Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-30
... INTERNATIONAL TRADE COMMISSION [Docket No. 2904] Certain Wireless Consumer Electronics Devices and.... International Trade Commission has received a complaint entitled Certain Wireless Consumer Electronics Devices... importation, and the sale within the United States after importation of certain wireless consumer electronics...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-24
... Electronics Devices and Components Thereof; Institution of Investigation Pursuant to 19 U.S.C. 1337 AGENCY: U... importation of certain wireless consumer electronics devices and components thereof by reason of infringement... wireless consumer electronics devices and components thereof that infringe one or more of claims 1, 6, 7, 9...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-29
... Electronics Devices and Components Thereof; Commission Determination To Review in Part A Final Initial... sale within the United States after importation of certain wireless consumer electronics devices and... Electronics, Inc. of Seoul, Korea and LG Electronics U.S.A., Inc. of Englewood Cliffs, New Jersey...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-12
... Electronics Devices and Components Thereof; Notice of Request for Statements on the Public Interest AGENCY: U... wireless consumer electronics devices and components thereof imported by respondents Acer, Inc. of Taipei... Communications, Inc. of San Diego, California; LG Electronics, Inc. of Seoul, Korea; LG Electronics U.S.A., Inc...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-22
... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-853] Certain Wireless Consumer Electronics Devices and Components Thereof; Commission Determination Concerning an Initial Determination Granting a Motion To Amend Complaint and Notice of Investigation AGENCY: U.S. International Trade...
High-performance green flexible electronics based on biodegradable cellulose nanofibril paper
Jung, Yei Hwan; Chang, Tzu-Hsuan; Zhang, Huilong; Yao, Chunhua; Zheng, Qifeng; Yang, Vina W.; Mi, Hongyi; Kim, Munho; Cho, Sang June; Park, Dong-Wook; Jiang, Hao; Lee, Juhwan; Qiu, Yijie; Zhou, Weidong; Cai, Zhiyong; Gong, Shaoqin; Ma, Zhenqiang
2015-01-01
Today's consumer electronics, such as cell phones, tablets and other portable electronic devices, are typically made of non-renewable, non-biodegradable, and sometimes potentially toxic (for example, gallium arsenide) materials. These consumer electronics are frequently upgraded or discarded, leading to serious environmental contamination. Thus, electronic systems consisting of renewable and biodegradable materials and minimal amount of potentially toxic materials are desirable. Here we report high-performance flexible microwave and digital electronics that consume the smallest amount of potentially toxic materials on biobased, biodegradable and flexible cellulose nanofibril papers. Furthermore, we demonstrate gallium arsenide microwave devices, the consumer wireless workhorse, in a transferrable thin-film form. Successful fabrication of key electrical components on the flexible cellulose nanofibril paper with comparable performance to their rigid counterparts and clear demonstration of fungal biodegradation of the cellulose-nanofibril-based electronics suggest that it is feasible to fabricate high-performance flexible electronics using ecofriendly materials. PMID:26006731
High-performance green flexible electronics based on biodegradable cellulose nanofibril paper.
Jung, Yei Hwan; Chang, Tzu-Hsuan; Zhang, Huilong; Yao, Chunhua; Zheng, Qifeng; Yang, Vina W; Mi, Hongyi; Kim, Munho; Cho, Sang June; Park, Dong-Wook; Jiang, Hao; Lee, Juhwan; Qiu, Yijie; Zhou, Weidong; Cai, Zhiyong; Gong, Shaoqin; Ma, Zhenqiang
2015-05-26
Today's consumer electronics, such as cell phones, tablets and other portable electronic devices, are typically made of non-renewable, non-biodegradable, and sometimes potentially toxic (for example, gallium arsenide) materials. These consumer electronics are frequently upgraded or discarded, leading to serious environmental contamination. Thus, electronic systems consisting of renewable and biodegradable materials and minimal amount of potentially toxic materials are desirable. Here we report high-performance flexible microwave and digital electronics that consume the smallest amount of potentially toxic materials on biobased, biodegradable and flexible cellulose nanofibril papers. Furthermore, we demonstrate gallium arsenide microwave devices, the consumer wireless workhorse, in a transferrable thin-film form. Successful fabrication of key electrical components on the flexible cellulose nanofibril paper with comparable performance to their rigid counterparts and clear demonstration of fungal biodegradation of the cellulose-nanofibril-based electronics suggest that it is feasible to fabricate high-performance flexible electronics using ecofriendly materials.
High-performance green flexible electronics based on biodegradable cellulose nanofibril paper
NASA Astrophysics Data System (ADS)
Jung, Yei Hwan; Chang, Tzu-Hsuan; Zhang, Huilong; Yao, Chunhua; Zheng, Qifeng; Yang, Vina W.; Mi, Hongyi; Kim, Munho; Cho, Sang June; Park, Dong-Wook; Jiang, Hao; Lee, Juhwan; Qiu, Yijie; Zhou, Weidong; Cai, Zhiyong; Gong, Shaoqin; Ma, Zhenqiang
2015-05-01
Today's consumer electronics, such as cell phones, tablets and other portable electronic devices, are typically made of non-renewable, non-biodegradable, and sometimes potentially toxic (for example, gallium arsenide) materials. These consumer electronics are frequently upgraded or discarded, leading to serious environmental contamination. Thus, electronic systems consisting of renewable and biodegradable materials and minimal amount of potentially toxic materials are desirable. Here we report high-performance flexible microwave and digital electronics that consume the smallest amount of potentially toxic materials on biobased, biodegradable and flexible cellulose nanofibril papers. Furthermore, we demonstrate gallium arsenide microwave devices, the consumer wireless workhorse, in a transferrable thin-film form. Successful fabrication of key electrical components on the flexible cellulose nanofibril paper with comparable performance to their rigid counterparts and clear demonstration of fungal biodegradation of the cellulose-nanofibril-based electronics suggest that it is feasible to fabricate high-performance flexible electronics using ecofriendly materials.
Sekitani, Tsuyoshi; Takamiya, Makoto; Noguchi, Yoshiaki; Nakano, Shintaro; Kato, Yusaku; Sakurai, Takayasu; Someya, Takao
2007-06-01
The electronics fields face serious problems associated with electric power; these include the development of ecologically friendly power-generation systems and ultralow-power-consuming circuits. Moreover, there is a demand for developing new power-transmission methods in the imminent era of ambient electronics, in which a multitude of electronic devices such as sensor networks will be used in our daily life to enhance security, safety and convenience. We constructed a sheet-type wireless power-transmission system by using state-of-the-art printing technologies using advanced electronic functional inks. This became possible owing to recent progress in organic semiconductor technologies; the diversity of chemical syntheses and processes on organic materials has led to a new class of organic semiconductors, dielectric layers and metals with excellent electronic functionalities. The new system directly drives electronic devices by transmitting power of the order of tens of watts without connectors, thereby providing an easy-to-use and reliable power source. As all of the components are manufactured on plastic films, it is easy to place the wireless power-transmission sheet over desks, floors, walls and any other location imaginable.
Wearable salivary uric acid mouthguard biosensor with integrated wireless electronics.
Kim, Jayoung; Imani, Somayeh; de Araujo, William R; Warchall, Julian; Valdés-Ramírez, Gabriela; Paixão, Thiago R L C; Mercier, Patrick P; Wang, Joseph
2015-12-15
This article demonstrates an instrumented mouthguard capable of non-invasively monitoring salivary uric acid (SUA) levels. The enzyme (uricase)-modified screen printed electrode system has been integrated onto a mouthguard platform along with anatomically-miniaturized instrumentation electronics featuring a potentiostat, microcontroller, and a Bluetooth Low Energy (BLE) transceiver. Unlike RFID-based biosensing systems, which require large proximal power sources, the developed platform enables real-time wireless transmission of the sensed information to standard smartphones, laptops, and other consumer electronics for on-demand processing, diagnostics, or storage. The mouthguard biosensor system offers high sensitivity, selectivity, and stability towards uric acid detection in human saliva, covering the concentration ranges for both healthy people and hyperuricemia patients. The new wireless mouthguard biosensor system is able to monitor SUA level in real-time and continuous fashion, and can be readily expanded to an array of sensors for different analytes to enable an attractive wearable monitoring system for diverse health and fitness applications. Copyright © 2015 Elsevier B.V. All rights reserved.
Wearable salivary uric acid mouthguard biosensor with integrated wireless electronics
Kim, Jayoung; Imani, Somayeh; de Araujo, William R.; Warchall, Julian; Valdés-Ramírez, Gabriela; Paixão, Thiago R.L.C.; Mercier, Patrick P.; Wang, Joseph
2016-01-01
This article demonstrates an instrumented mouthguard capable of non-invasively monitoring salivary uric acid (SUA) levels. The enzyme (uricase)-modified screen printed electrode system has been integrated onto a mouthguard platform along with anatomically-miniaturized instrumentation electronics featuring a potentiostat, microcontroller, and a Bluetooth Low Energy (BLE) transceiver. Unlike RFID-based biosensing systems, which require large proximal power sources, the developed platform enables real-time wireless transmission of the sensed information to standard smartphones, laptops, and other consumer electronics for on-demand processing, diagnostics, or storage. The mouthguard biosensor system offers high sensitivity, selectivity, and stability towards uric acid detection in human saliva, covering the concentration ranges for both healthy people and hyperuricemia patients. The new wireless mouthguard biosensor system is able to monitor SUA level in real-time and continuous fashion, and can be readily expanded to an array of sensors for different analytes to enable an attractive wearable monitoring system for diverse health and fitness applications. PMID:26276541
ERIC Educational Resources Information Center
van Steenderen, Margaret
2002-01-01
Explains the development of WAP (wireless application protocol), how it works, and what the major advantages and disadvantages are, especially when applied to the use of information. Topics include standardization; mobile communications; the effect of WAP on business tools, electronic commerce, and information services; consumers; corporate users;…
Seamless interworking architecture for WBAN in heterogeneous wireless networks with QoS guarantees.
Khan, Pervez; Ullah, Niamat; Ullah, Sana; Kwak, Kyung Sup
2011-10-01
The IEEE 802.15.6 standard is a communication standard optimized for low-power and short-range in-body/on-body nodes to serve a variety of medical, consumer electronics and entertainment applications. Providing high mobility with guaranteed Quality of Service (QoS) to a WBAN user in heterogeneous wireless networks is a challenging task. A WBAN uses a Personal Digital Assistant (PDA) to gather data from body sensors and forwards it to a remote server through wide range wireless networks. In this paper, we present a coexistence study of WBAN with Wireless Local Area Networks (WLAN) and Wireless Wide Area Networks (WWANs). The main issue is interworking of WBAN in heterogenous wireless networks including seamless handover, QoS, emergency services, cooperation and security. We propose a Seamless Interworking Architecture (SIA) for WBAN in heterogenous wireless networks based on a cost function. The cost function is based on power consumption and data throughput costs. Our simulation results show that the proposed scheme outperforms typical approaches in terms of throughput, delay and packet loss rate.
Adapting Wireless Technology to Lighting Control and Environmental Sensing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dana Teasdale; Francis Rubinstein; Dave Watson
The high cost of retrofitting buildings with advanced lighting control systems is a barrier to adoption of this energy-saving technology. Wireless technology, however, offers a solution to mounting installation costs since it requires no additional wiring to implement. To demonstrate the feasibility of such a system, a prototype wirelessly-controlled advanced lighting system was designed and built. The system includes the following components: a wirelessly-controllable analog circuit module (ACM), a wirelessly-controllable electronic dimmable ballast, a T8 3-lamp fixture, an environmental multi-sensor, a current transducer, and control software. The ACM, dimmable ballast, multi-sensor, and current transducer were all integrated with SmartMesh{trademark} wirelessmore » mesh networking nodes, called motes, enabling wireless communication, sensor monitoring, and actuator control. Each mote-enabled device has a reliable communication path to the SmartMesh Manager, a single board computer that controls network functions and connects the wireless network to a PC running lighting control software. The ACM is capable of locally driving one or more standard 0-10 Volt electronic dimmable ballasts through relay control and a 0-10 Volt controllable output. The mote-integrated electronic dimmable ballast is designed to drive a standard 3-lamp T8 light fixture. The environmental multi-sensor measures occupancy, light level and temperature. The current transducer is used to measure the power consumed by the fixture. Control software was developed to implement advanced lighting algorithms, including daylight ramping, occupancy control, and demand response. Engineering prototypes of each component were fabricated and tested in a bench-scale system. Based on standard industry practices, a cost analysis was conducted. It is estimated that the installation cost of a wireless advanced lighting control system for a retrofit application is at least 30% lower than a comparable wired system for a typical 16,000 square-foot office building, with a payback period of less than 3 years.« less
NASA Astrophysics Data System (ADS)
Ghosh, Sujoy Kumar; Sinha, Tridib Kumar; Mahanty, Biswajit; Jana, Santanu; Mandal, Dipankar
2016-11-01
An efficient, flexible and unvaryingly porous polymer composite membrane based nanogenerator (PPCNG) without any electrical poling treatment has been realised as wireless green energy source to power up smart electronic gadgets. Owing to self-polarized piezo- and ferro-electretic phenomenon of in situ platinum nanoparticles (Pt-NPs) doped porous poly(vinylidenefluoride-co-hexafluoropropylene)-membrane, a simple, inexpensive and scalable PPCNG fabrication is highlighted. The molecular orientations of the -CH2/-CF2 dipoles that cause self-polarization phenomenon has been realized by angular dependent near edge X-ray absorption fine structure spectroscopy. The square-like hysteresis loop with giant remnant polarization, Pr ˜ 68 μC/cm2 and exceptionally high piezoelectric charge coefficient, d33 ˜ - 836 pC/N promises a best suited ferro- and piezo-electretic membrane. The PPCNG exhibits a high electrical throughput such as, ranging from 2.7 V to 23 V of open-circuit voltage (Voc) and 2.9 μA to 24.7 μA of short-circuit current (Isc) under 0.5 MPa to 4.3 MPa of imparted stress amplitude by periodic human finger motion. The harvested mechanical and subsequent electrical energy by PPCNG is shown to transfer wirelessly via visible and infrared transmitter-receiver systems, where 17% and 49% of wireless power transfer efficiency, respectively, has been realized to power up several consumer electronics.
Adapting Wireless Technology to Lighting Control and Environmental Sensing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dana Teasdale; Francis Rubinstein; David S. Watson
Although advanced lighting control systems offer significant energy savings, the high cost of retrofitting buildings with advanced lighting control systems is a barrier to adoption of this energy-saving technology. Wireless technology, however, offers a solution to mounting installation costs since it requires no additional wiring to implement. To demonstrate the feasibility of such a system, a prototype wirelessly-controlled advanced lighting system was designed and built. The system includes the following components: a wirelessly-controllable analog circuit module (ACM), a wirelessly-controllable electronic dimmable ballast, a T8 3-lamp fixture, an environmental multi-sensor, a current transducer, and control software. The ACM, dimmable ballast, multi-sensor,more » and current transducer were all integrated with SmartMesh{trademark} wireless mesh networking nodes, called motes, enabling wireless communication, sensor monitoring, and actuator control. Each mote-enabled device has a reliable communication path to the SmartMesh Manager, a single board computer that controls network functions and connects the wireless network to a PC running lighting control software. The ACM is capable of locally driving one or more standard 0-10 Volt electronic dimmable ballasts through relay control and a 0-10 Volt controllable output, in addition to 0-24 Volt and 0-10 Volt inputs. The mote-integrated electronic dimmable ballast is designed to drive a standard 3-lamp T8 light fixture. The environmental multisensor measures occupancy, light level and temperature. The current transducer is used to measure the power consumed by the fixture. Control software was developed to implement advanced lighting algorithms, including open and closed-loop daylight ramping, occupancy control, and demand response. Engineering prototypes of each component were fabricated and tested in a bench-scale system. Based on standard industry practices, a cost analysis was conducted. It is estimated that the installation cost of a wireless advanced lighting control system for a retrofit application is at least 20% lower than a comparable wired system for a typical 16,000 square-foot office building, with a payback period of less than 3 years. At 30% market penetration saturation, a cumulative 695 Billion kWh of energy could be saved through 2025, a cost savings of $52 Billion.« less
Wireless data transfer with mm-waves for future tracking detectors
NASA Astrophysics Data System (ADS)
Pelikan, D.; Bingefors, N.; Brenner, R.; Dancila, D.; Gustafsson, L.
2014-11-01
Wireless data transfer has revolutionized the consumer market for the last decade generating many products equipped with transmitters and receivers for wireless data transfer. Wireless technology opens attractive possibilities for data transfer in future tracking detectors. The reduction of wires and connectors for data links is certainly beneficial both for the material budget and the reliability of the system. An advantage of wireless data transfer is the freedom of routing signals which today is particularly complicated when bringing the data the first 50 cm out of the tracker. With wireless links intelligence can be built into a tracker by introducing communication between tracking layers within a region of interest which would allow the construction of track primitives in real time. The wireless technology used in consumer products is however not suitable for tracker readouts. The low data transfer capacity of current 5 GHz transceivers and the relatively large feature sizes of the components is a disadvantage.Due to the requirement of high data rates in tracking detectors high bandwidth is required. The frequency band around 60 GHz turns out to be a very promising candidate for data transfer in a detector system. The high baseband frequency allows for data transfer in the order of several Gbit/s. Due to the small wavelength in the mm range only small structures are needed for the transmitting and receiving electronics. The 60 GHz frequency band is a strong candidate for future WLAN applications hence components are already starting to be available on the market.Patch antennas produced on flexible Printed Circuit Board substrate that can be used for wireless communication in future trackers are presented in this article. The antennas can be connected to transceivers for data transmission/reception or be connected by wave-guides to structures capable of bringing the 60 GHz signal behind boundaries. Results on simulation and fabrication of these antennas are presented as well as studies on the sensitivity of production tolerances.
Wireless power transfer inspired by the modern trends in electromagnetics
NASA Astrophysics Data System (ADS)
Song, Mingzhao; Belov, Pavel; Kapitanova, Polina
2017-06-01
Since the beginning of the 20th century, researchers have been looking for an effective way to transfer power without wired connections, but the wireless power transfer technology started to attract extensive interest from the industry side only in 2007 when the first smartphone was released and a consumer electronics revolution was triggered. Currently, the modern technology of wireless power transfer already has a rich research and development history as well as outstanding advances in commercialization. This review is focused on the description of distinctive implementations of this technology inspired by the modern trends in electrodynamics. We compare the performances of the power transfer systems based on three kinds of resonators, i.e., metallic coil resonators, dielectric resonators, and cavity mode resonators. We argue that metamaterials and meta-atoms are powerful tools to improve the functionalities and to obtain novel properties of the systems. We review different approaches to enhance the functionality of the wireless power transfer systems including control of the power transfer path and increase of the operation range and efficiency. Various applications of wireless power transfer are discussed and currently available standards are reviewed.
A wireless strain sensor consumes less than 10 mW
NASA Astrophysics Data System (ADS)
Hew, Y.; Deshmukh, S.; Huang, H.
2011-10-01
This paper presents a wireless strain sensor that consumes about 9 mW. To achieve such an ultra-low power operation, a voltage-controlled oscillator (VCO) is utilized to convert the direct-current (DC) strain signal to a high frequency oscillatory signal. This oscillatory signal is then transmitted using an unpowered wireless transponder (Huang et al 2011 Smart Mater. Struct. 20 015017). A photocell-based energy harvester was developed to power the wireless strain sensor. The energy harvested from a flash light placed at 65 cm away is sufficient to power the wireless strain sensor continuously. The implementation of the wireless strain sensor and its characterization are presented.
Case study: a health check-up for the corporate IT department.
Clark, Frank; Kimmerly, William
2004-01-01
As advances such as the electronic charting, closed-loop medication safety, physician order entry, consumer portals, electronic collaboration, and wireless access become the norm, central IS organizations are finding it difficult to keep pace. This challenge is exacerbated by declining margins, severe cost pressures, increased regulation, and added public scrutiny. Is your centralized IS organization healthy enough to meet the challenges presented by today's complex, demanding, dynamic healthcare delivery environments? How do you know? What factors do you consider?
Commentary: Tablet PCs--Lightweights with a Teaching Punch
ERIC Educational Resources Information Center
Parslow, Graham R.
2010-01-01
Tablet (or slate) computers are a group of small portable computers that have two features in common, a touch screen and wireless connectivity to the web. At the 2010 Consumer Electronics show held in January in Las Vegas, this category of product caused the greatest interest ahead of the release of the Apple iPad (www.cesweb.org). The tablet PC…
Review of Batteryless Wireless Sensors Using Additively Manufactured Microwave Resonators.
Memon, Muhammad Usman; Lim, Sungjoon
2017-09-09
The significant improvements observed in the field of bulk-production of printed microchip technologies in the past decade have allowed the fabrication of microchip printing on numerous materials including organic and flexible substrates. Printed sensors and electronics are of significant interest owing to the fast and low-cost fabrication techniques used in their fabrication. The increasing amount of research and deployment of specially printed electronic sensors in a number of applications demonstrates the immense attention paid by researchers to this topic in the pursuit of achieving wider-scale electronics on different dielectric materials. Although there are many traditional methods for fabricating radio frequency (RF) components, they are time-consuming, expensive, complicated, and require more power for operation than additive fabrication methods. This paper serves as a summary/review of improvements made to the additive printing technologies. The article focuses on three recently developed printing methods for the fabrication of wireless sensors operating at microwave frequencies. The fabrication methods discussed include inkjet printing, three-dimensional (3D) printing, and screen printing.
Review of Batteryless Wireless Sensors Using Additively Manufactured Microwave Resonators
2017-01-01
The significant improvements observed in the field of bulk-production of printed microchip technologies in the past decade have allowed the fabrication of microchip printing on numerous materials including organic and flexible substrates. Printed sensors and electronics are of significant interest owing to the fast and low-cost fabrication techniques used in their fabrication. The increasing amount of research and deployment of specially printed electronic sensors in a number of applications demonstrates the immense attention paid by researchers to this topic in the pursuit of achieving wider-scale electronics on different dielectric materials. Although there are many traditional methods for fabricating radio frequency (RF) components, they are time-consuming, expensive, complicated, and require more power for operation than additive fabrication methods. This paper serves as a summary/review of improvements made to the additive printing technologies. The article focuses on three recently developed printing methods for the fabrication of wireless sensors operating at microwave frequencies. The fabrication methods discussed include inkjet printing, three-dimensional (3D) printing, and screen printing. PMID:28891947
Wireless Biological Electronic Sensors.
Cui, Yue
2017-10-09
The development of wireless biological electronic sensors could open up significant advances for both fundamental studies and practical applications in a variety of areas, including medical diagnosis, environmental monitoring, and defense applications. One of the major challenges in the development of wireless bioelectronic sensors is the successful integration of biosensing units and wireless signal transducers. In recent years, there are a few types of wireless communication systems that have been integrated with biosensing systems to construct wireless bioelectronic sensors. To successfully construct wireless biological electronic sensors, there are several interesting questions: What types of biosensing transducers can be used in wireless bioelectronic sensors? What types of wireless systems can be integrated with biosensing transducers to construct wireless bioelectronic sensors? How are the electrical sensing signals generated and transmitted? This review will highlight the early attempts to address these questions in the development of wireless biological electronic sensors.
Wireless Biological Electronic Sensors
Cui, Yue
2017-01-01
The development of wireless biological electronic sensors could open up significant advances for both fundamental studies and practical applications in a variety of areas, including medical diagnosis, environmental monitoring, and defense applications. One of the major challenges in the development of wireless bioelectronic sensors is the successful integration of biosensing units and wireless signal transducers. In recent years, there are a few types of wireless communication systems that have been integrated with biosensing systems to construct wireless bioelectronic sensors. To successfully construct wireless biological electronic sensors, there are several interesting questions: What types of biosensing transducers can be used in wireless bioelectronic sensors? What types of wireless systems can be integrated with biosensing transducers to construct wireless bioelectronic sensors? How are the electrical sensing signals generated and transmitted? This review will highlight the early attempts to address these questions in the development of wireless biological electronic sensors. PMID:28991220
Energy Options for Wireless Sensor Nodes.
Knight, Chris; Davidson, Joshua; Behrens, Sam
2008-12-08
Reduction in size and power consumption of consumer electronics has opened up many opportunities for low power wireless sensor networks. One of the major challenges is in supporting battery operated devices as the number of nodes in a network grows. The two main alternatives are to utilize higher energy density sources of stored energy, or to generate power at the node from local forms of energy. This paper reviews the state-of-the art technology in the field of both energy storage and energy harvesting for sensor nodes. The options discussed for energy storage include batteries, capacitors, fuel cells, heat engines and betavoltaic systems. The field of energy harvesting is discussed with reference to photovoltaics, temperature gradients, fluid flow, pressure variations and vibration harvesting.
Energy Options for Wireless Sensor Nodes
Knight, Chris; Davidson, Joshua; Behrens, Sam
2008-01-01
Reduction in size and power consumption of consumer electronics has opened up many opportunities for low power wireless sensor networks. One of the major challenges is in supporting battery operated devices as the number of nodes in a network grows. The two main alternatives are to utilize higher energy density sources of stored energy, or to generate power at the node from local forms of energy. This paper reviews the state-of-the art technology in the field of both energy storage and energy harvesting for sensor nodes. The options discussed for energy storage include batteries, capacitors, fuel cells, heat engines and betavoltaic systems. The field of energy harvesting is discussed with reference to photovoltaics, temperature gradients, fluid flow, pressure variations and vibration harvesting. PMID:27873975
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-01
..., Including Wireless Communication Devices, Portable Music and Data Processing Devices, and Tablet Computers... electronic devices, including wireless communication devices, portable music and data processing devices, and... electronic devices, including wireless communication devices, portable music and data processing devices, and...
Ultrawideband Electromagnetic Interference to Aircraft Radios
NASA Technical Reports Server (NTRS)
Ely, Jay J.; Fuller, Gerald L.; Shaver, Timothy W.
2002-01-01
A very recent FCC Final Rule now permits marketing and operation of new products that incorporate Ultrawideband (UWB) technology into handheld devices. Wireless product developers are working to rapidly bring this versatile, powerful and expectedly inexpensive technology into numerous consumer wireless devices. Past studies addressing the potential for passenger-carried portable electronic devices (PEDs) to interfere with aircraft electronic systems suggest that UWB transmitters may pose a significant threat to aircraft communication and navigation radio receivers. NASA, United Airlines and Eagles Wings Incorporated have performed preliminary testing that clearly shows the potential for handheld UWB transmitters to cause cockpit failure indications for the air traffic control radio beacon system (ATCRBS), blanking of aircraft on the traffic alert and collision avoidance system (TCAS) displays, and cause erratic motion and failure of instrument landing system (ILS) localizer and glideslope pointers on the pilot horizontal situation and attitude director displays. This paper provides details of the preliminary testing and recommends further assessment of aircraft systems for susceptibility to UWB electromagnetic interference.
ERIC Educational Resources Information Center
Kpaduwa, Fidelis Iheanyi
2010-01-01
This current quantitative correlational research study evaluated the residential consumers' knowledge of wireless network security and its relationship with identity theft. Data analysis was based on a sample of 254 randomly selected students. All the study participants completed a survey questionnaire designed to measure their knowledge of…
Rout, Saroj; Sonkusale, Sameer
2016-06-27
The ever increasing demand for bandwidth in wireless communication systems will inevitably lead to the extension of operating frequencies toward the terahertz (THz) band known as the 'THz gap'. Towards closing this gap, we present a multi-level amplitude shift keying (ASK) terahertz wireless communication system using terahertz spatial light modulators (SLM) instead of traditional voltage mode modulation, achieving higher spectral efficiency for high speed communication. The fundamental principle behind this higher efficiency is the conversion of a noisy voltage domain signal to a noise-free binary spatial pattern for effective amplitude modulation of a free-space THz carrier wave. Spatial modulation is achieved using an an active metamaterial array embedded with pseudomorphic high-electron mobility (pHEMT) designed in a consumer-grade galium-arsenide (GaAs) integrated circuit process which enables electronic control of its THz transmissivity. Each array is assembled as individually controllable tiles for transmissive terahertz spatial modulation. Using the experimental data from our metamaterial based modulator, we show that a four-level ASK digital communication system has two orders of magnitude improvement in symbol error rate (SER) for a degradation of 20 dB in transmit signal-to-noise ratio (SNR) using spatial light modulation compared to voltage controlled modulation.
75 FR 54546 - Amendment of the Commission's Rules Governing Hearing Aid-Compatible Mobile Handsets
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-08
... revisions to the Commission's wireless hearing aid compatibility rules. The Commission initiates this proceeding to ensure that consumers with hearing loss are able to access wireless communications services.... FOR FURTHER INFORMATION CONTACT: John Borkowski, Wireless Telecommunications Bureau, (202) 418-0626, e...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-19
... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-794] Certain Electronic Devices, Including Wireless Communication Devices, Portable Music and Data Processing Devices, and Tablet Computers... certain electronic devices, including wireless communication devices, portable music and data processing...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-10
..., Including Wireless Communication Devices, Portable Music and Data Processing Devices, and Tablet Computers... importing wireless communication devices, portable music and data processing devices, and tablet computers... certain electronic devices, including wireless communication devices, portable music and data processing...
75 FR 54508 - Amendment of the Commission's Rules Governing Hearing Aid-Compatible Mobile Handsets
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-08
... (FCC) adopts final rules governing wireless hearing aid compatibility that are intended to ensure that consumers with hearing loss are able to access wireless communications services through a wide selection of... Borkowski, Wireless Telecommunications Bureau, (202) 418-0626, e-mail [email protected] . For...
Energy-efficient digital and wireless IC design for wireless smart sensing
NASA Astrophysics Data System (ADS)
Zhou, Jun; Huang, Xiongchuan; Wang, Chao; Tae-Hyoung Kim, Tony; Lian, Yong
2017-10-01
Wireless smart sensing is now widely used in various applications such as health monitoring and structural monitoring. In conventional wireless sensor nodes, significant power is consumed in wirelessly transmitting the raw data. Smart sensing adds local intelligence to the sensor node and reduces the amount of wireless data transmission via on-node digital signal processing. While the total power consumption is reduced compared to conventional wireless sensing, the power consumption of the digital processing becomes as dominant as wireless data transmission. This paper reviews the state-of-the-art energy-efficient digital and wireless IC design techniques for reducing the power consumption of the wireless smart sensor node to prolong battery life and enable self-powered applications.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-02
... marketplace in which more than half of the support is provided to wireless providers that do not charge a SLC... per household, consisting of either wireline or wireless service; and consumers who willfully make... effect on small entities within this category. 2. Wireless Carriers and Service Providers 51. Below, for...
Utilising eduroam[TM] Architecture in Building Wireless Community Networks
ERIC Educational Resources Information Center
Huhtanen, Karri; Vatiainen, Heikki; Keski-Kasari, Sami; Harju, Jarmo
2008-01-01
Purpose: eduroam[TM] has already been proved to be a scalable, secure and feasible way for universities and research institutions to connect their wireless networks into a WLAN roaming community, but the advantages of eduroam[TM] have not yet been fully discovered in the wireless community networks aimed at regular consumers. This aim of this…
Wireless connection of continuous glucose monitoring system to the electronic patient record
NASA Astrophysics Data System (ADS)
Murakami, Alexandre; Gutierrez, Marco A.; Lage, Silvia G.; Rebelo, Marina S.; Granja, Luiz A. R.; Ramires, Jose A. F.
2005-04-01
The control of blood sugar level (BSL) at near-normal levels has been documented to reduce both acute and chronic complications of diabetes mellitus. Recent studies suggested, the reduction of mortality in a surgical intensive care unit (ICU), when the BSL are maintained at normal levels. Despite of the benefits appointed by these and others clinical studies, the strict BSL control in critically ill patients suffers from some difficulties: a) medical staff need to measure and control the patient"s BSL using blood sample at least every hour. This is a complex and time consuming task; b) the inaccuracy of standard capillary glucose monitoring (fingerstick) in hypotensive patients and, if frequently used to sample arterial or venous blood, may lead to excess phlebotomy; c) there is no validated procedure for continuously monitoring of BSL levels. This study used the MiniMed CGMS in ill patients at ICU to send, in real-time, BSL values to a Web-Based Electronic Patient Record. The BSL values are parsed and delivered through a wireless network as an HL7 message. The HL7 messages with BSL values are collected, stored into the Electronic Patient Record and presented into a bed-side monitor at the ICU together with other relevant patient information.
Mobility and Cloud: Operating in Intermittent, Austere Network Conditions
2014-09-01
consume information, and are connected to cloud-based servers over wired or wireless network connections. For mobile clients, this connection, by...near future. In addition to intermittent connectivity issues, many wireless networks introduce additional delay due to excessive buffering. This can...requirements, commercial cloud applications have grown at a fast rate. Similar to other mobile systems, navy ships connected over wireless networks
The wireless Web and patient care.
Bergeron, B P
2001-01-01
Wireless computing, when integrated with the Web, is poised to revolutionize the practice and teaching of medicine. As vendors introduce wireless Web technologies in the medical community that have been used successfully in the business and consumer markets, clinicians can expect profound increases in the amount of patient data, as well as the ease with which those data are acquired, analyzed, and disseminated. The enabling technologies involved in this transformation to the wireless Web range from the new generation of wireless PDAs, eBooks, and wireless data acquisition peripherals to new wireless network protocols. The rate-limiting step in the application of this technology in medicine is not technology per se but rather how quickly clinicians and their patients come to accept and appreciate the benefits and limitations of the application of wireless Web technology.
E-Textile Antennas for Space Environments
NASA Technical Reports Server (NTRS)
Kennedy, Timothy F.; Fink, Patrick W.; Chu, Andrew W.
2007-01-01
The ability to integrate antennas and other radio frequency (RF) devices into wearable systems is increasingly important as wireless voice, video, and data sources become ubiquitous. Consumer applications including mobile computing, communications, and entertainment, as well as military and space applications for integration of biotelemetry, detailed tracking information and status of handheld tools, devices and on-body inventories are driving forces for research into wearable antennas and other e-textile devices. Operational conditions for military and space applications of wireless systems are often such that antennas are a limiting factor in wireless performance. The changing antenna platform, i.e. the dynamic wearer, can detune and alter the radiation characteristics of e-textile antennas, making antenna element selection and design challenging. Antenna designs and systems that offer moderate bandwidth, perform well with flexure, and are electronically reconfigurable are ideally suited to wearable applications. Several antennas, shown in Figure 1, have been created using a NASA-developed process for e-textiles that show promise in being integrated into a robust wireless system for space-based applications. Preliminary characterization of the antennas with flexure indicates that antenna performance can be maintained, and that a combination of antenna design and placement are useful in creating robust designs. Additionally, through utilization of modern smart antenna techniques, even greater flexibility can be achieved since antenna performance can be adjusted in real-time to compensate for the antenna s changing environment.
NASA Technical Reports Server (NTRS)
Ely, Jay J.; Shaver, Timothy W.; Fuller, Gerald L.
2002-01-01
On February 14, 2002, the FCC adopted a FIRST REPORT AND ORDER, released it on April 22, 2002, and on May 16, 2002 published in the Federal Register a Final Rule, permitting marketing and operation of new products incorporating UWB technology. Wireless product developers are working to rapidly bring this versatile, powerful and expectedly inexpensive technology into numerous consumer wireless devices. Past studies addressing the potential for passenger-carried portable electronic devices (PEDs) to interfere with aircraft electronic systems suggest that UWB transmitters may pose a significant threat to aircraft communication and navigation radio receivers. NASA, United Airlines and Eagles Wings Incorporated have performed preliminary testing that clearly shows the potential for handheld UWB transmitters to cause cockpit failure indications for the air traffic control radio beacon system (ATCRBS), blanking of aircraft on the traffic alert and collision avoidance system (TCAS) displays, and cause erratic motion and failure of instrument landing system (ILS) localizer and glideslope pointers on the pilot horizontal situation and attitude director displays. This report provides details of the preliminary testing and recommends further assessment of aircraft systems for susceptibility to UWB electromagnetic interference.
Wireless sensor node for surface seawater density measurements.
Baronti, Federico; Fantechi, Gabriele; Roncella, Roberto; Saletti, Roberto
2012-01-01
An electronic meter to measure surface seawater density is presented. It is based on the measurement of the difference in displacements of a surface level probe and a weighted float, which according to Archimedes' law depends on the density of the water. The displacements are simultaneously measured using a high-accuracy magnetostrictive sensor, to which a custom electronic board provides a wireless connection and power supply so that it can become part of a wireless sensor network. The electronics are designed so that different kinds of wireless networks can be used, by simply changing the wireless module and the relevant firmware of the microcontroller. Lastly, laboratory and at-sea tests are presented and discussed in order to highlight the functionality and the performance of a prototype of the wireless density meter node in a Bluetooth radio network. The experimental results show a good agreement of the values of the calculated density compared to reference hydrometer readings.
Wireless Sensor Node for Surface Seawater Density Measurements
Baronti, Federico; Fantechi, Gabriele; Roncella, Roberto; Saletti, Roberto
2012-01-01
An electronic meter to measure surface seawater density is presented. It is based on the measurement of the difference in displacements of a surface level probe and a weighted float, which according to Archimedes’ law depends on the density of the water. The displacements are simultaneously measured using a high-accuracy magnetostrictive sensor, to which a custom electronic board provides a wireless connection and power supply so that it can become part of a wireless sensor network. The electronics are designed so that different kinds of wireless networks can be used, by simply changing the wireless module and the relevant firmware of the microcontroller. Lastly, laboratory and at-sea tests are presented and discussed in order to highlight the functionality and the performance of a prototype of the wireless density meter node in a Bluetooth radio network. The experimental results show a good agreement of the values of the calculated density compared to reference hydrometer readings. PMID:22736986
Multi-Element Free-Space Optical (FSO) Modules for Mobile-Opportunistic Networking
2016-11-14
will enable us to improve our existing FSO prototype modules to low power consuming, miniature devices with high data transfer rates. Particularly, we... wireless spectrum bands in both military and civilian settings. Recent research has shown that free- space-optical (FSO), a.k.a. optical wireless ...communications is a promising complementary approach to address the exploding mobile wireless traffic demand. The major impediment for using FSO in a
Thin, nearly wireless adaptive optical device
NASA Technical Reports Server (NTRS)
Knowles, Gareth (Inventor); Hughes, Eli (Inventor)
2008-01-01
A thin, nearly wireless adaptive optical device capable of dynamically modulating the shape of a mirror in real time to compensate for atmospheric distortions and/or variations along an optical material is provided. The device includes an optical layer, a substrate, at least one electronic circuit layer with nearly wireless architecture, an array of actuators, power electronic switches, a reactive force element, and a digital controller. Actuators are aligned so that each axis of expansion and contraction intersects both substrate and reactive force element. Electronics layer with nearly wireless architecture, power electronic switches, and digital controller are provided within a thin-film substrate. The size and weight of the adaptive optical device is solely dominated by the size of the actuator elements rather than by the power distribution system.
Thin, nearly wireless adaptive optical device
NASA Technical Reports Server (NTRS)
Knowles, Gareth (Inventor); Hughes, Eli (Inventor)
2007-01-01
A thin, nearly wireless adaptive optical device capable of dynamically modulating the shape of a mirror in real time to compensate for atmospheric distortions and/or variations along an optical material is provided. The device includes an optical layer, a substrate, at least one electronic circuit layer with nearly wireless architecture, an array of actuators, power electronic switches, a reactive force element, and a digital controller. Actuators are aligned so that each axis of expansion and contraction intersects both substrate and reactive force element. Electronics layer with nearly wireless architecture, power electronic switches, and digital controller are provided within a thin-film substrate. The size and weight of the adaptive optical device is solely dominated by the size of the actuator elements rather than by the power distribution system.
Thin nearly wireless adaptive optical device
NASA Technical Reports Server (NTRS)
Knowles, Gareth J. (Inventor); Hughes, Eli (Inventor)
2009-01-01
A thin nearly wireless adaptive optical device capable of dynamically modulating the shape of a mirror in real time to compensate for atmospheric distortions and/or variations along an optical material is provided. The device includes an optical layer, a substrate, at least one electronic circuit layer with nearly wireless architecture, an array of actuators, power electronic switches, a reactive force element, and a digital controller. Actuators are aligned so that each axis of expansion and contraction intersects both substrate and reactive force element. Electronics layer with nearly wireless architecture, power electronic switches, and digital controller are provided within a thin-film substrate. The size and weight of the adaptive optical device is solely dominated by the size of the actuator elements rather than by the power distribution system.
Position-insensitive long range inductive power transfer
NASA Astrophysics Data System (ADS)
Kwan, Christopher H.; Lawson, James; Yates, David C.; Mitcheson, Paul D.
2014-11-01
This paper presents results of an improved inductive wireless power transfer system for reliable long range powering of sensors with milliwatt-level consumption. An ultra-low power flyback impedance emulator operating in open loop is used to present the optimal load to the receiver's resonant tank. Transmitter power modulation is implemented in order to maintain constant receiver power and to prevent damage to the receiver electronics caused by excessive received voltage. Received power is steady up to 3 m at around 30 mW. The receiver electronics and feedback system consumes 3.1 mW and so with a transmitter input power of 163.3 W the receiver becomes power neutral at 4.75 m. Such an IPT system can provide a reliable alternative to energy harvesters for supplying power concurrently to multiple remote sensors.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-08
... Wireless Communication Devices, Tablet Computers, Media Players, and Televisions, and Components Thereof... devices, including wireless communication devices, tablet computers, media players, and televisions, and... wireless communication devices, tablet computers, media players, and televisions, and components thereof...
Wireless roadside inspection phase II : final report : [technology brief].
DOT National Transportation Integrated Search
2014-04-01
The Federal Motor Carrier Safety Administration (FMCSA) Wireless Roadside Inspection (WRI) Program is demonstrating the feasibility and value of electronically assessing truck and motorcoach driver and vehicle safety. Electronic assessments (or WRIs)...
New strategies for SHM based on a multichannel wireless AE node
NASA Astrophysics Data System (ADS)
Godinez-Azcuaga, Valery; Ley, Obdulia
2014-03-01
This paper discusses the development of an Acoustic Emission (AE) wireless node and its application for SHM (Structural Health Monitoring). The instrument development was planned for applications monitoring steel and concrete bridges components. The final product, now commercially available, is a sensor node which includes multiple sensing elements, on board signal processing and analysis capabilities, signal conditioning electronics, power management circuits, wireless data transmission element and energy harvesting unit. The sensing elements are capable of functioning in both passive and active modes, while the multiple parametric inputs are available for connecting various sensor types to measure external characteristics affecting the performance of the structure under monitoring. The output of all these sensors are combined and analyzed at the node in order to minimize the data transmission rate, which consumes significant amount of power. Power management circuits are used to reduce the data collection intervals through selective data acquisition strategies and minimize the sensor node power consumption. This instrument, known as the 1284, is an excellent platform to deploy SHM in the original bridge applications, but initial prototypes has shown significant potential in monitoring composite wind turbine blades and composites mockups of Unmanned Autonomous Vehicles (UAV) components; currently we are working to extend the use of this system to fields such as coal flow, power transformer, and off-shore platform monitoring.
Wearable ear EEG for brain interfacing
NASA Astrophysics Data System (ADS)
Schroeder, Eric D.; Walker, Nicholas; Danko, Amanda S.
2017-02-01
Brain-computer interfaces (BCIs) measuring electrical activity via electroencephalogram (EEG) have evolved beyond clinical applications to become wireless consumer products. Typically marketed for meditation and neu- rotherapy, these devices are limited in scope and currently too obtrusive to be a ubiquitous wearable. Stemming from recent advancements made in hearing aid technology, wearables have been shrinking to the point that the necessary sensors, circuitry, and batteries can be fit into a small in-ear wearable device. In this work, an ear-EEG device is created with a novel system for artifact removal and signal interpretation. The small, compact, cost-effective, and discreet device is demonstrated against existing consumer electronics in this space for its signal quality, comfort, and usability. A custom mobile application is developed to process raw EEG from each device and display interpreted data to the user. Artifact removal and signal classification is accomplished via a combination of support matrix machines (SMMs) and soft thresholding of relevant statistical properties.
Wireless Local Area Networks: The Next Evolutionary Step.
ERIC Educational Resources Information Center
Wodarz, Nan
2001-01-01
The Institute of Electrical and Electronics Engineers recently approved a high-speed wireless standard that enables devices from different manufacturers to communicate through a common backbone, making wireless local area networks more feasible in schools. Schools can now use wireless access points and network cards to provide flexible…
ERIC Educational Resources Information Center
Winterbottom, Mark; Smith, Sarah; Hind, Sally; Haggard, Mark
2008-01-01
Purpose: eduroam[TM] has already been proved to be a scalable, secure and feasible way for universities and research institutions to connect their wireless networks into a WLAN roaming community, but the advantages of eduroam[TM] have not yet been fully discovered in the wireless community networks aimed at regular consumers. This aim of this…
Experimental validation of wireless communication with chaos.
Ren, Hai-Peng; Bai, Chao; Liu, Jian; Baptista, Murilo S; Grebogi, Celso
2016-08-01
The constraints of a wireless physical media, such as multi-path propagation and complex ambient noises, prevent information from being communicated at low bit error rate. Surprisingly, it has only recently been shown that, from a theoretical perspective, chaotic signals are optimal for communication. It maximises the receiver signal-to-noise performance, consequently minimizing the bit error rate. This work demonstrates numerically and experimentally that chaotic systems can in fact be used to create a reliable and efficient wireless communication system. Toward this goal, we propose an impulsive control method to generate chaotic wave signals that encode arbitrary binary information signals and an integration logic together with the match filter capable of decreasing the noise effect over a wireless channel. The experimental validation is conducted by inputting the signals generated by an electronic transmitting circuit to an electronic circuit that emulates a wireless channel, where the signals travel along three different paths. The output signal is decoded by an electronic receiver, after passing through a match filter.
Experimental validation of wireless communication with chaos
NASA Astrophysics Data System (ADS)
Ren, Hai-Peng; Bai, Chao; Liu, Jian; Baptista, Murilo S.; Grebogi, Celso
2016-08-01
The constraints of a wireless physical media, such as multi-path propagation and complex ambient noises, prevent information from being communicated at low bit error rate. Surprisingly, it has only recently been shown that, from a theoretical perspective, chaotic signals are optimal for communication. It maximises the receiver signal-to-noise performance, consequently minimizing the bit error rate. This work demonstrates numerically and experimentally that chaotic systems can in fact be used to create a reliable and efficient wireless communication system. Toward this goal, we propose an impulsive control method to generate chaotic wave signals that encode arbitrary binary information signals and an integration logic together with the match filter capable of decreasing the noise effect over a wireless channel. The experimental validation is conducted by inputting the signals generated by an electronic transmitting circuit to an electronic circuit that emulates a wireless channel, where the signals travel along three different paths. The output signal is decoded by an electronic receiver, after passing through a match filter.
Experimental validation of wireless communication with chaos
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, Hai-Peng; Bai, Chao; Liu, Jian
The constraints of a wireless physical media, such as multi-path propagation and complex ambient noises, prevent information from being communicated at low bit error rate. Surprisingly, it has only recently been shown that, from a theoretical perspective, chaotic signals are optimal for communication. It maximises the receiver signal-to-noise performance, consequently minimizing the bit error rate. This work demonstrates numerically and experimentally that chaotic systems can in fact be used to create a reliable and efficient wireless communication system. Toward this goal, we propose an impulsive control method to generate chaotic wave signals that encode arbitrary binary information signals and anmore » integration logic together with the match filter capable of decreasing the noise effect over a wireless channel. The experimental validation is conducted by inputting the signals generated by an electronic transmitting circuit to an electronic circuit that emulates a wireless channel, where the signals travel along three different paths. The output signal is decoded by an electronic receiver, after passing through a match filter.« less
Impact of wireless communication on multimedia application performance
NASA Astrophysics Data System (ADS)
Brown, Kevin A.
1999-01-01
Multimedia applications and specifically voice and video conferencing tools are widely used in business communications, and are quickly being discovered by the consumer market as well. At the same time, wireless communication services such as PCS voice and cellular data are becoming very popular, leading to the desire to deploy multimedia applications in the wireless environment. Wireless links, however, exhibit several characteristics which are different from traditional wired networks. These include: dynamically changing bandwidth due to mobile host movement in and out of cell where bandwidth is shared, high rates of packet corruption and subsequent loss, and frequent are lengthy disconnections due to obstacles, fading, and movement between cells. In addition, these effects are short-lived and difficult to reproduce, leading to a lack of adequate testing and analysis for applications used in wireless environments.
Real-time software-based end-to-end wireless visual communications simulation platform
NASA Astrophysics Data System (ADS)
Chen, Ting-Chung; Chang, Li-Fung; Wong, Andria H.; Sun, Ming-Ting; Hsing, T. Russell
1995-04-01
Wireless channel impairments pose many challenges to real-time visual communications. In this paper, we describe a real-time software based wireless visual communications simulation platform which can be used for performance evaluation in real-time. This simulation platform consists of two personal computers serving as hosts. Major components of each PC host include a real-time programmable video code, a wireless channel simulator, and a network interface for data transport between the two hosts. The three major components are interfaced in real-time to show the interaction of various wireless channels and video coding algorithms. The programmable features in the above components allow users to do performance evaluation of user-controlled wireless channel effects without physically carrying out these experiments which are limited in scope, time-consuming, and costly. Using this simulation platform as a testbed, we have experimented with several wireless channel effects including Rayleigh fading, antenna diversity, channel filtering, symbol timing, modulation, and packet loss.
A wireless sensor network deployment for rural and forest fire detection and verification.
Lloret, Jaime; Garcia, Miguel; Bri, Diana; Sendra, Sandra
2009-01-01
Forest and rural fires are one of the main causes of environmental degradation in Mediterranean countries. Existing fire detection systems only focus on detection, but not on the verification of the fire. However, almost all of them are just simulations, and very few implementations can be found. Besides, the systems in the literature lack scalability. In this paper we show all the steps followed to perform the design, research and development of a wireless multisensor network which mixes sensors with IP cameras in a wireless network in order to detect and verify fire in rural and forest areas of Spain. We have studied how many cameras, sensors and access points are needed to cover a rural or forest area, and the scalability of the system. We have developed a multisensor and when it detects a fire, it sends a sensor alarm through the wireless network to a central server. The central server selects the closest wireless cameras to the multisensor, based on a software application, which are rotated to the sensor that raised the alarm, and sends them a message in order to receive real-time images from the zone. The camera lets the fire fighters corroborate the existence of a fire and avoid false alarms. In this paper, we show the test performance given by a test bench formed by four wireless IP cameras in several situations and the energy consumed when they are transmitting. Moreover, we study the energy consumed by each device when the system is set up. The wireless sensor network could be connected to Internet through a gateway and the images of the cameras could be seen from any part of the world.
A Wireless Sensor Network Deployment for Rural and Forest Fire Detection and Verification
Lloret, Jaime; Garcia, Miguel; Bri, Diana; Sendra, Sandra
2009-01-01
Forest and rural fires are one of the main causes of environmental degradation in Mediterranean countries. Existing fire detection systems only focus on detection, but not on the verification of the fire. However, almost all of them are just simulations, and very few implementations can be found. Besides, the systems in the literature lack scalability. In this paper we show all the steps followed to perform the design, research and development of a wireless multisensor network which mixes sensors with IP cameras in a wireless network in order to detect and verify fire in rural and forest areas of Spain. We have studied how many cameras, sensors and access points are needed to cover a rural or forest area, and the scalability of the system. We have developed a multisensor and when it detects a fire, it sends a sensor alarm through the wireless network to a central server. The central server selects the closest wireless cameras to the multisensor, based on a software application, which are rotated to the sensor that raised the alarm, and sends them a message in order to receive real-time images from the zone. The camera lets the fire fighters corroborate the existence of a fire and avoid false alarms. In this paper, we show the test performance given by a test bench formed by four wireless IP cameras in several situations and the energy consumed when they are transmitting. Moreover, we study the energy consumed by each device when the system is set up. The wireless sensor network could be connected to Internet through a gateway and the images of the cameras could be seen from any part of the world. PMID:22291533
Wireless Phone Threat Assessment for Aircraft Communication and Navigation Radios
NASA Technical Reports Server (NTRS)
Nguyens, T. X.; Koppen, S. V.; Smith, L. J.; Williams, R. A.; Salud, M. T.
2005-01-01
Emissions in aircraft communication and navigation bands are measured for the latest generation of wireless phones. The two wireless technologies considered, GSM/GPRS and CDMA2000, are the latest available to general consumers in the U.S. A base-station simulator is used to control the phones. The measurements are conducted using reverberation chambers, and the results are compared against FCC and aircraft installed equipment emission limits. The results are also compared against baseline emissions from laptop computers and personal digital assistant devices that are currently allowed to operate on aircraft.
Near field wireless power transfer using curved relay resonators for extended transfer distance
NASA Astrophysics Data System (ADS)
Zhu, D.; Clare, L.; Stark, B. H.; Beeby, S. P.
2015-12-01
This paper investigates the performance of a near field wireless power transfer system that uses curved relay resonator to extend transfer distance. Near field wireless power transfer operates based on the near-field electromagnetic coupling of coils. Such a system can transfer energy over a relatively short distance which is of the same order of dimensions of the coupled coils. The energy transfer distance can be increased using flat relay resonators. Recent developments in printing electronics and e-textiles have seen increasing demand of embedding electronics into fabrics. Near field wireless power transfer is one of the most promising methods to power electronics on fabrics. The concept can be applied to body-worn textiles by, for example, integrating a transmitter coil into upholstery, and a flexible receiver coil into garments. Flexible textile coils take on the shape of the supporting materials such as garments, and therefore curved resonator and receiver coils are investigated in this work. Experimental results showed that using curved relay resonator can effectively extend the wireless power transfer distance. However, as the curvature of the coil increases, the performance of the wireless power transfer, especially the maximum received power, deteriorates.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-04
... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-794] Certain Electronic Devices, Including Wireless Commmunication Devices, Portable Music and Data Processing Devices, and Tablet Computers... communication devices, portable music and data processing devices, and tablet computers, imported by Apple Inc...
NASA Astrophysics Data System (ADS)
Khursheed, Khursheed; Imran, Muhammad; Ahmad, Naeem; O'Nils, Mattias
2012-06-01
Wireless Visual Sensor Network (WVSN) is an emerging field which combines image sensor, on board computation unit, communication component and energy source. Compared to the traditional wireless sensor network, which operates on one dimensional data, such as temperature, pressure values etc., WVSN operates on two dimensional data (images) which requires higher processing power and communication bandwidth. Normally, WVSNs are deployed in areas where installation of wired solutions is not feasible. The energy budget in these networks is limited to the batteries, because of the wireless nature of the application. Due to the limited availability of energy, the processing at Visual Sensor Nodes (VSN) and communication from VSN to server should consume as low energy as possible. Transmission of raw images wirelessly consumes a lot of energy and requires higher communication bandwidth. Data compression methods reduce data efficiently and hence will be effective in reducing communication cost in WVSN. In this paper, we have compared the compression efficiency and complexity of six well known bi-level image compression methods. The focus is to determine the compression algorithms which can efficiently compress bi-level images and their computational complexity is suitable for computational platform used in WVSNs. These results can be used as a road map for selection of compression methods for different sets of constraints in WVSN.
0.5 V and 0.43 pJ/bit Capacitive Sensor Interface for Passive Wireless Sensor Systems
Beriain, Andoni; Gutierrez, Iñigo; Solar, Hector; Berenguer, Roc
2015-01-01
This paper presents an ultra low-power and low-voltage pulse-width modulation based ratiometric capacitive sensor interface. The interface was designed and fabricated in a standard 90 nm CMOS 1P9M technology. The measurements show an effective resolution of 10 bits using 0.5 V of supply voltage. The active occupied area is only 0.0045 mm2 and the Figure of Merit (FOM), which takes into account the energy required per conversion bit, is 0.43 pJ/bit. Furthermore, the results show low sensitivity to PVT variations due to the proposed ratiometric architecture. In addition, the sensor interface was connected to a commercial pressure transducer and the measurements of the resulting complete pressure sensor show a FOM of 0.226 pJ/bit with an effective linear resolution of 7.64 bits. The results validate the use of the proposed interface as part of a pressure sensor, and its low-power and low-voltage characteristics make it suitable for wireless sensor networks and low power consumer electronics. PMID:26343681
Wireless Technology Infrastructures for Authentication of Patients: PKI that Rings
Sax, Ulrich; Kohane, Isaac; Mandl, Kenneth D.
2005-01-01
As the public interest in consumer-driven electronic health care applications rises, so do concerns about the privacy and security of these applications. Achieving a balance between providing the necessary security while promoting user acceptance is a major obstacle in large-scale deployment of applications such as personal health records (PHRs). Robust and reliable forms of authentication are needed for PHRs, as the record will often contain sensitive and protected health information, including the patient's own annotations. Since the health care industry per se is unlikely to succeed at single-handedly developing and deploying a large scale, national authentication infrastructure, it makes sense to leverage existing hardware, software, and networks. This report proposes a new model for authentication of users to health care information applications, leveraging wireless mobile devices. Cell phones are widely distributed, have high user acceptance, and offer advanced security protocols. The authors propose harnessing this technology for the strong authentication of individuals by creating a registration authority and an authentication service, and examine the problems and promise of such a system. PMID:15684133
0.5 V and 0.43 pJ/bit Capacitive Sensor Interface for Passive Wireless Sensor Systems.
Beriain, Andoni; Gutierrez, Iñigo; Solar, Hector; Berenguer, Roc
2015-08-28
This paper presents an ultra low-power and low-voltage pulse-width modulation based ratiometric capacitive sensor interface. The interface was designed and fabricated in a standard 90 nm CMOS 1P9M technology. The measurements show an effective resolution of 10 bits using 0.5 V of supply voltage. The active occupied area is only 0.0045 mm2 and the Figure of Merit (FOM), which takes into account the energy required per conversion bit, is 0.43 pJ/bit. Furthermore, the results show low sensitivity to PVT variations due to the proposed ratiometric architecture. In addition, the sensor interface was connected to a commercial pressure transducer and the measurements of the resulting complete pressure sensor show a FOM of 0.226 pJ/bit with an effective linear resolution of 7.64 bits. The results validate the use of the proposed interface as part of a pressure sensor, and its low-power and low-voltage characteristics make it suitable for wireless sensor networks and low power consumer electronics.
Wireless technology infrastructures for authentication of patients: PKI that rings.
Sax, Ulrich; Kohane, Isaac; Mandl, Kenneth D
2005-01-01
As the public interest in consumer-driven electronic health care applications rises, so do concerns about the privacy and security of these applications. Achieving a balance between providing the necessary security while promoting user acceptance is a major obstacle in large-scale deployment of applications such as personal health records (PHRs). Robust and reliable forms of authentication are needed for PHRs, as the record will often contain sensitive and protected health information, including the patient's own annotations. Since the health care industry per se is unlikely to succeed at single-handedly developing and deploying a large scale, national authentication infrastructure, it makes sense to leverage existing hardware, software, and networks. This report proposes a new model for authentication of users to health care information applications, leveraging wireless mobile devices. Cell phones are widely distributed, have high user acceptance, and offer advanced security protocols. The authors propose harnessing this technology for the strong authentication of individuals by creating a registration authority and an authentication service, and examine the problems and promise of such a system.
Feasibility of a wireless gamma probe in radioguided surgery.
Park, Hye Min; Joo, Koan Sik
2016-06-21
Radioguided surgery through the use of a gamma probe is an established practice, and has been widely applied in the case of sentinel lymph node biopsies. A wide range of intraoperative gamma probes is commercially available. The primary characteristics of the gamma probes include their sensitivity, spatial resolution, and energy resolution. We present the results obtained from a prototype of a new wireless gamma probe. This prototype is composed of a 20 mm thick cerium-doped gadolinium aluminum gallium garnet (Ce:GAGG) inorganic scintillation crystal from Furukawa Denshi and a Hamamatsu S12572-100C multi-pixel photon counter equipped with a designed electronics. The measured performance characteristics include the energy resolution, energy linearity, angular aperture, spatial resolution and sensitivity. Measurements were carried out using (57)Co, (133)Ba, (22)Na, and (137)Cs sources. The energy resolutions for 0.122 and 0.511 MeV were 17.2% and 6.9%, respectively. The designed prototype consumes an energy of approximately 4.4 W, weighs about 310 g (including battery) having a dimension of 20 mm (D) × 130 mm (L).
Feasibility of a wireless gamma probe in radioguided surgery
NASA Astrophysics Data System (ADS)
Park, Hye Min; Joo, Koan Sik
2016-06-01
Radioguided surgery through the use of a gamma probe is an established practice, and has been widely applied in the case of sentinel lymph node biopsies. A wide range of intraoperative gamma probes is commercially available. The primary characteristics of the gamma probes include their sensitivity, spatial resolution, and energy resolution. We present the results obtained from a prototype of a new wireless gamma probe. This prototype is composed of a 20 mm thick cerium-doped gadolinium aluminum gallium garnet (Ce:GAGG) inorganic scintillation crystal from Furukawa Denshi and a Hamamatsu S12572-100C multi-pixel photon counter equipped with a designed electronics. The measured performance characteristics include the energy resolution, energy linearity, angular aperture, spatial resolution and sensitivity. Measurements were carried out using 57Co, 133Ba, 22Na, and 137Cs sources. The energy resolutions for 0.122 and 0.511 MeV were 17.2% and 6.9%, respectively. The designed prototype consumes an energy of approximately 4.4 W, weighs about 310 g (including battery) having a dimension of 20 mm (D) × 130 mm (L).
Servati, Amir; Zou, Liang; Wang, Z Jane; Ko, Frank; Servati, Peyman
2017-07-13
Advances in flexible electronic materials and smart textile, along with broad availability of smart phones, cloud and wireless systems have empowered the wearable technologies for significant impact on future of digital and personalized healthcare as well as consumer electronics. However, challenges related to lack of accuracy, reliability, high power consumption, rigid or bulky form factor and difficulty in interpretation of data have limited their wide-scale application in these potential areas. As an important solution to these challenges, we present latest advances in novel flexible electronic materials and sensors that enable comfortable and conformable body interaction and potential for invisible integration within daily apparel. Advances in novel flexible materials and sensors are described for wearable monitoring of human vital signs including, body temperature, respiratory rate and heart rate, muscle movements and activity. We then present advances in signal processing focusing on motion and noise artifact removal, data mining and aspects of sensor fusion relevant to future clinical applications of wearable technology.
Servati, Amir; Wang, Z. Jane; Ko, Frank; Servati, Peyman
2017-01-01
Advances in flexible electronic materials and smart textile, along with broad availability of smart phones, cloud and wireless systems have empowered the wearable technologies for significant impact on future of digital and personalized healthcare as well as consumer electronics. However, challenges related to lack of accuracy, reliability, high power consumption, rigid or bulky form factor and difficulty in interpretation of data have limited their wide-scale application in these potential areas. As an important solution to these challenges, we present latest advances in novel flexible electronic materials and sensors that enable comfortable and conformable body interaction and potential for invisible integration within daily apparel. Advances in novel flexible materials and sensors are described for wearable monitoring of human vital signs including, body temperature, respiratory rate and heart rate, muscle movements and activity. We then present advances in signal processing focusing on motion and noise artifact removal, data mining and aspects of sensor fusion relevant to future clinical applications of wearable technology. PMID:28703744
NASA Astrophysics Data System (ADS)
Sihombing, Oloan; Zendrato, Niskarto; Laia, Yonata; Nababan, Marlince; Sitanggang, Delima; Purba, Windania; Batubara, Diarmansyah; Aisyah, Siti; Indra, Evta; Siregar, Saut
2018-04-01
In the era of technological development today, the technology has become the need for the life of today's society. One is needed to create a smart home in turning on and off electronic devices via smartphone. So far in turning off and turning the home electronic device is done by pressing the switch or remote button, so in control of electronic device control less effective. The home smart design is done by simulation concept by testing system, network configuration, and wireless home gateway computer network equipment required by a smart home network on cisco packet tracer using Internet Thing (IoT) control. In testing the IoT home network wireless network gateway system, multiple electronic devices can be controlled and monitored via smartphone based on predefined configuration conditions. With the Smart Ho me can potentially increase energy efficiency, decrease energy usage costs, control electronics and change the role of residents.
Mupparapu, Muralidhar
2006-02-15
Wireless networking is not new to contemporary dental offices around the country. Wireless routers and network cards have made access to patient records within the office handy and, thereby, saving valuable chair side time and increasing productivity. As is the case with any rapidly developing technology, wireless technology also changes with the same rate. Unless, the users of the wireless networking understand the implications of these changes and keep themselves updated periodically, the office network will become obsolete very quickly. This update of the emerging security protocols and pertaining to ratified wireless 802.11 standards will be timely for the contemporary dentist whose office is wirelessly networked. This article brings the practicing dentist up-to-date on the newer versions and standards in wireless networking that are changing at a fast pace. The introduction of newer 802.11 standards like super G, Super AG, Multiple Input Multiple Output (MIMO), and pre-n are changing the pace of adaptation of this technology. Like any other rapidly transforming technology, information pertaining to wireless networking should be a priority for the contemporary dentist, an eventual end-user in order to be a well-informed and techno-savvy consumer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
UC Berkeley, Berkeley, CA USA; Brown, Richard; Lanzisera, Steven
2011-05-24
Miscellaneous and electronic devices consume about one-third of the primary energy used in U.S. buildings, and their energy use is increasing faster than other end-uses. Despite the success of policies, such as Energy Star, that promote more efficient miscellaneous and electronic products, much remains to be done to address the energy use of these devices if we are to achieve our energy and carbon reduction goals. Developing efficiency strategies for these products depends on better data about their actual usage, but very few studies have collected field data on the long-term energy used by a large sample of devices duemore » to the difficulty and expense of collecting device-level energy data. This paper describes the development of an improved method for collecting device-level energy and power data using small, relatively inexpensive wireless power meters. These meters form a mesh network based on Internet standard protocols and can form networks of hundreds of metering points in a single building. Because the meters are relatively inexpensive and do not require manual data downloading, they can be left in the field for months or years to collect long time-series energy use data. In addition to the metering technology, we also describe a field protocol used to collect comprehensive, robust data on the miscellaneous and electronic devices in a building. The paper presents sample results from several case study buildings, in which all the plug-in devices for several homes were metered, and a representative sample of several hundred plug-in devices in a commercial office building were metered for several months.« less
Wireless Sensor Network Radio Power Management and Simulation Models
2010-01-01
The Open Electrical & Electronic Engineering Journal, 2010, 4, 21-31 21 1874-1290/10 2010 Bentham Open Open Access Wireless Sensor Network Radio...Air Force Institute of Technology, Wright-Patterson AFB, OH, USA Abstract: Wireless sensor networks (WSNs) create a new frontier in collecting and...consumption. Keywords: Wireless sensor network , power management, energy-efficiency, medium access control (MAC), simulation pa- rameters. 1
Wibree: wireless communication technology
NASA Astrophysics Data System (ADS)
Fernandes e Fizardo, Trima Piedade
2011-12-01
Nowadays everywhere we come across electronic devices and now the world has become entirely mobile with so many new electronic equipments. The number of computing and telecommunications devices is increasing and consequently the focus on how to connect them to each other. The usual solution is to connect the device with cables or using infra red light to make file transfer and synchronizations possible but infrared light requires line of sight. To solve these problems a new technology,Wibree radio technology complements other local connectivity technologies, consuming only a fraction of the power compared to other radio technologies, enabling smaller and less costly implementations and being easy to integrate with Bluetooth solutions, Furthermore it can be also used to enable communication between several units such as small radio LANs.This paper focuses on why this technology has got large attention although there are pro's and con's with respect to other technologies.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-08
... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-667; Investigation No. 337-TA-673] In the Matter of Certain Electronic Devices, Including Handheld Wireless Communications Devices; Notice of... Entirety AGENCY: U.S. International Trade Commission. ACTION: Notice. SUMMARY: Notice is hereby given that...
The Security Aspects of Wireless Local Area Network (WLAN)
2003-09-01
by wireless links to enable devices to communicate. In a Bluetooth network, mobile routers control the changing network topologies of these... Bluetooth Bluetooth is a simple peer-to-peer protocol created to connect multiple consumer mobile information devices (cellular phones, laptops...technology [Ref 2]. Bluetooth enables mobile devices to avoid interference from other signals by hopping to a new frequency after transmitting or
Radio/antenna mounting system for wireless networking under row-crop agriculture conditions
USDA-ARS?s Scientific Manuscript database
Interest in and deployment of wireless monitoring systems is increasing in many diverse environments, including row-crop agricultural fields. While many studies have been undertaken to evaluate various aspects of wireless monitoring and networking, such as electronic hardware components, data-colle...
[Development of Bluetooth wireless sensors].
Moor, C; Schwaibold, M; Roth, H; Schöchlin, J; Bolz, A
2002-01-01
Wireless communication could help to overcome current obstacles in medical devices and could enable medical services to offer completely new scenarios in health care. The Bluetooth technology which is the upcoming global market leader in wireless communication turned out to be perfectly suited not only for consumer market products but also in the medical environment [1]. It offers a low power, low cost connection in the medium range of 1-100 m with a bandwidth of currently 723.2 kbaud. This paper describes the development of a wireless ECG device and a Pulse Oximeter. Equipped with a Bluetooth port, the measurement devices are enabled to transmit data between the sensor and a Bluetooth-monitor. Therefore, CSR's Bluetooth protocol embedded two-processor and embedded single-processor architecture has been used.
Self-Powered Wireless Carbohydrate/Oxygen Sensitive Biodevice Based on Radio Signal Transmission
Falk, Magnus; Alcalde, Miguel; Bartlett, Philip N.; De Lacey, Antonio L.; Gorton, Lo; Gutierrez-Sanchez, Cristina; Haddad, Raoudha; Kilburn, Jeremy; Leech, Dónal; Ludwig, Roland; Magner, Edmond; Mate, Diana M.; Conghaile, Peter Ó.; Ortiz, Roberto; Pita, Marcos; Pöller, Sascha; Ruzgas, Tautgirdas; Salaj-Kosla, Urszula; Schuhmann, Wolfgang; Sebelius, Fredrik; Shao, Minling; Stoica, Leonard; Sygmund, Cristoph; Tilly, Jonas; Toscano, Miguel D.; Vivekananthan, Jeevanthi; Wright, Emma; Shleev, Sergey
2014-01-01
Here for the first time, we detail self-contained (wireless and self-powered) biodevices with wireless signal transmission. Specifically, we demonstrate the operation of self-sustained carbohydrate and oxygen sensitive biodevices, consisting of a wireless electronic unit, radio transmitter and separate sensing bioelectrodes, supplied with electrical energy from a combined multi-enzyme fuel cell generating sufficient current at required voltage to power the electronics. A carbohydrate/oxygen enzymatic fuel cell was assembled by comparing the performance of a range of different bioelectrodes followed by selection of the most suitable, stable combination. Carbohydrates (viz. lactose for the demonstration) and oxygen were also chosen as bioanalytes, being important biomarkers, to demonstrate the operation of the self-contained biosensing device, employing enzyme-modified bioelectrodes to enable the actual sensing. A wireless electronic unit, consisting of a micropotentiostat, an energy harvesting module (voltage amplifier together with a capacitor), and a radio microchip, were designed to enable the biofuel cell to be used as a power supply for managing the sensing devices and for wireless data transmission. The electronic system used required current and voltages greater than 44 µA and 0.57 V, respectively to operate; which the biofuel cell was capable of providing, when placed in a carbohydrate and oxygen containing buffer. In addition, a USB based receiver and computer software were employed for proof-of concept tests of the developed biodevices. Operation of bench-top prototypes was demonstrated in buffers containing different concentrations of the analytes, showcasing that the variation in response of both carbohydrate and oxygen biosensors could be monitored wirelessly in real-time as analyte concentrations in buffers were changed, using only an enzymatic fuel cell as a power supply. PMID:25310190
Self-powered wireless carbohydrate/oxygen sensitive biodevice based on radio signal transmission.
Falk, Magnus; Alcalde, Miguel; Bartlett, Philip N; De Lacey, Antonio L; Gorton, Lo; Gutierrez-Sanchez, Cristina; Haddad, Raoudha; Kilburn, Jeremy; Leech, Dónal; Ludwig, Roland; Magner, Edmond; Mate, Diana M; Conghaile, Peter Ó; Ortiz, Roberto; Pita, Marcos; Pöller, Sascha; Ruzgas, Tautgirdas; Salaj-Kosla, Urszula; Schuhmann, Wolfgang; Sebelius, Fredrik; Shao, Minling; Stoica, Leonard; Sygmund, Cristoph; Tilly, Jonas; Toscano, Miguel D; Vivekananthan, Jeevanthi; Wright, Emma; Shleev, Sergey
2014-01-01
Here for the first time, we detail self-contained (wireless and self-powered) biodevices with wireless signal transmission. Specifically, we demonstrate the operation of self-sustained carbohydrate and oxygen sensitive biodevices, consisting of a wireless electronic unit, radio transmitter and separate sensing bioelectrodes, supplied with electrical energy from a combined multi-enzyme fuel cell generating sufficient current at required voltage to power the electronics. A carbohydrate/oxygen enzymatic fuel cell was assembled by comparing the performance of a range of different bioelectrodes followed by selection of the most suitable, stable combination. Carbohydrates (viz. lactose for the demonstration) and oxygen were also chosen as bioanalytes, being important biomarkers, to demonstrate the operation of the self-contained biosensing device, employing enzyme-modified bioelectrodes to enable the actual sensing. A wireless electronic unit, consisting of a micropotentiostat, an energy harvesting module (voltage amplifier together with a capacitor), and a radio microchip, were designed to enable the biofuel cell to be used as a power supply for managing the sensing devices and for wireless data transmission. The electronic system used required current and voltages greater than 44 µA and 0.57 V, respectively to operate; which the biofuel cell was capable of providing, when placed in a carbohydrate and oxygen containing buffer. In addition, a USB based receiver and computer software were employed for proof-of concept tests of the developed biodevices. Operation of bench-top prototypes was demonstrated in buffers containing different concentrations of the analytes, showcasing that the variation in response of both carbohydrate and oxygen biosensors could be monitored wirelessly in real-time as analyte concentrations in buffers were changed, using only an enzymatic fuel cell as a power supply.
Radiation characteristics of input power from surface wave sustained plasma antenna
DOE Office of Scientific and Technical Information (OSTI.GOV)
Naito, T., E-mail: Naito.Teruki@bc.MitsubishiElectric.co.jp; Yamaura, S.; Fukuma, Y.
This paper reports radiation characteristics of input power from a surface wave sustained plasma antenna investigated theoretically and experimentally, especially focusing on the power consumption balance between the plasma generation and the radiation. The plasma antenna is a dielectric tube filled with argon and small amount of mercury, and the structure is a basic quarter wavelength monopole antenna at 2.45 GHz. Microwave power at 2.45 GHz is supplied to the plasma antenna. The input power is partially consumed to sustain the plasma, and the remaining part is radiated as a signal. The relationship between the antenna gain and the input powermore » is obtained by an analytical derivation and numerical simulations. As a result, the antenna gain is kept at low values, and most of the input power is consumed to increase the plasma volume until the tube is filled with the plasma whose electron density is higher than the critical electron density required for sustaining the surface wave. On the other hand, the input power is consumed to increase the electron density after the tube is fully filled with the plasma, and the antenna gain increases with increasing the electron density. The dependence of the antenna gain on the electron density is the same as that of a plasma antenna sustained by a DC glow discharge. These results are confirmed by experimental results of the antenna gain and radiation patterns. The antenna gain of the plasma is a few dB smaller than that of the identical metal antenna. The antenna gain of the plasma antenna is sufficient for the wireless communication, although it is difficult to substitute the plasma antenna for metal antennas completely. The plasma antenna is suitable for applications having high affinity with the plasma characteristics such as low interference and dynamic controllability.« less
Geckili, Onur; Bilhan, Hakan; Cilingir, Altug; Bilmenoglu, Caglar; Ates, Gokcen; Urgun, Aliye Ceren; Bural, Canan
2014-12-01
A comparative ex vivo study was performed to determine electronic percussive test values (PTVs) measured by cabled and wireless electronic percussive testing (EPT) devices and to evaluate the intra- and interobserver reliability of the wireless EPT device. Forty implants were inserted into the vertebrae and forty into the pelvis of a steer, a safe distance apart. The implants were all 4.3 mm wide and 13 mm long, from the same manufacturer. PTV of each implant was measured by four different examiners, using both EPT devices, and compared. Additionally, the intra- and interobserver reliability of the wireless EPT device was evaluated. Statistically significant differences (P <0.05) were observed between PTVs made by the two EPT devices. PTVs measured by the wireless EPT device were significantly higher than the cabled EPT device (P <0.05), indicating lower implant stability. The intraobserver reliability of the wireless EPT device was evaluated as excellent for the measurements in type II bone and good-to-excellent in type IV bone; interobserver reliability was evaluated as fair-to-good in both bone types. The wireless EPT device gives PTVs higher than the cabled EPT device, indicating lower implant stability, and its inter- and intraobserver reliability is good and acceptable.
2016-06-01
therefore did not implement or test actual sensors or electronic components (analog-to-digital conversion, power , and the wireless transmission ...ARL-TR-7703 ● JUNE 2016 US Army Research Laboratory Evaluation of a Prototype Low-Cost, Modular, Wireless Electroencephalography...originator. ARL-TR-7703 ● JUNE 2016 US Army Research Laboratory Evaluation of a Prototype Low-Cost, Modular, Wireless
47 CFR 1.913 - Application and notification forms; electronic and manual filing.
Code of Federal Regulations, 2014 CFR
2014-10-01
... PRACTICE AND PROCEDURE Grants by Random Selection Wireless Radio Services Applications and Proceedings... Form 601, Application for Authorization in the Wireless Radio Services. FCC Form 601 and associated..., notifications, requests for extension of time, and administrative updates. (2) FCC Form 602, Wireless Radio...
47 CFR 1.913 - Application and notification forms; electronic and manual filing.
Code of Federal Regulations, 2013 CFR
2013-10-01
... PRACTICE AND PROCEDURE Grants by Random Selection Wireless Radio Services Applications and Proceedings... Form 601, Application for Authorization in the Wireless Radio Services. FCC Form 601 and associated..., notifications, requests for extension of time, and administrative updates. (2) FCC Form 602, Wireless Radio...
Enhanced Security and Pairing-free Handover Authentication Scheme for Mobile Wireless Networks
NASA Astrophysics Data System (ADS)
Chen, Rui; Shu, Guangqiang; Chen, Peng; Zhang, Lijun
2017-10-01
With the widely deployment of mobile wireless networks, we aim to propose a secure and seamless handover authentication scheme that allows users to roam freely in wireless networks without worrying about security and privacy issues. Given the open characteristic of wireless networks, safety and efficiency should be considered seriously. Several previous protocols are designed based on a bilinear pairing mapping, which is time-consuming and inefficient work, as well as unsuitable for practical situations. To address these issues, we designed a new pairing-free handover authentication scheme for mobile wireless networks. This scheme is an effective improvement of the protocol by Xu et al., which is suffer from the mobile node impersonation attack. Security analysis and simulation experiment indicate that the proposed protocol has many excellent security properties when compared with other recent similar handover schemes, such as mutual authentication and resistance to known network threats, as well as requiring lower computation and communication cost.
Structural health monitoring using wireless sensor networks
NASA Astrophysics Data System (ADS)
Sreevallabhan, K.; Nikhil Chand, B.; Ramasamy, Sudha
2017-11-01
Monitoring and analysing health of large structures like bridges, dams, buildings and heavy machinery is important for safety, economical, operational, making prior protective measures, and repair and maintenance point of view. In recent years there is growing demand for such larger structures which in turn make people focus more on safety. By using Microelectromechanical Systems (MEMS) Accelerometer we can perform Structural Health Monitoring by studying the dynamic response through measure of ambient vibrations and strong motion of such structures. By using Wireless Sensor Networks (WSN) we can embed these sensors in wireless networks which helps us to transmit data wirelessly thus we can measure the data wirelessly at any remote location. This in turn reduces heavy wiring which is a cost effective as well as time consuming process to lay those wires. In this paper we developed WSN based MEMS-accelerometer for Structural to test the results in the railway bridge near VIT University, Vellore campus.
An Overview of the Development of High Temperature Wireless Smart Sensor Technology
NASA Technical Reports Server (NTRS)
Hunter, Gary W.
2014-01-01
The harsh environment inherent in propulsion systems is especially challenging for Smart Sensor Systems; this paper addresses technology development for such applications. A basic sensing system for high temperature wireless pressure monitoring composed of a sensor, electronics, and wireless communication with scavenged power developed for health monitoring of aircraft engines and other high temperature applications has been demonstrated at 475 C. Other efforts will be discussed including a brief overview of the status of high temperature electronics and sensors, as well as their use and applications.
Optical wireless link between a nanoscale antenna and a transducing rectenna.
Dasgupta, Arindam; Mennemanteuil, Marie-Maxime; Buret, Mickaël; Cazier, Nicolas; Colas-des-Francs, Gérard; Bouhelier, Alexandre
2018-05-18
Initiated as a cable-replacement solution, short-range wireless power transfer has rapidly become ubiquitous in the development of modern high-data throughput networking in centimeter to meter accessibility range. Wireless technology is now penetrating a higher level of system integration for chip-to-chip and on-chip radiofrequency interconnects. However, standard CMOS integrated millimeter-wave antennas have typical size commensurable with the operating wavelength, and are thus an unrealistic solution for downsizing transmitters and receivers to the micrometer and nanometer scale. Herein, we demonstrate a light-in and electrical signal-out, on-chip wireless near-infrared link between a 220 nm optical antenna and a sub-nanometer rectifying antenna converting the transmitted optical energy into direct electrical current. The co-integration of subwavelength optical functional devices with electronic transduction offers a disruptive solution to interface photons and electrons at the nanoscale for on-chip wireless optical interconnects.
NASA Astrophysics Data System (ADS)
Kruger, A.; Just, C. L.; Mudumbai, R.; Dasgupta, S.; Newton, T. J.; Durst, J.; Boddicker, M. D.; Diken, M. B.; Bril, J.; Baidoo-Williams, H. E.
2011-12-01
One of the most extensive manifestations of anthropogenic mismanagement of nitrogen is eutrophication of the Gulf of Mexico. Leaching and runoff transport nitrate compounds-excess agricultural fertilizer and animal waste-via the Mississippi River to the Gulf of Mexico. Phytoplankton then multiplies exponentially, and consumes most of the dissolved oxygen. This hypoxia kills fish and other organisms, leading to so-called dead zones in the Gulf that can cover 6,000-7,000 square miles. Dead zone mitigation plans call for coupling management actions with enhanced monitoring, modeling, and research on nitrogen delivery to, as well as processing within, the Mississippi River. Our vision is to create a biosensor network of native freshwater mussels in a major river to monitor, comprehend, and ultimately model key components of the nitrogen cycle. Native freshwater mussels are a guild of long-lived, suspension feeding bivalves that perform important ecological functions in aquatic systems. Mussels can influence nutrient cycling by transferring nutrients from the water column to the riverbed. A major problem for environmental scientists is that relatively little is known about the diurnal behaviors of freshwater mussels or the impacts these behaviors may have on the aquatic nitrogen cycle. Our multidisciplinary team is performing a series of laboratory experiments exploring the feasibility of using freshwater mussels as sensors of and capacitors for nitrates. For sensing, we place Hall-effect sensors on mussels to monitor the rhythmic opening and closing of their valves (gape). One shortcoming of previous work is that mussels were monitored in artificial conditions: glued fast in laboratory flumes, or tethered in constrained settings. To overcome this shortcoming, our team has built a mussel microhabitat with a constant river water feed stock, solar simulator, and a variety of water chemistry sensor. A main thrust of our work is to develop the technology to monitor mussel gape untethered/wirelessly using inexpensive radios and wireless sensor network concepts. If successful, this will enable us to monitor mussels untethered in their natural environment. We designed a series of experiments to test the following hypotheses. (1) The attachment of Hall-effect gape sensors and a small "backpack" containing wireless communicators and sensing electronics will have little impact on mussel mobility and survival. (2) One can build robust underwater communication networks using inexpensive wireless hardware. (3) The flow regime around mussels allows for sufficient energy harvest to power sensing electronics and radios. Preliminary results suggest that hypothesis (2) is true. However, our results also suggest hypothesis (3) is false, indicating that we should pay particular attention to the power consumption of the sensors and communication electronics to realize a long-lived wireless network.
47 CFR 1.913 - Application and notification forms; electronic and manual filing.
Code of Federal Regulations, 2012 CFR
2012-10-01
... PRACTICE AND PROCEDURE Grants by Random Selection Wireless Radio Services Applications and Proceedings... Form 601, Application for Authorization in the Wireless Radio Services. FCC Form 601 and associated... 602, Wireless Radio Services Ownership Form. FCC Form 602 is used by applicants and licensees in...
78 FR 2912 - Prohibition on Personal Use of Electronic Devices on the Flight Deck
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-15
....C. 332(c)(7)(C)(i). In general, wireless telecommunications is the transfer of information between... personal wireless communications device or laptop computer for personal use while at their duty station on.... Personal Wireless Communications Device IV. Regulatory Notices and Analyses A. Regulatory Evaluation B...
Extreme-Environment Silicon-Carbide (SiC) Wireless Sensor Suite
NASA Technical Reports Server (NTRS)
Yang, Jie
2015-01-01
Phase II objectives: Develop an integrated silicon-carbide wireless sensor suite capable of in situ measurements of critical characteristics of NTP engine; Compose silicon-carbide wireless sensor suite of: Extreme-environment sensors center, Dedicated high-temperature (450 deg C) silicon-carbide electronics that provide power and signal conditioning capabilities as well as radio frequency modulation and wireless data transmission capabilities center, An onboard energy harvesting system as a power source.
Intrusion detection and monitoring for wireless networks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, Eric D.; Van Randwyk, Jamie A.; Lee, Erik J.
Wireless computer networks are increasing exponentially around the world. They are being implemented in both the unlicensed radio frequency (RF) spectrum (IEEE 802.11a/b/g) and the licensed spectrum (e.g., Firetide [1] and Motorola Canopy [2]). Wireless networks operating in the unlicensed spectrum are by far the most popular wireless computer networks in existence. The open (i.e., proprietary) nature of the IEEE 802.11 protocols and the availability of ''free'' RF spectrum have encouraged many producers of enterprise and common off-the-shelf (COTS) computer networking equipment to jump into the wireless arena. Competition between these companies has driven down the price of 802.11 wirelessmore » networking equipment and has improved user experiences with such equipment. The end result has been an increased adoption of the equipment by businesses and consumers, the establishment of the Wi-Fi Alliance [3], and widespread use of the Alliance's ''Wi-Fi'' moniker to describe these networks. Consumers use 802.11 equipment at home to reduce the burden of running wires in existing construction, facilitate the sharing of broadband Internet services with roommates or neighbors, and increase their range of ''connectedness''. Private businesses and government entities (at all levels) are deploying wireless networks to reduce wiring costs, increase employee mobility, enable non-employees to access the Internet, and create an added revenue stream to their existing business models (coffee houses, airports, hotels, etc.). Municipalities (Philadelphia; San Francisco; Grand Haven, MI) are deploying wireless networks so they can bring broadband Internet access to places lacking such access; offer limited-speed broadband access to impoverished communities; offer broadband in places, such as marinas and state parks, that are passed over by traditional broadband providers; and provide themselves with higher quality, more complete network coverage for use by emergency responders and other municipal agencies. In short, these Wi-Fi networks are being deployed everywhere. Much thought has been and is being put into evaluating cost-benefit analyses of wired vs. wireless networks and issues such as how to effectively cover an office building or municipality, how to efficiently manage a large network of wireless access points (APs), and how to save money by replacing an Internet service provider (ISP) with 802.11 technology. In comparison, very little thought and money are being focused on wireless security and monitoring for security purposes.« less
Mobile Learning: A Framework and Evaluation
ERIC Educational Resources Information Center
Motiwalla, Luvai F.
2007-01-01
Wireless data communications in form of Short Message Service (SMS) and Wireless Access Protocols (WAP) browsers have gained global popularity, yet, not much has been done to extend the usage of these devices in electronic learning (e-learning). This project explores the extension of e-learning into wireless/handheld (W/H) computing devices with…
Throughput and delay analysis of IEEE 802.15.6-based CSMA/CA protocol.
Ullah, Sana; Chen, Min; Kwak, Kyung Sup
2012-12-01
The IEEE 802.15.6 is a new communication standard on Wireless Body Area Network (WBAN) that focuses on a variety of medical, Consumer Electronics (CE) and entertainment applications. In this paper, the throughput and delay performance of the IEEE 802.15.6 is presented. Numerical formulas are derived to determine the maximum throughput and minimum delay limits of the IEEE 802.15.6 for an ideal channel with no transmission errors. These limits are derived for different frequency bands and data rates. Our analysis is validated by extensive simulations using a custom C+ + simulator. Based on analytical and simulation results, useful conclusions are derived for network provisioning and packet size optimization for different applications.
Interference-Detection Module in a Digital Radar Receiver
NASA Technical Reports Server (NTRS)
Fischman, Mark; Berkun, Andrew; Chu, Anhua; Freedman, Adam; Jourdan, Michael; McWatters, Dalia; Paller, Mimi
2009-01-01
A digital receiver in a 1.26-GHz spaceborne radar scatterometer now undergoing development includes a module for detecting radio-frequency interference (RFI) that could contaminate scientific data intended to be acquired by the scatterometer. The role of the RFI-detection module is to identify time intervals during which the received signal is likely to be contaminated by RFI and thereby to enable exclusion, from further scientific data processing, of signal data acquired during those intervals. The underlying concepts of detection of RFI and rejection of RFI-contaminated signal data are also potentially applicable in advanced terrestrial radio receivers, including software-defined radio receivers in general, receivers in cellular telephones and other wireless consumer electronic devices, and receivers in automotive collision-avoidance radar systems.
THz and sub-THz (MMW)-over-Fiber Data Links and Radar Technology
2016-12-05
propagation loss in free-space or transmission line, and their inherent straight-line path of propagation affects connections and synchronization between the...effort is to realize photonic-network compatible wireless data link at data rate up to 100 Gbit/s, and to explore a real-time MMW radar imaging system...global village at terabit rate, hopefully wirelessly. Unfortunately, such high-volume data transmission over air consumes radio bandwidth—lots of it
THz and sub THz (MMW)-over-Fiber Data Links and Radar Technology
2016-11-30
propagation loss in free-space or transmission line, and their inherent straight-line path of propagation affects connections and synchronization between the...effort is to realize photonic-network compatible wireless data link at data rate up to 100 Gbit/s, and to explore a real-time MMW radar imaging system...global village at terabit rate, hopefully wirelessly. Unfortunately, such high-volume data transmission over air consumes radio bandwidth—lots of it
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-20
... feasibility of instituting usage alerts and cut-off mechanisms similar to those required under the European... other things, the Commission noted that advances in technology, including usage alerts delivered via... the kind and degree of information available to consumers.'' On the issue of usage alerts, the...
47 CFR 1.1152 - Schedule of annual regulatory fees and filing locations for wireless radio services.
Code of Federal Regulations, 2011 CFR
2011-10-01
... locations for wireless radio services. 1.1152 Section 1.1152 Telecommunication FEDERAL COMMUNICATIONS... Schedule of annual regulatory fees and filing locations for wireless radio services. Exclusive use services... (Electronic Filing) (FCC 601 & 159) 20.00 FCC,P.O. Box 979097,St. Louis, MO 63197-9000. General Mobile Radio...
NASA Astrophysics Data System (ADS)
Hallman, Sydney N.; Huck, Robert C.; Sluss, James J.
2016-05-01
The use of a wireless charging system for small, unmanned aircraft system applications is useful for both military and commercial consumers. An efficient way to keep the aircraft's batteries charged without interrupting flight would be highly marketable. While the general concepts behind highly resonant wireless power transfer are discussed in a few publications, the details behind the system designs are not available even in academic journals, especially in relation to avionics. Combining a highly resonant charging system with a solar panel charging system can produce enough power to extend the flight time of a small, unmanned aircraft system without interruption. This paper provides an overview of a few of the wireless-charging technologies currently available and outlines a preliminary design for an aircraft-mounted battery charging system.
Materials for bioresorbable radio frequency electronics.
Hwang, Suk-Won; Huang, Xian; Seo, Jung-Hun; Song, Jun-Kyul; Kim, Stanley; Hage-Ali, Sami; Chung, Hyun-Joong; Tao, Hu; Omenetto, Fiorenzo G; Ma, Zhenqiang; Rogers, John A
2013-07-12
Materials, device designs and manufacturing approaches are presented for classes of RF electronic components that are capable of complete dissolution in water or biofluids. All individual passive/active components as well as system-level examples such as wireless RF energy harvesting circuits exploit active materials that are biocompatible. The results provide diverse building blocks for physically transient forms of electronics, of particular potential value in bioresorbable medical implants with wireless power transmission and communication capabilities. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Butterfly Encryption Scheme for Resource-Constrained Wireless Networks †
Sampangi, Raghav V.; Sampalli, Srinivas
2015-01-01
Resource-constrained wireless networks are emerging networks such as Radio Frequency Identification (RFID) and Wireless Body Area Networks (WBAN) that might have restrictions on the available resources and the computations that can be performed. These emerging technologies are increasing in popularity, particularly in defence, anti-counterfeiting, logistics and medical applications, and in consumer applications with growing popularity of the Internet of Things. With communication over wireless channels, it is essential to focus attention on securing data. In this paper, we present an encryption scheme called Butterfly encryption scheme. We first discuss a seed update mechanism for pseudorandom number generators (PRNG), and employ this technique to generate keys and authentication parameters for resource-constrained wireless networks. Our scheme is lightweight, as in it requires less resource when implemented and offers high security through increased unpredictability, owing to continuously changing parameters. Our work focuses on accomplishing high security through simplicity and reuse. We evaluate our encryption scheme using simulation, key similarity assessment, key sequence randomness assessment, protocol analysis and security analysis. PMID:26389899
Butterfly Encryption Scheme for Resource-Constrained Wireless Networks.
Sampangi, Raghav V; Sampalli, Srinivas
2015-09-15
Resource-constrained wireless networks are emerging networks such as Radio Frequency Identification (RFID) and Wireless Body Area Networks (WBAN) that might have restrictions on the available resources and the computations that can be performed. These emerging technologies are increasing in popularity, particularly in defence, anti-counterfeiting, logistics and medical applications, and in consumer applications with growing popularity of the Internet of Things. With communication over wireless channels, it is essential to focus attention on securing data. In this paper, we present an encryption scheme called Butterfly encryption scheme. We first discuss a seed update mechanism for pseudorandom number generators (PRNG), and employ this technique to generate keys and authentication parameters for resource-constrained wireless networks. Our scheme is lightweight, as in it requires less resource when implemented and offers high security through increased unpredictability, owing to continuously changing parameters. Our work focuses on accomplishing high security through simplicity and reuse. We evaluate our encryption scheme using simulation, key similarity assessment, key sequence randomness assessment, protocol analysis and security analysis.
Wireless implantable electronic platform for chronic fluorescent-based biosensors.
Valdastri, Pietro; Susilo, Ekawahyu; Förster, Thilo; Strohhöfer, Christof; Menciassi, Arianna; Dario, Paolo
2011-06-01
The development of a long-term wireless implantable biosensor based on fluorescence intensity measurement poses a number of technical challenges, ranging from biocompatibility to sensor stability over time. One of these challenges is the design of a power efficient and miniaturized electronics, enabling the biosensor to move from bench testing to long term validation, up to its final application in human beings. In this spirit, we present a wireless programmable electronic platform for implantable chronic monitoring of fluorescent-based autonomous biosensors. This system is able to achieve extremely low power operation with bidirectional telemetry, based on the IEEE802.15.4-2003 protocol, thus enabling over three-year battery lifetime and wireless networking of multiple sensors. During the performance of single fluorescent-based sensor measurements, the circuit drives a laser diode, for sensor excitation, and acquires the amplified signals from four different photodetectors. In vitro functionality was preliminarily tested for both glucose and calcium monitoring, simply by changing the analyte-binding protein of the biosensor. Electronics performance was assessed in terms of timing, power consumption, tissue exposure to electromagnetic fields, and in vivo wireless connectivity. The final goal of the presented platform is to be integrated in a complete system for blood glucose level monitoring that may be implanted for at least one year under the skin of diabetic patients. Results reported in this paper may be applied to a wide variety of biosensors based on fluorescence intensity measurement.
Tang, Kea-Tiong; Li, Cheng-Han; Chiu, Shih-Wen
2011-01-01
This study developed an electronic-nose sensor node based on a polymer-coated surface acoustic wave (SAW) sensor array. The sensor node comprised an SAW sensor array, a frequency readout circuit, and an Octopus II wireless module. The sensor array was fabricated on a large K2 128° YX LiNbO3 sensing substrate. On the surface of this substrate, an interdigital transducer (IDT) was produced with a Cr/Au film as its metallic structure. A mixed-mode frequency readout application specific integrated circuit (ASIC) was fabricated using a TSMC 0.18 μm process. The ASIC output was connected to a wireless module to transmit sensor data to a base station for data storage and analysis. This sensor node is applicable for wireless sensor network (WSN) applications. PMID:22163865
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kar, Durga P.; Nayak, Praveen P.; Bhuyan, Satyanarayan
In order to power or charge electronic devices wirelessly, a bi-directional wireless power transfer method has been proposed and experimentally investigated. In the proposed design, two receiving coils are used on both sides of a transmitting coil along its central axis to receive the power wirelessly from the generated magnetic fields through strongly coupled magnetic resonance. It has been observed experimentally that the maximum power transfer occurs at the operating resonant frequency for optimum electric load connected across the receiving coils on both side. The optimum wireless power transfer efficiency is 88% for the bi-directional power transfer technique compared 84%more » in the one side receiver system. By adopting the developed bi-directional power transfer method, two electronic devices can be powered up or charged simultaneously instead of a single device through usual one side receiver system without affecting the optimum power transfer efficiency.« less
Tang, Kea-Tiong; Li, Cheng-Han; Chiu, Shih-Wen
2011-01-01
This study developed an electronic-nose sensor node based on a polymer-coated surface acoustic wave (SAW) sensor array. The sensor node comprised an SAW sensor array, a frequency readout circuit, and an Octopus II wireless module. The sensor array was fabricated on a large K(2) 128° YX LiNbO3 sensing substrate. On the surface of this substrate, an interdigital transducer (IDT) was produced with a Cr/Au film as its metallic structure. A mixed-mode frequency readout application specific integrated circuit (ASIC) was fabricated using a TSMC 0.18 μm process. The ASIC output was connected to a wireless module to transmit sensor data to a base station for data storage and analysis. This sensor node is applicable for wireless sensor network (WSN) applications.
Sen. Klobuchar, Amy [D-MN
2013-03-06
Senate - 03/06/2013 Read twice and referred to the Committee on Commerce, Science, and Transportation. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:
Xu, Wencheng; Shekhar, Sameer; Abbaspour-Tamijani, Abbas; Towe, Bruce C.; Miranda, Félix A.; Chae, Junseok
2011-01-01
The ability to safely monitor neuropotentials is essential in establishing methods to study the brain. Current research focuses on the wireless telemetry aspect of implantable sensors in order to make these devices ubiquitous and safe. Chronic implants necessitate superior reliability and durability of the integrated electronics. The power consumption of implanted electronics must also be limited to within several milliwatts to microwatts to minimize heat trauma in the human body. In order to address these severe requirements, we developed an entirely passive and wireless microsystem for recording neuropotentials. An external interrogator supplies a fundamental microwave carrier to the microsystem. The microsystem comprises varactors that perform nonlinear mixing of neuropotential and fundamental carrier signals. The varactors generate third-order mixing products that are wirelessly backscattered to the external interrogator where the original neuropotential signals are recovered. Performance of the neuro-recording microsystem was demonstrated by wireless recording of emulated and in vivo neuropotentials. The obtained results were wireless recovery of neuropotentials as low as approximately 500 microvolts peak-to-peak (μVpp) with a bandwidth of 10 Hz to 3 kHz (for emulated signals) and with 128 epoch signal averaging of repetitive signals (for in vivo signals). PMID:22267898
NASA Technical Reports Server (NTRS)
Hunter, Gary W.; Behbahani, Alireza
2012-01-01
Smart Sensor Systems with wireless capability operational in high temperature, harsh environments are a significant component in enabling future propulsion systems to meet a range of increasingly demanding requirements. These propulsion systems must incorporate technology that will monitor engine component conditions, analyze the incoming data, and modify operating parameters to optimize propulsion system operations. This paper discusses the motivation towards the development of high temperature, smart wireless sensor systems that include sensors, electronics, wireless communication, and power. The challenges associated with the use of traditional wired sensor systems will be reviewed and potential advantages of Smart Sensor Systems will be discussed. A brief review of potential applications for wireless smart sensor networks and their potential impact on propulsion system operation, with emphasis on Distributed Engine Control and Propulsion Health Management, will be given. A specific example related to the development of high temperature Smart Sensor Systems based on silicon carbide electronics will be discussed. It is concluded that the development of a range of robust smart wireless sensor systems are a foundation for future development of intelligent propulsion systems with enhanced capabilities.
Mobile Agents for Battlespace Information Exchange
2013-05-01
autonomously gather information and coordinate activities (e.g. meetings, e - commerce transactions) on behalf of their owners. Sometime in the...operations where consumer -level infrastructure is not available. The report provides an overview of MA characteristics and follows with a description of...detection for security, telecommunications and the military. With the advent of broadband communication (fixed and wireless) a typical consumer is now
Lenert, L A; Kirsh, D; Griswold, W G; Buono, C; Lyon, J; Rao, R; Chan, T C
2011-01-01
There is growing interest in the use of technology to enhance the tracking and quality of clinical information available for patients in disaster settings. This paper describes the design and evaluation of the Wireless Internet Information System for Medical Response in Disasters (WIISARD). WIISARD combined advanced networking technology with electronic triage tags that reported victims' position and recorded medical information, with wireless pulse-oximeters that monitored patient vital signs, and a wireless electronic medical record (EMR) for disaster care. The EMR system included WiFi handheld devices with barcode scanners (used by front-line responders) and computer tablets with role-tailored software (used by managers of the triage, treatment, transport and medical communications teams). An additional software system provided situational awareness for the incident commander. The WIISARD system was evaluated in a large-scale simulation exercise designed for training first responders. A randomized trial was overlaid on this exercise with 100 simulated victims, 50 in a control pathway (paper-based), and 50 in completely electronic WIISARD pathway. All patients in the electronic pathway were cared for within the WIISARD system without paper-based workarounds. WIISARD reduced the rate of the missing and/or duplicated patient identifiers (0% vs 47%, p<0.001). The total time of the field was nearly identical (38:20 vs 38:23, IQR 26:53-1:05:32 vs 18:55-57:22). Overall, the results of WIISARD show that wireless EMR systems for care of the victims of disasters would be complex to develop but potentially feasible to build and deploy, and likely to improve the quality of information available for the delivery of care during disasters.
Kirsh, D; Griswold, W G; Buono, C; Lyon, J; Rao, R; Chan, T C
2011-01-01
Background There is growing interest in the use of technology to enhance the tracking and quality of clinical information available for patients in disaster settings. This paper describes the design and evaluation of the Wireless Internet Information System for Medical Response in Disasters (WIISARD). Materials and methods WIISARD combined advanced networking technology with electronic triage tags that reported victims' position and recorded medical information, with wireless pulse-oximeters that monitored patient vital signs, and a wireless electronic medical record (EMR) for disaster care. The EMR system included WiFi handheld devices with barcode scanners (used by front-line responders) and computer tablets with role-tailored software (used by managers of the triage, treatment, transport and medical communications teams). An additional software system provided situational awareness for the incident commander. The WIISARD system was evaluated in a large-scale simulation exercise designed for training first responders. A randomized trial was overlaid on this exercise with 100 simulated victims, 50 in a control pathway (paper-based), and 50 in completely electronic WIISARD pathway. All patients in the electronic pathway were cared for within the WIISARD system without paper-based workarounds. Results WIISARD reduced the rate of the missing and/or duplicated patient identifiers (0% vs 47%, p<0.001). The total time of the field was nearly identical (38:20 vs 38:23, IQR 26:53–1:05:32 vs 18:55–57:22). Conclusion Overall, the results of WIISARD show that wireless EMR systems for care of the victims of disasters would be complex to develop but potentially feasible to build and deploy, and likely to improve the quality of information available for the delivery of care during disasters. PMID:21709162
Wireless roadside inspection phase II : final report.
DOT National Transportation Integrated Search
2014-03-01
The Federal Motor Carrier Safety Administration (FMCSA) Wireless Roadside Inspection (WRI) Program is demonstrating the feasibility and value of electronically assessing truck and motorcoach driver and vehicle safety at least 25 times more often than...
NASA Astrophysics Data System (ADS)
Watanabe, Atom O.; Raj, Pulugurtha Markondeya; Wong, Denny; Mullapudi, Ravi; Tummala, Rao
2018-05-01
Control of electromagnetic interference (EMI) represents a major challenge for emerging consumer electronics, the Internet of Things, automotive electronics, and wireless communication systems. This paper discusses innovative EMI shielding materials and structures that offer higher shielding effectiveness compared with copper. To create high shielding effectiveness in the frequency range of 1 MHz to 100 MHz, multilayered shielding topologies with electrically conductive and nanomagnetic materials were modeled, designed, fabricated, and characterized. In addition, suppression of out-of-plane and in-plane magnetic-field coupling noise with these structures is compared with that of traditional single-layer copper or nickel-iron films. Compared with single-layered copper shields, multilayered structures consisting of copper, nickel-iron, and titanium showed a 3.9 times increase in shielding effectiveness in suppressing out-of-plane or vertically coupled noise and 1.3 times increase in lateral coupling. The superiority of multilayered thin-film shields over conventional shielding enables greater design flexibility, higher shielding effectiveness, and further miniaturization of emerging radiofrequency (RF) and power modules.
Reconfigurable wireless monitoring systems for bridges: validation on the Yeondae Bridge
NASA Astrophysics Data System (ADS)
Kim, Junhee; Lynch, Jerome P.; Zonta, Daniele; Lee, Jong-Jae; Yun, Chung-Bang
2009-03-01
The installation of a structural monitoring system on a medium- to large-span bridge can be a challenging undertaking due to high system costs and time consuming installations. However, these historical challenges can be eliminated by using wireless sensors as the primary building block of a structural monitoring system. Wireless sensors are low-cost data acquisition nodes that utilize wireless communication to transfer data from the sensor to the data repository. Another advantageous characteristic of wireless sensors is their ability to be easily removed and reinstalled in another sensor location on the same structure; this installation modularity is highlighted in this study. Wireless sensor nodes designed for structural monitoring applications are installed on the 180 m long Yeondae Bridge (Korea) to measure the dynamic response of the bridge to controlled truck loading. To attain a high nodal density with a small number (20) of wireless sensors, the wireless sensor network is installed three times with each installation concentrating sensors in one portion of the bridge. Using forced and free vibration response data from the three installations, the modal properties of the bridge are accurately identified. Intentional nodal overlapping of the three different sensor installations allows mode shapes from each installation to be stitched together into global mode shapes. Specifically, modal properties of the Yeondae Bridge are derived off-line using frequency domain decomposition (FDD) modal analysis methods.
Packet Controller For Wireless Headset
NASA Technical Reports Server (NTRS)
Christensen, Kurt K.; Swanson, Richard J.
1993-01-01
Packet-message controller implements communications protocol of network of wireless headsets. Designed for headset application, readily adapted to other uses; slight modification enables controller to implement Integrated Services Digital Network (ISDN) X.25 protocol, giving far-reaching applications in telecommunications. Circuit converts continuous voice signals into digital packets of data and vice versa. Operates in master or slave mode. Controller reduced to single complementary metal oxide/semiconductor integrated-circuit chip. Occupies minimal space in headset and consumes little power, extending life of headset battery.
NASA Astrophysics Data System (ADS)
Abou-Elnour, Ali; Thabt, A.; Helmy, S.; Kashf, Y.; Hadad, Y.; Tarique, M.; Abo-Elnor, Ossama
2014-04-01
In the present work, wireless sensor network and smart real-time controlling and monitoring system are integrated for efficient energy management of standalone photovoltaic system. The proposed system has two main components namely the monitoring and controlling system and the wireless communication system. LabView software has been used in the implementation of the monitoring and controlling system. On the other hand, ZigBee wireless modules have been used to implement the wireless system. The main functions of monitoring and controlling unit is to efficiently control the energy consumption form the photovoltaic system based on accurate determination of the periods of times at which the loads are required to be operated. The wireless communication system send the data from the monitoring and controlling unit to the loads at which desired switching operations are performed. The wireless communication system also continuously feeds the monitoring and controlling unit with updated input data from the sensors and from the photovoltaic module send to calculate and record the generated, the consumed, and the stored energy to apply load switching saving schemes if necessary. It has to be mentioned that our proposed system is a low cost and low power system because and it is flexible to be upgraded to fulfill additional users' requirements.
Wireless roadside inspection phase II evaluation final report.
DOT National Transportation Integrated Search
2011-06-01
The Federal Motor Carrier Safety Administration (FMCSA) Wireless Roadside Inspection (WRI) Program is demonstrating the feasibility and value of electronically assessing truck and coach driver and vehicle safety at least 25 times more often than is p...
NASA Astrophysics Data System (ADS)
Zhu, D.; Henaut, J.; Beeby, S. P.
2014-11-01
This paper reports the design and testing of a power conditioning circuit for a solar powered in-car wireless tag for asset tracking and parking application. Existing long range asset tracking is based on the GSM/GPRS network, which requires expensive subscriptions. The EU FP7 project CEWITT aims at developing a credit card sized autonomous wireless tag with GNSS geo-positioning capabilities to ensure the integrity and cost effectiveness for parking applications. It was found in previous research that solar cells are the most suitable energy sources for this application. This study focused on the power electronics design for the wireless tag. A suitable solar cell was chosen for its high power density. Charging circuit, hysteresis control circuit and LDO were designed and integrated to meet the system requirement. Test results showed that charging efficiency of 80 % had been achieved.
Wireless sensor and actuator networks for lighting energy efficiency and user satisfaction
NASA Astrophysics Data System (ADS)
Wen, Yao-Jung
Buildings consume more than one third of the primary energy generated in the U.S., and lighting alone accounts for approximately 30% of the energy usage in commercial buildings. As the largest electricity consumer of all building electrical systems, lighting harbors the greatest potential for energy savings in the commercial sector. Fifty percent of current energy consumption could be reduced with energy-efficient lighting management strategies. While commercial products do exist, they are poorly received due to exorbitant retrofitting cost and unsatisfactory performance. As a result, most commercial buildings, especially legacy buildings, have not taken advantage of the opportunity to generate savings from lighting. The emergence of wireless sensor and actuator network (WSAN) technologies presents an alternative that circumvents costly rewiring and promises better performance than existing commercial lighting systems. The goal of this dissertation research is to develop a framework for wireless-networked lighting systems with increased cost effectiveness, energy efficiency, and user satisfaction. This research is realized through both theoretical developments and implementations. The theoretical research aims at developing techniques for harnessing WSAN technologies to lighting hardware and control strategies. Leveraging redundancy, a sensor validation and fusion algorithm is developed for extracting pertinent lighting information from the disturbance-prone desktop-mounted photosensors. An adaptive sensing strategy optimizes the timing of data acquisition and power-hungry wireless transmission of sensory feedback in real-time lighting control. Exploiting the individual addressability of wireless-enabled luminaires, a lighting optimization algorithm is developed to create the optimal lighting that minimizes energy usage while satisfying occupants' diverse lighting preferences. The wireless-networked lighting system was implemented and tested in a number of real-life settings. A human subject study conducted in a private office concluded that the research system was competitive with the commercial lighting system with much fewer retrofitting requirements. The system implemented in a shared-space office realized a self-configuring mesh network with wireless photosensors and light actuators, and demonstrated a 50% energy savings and increased performance when harvesting daylight through windows is possible. The cost analysis revealed a reasonable payback period after the system is optimized for commercialization and confirms the marketing feasibility.
NASA Technical Reports Server (NTRS)
Ely, Jay J.
2005-01-01
Electromagnetic interference (EMI) promises to be an ever-evolving concern for flight electronic systems. This paper introduces EMI and identifies its impact upon civil aviation radio systems. New wireless services, like mobile phones, text messaging, email, web browsing, radio frequency identification (RFID), and mobile audio/video services are now being introduced into passenger airplanes. FCC and FAA rules governing the use of mobile phones and other portable electronic devices (PEDs) on board airplanes are presented along with a perspective of how these rules are now being rewritten to better facilitate in-flight wireless services. This paper provides a comprehensive overview of NASA cooperative research with the FAA, RTCA, airlines and universities to obtain laboratory radiated emission data for numerous PED types, aircraft radio frequency (RF) coupling measurements, estimated aircraft radio interference thresholds, and direct-effects EMI testing. These elements are combined together to provide high-confidence answers regarding the EMI potential of new wireless products being used on passenger airplanes. This paper presents a vision for harmonizing new wireless services with aeronautical radio services by detecting, assessing, controlling and mitigating the effects of EMI.
Saving energy and protecting environment of electric vehicles
NASA Astrophysics Data System (ADS)
Yuan, Lina; Chen, Huajun; Gong, Jing
2017-05-01
With the concept of low carbon economy, saving energy, and protecting environment spread, the development of the electric promotes the research pace of wireless charging electronic vehicles, which will become the best choice of energy supply in the future. To generalize and exploit the corresponding alternative fuels and the research and development, and promotion of electric vehicles, becomes the effective means to directly reduce the consumption of fuel, effectively relieves the problem of nervous energy and environmental pollution, and really conforms to the requirements of the national strategy of sustainable development in China. This paper introduces the status of electronic cars and wireless charging, expounds the principle of wireless charging, and concludes the full text.
A study of IEEE 802.15.4 security framework for wireless body area networks.
Saleem, Shahnaz; Ullah, Sana; Kwak, Kyung Sup
2011-01-01
A Wireless Body Area Network (WBAN) is a collection of low-power and lightweight wireless sensor nodes that are used to monitor the human body functions and the surrounding environment. It supports a number of innovative and interesting applications, including ubiquitous healthcare and Consumer Electronics (CE) applications. Since WBAN nodes are used to collect sensitive (life-critical) information and may operate in hostile environments, they require strict security mechanisms to prevent malicious interaction with the system. In this paper, we first highlight major security requirements and Denial of Service (DoS) attacks in WBAN at Physical, Medium Access Control (MAC), Network, and Transport layers. Then we discuss the IEEE 802.15.4 security framework and identify the security vulnerabilities and major attacks in the context of WBAN. Different types of attacks on the Contention Access Period (CAP) and Contention Free Period (CFP) parts of the superframe are analyzed and discussed. It is observed that a smart attacker can successfully corrupt an increasing number of GTS slots in the CFP period and can considerably affect the Quality of Service (QoS) in WBAN (since most of the data is carried in CFP period). As we increase the number of smart attackers the corrupted GTS slots are eventually increased, which prevents the legitimate nodes to utilize the bandwidth efficiently. This means that the direct adaptation of IEEE 802.15.4 security framework for WBAN is not totally secure for certain WBAN applications. New solutions are required to integrate high level security in WBAN.
Yin, Ming; Li, Hao; Bull, Christopher; Borton, David A; Aceros, Juan; Larson, Lawrence; Nurmikko, Arto V
2013-01-01
In this paper we present a new type of head-mounted wireless neural recording device in a highly compact package, dedicated for untethered laboratory animal research and designed for future mobile human clinical use. The device, which takes its input from an array of intracortical microelectrode arrays (MEA) has ninety-seven broadband parallel neural recording channels and was integrated on to two custom designed printed circuit boards. These house several low power, custom integrated circuits, including a preamplifier ASIC, a controller ASIC, plus two SAR ADCs, a 3-axis accelerometer, a 48MHz clock source, and a Manchester encoder. Another ultralow power RF chip supports an OOK transmitter with the center frequency tunable from 3GHz to 4GHz, mounted on a separate low loss dielectric board together with a 3V LDO, with output fed to a UWB chip antenna. The IC boards were interconnected and packaged in a polyether ether ketone (PEEK) enclosure which is compatible with both animal and human use (e.g. sterilizable). The entire system consumes 17mA from a 1.2Ahr 3.6V Li-SOCl2 1/2AA battery, which operates the device for more than 2 days. The overall system includes a custom RF receiver electronics which are designed to directly interface with any number of commercial (or custom) neural signal processors for multi-channel broadband neural recording. Bench-top measurements and in vivo testing of the device in rhesus macaques are presented to demonstrate the performance of the wireless neural interface.
A Study of IEEE 802.15.4 Security Framework for Wireless Body Area Networks
Saleem, Shahnaz; Ullah, Sana; Kwak, Kyung Sup
2011-01-01
A Wireless Body Area Network (WBAN) is a collection of low-power and lightweight wireless sensor nodes that are used to monitor the human body functions and the surrounding environment. It supports a number of innovative and interesting applications, including ubiquitous healthcare and Consumer Electronics (CE) applications. Since WBAN nodes are used to collect sensitive (life-critical) information and may operate in hostile environments, they require strict security mechanisms to prevent malicious interaction with the system. In this paper, we first highlight major security requirements and Denial of Service (DoS) attacks in WBAN at Physical, Medium Access Control (MAC), Network, and Transport layers. Then we discuss the IEEE 802.15.4 security framework and identify the security vulnerabilities and major attacks in the context of WBAN. Different types of attacks on the Contention Access Period (CAP) and Contention Free Period (CFP) parts of the superframe are analyzed and discussed. It is observed that a smart attacker can successfully corrupt an increasing number of GTS slots in the CFP period and can considerably affect the Quality of Service (QoS) in WBAN (since most of the data is carried in CFP period). As we increase the number of smart attackers the corrupted GTS slots are eventually increased, which prevents the legitimate nodes to utilize the bandwidth efficiently. This means that the direct adaptation of IEEE 802.15.4 security framework for WBAN is not totally secure for certain WBAN applications. New solutions are required to integrate high level security in WBAN. PMID:22319358
NASA Astrophysics Data System (ADS)
Anton, S. R.; Taylor, S. G.; Raby, E. Y.; Farinholt, K. M.
2013-03-01
With a global interest in the development of clean, renewable energy, wind energy has seen steady growth over the past several years. Advances in wind turbine technology bring larger, more complex turbines and wind farms. An important issue in the development of these complex systems is the ability to monitor the state of each turbine in an effort to improve the efficiency and power generation. Wireless sensor nodes can be used to interrogate the current state and health of wind turbine structures; however, a drawback of most current wireless sensor technology is their reliance on batteries for power. Energy harvesting solutions present the ability to create autonomous power sources for small, low-power electronics through the scavenging of ambient energy; however, most conventional energy harvesting systems employ a single mode of energy conversion, and thus are highly susceptible to variations in the ambient energy. In this work, a multi-source energy harvesting system is developed to power embedded electronics for wind turbine applications in which energy can be scavenged simultaneously from several ambient energy sources. Field testing is performed on a full-size, residential scale wind turbine where both vibration and solar energy harvesting systems are utilized to power wireless sensing systems. Two wireless sensors are investigated, including the wireless impedance device (WID) sensor node, developed at Los Alamos National Laboratory (LANL), and an ultra-low power RF system-on-chip board that is the basis for an embedded wireless accelerometer node currently under development at LANL. Results indicate the ability of the multi-source harvester to successfully power both sensors.
A 0.7-V 17.4- μ W 3-lead wireless ECG SoC.
Khayatzadeh, Mahmood; Zhang, Xiaoyang; Tan, Jun; Liew, Wen-Sin; Lian, Yong
2013-10-01
This paper presents a fully integrated sub-1 V 3-lead wireless ECG System-on-Chip (SoC) for wireless body sensor network applications. The SoC includes a two-channel ECG front-end with a driven-right-leg circuit, an 8-bit SAR ADC, a custom-designed 16-bit microcontroller, two banks of 16 kb SRAM, and a MICS band transceiver. The microcontroller and SRAM blocks are able to operate at sub-/near-threshold regime for the best energy consumption. The proposed SoC has been implemented in a standard 0.13- μ m CMOS process. Measurement results show the microcontroller consumes only 2.62 pJ per instruction at 0.35 V . Both microcontroller and memory blocks are functional down to 0.25 V. The entire SoC is capable of working at single 0.7-V supply. At the best case, it consumes 17.4 μ W in heart rate detection mode and 74.8 μW in raw data acquisition mode under sampling rate of 500 Hz. This makes it one of the best ECG SoCs among state-of-the-art biomedical chips.
Wireless Acoustic Measurement System
NASA Technical Reports Server (NTRS)
Anderson, Paul D.; Dorland, Wade D.; Jolly, Ronald L.
2007-01-01
A prototype wireless acoustic measurement system (WAMS) is one of two main subsystems of the Acoustic Prediction/ Measurement Tool, which comprises software, acoustic instrumentation, and electronic hardware combined to afford integrated capabilities for predicting and measuring noise emitted by rocket and jet engines. The other main subsystem is described in the article on page 8. The WAMS includes analog acoustic measurement instrumentation and analog and digital electronic circuitry combined with computer wireless local-area networking to enable (1) measurement of sound-pressure levels at multiple locations in the sound field of an engine under test and (2) recording and processing of the measurement data. At each field location, the measurements are taken by a portable unit, denoted a field station. There are ten field stations, each of which can take two channels of measurements. Each field station is equipped with two instrumentation microphones, a micro- ATX computer, a wireless network adapter, an environmental enclosure, a directional radio antenna, and a battery power supply. The environmental enclosure shields the computer from weather and from extreme acoustically induced vibrations. The power supply is based on a marine-service lead-acid storage battery that has enough capacity to support operation for as long as 10 hours. A desktop computer serves as a control server for the WAMS. The server is connected to a wireless router for communication with the field stations via a wireless local-area network that complies with wireless-network standard 802.11b of the Institute of Electrical and Electronics Engineers. The router and the wireless network adapters are controlled by use of Linux-compatible driver software. The server runs custom Linux software for synchronizing the recording of measurement data in the field stations. The software includes a module that provides an intuitive graphical user interface through which an operator at the control server can control the operations of the field stations for calibration and for recording of measurement data. A test engineer positions and activates the WAMS. The WAMS automatically establishes the wireless network. Next, the engineer performs pretest calibrations. Then the engineer executes the test and measurement procedures. After the test, the raw measurement files are copied and transferred, through the wireless network, to a hard disk in the control server. Subsequently, the data are processed into 1.3-octave spectrograms.
Wireless Acoustic Measurement System
NASA Technical Reports Server (NTRS)
Anderson, Paul D.; Dorland, Wade D.
2005-01-01
A prototype wireless acoustic measurement system (WAMS) is one of two main subsystems of the Acoustic Prediction/Measurement Tool, which comprises software, acoustic instrumentation, and electronic hardware combined to afford integrated capabilities for predicting and measuring noise emitted by rocket and jet engines. The other main subsystem is described in "Predicting Rocket or Jet Noise in Real Time" (SSC-00215-1), which appears elsewhere in this issue of NASA Tech Briefs. The WAMS includes analog acoustic measurement instrumentation and analog and digital electronic circuitry combined with computer wireless local-area networking to enable (1) measurement of sound-pressure levels at multiple locations in the sound field of an engine under test and (2) recording and processing of the measurement data. At each field location, the measurements are taken by a portable unit, denoted a field station. There are ten field stations, each of which can take two channels of measurements. Each field station is equipped with two instrumentation microphones, a micro-ATX computer, a wireless network adapter, an environmental enclosure, a directional radio antenna, and a battery power supply. The environmental enclosure shields the computer from weather and from extreme acoustically induced vibrations. The power supply is based on a marine-service lead-acid storage battery that has enough capacity to support operation for as long as 10 hours. A desktop computer serves as a control server for the WAMS. The server is connected to a wireless router for communication with the field stations via a wireless local-area network that complies with wireless-network standard 802.11b of the Institute of Electrical and Electronics Engineers. The router and the wireless network adapters are controlled by use of Linux-compatible driver software. The server runs custom Linux software for synchronizing the recording of measurement data in the field stations. The software includes a module that provides an intuitive graphical user interface through which an operator at the control server can control the operations of the field stations for calibration and for recording of measurement data. A test engineer positions and activates the WAMS. The WAMS automatically establishes the wireless network. Next, the engineer performs pretest calibrations. Then the engineer executes the test and measurement procedures. After the test, the raw measurement files are copied and transferred, through the wireless network, to a hard disk in the control server. Subsequently, the data are processed into 1/3-octave spectrograms.
Energy-efficient sensing in wireless sensor networks using compressed sensing.
Razzaque, Mohammad Abdur; Dobson, Simon
2014-02-12
Sensing of the application environment is the main purpose of a wireless sensor network. Most existing energy management strategies and compression techniques assume that the sensing operation consumes significantly less energy than radio transmission and reception. This assumption does not hold in a number of practical applications. Sensing energy consumption in these applications may be comparable to, or even greater than, that of the radio. In this work, we support this claim by a quantitative analysis of the main operational energy costs of popular sensors, radios and sensor motes. In light of the importance of sensing level energy costs, especially for power hungry sensors, we consider compressed sensing and distributed compressed sensing as potential approaches to provide energy efficient sensing in wireless sensor networks. Numerical experiments investigating the effectiveness of compressed sensing and distributed compressed sensing using real datasets show their potential for efficient utilization of sensing and overall energy costs in wireless sensor networks. It is shown that, for some applications, compressed sensing and distributed compressed sensing can provide greater energy efficiency than transform coding and model-based adaptive sensing in wireless sensor networks.
An Energy-Efficient ASIC for Wireless Body Sensor Networks in Medical Applications.
Xiaoyu Zhang; Hanjun Jiang; Lingwei Zhang; Chun Zhang; Zhihua Wang; Xinkai Chen
2010-02-01
An energy-efficient application-specific integrated circuit (ASIC) featured with a work-on-demand protocol is designed for wireless body sensor networks (WBSNs) in medical applications. Dedicated for ultra-low-power wireless sensor nodes, the ASIC consists of a low-power microcontroller unit (MCU), a power-management unit (PMU), reconfigurable sensor interfaces, communication ports controlling a wireless transceiver, and an integrated passive radio-frequency (RF) receiver with energy harvesting ability. The MCU, together with the PMU, provides quite flexible communication and power-control modes for energy-efficient operations. The always-on passive RF receiver with an RF energy harvesting block offers the sensor nodes the capability of work-on-demand with zero standby power. Fabricated in standard 0.18-¿m complementary metal-oxide semiconductor technology, the ASIC occupies a die area of 2 mm × 2.5 mm. A wireless body sensor network sensor-node prototype using this ASIC only consumes < 10-nA current under the passive standby mode, and < 10 ¿A under the active standby mode, when supplied by a 3-V battery.
Bluetooth Low Energy: Wireless Connectivity for Medical Monitoring
Omre, Alf Helge
2010-01-01
Electronic wireless sensors could cut medical costs by enabling physicians to remotely monitor vital signs such as blood pressure, blood glucose, and blood oxygenation while patients remain at home. According to the IDC report “Worldwide Bluetooth Semiconductor 2008-2012 Forecast,” published November 2008, a forthcoming radio frequency communication (“wireless connectivity”) standard, Bluetooth low energy, will link wireless sensors via radio signals to the 70% of cell phones and computers likely to be fitted with the next generation of Bluetooth wireless technology, leveraging a ready-built infrastructure for data transmission. Analysis of trends indicated by this data can help physicians better manage diseases such as diabetes. The technology also addresses the concerns of cost, compatibility, and interoperability that have previously stalled widespread adoption of wireless technology in medical applications. PMID:20307407
Bluetooth low energy: wireless connectivity for medical monitoring.
Omre, Alf Helge
2010-03-01
Electronic wireless sensors could cut medical costs by enabling physicians to remotely monitor vital signs such as blood pressure, blood glucose, and blood oxygenation while patients remain at home. According to the IDC report "Worldwide Bluetooth Semiconductor 2008-2012 Forecast," published November 2008, a forthcoming radio frequency communication ("wireless connectivity") standard, Bluetooth low energy, will link wireless sensors via radio signals to the 70% of cell phones and computers likely to be fitted with the next generation of Bluetooth wireless technology, leveraging a ready-built infrastructure for data transmission. Analysis of trends indicated by this data can help physicians better manage diseases such as diabetes. The technology also addresses the concerns of cost, compatibility, and interoperability that have previously stalled widespread adoption of wireless technology in medical applications. (c) 2010 Diabetes Technology Society.
Experience of wireless local area network in a radiation oncology department.
Mandal, Abhijit; Asthana, Anupam Kumar; Aggarwal, Lalit Mohan
2010-01-01
The aim of this work is to develop a wireless local area network (LAN) between different types of users (Radiation Oncologists, Radiological Physicists, Radiation Technologists, etc) for efficient patient data management and to made easy the availability of information (chair side) to improve the quality of patient care in Radiation Oncology department. We have used mobile workstations (Laptops) and stationary workstations, all equipped with wireless-fidelity (Wi-Fi) access. Wireless standard 802.11g (as recommended by Institute of Electrical and Electronic Engineers (IEEE, Piscataway, NJ) has been used. The wireless networking was configured with the Service Set Identifier (SSID), Media Access Control (MAC) address filtering, and Wired Equivalent Privacy (WEP) network securities. We are successfully using this wireless network in sharing the indigenously developed patient information management software. The proper selection of the hardware and the software combined with a secure wireless LAN setup will lead to a more efficient and productive radiation oncology department.
The Coverage Problem in Video-Based Wireless Sensor Networks: A Survey
Costa, Daniel G.; Guedes, Luiz Affonso
2010-01-01
Wireless sensor networks typically consist of a great number of tiny low-cost electronic devices with limited sensing and computing capabilities which cooperatively communicate to collect some kind of information from an area of interest. When wireless nodes of such networks are equipped with a low-power camera, visual data can be retrieved, facilitating a new set of novel applications. The nature of video-based wireless sensor networks demands new algorithms and solutions, since traditional wireless sensor networks approaches are not feasible or even efficient for that specialized communication scenario. The coverage problem is a crucial issue of wireless sensor networks, requiring specific solutions when video-based sensors are employed. In this paper, it is surveyed the state of the art of this particular issue, regarding strategies, algorithms and general computational solutions. Open research areas are also discussed, envisaging promising investigation considering coverage in video-based wireless sensor networks. PMID:22163651
Use of consumer wireless devices by South Africans with severe communication disability
Bryen, Diane Nelson; Moolman, Enid; Morris, John
2016-01-01
Background Advancements in wireless technology (e.g. cell phones and tablets) have opened new communication opportunities and environments for individuals with severe communication disabilities. The advancement of these technologies poses challenges to ensuring that these individuals enjoy equal access to this increasingly essential technology. However, a paucity of research exists. Objectives To describe the nature and frequency with which South African adults with severe communication disabilities have access to and use wireless devices, as well as the types of activities for which wireless devices are used. Method Survey research was conducted with 30 individuals who use augmentative and alternative communication (AAC) technology using the Survey of User Needs Questionnaire developed in the United States, and localized to the South African context. Results All participants, despite their limited education, unemployment and low economic status, owned and/or used mainstream wireless devices. Slightly more than half of the participants (53.3%) needed adaptations to their wireless devices. Advantages of using wireless devices were highlighted, including connecting with others (through using text messaging, social networking, making plans with others, sharing photos and videos with friends), for leisure activities (e.g. listening to music, watching videos, playing games), and for safety purposes (e.g. to navigate when lost, using the device when in trouble and needing immediate assistance). Conclusion These wireless devices offer substantial benefits and opportunities to individuals with disabilities who rely on AAC in terms of independence, social participation, education and safety/security. However, they still do not enjoy equal opportunity to access and use wireless devices relative to the non-disabled population. PMID:28730045
Use of consumer wireless devices by South Africans with severe communication disability.
Bornman, Juan; Bryen, Diane Nelson; Moolman, Enid; Morris, John
2016-01-01
Advancements in wireless technology (e.g. cell phones and tablets) have opened new communication opportunities and environments for individuals with severe communication disabilities. The advancement of these technologies poses challenges to ensuring that these individuals enjoy equal access to this increasingly essential technology. However, a paucity of research exists. To describe the nature and frequency with which South African adults with severe communication disabilities have access to and use wireless devices, as well as the types of activities for which wireless devices are used. Survey research was conducted with 30 individuals who use augmentative and alternative communication (AAC) technology using the Survey of User Needs Questionnaire developed in the United States, and localized to the South African context. All participants, despite their limited education, unemployment and low economic status, owned and/or used mainstream wireless devices. Slightly more than half of the participants (53.3%) needed adaptations to their wireless devices. Advantages of using wireless devices were highlighted, including connecting with others (through using text messaging, social networking, making plans with others, sharing photos and videos with friends), for leisure activities (e.g. listening to music, watching videos, playing games), and for safety purposes (e.g. to navigate when lost, using the device when in trouble and needing immediate assistance). These wireless devices offer substantial benefits and opportunities to individuals with disabilities who rely on AAC in terms of independence, social participation, education and safety/security. However, they still do not enjoy equal opportunity to access and use wireless devices relative to the non-disabled population.
2008-05-07
The Federal Communications Commission (Commission) adopts various proposals to amend its hearing aid compatibility policies and requirements pertaining to wireless services, including modifications and other requirements along the framework proposed in a consensus plan (Joint Consensus Plan) developed jointly by industry and representatives for the deaf and hard of hearing community. The Commission anticipates that these rule changes, taken together and largely supported by manufacturers, service providers, and consumers with hearing loss, will meet statutory obligations to ensure reasonable access to telephone service by persons with impaired hearing. These requirements are intended to benefit wireless users in the deaf and hard of hearing community, including the most disadvantaged who are more likely to rely on telecoil-equipped hearing aids, as well as to ensure that these consumers have a variety of handsets available to them, including handsets with innovative features.
65 nm LP/GP mix low cost platform for multi-media wireless and consumer applications
NASA Astrophysics Data System (ADS)
Tavel, B.; Duriez, B.; Gwoziecki, R.; Basso, M. T.; Julien, C.; Ortolland, C.; Laplanche, Y.; Fox, R.; Sabouret, E.; Detcheverry, C.; Boeuf, F.; Morin, P.; Barge, D.; Bidaud, M.; Biénacel, J.; Garnier, P.; Cooper, K.; Chapon, J. D.; Trouiller, Y.; Belledent, J.; Broekaart, M.; Gouraud, P.; Denais, M.; Huard, V.; Rochereau, K.; Difrenza, R.; Planes, N.; Marin, M.; Boret, S.; Gloria, D.; Vanbergue, S.; Abramowitz, P.; Vishnubhotla, L.; Reber, D.; Stolk, P.; Woo, M.; Arnaud, F.
2006-04-01
A complete 65 nm CMOS platform, called LP/GP Mix, has been developed employing thick oxide transistor (IO), Low Power (LP) and General Purpose (GP) devices on the same chip. Dedicated to wireless multi-media and consumer applications, this new triple gate oxide platform is low cost (+1mask only) and saves over 35% of dynamic power with the use of the low operating voltage GP. The LP/GP mix shows competitive digital performance with a ring oscillator (FO = 1) speed equal to 7 ps per stage (GP) and 6T-SRAM static power lower than 10 pA/cell (LP). Compatible with mixed-signal design requirements, transistors show high voltage gain, low mismatch factor and low flicker noise. Moreover, to address mobile phone demands, excellent RF performance has been achieved with FT = 160 GHz for LP and 280 GHz for GP nMOS transistors.
Doctor-patient communication in the e-health era.
Weiner, Jonathan P
2012-08-28
The digital revolution will have a profound impact on how physicians and health care delivery organizations interact with patients and the community at-large. Over the coming decades, face-to-face patient/doctor contacts will become less common and exchanges between consumers and providers will increasingly be mediated by electronic devices.In highly developed health care systems like those in Israel, the United States, and Europe, most aspects of the health care and consumer health experience are becoming supported by a wide array of technology such as electronic and personal health records (EHRs and PHRs), biometric & telemedicine devices, and consumer-focused wireless and wired Internet applications.In an article in this issue, Peleg and Nazarenko report on a survey they fielded within Israel's largest integrated delivery system regarding patient views on the use of electronic communication with their doctors via direct-access mobile phones and e-mail. A previous complementary paper describes the parallel perspectives of the physician staff at the same organization. These two surveys offer useful insights to clinicians, managers, researchers, and policymakers on how best to integrate e-mail and direct-to-doctor mobile phones into their practice settings. These papers, along with several other recent Israeli studies on e-health, also provide an opportunity to step back and take stock of the dramatic impact that information & communication technology (ICT) and health information technology (HIT) will have on clinician/patient communication moving forward.The main goals of this commentary are to describe the scope of this issue and to offer a framework for understanding the potential impact that e-health tools will have on provider/patient communication. It will be essential that clinicians, managers, policymakers, and researchers gain an increased understanding of this trend so that health care systems around the globe can adapt, adopt, and embrace these rapidly evolving digital technologies.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-10
... Respondents Samsung Electronics Co., Ltd., Samsung Electronics America, Inc., and Samsung Telecommunications... with respect to Samsung Electronics Co., Ltd., Samsung Electronics America, Inc., and Samsung... Electronics Co., Ltd., Samsung Electronics America, Inc., Samsung Telecommunications America, LLC...
Wireless energizing system for an automated implantable sensor.
Swain, Biswaranjan; Nayak, Praveen P; Kar, Durga P; Bhuyan, Satyanarayan; Mishra, Laxmi P
2016-07-01
The wireless drive of an automated implantable electronic sensor has been explored for health monitoring applications. The proposed system comprises of an automated biomedical sensing system which is energized through resonant inductive coupling. The implantable sensor unit is able to monitor the body temperature parameter and sends back the corresponding telemetry data wirelessly to the data recoding unit. It has been observed that the wireless power delivery system is capable of energizing the automated biomedical implantable electronic sensor placed over a distance of 3 cm from the power transmitter with an energy transfer efficiency of 26% at the operating resonant frequency of 562 kHz. This proposed method ensures real-time monitoring of different human body temperatures around the clock. The monitored temperature data have been compared with a calibrated temperature measurement system to ascertain the accuracy of the proposed system. The investigated technique can also be useful for monitoring other body parameters such as blood pressure, bladder pressure, and physiological signals of the patient in vivo using various implantable sensors.
Smart Grid Communications System Blueprint
NASA Astrophysics Data System (ADS)
Clark, Adrian; Pavlovski, Chris
2010-10-01
Telecommunications operators are well versed in deploying 2G and 3G wireless networks. These networks presently support the mobile business user and/or retail consumer wishing to place conventional voice calls and data connections. The electrical power industry has recently commenced transformation of its distribution networks by deploying smart monitoring and control devices throughout their networks. This evolution of the network into a `smart grid' has also motivated the need to deploy wireless technologies that bridge the communication gap between the smart devices and information technology systems. The requirements of these networks differ from traditional wireless networks that communications operators have deployed, which have thus far forced energy companies to consider deploying their own wireless networks. We present our experience in deploying wireless networks to support the smart grid and highlight the key properties of these networks. These characteristics include application awareness, support for large numbers of simultaneous cell connections, high service coverage and prioritized routing of data. We also outline our target blueprint architecture that may be useful to the industry in building wireless and fixed networks to support the smart grid. By observing our experiences, telecommunications operators and equipment manufacturers will be able to augment their current networks and products in a way that accommodates the needs of the emerging industry of smart grids and intelligent electrical networks.
Distributed Similarity based Clustering and Compressed Forwarding for wireless sensor networks.
Arunraja, Muruganantham; Malathi, Veluchamy; Sakthivel, Erulappan
2015-11-01
Wireless sensor networks are engaged in various data gathering applications. The major bottleneck in wireless data gathering systems is the finite energy of sensor nodes. By conserving the on board energy, the life span of wireless sensor network can be well extended. Data communication being the dominant energy consuming activity of wireless sensor network, data reduction can serve better in conserving the nodal energy. Spatial and temporal correlation among the sensor data is exploited to reduce the data communications. Data similar cluster formation is an effective way to exploit spatial correlation among the neighboring sensors. By sending only a subset of data and estimate the rest using this subset is the contemporary way of exploiting temporal correlation. In Distributed Similarity based Clustering and Compressed Forwarding for wireless sensor networks, we construct data similar iso-clusters with minimal communication overhead. The intra-cluster communication is reduced using adaptive-normalized least mean squares based dual prediction framework. The cluster head reduces the inter-cluster data payload using a lossless compressive forwarding technique. The proposed work achieves significant data reduction in both the intra-cluster and the inter-cluster communications, with the optimal data accuracy of collected data. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Health monitoring of offshore structures using wireless sensor network: experimental investigations
NASA Astrophysics Data System (ADS)
Chandrasekaran, Srinivasan; Chitambaram, Thailammai
2016-04-01
This paper presents a detailed methodology of deploying wireless sensor network in offshore structures for structural health monitoring (SHM). Traditional SHM is carried out by visual inspections and wired systems, which are complicated and requires larger installation space to deploy while decommissioning is a tedious process. Wireless sensor networks can enhance the art of health monitoring with deployment of scalable and dense sensor network, which consumes lesser space and lower power consumption. Proposed methodology is mainly focused to determine the status of serviceability of large floating platforms under environmental loads using wireless sensors. Data acquired by the servers will analyze the data for their exceedance with respect to the threshold values. On failure, SHM architecture will trigger an alarm or an early warning in the form of alert messages to alert the engineer-in-charge on board; emergency response plans can then be subsequently activated, which shall minimize the risk involved apart from mitigating economic losses occurring from the accidents. In the present study, wired and wireless sensors are installed in the experimental model and the structural response, acquired is compared. The wireless system comprises of Raspberry pi board, which is programmed to transmit the acquired data to the server using Wi-Fi adapter. Data is then hosted in the webpage for further post-processing, as desired.
Third Generation Wireless Phone Threat Assessment for Aircraft Communication and Navigation Radios
NASA Technical Reports Server (NTRS)
Nguyen, Truong X.; Koppen, Sandra V.; Smith, Laura J.; Williams, Reuben A.; Salud, Maria Theresa P.
2005-01-01
Radiated emissions in aircraft communication and navigation bands are measured from third generation (3G) wireless mobile phones. The two wireless technologies considered are the latest available to general consumers in the US. The measurements are conducted using reverberation chambers. The results are compared against baseline emissions from laptop computers and personal digital assistant devices that are currently allowed to operate on aircraft. Using existing interference path loss data and receivers interference threshold, a risk assessment is performed for several aircraft communication and navigation radio systems. In addition, cumulative interference effects of multiple similar devices are conservatively estimated or bounded. The effects are computed by summing the interference power from individual devices that is scaled according to the interference path loss at its location.
New technology continues to invade healthcare. What are the strategic implications/outcomes?
Smith, Coy
2004-01-01
Healthcare technology continues to advance and be implemented in healthcare organizations. Nurse executives must strategically evaluate the effectiveness of each proposed system or device using a strategic planning process. Clinical information systems, computer-chip-based clinical monitoring devices, advanced Web-based applications with remote, wireless communication devices, clinical decision support software--all compete for capital and registered nurse salary dollars. The concept of clinical transformation is developed with new models of care delivery being supported by technology rather than driving care delivery. Senior nursing leadership's role in clinical transformation and healthcare technology implementation is developed. Proposed standards, expert group action, business and consumer groups, and legislation are reviewed as strategic drivers in the development of an electronic health record and healthcare technology. A matrix of advancing technology and strategic decision-making parameters are outlined.
The wireless data acquisition system based on Bluetooth
NASA Astrophysics Data System (ADS)
Cheng, En; Xu, Xiao-na; Wu, Si-long
2013-03-01
Bluetooth is one of the wireless communication technology, which is developing rapidly in recent years. As a result of low cost and short distance, Bluetooth can set up a special connection for portable electronic devices and stationary electronic equipment communication environment. The paper studies a data acquisition system based on Bluetooth. The system can collect the angle of motor rotation and send it to the Receiver through the Bluetooth. The results show that the system can be run normal.[1
Eyeglasses based wireless electrolyte and metabolite sensor platform.
Sempionatto, Juliane R; Nakagawa, Tatsuo; Pavinatto, Adriana; Mensah, Samantha T; Imani, Somayeh; Mercier, Patrick; Wang, Joseph
2017-05-16
The demand for wearable sensors has grown rapidly in recent years, with increasing attention being given to epidermal chemical sensing. Here, we present the first example of a fully integrated eyeglasses wireless multiplexed chemical sensing platform capable of real-time monitoring of sweat electrolytes and metabolites. The new concept has been realized by integrating an amperometric lactate biosensor and a potentiometric potassium ion-selective electrode into the two nose-bridge pads of the glasses and interfacing them with a wireless electronic backbone placed on the glasses' arms. Simultaneous real-time monitoring of sweat lactate and potassium levels with no apparent cross-talk is demonstrated along with wireless signal transduction. The electrochemical sensors were screen-printed on polyethylene terephthalate (PET) stickers and placed on each side of the glasses' nose pads in order to monitor sweat metabolites and electrolytes. The electronic backbone on the arms of the glasses' frame offers control of the amperometric and potentiometric transducers and enables Bluetooth wireless data transmission to the host device. The new eyeglasses system offers an interchangeable-sensor feature in connection with a variety of different nose-bridge amperometric and potentiometric sensor stickers. For example, the lactate bridge-pad sensor was replaced with a glucose one to offer convenient monitoring of sweat glucose. Such a fully integrated wireless "Lab-on-a-Glass" multiplexed biosensor platform can be readily expanded for the simultaneous monitoring of additional sweat electrolytes and metabolites.
49 CFR 395.16 - Electronic on-board recording devices.
Code of Federal Regulations, 2010 CFR
2010-10-01
... transfer through wired and wireless methods to portable computers used by roadside safety assurance... the results of power-on self-tests and diagnostic error codes. (e) Date and time. (1) The date and... part. Wireless communication information interchange methods must comply with the requirements of the...
Wireless fluorescence capsule for endoscopy using single photon-based detection
NASA Astrophysics Data System (ADS)
Al-Rawhani, Mohammed A.; Beeley, James; Cumming, David R. S.
2015-12-01
Fluorescence Imaging (FI) is a powerful technique in biological science and clinical medicine. Current FI devices that are used either for in-vivo or in-vitro studies are expensive, bulky and consume substantial power, confining the technique to laboratories and hospital examination rooms. Here we present a miniaturised wireless fluorescence endoscope capsule with low power consumption that will pave the way for future FI systems and applications. With enhanced sensitivity compared to existing technology we have demonstrated that the capsule can be successfully used to image tissue autofluorescence and targeted fluorescence via fluorophore labelling of tissues. The capsule incorporates a state-of-the-art complementary metal oxide semiconductor single photon avalanche detector imaging array, miniaturised optical isolation, wireless technology and low power design. When in use the capsule consumes only 30.9 mW, and deploys very low-level 468 nm illumination. The device has the potential to replace highly power-hungry intrusive optical fibre based endoscopes and to extend the range of clinical examination below the duodenum. To demonstrate the performance of our capsule, we imaged fluorescence phantoms incorporating principal tissue fluorophores (flavins) and absorbers (haemoglobin). We also demonstrated the utility of marker identification by imaging a 20 μM fluorescein isothiocyanate (FITC) labelling solution on mammalian tissue.
A novel topology control approach to maintain the node degree in dynamic wireless sensor networks.
Huang, Yuanjiang; Martínez, José-Fernán; Díaz, Vicente Hernández; Sendra, Juana
2014-03-07
Topology control is an important technique to improve the connectivity and the reliability of Wireless Sensor Networks (WSNs) by means of adjusting the communication range of wireless sensor nodes. In this paper, a novel Fuzzy-logic Topology Control (FTC) is proposed to achieve any desired average node degree by adaptively changing communication range, thus improving the network connectivity, which is the main target of FTC. FTC is a fully localized control algorithm, and does not rely on location information of neighbors. Instead of designing membership functions and if-then rules for fuzzy-logic controller, FTC is constructed from the training data set to facilitate the design process. FTC is proved to be accurate, stable and has short settling time. In order to compare it with other representative localized algorithms (NONE, FLSS, k-Neighbor and LTRT), FTC is evaluated through extensive simulations. The simulation results show that: firstly, similar to k-Neighbor algorithm, FTC is the best to achieve the desired average node degree as node density varies; secondly, FTC is comparable to FLSS and k-Neighbor in terms of energy-efficiency, but is better than LTRT and NONE; thirdly, FTC has the lowest average maximum communication range than other algorithms, which indicates that the most energy-consuming node in the network consumes the lowest power.
Scientific progress - wireless phones and brain cancer: current state of the science.
Carlo, G L; Jenrow, R S
2000-07-11
The current science is not definitive about health risks from wireless phones; however, the legitimate questions about safety that have arisen from recent studies make claims of absolute safety no longer supportable. The objective of this paper is to outline for primary care providers the results of the most current research on the possible impact of wireless phone use on human health. Presented are study results from Wireless Technology Research (WTR) program, the 7-year, $27 million effort funded by the wireless industry in the United States, that represents the world's most comprehensive research effort addressing this issue to date. Science-based recommendations for consumer interventions and future research are presented. Original studies performed under the WTR program as well as other relevant research from around the world. This article presents a synopsis of the peer-reviewed in vitro and in vivo laboratory research, and the peer-reviewed epidemiology studies supported by the WTR, as well as a summary of other relevant work. Only peer-reviewed scientific studies are presented, primarily WTR-sponsored research. In addition, results of the WTR literature surveillance program, which identified other relevant toxicology and epidemiology studies on an ongoing basis, are presented. These studies are presented in the context of their usefulness in providing intervention recommendations for consumers. Following a qualitative synthesis of specific relevant non-WTR research and a critical assessment of the WTR results, the following represents the current state of scientific understanding relevant to the public health impact of wireless phones: laboratory studies appear to have confirmed that radio frequency radiation from wireless phone antennas is insufficient to cause DNA breakage; however, this same radiation appears to cause genetic damage in human blood as measured through the formation of micronuclei. An increase in the rate of brain cancer mortality among hand-held cellular phone users as compared to car phone users, though not statistically significant, was observed in the WTR cohort study. A statistically significant increase in the risk of neuro-epithelial brain tumors was observed among cellular phone users in another case-control study. As new data emerge, our understanding of this complex problem will improve; however, at present there is a critical need for ongoing and open evaluation of the public health impact of new science, and communication of this science and derivative intervention options to those who are potentially affected.
Optical wireless communications to OC-768 and beyond
NASA Astrophysics Data System (ADS)
Medved, David B.; Davidovich, Leonid
2001-10-01
Laser and LED-based wireless communication systems are currently providing license-free interconnection for broadband voice, data and video transport. These systems allow for the immediate, reliable and low-cost extension of copper and fiber-based networks to any end user, providing efficient First Mile bypass access to high data rate backbone networks at speeds ranging from T-1 voice to full throughput ATM at 155 Mbps and up to Gigabit Ethernet. These wireless optical beams constitute a Virtual Fiber in the air, providing the capabilities of fiber in situations where wired connectivity is unavailable, impractical, expensive or slow-to-implement, while achieving a combination of low cost, speed and reliability that cannot be matched by microwave, mm wave, spread spectrum or other competing (actually complementary) wireless technologies. The carrier frequency of the optical beam is about 10,000 times higher than the highest frequencies used by the millimeter wave technology. By means of Wavelength Division Multiplexing more than 1000 independent data channels can be projected into the air on a single beam thus providing a potential bandwidth ten million times that of any RF solution. The twin barriers of physics and regulatory bureaucracy to this essentially infinite wireless bandwidth are thus eliminated by this Virtual Fiber. As user density and individual bandwidth needs escalate, the optical wireless will be the preferred medium of choice in both network and cellular interconnection. A mesh topology which integrates our optical wireless systems with the latest Optical Access switches and routing equipment will be described using case study examples from Japan to South America. As the Bandwidth Blowout continues to push the limits of electronics and especially in the case of DWDM (Dense Wavelength Division Multiples), the conventional optical wireless solutions are no longer feasible. Instead of using f.o. transceivers to convert photons to electrons and thence back to photons we have designed a series of airlinks whose transmitters and receivers operate without electronics. At the PATX (Photonic Airlink Transmitter), instead of demodulating the fiber optic input signals from a Network Interface Unit (NIU) we project the light from the polished terminated fiber end into the air using appropriate optics. Any signal being carried by the fiber from the NIU is now airborne without any intermediate processing electronics thus realizing the full potential of the optical carrier. At the receiver end (PARX - Photonic Airlink Receiver), the weak optical signals are collected by the appropriate optics (including combiners using large area MMF) and guided to the NIU (switch, PABX, etc.) by compatible fiber. It is necessary to maintain a large field-of-view at the receiver to ensure reliability, stability and ease of alignment. This is achieved by use of high N.A. fiber. In this paper we discuss the design trade off's, construction and field test results of several systems implementing the all- photonic wireless concept including: Transmission of WDM signals through the air at distances up to 1 km. Results with wireless transmission of Gigabit Ethernet using the Optiswitch modules as the NIU. Providing high speed wireless (Fast Ethernet and beyond) to the home at a cost of less than $250 per node. The paper will conclude with a discussion on the role of the all-photonic wireless technology in the emerging field of Passive Optical Networking.
Cross-layer cluster-based energy-efficient protocol for wireless sensor networks.
Mammu, Aboobeker Sidhik Koyamparambil; Hernandez-Jayo, Unai; Sainz, Nekane; de la Iglesia, Idoia
2015-04-09
Recent developments in electronics and wireless communications have enabled the improvement of low-power and low-cost wireless sensors networks (WSNs). One of the most important challenges in WSNs is to increase the network lifetime due to the limited energy capacity of the network nodes. Another major challenge in WSNs is the hot spots that emerge as locations under heavy traffic load. Nodes in such areas quickly drain energy resources, leading to disconnection in network services. In such an environment, cross-layer cluster-based energy-efficient algorithms (CCBE) can prolong the network lifetime and energy efficiency. CCBE is based on clustering the nodes to different hexagonal structures. A hexagonal cluster consists of cluster members (CMs) and a cluster head (CH). The CHs are selected from the CMs based on nodes near the optimal CH distance and the residual energy of the nodes. Additionally, the optimal CH distance that links to optimal energy consumption is derived. To balance the energy consumption and the traffic load in the network, the CHs are rotated among all CMs. In WSNs, energy is mostly consumed during transmission and reception. Transmission collisions can further decrease the energy efficiency. These collisions can be avoided by using a contention-free protocol during the transmission period. Additionally, the CH allocates slots to the CMs based on their residual energy to increase sleep time. Furthermore, the energy consumption of CH can be further reduced by data aggregation. In this paper, we propose a data aggregation level based on the residual energy of CH and a cost-aware decision scheme for the fusion of data. Performance results show that the CCBE scheme performs better in terms of network lifetime, energy consumption and throughput compared to low-energy adaptive clustering hierarchy (LEACH) and hybrid energy-efficient distributed clustering (HEED).
Zhou, Nanjia; Liu, Chengye; Lewis, Jennifer A; Ham, Donhee
2017-04-01
Radio-frequency (RF) electronics, which combine passive electromagnetic devices and active transistors to generate and process gigahertz (GHz) signals, provide a critical basis of ever-pervasive wireless networks. While transistors are best realized by top-down fabrication, relatively larger electromagnetic passives are within the reach of printing techniques. Here, direct writing of viscoelastic silver-nanoparticle inks is used to produce a broad array of RF passives operating up to 45 GHz. These include lumped devices such as inductors and capacitors, and wave-based devices such as transmission lines, their resonant networks, and antennas. Moreover, to demonstrate the utility of these printed RF passive structures in active RF electronic circuits, they are combined with discrete transistors to fabricate GHz self-sustained oscillators and synchronized oscillator arrays that provide RF references, and wireless transmitters clocked by the oscillators. This work demonstrates the synergy of direct ink writing and RF electronics for wireless applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Kiourti, Asimina; Psathas, Konstantinos A; Nikita, Konstantina S
2014-01-01
Wireless medical telemetry permits the measurement of physiological signals at a distance through wireless technologies. One of the latest applications is in the field of implantable and ingestible medical devices (IIMDs) with integrated antennas for wireless radiofrequency (RF) communication (telemetry) with exterior monitoring/control equipment. Implantable medical devices (MDs) perform an expanding variety of diagnostic and therapeutic functions, while ingestible MDs receive significant attention in gastrointestinal endoscopy. Design of such wireless IIMD telemetry systems is highly intriguing and deals with issues related to: operation frequency selection, electronics and powering, antenna design and performance, and modeling of the wireless channel. In this paper, we attempt to comparatively review the current status and challenges of IIMDs with wireless telemetry functionalities. Full solutions of commercial IIMDs are also recorded. The objective is to provide a comprehensive reference for scientists and developers in the field, while indicating directions for future research. © 2013 Wiley Periodicals, Inc.
Wireless power using magnetic resonance coupling for neural sensing applications
NASA Astrophysics Data System (ADS)
Yoon, Hargsoon; Kim, Hyunjung; Choi, Sang H.; Sanford, Larry D.; Geddis, Demetris; Lee, Kunik; Kim, Jaehwan; Song, Kyo D.
2012-04-01
Various wireless power transfer systems based on electromagnetic coupling have been investigated and applied in many biomedical applications including functional electrical stimulation systems and physiological sensing in humans and animals. By integrating wireless power transfer modules with wireless communication devices, electronic systems can deliver data and control system operation in untethered freely-moving conditions without requiring access through the skin, a potential source of infection. In this presentation, we will discuss a wireless power transfer module using magnetic resonance coupling that is specifically designed for neural sensing systems and in-vivo animal models. This research presents simple experimental set-ups and circuit models of magnetic resonance coupling modules and discusses advantages and concerns involved in positioning and sizing of source and receiver coils compared to conventional inductive coupling devices. Furthermore, the potential concern of tissue heating in the brain during operation of the wireless power transfer systems will also be addressed.
Applications of wireless sensor networks in marine environment monitoring: a survey.
Xu, Guobao; Shen, Weiming; Wang, Xianbin
2014-09-11
With the rapid development of society and the economy, an increasing number of human activities have gradually destroyed the marine environment. Marine environment monitoring is a vital problem and has increasingly attracted a great deal of research and development attention. During the past decade, various marine environment monitoring systems have been developed. The traditional marine environment monitoring system using an oceanographic research vessel is expensive and time-consuming and has a low resolution both in time and space. Wireless Sensor Networks (WSNs) have recently been considered as potentially promising alternatives for monitoring marine environments since they have a number of advantages such as unmanned operation, easy deployment, real-time monitoring, and relatively low cost. This paper provides a comprehensive review of the state-of-the-art technologies in the field of marine environment monitoring using wireless sensor networks. It first describes application areas, a common architecture of WSN-based oceanographic monitoring systems, a general architecture of an oceanographic sensor node, sensing parameters and sensors, and wireless communication technologies. Then, it presents a detailed review of some related projects, systems, techniques, approaches and algorithms. It also discusses challenges and opportunities in the research, development, and deployment of wireless sensor networks for marine environment monitoring.
Yin, Ming; Ghovanloo, Maysam
2013-01-01
We have used a well-known technique in wireless communication, pulse width modulation (PWM) of time division multiplexed (TDM) signals, within the architecture of a novel wireless integrated neural recording (WINeR) system. We have evaluated the performance of the PWM-based architecture and indicated its accuracy and potential sources of error through detailed theoretical analysis, simulations, and measurements on a setup consisting of a 15-channel WINeR prototype as the transmitter and two types of receivers; an Agilent 89600 vector signal analyzer and a custom wideband receiver, with 36 and 75 MHz of maximum bandwidth, respectively. Furthermore, we present simulation results from a realistic MATLAB-Simulink model of the entire WINeR system to observe the system behavior in response to changes in various parameters. We have concluded that the 15-ch WINeR prototype, which is fabricated in a 0.5-μm standard CMOS process and consumes 4.5 mW from ±1.5 V supplies, can acquire and wirelessly transmit up to 320 k-samples/s to a 75-MHz receiver with 8.4 bits of resolution, which is equivalent to a wireless data rate of ~ 2.26 Mb/s. PMID:19497823
Use of a wireless local area network in an orthodontic clinic.
Mupparapu, Muralidhar; Binder, Robert E; Cummins, John M
2005-06-01
Radiographic images and other patient records, including medical histories, demographics, and health insurance information, can now be stored digitally and accessed via patient management programs. However, digital image acquisition and diagnosis and treatment planning are independent tasks, and each is time consuming, especially when performed at different computer workstations. Networking or linking the computers in an office enhances access to imaging and treatment planning tools. Access can be further enhanced if the entire network is wireless. Thanks to wireless technology, stand-alone, desk-bound personal computers have been replaced with mobile, hand-held devices that can communicate with each other and the rest of the world via the Internet. As with any emerging technology, some issues should be kept in mind when adapting to the wireless environment. Foremost is network security. Second is the choice of mobile hardware devices that are used by the orthodontist, office staff, and patients. This article details the standards and choices in wireless technology that can be implemented in an orthodontic clinic and suggests how to select suitable mobile hardware for accessing or adding data to a preexisting network. The network security protocols discussed comply with HIPAA regulations and boost the efficiency of a modern orthodontic clinic.
A Low Power 2.4 GHz CMOS Mixer Using Forward Body Bias Technique for Wireless Sensor Network
NASA Astrophysics Data System (ADS)
Yin, C. J.; Murad, S. A. Z.; Harun, A.; Ramli, M. M.; Zulkifli, T. Z. A.; Karim, J.
2018-03-01
Wireless sensor network (WSN) is a highly-demanded application since the evolution of wireless generation which is often used in recent communication technology. A radio frequency (RF) transceiver in WSN should have a low power consumption to support long operating times of mobile devices. A down-conversion mixer is responsible for frequency translation in a receiver. By operating a down-conversion mixer at a low supply voltage, the power consumed by WSN receiver can be greatly reduced. This paper presents a development of low power CMOS mixer using forward body bias technique for wireless sensor network. The proposed mixer is implemented using CMOS 0.13 μm Silterra technology. The forward body bias technique is adopted to obtain low power consumption. The simulation results indicate that a low power consumption of 0.91 mW is achieved at 1.6 V supply voltage. Moreover, the conversion gain (CG) of 21.83 dB, the noise figure (NF) of 16.51 dB and the input-referred third-order intercept point (IIP3) of 8.0 dB at 2.4 GHz are obtained. The proposed mixer is suitable for wireless sensor network.
75 FR 55488 - Electronic On-Board Recorders for Hours-of-Service Compliance
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-13
... additional alternative for the data transfer between an EOBR and a roadside safety official's portable... [deg]F), although some components of wireless communications systems are specified to operate in a -20... Engineers (IEEE) 802.11 wireless communications requirement. Agency's Assessment and Decision The -40 [deg]C...
A compact, low-loss, tunable phase shifter on defect mitigated dielectrics up to 40 GHz
NASA Astrophysics Data System (ADS)
Orloff, Nathan; Long, Christian; Lu, Xifeng; Nair, Hari; Dawley, Natalie; Schlom, Darrell; Booth, James
With the emergence of the internet-of-things and increased connectivity of modern commerce, consumers have driven demand for wireless spectrum beyond current capacity and infrastructure capabilities. One way the telecommunications industry is addressing this problem is by pushing front-end electronics to higher frequencies, introducing carrier aggregation schemes, and developing spectrum-sharing techniques. Some of these solutions require frequency agile components that are vastly different from what is in today's marketplace. Perhaps the most basic and ubiquitous component in front-end electronics is the phase shifter. Phase shifters are particularly important for compact beam-forming antennas that may soon appear in commercial technology. Here, we demonstrate a compact, tunable phase shifter with very low insertion loss up to 40 GHz on a defect mitigated tunable dielectric. We demonstrate performance compared to barium-doped strontium titanate phase shifters. Such phase shifters could potentially meet the stringent size and performance characteristics demanded by telecommunications industry, readily facilitating massive multiple-input multiple-output antennas in the next-generation of mobile handsets.
EMI Standards for Wireless Voice and Data on Board Aircraft
NASA Technical Reports Server (NTRS)
Ely, Jay J.; Nguyen, Truong X.
2002-01-01
The use of portable electronic devices (PEDs) on board aircraft continues to be an increasing source of misunderstanding between passengers and flight-crews, and consequently, an issue of controversy between wireless product manufacturers and air transport regulatory authorities. This conflict arises primarily because of the vastly different regulatory objectives between commercial product and airborne equipment standards for avoiding electromagnetic interference (EMI). This paper summarizes international regulatory limits and test processes for measuring spurious radiated emissions from commercially available PEDs, and compares them to international standards for airborne equipment. The goal is to provide insight for wireless product developers desiring to extend the freedom of their customers to use wireless products on-board aircraft, and to identify future product characteristics, test methods and technologies that may facilitate improved wireless freedom for airline passengers.
A two-tiered self-powered wireless monitoring system architecture for bridge health management
NASA Astrophysics Data System (ADS)
Kurata, Masahiro; Lynch, Jerome P.; Galchev, Tzeno; Flynn, Michael; Hipley, Patrick; Jacob, Vince; van der Linden, Gwendolyn; Mortazawi, Amir; Najafi, Khalil; Peterson, Rebecca L.; Sheng, Li-Hong; Sylvester, Dennis; Thometz, Edward
2010-04-01
Bridges are an important societal resource used to carry vehicular traffic within a transportation network. As such, the economic impact of the failure of a bridge is high; the recent failure of the I-35W Bridge in Minnesota (2007) serves as a poignant example. Structural health monitoring (SHM) systems can be adopted to detect and quantify structural degradation and damage in an affordable and real-time manner. This paper presents a detailed overview of a multi-tiered architecture for the design of a low power wireless monitoring system for large and complex infrastructure systems. The monitoring system architecture employs two wireless sensor nodes, each with unique functional features and varying power demand. At the lowest tier of the system architecture is the ultra-low power Phoenix wireless sensor node whose design has been optimized to draw minimal power during standby. These ultra low-power nodes are configured to communicate their measurements to a more functionally-rich wireless sensor node residing on the second-tier of the monitoring system architecture. While the Narada wireless sensor node offers more memory, greater processing power and longer communication ranges, it also consumes more power during operation. Radio frequency (RF) and mechanical vibration power harvesting is integrated with the wireless sensor nodes to allow them to operate freely for long periods of time (e.g., years). Elements of the proposed two-tiered monitoring system architecture are validated upon an operational long-span suspension bridge.
Baker, Paul M A; Moon, Nathan W
2008-01-01
The near universal deployment in the United States of a wide variety of information and communications technologies, both wired and wireless, creates potential barriers to use for several key populations, including the poor, people with disabilities, and the aging. Equal access to wireless technologies and services can be achieved through a variety of mechanisms, including legislation and regulations, market-based solutions, and awareness and outreach-based approaches. This article discusses the results of policy research conducted by the Rehabilitation Engineering Research Center on Wireless Technologies (Wireless RERC) using policy Delphi polling methodology to probe stakeholders' opinions on key access barrier issues and to explore potential policy responses. Participants included disability advocates, disability/wireless technology policy makers, and product developers/manufacturers. Respondent input informed subsequent development of potential policy initiatives to increase access to these technologies. The findings from the Delphi suggest that awareness issues remain most important, especially manufacturer awareness of user needs and availability of consumer information for selecting the most appropriate wireless devices and services. Other key issues included the ability of people with disabilities to afford technologies and inadequacies in legislation and policy making for ensuring their general accessibility, as well as usefulness in emergencies. Technical issues, including interoperability, speech-to-text conversion, and hearing aid compatibility, were also identified by participating stakeholders as important. To address all these issues, Delphi respondents favored goals and options congruent with voluntary market-driven solutions where possible but also supported federal involvement, where necessary, to aid this process.
Triple Play over Satellite, Ka-Band Making the Difference
NASA Astrophysics Data System (ADS)
Benoit, Guillaume; Fenech, Hector; Pezzana, Stefano
Over the last years a number of operators have been deploying satellite-based consumer internet access services to reduce the digital divide and capture the market of households not covered by ADSL, cable or wireless broadband. These operators are proposing a step change improvement in the economics of consumer service, with lower terminal costs, broadband access with monthly fees comparable to ADSL and an integrated technology simplifying the process of terminal installation, provisioning and management.
[Access control management in electronic health records: a systematic literature review].
Carrión Señor, Inmaculada; Fernández Alemán, José Luis; Toval, Ambrosio
2012-01-01
This study presents the results of a systematic literature review of aspects related to access control in electronic health records systems, wireless security and privacy and security training for users. Information sources consisted of original articles found in Medline, ACM Digital Library, Wiley InterScience, IEEE Digital Library, Science@Direct, MetaPress, ERIC, CINAHL and Trip Database, published between January 2006 and January 2011. A total of 1,208 articles were extracted using a predefined search string and were reviewed by the authors. The final selection consisted of 24 articles. Of the selected articles, 21 dealt with access policies in electronic health records systems. Eleven articles discussed whether access to electronic health records should be granted by patients or by health organizations. Wireless environments were only considered in three articles. Finally, only four articles explicitly mentioned that technical training of staff and/or patients is required. Role-based access control is the preferred mechanism to deploy access policy by the designers of electronic health records. In most systems, access control is managed by users and health professionals, which promotes patients' right to control personal information. Finally, the security of wireless environments is not usually considered. However, one line of research is eHealth in mobile environments, called mHealth. Copyright © 2011 SESPAS. Published by Elsevier Espana. All rights reserved.
Wireless Power Transfer to Millimeter-Sized Gastrointestinal Electronics Validated in a Swine Model.
Abid, Abubakar; O'Brien, Jonathan M; Bensel, Taylor; Cleveland, Cody; Booth, Lucas; Smith, Brian R; Langer, Robert; Traverso, Giovanni
2017-04-27
Electronic devices placed in the gastrointestinal (GI) tract for prolonged periods have the potential to transform clinical evaluation and treatment. One challenge to the deployment of such gastroresident electronics is the difficulty in powering millimeter-sized electronics devices without using batteries, which compromise biocompatibility and long-term residence. We examined the feasibility of leveraging mid-field wireless powering to transfer power from outside of the body to electronics at various locations along the GI tract. Using simulations and ex vivo measurements, we designed mid-field antennas capable of operating efficiently in tissue at 1.2 GHz. These antennas were then characterized in vivo in five anesthetized pigs, by placing one antenna outside the body, and the other antenna inside the body endoscopically, at the esophagus, stomach, and colon. Across the animals tested, mean transmission efficiencies of -41.2, -36.1, and -34.6 dB were achieved in vivo while coupling power from outside the body to the esophagus, stomach, and colon, respectively. This corresponds to power levels of 37.5 μW, 123 μW and 173 μW received by antennas in the respective locations, while keeping radiation exposure levels below safety thresholds. These power levels are sufficient to wirelessly power a range of medical devices from outside of the body.
Wireless Power Transfer to Millimeter-Sized Gastrointestinal Electronics Validated in a Swine Model
NASA Astrophysics Data System (ADS)
Abid, Abubakar; O'Brien, Jonathan M.; Bensel, Taylor; Cleveland, Cody; Booth, Lucas; Smith, Brian R.; Langer, Robert; Traverso, Giovanni
2017-04-01
Electronic devices placed in the gastrointestinal (GI) tract for prolonged periods have the potential to transform clinical evaluation and treatment. One challenge to the deployment of such gastroresident electronics is the difficulty in powering millimeter-sized electronics devices without using batteries, which compromise biocompatibility and long-term residence. We examined the feasibility of leveraging mid-field wireless powering to transfer power from outside of the body to electronics at various locations along the GI tract. Using simulations and ex vivo measurements, we designed mid-field antennas capable of operating efficiently in tissue at 1.2 GHz. These antennas were then characterized in vivo in five anesthetized pigs, by placing one antenna outside the body, and the other antenna inside the body endoscopically, at the esophagus, stomach, and colon. Across the animals tested, mean transmission efficiencies of -41.2, -36.1, and -34.6 dB were achieved in vivo while coupling power from outside the body to the esophagus, stomach, and colon, respectively. This corresponds to power levels of 37.5 μW, 123 μW and 173 μW received by antennas in the respective locations, while keeping radiation exposure levels below safety thresholds. These power levels are sufficient to wirelessly power a range of medical devices from outside of the body.
Handheld spectrometers: the state of the art
NASA Astrophysics Data System (ADS)
Crocombe, Richard A.
2013-05-01
"Small" spectrometers fall into three broad classes: small versions of laboratory instruments, providing data, subsequently processed on a PC; dedicated analyzers, providing actionable information to an individual operator; and process analyzers, providing quantitative or semi-quantitative information to a process controller. The emphasis of this paper is on handheld dedicated analyzers. Many spectrometers have historically been large, possible fragile, expensive and complicated to use. The challenge over the last dozen years, as instruments have moved into the field, has been to make spectrometers smaller, affordable, rugged, easy-to-use, but most of all capable of delivering actionable results. Actionable results can dramatically improve the efficiency of a testing process and transform the way business is done. There are several keys to this handheld spectrometer revolution. Consumer electronics has given us powerful mobile platforms, compact batteries, clearly visible displays, new user interfaces, etc., while telecomm has revolutionized miniature optics, sources and detectors. While these technologies enable miniature spectrometers themselves, actionable information has demanded the development of rugged algorithms for material confirmation, unknown identification, mixture analysis and detection of suspicious materials in unknown matrices. These algorithms are far more sophisticated than the `correlation' or `dot-product' methods commonly used in benchtop instruments. Finally, continuing consumer electronics advances now enable many more technologies to be incorporated into handheld spectrometers, including Bluetooth, wireless, WiFi, GPS, cameras and bar code readers, and the continued size shrinkage of spectrometer `engines' leads to the prospect of dual technology or `hyphenated' handheld instruments.
Giovanni, Mazza G; Shenvi, Rohit; Battles, Marcie; Orthner, Helmuth F
2008-11-06
The eMonitor is a component of the ePatient system; a prototype system used by emergency medical services (EMS) personnel in the field to record and transmits electronic patient care report (ePCR) information interactively. The eMonitor component allows each Mobile Data Terminal (MDT) on an unreliable Cisco MobileIP wireless network to securely send and received XML messages used to update patient information to and from the MDT before, during and after the transport of a patient.
``Low Power Wireless Technologies: An Approach to Medical Applications''
NASA Astrophysics Data System (ADS)
Bellido O., Francisco J.; González R., Miguel; Moreno M., Antonio; de La Cruz F, José Luis
Wireless communication supposed a great both -quantitative and qualitative, jump in the management of the information, allowing the access and interchange of it without the need of a physical cable connection. The wireless transmission of voice and information has remained in constant evolution, arising new standards like BluetoothTM, WibreeTM or ZigbeeTM developed under the IEEE 802.15 norm. These newest wireless technologies are oriented to systems of communication of short-medium distance and optimized for a low cost and minor consume, becoming recognized as a flexible and reliable medium for data communications across a broad range of applications due to the potential that the wireless networks presents to operate in demanding environments providing clear advantages in cost, size, power, flexibility, and distributed intelligence. About the medical applications, the remote health or telecare (also called eHealth) is getting a bigger place into the manufacturers and medical companies, in order to incorporate products for assisted living and remote monitoring of health parameteres. At this point, the IEEE 1073, Personal Health Devices Working Group, stablish the framework for these kind of applications. Particularly, the 1073.3.X describes the physical and transport layers, where the new ultra low power short range wireless technologies can play a big role, providing solutions that allow the design of products which are particularly appropriate for monitor people’s health with interoperability requirements.
Lee, Yongkuk; Howe, Connor; Mishra, Saswat; Lee, Dong Sup; Mahmood, Musa; Piper, Matthew; Kim, Youngbin; Tieu, Katie; Byun, Hun-Soo; Coffey, James P; Shayan, Mahdis; Chun, Youngjae; Costanzo, Richard M; Yeo, Woon-Hong
2018-05-22
Recent wearable devices offer portable monitoring of biopotentials, heart rate, or physical activity, allowing for active management of human health and wellness. Such systems can be inserted in the oral cavity for measuring food intake in regard to controlling eating behavior, directly related to diseases such as hypertension, diabetes, and obesity. However, existing devices using plastic circuit boards and rigid sensors are not ideal for oral insertion. A user-comfortable system for the oral cavity requires an ultrathin, low-profile, and soft electronic platform along with miniaturized sensors. Here, we introduce a stretchable hybrid electronic system that has an exceptionally small form factor, enabling a long-range wireless monitoring of sodium intake. Computational study of flexible mechanics and soft materials provides fundamental aspects of key design factors for a tissue-friendly configuration, incorporating a stretchable circuit and sensor. Analytical calculation and experimental study enables reliable wireless circuitry that accommodates dynamic mechanical stress. Systematic in vitro modeling characterizes the functionality of a sodium sensor in the electronics. In vivo demonstration with human subjects captures the device feasibility for real-time quantification of sodium intake, which can be used to manage hypertension.
Mobile Internet Revenues: An Empirical Study of the I-Mode Portal.
ERIC Educational Resources Information Center
Jonason, Andreas; Eliasson, Gunnar
2001-01-01
Discusses new electronic commerce applications enabled by mobility and personalization over mobile devices; considers the convergence of the wireless, the fixed Internet, and the media industries; describes innovative pricing models; and reports results from a survey of users of I-mode, a wireless Internet service offering Web browsing and email…
NASA Astrophysics Data System (ADS)
Jia, Zhiwei; Yan, Guozheng; Zhu, Bingquan
2015-04-01
An implanted telemetry system for experimental animals with or without anaesthesia can be used to continuously monitor physiological parameters. This system is significant not only in the study of organisms but also in the evaluation of drug efficacy, artificial organs, and auxiliary devices. The system is composed of a miniature electronic capsule, a wireless power transmission module, a data-recording device, and a processing module. An electrocardiograph, a temperature sensor, and a pressure sensor are integrated in the miniature electronic capsule, in which the signals are transmitted in vitro by wireless communication after filtering, amplification, and A/D sampling. To overcome the power shortage of batteries, a wireless power transmission module based on electromagnetic induction was designed. The transmitting coil of a rectangular-section solenoid and a 3D receiving coil are proposed according to stability and safety constraints. Experiments show that at least 150 mW of power could pick up on the load in a volume of Φ10.5 mm × 11 mm, with a transmission efficiency of 2.56%. Vivisection experiments verified the feasibility of the integrated radio-telemetry system.
Wireless energizing system for an automated implantable sensor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swain, Biswaranjan; Nayak, Praveen P.; Kar, Durga P.
The wireless drive of an automated implantable electronic sensor has been explored for health monitoring applications. The proposed system comprises of an automated biomedical sensing system which is energized through resonant inductive coupling. The implantable sensor unit is able to monitor the body temperature parameter and sends back the corresponding telemetry data wirelessly to the data recoding unit. It has been observed that the wireless power delivery system is capable of energizing the automated biomedical implantable electronic sensor placed over a distance of 3 cm from the power transmitter with an energy transfer efficiency of 26% at the operating resonantmore » frequency of 562 kHz. This proposed method ensures real-time monitoring of different human body temperatures around the clock. The monitored temperature data have been compared with a calibrated temperature measurement system to ascertain the accuracy of the proposed system. The investigated technique can also be useful for monitoring other body parameters such as blood pressure, bladder pressure, and physiological signals of the patient in vivo using various implantable sensors.« less
Mupparapu, Muralidhar
2007-06-01
Although it sounds like a nonvital tooth, Bluetooth is actually one of technology's hottest trends. It is an industrial specification for wireless personal area networks, but for a busy orthodontic practice, it translates to freedom from cables and cords. Despite its enigmatic name, Bluetooth-based devices and the wireless technology that these gadgets work with are here to stay. They promise to make life easier for the electronic-device users of all stripes, and orthodontists are no exception. The purpose of this article is to orient orthodontists, office staff, and auxiliary personnel to this universal wireless technology that is slowly becoming an integral part of every office.
Design of on-board Bluetooth wireless network system based on fault-tolerant technology
NASA Astrophysics Data System (ADS)
You, Zheng; Zhang, Xiangqi; Yu, Shijie; Tian, Hexiang
2007-11-01
In this paper, the Bluetooth wireless data transmission technology is applied in on-board computer system, to realize wireless data transmission between peripherals of the micro-satellite integrating electronic system, and in view of the high demand of reliability of a micro-satellite, a design of Bluetooth wireless network based on fault-tolerant technology is introduced. The reliability of two fault-tolerant systems is estimated firstly using Markov model, then the structural design of this fault-tolerant system is introduced; several protocols are established to make the system operate correctly, some related problems are listed and analyzed, with emphasis on Fault Auto-diagnosis System, Active-standby switch design and Data-Integrity process.
Wireless powering of e -swimmers
NASA Astrophysics Data System (ADS)
Roche, Jérome; Carrara, Serena; Sanchez, Julien; Lannelongue, Jérémy; Loget, Gabriel; Bouffier, Laurent; Fischer, Peer; Kuhn, Alexander
2014-10-01
Miniaturized structures that can move in a controlled way in solution and integrate various functionalities are attracting considerable attention due to the potential applications in fields ranging from autonomous micromotors to roving sensors. Here we introduce a concept which allows, depending on their specific design, the controlled directional motion of objects in water, combined with electronic functionalities such as the emission of light, sensing, signal conversion, treatment and transmission. The approach is based on electric field-induced polarization, which triggers different chemical reactions at the surface of the object and thereby its propulsion. This results in a localized electric current that can power in a wireless way electronic devices in water, leading to a new class of electronic swimmers (e-swimmers).
Coexistence issues for a 2.4 GHz wireless audio streaming in presence of bluetooth paging and WLAN
NASA Astrophysics Data System (ADS)
Pfeiffer, F.; Rashwan, M.; Biebl, E.; Napholz, B.
2015-11-01
Nowadays, customers expect to integrate their mobile electronic devices (smartphones and laptops) in a vehicle to form a wireless network. Typically, IEEE 802.11 is used to provide a high-speed wireless local area network (WLAN) and Bluetooth is used for cable replacement applications in a wireless personal area network (PAN). In addition, Daimler uses KLEER as third wireless technology in the unlicensed (UL) 2.4 GHz-ISM-band to transmit full CD-quality digital audio. As Bluetooth, IEEE 802.11 and KLEER are operating in the same frequency band, it has to be ensured that all three technologies can be used simultaneously without interference. In this paper, we focus on the impact of Bluetooth and IEEE 802.11 as interferer in presence of a KLEER audio transmission.
Majumdar, Angshul; Gogna, Anupriya; Ward, Rabab
2014-08-25
We address the problem of acquiring and transmitting EEG signals in Wireless Body Area Networks (WBAN) in an energy efficient fashion. In WBANs, the energy is consumed by three operations: sensing (sampling), processing and transmission. Previous studies only addressed the problem of reducing the transmission energy. For the first time, in this work, we propose a technique to reduce sensing and processing energy as well: this is achieved by randomly under-sampling the EEG signal. We depart from previous Compressed Sensing based approaches and formulate signal recovery (from under-sampled measurements) as a matrix completion problem. A new algorithm to solve the matrix completion problem is derived here. We test our proposed method and find that the reconstruction accuracy of our method is significantly better than state-of-the-art techniques; and we achieve this while saving sensing, processing and transmission energy. Simple power analysis shows that our proposed methodology consumes considerably less power compared to previous CS based techniques.
Wireless sensors powered by microbial fuel cells.
Shantaram, Avinash; Beyenal, Haluk; Raajan, Raaja; Veluchamy, Angathevar; Lewandowski, Zbigniew
2005-07-01
Monitoring parameters characterizing water quality, such as temperature, pH, and concentrations of heavy metals in natural waters, is often followed by transmitting the data to remote receivers using telemetry systems. Such systems are commonly powered by batteries, which can be inconvenient at times because batteries have a limited lifetime and must be recharged or replaced periodically to ensure that sufficient energy is available to power the electronics. To avoid these inconveniences, a microbial fuel cell was designed to power electrochemical sensors and small telemetry systems to transmit the data acquired by the sensors to remote receivers. The microbial fuel cell was combined with low-power, high-efficiency electronic circuitry providing a stable power source for wireless data transmission. To generate enough power for the telemetry system, energy produced by the microbial fuel cell was stored in a capacitor and used in short bursts when needed. Since commercial electronic circuits require a minimum 3.3 V input and our cell was able to deliver a maximum of 2.1 V, a DC-DC converter was used to boost the potential. The DC-DC converter powered a transmitter, which gathered the data from the sensor and transmitted it wirelessly to a remote receiver. To demonstrate the utility of the system, temporal variations in temperature were measured, and the data were wirelessly transmitted to a remote receiver.
A distributed geo-routing algorithm for wireless sensor networks.
Joshi, Gyanendra Prasad; Kim, Sung Won
2009-01-01
Geographic wireless sensor networks use position information for greedy routing. Greedy routing works well in dense networks, whereas in sparse networks it may fail and require a recovery algorithm. Recovery algorithms help the packet to get out of the communication void. However, these algorithms are generally costly for resource constrained position-based wireless sensor networks (WSNs). In this paper, we propose a void avoidance algorithm (VAA), a novel idea based on upgrading virtual distance. VAA allows wireless sensor nodes to remove all stuck nodes by transforming the routing graph and forwarding packets using only greedy routing. In VAA, the stuck node upgrades distance unless it finds a next hop node that is closer to the destination than it is. VAA guarantees packet delivery if there is a topologically valid path. Further, it is completely distributed, immediately responds to node failure or topology changes and does not require planarization of the network. NS-2 is used to evaluate the performance and correctness of VAA and we compare its performance to other protocols. Simulations show our proposed algorithm consumes less energy, has an efficient path and substantially less control overheads.
Khairi, Ahmad; Thaokar, Chandrajit; Fedder, Gary; Paramesh, Jeyanandh; Rabin, Yoed
2014-09-01
In effort to improve thermal control in minimally invasive cryosurgery, the concept of a miniature, wireless, implantable sensing unit has been developed recently. The sensing unit integrates a wireless power delivery mechanism, wireless communication means, and a sensing core-the subject matter of the current study. The current study presents a CMOS ultra-miniature PTAT temperature sensing core and focuses on design principles, fabrication of a proof-of-concept, and characterization in a cryogenic environment. For this purpose, a 100 μm × 400 μm sensing core prototype has been fabricated using a 130 nm CMOS process. The senor has shown to operate between -180°C and room temperature, to consume power of less than 1 μW, and to have an uncertainty range of 1.4°C and non-linearity of 1.1%. Results of this study suggest that the sensing core is ready to be integrated in the sensing unit, where system integration is the subject matter of a parallel effort. Copyright © 2014 IPEM. Published by Elsevier Ltd. All rights reserved.
Location-Aware Dynamic Session-Key Management for Grid-Based Wireless Sensor Networks
Chen, Chin-Ling; Lin, I-Hsien
2010-01-01
Security is a critical issue for sensor networks used in hostile environments. When wireless sensor nodes in a wireless sensor network are distributed in an insecure hostile environment, the sensor nodes must be protected: a secret key must be used to protect the nodes transmitting messages. If the nodes are not protected and become compromised, many types of attacks against the network may result. Such is the case with existing schemes, which are vulnerable to attacks because they mostly provide a hop-by-hop paradigm, which is insufficient to defend against known attacks. We propose a location-aware dynamic session-key management protocol for grid-based wireless sensor networks. The proposed protocol improves the security of a secret key. The proposed scheme also includes a key that is dynamically updated. This dynamic update can lower the probability of the key being guessed correctly. Thus currently known attacks can be defended. By utilizing the local information, the proposed scheme can also limit the flooding region in order to reduce the energy that is consumed in discovering routing paths. PMID:22163606
Location-aware dynamic session-key management for grid-based Wireless Sensor Networks.
Chen, Chin-Ling; Lin, I-Hsien
2010-01-01
Security is a critical issue for sensor networks used in hostile environments. When wireless sensor nodes in a wireless sensor network are distributed in an insecure hostile environment, the sensor nodes must be protected: a secret key must be used to protect the nodes transmitting messages. If the nodes are not protected and become compromised, many types of attacks against the network may result. Such is the case with existing schemes, which are vulnerable to attacks because they mostly provide a hop-by-hop paradigm, which is insufficient to defend against known attacks. We propose a location-aware dynamic session-key management protocol for grid-based wireless sensor networks. The proposed protocol improves the security of a secret key. The proposed scheme also includes a key that is dynamically updated. This dynamic update can lower the probability of the key being guessed correctly. Thus currently known attacks can be defended. By utilizing the local information, the proposed scheme can also limit the flooding region in order to reduce the energy that is consumed in discovering routing paths.
NASA Fuel Tank Wireless Power and Signal Study
NASA Technical Reports Server (NTRS)
Merrill, Garrick
2015-01-01
Hydro Technologies has developed a custom electronics and mechanical framework for interfacing with off-the-shelf sensors to achieve through barrier sensing solutions. The core project technology relies on Hydro Technologies Wireless Power and Signal Interface (Wi psi) System for transmitting data and power wirelessly using magnetic fields. To accomplish this, Wi psi uses a multi-frequency local magnetic field to produce magnetic fields capable of carrying data and power through almost any material such as metals, seawater, concrete, and air. It will also work through layers of multiple materials.
A Silicon Carbide Wireless Temperature Sensing System for High Temperature Applications
Yang, Jie
2013-01-01
In this article, an extreme environment-capable temperature sensing system based on state-of-art silicon carbide (SiC) wireless electronics is presented. In conjunction with a Pt-Pb thermocouple, the SiC wireless sensor suite is operable at 450 °C while under centrifugal load greater than 1,000 g. This SiC wireless temperature sensing system is designed to be non-intrusively embedded inside the gas turbine generators, acquiring the temperature information of critical components such as turbine blades, and wirelessly transmitting the information to the receiver located outside the turbine engine. A prototype system was developed and verified up to 450 °C through high temperature lab testing. The combination of the extreme temperature SiC wireless telemetry technology and integrated harsh environment sensors will allow for condition-based in-situ maintenance of power generators and aircraft turbines in field operation, and can be applied in many other industries requiring extreme environment monitoring and maintenance. PMID:23377189
Smart roadside initiative : system design document.
DOT National Transportation Integrated Search
2015-09-01
This document describes the software design for the Smart Roadside Initiative (SRI) for the delivery of capabilities related to wireless roadside inspections, electronic screening/virtual weigh stations, universal electronic commercial vehicle identi...
A Novel Topology Control Approach to Maintain the Node Degree in Dynamic Wireless Sensor Networks
Huang, Yuanjiang; Martínez, José-Fernán; Díaz, Vicente Hernández; Sendra, Juana
2014-01-01
Topology control is an important technique to improve the connectivity and the reliability of Wireless Sensor Networks (WSNs) by means of adjusting the communication range of wireless sensor nodes. In this paper, a novel Fuzzy-logic Topology Control (FTC) is proposed to achieve any desired average node degree by adaptively changing communication range, thus improving the network connectivity, which is the main target of FTC. FTC is a fully localized control algorithm, and does not rely on location information of neighbors. Instead of designing membership functions and if-then rules for fuzzy-logic controller, FTC is constructed from the training data set to facilitate the design process. FTC is proved to be accurate, stable and has short settling time. In order to compare it with other representative localized algorithms (NONE, FLSS, k-Neighbor and LTRT), FTC is evaluated through extensive simulations. The simulation results show that: firstly, similar to k-Neighbor algorithm, FTC is the best to achieve the desired average node degree as node density varies; secondly, FTC is comparable to FLSS and k-Neighbor in terms of energy-efficiency, but is better than LTRT and NONE; thirdly, FTC has the lowest average maximum communication range than other algorithms, which indicates that the most energy-consuming node in the network consumes the lowest power. PMID:24608008
A Harsh Environment Wireless Pressure Sensing Solution Utilizing High Temperature Electronics
Yang, Jie
2013-01-01
Pressure measurement under harsh environments, especially at high temperatures, is of great interest to many industries. The applicability of current pressure sensing technologies in extreme environments is limited by the embedded electronics which cannot survive beyond 300 °C ambient temperature as of today. In this paper, a pressure signal processing and wireless transmission module based on the cutting-edge Silicon Carbide (SiC) devices is designed and developed, for a commercial piezoresistive MEMS pressure sensor from Kulite Semiconductor Products, Inc. Equipped with this advanced high-temperature SiC electronics, not only the sensor head, but the entire pressure sensor suite is capable of operating at 450 °C. The addition of wireless functionality also makes the pressure sensor more flexible in harsh environments by eliminating the costly and fragile cable connections. The proposed approach was verified through prototype fabrication and high temperature bench testing from room temperature up to 450 °C. This novel high-temperature pressure sensing technology can be applied in real-time health monitoring of many systems involving harsh environments, such as military and commercial turbine engines. PMID:23447006
A harsh environment wireless pressure sensing solution utilizing high temperature electronics.
Yang, Jie
2013-02-27
Pressure measurement under harsh environments, especially at high temperatures, is of great interest to many industries. The applicability of current pressure sensing technologies in extreme environments is limited by the embedded electronics which cannot survive beyond 300 °C ambient temperature as of today. In this paper, a pressure signal processing and wireless transmission module based on the cutting-edge Silicon Carbide (SiC) devices is designed and developed, for a commercial piezoresistive MEMS pressure sensor from Kulite Semiconductor Products, Inc. Equipped with this advanced high-temperature SiC electronics, not only the sensor head, but the entire pressure sensor suite is capable of operating at 450 °C. The addition of wireless functionality also makes the pressure sensor more flexible in harsh environments by eliminating the costly and fragile cable connections. The proposed approach was verified through prototype fabrication and high temperature bench testing from room temperature up to 450 °C. This novel high-temperature pressure sensing technology can be applied in real-time health monitoring of many systems involving harsh environments, such as military and commercial turbine engines.
[Design and Implementation of a Novel Networked Sleep Monitoring System].
Tian, Yu; Yan, Zhuangzhi; Tao, Jia'an
2015-03-01
To meet the need of cost-effective multi-biosignal monitoring devices nowadays, we designed a system based on super low power MCU. It can collect, record and transfer several signals including ECG, Oxygen saturation, thoracic and abdominal wall expansion, oronasal airflow signal. The data files can be stored on a flash chip and transferred to a computer by a USB module. In addition, the sensing data can be sent wirelessly in real time. Considering that long term work of wireless module consumes much energy, we present a low-power optimization method based on delay constraint. Lower energy consumption comes at the cost of little delay. Experimental results show that it can effectively decrease the energy consumption without changing wireless module and transfer protocol. Besides, our system is powered by two dry batteries and can work at least 8 hours throughout a whole night.
Wireless technologies for closed-loop retinal prostheses.
Ng, David C; Bai, Shun; Yang, Jiawei; Tran, Nhan; Skafidas, Efstratios
2009-12-01
In this paper, we discuss various technologies needed to develop retinal prostheses with wireless power and data telemetry operation. In addition to the need to communicate with the implanted device, supply of power to the retinal prosthesis is especially difficult. This is because, in the implanted state, the device is not fixed in position due to constant motion of the eye. Furthermore, a retinal prosthesis incorporating a high density electrode array of more than 1000 electrodes is expected to consume approximately 45 mW of power and require 300 kbps of image and stimulation data. The front end of the wireless power and data transmission, the antenna, needs to be small compared to the size of the eye. Also, the wireless module is expected to operate in the reactive near-field region due to small separation between the transmit and receive antennas compared to their size and corresponding operating wavelength. An inductive link is studied as a means to transfer power and for data telemetry between the implant and external unit. In this work, the use of integrated circuit and microfabrication technologies for implementing inductive links is discussed. A closed-loop approach is taken to improve performance and reach optimum operation condition. Design and simulation data are presented as the basis for development of viable wireless module prototypes.
Wireless technologies for closed-loop retinal prostheses
NASA Astrophysics Data System (ADS)
Ng, David C.; Bai, Shun; Yang, Jiawei; Tran, Nhan; Skafidas, Efstratios
2009-12-01
In this paper, we discuss various technologies needed to develop retinal prostheses with wireless power and data telemetry operation. In addition to the need to communicate with the implanted device, supply of power to the retinal prosthesis is especially difficult. This is because, in the implanted state, the device is not fixed in position due to constant motion of the eye. Furthermore, a retinal prosthesis incorporating a high density electrode array of more than 1000 electrodes is expected to consume approximately 45 mW of power and require 300 kbps of image and stimulation data. The front end of the wireless power and data transmission, the antenna, needs to be small compared to the size of the eye. Also, the wireless module is expected to operate in the reactive near-field region due to small separation between the transmit and receive antennas compared to their size and corresponding operating wavelength. An inductive link is studied as a means to transfer power and for data telemetry between the implant and external unit. In this work, the use of integrated circuit and microfabrication technologies for implementing inductive links is discussed. A closed-loop approach is taken to improve performance and reach optimum operation condition. Design and simulation data are presented as the basis for development of viable wireless module prototypes.
Applications of Wireless Sensor Networks in Marine Environment Monitoring: A Survey
Xu, Guobao; Shen, Weiming; Wang, Xianbin
2014-01-01
With the rapid development of society and the economy, an increasing number of human activities have gradually destroyed the marine environment. Marine environment monitoring is a vital problem and has increasingly attracted a great deal of research and development attention. During the past decade, various marine environment monitoring systems have been developed. The traditional marine environment monitoring system using an oceanographic research vessel is expensive and time-consuming and has a low resolution both in time and space. Wireless Sensor Networks (WSNs) have recently been considered as potentially promising alternatives for monitoring marine environments since they have a number of advantages such as unmanned operation, easy deployment, real-time monitoring, and relatively low cost. This paper provides a comprehensive review of the state-of-the-art technologies in the field of marine environment monitoring using wireless sensor networks. It first describes application areas, a common architecture of WSN-based oceanographic monitoring systems, a general architecture of an oceanographic sensor node, sensing parameters and sensors, and wireless communication technologies. Then, it presents a detailed review of some related projects, systems, techniques, approaches and algorithms. It also discusses challenges and opportunities in the research, development, and deployment of wireless sensor networks for marine environment monitoring. PMID:25215942
47 CFR 1.1113 - Filing locations.
Code of Federal Regulations, 2014 CFR
2014-10-01
... returned to the applicant or filer. (c) Fees for applications and other filings pertaining to the Wireless Radio Services that are submitted electronically via ULS may be paid electronically or sent to the...
47 CFR 1.1113 - Filing locations.
Code of Federal Regulations, 2013 CFR
2013-10-01
... returned to the applicant or filer. (c) Fees for applications and other filings pertaining to the Wireless Radio Services that are submitted electronically via ULS may be paid electronically or sent to the...
47 CFR 1.1113 - Filing locations.
Code of Federal Regulations, 2012 CFR
2012-10-01
... returned to the applicant or filer. (c) Fees for applications and other filings pertaining to the Wireless Radio Services that are submitted electronically via ULS may be paid electronically or sent to the...
47 CFR 15.118 - Cable ready consumer electronics equipment.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 1 2010-10-01 2010-10-01 false Cable ready consumer electronics equipment. 15... Unintentional Radiators § 15.118 Cable ready consumer electronics equipment. (a) All consumer electronics TV... provisions of this section. Consumer electronics TV receiving equipment that includes features intended for...
47 CFR 15.118 - Cable ready consumer electronics equipment.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 47 Telecommunication 1 2012-10-01 2012-10-01 false Cable ready consumer electronics equipment. 15... Unintentional Radiators § 15.118 Cable ready consumer electronics equipment. (a) All consumer electronics TV... provisions of this section. Consumer electronics TV receiving equipment that includes features intended for...
47 CFR 15.118 - Cable ready consumer electronics equipment.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 1 2011-10-01 2011-10-01 false Cable ready consumer electronics equipment. 15... Unintentional Radiators § 15.118 Cable ready consumer electronics equipment. (a) All consumer electronics TV... provisions of this section. Consumer electronics TV receiving equipment that includes features intended for...
47 CFR 15.118 - Cable ready consumer electronics equipment.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 47 Telecommunication 1 2014-10-01 2014-10-01 false Cable ready consumer electronics equipment. 15... Unintentional Radiators § 15.118 Cable ready consumer electronics equipment. (a) All consumer electronics TV... provisions of this section. Consumer electronics TV receiving equipment that includes features intended for...
47 CFR 15.118 - Cable ready consumer electronics equipment.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 47 Telecommunication 1 2013-10-01 2013-10-01 false Cable ready consumer electronics equipment. 15... Unintentional Radiators § 15.118 Cable ready consumer electronics equipment. (a) All consumer electronics TV... provisions of this section. Consumer electronics TV receiving equipment that includes features intended for...
Wireless Power Transfer to Millimeter-Sized Gastrointestinal Electronics Validated in a Swine Model
Abid, Abubakar; O’Brien, Jonathan M.; Bensel, Taylor; Cleveland, Cody; Booth, Lucas; Smith, Brian R.; Langer, Robert; Traverso, Giovanni
2017-01-01
Electronic devices placed in the gastrointestinal (GI) tract for prolonged periods have the potential to transform clinical evaluation and treatment. One challenge to the deployment of such gastroresident electronics is the difficulty in powering millimeter-sized electronics devices without using batteries, which compromise biocompatibility and long-term residence. We examined the feasibility of leveraging mid-field wireless powering to transfer power from outside of the body to electronics at various locations along the GI tract. Using simulations and ex vivo measurements, we designed mid-field antennas capable of operating efficiently in tissue at 1.2 GHz. These antennas were then characterized in vivo in five anesthetized pigs, by placing one antenna outside the body, and the other antenna inside the body endoscopically, at the esophagus, stomach, and colon. Across the animals tested, mean transmission efficiencies of −41.2, −36.1, and −34.6 dB were achieved in vivo while coupling power from outside the body to the esophagus, stomach, and colon, respectively. This corresponds to power levels of 37.5 μW, 123 μW and 173 μW received by antennas in the respective locations, while keeping radiation exposure levels below safety thresholds. These power levels are sufficient to wirelessly power a range of medical devices from outside of the body. PMID:28447624
Low Power Transmitter for Wireless Capsule Endoscope
NASA Astrophysics Data System (ADS)
Lioe, D. X.; Shafie, S.; Ramiah, H.; Sulaiman, N.; Halin, I. A.
2013-04-01
This paper presents the transmitter circuit designed for the application of wireless capsule endoscope to overcome the limitation of conventional endoscope. The design is performed using CMOS 0.13 μm technology. The transmitter is designed to operate at centre frequency of 433.92 MHz, which is one of the ISM band. Active mixer and ring oscillator made up the transmitter and it consumes 1.57 mA of current using a supply voltage of 1.2 V, brings the dc power consumption of the transmitter to be 1.88 mW. Data rate of 3.5 Mbps ensure it can transmit high quality medical imaging.
Multilevel wireless capsule endoscopy video segmentation
NASA Astrophysics Data System (ADS)
Hwang, Sae; Celebi, M. Emre
2010-03-01
Wireless Capsule Endoscopy (WCE) is a relatively new technology (FDA approved in 2002) allowing doctors to view most of the small intestine. WCE transmits more than 50,000 video frames per examination and the visual inspection of the resulting video is a highly time-consuming task even for the experienced gastroenterologist. Typically, a medical clinician spends one or two hours to analyze a WCE video. To reduce the assessment time, it is critical to develop a technique to automatically discriminate digestive organs and shots each of which consists of the same or similar shots. In this paper a multi-level WCE video segmentation methodology is presented to reduce the examination time.
Song, Kai; Wang, Qi; Liu, Qi; Zhang, Hongquan; Cheng, Yingguo
2011-01-01
This paper describes the design and implementation of a wireless electronic nose (WEN) system which can online detect the combustible gases methane and hydrogen (CH4/H2) and estimate their concentrations, either singly or in mixtures. The system is composed of two wireless sensor nodes—a slave node and a master node. The former comprises a Fe2O3 gas sensing array for the combustible gas detection, a digital signal processor (DSP) system for real-time sampling and processing the sensor array data and a wireless transceiver unit (WTU) by which the detection results can be transmitted to the master node connected with a computer. A type of Fe2O3 gas sensor insensitive to humidity is developed for resistance to environmental influences. A threshold-based least square support vector regression (LS-SVR)estimator is implemented on a DSP for classification and concentration measurements. Experimental results confirm that LS-SVR produces higher accuracy compared with artificial neural networks (ANNs) and a faster convergence rate than the standard support vector regression (SVR). The designed WEN system effectively achieves gas mixture analysis in a real-time process. PMID:22346587
Research Update: Nanogenerators for self-powered autonomous wireless sensors
NASA Astrophysics Data System (ADS)
Khan, Usman; Hinchet, Ronan; Ryu, Hanjun; Kim, Sang-Woo
2017-07-01
Largely distributed networks of sensors based on the small electronics have great potential for health care, safety, and environmental monitoring. However, in order to have a maintenance free and sustainable operation, such wireless sensors have to be self-powered. Among various energies present in our environment, mechanical energy is widespread and can be harvested for powering the sensors. Piezoelectric and triboelectric nanogenerators (NGs) have been recently introduced for mechanical energy harvesting. Here we introduce the architecture and operational modes of self-powered autonomous wireless sensors. Thereafter, we review the piezoelectric and triboelectric NGs focusing on their working mechanism, structures, strategies, and materials.
High Temperature Wireless Communication And Electronics For Harsh Environment Applications
NASA Technical Reports Server (NTRS)
Hunter, G. W.; Neudeck, P. G.; Beheim, G. M.; Ponchak, G. E.; Chen, L.-Y
2007-01-01
In order for future aerospace propulsion systems to meet the increasing requirements for decreased maintenance, improved capability, and increased safety, the inclusion of intelligence into the propulsion system design and operation becomes necessary. These propulsion systems will have to incorporate technology that will monitor propulsion component conditions, analyze the incoming data, and modify operating parameters to optimize propulsion system operations. This implies the development of sensors, actuators, and electronics, with associated packaging, that will be able to operate under the harsh environments present in an engine. However, given the harsh environments inherent in propulsion systems, the development of engine-compatible electronics and sensors is not straightforward. The ability of a sensor system to operate in a given environment often depends as much on the technologies supporting the sensor element as the element itself. If the supporting technology cannot handle the application, then no matter how good the sensor is itself, the sensor system will fail. An example is high temperature environments where supporting technologies are often not capable of operation in engine conditions. Further, for every sensor going into an engine environment, i.e., for every new piece of hardware that improves the in-situ intelligence of the components, communication wires almost always must follow. The communication wires may be within or between parts, or from the engine to the controller. As more hardware is added, more wires, weight, complexity, and potential for unreliability is also introduced. Thus, wireless communication combined with in-situ processing of data would significantly improve the ability to include sensors into high temperature systems and thus lead toward more intelligent engine systems. NASA Glenn Research Center (GRC) is presently leading the development of electronics, communication systems, and sensors capable of prolonged stable operation in harsh 500C environments. This has included world record operation of SiC-based transistor technology (including packaging) that has demonstrated continuous electrical operation at 500C for over 2000 hours. Based on SiC electronics, development of high temperature wireless communication has been on-going. This work has concentrated on maturing the SiC electronic devices for communication purposes as well as the passive components such as resistors and capacitors needed to enable a high temperature wireless system. The objective is to eliminate wires associated with high temperature sensors which add weight to a vehicle and can be a cause of sensor unreliability. This paper discusses the development of SiC based electronics and wireless communications technology for harsh environment applications such as propulsion health management systems and in Venus missions. A brief overview of the future directions in sensor technology is given including maturing of near-room temperature "Lick and Stick" leak sensor technology for possible implementation in the Crew Launch Vehicle program. Then an overview of high temperature electronics and the development of high temperature communication systems is presented. The maturity of related technologies such as sensor and packaging will also be discussed. It is concluded that a significant component of efforts to improve the intelligence of harsh environment operating systems is the development and implementation of high temperature wireless technology
Integrating Wireless Networking for Radiation Detection
NASA Astrophysics Data System (ADS)
Board, Jeremy; Barzilov, Alexander; Womble, Phillip; Paschal, Jon
2006-10-01
As wireless networking becomes more available, new applications are being developed for this technology. Our group has been studying the advantages of wireless networks of radiation detectors. With the prevalence of the IEEE 802.11 standard (``WiFi''), we have developed a wireless detector unit which is comprised of a 5 cm x 5 cm NaI(Tl) detector, amplifier and data acquisition electronics, and a WiFi transceiver. A server may communicate with the detector unit using a TCP/IP network connected to a WiFi access point. Special software on the server will perform radioactive isotope determination and estimate dose-rates. We are developing an enhanced version of the software which utilizes the receiver signal strength index (RSSI) to estimate source strengths and to create maps of radiation intensity.
Cao, Xia; Zhang, Meng; Huang, Jinrong; Jiang, Tao; Zou, Jingdian; Wang, Ning; Wang, Zhong Lin
2018-02-01
Wireless power delivery has been a dream technology for applications in medical science, security, radio frequency identification (RFID), and the internet of things, and is usually based on induction coils and/or antenna. Here, a new approach is demonstrated for wireless power delivery by using the Maxwell's displacement current generated by an electrodeless triboelectric nanogenerator (TENG) that directly harvests ambient mechanical energy. A rotary electrodeless TENG is fabricated using the contact and sliding mode with a segmented structure. Due to the leakage of electric field between the segments during relative rotation, the generated Maxwell's displacement current in free space is collected by metal collectors. At a gap distance of 3 cm, the output wireless current density and voltage can reach 7 µA cm -2 and 65 V, respectively. A larger rotary electrodeless TENG and flexible wearable electrodeless TENG are demonstrated to power light-emitting diodes (LEDs) through wireless energy delivery. This innovative discovery opens a new avenue for noncontact, wireless energy transmission for applications in portable and wearable electronics. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
U31: vehicle stability and dynamics electronic stability control final report.
DOT National Transportation Integrated Search
2011-09-01
A team led by NTRCI is working to improve the roll and yaw stability of heavy duty combination trucks through developing stability algorithms, assembling demonstration hardware, and investigating robust wireless communication. : Modern electronic sta...
Cook, David J; Moradkhani, Anilga; Douglas, Kristin S Vickers; Prinsen, Sharon K; Fischer, Erin N; Schroeder, Darrell R
2014-04-01
The objective of this investigation was to assess whether a new electronic health (e-health) platform, combining mobile computing and a content management system, could effectively deliver modular and "just-in-time" education to older patients following cardiac surgery. Patients were provided with iPad(®) (Apple(®), Cupertino, CA) tablets that delivered educational modules as part of a daily "to do" list in a plan of care. The tablet communicated wirelessly to a dashboard where data were aggregated and displayed for providers. A surgical population of 149 patients with a mean age of 68 years utilized 5,267 of 6,295 (84%) of education modules delivered over a 5.3-day hospitalization. Increased age was not associated with decreased use. We demonstrate that age, hospitalization, and major surgery are not significant barriers to effective patient education if content is highly consumable and relevant to patients' daily care experience. We also show that mobile technology, even if unfamiliar to many older patients, makes this possible. The combination of mobile computing with a content management system allows for dynamic, modular, personalized, and "just-in-time" education in a highly consumable format. This approach presents a means by which patients may become informed participants in new healthcare models.
Goldblum, O M
2001-02-01
The objectives of this study were: 1) to establish criteria for evaluating handheld computerized prescribing systems; and 2) to evaluate out-of-box performance and features of a new, Palm Operating System (OS)-based, handheld, wireless wide area network (WWAN) prescribing system. The system consisted of a Palm Vx handheld organizer, a Novatel Minstrel V wireless modem, OmniSky wireless internet access and ePhysician ePad 1.1, the Palm OS electronic prescribing software program. A dermatologist familiar with healthcare information technology conducted an evaluation of the performance and features of a new, handheld, WWAN electronic prescribing system in an office practice during a three-month period in 2000. System performance, defined as transmission success rate, was determined from data collected during the three-month trial. Evaluation criteria consisted of an analysis of features found in electronic prescribing systems. All prescriptions written for all patients seen during a three-month period (August - November, 2000) were eligible for inclusion. Prescriptions written for patients who intended to fill them at pharmacies without known facsimile receiving capabilities were excluded from the study. The performance of the system was evaluated using data collected during the study. Criteria for evaluating features of electronic prescribing systems were developed and used to analyze the system employed in this study. During this three-month trial, 200 electronic prescriptions were generated for 132 patients included in the study. Of these prescriptions, 92.5 percent were successfully transmitted to pharmacies. Transmission failures resulted from incorrect facsimile numbers and non-functioning facsimile machines. Criteria established for evaluation of electronic prescribing systems included System (Hardware & Software), Costs, System Features, Printing & Transmission, Formulary & Insurance, Customization, Drug Safety and Security. This study is the first effort to establish comprehensive criteria for evaluating handheld prescribing systems and to evaluate the performance and features of a handheld, electronic prescribing system. The results demonstrated that the evaluated system: 1) was simple to install; 2) successfully interfaced with a commonly used practice management system; 3) was user-friendly and easy to operate; 4) offered a robust variety of standard features; and, 5) resulted in a high rate of success for transmitting electronic prescriptions. The criteria established for the evaluation of features of an electronic prescribing system can be used to critically evaluate the performance and features of other handheld and personal computer-based electronic prescribing systems.
Energy storage management system with distributed wireless sensors
Farmer, Joseph C.; Bandhauer, Todd M.
2015-12-08
An energy storage system having a multiple different types of energy storage and conversion devices. Each device is equipped with one or more sensors and RFID tags to communicate sensor information wirelessly to a central electronic management system, which is used to control the operation of each device. Each device can have multiple RFID tags and sensor types. Several energy storage and conversion devices can be combined.
Elastomeric Sensing of Pressure with Liquid Metal and Wireless Inductive Coupling
NASA Technical Reports Server (NTRS)
Dick, Jacob; Zou, Xiyue; Hogan, Ben; Tumalle, Jonathan; Etikyala, Sowmith; Fung, Diego; Charles, Watley; Gu, Tianye; Hull, Patrick V.; Mazzeo, Aaron D.
2017-01-01
This project describes resistance-based soft sensors filled with liquid metal, which permit measurements of large strains (0 percent to 110 percent), associated with small forces of less than 30 Newtons. This work also demonstrates a methodology for wireless transfer of these strain measurements without connected electrodes. These sensors allow intermittent detection of pressure on soft membranes with low force. Adapting these sensors for passive wireless pressure sensing will eliminate the need for embedded batteries, and will allow the sensors to transmit pressure data through non-conductive materials including glass and acrylic. The absence of batteries allows us to embed these sensors into materials for long-term use because the sensors only use passive analog circuit elements. We found the oxidation of the liquid metal (eutectic gallium indium) plays a role in the repeatability of the soft sensors. We investigated how the oxidation layer affected the behavior of the sensor by encapsulating materials (silicone, fluorosilicone, and PVC) with varied permeabilities to oxygen. We measured the effects of mechanical loading on the oxidation layer and the effects of wireless inductive coupling on the oxidation layer. We concluded our research by investigating the effects of embedding self-resonant circuits into polydimethylsiloxane (PDMS). Efforts to design engineered systems with soft materials are a growing field with progress in soft robotics, epidermal electronics, and wearable electronics. In the field of soft robotics, PDMS-based grippers are capable of picking up delicate objects because their form-fitting properties allow them to conform to the shape of objects more easily than conventional robotic grippers. Epidermal devices also use PDMS as a substrate to hold electronic components such as radios, sensors, and power supply circuits. Additionally, PDMS-based soft sensors can monitor human motion with liquid metal embedded within micro-channels. Passive wireless sensors have applications in structural health monitoring and medical health monitoring. Doctors can take wireless blood pressure measurements inside arteries to monitor the progression of heart disease. Glaucoma patients can use this technology to monitor the pressure in their eyes to track the progression of the disease.
Batteryless, wireless sensor powered by a sediment microbial fuel cell.
Donovan, Conrad; Dewan, Alim; Heo, Deukhyoun; Beyenal, Haluk
2008-11-15
Sediment microbial fuel cells (SMFCs) are considered to be an alternative renewable power source for remote monitoring. There are two main challenges to using SMFCs as power sources: 1) a SMFC produces a low potential at which most sensor electronics do not operate, and 2) a SMFC cannot provide continuous power, so energy from the SMFC must be stored and then used to repower sensor electronics intermittently. In this study, we developed a SMFC and a power management system (PMS) to power a batteryless, wireless sensor. A SMFC operating with a microbial anode and cathode, located in the Palouse River, Pullman, Washington, U.S.A., was used to demonstrate the utility of the developed system. The designed PMS stored microbial energy and then started powering the wireless sensor when the SMFC potential reached 320 mV. It continued powering until the SMFC potential dropped below 52 mV. The system was repowered when the SMFC potential increased to 320 mV, and this repowering continued as long as microbial reactions continued. We demonstrated that a microbial fuel cell with a microbial anode and cathode can be used as an effective renewable power source for remote monitoring using custom-designed electronics.
Multi-carrier transmission for hybrid radio frequency with optical wireless communications
NASA Astrophysics Data System (ADS)
Wang, Gang; Chen, Genshe; Shen, Dan; Pham, Khanh; Blasch, Erik; Nguyen, Tien M.
2015-05-01
Radio frequency (RF) wireless communication is reaching its capacity to support large data rate transmissions due to hardware constraints (e.g., silicon processes), software strategies (e.g., information theory), and consumer desire for timely large file exchanges (e.g., big data and mobile cloud computing). A high transmission rate performance must keep pace with the generated huge volumes of data for real-time processing. Integrated RF and optical wireless communications (RF/OWC) could be the next generation transmission technology to satisfy both the increased data rate exchange and the communications constraints. However, with the promising benefits of RF/OWC, challenges remain to fully develop hybrid RF with wireless optical communications such as uniform waveform design for information transmission and detection. In this paper, an orthogonal frequency division multiplexing (OFDM) transmission scheme, which widely employed in RF communications, is developed for optical communications. The traditional high peak-to-average power ratio (PAPR) in OFDM is reduced to improve system performance. The proposed multi-carrier waveform is evaluated with a frequency-selective fading channel. The results demonstrate that bit error rate (BER) performance of our proposed optical OFDM transmission technique outperforms the traditional OWC on-off keying (OOK) transmission scheme.
NASA Astrophysics Data System (ADS)
Asadollahi, Parisa; Li, Jian
2016-04-01
Understanding the dynamic behavior of complex structures such as long-span bridges requires dense deployment of sensors. Traditional wired sensor systems are generally expensive and time-consuming to install due to cabling. With wireless communication and on-board computation capabilities, wireless smart sensor networks have the advantages of being low cost, easy to deploy and maintain and therefore facilitate dense instrumentation for structural health monitoring. A long-term monitoring project was recently carried out for a cable-stayed bridge in South Korea with a dense array of 113 smart sensors, which feature the world's largest wireless smart sensor network for civil structural monitoring. This paper presents a comprehensive statistical analysis of the modal properties including natural frequencies, damping ratios and mode shapes of the monitored cable-stayed bridge. Data analyzed in this paper is composed of structural vibration signals monitored during a 12-month period under ambient excitations. The correlation between environmental temperature and the modal frequencies is also investigated. The results showed the long-term statistical structural behavior of the bridge, which serves as the basis for Bayesian statistical updating for the numerical model.
Buttenheim, Alison M; Havassy, Joshua; Fang, Michelle; Glyn, Jonathan; Karpyn, Allison E
2012-05-01
Supplemental Nutrition Assistance Program (SNAP) (formerly Food Stamp Program) participants can use their benefits at many farmers' markets. However, most markets have only one market-operated wireless point-of-sale (POS) card swipe terminal for electronic benefits transfer (EBT) transactions. It is not known whether providing each farmer/vendor with individual wireless POS terminals and subsidizing EBT fees will increase SNAP/EBT purchases at farmers' markets. To evaluate the effects of multiple vendor-operated wireless POS terminals (vs a single market-operated terminal) on use of SNAP benefits at an urban farmers' market. Time-series analyses of SNAP/EBT sales. The Clark Park farmers' market in West Philadelphia, PA, which accounts for one quarter of all SNAP/EBT sales at farmers' markets in Pennsylvania. Vendors were provided with individual wireless POS terminals for 9 months (June 2008-February 2009.) The pilot program covered all equipment and wireless service costs and transaction fees associated with SNAP/EBT, credit, and debit sales. Monthly SNAP/EBT sales at the Clark Park farmers' market. SNAP/EBT sales data were collected for 48 months (January 2007-December 2010). Time-series regression analysis was used to estimate the effect of the intervention period (June 2008-February 2009) on SNAP/EBT sales, controlling for seasonal effects and total SNAP benefits issued in Philadelphia. The intervention was associated with a 38% increase in monthly SNAP/EBT sales. Effects were greatest during the busy fall market seasons. SNAP/EBT sales did not remain significantly higher after the intervention period. Providing individual wireless POS terminals to farmers' market vendors leads to increased sales. However, market vendors indicated that subsidies for equipment costs and fees would be needed to break even. Currently, SNAP provides some support for these services for supermarket and other SNAP retailers with landline access, but not for farmers' markets. Copyright © 2012 Academy of Nutrition and Dietetics. Published by Elsevier Inc. All rights reserved.
A flexible super-capacitive solid-state power supply for miniature implantable medical devices.
Meng, Chuizhou; Gall, Oren Z; Irazoqui, Pedro P
2013-12-01
We present a high-energy local power supply based on a flexible and solid-state supercapacitor for miniature wireless implantable medical devices. Wireless radio-frequency (RF) powering recharges the supercapacitor through an antenna with an RF rectifier. A power management circuit for the super-capacitive system includes a boost converter to increase the breakdown voltage required for powering device circuits, and a parallel conventional capacitor as an intermediate power source to deliver current spikes during high current transients (e.g., wireless data transmission). The supercapacitor has an extremely high area capacitance of ~1.3 mF/mm(2), and is in the novel form of a 100 μm-thick thin film with the merit of mechanical flexibility and a tailorable size down to 1 mm(2) to meet various clinical dimension requirements. We experimentally demonstrate that after fully recharging the capacitor with an external RF powering source, the supercapacitor-based local power supply runs a full system for electromyogram (EMG) recording that consumes ~670 μW with wireless-data-transmission functionality for a period of ~1 s in the absence of additional RF powering. Since the quality of wireless powering for implantable devices is sensitive to the position of those devices within the RF electromagnetic field, this high-energy local power supply plays a crucial role in providing continuous and reliable power for medical device operations.
Leveraging Energy Harvesting and Wake-Up Receivers for Long-Term Wireless Sensor Networks.
Ait Aoudia, Fayçal; Gautier, Matthieu; Magno, Michele; Berder, Olivier; Benini, Luca
2018-05-15
Wireless sensor nodes are traditionally powered by individual batteries, and a significant effort has been devoted to maximizing the lifetime of these devices. However, as the batteries can only store a finite amount of energy, the network is still doomed to die, and changing the batteries is not always possible. A promising solution is to enable each node to harvest energy directly in its environment, using individual energy harvesters. Moreover, novel ultra-low power wake-up receivers, which allow continuous listening of the channel with negligible power consumption, are emerging. These devices enable asynchronous communication, further reducing the power consumption related to communication, which is typically one the most energy-consuming tasks in wireless sensor networks. Energy harvesting and wake-up receivers can be combined to significantly increase the energy efficiency of sensor networks. In this paper, we propose an energy manager for energy harvesting wireless sensor nodes and an asynchronous medium access control protocol, which exploits ultra-low power wake-up receivers. The two components are designed to work together and especially to fit the stringent constraints of wireless sensor nodes. The proposed approach has been implemented on a real hardware platform and tested in the field. Experimental results demonstrate the benefits of the proposed approach in terms of energy efficiency, power consumption and throughput, which can be up to more than two-times higher compared to traditional schemes.
Leveraging Energy Harvesting and Wake-Up Receivers for Long-Term Wireless Sensor Networks
Ait Aoudia, Fayçal; Gautier, Matthieu; Magno, Michele; Benini, Luca
2018-01-01
Wireless sensor nodes are traditionally powered by individual batteries, and a significant effort has been devoted to maximizing the lifetime of these devices. However, as the batteries can only store a finite amount of energy, the network is still doomed to die, and changing the batteries is not always possible. A promising solution is to enable each node to harvest energy directly in its environment, using individual energy harvesters. Moreover, novel ultra-low power wake-up receivers, which allow continuous listening of the channel with negligible power consumption, are emerging. These devices enable asynchronous communication, further reducing the power consumption related to communication, which is typically one the most energy-consuming tasks in wireless sensor networks. Energy harvesting and wake-up receivers can be combined to significantly increase the energy efficiency of sensor networks. In this paper, we propose an energy manager for energy harvesting wireless sensor nodes and an asynchronous medium access control protocol, which exploits ultra-low power wake-up receivers. The two components are designed to work together and especially to fit the stringent constraints of wireless sensor nodes. The proposed approach has been implemented on a real hardware platform and tested in the field. Experimental results demonstrate the benefits of the proposed approach in terms of energy efficiency, power consumption and throughput, which can be up to more than two-times higher compared to traditional schemes. PMID:29762535
NASA Astrophysics Data System (ADS)
Smith, C. J.; Kim, B.; Zhang, Y.; Ng, T. N.; Beck, V.; Ganguli, A.; Saha, B.; Daniel, G.; Lee, J.; Whiting, G.; Meyyappan, M.; Schwartz, D. E.
2015-12-01
We will present our progress on the development of a wireless sensor network that will determine the source and rate of detected methane leaks. The targeted leak detection threshold is 2 g/min with a rate estimation error of 20% and localization error of 1 m within an outdoor area of 100 m2. The network itself is composed of low-cost, high-performance sensor nodes based on printed nanomaterials with expected sensitivity below 1 ppmv methane. High sensitivity to methane is achieved by modifying high surface-area-to-volume-ratio single-walled carbon nanotubes (SWNTs) with materials that adsorb methane molecules. Because the modified SWNTs are not perfectly selective to methane, the sensor nodes contain arrays of variously-modified SWNTs to build diversity of response towards gases with adsorption affinity. Methane selectivity is achieved through advanced pattern-matching algorithms of the array's ensemble response. The system is low power and designed to operate for a year on a single small battery. The SWNT sensing elements consume only microwatts. The largest power consumer is the wireless communication, which provides robust, real-time measurement data. Methane leak localization and rate estimation will be performed by machine-learning algorithms built with the aid of computational fluid dynamics simulations of gas plume formation. This sensor system can be broadly applied at gas wells, distribution systems, refineries, and other downstream facilities. It also can be utilized for industrial and residential safety applications, and adapted to other gases and gas combinations.
Preliminary validation of a new magnetic wireless blood pump.
Kim, Sung Hoon; Ishiyama, Kazushi; Hashi, Shuichiro; Shiraishi, Yasuyuki; Hayatsu, Yukihiro; Akiyama, Masatoshi; Saiki, Yoshikatsu; Yambe, Tomoyuki
2013-10-01
In general, a blood pump must be small, have a simple configuration, and have sufficient hydrodynamic performance. Herein, we introduce new mechanisms for a wireless blood pump that is small and simple and provides wireless and battery-free operation. To achieve wireless and battery-free operation, we implement magnetic torque and force control methods that use two external drivers: an external coil and a permanent magnet with a DC-motor, respectively. Power harvesting can be used to drive an electronic circuit for wireless monitoring (the observation of the pump conditions and temperature) without the use of an internal battery. The power harvesting will be used as a power source to drive other electronic devices, such as various biosensors with their driving circuits. To have both a compact size and sufficient pumping capability, the fully magnetic impeller has five stages and each stage includes four backward-curved blades. The pump has total and inner volumes of 20 and 9.8 cc, respectively, and weighs 52 g. The pump produces a flow rate of approximately 8 L/min at 80 mm Hg and the power generator produces 0.3 W of electrical power at 120 Ω. The pump also produces a minimum flow rate of 1.5 L/min and a pressure of 30 mm Hg for circulation at a maximum distance of 7.5 cm. © 2013 Wiley Periodicals, Inc. and International Center for Artificial Organs and Transplantation.
Two-dimensional materials based transparent flexible electronics
NASA Astrophysics Data System (ADS)
Yu, Lili; Ha, Sungjae; El-Damak, Dina; McVay, Elaine; Ling, Xi; Chandrakasan, Anantha; Kong, Jing; Palacios, Tomas
2015-03-01
Two-dimensional (2D) materials have generated great interest recently as a set of tools for electronics, as these materials can push electronics beyond traditional boundaries. These materials and their heterostructures offer excellent mechanical flexibility, optical transparency, and favorable transport properties for realizing electronic, sensing, and optical systems on arbitrary surfaces. These thin, lightweight, bendable, highly rugged and low-power devices may bring dramatic changes in information processing, communications and human-electronic interaction. In this report, for the first time, we demonstrate two complex transparent flexible systems based on molybdenum disulfide (MoS2) grown by chemical vapor method: a transparent active-matrix organic light-emitting diode (AMOLED) display and a MoS2 wireless link for sensor nodes. The 1/2 x 1/2 square inch, 4 x 5 pixels AMOLED structures are built on transparent substrates, containing MoS2 back plane circuit and OLEDs integrated on top of it. The back plane circuit turns on and off the individual pixel with two MoS2 transistors and a capacitor. The device is designed and fabricated based on SPICE simulation to achieve desired DC and transient performance. We have also demonstrated a MoS2 wireless self-powered sensor node. The system consists of as energy harvester, rectifier, sensor node and logic units. AC signals from the environment, such as near-field wireless power transfer, piezoelectric film and RF signal, are harvested, then rectified into DC signal by a MoS2 diode. CIQM, CICS, SRC.
2007-06-08
Temperature Detectors (RTDs), thermistors , bimetallic devices, liquid expansion devices, and change-of-state devices. Liquid expansion, change-of...sterilization lamps, halogen lamps, direct or reflected sunlight on the sensor, electrical or welding sparks, radiation sources and high 7 Figure 1, Standard
Analysis of Instruction Models in SMART Education
ERIC Educational Resources Information Center
Park, JaeHyeong; Choi, JeongWon; Lee, YoungJun
2013-01-01
Development in the smartifacts and wireless network has brought changes in the approaches and usages, as well as producing and sharing of the information. The learners are changing into independent provider from consumer of information. In order to teach the students effectively with this trend, changes in the education is inevitable. In Korea,…
76 FR 60765 - Mail or Telephone Order Merchandise Rule
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-30
... access, not telephone dial-up. \\19\\ U.S. Census Bureau, E-Stats, 2007 E-Commerce Multi-Sector Report, May... Shopping and Mail-Order Houses--Total and E-Commerce Sales by Merchandise Line: 2006-2007. Second, consumer... buyers access the Internet (e.g., dial-up telephone modem, cable, or wireless); (2) allow sellers to...
Unlocking Consumer Choice and Wireless Competition Act
Rep. Goodlatte, Bob [R-VA-6
2013-03-13
Senate - 02/26/2014 Received in the Senate and Read twice and referred to the Committee on the Judiciary. (All Actions) Notes: For further action, see S.517, which became Public Law 113-144 on 8/1/2014. Tracker: This bill has the status Passed HouseHere are the steps for Status of Legislation:
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-18
... offer their customers an increasing array of ``smartphones'' and data-centric devices, such as tablets... basis to provide service to their customers? 38. Additionally, the proposal would allow providers to... customers with comparable levels of service within that county? 40. Second, will consumers find this metric...
Finding Minimum-Power Broadcast Trees for Wireless Networks
NASA Technical Reports Server (NTRS)
Arabshahi, Payman; Gray, Andrew; Das, Arindam; El-Sharkawi, Mohamed; Marks, Robert, II
2004-01-01
Some algorithms have been devised for use in a method of constructing tree graphs that represent connections among the nodes of a wireless communication network. These algorithms provide for determining the viability of any given candidate connection tree and for generating an initial set of viable trees that can be used in any of a variety of search algorithms (e.g., a genetic algorithm) to find a tree that enables the network to broadcast from a source node to all other nodes while consuming the minimum amount of total power. The method yields solutions better than those of a prior algorithm known as the broadcast incremental power algorithm, albeit at a slightly greater computational cost.
Wireless Actuation of Micromechanical Resonators
NASA Astrophysics Data System (ADS)
Mateen, Farrukh; Maedler, Carsten; Erramilli, Shyamsunder; Mohanty, Pritiraj
Wireless transfer of power is of fundamental and technical interest with applications ranging from remote operation of electronics, biomedical implants, and device actuation where hard-wired power sources are neither desirable nor practical. In particular, biomedical implants in the body or the brain need small footprint power receiving elements for wireless charging, which can be accomplished by micromechanical resonators. In contrast for fundamental experiments, ultra low-power wireless operation of micromechanical resonators in the microwave range makes low-temperature studies of mechanical systems in the quantum regime possible, where heat carried by the electrical wires in standard actuation techniques is detrimental to maintaining the resonator in a quantum state. We demonstrate successful actuation of micron-sized silicon-based piezoelectric resonators with resonance frequencies from 36 MHz to 120 MHz, at power levels of nanowatts and distances of about 3 feet, including polarization, distance and power dependence measurements. Our demonstration of wireless actuation of micromechanical resonators via electric-field coupling down to nanowatt levels enables a multitude of applications based on micromechanical resonators, inaccessible until now.
Development and application of a modified wireless tracer for disaster prevention
NASA Astrophysics Data System (ADS)
Chung Yang, Han; Su, Chih Chiang
2016-04-01
Typhoon-induced flooding causes water overflow in a river channel, which results in general and bridge scour and soil erosion, thus leading to bridge failure, debris flow and landslide collapse. Therefore, dynamic measurement technology should be developed to assess scour in channels and landslide as a disaster-prevention measure against bridge failure and debris flow. This paper presents a wireless tracer that enables monitoring general scour in river channels and soil erosion in hillsides. The wireless tracer comprises a wireless high-power radio modem, various electronic components, and a self-designed printed circuit board that are all combined with a 9-V battery pack and an auto switch. The entire device is sealed in a jar by silicon. After it was modified, the wireless tracer underwent the following tests for practical applications: power continuation and durability, water penetration, and signal transmission during floating. A regression correlation between the wireless tracer's transmission signal and distance was also established. This device can be embedded at any location where scouring is monitored, and, in contrast to its counterparts that detect scour depth by identifying and analyzing received signals, it enables real-time observation of the scouring process. In summary, the wireless tracer developed in this study provides a dynamic technology for real-time monitoring of scouring (or erosion) and forecasting of landslide hazards. Keywords: wireless tracer; scour; real-time monitoring; landslide hazard.
NASA Astrophysics Data System (ADS)
Colins, Karen; Li, Liqian; Liu, Yu
2017-05-01
Mass production of widely used semiconductor digital integrated circuits (ICs) has lowered unit costs to the level of ordinary daily consumables of a few dollars. It is therefore reasonable to contemplate the idea of an engineered system that consumes unshielded low-cost ICs for the purpose of measuring gamma radiation dose. Underlying the idea is the premise of a measurable correlation between an observable property of ICs and radiation dose. Accumulation of radiation-damage-induced state changes or error events is such a property. If correct, the premise could make possible low-cost wide-area radiation dose measurement systems, instantiated as wireless sensor networks (WSNs) with unshielded consumable ICs as nodes, communicating error events to a remote base station. The premise has been investigated quantitatively for the first time in laboratory experiments and related analyses performed at the Canadian Nuclear Laboratories. State changes or error events were recorded in real time during irradiation of samples of ICs of different types in a 60Co gamma cell. From the error-event sequences, empirical distribution functions of dose were generated. The distribution functions were inverted and probabilities scaled by total error events, to yield plots of the relationship between dose and error tallies. Positive correlation was observed, and discrete functional dependence of dose quantiles on error tallies was measured, demonstrating the correctness of the premise. The idea of an engineered system that consumes unshielded low-cost ICs in a WSN, for the purpose of measuring gamma radiation dose over wide areas, is therefore tenable.
Analysis of power management and system latency in wireless sensor networks
NASA Astrophysics Data System (ADS)
Oswald, Matthew T.; Rohwer, Judd A.; Forman, Michael A.
2004-08-01
Successful power management in a wireless sensor network requires optimization of the protocols which affect energy-consumption on each node and the aggregate effects across the larger network. System optimization for a given deployment scenario requires an analysis and trade off of desired node and network features with their associated costs. The sleep protocol for an energy-efficient wireless sensor network for event detection, target classification, and target tracking developed at Sandia National Laboratories is presented. The dynamic source routing (DSR) algorithm is chosen to reduce network maintenance overhead, while providing a self-configuring and self-healing network architecture. A method for determining the optimal sleep time is developed and presented, providing reference data which spans several orders of magnitude. Message timing diagrams show, that a node in a five-node cluster, employing an optimal cyclic single-radio sleep protocol, consumes 3% more energy and incurs a 16-s increase latency than nodes employing the more complex dual-radio STEM protocol.
Xie, Kejun; Zhang, Shaomin; Dong, Shurong; Li, Shijian; Yu, Chaonan; Xu, Kedi; Chen, Wanke; Guo, Wei; Luo, Jikui; Wu, Zhaohui
2017-08-10
In this paper, we present a portable wireless electrocorticography (ECoG) system. It uses a high resolution 32-channel flexible ECoG electrodes array to collect electrical signals of brain activities and to stimulate the lesions. Electronic circuits are designed for signal acquisition, processing and transmission using Bluetooth Low Energy 4 (LTE4) for wireless communication with cell phone. In-vivo experiments on a rat show that the flexible ECoG system can accurately record electrical signals of brain activities and transmit them to cell phone with a maximal sampling rate of 30 ksampling/s per channel. It demonstrates that the epilepsy lesions can be detected, located and treated through the ECoG system. The wireless ECoG system has low energy consumption and high brain spatial resolution, thus has great prospects for future application.
Wireless Sensors and Networks for Advanced Energy Management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hardy, J.E.
Numerous national studies and working groups have identified low-cost, very low-power wireless sensors and networks as a critical enabling technology for increasing energy efficiency, reducing waste, and optimizing processes. Research areas for developing such sensor and network platforms include microsensor arrays, ultra-low power electronics and signal conditioning, data/control transceivers, and robust wireless networks. A review of some of the research in the following areas will be discussed: (1) Low-cost, flexible multi-sensor array platforms (CO{sub 2}, NO{sub x}, CO, humidity, NH{sub 3}, O{sub 2}, occupancy, etc.) that enable energy and emission reductions in applications such as buildings and manufacturing; (2) Modelingmore » investments (energy usage and savings to drive capital investment decisions) and estimated uptime improvements through pervasive gathering of equipment and process health data and its effects on energy; (3) Robust, self-configuring wireless sensor networks for energy management; and (4) Quality-of-service for secure and reliable data transmission from widely distributed sensors. Wireless communications is poised to support technical innovations in the industrial community, with widespread use of wireless sensors forecasted to improve manufacturing production and energy efficiency and reduce emissions. Progress being made in wireless system components, as described in this paper, is helping bring these projected improvements to reality.« less
Energy Harvesting Based Body Area Networks for Smart Health.
Hao, Yixue; Peng, Limei; Lu, Huimin; Hassan, Mohammad Mehedi; Alamri, Atif
2017-07-10
Body area networks (BANs) are configured with a great number of ultra-low power consumption wearable devices, which constantly monitor physiological signals of the human body and thus realize intelligent monitoring. However, the collection and transfer of human body signals consume energy, and considering the comfort demand of wearable devices, both the size and the capacity of a wearable device's battery are limited. Thus, minimizing the energy consumption of wearable devices and optimizing the BAN energy efficiency is still a challenging problem. Therefore, in this paper, we propose an energy harvesting-based BAN for smart health and discuss an optimal resource allocation scheme to improve BAN energy efficiency. Specifically, firstly, considering energy harvesting in a BAN and the time limits of human body signal transfer, we formulate the energy efficiency optimization problem of time division for wireless energy transfer and wireless information transfer. Secondly, we convert the optimization problem into a convex optimization problem under a linear constraint and propose a closed-form solution to the problem. Finally, simulation results proved that when the size of data acquired by the wearable devices is small, the proportion of energy consumed by the circuit and signal acquisition of the wearable devices is big, and when the size of data acquired by the wearable devices is big, the energy consumed by the signal transfer of the wearable device is decisive.
Løkke, Mette Marie; Seefeldt, Helene Fast; Edwards, Gareth; Green, Ole
2011-01-01
In order to design optimal packages, it is of pivotal importance to determine the rate at which harvested fresh fruits and vegetables consume oxygen. The respiration rate of oxygen (RRO2) is determined by measuring the consumed oxygen per hour per kg plant material, and the rate is highly influenced by temperature and gas composition. Traditionally, RRO2 has been determined at discrete time intervals. In this study, wireless sensor networks (WSNs) were used to determine RRO2 continuously in plant material (fresh cut broccoli florets) at 5 °C, 10 °C and 20 °C and at modified gas compositions (decreasing oxygen and increasing carbon dioxide levels). Furthermore, the WSN enabled concomitant determination of oxygen and temperature in the very close vicinity of the plant material. This information proved a very close relationship between changes in temperature and respiration rate. The applied WSNs were unable to determine oxygen levels lower than 5% and carbon dioxide was not determined. Despite these drawbacks in relation to respiration analysis, the WSNs offer a new possibility to do continuous measurement of RRO2 in post harvest research, thereby investigating the close relation between temperature and RRO2. The conclusions are that WSNs have the potential to be used as a monitor of RRO2 of plant material after harvest, during storage and packaging, thereby leading to optimized consumer products. PMID:22164085
Energy Harvesting Based Body Area Networks for Smart Health
Hao, Yixue; Peng, Limei; Alamri, Atif
2017-01-01
Body area networks (BANs) are configured with a great number of ultra-low power consumption wearable devices, which constantly monitor physiological signals of the human body and thus realize intelligent monitoring. However, the collection and transfer of human body signals consume energy, and considering the comfort demand of wearable devices, both the size and the capacity of a wearable device’s battery are limited. Thus, minimizing the energy consumption of wearable devices and optimizing the BAN energy efficiency is still a challenging problem. Therefore, in this paper, we propose an energy harvesting-based BAN for smart health and discuss an optimal resource allocation scheme to improve BAN energy efficiency. Specifically, firstly, considering energy harvesting in a BAN and the time limits of human body signal transfer, we formulate the energy efficiency optimization problem of time division for wireless energy transfer and wireless information transfer. Secondly, we convert the optimization problem into a convex optimization problem under a linear constraint and propose a closed-form solution to the problem. Finally, simulation results proved that when the size of data acquired by the wearable devices is small, the proportion of energy consumed by the circuit and signal acquisition of the wearable devices is big, and when the size of data acquired by the wearable devices is big, the energy consumed by the signal transfer of the wearable device is decisive. PMID:28698501
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-23
... INTERNATIONAL TRADE COMMISSION [Docket No 2956] Certain Consumer Electronics With Display and... the U.S. International Trade Commission has received a complaint entitled Certain Consumer Electronics... consumer electronics with display and processing capabilities. The complaint names as respondents Panasonic...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-27
... 11-153] Basic Service Tier Encryption Compatibility Between Cable Systems and Consumer Electronics... substantially affect compatibility between cable service and consumer electronics equipment for most subscribers... problems between cable service and consumer electronics equipment were limiting and/or precluding the...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-09
...-126] Basic Service Tier Encryption Compatibility Between Cable Systems and Consumer Electronics... between consumer electronics equipment (such as digital television sets) and newly encrypted cable service... Act''), Congress sought to make sure that consumer electronics equipment could receive cable...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-09
... INTERNATIONAL TRADE COMMISSION [DN 2882] Certain Consumer Electronics and Display Devices and... the U.S. International Trade Commission has received a complaint entitled Certain Consumer Electronics... importation of certain consumer electronics and display devices and products containing same. The complaint...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-23
... INTERNATIONAL TRADE COMMISSION [DN 2858] Certain Consumer Electronics and Display Devices and.... International Trade Commission has received a complaint entitled In Re Certain Consumer Electronics and Display... importation of certain consumer electronics and display devices and products containing same. The complaint...
Nonlinear optimization-based device-free localization with outlier link rejection.
Xiao, Wendong; Song, Biao; Yu, Xiting; Chen, Peiyuan
2015-04-07
Device-free localization (DFL) is an emerging wireless technique for estimating the location of target that does not have any attached electronic device. It has found extensive use in Smart City applications such as healthcare at home and hospitals, location-based services at smart spaces, city emergency response and infrastructure security. In DFL, wireless devices are used as sensors that can sense the target by transmitting and receiving wireless signals collaboratively. Many DFL systems are implemented based on received signal strength (RSS) measurements and the location of the target is estimated by detecting the changes of the RSS measurements of the wireless links. Due to the uncertainty of the wireless channel, certain links may be seriously polluted and result in erroneous detection. In this paper, we propose a novel nonlinear optimization approach with outlier link rejection (NOOLR) for RSS-based DFL. It consists of three key strategies, including: (1) affected link identification by differential RSS detection; (2) outlier link rejection via geometrical positional relationship among links; (3) target location estimation by formulating and solving a nonlinear optimization problem. Experimental results demonstrate that NOOLR is robust to the fluctuation of the wireless signals with superior localization accuracy compared with the existing Radio Tomographic Imaging (RTI) approach.
Code of Federal Regulations, 2011 CFR
2011-10-01
...) Any person who manufactures, sells, leases, or offers for sale or lease, low power auxiliary stations... following disclosure requirements: (1) Such persons must display the consumer disclosure text, as specified... or lease and clearly associated with the model to which it pertains. (2) If such persons offer such...
SenseCube--A Novel Inexpensive Wireless Multisensor for Physics Lab Experimentations
ERIC Educational Resources Information Center
Mehta, Vedant; Lane, Charles D.
2018-01-01
SenseCube is a multisensor capable of measuring many different real-time events and changes in environment. Most conventional sensors used in introductory-physics labs use their own software and have wires that must be attached to a computer or an alternate device to analyze the data. This makes the standard sensors time consuming, tedious, and…
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-22
..., 332, 336, and 337. Total Annual Burden: 32,925 hours. Total Annual Cost: $1,625,000. Privacy Act... MHz band, and more are expected to commence operation soon. Interference from wireless microphones... Commission provides for these early clearing and consumer disclosure measures to commence as early as...
Han, Yu; Lin, Jie; Liu, Yuxuan; Fu, Hao; Ma, Yuan; Jin, Peng; Tan, Jiubin
2016-01-01
Our daily electromagnetic environment is becoming increasingly complex with the rapid development of consumer electronics and wireless communication technologies, which in turn necessitates the development of electromagnetic interference (EMI) shielding, especially for transparent components. We engineered a transparent EMI shielding film with crack-template based metallic mesh (CT-MM) that shows highly homogeneous light transmission and strong microwave shielding efficacy. The CT-MM film is fabricated using a cost-effective lift-off method based on a crackle template. It achieves a shielding effectiveness of ~26 dB, optical transmittance of ~91% and negligible impact on optical imaging performance. Moreover, high–quality CT-MM film is demonstrated on a large–calibre spherical surface. These excellent properties of CT-MM film, together with its advantages of facile large-area fabrication and scalability in processing on multi-shaped substrates, make CT-MM a powerful technology for transparent EMI shielding in practical applications. PMID:27151578
Point-of-care and point-of-procedure optical imaging technologies for primary care and global health
Boppart, Stephen A.; Richards-Kortum, Rebecca
2015-01-01
Leveraging advances in consumer electronics and wireless telecommunications, low-cost, portable optical imaging devices have the potential to improve screening and detection of disease at the point of care in primary health care settings in both low- and high-resource countries. Similarly, real-time optical imaging technologies can improve diagnosis and treatment at the point of procedure by circumventing the need for biopsy and analysis by expert pathologists, who are scarce in developing countries. Although many optical imaging technologies have been translated from bench to bedside, industry support is needed to commercialize and broadly disseminate these from the patient level to the population level to transform the standard of care. This review provides an overview of promising optical imaging technologies, the infrastructure needed to integrate them into widespread clinical use, and the challenges that must be addressed to harness the potential of these technologies to improve health care systems around the world. PMID:25210062
Boppart, Stephen A; Richards-Kortum, Rebecca
2014-09-10
Leveraging advances in consumer electronics and wireless telecommunications, low-cost, portable optical imaging devices have the potential to improve screening and detection of disease at the point of care in primary health care settings in both low- and high-resource countries. Similarly, real-time optical imaging technologies can improve diagnosis and treatment at the point of procedure by circumventing the need for biopsy and analysis by expert pathologists, who are scarce in developing countries. Although many optical imaging technologies have been translated from bench to bedside, industry support is needed to commercialize and broadly disseminate these from the patient level to the population level to transform the standard of care. This review provides an overview of promising optical imaging technologies, the infrastructure needed to integrate them into widespread clinical use, and the challenges that must be addressed to harness the potential of these technologies to improve health care systems around the world. Copyright © 2014, American Association for the Advancement of Science.
A fully implantable pacemaker for the mouse: from battery to wireless power.
Laughner, Jacob I; Marrus, Scott B; Zellmer, Erik R; Weinheimer, Carla J; MacEwan, Matthew R; Cui, Sophia X; Nerbonne, Jeanne M; Efimov, Igor R
2013-01-01
Animal models have become a popular platform for the investigation of the molecular and systemic mechanisms of pathological cardiovascular physiology. Chronic pacing studies with implantable pacemakers in large animals have led to useful models of heart failure and atrial fibrillation. Unfortunately, molecular and genetic studies in these large animal models are often prohibitively expensive or not available. Conversely, the mouse is an excellent species for studying molecular mechanisms of cardiovascular disease through genetic engineering. However, the large size of available pacemakers does not lend itself to chronic pacing in mice. Here, we present the design for a novel, fully implantable wireless-powered pacemaker for mice capable of long-term (>30 days) pacing. This design is compared to a traditional battery-powered pacemaker to demonstrate critical advantages achieved through wireless inductive power transfer and control. Battery-powered and wireless-powered pacemakers were fabricated from standard electronic components in our laboratory. Mice (n = 24) were implanted with endocardial, battery-powered devices (n = 14) and epicardial, wireless-powered devices (n = 10). Wireless-powered devices were associated with reduced implant mortality and more reliable device function compared to battery-powered devices. Eight of 14 (57.1%) mice implanted with battery-powered pacemakers died following device implantation compared to 1 of 10 (10%) mice implanted with wireless-powered pacemakers. Moreover, device function was achieved for 30 days with the wireless-powered device compared to 6 days with the battery-powered device. The wireless-powered pacemaker system presented herein will allow electrophysiology studies in numerous genetically engineered mouse models as well as rapid pacing-induced heart failure and atrial arrhythmia in mice.
Online fault diagnostics and testing of area gamma radiation monitor using wireless network
NASA Astrophysics Data System (ADS)
Reddy, Padi Srinivas; Kumar, R. Amudhu Ramesh; Mathews, M. Geo; Amarendra, G.
2017-07-01
Periodical surveillance, checking, testing, and calibration of the installed Area Gamma Radiation Monitors (AGRM) in the nuclear plants are mandatory. The functionality of AGRM counting electronics and Geiger-Muller (GM) tube is to be monitored periodically. The present paper describes the development of online electronic calibration and testing of the GM tube from the control room. Two electronic circuits were developed, one for AGRM electronic test and another for AGRM detector test. A dedicated radiation data acquisition system was developed using an open platform communication server and data acquisition software. The Modbus RTU protocol on ZigBee based wireless communication was used for online monitoring and testing. The AGRM electronic test helps to carry out the three-point electronic calibration and verification of accuracy. The AGRM detector test is used to verify the GM threshold voltage and the plateau slope of the GM tube in-situ. The real-time trend graphs generated during these tests clearly identified the state of health of AGRM electronics and GM tube on go/no-go basis. This method reduces the radiation exposures received by the maintenance crew and facilitates quick testing with minimum downtime of the instrument.
2015-08-21
building (right) hosting the electronic unit, USB power sully and the wireless network . Figure 48. Ionosonde Field Site at Maseno, Kenya Figure 49... wireless 3G network . Continuous access to the system requires regular purchasing of data bundles. Web data repository Boston College has also...support of ionospheric instruments that have been deployed around the world in support of the SCINDA and LISN Networks . 15. SUBJECT TERMS Total
Secure dissemination of electronic healthcare records in distributed wireless environments.
Belsis, Petros; Vassis, Dimitris; Skourlas, Christos; Pantziou, Grammati
2008-01-01
A new networking paradigm has emerged with the appearance of wireless computing. Among else ad-hoc networks, mobile and ubiquitous environments can boost the performance of systems in which they get applied. Among else, medical environments are a convenient example of their applicability. With the utilisation of wireless infrastructures, medical data may be accessible to healthcare practitioners, enabling continuous access to medical data. Due to the critical nature of medical information, the design and implementation of these infrastructures demands special treatment in order to meet specific requirements; among else, special care should be taken in order to manage interoperability, security, and in order to deal with bandwidth and hardware resource constraints that characterize the wireless topology. In this paper we present an architecture that attempts to deal with these issues; moreover, in order to prove the validity of our approach we have also evaluated the performance of our platform through simulation in different operating scenarios.
Mohammadi, Ali; Redoute, Jean-Michel; Yuce, Mehmet R
2015-01-01
Biomedical implants require an electronic power conditioning circuitry to provide a stable electrical power supply. The efficiency of wireless power transmission is strongly dependent on the power conditioning circuitry specifically the rectifier. A cross-connected CMOS bridge rectifier is implemented to demonstrate the impact of thresholds of rectifiers on wireless power transfer. The performance of the proposed rectifier is experimentally compared with a conventional Schottky diode full wave rectifier over 9 cm distance of air and tissue medium between the transmitter and receiver. The output voltage generated by the CMOS rectifier across a 1 KΩ resistive load is around twice as much as the Schottky rectifier.
An adaptive distributed data aggregation based on RCPC for wireless sensor networks
NASA Astrophysics Data System (ADS)
Hua, Guogang; Chen, Chang Wen
2006-05-01
One of the most important design issues in wireless sensor networks is energy efficiency. Data aggregation has significant impact on the energy efficiency of the wireless sensor networks. With massive deployment of sensor nodes and limited energy supply, data aggregation has been considered as an essential paradigm for data collection in sensor networks. Recently, distributed source coding has been demonstrated to possess several advantages in data aggregation for wireless sensor networks. Distributed source coding is able to encode sensor data with lower bit rate without direct communication among sensor nodes. To ensure reliable and high throughput transmission with the aggregated data, we proposed in this research a progressive transmission and decoding of Rate-Compatible Punctured Convolutional (RCPC) coded data aggregation with distributed source coding. Our proposed 1/2 RSC codes with Viterbi algorithm for distributed source coding are able to guarantee that, even without any correlation between the data, the decoder can always decode the data correctly without wasting energy. The proposed approach achieves two aspects in adaptive data aggregation for wireless sensor networks. First, the RCPC coding facilitates adaptive compression corresponding to the correlation of the sensor data. When the data correlation is high, higher compression ration can be achieved. Otherwise, lower compression ratio will be achieved. Second, the data aggregation is adaptively accumulated. There is no waste of energy in the transmission; even there is no correlation among the data, the energy consumed is at the same level as raw data collection. Experimental results have shown that the proposed distributed data aggregation based on RCPC is able to achieve high throughput and low energy consumption data collection for wireless sensor networks
Castillo-Cara, Manuel; Lovón-Melgarejo, Jesús; Bravo-Rocca, Gusseppe; Orozco-Barbosa, Luis; García-Varea, Ismael
2017-01-01
Nowadays, there is a great interest in developing accurate wireless indoor localization mechanisms enabling the implementation of many consumer-oriented services. Among the many proposals, wireless indoor localization mechanisms based on the Received Signal Strength Indication (RSSI) are being widely explored. Most studies have focused on the evaluation of the capabilities of different mobile device brands and wireless network technologies. Furthermore, different parameters and algorithms have been proposed as a means of improving the accuracy of wireless-based localization mechanisms. In this paper, we focus on the tuning of the RSSI fingerprint to be used in the implementation of a Bluetooth Low Energy 4.0 (BLE4.0) Bluetooth localization mechanism. Following a holistic approach, we start by assessing the capabilities of two Bluetooth sensor/receiver devices. We then evaluate the relevance of the RSSI fingerprint reported by each BLE4.0 beacon operating at various transmission power levels using feature selection techniques. Based on our findings, we use two classification algorithms in order to improve the setting of the transmission power levels of each of the BLE4.0 beacons. Our main findings show that our proposal can greatly improve the localization accuracy by setting a custom transmission power level for each BLE4.0 beacon. PMID:28590413
Castillo-Cara, Manuel; Lovón-Melgarejo, Jesús; Bravo-Rocca, Gusseppe; Orozco-Barbosa, Luis; García-Varea, Ismael
2017-06-07
Nowadays, there is a great interest in developing accurate wireless indoor localization mechanisms enabling the implementation of many consumer-oriented services. Among the many proposals, wireless indoor localization mechanisms based on the Received Signal Strength Indication (RSSI) are being widely explored. Most studies have focused on the evaluation of the capabilities of different mobile device brands and wireless network technologies. Furthermore, different parameters and algorithms have been proposed as a means of improving the accuracy of wireless-based localization mechanisms. In this paper, we focus on the tuning of the RSSI fingerprint to be used in the implementation of a Bluetooth Low Energy 4.0 (BLE4.0) Bluetooth localization mechanism. Following a holistic approach, we start by assessing the capabilities of two Bluetooth sensor/receiver devices. We then evaluate the relevance of the RSSI fingerprint reported by each BLE4.0 beacon operating at various transmission power levels using feature selection techniques. Based on our findings, we use two classification algorithms in order to improve the setting of the transmission power levels of each of the BLE4.0 beacons. Our main findings show that our proposal can greatly improve the localization accuracy by setting a custom transmission power level for each BLE4.0 beacon.
Terahertz (THz) Wireless Systems for Space Applications
NASA Technical Reports Server (NTRS)
Hwu, Shian U.; deSilva, Kanishka B.; Jih, Cindy T.
2013-01-01
NASA has been leading the Terahertz (THz) technology development for the sensors and instruments in astronomy in the past 20 years. THz technologies are expanding into much broader applications in recent years. Due to the vast available multiple gigahertz (GHz) broad bandwidths, THz radios offer the possibility for wireless transmission of high data rates. Multi-Gigabits per second (MGbps) broadband wireless access based on THz waves are closer to reality. The THz signal high atmosphere attenuation could significantly decrease the communication ranges and transmittable data rates for the ground systems. Contrary to the THz applications on the ground, the space applications in the atmosphere free environment do not suffer the atmosphere attenuation. The manufacturing technologies for the THz electronic components are advancing and maturing. There is great potential for the NASA future high data wireless applications in environments with difficult cabling and size/weight constraints. In this study, the THz wireless systems for potential space applications were investigated. The applicability of THz systems for space applications was analyzed. The link analysis indicates that MGbps data rates are achievable with compact sized high gain antennas.
Autonomous solutions for powering wireless sensor nodes in rivers
NASA Astrophysics Data System (ADS)
Kamenar, E.; Maćešić, S.; Gregov, G.; Blažević, D.; Zelenika, S.; Marković, K.; Glažar, V.
2015-05-01
There is an evident need for monitoring pollutants and/or other conditions in river flows via wireless sensor networks. In a typical wireless sensor network topography, a series of sensor nodes is to be deployed in the environment, all wirelessly connected to each other and/or their gateways. Each sensor node is composed of active electronic devices that have to be constantly powered. In general, batteries can be used for this purpose, but problems may occur when they have to be replaced. In the case of large networks, when sensor nodes can be placed in hardly accessible locations, energy harvesting can thus be a viable powering solution. The possibility to use three different small-scale river flow energy harvesting principles is hence thoroughly studied in this work: a miniaturized underwater turbine, a so-called `piezoelectric eel' and a hybrid turbine solution coupled with a rigid piezoelectric beam. The first two concepts are then validated experimentally in laboratory as well as in real river conditions. The concept of the miniaturised hydro-generator is finally embedded into the actual wireless sensor node system and its functionality is confirmed.
High Temperature Capacitive Pressure Sensor Employing a SiC Based Ring Oscillator
NASA Technical Reports Server (NTRS)
Meredith, Roger D.; Neudeck, Philip G.; Ponchak, George E.; Beheim, Glenn M.; Scardelletti, Maximilian; Jordan, Jennifer L.; Chen, Liang-Yu; Spry, David J.; Krawowski, Michael J.; Hunter, Gary W.
2011-01-01
In an effort to develop harsh environment electronic and sensor technologies for aircraft engine safety and monitoring, we have used capacitive-based pressure sensors to shift the frequency of a SiC-electronics-based oscillator to produce a pressure-indicating signal that can be readily transmitted, e.g. wirelessly, to a receiver located in a more benign environment. Our efforts target 500 C, a temperature well above normal operating conditions of commercial circuits but within areas of interest in aerospace engines, deep mining applications and for future missions to the Venus atmosphere. This paper reports for the first time a ring oscillator circuit integrated with a capacitive pressure sensor, both operating at 500 C. This demonstration represents a significant step towards a wireless pressure sensor that can operate at 500 C and confirms the viability of 500 C electronic sensor systems.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-07
..., Modifications and Rulings: Certain Consumer Electronics and Display Devices and Products Containing Same AGENCY... the sale within the United States after importation of certain consumer electronics devices and..., Washington; LG Electronics, Inc. of Seoul, South Korea; LG Electronics, Mobilecomm U.S.A., Inc. of San Diego...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jia, Zhiwei, E-mail: jiayege@hotmail.com; Yan, Guozheng; Zhu, Bingquan
An implanted telemetry system for experimental animals with or without anaesthesia can be used to continuously monitor physiological parameters. This system is significant not only in the study of organisms but also in the evaluation of drug efficacy, artificial organs, and auxiliary devices. The system is composed of a miniature electronic capsule, a wireless power transmission module, a data-recording device, and a processing module. An electrocardiograph, a temperature sensor, and a pressure sensor are integrated in the miniature electronic capsule, in which the signals are transmitted in vitro by wireless communication after filtering, amplification, and A/D sampling. To overcome themore » power shortage of batteries, a wireless power transmission module based on electromagnetic induction was designed. The transmitting coil of a rectangular-section solenoid and a 3D receiving coil are proposed according to stability and safety constraints. Experiments show that at least 150 mW of power could pick up on the load in a volume of Φ10.5 mm × 11 mm, with a transmission efficiency of 2.56%. Vivisection experiments verified the feasibility of the integrated radio-telemetry system.« less
A nanofiber based artificial electronic skin with high pressure sensitivity and 3D conformability
NASA Astrophysics Data System (ADS)
Zhong, Weibin; Liu, Qiongzhen; Wu, Yongzhi; Wang, Yuedan; Qing, Xing; Li, Mufang; Liu, Ke; Wang, Wenwen; Wang, Dong
2016-06-01
Pressure sensors with 3D conformability are highly desirable components for artificial electronic skin or e-textiles that can mimic natural skin, especially for application in real-time monitoring of human physiological signals. Here, a nanofiber based electronic skin with ultra-high pressure sensitivity and 3D conformability is designed and built by interlocking two elastic patterned nanofibrous membranes. The patterned membrane is facilely prepared by casting conductive nanofiber ink into a silicon mould to form an array of semi-spheroid-like protuberances. The protuberances composed of intertwined elastic POE nanofibers and PPy@PVA-co-PE nanofibers afford a tunable effective elastic modulus that is capable of capturing varied strains and stresses, thereby contributing to a high sensitivity for pressure sensing. This electronic skin-like sensor demonstrates an ultra-high sensitivity (1.24 kPa-1) below 150 Pa with a detection limit as low as about 1.3 Pa. The pixelated sensor array and a RGB-LED light are then assembled into a circuit and show a feasibility for visual detection of spatial pressure. Furthermore, a nanofiber based proof-of-concept wireless pressure sensor with a bluetooth module as a signal transmitter is proposed and has demonstrated great promise for wireless monitoring of human physiological signals, indicating a potential for large scale wearable electronic devices or e-skin.Pressure sensors with 3D conformability are highly desirable components for artificial electronic skin or e-textiles that can mimic natural skin, especially for application in real-time monitoring of human physiological signals. Here, a nanofiber based electronic skin with ultra-high pressure sensitivity and 3D conformability is designed and built by interlocking two elastic patterned nanofibrous membranes. The patterned membrane is facilely prepared by casting conductive nanofiber ink into a silicon mould to form an array of semi-spheroid-like protuberances. The protuberances composed of intertwined elastic POE nanofibers and PPy@PVA-co-PE nanofibers afford a tunable effective elastic modulus that is capable of capturing varied strains and stresses, thereby contributing to a high sensitivity for pressure sensing. This electronic skin-like sensor demonstrates an ultra-high sensitivity (1.24 kPa-1) below 150 Pa with a detection limit as low as about 1.3 Pa. The pixelated sensor array and a RGB-LED light are then assembled into a circuit and show a feasibility for visual detection of spatial pressure. Furthermore, a nanofiber based proof-of-concept wireless pressure sensor with a bluetooth module as a signal transmitter is proposed and has demonstrated great promise for wireless monitoring of human physiological signals, indicating a potential for large scale wearable electronic devices or e-skin. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr02678h
Code of Federal Regulations, 2012 CFR
2012-10-01
..., conspicuous, and readily legible manner. One way to fulfill the requirement in this section is to display the consumer disclosure text in a prominent manner on the product box by using a label (either printed onto the box or otherwise affixed to the box), a sticker, or other means. Another way to fulfill this...
NASA Astrophysics Data System (ADS)
Ellinger, Frank; Fritsche, David; Tretter, Gregor; Leufker, Jan Dirk; Yodprasit, Uroschanit; Carta, C.
2017-01-01
In this paper we review high-speed radio-frequency integrated circuits operating up to 210 GHz and present selected state-of-the-art circuits with leading-edge performance, which we have designed at our chair. The following components are discussed employing bipolar complementary metal oxide semiconductors (BiCMOS) technologies: a 200 GHz amplifier with 17 dB gain and around 9 dB noise figure consuming only 18 mW, a 200 GHz down mixer with 5.5 dB conversion gain and 40 mW power consumption, a 190 GHz receiver with 47 dB conversion gain and 11 dB noise figure and a 60 GHz power amplifier with 24.5 dBm output power and 12.9 % power added efficiency (PAE). Moreover, we report on a single-core flash CMOS analogue-to-digital converter (ADC) with 3 bit resolution and a speed of 24 GS/s. Finally, we discuss a 60 GHz on-off keying (OOK) BiCMOS transceiver chip set. The wireless transmission of data with 5 Gb/s at 42 cm distance between transmitter and receiver was verified by experiments. The complete transceiver consumes 396 mW.
A dual slope charge sampling analog front-end for a wireless neural recording system.
Lee, Seung Bae; Lee, Byunghun; Gosselin, Benoit; Ghovanloo, Maysam
2014-01-01
This paper presents a novel dual slope charge sampling (DSCS) analog front-end (AFE) architecture, which amplifies neural signals by taking advantage of the charge sampling concept for analog signal conditioning, such as amplification and filtering. The presented DSCS-AFE achieves amplification, filtering, and sampling in a simultaneous fashion, while consuming very small amount of power. The output of the DSCS-AFE produces a pulse width modulated (PWM) signal that is proportional to the input voltage amplitude. A circular shift register (CSR) utilizes time division multiplexing (TDM) of the PWM pulses to create a pseudo-digital TDM-PWM signal that can feed a wireless transmitter. The 8-channel system-on-a-chip was fabricated in a 0.35-μm CMOS process, occupying 2.4 × 2.1 mm(2) and consuming 255 μW from a 1.8V supply. Measured input-referred noise for the entire system, including the FPGA in order to recover PWM signal is 6.50 μV(rms) in the 288 Hz~10 kHz range. For each channel, sampling rate is 31.25 kHz, and power consumption is 31.8 μW.
A Dual Slope Charge Sampling Analog Front-End for a Wireless Neural Recording System
Lee, Seung Bae; Lee, Byunghun; Gosselin, Benoit
2015-01-01
This paper presents a novel dual slope charge sampling (DSCS) analog front-end (AFE) architecture, which amplifies neural signals by taking advantage of the charge sampling concept for analog signal conditioning, such as amplification and filtering. The presented DSCS-AFE achieves amplification, filtering, and sampling in a simultaneous fashion, while consuming very small amount of power. The output of the DSCS-AFE produces a pulse width modulated (PWM) signal that is proportional to the input voltage amplitude. A circular shift register (CSR) utilizes time division multiplexing (TDM) of the PWM pulses to create a pseudo-digital TDM-PWM signal that can feed a wireless transmitter. The 8-channel system-on-a-chip was fabricated in a 0.35-µm CMOS process, occupying 2.4 × 2.1 mm2 and consuming 255 µW from a 1.8V supply. Measured input-referred noise for the entire system, including the FPGA in order to recover PWM signal is 6.50 µVrms in the 288 Hz~10 kHz range. For each channel, sampling rate is 31.25 kHz, and power consumption is 31.8 µW. PMID:25570655
Mohanasundaram, Ranganathan; Periasamy, Pappampalayam Sanmugam
2015-01-01
The current high profile debate with regard to data storage and its growth have become strategic task in the world of networking. It mainly depends on the sensor nodes called producers, base stations, and also the consumers (users and sensor nodes) to retrieve and use the data. The main concern dealt here is to find an optimal data storage position in wireless sensor networks. The works that have been carried out earlier did not utilize swarm intelligence based optimization approaches to find the optimal data storage positions. To achieve this goal, an efficient swam intelligence approach is used to choose suitable positions for a storage node. Thus, hybrid particle swarm optimization algorithm has been used to find the suitable positions for storage nodes while the total energy cost of data transmission is minimized. Clustering-based distributed data storage is utilized to solve clustering problem using fuzzy-C-means algorithm. This research work also considers the data rates and locations of multiple producers and consumers to find optimal data storage positions. The algorithm is implemented in a network simulator and the experimental results show that the proposed clustering and swarm intelligence based ODS strategy is more effective than the earlier approaches.
A Fully Implantable Pacemaker for the Mouse: From Battery to Wireless Power
Zellmer, Erik R.; Weinheimer, Carla J.; MacEwan, Matthew R.; Cui, Sophia X.; Nerbonne, Jeanne M.; Efimov, Igor R.
2013-01-01
Animal models have become a popular platform for the investigation of the molecular and systemic mechanisms of pathological cardiovascular physiology. Chronic pacing studies with implantable pacemakers in large animals have led to useful models of heart failure and atrial fibrillation. Unfortunately, molecular and genetic studies in these large animal models are often prohibitively expensive or not available. Conversely, the mouse is an excellent species for studying molecular mechanisms of cardiovascular disease through genetic engineering. However, the large size of available pacemakers does not lend itself to chronic pacing in mice. Here, we present the design for a novel, fully implantable wireless-powered pacemaker for mice capable of long-term (>30 days) pacing. This design is compared to a traditional battery-powered pacemaker to demonstrate critical advantages achieved through wireless inductive power transfer and control. Battery-powered and wireless-powered pacemakers were fabricated from standard electronic components in our laboratory. Mice (n = 24) were implanted with endocardial, battery-powered devices (n = 14) and epicardial, wireless-powered devices (n = 10). Wireless-powered devices were associated with reduced implant mortality and more reliable device function compared to battery-powered devices. Eight of 14 (57.1%) mice implanted with battery-powered pacemakers died following device implantation compared to 1 of 10 (10%) mice implanted with wireless-powered pacemakers. Moreover, device function was achieved for 30 days with the wireless-powered device compared to 6 days with the battery-powered device. The wireless-powered pacemaker system presented herein will allow electrophysiology studies in numerous genetically engineered mouse models as well as rapid pacing-induced heart failure and atrial arrhythmia in mice. PMID:24194832
Moradkhani, Anilga; Douglas, Kristin S. Vickers; Prinsen, Sharon K.; Fischer, Erin N.; Schroeder, Darrell R.
2014-01-01
Abstract Objective: The objective of this investigation was to assess whether a new electronic health (e-health) platform, combining mobile computing and a content management system, could effectively deliver modular and “just-in-time” education to older patients following cardiac surgery. Subjects and Methods: Patients were provided with iPad® (Apple®, Cupertino, CA) tablets that delivered educational modules as part of a daily “to do” list in a plan of care. The tablet communicated wirelessly to a dashboard where data were aggregated and displayed for providers. Results: A surgical population of 149 patients with a mean age of 68 years utilized 5,267 of 6,295 (84%) of education modules delivered over a 5.3-day hospitalization. Increased age was not associated with decreased use. Conclusions: We demonstrate that age, hospitalization, and major surgery are not significant barriers to effective patient education if content is highly consumable and relevant to patients' daily care experience. We also show that mobile technology, even if unfamiliar to many older patients, makes this possible. The combination of mobile computing with a content management system allows for dynamic, modular, personalized, and “just-in-time” education in a highly consumable format. This approach presents a means by which patients may become informed participants in new healthcare models. PMID:24443928
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-11
... its Electronic Document Management System (EDOCS): http://hraunfoss.fcc.gov/edocs_public/SilverStream... Communications Commission. ACTION: Notice. SUMMARY: In this document, comment is sought on a December 17, 2009...'s Electronic Comment Filing System (ECFS), (2) the Federal Government's eRulemaking Portal, or (3...
Away from silicon era: the paper electronics
NASA Astrophysics Data System (ADS)
Martins, R.; Brás, B.; Ferreira, I.; Pereira, L.; Barquinha, P.; Correia, N.; Costa, R.; Busani, T.; Gonçalves, A.; Pimentel, A.; Fortunato, E.
2011-02-01
Today there is a strong interest in the scientific and industrial community concerning the use of biopolymers for electronic applications, mainly driven by low-cost and disposable applications. Adding to this interest, we must recognize the importance of the wireless auto sustained and low energy consumption electronics dream. This dream can be fulfilled by cellulose paper, the lightest and the cheapest known substrate material, as well as the Earth's major biopolymer and of tremendous global economic importance. The recent developments of oxide thin film transistors and in particular the production of paper transistors at room temperature had contributed, as a first step, for the development of disposable, low cost and flexible electronic devices. To fulfil the wireless demand, it is necessary to prove the concept of self powered devices. In the case of paper electronics, this implies demonstrating the idea of self regenerated thin film paper batteries and its integration with other electronic components. Here we demonstrate this possibility by actuating the gate of paper transistors by paper batteries. We found that when a sheet of cellulose paper is covered in both faces with thin layers of opposite electrochemical potential materials, a voltage appears between both electrodes -paper battery, which is also self-regenerated. The value of the potential depends upon the materials used for anode and cathode. An open circuit voltage of 0.5V and a short-circuit current density of 1μA/cm2 were obtained in the simplest structure produced (Cu/paper/Al). For actuating the gate of the paper transistor, seven paper batteries were integrated in the same substrate in series, supplying a voltage of 3.4V. This allows proper ON/OFF control of the paper transistor. Apart from that transparent conductive oxides can be also used as cathode/anode materials allowing so the production of thin film batteries with transparent electrodes compatible with flexible, invisible, self powered and wireless electronics.
Xiong, Hailiang; Zhang, Wensheng; Xu, Hongji; Du, Zhengfeng; Tang, Huaibin; Li, Jing
2017-05-25
With the rapid development of wireless communication systems and electronic techniques, the limited frequency spectrum resources are shared with various wireless devices, leading to a crowded and challenging coexistence circumstance. Cognitive radio (CR) and ultra-wide band (UWB), as sophisticated wireless techniques, have been considered as significant solutions to solve the harmonious coexistence issues. UWB wireless sensors can share the spectrum with primary user (PU) systems without harmful interference. The in-band interference of UWB systems should be considered because such interference can severely affect the transmissions of UWB wireless systems. In order to solve the in-band interference issues for UWB wireless sensor networks (WSN), a novel in-band narrow band interferences (NBIs) elimination scheme is proposed in this paper. The proposed narrow band interferences suppression scheme is based on a novel complex-coefficient adaptive notch filter unit with a single constrained zero-pole pair. Moreover, in order to reduce the computation complexity of the proposed scheme, an adaptive complex-coefficient iterative method based on two-order Taylor series is designed. To cope with multiple narrow band interferences, a linear cascaded high order adaptive filter and a cyclic cascaded high order matrix adaptive filter (CCHOMAF) interference suppression algorithm based on the basic adaptive notch filter unit are also presented. The theoretical analysis and numerical simulation results indicate that the proposed CCHOMAF algorithm can achieve better performance in terms of average bit error rate for UWB WSNs. The proposed in-band NBIs elimination scheme can significantly improve the reception performance of low-cost and low-power UWB wireless systems.
Xiong, Hailiang; Zhang, Wensheng; Xu, Hongji; Du, Zhengfeng; Tang, Huaibin; Li, Jing
2017-01-01
With the rapid development of wireless communication systems and electronic techniques, the limited frequency spectrum resources are shared with various wireless devices, leading to a crowded and challenging coexistence circumstance. Cognitive radio (CR) and ultra-wide band (UWB), as sophisticated wireless techniques, have been considered as significant solutions to solve the harmonious coexistence issues. UWB wireless sensors can share the spectrum with primary user (PU) systems without harmful interference. The in-band interference of UWB systems should be considered because such interference can severely affect the transmissions of UWB wireless systems. In order to solve the in-band interference issues for UWB wireless sensor networks (WSN), a novel in-band narrow band interferences (NBIs) elimination scheme is proposed in this paper. The proposed narrow band interferences suppression scheme is based on a novel complex-coefficient adaptive notch filter unit with a single constrained zero-pole pair. Moreover, in order to reduce the computation complexity of the proposed scheme, an adaptive complex-coefficient iterative method based on two-order Taylor series is designed. To cope with multiple narrow band interferences, a linear cascaded high order adaptive filter and a cyclic cascaded high order matrix adaptive filter (CCHOMAF) interference suppression algorithm based on the basic adaptive notch filter unit are also presented. The theoretical analysis and numerical simulation results indicate that the proposed CCHOMAF algorithm can achieve better performance in terms of average bit error rate for UWB WSNs. The proposed in-band NBIs elimination scheme can significantly improve the reception performance of low-cost and low-power UWB wireless systems. PMID:28587085
Developing novel 3D antennas using advanced additive manufacturing technology
NASA Astrophysics Data System (ADS)
Mirzaee, Milad
In today's world of wireless communication systems, antenna engineering is rapidly advancing as the wireless services continue to expand in support of emerging commercial applications. Antennas play a key role in the performance of advanced transceiver systems where they serve to convert electric power to electromagnetic waves and vice versa. Researchers have held significant interest in developing this crucial component for wireless communication systems by employing a variety of design techniques. In the past few years, demands for electrically small antennas continues to increase, particularly among portable and mobile wireless devices, medical electronics and aerospace systems. This trend toward smaller electronic devices makes the three dimensional (3D) antennas very appealing, since they can be designed in a way to use every available space inside the devise. Additive Manufacturing (AM) method could help to find great solutions for the antennas design for next generation of wireless communication systems. In this thesis, the design and fabrication of 3D printed antennas using AM technology is studied. To demonstrate this application of AM, different types of antennas structures have been designed and fabricated using various manufacturing processes. This thesis studies, for the first time, embedded conductive 3D printed antennas using PolyLactic Acid (PLA) and Acrylonitrile Butadiene Styrene (ABS) for substrate parts and high temperature carbon paste for conductive parts which can be a good candidate to overcome the limitations of direct printing on 3D surfaces that is the most popular method to fabricate conductive parts of the antennas. This thesis also studies, for the first time, the fabrication of antennas with 3D printed conductive parts which can contribute to the new generation of 3D printed antennas.
NASA Astrophysics Data System (ADS)
Sklavos, N.; Selimis, G.; Koufopavlou, O.
2005-01-01
The explosive growth of internet and consumer demand for mobility has fuelled the exponential growth of wireless communications and networks. Mobile users want access to services and information, from both internet and personal devices, from a range of locations without the use of a cable medium. IEEE 802.11 is one of the most widely used wireless standards of our days. The amount of access and mobility into wireless networks requires a security infrastructure that protects communication within that network. The security of this protocol is based on the wired equivalent privacy (WEP) scheme. Currently, all the IEEE 802.11 market products support WEP. But recently, the 802.11i working group introduced the advanced encryption standard (AES), as the security scheme for the future IEEE 802.11 applications. In this paper, the hardware integrations of WEP and AES are studied. A field programmable gate array (FPGA) device has been used as the hardware implementation platform, for a fair comparison between the two security schemes. Measurements for the FPGA implementation cost, operating frequency, power consumption and performance are given.
The evolution and impact of PCS technology
NASA Astrophysics Data System (ADS)
Lawson, John R.
1994-09-01
In today's mobile society, communications services that focus on location (wired) are increasingly inadequate. But services that center around the individual (wireless) are being developed to serve society in a way that only recently could consumers have imagined. People-oriented communications tools will make life simpler and more productive. The essence of this concept is captured in a family of wireless services and devices that allow the user to communicate independent of location--Personal Communications Services, known as PCS. First generation PCS devices such a pagers and cellular phones were the instruments of the first wireless revolution, but they will soon be forced to relinquish the spotlight to the new generation of PCS and what should be a dazzling variety of individualized advanced telecommunications services and devices. Within the next two years, these new PCS models, recently described as 'the most exciting development in telecommunications since the breakup of AT&T,' should hit the marketplace, changing the way we communicate and, in turn, the way we live. This paper explores the status and likely development of PCS generally, including 'new PCS.'
Liu, Xuemei; Ge, Baofeng
2012-04-01
This paper proposes a media access control (MAC) layer design for wireless body area network (WBAN) systems. WBAN is a technology that targets for wireless networking of wearable and implantable body sensors which monitor vital body signs, such as heart-rate, body temperature, blood pressure, etc. It has been receiving attentions from international organizations, e. g. the Institute of Electrical and Electronics Engineers (IEEE), due to its capability of providing efficient healthcare services and clinical management. This paper reviews the standardization procedure of WBAN and summarizes the challenge of the MAC layer design. It also discusses the methods of improving power consumption performance, which is one of the major issues of WBAN systems.
Bimodal wireless sensing with dual-channel wide bandgap heterostructure varactors
NASA Astrophysics Data System (ADS)
Deen, David A.; Osinsky, Andrei; Miller, Ross
2014-03-01
A capacitive wireless sensing scheme is developed that utilizes an AlN/GaN-based dual-channel varactor. The dual-channel heterostructure affords two capacitance plateaus within the capacitance-voltage (CV) characteristic, owing to the two parallel two-dimensional electron gases (2DEGs) located at respective AlN/GaN interfaces. The capacitance plateaus are leveraged for the definition of two resonant states of the sensor when implemented in an inductively-coupled resonant LRC network for wireless readout. The physics-based CV model is compared with published experimental results, which serve as a basis for the sensor embodiment. The bimodal resonant sensor is befitting for a broad application space ranging from gas, electrostatic, and piezoelectric sensors to biological and chemical detection.
Chow, C W; Lin, Y H
2012-04-09
To provide broadband services in a single and low cost perform, the convergent optical wired and wireless access network is promising. Here, we propose and demonstrate a convergent optical wired and wireless long-reach access networks based on orthogonal wavelength division multiplexing (WDM). Both the baseband signal and the radio-over-fiber (ROF) signal are multiplexed and de-multiplexed in optical domain, hence it is simple and the operation speed is not limited by the electronic bottleneck caused by the digital signal processing (DSP). Error-free de-multiplexing and down-conversion can be achieved for all the signals after 60 km (long-reach) fiber transmission. The scalability of the system for higher bit-rate (60 GHz) is also simulated and discussed.
Optimised cross-layer synchronisation schemes for wireless sensor networks
NASA Astrophysics Data System (ADS)
Nasri, Nejah; Ben Fradj, Awatef; Kachouri, Abdennaceur
2017-07-01
This paper aims at synchronisation between the sensor nodes. Indeed, in the context of wireless sensor networks, it is necessary to take into consideration the energy cost induced by the synchronisation, which can represent the majority of the energy consumed. On communication, an already identified hard point consists in imagining a fine synchronisation protocol which must be sufficiently robust to the intermittent energy in the sensors. Hence, this paper worked on aspects of performance and energy saving, in particular on the optimisation of the synchronisation protocol using cross-layer design method such as synchronisation between layers. Our approach consists in balancing the energy consumption between the sensors and choosing the cluster head with the highest residual energy in order to guarantee the reliability, integrity and continuity of communication (i.e. maximising the network lifetime).
A 0.5 cm(3) four-channel 1.1 mW wireless biosignal interface with 20 m range.
Morrison, Tim; Nagaraju, Manohar; Winslow, Brent; Bernard, Amy; Otis, Brian P
2014-02-01
This paper presents a self-contained, single-chip biosignal monitoring system with wireless programmability and telemetry interface suitable for mainstream healthcare applications. The system consists of low-noise front end amplifiers, ADC, MICS/ISM transmitter and infrared programming capability to configure the state of the chip. An on-chip packetizer ensures easy pairing with standard off-the-shelf receivers. The chip is realized in the IBM 130 nm CMOS process with an area of 2×2 mm(2). The entire system consumes 1.07 mW from a 1.2 V supply. It weighs 0.6 g including a zinc-air battery. The system has been extensively tested in in vivo biological experiments and requires minimal human interaction or calibration.
A low power wearable transceiver for human body communication.
Huang, Jin; Chen, Lian-Kang; Zhang, Yuan-Ting
2009-01-01
This paper reports a low power transceiver designed for wearable medical healthcare system. Based on a novel energy-efficient wideband wireless communication scheme that uses human body as a transmission medium, the transceiver can achieve a maximum 15 Mbps data rate with total receiver sensitivity of -30 dBm. The chip measures only 0.56 mm(2) and was fabricated in the SMIC 0.18um 1P6M RF CMOS process. The RX consumes 5mW and TX dissipates 1mW with delivering power up to 10uW, which is suitable for the body area network short range application. Real-time medical information collecting through the human body is fully simulated. Architecture of the chip together with the detail characterizes from its wireless analog front-end are presented.
Social Network Analysis and Its Applications in Wireless Sensor and Vehicular Networks
NASA Astrophysics Data System (ADS)
Papadimitriou, Alexis; Katsaros, Dimitrios; Manolopoulos, Yannis
Ever since the introduction of wireless sensor networks in the research and development agenda, the corresponding community has been eager to harness the endless possibilities that this new technology has to offer. These micro sensor nodes, whose capabilities have skyrocketed over the last couple of years, have allowed for a wide range of applications to be created; applications that not so long ago would seem impossible, impractical and time-consuming. It would only be logical to expect that researchers from other fields would take an interest in sensor networks, hence expanding the already wide variety of algorithms, theoretical proofs and applications that existed beforehand. Social Network Analysis is one such field, which has instigated a paradigm shift in the way we view sensor nodes.
Helder, Onno K; van Goudoever, Johannes B; Hop, Wim C J; Brug, Johannes; Kornelisse, René F
2012-10-08
Good hand hygiene compliance is essential to prevent nosocomial infections in healthcare settings. Direct observation of hand hygiene compliance is the gold standard but is time consuming. An electronic dispenser with built-in wireless recording equipment allows continuous monitoring of its usage. The purpose of this study was to monitor the use of alcohol-based hand rub dispensers with a built-in electronic counter in a neonatal intensive care unit (NICU) setting and to determine compliance with hand hygiene protocols by direct observation. A one-year observational study was conducted at a 27 bed level III NICU at a university hospital. All healthcare workers employed at the NICU participated in the study. The use of bedside dispensers was continuously monitored and compliance with hand hygiene was determined by random direct observations. A total of 258,436 hand disinfection events were recorded; i.e. a median (interquartile range) of 697 (559-840) per day. The median (interquartile range) number of hand disinfection events performed per healthcare worker during the day, evening, and night shifts was 13.5 (10.8 - 16.7), 19.8 (16.3 - 24.1), and 16.6 (14.2 - 19.3), respectively. In 65.8% of the 1,168 observations of patient contacts requiring hand hygiene, healthcare workers fully complied with the protocol. We conclude that the electronic devices provide useful information on frequency, time, and location of its use, and also reveal trends in hand disinfection events over time. Direct observations offer essential data on compliance with the hand hygiene protocol. In future research, data generated by the electronic devices can be supplementary used to evaluate the effectiveness of hand hygiene promotion campaigns.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-28
... INTERNATIONAL TRADE COMMISSION [DN 2885] Certain Consumer Electronics, Including Mobile Phones and.... International Trade Commission has received a complaint entitled Certain Consumer Electronics, Including Mobile... electronics, including mobile phones and tablets. The complaint names as respondents ASUSTeK Computer, Inc. of...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-25
... INTERNATIONAL TRADE COMMISSION [Inv. No. 337-TA-884] Certain Consumer Electronics With Display and... electronics with display and processing capabilities by reason of infringement of U.S. Patent No. 6,650,327... after importation of certain consumer electronics with display and processing capabilities by reason of...
Live broadcast of laparoscopic surgery to handheld computers.
Gandsas, A; McIntire, K; Park, A
2004-06-01
Thanks to advances in computer power and miniaturization technology, portable electronic devices are now being used to assist physicians with various applications that extend far beyond Web browsing or sending e-mail. Handheld computers are used for electronic medical records, billing, coding, and to enable convenient access to electronic journals for reference purposes. The results of diagnostic investigations, such as laboratory results, study reports, and still radiographic pictures, can also be downloaded into portable devices for later view. Handheld computer technology, combined with wireless protocols and streaming video technology, has the added potential to become a powerful educational tool for medical students and residents. The purpose of this study was to assess the feasibility of transferring multimedia data in real time to a handheld computer via a wireless network and displaying them on the computer screens of clients at remote locations. A live laparoscopic splenectomy was transmitted live to eight handheld computers simultaneously through our institution's wireless network. All eight viewers were able to view the procedure and to hear the surgeon's comments throughout the entire duration of the operation. Handheld computer technology can play a key role in surgical education by delivering information to surgical residents or students when they are geographically distant from the actual event. Validation of this new technology by conducting clinical research is still needed to determine whether resident physicians or medical students can benefit from the use of handheld computers.
NASA Astrophysics Data System (ADS)
Park, Jihun; Kim, Joohee; Kim, Kukjoo; Kim, So-Yun; Cheong, Woon Hyung; Park, Kyeongmin; Song, Joo Hyeb; Namgoong, Gyeongho; Kim, Jae Joon; Heo, Jaeyeong; Bien, Franklin; Park, Jang-Ung
2016-05-01
Herein, we report the fabrication of a highly stretchable, transparent gas sensor based on silver nanowire-graphene hybrid nanostructures. Due to its superb mechanical and optical characteristics, the fabricated sensor demonstrates outstanding and stable performances even under extreme mechanical deformation (stable until 20% of strain). The integration of a Bluetooth system or an inductive antenna enables the wireless operation of the sensor. In addition, the mechanical robustness of the materials allows the device to be transferred onto various nonplanar substrates, including a watch, a bicycle light, and the leaves of live plants, thereby achieving next-generation sensing electronics for the `Internet of Things' area.Herein, we report the fabrication of a highly stretchable, transparent gas sensor based on silver nanowire-graphene hybrid nanostructures. Due to its superb mechanical and optical characteristics, the fabricated sensor demonstrates outstanding and stable performances even under extreme mechanical deformation (stable until 20% of strain). The integration of a Bluetooth system or an inductive antenna enables the wireless operation of the sensor. In addition, the mechanical robustness of the materials allows the device to be transferred onto various nonplanar substrates, including a watch, a bicycle light, and the leaves of live plants, thereby achieving next-generation sensing electronics for the `Internet of Things' area. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01468b
DOE Office of Scientific and Technical Information (OSTI.GOV)
Onar, Omer C; Jones, Perry T
2014-01-01
While the total liquid fuels consumed in the U.S. for transportation of goods and people is expected to hold steady, or decline slightly over the next few decades, the world wide consumption is projected to increase of over 30% according to the Annual Energy Outlook 2014 [1]. The balance of energy consumption for transportation between petroleum fuels and electric energy, and the related greenhouse gas (GHG) emissions produced consuming either, is of particular interest to government administrations, vehicle OEMs, and energy suppliers. The market adoption of plug-in electric vehicles (PEVs) appears to be inhibited by many factors relating to themore » energy storage system (ESS) and charging infrastructure. Wireless power transfer (WPT) technologies have been identified as a key enabling technology to increase the acceptance of EVs. Oak Ridge National Laboratory (ORNL) has been involved in many research areas related to understanding the impacts, opportunities, challenges and costs related to various deployments of WPT technology for transportation use. Though the initial outlook for WPT deployment looks promising, many other emerging technologies have met unfavorable market launches due to unforeseen technology limitations, sometimes due to the complex system in which the new technology was placed. This paper will summarize research and development (R&D) performed at ORNL in the area of Wireless Power Transfer (WPT). ORNL s advanced transportation technology R&D activities provide a unique set of experienced researchers to assist in the creation of a transportation system level view. These activities range from fundamental technology development at the component level to subsystem controls and interactions to applicable system level analysis of impending market and industry responses and beyond.« less
Portable Integrated Wireless Device Threat Assessment to Aircraft Radio Systems
NASA Technical Reports Server (NTRS)
Salud, Maria Theresa P.; Williams, Reuben A. (Technical Monitor)
2004-01-01
An assessment was conducted on multiple wireless local area network (WLAN) devices using the three wireless standards for spurious radiated emissions to determine their threat to aircraft radio navigation systems. The measurement process, data and analysis are provided for devices tested using IEEE 802.11a, IEEE 802.11b, and Bluetooth as well as data from portable laptops/tablet PCs and PDAs (grouping known as PEDs). A comparison was made between wireless LAN devices and portable electronic devices. Spurious radiated emissions were investigated in the radio frequency bands for the following aircraft systems: Instrument Landing System Localizer and Glideslope, Very High Frequency (VHF) Communication, VHF Omnidirectional Range, Traffic Collision Avoidance System, Air Traffic Control Radar Beacon System, Microwave Landing System and Global Positioning System. Since several of the contiguous navigation systems were grouped under one encompassing measurement frequency band, there were five measurement frequency bands where spurious radiated emissions data were collected for the PEDs and WLAN devices. The report also provides a comparison between emissions data and regulatory emission limit.
Chandrasekhar, Arunkumar; Alluri, Nagamalleswara Rao; Sudhakaran, M S P; Mok, Young Sun; Kim, Sang-Jae
2017-07-20
A Smart Mobile Pouch Triboelectric Nanogenerator (SMP-TENG) is introduced as a promising eco-friendly approach for scavenging biomechanical energy for powering next generation intelligent devices and smart phones. This is a cost-effective and robust method for harvesting energy from human motion, by utilizing worn fabrics as a contact material. The SMP-TENG is capable of harvesting energy in two operational modes: lateral sliding and vertical contact and separation. Moreover, the SMP-TENG can also act as a self-powered emergency flashlight and self-powered pedometer during normal human motion. A wireless power transmission setup integrated with SMP-TENG is demonstrated. This upgrades the traditional energy harvesting device into a self-powered wireless power transfer SMP-TENG. The wirelessly transferred power can be used to charge a Li-ion battery and light LEDs. The SMP-TENG opens a wide range of opportunities in the field of self-powered devices and low maintenance energy harvesting systems for portable and wearable electronic gadgets.
Smartphone-based portable wireless optical system for the detection of target analytes.
Gautam, Shreedhar; Batule, Bhagwan S; Kim, Hyo Yong; Park, Ki Soo; Park, Hyun Gyu
2017-02-01
Rapid and accurate on-site wireless measurement of hazardous molecules or biomarkers is one of the biggest challenges in nanobiotechnology. A novel smartphone-based Portable and Wireless Optical System (PAWS) for rapid, quantitative, and on-site analysis of target analytes is described. As a proof-of-concept, we employed gold nanoparticles (GNP) and an enzyme, horse radish peroxidase (HRP), to generate colorimetric signals in response to two model target molecules, melamine and hydrogen peroxide, respectively. The colorimetric signal produced by the presence of the target molecules is converted to an electrical signal by the inbuilt electronic circuit of the device. The converted electrical signal is then measured wirelessly via multimeter in the smartphone which processes the data and displays the results, including the concentration of analytes and its significance. This handheld device has great potential as a programmable and miniaturized platform to achieve rapid and on-site detection of various analytes in a point-of-care testing (POCT) manner. Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Abbas, Syed Muzahir; Ranga, Yogesh; Esselle, Karu P
2015-01-01
This paper presents electronically reconfigurable antenna options in healthcare applications. They are suitable for wireless body area network devices operating in the industrial, scientific, and medical (ISM) band at 2.45 GHz and IEEE 802.11 Wireless Local Area Network (WLAN) band at 5 GHz (5.15-5.35 GHz, 5.25-5.35 GHz). Two types of antennas are investigated: Antenna-I has a full ground plane and Antenna-II has a partial ground plane. The proposed antennas provide ISM operation in one mode while in another mode they support 5 GHz WLAN band. Their performance is assessed for body centric wireless communication using a simplified human body model. Antenna sensitivity to the gap between the antenna and the human body is investigated for both modes of each antenna. The proposed antennas exhibit a wide radiation pattern along the body surface to provide wide coverage and their small width (14 mm) makes them suitable for on-body communication in healthcare applications.
ERIC Educational Resources Information Center
Bearman, David, Ed.; Trant, Jennifer, Ed.
This proceedings contains the following selected papers from the Museums and the Web 2002 international conference: "The Electronic Guidebook: Using Portable Devices and a Wireless Web-Based Network To Extend the Museum Experience" (Robert Semper, Mirjana Spasojevic); "Eavesdropping on Electronic Guidebooks: Observing Learning…
76 FR 19285 - Request for Information Regarding Electronic Disclosure by Employee Benefit Plans
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-07
..., fiber optic and wireless networks; hardware improvements to servers and personal computers improving... electronic media. For instance, the 2009 U.S. Census Bureau Current Population Survey (Census) found that 76.... \\3\\ The Census information may be found at http://www.census.gov/population/www/socdemo/computer.html...
49 CFR Appendix A to Part 395 - Electronic On-Board Recorder Performance Specifications
Code of Federal Regulations, 2010 CFR
2010-10-01
... one-way transfer of these records through wired and wireless methods to authorized safety officials... facilitate the electronic transfer of records to roadside inspection personnel and compliance review... whenever there is a change in driver duty status, an EOBR diagnostic event (such as power-on/off, self test...
Code of Federal Regulations, 2014 CFR
2014-10-01
... Wireless Telecommunications Bureau announces by public notice the implementation of a third-party database...) Provide an electronic copy of an interference analysis to the third-party database manager which...-party database managers shall receive and retain the interference analyses electronically and make them...
Code of Federal Regulations, 2012 CFR
2012-10-01
... Wireless Telecommunications Bureau announces by public notice the implementation of a third-party database...) Provide an electronic copy of an interference analysis to the third-party database manager which...-party database managers shall receive and retain the interference analyses electronically and make them...
Code of Federal Regulations, 2010 CFR
2010-10-01
... Wireless Telecommunications Bureau announces by public notice the implementation of a third-party database...) Provide an electronic copy of an interference analysis to the third-party database manager which...-party database managers shall receive and retain the interference analyses electronically and make them...
Code of Federal Regulations, 2013 CFR
2013-10-01
... Wireless Telecommunications Bureau announces by public notice the implementation of a third-party database...) Provide an electronic copy of an interference analysis to the third-party database manager which...-party database managers shall receive and retain the interference analyses electronically and make them...
Code of Federal Regulations, 2011 CFR
2011-10-01
... Wireless Telecommunications Bureau announces by public notice the implementation of a third-party database...) Provide an electronic copy of an interference analysis to the third-party database manager which...-party database managers shall receive and retain the interference analyses electronically and make them...
The impact of using electronic patient records on practices of reading and writing.
Laitinen, Heleena; Kaunonen, Marja; Åstedt-Kurki, Paivi
2014-12-01
The aim of this study was to investigate the use of electronic patient records in daily practice. In four wards of a large hospital district in Finland, N = 43 patients' care and activities were observed and analysed in terms of the Grounded Theory method. The findings revealed that using electronic patient records created a particular process of writing and reading. Wireless technology enabled simultaneous patient involvement and point-of-care documentation, additionally supporting real-time reading. Remote and retrospective documentation was distant in terms of both space and time. The remoteness caused double documentation, reduced accuracy and less-efficient use of time. 'Non-reading' practices were witnessed in retrospective reading, causing delays in patient care and increase in workload. Similarly, if documentation was insufficient or non-existent, the consequences were found to be detrimental to the patients. The use of an electronic patient record system has a significant impact on patient care. Therefore, it is crucial to develop wireless technology and interdisciplinary collaboration in order to improve and support high-quality patient care. © The Author(s) 2013.
Jeong, Seung Hee; Hjort, Klas; Wu, Zhigang
2015-02-12
Stretchable electronics offers unsurpassed mechanical compliance on complex or soft surfaces like the human skin and organs. To fully exploit this great advantage, an autonomous system with a self-powered energy source has been sought for. Here, we present a new technology to pattern liquid alloys on soft substrates, targeting at fabrication of a hybrid-integrated power source in microfluidic stretchable electronics. By atomized spraying of a liquid alloy onto a soft surface with a tape transferred adhesive mask, a universal fabrication process is provided for high quality patterns of liquid conductors in a meter scale. With the developed multilayer fabrication technique, a microfluidic stretchable wireless power transfer device with an integrated LED was demonstrated, which could survive cycling between 0% and 25% strain over 1,000 times.
Jeong, Seung Hee; Hjort, Klas; Wu, Zhigang
2015-01-01
Stretchable electronics offers unsurpassed mechanical compliance on complex or soft surfaces like the human skin and organs. To fully exploit this great advantage, an autonomous system with a self-powered energy source has been sought for. Here, we present a new technology to pattern liquid alloys on soft substrates, targeting at fabrication of a hybrid-integrated power source in microfluidic stretchable electronics. By atomized spraying of a liquid alloy onto a soft surface with a tape transferred adhesive mask, a universal fabrication process is provided for high quality patterns of liquid conductors in a meter scale. With the developed multilayer fabrication technique, a microfluidic stretchable wireless power transfer device with an integrated LED was demonstrated, which could survive cycling between 0% and 25% strain over 1,000 times. PMID:25673261
Zhang, Binbin; Chen, Jun; Jin, Long; Deng, Weili; Zhang, Lei; Zhang, Haitao; Zhu, Minhao; Yang, Weiqing; Wang, Zhong Lin
2016-06-28
Wireless traffic volume detectors play a critical role for measuring the traffic-flow in a real-time for current Intelligent Traffic System. However, as a battery-operated electronic device, regularly replacing battery remains a great challenge, especially in the remote area and wide distribution. Here, we report a self-powered active wireless traffic volume sensor by using a rotating-disk-based hybridized nanogenerator of triboelectric nanogenerator and electromagnetic generator as the sustainable power source. Operated at a rotating rate of 1000 rpm, the device delivered an output power of 17.5 mW, corresponding to a volume power density of 55.7 W/m(3) (Pd = P/V, see Supporting Information for detailed calculation) at a loading resistance of 700 Ω. The hybridized nanogenerator was demonstrated to effectively harvest energy from wind generated by a moving vehicle through the tunnel. And the delivered power is capable of triggering a counter via a wireless transmitter for real-time monitoring the traffic volume in the tunnel. This study further expands the applications of triboelectric nanogenerators for high-performance ambient mechanical energy harvesting and as sustainable power sources for driving wireless traffic volume sensors.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-10
... INTERNATIONAL TRADE COMMISSION [Inv. No. 337-TA-836] Certain Consumer Electronics and Display... electronics and display devices and products containing same by reason of infringement of certain claims of U... importation, or the sale within the United States after importation of certain consumer electronics and...
Soft, smart contact lenses with integrations of wireless circuits, glucose sensors, and displays
Park, Jihun; Kim, Joohee; Kim, So-Yun; Cheong, Woon Hyung; Jang, Jiuk; Park, Young-Geun; Na, Kyungmin; Kim, Yun-Tae; Heo, Jun Hyuk; Lee, Chang Young; Lee, Jung Heon; Bien, Franklin; Park, Jang-Ung
2018-01-01
Recent advances in wearable electronics combined with wireless communications are essential to the realization of medical applications through health monitoring technologies. For example, a smart contact lens, which is capable of monitoring the physiological information of the eye and tear fluid, could provide real-time, noninvasive medical diagnostics. However, previous reports concerning the smart contact lens have indicated that opaque and brittle components have been used to enable the operation of the electronic device, and this could block the user’s vision and potentially damage the eye. In addition, the use of expensive and bulky equipment to measure signals from the contact lens sensors could interfere with the user’s external activities. Thus, we report an unconventional approach for the fabrication of a soft, smart contact lens in which glucose sensors, wireless power transfer circuits, and display pixels to visualize sensing signals in real time are fully integrated using transparent and stretchable nanostructures. The integration of this display into the smart lens eliminates the need for additional, bulky measurement equipment. This soft, smart contact lens can be transparent, providing a clear view by matching the refractive indices of its locally patterned areas. The resulting soft, smart contact lens provides real-time, wireless operation, and there are in vivo tests to monitor the glucose concentration in tears (suitable for determining the fasting glucose level in the tears of diabetic patients) and, simultaneously, to provide sensing results through the contact lens display. PMID:29387797
Soft, smart contact lenses with integrations of wireless circuits, glucose sensors, and displays.
Park, Jihun; Kim, Joohee; Kim, So-Yun; Cheong, Woon Hyung; Jang, Jiuk; Park, Young-Geun; Na, Kyungmin; Kim, Yun-Tae; Heo, Jun Hyuk; Lee, Chang Young; Lee, Jung Heon; Bien, Franklin; Park, Jang-Ung
2018-01-01
Recent advances in wearable electronics combined with wireless communications are essential to the realization of medical applications through health monitoring technologies. For example, a smart contact lens, which is capable of monitoring the physiological information of the eye and tear fluid, could provide real-time, noninvasive medical diagnostics. However, previous reports concerning the smart contact lens have indicated that opaque and brittle components have been used to enable the operation of the electronic device, and this could block the user's vision and potentially damage the eye. In addition, the use of expensive and bulky equipment to measure signals from the contact lens sensors could interfere with the user's external activities. Thus, we report an unconventional approach for the fabrication of a soft, smart contact lens in which glucose sensors, wireless power transfer circuits, and display pixels to visualize sensing signals in real time are fully integrated using transparent and stretchable nanostructures. The integration of this display into the smart lens eliminates the need for additional, bulky measurement equipment. This soft, smart contact lens can be transparent, providing a clear view by matching the refractive indices of its locally patterned areas. The resulting soft, smart contact lens provides real-time, wireless operation, and there are in vivo tests to monitor the glucose concentration in tears (suitable for determining the fasting glucose level in the tears of diabetic patients) and, simultaneously, to provide sensing results through the contact lens display.
47 CFR 76.630 - Compatibility with consumer electronics equipment.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 4 2010-10-01 2010-10-01 false Compatibility with consumer electronics equipment. 76.630 Section 76.630 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST... Compatibility with consumer electronics equipment. (a) Cable system operators shall not scramble or otherwise...
47 CFR 76.630 - Compatibility with consumer electronics equipment.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 4 2011-10-01 2011-10-01 false Compatibility with consumer electronics equipment. 76.630 Section 76.630 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST... Compatibility with consumer electronics equipment. (a) Cable system operators shall not scramble or otherwise...
47 CFR 76.630 - Compatibility with consumer electronics equipment.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 47 Telecommunication 4 2014-10-01 2014-10-01 false Compatibility with consumer electronics equipment. 76.630 Section 76.630 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST... Compatibility with consumer electronics equipment. (a) Cable system operators shall not scramble or otherwise...
47 CFR 76.630 - Compatibility with consumer electronics equipment.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 47 Telecommunication 4 2013-10-01 2013-10-01 false Compatibility with consumer electronics equipment. 76.630 Section 76.630 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST... Compatibility with consumer electronics equipment. (a) Cable system operators shall not scramble or otherwise...
47 CFR 76.630 - Compatibility with consumer electronics equipment.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 47 Telecommunication 4 2012-10-01 2012-10-01 false Compatibility with consumer electronics equipment. 76.630 Section 76.630 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST... Compatibility with consumer electronics equipment. (a) Cable system operators shall not scramble or otherwise...
Park, Hyejin; Kang, Hwiwon; Lee, Yonggil; Park, Yongsu; Noh, Jinsoo; Cho, Gyoujin
2012-08-31
Wireless power transmission to inexpensive and disposable smart electronic devices is one of the key issues for the realization of a ubiquitous society where sensor networks such as RFID tags, price tags, smart logos, signage and sensors could be fully interconnected and utilized by DC power of less than 0.3 W. This DC power can be provided by inductively coupled AC from a 13.56 MHz power transmitter through a rectenna, consisting of an antenna, a diode and a capacitor, which would be cheap to integrate with inexpensive smart electronic devices. To integrate the rectenna with a minimum cost, a roll-to-roll (R2R) gravure printing process has been considered to print the rectenna on plastic foils. In this paper, R2R gravure printing systems including printing condition and four different nanoparticle based inks will be reported to print the rectenna (antenna, diode and capacitor) on plastic foils at a printing speed of 8 m min(-1) and more than 90% device yield for a wireless power transmission of 0.3 W using a standard 13.56 MHz power transmitter.
Integrated digital printing of flexible circuits for wireless sensing (Conference Presentation)
NASA Astrophysics Data System (ADS)
Mei, Ping; Whiting, Gregory L.; Schwartz, David E.; Ng, Tse Nga; Krusor, Brent S.; Ready, Steve E.; Daniel, George; Veres, Janos; Street, Bob
2016-09-01
Wireless sensing has broad applications in a wide variety of fields such as infrastructure monitoring, chemistry, environmental engineering and cold supply chain management. Further development of sensing systems will focus on achieving light weight, flexibility, low power consumption and low cost. Fully printed electronics provide excellent flexibility and customizability, as well as the potential for low cost and large area applications, but lack solutions for high-density, high-performance circuitry. Conventional electronics mounted on flexible printed circuit boards provide high performance but are not digitally fabricated or readily customizable. Incorporation of small silicon dies or packaged chips into a printed platform enables high performance without compromising flexibility or cost. At PARC, we combine high functionality c-Si CMOS and digitally printed components and interconnects to create an integrated platform that can read and process multiple discrete sensors. Our approach facilitates customization to a wide variety of sensors and user interfaces suitable for a broad range of applications including remote monitoring of health, structures and environment. This talk will describe several examples of printed wireless sensing systems. The technologies required for these sensor systems are a mix of novel sensors, printing processes, conventional microchips, flexible substrates and energy harvesting power solutions.
Measurements on wireless transmission of ECG signals
NASA Astrophysics Data System (ADS)
Gabrielli, A.; Lax, I.
2016-12-01
The scope of this research is to design an electronic prototype, an operative system as a proof of concept, to transmit and receive biological parameters, in particular electrocardiogram signals, through dedicated wireless circuits. The apparatus features microelectronics chips that were developed for more general biomedical applications, here adapted to deal with cardiac signals. The paper mainly focuses on the electronic aspects, as in this study we do not face medical or clinical aspects of the system. The transmitter circuit uses a commercial instrumentation amplifier and the receiver has been equipped with wide-band amplifiers along with made-in-the-lab band-pass filters centered at the carrier. We have been able to mount the entire system prototype into a preliminary data acquisition chain that reads out the electrocardiogram signal. The prototype allows acquiring the waveform, converting it to a digital pattern and open the transmission through a series of high-frequency packets exploiting the Ultra Wide Band protocol. The sensor value is embedded in the transmission through the rate of the digital packets. In fact, these are sent wireless at a specific packet-frequency that depends on the sensor amplitude and are detected into a receiver circuit that recovers the information.
NASA Astrophysics Data System (ADS)
Park, Hyejin; Kang, Hwiwon; Lee, Yonggil; Park, Yongsu; Noh, Jinsoo; Cho, Gyoujin
2012-08-01
Wireless power transmission to inexpensive and disposable smart electronic devices is one of the key issues for the realization of a ubiquitous society where sensor networks such as RFID tags, price tags, smart logos, signage and sensors could be fully interconnected and utilized by DC power of less than 0.3 W. This DC power can be provided by inductively coupled AC from a 13.56 MHz power transmitter through a rectenna, consisting of an antenna, a diode and a capacitor, which would be cheap to integrate with inexpensive smart electronic devices. To integrate the rectenna with a minimum cost, a roll-to-roll (R2R) gravure printing process has been considered to print the rectenna on plastic foils. In this paper, R2R gravure printing systems including printing condition and four different nanoparticle based inks will be reported to print the rectenna (antenna, diode and capacitor) on plastic foils at a printing speed of 8 m min-1 and more than 90% device yield for a wireless power transmission of 0.3 W using a standard 13.56 MHz power transmitter.
NASA Astrophysics Data System (ADS)
Xu, Sheng; Zhang, Yihui; Cho, Jiung; Lee, Juhwan; Huang, Xian; Jia, Lin; Fan, Jonathan A.; Su, Yewang; Su, Jessica; Zhang, Huigang; Cheng, Huanyu; Lu, Bingwei; Yu, Cunjiang; Chuang, Chi; Kim, Tae-Il; Song, Taeseup; Shigeta, Kazuyo; Kang, Sen; Dagdeviren, Canan; Petrov, Ivan; Braun, Paul V.; Huang, Yonggang; Paik, Ungyu; Rogers, John A.
2013-02-01
An important trend in electronics involves the development of materials, mechanical designs and manufacturing strategies that enable the use of unconventional substrates, such as polymer films, metal foils, paper sheets or rubber slabs. The last possibility is particularly challenging because the systems must accommodate not only bending but also stretching. Although several approaches are available for the electronics, a persistent difficulty is in power supplies that have similar mechanical properties, to allow their co-integration with the electronics. Here we introduce a set of materials and design concepts for a rechargeable lithium ion battery technology that exploits thin, low modulus silicone elastomers as substrates, with a segmented design in the active materials, and unusual ‘self-similar’ interconnect structures between them. The result enables reversible levels of stretchability up to 300%, while maintaining capacity densities of ~1.1 mAh cm-2. Stretchable wireless power transmission systems provide the means to charge these types of batteries, without direct physical contact.
Takeda, Yasunori; Hayasaka, Kazuma; Shiwaku, Rei; Yokosawa, Koji; Shiba, Takeo; Mamada, Masashi; Kumaki, Daisuke; Fukuda, Kenjiro; Tokito, Shizuo
2016-05-09
Ultrathin electronic circuits that can be manufactured by using conventional printing technologies are key elements necessary to realize wearable health sensors and next-generation flexible electronic devices. Due to their low level of power consumption, complementary (CMOS) circuits using both types of semiconductors can be easily employed in wireless devices. Here, we describe ultrathin CMOS logic circuits, for which not only the source/drain electrodes but also the semiconductor layers were printed. Both p-type and n-type organic thin film transistor devices were employed in a D-flip flop circuit in the newly developed stacked structure and exhibited excellent electrical characteristics, including good carrier mobilities of 0.34 and 0.21 cm(2) V(-1) sec(-1), and threshold voltages of nearly 0 V with low operating voltages. These printed organic CMOS D-flip flop circuits exhibit operating frequencies of 75 Hz and demonstrate great potential for flexible and printed electronics technology, particularly for wearable sensor applications with wireless connectivity.
Xu, Sheng; Zhang, Yihui; Cho, Jiung; Lee, Juhwan; Huang, Xian; Jia, Lin; Fan, Jonathan A; Su, Yewang; Su, Jessica; Zhang, Huigang; Cheng, Huanyu; Lu, Bingwei; Yu, Cunjiang; Chuang, Chi; Kim, Tae-Il; Song, Taeseup; Shigeta, Kazuyo; Kang, Sen; Dagdeviren, Canan; Petrov, Ivan; Braun, Paul V; Huang, Yonggang; Paik, Ungyu; Rogers, John A
2013-01-01
An important trend in electronics involves the development of materials, mechanical designs and manufacturing strategies that enable the use of unconventional substrates, such as polymer films, metal foils, paper sheets or rubber slabs. The last possibility is particularly challenging because the systems must accommodate not only bending but also stretching. Although several approaches are available for the electronics, a persistent difficulty is in power supplies that have similar mechanical properties, to allow their co-integration with the electronics. Here we introduce a set of materials and design concepts for a rechargeable lithium ion battery technology that exploits thin, low modulus silicone elastomers as substrates, with a segmented design in the active materials, and unusual 'self-similar' interconnect structures between them. The result enables reversible levels of stretchability up to 300%, while maintaining capacity densities of ~1.1 mAh cm(-2). Stretchable wireless power transmission systems provide the means to charge these types of batteries, without direct physical contact.
Takeda, Yasunori; Hayasaka, Kazuma; Shiwaku, Rei; Yokosawa, Koji; Shiba, Takeo; Mamada, Masashi; Kumaki, Daisuke; Fukuda, Kenjiro; Tokito, Shizuo
2016-01-01
Ultrathin electronic circuits that can be manufactured by using conventional printing technologies are key elements necessary to realize wearable health sensors and next-generation flexible electronic devices. Due to their low level of power consumption, complementary (CMOS) circuits using both types of semiconductors can be easily employed in wireless devices. Here, we describe ultrathin CMOS logic circuits, for which not only the source/drain electrodes but also the semiconductor layers were printed. Both p-type and n-type organic thin film transistor devices were employed in a D-flip flop circuit in the newly developed stacked structure and exhibited excellent electrical characteristics, including good carrier mobilities of 0.34 and 0.21 cm2 V−1 sec−1, and threshold voltages of nearly 0 V with low operating voltages. These printed organic CMOS D-flip flop circuits exhibit operating frequencies of 75 Hz and demonstrate great potential for flexible and printed electronics technology, particularly for wearable sensor applications with wireless connectivity. PMID:27157914
Smart roadside initiative : system requirements specifications.
DOT National Transportation Integrated Search
2015-09-01
This document describes the system requirements specifications (SyRS) for the Smart Roadside Initiative (SRI) Prototype for the delivery of capabilities related to wireless roadside inspections, electronic screening/virtual weigh stations, universal ...
12 CFR 1005.7 - Initial disclosures.
Code of Federal Regulations, 2012 CFR
2012-01-01
... disclosures required by this section at the time a consumer contracts for an electronic fund transfer service or before the first electronic fund transfer is made involving the consumer's account. (b) Content of... Banks and Banking BUREAU OF CONSUMER FINANCIAL PROTECTION ELECTRONIC FUND TRANSFERS (REGULATION E...
Game-theoretic approach for improving cooperation in wireless multihop networks.
Ng, See-Kee; Seah, Winston K G
2010-06-01
Traditional networks are built on the assumption that network entities cooperate based on a mandatory network communication semantic to achieve desirable qualities such as efficiency and scalability. Over the years, this assumption has been eroded by the emergence of users that alter network behavior in a way to benefit themselves at the expense of others. At one extreme, a malicious user/node may eavesdrop on sensitive data or deliberately inject packets into the network to disrupt network operations. The solution to this generally lies in encryption and authentication. In contrast, a rational node acts only to achieve an outcome that he desires most. In such a case, cooperation is still achievable if the outcome is to the best interest of the node. The node misbehavior problem would be more pronounced in multihop wireless networks like mobile ad hoc and sensor networks, which are typically made up of wireless battery-powered devices that must cooperate to forward packets for one another. However, cooperation may be hard to maintain as it consumes scarce resources such as bandwidth, computational power, and battery power. This paper applies game theory to achieve collusive networking behavior in such network environments. In this paper, pricing, promiscuous listening, and mass punishments are avoided altogether. Our model builds on recent work in the field of Economics on the theory of imperfect private monitoring for the dynamic Bertrand oligopoly, and adapts it to the wireless multihop network. The model derives conditions for collusive packet forwarding, truthful routing broadcasts, and packet acknowledgments under a lossy wireless multihop environment, thus capturing many important characteristics of the network layer and link layer in one integrated analysis that has not been achieved previously. We also provide a proof of the viability of the model under a theoretical wireless environment. Finally, we show how the model can be applied to design a generic protocol which we call the Selfishness Resilient Resource Reservation protocol, and validate the effectiveness of this protocol in ensuring cooperation using simulations.
Smart acoustic emission system for wireless monitoring of concrete structures
NASA Astrophysics Data System (ADS)
Yoon, Dong-Jin; Kim, Young-Gil; Kim, Chi-Yeop; Seo, Dae-Cheol
2008-03-01
Acoustic emission (AE) has emerged as a powerful nondestructive tool to detect preexisting defects or to characterize failure mechanisms. Recently, this technique or this kind of principle, that is an in-situ monitoring of inside damages of materials or structures, becomes increasingly popular for monitoring the integrity of large structures. Concrete is one of the most widely used materials for constructing civil structures. In the nondestructive evaluation point of view, a lot of AE signals are generated in concrete structures under loading whether the crack development is active or not. Also, it was required to find a symptom of damage propagation before catastrophic failure through a continuous monitoring. Therefore we have done a practical study in this work to fabricate compact wireless AE sensor and to develop diagnosis system. First, this study aims to identify the differences of AE event patterns caused by both real damage sources and the other normal sources. Secondly, it was focused to develop acoustic emission diagnosis system for assessing the deterioration of concrete structures such as a bridge, dame, building slab, tunnel etc. Thirdly, the wireless acoustic emission system was developed for the application of monitoring concrete structures. From the previous laboratory study such as AE event patterns analysis under various loading conditions, we confirmed that AE analysis provided a promising approach for estimating the condition of damage and distress in concrete structures. In this work, the algorithm for determining the damage status of concrete structures was developed and typical criteria for decision making was also suggested. For the future application of wireless monitoring, a low energy consumable, compact, and robust wireless acoustic emission sensor module was developed and applied to the concrete beam for performance test. Finally, based on the self-developed diagnosis algorithm and compact wireless AE sensor, new AE system for practical AE diagnosis was demonstrated for assessing the conditions of damage and distress in concrete structures.
Light fidelity (Li-Fi): towards all-optical networking
NASA Astrophysics Data System (ADS)
Tsonev, Dobroslav; Videv, Stefan; Haas, Harald
2013-12-01
Motivated by the looming radio frequency (RF) spectrum crisis, this paper aims at demonstrating that optical wireless communication (OWC) has now reached a state where it can demonstrate that it is a viable and matured solution to this fundamental problem. In particular, for indoor communications where most mobile data traffic is consumed, light fidelity (Li-Fi) which is related to visible light communication (VLC) offers many key advantages, and effective solutions to the issues that have been posed in the last decade. This paper discusses all key component technologies required to realize optical cellular communication systems referred to here as optical attocell networks. Optical attocells are the next step in the progression towards ever smaller cells, a progression which is known to be the most significant contributor to the improvements in network spectral efficiencies in RF wireless networks.
Ultra-low-power wireless transmitter for neural prostheses with modified pulse position modulation.
Goodarzy, Farhad; Skafidas, Stan E
2014-01-01
An ultra-low-power wireless transmitter for embedded bionic systems is proposed, which achieves 40 pJ/b energy efficiency and delivers 500 kb/s data using the medical implant communication service frequency band (402-405 MHz). It consumes a measured peak power of 200 µW from a 1.2 V supply while occupying an active area of 0.0016 mm(2) in a 130 nm technology. A modified pulse position modulation technique called saturated amplified signal is proposed and implemented, which can reduce the overall and per bit transferred power consumption of the transmitter while reducing the complexity of the transmitter architectures, and hence potentially shrinking the size of the implemented circuitry. The design is capable of being fully integrated on single-chip solutions for surgically implanted bionic systems, wearable devices and neural embedded systems.
Energy Efficient In-network RFID Data Filtering Scheme in Wireless Sensor Networks
Bashir, Ali Kashif; Lim, Se-Jung; Hussain, Chauhdary Sajjad; Park, Myong-Soon
2011-01-01
RFID (Radio frequency identification) and wireless sensor networks are backbone technologies for pervasive environments. In integration of RFID and WSN, RFID data uses WSN protocols for multi-hop communications. Energy is a critical issue in WSNs; however, RFID data contains a lot of duplication. These duplications can be eliminated at the base station, but unnecessary transmissions of duplicate data within the network still occurs, which consumes nodes’ energy and affects network lifetime. In this paper, we propose an in-network RFID data filtering scheme that efficiently eliminates the duplicate data. For this we use a clustering mechanism where cluster heads eliminate duplicate data and forward filtered data towards the base station. Simulation results prove that our approach saves considerable amounts of energy in terms of communication and computational cost, compared to existing filtering schemes. PMID:22163999
Enabling Secure High-Performance Wireless Ad Hoc Networking
2003-05-29
destinations, consuming energy and available bandwidth. An attacker may similarly create a routing black hole, in which all packets are dropped: by sending...of the vertex cut, for example by forwarding only routing packets and not data packets, such that the nodes waste energy forwarding packets to the...with limited resources, including network bandwidth and the CPU processing capacity, memory, and battery power ( energy ) of each individual node in the
Wireless network interface energy consumption implications of popular streaming formats
NASA Astrophysics Data System (ADS)
Chandra, Surendar
2001-12-01
With the proliferation of mobile streaming multimedia, available battery capacity constrains the end-user experience. Since streaming applications tend to be long running, wireless network interface card's (WNIC) energy consumption is particularly an acute problem. In this work, we explore the WNIC energy consumption implications of popular multimedia streaming formats from Microsoft (Windows media), Real (Real media) and Apple (Quick Time). We investigate the energy consumption under varying stream bandwidth and network loss rates. We also explore history-based client-side strategies to reduce the energy consumed by transitioning the WNICs to a lower power consuming sleep state. We show that Microsoft media tends to transmit packets at regular intervals; streams optimized for 28.8 Kbps can save over 80% in energy consumption with 2% data loss. A high bandwidth stream (768 Kbps) can still save 57% in energy consumption with less than 0.3% data loss. For high bandwidth streams, Microsoft media exploits network-level packet fragmentation, which can lead to excessive packet loss (and wasted energy) in a lossy network. Real stream packets tend to be sent closer to each other, especially at higher bandwidths. Quicktime packets sometimes arrive in quick succession; most likely an application level fragmentation mechanism. Such packets are harder to predict at the network level without understanding the packet semantics.
Mohanasundaram, Ranganathan; Periasamy, Pappampalayam Sanmugam
2015-01-01
The current high profile debate with regard to data storage and its growth have become strategic task in the world of networking. It mainly depends on the sensor nodes called producers, base stations, and also the consumers (users and sensor nodes) to retrieve and use the data. The main concern dealt here is to find an optimal data storage position in wireless sensor networks. The works that have been carried out earlier did not utilize swarm intelligence based optimization approaches to find the optimal data storage positions. To achieve this goal, an efficient swam intelligence approach is used to choose suitable positions for a storage node. Thus, hybrid particle swarm optimization algorithm has been used to find the suitable positions for storage nodes while the total energy cost of data transmission is minimized. Clustering-based distributed data storage is utilized to solve clustering problem using fuzzy-C-means algorithm. This research work also considers the data rates and locations of multiple producers and consumers to find optimal data storage positions. The algorithm is implemented in a network simulator and the experimental results show that the proposed clustering and swarm intelligence based ODS strategy is more effective than the earlier approaches. PMID:25734182
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-14
... Availability of Navigation Devices; Compatibility Between Cable Systems and Consumer Electronics Equipment... cable operators and the consumer electronics industry to establish the technical details of the... Cable and Telecommunications Association and the Consumer Electronics Association had agreed in a...
12 CFR 226.5 - General disclosure requirements.
Code of Federal Regulations, 2010 CFR
2010-01-01
... conspicuously in writing, 7 in a form that the consumer may keep. 8 The disclosures required by this subpart may be provided to the consumer in electronic form, subject to compliance with the consumer consent and... to the consumer in electronic form without regard to the consumer consent or other provisions of the...
Technology-design-manufacturing co-optimization for advanced mobile SoCs
NASA Astrophysics Data System (ADS)
Yang, Da; Gan, Chock; Chidambaram, P. R.; Nallapadi, Giri; Zhu, John; Song, S. C.; Xu, Jeff; Yeap, Geoffrey
2014-03-01
How to maintain the Moore's Law scaling beyond the 193 immersion resolution limit is the key question semiconductor industry needs to answer in the near future. Process complexity will undoubtfully increase for 14nm node and beyond, which brings both challenges and opportunities for technology development. A vertically integrated design-technologymanufacturing co-optimization flow is desired to better address the complicated issues new process changes bring. In recent years smart mobile wireless devices have been the fastest growing consumer electronics market. Advanced mobile devices such as smartphones are complex systems with the overriding objective of providing the best userexperience value by harnessing all the technology innovations. Most critical system drivers are better system performance/power efficiency, cost effectiveness, and smaller form factors, which, in turns, drive the need of system design and solution with More-than-Moore innovations. Mobile system-on-chips (SoCs) has become the leading driver for semiconductor technology definition and manufacturing. Here we highlight how the co-optimization strategy influenced architecture, device/circuit, process technology and package, in the face of growing process cost/complexity and variability as well as design rule restrictions.
A Robust, Microwave Rain Gauge
NASA Astrophysics Data System (ADS)
Mansheim, T. J.; Niemeier, J. J.; Kruger, A.
2008-12-01
Researchers at The University of Iowa have developed an all-electronic rain gauge that uses microwave sensors operating at either 10 GHz or 23 GHz, and measures the Doppler shift caused by falling raindrops. It is straightforward to interface these sensors with conventional data loggers, or integrate them into a wireless sensor network. A disadvantage of these microwave rain gauges is that they consume significant power when they are operating. However, this may be partially negated by using data loggers' or sensors networks' sleep-wake-sleep mechanism. Advantages of the microwave rain gauges are that one can make them very robust, they cannot clog, they don't have mechanical parts that wear out, and they don't have to be perfectly level. Prototype microwave rain gauges were collocated with tipping-bucket rain gauges, and data were collected for two seasons. At higher rain rates, microwave rain gauge measurements compare well with tipping-bucket measurements. At lower rain rates, the microwave rain gauges provide more detailed information than tipping buckets, which quantize measurement typically in 1 tip per 0.01 inch, or 1 tip per mm of rainfall.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-16
... continuation of electronic newsgathering operations, and the appropriate channelization scheme, coordination... also sought comment on alternative channelization schemes. Several commenters, including FWCC and...
Code of Federal Regulations, 2014 CFR
2014-01-01
...-time electronic fund transfer from a consumer's account. The consumer must authorize the transfer. (ii... one-time electronic fund transfer (in providing a check to a merchant or other payee for the MICR... transfer. A consumer authorizes a one-time electronic fund transfer from his or her account to pay the fee...
Chiou, Jin-Chern; Hsu, Shun-Hsi; Huang, Yu-Chieh; Yeh, Guan-Ting; Liou, Wei-Ting; Kuei, Cheng-Kai
2017-01-01
This study presented a wireless smart contact lens system that was composed of a reconfigurable capacitive sensor interface circuitry and wirelessly powered radio-frequency identification (RFID) addressable system for sensor control and data communication. In order to improve compliance and reduce user discomfort, a capacitive sensor was embedded on a soft contact lens of 200 μm thickness using commercially available bio-compatible lens material and a standard manufacturing process. The results indicated that the reconfigurable sensor interface achieved sensitivity and baseline tuning up to 120 pF while consuming only 110 μW power. The range and sensitivity tuning of the readout circuitry ensured a reliable operation with respect to sensor fabrication variations and independent calibration of the sensor baseline for individuals. The on-chip voltage scaling allowed the further extension of the detection range and prevented the implementation of large on-chip elements. The on-lens system enabled the detection of capacitive variation caused by pressure changes in the range of 2.25 to 30 mmHg and hydration level variation from a distance of 1 cm using incident power from an RFID reader at 26.5 dBm. PMID:28067859
Kumar, Yogaprakash; Yen, Shih-Cheng; Tay, Arthur; Lee, Wangwei; Gao, Fan; Zhao, Ziyi; Li, Jingze; Hon, Benjamin; Tian-Ma Xu, Tim; Cheong, Angela; Koh, Karen; Ng, Yee-Sien; Chew, Effie; Koh, Gerald
2015-02-01
Range-of-motion (ROM) assessment is a critical assessment tool during the rehabilitation process. The conventional approach uses the goniometer which remains the most reliable instrument but it is usually time-consuming and subject to both intra- and inter-therapist measurement errors. An automated wireless wearable sensor system for the measurement of ROM has previously been developed by the current authors. Presented is the correlation and accuracy of the automated wireless wearable sensor system against a goniometer in measuring ROM in the major joints of upper (UEs) and lower extremities (LEs) in 19 healthy subjects and 20 newly disabled inpatients through intra (same) subject comparison of ROM assessments between the sensor system against goniometer measurements by physical therapists. In healthy subjects, ROM measurements using the new sensor system were highly correlated with goniometry, with 95% of differences < 20° and 10° for most movements in major joints of UE and LE, respectively. Among inpatients undergoing rehabilitation, ROM measurements using the new sensor system were also highly correlated with goniometry, with 95% of the differences being < 20° and 25° for most movements in the major joints of UE and LE, respectively.
Long-Term Animal Observation by Wireless Sensor Networks with Sound Recognition
NASA Astrophysics Data System (ADS)
Liu, Ning-Han; Wu, Chen-An; Hsieh, Shu-Ju
Due to wireless sensor networks can transmit data wirelessly and can be disposed easily, they are used in the wild to monitor the change of environment. However, the lifetime of sensor is limited by the battery, especially when the monitored data type is audio, the lifetime is very short due to a huge amount of data transmission. By intuition, sensor mote analyzes the sensed data and decides not to deliver them to server that can reduce the expense of energy. Nevertheless, the ability of sensor mote is not powerful enough to work on complicated methods. Therefore, it is an urgent issue to design a method to keep analyzing speed and accuracy under the restricted memory and processor. This research proposed an embedded audio processing module in the sensor mote to extract and analyze audio features in advance. Then, through the estimation of likelihood of observed animal sound by the frequencies distribution, only the interesting audio data are sent back to server. The prototype of WSN system is built and examined in the wild to observe frogs. According to the results of experiments, the energy consumed by sensors through our method can be reduced effectively to prolong the observing time of animal detecting sensors.
Body Area Network BAN--a key infrastructure element for patient-centered medical applications.
Schmidt, Robert; Norgall, Thomas; Mörsdorf, Joachim; Bernhard, Josef; von der Grün, Thomas
2002-01-01
The Body Area Network (BAN) concept enables wireless communication between several miniaturized, intelligent Body Sensor (or actor) Units (BSU) and a single Body Central Unit (BCU) worn at the human body. A separate wireless transmission link from the BCU to a network access point--using different technology--provides for online access to BAN data via usual network infrastructure. BAN is expected to become a basic infrastructure element for service-based electronic health assistance: By integrating patient-attached sensors and control of mobile dedicated actor units, the range of medical workflow can be extended by wireless patient monitoring and therapy support. Beyond clinical use, professional disease management environments, and private personal health assistance scenarios (without financial reimbursement by health agencies/insurance companies), BAN enables a wide range of health care applications and related services.
Injection moulded microneedle sensor for real-time wireless pH monitoring.
Mirza, Khalid B; Zuliani, Claudio; Hou, Benjamin; Ng, Fu Siong; Peters, Nicholas S; Toumazou, Christofer
2017-07-01
This paper describes the development of an array of individually addressable pH sensitive microneedles using injection moulding and their integration within a portable device for real-time wireless recording of pH distributions in biological samples. The fabricated microneedles are subjected to gold patterning followed by electrodeposition of iridium oxide to sensitize them to 0.07 units of pH change. Miniaturised electronics suitable for the sensors readout, analog-to-digital conversion and wireless transmission of the potentiometric data are embodied within the device, enabling it to measure real-time pH of soft biological samples such as muscles. In this paper, real-time recording of the cardiac pH distribution, during ischemia followed by reperfusion cycles in cardiac muscles of male Wistar rats has been demonstrated by using the microneedle array.
12 CFR 1005.6 - Liability of consumer for unauthorized transfers.
Code of Federal Regulations, 2012 CFR
2012-01-01
... transfers. 1005.6 Section 1005.6 Banks and Banking BUREAU OF CONSUMER FINANCIAL PROTECTION ELECTRONIC FUND TRANSFERS (REGULATION E) § 1005.6 Liability of consumer for unauthorized transfers. (a) Conditions for..., for an unauthorized electronic fund transfer involving the consumer's account only if the financial...
The market growth of consumer electronics makes it essential for industries and policy-makers to work together to develop sustainable products. The objective of this study is to better understand how to promote environmentally sustainable consumer electronics by examining the use...
Zhao, Yu; Liu, Yide; Lai, Ivan K W; Zhang, Hongfeng; Zhang, Yi
2016-03-18
As one of the latest revolutions in networking technology, social networks allow users to keep connected and exchange information. Driven by the rapid wireless technology development and diffusion of mobile devices, social networks experienced a tremendous change based on mobile sensor computing. More and more mobile sensor network applications have appeared with the emergence of a huge amount of users. Therefore, an in-depth discussion on the human-computer interaction (HCI) issues of mobile sensor computing is required. The target of this study is to extend the discussions on HCI by examining the relationships of users' compound attitudes (i.e., affective attitudes, cognitive attitude), engagement and electronic word of mouth (eWOM) behaviors in the context of mobile sensor computing. A conceptual model is developed, based on which, 313 valid questionnaires are collected. The research discusses the level of impact on the eWOM of mobile sensor computing by considering user-technology issues, including the compound attitude and engagement, which can bring valuable discussions on the HCI of mobile sensor computing in further study. Besides, we find that user engagement plays a mediating role between the user's compound attitudes and eWOM. The research result can also help the mobile sensor computing industry to develop effective strategies and build strong consumer user-product (brand) relationships.
Zhao, Yu; Liu, Yide; Lai, Ivan K. W.; Zhang, Hongfeng; Zhang, Yi
2016-01-01
As one of the latest revolutions in networking technology, social networks allow users to keep connected and exchange information. Driven by the rapid wireless technology development and diffusion of mobile devices, social networks experienced a tremendous change based on mobile sensor computing. More and more mobile sensor network applications have appeared with the emergence of a huge amount of users. Therefore, an in-depth discussion on the human–computer interaction (HCI) issues of mobile sensor computing is required. The target of this study is to extend the discussions on HCI by examining the relationships of users’ compound attitudes (i.e., affective attitudes, cognitive attitude), engagement and electronic word of mouth (eWOM) behaviors in the context of mobile sensor computing. A conceptual model is developed, based on which, 313 valid questionnaires are collected. The research discusses the level of impact on the eWOM of mobile sensor computing by considering user-technology issues, including the compound attitude and engagement, which can bring valuable discussions on the HCI of mobile sensor computing in further study. Besides, we find that user engagement plays a mediating role between the user’s compound attitudes and eWOM. The research result can also help the mobile sensor computing industry to develop effective strategies and build strong consumer user—product (brand) relationships. PMID:26999155
Far-field Wireless Energy Harvesting for Increased Safeguards Equipment Battery Life.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hymel, Ross W.
Modern unattended safeguards equipment (e.g. seals) incorporates many low-power electronic circuits, which are typically powered by expensive and toxic lithium thionyl chloride (LiSOCL2) batteries. The limited life of these batteries necessitates their periodic replacement. This replacement must be performed before total battery discharge to avoid potential loss of continuity of knowledge. Thus, the effective battery capacity becomes significantly less than the actual usable capacity. Additionally, such maintenance is a radiological hazard to personnel, as well as a monetary burden to a safeguards inspectorate. Energy harvesting, a commercially available technology, could extend the operational life of batterypowered equipment to achieve significantmore » efficiencies for safeguards deployments. Energy harvesting is the scavenging and storage of ambient energy sources, such as solar, thermal, and kinetic for use in lowpower electronic applications. While the amount of scavenged energy per unit time may be small, it most often comes from a source that will not be depleted throughout the deployment of the harvesting device. The best-known energy harvesters are solar panels and wind turbines. Recently, far-field wireless energy harvesting has become a commercially available option. Far-field wireless energy harvesting provides consistent, predictable, and un-tethered power over distances up to 50 feet. This process converts radio frequency (RF) energy, both intentionally emitted and ambient, into usable direct current (DC) power. Incorporating far-field wireless energy harvesting into safeguards equipment can significantly extend the equipment’s battery life and perhaps make it indefinite. Furthermore, additional functionality can be added to safeguards equipment without lowering its operational life expectancy. This paper explores the benefits and drawbacks of integrating far-field wireless energy harvesting into a chosen safeguards seal: the Remotely Monitored Sealing Array (RMSA). Specifically, it examines the performance of a commercially available RF harvesting system from Powercast, as well as commercial and custom antenna solutions.« less
An Inductively-Powered Wireless Neural Recording System with a Charge Sampling Analog Front-End
Lee, Seung Bae; Lee, Byunghun; Kiani, Mehdi; Mahmoudi, Babak; Gross, Robert; Ghovanloo, Maysam
2015-01-01
An inductively-powered wireless integrated neural recording system (WINeR-7) is presented for wireless and battery less neural recording from freely-behaving animal subjects inside a wirelessly-powered standard homecage. The WINeR-7 system employs a novel wide-swing dual slope charge sampling (DSCS) analog front-end (AFE) architecture, which performs amplification, filtering, sampling, and analog-to-time conversion (ATC) with minimal interference and small amount of power. The output of the DSCS-AFE produces a pseudo-digital pulse width modulated (PWM) signal. A circular shift register (CSR) time division multiplexes (TDM) the PWM pulses to create a TDM-PWM signal, which is fed into an on-chip 915 MHz transmitter (Tx). The AFE and Tx are supplied at 1.8 V and 4.2 V, respectively, by a power management block, which includes a high efficiency active rectifier and automatic resonance tuning (ART), operating at 13.56 MHz. The 8-ch system-on-a-chip (SoC) was fabricated in a 0.35-μm CMOS process, occupying 5.0 × 2.5 mm2 and consumed 51.4 mW. For each channel, the sampling rate is 21.48 kHz and the power consumption is 19.3 μW. In vivo experiments were conducted on freely behaving rats in an energized homecage by continuously delivering 51.4 mW to the WINeR-7 system in a closed-loop fashion and recording local field potentials (LFP). PMID:27069422
An Inductively-Powered Wireless Neural Recording System with a Charge Sampling Analog Front-End.
Lee, Seung Bae; Lee, Byunghun; Kiani, Mehdi; Mahmoudi, Babak; Gross, Robert; Ghovanloo, Maysam
2016-01-15
An inductively-powered wireless integrated neural recording system (WINeR-7) is presented for wireless and battery less neural recording from freely-behaving animal subjects inside a wirelessly-powered standard homecage. The WINeR-7 system employs a novel wide-swing dual slope charge sampling (DSCS) analog front-end (AFE) architecture, which performs amplification, filtering, sampling, and analog-to-time conversion (ATC) with minimal interference and small amount of power. The output of the DSCS-AFE produces a pseudo-digital pulse width modulated (PWM) signal. A circular shift register (CSR) time division multiplexes (TDM) the PWM pulses to create a TDM-PWM signal, which is fed into an on-chip 915 MHz transmitter (Tx). The AFE and Tx are supplied at 1.8 V and 4.2 V, respectively, by a power management block, which includes a high efficiency active rectifier and automatic resonance tuning (ART), operating at 13.56 MHz. The 8-ch system-on-a-chip (SoC) was fabricated in a 0.35-μm CMOS process, occupying 5.0 × 2.5 mm 2 and consumed 51.4 mW. For each channel, the sampling rate is 21.48 kHz and the power consumption is 19.3 μW. In vivo experiments were conducted on freely behaving rats in an energized homecage by continuously delivering 51.4 mW to the WINeR-7 system in a closed-loop fashion and recording local field potentials (LFP).
Leccardi, Matteo; Decarli, Massimiliano; Lorenzelli, Leandro; Milani, Paolo; Mettala, Petteri; Orava, Risto; Barborini, Emanuele
2012-01-01
We have fabricated and tested in long-term field operating conditions a wireless unit for outdoor air quality monitoring. The unit is equipped with two multiparametric sensors, one miniaturized thermo-hygrometer, front-end analogical and digital electronics, and an IEEE 802.15.4 based module for wireless data transmission. Micromachined platforms were functionalized with nanoporous metal-oxides to obtain multiparametric sensors, hosting gas-sensitive, anemometric and temperature transducers. Nanoporous metal-oxide layer was directly deposited on gas sensing regions of micromachined platform batches by hard-mask patterned supersonic cluster beam deposition. An outdoor, roadside experiment was arranged in downtown Milan (Italy), where one wireless sensing unit was continuously operated side by side with standard gas chromatographic instrumentation for air quality measurements. By means of a router PC, data from sensing unit and other instrumentation were collected, merged, and sent to a remote data storage server, through an UMTS device. The whole-system robustness as well as sensor dataset characteristics were continuously characterized over a run-time period of 18 months. PMID:22969394
Deep Space Habitat Wireless Smart Plug
NASA Technical Reports Server (NTRS)
Morgan, Joseph A.; Porter, Jay; Rojdev, Kristina; Carrejo, Daniel B.; Colozza, Anthony J.
2014-01-01
NASA has been interested in technology development for deep space exploration, and one avenue of developing these technologies is via the eXploration Habitat (X-Hab) Academic Innovation Challenge. In 2013, NASA's Deep Space Habitat (DSH) project was in need of sensors that could monitor the power consumption of various devices in the habitat with added capability to control the power to these devices for load shedding in emergency situations. Texas A&M University's Electronic Systems Engineering Technology Program (ESET) in conjunction with their Mobile Integrated Solutions Laboratory (MISL) accepted this challenge, and over the course of 2013, several undergraduate students in a Capstone design course developed five wireless DC Smart Plugs for NASA. The wireless DC Smart Plugs developed by Texas A&M in conjunction with NASA's Deep Space Habitat team is a first step in developing wireless instrumentation for future flight hardware. This paper will further discuss the X-Hab challenge and requirements set out by NASA, the detailed design and testing performed by Texas A&M, challenges faced by the team and lessons learned, and potential future work on this design.
Body area network--a key infrastructure element for patient-centered telemedicine.
Norgall, Thomas; Schmidt, Robert; von der Grün, Thomas
2004-01-01
The Body Area Network (BAN) extends the range of existing wireless network technologies by an ultra-low range, ultra-low power network solution optimised for long-term or continuous healthcare applications. It enables wireless radio communication between several miniaturised, intelligent Body Sensor (or actor) Units (BSU) and a single Body Central Unit (BCU) worn at the human body. A separate wireless transmission link from the BCU to a network access point--using different technology--provides for online access to BAN components via usual network infrastructure. The BAN network protocol maintains dynamic ad-hoc network configuration scenarios and co-existence of multiple networks.BAN is expected to become a basic infrastructure element for electronic health services: By integrating patient-attached sensors and mobile actor units, distributed information and data processing systems, the range of medical workflow can be extended to include applications like wireless multi-parameter patient monitoring and therapy support. Beyond clinical use and professional disease management environments, private personal health assistance scenarios (without financial reimbursement by health agencies / insurance companies) enable a wide range of applications and services in future pervasive computing and networking environments.
48 CFR 1819.1005 - Applicability.
Code of Federal Regulations, 2013 CFR
2013-10-01
... System (NAICS) codes are: NAICS code Industry category 334111 Electronic Computer Manufacturing. 334418... Manufacturing. 334119 Other Computer Peripheral Equipment Manufacturing. 33422 Radio and Television Broadcasting and Wireless Communication Equipment Manufacturing. 336415 Guided Missile and Space Vehicle Propulsion...
48 CFR 1819.1005 - Applicability.
Code of Federal Regulations, 2014 CFR
2014-10-01
... System (NAICS) codes are: NAICS code Industry category 334111 Electronic Computer Manufacturing. 334418... Manufacturing. 334119 Other Computer Peripheral Equipment Manufacturing. 33422 Radio and Television Broadcasting and Wireless Communication Equipment Manufacturing. 336415 Guided Missile and Space Vehicle Propulsion...
48 CFR 1819.1005 - Applicability.
Code of Federal Regulations, 2012 CFR
2012-10-01
... System (NAICS) codes are: NAICS code Industry category 334111 Electronic Computer Manufacturing. 334418... Manufacturing. 334119 Other Computer Peripheral Equipment Manufacturing. 33422 Radio and Television Broadcasting and Wireless Communication Equipment Manufacturing. 336415 Guided Missile and Space Vehicle Propulsion...
47 CFR 1.106 - Petitions for reconsideration in non-rulemaking proceedings.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Wireless Radio Services, may be filed electronically via ULS. (p) Petitions for reconsideration of a... the other requirements of this section, must be accompanied by an affidavit of a qualified radio...
47 CFR 1.106 - Petitions for reconsideration in non-rulemaking proceedings.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Wireless Radio Services, may be filed electronically via ULS. (p) Petitions for reconsideration of a... the other requirements of this section, must be accompanied by an affidavit of a qualified radio...
47 CFR 1.106 - Petitions for reconsideration in non-rulemaking proceedings.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Wireless Radio Services, may be filed electronically via ULS. (p) Petitions for reconsideration of a... the other requirements of this section, must be accompanied by an affidavit of a qualified radio...
47 CFR 1.106 - Petitions for reconsideration in non-rulemaking proceedings.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Wireless Radio Services, may be filed electronically via ULS. (p) Petitions for reconsideration of a... the other requirements of this section, must be accompanied by an affidavit of a qualified radio...
ERIC Educational Resources Information Center
Oliveira, Luis Bica; Paulino, Nuno; Oliveira, João P.; Santos-Tavares, Rui; Pereira, Nuno; Goes, João
2017-01-01
The two projects presented in this paper can be used either as two separate assignments in two different semesters or as a final assignment for undergraduate students of electrical engineering. They have two main objectives: first, to teach basic electronic circuit design concepts and, second, to motivate the students to learn more about analog…
Localized radio frequency communication using asynchronous transfer mode protocol
Witzke, Edward L [Edgewood, NM; Robertson, Perry J [Albuquerque, NM; Pierson, Lyndon G [Albuquerque, NM
2007-08-14
A localized wireless communication system for communication between a plurality of circuit boards, and between electronic components on the circuit boards. Transceivers are located on each circuit board and electronic component. The transceivers communicate with one another over spread spectrum radio frequencies. An asynchronous transfer mode protocol controls communication flow with asynchronous transfer mode switches located on the circuit boards.
Wang, Sihong; Lin, Long; Wang, Zhong Lin
2012-12-12
Harvesting energy from our living environment is an effective approach for sustainable, maintenance-free, and green power source for wireless, portable, or implanted electronics. Mechanical energy scavenging based on triboelectric effect has been proven to be simple, cost-effective, and robust. However, its output is still insufficient for sustainably driving electronic devices/systems. Here, we demonstrated a rationally designed arch-shaped triboelectric nanogenerator (TENG) by utilizing the contact electrification between a polymer thin film and a metal thin foil. The working mechanism of the TENG was studied by finite element simulation. The output voltage, current density, and energy volume density reached 230 V, 15.5 μA/cm(2), and 128 mW/cm(3), respectively, and an energy conversion efficiency as high as 10-39% has been demonstrated. The TENG was systematically studied and demonstrated as a sustainable power source that can not only drive instantaneous operation of light-emitting diodes (LEDs) but also charge a lithium ion battery as a regulated power module for powering a wireless sensor system and a commercial cell phone, which is the first demonstration of the nanogenerator for driving personal mobile electronics, opening the chapter of impacting general people's life by nanogenerators.
Wearable Fall Detector using Integrated Sensors and Energy Devices
NASA Astrophysics Data System (ADS)
Jung, Sungmook; Hong, Seungki; Kim, Jaemin; Lee, Sangkyu; Hyeon, Taeghwan; Lee, Minbaek; Kim, Dae-Hyeong
2015-11-01
Wearable devices have attracted great attentions as next-generation electronic devices. For the comfortable, portable, and easy-to-use system platform in wearable electronics, a key requirement is to replace conventional bulky and rigid energy devices into thin and deformable ones accompanying the capability of long-term energy supply. Here, we demonstrate a wearable fall detection system composed of a wristband-type deformable triboelectric generator and lithium ion battery in conjunction with integrated sensors, controllers, and wireless units. A stretchable conductive nylon is used as electrodes of the triboelectric generator and the interconnection between battery cells. Ethoxylated polyethylenimine, coated on the surface of the conductive nylon electrode, tunes the work function of a triboelectric generator and maximizes its performance. The electrical energy harvested from the triboelectric generator through human body motions continuously recharges the stretchable battery and prolongs hours of its use. The integrated energy supply system runs the 3-axis accelerometer and related electronics that record human body motions and send the data wirelessly. Upon the unexpected fall occurring, a custom-made software discriminates the fall signal and an emergency alert is immediately sent to an external mobile device. This wearable fall detection system would provide new opportunities in the mobile electronics and wearable healthcare.
Wearable Fall Detector using Integrated Sensors and Energy Devices.
Jung, Sungmook; Hong, Seungki; Kim, Jaemin; Lee, Sangkyu; Hyeon, Taeghwan; Lee, Minbaek; Kim, Dae-Hyeong
2015-11-24
Wearable devices have attracted great attentions as next-generation electronic devices. For the comfortable, portable, and easy-to-use system platform in wearable electronics, a key requirement is to replace conventional bulky and rigid energy devices into thin and deformable ones accompanying the capability of long-term energy supply. Here, we demonstrate a wearable fall detection system composed of a wristband-type deformable triboelectric generator and lithium ion battery in conjunction with integrated sensors, controllers, and wireless units. A stretchable conductive nylon is used as electrodes of the triboelectric generator and the interconnection between battery cells. Ethoxylated polyethylenimine, coated on the surface of the conductive nylon electrode, tunes the work function of a triboelectric generator and maximizes its performance. The electrical energy harvested from the triboelectric generator through human body motions continuously recharges the stretchable battery and prolongs hours of its use. The integrated energy supply system runs the 3-axis accelerometer and related electronics that record human body motions and send the data wirelessly. Upon the unexpected fall occurring, a custom-made software discriminates the fall signal and an emergency alert is immediately sent to an external mobile device. This wearable fall detection system would provide new opportunities in the mobile electronics and wearable healthcare.
12 CFR 1005.6 - Liability of consumer for unauthorized transfers.
Code of Federal Regulations, 2014 CFR
2014-01-01
... transfers. 1005.6 Section 1005.6 Banks and Banking BUREAU OF CONSUMER FINANCIAL PROTECTION ELECTRONIC FUND TRANSFERS (REGULATION E) General § 1005.6 Liability of consumer for unauthorized transfers. (a) Conditions... this section, for an unauthorized electronic fund transfer involving the consumer's account only if the...
12 CFR 1005.6 - Liability of consumer for unauthorized transfers.
Code of Federal Regulations, 2013 CFR
2013-01-01
... transfers. 1005.6 Section 1005.6 Banks and Banking BUREAU OF CONSUMER FINANCIAL PROTECTION ELECTRONIC FUND TRANSFERS (REGULATION E) General § 1005.6 Liability of consumer for unauthorized transfers. (a) Conditions... this section, for an unauthorized electronic fund transfer involving the consumer's account only if the...
A 380pW Dual Mode Optical Wake-up Receiver with Ambient Noise Cancellation.
Lim, Wootaek; Jang, Taekwang; Lee, Inhee; Kim, Hun-Seok; Sylvester, Dennis; Blaauw, David
2016-06-01
We present a sub-nW optical wake-up receiver for wireless sensor nodes. The wake-up receiver supports dual mode operation for both ultra-low standby power and high data rates, while canceling ambient in-band noise. In 0.18µm CMOS the receiver consumes 380pW in always-on wake-up mode and 28.1µW in fast RX mode at 250kbps.
A 380pW Dual Mode Optical Wake-up Receiver with Ambient Noise Cancellation
Lim, Wootaek; Jang, Taekwang; Lee, Inhee; Kim, Hun-Seok; Sylvester, Dennis; Blaauw, David
2016-01-01
We present a sub-nW optical wake-up receiver for wireless sensor nodes. The wake-up receiver supports dual mode operation for both ultra-low standby power and high data rates, while canceling ambient in-band noise. In 0.18µm CMOS the receiver consumes 380pW in always-on wake-up mode and 28.1µW in fast RX mode at 250kbps. PMID:28392978
Aguirre, Erik; Lopez-Iturri, Peio; Azpilicueta, Leyre; Astrain, José Javier; Villadangos, Jesús; Santesteban, Daniel; Falcone, Francisco
2016-01-01
The flexibility of new age wireless networks and the variety of sensors to measure a high number of variables, lead to new scenarios where anything can be monitored by small electronic devices, thereby implementing Wireless Sensor Networks (WSN). Thanks to ZigBee, RFID or WiFi networks the precise location of humans or animals as well as some biological parameters can be known in real-time. However, since wireless sensors must be attached to biological tissues and they are highly dispersive, propagation of electromagnetic waves must be studied to deploy an efficient and well-working network. The main goal of this work is to study the influence of wireless channel limitations in the operation of a specific pet monitoring system, validated at physical channel as well as at functional level. In this sense, radio wave propagation produced by ZigBee devices operating at the ISM 2.4 GHz band is studied through an in-house developed 3D Ray Launching simulation tool, in order to analyze coverage/capacity relations for the optimal system selection as well as deployment strategy in terms of number of transceivers and location. Furthermore, a simplified dog model is developed for simulation code, considering not only its morphology but also its dielectric properties. Relevant wireless channel information such as power distribution, power delay profile and delay spread graphs are obtained providing an extensive wireless channel analysis. A functional dog monitoring system is presented, operating over the implemented ZigBee network and providing real time information to Android based devices. The proposed system can be scaled in order to consider different types of domestic pets as well as new user based functionalities. PMID:27589751
Mao, Shitong; Wang, Hao; Zhu, Chunbo; Mao, Zhi-Hong; Sun, Mingui
2017-10-01
Wireless Power Transfer (WPT) and wireless data communication are both important problems of research with various applications, especially in medicine. However, these two problems are usually studied separately. In this work, we present a joint study of both problems. Most medical electronic devices, such as smart implants, must have both a power supply to allow continuous operation and a communication link to pass information. Traditionally, separate wireless channels for power transfer and communication are utilized, which complicate the system structure, increase power consumption and make device miniaturization difficult. A more effective approach is to use a single wireless link with both functions of delivering power and passing information. We present a design of such a wireless link in which power and data travel in opposite directions. In order to aggressively miniaturize the implant and reduce power consumption, we eliminate the traditional multi-bit Analog-to-Digital Converter (ADC), digital memory and data transmission circuits all together. Instead, we use a pulse stream, which is obtained from the original biological signal, by a sigma-delta converter and an edge detector, to alter the load properties of the WPT channel. The resulting WPT signal is synchronized with the load changes therefore requiring no memory elements to record inter-pulse intervals. We take advantage of the high sensitivity of the resonant WPT to the load change, and the system dynamic response is used to transfer each pulse. The transient time of the WPT system is analyzed using the coupling mode theory (CMT). Our experimental results show that the memoryless approach works well for both power delivery and data transmission, providing a new wireless platform for the design of future miniaturized medical implants.
Aguirre, Erik; Lopez-Iturri, Peio; Azpilicueta, Leyre; Astrain, José Javier; Villadangos, Jesús; Santesteban, Daniel; Falcone, Francisco
2016-08-30
The flexibility of new age wireless networks and the variety of sensors to measure a high number of variables, lead to new scenarios where anything can be monitored by small electronic devices, thereby implementing Wireless Sensor Networks (WSN). Thanks to ZigBee, RFID or WiFi networks the precise location of humans or animals as well as some biological parameters can be known in real-time. However, since wireless sensors must be attached to biological tissues and they are highly dispersive, propagation of electromagnetic waves must be studied to deploy an efficient and well-working network. The main goal of this work is to study the influence of wireless channel limitations in the operation of a specific pet monitoring system, validated at physical channel as well as at functional level. In this sense, radio wave propagation produced by ZigBee devices operating at the ISM 2.4 GHz band is studied through an in-house developed 3D Ray Launching simulation tool, in order to analyze coverage/capacity relations for the optimal system selection as well as deployment strategy in terms of number of transceivers and location. Furthermore, a simplified dog model is developed for simulation code, considering not only its morphology but also its dielectric properties. Relevant wireless channel information such as power distribution, power delay profile and delay spread graphs are obtained providing an extensive wireless channel analysis. A functional dog monitoring system is presented, operating over the implemented ZigBee network and providing real time information to Android based devices. The proposed system can be scaled in order to consider different types of domestic pets as well as new user based functionalities.
NASA Astrophysics Data System (ADS)
Arndt, Josua; Krystofiak, Lukas; Bonehi, Vahid; Wunderlich, Ralf; Heinen, Stefan
2017-09-01
Power consumption in wireless networks is crucial. In most scenarios the transmission time is short compared to the idle listening time for data transmission, the most power is consumed by the receiver. In low latency systems there is a need for low power wake-up receivers (WuRx) that reduce the power consumption when the node is idle, but keep it responsive. This work presents a WuRx designed out of commercial components to investigate the needs of a WuRx when it is embedded in a Wireless Personal Area Network (WPAN) system in a real environment setup including WLAN and LTE communication and considering interferer rejection. The calculation necessary for the attenuation of those interferers is explained in detail. Furthermore, a system design is presented that fulfills the requirements for this environment and is build from off-the-shelf components.
NASA Astrophysics Data System (ADS)
Weijers, Jan-Willem; Derudder, Veerle; Janssens, Sven; Petré, Frederik; Bourdoux, André
2006-12-01
To assess the performance of forthcoming 4th generation wireless local area networks, the algorithmic functionality is usually modelled using a high-level mathematical software package, for instance, Matlab. In order to validate the modelling assumptions against the real physical world, the high-level functional model needs to be translated into a prototype. A systematic system design methodology proves very valuable, since it avoids, or, at least reduces, numerous design iterations. In this paper, we propose a novel Matlab-to-hardware design flow, which allows to map the algorithmic functionality onto the target prototyping platform in a systematic and reproducible way. The proposed design flow is partly manual and partly tool assisted. It is shown that the proposed design flow allows to use the same testbench throughout the whole design flow and avoids time-consuming and error-prone intermediate translation steps.
An energy-aware routing protocol for query-based applications in wireless sensor networks.
Ahvar, Ehsan; Ahvar, Shohreh; Lee, Gyu Myoung; Crespi, Noel
2014-01-01
Wireless sensor network (WSN) typically has energy consumption restriction. Designing energy-aware routing protocol can significantly reduce energy consumption in WSNs. Energy-aware routing protocols can be classified into two categories, energy savers and energy balancers. Energy saving protocols are used to minimize the overall energy consumed by a WSN, while energy balancing protocols attempt to efficiently distribute the consumption of energy throughout the network. In general terms, energy saving protocols are not necessarily good at balancing energy consumption and energy balancing protocols are not always good at reducing energy consumption. In this paper, we propose an energy-aware routing protocol (ERP) for query-based applications in WSNs, which offers a good trade-off between traditional energy balancing and energy saving objectives and supports a soft real time packet delivery. This is achieved by means of fuzzy sets and learning automata techniques along with zonal broadcasting to decrease total energy consumption.
SenseCube—a novel inexpensive wireless multisensor for physics lab experimentations
NASA Astrophysics Data System (ADS)
Mehta, Vedant; Lane, Charles D.
2018-07-01
SenseCube is a multisensor capable of measuring many different real-time events and changes in environment. Most conventional sensors used in introductory-physics labs use their own software and have wires that must be attached to a computer or an alternate device to analyze the data. This makes the standard sensors time consuming, tedious, and space-constricted. SenseCube was developed to overcome these limitations. This research was focused on developing a device that is all-encompassing, cost-effective, wireless, and compact, yet can perform the same tasks as the multiple standard sensors normally used in physics labs. It measures more than twenty distinct types of real-time events and transfers the data via Bluetooth. Both Windows and Mac software were developed so that the data from this device can be retrieved and/or saved on either platform. This paper describes the sensor itself, its development, its capabilities, and its cost comparison with standard sensors.
Real-Time Support on IEEE 802.11 Wireless Ad-Hoc Networks: Reality vs. Theory
NASA Astrophysics Data System (ADS)
Kang, Mikyung; Kang, Dong-In; Suh, Jinwoo
The usable throughput of an IEEE 802.11 system for an application is much less than the raw bandwidth. Although 802.11b has a theoretical maximum of 11Mbps, more than half of the bandwidth is consumed by overhead leaving at most 5Mbps of usable bandwidth. Considering this characteristic, this paper proposes and analyzes a real-time distributed scheduling scheme based on the existing IEEE 802.11 wireless ad-hoc networks, using USC/ISI's Power Aware Sensing Tracking and Analysis (PASTA) hardware platform. We compared the distributed real-time scheduling scheme with the real-time polling scheme to meet deadline, and compared a measured real bandwidth with a theoretical result. The theoretical and experimental results show that the distributed scheduling scheme can guarantee real-time traffic and enhances the performance up to 74% compared with polling scheme.
An Energy-Aware Routing Protocol for Query-Based Applications in Wireless Sensor Networks
Crespi, Noel
2014-01-01
Wireless sensor network (WSN) typically has energy consumption restriction. Designing energy-aware routing protocol can significantly reduce energy consumption in WSNs. Energy-aware routing protocols can be classified into two categories, energy savers and energy balancers. Energy saving protocols are used to minimize the overall energy consumed by a WSN, while energy balancing protocols attempt to efficiently distribute the consumption of energy throughout the network. In general terms, energy saving protocols are not necessarily good at balancing energy consumption and energy balancing protocols are not always good at reducing energy consumption. In this paper, we propose an energy-aware routing protocol (ERP) for query-based applications in WSNs, which offers a good trade-off between traditional energy balancing and energy saving objectives and supports a soft real time packet delivery. This is achieved by means of fuzzy sets and learning automata techniques along with zonal broadcasting to decrease total energy consumption. PMID:24696640
Power smart in-door optical wireless link design
NASA Astrophysics Data System (ADS)
Marraccini, P. J.; Riza, N. A.
2011-12-01
Presented for the first time, to the best of the authors´ knowledge, is the design of a power smart in-door optical wireless link that provides lossless beam propagation between Transmitter (T) and Receiver (R) for changing link distances. Each T/R unit uses a combination of fixed and variable focal length optics to smartly adjust the laser beam propagation parameters of minimum beam waist size and its location to produce the optimal zero propagation loss coupling condition at the R for that link distance. An Electronically Controlled Variable Focus Lens (ECVFL) is used to form the wide field-of-view search beam and change the beam size at R to form a low loss beam. The T/R unit can also deploy camera optics and thermal energy harvesting electronics to improve link operational smartness and efficiency. To demonstrate the principles of the beam conditioned low loss indoor link, a visible 633 nm laser link using an electro-wetting technology liquid ECVFL is demonstrated for a variable 1 to 4 m link range. Measurements indicate a 53% improvement over an unconditioned laser link at 4 m. Applications for this power efficient wireless link includes mobile computer platform communications and agile server rack interconnections in data centres.
NASA Technical Reports Server (NTRS)
Cribb, H. E.
1970-01-01
Two-way wireless voice communications system is automatic, provides freedom of movement, allows for complete awareness of the environment, and does not present any additional hazards such as activation of electromagnetic sensitive devices.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-05
... Certain Electronic Devices, Including Wireless Communication Devices, Portable Music and Data, and Tablet..., portable music and data processing devices, and tablet computers. The complaint names as respondent Apple...
48 CFR 1819.1005 - Applicability.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Printed Circuit Assembly (Electronic Assembly) Manufacturing. 334613 Magnetic and Optical Recording Media... and Wireless Communication Equipment Manufacturing. 336415 Guided Missile and Space Vehicle Propulsion Unit and Propulsion Unit Parts Manufacturing. 336419 Other Guided Missile and Space Vehicle Parts and...
48 CFR 1819.1005 - Applicability.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Printed Circuit Assembly (Electronic Assembly) Manufacturing. 334613 Magnetic and Optical Recording Media... and Wireless Communication Equipment Manufacturing. 336415 Guided Missile and Space Vehicle Propulsion Unit and Propulsion Unit Parts Manufacturing. 336419 Other Guided Missile and Space Vehicle Parts and...
Japan's electronic packaging technologies
NASA Technical Reports Server (NTRS)
Tummala, Rao R.; Pecht, Michael
1995-01-01
The JTEC panel found Japan to have significant leadership over the United States in the strategic area of electronic packaging. Many technologies and products once considered the 'heart and soul' of U.S. industry have been lost over the past decades to Japan and other Asian countries. The loss of consumer electronics technologies and products is the most notable of these losses, because electronics is the United States' largest employment sector and is critical for growth businesses in consumer products, computers, automobiles, aerospace, and telecommunications. In the past there was a distinction between consumer and industrial product technologies. While Japan concentrated on the consumer market, the United States dominated the industrial sector. No such distinction is anticipated in the future; the consumer-oriented technologies Japan has dominated are expected to characterize both domains. The future of U.S. competitiveness will, therefore, depend on the ability of the United States to rebuild its technological capabilities in the area of portable electronic packaging.
12 CFR 205.9 - Receipts at electronic terminals; periodic statements.
Code of Federal Regulations, 2011 CFR
2011-01-01
... RESERVE SYSTEM ELECTRONIC FUND TRANSFERS (REGULATION E) § 205.9 Receipts at electronic terminals; periodic..., a financial institution shall make a receipt available to a consumer at the time the consumer initiates an electronic fund transfer at an electronic terminal. The receipt shall set forth the following...
12 CFR 205.9 - Receipts at electronic terminals; periodic statements.
Code of Federal Regulations, 2013 CFR
2013-01-01
... RESERVE SYSTEM ELECTRONIC FUND TRANSFERS (REGULATION E) § 205.9 Receipts at electronic terminals; periodic..., a financial institution shall make a receipt available to a consumer at the time the consumer initiates an electronic fund transfer at an electronic terminal. The receipt shall set forth the following...
12 CFR 205.9 - Receipts at electronic terminals; periodic statements.
Code of Federal Regulations, 2014 CFR
2014-01-01
... RESERVE SYSTEM ELECTRONIC FUND TRANSFERS (REGULATION E) § 205.9 Receipts at electronic terminals; periodic..., a financial institution shall make a receipt available to a consumer at the time the consumer initiates an electronic fund transfer at an electronic terminal. The receipt shall set forth the following...
12 CFR 205.9 - Receipts at electronic terminals; periodic statements.
Code of Federal Regulations, 2010 CFR
2010-01-01
... RESERVE SYSTEM ELECTRONIC FUND TRANSFERS (REGULATION E) § 205.9 Receipts at electronic terminals; periodic..., a financial institution shall make a receipt available to a consumer at the time the consumer initiates an electronic fund transfer at an electronic terminal. The receipt shall set forth the following...
12 CFR 205.9 - Receipts at electronic terminals; periodic statements.
Code of Federal Regulations, 2012 CFR
2012-01-01
... RESERVE SYSTEM ELECTRONIC FUND TRANSFERS (REGULATION E) § 205.9 Receipts at electronic terminals; periodic..., a financial institution shall make a receipt available to a consumer at the time the consumer initiates an electronic fund transfer at an electronic terminal. The receipt shall set forth the following...
Radio-frequency flexible and stretchable electronics: the need, challenges and opportunities
NASA Astrophysics Data System (ADS)
Jung, Yei Hwan; Seo, Jung-Hun; Zhang, Huilong; Lee, Juhwan; Cho, Sang June; Chang, Tzu-Hsuan; Ma, Zhenqiang
2017-05-01
Successful integration of ultrathin flexible or stretchable systems with new applications, such as medical devices and biodegradable electronics, have intrigued many researchers and industries around the globe to seek materials and processes to create high-performance, non-invasive and cost-effective electronics to match those of state-of-the-art devices. Nevertheless, the crucial concept of transmitting data or power wirelessly for such unconventional devices has been difficult to realize due to limitations of radio-frequency (RF) electronics in individual components that form a wireless circuitry, such as antenna, transmission line, active devices, passive devices etc. To overcome such challenges, these components must be developed in a step-by-step manner, as each component faces a number of different challenges in ultrathin formats. Here, we report on materials and design considerations for fabricating flexible and stretchable electronics systems that operate in the microwave level. High-speed flexible active devices, including cost effective Si-based strained MOSFETs, GaAs-based HBTs and GaN-based HEMTs, performing at multi-gigahertz frequencies are presented. Furthermore, flexible or stretchable passive devices, including capacitors, inductors and transmission lines that are vital parts of a microwave circuitry are also demonstrated. We also present unique applications using the presented flexible or stretchable RF components, including wearable RF electronics and biodegradable RF electronics, which were impossible to achieve using conventional rigid, wafer-based technology. Further opportunities like implantable systems exist utilizing such ultrathin RF components, which are discussed in this report as well.
Safety considerations for wireless delivery of continuous power to implanted medical devices.
Lucke, Lori; Bluvshtein, Vlad
2014-01-01
Wireless power systems for use with implants are referred to as transcutaneous energy transmission systems (TETS) and consist of an implanted secondary coil and an external primary coil along with supporting electronics. A TETS system could be used to power ventricular assist systems and eliminate driveline infections. There are both direct and indirect safety concerns that must be addressed when continuously transferring power through the skin. Direct safety concerns include thermal tissue damage caused by exposure to the electromagnetic fields, coil heating effects, and potential unwanted nerve stimulation. Indirect concerns are those caused by potential interference of the TETS system with other implanted devices. Wireless power systems are trending towards higher frequency operation. Understanding the limits for safe operation of a TETS system across a range of frequencies is important. A low frequency and a high frequency implementation are simulated to demonstrate the impact of this trend for a VAD application.
Energy efficient wireless sensor networks by using a fuzzy-based solution
NASA Astrophysics Data System (ADS)
Tirrito, Salvatore; Nicolosi, Giuseppina
2016-12-01
Wireless Sensor Networks are characterized by a distributed architecture realized by a set of autonomous electronic devices able to sense data from the surrounding environment and to communicate among them. These devices are battery powered since they may be used even to monitor hazardous events in inaccessible areas. As a consequence, it is preferable to assure the adoption of energy management solutions in order to extend the WSN lifetime, as far as possible. Moreover, it is crucial to guarantee that the nodes receive the transmitted data correctly. It is clear that trading off power optimization and quality of service has become one the most important concerns when dealing with modern systems based on WSNs. This paper introduces a solution based on a Fuzzy Logic Controller (FLC) focusing on the minimization of energy consumption of wireless sensor nodes. This is made possible because the sleeping time of these nodes is dynamically regulated by a FLC.
The Development of Wireless Body Area Network for Motion Sensing Application
NASA Astrophysics Data System (ADS)
Puspitaningayu, P.; Widodo, A.; Yundra, E.; Ramadhany, F.; Arianto, L.; Habibie, D.
2018-04-01
The information era has driven the society into the digitally-controlled lifestyle. Wireless body area networks (WBAN) as the specific scope of wireless sensor networks (WSN) is consistently growing into bigger applications. Currently, people are able to monitor their medical parameters by simply using small electronics devices attached to their body and connected to the authorities. On top of that, this time, smart phones are typically equipped with sensors such as accelerometer, gyroscope, barometric pressure, heart rate monitor, etc. It means that the sensing yet the signal processing can be performed by a single device. Moreover, Android opens lot wider opportunities for new applications as the most popular open-sourced smart phone platform. This paper is intended to show the development of motion sensing application which focused on analysing data from accelerometer and gyroscope. Beside reads the sensors, this application also has the ability to convert the sensors’ numerical value into graphs.
Low Cost Inkjet Printed Smart Bandage for Wireless Monitoring of Chronic Wounds
Farooqui, Muhammad Fahad; Shamim, Atif
2016-01-01
Chronic wounds affect millions of patients around the world and their treatment is challenging as the early signs indicating their development are subtle. In addition, a type of chronic wound, known as pressure ulcer, develops in patients with limited mobility. Infection and frequent bleeding are indicators of chronic wound development. In this article, we present an unprecedented low cost continuous wireless monitoring system, realized through inkjet printing on a standard bandage, which can send early warnings for the parameters like irregular bleeding, variations in pH levels and external pressure at wound site. In addition to the early warnings, this smart bandage concept can provide long term wound progression data to the health care providers. The smart bandage comprises a disposable part which has the inkjet printed sensors and a reusable part constituting the wireless electronics. This work is an important step towards futuristic wearable sensors for remote health care applications. PMID:27353200
Low Cost Inkjet Printed Smart Bandage for Wireless Monitoring of Chronic Wounds
NASA Astrophysics Data System (ADS)
Farooqui, Muhammad Fahad; Shamim, Atif
2016-06-01
Chronic wounds affect millions of patients around the world and their treatment is challenging as the early signs indicating their development are subtle. In addition, a type of chronic wound, known as pressure ulcer, develops in patients with limited mobility. Infection and frequent bleeding are indicators of chronic wound development. In this article, we present an unprecedented low cost continuous wireless monitoring system, realized through inkjet printing on a standard bandage, which can send early warnings for the parameters like irregular bleeding, variations in pH levels and external pressure at wound site. In addition to the early warnings, this smart bandage concept can provide long term wound progression data to the health care providers. The smart bandage comprises a disposable part which has the inkjet printed sensors and a reusable part constituting the wireless electronics. This work is an important step towards futuristic wearable sensors for remote health care applications.
Applications of software-defined radio (SDR) technology in hospital environments.
Chávez-Santiago, Raúl; Mateska, Aleksandra; Chomu, Konstantin; Gavrilovska, Liljana; Balasingham, Ilangko
2013-01-01
A software-defined radio (SDR) is a radio communication system where the major part of its functionality is implemented by means of software in a personal computer or embedded system. Such a design paradigm has the major advantage of producing devices that can receive and transmit widely different radio protocols based solely on the software used. This flexibility opens several application opportunities in hospital environments, where a large number of wired and wireless electronic devices must coexist in confined areas like operating rooms and intensive care units. This paper outlines some possible applications in the 2360-2500 MHz frequency band. These applications include the integration of wireless medical devices in a common communication platform for seamless interoperability, and cognitive radio (CR) for body area networks (BANs) and wireless sensor networks (WSNs) for medical environmental surveillance. The description of a proof-of-concept CR prototype is also presented.
Practical applications of hand-held computers in dermatology.
Goldblum, Orin M
2002-09-01
For physicians, hand-held computers are gaining popularity as point of care reference tools. The convergence of hand-held computers, the Internet, and wireless networks will enable these devices to assume more essential roles as mobile transmitters and receivers of digital medical Information. In addition to serving as portable medical reference sources, these devices can be Internet-enabled, allowing them to communicate over wireless wide and local area networks. With enhanced wireless connectivity, hand-held computers can be used at the point of patient care for charge capture, electronic prescribing, laboratory test ordering, laboratory result retrieval, web access, e-mail communication, and other clinical and administrative tasks. Physicians In virtually every medical specialty have begun using these devices in various ways. This review of hand-held computer use in dermatology illustrates practical examples of the many different ways hand-held computers can be effectively used by the practicing dermatologist.
Low Cost Inkjet Printed Smart Bandage for Wireless Monitoring of Chronic Wounds.
Farooqui, Muhammad Fahad; Shamim, Atif
2016-06-29
Chronic wounds affect millions of patients around the world and their treatment is challenging as the early signs indicating their development are subtle. In addition, a type of chronic wound, known as pressure ulcer, develops in patients with limited mobility. Infection and frequent bleeding are indicators of chronic wound development. In this article, we present an unprecedented low cost continuous wireless monitoring system, realized through inkjet printing on a standard bandage, which can send early warnings for the parameters like irregular bleeding, variations in pH levels and external pressure at wound site. In addition to the early warnings, this smart bandage concept can provide long term wound progression data to the health care providers. The smart bandage comprises a disposable part which has the inkjet printed sensors and a reusable part constituting the wireless electronics. This work is an important step towards futuristic wearable sensors for remote health care applications.
Canoe: An Autonomous Infrastructure-Free Indoor Navigation System.
Dong, Kai; Wu, Wenjia; Ye, Haibo; Yang, Ming; Ling, Zhen; Yu, Wei
2017-04-30
The development of the Internet of Things (IoT) has accelerated research in indoor navigation systems, a majority of which rely on adequate wireless signals and sources. Nonetheless, deploying such a system requires periodic site-survey, which is time consuming and labor intensive. To address this issue, in this paper we present Canoe , an indoor navigation system that considers shopping mall scenarios. In our system, we do not assume any prior knowledge, such as floor-plan or the shop locations, access point placement or power settings, historical RSS measurements or fingerprints, etc. Instead, Canoe requires only that the shop owners collect and publish RSS values at the entrances of their shops and can direct a consumer to any of these shops by comparing the observed RSS values. The locations of the consumers and the shops are estimated using maximum likelihood estimation. In doing this, the direction of the target shop relative to the current orientation of the consumer can be precisely computed, such that the direction that a consumer should move can be determined. We have conducted extensive simulations using a real-world dataset. Our experiments in a real shopping mall demonstrate that if 50% of the shops publish their RSS values, Canoe can precisely navigate a consumer within 30 s, with an error rate below 9%.
Canoe: An Autonomous Infrastructure-Free Indoor Navigation System
Dong, Kai; Wu, Wenjia; Ye, Haibo; Yang, Ming; Ling, Zhen; Yu, Wei
2017-01-01
The development of the Internet of Things (IoT) has accelerated research in indoor navigation systems, a majority of which rely on adequate wireless signals and sources. Nonetheless, deploying such a system requires periodic site-survey, which is time consuming and labor intensive. To address this issue, in this paper we present Canoe, an indoor navigation system that considers shopping mall scenarios. In our system, we do not assume any prior knowledge, such as floor-plan or the shop locations, access point placement or power settings, historical RSS measurements or fingerprints, etc. Instead, Canoe requires only that the shop owners collect and publish RSS values at the entrances of their shops and can direct a consumer to any of these shops by comparing the observed RSS values. The locations of the consumers and the shops are estimated using maximum likelihood estimation. In doing this, the direction of the target shop relative to the current orientation of the consumer can be precisely computed, such that the direction that a consumer should move can be determined. We have conducted extensive simulations using a real-world dataset. Our experiments in a real shopping mall demonstrate that if 50% of the shops publish their RSS values, Canoe can precisely navigate a consumer within 30 s, with an error rate below 9%. PMID:28468291
Code of Federal Regulations, 2010 CFR
2010-01-01
... 101 of the Consumer Product Safety Improvement Act for certain electronic devices. 1500.88 Section... from lead limits under section 101 of the Consumer Product Safety Improvement Act for certain electronic devices. (a) The Consumer Product Safety Improvement Act (CPSIA) provides for specific lead limits...
75 FR 40833 - Sunshine Act Meeting; Open Commission Meeting; Thursday, July 15, 2010
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-14
... OFFICE OF TITLE: Fixed and ENGINEERING AND Mobile services TECHNOLOGY, in the Mobile WIRELESS TELE... investment in the 2 GHz, Big LEO, and L-bands of the Mobile Satellite Service. 3 WIRELINE TITLE: Electronic...
12 CFR 1005.14 - Electronic fund transfer service provider not holding consumer's account.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 12 Banks and Banking 8 2012-01-01 2012-01-01 false Electronic fund transfer service provider not... PROTECTION ELECTRONIC FUND TRANSFERS (REGULATION E) § 1005.14 Electronic fund transfer service provider not holding consumer's account. (a) Provider of electronic fund transfer service. A person that provides an...
12 CFR 1005.14 - Electronic fund transfer service provider not holding consumer's account.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 12 Banks and Banking 8 2013-01-01 2013-01-01 false Electronic fund transfer service provider not... PROTECTION ELECTRONIC FUND TRANSFERS (REGULATION E) General § 1005.14 Electronic fund transfer service provider not holding consumer's account. (a) Provider of electronic fund transfer service. A person that...
12 CFR 1005.14 - Electronic fund transfer service provider not holding consumer's account.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 12 Banks and Banking 8 2014-01-01 2014-01-01 false Electronic fund transfer service provider not... PROTECTION ELECTRONIC FUND TRANSFERS (REGULATION E) General § 1005.14 Electronic fund transfer service provider not holding consumer's account. (a) Provider of electronic fund transfer service. A person that...
High-performance green flexible electronics based on biodegradable cellulose nanofibril paper
Yei Hwan Jung; Tzu-Hsuan Chang; Huilong Zhang; Chunhua Yao; Qifeng Zheng; Vina W. Yang; Hongyi Mi; Munho Kim; Sang June Cho; Dong-Wook Park; Hao Jiang; Juhwan Lee; Yijie Qiu; Weidong Zhou; Zhiyong Cai; Shaoqin Gong; Zhenqiang Ma
2015-01-01
Todayâs consumer electronics, such as cell phones, tablets and other portable electronic devices, are typically made of non-renewable, non-biodegradable, and sometimes potentially toxic (for example, gallium arsenide) materials. These consumer electronics are frequently upgraded or discarded, leading to serious environmental contamination. Thus, electronic systems...
In-to-Out Body Antenna-Independent Path Loss Model for Multilayered Tissues and Heterogeneous Medium
Kurup, Divya; Vermeeren, Günter; Tanghe, Emmeric; Joseph, Wout; Martens, Luc
2015-01-01
In this paper, we investigate multilayered lossy and heterogeneous media for wireless body area networks (WBAN) to develop a simple, fast and efficient analytical in-to-out body path loss (PL) model at 2.45 GHz and, thus, avoid time-consuming simulations. The PL model is an antenna-independent model and is validated with simulations in layered medium, as well as in a 3D human model using electromagnetic solvers. PMID:25551483
A wireless sensor tag platform for container security and integrity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amaya, Ivan A.; Cree, Johnathan V.; Mauss, Fredrick J.
Cargo containers onboard ships are widely used in the global supply chain. The need for container security is evidenced by the Container Security Initiative launched by the U.S. Bureau of Customs and Border Protection (CBP). One method of monitoring cargo containers is using low power wireless sensor tags. The wireless sensor tags are used to set up a network that is comprised of tags internal to the container and a central device. The sensor network reports alarms and other anomalies to a central device, which then relays the message to an outside network upon arrival at the destination port. Thismore » allows the port authorities to have knowledge of potential security or integrity issues before physically examining the container. Challenges of using wireless sensor tag networks for container security include battery life, size, environmental conditions, information security, and cost among others. PNNL developed an active wireless sensor tag platform capable of reporting data wirelessly to a central node as well as logging data to nonvolatile memory. The tags, operate at 2.4 GHz over an IEEE 802.15.4 protocol, and were designed to be distributed throughout the inside of a shipping container in the upper support frame. The tags are mounted in a housing that allows for simple and efficient installation or removal prior to, during, or after shipment. The distributed tags monitor the entire container volume. The sensor tag platform utilizes low power electronics and provides an extensible sensor interface for incorporating a wide range of sensors including chemical, biological, and environmental sensors.« less
A wireless sensor tag platform for container security and integrity
NASA Astrophysics Data System (ADS)
Amaya, Ivan A.; Cree, Johnathan V.; Mauss, Fredrick J.
2011-04-01
Cargo containers onboard ships are widely used in the global supply chain. The need for container security is evidenced by the Container Security Initiative launched by the U.S. Bureau of Customs and Border Protection (CBP). One method of monitoring cargo containers is using low power wireless sensor tags. The wireless sensor tags are used to set up a network that is comprised of tags internal to the container and a central device. The sensor network reports alarms and other anomalies to a central device, which then relays the message to an outside network upon arrival at the destination port. This allows the port authorities to have knowledge of potential security or integrity issues before physically examining the container. Challenges of using wireless sensor tag networks for container security include battery life, size, environmental conditions, information security, and cost among others. PNNL developed an active wireless sensor tag platform capable of reporting data wirelessly to a central node as well as logging data to nonvolatile memory. The tags, operate at 2.4 GHz over an IEEE 802.15.4 protocol, and were designed to be distributed throughout the inside of a shipping container in the upper support frame. The tags are mounted in a housing that allows for simple and efficient installation or removal prior to, during, or after shipment. The distributed tags monitor the entire container volume. The sensor tag platform utilizes low power electronics and provides an extensible sensor interface for incorporating a wide range of sensors including chemical, biological, and environmental sensors.
Wireless recording systems: from noninvasive EEG-NIRS to invasive EEG devices.
Sawan, Mohamad; Salam, Muhammad T; Le Lan, Jérôme; Kassab, Amal; Gelinas, Sébastien; Vannasing, Phetsamone; Lesage, Frédéric; Lassonde, Maryse; Nguyen, Dang K
2013-04-01
In this paper, we present the design and implementation of a wireless wearable electronic system dedicated to remote data recording for brain monitoring. The reported wireless recording system is used for a) simultaneous near-infrared spectrometry (NIRS) and scalp electro-encephalography (EEG) for noninvasive monitoring and b) intracerebral EEG (icEEG) for invasive monitoring. Bluetooth and dual radio links were introduced for these recordings. The Bluetooth-based device was embedded in a noninvasive multichannel EEG-NIRS system for easy portability and long-term monitoring. On the other hand, the 32-channel implantable recording device offers 24-bit resolution, tunable features, and a sampling frequency up to 2 kHz per channel. The analog front-end preamplifier presents low input-referred noise of 5 μ VRMS and a signal-to-noise ratio of 112 dB. The communication link is implemented using a dual-band radio frequency transceiver offering a half-duplex 800 kb/s data rate, 16.5 mW power consumption and less than 10(-10) post-correction Bit-Error Rate (BER). The designed system can be accessed and controlled by a computer with a user-friendly graphical interface. The proposed wireless implantable recording device was tested in vitro using real icEEG signals from two patients with refractory epilepsy. The wirelessly recorded signals were compared to the original signals recorded using wired-connection, and measured normalized root-mean square deviation was under 2%.
Synchronous wearable wireless body sensor network composed of autonomous textile nodes.
Vanveerdeghem, Peter; Van Torre, Patrick; Stevens, Christiaan; Knockaert, Jos; Rogier, Hendrik
2014-10-09
A novel, fully-autonomous, wearable, wireless sensor network is presented, where each flexible textile node performs cooperative synchronous acquisition and distributed event detection. Computationally efficient situational-awareness algorithms are implemented on the low-power microcontroller present on each flexible node. The detected events are wirelessly transmitted to a base station, directly, as well as forwarded by other on-body nodes. For each node, a dual-polarized textile patch antenna serves as a platform for the flexible electronic circuitry. Therefore, the system is particularly suitable for comfortable and unobtrusive integration into garments. In the meantime, polarization diversity can be exploited to improve the reliability and energy-efficiency of the wireless transmission. Extensive experiments in realistic conditions have demonstrated that this new autonomous, body-centric, textile-antenna, wireless sensor network is able to correctly detect different operating conditions of a firefighter during an intervention. By relying on four network nodes integrated into the protective garment, this functionality is implemented locally, on the body, and in real time. In addition, the received sensor data are reliably transferred to a central access point at the command post, for more detailed and more comprehensive real-time visualization. This information provides coordinators and commanders with situational awareness of the entire rescue operation. A statistical analysis of measured on-body node-to-node, as well as off-body person-to-person channels is included, confirming the reliability of the communication system.
Synchronous Wearable Wireless Body Sensor Network Composed of Autonomous Textile Nodes
Vanveerdeghem, Peter; Van Torre, Patrick; Stevens, Christiaan; Knockaert, Jos; Rogier, Hendrik
2014-01-01
A novel, fully-autonomous, wearable, wireless sensor network is presented, where each flexible textile node performs cooperative synchronous acquisition and distributed event detection. Computationally efficient situational-awareness algorithms are implemented on the low-power microcontroller present on each flexible node. The detected events are wirelessly transmitted to a base station, directly, as well as forwarded by other on-body nodes. For each node, a dual-polarized textile patch antenna serves as a platform for the flexible electronic circuitry. Therefore, the system is particularly suitable for comfortable and unobtrusive integration into garments. In the meantime, polarization diversity can be exploited to improve the reliability and energy-efficiency of the wireless transmission. Extensive experiments in realistic conditions have demonstrated that this new autonomous, body-centric, textile-antenna, wireless sensor network is able to correctly detect different operating conditions of a firefighter during an intervention. By relying on four network nodes integrated into the protective garment, this functionality is implemented locally, on the body, and in real time. In addition, the received sensor data are reliably transferred to a central access point at the command post, for more detailed and more comprehensive real-time visualization. This information provides coordinators and commanders with situational awareness of the entire rescue operation. A statistical analysis of measured on-body node-to-node, as well as off-body person-to-person channels is included, confirming the reliability of the communication system. PMID:25302808
A New Approach to Design Autonomous Wireless Sensor Node Based on RF Energy Harvesting System.
Mouapi, Alex; Hakem, Nadir
2018-01-05
Energy Harvesting techniques are increasingly seen as the solution for freeing the wireless sensor nodes from their battery dependency. However, it remains evident that network performance features, such as network size, packet length, and duty cycle, are influenced by the sum of recovered energy. This paper proposes a new approach to defining the specifications of a stand-alone wireless node based on a Radio-frequency Energy Harvesting System (REHS). To achieve adequate performance regarding the range of the Wireless Sensor Network (WSN), techniques for minimizing the energy consumed by the sensor node are combined with methods for optimizing the performance of the REHS. For more rigor in the design of the autonomous node, a comprehensive energy model of the node in a wireless network is established. For an equitable distribution of network charges between the different nodes that compose it, the Low-Energy Adaptive Clustering Hierarchy (LEACH) protocol is used for this purpose. The model considers five energy-consumption sources, most of which are ignored in recently used models. By using the hardware parameters of commercial off-the-shelf components (Mica2 Motes and CC2520 of Texas Instruments), the energy requirement of a sensor node is quantified. A miniature REHS based on a judicious choice of rectifying diodes is then designed and developed to achieve optimal performance in the Industrial Scientific and Medical (ISM) band centralized at 2.45 GHz . Due to the mismatch between the REHS and the antenna, a band pass filter is designed to reduce reflection losses. A gradient method search is used to optimize the output characteristics of the adapted REHS. At 1 mW of input RF power, the REHS provides an output DC power of 0.57 mW and a comparison with the energy requirement of the node allows the Base Station (BS) to be located at 310 m from the wireless nodes when the Wireless Sensor Network (WSN) has 100 nodes evenly spread over an area of 300 × 300 m 2 and when each round lasts 10 min . The result shows that the range of the autonomous WSN increases when the controlled physical phenomenon varies very slowly. Having taken into account all the dissipation sources coexisting in a sensor node and using actual measurements of an REHS, this work provides the guidelines for the design of autonomous nodes based on REHS.
Novel metamaterial based antennas for flexible wireless systems
NASA Astrophysics Data System (ADS)
Khaleel, Haider Raad
Recent years have witnessed a great deal of interest from both academia and industry in the field of flexible electronic systems. This research topic tops the pyramid of research priorities requested by many national research agencies. Consistently, flexible electronic systems require the integration of flexible antennas operating in specific frequency bands to provide wireless connectivity which is highly demanded by today's information oriented society. On the other hand, metamaterials have become very popular in the design of contemporary antenna and microwave devices due to their wide range of applications derived from their unique properties which significantly enhances the performance of antennas and RF systems. Accordingly, the integration of metamaterial structures within flexible wireless systems is very beneficial in this growing field of research. A systematic approach to the analysis and design of flexible and conformal antennas and metamaterials is ultimately needed. The research reported in this thesis focuses on developing flexible low profile antennas and metamaterial structures in addition to characterizing their performance when integrated within flexible wireless systems. Three flexible, compact, and extremely low profile (50.8 microm) antennas intended for WLAN, Bluetooth and Ultra Wide Band (UWB) applications are presented. Next, a novel miniaturized Artificial Magnetic Conductor (AMC) and a new technique to enhance the bandwidth of micro-Negative (MNG) metamaterial are reported. Furthermore, the effect of bending on the AMC and MNG metamaterial is investigated in this thesis for the first time. Finally, the findings of this research are utilized in practical applications with specific design constraints including mutual coupling reduction between radiating elements in antenna arrays and MIMO systems and Specific Absorption Rate (SAR) reduction in telemedicine systems.
Graham, Eric A.; Patange, Omkar; Lukac, Martin; ...
2014-08-27
With improved cookstoves (ICs) increasingly distributed to households for a range of air pollution interventions and carbon-credit programs, it has become necessary to accurately monitor the duration of cooking and the amount of fuel consumed. In this study, laboratory trials were used to create temperature-based algorithms for quantifying cooking duration and estimating fuel consumption from stove temperatures. Field validation of the algorithms employed a Wireless Cookstove Sensing System (WiCS) that offers remote, low-cost temperature sensing and the wireless transmission of temperature data to a centralized database using local cellular networks. Field trials included 68 unscripted household cooking events. In themore » laboratory, temperature responses of the IC body and that of a removable temperature probe (J-bar) followed well-known physical models during cooking, indicating that location of the temperature sensor is not critical. In the laboratory, the classification correctly identified active cooking 97.2% of the time. In the field, the cooking duration was not statistically different from that recorded by trained volunteers; the average difference between calculated and observed cooking times was 0.03 ± 0.31 h (mean ± SD). In the laboratory, energy flux from the IC was calculated using temperatures measured by the J-bar and on the IC body and found to be proportional to the total energy in the consumed fuel, with an r 2 correlation value of 0.95. Here in the field, the average fuel consumption was calculated to be 0.97 ± 0.32 kg compared to that recorded by volunteers of 1.19 ± 0.37 kg with an average difference between calculated and observed fuel mass of 0.21 ± 0.37 kg per event. Finally, despite wide variation in observed cooking duration and fuel consumption per event, a relatively constant rate of fuel consumption of 0.48 kg h -1 was calculated for users of the same type of IC.« less
ERIC Educational Resources Information Center
Thompson, Chester D.
2013-01-01
The purpose of this study is to explore healthcare consumers' perceptions of their Electronic Medical Records (EMRs). Although there have been numerous studies regarding EMRs, there have been minimal, if any, research that explores healthcare consumers' awareness of this technology and the social implications that result. As consumers' health…
A hybrid stochastic approach for self-location of wireless sensors in indoor environments.
Lloret, Jaime; Tomas, Jesus; Garcia, Miguel; Canovas, Alejandro
2009-01-01
Indoor location systems, especially those using wireless sensor networks, are used in many application areas. While the need for these systems is widely proven, there is a clear lack of accuracy. Many of the implemented applications have high errors in their location estimation because of the issues arising in the indoor environment. Two different approaches had been proposed using WLAN location systems: on the one hand, the so-called deductive methods take into account the physical properties of signal propagation. These systems require a propagation model, an environment map, and the position of the radio-stations. On the other hand, the so-called inductive methods require a previous training phase where the system learns the received signal strength (RSS) in each location. This phase can be very time consuming. This paper proposes a new stochastic approach which is based on a combination of deductive and inductive methods whereby wireless sensors could determine their positions using WLAN technology inside a floor of a building. Our goal is to reduce the training phase in an indoor environment, but, without an loss of precision. Finally, we compare the measurements taken using our proposed method in a real environment with the measurements taken by other developed systems. Comparisons between the proposed system and other hybrid methods are also provided.
NASA Astrophysics Data System (ADS)
Das, Anshuman J.; Wahi, Akshat; Kothari, Ishan; Raskar, Ramesh
2016-09-01
We demonstrate a smartphone based spectrometer design that is standalone and supported on a wireless platform. The device is inherently low-cost and the power consumption is minimal making it portable to carry out a range of studies in the field. All essential components of the device like the light source, spectrometer, filters, microcontroller and wireless circuits have been assembled in a housing of dimensions 88 mm × 37 mm × 22 mm and the entire device weighs 48 g. The resolution of the spectrometer is 15 nm, delivering accurate and repeatable measurements. The device has a dedicated app interface on the smartphone to communicate, receive, plot and analyze spectral data. The performance of the smartphone spectrometer is comparable to existing bench-top spectrometers in terms of stability and wavelength resolution. Validations of the device were carried out by demonstrating non-destructive ripeness testing in fruit samples. Ultra-Violet (UV) fluorescence from Chlorophyll present in the skin was measured across various apple varieties during the ripening process and correlated with destructive firmness tests. A satisfactory agreement was observed between ripeness and fluorescence signals. This demonstration is a step towards possible consumer, bio-sensing and diagnostic applications that can be carried out in a rapid manner.
Resonant tunnelling diode terahertz sources for broadband wireless communications
NASA Astrophysics Data System (ADS)
Wasige, Edward; Alharbi, Khalid H.; Al-Khalidi, Abdullah; Wang, Jue; Khalid, Ata; Rodrigues, Gil C.; Figueiredo, José
2017-02-01
This paper will discuss resonant tunnelling diode (RTD) sources being developed on a European project iBROW (ibrow.project.eu) to enable short-range multi-gigabit wireless links and microwave-photonic interfaces for seamless links to the optical fibre backbone network. The practically relevant output powers are at least 10 mW at 90 GHz, 5 mW at 160 GHz and 1 mW at 300 GHz and simulation and some experimental results show that these are feasible in RTD technology. To date, 75 - 315 GHz indium phosphide (InP) based RTD oscillators with relatively high output powers in the 0.5 - 1.1 mW range have been demonstrated on the project. They are realised in various circuit topologies including those that use a single RTD device, 2 RTD devices and up to 4 RTD devices for increasingly higher output power. The oscillators are realised using only photolithography by taking advantage of the large micron-sized but broadband RTD devices. The paper will also describe properties of RTD devices as photo-detectors which makes this a unified technology that can be integrated into both ends of a wireless link, namely consumer portable devices and fibre-optic supported base-stations (since integration with laser diodes is also possible).
Das, Anshuman J; Wahi, Akshat; Kothari, Ishan; Raskar, Ramesh
2016-09-08
We demonstrate a smartphone based spectrometer design that is standalone and supported on a wireless platform. The device is inherently low-cost and the power consumption is minimal making it portable to carry out a range of studies in the field. All essential components of the device like the light source, spectrometer, filters, microcontroller and wireless circuits have been assembled in a housing of dimensions 88 mm × 37 mm × 22 mm and the entire device weighs 48 g. The resolution of the spectrometer is 15 nm, delivering accurate and repeatable measurements. The device has a dedicated app interface on the smartphone to communicate, receive, plot and analyze spectral data. The performance of the smartphone spectrometer is comparable to existing bench-top spectrometers in terms of stability and wavelength resolution. Validations of the device were carried out by demonstrating non-destructive ripeness testing in fruit samples. Ultra-Violet (UV) fluorescence from Chlorophyll present in the skin was measured across various apple varieties during the ripening process and correlated with destructive firmness tests. A satisfactory agreement was observed between ripeness and fluorescence signals. This demonstration is a step towards possible consumer, bio-sensing and diagnostic applications that can be carried out in a rapid manner.
Teng, Kok-Hin; Wu, Tong; Liu, Xiayun; Yang, Zhi; Heng, Chun-Huat
2017-06-01
An 8-channel wireless neural signal processing IC, which can perform real-time spike detection, alignment, and feature extraction, and wireless data transmission is proposed. A reconfigurable BFSK/QPSK transmitter (TX) at MICS/MedRadio band is incorporated to support different data rate requirement. By using an Exponential Component-Polynomial Component (EC-PC) spike processing unit with an incremental principal component analysis (IPCA) engine, the detection of neural spikes with poor SNR is possible while achieving 625× data reduction. For the TX, a dual-channel at 401 MHz and 403.8 MHz are supported by applying sequential injection locked techniques while attaining phase noise of -102 dBc/Hz at 100 kHz offset. From the measurement, error vector magnitude (EVM) of 4.60%/9.55% with power amplifier (PA) output power of -15 dBm is achieved for the QPSK at 8 Mbps and the BFSK at 12.5 kbps. Fabricated in 65 nm CMOS with an active area of 1 mm 2 , the design consumes a total current of 5 ∼ 5.6 mA with a maximum energy efficiency of 0.7 nJ/b.
A Hybrid Stochastic Approach for Self-Location of Wireless Sensors in Indoor Environments
Lloret, Jaime; Tomas, Jesus; Garcia, Miguel; Canovas, Alejandro
2009-01-01
Indoor location systems, especially those using wireless sensor networks, are used in many application areas. While the need for these systems is widely proven, there is a clear lack of accuracy. Many of the implemented applications have high errors in their location estimation because of the issues arising in the indoor environment. Two different approaches had been proposed using WLAN location systems: on the one hand, the so-called deductive methods take into account the physical properties of signal propagation. These systems require a propagation model, an environment map, and the position of the radio-stations. On the other hand, the so-called inductive methods require a previous training phase where the system learns the received signal strength (RSS) in each location. This phase can be very time consuming. This paper proposes a new stochastic approach which is based on a combination of deductive and inductive methods whereby wireless sensors could determine their positions using WLAN technology inside a floor of a building. Our goal is to reduce the training phase in an indoor environment, but, without an loss of precision. Finally, we compare the measurements taken using our proposed method in a real environment with the measurements taken by other developed systems. Comparisons between the proposed system and other hybrid methods are also provided. PMID:22412334
Yeh, Kun-Ying; Yeh, Chao-Chi; Tang, Kuan; Wu, Jyun-Yi; Chen, Yun-Ting; Xu, Ming-Xin; Chen, Yunn-Jy; Yang, Yao-Joe; Lu, Shey-Shi
2017-01-01
Sleep apnea is a serious sleep disorder, and the most common type is obstructive sleep apnea (OSA). Untreated OSA will cause lots of potential health problems. Oral appliance therapy is an effective and popular approach for OSA treatment, but making a perfect fit for each patient is time-consuming and decreases its efficiency considerably. This paper proposes a System-on-a-Chip (SoC) enabled sleep monitoring system in a smart oral appliance, which is capable of intelligently collecting the physiological data about tongue movement through the whole therapy. A tunneling sensor array with an ultra-high sensitivity is incorporated to accurately detect the subtle pressure from the tongue. When the device is placed on the wireless platform, the temporary stored data will be retrieved and wirelessly transmitted to personal computers and cloud storages. The battery will be recharged by harvesting external RF power from the platform. A compact prototype module, whose size is 4.5 × 2.5 × 0.9 cm3, is implemented and embedded inside the oral appliance to demonstrate the tongue movement detection in continuous time frames. The functions of this design are verified by the presented measurement results. This design aims to increase efficiency and make it a total solution for OSA treatment. PMID:29035296
A wireless narrowband imaging chip for capsule endoscope.
Lan-Rong Dung; Yin-Yi Wu
2010-12-01
This paper presents a dual-mode capsule gastrointestinal endoscope device. An endoscope combined with a narrowband image (NBI), has been shown to be a superior diagnostic tool for early stage tissue neoplasms detection. Nevertheless, a wireless capsule endoscope with the narrowband imaging technology has not been presented in the market up to now. The narrowband image acquisition and power dissipation reduction are the main challenges of NBI capsule endoscope. In this paper, we present the first narrowband imaging capsule endoscope that can assist clinical doctors to effectively diagnose early gastrointestinal cancers, profited from our dedicated dual-mode complementary metal-oxide semiconductor (CMOS) sensor. The dedicated dual-mode CMOS sensor can offer white-light and narrowband images. Implementation results show that the proposed 512 × 512 CMOS sensor consumes only 2 mA at a 3-V power supply. The average current of the NBI capsule with an 8-Mb/s RF transmitter is nearly 7 ~ 8 mA that can continuously work for 6 ~ 8 h with two 1.5-V 80-mAh button batteries while the frame rate is 2 fps. Experimental results on backside mucosa of a human tongue and pig's small intestine showed that the wireless NBI capsule endoscope can significantly improve the image quality, compared with a commercial-of-the-shelf capsule endoscope for gastrointestinal tract diagnosis.
Embedded electronics for a 64-channel wireless brain implant
NASA Astrophysics Data System (ADS)
Burgert, Johann D.; Malasek, Jan; Martel, Sylvain M.; Wiseman, Colette; Fofonoff, Timothy; Dyer, Robert; Hunter, Ian W.; Hatsopoulos, Nicholas; Donoghue, John
2001-10-01
The Telemetric Electrode Array System (TEAS) is a surgically implantable device for the study of neural activity in the brain. An 8x8 array of electrodes collects intra-cortical neural signals and connects them to an analog front end. The front end amplifies and digitizes these microvolt-level signals with 12 bits of resolution and at 31KHz per channel. Peak detection is used to extract the information carrying features of these signals, which are transmitted over a Bluetooth-based radio link at 725 Kbit/sec. The electrode array is made up of 1mm tall, 60-micron square electrodes spaced 500 microns tip-to-tip. A flex circuit connector provides mechanical isolation between the brain and the electronics, which are mounted to the cranium. Power consumption and management is a critical aspect of the design. The entire system must operate off a surgically implantable battery. With this power source, the system must provide the functionality of a wireless, 64-channel oscilloscope for several hours. The system also provides a low-power sleep mode during which the battery can be inductively charged. Power dissipation and biocompatibility issues also affect the design of the electronics for the probe. The electronics system must fit between the skull and the skin of the test subject. Thus, circuit miniaturization and microassembly techniques are essential to construct the probe's electronics.
ERIC Educational Resources Information Center
Vail, Kathleen
2003-01-01
Practitioners and researchers in the education technology field asked to give their vision of the future list laptop computers, personal digital assistants, electronic testing, wireless networking, and multimedia technology among the technology advances headed soon for schools. A sidebar lists 12 online resources. (MLF)
Electronic School. Supplement.
ERIC Educational Resources Information Center
American School Board Journal, 1997
1997-01-01
This supplementary insert describes developments in computer uses in education. Feature articles discuss connecting rural schools to computer networks through affordable wireless transmission, using the Internet to teach foreign languages, and forging links between the school and home through technology. Other columns discuss updates on the…
12 CFR 1005.9 - Receipts at electronic terminals; periodic statements.
Code of Federal Regulations, 2014 CFR
2014-01-01
... TRANSFERS (REGULATION E) General § 1005.9 Receipts at electronic terminals; periodic statements. (a... institution shall make a receipt available to a consumer at the time the consumer initiates an electronic fund transfer at an electronic terminal. The receipt shall set forth the following information, as applicable...
12 CFR 1005.9 - Receipts at electronic terminals; periodic statements.
Code of Federal Regulations, 2013 CFR
2013-01-01
... TRANSFERS (REGULATION E) General § 1005.9 Receipts at electronic terminals; periodic statements. (a... institution shall make a receipt available to a consumer at the time the consumer initiates an electronic fund transfer at an electronic terminal. The receipt shall set forth the following information, as applicable...
12 CFR 1005.9 - Receipts at electronic terminals; periodic statements.
Code of Federal Regulations, 2012 CFR
2012-01-01
... TRANSFERS (REGULATION E) § 1005.9 Receipts at electronic terminals; periodic statements. (a) Receipts at... shall make a receipt available to a consumer at the time the consumer initiates an electronic fund transfer at an electronic terminal. The receipt shall set forth the following information, as applicable...
Kim, Min-Beom; Chung, Won-Ho; Choi, Jeesun; Hong, Sung Hwa; Cho, Yang-Sun; Park, Gyuseok; Lee, Sangmin
2014-06-01
The object was to evaluate speech perception improvement through Bluetooth-implemented hearing aids in hearing-impaired adults. Thirty subjects with bilateral symmetric moderate sensorineural hearing loss participated in this study. A Bluetooth-implemented hearing aid was fitted unilaterally in all study subjects. Objective speech recognition score and subjective satisfaction were measured with a Bluetooth-implemented hearing aid to replace the acoustic connection from either a cellular phone or a loudspeaker system. In each system, participants were assigned to 4 conditions: wireless speech signal transmission into hearing aid (wireless mode) in quiet or noisy environment and conventional speech signal transmission using external microphone of hearing aid (conventional mode) in quiet or noisy environment. Also, participants completed questionnaires to investigate subjective satisfaction. Both cellular phone and loudspeaker system situation, participants showed improvements in sentence and word recognition scores with wireless mode compared to conventional mode in both quiet and noise conditions (P < .001). Participants also reported subjective improvements, including better sound quality, less noise interference, and better accuracy naturalness, when using the wireless mode (P < .001). Bluetooth-implemented hearing aids helped to improve subjective and objective speech recognition performances in quiet and noisy environments during the use of electronic audio devices.
A Survey on M2M Systems for mHealth: A Wireless Communications Perspective
Kartsakli, Elli; Lalos, Aris S.; Antonopoulos, Angelos; Tennina, Stefano; Di Renzo, Marco; Alonso, Luis; Verikoukis, Christos
2014-01-01
In the new era of connectivity, marked by the explosive number of wireless electronic devices and the need for smart and pervasive applications, Machine-to-Machine (M2M) communications are an emerging technology that enables the seamless device interconnection without the need of human interaction. The use of M2M technology can bring to life a wide range of mHealth applications, with considerable benefits for both patients and healthcare providers. Many technological challenges have to be met, however, to ensure the widespread adoption of mHealth solutions in the future. In this context, we aim to provide a comprehensive survey on M2M systems for mHealth applications from a wireless communication perspective. An end-to-end holistic approach is adopted, focusing on different communication aspects of the M2M architecture. Hence, we first provide a systematic review of Wireless Body Area Networks (WBANs), which constitute the enabling technology at the patient's side, and then discuss end-to-end solutions that involve the design and implementation of practical mHealth applications. We close the survey by identifying challenges and open research issues, thus paving the way for future research opportunities. PMID:25264958
Hou, K-C; Chang, C-W; Chiou, J-C; Huang, Y-H; Shaw, F-Z
2011-12-01
This work presents a biomedical microsystem with a wireless radiofrequency (RF)-powered electronics and versatile sensors/actuators for use in nanomedicinal diagnosis and therapy. The cooling of brain tissue has the potential to reduce the frequency and severity of epilepsy. Miniaturised spiral coils as a wireless power module with low-dropout linear regulator circuit convert RF signals into a DC voltage, can be implanted without a battery in monitoring free behaviour. A thermoelectric (TE) cooler is an actuator that is employed to cool down brain tissue to suppress epilepsy. Electroencephalogram (EEG) electrodes and TE coolers are integrated to form module that is placed inside the head of a rat and fastened with a bio-compatible material. EEG signals are used to identify waveforms associated with epilepsy and are measured using readout circuits. The wireless part of the presented design achieves a low quiescent current and line/load regulation and high antenna/current efficiency with thermal protection to avoid damage to the implanted tissue. Epilepsy is suppressed by reducing the temperature to reduce the duration of this epileptic episode. Related characterisations demonstrate that the proposed design can be adopted in an effective nanomedicine microsystem.
Building a Terabyte Memory Bandwidth Compute Node with Four Consumer Electronics GPUs
NASA Astrophysics Data System (ADS)
Omlin, Samuel; Räss, Ludovic; Podladchikov, Yuri
2014-05-01
GPUs released for consumer electronics are generally built with the same chip architectures as the GPUs released for professional usage. With regards to scientific computing, there are no obvious important differences in functionality or performance between the two types of releases, yet the price can differ up to one order of magnitude. For example, the consumer electronics release of the most recent NVIDIA Kepler architecture (GK110), named GeForce GTX TITAN, performed equally well in conducted memory bandwidth tests as the professional release, named Tesla K20; the consumer electronics release costs about one third of the professional release. We explain how to design and assemble a well adjusted computer with four high-end consumer electronics GPUs (GeForce GTX TITAN) combining more than 1 terabyte/s memory bandwidth. We compare the system's performance and precision with the one of hardware released for professional usage. The system can be used as a powerful workstation for scientific computing or as a compute node in a home-built GPU cluster.
Epidermal electronics with advanced capabilities in near-field communication.
Kim, Jeonghyun; Banks, Anthony; Cheng, Huanyu; Xie, Zhaoqian; Xu, Sheng; Jang, Kyung-In; Lee, Jung Woo; Liu, Zhuangjian; Gutruf, Philipp; Huang, Xian; Wei, Pinghung; Liu, Fei; Li, Kan; Dalal, Mitul; Ghaffari, Roozbeh; Feng, Xue; Huang, Yonggang; Gupta, Sanjay; Paik, Ungyu; Rogers, John A
2015-02-25
Epidermal electronics with advanced capabilities in near field communications (NFC) are presented. The systems include stretchable coils and thinned NFC chips on thin, low modulus stretchable adhesives, to allow seamless, conformal contact with the skin and simultaneous capabilities for wireless interfaces to any standard, NFC-enabled smartphone, even under extreme deformation and after/during normal daily activities. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Future Optical Communications Systems
2008-06-01
rich handsets are driving growth in the wireless backhaul market. Both the iPhone and Blackberry are growing in popularity. Figure 49 forecasts the...electronic emission and tunneling , and hetero-barrier leakage. In barrier thermo-electronic emission, the conduction band of the quantum well laser is...barrier can reduce the mod- ulation bandwidth of the laser and reduce high-temperature performance due to tunneling out of the p-n junction or due
Wearable Fall Detector using Integrated Sensors and Energy Devices
Jung, Sungmook; Hong, Seungki; Kim, Jaemin; Lee, Sangkyu; Hyeon, Taeghwan; Lee, Minbaek; Kim, Dae-Hyeong
2015-01-01
Wearable devices have attracted great attentions as next-generation electronic devices. For the comfortable, portable, and easy-to-use system platform in wearable electronics, a key requirement is to replace conventional bulky and rigid energy devices into thin and deformable ones accompanying the capability of long-term energy supply. Here, we demonstrate a wearable fall detection system composed of a wristband-type deformable triboelectric generator and lithium ion battery in conjunction with integrated sensors, controllers, and wireless units. A stretchable conductive nylon is used as electrodes of the triboelectric generator and the interconnection between battery cells. Ethoxylated polyethylenimine, coated on the surface of the conductive nylon electrode, tunes the work function of a triboelectric generator and maximizes its performance. The electrical energy harvested from the triboelectric generator through human body motions continuously recharges the stretchable battery and prolongs hours of its use. The integrated energy supply system runs the 3-axis accelerometer and related electronics that record human body motions and send the data wirelessly. Upon the unexpected fall occurring, a custom-made software discriminates the fall signal and an emergency alert is immediately sent to an external mobile device. This wearable fall detection system would provide new opportunities in the mobile electronics and wearable healthcare. PMID:26597423
The Language of Glove: Wireless gesture decoder with low-power and stretchable hybrid electronics.
O'Connor, Timothy F; Fach, Matthew E; Miller, Rachel; Root, Samuel E; Mercier, Patrick P; Lipomi, Darren J
2017-01-01
This communication describes a glove capable of wirelessly translating the American Sign Language (ASL) alphabet into text displayable on a computer or smartphone. The key components of the device are strain sensors comprising a piezoresistive composite of carbon particles embedded in a fluoroelastomer. These sensors are integrated with a wearable electronic module consisting of digitizers, a microcontroller, and a Bluetooth radio. Finite-element analysis predicts a peak strain on the sensors of 5% when the knuckles are fully bent. Fatigue studies suggest that the sensors successfully detect the articulation of the knuckles even when bent to their maximal degree 1,000 times. In concert with an accelerometer and pressure sensors, the glove is able to translate all 26 letters of the ASL alphabet. Lastly, data taken from the glove are used to control a virtual hand; this application suggests new ways in which stretchable and wearable electronics can enable humans to interface with virtual environments. Critically, this system was constructed of components costing less than $100 and did not require chemical synthesis or access to a cleanroom. It can thus be used as a test bed for materials scientists to evaluate the performance of new materials and flexible and stretchable hybrid electronics.
The Language of Glove: Wireless gesture decoder with low-power and stretchable hybrid electronics
O’Connor, Timothy F.; Fach, Matthew E.; Miller, Rachel; Root, Samuel E.; Mercier, Patrick P.
2017-01-01
This communication describes a glove capable of wirelessly translating the American Sign Language (ASL) alphabet into text displayable on a computer or smartphone. The key components of the device are strain sensors comprising a piezoresistive composite of carbon particles embedded in a fluoroelastomer. These sensors are integrated with a wearable electronic module consisting of digitizers, a microcontroller, and a Bluetooth radio. Finite-element analysis predicts a peak strain on the sensors of 5% when the knuckles are fully bent. Fatigue studies suggest that the sensors successfully detect the articulation of the knuckles even when bent to their maximal degree 1,000 times. In concert with an accelerometer and pressure sensors, the glove is able to translate all 26 letters of the ASL alphabet. Lastly, data taken from the glove are used to control a virtual hand; this application suggests new ways in which stretchable and wearable electronics can enable humans to interface with virtual environments. Critically, this system was constructed of components costing less than $100 and did not require chemical synthesis or access to a cleanroom. It can thus be used as a test bed for materials scientists to evaluate the performance of new materials and flexible and stretchable hybrid electronics. PMID:28700603
Eye vision system using programmable micro-optics and micro-electronics
NASA Astrophysics Data System (ADS)
Riza, Nabeel A.; Amin, M. Junaid; Riza, Mehdi N.
2014-02-01
Proposed is a novel eye vision system that combines the use of advanced micro-optic and microelectronic technologies that includes programmable micro-optic devices, pico-projectors, Radio Frequency (RF) and optical wireless communication and control links, energy harvesting and storage devices and remote wireless energy transfer capabilities. This portable light weight system can measure eye refractive powers, optimize light conditions for the eye under test, conduct color-blindness tests, and implement eye strain relief and eye muscle exercises via time sequenced imaging. Described is the basic design of the proposed system and its first stage system experimental results for vision spherical lens refractive error correction.
Wireless communication links for brain-machine interface applications
NASA Astrophysics Data System (ADS)
Larson, L.
2016-05-01
Recent technological developments have given neuroscientists direct access to neural signals in real time, with the accompanying ability to decode the resulting information and control various prosthetic devices and gain insight into deeper aspects of cognition. These developments - along with deep brain stimulation for Parkinson's disease and the possible use of electro-stimulation for other maladies - leads to the conclusion that the widespread use electronic brain interface technology is a long term possibility. This talk will summarize the various technical challenges and approaches that have been developed to wirelessly communicate with the brain, including technology constraints, dc power limits, compression and data rate issues.
Borton, David A.; Song, Yoon-Kyu; Patterson, William R.; Bull, Christopher W.; Park, Sunmee; Laiwalla, Farah; Donoghue, John P.; Nurmikko, Arto V.
2013-01-01
A multitude of neuroengineering challenges exist today in creating practical, chronic multichannel neural recording systems for primate research and human clinical application. Specifically, a) the persistent wired connections limit patient mobility from the recording system, b) the transfer of high bandwidth signals to external (even distant) electronics normally forces premature data reduction, and c) the chronic susceptibility to infection due to the percutaneous nature of the implants all severely hinder the success of neural prosthetic systems. Here we detail one approach to overcome these limitations: an entirely implantable, wirelessly communicating, integrated neural recording microsystem, dubbed the Brain Implantable Chip (BIC). PMID:19964128
Chow, C W; Yeh, C H; Sung, J Y; Hsu, C W
2014-12-15
We propose and demonstrate the feasibility of using all-optical orthogonal frequency division multiplexing (AO-OFDM) for the convergent optical wired and wireless access networks. AO-OFDM relies on all-optically generated orthogonal subcarriers; hence, high data rate (> 100 Gb/s) can be easily achieved without hitting the speed limit of electronic digital-to-analog and analog-to-digital converters (DAC/ADC). A proof-of-concept convergent access network using AO-OFDM super-channel (SC) is demonstrated supporting 40 - 100 Gb/s wired and gigabit/s 100 GHz millimeter-wave (MMW) ROF transmissions.
Park, Jihun; Kim, Joohee; Kim, Kukjoo; Kim, So-Yun; Cheong, Woon Hyung; Park, Kyeongmin; Song, Joo Hyeb; Namgoong, GyeongHo; Kim, Jae Joon; Heo, Jaeyeong; Bien, Franklin; Park, Jang-Ung
2016-05-19
Herein, we report the fabrication of a highly stretchable, transparent gas sensor based on silver nanowire-graphene hybrid nanostructures. Due to its superb mechanical and optical characteristics, the fabricated sensor demonstrates outstanding and stable performances even under extreme mechanical deformation (stable until 20% of strain). The integration of a Bluetooth system or an inductive antenna enables the wireless operation of the sensor. In addition, the mechanical robustness of the materials allows the device to be transferred onto various nonplanar substrates, including a watch, a bicycle light, and the leaves of live plants, thereby achieving next-generation sensing electronics for the 'Internet of Things' area.
Self sufficient wireless transmitter powered by foot-pumped urine operating wearable MFC.
Taghavi, M; Stinchcombe, A; Greenman, J; Mattoli, V; Beccai, L; Mazzolai, B; Melhuish, C; Ieropoulos, I A
2015-12-10
The first self-sufficient system, powered by a wearable energy generator based on microbial fuel cell (MFC) technology is introduced. MFCs made from compliant material were developed in the frame of a pair of socks, which was fed by urine via a manual gaiting pump. The simple and single loop cardiovascular fish circulatory system was used as the inspiration for the design of the manual pump. A wireless programmable communication module, engineered to operate within the range of the generated electricity, was employed, which opens a new avenue for research in the utilisation of waste products for powering portable as well as wearable electronics.
Scientific publishing in non industrialized countries: a pilot wireless internet project for Africa.
Azzi, Angelo
2005-01-01
There is general agreement that the internet is the major means of future scientific communication and education. However not everybody appreciates that the development of electronic communication in industrialized societies is not matched, even to a small extent, in developing countries. Several new technologies offer the potential for developing countries to provide connectivity. Terrestrial wireless and satellite technologies offer many advantages in that they do not require installation of wire-line networks. Satellite facilities can also be installed where communication is needed, even in remote and isolated areas, rather than waiting for terrestrial networks to be extended from the cities.
Code of Federal Regulations, 2013 CFR
2013-01-01
... Banking BUREAU OF CONSUMER FINANCIAL PROTECTION ELECTRONIC FUND TRANSFERS (REGULATION E) General § 1005.3... Consumer Financial Protection Act of 2010, Title X of the Dodd-Frank Wall Street Reform and Consumer Protection Act, Public Law 111-203, 124 Stat. 1376. (b) Electronic fund transfer. (1) Definition. The term...
Code of Federal Regulations, 2012 CFR
2012-01-01
... Banking BUREAU OF CONSUMER FINANCIAL PROTECTION ELECTRONIC FUND TRANSFERS (REGULATION E) § 1005.3 Coverage... Consumer Financial Protection Act of 2010, Title X of the Dodd-Frank Wall Street Reform and Consumer Protection Act, Public Law 111-203, 124 Stat. 1376. (b) Electronic fund transfer—(1) Definition. The term...
12 CFR 205.11 - Procedures for resolving errors.
Code of Federal Regulations, 2010 CFR
2010-01-01
... institution's findings and shall note the consumer's right to request the documents that the institution... transfer; (ii) An incorrect electronic fund transfer to or from the consumer's account; (iii) The omission... made by the financial institution relating to an electronic fund transfer; (v) The consumer's receipt...
Botelho, Anabela; Ferreira Dias, Marta; Ferreira, Carla; Pinto, Lígia M Costa
2016-10-01
This paper aims to ascertain the efficacy and acceptability of five incentive schemes for the take-back of waste electrical and electronic equipment in Portugal, focusing in consumers' perspectives. It assesses users' perception of these items, evaluating the motivations and interests they have concerning the market of waste electrical and electronic equipment. Results indicate, on one hand, a lack of awareness by consumers about the process of take-back of their equipment. On the other hand, results show that information conditions and socio-demographic factors affect consumers' motivations for returning the electrical and electronic equipment at the end of life. In this context, it can be concluded that, in Portugal, the market for the recovery of waste electrical and electronic equipment is still in its infancy. © The Author(s) 2016.
NASA Technical Reports Server (NTRS)
1998-01-01
With assistance from NASA's Ames Research Center, the iTV Corporation has developed a full custom microprocessor that enables access to the Internet through a $49 device. The microprocessor is supported with a compliment of design tools for customization and adaptation as either a licensable core or as a complete microprocessor. Other uses include cell phones, DVD (digital versatile disk) players, cable modems, video conferencing equipment, digital cameras, wireless LANs (Local Area Network) and WANs (Wide Area Network). iTV continues to design new, low-cost consumer products.
Intelligent Cooperative MAC Protocol for Balancing Energy Consumption
NASA Astrophysics Data System (ADS)
Wu, S.; Liu, K.; Huang, B.; Liu, F.
To extend the lifetime of wireless sensor networks, we proposed an intelligent balanced energy consumption cooperative MAC protocol (IBEC-CMAC) based on the multi-node cooperative transmission model. The protocol has priority to access high-quality channels for reducing energy consumption of each transmission. It can also balance the energy consumption among cooperative nodes by using high residual energy nodes instead of excessively consuming some node's energy. Simulation results show that IBEC-CMAC can obtain longer network lifetime and higher energy utilization than direct transmission.
Seckler, Tobias; Jagielski, Kai; Stunder, Dominik
2015-01-01
Electromagnetic interference is a concern for people wearing cardiovascular implantable electronic devices (CIEDs). The aim of this study was to assess the electromagnetic compatibility between CIEDs and the magnetic field of a common wireless charging technology. To do so the voltage induced in CIEDs by Qi A13 design magnetic fields were measured and compared with the performance limits set by ISO 14117. In order to carry this out a measuring circuit was developed which can be connected with unipolar or bipolar pacemaker leads. The measuring system was positioned at the four most common implantation sites in a torso phantom filled with physiological saline solution. The phantom was exposed by using Helmholtz coils from 5 µT to 27 µT with 111 kHz sine-bursts or by using a Qi A13 design wireless charging board (Qi-A13-Board) in two operating modes “power transfer” and “pinging”. With the Helmholtz coils the lowest magnetic flux density at which the performance limit was exceeded is 11 µT. With the Qi-A13-Board in power transfer mode 10.8% and in pinging mode 45.7% (2.2% at 10 cm distance) of the performance limit were reached at maximum. In neither of the scrutinized cases, did the voltage induced by the Qi-A13-Board exceed the performance limits. PMID:26024360
Wireless power transfer to deep-tissue microimplants
Yeh, Alexander J.; Neofytou, Evgenios; Kim, Sanghoek; Tanabe, Yuji; Patlolla, Bhagat; Beygui, Ramin E.; Poon, Ada S. Y.
2014-01-01
The ability to implant electronic systems in the human body has led to many medical advances. Progress in semiconductor technology paved the way for devices at the scale of a millimeter or less (“microimplants”), but the miniaturization of the power source remains challenging. Although wireless powering has been demonstrated, energy transfer beyond superficial depths in tissue has so far been limited by large coils (at least a centimeter in diameter) unsuitable for a microimplant. Here, we show that this limitation can be overcome by a method, termed midfield powering, to create a high-energy density region deep in tissue inside of which the power-harvesting structure can be made extremely small. Unlike conventional near-field (inductively coupled) coils, for which coupling is limited by exponential field decay, a patterned metal plate is used to induce spatially confined and adaptive energy transport through propagating modes in tissue. We use this method to power a microimplant (2 mm, 70 mg) capable of closed-chest wireless control of the heart that is orders of magnitude smaller than conventional pacemakers. With exposure levels below human safety thresholds, milliwatt levels of power can be transferred to a deep-tissue (>5 cm) microimplant for both complex electronic function and physiological stimulation. The approach developed here should enable new generations of implantable systems that can be integrated into the body at minimal cost and risk. PMID:24843161
Wireless power transfer to deep-tissue microimplants.
Ho, John S; Yeh, Alexander J; Neofytou, Evgenios; Kim, Sanghoek; Tanabe, Yuji; Patlolla, Bhagat; Beygui, Ramin E; Poon, Ada S Y
2014-06-03
The ability to implant electronic systems in the human body has led to many medical advances. Progress in semiconductor technology paved the way for devices at the scale of a millimeter or less ("microimplants"), but the miniaturization of the power source remains challenging. Although wireless powering has been demonstrated, energy transfer beyond superficial depths in tissue has so far been limited by large coils (at least a centimeter in diameter) unsuitable for a microimplant. Here, we show that this limitation can be overcome by a method, termed midfield powering, to create a high-energy density region deep in tissue inside of which the power-harvesting structure can be made extremely small. Unlike conventional near-field (inductively coupled) coils, for which coupling is limited by exponential field decay, a patterned metal plate is used to induce spatially confined and adaptive energy transport through propagating modes in tissue. We use this method to power a microimplant (2 mm, 70 mg) capable of closed-chest wireless control of the heart that is orders of magnitude smaller than conventional pacemakers. With exposure levels below human safety thresholds, milliwatt levels of power can be transferred to a deep-tissue (>5 cm) microimplant for both complex electronic function and physiological stimulation. The approach developed here should enable new generations of implantable systems that can be integrated into the body at minimal cost and risk.
Seckler, Tobias; Jagielski, Kai; Stunder, Dominik
2015-05-27
Electromagnetic interference is a concern for people wearing cardiovascular implantable electronic devices (CIEDs). The aim of this study was to assess the electromagnetic compatibility between CIEDs and the magnetic field of a common wireless charging technology. To do so the voltage induced in CIEDs by Qi A13 design magnetic fields were measured and compared with the performance limits set by ISO 14117. In order to carry this out a measuring circuit was developed which can be connected with unipolar or bipolar pacemaker leads. The measuring system was positioned at the four most common implantation sites in a torso phantom filled with physiological saline solution. The phantom was exposed by using Helmholtz coils from 5 µT to 27 µT with 111 kHz sine‑bursts or by using a Qi A13 design wireless charging board (Qi‑A13‑Board) in two operating modes "power transfer" and "pinging". With the Helmholtz coils the lowest magnetic flux density at which the performance limit was exceeded is 11 µT. With the Qi‑A13‑Board in power transfer mode 10.8% and in pinging mode 45.7% (2.2% at 10 cm distance) of the performance limit were reached at maximum. In neither of the scrutinized cases, did the voltage induced by the Qi‑A13‑Board exceed the performance limits.
A 100-Channel Hermetically Sealed Implantable Device for Chronic Wireless Neurosensing Applications
Yin, Ming; Borton, David A.; Aceros, Juan; Patterson, William R.; Nurmikko, Arto V.
2014-01-01
A 100-channel fully implantable wireless broadband neural recording system was developed. It features 100 parallel broadband (0.1 Hz–7.8 kHz) neural recording channels, a medical grade 200 mAh Li-ion battery recharged inductively at 150 kHz, and data telemetry using 3.2 GHz to 3.8 GHz FSK modulated wireless link for 48 Mbps Manchester encoded data. All active electronics are hermetically sealed in a titanium enclosure with a sapphire window for electromagnetic transparency. A custom, high-density configuration of 100 individual hermetic feedthrough pins enable connection to an intracortical neural recording microelectrode array. A 100 MHz bandwidth custom receiver was built to remotely receive the FSK signal and achieved −77.7 dBm sensitivity with 10−8 BER at 48 Mbps data rate. ESD testing on all the electronic inputs and outputs has proven that the implantable device satisfies the HBM Class-1B ESD Standard. In addition, the evaluation of the worst-case charge density delivered to the tissue from each I/O pin verifies the patient safety of the device in the event of failure. Finally, the functionality and reliability of the complete device has been tested on-bench and further validated chronically in ongoing freely moving swine and monkey animal trials for more than one year to date. PMID:23853294
Campus Computing Looks Ahead: Tracking the Digital Puck.
ERIC Educational Resources Information Center
Green, Kenneth C.
2002-01-01
Examines data from the 2002 Campus Computing Survey to determine trends in information technology in higher education and future possibilities. Discusses Web portals; electronic commerce capabilities, including use of credit cards; budget challenges, including budget cuts; and mobile technology and wireless networks. (LRW)
High-Performance Medium- & Heavy-Duty Vehicles | Transportation Research |
, as is a range of charging technology options. A study compared a wireless-power-transfer-enabled plug , and Doug DeVoto of NREL's Power Electronics and Electric Machines research group were part of the
Effects of New Jersey's cell phone and text ban.
DOT National Transportation Integrated Search
2013-12-01
Since March 1, 2008 there has been a ban on wireless telephone and electronic : communication devices in New Jersey while operating a motor vehicle. But from general : observation on any roadway, it appears that there are still drivers who are talkin...
An open-source wireless sensor stack: from Arduino to SDI-12 to Water One Flow
NASA Astrophysics Data System (ADS)
Hicks, S.; Damiano, S. G.; Smith, K. M.; Olexy, J.; Horsburgh, J. S.; Mayorga, E.; Aufdenkampe, A. K.
2013-12-01
Implementing a large-scale streaming environmental sensor network has previously been limited by the high cost of the datalogging and data communication infrastructure. The Christina River Basin Critical Zone Observatory (CRB-CZO) is overcoming the obstacles to large near-real-time data collection networks by using Arduino, an open source electronics platform, in combination with XBee ZigBee wireless radio modules. These extremely low-cost and easy-to-use open source electronics are at the heart of the new DIY movement and have provided solutions to countless projects by over half a million users worldwide. However, their use in environmental sensing is in its infancy. At present a primary limitation to widespread deployment of open-source electronics for environmental sensing is the lack of a simple, open-source software stack to manage streaming data from heterogeneous sensor networks. Here we present a functioning prototype software stack that receives sensor data over a self-meshing ZigBee wireless network from over a hundred sensors, stores the data locally and serves it on demand as a CUAHSI Water One Flow (WOF) web service. We highlight a few new, innovative components, including: (1) a versatile open data logger design based the Arduino electronics platform and ZigBee radios; (2) a software library implementing SDI-12 communication protocol between any Arduino platform and SDI12-enabled sensors without the need for additional hardware (https://github.com/StroudCenter/Arduino-SDI-12); and (3) 'midStream', a light-weight set of Python code that receives streaming sensor data, appends it with metadata on the fly by querying a relational database structured on an early version of the Observations Data Model version 2.0 (ODM2), and uses the WOFpy library to serve the data as WaterML via SOAP and REST web services.
12 CFR 40.7 - Form of opt out notice to consumers; opt out methods.
Code of Federal Regulations, 2010 CFR
2010-01-01
..., if the consumer agrees, electronically. (2) When a customer relationship terminates, the customer's... during or related to that relationship. If the individual subsequently establishes a new customer... opt out notice in writing or, if the consumer agrees, electronically. (d) Joint relationships. (1) If...
16 CFR 313.7 - Form of opt out notice to consumers; opt out methods.
Code of Federal Regulations, 2010 CFR
2010-01-01
..., electronically. (2) When a customer relationship terminates, the customer's opt out direction continues to apply... the individual subsequently establishes a new customer relationship with you, the opt out direction... writing or, if the consumer agrees, electronically. (d) Joint relationships—(1) If two or more consumers...
12 CFR 332.7 - Form of opt out notice to consumers; opt out methods.
Code of Federal Regulations, 2010 CFR
2010-01-01
..., electronically. (2) When a customer relationship terminates, the customer's opt out direction continues to apply... the individual subsequently establishes a new customer relationship with you, the opt out direction... writing or, if the consumer agrees, electronically. (d) Joint relationships—(1) If two or more consumers...
12 CFR 216.7 - Form of opt out notice to consumers; opt out methods.
Code of Federal Regulations, 2010 CFR
2010-01-01
..., electronically. (2) When a customer relationship terminates, the customer's opt out direction continues to apply... the individual subsequently establishes a new customer relationship with you, the opt out direction... writing or, if the consumer agrees, electronically. (d) Joint relationships—(1) If two or more consumers...
Code of Federal Regulations, 2014 CFR
2014-01-01
... to initiate a one-time electronic fund transfer from a consumer's account. The consumer must...-time electronic fund transfer (in providing a check to a merchant or other payee for the MICR encoding... information for the transfer shall also provide a notice to the consumer at the same time it provides the...
Code of Federal Regulations, 2011 CFR
2011-01-01
... to initiate a one-time electronic fund transfer from a consumer's account. The consumer must...-time electronic fund transfer (in providing a check to a merchant or other payee for the MICR encoding... information for the transfer shall also provide a notice to the consumer at the same time it provides the...
Code of Federal Regulations, 2013 CFR
2013-01-01
... to initiate a one-time electronic fund transfer from a consumer's account. The consumer must...-time electronic fund transfer (in providing a check to a merchant or other payee for the MICR encoding... information for the transfer shall also provide a notice to the consumer at the same time it provides the...
Respiratory rates measured by a standardised clinical approach, ward staff, and a wireless device.
Granholm, A; Pedersen, N E; Lippert, A; Petersen, L F; Rasmussen, L S
2016-11-01
Respiratory rate is among the first vital signs to change in deteriorating patients. The aim was to investigate the agreement between respiratory rate measurements by three different methods. This prospective observational study included acutely admitted adult patients in a medical ward. Respiratory rate was measured by three methods: a standardised approach over 60 s while patients lay still and refrained from talking, by ward staff and by a wireless electronic patch (SensiumVitals). The Bland-Altman method was used to compare measurements and three breaths per minute (BPM) was considered a clinically relevant difference. We included 50 patients. The mean difference between the standardised approach and the electronic measurement was 0.3 (95% CI: -1.4 to 2.0) BPM; 95% limits of agreement were -11.5 (95% CI: -14.5 to -8.6) and 12.1 (95% CI: 9.2 to 15.1) BPM. Removal of three outliers with huge differences lead to a mean difference of -0.1 (95% CI: -0.7 to 0.5) BPM and 95% limits of agreement of -4.2 (95% CI: -5.3 to -3.2) BPM and 4.0 (95% CI: 2.9 to 5.0) BPM. The mean difference between staff and electronic measurements was 1.7 (95% CI: -0.5 to 3.9) BPM; 95% limits of agreement were -13.3 (95% CI: -17.2 to -9.5) BPM and 16.8 (95% CI: 13.0 to 20.6) BPM. A concerning lack of agreement was found between a wireless monitoring system and a standardised clinical approach. Ward staff's measurements also seemed to be inaccurate. © 2016 The Acta Anaesthesiologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.
Parasuraman, Ramviyas; Fabry, Thomas; Molinari, Luca; Kershaw, Keith; Di Castro, Mario; Masi, Alessandro; Ferre, Manuel
2014-12-12
The reliability of wireless communication in a network of mobile wireless robot nodes depends on the received radio signal strength (RSS). When the robot nodes are deployed in hostile environments with ionizing radiations (such as in some scientific facilities), there is a possibility that some electronic components may fail randomly (due to radiation effects), which causes problems in wireless connectivity. The objective of this paper is to maximize robot mission capabilities by maximizing the wireless network capacity and to reduce the risk of communication failure. Thus, in this paper, we consider a multi-node wireless tethering structure called the "server-relay-client" framework that uses (multiple) relay nodes in between a server and a client node. We propose a robust stochastic optimization (RSO) algorithm using a multi-sensor-based RSS sampling method at the relay nodes to efficiently improve and balance the RSS between the source and client nodes to improve the network capacity and to provide redundant networking abilities. We use pre-processing techniques, such as exponential moving averaging and spatial averaging filters on the RSS data for smoothing. We apply a receiver spatial diversity concept and employ a position controller on the relay node using a stochastic gradient ascent method for self-positioning the relay node to achieve the RSS balancing task. The effectiveness of the proposed solution is validated by extensive simulations and field experiments in CERN facilities. For the field trials, we used a youBot mobile robot platform as the relay node, and two stand-alone Raspberry Pi computers as the client and server nodes. The algorithm has been proven to be robust to noise in the radio signals and to work effectively even under non-line-of-sight conditions.
Parasuraman, Ramviyas; Fabry, Thomas; Molinari, Luca; Kershaw, Keith; Di Castro, Mario; Masi, Alessandro; Ferre, Manuel
2014-01-01
The reliability of wireless communication in a network of mobile wireless robot nodes depends on the received radio signal strength (RSS). When the robot nodes are deployed in hostile environments with ionizing radiations (such as in some scientific facilities), there is a possibility that some electronic components may fail randomly (due to radiation effects), which causes problems in wireless connectivity. The objective of this paper is to maximize robot mission capabilities by maximizing the wireless network capacity and to reduce the risk of communication failure. Thus, in this paper, we consider a multi-node wireless tethering structure called the “server-relay-client” framework that uses (multiple) relay nodes in between a server and a client node. We propose a robust stochastic optimization (RSO) algorithm using a multi-sensor-based RSS sampling method at the relay nodes to efficiently improve and balance the RSS between the source and client nodes to improve the network capacity and to provide redundant networking abilities. We use pre-processing techniques, such as exponential moving averaging and spatial averaging filters on the RSS data for smoothing. We apply a receiver spatial diversity concept and employ a position controller on the relay node using a stochastic gradient ascent method for self-positioning the relay node to achieve the RSS balancing task. The effectiveness of the proposed solution is validated by extensive simulations and field experiments in CERN facilities. For the field trials, we used a youBot mobile robot platform as the relay node, and two stand-alone Raspberry Pi computers as the client and server nodes. The algorithm has been proven to be robust to noise in the radio signals and to work effectively even under non-line-of-sight conditions. PMID:25615734
12 CFR 205.14 - Electronic fund transfer service provider not holding consumer's account.
Code of Federal Regulations, 2010 CFR
2010-01-01
... consumer learns of the loss or theft; and extends the time periods for reporting unauthorized transfers or... 12 Banks and Banking 2 2010-01-01 2010-01-01 false Electronic fund transfer service provider not... GOVERNORS OF THE FEDERAL RESERVE SYSTEM ELECTRONIC FUND TRANSFERS (REGULATION E) § 205.14 Electronic fund...
12 CFR 205.14 - Electronic fund transfer service provider not holding consumer's account.
Code of Federal Regulations, 2013 CFR
2013-01-01
... consumer learns of the loss or theft; and extends the time periods for reporting unauthorized transfers or... 12 Banks and Banking 2 2013-01-01 2013-01-01 false Electronic fund transfer service provider not... GOVERNORS OF THE FEDERAL RESERVE SYSTEM ELECTRONIC FUND TRANSFERS (REGULATION E) § 205.14 Electronic fund...
12 CFR 205.14 - Electronic fund transfer service provider not holding consumer's account.
Code of Federal Regulations, 2014 CFR
2014-01-01
... consumer learns of the loss or theft; and extends the time periods for reporting unauthorized transfers or... 12 Banks and Banking 2 2014-01-01 2014-01-01 false Electronic fund transfer service provider not... GOVERNORS OF THE FEDERAL RESERVE SYSTEM ELECTRONIC FUND TRANSFERS (REGULATION E) § 205.14 Electronic fund...
12 CFR 205.14 - Electronic fund transfer service provider not holding consumer's account.
Code of Federal Regulations, 2011 CFR
2011-01-01
... consumer learns of the loss or theft; and extends the time periods for reporting unauthorized transfers or... 12 Banks and Banking 2 2011-01-01 2011-01-01 false Electronic fund transfer service provider not... GOVERNORS OF THE FEDERAL RESERVE SYSTEM ELECTRONIC FUND TRANSFERS (REGULATION E) § 205.14 Electronic fund...
12 CFR 205.14 - Electronic fund transfer service provider not holding consumer's account.
Code of Federal Regulations, 2012 CFR
2012-01-01
... consumer learns of the loss or theft; and extends the time periods for reporting unauthorized transfers or... 12 Banks and Banking 2 2012-01-01 2012-01-01 false Electronic fund transfer service provider not... GOVERNORS OF THE FEDERAL RESERVE SYSTEM ELECTRONIC FUND TRANSFERS (REGULATION E) § 205.14 Electronic fund...
49 CFR 220.301 - Purpose and application.
Code of Federal Regulations, 2014 CFR
2014-10-01
..., DEPARTMENT OF TRANSPORTATION RAILROAD COMMUNICATIONS Electronic Devices § 220.301 Purpose and application. (a... or cellular phones) and laptop computers. (b) The applicability of this subpart is governed by § 220.3; this subpart, however, does not affect the use of working wireless communications pursuant to...
49 CFR 220.301 - Purpose and application.
Code of Federal Regulations, 2013 CFR
2013-10-01
..., DEPARTMENT OF TRANSPORTATION RAILROAD COMMUNICATIONS Electronic Devices § 220.301 Purpose and application. (a... or cellular phones) and laptop computers. (b) The applicability of this subpart is governed by § 220.3; this subpart, however, does not affect the use of working wireless communications pursuant to...
Code of Federal Regulations, 2014 CFR
2014-01-01
... Photographic and photocopying equipment manufacturing. 3341 Computer and peripheral equipment manufacturing. 33422 Radio and television broadcasting and wireless communications equipment manufacturing. 33429 Other communications equipment manufacturing. 3343 Audio and video equipment manufacturing. 334412 Bare printed circuit...
49 CFR 220.301 - Purpose and application.
Code of Federal Regulations, 2011 CFR
2011-10-01
..., DEPARTMENT OF TRANSPORTATION RAILROAD COMMUNICATIONS Electronic Devices § 220.301 Purpose and application. (a... or cellular phones) and laptop computers. (b) The applicability of this subpart is governed by § 220.3; this subpart, however, does not affect the use of working wireless communications pursuant to...
49 CFR 220.301 - Purpose and application.
Code of Federal Regulations, 2012 CFR
2012-10-01
..., DEPARTMENT OF TRANSPORTATION RAILROAD COMMUNICATIONS Electronic Devices § 220.301 Purpose and application. (a... or cellular phones) and laptop computers. (b) The applicability of this subpart is governed by § 220.3; this subpart, however, does not affect the use of working wireless communications pursuant to...
49 CFR 220.301 - Purpose and application.
Code of Federal Regulations, 2010 CFR
2010-10-01
..., DEPARTMENT OF TRANSPORTATION RAILROAD COMMUNICATIONS Electronic Devices § 220.301 Purpose and application. (a... or cellular phones) and laptop computers. (b) The applicability of this subpart is governed by § 220.3; this subpart, however, does not affect the use of working wireless communications pursuant to...
Internet of "printed" Things: low-cost fabrication of autonomous sensing nodes by inkjet printing
NASA Astrophysics Data System (ADS)
Kawahara, Yoshihiro
2014-11-01
"What if electronics devices are printed using an inkjet printer even at home?" "What if those devices no longer need a battery?" I will introduce two enabling technologies for the Internet of Things concept. 1. Instant Inkjet Circuits: A low cost, fast and accessible technology to support the rapid prototyping of electronic devices. We demonstrated that "sintering-free" silver nano particle ink with a commodity inkjet printer can be used to fabricate printed circuit board and high-frequency applications such as antennas and sensors. The technology is now commercialized by AgIC, Inc. 2. Wireless Power: Although large amounts of data can be exchanged over a wireless communication link, mobile devices are still tethered by power cables. We are trying to solve this problem by two different approaches: energy harvesting. A simple circuitry comprised of diodes and capacitor can convert ambient radio signals into DC current. Our research revealed the signals from TV tower located 6.5km apart could be used to feed 100 microwatts to power microcontrollers.
Lee, Joong Hoon; Hwang, Ji-Young; Zhu, Jia; Hwang, Ha Ryeon; Lee, Seung Min; Cheng, Huanyu; Lee, Sang-Hoon; Hwang, Suk-Won
2018-06-14
We introduce optimized elastomeric conductive electrodes using a mixture of silver nanowires (AgNWs) with carbon nanotubes/polydimethylsiloxane (CNTs/PDMS), to build a portable earphone type of wearable system that is designed to enable recording electrophysiological activities as well as listening to music at the same time. A custom-built, plastic frame integrated with soft, deformable fabric-based memory foam of earmuffs facilitates essential electronic components, such as conductive elastomers, metal strips, signal transducers and a speaker. Such platform incorporates with accessory cables to attain wireless, real-time monitoring of electrical potentials whose information can be displayed on a cell phone during outdoor activities and music appreciation. Careful evaluations on experimental results reveal that the performance of fabricated dry electrodes are comparable to that of commercial wet electrodes, and position-dependent signal behaviors provide a route toward accomplishing maximized signal quality. This research offers a facile approach for a wearable healthcare monitor via integration of soft electronic constituents with personal belongings.