M Brent; Łaguna, Mariola
2018-06-01
The Name Letter Test (NLT) assesses the degree that participants show a preference for an individual's own initials. The NLT was often thought to measure implicit self-esteem, but recent literature reviews do not equivocally support this hypothesis. Several authors have argued that the NLT is most strongly associated with the state component of self-esteem. The current research uses a modified STARTS model to (a) estimate the percentage of stable and transient components of the NLT and (b) estimate the covariances between stable/transient components of the NLT and stable/transient components of self-esteem and positive and negative affect. Two longitudinal studies were conducted with different time lags: In Study 1, participants were assessed daily for 7 consecutive days, whereas in Study 2, participants were assessed weekly for 8 consecutive weeks. Participants also completed a battery of questionnaires including global self-esteem, positive affect, and negative affect. In both studies, the NLT showed (a) high stability across time, (b) a high percentage of stable variance, (c) no significant covariance with stable and transient factors for global self-esteem, and (d) a different pattern of correlations with stable and transient factors of affect than global self-esteem. Collectively, these results further undermine the claim that the NLT is a valid measure of implicit self-esteem. Future work is needed to identify theoretically grounded correlates of the NLT. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
C145 as a short-latency electrophysiological index of cognitive compensation in Alzheimer's disease
Chapman, Robert M.; Porsteinsson, Anton P.; Gardner, Margaret N.; Mapstone, Mark; McCrary, John W.; Sandoval, Tiffany C.; Guillily, Maria D.; DeGrush, Elizabeth; Reilly, Lindsey A.
2012-01-01
Brain plasticity and cognitive compensation in the elderly are of increasing interest, and Alzheimer's disease (AD) offers an opportunity to elucidate how the brain may overcome damage. We provide neurophysiological evidence of a short-latency ERP component (C145) linked to stimulus relevancy that may reflect cognitive compensation in early-stage Alzheimer's disease (AD). Thirty-six subjects with early-stage, mild AD and 36 like-aged normal elderly (Controls) had their EEG recorded while performing our Number-Letter task, a cognitive/perceptual paradigm that manipulates stimulus relevancies. ERP components, including C145, were extracted from ERPs using Principal Components Analysis. C145 amplitudes and spatial distributions were compared among Controls, AD subjects with high performance on the Number-Letter task, and AD subjects with low performance. Compared to AD subjects, Control subjects showed enhanced C145 processing of visual stimuli in the occipital region where differential processing of relevant stimuli occurred. AD high performers recruited central brain areas in processing task relevancy. Controls and AD low performers did not show a significant task relevancy effect in these areas. We conclude that short-latency ERP components can detect electrophysiological differences in early-stage AD that reflect altered cognition. Differences in C145 amplitudes between AD and normal elderly groups regarding brain locations and types of task effects suggest compensatory mechanisms can occur in the AD brain to overcome loss of normal functionality, and this early compensation may have a profound effect on the cognitive efficiency of AD individuals. PMID:22886016
Unpowered wireless generation and sensing of ultrasound
NASA Astrophysics Data System (ADS)
Huang, Haiying
2013-04-01
This paper presents a wireless ultrasound pitch-catch system that demonstrates the wireless generation and sensing of ultrasounds based on the principle of frequency conversion. The wireless ultrasound pitch-catch system consists of a wireless interrogator and two wireless ultrasound transducers. The wireless interrogator generates an ultrasound-modulated signal and a carrier signal, both at the microwave frequency, and transmits these two signals to the wireless ultrasound actuator using a pair of antennas. Upon receiving these two signals, the wireless ultrasound actuator recovers the ultrasound excitation signal using a passive mixer and then supplies it to a piezoelectric wafer sensor for ultrasound generation in the structure. For wireless ultrasound sensing, the frequency conversion process is reversed. The ultrasound sensing signal is up-converted to a microwave signal by the wireless ultrasound sensor and is recovered at the wireless interrogator using a homodyne receiver. To differentiate the wireless actuator from the wireless sensor, each wireless transducer is equipped with a narrowband microwave filter so that it only responds to the carrier frequency that matches the filter's operation bandwidth. The principle of operation of the wireless pitch-catch system, the hardware implementation, and the associated data processing algorithm to recover the ultrasound signal from the wirelessly received signal are described. The wirelessly acquired ultrasound signal is compared with those acquired using wired connection in both time and frequency domain.
Spinning Up Interest: Classroom Demonstrations of Rotating Fluid Dynamics
NASA Astrophysics Data System (ADS)
Aurnou, J.
2005-12-01
The complex relationship between rotation and its effect on fluid motions presents some of the most difficult and vexing concepts for both undergraduate and graduate level students to learn. We have found that student comprehension is greatly increased by the presentation of in-class fluid mechanics experiments. A relatively inexpensive experimental set-up consists of the following components: a record player, a wireless camera placed in the rotating frame, a tank of fluid, and food coloring. At my poster, I will use this set-up to carry out demonstrations that illustrate the Taylor-Proudman theorem, flow within the Ekman layer, columnar convection, and flow around high and low pressure centers. By sending the output of the wireless camera through an LCD projection system, such demonstrations can be carried out even for classes in large lecture halls.
Light fidelity (Li-Fi): towards all-optical networking
NASA Astrophysics Data System (ADS)
Tsonev, Dobroslav; Videv, Stefan; Haas, Harald
2013-12-01
Motivated by the looming radio frequency (RF) spectrum crisis, this paper aims at demonstrating that optical wireless communication (OWC) has now reached a state where it can demonstrate that it is a viable and matured solution to this fundamental problem. In particular, for indoor communications where most mobile data traffic is consumed, light fidelity (Li-Fi) which is related to visible light communication (VLC) offers many key advantages, and effective solutions to the issues that have been posed in the last decade. This paper discusses all key component technologies required to realize optical cellular communication systems referred to here as optical attocell networks. Optical attocells are the next step in the progression towards ever smaller cells, a progression which is known to be the most significant contributor to the improvements in network spectral efficiencies in RF wireless networks.
Ur Rehman, Yasar Abbas; Tariq, Muhammad; Khan, Omar Usman
2015-01-01
Object localization plays a key role in many popular applications of Wireless Multimedia Sensor Networks (WMSN) and as a result, it has acquired a significant status for the research community. A significant body of research performs this task without considering node orientation, object geometry and environmental variations. As a result, the localized object does not reflect the real world scenarios. In this paper, a novel object localization scheme for WMSN has been proposed that utilizes range free localization, computer vision, and principle component analysis based algorithms. The proposed approach provides the best possible approximation of distance between a wmsn sink and an object, and the orientation of the object using image based information. Simulation results report 99% efficiency and an error ratio of 0.01 (around 1 ft) when compared to other popular techniques. PMID:26528919
Cognitive LF-Ant: a novel protocol for healthcare wireless sensor networks.
Sousa, Marcelo; Lopes, Waslon; Madeiro, Francisco; Alencar, Marcelo
2012-01-01
In this paper, the authors present the Cognitive LF-Ant protocol for emergency reporting in healthcare wireless sensor networks. The protocol is inspired by the natural behaviour of ants and a cognitive component provides the capabilities to dynamically allocate resources, in accordance with the emergency degree of each patient. The intra-cluster emergency reporting is inspired by the different capabilities of leg-manipulated ants. The inter-cluster reporting is aided by the cooperative modulation diversity with spectrum sensing, which can detect new emergency reporting requests and forward them. Simulations results show the decrease of average delay time as the probability of opportunistic access increases, which privileges the emergency reporting related to the patients with higher priority of resources' usage. Furthermore, the packet loss rate is decreased by the use of cooperative modulation diversity with spectrum sensing.
Cognitive LF-Ant: A Novel Protocol for Healthcare Wireless Sensor Networks
Sousa, Marcelo; Lopes, Waslon; Madeiro, Francisco; Alencar, Marcelo
2012-01-01
In this paper, the authors present the Cognitive LF-Ant protocol for emergency reporting in healthcare wireless sensor networks. The protocol is inspired by the natural behaviour of ants and a cognitive component provides the capabilities to dynamically allocate resources, in accordance with the emergency degree of each patient. The intra-cluster emergency reporting is inspired by the different capabilities of leg-manipulated ants. The inter-cluster reporting is aided by the cooperative modulation diversity with spectrum sensing, which can detect new emergency reporting requests and forward them. Simulations results show the decrease of average delay time as the probability of opportunistic access increases, which privileges the emergency reporting related to the patients with higher priority of resources' usage. Furthermore, the packet loss rate is decreased by the use of cooperative modulation diversity with spectrum sensing. PMID:23112610
NASA Astrophysics Data System (ADS)
Deng, Shijie; Doherty, William; McAuliffe, Michael AP; Salaj-Kosla, Urszula; Lewis, Liam; Huyet, Guillaume
2016-06-01
A low-cost and portable optical chemical sensor based ammonia sensing system that is capable of detecting dissolved ammonia up to 5 ppm is presented. In the system, an optical chemical sensor is designed and fabricated for sensing dissolved ammonia concentrations. The sensor uses eosin as the fluorescence dye which is immobilized on the glass substrate by a gas-permeable protection layer. A compact module is developed to hold the optical components, and a battery powered micro-controller system is designed to read out and process the data measured. The system operates without the requirement of laboratory instruments that makes it cost effective and highly portable. Moreover, the calculated results in the system can be transmitted to a PC wirelessly, which allows the remote and real-time monitoring of dissolved ammonia.
Graphene electrostatic microphone and ultrasonic radio
Zhou, Qin; Zheng, Jinglin; Onishi, Seita; Crommie, M. F.; Zettl, Alex K.
2015-01-01
We present a graphene-based wideband microphone and a related ultrasonic radio that can be used for wireless communication. It is shown that graphene-based acoustic transmitters and receivers have a wide bandwidth, from the audible region (20∼20 kHz) to the ultrasonic region (20 kHz to at least 0.5 MHz). Using the graphene-based components, we demonstrate efficient high-fidelity information transmission using an ultrasonic band centered at 0.3 MHz. The graphene-based microphone is also shown to be capable of directly receiving ultrasound signals generated by bats in the field, and the ultrasonic radio, coupled to electromagnetic (EM) radio, is shown to function as a high-accuracy rangefinder. The ultrasonic radio could serve as a useful addition to wireless communication technology where the propagation of EM waves is difficult. PMID:26150483
Using LOTOS for Formalizing Wireless Sensor Network Applications
Rosa, Nelson Souto; Cunha, Paulo Roberto Freire
2007-01-01
The number of wireless sensor network (WSN) applications is rapidly increasing and becoming an integral part of sensor nodes. These applications have been widely developed on TinyOS operating system using the nesC programming language. However, due to the tight integration to physical world, limited node power and resources (CPU and memory) and complexity of combining components into an application, to build such applications is not a trivial task. In this context, we present an approach for treating with this complexity adopting a formal description technique, namely LOTOS, for formalising the WSN applications ‘behaviour. The formalisation has three main benefits: better understanding on how the application actually works, checking of desired properties of the application's behaviour, and simulation facilities. In order to illustrate the proposed approach, we apply it to two nesC traditional applications, namely BLink and Sense.
Wireless Networks: New Meaning to Ubiquitous Computing.
ERIC Educational Resources Information Center
Drew, Wilfred, Jr.
2003-01-01
Discusses the use of wireless technology in academic libraries. Topics include wireless networks; standards (IEEE 802.11); wired versus wireless; why libraries implement wireless technology; wireless local area networks (WLANs); WLAN security; examples of wireless use at Indiana State University and Morrisville College (New York); and useful…
Bratan, Tanja; Stramer, Katja; Greenhalgh, Trisha
2010-12-01
The introduction of electronic patient records that are accessible by multiple providers raises security issues and requires informed consent - or at the very least, an opportunity to opt out. Introduction of the Summary Care Record (SCR) (a centrally stored electronic summary of a patient's medical record) in pilot sites in the UK was associated with low awareness, despite an intensive public information programme that included letters, posters, leaflets, and road shows. To understand why the public information programme had limited impact and to learn lessons for future programmes. Linguistic and communications analysis of components of the programme, contextualized within a wider mixed-method case study of the introduction of the SCR in pilot sites. Theoretical insights from linguistics and communication studies were applied. The context of the SCR pilots and the linked information programme created inherent challenges which were partially but not fully overcome by the efforts of campaigners. Much effort was put into designing the content of a mail merge letter, but less attention was given to its novelty, linguistic style, and rhetorical appeal. Many recipients viewed this letter as junk mail or propaganda and discarded it unread. Other components of the information programme were characterized by low visibility, partly because only restricted areas were participating in the pilot. Relatively little use was made of interpersonal communication channels. Despite ethical and legal imperatives, informed consent for the introduction of shared electronic records may be difficult to achieve through public information campaigns. Success may be more likely if established principles of effective mass and interpersonal communication are applied. © 2010 Blackwell Publishing Ltd.
Donohue, Sarah E; Todisco, Alexandra E; Woldorff, Marty G
2013-04-01
Neuroimaging work on multisensory conflict suggests that the relevant modality receives enhanced processing in the face of incongruency. However, the degree of stimulus processing in the irrelevant modality and the temporal cascade of the attentional modulations in either the relevant or irrelevant modalities are unknown. Here, we employed an audiovisual conflict paradigm with a sensory probe in the task-irrelevant modality (vision) to gauge the attentional allocation to that modality. ERPs were recorded as participants attended to and discriminated spoken auditory letters while ignoring simultaneous bilateral visual letter stimuli that were either fully congruent, fully incongruent, or partially incongruent (one side incongruent, one congruent) with the auditory stimulation. Half of the audiovisual letter stimuli were followed 500-700 msec later by a bilateral visual probe stimulus. As expected, ERPs to the audiovisual stimuli showed an incongruency ERP effect (fully incongruent versus fully congruent) of an enhanced, centrally distributed, negative-polarity wave starting ∼250 msec. More critically here, the sensory ERP components to the visual probes were larger when they followed fully incongruent versus fully congruent multisensory stimuli, with these enhancements greatest on fully incongruent trials with the slowest RTs. In addition, on the slowest-response partially incongruent trials, the P2 sensory component to the visual probes was larger contralateral to the preceding incongruent visual stimulus. These data suggest that, in response to conflicting multisensory stimulus input, the initial cognitive effect is a capture of attention by the incongruent irrelevant-modality input, pulling neural processing resources toward that modality, resulting in rapid enhancement, rather than rapid suppression, of that input.
Wireless device monitoring methods, wireless device monitoring systems, and articles of manufacture
McCown, Steven H [Rigby, ID; Derr, Kurt W [Idaho Falls, ID; Rohde, Kenneth W [Idaho Falls, ID
2012-05-08
Wireless device monitoring methods, wireless device monitoring systems, and articles of manufacture are described. According to one embodiment, a wireless device monitoring method includes accessing device configuration information of a wireless device present at a secure area, wherein the device configuration information comprises information regarding a configuration of the wireless device, accessing stored information corresponding to the wireless device, wherein the stored information comprises information regarding the configuration of the wireless device, comparing the device configuration information with the stored information, and indicating the wireless device as one of authorized and unauthorized for presence at the secure area using the comparing.
NASA Astrophysics Data System (ADS)
Young, Darrin Jun
The proliferation of wireless services creates a pressing need for compact and low cost RF transceivers. Modern sub-micron technologies provide the active components needed for miniaturization but fail to deliver high quality passives needed in oscillators and filters. This dissertation demonstrates procedures for adding high quality inductors and tunable capacitors to a standard silicon integrated circuits. Several voltage-controlled oscillators operating in the low Giga-Hertz range demonstrate the suitability of these components for high performance RF building blocks. Two low-temperature processes are described to add inductors and capacitors to silicon ICs. A 3-D coil geometry is used for the inductors rather than the conventional planar spiral to substantially reduce substrate loss and hence improve the quality factor and self-resonant frequency. Measured Q-factors at 1 GHz are 30 for a 4.8 nH device, 16 for 8.2 nH and 13.8 nH inductors. Several enhancements are proposed that are expected to result in a further improvement of the achievable Q-factor. This research investigates the design and fabrication of silicon-based IC-compatible high-Q tunable capacitors and inductors. The goal of this investigation is to develop a monolithic low phase noise radio-frequency voltage-controlled oscillator using these high-performance passive components for wireless communication applications. Monolithic VCOs will help the miniaturization of current radio transceivers, which offers a potential solution to achieve a single hand-held wireless phone with multistandard capabilities. IC-compatible micromachining fabrication technologies have been developed to realize on-chip high-Q RF tunable capacitors and 3-D coil inductors. The capacitors achieve a nominal capacitance value of 2 pF and can be tuned over 15% with 3 V. A quality factor over 60 has been measured at 1 GHz. 3-D coil inductors obtain values of 4.8 nH, 8.2 nH and 13.8 nH. At 1 GHz a Q factor of 30 has been achieved for a 4.8 nH device and a Q of 16 for 8.2 nH and 13.8 nH inductors. A prototype RF voltage-controlled oscillator has been implemented employing the micromachined tunable capacitors and a 8.2 nH 3-D coil inductor. The active electronics, tunable capacitors and inductor are fabricated on separated silicon substrates and wire bonded to form the VCO. This hybrid approach is used to avoid the complexity of building the prototype oscillator. Both passive components are fabricated on silicon substrates and thus amenable to monolithic integration with standard IC process. The VCO achieves a -136 dBc/Hz phase noise at a 3 MHz offset frequency from the carrier, suitable for most wireless communication applications and is tunable from 855 MHz to 863 MHz with 3 V.
Shed a light of wireless technology on portable mobile design of NIRS
NASA Astrophysics Data System (ADS)
Sun, Yunlong; Li, Ting
2016-03-01
Mobile internet is growing rapidly driven by high-tech companies including the popular Apple and Google. The wireless mini-NIRS is believed to deserve a great spread future, while there is sparse report on wireless NIRS device and even for the reported wireless NIRS, its wireless design is scarcely presented. Here we focused on the wireless design of NIRS devices. The widely-used wireless communication standards and wireless communication typical solutions were employed into our NIRS design and then compared on communication efficiency, distance, error rate, low-cost, power consumption, and stabilities, based on the requirements of NIRS applications. The properly-performed wireless communication methods matched with the characteristics of NIRS are picked out. Finally, we realized one recommended wireless communication in our NIRS, developed a test platform on wireless NIRS and tested the full properties on wireless communication. This study elaborated the wireless communication methods specified for NIRS and suggested one implementation with one example fully illustrated, which support the future mobile design on NIRS devices.
Wireless device monitoring systems and monitoring devices, and associated methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCown, Steven H; Derr, Kurt W; Rohde, Kenneth W
Wireless device monitoring systems and monitoring devices include a communications module for receiving wireless communications of a wireless device. Processing circuitry is coupled with the communications module and configured to process the wireless communications to determine whether the wireless device is authorized or unauthorized to be present at the monitored area based on identification information of the wireless device. Methods of monitoring for the presence and identity of wireless devices are also provided.
A 200kW central receiver CPV system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lasich, John, E-mail: jbl@raygen.com; Thomas, Ian, E-mail: ithomas@raygen.com; Hertaeg, Wolfgang
2015-09-28
Raygen Resources has recently completed a Central Receiver CPV (CSPV) pilot plant in Central Victoria, Australia. The system is under final commissioning and initial operation is expected in late April 2015. The pilot demonstrates a full scale CSPV repeatable unit in a form that is representative of a commercial product and provides a test bed to prove out performance and reliability of the CSPV technology. Extensive testing of the system key components: dense array module, wireless solar powered heliostat and control system has been performed in the laboratory and on sun. Results from this key component testing are presented herein.
360-Degree Rhetorical Analysis of Job Hunting: A Four-Part, Multimodal Project
ERIC Educational Resources Information Center
Ding, Huiling; Ding, Xin
2013-01-01
This article proposes the use of a four-component multimodal employment project that offers students a 360-degree understanding of the rhetorical situations surrounding job searches. More specifically, we argue for the use of the four deliverables of written resumes and cover letters, mock oral onsite interview, video resume analysis, and peer…
ERIC Educational Resources Information Center
Korat, O.
2005-01-01
This research had three aims: first, to examine the relationship between two components of emergent literacy: contextual (environmental print, print functions, identifying literacy activities) and non-contextual knowledge (e.g., letters' names, phonemic awareness, concept of print, etc.); second, to explore the relationship between children's…
ERIC Educational Resources Information Center
Havelka, Jelena; Rastle, Kathleen
2005-01-01
The Serbian writing system was used to investigate whether a serial procedure is implicated in print-to-sound translation and whether components of the reading aloud system can be strategically controlled. In mixed- and pure-alphabet lists, participants read aloud phonologically bivalent words comprising bivalent letters in initial or final…
D'Nealian Manuscript--An Aid to Reading Development.
ERIC Educational Resources Information Center
Thurber, Donald N.
A new method of continuous stroke manuscript print called D'Nealian Manuscript is challenging the traditional circle-stick method of teaching children how to write. The circle-stick uses component or splinter parts to form whole letters. Children are forced to form all writing with verticle lines and to learn a manuscript print that goes nowhere.…
Turning a Molehill into a Mountain? How Reading Curricula Are Failing the Poor Worldwide
ERIC Educational Resources Information Center
Abadzi, Helen
2016-01-01
Reading programs for low-income populations often give disappointing results. Failures may be partly due to a neglect of practice in decoding letters. Visual stimuli are best learned symbol by symbol, with pattern analogies and much practice to unite smaller components and speed up identification. The prerequisite for comprehending volumes of text…
Wireless sEMG-Based Body-Machine Interface for Assistive Technology Devices.
Fall, Cheikh Latyr; Gagnon-Turcotte, Gabriel; Dube, Jean-Francois; Gagne, Jean Simon; Delisle, Yanick; Campeau-Lecours, Alexandre; Gosselin, Clement; Gosselin, Benoit
2017-07-01
Assistive technology (AT) tools and appliances are being more and more widely used and developed worldwide to improve the autonomy of people living with disabilities and ease the interaction with their environment. This paper describes an intuitive and wireless surface electromyography (sEMG) based body-machine interface for AT tools. Spinal cord injuries at C5-C8 levels affect patients' arms, forearms, hands, and fingers control. Thus, using classical AT control interfaces (keypads, joysticks, etc.) is often difficult or impossible. The proposed system reads the AT users' residual functional capacities through their sEMG activity, and converts them into appropriate commands using a threshold-based control algorithm. It has proven to be suitable as a control alternative for assistive devices and has been tested with the JACO arm, an articulated assistive device of which the vocation is to help people living with upper-body disabilities in their daily life activities. The wireless prototype, the architecture of which is based on a 3-channel sEMG measurement system and a 915-MHz wireless transceiver built around a low-power microcontroller, uses low-cost off-the-shelf commercial components. The embedded controller is compared with JACO's regular joystick-based interface, using combinations of forearm, pectoral, masseter, and trapeze muscles. The measured index of performance values is 0.88, 0.51, and 0.41 bits/s, respectively, for correlation coefficients with the Fitt's model of 0.75, 0.85, and 0.67. These results demonstrate that the proposed controller offers an attractive alternative to conventional interfaces, such as joystick devices, for upper-body disabled people using ATs such as JACO.
Steele, Kerry D [Kennewick, WA; Anderson, Gordon A [Benton City, WA; Gilbert, Ronald W [Morgan Hill, CA
2011-02-01
Communications device identification methods, communications methods, wireless communications readers, wireless communications systems, and articles of manufacture are described. In one aspect, a communications device identification method includes providing identification information regarding a group of wireless identification devices within a wireless communications range of a reader, using the provided identification information, selecting one of a plurality of different search procedures for identifying unidentified ones of the wireless identification devices within the wireless communications range, and identifying at least some of the unidentified ones of the wireless identification devices using the selected one of the search procedures.
Wireless security in mobile health.
Osunmuyiwa, Olufolabi; Ulusoy, Ali Hakan
2012-12-01
Mobile health (m-health) is an extremely broad term that embraces mobile communication in the health sector and data packaging. The four broad categories of wireless networks are wireless personal area network, wireless metropolitan area network, wireless wide area network, and wireless local area network. Wireless local area network is the most notable of the wireless networking tools obtainable in the health sector. Transfer of delicate and critical information on radio frequencies should be secure, and the right to use must be meticulous. This article covers the business opportunities in m-health, threats faced by wireless networks in hospitals, and methods of mitigating these threats.
Wireless Biological Electronic Sensors.
Cui, Yue
2017-10-09
The development of wireless biological electronic sensors could open up significant advances for both fundamental studies and practical applications in a variety of areas, including medical diagnosis, environmental monitoring, and defense applications. One of the major challenges in the development of wireless bioelectronic sensors is the successful integration of biosensing units and wireless signal transducers. In recent years, there are a few types of wireless communication systems that have been integrated with biosensing systems to construct wireless bioelectronic sensors. To successfully construct wireless biological electronic sensors, there are several interesting questions: What types of biosensing transducers can be used in wireless bioelectronic sensors? What types of wireless systems can be integrated with biosensing transducers to construct wireless bioelectronic sensors? How are the electrical sensing signals generated and transmitted? This review will highlight the early attempts to address these questions in the development of wireless biological electronic sensors.
System contemplations for precision irrigation in agriculture
NASA Astrophysics Data System (ADS)
Schubert, Martin J. W.
2017-04-01
This communication contemplates political, biological and technical aspects for efficient and profitable irrigation in sustainable agriculture. A standard for irrigation components is proposed. The need for many, and three-dimensionally distributed, soil measurement points is explained, thus enabling the control of humidity in selected layers of earth. Combined wireless and wired data transmission is proposed. Energy harvesting and storage together with mechanical sensor construction are discussed.
Automatic Adaptation of Tunable Distributed Applications
2001-01-01
size, weight, and battery life, with a single CPU, less memory, smaller hard disk, and lower bandwidth network connectivity. The power of PDAs is...wireless, and bluetooth [32] facilities; thus achieving different rates of data transmission. 1 With the trend of “write once, run everywhere...applications, a single component can execute on multiple processors (or machines) in parallel. These parallel applications, written in a specialized language
Design of Energy Harvesting Technology: Feasibility for Low-Power Wireless Sensor Networks
2010-08-18
2.2.3 VIBRATION ENERGY: PIEZOELECTRIC & INDUCTIVE HARVESTERS The theoretical power available from vibration relates to the kinetic energy of... vibration energy. Energy storage is also discussed, including both disposable batteries (as the status quo with which to compare energy harvesting ...and rechargeable systems (as a necessary component of the energy harvesting system). Solar, wind, and vibration energy are all found to be
NASA Technical Reports Server (NTRS)
Wang, Ray (Inventor)
2009-01-01
A method and system for spatial data manipulation input and distribution via an adaptive wireless transceiver. The method and system include a wireless transceiver for automatically and adaptively controlling wireless transmissions using a Waveform-DNA method. The wireless transceiver can operate simultaneously over both the short and long distances. The wireless transceiver is automatically adaptive and wireless devices can send and receive wireless digital and analog data from various sources rapidly in real-time via available networks and network services.
Learning to Write Letters: Examination of Student and Letter Factors
Puranik, Cynthia S.; Petscher, Yaacov; Lonigan, Christopher J.
2016-01-01
Learning to write the letters of the alphabet is an important part of learning how to write conventionally. In this study, we investigated critical factors in the development of letter-writing skills using exploratory item response models to simultaneously account for variance in responses due to differences between students and between letters. Letter-writing skills were assessed in 415 preschool children aged 3 to 5 years. At the student level, we examined the contribution of letter-name knowledge, letter-sound knowledge, and phonological awareness to letter-writing skills. At the letter level, we examined seven intrinsic and extrinsic factors in understanding how preschool children learn to write alphabet letters: first letter of name, letters in name, letter order, textual frequency, number of strokes, symmetry, and letter type. Results indicated that variation in letter-writing skills was accounted for more by differences between students rather than by differences between letters, with most of the variability accounted for by letter-name knowledge and age. Although significant, the contribution of letter-sound knowledge and phonological awareness was relatively small. Student-level mechanisms underlying the acquisition of letter-writing skills are similar to the mechanisms underlying the learning of letter sounds. However, letter characteristics, which appear to play a major role in the learning of letter names and letter sounds, did not appear to influence learning how to write letters in a substantial way. The exception was if the letter was in the child’s name. PMID:25181463
Energy-efficient digital and wireless IC design for wireless smart sensing
NASA Astrophysics Data System (ADS)
Zhou, Jun; Huang, Xiongchuan; Wang, Chao; Tae-Hyoung Kim, Tony; Lian, Yong
2017-10-01
Wireless smart sensing is now widely used in various applications such as health monitoring and structural monitoring. In conventional wireless sensor nodes, significant power is consumed in wirelessly transmitting the raw data. Smart sensing adds local intelligence to the sensor node and reduces the amount of wireless data transmission via on-node digital signal processing. While the total power consumption is reduced compared to conventional wireless sensing, the power consumption of the digital processing becomes as dominant as wireless data transmission. This paper reviews the state-of-the-art energy-efficient digital and wireless IC design techniques for reducing the power consumption of the wireless smart sensor node to prolong battery life and enable self-powered applications.
A New Approach to Design Autonomous Wireless Sensor Node Based on RF Energy Harvesting System
Hakem, Nadir
2018-01-01
Energy Harvesting techniques are increasingly seen as the solution for freeing the wireless sensor nodes from their battery dependency. However, it remains evident that network performance features, such as network size, packet length, and duty cycle, are influenced by the sum of recovered energy. This paper proposes a new approach to defining the specifications of a stand-alone wireless node based on a Radio-frequency Energy Harvesting System (REHS). To achieve adequate performance regarding the range of the Wireless Sensor Network (WSN), techniques for minimizing the energy consumed by the sensor node are combined with methods for optimizing the performance of the REHS. For more rigor in the design of the autonomous node, a comprehensive energy model of the node in a wireless network is established. For an equitable distribution of network charges between the different nodes that compose it, the Low-Energy Adaptive Clustering Hierarchy (LEACH) protocol is used for this purpose. The model considers five energy-consumption sources, most of which are ignored in recently used models. By using the hardware parameters of commercial off-the-shelf components (Mica2 Motes and CC2520 of Texas Instruments), the energy requirement of a sensor node is quantified. A miniature REHS based on a judicious choice of rectifying diodes is then designed and developed to achieve optimal performance in the Industrial Scientific and Medical (ISM) band centralized at 2.45 GHz. Due to the mismatch between the REHS and the antenna, a band pass filter is designed to reduce reflection losses. A gradient method search is used to optimize the output characteristics of the adapted REHS. At 1 mW of input RF power, the REHS provides an output DC power of 0.57 mW and a comparison with the energy requirement of the node allows the Base Station (BS) to be located at 310 m from the wireless nodes when the Wireless Sensor Network (WSN) has 100 nodes evenly spread over an area of 300 × 300 m2 and when each round lasts 10 min. The result shows that the range of the autonomous WSN increases when the controlled physical phenomenon varies very slowly. Having taken into account all the dissipation sources coexisting in a sensor node and using actual measurements of an REHS, this work provides the guidelines for the design of autonomous nodes based on REHS. PMID:29304002
Open hardware: a role to play in wireless sensor networks?
Fisher, Roy; Ledwaba, Lehlogonolo; Hancke, Gerhard; Kruger, Carel
2015-03-20
The concept of the Internet of Things is rapidly becoming a reality, with many applications being deployed within industrial and consumer sectors. At the 'thing' level-devices and inter-device network communication-the core technical building blocks are generally the same as those found in wireless sensor network implementations. For the Internet of Things to continue growing, we need more plentiful resources for building intelligent devices and sensor networks. Unfortunately, current commercial devices, e.g., sensor nodes and network gateways, tend to be expensive and proprietary, which presents a barrier to entry and arguably slows down further development. There are, however, an increasing number of open embedded platforms available and also a wide selection of off-the-shelf components that can quickly and easily be built into device and network gateway solutions. The question is whether these solutions measure up to built-for-purpose devices. In the paper, we provide a comparison of existing built-for-purpose devices against open source devices. For comparison, we have also designed and rapidly prototyped a sensor node based on off-the-shelf components. We show that these devices compare favorably to built-for-purpose devices in terms of performance, power and cost. Using open platforms and off-the-shelf components would allow more developers to build intelligent devices and sensor networks, which could result in a better overall development ecosystem, lower barriers to entry and rapid growth in the number of IoT applications.
Open Hardware: A Role to Play in Wireless Sensor Networks?
Fisher, Roy; Ledwaba, Lehlogonolo; Hancke, Gerhard; Kruger, Carel
2015-01-01
The concept of the Internet of Things is rapidly becoming a reality, with many applications being deployed within industrial and consumer sectors. At the ‘thing’ level—devices and inter-device network communication—the core technical building blocks are generally the same as those found in wireless sensor network implementations. For the Internet of Things to continue growing, we need more plentiful resources for building intelligent devices and sensor networks. Unfortunately, current commercial devices, e.g., sensor nodes and network gateways, tend to be expensive and proprietary, which presents a barrier to entry and arguably slows down further development. There are, however, an increasing number of open embedded platforms available and also a wide selection of off-the-shelf components that can quickly and easily be built into device and network gateway solutions. The question is whether these solutions measure up to built-for-purpose devices. In the paper, we provide a comparison of existing built-for-purpose devices against open source devices. For comparison, we have also designed and rapidly prototyped a sensor node based on off-the-shelf components. We show that these devices compare favorably to built-for-purpose devices in terms of performance, power and cost. Using open platforms and off-the-shelf components would allow more developers to build intelligent devices and sensor networks, which could result in a better overall development ecosystem, lower barriers to entry and rapid growth in the number of IoT applications. PMID:25803706
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bradonjic, Milan; Hagberg, Aric; Hengartner, Nick
We analyze component evolution in general random intersection graphs (RIGs) and give conditions on existence and uniqueness of the giant component. Our techniques generalize the existing methods for analysis on component evolution in RIGs. That is, we analyze survival and extinction properties of a dependent, inhomogeneous Galton-Watson branching process on general RIGs. Our analysis relies on bounding the branching processes and inherits the fundamental concepts from the study on component evolution in Erdos-Renyi graphs. The main challenge becomes from the underlying structure of RIGs, when the number of offsprings follows a binomial distribution with a different number of nodes andmore » different rate at each step during the evolution. RIGs can be interpreted as a model for large randomly formed non-metric data sets. Besides the mathematical analysis on component evolution, which we provide in this work, we perceive RIGs as an important random structure which has already found applications in social networks, epidemic networks, blog readership, or wireless sensor networks.« less
Wireless Biological Electronic Sensors
Cui, Yue
2017-01-01
The development of wireless biological electronic sensors could open up significant advances for both fundamental studies and practical applications in a variety of areas, including medical diagnosis, environmental monitoring, and defense applications. One of the major challenges in the development of wireless bioelectronic sensors is the successful integration of biosensing units and wireless signal transducers. In recent years, there are a few types of wireless communication systems that have been integrated with biosensing systems to construct wireless bioelectronic sensors. To successfully construct wireless biological electronic sensors, there are several interesting questions: What types of biosensing transducers can be used in wireless bioelectronic sensors? What types of wireless systems can be integrated with biosensing transducers to construct wireless bioelectronic sensors? How are the electrical sensing signals generated and transmitted? This review will highlight the early attempts to address these questions in the development of wireless biological electronic sensors. PMID:28991220
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-24
... Communications System Server Software, Wireless Handheld Devices and Battery Packs; Notice of Investigation..., wireless handheld devices and battery packs by reason of infringement of certain claims of U.S. Patent Nos... certain wireless communications system server software, wireless handheld devices or battery packs that...
System and method for time synchronization in a wireless network
Gonia, Patrick S.; Kolavennu, Soumitri N.; Mahasenan, Arun V.; Budampati, Ramakrishna S.
2010-03-30
A system includes multiple wireless nodes forming a cluster in a wireless network, where each wireless node is configured to communicate and exchange data wirelessly based on a clock. One of the wireless nodes is configured to operate as a cluster master. Each of the other wireless nodes is configured to (i) receive time synchronization information from a parent node, (ii) adjust its clock based on the received time synchronization information, and (iii) broadcast time synchronization information based on the time synchronization information received by that wireless node. The time synchronization information received by each of the other wireless nodes is based on time synchronization information provided by the cluster master so that the other wireless nodes substantially synchronize their clocks with the clock of the cluster master.
Luo, Yanting; Yang, Yongmin; Chen, Zhongsheng
2014-04-10
Sub-resonances often happen in wireless power transmission (WPT) systems using coupled magnetic resonances (CMR) due to environmental changes, coil movements or component degradations, which is a serious challenge for high efficiency power transmission. Thus self-tuning is very significant to keep WPT systems following strongly magnetic resonant conditions in practice. Traditional coupled-mode ways is difficult to solve this problem. In this paper a two-port power wave model is presented, where power matching and the overall systemic power transmission efficiency are firstly defined by scattering (S) parameters. Then we propose a novel self-tuning scheme based on on-line S parameters measurements and two-side power matching. Experimental results testify the feasibility of the proposed method. These findings suggest that the proposed method is much potential to develop strongly self-adaptive WPT systems with CMR.
A bilinear pairing based anonymous authentication scheme in wireless body area networks for mHealth.
Jiang, Qi; Lian, Xinxin; Yang, Chao; Ma, Jianfeng; Tian, Youliang; Yang, Yuanyuan
2016-11-01
Wireless body area networks (WBANs) have become one of the key components of mobile health (mHealth) which provides 24/7 health monitoring service and greatly improves the quality and efficiency of healthcare. However, users' concern about the security and privacy of their health information has become one of the major obstacles that impede the wide adoption of WBANs. Anonymous and unlinkable authentication is critical to protect the security and privacy of sensitive physiological information in transit from the client to the application provider. We first show that the anonymous authentication scheme of Wang and Zhang based on bilinear pairing is prone to client impersonation attack. Then, we propose an enhanced anonymous authentication scheme to remedy the flaw in Wang and Zhang's scheme. We give the security analysis to demonstrate that the enhanced scheme achieves the desired security features and withstands various known attacks.
Regulation control and energy management scheme for wireless power transfer
Miller, John M.
2015-12-29
Power transfer rate at a charging facility can be maximized by employing a feedback scheme. The state of charge (SOC) and temperature of the regenerative energy storage system (RESS) pack of a vehicle is monitored to determine the load due to the RESS pack. An optimal frequency that cancels the imaginary component of the input impedance for the output signal from a grid converter is calculated from the load of the RESS pack, and a frequency offset f* is made to the nominal frequency f.sub.0 of the grid converter output based on the resonance frequency of a magnetically coupled circuit. The optimal frequency can maximize the efficiency of the power transfer. Further, an optimal grid converter duty ratio d* can be derived from the charge rate of the RESS pack. The grid converter duty ratio d* regulates wireless power transfer (WPT) power level.
Tattoolike Polyaniline Microparticle-Doped Gold Nanowire Patches as Highly Durable Wearable Sensors.
Gong, Shu; Lai, Daniel T H; Wang, Yan; Yap, Lim Wei; Si, Kae Jye; Shi, Qianqian; Jason, Naveen Noah; Sridhar, Tam; Uddin, Hemayet; Cheng, Wenlong
2015-09-09
Wearable and highly sensitive strain sensors are essential components of electronic skin for future biomonitoring and human machine interfaces. Here we report a low-cost yet efficient strategy to dope polyaniline microparticles into gold nanowire (AuNW) films, leading to 10 times enhancement in conductivity and ∼8 times improvement in sensitivity. Simultaneously, tattoolike wearable sensors could be fabricated simply by a direct "draw-on" strategy with a Chinese penbrush. The stretchability of the sensors could be enhanced from 99.7% to 149.6% by designing curved tattoo with different radius of curvatures. We also demonstrated roller coating method to encapusulate AuNWs sensors, exhibiting excellent water resistibility and durability. Because of improved conductivity of our sensors, they can directly interface with existing wireless circuitry, allowing for fabrication of wireless flexion sensors for a human finger-controlled robotic arm system.
On design of sensor nodes in the rice planthopper monitoring system based on the internet of things
NASA Astrophysics Data System (ADS)
Wang, Ke Qiang; Cai, Ken
2011-02-01
Accurate records and prediction of the number of the rice planthopper's outbreaks and the environmental information of farmland are effective measures to control pests' damages. On the other hand, a new round of technological revolution from the Internet to the Internet of things is taking place in the field of information. The application of the Internet of things in rice planthopper and environmental online monitoring is an effective measure to solve problems existing in the present wired sensor monitoring technology. Having described the general framework of wireless sensor nodes in the Internet of things in this paper, the software and hardware design schemes of wireless sensor nodes are proposed, combining the needs of rice planthopper and environmental monitoring. In these schemes, each module's design and key components' selection are both aiming to the characteristics of the Internet of things, so it has a strong practical value.
A Wireless Multi-Sensor Dielectric Impedance Spectroscopy Platform
Ghaffari, Seyed Alireza; Caron, William-O.; Loubier, Mathilde; Rioux, Maxime; Viens, Jeff; Gosselin, Benoit; Messaddeq, Younes
2015-01-01
This paper describes the development of a low-cost, miniaturized, multiplexed, and connected platform for dielectric impedance spectroscopy (DIS), designed for in situ measurements and adapted to wireless network architectures. The platform has been tested and used as a DIS sensor node on ZigBee mesh and was able to interface up to three DIS sensors at the same time and relay the information through the network for data analysis and storage. The system is built from low-cost commercial microelectronics components, performs dielectric spectroscopy ranging from 5 kHz to 100 kHz, and benefits from an on-the-fly calibration system that makes sensor calibration easy. The paper describes the microelectronics design, the Nyquist impedance response, the measurement sensitivity and accuracy, and the testing of the platform for in situ dielectric impedance spectroscopy applications pertaining to fertilizer sensing, water quality sensing, and touch sensing. PMID:26393587
A wireless breathing-training support system for kinesitherapy.
Tawa, Hiroki; Yonezawa, Yoshiharu; Maki, Hiromichi; Ogawa, Hidekuni; Ninomiya, Ishio; Sada, Kouji; Hamada, Shingo; Caldwell, W Morton
2009-01-01
We have developed a new wireless breathing-training support system for kinesitherapy. The system consists of an optical sensor, an accelerometer, a microcontroller, a Bluetooth module and a laptop computer. The optical sensor, which is attached to the patient's chest, measures chest circumference. The low frequency components of circumference are mainly generated by breathing. The optical sensor outputs the circumference as serial digital data. The accelerometer measures the dynamic acceleration force produced by exercise, such as walking. The microcontroller sequentially samples this force. The acceleration force and chest circumference are sent sequentially via Bluetooth to a physical therapist's laptop computer, which receives and stores the data. The computer simultaneously displays these data so that the physical therapist can monitor the patient's breathing and acceleration waveforms and give instructions to the patient in real time during exercise. Moreover, the system enables a quantitative training evaluation and calculation the volume of air inspired and expired by the lungs.
AEGIS: A Lightweight Firewall for Wireless Sensor Networks
NASA Astrophysics Data System (ADS)
Hossain, Mohammad Sajjad; Raghunathan, Vijay
Firewalls are an essential component in today's networked computing systems (desktops, laptops, and servers) and provide effective protection against a variety of over-the-network security attacks. With the development of technologies such as IPv6 and 6LoWPAN that pave the way for Internet-connected embedded systems and sensor networks, these devices will soon be subject to (and need to be defended against) similar security threats. As a first step, this paper presents Aegis, a lightweight, rule-based firewall for networked embedded systems such as wireless sensor networks. Aegis is based on a semantically rich, yet simple, rule definition language. In addition, Aegis is highly efficient during operation, runs in a transparent manner from running applications, and is easy to maintain. Experimental results obtained using real sensor nodes and cycle-accurate simulations demonstrate that Aegis successfully performs gatekeeping of a sensor node's communication traffic in a flexible manner with minimal overheads.
Autonomous microfluidic system for phosphate detection.
McGraw, Christina M; Stitzel, Shannon E; Cleary, John; Slater, Conor; Diamond, Dermot
2007-02-28
Miniaturization of analytical devices through the advent of microfluidics and micro total analysis systems is an important step forward for applications such as medical diagnostics and environmental monitoring. The development of field-deployable instruments requires that the entire system, including all necessary peripheral components, be miniaturized and packaged in a portable device. A sensor for long-term monitoring of phosphate levels has been developed that incorporates sampling, reagent and waste storage, detection, and wireless communication into a complete, miniaturized system. The device employs a low-power detection and communication system, so the entire instrument can operate autonomously for 7 days on a single rechargeable, 12V battery. In addition, integration of a wireless communication device allows the instrument to be controlled and results to be downloaded remotely. This autonomous system has a limit of detection of 0.3mg/L and a linear dynamic range between 0 and 20mg/L.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chinthavali, Madhu Sudhan; Campbell, Steven L; Tolbert, Leon M
So far, vehicular power electronics integration is limited to the integration of on-board battery chargers (OBC) into the traction drive system and sometimes to the accessory dc/dc converters in plug-in electric vehicles (PEV). These integration approaches do not provide isolation from the grid although it is an important feature that is required for user interface systems that have grid connections. This is therefore a major limitation that needs to be addressed along with the integrated functionality. Furthermore, there is no previous study that proposes the integration of wireless charger with the other on-board components. This study features a unique waymore » of combining the wired and wireless charging functionalities with vehicle side boost converter integration and maintaining the isolation to provide the best solution to the plug-in electric vehicle users. The new topology is additionally compared with commercially available OBC systems from manufacturers.« less
Rodent wearable ultrasound system for wireless neural recording.
Piech, David K; Kay, Joshua E; Boser, Bernhard E; Maharbiz, Michel M
2017-07-01
Advances in minimally-invasive, distributed biological interface nodes enable possibilities for networks of sensors and actuators to connect the brain with external devices. The recent development of the neural dust sensor mote has shown that utilizing ultrasound backscatter communication enables untethered sub-mm neural recording devices. These implanted sensor motes require a wearable external ultrasound interrogation device to enable in-vivo, freely-behaving neural interface experiments. However, minimizing the complexity and size of the implanted sensors shifts the power and processing burden to the external interrogator. In this paper, we present an ultrasound backscatter interrogator that supports real-time backscatter processing in a rodent-wearable, completely wireless device. We demonstrate a generic digital encoding scheme which is intended for transmitting neural information. The system integrates a front-end ultrasonic interface ASIC with off-the-shelf components to enable a highly compact ultrasound interrogation device intended for rodent neural interface experiments but applicable to other model systems.
Fundamental Technology Development for Gas-Turbine Engine Health Management
NASA Technical Reports Server (NTRS)
Mercer, Carolyn R.; Simon, Donald L.; Hunter, Gary W.; Arnold, Steven M.; Reveley, Mary S.; Anderson, Lynn M.
2007-01-01
Integrated vehicle health management technologies promise to dramatically improve the safety of commercial aircraft by reducing system and component failures as causal and contributing factors in aircraft accidents. To realize this promise, fundamental technology development is needed to produce reliable health management components. These components include diagnostic and prognostic algorithms, physics-based and data-driven lifing and failure models, sensors, and a sensor infrastructure including wireless communications, power scavenging, and electronics. In addition, system assessment methods are needed to effectively prioritize development efforts. Development work is needed throughout the vehicle, but particular challenges are presented by the hot, rotating environment of the propulsion system. This presentation describes current work in the field of health management technologies for propulsion systems for commercial aviation.
Promoting Wired Links in Wireless Mesh Networks: An Efficient Engineering Solution
Barekatain, Behrang; Raahemifar, Kaamran; Ariza Quintana, Alfonso; Triviño Cabrera, Alicia
2015-01-01
Wireless Mesh Networks (WMNs) cannot completely guarantee good performance of traffic sources such as video streaming. To improve the network performance, this study proposes an efficient engineering solution named Wireless-to-Ethernet-Mesh-Portal-Passageway (WEMPP) that allows effective use of wired communication in WMNs. WEMPP permits transmitting data through wired and stable paths even when the destination is in the same network as the source (Intra-traffic). Tested with four popular routing protocols (Optimized Link State Routing or OLSR as a proactive protocol, Dynamic MANET On-demand or DYMO as a reactive protocol, DYMO with spanning tree ability and HWMP), WEMPP considerably decreases the end-to-end delay, jitter, contentions and interferences on nodes, even when the network size or density varies. WEMPP is also cost-effective and increases the network throughput. Moreover, in contrast to solutions proposed by previous studies, WEMPP is easily implemented by modifying the firmware of the actual Ethernet hardware without altering the routing protocols and/or the functionality of the IP/MAC/Upper layers. In fact, there is no need for modifying the functionalities of other mesh components in order to work with WEMPPs. The results of this study show that WEMPP significantly increases the performance of all routing protocols, thus leading to better video quality on nodes. PMID:25793516
NASA Astrophysics Data System (ADS)
Godinez-Azcuaga, Valery F.; Farmer, Justin; Ziehl, Paul H.; Giurgiutiu, Victor; Nanni, Antonio; Inman, Daniel J.
2012-04-01
This paper discusses the development status of a self-powered wireless sensor node for steel and concrete bridges monitoring and prognosis. By the end of the third year in this four-year cross-disciplinary project, the 4-channel acoustic emission wireless node, developed by Mistras Group Inc, has already been deployed in concrete structures by the University of Miami. Also, extensive testing is underway with the node powered by structural vibration and wind energy harvesting modules developed by Virginia Tech. The development of diagnosis tools and models for bridge prognosis, which will be discussed in the paper, continues and the diagnosis tools are expected to be programmed in the node's AVR during the 4th year of the project. The impact of this development extends beyond the area of bridge health monitoring into several fields, such as offshore oil platforms, composite components on military ships and race boats, combat deployable bridges and wind turbine blades. Some of these applications will also be discussed. This project was awarded to a joint venture formed by Mistras Group Inc, Virginia Tech, University of South Carolina and University of Miami by the National Institute of Standards and Technology through its Technology Innovation Program Grant #70NANB9H007.
RFIC's challenges for third-generation wireless systems
NASA Astrophysics Data System (ADS)
Boric-Lubecke, Olga; Lin, Jenshan; Gould, Penny; Kermalli, Munawar
2001-11-01
Third generation (3G) cellular wireless systems are envisioned to offer low cost, high-capacity mobile communications with data rates of up to 2 Mbit/s, with global roaming and advanced data services. Besides adding mobility to the internet, 3G systems will provide location-based services, as well as personalized information and entertainment. Low cost, high dynamic-range radios, both for base stations (BS) and for mobile stations (MS) are required to enable worldwide deployment of such networks. A receiver's reference sensitivity, intermodulation characteristics, and blocking characteristics, set by a wireless standard, define performance requirements of individual components of a receiver front end. Since base station handles multiple signals from various distances simultaneously, its radio specifications are significantly more demanding than those for mobile devices. While high level of integration has already been achieved for second generation hand-sets using low-cost silicon technologies, the cost and size reduction of base stations still remains a challenge and necessity. While silicon RFIC technology is steadily improving, it is still difficult to achieve noise figure (NF), linearity, and phase noise requirements with presently available devices. This paper will discuss base station specification for 2G (GSM) and 3G (UMTS) systems, as well as the feasibility of implementing base station radios in low-cost silicon processes.
NASA Astrophysics Data System (ADS)
Das, Anshuman J.; Wahi, Akshat; Kothari, Ishan; Raskar, Ramesh
2016-09-01
We demonstrate a smartphone based spectrometer design that is standalone and supported on a wireless platform. The device is inherently low-cost and the power consumption is minimal making it portable to carry out a range of studies in the field. All essential components of the device like the light source, spectrometer, filters, microcontroller and wireless circuits have been assembled in a housing of dimensions 88 mm × 37 mm × 22 mm and the entire device weighs 48 g. The resolution of the spectrometer is 15 nm, delivering accurate and repeatable measurements. The device has a dedicated app interface on the smartphone to communicate, receive, plot and analyze spectral data. The performance of the smartphone spectrometer is comparable to existing bench-top spectrometers in terms of stability and wavelength resolution. Validations of the device were carried out by demonstrating non-destructive ripeness testing in fruit samples. Ultra-Violet (UV) fluorescence from Chlorophyll present in the skin was measured across various apple varieties during the ripening process and correlated with destructive firmness tests. A satisfactory agreement was observed between ripeness and fluorescence signals. This demonstration is a step towards possible consumer, bio-sensing and diagnostic applications that can be carried out in a rapid manner.
Das, Anshuman J; Wahi, Akshat; Kothari, Ishan; Raskar, Ramesh
2016-09-08
We demonstrate a smartphone based spectrometer design that is standalone and supported on a wireless platform. The device is inherently low-cost and the power consumption is minimal making it portable to carry out a range of studies in the field. All essential components of the device like the light source, spectrometer, filters, microcontroller and wireless circuits have been assembled in a housing of dimensions 88 mm × 37 mm × 22 mm and the entire device weighs 48 g. The resolution of the spectrometer is 15 nm, delivering accurate and repeatable measurements. The device has a dedicated app interface on the smartphone to communicate, receive, plot and analyze spectral data. The performance of the smartphone spectrometer is comparable to existing bench-top spectrometers in terms of stability and wavelength resolution. Validations of the device were carried out by demonstrating non-destructive ripeness testing in fruit samples. Ultra-Violet (UV) fluorescence from Chlorophyll present in the skin was measured across various apple varieties during the ripening process and correlated with destructive firmness tests. A satisfactory agreement was observed between ripeness and fluorescence signals. This demonstration is a step towards possible consumer, bio-sensing and diagnostic applications that can be carried out in a rapid manner.
Logic-centered architecture for ubiquitous health monitoring.
Lewandowski, Jacek; Arochena, Hisbel E; Naguib, Raouf N G; Chao, Kuo-Ming; Garcia-Perez, Alexeis
2014-09-01
One of the key points to maintain and boost research and development in the area of smart wearable systems (SWS) is the development of integrated architectures for intelligent services, as well as wearable systems and devices for health and wellness management. This paper presents such a generic architecture for multiparametric, intelligent and ubiquitous wireless sensing platforms. It is a transparent, smartphone-based sensing framework with customizable wireless interfaces and plug'n'play capability to easily interconnect third party sensor devices. It caters to wireless body, personal, and near-me area networks. A pivotal part of the platform is the integrated inference engine/runtime environment that allows the mobile device to serve as a user-adaptable personal health assistant. The novelty of this system lays in a rapid visual development and remote deployment model. The complementary visual Inference Engine Editor that comes with the package enables artificial intelligence specialists, alongside with medical experts, to build data processing models by assembling different components and instantly deploying them (remotely) on patient mobile devices. In this paper, the new logic-centered software architecture for ubiquitous health monitoring applications is described, followed by a discussion as to how it helps to shift focus from software and hardware development, to medical and health process-centered design of new SWS applications.
Progress on the Development of Future Airport Surface Wireless Communications Network
NASA Technical Reports Server (NTRS)
Kerczewski, Robert J.; Budinger, James M.; Brooks, David E.; Franklin, Morgan; DeHart, Steve; Dimond, Robert P.; Borden, Michael
2009-01-01
Continuing advances in airport surface management and improvements in airport surface safety are required to enable future growth in air traffic throughout the airspace, as airport arrival and departure delays create a major system bottleneck. These airport management and safety advances will be built upon improved communications, navigation, surveillance, and weather sensing, creating an information environment supporting system automation. The efficient movement of the digital data generated from these systems requires an underlying communications network infrastructure to connect data sources with the intended users with the required quality of service. Current airport surface communications consists primarily of buried copper or fiber cable. Safety related communications with mobile airport surface assets occurs over 25 kHz VHF voice and data channels. The available VHF spectrum, already congested in many areas, will be insufficient to support future data traffic requirements. Therefore, a broadband wireless airport surface communications network is considered a requirement for the future airport component of the air transportation system. Progress has been made on defining the technology and frequency spectrum for the airport surface wireless communications network. The development of a test and demonstration facility and the definition of required testing and standards development are now underway. This paper will review the progress and planned future work.
Gilbert, Hazel; Nazareth, Irwin; Sutton, Stephen; Morris, Richard; Petersen, Irene; Galton, Simon; Parrott, Steve
2017-01-01
Abstract Aims To assess the cost‐effectiveness of a two‐component intervention designed to increase attendance at the NHS Stop Smoking Services (SSSs) in England. Design Cost‐effectiveness analysis alongside a randomized controlled trial (Start2quit). Setting NHS SSS and general practices in England. Participants The study comprised 4384 smokers aged 16 years or more identified from medical records in 99 participating practices, who were motivated to quit and had not attended the SSS in the previous 12 months. Intervention and comparator Intervention was a personalized and tailored letter sent from the general practitioner (GP) and a personal invitation and appointment to attend a taster session providing information about SSS. Control was a standard generic letter from the GP advertising SSS and asking smokers to contact the service to make an appointment. Measurements Costs measured from an NHS/personal social services perspective, estimated health gains in quality‐adjusted life‐years (QALYs) measured with EQ‐5D and incremental cost per QALY gained during both 6 months and a life‐time horizon. Findings During the trial period, the adjusted mean difference in costs was £92 [95% confidence interval (CI) = –£32 to –£216) and the adjusted mean difference in QALY gains was 0.002 (95% CI = –0.001 to 0.004). This generates an incremental cost per QALY gained of £59 401. The probability that the tailored letter and taster session is more cost‐effective than the generic letter at 6 months is never above 50%. In contrast, the discounted life‐time health‐care cost was lower in the intervention group, while the life‐time QALY gains were significantly higher. The probability that the intervention is more cost‐effective is more than 83% using a £20 000–30 000 per QALY‐gained decision‐making threshold. Conclusions An intervention designed to increase attendance at the NHS Stop Smoking Services (tailored letter and taster session in the services) appears less likely to be cost‐effective than a generic letter in the short term, but is likely to become more cost‐effective than the generic letter during the long term. PMID:29105871
Kahn-Horwitz, Janina; Shimron, Joseph; Sparks, Richard L
2006-06-01
This study examined individual differences among beginning readers of English as a foreign language (EFL). The study concentrated on the effects of underlying first language (L1) knowledge as well as EFL letter and vocabulary knowledge. Phonological and morphological awareness, spelling, vocabulary knowledge, and word reading in Hebrew L1, in addition to knowledge of EFL letters and EFL vocabulary, were measured. The study also investigated the effect of socioeconomic background (SES) on beginning EFL readers. Participants included 145 fourth graders from three schools representing two socioeconomic backgrounds in the north of Israel. The results indicate that knowledge of English letters played a more prominent role than knowledge of Hebrew L1 components in differentiating between strong and weak EFL readers. The Linguistic Coding Differences Hypothesis was supported by L1 phonological awareness, word reading, and vocabulary knowledge appearing as part of discriminating functions. The presence of English vocabulary knowledge as part of the discriminant functions provides support for English word reading being more than just a decoding task for EFL beginner readers. Socioeconomic status differentiated the groups for EFL word recognition but not for EFL reading comprehension.
Kim, Sang Hyun
2013-09-01
The purpose of this study was to investigate applicants' behavioral characteristics based on the evaluation of cognitive, affective and social domain shown in self introduction letter and professor's recommendation letter. Self introduction letters and professor's recommendation letters of 109 applicants students who applied to medical school were collected. Frequency analysis and simple correlation were done in self introduction letter and professor's recommendation letter. Frequency analysis showed affective characteristics were most often mentioned in self introduction letter, and cognitive characteristics were most frequently described in professor's recommendation letter. There was a strong correlation between cognitive domains of self introduction letter and cognitive domain of professor's recommendation letter. There was a strong correlation between affective domain of self introduction letter and cognitive domain professor's recommendation letter. It is very important to make full use of self introduction letter and professor's recommendation letter for selecting medical students. Through the frequency analysis and simple correlation, more specific guidelines need to be suggested in order to secure fairness and objectivity in the evaluation of self-introduction letter and professor's recommendation letter.
On the Probabilistic Deployment of Smart Grid Networks in TV White Space.
Cacciapuoti, Angela Sara; Caleffi, Marcello; Paura, Luigi
2016-05-10
To accommodate the rapidly increasing demand for wireless broadband communications in Smart Grid (SG) networks, research efforts are currently ongoing to enable the SG networks to utilize the TV spectrum according to the Cognitive Radio paradigm. To this aim, in this letter, we develop an analytical framework for the optimal deployment of multiple closely-located SG Neighborhood Area Networks (NANs) concurrently using the same TV spectrum. The objective is to derive the optimal values for both the number of NANs and their coverage. More specifically, regarding the number of NANs, we derive the optimal closed-form expression, i.e., the closed-form expression that assures the deployment of the maximum number of NANs in the considered region satisfying a given collision constraint on the transmissions of the NANs. Regarding the NAN coverage, we derive the optimal closed-form expression, i.e., the closed-form expression of the NAN transmission range that assures the maximum coverage of each NAN in the considered region satisfying the given collision constraint. All the theoretical results are derived by adopting a stochastic approach. Finally, numerical results validate the theoretical analysis.
Re-Evaluating Split-Fovea Processing in Word Recognition: A Critical Assessment of Recent Research
ERIC Educational Resources Information Center
Jordan, Timothy R.; Paterson, Kevin B.
2009-01-01
In recent years, some researchers have proposed that a fundamental component of the word recognition process is that each fovea is divided precisely at its vertical midline and that information either side of this midline projects to different, contralateral hemispheres. Thus, when a word is fixated, all letters to the left of the point of…
‘Never heard of it’– Understanding the public’s lack of awareness of a new electronic patient record
Bratan, Tanja; Stramer, Katja; Greenhalgh, Trisha
2010-01-01
Abstract Background The introduction of electronic patient records that are accessible by multiple providers raises security issues and requires informed consent – or at the very least, an opportunity to opt out. Introduction of the Summary Care Record (SCR) (a centrally stored electronic summary of a patient’s medical record) in pilot sites in the UK was associated with low awareness, despite an intensive public information programme that included letters, posters, leaflets, and road shows. Aim To understand why the public information programme had limited impact and to learn lessons for future programmes. Methods Linguistic and communications analysis of components of the programme, contextualized within a wider mixed‐method case study of the introduction of the SCR in pilot sites. Theoretical insights from linguistics and communication studies were applied. Results The context of the SCR pilots and the linked information programme created inherent challenges which were partially but not fully overcome by the efforts of campaigners. Much effort was put into designing the content of a mail merge letter, but less attention was given to its novelty, linguistic style, and rhetorical appeal. Many recipients viewed this letter as junk mail or propaganda and discarded it unread. Other components of the information programme were characterized by low visibility, partly because only restricted areas were participating in the pilot. Relatively little use was made of interpersonal communication channels. Conclusion Despite ethical and legal imperatives, informed consent for the introduction of shared electronic records may be difficult to achieve through public information campaigns. Success may be more likely if established principles of effective mass and interpersonal communication are applied. PMID:20579117
Electromagnetic spectrum management system
Seastrand, Douglas R.
2017-01-31
A system for transmitting a wireless countermeasure signal to disrupt third party communications is disclosed that include an antenna configured to receive wireless signals and transmit wireless counter measure signals such that the wireless countermeasure signals are responsive to the received wireless signals. A receiver processes the received wireless signals to create processed received signal data while a spectrum control module subtracts known source signal data from the processed received signal data to generate unknown source signal data. The unknown source signal data is based on unknown wireless signals, such as enemy signals. A transmitter is configured to process the unknown source signal data to create countermeasure signals and transmit a wireless countermeasure signal over the first antenna or a second antenna to thereby interfere with the unknown wireless signals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sabolsky, Edward M.; Bhattacharyya, Debangsu; Graham, David
The objective of the work was to develop refractory “smart bricks”, which would contain embedded temperature, strain/stress, and spallation sensors throughout the volume of high-chromia (-Cr2O3) refractory brick. The proposed work included work to interconnect the sensors to the reactor exterior, where the sensor signals may be processed by low-power electronics and transmitted wirelessly to a central processing hub. The data processing and wireless transmitter hardware was specifically designed to be isolated (with low power consumption) and to be adaptable to future implementation of energy-harvesting strategies for extended life. Finally, the collected data was incorporated into a model to estimatemore » refractory degradation, a technique that could help monitor the health of the refractory in real-time. The long-term goal of this program was to demonstrate high-temperature, wireless sensor arrays for in situ three-dimensional (3-D) refractory monitoring or mapping for slagging gasification systems. The research was in collaboration with HarbisonWalker International (HWI) Technology Center in West Mifflin, PA. HWI is a leading developer and manufacturer of ceramic refractory products for high-temperature applications. The work completed focused on the following areas: 1) Investigation of the chemical stability, microstructural evolution, grain growth kinetics, degree of homogeneity (quantitative image analysis), and electrical properties of refractory oxide-silicide composites at temperatures between 750-1450ºC; 2) Fabrication of silicide-alumina composite and oxide thermocouples and thermistor preforms and the development of techniques to embed them into high-chromia refractory bricks to form “smart bricks”; 3) Utilization of commercial off-the-shelf discrete components to prototype circuits for interfacing between smart brick sensors and the wireless sensor network. The prototypes were then used to design an integrated circuit for thermistor, thermocouple, and capacitive-based smart brick sensor interfacing; 4) Interfacing of the smart bricks with embedded sensors with wireless motes thus yielding a complete signal chain. This end-to-end data collection system was tested on a furnace heated to 1350 °C; 5) Development of a slag penetration model and a nonlinear unknown input filter for the data from the embedded sensors for estimating temperature and extent of slag penetration.« less
Li, Xinying; Yu, Jianjun; Dong, Ze; Zhang, Junwen; Chi, Nan; Yu, Jianguo
2013-03-01
We experimentally investigate the interference in multiple-input multiple-output (MIMO) wireless transmission by adjusting the relative locations of horn antennas (HAs) in a 100 GHz optical wireless integration system, which can deliver a 50 Gb/s polarization-division-multiplexing quadrature-phase-shift-keying signal over 80 km single-mode fiber-28 and a 2×2 MIMO wireless link. For the parallel 2×2 MIMO wireless link, each receiver HA can only get wireless power from the corresponding transmitter HA, while for the crossover ones, the receiver HA can get wireless power from two transmitter HAs. At the wireless receiver, polarization demultiplexing is realized by the constant modulus algorithm (CMA) in the digital-signal-processing part. Compared to the parallel case, wireless interference causes about 2 dB optical signal-to-noise ratio penalty at a bit-error ratio (BER) of 3.8×10(-3) for the crossover cases if similar CMA taps are employed. The increase in CMA tap length can reduce wireless interference and improve BER performance. Furthermore, more CMA taps should be adopted to overcome the severe wireless interference when two pairs of transmitter and receiver HAs have different wireless distances.
ERIC Educational Resources Information Center
Lorenzen, Elizabeth A.; And Others
This paper describes the various types of correspondence used in the job search process and provides guidelines and samples of each type. Types of letters discussed include cover letters (including letters of application and prospecting letters), networking letters, thank-you letters, acceptance letters, withdrawal letters, and rejection of offer…
Overcoming the effect of letter confusability in letter-by-letter reading: a rehabilitation study.
Harris, Lara; Olson, Andrew; Humphreys, Glyn
2013-01-01
Patients who read in a letter-by-letter manner can demonstrate effects of lexical variables when reading words comprised of low confusability letters, suggesting the capacity to process low-confusability words in parallel across the letters (Fiset, Arguin, & McCabe, 2006). Here a series of experiments is presented investigating letter confusability effects in MAH, a patient with expressive and receptive aphasia who shows reduced reading accuracy with longer words, and DM, a relatively "pure" alexic patient. Two rehabilitation studies were employed: (i) a word-level therapy and (ii) a letter-level therapy designed to improve discrimination of individual letters. The word-level treatment produced generalised improvement to low-confusability words only, but the serial processing treatment produced improvement on both high and low confusability words. The results add support to the hypothesis that letter confusability plays a key role in letter-by-letter reading, and suggest that a rehabilitation method aimed at reducing ambiguities in letter identification may be particularly effective for treating letter-by-letter reading.
An open source, wireless capable miniature microscope system
NASA Astrophysics Data System (ADS)
Liberti, William A., III; Perkins, L. Nathan; Leman, Daniel P.; Gardner, Timothy J.
2017-08-01
Objective. Fluorescence imaging through head-mounted microscopes in freely behaving animals is becoming a standard method to study neural circuit function. Flexible, open-source designs are needed to spur evolution of the method. Approach. We describe a miniature microscope for single-photon fluorescence imaging in freely behaving animals. The device is made from 3D printed parts and off-the-shelf components. These microscopes weigh less than 1.8 g, can be configured to image a variety of fluorophores, and can be used wirelessly or in conjunction with active commutators. Microscope control software, based in Swift for macOS, provides low-latency image processing capabilities for closed-loop, or BMI, experiments. Main results. Miniature microscopes were deployed in the songbird premotor region HVC (used as a proper name), in singing zebra finches. Individual neurons yield temporally precise patterns of calcium activity that are consistent over repeated renditions of song. Several cells were tracked over timescales of weeks and months, providing an opportunity to study learning related changes in HVC. Significance. 3D printed miniature microscopes, composed completely of consumer grade components, are a cost-effective, modular option for head-mounting imaging. These easily constructed and customizable tools provide access to cell-type specific neural ensembles over timescales of weeks.
Symphony: A Framework for Accurate and Holistic WSN Simulation
Riliskis, Laurynas; Osipov, Evgeny
2015-01-01
Research on wireless sensor networks has progressed rapidly over the last decade, and these technologies have been widely adopted for both industrial and domestic uses. Several operating systems have been developed, along with a multitude of network protocols for all layers of the communication stack. Industrial Wireless Sensor Network (WSN) systems must satisfy strict criteria and are typically more complex and larger in scale than domestic systems. Together with the non-deterministic behavior of network hardware in real settings, this greatly complicates the debugging and testing of WSN functionality. To facilitate the testing, validation, and debugging of large-scale WSN systems, we have developed a simulation framework that accurately reproduces the processes that occur inside real equipment, including both hardware- and software-induced delays. The core of the framework consists of a virtualized operating system and an emulated hardware platform that is integrated with the general purpose network simulator ns-3. Our framework enables the user to adjust the real code base as would be done in real deployments and also to test the boundary effects of different hardware components on the performance of distributed applications and protocols. Additionally we have developed a clock emulator with several different skew models and a component that handles sensory data feeds. The new framework should substantially shorten WSN application development cycles. PMID:25723144
Lexical access via letter naming in a profoundly alexic and anomic patient: a treatment study.
Greenwald, M L; Gonzalez Rothi, L J
1998-11-01
We report the results of a letter naming treatment designed to facilitate letter-by-letter reading in an aphasic patient with no reading ability. Patient M.R.'s anomia for written letters reflected two loci of impairment within visual naming: impaired letter activation from print (a deficit commonly seen in pure alexic patients who read letter by letter) and impaired access to phonology via semantics (documented in a severe multimodality anomia). Remarkably, M.R. retained an excellent ability to pronounce orally spelled words, demonstrating that abstract letter identities could be activated normally via spoken letter names, and also that lexical phonological representations were intact when accessed via spoken letter names. M.R.'s training in oral naming of written letters resulted in significant improvement in her oral naming of trained letters. Importantly, as M.R.'s letter naming improved, she became able to employ letter-by-letter reading as a compensatory strategy for oral word reading. M.R.'s success in letter naming and letter-by-letter reading suggests that other patients with a similar pattern of spared and impaired cognitive abilities may benefit from a similar treatment. Moreover, this study highlights the value of testing the pronunciation of orally spelled words in localizing the source of prelexical reading impairment and in predicting the functional outcome of treatment for impaired letter activation in reading.
Wireless Sensor Networks: Monitoring and Control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hastbacka, Mildred; Ponoum, Ratcharit; Bouza, Antonio
2013-05-31
The article discusses wireless sensor technologies for building energy monitoring and control. This article, also, addresses wireless sensor networks as well as benefits and challenges of using wireless sensors. The energy savings and market potential of wireless sensors are reviewed.
Electromagnetic spectrum management system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seastrand, Douglas R.
A system for transmitting a wireless countermeasure signal to disrupt third party communications is disclosed that include an antenna configured to receive wireless signals and transmit wireless counter measure signals such that the wireless countermeasure signals are responsive to the received wireless signals. A receiver processes the received wireless signals to create processed received signal data while a spectrum control module subtracts known source signal data from the processed received signal data to generate unknown source signal data. The unknown source signal data is based on unknown wireless signals, such as enemy signals. A transmitter is configured to process themore » unknown source signal data to create countermeasure signals and transmit a wireless countermeasure signal over the first antenna or a second antenna to thereby interfere with the unknown wireless signals.« less
Local-based damage detection of cyclically loaded bridge piers using wireless sensing units
NASA Astrophysics Data System (ADS)
Hou, Tsung-Chin; Lynch, Jerome P.; Parra-Montesinos, Gustavo
2005-05-01
Concrete bridge piers are a common structural element employed in the design of bridges and elevated roadways. In order to ensure adequate behavior under earthquake-induced displacements, extensive reinforcement detailing in the form of closely spaced ties or spirals is necessary, leading to congestion problems and difficulties during concrete casting. Further, costly repairs are often necessary in bridge piers after a major earthquake which in some cases involve the total or partial shutdown of the bridge. In order to increase the damage tolerance while relaxing the transverse reinforcement requirements of bridge piers, the use of high-performance fiber reinforced cementitious composites (HPFRCC) in earthquake-resistant bridge piers is explored. HPFRCCs are a relatively new class of cementitious material for civil structures with tensile strain-hardening behavior and high damage tolerance. To monitor the behavior of this new class of material in the field, low-cost wireless monitoring technologies will be adopted to provide HPFRCC structural elements the capability to accurately monitor their performance and health. In particular, the computational core of a wireless sensing unit can be harnessed to screen HPFRCC components for damage in real-time. A seismic damage index initially proposed for flexure dominated reinforced concrete elements is modified to serve as an algorithmic tool for the rapid assessment of damage (due to flexure and shear) in HPFRCC bridge piers subjected to large shear reversals. Traditional and non-traditional sensor strategies of an HPFRCC bridge pier are proposed to optimize the correlation between the proposed damage index model and the damage observed in a circular pier test specimen. Damage index models are shown to be a sufficiently accurate rough measure of the degree of local-area damage that can then be wirelessly communicated to bridge officials.
Callan, Daniel E; Durantin, Gautier; Terzibas, Cengiz
2015-01-01
Application of neuro-augmentation technology based on dry-wireless EEG may be considerably beneficial for aviation and space operations because of the inherent dangers involved. In this study we evaluate classification performance of perceptual events using a dry-wireless EEG system during motion platform based flight simulation and actual flight in an open cockpit biplane to determine if the system can be used in the presence of considerable environmental and physiological artifacts. A passive task involving 200 random auditory presentations of a chirp sound was used for evaluation. The advantage of this auditory task is that it does not interfere with the perceptual motor processes involved with piloting the plane. Classification was based on identifying the presentation of a chirp sound vs. silent periods. Evaluation of Independent component analysis (ICA) and Kalman filtering to enhance classification performance by extracting brain activity related to the auditory event from other non-task related brain activity and artifacts was assessed. The results of permutation testing revealed that single trial classification of presence or absence of an auditory event was significantly above chance for all conditions on a novel test set. The best performance could be achieved with both ICA and Kalman filtering relative to no processing: Platform Off (83.4% vs. 78.3%), Platform On (73.1% vs. 71.6%), Biplane Engine Off (81.1% vs. 77.4%), and Biplane Engine On (79.2% vs. 66.1%). This experiment demonstrates that dry-wireless EEG can be used in environments with considerable vibration, wind, acoustic noise, and physiological artifacts and achieve good single trial classification performance that is necessary for future successful application of neuro-augmentation technology based on brain-machine interfaces.
DAWN: Dynamic Ad-hoc Wireless Network
2016-06-19
DAWN: Dynamic Ad-hoc Wireless Network The DAWN (Dynamic Ad-hoc Wireless Networks) project is developing a general theory of complex and dynamic... wireless communication networks. To accomplish this, DAWN adopts a very different approach than those followed in the past and summarized above. DAWN... wireless communication networks. The members of DAWN investigated difference aspects of wireless mobile ad hoc networks (MANET). The views, opinions and/or
NASA Astrophysics Data System (ADS)
Oyama, Takuro; Ikabata, Yasuhiro; Seino, Junji; Nakai, Hiromi
2017-07-01
This Letter proposes a density functional treatment based on the two-component relativistic scheme at the infinite-order Douglas-Kroll-Hess (IODKH) level. The exchange-correlation energy and potential are calculated using the electron density based on the picture-change corrected density operator transformed by the IODKH method. Numerical assessments indicated that the picture-change uncorrected density functional terms generate significant errors, on the order of hartree for heavy atoms. The present scheme was found to reproduce the energetics in the four-component treatment with high accuracy.
Letter: Symmetric instability drastically changes upon inclusion of the full Coriolis force
NASA Astrophysics Data System (ADS)
Zeitlin, V.
2018-06-01
It is shown that the classical symmetric instability drastically changes, if the usually neglected vertical component of the Coriolis force and the contribution of the vertical velocity into its horizontal components are taken into account. The influence of these "non-traditional" terms is different for flows with positive and negative horizontal relative vorticities. A critical value of the Richardson number appears in the second case, with the instability changing its character across it. Major differences appear between hydrostatic and non-hydrostatic versions of the instability. All these features are absent in the traditional approximation.
Letter names and phonological awareness help children to learn letter-sound relations.
Cardoso-Martins, Cláudia; Mesquita, Tereza Cristina Lara; Ehri, Linnea
2011-05-01
Two experimental training studies with Portuguese-speaking preschoolers in Brazil were conducted to investigate whether children benefit from letter name knowledge and phonological awareness in learning letter-sound relations. In Experiment 1, two groups of children were compared. The experimental group was taught the names of letters whose sounds occur either at the beginning (e.g., the letter /be/) or in the middle (e.g., the letter /'eli/) of the letter name. The control group was taught the shapes of the letters but not their names. Then both groups were taught the sounds of the letters. Results showed an advantage for the experimental group, but only for beginning-sound letters. Experiment 2 investigated whether training in phonological awareness could boost the learning of letter sounds, particularly middle-sound letters. In addition to learning the names of beginning- and middle-sound letters, children in the experimental group were taught to categorize words according to rhyme and alliteration, whereas controls were taught to categorize the same words semantically. All children were then taught the sounds of the letters. Results showed that children who were given phonological awareness training found it easier to learn letter sounds than controls. This was true for both types of letters, but especially for middle-sound letters. Copyright © 2011. Published by Elsevier Inc.
Schubert, Teresa; Reilhac, Caroline; McCloskey, Michael
2018-06-01
How are reading and writing related? In this study, we address the relationship between letter identification and letter production, uncovering a link in which production information can be used to identify letters presented dynamically. By testing an individual with a deficit in letter identification, we identified a benefit which would be masked by ceiling effects in unimpaired readers. In Experiment 1 we found that letter stimuli defined by the direction of dot motion (tiny dots within letter move leftward, background dots move rightward) provided no advantage over static letters. In Experiment 2, we tested dynamic stimuli in which the letter shapes emerged over time: drawn as they would be written, drawn in reverse, or with the letter shape filled in randomly. Improved identification was observed only for letters drawn as they are typically written. These results demonstrate that information about letter production can be integrated into letter identification, and point to bi-directional connections between stored letter production information (used for writing) and abstract letter identity representations (used in both reading and writing). The links from stored production information to abstract letter identities allow the former to activate the latter. We also consider the implications of our results for remediation of acquired letter identification deficits, including letter-drawing treatments and the underlying cause of their efficacy. Copyright © 2018 Elsevier Ltd. All rights reserved.
Wireless body sensor networks for health-monitoring applications.
Hao, Yang; Foster, Robert
2008-11-01
Current wireless technologies, such as wireless body area networks and wireless personal area networks, provide promising applications in medical monitoring systems to measure specified physiological data and also provide location-based information, if required. With the increasing sophistication of wearable and implantable medical devices and their integration with wireless sensors, an ever-expanding range of therapeutic and diagnostic applications is being pursued by research and commercial organizations. This paper aims to provide a comprehensive review of recent developments in wireless sensor technology for monitoring behaviour related to human physiological responses. It presents background information on the use of wireless technology and sensors to develop a wireless physiological measurement system. A generic miniature platform and other available technologies for wireless sensors have been studied in terms of hardware and software structural requirements for a low-cost, low-power, non-invasive and unobtrusive system.
ERIC Educational Resources Information Center
Evans, Mary Ann; Bell, Michelle; Shaw, Deborah; Moretti, Shelley; Page, Jodi
2006-01-01
In this study 149 kindergarten children were assessed for knowledge of letter names and letter sounds, phonological awareness, and cognitive abilities. Through this it examined child and letter characteristics influencing the acquisition of alphabetic knowledge in a naturalistic context, the relationship between letter-sound knowledge and…
Effects of Letter-Identification Training on Letter Naming in Prereading Children
ERIC Educational Resources Information Center
Hayashi, Yusuke; Schmidt, Anna C.; Saunders, Kathryn J.
2013-01-01
Three prereading children who named 0 to 3 of 20 targeted letters were taught to select the 20 printed letters when they heard spoken letter names. For all participants, letter-identification training resulted in naming for the majority of letters.
ERIC Educational Resources Information Center
Brown, Joshua W.; Rud, A. G.
2006-01-01
The development of course management plans and student behavioral guidelines are a necessary component for the foundation of any school or learning community. In this article the authors explore a few of the principal foundations of creating these plans based on the qualities Erasmus described in his great friend Thomas More. Teachers and…
SKread predicts handwriting performance in patients with low vision.
Downes, Ken; Walker, Laura L; Fletcher, Donald C
2015-06-01
To assess whether performance on the Smith-Kettlewell Reading (SKread) test is a reliable predictor of handwriting performance in patients with low vision. Cross-sectional study. Sixty-six patients at their initial low-vision rehabilitation evaluation. The patients completed all components of a routine low-vision appointment including logMAR acuity, performed the SKread test, and performed a handwriting task. Patients were timed while performing each task and their accuracy was recorded. The handwriting task was performed by having patients write 5 5-letter words into sets of boxes where each letter is separated by a box. The boxes were 15 × 15 mm, and accuracy was scored with 50 points possible from 25 letters: 1 point for each letter within the confines of a box and 1 point if the letter was legible. Correlation analysis was then performed. Median age of participants was 84 (range 54-97) years. Fifty-seven patients (86%) had age-related macular degeneration or some other maculopathy, whereas 9 patients (14%) had visual impairment from media opacity or neurologic impairment. Median Early Treatment Diabetic Retinopathy Study acuity was 20/133 (range 20/22 to 20/1000), and median logMAR acuity was 0.82 (range 0.04-1.70). SKread errors per block correlated with logMAR acuity (r = 0.6), and SKread time per block correlated with logMAR acuity (r = 0.51). SKread errors per block correlated with handwriting task time/accuracy ratio (r = 0.61). SKread time per block correlated with handwriting task time/accuracy ratio (r = 0.7). LogMAR acuity score correlated with handwriting task time/accuracy ratio (r = 0.42). All p values were < 0.01. SKread scores predict handwriting performance in patients with low vision better than logMAR acuity. Copyright © 2015 Canadian Ophthalmological Society. Published by Elsevier Inc. All rights reserved.
Symbol processing in the left angular gyrus: evidence from passive perception of digits.
Price, Gavin R; Ansari, Daniel
2011-08-01
Arabic digits are one of the most ubiquitous symbol sets in the world. While there have been many investigations into the neural processing of the semantic information digits represent (e.g. through numerical comparison tasks), little is known about the neural mechanisms which support the processing of digits as visual symbols. To characterise the component neurocognitive mechanisms which underlie numerical cognition, it is essential to understand the processing of digits as a visual category, independent of numerical magnitude processing. The 'Triple Code Model' (Dehaene, 1992; Dehaene and Cohen, 1995) posits an asemantic visual code for processing Arabic digits in the ventral visual stream, yet there is currently little empirical evidence in support of this code. This outstanding question was addressed in the current functional Magnetic Resonance (fMRI) study by contrasting brain responses during the passive viewing of digits versus letters and novel symbols at short (50 ms) and long (500 ms) presentation times. The results of this study reveal increased activation for familiar symbols (digits and letters) relative to unfamiliar symbols (scrambled digits and letters) at long presentation durations in the left dorsal Angular gyrus (dAG). Furthermore, increased activation for Arabic digits was observed in the left ventral Angular gyrus (vAG) in comparison to letters, scrambled digits and scrambled letters at long presentation durations, but no digit specific activation in any region at short presentation durations. These results suggest an absence of a digit specific 'Visual Number Form Area' (VNFA) in the ventral visual cortex, and provide evidence for the role of the left ventral AG during the processing of digits in the absence of any explicit processing demands. We conclude that Arabic digit processing depends specifically on the left AG rather than a ventral visual stream VNFA. Copyright © 2011 Elsevier Inc. All rights reserved.