Wireless live streaming video of laparoscopic surgery: a bandwidth analysis for handheld computers.
Gandsas, Alex; McIntire, Katherine; George, Ivan M; Witzke, Wayne; Hoskins, James D; Park, Adrian
2002-01-01
Over the last six years, streaming media has emerged as a powerful tool for delivering multimedia content over networks. Concurrently, wireless technology has evolved, freeing users from desktop boundaries and wired infrastructures. At the University of Kentucky Medical Center, we have integrated these technologies to develop a system that can wirelessly transmit live surgery from the operating room to a handheld computer. This study establishes the feasibility of using our system to view surgeries and describes the effect of bandwidth on image quality. A live laparoscopic ventral hernia repair was transmitted to a single handheld computer using five encoding speeds at a constant frame rate, and the quality of the resulting streaming images was evaluated. No video images were rendered when video data were encoded at 28.8 kilobytes per second (Kbps), the slowest encoding bitrate studied. The highest quality images were rendered at encoding speeds greater than or equal to 150 Kbps. Of note, a 15 second transmission delay was experienced using all four encoding schemes that rendered video images. We believe that the wireless transmission of streaming video to handheld computers has tremendous potential to enhance surgical education. For medical students and residents, the ability to view live surgeries, lectures, courses and seminars on handheld computers means a larger number of learning opportunities. In addition, we envision that wireless enabled devices may be used to telemonitor surgical procedures. However, bandwidth availability and streaming delay are major issues that must be addressed before wireless telementoring becomes a reality.
NASA Astrophysics Data System (ADS)
Agueh, Max; Diouris, Jean-François; Diop, Magaye; Devaux, François-Olivier; De Vleeschouwer, Christophe; Macq, Benoit
2008-12-01
Based on the analysis of real mobile ad hoc network (MANET) traces, we derive in this paper an optimal wireless JPEG 2000 compliant forward error correction (FEC) rate allocation scheme for a robust streaming of images and videos over MANET. The packet-based proposed scheme has a low complexity and is compliant to JPWL, the 11th part of the JPEG 2000 standard. The effectiveness of the proposed method is evaluated using a wireless Motion JPEG 2000 client/server application; and the ability of the optimal scheme to guarantee quality of service (QoS) to wireless clients is demonstrated.
Performance analysis of medical video streaming over mobile WiMAX.
Alinejad, Ali; Philip, N; Istepanian, R H
2010-01-01
Wireless medical ultrasound streaming is considered one of the emerging application within the broadband mobile healthcare domain. These applications are considered as bandwidth demanding services that required high data rates with acceptable diagnostic quality of the transmitted medical images. In this paper, we present the performance analysis of a medical ultrasound video streaming acquired via special robotic ultrasonography system over emulated WiMAX wireless network. The experimental set-up of this application is described together with the performance of the relevant medical quality of service (m-QoS) metrics.
Research on quality metrics of wireless adaptive video streaming
NASA Astrophysics Data System (ADS)
Li, Xuefei
2018-04-01
With the development of wireless networks and intelligent terminals, video traffic has increased dramatically. Adaptive video streaming has become one of the most promising video transmission technologies. For this type of service, a good QoS (Quality of Service) of wireless network does not always guarantee that all customers have good experience. Thus, new quality metrics have been widely studies recently. Taking this into account, the objective of this paper is to investigate the quality metrics of wireless adaptive video streaming. In this paper, a wireless video streaming simulation platform with DASH mechanism and multi-rate video generator is established. Based on this platform, PSNR model, SSIM model and Quality Level model are implemented. Quality Level Model considers the QoE (Quality of Experience) factors such as image quality, stalling and switching frequency while PSNR Model and SSIM Model mainly consider the quality of the video. To evaluate the performance of these QoE models, three performance metrics (SROCC, PLCC and RMSE) which are used to make a comparison of subjective and predicted MOS (Mean Opinion Score) are calculated. From these performance metrics, the monotonicity, linearity and accuracy of these quality metrics can be observed.
Lifting Scheme DWT Implementation in a Wireless Vision Sensor Network
NASA Astrophysics Data System (ADS)
Ong, Jia Jan; Ang, L.-M.; Seng, K. P.
This paper presents the practical implementation of a Wireless Visual Sensor Network (WVSN) with DWT processing on the visual nodes. WVSN consists of visual nodes that capture video and transmit to the base-station without processing. Limitation of network bandwidth restrains the implementation of real time video streaming from remote visual nodes through wireless communication. Three layers of DWT filters are implemented to process the captured image from the camera. With having all the wavelet coefficients produced, it is possible just to transmit the low frequency band coefficients and obtain an approximate image at the base-station. This will reduce the amount of power required in transmission. When necessary, transmitting all the wavelet coefficients will produce the full detail of image, which is similar to the image captured at the visual nodes. The visual node combines the CMOS camera, Xilinx Spartan-3L FPGA and wireless ZigBee® network that uses the Ember EM250 chip.
An elementary research on wireless transmission of holographic 3D moving pictures
NASA Astrophysics Data System (ADS)
Takano, Kunihiko; Sato, Koki; Endo, Takaya; Asano, Hiroaki; Fukuzawa, Atsuo; Asai, Kikuo
2009-05-01
In this paper, a transmitting process of a sequence of holograms describing 3D moving objects over the communicating wireless-network system is presented. A sequence of holograms involves holograms is transformed into a bit stream data, and then it is transmitted over the wireless LAN and Bluetooth. It is shown that applying this technique, holographic data of 3D moving object is transmitted in high quality and a relatively good reconstruction of holographic images is performed.
Pohjonen, Hanna; Ross, Peeter; Blickman, Johan G; Kamman, Richard
2007-01-01
Emerging technologies are transforming the workflows in healthcare enterprises. Computing grids and handheld mobile/wireless devices are providing clinicians with enterprise-wide access to all patient data and analysis tools on a pervasive basis. In this paper, emerging technologies are presented that provide computing grids and streaming-based access to image and data management functions, and system architectures that enable pervasive computing on a cost-effective basis. Finally, the implications of such technologies are investigated regarding the positive impacts on clinical workflows.
An 802.11 n wireless local area network transmission scheme for wireless telemedicine applications.
Lin, C F; Hung, S I; Chiang, I H
2010-10-01
In this paper, an 802.11 n transmission scheme is proposed for wireless telemedicine applications. IEEE 802.11n standards, a power assignment strategy, space-time block coding (STBC), and an object composition Petri net (OCPN) model are adopted. With the proposed wireless system, G.729 audio bit streams, Joint Photographic Experts Group 2000 (JPEG 2000) clinical images, and Moving Picture Experts Group 4 (MPEG-4) video bit streams achieve a transmission bit error rate (BER) of 10-7, 10-4, and 103 simultaneously. The proposed system meets the requirements prescribed for wireless telemedicine applications. An essential feature of this proposed transmission scheme is that clinical information that requires a high quality of service (QoS) is transmitted at a high power transmission rate with significant error protection. For maximizing resource utilization and minimizing the total transmission power, STBC and adaptive modulation techniques are used in the proposed 802.11 n wireless telemedicine system. Further, low power, direct mapping (DM), low-error protection scheme, and high-level modulation are adopted for messages that can tolerate a high BER. With the proposed transmission scheme, the required reliability of communication can be achieved. Our simulation results have shown that the proposed 802.11 n transmission scheme can be used for developing effective wireless telemedicine systems.
NASA Astrophysics Data System (ADS)
Al Hadhrami, Tawfik; Wang, Qi; Grecos, Christos
2012-06-01
When natural disasters or other large-scale incidents occur, obtaining accurate and timely information on the developing situation is vital to effective disaster recovery operations. High-quality video streams and high-resolution images, if available in real time, would provide an invaluable source of current situation reports to the incident management team. Meanwhile, a disaster often causes significant damage to the communications infrastructure. Therefore, another essential requirement for disaster management is the ability to rapidly deploy a flexible incident area communication network. Such a network would facilitate the transmission of real-time video streams and still images from the disrupted area to remote command and control locations. In this paper, a comprehensive end-to-end video/image transmission system between an incident area and a remote control centre is proposed and implemented, and its performance is experimentally investigated. In this study a hybrid multi-segment communication network is designed that seamlessly integrates terrestrial wireless mesh networks (WMNs), distributed wireless visual sensor networks, an airborne platform with video camera balloons, and a Digital Video Broadcasting- Satellite (DVB-S) system. By carefully integrating all of these rapidly deployable, interworking and collaborative networking technologies, we can fully exploit the joint benefits provided by WMNs, WSNs, balloon camera networks and DVB-S for real-time video streaming and image delivery in emergency situations among the disaster hit area, the remote control centre and the rescue teams in the field. The whole proposed system is implemented in a proven simulator. Through extensive simulations, the real-time visual communication performance of this integrated system has been numerically evaluated, towards a more in-depth understanding in supporting high-quality visual communications in such a demanding context.
Scalable Video Streaming in Wireless Mesh Networks for Education
ERIC Educational Resources Information Center
Liu, Yan; Wang, Xinheng; Zhao, Liqiang
2011-01-01
In this paper, a video streaming system for education based on a wireless mesh network is proposed. A wireless mesh network is a self-organizing, self-managing and reliable intelligent network, which allows educators to deploy a network quickly. Video streaming plays an important role in this system for multimedia data transmission. This new…
Two-Step Fair Scheduling of Continuous Media Streams over Error-Prone Wireless Channels
NASA Astrophysics Data System (ADS)
Oh, Soohyun; Lee, Jin Wook; Park, Taejoon; Jo, Tae-Chang
In wireless cellular networks, streaming of continuous media (with strict QoS requirements) over wireless links is challenging due to their inherent unreliability characterized by location-dependent, bursty errors. To address this challenge, we present a two-step scheduling algorithm for a base station to provide streaming of continuous media to wireless clients over the error-prone wireless links. The proposed algorithm is capable of minimizing the packet loss rate of individual clients in the presence of error bursts, by transmitting packets in the round-robin manner and also adopting a mechanism for channel prediction and swapping.
A novel multiple description scalable coding scheme for mobile wireless video transmission
NASA Astrophysics Data System (ADS)
Zheng, Haifeng; Yu, Lun; Chen, Chang Wen
2005-03-01
We proposed in this paper a novel multiple description scalable coding (MDSC) scheme based on in-band motion compensation temporal filtering (IBMCTF) technique in order to achieve high video coding performance and robust video transmission. The input video sequence is first split into equal-sized groups of frames (GOFs). Within a GOF, each frame is hierarchically decomposed by discrete wavelet transform. Since there is a direct relationship between wavelet coefficients and what they represent in the image content after wavelet decomposition, we are able to reorganize the spatial orientation trees to generate multiple bit-streams and employed SPIHT algorithm to achieve high coding efficiency. We have shown that multiple bit-stream transmission is very effective in combating error propagation in both Internet video streaming and mobile wireless video. Furthermore, we adopt the IBMCTF scheme to remove the redundancy for inter-frames along the temporal direction using motion compensated temporal filtering, thus high coding performance and flexible scalability can be provided in this scheme. In order to make compressed video resilient to channel error and to guarantee robust video transmission over mobile wireless channels, we add redundancy to each bit-stream and apply error concealment strategy for lost motion vectors. Unlike traditional multiple description schemes, the integration of these techniques enable us to generate more than two bit-streams that may be more appropriate for multiple antenna transmission of compressed video. Simulate results on standard video sequences have shown that the proposed scheme provides flexible tradeoff between coding efficiency and error resilience.
High-resolution streaming video integrated with UGS systems
NASA Astrophysics Data System (ADS)
Rohrer, Matthew
2010-04-01
Imagery has proven to be a valuable complement to Unattended Ground Sensor (UGS) systems. It provides ultimate verification of the nature of detected targets. However, due to the power, bandwidth, and technological limitations inherent to UGS, sacrifices have been made to the imagery portion of such systems. The result is that these systems produce lower resolution images in small quantities. Currently, a high resolution, wireless imaging system is being developed to bring megapixel, streaming video to remote locations to operate in concert with UGS. This paper will provide an overview of how using Wifi radios, new image based Digital Signal Processors (DSP) running advanced target detection algorithms, and high resolution cameras gives the user an opportunity to take high-powered video imagers to areas where power conservation is a necessity.
Scalable Video Streaming Relay for Smart Mobile Devices in Wireless Networks
Kwon, Dongwoo; Je, Huigwang; Kim, Hyeonwoo; Ju, Hongtaek; An, Donghyeok
2016-01-01
Recently, smart mobile devices and wireless communication technologies such as WiFi, third generation (3G), and long-term evolution (LTE) have been rapidly deployed. Many smart mobile device users can access the Internet wirelessly, which has increased mobile traffic. In 2014, more than half of the mobile traffic around the world was devoted to satisfying the increased demand for the video streaming. In this paper, we propose a scalable video streaming relay scheme. Because many collisions degrade the scalability of video streaming, we first separate networks to prevent excessive contention between devices. In addition, the member device controls the video download rate in order to adapt to video playback. If the data are sufficiently buffered, the member device stops the download. If not, it requests additional video data. We implemented apps to evaluate the proposed scheme and conducted experiments with smart mobile devices. The results showed that our scheme improves the scalability of video streaming in a wireless local area network (WLAN). PMID:27907113
Scalable Video Streaming Relay for Smart Mobile Devices in Wireless Networks.
Kwon, Dongwoo; Je, Huigwang; Kim, Hyeonwoo; Ju, Hongtaek; An, Donghyeok
2016-01-01
Recently, smart mobile devices and wireless communication technologies such as WiFi, third generation (3G), and long-term evolution (LTE) have been rapidly deployed. Many smart mobile device users can access the Internet wirelessly, which has increased mobile traffic. In 2014, more than half of the mobile traffic around the world was devoted to satisfying the increased demand for the video streaming. In this paper, we propose a scalable video streaming relay scheme. Because many collisions degrade the scalability of video streaming, we first separate networks to prevent excessive contention between devices. In addition, the member device controls the video download rate in order to adapt to video playback. If the data are sufficiently buffered, the member device stops the download. If not, it requests additional video data. We implemented apps to evaluate the proposed scheme and conducted experiments with smart mobile devices. The results showed that our scheme improves the scalability of video streaming in a wireless local area network (WLAN).
Real-time video streaming in mobile cloud over heterogeneous wireless networks
NASA Astrophysics Data System (ADS)
Abdallah-Saleh, Saleh; Wang, Qi; Grecos, Christos
2012-06-01
Recently, the concept of Mobile Cloud Computing (MCC) has been proposed to offload the resource requirements in computational capabilities, storage and security from mobile devices into the cloud. Internet video applications such as real-time streaming are expected to be ubiquitously deployed and supported over the cloud for mobile users, who typically encounter a range of wireless networks of diverse radio access technologies during their roaming. However, real-time video streaming for mobile cloud users across heterogeneous wireless networks presents multiple challenges. The network-layer quality of service (QoS) provision to support high-quality mobile video delivery in this demanding scenario remains an open research question, and this in turn affects the application-level visual quality and impedes mobile users' perceived quality of experience (QoE). In this paper, we devise a framework to support real-time video streaming in this new mobile video networking paradigm and evaluate the performance of the proposed framework empirically through a lab-based yet realistic testing platform. One particular issue we focus on is the effect of users' mobility on the QoS of video streaming over the cloud. We design and implement a hybrid platform comprising of a test-bed and an emulator, on which our concept of mobile cloud computing, video streaming and heterogeneous wireless networks are implemented and integrated to allow the testing of our framework. As representative heterogeneous wireless networks, the popular WLAN (Wi-Fi) and MAN (WiMAX) networks are incorporated in order to evaluate effects of handovers between these different radio access technologies. The H.264/AVC (Advanced Video Coding) standard is employed for real-time video streaming from a server to mobile users (client nodes) in the networks. Mobility support is introduced to enable continuous streaming experience for a mobile user across the heterogeneous wireless network. Real-time video stream packets are captured for analytical purposes on the mobile user node. Experimental results are obtained and analysed. Future work is identified towards further improvement of the current design and implementation. With this new mobile video networking concept and paradigm implemented and evaluated, results and observations obtained from this study would form the basis of a more in-depth, comprehensive understanding of various challenges and opportunities in supporting high-quality real-time video streaming in mobile cloud over heterogeneous wireless networks.
A real-time remote video streaming platform for ultrasound imaging.
Ahmadi, Mehdi; Gross, Warren J; Kadoury, Samuel
2016-08-01
Ultrasound is a viable imaging technology in remote and resources-limited areas. Ultrasonography is a user-dependent skill which depends on a high degree of training and hands-on experience. However, there is a limited number of skillful sonographers located in remote areas. In this work, we aim to develop a real-time video streaming platform which allows specialist physicians to remotely monitor ultrasound exams. To this end, an ultrasound stream is captured and transmitted through a wireless network into remote computers, smart-phones and tablets. In addition, the system is equipped with a camera to track the position of the ultrasound probe. The main advantage of our work is using an open source platform for video streaming which gives us more control over streaming parameters than the available commercial products. The transmission delays of the system are evaluated for several ultrasound video resolutions and the results show that ultrasound videos close to the high-definition (HD) resolution can be received and displayed on an Android tablet with the delay of 0.5 seconds which is acceptable for accurate real-time diagnosis.
NASA Astrophysics Data System (ADS)
Lin, Chow-Sing; Yen, Fang-Zhi
With the rapid advances in wireless network communication, multimedia presentation has become more applicable. However, due to the limited wireless network resource and the mobility of Mobile Host (MH), QoS for wireless streaming is much more difficult to maintain. How to decrease Call Dropping Probability (CDP) in multimedia traffic while still keeping acceptable Call Block Probability (CBP) without sacrificing QoS has become an significant issue in providing wireless streaming services. In this paper, we propose a novel Dynamic Resources Adjustment (DRA) algorithm, which can dynamically borrow idle reserved resources in the serving cell or the target cell for handoffing MHs to compensate the shortage of bandwidth in media streaming. The experimental simulation results show that compared with traditional No Reservation (NR), and Resource Reservation in the six neighboring cells (RR-nb), and Resource Reservation in the target cell (RR-t), our proposed DRA algorithm can fully utilize unused reserved resources to effectively decrease the CDP while still keeping acceptable CBP with high bandwidth utilization.
NASA Astrophysics Data System (ADS)
Milanovic, Veljko; Kasturi, Abhishek; Hachtel, Volker
2015-02-01
A high brightness Head-Up Display (HUD) module was demonstrated with a fast, dual-axis MEMS mirror that displays vector images and text, utilizing its ~8kHz bandwidth on both axes. Two methodologies were evaluated: in one, the mirror steers a laser at wide angles of <48° on transparent multi-color fluorescent emissive film and displays content directly on the windshield, and in the other the mirror displays content on reflective multi-color emissive phosphor plates reflected off the windshield to create a virtual image for the driver. The display module is compact, consisting of a single laser diode, off-the-shelf lenses and a MEMS mirror in combination with a MEMS controller to enable precise movement of the mirror's X- and Y-axis. The MEMS controller offers both USB and wireless streaming capability and we utilize a library of functions on a host computer for creating content and controlling the mirror. Integration with smart phone applications is demonstrated, utilizing the mobile device both for content generation based on various messages or data, and for content streaming to the MEMS controller via Bluetooth interface. The display unit is highly resistant to vibrations and shock, and requires only ~1.5W to operate, even with content readable in sunlit outdoor conditions. The low power requirement is in part due to a vector graphics approach, allowing the efficient use of laser power, and also due to the use of a single, relatively high efficiency laser and simple optics.
Cooperation stimulation strategies for peer-to-peer wireless live video-sharing social networks.
Lin, W Sabrina; Zhao, H Vicky; Liu, K J Ray
2010-07-01
Human behavior analysis in video sharing social networks is an emerging research area, which analyzes the behavior of users who share multimedia content and investigates the impact of human dynamics on video sharing systems. Users watching live streaming in the same wireless network share the same limited bandwidth of backbone connection to the Internet, thus, they might want to cooperate with each other to obtain better video quality. These users form a wireless live-streaming social network. Every user wishes to watch video with high quality while paying as little as possible cost to help others. This paper focuses on providing incentives for user cooperation. We propose a game-theoretic framework to model user behavior and to analyze the optimal strategies for user cooperation simulation in wireless live streaming. We first analyze the Pareto optimality and the time-sensitive bargaining equilibrium of the two-person game. We then extend the solution to the multiuser scenario. We also consider potential selfish users' cheating behavior and malicious users' attacking behavior and analyze the performance of the proposed strategies with the existence of cheating users and malicious attackers. Both our analytical and simulation results show that the proposed strategies can effectively stimulate user cooperation, achieve cheat free and attack resistance, and help provide reliable services for wireless live streaming applications.
Wireless Sensor Network Handles Image Data
NASA Technical Reports Server (NTRS)
2008-01-01
To relay data from remote locations for NASA s Earth sciences research, Goddard Space Flight Center contributed to the development of "microservers" (wireless sensor network nodes), which are now used commercially as a quick and affordable means to capture and distribute geographical information, including rich sets of aerial and street-level imagery. NASA began this work out of a necessity for real-time recovery of remote sensor data. These microservers work much like a wireless office network, relaying information between devices. The key difference, however, is that instead of linking workstations within one office, the interconnected microservers operate miles away from one another. This attribute traces back to the technology s original use: The microservers were originally designed for seismology on remote glaciers and ice streams in Alaska, Greenland, and Antarctica-acquiring, storing, and relaying data wirelessly between ground sensors. The microservers boast three key attributes. First, a researcher in the field can establish a "managed network" of microservers and rapidly see the data streams (recovered wirelessly) on a field computer. This rapid feedback permits the researcher to reconfigure the network for different purposes over the course of a field campaign. Second, through careful power management, the microservers can dwell unsupervised in the field for up to 2 years, collecting tremendous amounts of data at a research location. The third attribute is the exciting potential to deploy a microserver network that works in synchrony with robotic explorers (e.g., providing ground truth validation for satellites, supporting rovers as they traverse the local environment). Managed networks of remote microservers that relay data unsupervised for up to 2 years can drastically reduce the costs of field instrumentation and data rec
NASA Astrophysics Data System (ADS)
Patti, Andrew; Tan, Wai-tian; Shen, Bo
2007-09-01
Streaming video in consumer homes over wireless IEEE 802.11 networks is becoming commonplace. Wireless 802.11 networks pose unique difficulties for streaming high definition (HD), low latency video due to their error-prone physical layer and media access procedures which were not designed for real-time traffic. HD video streaming, even with sophisticated H.264 encoding, is particularly challenging due to the large number of packet fragments per slice. Cross-layer design strategies have been proposed to address the issues of video streaming over 802.11. These designs increase streaming robustness by imposing some degree of monitoring and control over 802.11 parameters from application level, or by making the 802.11 layer media-aware. Important contributions are made, but none of the existing approaches directly take the 802.11 queuing into account. In this paper we take a different approach and propose a cross-layer design allowing direct, expedient control over the wireless packet queue, while obtaining timely feedback on transmission status for each packet in a media flow. This method can be fully implemented on a media sender with no explicit support or changes required to the media client. We assume that due to congestion or deteriorating signal-to-noise levels, the available throughput may drop substantially for extended periods of time, and thus propose video source adaptation methods that allow matching the bit-rate to available throughput. A particular H.264 slice encoding is presented to enable seamless stream switching between streams at multiple bit-rates, and we explore using new computationally efficient transcoding methods when only a high bit-rate stream is available.
Istepanian, R S H; Philip, N
2005-01-01
In this paper we describe some of the optimisation issues relevant to the requirements of high throughput of medical data and video streaming traffic in 3G wireless environments. In particular we present a challenging 3G mobile health care application that requires a demanding 3G medical data throughput. We also describe the 3G QoS requirement of mObile Tele-Echography ultra-Light rObot system (OTELO that is designed to provide seamless 3G connectivity for real-time ultrasound medical video streams and diagnosis from a remote site (robotic and patient station) manipulated by an expert side (specialists) that is controlling the robotic scanning operation and presenting a real-time feedback diagnosis using 3G wireless communication links.
Roadside-based communication system and method
NASA Technical Reports Server (NTRS)
Bachelder, Aaron D. (Inventor)
2007-01-01
A roadside-based communication system providing backup communication between emergency mobile units and emergency command centers. In the event of failure of a primary communication, the mobile units transmit wireless messages to nearby roadside controllers that may take the form of intersection controllers. The intersection controllers receive the wireless messages, convert the messages into standard digital streams, and transmit the digital streams along a citywide network to a destination intersection or command center.
A synchronized multipoint vision-based system for displacement measurement of civil infrastructures.
Ho, Hoai-Nam; Lee, Jong-Han; Park, Young-Soo; Lee, Jong-Jae
2012-01-01
This study presents an advanced multipoint vision-based system for dynamic displacement measurement of civil infrastructures. The proposed system consists of commercial camcorders, frame grabbers, low-cost PCs, and a wireless LAN access point. The images of target panels attached to a structure are captured by camcorders and streamed into the PC via frame grabbers. Then the displacements of targets are calculated using image processing techniques with premeasured calibration parameters. This system can simultaneously support two camcorders at the subsystem level for dynamic real-time displacement measurement. The data of each subsystem including system time are wirelessly transferred from the subsystem PCs to master PC and vice versa. Furthermore, synchronization process is implemented to ensure the time synchronization between the master PC and subsystem PCs. Several shaking table tests were conducted to verify the effectiveness of the proposed system, and the results showed very good agreement with those from a conventional sensor with an error of less than 2%.
A Synchronized Multipoint Vision-Based System for Displacement Measurement of Civil Infrastructures
Ho, Hoai-Nam; Lee, Jong-Han; Park, Young-Soo; Lee, Jong-Jae
2012-01-01
This study presents an advanced multipoint vision-based system for dynamic displacement measurement of civil infrastructures. The proposed system consists of commercial camcorders, frame grabbers, low-cost PCs, and a wireless LAN access point. The images of target panels attached to a structure are captured by camcorders and streamed into the PC via frame grabbers. Then the displacements of targets are calculated using image processing techniques with premeasured calibration parameters. This system can simultaneously support two camcorders at the subsystem level for dynamic real-time displacement measurement. The data of each subsystem including system time are wirelessly transferred from the subsystem PCs to master PC and vice versa. Furthermore, synchronization process is implemented to ensure the time synchronization between the master PC and subsystem PCs. Several shaking table tests were conducted to verify the effectiveness of the proposed system, and the results showed very good agreement with those from a conventional sensor with an error of less than 2%. PMID:23028250
NASA Astrophysics Data System (ADS)
Nightingale, James; Wang, Qi; Grecos, Christos
2011-03-01
Users of the next generation wireless paradigm known as multihomed mobile networks expect satisfactory quality of service (QoS) when accessing streamed multimedia content. The recent H.264 Scalable Video Coding (SVC) extension to the Advanced Video Coding standard (AVC), offers the facility to adapt real-time video streams in response to the dynamic conditions of multiple network paths encountered in multihomed wireless mobile networks. Nevertheless, preexisting streaming algorithms were mainly proposed for AVC delivery over multipath wired networks and were evaluated by software simulation. This paper introduces a practical, hardware-based testbed upon which we implement and evaluate real-time H.264 SVC streaming algorithms in a realistic multihomed wireless mobile networks environment. We propose an optimised streaming algorithm with multi-fold technical contributions. Firstly, we extended the AVC packet prioritisation schemes to reflect the three-dimensional granularity of SVC. Secondly, we designed a mechanism for evaluating the effects of different streamer 'read ahead window' sizes on real-time performance. Thirdly, we took account of the previously unconsidered path switching and mobile networks tunnelling overheads encountered in real-world deployments. Finally, we implemented a path condition monitoring and reporting scheme to facilitate the intelligent path switching. The proposed system has been experimentally shown to offer a significant improvement in PSNR of the received stream compared with representative existing algorithms.
Issues in implementing services for a wireless web-enabled digital camera
NASA Astrophysics Data System (ADS)
Venkataraman, Shyam; Sampat, Nitin; Fisher, Yoram; Canosa, John; Noel, Nicholas
2001-05-01
The competition in the exploding digital photography market has caused vendors to explore new ways to increase their return on investment. A common view among industry analysts is that increasingly it will be services provided by these cameras, and not the cameras themselves, that will provide the revenue stream. These services will be coupled to e- Appliance based Communities. In addition, the rapidly increasing need to upload images to the Internet for photo- finishing services as well as the need to download software upgrades to the camera is driving many camera OEMs to evaluate the benefits of using the wireless web to extend their enterprise systems. Currently, creating a viable e- appliance such as a digital camera coupled with a wireless web service requires more than just a competency in product development. This paper will evaluate the system implications in the deployment of recurring revenue services and enterprise connectivity of a wireless, web-enabled digital camera. These include, among other things, an architectural design approach for services such as device management, synchronization, billing, connectivity, security, etc. Such an evaluation will assist, we hope, anyone designing or connecting a digital camera to the enterprise systems.
Lee, Chaewoo
2014-01-01
The advancement in wideband wireless network supports real time services such as IPTV and live video streaming. However, because of the sharing nature of the wireless medium, efficient resource allocation has been studied to achieve a high level of acceptability and proliferation of wireless multimedia. Scalable video coding (SVC) with adaptive modulation and coding (AMC) provides an excellent solution for wireless video streaming. By assigning different modulation and coding schemes (MCSs) to video layers, SVC can provide good video quality to users in good channel conditions and also basic video quality to users in bad channel conditions. For optimal resource allocation, a key issue in applying SVC in the wireless multicast service is how to assign MCSs and the time resources to each SVC layer in the heterogeneous channel condition. We formulate this problem with integer linear programming (ILP) and provide numerical results to show the performance under 802.16 m environment. The result shows that our methodology enhances the overall system throughput compared to an existing algorithm. PMID:25276862
Maximizing Resource Utilization in Video Streaming Systems
ERIC Educational Resources Information Center
Alsmirat, Mohammad Abdullah
2013-01-01
Video streaming has recently grown dramatically in popularity over the Internet, Cable TV, and wire-less networks. Because of the resource demanding nature of video streaming applications, maximizing resource utilization in any video streaming system is a key factor to increase the scalability and decrease the cost of the system. Resources to…
The Use of Smart Glasses for Surgical Video Streaming.
Hiranaka, Takafumi; Nakanishi, Yuta; Fujishiro, Takaaki; Hida, Yuichi; Tsubosaka, Masanori; Shibata, Yosaku; Okimura, Kenjiro; Uemoto, Harunobu
2017-04-01
Observation of surgical procedures performed by experts is extremely important for acquisition and improvement of surgical skills. Smart glasses are small computers, which comprise a head-mounted monitor and video camera, and can be connected to the internet. They can be used for remote observation of surgeries by video streaming. Although Google Glass is the most commonly used smart glasses for medical purposes, it is still unavailable commercially and has some limitations. This article reports the use of a different type of smart glasses, InfoLinker, for surgical video streaming. InfoLinker has been commercially available in Japan for industrial purposes for more than 2 years. It is connected to a video server via wireless internet directly, and streaming video can be seen anywhere an internet connection is available. We have attempted live video streaming of knee arthroplasty operations that were viewed at several different locations, including foreign countries, on a common web browser. Although the quality of video images depended on the resolution and dynamic range of the video camera, speed of internet connection, and the wearer's attention to minimize image shaking, video streaming could be easily performed throughout the procedure. The wearer could confirm the quality of the video as the video was being shot by the head-mounted display. The time and cost for observation of surgical procedures can be reduced by InfoLinker, and further improvement of hardware as well as the wearer's video shooting technique is expected. We believe that this can be used in other medical settings.
Privacy Preserving Sequential Pattern Mining in Data Stream
NASA Astrophysics Data System (ADS)
Huang, Qin-Hua
The privacy preserving data mining technique researches have gained much attention in recent years. For data stream systems, wireless networks and mobile devices, the related stream data mining techniques research is still in its' early stage. In this paper, an data mining algorithm dealing with privacy preserving problem in data stream is presented.
Continuous, Wireless Monitoring of Sediment Flux within Streams on Military Installations
2013-10-17
2.2.1.3.2 Voltage Regulation ...................................................................................... 14 2.2.1.3.3 Mote and Data...components are: A. PCB board; B. Suspended sediment sensor; C. MDA300; D. Crossbow mote (not in the picture); E. Rain gauge; F. Two solenoid valves...wireless mote (MICA2, Crossbow Technology), a rechargeable battery, and a mounting structure. The exact configuration of the wireless sensor node
NASA Astrophysics Data System (ADS)
Khan, Kashif A.; Wang, Qi; Luo, Chunbo; Wang, Xinheng; Grecos, Christos
2014-05-01
Mobile cloud computing is receiving world-wide momentum for ubiquitous on-demand cloud services for mobile users provided by Amazon, Google etc. with low capital cost. However, Internet-centric clouds introduce wide area network (WAN) delays that are often intolerable for real-time applications such as video streaming. One promising approach to addressing this challenge is to deploy decentralized mini-cloud facility known as cloudlets to enable localized cloud services. When supported by local wireless connectivity, a wireless cloudlet is expected to offer low cost and high performance cloud services for the users. In this work, we implement a realistic framework that comprises both a popular Internet cloud (Amazon Cloud) and a real-world cloudlet (based on Ubuntu Enterprise Cloud (UEC)) for mobile cloud users in a wireless mesh network. We focus on real-time video streaming over the HTTP standard and implement a typical application. We further perform a comprehensive comparative analysis and empirical evaluation of the application's performance when it is delivered over the Internet cloud and the cloudlet respectively. The study quantifies the influence of the two different cloud networking architectures on supporting real-time video streaming. We also enable movement of the users in the wireless mesh network and investigate the effect of user's mobility on mobile cloud computing over the cloudlet and Amazon cloud respectively. Our experimental results demonstrate the advantages of the cloudlet paradigm over its Internet cloud counterpart in supporting the quality of service of real-time applications.
Wang, Wei; Wang, Chunqiu; Zhao, Min
2014-03-01
To ease the burdens on the hospitalization capacity, an emerging swallowable-capsule technology has evolved to serve as a remote gastrointestinal (GI) disease examination technique with the aid of the wireless body sensor network (WBSN). Secure multimedia transmission in such a swallowable-capsule-based WBSN faces critical challenges including energy efficiency and content quality guarantee. In this paper, we propose a joint resource allocation and stream authentication scheme to maintain the best possible video quality while ensuring security and energy efficiency in GI-WBSNs. The contribution of this research is twofold. First, we establish a unique signature-hash (S-H) diversity approach in the authentication domain to optimize video authentication robustness and the authentication bit rate overhead over a wireless channel. Based on the full exploration of S-H authentication diversity, we propose a new two-tier signature-hash (TTSH) stream authentication scheme to improve the video quality by reducing authentication dependence overhead while protecting its integrity. Second, we propose to combine this authentication scheme with a unique S-H oriented unequal resource allocation (URA) scheme to improve the energy-distortion-authentication performance of wireless video delivery in GI-WBSN. Our analysis and simulation results demonstrate that the proposed TTSH with URA scheme achieves considerable gain in both authenticated video quality and energy efficiency.
Data Centric Sensor Stream Reduction for Real-Time Applications in Wireless Sensor Networks
Aquino, Andre Luiz Lins; Nakamura, Eduardo Freire
2009-01-01
This work presents a data-centric strategy to meet deadlines in soft real-time applications in wireless sensor networks. This strategy considers three main aspects: (i) The design of real-time application to obtain the minimum deadlines; (ii) An analytic model to estimate the ideal sample size used by data-reduction algorithms; and (iii) Two data-centric stream-based sampling algorithms to perform data reduction whenever necessary. Simulation results show that our data-centric strategies meet deadlines without loosing data representativeness. PMID:22303145
MWAHCA: a multimedia wireless ad hoc cluster architecture.
Diaz, Juan R; Lloret, Jaime; Jimenez, Jose M; Sendra, Sandra
2014-01-01
Wireless Ad hoc networks provide a flexible and adaptable infrastructure to transport data over a great variety of environments. Recently, real-time audio and video data transmission has been increased due to the appearance of many multimedia applications. One of the major challenges is to ensure the quality of multimedia streams when they have passed through a wireless ad hoc network. It requires adapting the network architecture to the multimedia QoS requirements. In this paper we propose a new architecture to organize and manage cluster-based ad hoc networks in order to provide multimedia streams. Proposed architecture adapts the network wireless topology in order to improve the quality of audio and video transmissions. In order to achieve this goal, the architecture uses some information such as each node's capacity and the QoS parameters (bandwidth, delay, jitter, and packet loss). The architecture splits the network into clusters which are specialized in specific multimedia traffic. The real system performance study provided at the end of the paper will demonstrate the feasibility of the proposal.
NASA Astrophysics Data System (ADS)
Huang, Xu-Hong; Lu, Hai-Han; Donati, Silvano; Li, Chung-Yi; Wang, Yun-Chieh; Jheng, Yu-Bo; Chang, Jen-Chieh
2018-07-01
Two-way wireless-over-fiber and free-space optical (FSO)-over-fiber communication systems, with an optical carrier transmission for a hybrid 10 Gbps baseband data stream, are proposed and practically demonstrated. 10 Gbps/50 GHz and 10 Gbps/100 GHz millimeter-wave data signal transmissions are also proposed and practically demonstrated. An optical carrier with a 10 Gbps baseband data stream is delivered via a 50 km single-mode fiber transportation to effectively lower dispersion-induced limitation due to fiber links and distortion produced by beating among multiple optical sidebands. To our understanding, this experiment is foremost in employing an optical carrier transmission approach to a two-way wireless-over-fiber and FSO-over-fiber communication system to suppress fiber dispersion and distortion effectively. Bit error rate performs well for downlink and uplink deliveries via a 50 km single-mode fiber transportation with a 100 m FSO link/5 m RF wireless delivery. The offered two-way wireless-over-fiber and FSO-over-fiber communication system with an optical carrier transmission is a promising option. It should be interesting for signifying the progress in the integration of long-haul fiber-based trunks and short-range RF/optical wireless link-based branches.
Multivariate Spatial Condition Mapping Using Subtractive Fuzzy Cluster Means
Sabit, Hakilo; Al-Anbuky, Adnan
2014-01-01
Wireless sensor networks are usually deployed for monitoring given physical phenomena taking place in a specific space and over a specific duration of time. The spatio-temporal distribution of these phenomena often correlates to certain physical events. To appropriately characterise these events-phenomena relationships over a given space for a given time frame, we require continuous monitoring of the conditions. WSNs are perfectly suited for these tasks, due to their inherent robustness. This paper presents a subtractive fuzzy cluster means algorithm and its application in data stream mining for wireless sensor systems over a cloud-computing-like architecture, which we call sensor cloud data stream mining. Benchmarking on standard mining algorithms, the k-means and the FCM algorithms, we have demonstrated that the subtractive fuzzy cluster means model can perform high quality distributed data stream mining tasks comparable to centralised data stream mining. PMID:25313495
Wireless network interface energy consumption implications of popular streaming formats
NASA Astrophysics Data System (ADS)
Chandra, Surendar
2001-12-01
With the proliferation of mobile streaming multimedia, available battery capacity constrains the end-user experience. Since streaming applications tend to be long running, wireless network interface card's (WNIC) energy consumption is particularly an acute problem. In this work, we explore the WNIC energy consumption implications of popular multimedia streaming formats from Microsoft (Windows media), Real (Real media) and Apple (Quick Time). We investigate the energy consumption under varying stream bandwidth and network loss rates. We also explore history-based client-side strategies to reduce the energy consumed by transitioning the WNICs to a lower power consuming sleep state. We show that Microsoft media tends to transmit packets at regular intervals; streams optimized for 28.8 Kbps can save over 80% in energy consumption with 2% data loss. A high bandwidth stream (768 Kbps) can still save 57% in energy consumption with less than 0.3% data loss. For high bandwidth streams, Microsoft media exploits network-level packet fragmentation, which can lead to excessive packet loss (and wasted energy) in a lossy network. Real stream packets tend to be sent closer to each other, especially at higher bandwidths. Quicktime packets sometimes arrive in quick succession; most likely an application level fragmentation mechanism. Such packets are harder to predict at the network level without understanding the packet semantics.
A QoS Aware Resource Allocation Strategy for 3D A/V Streaming in OFDMA Based Wireless Systems
Chung, Young-uk; Choi, Yong-Hoon; Park, Suwon; Lee, Hyukjoon
2014-01-01
Three-dimensional (3D) video is expected to be a “killer app” for OFDMA-based broadband wireless systems. The main limitation of 3D video streaming over a wireless system is the shortage of radio resources due to the large size of the 3D traffic. This paper presents a novel resource allocation strategy to address this problem. In the paper, the video-plus-depth 3D traffic type is considered. The proposed resource allocation strategy focuses on the relationship between 2D video and the depth map, handling them with different priorities. It is formulated as an optimization problem and is solved using a suboptimal heuristic algorithm. Numerical results show that the proposed scheme provides a better quality of service compared to conventional schemes. PMID:25250377
Liteplo, Andrew S; Noble, Vicki E; Attwood, Ben H C
2011-11-01
As the use of point-of-care sonography spreads, so too does the need for remote expert over-reading via telesonogrpahy. We sought to assess the feasibility of using familiar, widespread, and cost-effective existent technology to allow remote over-reading of sonograms in real time and to compare 4 different methods of transmission and communication for both the feasibility of transmission and image quality. Sonographic video clips were transmitted using 2 different connections (WiFi and 3G) and via 2 different videoconferencing modalities (iChat [Apple Inc, Cupertino, CA] and Skype [Skype Software Sàrl, Luxembourg]), for a total of 4 different permutations. The clips were received at a remote location and recorded and then scored by expert reviewers for image quality, resolution, and detail. Wireless transmission of sonographic clips was feasible in all cases when WiFi was used and when Skype was used over a 3G connection. Images transmitted via a WiFi connection were statistically superior to those transmitted via 3G in all parameters of quality (average P = .031), and those sent by iChat were superior to those sent by Skype but not statistically so (average P = .057). Wireless transmission of sonographic video clips using inexpensive hardware, free videoconferencing software, and domestic Internet networks is feasible with retention of image quality sufficient for interpretation. WiFi transmission results in greater image quality than transmission by a 3G network.
MWAHCA: A Multimedia Wireless Ad Hoc Cluster Architecture
Diaz, Juan R.; Jimenez, Jose M.; Sendra, Sandra
2014-01-01
Wireless Ad hoc networks provide a flexible and adaptable infrastructure to transport data over a great variety of environments. Recently, real-time audio and video data transmission has been increased due to the appearance of many multimedia applications. One of the major challenges is to ensure the quality of multimedia streams when they have passed through a wireless ad hoc network. It requires adapting the network architecture to the multimedia QoS requirements. In this paper we propose a new architecture to organize and manage cluster-based ad hoc networks in order to provide multimedia streams. Proposed architecture adapts the network wireless topology in order to improve the quality of audio and video transmissions. In order to achieve this goal, the architecture uses some information such as each node's capacity and the QoS parameters (bandwidth, delay, jitter, and packet loss). The architecture splits the network into clusters which are specialized in specific multimedia traffic. The real system performance study provided at the end of the paper will demonstrate the feasibility of the proposal. PMID:24737996
2017-03-01
A Low- Power Wireless Image Sensor Node with Noise-Robust Moving Object Detection and a Region-of-Interest Based Rate Controller Jong Hwan Ko...Atlanta, GA 30332 USA Contact Author Email: jonghwan.ko@gatech.edu Abstract: This paper presents a low- power wireless image sensor node for...present a low- power wireless image sensor node with a noise-robust moving object detection and region-of-interest based rate controller [Fig. 1]. The
Upgrade of U.S. EPA's Experimental Stream Facility Supervisory Control and Data Acquisition System
The Supervisory control and data acquisition (SCADA) system for the U.S. EPA’s Experimental Stream Facility (ESF) was upgraded using Camile hardware and software in 2015. The upgrade added additional hardwired connections, new wireless capabilities, and included a complete rewrit...
Acquisition and management of continuous data streams for crop water management
USDA-ARS?s Scientific Manuscript database
Wireless sensor network systems for decision support in crop water management offer many advantages including larger spatial coverage and multiple types of data input. However, collection and management of multiple and continuous data streams for near real-time post analysis can be problematic. Thi...
Riffe, Matthew J; Yutzy, Stephen R; Jiang, Yun; Twieg, Michael D; Blumenthal, Colin J; Hsu, Daniel P; Pan, Li; Gilson, Wesley D; Sunshine, Jeffrey L; Flask, Christopher A; Duerk, Jeffrey L; Nakamoto, Dean; Gulani, Vikas; Griswold, Mark A
2014-06-01
A prototype wireless guidance device using single sideband amplitude modulation (SSB) is presented for a 1.5T magnetic resonance imaging system. The device contained three fiducial markers each mounted to an independent receiver coil equipped with wireless SSB technology. Acquiring orthogonal projections of these markers determined the position and orientation of the device, which was used to define the scan plane for a subsequent image acquisition. Device localization and scan plane update required approximately 30 ms, so it could be interleaved with high temporal resolution imaging. Since the wireless device is used for localization and does not require full imaging capability, the design of the SSB wireless system was simplified by allowing an asynchronous clock between the transmitter and receiver. When coupled to a high readout bandwidth, the error caused by the lack of a shared frequency reference was quantified to be less than one pixel (0.78 mm) in the projection acquisitions. Image guidance with the prototype was demonstrated with a phantom where a needle was successfully guided to a target and contrast was delivered. The feasibility of active tracking with a wireless detector array is demonstrated. Wireless arrays could be incorporated into devices to assist in image-guided procedures. Copyright © 2013 Wiley Periodicals, Inc.
A video wireless capsule endoscopy system powered wirelessly: design, analysis and experiment
NASA Astrophysics Data System (ADS)
Pan, Guobing; Xin, Wenhui; Yan, Guozheng; Chen, Jiaoliao
2011-06-01
Wireless capsule endoscopy (WCE), as a relatively new technology, has brought about a revolution in the diagnosis of gastrointestinal (GI) tract diseases. However, the existing WCE systems are not widely applied in clinic because of the low frame rate and low image resolution. A video WCE system based on a wireless power supply is developed in this paper. This WCE system consists of a video capsule endoscope (CE), a wireless power transmission device, a receiving box and an image processing station. Powered wirelessly, the video CE has the abilities of imaging the GI tract and transmitting the images wirelessly at a frame rate of 30 frames per second (f/s). A mathematical prototype was built to analyze the power transmission system, and some experiments were performed to test the capability of energy transferring. The results showed that the wireless electric power supply system had the ability to transfer more than 136 mW power, which was enough for the working of a video CE. In in vitro experiments, the video CE produced clear images of the small intestine of a pig with the resolution of 320 × 240, and transmitted NTSC format video outside the body. Because of the wireless power supply, the video WCE system with high frame rate and high resolution becomes feasible, and provides a novel solution for the diagnosis of the GI tract in clinic.
High-speed duplex optical wireless communication system for indoor personal area networks.
Wang, Ke; Nirmalathas, Ampalavanapillai; Lim, Christina; Skafidas, Efstratios
2010-11-22
In this paper a new hybrid wireless access system incorporating high bandwidth line-of-sight free space optical wireless and radio frequency localization is proposed and demonstrated. This system is capable of supporting several gigabits/second up-stream and down-stream data transmission and ideally suited for high bandwidth indoor applications such as personal area networks. A radio frequency signal is used to achieve localization of subscribers, offering limited mobility to subscribers within a practical office scenario. Even with the modest transmitted power of 5 dBm, we demonstrate satisfactory performance of bit error rates better than 10(-9) over the entire room in the presence of strong background light. Using simulations, the effectiveness of the proposed system architecture is investigated and the key performance trade-offs identified. Proof-of-concept experiments have also been carried out to validate simulation model, and initial experimental results successfully demonstrate the feasibility of the system capable of supporting 2.5 Gbps over a 1-2 m optical wireless link (limited by the length of the sliding rail used in the experiment) with a 45 degrees diffused beam in an indoor environment for the first time.
A Seamless Ubiquitous Telehealthcare Tunnel
Cheng, Po-Hsun; Lin, Bor-Shing; Yu, Chu; Hu, Shun-Hsiang; Chen, Sao-Jie
2013-01-01
Mobile handheld devices are rapidly using to implement healthcare services around the World. Fundamentally, these services utilize telemedicine technologies. A disconnection of a mobile telemedicine system usually results in an interruption, which is embarrassing, and reconnection is necessary during the communication session. In this study, the Stream Control Transmission Protocol (SCTP) is adopted to build a stable session tunnel to guarantee seamless switching among heterogeneous wireless communication standards, such as Wi-Fi and 3G. This arrangement means that the telemedicine devices will not be limited by a fixed wireless connection and can switch to a better wireless channel if necessary. The tunnel can transmit plain text, binary data, and video streams. According to the evaluation of the proposed software-based SCTP-Tunnel middleware shown, the performance is lower than anticipated and is slightly slower than a fixed connection. However, the transmission throughput is still acceptable for healthcare professionals in a healthcare enterprise or home care site. It is necessary to build more heterogeneous wireless protocols into the proposed tunnel-switching scheme to support all possible communication protocols. In addition, SCTP is another good choice for promoting communication in telemedicine and healthcare fields. PMID:23917812
Using digital watermarking to enhance security in wireless medical image transmission.
Giakoumaki, Aggeliki; Perakis, Konstantinos; Banitsas, Konstantinos; Giokas, Konstantinos; Tachakra, Sapal; Koutsouris, Dimitris
2010-04-01
During the last few years, wireless networks have been increasingly used both inside hospitals and in patients' homes to transmit medical information. In general, wireless networks suffer from decreased security. However, digital watermarking can be used to secure medical information. In this study, we focused on combining wireless transmission and digital watermarking technologies to better secure the transmission of medical images within and outside the hospital. We utilized an integrated system comprising the wireless network and the digital watermarking module to conduct a series of tests. The test results were evaluated by medical consultants. They concluded that the images suffered no visible quality degradation and maintained their diagnostic integrity. The proposed integrated system presented reasonable stability, and its performance was comparable to that of a fixed network. This system can enhance security during the transmission of medical images through a wireless channel.
Layer-based buffer aware rate adaptation design for SHVC video streaming
NASA Astrophysics Data System (ADS)
Gudumasu, Srinivas; Hamza, Ahmed; Asbun, Eduardo; He, Yong; Ye, Yan
2016-09-01
This paper proposes a layer based buffer aware rate adaptation design which is able to avoid abrupt video quality fluctuation, reduce re-buffering latency and improve bandwidth utilization when compared to a conventional simulcast based adaptive streaming system. The proposed adaptation design schedules DASH segment requests based on the estimated bandwidth, dependencies among video layers and layer buffer fullness. Scalable HEVC video coding is the latest state-of-art video coding technique that can alleviate various issues caused by simulcast based adaptive video streaming. With scalable coded video streams, the video is encoded once into a number of layers representing different qualities and/or resolutions: a base layer (BL) and one or more enhancement layers (EL), each incrementally enhancing the quality of the lower layers. Such layer based coding structure allows fine granularity rate adaptation for the video streaming applications. Two video streaming use cases are presented in this paper. The first use case is to stream HD SHVC video over a wireless network where available bandwidth varies, and the performance comparison between proposed layer-based streaming approach and conventional simulcast streaming approach is provided. The second use case is to stream 4K/UHD SHVC video over a hybrid access network that consists of a 5G millimeter wave high-speed wireless link and a conventional wired or WiFi network. The simulation results verify that the proposed layer based rate adaptation approach is able to utilize the bandwidth more efficiently. As a result, a more consistent viewing experience with higher quality video content and minimal video quality fluctuations can be presented to the user.
A synchronization method for wireless acquisition systems, application to brain computer interfaces.
Foerster, M; Bonnet, S; van Langhenhove, A; Porcherot, J; Charvet, G
2013-01-01
A synchronization method for wireless acquisition systems has been developed and implemented on a wireless ECoG recording implant and on a wireless EEG recording helmet. The presented algorithm and hardware implementation allow the precise synchronization of several data streams from several sensor nodes for applications where timing is critical like in event-related potential (ERP) studies. The proposed method has been successfully applied to obtain visual evoked potentials and compared with a reference biosignal amplifier. The control over the exact sampling frequency allows reducing synchronization errors that will otherwise accumulate during a recording. The method is scalable to several sensor nodes communicating with a shared base station.
NASA Astrophysics Data System (ADS)
Huang, Xu-Hong; Lu, Hai-Han; Li, Chung-Yi; Wang, Yun-Chieh; Chang, Jen-Chieh; Jheng, Yu-Bo; Tsai, Wen-Shing
2018-06-01
A bidirectional fiber-free-space optical (FSO)/wireless convergent system that uses dual-polarization and one optical sideband transmission schemes for hybrid vestigial sideband (VSB)–four-level pulse amplitude modulation (PAM4)/millimeter-wave signal transmission is proposed and demonstrated. Using a dual-polarization scheme, one optical sideband that is modulated by a 56 Gb s‑1 VSB–PAM4 signal (x-polarization) and another optical sideband that is modulated by a 10 Gbps data stream (y-polarization) are separated and polarized orthogonally. One optical sideband modulated by a 10 Gbps data stream (y-polarization) is delivered to efficaciously suppress the dispersion-induced limitation due to a span of 40 km single-mode fiber (SMF) and the distortion due to the beating among multiple sidebands. The proposed bidirectional fiber-FSO/wireless convergent system is a prominent one for providing broadband integrated services, such as the Internet, telecommunication, and 5G mobile networks.
On computer vision in wireless sensor networks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berry, Nina M.; Ko, Teresa H.
Wireless sensor networks allow detailed sensing of otherwise unknown and inaccessible environments. While it would be beneficial to include cameras in a wireless sensor network because images are so rich in information, the power cost of transmitting an image across the wireless network can dramatically shorten the lifespan of the sensor nodes. This paper describe a new paradigm for the incorporation of imaging into wireless networks. Rather than focusing on transmitting images across the network, we show how an image can be processed locally for key features using simple detectors. Contrasted with traditional event detection systems that trigger an imagemore » capture, this enables a new class of sensors which uses a low power imaging sensor to detect a variety of visual cues. Sharing these features among relevant nodes cues specific actions to better provide information about the environment. We report on various existing techniques developed for traditional computer vision research which can aid in this work.« less
Nonlinear Photonic Systems for V- and W-Band Antenna Remoting Applications
2016-10-22
for commercial, academic, and military purposes delivering microwaves through fibers to remote areas for wireless sensing , imaging, and detection...academic, and military purposes, which use optical carriers to deliver microwave signals to remote areas for wireless sensing , imaging, and...and military purposes, which use optical carriers to deliver microwave signals to remote areas for wireless sensing , imaging, and detection
[Research on WiFi-based wireless microscopy on a mobile phone and its application].
Hailan, Jin; Jing, Liu
2012-11-01
We proposed and realized a new device that acquires microscopic image wirelessly based on mobile phone and WiFi system. The mobile terminals could record, display and store the image from the far end via the wireless LAN. Using this system, a series of conceptual experiments on monitoring the microscopic images of common objects and liver cancer cells were successfully demonstrated. This system is expected to have important value in the experimental investigations on wirelessly monitoring the cell culture, and small insect etc.
Coexistence issues for a 2.4 GHz wireless audio streaming in presence of bluetooth paging and WLAN
NASA Astrophysics Data System (ADS)
Pfeiffer, F.; Rashwan, M.; Biebl, E.; Napholz, B.
2015-11-01
Nowadays, customers expect to integrate their mobile electronic devices (smartphones and laptops) in a vehicle to form a wireless network. Typically, IEEE 802.11 is used to provide a high-speed wireless local area network (WLAN) and Bluetooth is used for cable replacement applications in a wireless personal area network (PAN). In addition, Daimler uses KLEER as third wireless technology in the unlicensed (UL) 2.4 GHz-ISM-band to transmit full CD-quality digital audio. As Bluetooth, IEEE 802.11 and KLEER are operating in the same frequency band, it has to be ensured that all three technologies can be used simultaneously without interference. In this paper, we focus on the impact of Bluetooth and IEEE 802.11 as interferer in presence of a KLEER audio transmission.
Wireless technologies for robotic endoscope in gastrointestinal tract.
Gao, P; Yan, G; Wang, Z; Liu, H
2012-07-01
This paper introduces wireless technologies for use with robotic endoscopes in the gastrointestinal tract. The technologies include wireless power transmission (WPT), wireless remote control (WRC), and wireless image transmission (WIT). WPT, based on the electromagnetic coupling principle, powers active locomotion actuators and other peripherals in large air gaps. WRC, based on real-time bidirectional communication, has a multikernel frame in vivo to realize real-time multitasking. WIT provides a continuous dynamic image with a revolution of 320 × 240 pixel at 30 fps for in vitro diagnosis. To test these wireless technologies, three robotic endoscope prototypes were fabricated and equipped with the customized modules. The experimental results show that the wireless technologies have value for clinical applications.
Device localization and dynamic scan plane selection using a wireless MRI detector array
Riffe, Matthew J.; Yutzy, Stephen R.; Jiang, Yun; Twieg, Michael D.; Blumenthal, Colin J.; Hsu, Daniel P.; Pan, Li; Gilson, Wesley D.; Sunshine, Jeffrey L.; Flask, Christopher A.; Duerk, Jeffrey L.; Nakamoto, Dean; Gulani, Vikas; Griswold, Mark A.
2013-01-01
Purpose A prototype wireless guidance device using single sideband amplitude modulation (SSB) is presented for a 1.5T MRI system. Methods The device contained three fiducial markers each mounted to an independent receiver coil equipped with wireless SSB technology. Acquiring orthogonal projections of these markers determined the position and orientation of the device, which was used to define the scan plane for a subsequent image acquisition. Device localization and scan plane update required approximately 30 ms, so it could be interleaved with high temporal resolution imaging. Since the wireless device is used for localization and doesn’t require full imaging capability, the design of the SSB wireless system was simplified by allowing an asynchronous clock between the transmitter and receiver. Results When coupled to a high readout bandwidth, the error caused by the lack of a shared frequency reference was quantified to be less than one pixel (0.78 mm) in the projection acquisitions. Image-guidance with the prototype was demonstrated with a phantom where a needle was successfully guided to a target and contrast was delivered. Conclusion The feasibility of active tracking with a wireless detector array is demonstrated. Wireless arrays could be incorporated into devices to assist in image-guided procedures. PMID:23900921
NASA Astrophysics Data System (ADS)
Hayami, Hajime; Takehara, Hiroaki; Nagata, Kengo; Haruta, Makito; Noda, Toshihiko; Sasagawa, Kiyotaka; Tokuda, Takashi; Ohta, Jun
2016-04-01
Intra body communication technology allows the fabrication of compact implantable biomedical sensors compared with RF wireless technology. In this paper, we report the fabrication of an implantable image sensor of 625 µm width and 830 µm length and the demonstration of wireless image-data transmission through a brain tissue of a living mouse. The sensor was designed to transmit output signals of pixel values by pulse width modulation (PWM). The PWM signals from the sensor transmitted through a brain tissue were detected by a receiver electrode. Wireless data transmission of a two-dimensional image was successfully demonstrated in a living mouse brain. The technique reported here is expected to provide useful methods of data transmission using micro sized implantable biomedical sensors.
Object tracking using multiple camera video streams
NASA Astrophysics Data System (ADS)
Mehrubeoglu, Mehrube; Rojas, Diego; McLauchlan, Lifford
2010-05-01
Two synchronized cameras are utilized to obtain independent video streams to detect moving objects from two different viewing angles. The video frames are directly correlated in time. Moving objects in image frames from the two cameras are identified and tagged for tracking. One advantage of such a system involves overcoming effects of occlusions that could result in an object in partial or full view in one camera, when the same object is fully visible in another camera. Object registration is achieved by determining the location of common features in the moving object across simultaneous frames. Perspective differences are adjusted. Combining information from images from multiple cameras increases robustness of the tracking process. Motion tracking is achieved by determining anomalies caused by the objects' movement across frames in time in each and the combined video information. The path of each object is determined heuristically. Accuracy of detection is dependent on the speed of the object as well as variations in direction of motion. Fast cameras increase accuracy but limit the speed and complexity of the algorithm. Such an imaging system has applications in traffic analysis, surveillance and security, as well as object modeling from multi-view images. The system can easily be expanded by increasing the number of cameras such that there is an overlap between the scenes from at least two cameras in proximity. An object can then be tracked long distances or across multiple cameras continuously, applicable, for example, in wireless sensor networks for surveillance or navigation.
An End-to-End Loss Discrimination Scheme for Multimedia Transmission over Wireless IP Networks
NASA Astrophysics Data System (ADS)
Zhao, Hai-Tao; Dong, Yu-Ning; Li, Yang
As the rapid growth of wireless IP networks, wireless IP access networks have a lot of potential applications in a variety of fields in civilian and military environments. Many of these applications, such as realtime audio/video streaming, will require some form of end-to-end QoS assurance. In this paper, an algorithm WMPLD (Wireless Multimedia Packet Loss Discrimination) is proposed for multimedia transmission control over wired-wireless hybrid IP networks. The relationship between packet length and packet loss rate in the Gilbert wireless error model is investigated. Furthermore, the algorithm can detect the nature of packet losses by sending large and small packets alternately, and control the sending rate of nodes. In addition, by means of updating factor K, this algorithm can adapt to the changes of network states quickly. Simulation results show that, compared to previous algorithms, WMPLD algorithm can improve the networks throughput as well as reduce the congestion loss rate in various situations.
Low-power wireless micromanometer system for acute and chronic bladder-pressure monitoring.
Majerus, Steve J A; Fletter, Paul C; Damaser, Margot S; Garverick, Steven L
2011-03-01
This letter describes the design, fabrication, and testing of a wireless bladder-pressure-sensing system for chronic, point-of-care applications, such as urodynamics or closed-loop neuromodulation. The system consists of a miniature implantable device and an external RF receiver and wireless battery charger. The implant is small enough to be cystoscopically implanted within the bladder wall, where it is securely held and shielded from the urine stream. The implant consists of a custom application-specific integrated circuit (ASIC), a pressure transducer, a rechargeable battery, and wireless telemetry and recharging antennas. The ASIC includes instrumentation, wireless transmission, and power-management circuitry, and on an average draws less than 9 μA from the 3.6-V battery. The battery charge can be wirelessly replenished with daily 6-h recharge periods that can occur during the periods of sleep. Acute in vivo evaluation of the pressure-sensing system in canine models has demonstrated that the system can accurately capture lumen pressure from a submucosal implant location.
A wideband wireless neural stimulation platform for high-density microelectrode arrays.
Myers, Frank B; Simpson, Jim A; Ghovanloo, Maysam
2006-01-01
We describe a system that allows researchers to control an implantable neural microstimulator from a PC via a USB 2.0 interface and a novel dual-carrier wireless link, which provides separate data and power transmission. Our wireless stimulator, Interestim-2B (IS-2B), is a modular device capable of generating controlled-current stimulation pulse trains across 32 sites per module with support for a variety of stimulation schemes (biphasic/monophasic, bipolar/monopolar). We have developed software to generate multi-site stimulation commands for the IS-2B based on streaming data from artificial sensory devices such as cameras and microphones. For PC interfacing, we have developed a USB 2.0 microcontroller-based interface. Data is transmitted using frequency-shift keying (FSK) at 6/12 MHz to achieve a data rate of 3 Mb/s via a pair of rectangular coils. Power is generated using a class-E power amplifier operating at 1 MHz and transmitted via a separate pair of spiral planar coils which are oriented perpendicular to the data coils to minimize cross-coupling. We have successfully demonstrated the operation of the system by applying it as a visual prosthesis. Pulse-frequency modulated stimuli are generated in real-time based on a grayscale image from a webcam. These pulses are projected onto an 11x11 LED matrix that represents a 2D microelectrode array.
Lei, Yi; Li, Jianqiang; Fan, Yuting; Yu, Dawei; Fu, Songnian; Yin, Feifei; Dai, Yitang; Xu, Kun
2016-12-12
In this paper, we experimentally demonstrate space-division-multiplexed (SDM) transmission of IEEE 802.11ac-compliant 3-spatial-stream WLAN signals over 3 spatial modes of conventional 50um graded-index (GI) multimode fiber (MMF) employing non-mode-selective 3D-waveguide photonic lantern. Two kinds of scenarios, including fiber-only transmission and fiber-wireless hybrid transmission, were investigated by measuring error vector magnitude (EVM) performance for each stream and condition number (CN) of the channel matrix. The experimental results show that, SDM-based MMF link could offer a CN< 20dB well-conditioned MIMO channel over up to 1km fiber length within 0-6GHz, achieving as low as 2.38%, 2.97% and 2.11% EVM performance for 1km MMF link at 2.4GHz, 5.8GHz, and 200m MMF link followed by 1m air distance at 2.7GHz, respectively. These results indicate the possibility to distribute wireless MIMO signals over existing in-building commercially-available MMFs with enormous cost-saving.
Wireless Command-and-Control of UAV-Based Imaging LANs
NASA Technical Reports Server (NTRS)
Herwitz, Stanley; Dunagan, S. E.; Sullivan, D. V.; Slye, R. E.; Leung, J. G.; Johnson, L. F.
2006-01-01
Dual airborne imaging system networks were operated using a wireless line-of-sight telemetry system developed as part of a 2002 unmanned aerial vehicle (UAV) imaging mission over the USA s largest coffee plantation on the Hawaiian island of Kauai. A primary mission objective was the evaluation of commercial-off-the-shelf (COTS) 802.11b wireless technology for reduction of payload telemetry costs associated with UAV remote sensing missions. Predeployment tests with a conventional aircraft demonstrated successful wireless broadband connectivity between a rapidly moving airborne imaging local area network (LAN) and a fixed ground station LAN. Subsequently, two separate LANs with imaging payloads, packaged in exterior-mounted pressure pods attached to the underwing of NASA's Pathfinder-Plus UAV, were operated wirelessly by ground-based LANs over independent Ethernet bridges. Digital images were downlinked from the solar-powered aircraft at data rates of 2-6 megabits per second (Mbps) over a range of 6.5 9.5 km. An integrated wide area network enabled payload monitoring and control through the Internet from a range of ca. 4000 km during parts of the mission. The recent advent of 802.11g technology is expected to boost the system data rate by about a factor of five.
Rehan, Waqas; Fischer, Stefan; Rehan, Maaz
2016-09-12
Wireless sensor networks (WSNs) have become more and more diversified and are today able to also support high data rate applications, such as multimedia. In this case, per-packet channel handshaking/switching may result in inducing additional overheads, such as energy consumption, delays and, therefore, data loss. One of the solutions is to perform stream-based channel allocation where channel handshaking is performed once before transmitting the whole data stream. Deciding stream-based channel allocation is more critical in case of multichannel WSNs where channels of different quality/stability are available and the wish for high performance requires sensor nodes to switch to the best among the available channels. In this work, we will focus on devising mechanisms that perform channel quality/stability estimation in order to improve the accommodation of stream-based communication in multichannel wireless sensor networks. For performing channel quality assessment, we have formulated a composite metric, which we call channel rank measurement (CRM), that can demarcate channels into good, intermediate and bad quality on the basis of the standard deviation of the received signal strength indicator (RSSI) and the average of the link quality indicator (LQI) of the received packets. CRM is then used to generate a data set for training a supervised machine learning-based algorithm (which we call Normal Equation based Channel quality prediction (NEC) algorithm) in such a way that it may perform instantaneous channel rank estimation of any channel. Subsequently, two robust extensions of the NEC algorithm are proposed (which we call Normal Equation based Weighted Moving Average Channel quality prediction (NEWMAC) algorithm and Normal Equation based Aggregate Maturity Criteria with Beta Tracking based Channel weight prediction (NEAMCBTC) algorithm), that can perform channel quality estimation on the basis of both current and past values of channel rank estimation. In the end, simulations are made using MATLAB, and the results show that the Extended version of NEAMCBTC algorithm (Ext-NEAMCBTC) outperforms the compared techniques in terms of channel quality and stability assessment. It also minimizes channel switching overheads (in terms of switching delays and energy consumption) for accommodating stream-based communication in multichannel WSNs.
Rehan, Waqas; Fischer, Stefan; Rehan, Maaz
2016-01-01
Wireless sensor networks (WSNs) have become more and more diversified and are today able to also support high data rate applications, such as multimedia. In this case, per-packet channel handshaking/switching may result in inducing additional overheads, such as energy consumption, delays and, therefore, data loss. One of the solutions is to perform stream-based channel allocation where channel handshaking is performed once before transmitting the whole data stream. Deciding stream-based channel allocation is more critical in case of multichannel WSNs where channels of different quality/stability are available and the wish for high performance requires sensor nodes to switch to the best among the available channels. In this work, we will focus on devising mechanisms that perform channel quality/stability estimation in order to improve the accommodation of stream-based communication in multichannel wireless sensor networks. For performing channel quality assessment, we have formulated a composite metric, which we call channel rank measurement (CRM), that can demarcate channels into good, intermediate and bad quality on the basis of the standard deviation of the received signal strength indicator (RSSI) and the average of the link quality indicator (LQI) of the received packets. CRM is then used to generate a data set for training a supervised machine learning-based algorithm (which we call Normal Equation based Channel quality prediction (NEC) algorithm) in such a way that it may perform instantaneous channel rank estimation of any channel. Subsequently, two robust extensions of the NEC algorithm are proposed (which we call Normal Equation based Weighted Moving Average Channel quality prediction (NEWMAC) algorithm and Normal Equation based Aggregate Maturity Criteria with Beta Tracking based Channel weight prediction (NEAMCBTC) algorithm), that can perform channel quality estimation on the basis of both current and past values of channel rank estimation. In the end, simulations are made using MATLAB, and the results show that the Extended version of NEAMCBTC algorithm (Ext-NEAMCBTC) outperforms the compared techniques in terms of channel quality and stability assessment. It also minimizes channel switching overheads (in terms of switching delays and energy consumption) for accommodating stream-based communication in multichannel WSNs. PMID:27626429
Image-Based Environmental Monitoring Sensor Application Using an Embedded Wireless Sensor Network
Paek, Jeongyeup; Hicks, John; Coe, Sharon; Govindan, Ramesh
2014-01-01
This article discusses the experiences from the development and deployment of two image-based environmental monitoring sensor applications using an embedded wireless sensor network. Our system uses low-power image sensors and the Tenet general purpose sensing system for tiered embedded wireless sensor networks. It leverages Tenet's built-in support for reliable delivery of high rate sensing data, scalability and its flexible scripting language, which enables mote-side image compression and the ease of deployment. Our first deployment of a pitfall trap monitoring application at the James San Jacinto Mountain Reserve provided us with insights and lessons learned into the deployment of and compression schemes for these embedded wireless imaging systems. Our three month-long deployment of a bird nest monitoring application resulted in over 100,000 images collected from a 19-camera node network deployed over an area of 0.05 square miles, despite highly variable environmental conditions. Our biologists found the on-line, near-real-time access to images to be useful for obtaining data on answering their biological questions. PMID:25171121
Image-based environmental monitoring sensor application using an embedded wireless sensor network.
Paek, Jeongyeup; Hicks, John; Coe, Sharon; Govindan, Ramesh
2014-08-28
This article discusses the experiences from the development and deployment of two image-based environmental monitoring sensor applications using an embedded wireless sensor network. Our system uses low-power image sensors and the Tenet general purpose sensing system for tiered embedded wireless sensor networks. It leverages Tenet's built-in support for reliable delivery of high rate sensing data, scalability and its flexible scripting language, which enables mote-side image compression and the ease of deployment. Our first deployment of a pitfall trap monitoring application at the James San Cannot Mountain Reserve provided us with insights and lessons learned into the deployment of and compression schemes for these embedded wireless imaging systems. Our three month-long deployment of a bird nest monitoring application resulted in over 100,000 images collected from a 19-camera node network deployed over an area of 0.05 square miles, despite highly variable environmental conditions. Our biologists found the on-line, near-real-time access to images to be useful for obtaining data on answering their biological questions.
Frequency-division multiplexer and demultiplexer for terahertz wireless links.
Ma, Jianjun; Karl, Nicholas J; Bretin, Sara; Ducournau, Guillaume; Mittleman, Daniel M
2017-09-28
The development of components for terahertz wireless communications networks has become an active and growing research field. However, in most cases these components have been studied using a continuous or broadband-pulsed terahertz source, not using a modulated data stream. This limitation may mask important aspects of the performance of the device in a realistic system configuration. We report the characterization of one such device, a frequency multiplexer, using modulated data at rates up to 10 gigabits per second. We also demonstrate simultaneous error-free transmission of two signals at different carrier frequencies, with an aggregate data rate of 50 gigabits per second. We observe that the far-field spatial variation of the bit error rate is different from that of the emitted power, due to a small nonuniformity in the angular detection sensitivity. This is likely to be a common feature of any terahertz communication system in which signals propagate as diffracting beams not omnidirectional broadcasts.There is growing interest in the development of components to facilitate wireless communications in the terahertz but the characterization of these systems involve an unmodulated input. Here the authors demonstrate multiplexing and demultiplexing of data streams in the terahertz range using a real data link.
Distributed Estimation, Coding, and Scheduling in Wireless Visual Sensor Networks
ERIC Educational Resources Information Center
Yu, Chao
2013-01-01
In this thesis, we consider estimation, coding, and sensor scheduling for energy efficient operation of wireless visual sensor networks (VSN), which consist of battery-powered wireless sensors with sensing (imaging), computation, and communication capabilities. The competing requirements for applications of these wireless sensor networks (WSN)…
Multi-channel distributed coordinated function over single radio in wireless sensor networks.
Campbell, Carlene E-A; Loo, Kok-Keong Jonathan; Gemikonakli, Orhan; Khan, Shafiullah; Singh, Dhananjay
2011-01-01
Multi-channel assignments are becoming the solution of choice to improve performance in single radio for wireless networks. Multi-channel allows wireless networks to assign different channels to different nodes in real-time transmission. In this paper, we propose a new approach, Multi-channel Distributed Coordinated Function (MC-DCF) which takes advantage of multi-channel assignment. The backoff algorithm of the IEEE 802.11 distributed coordination function (DCF) was modified to invoke channel switching, based on threshold criteria in order to improve the overall throughput for wireless sensor networks (WSNs) over 802.11 networks. We presented simulation experiments in order to investigate the characteristics of multi-channel communication in wireless sensor networks using an NS2 platform. Nodes only use a single radio and perform channel switching only after specified threshold is reached. Single radio can only work on one channel at any given time. All nodes initiate constant bit rate streams towards the receiving nodes. In this work, we studied the impact of non-overlapping channels in the 2.4 frequency band on: constant bit rate (CBR) streams, node density, source nodes sending data directly to sink and signal strength by varying distances between the sensor nodes and operating frequencies of the radios with different data rates. We showed that multi-channel enhancement using our proposed algorithm provides significant improvement in terms of throughput, packet delivery ratio and delay. This technique can be considered for WSNs future use in 802.11 networks especially when the IEEE 802.11n becomes popular thereby may prevent the 802.15.4 network from operating effectively in the 2.4 GHz frequency band.
Multi-Channel Distributed Coordinated Function over Single Radio in Wireless Sensor Networks
Campbell, Carlene E.-A.; Loo, Kok-Keong (Jonathan); Gemikonakli, Orhan; Khan, Shafiullah; Singh, Dhananjay
2011-01-01
Multi-channel assignments are becoming the solution of choice to improve performance in single radio for wireless networks. Multi-channel allows wireless networks to assign different channels to different nodes in real-time transmission. In this paper, we propose a new approach, Multi-channel Distributed Coordinated Function (MC-DCF) which takes advantage of multi-channel assignment. The backoff algorithm of the IEEE 802.11 distributed coordination function (DCF) was modified to invoke channel switching, based on threshold criteria in order to improve the overall throughput for wireless sensor networks (WSNs) over 802.11 networks. We presented simulation experiments in order to investigate the characteristics of multi-channel communication in wireless sensor networks using an NS2 platform. Nodes only use a single radio and perform channel switching only after specified threshold is reached. Single radio can only work on one channel at any given time. All nodes initiate constant bit rate streams towards the receiving nodes. In this work, we studied the impact of non-overlapping channels in the 2.4 frequency band on: constant bit rate (CBR) streams, node density, source nodes sending data directly to sink and signal strength by varying distances between the sensor nodes and operating frequencies of the radios with different data rates. We showed that multi-channel enhancement using our proposed algorithm provides significant improvement in terms of throughput, packet delivery ratio and delay. This technique can be considered for WSNs future use in 802.11 networks especially when the IEEE 802.11n becomes popular thereby may prevent the 802.15.4 network from operating effectively in the 2.4 GHz frequency band. PMID:22346614
Wireless Zigbee strain gage sensor system for structural health monitoring
NASA Astrophysics Data System (ADS)
Ide, Hiroshi; Abdi, Frank; Miraj, Rashid; Dang, Chau; Takahashi, Tatsuya; Sauer, Bruce
2009-05-01
A compact cell phone size radio frequency (ZigBee) wireless strain measurement sensor system to measure the structural strain deformation was developed. The developed system provides an accurate strain measurement data stream to the Internet for further Diagnostic and Prognostic (DPS) correlation. Existing methods of structural measurement by strain sensors (gauges) do not completely satisfy problems posed by continuous structural health monitoring. The need for efficient health monitoring methods with real-time requirements to bidirectional data flow from sensors and to a commanding device is becoming critical for keeping our daily life safety. The use of full-field strain measurement techniques could reduce costly experimental programs through better understanding of material behavior. Wireless sensor-network technology is a monitoring method that is estimated to grow rapidly providing potential for cost savings over traditional wired sensors. The many of currently available wireless monitoring methods have: the proactive and constant data rate character of the data streams rather than traditional reactive, event-driven data delivery; mostly static node placement on structures with limited number of nodes. Alpha STAR Electronics' wireless sensor network system, ASWN, addresses some of these deficiencies, making the system easier to operate. The ASWN strain measurement system utilizes off-the-shelf sensors, namely strain gauges, with an analog-to-digital converter/amplifier and ZigBee radio chips to keep cost lower. Strain data is captured by the sensor, converted to digital form and delivered to the ZigBee radio chip, which in turn broadcasts the information using wireless protocols to a Personal Data Assistant (PDA) or Laptop/Desktop computers. From here, data is forwarded to remote computers for higher-level analysis and feedback using traditional cellular and satellite communication or the Ethernet infrastructure. This system offers a compact size, lower cost, and temperature insensitivity for critical structural applications, which require immediate monitoring and feedback.
Implemented a wireless communication system for VGA capsule endoscope.
Moon, Yeon-Kwan; Lee, Jyung Hyun; Park, Hee-Joon; Cho, Jin-Ho; Choi, Hyun-Chul
2014-01-01
Recently, several medical devices that use wireless communication are under development. In this paper, the small size frequency shift keying (FSK) transmitter and a monofilar antenna for the capsule endoscope, enabling the medical device to transmit VGA-size images of the intestine. To verify the functionality of the proposed wireless communication system, computer simulations and animal experiments were performed with the implemented capsule endoscope that includes the proposed wireless communication system. Several fundamental experiments are carried out using the implemented transmitter and antenna, and animal in-vivo experiments were performed to verify VGA image transmission.
Chaves, Rafael Oliveira; de Oliveira, Pedro Armando Valente; Rocha, Luciano Chaves; David, Joacy Pedro Franco; Ferreira, Sanmari Costa; Santos, Alex de Assis Santos Dos; Melo, Rômulo Müller Dos Santos; Yasojima, Edson Yuzur; Brito, Marcus Vinicius Henriques
2017-10-01
In order to engage medical students and residents from public health centers to utilize the telemedicine features of surgery on their own smartphones and tablets as an educational tool, an innovative streaming system was developed with the purpose of streaming live footage from open surgeries to smartphones and tablets, allowing the visualization of the surgical field from the surgeon's perspective. The current study aims to describe the results of an evaluation on level 1 of Kirkpatrick's Model for Evaluation of the streaming system usage during gynecological surgeries, based on the perception of medical students and gynecology residents. Consisted of a live video streaming (from the surgeon's point of view) of gynecological surgeries for smartphones and tablets, one for each volunteer. The volunteers were able to connect to the local wireless network, created by the streaming system, through an access password and watch the video transmission on a web browser on their smartphones. Then, they answered a Likert-type questionnaire containing 14 items about the educational applicability of the streaming system, as well as comparing it to watching an in loco procedure. This study is formally approved by the local ethics commission (Certificate No. 53175915.7.0000.5171/2016). Twenty-one volunteers participated, totalizing 294 items answered, in which 94.2% were in agreement with the items affirmative, 4.1% were neutral, and only 1.7% answers corresponded to negative impressions. Cronbach's α was .82, which represents a good reliability level. Spearman's coefficients were highly significant in 4 comparisons and moderately significant in the other 20 comparisons. This study presents a local streaming video system of live surgeries to smartphones and tablets and shows its educational utility, low cost, and simple usage, which offers convenience and satisfactory image resolution, thus being potentially applicable in surgical teaching.
Wireless sensors for measuring sub-surface processes in firn
NASA Astrophysics Data System (ADS)
Bagshaw, Elizabeth; Karlsson, Nanna; Lishman, Ben; Bun Lok, Lai; Burrow, Stephen; Wadham, Jemma; Clare, Lindsay; Nicholls, Keith; Corr, Hugh; Brennan, Paul; Eisen, Olaf; Dahl-Jensson, Dorthe
2017-04-01
Subsurface processes exert controls on meltwater storage and densification within firn, which are, by their nature, challenging to measure. We present the results of proof-of-concept tests of wireless ETracer sensors with the East Greenland Ice Core Project (EGRIP) at the Northeast Greenland Ice Stream. ETracers equipped with temperature, pressure and electrical conductivity sensors were deployed in firn boreholes at the centre and the shear margins of the ice stream. Data were returned from a 60m deep test borehole, and continuously for 4 weeks from two 14m deep boreholes, to autonomous receivers at the surface. Two receivers were tested: a station using software radio and PC, and the BAS/UCL ApRES radar system. The sensors were used to track high resolution changes in temperature with depth, changes in densification rates in response to accumulation events and snow redistribution, and the presence of liquid water within the firn.
A Wireless Sensor Network for Vineyard Monitoring That Uses Image Processing
Lloret, Jaime; Bosch, Ignacio; Sendra, Sandra; Serrano, Arturo
2011-01-01
The first step to detect when a vineyard has any type of deficiency, pest or disease is to observe its stems, its grapes and/or its leaves. To place a sensor in each leaf of every vineyard is obviously not feasible in terms of cost and deployment. We should thus look for new methods to detect these symptoms precisely and economically. In this paper, we present a wireless sensor network where each sensor node takes images from the field and internally uses image processing techniques to detect any unusual status in the leaves. This symptom could be caused by a deficiency, pest, disease or other harmful agent. When it is detected, the sensor node sends a message to a sink node through the wireless sensor network in order to notify the problem to the farmer. The wireless sensor uses the IEEE 802.11 a/b/g/n standard, which allows connections from large distances in open air. This paper describes the wireless sensor network design, the wireless sensor deployment, how the node processes the images in order to monitor the vineyard, and the sensor network traffic obtained from a test bed performed in a flat vineyard in Spain. Although the system is not able to distinguish between deficiency, pest, disease or other harmful agents, a symptoms image database and a neuronal network could be added in order learn from the experience and provide an accurate problem diagnosis. PMID:22163948
A wireless sensor network for vineyard monitoring that uses image processing.
Lloret, Jaime; Bosch, Ignacio; Sendra, Sandra; Serrano, Arturo
2011-01-01
The first step to detect when a vineyard has any type of deficiency, pest or disease is to observe its stems, its grapes and/or its leaves. To place a sensor in each leaf of every vineyard is obviously not feasible in terms of cost and deployment. We should thus look for new methods to detect these symptoms precisely and economically. In this paper, we present a wireless sensor network where each sensor node takes images from the field and internally uses image processing techniques to detect any unusual status in the leaves. This symptom could be caused by a deficiency, pest, disease or other harmful agent. When it is detected, the sensor node sends a message to a sink node through the wireless sensor network in order to notify the problem to the farmer. The wireless sensor uses the IEEE 802.11 a/b/g/n standard, which allows connections from large distances in open air. This paper describes the wireless sensor network design, the wireless sensor deployment, how the node processes the images in order to monitor the vineyard, and the sensor network traffic obtained from a test bed performed in a flat vineyard in Spain. Although the system is not able to distinguish between deficiency, pest, disease or other harmful agents, a symptoms image database and a neuronal network could be added in order learn from the experience and provide an accurate problem diagnosis.
NASA Astrophysics Data System (ADS)
Khursheed, Khursheed; Imran, Muhammad; Ahmad, Naeem; O'Nils, Mattias
2012-06-01
Wireless Visual Sensor Network (WVSN) is an emerging field which combines image sensor, on board computation unit, communication component and energy source. Compared to the traditional wireless sensor network, which operates on one dimensional data, such as temperature, pressure values etc., WVSN operates on two dimensional data (images) which requires higher processing power and communication bandwidth. Normally, WVSNs are deployed in areas where installation of wired solutions is not feasible. The energy budget in these networks is limited to the batteries, because of the wireless nature of the application. Due to the limited availability of energy, the processing at Visual Sensor Nodes (VSN) and communication from VSN to server should consume as low energy as possible. Transmission of raw images wirelessly consumes a lot of energy and requires higher communication bandwidth. Data compression methods reduce data efficiently and hence will be effective in reducing communication cost in WVSN. In this paper, we have compared the compression efficiency and complexity of six well known bi-level image compression methods. The focus is to determine the compression algorithms which can efficiently compress bi-level images and their computational complexity is suitable for computational platform used in WVSNs. These results can be used as a road map for selection of compression methods for different sets of constraints in WVSN.
Wireless actuation with functional acoustic surfaces
NASA Astrophysics Data System (ADS)
Qiu, T.; Palagi, S.; Mark, A. G.; Melde, K.; Adams, F.; Fischer, P.
2016-11-01
Miniaturization calls for micro-actuators that can be powered wirelessly and addressed individually. Here, we develop functional surfaces consisting of arrays of acoustically resonant micro-cavities, and we demonstrate their application as two-dimensional wireless actuators. When remotely powered by an acoustic field, the surfaces provide highly directional propulsive forces in fluids through acoustic streaming. A maximal force of ˜0.45 mN is measured on a 4 × 4 mm2 functional surface. The response of the surfaces with bubbles of different sizes is characterized experimentally. This shows a marked peak around the micro-bubbles' resonance frequency, as estimated by both an analytical model and numerical simulations. The strong frequency dependence can be exploited to address different surfaces with different acoustic frequencies, thus achieving wireless actuation with multiple degrees of freedom. The use of the functional surfaces as wireless ready-to-attach actuators is demonstrated by implementing a wireless and bidirectional miniaturized rotary motor, which is 2.6 × 2.6 × 5 mm3 in size and generates a stall torque of ˜0.5 mN.mm. The adoption of micro-structured surfaces as wireless actuators opens new possibilities in the development of miniaturized devices and tools for fluidic environments that are accessible by low intensity ultrasound fields.
Yoshihiro, Akiko; Nakata, Norio; Harada, Junta; Tada, Shimpei
2002-01-01
Although local area networks (LANs) are commonplace in hospital-based radiology departments today, wireless LANs are still relatively unknown and untried. A linked wireless reporting system was developed to improve work throughput and efficiency. It allows radiologists, physicians, and technologists to review current radiology reports and images and instantly compare them with reports and images from previous examinations. This reporting system also facilitates creation of teaching files quickly, easily, and accurately. It consists of a Digital Imaging and Communications in Medicine 3.0-based picture archiving and communication system (PACS), a diagnostic report server, and portable laptop computers. The PACS interfaces with magnetic resonance imagers, computed tomographic scanners, and computed radiography equipment. The same kind of functionality is achievable with a wireless LAN as with a wired LAN, with comparable bandwidth but with less cabling infrastructure required. This wireless system is presently incorporated into the operations of the emergency and radiology departments, with future plans calling for applications in operating rooms, outpatient departments, all hospital wards, and intensive care units. No major problems have been encountered with the system, which is in constant use and appears to be quite successful. Copyright RSNA, 2002
2009-09-01
with the flexibility provided by a wireless sensor network , could provide such enhancements. The objective of this research was to explore the...feasibility of remote management and control of a low-power/low-cost wireless sensor network by implementing a point-to-point wireless network utilizing IEEE
An open-source wireless sensor stack: from Arduino to SDI-12 to Water One Flow
NASA Astrophysics Data System (ADS)
Hicks, S.; Damiano, S. G.; Smith, K. M.; Olexy, J.; Horsburgh, J. S.; Mayorga, E.; Aufdenkampe, A. K.
2013-12-01
Implementing a large-scale streaming environmental sensor network has previously been limited by the high cost of the datalogging and data communication infrastructure. The Christina River Basin Critical Zone Observatory (CRB-CZO) is overcoming the obstacles to large near-real-time data collection networks by using Arduino, an open source electronics platform, in combination with XBee ZigBee wireless radio modules. These extremely low-cost and easy-to-use open source electronics are at the heart of the new DIY movement and have provided solutions to countless projects by over half a million users worldwide. However, their use in environmental sensing is in its infancy. At present a primary limitation to widespread deployment of open-source electronics for environmental sensing is the lack of a simple, open-source software stack to manage streaming data from heterogeneous sensor networks. Here we present a functioning prototype software stack that receives sensor data over a self-meshing ZigBee wireless network from over a hundred sensors, stores the data locally and serves it on demand as a CUAHSI Water One Flow (WOF) web service. We highlight a few new, innovative components, including: (1) a versatile open data logger design based the Arduino electronics platform and ZigBee radios; (2) a software library implementing SDI-12 communication protocol between any Arduino platform and SDI12-enabled sensors without the need for additional hardware (https://github.com/StroudCenter/Arduino-SDI-12); and (3) 'midStream', a light-weight set of Python code that receives streaming sensor data, appends it with metadata on the fly by querying a relational database structured on an early version of the Observations Data Model version 2.0 (ODM2), and uses the WOFpy library to serve the data as WaterML via SOAP and REST web services.
DOT National Transportation Integrated Search
1999-03-01
This study focused on assessing the application of traffic monitoring and management systems which use transportable surveillance and ramp meter trailers, video image processors, and wireless communications. The mobile surveillance and wireless commu...
A Wireless Capsule Endoscope System With Low-Power Controlling and Processing ASIC.
Xinkai Chen; Xiaoyu Zhang; Linwei Zhang; Xiaowen Li; Nan Qi; Hanjun Jiang; Zhihua Wang
2009-02-01
This paper presents the design of a wireless capsule endoscope system. The proposed system is mainly composed of a CMOS image sensor, a RF transceiver and a low-power controlling and processing application specific integrated circuit (ASIC). Several design challenges involving system power reduction, system miniaturization and wireless wake-up method are resolved by employing optimized system architecture, integration of an area and power efficient image compression module, a power management unit (PMU) and a novel wireless wake-up subsystem with zero standby current in the ASIC design. The ASIC has been fabricated in 0.18-mum CMOS technology with a die area of 3.4 mm * 3.3 mm. The digital baseband can work under a power supply down to 0.95 V with a power dissipation of 1.3 mW. The prototype capsule based on the ASIC and a data recorder has been developed. Test result shows that proposed system architecture with local image compression lead to an average of 45% energy reduction for transmitting an image frame.
Kumamoto, Etsuko; Takahashi, Akihiro; Matsuoka, Yuichiro; Morita, Yoshinori; Kutsumi, Hiromu; Azuma, Takeshi; Kuroda, Kagayaki
2013-01-01
The MR-endoscope system can perform magnetic resonance (MR) imaging during endoscopy and show the images obtained by using endoscope and MR. The MR-endoscope system can acquire a high-spatial resolution MR image with an intraluminal radiofrequency (RF) coil, and the navigation system shows the scope's location and orientation inside the human body and indicates MR images with a scope view. In order to conveniently perform an endoscopy and MR procedure, the design of the user interface is very important because it provides useful information. In this study, we propose a navigation system using a wireless accelerometer-based controller with Bluetooth technology and a navigation technique to set the intraluminal RF coil using the navigation system. The feasibility of using this wireless controller in the MR shield room was validated via phantom examinations of the influence on MR procedures and navigation accuracy. In vitro examinations using an isolated porcine stomach demonstrated the effectiveness of the navigation technique using a wireless remote-control device.
The design of the CMOS wireless bar code scanner applying optical system based on ZigBee
NASA Astrophysics Data System (ADS)
Chen, Yuelin; Peng, Jian
2008-03-01
The traditional bar code scanner is influenced by the length of data line, but the farthest distance of the wireless bar code scanner of wireless communication is generally between 30m and 100m on the market. By rebuilding the traditional CCD optical bar code scanner, a CMOS code scanner is designed based on the ZigBee to meet the demands of market. The scan system consists of the CMOS image sensor and embedded chip S3C2401X, when the two dimensional bar code is read, the results show the inaccurate and wrong code bar, resulted from image defile, disturber, reads image condition badness, signal interference, unstable system voltage. So we put forward the method which uses the matrix evaluation and Read-Solomon arithmetic to solve them. In order to construct the whole wireless optics of bar code system and to ensure its ability of transmitting bar code image signals digitally with long distances, ZigBee is used to transmit data to the base station, and this module is designed based on image acquisition system, and at last the wireless transmitting/receiving CC2430 module circuit linking chart is established. And by transplanting the embedded RTOS system LINUX to the MCU, an applying wireless CMOS optics bar code scanner and multi-task system is constructed. Finally, performance of communication is tested by evaluation software Smart RF. In broad space, every ZIGBEE node can realize 50m transmission with high reliability. When adding more ZigBee nodes, the transmission distance can be several thousands of meters long.
NASA Astrophysics Data System (ADS)
Bartos, M. D.; Kerkez, B.; Noh, S.; Seo, D. J.
2017-12-01
In this study, we develop and evaluate a high resolution urban flash flood monitoring system using a wireless sensor network (WSN), a real-time rainfall-runoff model, and spatially-explicit radar rainfall predictions. Flooding is the leading cause of natural disaster fatalities in the US, with flash flooding in particular responsible for a majority of flooding deaths. While many riverine flood models have been operationalized into early warning systems, there is currently no model that is capable of reliably predicting flash floods in urban areas. Urban flash floods are particularly difficult to model due to a lack of rainfall and runoff data at appropriate scales. To address this problem, we develop a wide-area flood-monitoring wireless sensor network for the Dallas-Fort Worth metroplex, and use this network to characterize rainfall-runoff response over multiple heterogeneous catchments. First, we deploy a network of 22 wireless sensor nodes to collect real-time stream stage measurements over catchments ranging from 2-80 km2 in size. Next, we characterize the rainfall-runoff response of each catchment by combining stream stage data with gage and radar-based precipitation measurements. Finally, we demonstrate the potential for real-time flash flood prediction by joining the derived rainfall-runoff models with real-time radar rainfall predictions. We find that runoff response is highly heterogeneous among catchments, with large variabilities in runoff response detected even among nearby gages. However, when spatially-explicit rainfall fields are included, spatial variability in runoff response is largely captured. This result highlights the importance of increased spatial coverage for flash flood prediction.
WISH: a Wireless Mobile Multimedia Information System in Healthcare using RFID.
Yu, Weider D; Ray, Pradeep; Motoc, Tiberiu
2008-05-01
It is important to improve the efficiency of healthcare-related operations and the associated costs. Healthcare organizations are constantly under increased pressure to streamline operations and provide enhanced services to their patients. Wireless mobile computing technology has the potential to provide the desired benefits and would be a critical part of today's healthcare information system. In this paper, a system is presented to better facilitate the functions of physicians and medical staff in healthcare by using modern wireless mobile technology, Radio Frequency Identification (RFID) tools, and multimedia streaming. The paper includes a case study of the development of such a system in the context of healthcare in the United States. The results of the study show how wireless mobile multimedia systems can be developed for the improvement of the quality and efficiency in healthcare for other nations as well. Our testing data show a time reduction of more than 50% in the daily activities of hospital staff.
Blood detection in wireless capsule endoscope images based on salient superpixels.
Iakovidis, Dimitris K; Chatzis, Dimitris; Chrysanthopoulos, Panos; Koulaouzidis, Anastasios
2015-08-01
Wireless capsule endoscopy (WCE) enables screening of the gastrointestinal (GI) tract with a miniature, optical endoscope packed within a small swallowable capsule, wirelessly transmitting color images. In this paper we propose a novel method for automatic blood detection in contemporary WCE images. Blood is an alarming indication for the presence of pathologies requiring further treatment. The proposed method is based on a new definition of superpixel saliency. The saliency of superpixels is assessed upon their color, enabling the identification of image regions that are likely to contain blood. The blood patterns are recognized by their color features using a supervised learning machine. Experiments performed on a public dataset using automatically selected first-order statistical features from various color components indicate that the proposed method outperforms state-of-the-art methods.
Multimedia information processing in the SWAN mobile networked computing system
NASA Astrophysics Data System (ADS)
Agrawal, Prathima; Hyden, Eoin; Krzyzanowsji, Paul; Srivastava, Mani B.; Trotter, John
1996-03-01
Anytime anywhere wireless access to databases, such as medical and inventory records, can simplify workflow management in a business, and reduce or even eliminate the cost of moving paper documents. Moreover, continual progress in wireless access technology promises to provide per-user bandwidths of the order of a few Mbps, at least in indoor environments. When combined with the emerging high-speed integrated service wired networks, it enables ubiquitous and tetherless access to and processing of multimedia information by mobile users. To leverage on this synergy an indoor wireless network based on room-sized cells and multimedia mobile end-points is being developed at AT&T Bell Laboratories. This research network, called SWAN (Seamless Wireless ATM Networking), allows users carrying multimedia end-points such as PDAs, laptops, and portable multimedia terminals, to seamlessly roam while accessing multimedia data streams from the wired backbone network. A distinguishing feature of the SWAN network is its use of end-to-end ATM connectivity as opposed to the connectionless mobile-IP connectivity used by present day wireless data LANs. This choice allows the wireless resource in a cell to be intelligently allocated amongst various ATM virtual circuits according to their quality of service requirements. But an efficient implementation of ATM in a wireless environment requires a proper mobile network architecture. In particular, the wireless link and medium-access layers need to be cognizant of the ATM traffic, while the ATM layers need to be cognizant of the mobility enabled by the wireless layers. This paper presents an overview of SWAN's network architecture, briefly discusses the issues in making ATM mobile and wireless, and describes initial multimedia applications for SWAN.
Khanna, Preeya; Swann, Nicole C.; de Hemptinne, Coralie; Miocinovic, Svjetlana; Miller, Andrew; Starr, Philip A.; Carmena, Jose M.
2017-01-01
Parkinson’s disease (PD) is characterized by motor symptoms such as rigidity and bradykinesia that prevent normal movement. Beta band oscillations (13–30 Hz) in neural local field potentials (LFPs) have been associated with these motor symptoms. Here, three PD patients implanted with a therapeutic deep brain neural stimulator that can also record and wirelessly stream neural data played a neurofeedback game where they modulated their beta band power from sensorimotor cortical areas. Patients’ beta band power was streamed in real-time to update the position of a cursor that they tried to drive into a cued target. After playing the game for 1–2 hours each, all three patients exhibited above chance-level performance regardless of subcortical stimulation levels. This study, for the first time, demonstrates using an invasive neural recording system for at-home neurofeedback training. Future work will investigate chronic neurofeedback training as a potentially therapeutic tool for patients with neurological disorders. PMID:28113590
Khanna, Preeya; Swann, Nicole C; de Hemptinne, Coralie; Miocinovic, Svjetlana; Miller, Andrew; Starr, Philip A; Carmena, Jose M
2017-10-01
Parkinson's disease (PD) is characterized by motor symptoms such as rigidity and bradykinesia that prevent normal movement. Beta band oscillations (13-30 Hz) in neural local field potentials (LFPs) have been associated with these motor symptoms. Here, three PD patients implanted with a therapeutic deep brain neural stimulator that can also record and wirelessly stream neural data played a neurofeedback game where they modulated their beta band power from sensorimotor cortical areas. Patients' beta band power was streamed in real-time to update the position of a cursor that they tried to drive into a cued target. After playing the game for 1-2 hours each, all three patients exhibited above chance-level performance regardless of subcortical stimulation levels. This study, for the first time, demonstrates using an invasive neural recording system for at-home neurofeedback training. Future work will investigate chronic neurofeedback training as a potentially therapeutic tool for patients with neurological disorders.
Energy reduction using multi-channels optical wireless communication based OFDM
NASA Astrophysics Data System (ADS)
Darwesh, Laialy; Arnon, Shlomi
2017-10-01
In recent years, an increasing number of data center networks (DCNs) have been built to provide various cloud applications. Major challenges in the design of next generation DC networks include reduction of the energy consumption, high flexibility and scalability, high data rates, minimum latency and high cyber security. Use of optical wireless communication (OWC) to augment the DC network could help to confront some of these challenges. In this paper we present an OWC multi channels communication method that could lead to significant energy reduction of the communication equipment. The method is to convert a high speed serial data stream to many slower and parallel streams and vies versa at the receiver. We implement this concept of multi channels using optical orthogonal frequency division multiplexing (O-OFDM) method. In our scheme, we use asymmetrically clipped optical OFDM (ACO-OFDM). Our results show that the realization of multi channels OFDM (ACO-OFDM) methods reduces the total energy consumption exponentially, as the number of channels transmitted through them rises.
Power-Constrained Fuzzy Logic Control of Video Streaming over a Wireless Interconnect
NASA Astrophysics Data System (ADS)
Razavi, Rouzbeh; Fleury, Martin; Ghanbari, Mohammed
2008-12-01
Wireless communication of video, with Bluetooth as an example, represents a compromise between channel conditions, display and decode deadlines, and energy constraints. This paper proposes fuzzy logic control (FLC) of automatic repeat request (ARQ) as a way of reconciling these factors, with a 40% saving in power in the worst channel conditions from economizing on transmissions when channel errors occur. Whatever the channel conditions are, FLC is shown to outperform the default Bluetooth scheme and an alternative Bluetooth-adaptive ARQ scheme in terms of reduced packet loss and delay, as well as improved video quality.
Robust digital image inpainting algorithm in the wireless environment
NASA Astrophysics Data System (ADS)
Karapetyan, G.; Sarukhanyan, H. G.; Agaian, S. S.
2014-05-01
Image or video inpainting is the process/art of retrieving missing portions of an image without introducing undesirable artifacts that are undetectable by an ordinary observer. An image/video can be damaged due to a variety of factors, such as deterioration due to scratches, laser dazzling effects, wear and tear, dust spots, loss of data when transmitted through a channel, etc. Applications of inpainting include image restoration (removing laser dazzling effects, dust spots, date, text, time, etc.), image synthesis (texture synthesis), completing panoramas, image coding, wireless transmission (recovery of the missing blocks), digital culture protection, image de-noising, fingerprint recognition, and film special effects and production. Most inpainting methods can be classified in two key groups: global and local methods. Global methods are used for generating large image regions from samples while local methods are used for filling in small image gaps. Each method has its own advantages and limitations. For example, the global inpainting methods perform well on textured image retrieval, whereas the classical local methods perform poorly. In addition, some of the techniques are computationally intensive; exceeding the capabilities of most currently used mobile devices. In general, the inpainting algorithms are not suitable for the wireless environment. This paper presents a new and efficient scheme that combines the advantages of both local and global methods into a single algorithm. Particularly, it introduces a blind inpainting model to solve the above problems by adaptively selecting support area for the inpainting scheme. The proposed method is applied to various challenging image restoration tasks, including recovering old photos, recovering missing data on real and synthetic images, and recovering the specular reflections in endoscopic images. A number of computer simulations demonstrate the effectiveness of our scheme and also illustrate the main properties and implementation steps of the presented algorithm. Furthermore, the simulation results show that the presented method is among the state-of-the-art and compares favorably against many available methods in the wireless environment. Robustness in the wireless environment with respect to the shape of the manually selected "marked" region is also illustrated. Currently, we are working on the expansion of this work to video and 3-D data.
A High-Resolution Minimicroscope System for Wireless Real-Time Monitoring.
Wang, Zongjie; Boddeda, Akash; Parker, Benjamin; Samanipour, Roya; Ghosh, Sanjoy; Menard, Frederic; Kim, Keekyoung
2018-07-01
Compact, cost-effective, and high-performance microscope that enables the real-time imaging of cells and lab-on-a-chip devices is highly demanded for cell biology and biomedical engineering. This paper aims to present the design and application of an inexpensive wireless minimicroscope with resolution up to 2592 × 1944 pixels and speed up to 90 f/s. The minimicroscope system was built on a commercial embedded system (Raspberry Pi). We modified a camera module and adopted an inverse dual lens system to obtain the clear field of view and appropriate magnification for tens of micrometer objects. The system was capable of capturing time-lapse images and transferring image data wirelessly. The entire system can be operated wirelessly and cordlessly in a conventional cell culturing incubator. The developed minimicroscope was used to monitor the attachment and proliferation of NIH-3T3 and HEK 293 cells inside an incubator for 50 h. In addition, the minimicroscope was used to monitor a droplet generation process in a microfluidic device. The high-quality images captured by the minimicroscope enabled us an automated analysis of experimental parameters. The successful applications prove the great potential of the developed minimicroscope for monitoring various biological samples and microfluidic devices. This paper presents the design of a high-resolution minimicroscope system that enables the wireless real-time imaging of cells inside the incubator. This system has been verified to be a useful tool to obtain high-quality images and videos for the automated quantitative analysis of biological samples and lab-on-a-chip devices in the long term.
NASA Astrophysics Data System (ADS)
Brown, T.; Borevitz, J. O.; Zimmermann, C.
2010-12-01
We have a developed a camera system that can record hourly, gigapixel (multi-billion pixel) scale images of an ecosystem in a 360x90 degree panorama. The “Gigavision” camera system is solar-powered and can wirelessly stream data to a server. Quantitative data collection from multiyear timelapse gigapixel images is facilitated through an innovative web-based toolkit for recording time-series data on developmental stages (phenology) from any plant in the camera’s field of view. Gigapixel images enable time-series recording of entire landscapes with a resolution sufficient to record phenology from a majority of individuals in entire populations of plants. When coupled with next generation sequencing, quantitative population genomics can be performed in a landscape context linking ecology and evolution in situ and in real time. The Gigavision camera system achieves gigapixel image resolution by recording rows and columns of overlapping megapixel images. These images are stitched together into a single gigapixel resolution image using commercially available panorama software. Hardware consists of a 5-18 megapixel resolution DSLR or Network IP camera mounted on a pair of heavy-duty servo motors that provide pan-tilt capabilities. The servos and camera are controlled with a low-power Windows PC. Servo movement, power switching, and system status monitoring are enabled with Phidgets-brand sensor boards. System temperature, humidity, power usage, and battery voltage are all monitored at 5 minute intervals. All sensor data is uploaded via cellular or 802.11 wireless to an interactive online interface for easy remote monitoring of system status. Systems with direct internet connections upload the full sized images directly to our automated stitching server where they are stitched and available online for viewing within an hour of capture. Systems with cellular wireless upload an 80 megapixel “thumbnail” of each larger panorama and full-sized images are manually retrieved at bi-weekly intervals. Our longer-term goal is to make gigapixel time-lapse datasets available online in an interactive interface that layers plant-level phenology data with gigapixel resolution images, genomic sequence data from individual plants with weather and other abitotic sensor data. Co-visualization of all of these data types provides researchers with a powerful new tool for examining complex ecological interactions across scales from the individual to the ecosystem. We will present detailed phenostage data from more than 100 plants of multiple species from our Gigavision timelapse camera at our “Big Blowout East” field site in the Indiana Dunes State Park, IN. This camera has been recording three to four 700 million pixel images a day since February 28, 2010. The camera field of view covers an area of about 7 hectares resulting in an average image resolution of about 1 pixel per centimeter over the entire site. We will also discuss some of the many technological challenges with developing and maintaining these types of hardware systems, collecting quantitative data from gigapixel resolution time-lapse data and effectively managing terabyte-sized datasets of millions of images.
NASA Technical Reports Server (NTRS)
DeCristofaro, Michael A.; Lansdowne, Chatwin A.; Schlesinger, Adam M.
2014-01-01
NASA has identified standardized wireless mesh networking as a key technology for future human and robotic space exploration. Wireless mesh networks enable rapid deployment, provide coverage in undeveloped regions. Mesh networks are also self-healing, resilient, and extensible, qualities not found in traditional infrastructure-based networks. Mesh networks can offer lower size, weight, and power (SWaP) than overlapped infrastructure-perapplication. To better understand the maturity, characteristics and capability of the technology, we developed an 802.11 mesh network consisting of a combination of heterogeneous commercial off-the-shelf devices and opensource firmware and software packages. Various streaming applications were operated over the mesh network, including voice and video, and performance measurements were made under different operating scenarios. During the testing several issues with the currently implemented mesh network technology were identified and outlined for future work.
NASA Astrophysics Data System (ADS)
Liu, Brent J.; Documet, Luis; Documet, Jorge; Huang, H. K.; Muldoon, Jean
2004-04-01
An Application Service Provider (ASP) archive model for disaster recovery for Saint John"s Health Center (SJHC) clinical PACS data has been implemented using a Fault-Tolerant Archive Server at the Image Processing and Informatics Laboratory, Marina del Rey, CA (IPIL) since mid-2002. The purpose of this paper is to provide clinical experiences with the implementation of an ASP model backup archive in conjunction with handheld wireless technologies for a particular disaster recovery scenario, an earthquake, in which the local PACS archive and the hospital are destroyed and the patients are moved from one hospital to another. The three sites involved are: (1) SJHC, the simulated disaster site; (2) IPIL, the ASP backup archive site; and (3) University of California, Los Angeles Medical Center (UCLA), the relocated patient site. An ASP backup archive has been established at IPIL to receive clinical PACS images daily using a T1 line from SJHC for backup and disaster recovery storage. Procedures were established to test the network connectivity and data integrity on a regular basis. In a given disaster scenario where the local PACS archive has been destroyed and the patients need to be moved to a second hospital, a wireless handheld device such as a Personal Digital Assistant (PDA) can be utilized to route images to the second hospital site with a PACS and reviewed by radiologists. To simulate this disaster scenario, a wireless network was implemented within the clinical environment in all three sites: SJHC, IPIL, and UCLA. Upon executing the disaster scenario, the SJHC PACS archive server simulates a downtime disaster event. Using the PDA, the radiologist at UCLA can query the ASP backup archive server at IPIL for PACS images and route them directly to UCLA. Implementation experiences integrating this solution within the three clinical environments as well as the wireless performance are discussed. A clinical downtime disaster scenario was implemented and successfully tested. Radiologists were able to successfully query PACS images utilizing a wireless handheld device from the ASP backup archive at IPIL and route the PACS images directly to a second clinical site at UCLA where they and the patients are located at that time. In a disaster scenario, using a wireless device, radiologists at the disaster health care center can route PACS data from an ASP backup archive server to be reviewed in a live clinical PACS environment at a secondary site. This solution allows Radiologists to use a wireless handheld device to control the image workflow and to review PACS images during a major disaster event where patients must be moved to a secondary site.
Aghdasi, Hadi S; Abbaspour, Maghsoud; Moghadam, Mohsen Ebrahimi; Samei, Yasaman
2008-08-04
Technological progress in the fields of Micro Electro-Mechanical Systems (MEMS) and wireless communications and also the availability of CMOS cameras, microphones and small-scale array sensors, which may ubiquitously capture multimedia content from the field, have fostered the development of low-cost limited resources Wireless Video-based Sensor Networks (WVSN). With regards to the constraints of videobased sensor nodes and wireless sensor networks, a supporting video stream is not easy to implement with the present sensor network protocols. In this paper, a thorough architecture is presented for video transmission over WVSN called Energy-efficient and high-Quality Video transmission Architecture (EQV-Architecture). This architecture influences three layers of communication protocol stack and considers wireless video sensor nodes constraints like limited process and energy resources while video quality is preserved in the receiver side. Application, transport, and network layers are the layers in which the compression protocol, transport protocol, and routing protocol are proposed respectively, also a dropping scheme is presented in network layer. Simulation results over various environments with dissimilar conditions revealed the effectiveness of the architecture in improving the lifetime of the network as well as preserving the video quality.
Integrated wireless systems: The future has arrived (Keynote Address)
NASA Astrophysics Data System (ADS)
Rivoir, Roberto
2005-06-01
It is believed that we are just at the beginning with wireless, and that a new age is dawning for this breakthrough technology. Thanks to several years of industrial manufacturing in mass-market applications such as cellular phones, wireless technology has nowadays reached a level of maturity that, combined with other achievements arising from different fields, such as information technology, artificial intelligence, pervasive computing, science of new materials, and micro-electro-mechanical systems (MEMS), will enable the realization of a networked stream-flow of real-time information, that will accompany us in our daily life, in a total seamless, transparent fashion. As almost any application scenario will require the deployment of complex, miniaturized, almost "invisible" systems, operating with different wireless standards, hard technological challenges will have to be faced for designing and fabricating ultra-low-cost, reconfigurable, and multi-mode heterogeneous smart micro-devices. But ongoing, unending progresses on wireless technology keeps the promise of helping to solve important societal problems in the health-care, safety, security, industry, environment sectors, and in general opening the possibility for an improved quality of life at work, on travel, at home, practically "everywhere, anytime".
Use of a wireless local area network in an orthodontic clinic.
Mupparapu, Muralidhar; Binder, Robert E; Cummins, John M
2005-06-01
Radiographic images and other patient records, including medical histories, demographics, and health insurance information, can now be stored digitally and accessed via patient management programs. However, digital image acquisition and diagnosis and treatment planning are independent tasks, and each is time consuming, especially when performed at different computer workstations. Networking or linking the computers in an office enhances access to imaging and treatment planning tools. Access can be further enhanced if the entire network is wireless. Thanks to wireless technology, stand-alone, desk-bound personal computers have been replaced with mobile, hand-held devices that can communicate with each other and the rest of the world via the Internet. As with any emerging technology, some issues should be kept in mind when adapting to the wireless environment. Foremost is network security. Second is the choice of mobile hardware devices that are used by the orthodontist, office staff, and patients. This article details the standards and choices in wireless technology that can be implemented in an orthodontic clinic and suggests how to select suitable mobile hardware for accessing or adding data to a preexisting network. The network security protocols discussed comply with HIPAA regulations and boost the efficiency of a modern orthodontic clinic.
Binary video codec for data reduction in wireless visual sensor networks
NASA Astrophysics Data System (ADS)
Khursheed, Khursheed; Ahmad, Naeem; Imran, Muhammad; O'Nils, Mattias
2013-02-01
Wireless Visual Sensor Networks (WVSN) is formed by deploying many Visual Sensor Nodes (VSNs) in the field. Typical applications of WVSN include environmental monitoring, health care, industrial process monitoring, stadium/airports monitoring for security reasons and many more. The energy budget in the outdoor applications of WVSN is limited to the batteries and the frequent replacement of batteries is usually not desirable. So the processing as well as the communication energy consumption of the VSN needs to be optimized in such a way that the network remains functional for longer duration. The images captured by VSN contain huge amount of data and require efficient computational resources for processing the images and wide communication bandwidth for the transmission of the results. Image processing algorithms must be designed and developed in such a way that they are computationally less complex and must provide high compression rate. For some applications of WVSN, the captured images can be segmented into bi-level images and hence bi-level image coding methods will efficiently reduce the information amount in these segmented images. But the compression rate of the bi-level image coding methods is limited by the underlined compression algorithm. Hence there is a need for designing other intelligent and efficient algorithms which are computationally less complex and provide better compression rate than that of bi-level image coding methods. Change coding is one such algorithm which is computationally less complex (require only exclusive OR operations) and provide better compression efficiency compared to image coding but it is effective for applications having slight changes between adjacent frames of the video. The detection and coding of the Region of Interest (ROIs) in the change frame efficiently reduce the information amount in the change frame. But, if the number of objects in the change frames is higher than a certain level then the compression efficiency of both the change coding and ROI coding becomes worse than that of image coding. This paper explores the compression efficiency of the Binary Video Codec (BVC) for the data reduction in WVSN. We proposed to implement all the three compression techniques i.e. image coding, change coding and ROI coding at the VSN and then select the smallest bit stream among the results of the three compression techniques. In this way the compression performance of the BVC will never become worse than that of image coding. We concluded that the compression efficiency of BVC is always better than that of change coding and is always better than or equal that of ROI coding and image coding.
A low-cost, portable, high-throughput wireless sensor system for phonocardiography applications.
Sa-Ngasoongsong, Akkarapol; Kunthong, Jakkrit; Sarangan, Venkatesh; Cai, Xinwei; Bukkapatnam, Satish T S
2012-01-01
This paper presents the design and testing of a wireless sensor system developed using a Microchip PICDEM developer kit to acquire and monitor human heart sounds for phonocardiography applications. This system can serve as a cost-effective option to the recent developments in wireless phonocardiography sensors that have primarily focused on Bluetooth technology. This wireless sensor system has been designed and developed in-house using off-the-shelf components and open source software for remote and mobile applications. The small form factor (3.75 cm × 5 cm × 1 cm), high throughput (6,000 Hz data streaming rate), and low cost ($13 per unit for a 1,000 unit batch) of this wireless sensor system make it particularly attractive for phonocardiography and other sensing applications. The experimental results of sensor signal analysis using several signal characterization techniques suggest that this wireless sensor system can capture both fundamental heart sounds (S1 and S2), and is also capable of capturing abnormal heart sounds (S3 and S4) and heart murmurs without aliasing. The results of a denoising application using Wavelet Transform show that the undesirable noises of sensor signals in the surrounding environment can be reduced dramatically. The exercising experiment results also show that this proposed wireless PCG system can capture heart sounds over different heart conditions simulated by varying heart rates of six subjects over a range of 60-180 Hz through exercise testing.
A Low-Cost, Portable, High-Throughput Wireless Sensor System for Phonocardiography Applications
Sa-ngasoongsong, Akkarapol; Kunthong, Jakkrit; Sarangan, Venkatesh; Cai, Xinwei; Bukkapatnam, Satish T. S.
2012-01-01
This paper presents the design and testing of a wireless sensor system developed using a Microchip PICDEM developer kit to acquire and monitor human heart sounds for phonocardiography applications. This system can serve as a cost-effective option to the recent developments in wireless phonocardiography sensors that have primarily focused on Bluetooth technology. This wireless sensor system has been designed and developed in-house using off-the-shelf components and open source software for remote and mobile applications. The small form factor (3.75 cm × 5 cm × 1 cm), high throughput (6,000 Hz data streaming rate), and low cost ($13 per unit for a 1,000 unit batch) of this wireless sensor system make it particularly attractive for phonocardiography and other sensing applications. The experimental results of sensor signal analysis using several signal characterization techniques suggest that this wireless sensor system can capture both fundamental heart sounds (S1 and S2), and is also capable of capturing abnormal heart sounds (S3 and S4) and heart murmurs without aliasing. The results of a denoising application using Wavelet Transform show that the undesirable noises of sensor signals in the surrounding environment can be reduced dramatically. The exercising experiment results also show that this proposed wireless PCG system can capture heart sounds over different heart conditions simulated by varying heart rates of six subjects over a range of 60–180 Hz through exercise testing. PMID:23112633
Wolfe, Jace; Morais, Mila; Schafer, Erin
2016-02-01
The goals of the present investigation were (1) to evaluate recognition of recorded speech presented over a mobile telephone for a group of adult bimodal cochlear implant users, and (2) to measure the potential benefits of wireless hearing assistance technology (HAT) for mobile telephone speech recognition using bimodal stimulation (i.e., a cochlear implant in one ear and a hearing aid on the other ear). A three-by-two-way repeated measures design was used to evaluate mobile telephone sentence-recognition performance differences obtained in quiet and in noise with and without the wireless HAT accessory coupled to the hearing aid alone, CI sound processor alone, and in the bimodal condition. Outpatient cochlear implant clinic. Sixteen bimodal users with Nucleus 24, Freedom, CI512, or CI422 cochlear implants participated in this study. Performance was measured with and without the use of a wireless HAT for the telephone used with the hearing aid alone, CI alone, and bimodal condition. CNC word recognition in quiet and in noise with and without the use of a wireless HAT telephone accessory in the hearing aid alone, CI alone, and bimodal conditions. Results suggested that the bimodal condition gave significantly better speech recognition on the mobile telephone with the wireless HAT. A wireless HAT for the mobile telephone provides bimodal users with significant improvement in word recognition in quiet and in noise over the mobile telephone.
Yau, Her-Terng; Hung, Tzu-Hsiang; Hsieh, Chia-Chun
2012-01-01
This study used the complex dynamic characteristics of chaotic systems and Bluetooth to explore the topic of wireless chaotic communication secrecy and develop a communication security system. The PID controller for chaos synchronization control was applied, and the optimum parameters of this PID controller were obtained using a Particle Swarm Optimization (PSO) algorithm. Bluetooth was used to realize wireless transmissions, and a chaotic wireless communication security system was developed in the design concept of a chaotic communication security system. The experimental results show that this scheme can be used successfully in image encryption.
Stochastic Packet Loss Model to Evaluate QoE Impairments
NASA Astrophysics Data System (ADS)
Hohlfeld, Oliver
With provisioning of broadband access for mass market—even in wireless and mobile networks—multimedia content, especially real-time streaming of high-quality audio and video, is extensively viewed and exchanged over the Internet. Quality of Experience (QoE) aspects, describing the service quality perceived by the user, is a vital factor in ensuring customer satisfaction in today's communication networks. Frameworks for accessing quality degradations in streamed video currently are investigated as a complex multi-layered research topic, involving network traffic load, codec functions and measures of user perception of video quality.
Semantic Network Adaptation Based on QoS Pattern Recognition for Multimedia Streams
NASA Astrophysics Data System (ADS)
Exposito, Ernesto; Gineste, Mathieu; Lamolle, Myriam; Gomez, Jorge
This article proposes an ontology based pattern recognition methodology to compute and represent common QoS properties of the Application Data Units (ADU) of multimedia streams. The use of this ontology by mechanisms located at different layers of the communication architecture will allow implementing fine per-packet self-optimization of communication services regarding the actual application requirements. A case study showing how this methodology is used by error control mechanisms in the context of wireless networks is presented in order to demonstrate the feasibility and advantages of this approach.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-11
... its Electronic Document Management System (EDOCS): http://hraunfoss.fcc.gov/edocs_public/SilverStream... Communications Commission. ACTION: Notice. SUMMARY: In this document, comment is sought on a December 17, 2009...'s Electronic Comment Filing System (ECFS), (2) the Federal Government's eRulemaking Portal, or (3...
Prospective motion correction using inductively coupled wireless RF coils.
Ooi, Melvyn B; Aksoy, Murat; Maclaren, Julian; Watkins, Ronald D; Bammer, Roland
2013-09-01
A novel prospective motion correction technique for brain MRI is presented that uses miniature wireless radio-frequency coils, or "wireless markers," for position tracking. Each marker is free of traditional cable connections to the scanner. Instead, its signal is wirelessly linked to the MR receiver via inductive coupling with the head coil. Real-time tracking of rigid head motion is performed using a pair of glasses integrated with three wireless markers. A tracking pulse-sequence, combined with knowledge of the markers' unique geometrical arrangement, is used to measure their positions. Tracking data from the glasses is then used to prospectively update the orientation and position of the image-volume so that it follows the motion of the head. Wireless-marker position measurements were comparable to measurements using traditional wired radio-frequency tracking coils, with the standard deviation of the difference < 0.01 mm over the range of positions measured inside the head coil. Wireless-marker safety was verified with B1 maps and temperature measurements. Prospective motion correction was demonstrated in a 2D spin-echo scan while the subject performed a series of deliberate head rotations. Prospective motion correction using wireless markers enables high quality images to be acquired even during bulk motions. Wireless markers are small, avoid radio-frequency safety risks from electrical cables, are not hampered by mechanical connections to the scanner, and require minimal setup times. These advantages may help to facilitate adoption in the clinic. Copyright © 2013 Wiley Periodicals, Inc.
vertical. See Flickr for more sizes and details. Advanced wireless sensing systems for wind-turbine blades Advanced wireless sensing systems for wind-turbine blades Researcher explores solar energy solutions at the
Transfer Error and Correction Approach in Mobile Network
NASA Astrophysics Data System (ADS)
Xiao-kai, Wu; Yong-jin, Shi; Da-jin, Chen; Bing-he, Ma; Qi-li, Zhou
With the development of information technology and social progress, human demand for information has become increasingly diverse, wherever and whenever people want to be able to easily, quickly and flexibly via voice, data, images and video and other means to communicate. Visual information to the people direct and vivid image, image / video transmission also been widespread attention. Although the third generation mobile communication systems and the emergence and rapid development of IP networks, making video communications is becoming the main business of the wireless communications, however, the actual wireless and IP channel will lead to error generation, such as: wireless channel multi- fading channels generated error and blocking IP packet loss and so on. Due to channel bandwidth limitations, the video communication compression coding of data is often beyond the data, and compress data after the error is very sensitive to error conditions caused a serious decline in image quality.
A PDA study management tool (SMT) utilizing wireless broadband and full DICOM viewing capability
NASA Astrophysics Data System (ADS)
Documet, Jorge; Liu, Brent; Zhou, Zheng; Huang, H. K.; Documet, Luis
2007-03-01
During the last 4 years IPI (Image Processing and Informatics) Laboratory has been developing a web-based Study Management Tool (SMT) application that allows Radiologists, Film librarians and PACS-related (Picture Archiving and Communication System) users to dynamically and remotely perform Query/Retrieve operations in a PACS network. The users utilizing a regular PDA (Personal Digital Assistant) can remotely query a PACS archive to distribute any study to an existing DICOM (Digital Imaging and Communications in Medicine) node. This application which has proven to be convenient to manage the Study Workflow [1, 2] has been extended to include a DICOM viewing capability in the PDA. With this new feature, users can take a quick view of DICOM images providing them mobility and convenience at the same time. In addition, we are extending this application to Metropolitan-Area Wireless Broadband Networks. This feature requires Smart Phones that are capable of working as a PDA and have access to Broadband Wireless Services. With the extended application to wireless broadband technology and the preview of DICOM images, the Study Management Tool becomes an even more powerful tool for clinical workflow management.
Evaluation Study of a Wireless Multimedia Traffic-Oriented Network Model
NASA Astrophysics Data System (ADS)
Vasiliadis, D. C.; Rizos, G. E.; Vassilakis, C.
2008-11-01
In this paper, a wireless multimedia traffic-oriented network scheme over a fourth generation system (4-G) is presented and analyzed. We conducted an extensive evaluation study for various mobility configurations in order to incorporate the behavior of the IEEE 802.11b standard over a test-bed wireless multimedia network model. In this context, the Quality of Services (QoS) over this network is vital for providing a reliable high-bandwidth platform for data-intensive sources like video streaming. Therefore, the main issues concerned in terms of QoS were the metrics for bandwidth of both dropped and lost packets and their mean packet delay under various traffic conditions. Finally, we used a generic distance-vector routing protocol which was based on an implementation of Distributed Bellman-Ford algorithm. The performance of the test-bed network model has been evaluated by using the simulation environment of NS-2.
Wireless augmented reality communication system
NASA Technical Reports Server (NTRS)
Devereaux, Ann (Inventor); Agan, Martin (Inventor); Jedrey, Thomas (Inventor)
2006-01-01
The system of the present invention is a highly integrated radio communication system with a multimedia co-processor which allows true two-way multimedia (video, audio, data) access as well as real-time biomedical monitoring in a pager-sized portable access unit. The system is integrated in a network structure including one or more general purpose nodes for providing a wireless-to-wired interface. The network architecture allows video, audio and data (including biomedical data) streams to be connected directly to external users and devices. The portable access units may also be mated to various non-personal devices such as cameras or environmental sensors for providing a method for setting up wireless sensor nets from which reported data may be accessed through the portable access unit. The reported data may alternatively be automatically logged at a remote computer for access and viewing through a portable access unit, including the user's own.
Wireless Augmented Reality Communication System
NASA Technical Reports Server (NTRS)
Jedrey, Thomas (Inventor); Agan, Martin (Inventor); Devereaux, Ann (Inventor)
2014-01-01
The system of the present invention is a highly integrated radio communication system with a multimedia co-processor which allows true two-way multimedia (video, audio, data) access as well as real-time biomedical monitoring in a pager-sized portable access unit. The system is integrated in a network structure including one or more general purpose nodes for providing a wireless-to-wired interface. The network architecture allows video, audio and data (including biomedical data) streams to be connected directly to external users and devices. The portable access units may also be mated to various non-personal devices such as cameras or environmental sensors for providing a method for setting up wireless sensor nets from which reported data may be accessed through the portable access unit. The reported data may alternatively be automatically logged at a remote computer for access and viewing through a portable access unit, including the user's own.
Wireless Augmented Reality Communication System
NASA Technical Reports Server (NTRS)
Agan, Martin (Inventor); Devereaux, Ann (Inventor); Jedrey, Thomas (Inventor)
2016-01-01
The system of the present invention is a highly integrated radio communication system with a multimedia co-processor which allows true two-way multimedia (video, audio, data) access as well as real-time biomedical monitoring in a pager-sized portable access unit. The system is integrated in a network structure including one or more general purpose nodes for providing a wireless-to-wired interface. The network architecture allows video, audio and data (including biomedical data) streams to be connected directly to external users and devices. The portable access units may also be mated to various non-personal devices such as cameras or environmental sensors for providing a method for setting up wireless sensor nets from which reported data may be accessed through the portable access unit. The reported data may alternatively be automatically logged at a remote computer for access and viewing through a portable access unit, including the user's own.
Consistent Steering System using SCTP for Bluetooth Scatternet Sensor Network
NASA Astrophysics Data System (ADS)
Dhaya, R.; Sadasivam, V.; Kanthavel, R.
2012-12-01
Wireless communication is the best way to convey information from source to destination with flexibility and mobility and Bluetooth is the wireless technology suitable for short distance. On the other hand a wireless sensor network (WSN) consists of spatially distributed autonomous sensors to cooperatively monitor physical or environmental conditions, such as temperature, sound, vibration, pressure, motion or pollutants. Using Bluetooth piconet wireless technique in sensor nodes creates limitation in network depth and placement. The introduction of Scatternet solves the network restrictions with lack of reliability in data transmission. When the depth of the network increases, it results in more difficulties in routing. No authors so far focused on the reliability factors of Scatternet sensor network's routing. This paper illustrates the proposed system architecture and routing mechanism to increase the reliability. The another objective is to use reliable transport protocol that uses the multi-homing concept and supports multiple streams to prevent head-of-line blocking. The results show that the Scatternet sensor network has lower packet loss even in the congestive environment than the existing system suitable for all surveillance applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bonior, Jason D; Hu, Zhen; Guo, Terry N.
This letter presents an experimental demonstration of software-defined-radio-based wireless tomography using computer-hosted radio devices called Universal Software Radio Peripheral (USRP). This experimental brief follows our vision and previous theoretical study of wireless tomography that combines wireless communication and RF tomography to provide a novel approach to remote sensing. Automatic data acquisition is performed inside an RF anechoic chamber. Semidefinite relaxation is used for phase retrieval, and the Born iterative method is utilized for imaging the target. Experimental results are presented, validating our vision of wireless tomography.
Hybrid wireless sensor network for rescue site monitoring after earthquake
NASA Astrophysics Data System (ADS)
Wang, Rui; Wang, Shuo; Tang, Chong; Zhao, Xiaoguang; Hu, Weijian; Tan, Min; Gao, Bowei
2016-07-01
This paper addresses the design of a low-cost, low-complexity, and rapidly deployable wireless sensor network (WSN) for rescue site monitoring after earthquakes. The system structure of the hybrid WSN is described. Specifically, the proposed hybrid WSN consists of two kinds of wireless nodes, i.e., the monitor node and the sensor node. Then the mechanism and the system configuration of the wireless nodes are detailed. A transmission control protocol (TCP)-based request-response scheme is proposed to allow several monitor nodes to communicate with the monitoring center. UDP-based image transmission algorithms with fast recovery have been developed to meet the requirements of in-time delivery of on-site monitor images. In addition, the monitor node contains a ZigBee module that used to communicate with the sensor nodes, which are designed with small dimensions to monitor the environment by sensing different physical properties in narrow spaces. By building a WSN using these wireless nodes, the monitoring center can display real-time monitor images of the monitoring area and visualize all collected sensor data on geographic information systems. In the end, field experiments were performed at the Training Base of Emergency Seismic Rescue Troops of China and the experimental results demonstrate the feasibility and effectiveness of the monitor system.
Huang, Shuo; Liu, Jing
2010-05-01
Application of clinical digital medical imaging has raised many tough issues to tackle, such as data storage, management, and information sharing. Here we investigated a mobile phone based medical image management system which is capable of achieving personal medical imaging information storage, management and comprehensive health information analysis. The technologies related to the management system spanning the wireless transmission technology, the technical capabilities of phone in mobile health care and management of mobile medical database were discussed. Taking medical infrared images transmission between phone and computer as an example, the working principle of the present system was demonstrated.
Prospective Motion Correction using Inductively-Coupled Wireless RF Coils
Ooi, Melvyn B.; Aksoy, Murat; Maclaren, Julian; Watkins, Ronald D.; Bammer, Roland
2013-01-01
Purpose A novel prospective motion correction technique for brain MRI is presented that uses miniature wireless radio-frequency (RF) coils, or “wireless markers”, for position tracking. Methods Each marker is free of traditional cable connections to the scanner. Instead, its signal is wirelessly linked to the MR receiver via inductive coupling with the head coil. Real-time tracking of rigid head motion is performed using a pair of glasses integrated with three wireless markers. A tracking pulse-sequence, combined with knowledge of the markers’ unique geometrical arrangement, is used to measure their positions. Tracking data from the glasses is then used to prospectively update the orientation and position of the image-volume so that it follows the motion of the head. Results Wireless-marker position measurements were comparable to measurements using traditional wired RF tracking coils, with the standard deviation of the difference < 0.01 mm over the range of positions measured inside the head coil. RF safety was verified with B1 maps and temperature measurements. Prospective motion correction was demonstrated in a 2D spin-echo scan while the subject performed a series of deliberate head rotations. Conclusion Prospective motion correction using wireless markers enables high quality images to be acquired even during bulk motions. Wireless markers are small, avoid RF safety risks from electrical cables, are not hampered by mechanical connections to the scanner, and require minimal setup times. These advantages may help to facilitate adoption in the clinic. PMID:23813444
NASA Astrophysics Data System (ADS)
Boumehrez, Farouk; Brai, Radhia; Doghmane, Noureddine; Mansouri, Khaled
2018-01-01
Recently, video streaming has attracted much attention and interest due to its capability to process and transmit large data. We propose a quality of experience (QoE) model relying on high efficiency video coding (HEVC) encoder adaptation scheme, in turn based on the multiple description coding (MDC) for video streaming. The main contributions of the paper are (1) a performance evaluation of the new and emerging video coding standard HEVC/H.265, which is based on the variation of quantization parameter (QP) values depending on different video contents to deduce their influence on the sequence to be transmitted, (2) QoE support multimedia applications in wireless networks are investigated, so we inspect the packet loss impact on the QoE of transmitted video sequences, (3) HEVC encoder parameter adaptation scheme based on MDC is modeled with the encoder parameter and objective QoE model. A comparative study revealed that the proposed MDC approach is effective for improving the transmission with a peak signal-to-noise ratio (PSNR) gain of about 2 to 3 dB. Results show that a good choice of QP value can compensate for transmission channel effects and improve received video quality, although HEVC/H.265 is also sensitive to packet loss. The obtained results show the efficiency of our proposed method in terms of PSNR and mean-opinion-score.
Novel Use of Google Glass for Procedural Wireless Vital Sign Monitoring.
Liebert, Cara A; Zayed, Mohamed A; Aalami, Oliver; Tran, Jennifer; Lau, James N
2016-08-01
Purpose This study investigates the feasibility and potential utility of head-mounted displays for real-time wireless vital sign monitoring during surgical procedures. Methods In this randomized controlled pilot study, surgery residents (n = 14) performed simulated bedside procedures with traditional vital sign monitors and were randomized to addition of vital sign streaming to Google Glass. Time to recognition of preprogrammed vital sign deterioration and frequency of traditional monitor use was recorded. User feedback was collected by electronic survey. Results The experimental group spent 90% less time looking away from the procedural field to view traditional monitors during bronchoscopy (P = .003), and recognized critical desaturation 8.8 seconds earlier; the experimental group spent 71% (P = .01) less time looking away from the procedural field during thoracostomy, and recognized hypotension 10.5 seconds earlier. Trends toward earlier recognition of deterioration did not reach statistical significance. The majority of participants agreed that Google Glass increases situational awareness (64%), is helpful in monitoring vitals (86%), is easy to use (93%), and has potential to improve patient safety (85%). Conclusion In this early feasibility study, use of streaming to Google Glass significantly decreased time looking away from procedural fields and resulted in a nonsignificant trend toward earlier recognition of vital sign deterioration. Vital sign streaming with Google Glass or similar platforms is feasible and may enhance procedural situational awareness. © The Author(s) 2016.
Meir, Arie; Rubinsky, Boris
2009-01-01
Medical technologies are indispensable to modern medicine. However, they have become exceedingly expensive and complex and are not available to the economically disadvantaged majority of the world population in underdeveloped as well as developed parts of the world. For example, according to the World Health Organization about two thirds of the world population does not have access to medical imaging. In this paper we introduce a new medical technology paradigm centered on wireless technology and cloud computing that was designed to overcome the problems of increasing health technology costs. We demonstrate the value of the concept with an example; the design of a wireless, distributed network and central (cloud) computing enabled three-dimensional (3-D) ultrasound system. Specifically, we demonstrate the feasibility of producing a 3-D high end ultrasound scan at a central computing facility using the raw data acquired at the remote patient site with an inexpensive low end ultrasound transducer designed for 2-D, through a mobile device and wireless connection link between them. Producing high-end 3D ultrasound images with simple low-end transducers reduces the cost of imaging by orders of magnitude. It also removes the requirement of having a highly trained imaging expert at the patient site, since the need for hand-eye coordination and the ability to reconstruct a 3-D mental image from 2-D scans, which is a necessity for high quality ultrasound imaging, is eliminated. This could enable relatively untrained medical workers in developing nations to administer imaging and a more accurate diagnosis, effectively saving the lives of people. PMID:19936236
Meir, Arie; Rubinsky, Boris
2009-11-19
Medical technologies are indispensable to modern medicine. However, they have become exceedingly expensive and complex and are not available to the economically disadvantaged majority of the world population in underdeveloped as well as developed parts of the world. For example, according to the World Health Organization about two thirds of the world population does not have access to medical imaging. In this paper we introduce a new medical technology paradigm centered on wireless technology and cloud computing that was designed to overcome the problems of increasing health technology costs. We demonstrate the value of the concept with an example; the design of a wireless, distributed network and central (cloud) computing enabled three-dimensional (3-D) ultrasound system. Specifically, we demonstrate the feasibility of producing a 3-D high end ultrasound scan at a central computing facility using the raw data acquired at the remote patient site with an inexpensive low end ultrasound transducer designed for 2-D, through a mobile device and wireless connection link between them. Producing high-end 3D ultrasound images with simple low-end transducers reduces the cost of imaging by orders of magnitude. It also removes the requirement of having a highly trained imaging expert at the patient site, since the need for hand-eye coordination and the ability to reconstruct a 3-D mental image from 2-D scans, which is a necessity for high quality ultrasound imaging, is eliminated. This could enable relatively untrained medical workers in developing nations to administer imaging and a more accurate diagnosis, effectively saving the lives of people.
Live streaming video for medical education: a laboratory model.
Gandsas, Alejandro; McIntire, Katherine; Palli, Guillermo; Park, Adrian
2002-10-01
At the University of Kentucky (UK), we applied streaming video technology to develop a webcast model that will allow institutions to broadcast live and prerecorded surgeries, conferences, and courses in real time over networks (the Internet or an intranet). We successfully broadcast a prerecorded laparoscopic paraesophageal hernia repair to domestic and international clients by using desktop computers equipped with off-the-shelf, streaming-enabled software and standard hardware and operating systems. A web-based user interface made accessing the educational material as simple as a mouse click and allowed clients to participate in the broadcast event via an embedded e-mail/chat module. Three client computers (two connected to the Internet and a third connected to the UK intranet) requested and displayed the surgical film by means of seven common network connection configurations. Significantly, no difference in image resolution was detected with the use of a connection speed faster than 128 kilobytes per second (kbps). At this connection speed, an average bandwidth of 32.7 kbps was used, and although a 15-second delay was experienced from the time of data request to data display, the surgical film streamed continuously from beginning to end at a mean rate of 14.4 frames per second (fps). The clients easily identified all anatomic structures in full color motion, clearly followed all steps of the surgical procedure, and successfully asked questions and made comments by using the e-mail/chat module while viewing the surgery. With minimal financial investment, we have created an interactive virtual classroom with the potential to attract a global audience. Our webcast model represents a simple and practical method for institutions to supplement undergraduate and graduate surgical education and offer continuing medical education credits in a way that is convenient for clients (surgeons, students, residents, others). In the future, physicians may access streaming webcast material wirelessly with hand-held computers, so that they will be freed from computer stations.
A Distributed Compressive Sensing Scheme for Event Capture in Wireless Visual Sensor Networks
NASA Astrophysics Data System (ADS)
Hou, Meng; Xu, Sen; Wu, Weiling; Lin, Fei
2018-01-01
Image signals which acquired by wireless visual sensor network can be used for specific event capture. This event capture is realized by image processing at the sink node. A distributed compressive sensing scheme is used for the transmission of these image signals from the camera nodes to the sink node. A measurement and joint reconstruction algorithm for these image signals are proposed in this paper. Make advantage of spatial correlation between images within a sensing area, the cluster head node which as the image decoder can accurately co-reconstruct these image signals. The subjective visual quality and the reconstruction error rate are used for the evaluation of reconstructed image quality. Simulation results show that the joint reconstruction algorithm achieves higher image quality at the same image compressive rate than the independent reconstruction algorithm.
Wang, Xinheng
2008-01-01
Wireless telemedicine using GSM and GPRS technologies can only provide low bandwidth connections, which makes it difficult to transmit images and video. Satellite or 3G wireless transmission provides greater bandwidth, but the running costs are high. Wireless networks (WLANs) appear promising, since they can supply high bandwidth at low cost. However, the WLAN technology has limitations, such as coverage. A new wireless networking technology named the wireless mesh network (WMN) overcomes some of the limitations of the WLAN. A WMN combines the characteristics of both a WLAN and ad hoc networks, thus forming an intelligent, large scale and broadband wireless network. These features are attractive for telemedicine and telecare because of the ability to provide data, voice and video communications over a large area. One successful wireless telemedicine project which uses wireless mesh technology is the Emergency Room Link (ER-LINK) in Tucson, Arizona, USA. There are three key characteristics of a WMN: self-organization, including self-management and self-healing; dynamic changes in network topology; and scalability. What we may now see is a shift from mobile communication and satellite systems for wireless telemedicine to the use of wireless networks based on mesh technology, since the latter are very attractive in terms of cost, reliability and speed.
ERIC Educational Resources Information Center
Baildon, Mark; Damico, James
2011-01-01
The "elaborate systems of communication" that historian Christopher Lasch observed nearly three decades ago have intensified in complexity and scope. The explosion of the Internet and wireless technologies has resulted in a dizzying proliferation of texts. Teachers and students are but a keystroke or mouse click away from a limitless stream of…
Development of a handheld smart dental instrument for root canal imaging
NASA Astrophysics Data System (ADS)
Okoro, Chukwuemeka; Vartanian, Albert; Toussaint, , Kimani C., Jr.
2016-11-01
Ergonomics and ease of visualization play a major role in the effectiveness of endodontic therapy. Using only commercial off-the-shelf components, we present the pulpascope-a prototype of a compact, handheld, wireless dental instrument for pulp cavity imaging. This instrument addresses the current limitations of occupational injuries, size, and cost that exist with current endodontic microscopes used for root canal procedures. Utilizing a 15,000 coherent, imaging fiber bundle along with an integrated illumination source and wireless CMOS sensor, we demonstrate images of various teeth with resolution of ˜48 μm and angular field-of-view of 70 deg.
Fragility issues of medical video streaming over 802.11e-WLAN m-health environments.
Tan, Yow-Yiong Edwin; Philip, Nada; Istepanian, Robert H
2006-01-01
This paper presents some of the fragility issues of a medical video streaming over 802.11e-WLAN in m-health applications. In particular, we present a medical channel-adaptive fair allocation (MCAFA) scheme for enhanced QoS support for IEEE 802.11 (WLAN), as a modification for the standard 802.11e enhanced distributed coordination function (EDCF) is proposed for enhanced medical data performance. The medical channel-adaptive fair allocation (MCAFA) proposed extends the EDCF, by halving the contention window (CW) after zeta consecutive successful transmissions to reduce the collision probability when channel is busy. Simulation results show that MCAFA outperforms EDCF in-terms of overall performance relevant to the requirements of high throughput of medical data and video streaming traffic in 3G/WLAN wireless environments.
Wireless, Web-Based Interactive Control of Optical Coherence Tomography with Mobile Devices.
Mehta, Rajvi; Nankivil, Derek; Zielinski, David J; Waterman, Gar; Keller, Brenton; Limkakeng, Alexander T; Kopper, Regis; Izatt, Joseph A; Kuo, Anthony N
2017-01-01
Optical coherence tomography (OCT) is widely used in ophthalmology clinics and has potential for more general medical settings and remote diagnostics. In anticipation of remote applications, we developed wireless interactive control of an OCT system using mobile devices. A web-based user interface (WebUI) was developed to interact with a handheld OCT system. The WebUI consisted of key OCT displays and controls ported to a webpage using HTML and JavaScript. Client-server relationships were created between the WebUI and the OCT system computer. The WebUI was accessed on a cellular phone mounted to the handheld OCT probe to wirelessly control the OCT system. Twenty subjects were imaged using the WebUI to assess the system. System latency was measured using different connection types (wireless 802.11n only, wireless to remote virtual private network [VPN], and cellular). Using a cellular phone, the WebUI was successfully used to capture posterior eye OCT images in all subjects. Simultaneous interactivity by a remote user on a laptop was also demonstrated. On average, use of the WebUI added only 58, 95, and 170 ms to the system latency using wireless only, wireless to VPN, and cellular connections, respectively. Qualitatively, operator usage was not affected. Using a WebUI, we demonstrated wireless and remote control of an OCT system with mobile devices. The web and open source software tools used in this project make it possible for any mobile device to potentially control an OCT system through a WebUI. This platform can be a basis for remote, teleophthalmology applications using OCT.
Sub-component modeling for face image reconstruction in video communications
NASA Astrophysics Data System (ADS)
Shiell, Derek J.; Xiao, Jing; Katsaggelos, Aggelos K.
2008-08-01
Emerging communications trends point to streaming video as a new form of content delivery. These systems are implemented over wired systems, such as cable or ethernet, and wireless networks, cell phones, and portable game systems. These communications systems require sophisticated methods of compression and error-resilience encoding to enable communications across band-limited and noisy delivery channels. Additionally, the transmitted video data must be of high enough quality to ensure a satisfactory end-user experience. Traditionally, video compression makes use of temporal and spatial coherence to reduce the information required to represent an image. In many communications systems, the communications channel is characterized by a probabilistic model which describes the capacity or fidelity of the channel. The implication is that information is lost or distorted in the channel, and requires concealment on the receiving end. We demonstrate a generative model based transmission scheme to compress human face images in video, which has the advantages of a potentially higher compression ratio, while maintaining robustness to errors and data corruption. This is accomplished by training an offline face model and using the model to reconstruct face images on the receiving end. We propose a sub-component AAM modeling the appearance of sub-facial components individually, and show face reconstruction results under different types of video degradation using a weighted and non-weighted version of the sub-component AAM.
Wireless Medical Devices for MRI-Guided Interventions
NASA Astrophysics Data System (ADS)
Venkateswaran, Madhav
Wireless techniques can play an important role in next-generation, image-guided surgical techniques with integration strategies being the key. We present our investigations on three wireless applications. First, we validate a position and orientation independent method to noninvasively monitor wireless power delivery using current perturbation measurements of switched load modulation of the RF carrier. This is important for safe and efficient powering without using bulky batteries or invasive cables. Use of MRI transmit RF pulses for simultaneous powering is investigated in the second part. We develop system models for the MRI transmit chain, wireless powering circuits and a typical load. Detailed analysis and validation of nonlinear and cascaded modeling strategies are performed, useful for decoupled optimization of the harvester coil and RF-DC converter. MRI pulse sequences are investigated for suitability for simultaneous powering. Simulations indicate that a 1.8V, 2 mA load can be powered with a 100% duty cycle using a 30° fGRE sequence, despite the RF duty cycle being 44 mW for a 30° flip angle, consistent with model predictions. Investigations on imaging artifacts indicates that distortion is mostly restricted to within the physical span of the harvester coil in the imaging volume, with the homogeneous B1+ transmit field providing positioning flexibility to minimize this for simultaneous powering. The models are potentially valuable in designing wireless powering solutions for implantable devices with simultaneous real-time imaging in MRI-guided surgical suites. Finally in the last section, we model endovascular MRI coil coupling during RF transmit. FEM models for a series-resonant multimode coil and quadrature birdcage coil fields are developed and computationally efficient, circuit and full-wave simulations are used to model inductive coupling. The Bloch Siegert B1 mapping sequence is used for validating at 24, 28 and 34 microT background excitation. Quantitative performance metrics are successfully predicted and the role of simulation in geometric optimization is demonstrated. In a pig study, we demonstrate navigation of a catheter, with tip-tracking and high-resolution intravascular imaging, through the vasculature into the heart, followed by contextual visualization. A potentially significant application is in MRI-guided cardiac ablation procedures.
Wireless Acoustic-Surface Actuators for Miniaturized Endoscopes.
Qiu, Tian; Adams, Fabian; Palagi, Stefano; Melde, Kai; Mark, Andrew; Wetterauer, Ulrich; Miernik, Arkadiusz; Fischer, Peer
2017-12-13
Endoscopy enables minimally invasive procedures in many medical fields, such as urology. However, current endoscopes are normally cable-driven, which limits their dexterity and makes them hard to miniaturize. Indeed, current urological endoscopes have an outer diameter of about 3 mm and still only possess one bending degree-of-freedom. In this article, we report a novel wireless actuation mechanism that increases the dexterity and that permits the miniaturization of a urological endoscope. The novel actuator consists of thin active surfaces that can be readily attached to any device and are wirelessly powered by ultrasound. The surfaces consist of two-dimensional arrays of microbubbles, which oscillate under ultrasound excitation and thereby generate an acoustic streaming force. Bubbles of different sizes are addressed by their unique resonance frequency, thus multiple degrees-of-freedom can readily be incorporated. Two active miniaturized devices (with a side length of around 1 mm) are demonstrated: a miniaturized mechanical arm that realizes two degrees-of-freedom, and a flexible endoscope prototype equipped with a camera at the tip. With the flexible endoscope, an active endoscopic examination is successfully performed in a rabbit bladder. The results show the potential medical applicability of surface actuators wirelessly powered by ultrasound penetrating through biological tissues.
Wolfe, Jace; Morais Duke, Mila; Schafer, Erin; Cire, George; Menapace, Christine; O'Neill, Lori
2016-01-01
The objective of this study was to evaluate the potential improvement in word recognition in quiet and in noise obtained with use of a Bluetooth-compatible wireless hearing assistance technology (HAT) relative to the acoustic mobile telephone condition (e.g. the mobile telephone receiver held to the microphone of the sound processor). A two-way repeated measures design was used to evaluate differences in telephone word recognition obtained in quiet and in competing noise in the acoustic mobile telephone condition compared to performance obtained with use of the CI sound processor and a telephone HAT. Sixteen adult users of Nucleus cochlear implants and the Nucleus 6 sound processor were included in this study. Word recognition over the mobile telephone in quiet and in noise was significantly better with use of the wireless HAT compared to performance in the acoustic mobile telephone condition. Word recognition over the mobile telephone was better in quiet when compared to performance in noise. The results of this study indicate that use of a wireless HAT improves word recognition over the mobile telephone in quiet and in noise relative to performance in the acoustic mobile telephone condition for a group of adult cochlear implant recipients.
Li, Chung-Yi; Lu, Hai-Han; Lu, Ting-Chieh; Chu, Chien-An; Chen, Bo-Rui; Lin, Chun-Yu; Peng, Peng-Chun
2015-12-14
A hybrid lightwave transmission system for cable television (CATV)/millimeter-wave (MMW)/baseband (BB) signal transmission based on fiber-wired/fiber-wireless/fiber-visible laser light communication (VLLC) integrations is proposed and demonstrated. For down-link transmission, the light is intensity-modulated with 50-550 MHz CATV signal and optically promoted from 25 GHz radio frequency (RF) signal to 10 Gbps/50 GHz and 20 Gbps/100 GHz MMW data signals based on fiber-wired and fiber-wireless integrations. Good performances of carrier-to-noise ratio (CNR), composite second-order (CSO), composite triple-beat (CTB), and bit error rate (BER) are obtained over a 40-km single-mode fiber (SMF) and a 10-m RF wireless transport. For up-link transmission, the light is successfully intensity-remodulated with 5-Gbps BB data stream based on fiber-VLLC integration. Good BER performance is achieved over a 40-km SMF and a 10-m free-space VLLC transport. Such a hybrid CATV/MMW/BB lightwave transmission system is an attractive alternative, it gives the benefits of a communication link for broader bandwidth and higher transmission rate.
Frequency-agile wireless sensor networks
NASA Astrophysics Data System (ADS)
Arms, Steven W.; Townsend, Christopher P.; Churchill, David L.; Hamel, Michael J.; Galbreath, Jacob H.; Mundell, Steven W.
2004-07-01
Our goal was to demonstrate a wireless communications system capable of simultaneous, high speed data communications from a variety of sensors. We have previously reported on the design and application of 2 KHz data logging transceiver nodes, however, only one node may stream data at a time, since all nodes on the network use the same communications frequency. To overcome these limitations, second generation data logging transceivers were developed with software programmable radio frequency (RF) communications. Each node contains on-board memory (2 Mbytes), sensor excitation, instrumentation amplifiers with programmable gains & offsets, multiplexer, 16 bit A/D converter, microcontroller, and frequency agile, bi-directional, frequency shift keyed (FSK) RF serial data link. These systems are capable of continuous data transmission from 26 distinct nodes (902-928 MHz band, 75 kbaud). The system was demonstrated in a compelling structural monitoring application. The National Parks Service requested a means for continual monitoring and recording of sensor data from the Liberty Bell during a move to a new location (Philadelphia, October 2003). Three distinct, frequency agile, wireless sensing nodes were used to detect visible crack shear/opening micromotions, triaxial accelerations, and hairline crack tip strains. The wireless sensors proved to be useful in protecting the Liberty Bell.
Wireless Acoustic-Surface Actuators for Miniaturized Endoscopes
2017-01-01
Endoscopy enables minimally invasive procedures in many medical fields, such as urology. However, current endoscopes are normally cable-driven, which limits their dexterity and makes them hard to miniaturize. Indeed, current urological endoscopes have an outer diameter of about 3 mm and still only possess one bending degree-of-freedom. In this article, we report a novel wireless actuation mechanism that increases the dexterity and that permits the miniaturization of a urological endoscope. The novel actuator consists of thin active surfaces that can be readily attached to any device and are wirelessly powered by ultrasound. The surfaces consist of two-dimensional arrays of microbubbles, which oscillate under ultrasound excitation and thereby generate an acoustic streaming force. Bubbles of different sizes are addressed by their unique resonance frequency, thus multiple degrees-of-freedom can readily be incorporated. Two active miniaturized devices (with a side length of around 1 mm) are demonstrated: a miniaturized mechanical arm that realizes two degrees-of-freedom, and a flexible endoscope prototype equipped with a camera at the tip. With the flexible endoscope, an active endoscopic examination is successfully performed in a rabbit bladder. The results show the potential medical applicability of surface actuators wirelessly powered by ultrasound penetrating through biological tissues. PMID:29148713
Mao, Shitong; Wang, Hao; Zhu, Chunbo; Mao, Zhi-Hong; Sun, Mingui
2017-10-01
Wireless Power Transfer (WPT) and wireless data communication are both important problems of research with various applications, especially in medicine. However, these two problems are usually studied separately. In this work, we present a joint study of both problems. Most medical electronic devices, such as smart implants, must have both a power supply to allow continuous operation and a communication link to pass information. Traditionally, separate wireless channels for power transfer and communication are utilized, which complicate the system structure, increase power consumption and make device miniaturization difficult. A more effective approach is to use a single wireless link with both functions of delivering power and passing information. We present a design of such a wireless link in which power and data travel in opposite directions. In order to aggressively miniaturize the implant and reduce power consumption, we eliminate the traditional multi-bit Analog-to-Digital Converter (ADC), digital memory and data transmission circuits all together. Instead, we use a pulse stream, which is obtained from the original biological signal, by a sigma-delta converter and an edge detector, to alter the load properties of the WPT channel. The resulting WPT signal is synchronized with the load changes therefore requiring no memory elements to record inter-pulse intervals. We take advantage of the high sensitivity of the resonant WPT to the load change, and the system dynamic response is used to transfer each pulse. The transient time of the WPT system is analyzed using the coupling mode theory (CMT). Our experimental results show that the memoryless approach works well for both power delivery and data transmission, providing a new wireless platform for the design of future miniaturized medical implants.
Zeng, Xianchun; Barbic, Mladen; Chen, Liangliang; Qian, Chunqi
2017-11-01
To improve the imaging quality of vessel walls with an endoesophageal Wireless Amplified NMR Detector (WAND). A cylindrically shaped double-frequency resonator has been constructed with a single metal wire that is self-connected by a pair of nonlinear capacitors. The double-frequency resonator can convert wirelessly provided pumping power into amplified MR signals. This compact design makes the detector easily insertable into a rodent esophagus. The detector has good longitudinal and axial symmetry. Compared to an external surface coil, the WAND can enhance detection sensitivity by at least 5 times, even when the distance separation between the region of interest and the detector's cylindrical surface is twice the detector's own radius. Such detection capability enables us to observe vessel walls near the aortic arch and carotid bifurcation with elevated sensitivity. A cylindrical MRI detector integrated with a wireless-powered amplifier has been developed as an endoesophageal detector to enhance detection sensitivity of vessel walls. This detector can greatly improve the imaging quality for vessel regions that are susceptible to atherosclerotic lesions. Magn Reson Med 78:2048-2054, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
Alpha-band rhythm modulation under the condition of subliminal face presentation: MEG study.
Sakuraba, Satoshi; Kobayashi, Hana; Sakai, Shinya; Yokosawa, Koichi
2013-01-01
The human brain has two streams to process visual information: a dorsal stream and a ventral stream. Negative potential N170 or its magnetic counterpart M170 is known as the face-specific signal originating from the ventral stream. It is possible to present a visual image unconsciously by using continuous flash suppression (CFS), which is a visual masking technique adopting binocular rivalry. In this work, magnetoencephalograms were recorded during presentation of the three invisible images: face images, which are processed by the ventral stream; tool images, which could be processed by the dorsal stream, and a blank image. Alpha-band activities detected by sensors that are sensitive to M170 were compared. The alpha-band rhythm was suppressed more during presentation of face images than during presentation of the blank image (p=.028). The suppression remained for about 1 s after ending presentations. However, no significant difference was observed between tool and other images. These results suggest that alpha-band rhythm can be modulated also by unconscious visual images.
Power-rate-distortion analysis for wireless video communication under energy constraint
NASA Astrophysics Data System (ADS)
He, Zhihai; Liang, Yongfang; Ahmad, Ishfaq
2004-01-01
In video coding and streaming over wireless communication network, the power-demanding video encoding operates on the mobile devices with limited energy supply. To analyze, control, and optimize the rate-distortion (R-D) behavior of the wireless video communication system under the energy constraint, we need to develop a power-rate-distortion (P-R-D) analysis framework, which extends the traditional R-D analysis by including another dimension, the power consumption. Specifically, in this paper, we analyze the encoding mechanism of typical video encoding systems and develop a parametric video encoding architecture which is fully scalable in computational complexity. Using dynamic voltage scaling (DVS), a hardware technology recently developed in CMOS circuits design, the complexity scalability can be translated into the power consumption scalability of the video encoder. We investigate the rate-distortion behaviors of the complexity control parameters and establish an analytic framework to explore the P-R-D behavior of the video encoding system. Both theoretically and experimentally, we show that, using this P-R-D model, the encoding system is able to automatically adjust its complexity control parameters to match the available energy supply of the mobile device while maximizing the picture quality. The P-R-D model provides a theoretical guideline for system design and performance optimization in wireless video communication under energy constraint, especially over the wireless video sensor network.
A wireless narrowband imaging chip for capsule endoscope.
Lan-Rong Dung; Yin-Yi Wu
2010-12-01
This paper presents a dual-mode capsule gastrointestinal endoscope device. An endoscope combined with a narrowband image (NBI), has been shown to be a superior diagnostic tool for early stage tissue neoplasms detection. Nevertheless, a wireless capsule endoscope with the narrowband imaging technology has not been presented in the market up to now. The narrowband image acquisition and power dissipation reduction are the main challenges of NBI capsule endoscope. In this paper, we present the first narrowband imaging capsule endoscope that can assist clinical doctors to effectively diagnose early gastrointestinal cancers, profited from our dedicated dual-mode complementary metal-oxide semiconductor (CMOS) sensor. The dedicated dual-mode CMOS sensor can offer white-light and narrowband images. Implementation results show that the proposed 512 × 512 CMOS sensor consumes only 2 mA at a 3-V power supply. The average current of the NBI capsule with an 8-Mb/s RF transmitter is nearly 7 ~ 8 mA that can continuously work for 6 ~ 8 h with two 1.5-V 80-mAh button batteries while the frame rate is 2 fps. Experimental results on backside mucosa of a human tongue and pig's small intestine showed that the wireless NBI capsule endoscope can significantly improve the image quality, compared with a commercial-of-the-shelf capsule endoscope for gastrointestinal tract diagnosis.
The UTCOMS: a wireless video capsule nanoendoscope
NASA Astrophysics Data System (ADS)
Lee, Mike M.; Lee, Eun-Mi; Cho, Byung Lok; Eshraghian, Kamran; Kim, Yun-Hyun
2006-02-01
This research shows a 1mW Low Power and real-time imaging Tx/Rx communication system via RF-delay smart Antenna using up to 10GHz UWB(Ultra WideBand) as a concept of Wireless Medical Telemetry Service (WMTS). This UTCOMS (COMmunication System for Nano-scale USLI designed Endoscope using UWB technology) results in less body loss(about 6~13dB) at high frequency, disposable and ingestible compact size of 5×10 mm2 and multifunction, bidirectional communications, independent subsystem control multichannel, and high sensitivity smart receiving antenna of three-dimensional image captured still and moving images.
Yamamoto, L G
1995-03-01
The feasibility of wireless portable teleradiology and facsimile (fax) transmission using a pocket cellular phone and a notebook computer to obtain immediate access to consultants at any location was studied. Modems specially designed for data and fax communication via cellular systems were employed to provide a data communication interface between the cellular phone and the notebook computer. Computed tomography (CT) scans, X-rays, and electrocardiograms (ECGs) were transmitted to a wireless unit to measure performance characteristics. Data transmission rates ranged from 520 to 1100 bytes per second. Typical image transmission times ranged from 1 to 10 minutes; however, using joint photographic experts group or fractal image compression methods would shorten typical transmission times to less than one minute. This study showed that wireless teleradiology and fax over cellular communication systems are feasible with current technology. Routine immediate cellular faxing of ECGs to cardiologists may expedite thrombolytic therapy decisions in questionable cases. Routine immediate teleradiology of CT scans may reduce operation room preparation times in severe head trauma.
NASA Astrophysics Data System (ADS)
Flexman, M. L.; Kim, H. K.; Stoll, R.; Khalil, M. A.; Fong, C. J.; Hielscher, A. H.
2012-03-01
We present a low-cost, portable, wireless diffuse optical imaging device. The handheld device is fast, portable, and can be applied to a wide range of both static and dynamic imaging applications including breast cancer, functional brain imaging, and peripheral artery disease. The continuous-wave probe has four near-infrared wavelengths and uses digital detection techniques to perform measurements at 2.3 Hz. Using a multispectral evolution algorithm for chromophore reconstruction, we can measure absolute oxygenated and deoxygenated hemoglobin concentration as well as scattering in tissue. Performance of the device is demonstrated using a series of liquid phantoms comprised of Intralipid®, ink, and dye.
Radiographic endodontic working length estimation: comparison of three digital image receptors.
Athar, Anas; Angelopoulos, Christos; Katz, Jerald O; Williams, Karen B; Spencer, Paulette
2008-10-01
This in vitro study was conducted to evaluate the accuracy of the Schick wireless image receptor compared with 2 other types of digital image receptors for measuring the radiographic landmarks pertinent to endodontic treatment. Fourteen human cadaver mandibles with retained molars were selected. A fine endodontic file (#10) was introduced into the canal at random distances from the apex and at the apex of the tooth; images were made with 3 different #2-size image receptors: DenOptix storage phosphor plates, Gendex CCD sensor (wired), and Schick CDR sensor (wireless). Six raters viewed the images for identification of the radiographic apex of the tooth and the tip of a fine (#10) endodontic file. Inter-rater reliability was also assessed. Repeated-measures analysis of variance revealed a significant main effect for the type of image receptor. Raters' error in identifying structures of interest was significantly higher for Denoptix storage phosphor plates, whereas the least error was noted with the Schick CDR sensor. A significant interaction effect was observed for rater and type of image receptor used, but this effect contributed only 6% (P < .01; eta(2) = 0.06) toward the outcome of the results. Schick CDR wireless sensor may be preferable to other solid-state sensors, because there is no cable connecting the sensor to the computer. Further testing of this sensor for other diagnostic tasks is recommended, as well as evaluation of patient acceptance.
Wireless, Web-Based Interactive Control of Optical Coherence Tomography with Mobile Devices
Mehta, Rajvi; Nankivil, Derek; Zielinski, David J.; Waterman, Gar; Keller, Brenton; Limkakeng, Alexander T.; Kopper, Regis; Izatt, Joseph A.; Kuo, Anthony N.
2017-01-01
Purpose Optical coherence tomography (OCT) is widely used in ophthalmology clinics and has potential for more general medical settings and remote diagnostics. In anticipation of remote applications, we developed wireless interactive control of an OCT system using mobile devices. Methods A web-based user interface (WebUI) was developed to interact with a handheld OCT system. The WebUI consisted of key OCT displays and controls ported to a webpage using HTML and JavaScript. Client–server relationships were created between the WebUI and the OCT system computer. The WebUI was accessed on a cellular phone mounted to the handheld OCT probe to wirelessly control the OCT system. Twenty subjects were imaged using the WebUI to assess the system. System latency was measured using different connection types (wireless 802.11n only, wireless to remote virtual private network [VPN], and cellular). Results Using a cellular phone, the WebUI was successfully used to capture posterior eye OCT images in all subjects. Simultaneous interactivity by a remote user on a laptop was also demonstrated. On average, use of the WebUI added only 58, 95, and 170 ms to the system latency using wireless only, wireless to VPN, and cellular connections, respectively. Qualitatively, operator usage was not affected. Conclusions Using a WebUI, we demonstrated wireless and remote control of an OCT system with mobile devices. Translational Relevance The web and open source software tools used in this project make it possible for any mobile device to potentially control an OCT system through a WebUI. This platform can be a basis for remote, teleophthalmology applications using OCT. PMID:28138415
NASA Astrophysics Data System (ADS)
Barbieri, Ivano; Lambruschini, Paolo; Raggio, Marco; Stagnaro, Riccardo
2007-12-01
The increase in the availability of bandwidth for wireless links, network integration, and the computational power on fixed and mobile platforms at affordable costs allows nowadays for the handling of audio and video data, their quality making them suitable for medical application. These information streams can support both continuous monitoring and emergency situations. According to this scenario, the authors have developed and implemented the mobile communication system which is described in this paper. The system is based on ITU-T H.323 multimedia terminal recommendation, suitable for real-time data/video/audio and telemedical applications. The audio and video codecs, respectively, H.264 and G723.1, were implemented and optimized in order to obtain high performance on the system target processors. Offline media streaming storage and retrieval functionalities were supported by integrating a relational database in the hospital central system. The system is based on low-cost consumer technologies such as general packet radio service (GPRS) and wireless local area network (WLAN or WiFi) for lowband data/video transmission. Implementation and testing were carried out for medical emergency and telemedicine application. In this paper, the emergency case study is described.
Vision communications based on LED array and imaging sensor
NASA Astrophysics Data System (ADS)
Yoo, Jong-Ho; Jung, Sung-Yoon
2012-11-01
In this paper, we propose a brand new communication concept, called as "vision communication" based on LED array and image sensor. This system consists of LED array as a transmitter and digital device which include image sensor such as CCD and CMOS as receiver. In order to transmit data, the proposed communication scheme simultaneously uses the digital image processing and optical wireless communication scheme. Therefore, the cognitive communication scheme is possible with the help of recognition techniques used in vision system. By increasing data rate, our scheme can use LED array consisting of several multi-spectral LEDs. Because arranged each LED can emit multi-spectral optical signal such as visible, infrared and ultraviolet light, the increase of data rate is possible similar to WDM and MIMO skills used in traditional optical and wireless communications. In addition, this multi-spectral capability also makes it possible to avoid the optical noises in communication environment. In our vision communication scheme, the data packet is composed of Sync. data and information data. Sync. data is used to detect the transmitter area and calibrate the distorted image snapshots obtained by image sensor. By making the optical rate of LED array be same with the frame rate (frames per second) of image sensor, we can decode the information data included in each image snapshot based on image processing and optical wireless communication techniques. Through experiment based on practical test bed system, we confirm the feasibility of the proposed vision communications based on LED array and image sensor.
Kim, Dong Keun; Yoo, Sun K; Park, Jeong Jin; Kim, Sun Ho
2007-06-01
Remote teleconsultation by specialists is important for timely, correct, and specialized emergency surgical and medical decision making. In this paper, we designed a new personal digital assistant (PDA)-phone-based emergency teleradiology system by combining cellular communication with Bluetooth-interfaced local wireless links. The mobility and portability resulting from the use of PDAs and wireless communication can provide a more effective means of emergency teleconsultation without requiring the user to be limited to a fixed location. Moreover, it enables synchronized radiological image sharing between the attending physician in the emergency room and the remote specialist on picture archiving and communication system terminals without distorted image acquisition. To enable rapid and fine-quality radiological image transmission over a cellular network in a secure manner, progressive compression and security mechanisms have been incorporated. The proposed system is tested over a code division Multiple Access 1x-Evolution Data-Only network to evaluate the performance and to demonstrate the feasibility of this system in a real-world setting.
Proxy-assisted multicasting of video streams over mobile wireless networks
NASA Astrophysics Data System (ADS)
Nguyen, Maggie; Pezeshkmehr, Layla; Moh, Melody
2005-03-01
This work addresses the challenge of providing seamless multimedia services to mobile users by proposing a proxy-assisted multicast architecture for delivery of video streams. We propose a hybrid system of streaming proxies, interconnected by an application-layer multicast tree, where each proxy acts as a cluster head to stream out content to its stationary and mobile users. The architecture is based on our previously proposed Enhanced-NICE protocol, which uses an application-layer multicast tree to deliver layered video streams to multiple heterogeneous receivers. We targeted the study on placements of streaming proxies to enable efficient delivery of live and on-demand video, supporting both stationary and mobile users. The simulation results are evaluated and compared with two other baseline scenarios: one with a centralized proxy system serving the entire population and one with mini-proxies each to serve its local users. The simulations are implemented using the J-SIM simulator. The results show that even though proxies in the hybrid scenario experienced a slightly longer delay, they had the lowest drop rate of video content. This finding illustrates the significance of task sharing in multiple proxies. The resulted load balancing among proxies has provided a better video quality delivered to a larger audience.
Autonomous chemical and biological miniature wireless-sensor
NASA Astrophysics Data System (ADS)
Goldberg, Bar-Giora
2005-05-01
The presentation discusses a new concept and a paradigm shift in biological, chemical and explosive sensor system design and deployment. From large, heavy, centralized and expensive systems to distributed wireless sensor networks utilizing miniature platforms (nodes) that are lightweight, low cost and wirelessly connected. These new systems are possible due to the emergence and convergence of new innovative radio, imaging, networking and sensor technologies. Miniature integrated radio-sensor networks, is a technology whose time has come. These network systems are based on large numbers of distributed low cost and short-range wireless platforms that sense and process their environment and communicate data thru a network to a command center. The recent emergence of chemical and explosive sensor technology based on silicon nanostructures, coupled with the fast evolution of low-cost CMOS imagers, low power DSP engines and integrated radio chips, has created an opportunity to realize the vision of autonomous wireless networks. These threat detection networks will perform sophisticated analysis at the sensor node and convey alarm information up the command chain. Sensor networks of this type are expected to revolutionize the ability to detect and locate biological, chemical, or explosive threats. The ability to distribute large numbers of low-cost sensors over large areas enables these devices to be close to the targeted threats and therefore improve detection efficiencies and enable rapid counter responses. These sensor networks will be used for homeland security, shipping container monitoring, and other applications such as laboratory medical analysis, drug discovery, automotive, environmental and/or in-vivo monitoring. Avaak"s system concept is to image a chromatic biological, chemical and/or explosive sensor utilizing a digital imager, analyze the images and distribute alarm or image data wirelessly through the network. All the imaging, processing and communications would take place within the miniature, low cost distributed sensor platforms. This concept however presents a significant challenge due to a combination and convergence of required new technologies, as mentioned above. Passive biological and chemical sensors with very high sensitivity and which require no assaying are in development using a technique to optically and chemically encode silicon wafers with tailored nanostructures. The silicon wafer is patterned with nano-structures designed to change colors ad patterns when exposed to the target analytes (TICs, TIMs, VOC). A small video camera detects the color and pattern changes on the sensor. To determine if an alarm condition is present, an on board DSP processor, using specialized image processing algorithms and statistical analysis, determines if color gradient changes occurred on the sensor array. These sensors can detect several agents simultaneously. This system is currently under development by Avaak, with funding from DARPA through an SBIR grant.
Buckman, Clayton; George, Thaddeus C; Friend, Sherree; Sutovsky, Miriam; Miranda-Vizuete, Antonio; Ozanon, Christophe; Morrissey, Phil; Sutovsky, Peter
2009-12-01
Spermatid specific thioredoxin-3 protein (SPTRX-3) accumulates in the superfluous cytoplasm of defective human spermatozoa. Novel ImageStream technology combining flow cytometry with cell imaging was used for parallel quantification and visualization of SPTRX-3 protein in defective spermatozoa of five men from infertile couples. The majority of the SPTRX-3 containing cells were overwhelmingly spermatozoa with a variety of morphological defects, detectable in the ImageStream recorded images. Quantitative parameters of relative SPTRX-3 induced fluorescence measured by ImageStream correlated closely with conventional flow cytometric measurements of the same sample set and reflected the results of clinical semen evaluation. Image Stream quantification of SPTRX-3 combines and surpasses the informative value of both conventional flow cytometry and light microscopic semen evaluation. The observed patterns of the retention of SPTRX-3 in the sperm samples from infertility patients support the view that SPTRX3 is a biomarker of male infertility.
Planning and Management of Real-Time Geospatialuas Missions Within a Virtual Globe Environment
NASA Astrophysics Data System (ADS)
Nebiker, S.; Eugster, H.; Flückiger, K.; Christen, M.
2011-09-01
This paper presents the design and development of a hardware and software framework supporting all phases of typical monitoring and mapping missions with mini and micro UAVs (unmanned aerial vehicles). The developed solution combines state-of-the art collaborative virtual globe technologies with advanced geospatial imaging techniques and wireless data link technologies supporting the combined and highly reliable transmission of digital video, high-resolution still imagery and mission control data over extended operational ranges. The framework enables the planning, simulation, control and real-time monitoring of UAS missions in application areas such as monitoring of forest fires, agronomical research, border patrol or pipeline inspection. The geospatial components of the project are based on the Virtual Globe Technology i3D OpenWebGlobe of the Institute of Geomatics Engineering at the University of Applied Sciences Northwestern Switzerland (FHNW). i3D OpenWebGlobe is a high-performance 3D geovisualisation engine supporting the web-based streaming of very large amounts of terrain and POI data.
21 CFR 876.1300 - Ingestible telemetric gastrointestinal capsule imaging system.
Code of Federal Regulations, 2012 CFR
2012-04-01
... images of the small bowel with a wireless camera contained in a capsule. This device includes an... receiving/recording unit, a data storage device, computer software to process the images, and accessories...
21 CFR 876.1300 - Ingestible telemetric gastrointestinal capsule imaging system.
Code of Federal Regulations, 2013 CFR
2013-04-01
... images of the small bowel with a wireless camera contained in a capsule. This device includes an... receiving/recording unit, a data storage device, computer software to process the images, and accessories...
21 CFR 876.1300 - Ingestible telemetric gastrointestinal capsule imaging system.
Code of Federal Regulations, 2014 CFR
2014-04-01
... images of the small bowel with a wireless camera contained in a capsule. This device includes an... receiving/recording unit, a data storage device, computer software to process the images, and accessories...
21 CFR 876.1300 - Ingestible telemetric gastrointestinal capsule imaging system.
Code of Federal Regulations, 2011 CFR
2011-04-01
... images of the small bowel with a wireless camera contained in a capsule. This device includes an... receiving/recording unit, a data storage device, computer software to process the images, and accessories...
Ying Ouyang; Theodor D. Leininger; Jeff Hatten
2013-01-01
Elevated phosphorus (P) in surface waters can cause eutrophication of aquatic ecosystems and can impair water for drinking, industry, agriculture, and recreation. Currently, no effort has been devoted to estimating real-time variation and load of total P (TP) in surface waters due to the lack of suitable and/or cost-effective wireless sensors. However, when considering...
Distributed multimodal data fusion for large scale wireless sensor networks
NASA Astrophysics Data System (ADS)
Ertin, Emre
2006-05-01
Sensor network technology has enabled new surveillance systems where sensor nodes equipped with processing and communication capabilities can collaboratively detect, classify and track targets of interest over a large surveillance area. In this paper we study distributed fusion of multimodal sensor data for extracting target information from a large scale sensor network. Optimal tracking, classification, and reporting of threat events require joint consideration of multiple sensor modalities. Multiple sensor modalities improve tracking by reducing the uncertainty in the track estimates as well as resolving track-sensor data association problems. Our approach to solving the fusion problem with large number of multimodal sensors is construction of likelihood maps. The likelihood maps provide a summary data for the solution of the detection, tracking and classification problem. The likelihood map presents the sensory information in an easy format for the decision makers to interpret and is suitable with fusion of spatial prior information such as maps, imaging data from stand-off imaging sensors. We follow a statistical approach to combine sensor data at different levels of uncertainty and resolution. The likelihood map transforms each sensor data stream to a spatio-temporal likelihood map ideally suitable for fusion with imaging sensor outputs and prior geographic information about the scene. We also discuss distributed computation of the likelihood map using a gossip based algorithm and present simulation results.
Multiple bio-monitoring system using visible light for electromagnetic-wave free indoor healthcare
NASA Astrophysics Data System (ADS)
An, Jinyoung; Pham, Ngoc Quan; Chung, Wan-Young
2017-12-01
In this paper, a multiple biomedical data transmission system with visible light communication (VLC) is proposed for an electromagnetic-wave-free indoor healthcare. VLC technology has emerged as an alternative solution to radio-frequency (RF) wireless systems, due to its various merits, e.g., ubiquity, power efficiency, no RF radiation, and security. With VLC, critical bio-medical signals, including electrocardiography (ECG), can be transmitted in places where RF radiation is restricted. This potential advantage of VLC could save more lives in emergency situations. A time hopping (TH) scheme is employed to transfer multiple medical-data streams in real time with a simple system design. Multiple data streams are transmitted using identical color LEDs and go into an optical detector. The received multiple data streams are demodulated and rearranged using a TH-based demodulator. The medical data is then monitored and managed to provide the necessary medical care for each patient.
Wireless fluorescence capsule for endoscopy using single photon-based detection
NASA Astrophysics Data System (ADS)
Al-Rawhani, Mohammed A.; Beeley, James; Cumming, David R. S.
2015-12-01
Fluorescence Imaging (FI) is a powerful technique in biological science and clinical medicine. Current FI devices that are used either for in-vivo or in-vitro studies are expensive, bulky and consume substantial power, confining the technique to laboratories and hospital examination rooms. Here we present a miniaturised wireless fluorescence endoscope capsule with low power consumption that will pave the way for future FI systems and applications. With enhanced sensitivity compared to existing technology we have demonstrated that the capsule can be successfully used to image tissue autofluorescence and targeted fluorescence via fluorophore labelling of tissues. The capsule incorporates a state-of-the-art complementary metal oxide semiconductor single photon avalanche detector imaging array, miniaturised optical isolation, wireless technology and low power design. When in use the capsule consumes only 30.9 mW, and deploys very low-level 468 nm illumination. The device has the potential to replace highly power-hungry intrusive optical fibre based endoscopes and to extend the range of clinical examination below the duodenum. To demonstrate the performance of our capsule, we imaged fluorescence phantoms incorporating principal tissue fluorophores (flavins) and absorbers (haemoglobin). We also demonstrated the utility of marker identification by imaging a 20 μM fluorescein isothiocyanate (FITC) labelling solution on mammalian tissue.
NASA Astrophysics Data System (ADS)
El-Shafai, W.; El-Bakary, E. M.; El-Rabaie, S.; Zahran, O.; El-Halawany, M.; Abd El-Samie, F. E.
2017-06-01
Three-Dimensional Multi-View Video (3D-MVV) transmission over wireless networks suffers from Macro-Blocks losses due to either packet dropping or fading-motivated bit errors. Thus, the robust performance of 3D-MVV transmission schemes over wireless channels becomes a recent considerable hot research issue due to the restricted resources and the presence of severe channel errors. The 3D-MVV is composed of multiple video streams shot by several cameras around a single object, simultaneously. Therefore, it is an urgent task to achieve high compression ratios to meet future bandwidth constraints. Unfortunately, the highly-compressed 3D-MVV data becomes more sensitive and vulnerable to packet losses, especially in the case of heavy channel faults. Thus, in this paper, we suggest the application of a chaotic Baker interleaving approach with equalization and convolution coding for efficient Singular Value Decomposition (SVD) watermarked 3D-MVV transmission over an Orthogonal Frequency Division Multiplexing wireless system. Rayleigh fading and Additive White Gaussian Noise are considered in the real scenario of 3D-MVV transmission. The SVD watermarked 3D-MVV frames are primarily converted to their luminance and chrominance components, which are then converted to binary data format. After that, chaotic interleaving is applied prior to the modulation process. It is used to reduce the channel effects on the transmitted bit streams and it also adds a degree of encryption to the transmitted 3D-MVV frames. To test the performance of the proposed framework; several simulation experiments on different SVD watermarked 3D-MVV frames have been executed. The experimental results show that the received SVD watermarked 3D-MVV frames still have high Peak Signal-to-Noise Ratios and watermark extraction is possible in the proposed framework.
2014-03-27
TOMOGRAPHIC IMAGING IN 3D WIRELESS SENSOR NETWORKS Thea S. Danella, B.S.E.E. Captain, USAF Approved: //signed// Richard K. Martin , PhD (Chairman) //signed...have every one of them in my life. I want to also thank my advisor, Dr. Richard K. Martin , and fellow student, Mr. Jason Pennington. They were...of the Fisher Information Matrix (FIM) J, and as such are the lower bounds on the Normalized Mean Squared Error (NMSE)R for pixel p. In [49], Martin et
Wireless remote control clinical image workflow: utilizing a PDA for offsite distribution
NASA Astrophysics Data System (ADS)
Liu, Brent J.; Documet, Luis; Documet, Jorge; Huang, H. K.; Muldoon, Jean
2004-04-01
Last year we presented in RSNA an application to perform wireless remote control of PACS image distribution utilizing a handheld device such as a Personal Digital Assistant (PDA). This paper describes the clinical experiences including workflow scenarios of implementing the PDA application to route exams from the clinical PACS archive server to various locations for offsite distribution of clinical PACS exams. By utilizing this remote control application, radiologists can manage image workflow distribution with a single wireless handheld device without impacting their clinical workflow on diagnostic PACS workstations. A PDA application was designed and developed to perform DICOM Query and C-Move requests by a physician from a clinical PACS Archive to a CD-burning device for automatic burning of PACS data for the distribution to offsite. In addition, it was also used for convenient routing of historical PACS exams to the local web server, local workstations, and teleradiology systems. The application was evaluated by radiologists as well as other clinical staff who need to distribute PACS exams to offsite referring physician"s offices and offsite radiologists. An application for image workflow management utilizing wireless technology was implemented in a clinical environment and evaluated. A PDA application was successfully utilized to perform DICOM Query and C-Move requests from the clinical PACS archive to various offsite exam distribution devices. Clinical staff can utilize the PDA to manage image workflow and PACS exam distribution conveniently for offsite consultations by referring physicians and radiologists. This solution allows the radiologist to expand their effectiveness in health care delivery both within the radiology department as well as offisite by improving their clinical workflow.
Design of verification platform for wireless vision sensor networks
NASA Astrophysics Data System (ADS)
Ye, Juanjuan; Shang, Fei; Yu, Chuang
2017-08-01
At present, the majority of research for wireless vision sensor networks (WVSNs) still remains in the software simulation stage, and the verification platforms of WVSNs that available for use are very few. This situation seriously restricts the transformation from theory research of WVSNs to practical application. Therefore, it is necessary to study the construction of verification platform of WVSNs. This paper combines wireless transceiver module, visual information acquisition module and power acquisition module, designs a high-performance wireless vision sensor node whose core is ARM11 microprocessor and selects AODV as the routing protocol to set up a verification platform called AdvanWorks for WVSNs. Experiments show that the AdvanWorks can successfully achieve functions of image acquisition, coding, wireless transmission, and obtain the effective distance parameters between nodes, which lays a good foundation for the follow-up application of WVSNs.
Li, Baopu; Meng, Max Q-H
2012-05-01
Tumor in digestive tract is a common disease and wireless capsule endoscopy (WCE) is a relatively new technology to examine diseases for digestive tract especially for small intestine. This paper addresses the problem of automatic recognition of tumor for WCE images. Candidate color texture feature that integrates uniform local binary pattern and wavelet is proposed to characterize WCE images. The proposed features are invariant to illumination change and describe multiresolution characteristics of WCE images. Two feature selection approaches based on support vector machine, sequential forward floating selection and recursive feature elimination, are further employed to refine the proposed features for improving the detection accuracy. Extensive experiments validate that the proposed computer-aided diagnosis system achieves a promising tumor recognition accuracy of 92.4% in WCE images on our collected data.
A wireless sensor network deployment for rural and forest fire detection and verification.
Lloret, Jaime; Garcia, Miguel; Bri, Diana; Sendra, Sandra
2009-01-01
Forest and rural fires are one of the main causes of environmental degradation in Mediterranean countries. Existing fire detection systems only focus on detection, but not on the verification of the fire. However, almost all of them are just simulations, and very few implementations can be found. Besides, the systems in the literature lack scalability. In this paper we show all the steps followed to perform the design, research and development of a wireless multisensor network which mixes sensors with IP cameras in a wireless network in order to detect and verify fire in rural and forest areas of Spain. We have studied how many cameras, sensors and access points are needed to cover a rural or forest area, and the scalability of the system. We have developed a multisensor and when it detects a fire, it sends a sensor alarm through the wireless network to a central server. The central server selects the closest wireless cameras to the multisensor, based on a software application, which are rotated to the sensor that raised the alarm, and sends them a message in order to receive real-time images from the zone. The camera lets the fire fighters corroborate the existence of a fire and avoid false alarms. In this paper, we show the test performance given by a test bench formed by four wireless IP cameras in several situations and the energy consumed when they are transmitting. Moreover, we study the energy consumed by each device when the system is set up. The wireless sensor network could be connected to Internet through a gateway and the images of the cameras could be seen from any part of the world.
A Wireless Sensor Network Deployment for Rural and Forest Fire Detection and Verification
Lloret, Jaime; Garcia, Miguel; Bri, Diana; Sendra, Sandra
2009-01-01
Forest and rural fires are one of the main causes of environmental degradation in Mediterranean countries. Existing fire detection systems only focus on detection, but not on the verification of the fire. However, almost all of them are just simulations, and very few implementations can be found. Besides, the systems in the literature lack scalability. In this paper we show all the steps followed to perform the design, research and development of a wireless multisensor network which mixes sensors with IP cameras in a wireless network in order to detect and verify fire in rural and forest areas of Spain. We have studied how many cameras, sensors and access points are needed to cover a rural or forest area, and the scalability of the system. We have developed a multisensor and when it detects a fire, it sends a sensor alarm through the wireless network to a central server. The central server selects the closest wireless cameras to the multisensor, based on a software application, which are rotated to the sensor that raised the alarm, and sends them a message in order to receive real-time images from the zone. The camera lets the fire fighters corroborate the existence of a fire and avoid false alarms. In this paper, we show the test performance given by a test bench formed by four wireless IP cameras in several situations and the energy consumed when they are transmitting. Moreover, we study the energy consumed by each device when the system is set up. The wireless sensor network could be connected to Internet through a gateway and the images of the cameras could be seen from any part of the world. PMID:22291533
Intrusion detection and monitoring for wireless networks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, Eric D.; Van Randwyk, Jamie A.; Lee, Erik J.
Wireless computer networks are increasing exponentially around the world. They are being implemented in both the unlicensed radio frequency (RF) spectrum (IEEE 802.11a/b/g) and the licensed spectrum (e.g., Firetide [1] and Motorola Canopy [2]). Wireless networks operating in the unlicensed spectrum are by far the most popular wireless computer networks in existence. The open (i.e., proprietary) nature of the IEEE 802.11 protocols and the availability of ''free'' RF spectrum have encouraged many producers of enterprise and common off-the-shelf (COTS) computer networking equipment to jump into the wireless arena. Competition between these companies has driven down the price of 802.11 wirelessmore » networking equipment and has improved user experiences with such equipment. The end result has been an increased adoption of the equipment by businesses and consumers, the establishment of the Wi-Fi Alliance [3], and widespread use of the Alliance's ''Wi-Fi'' moniker to describe these networks. Consumers use 802.11 equipment at home to reduce the burden of running wires in existing construction, facilitate the sharing of broadband Internet services with roommates or neighbors, and increase their range of ''connectedness''. Private businesses and government entities (at all levels) are deploying wireless networks to reduce wiring costs, increase employee mobility, enable non-employees to access the Internet, and create an added revenue stream to their existing business models (coffee houses, airports, hotels, etc.). Municipalities (Philadelphia; San Francisco; Grand Haven, MI) are deploying wireless networks so they can bring broadband Internet access to places lacking such access; offer limited-speed broadband access to impoverished communities; offer broadband in places, such as marinas and state parks, that are passed over by traditional broadband providers; and provide themselves with higher quality, more complete network coverage for use by emergency responders and other municipal agencies. In short, these Wi-Fi networks are being deployed everywhere. Much thought has been and is being put into evaluating cost-benefit analyses of wired vs. wireless networks and issues such as how to effectively cover an office building or municipality, how to efficiently manage a large network of wireless access points (APs), and how to save money by replacing an Internet service provider (ISP) with 802.11 technology. In comparison, very little thought and money are being focused on wireless security and monitoring for security purposes.« less
Cooperation and information replication in wireless networks.
Poularakis, Konstantinos; Tassiulas, Leandros
2016-03-06
A significant portion of today's network traffic is due to recurring downloads of a few popular contents. It has been observed that replicating the latter in caches installed at network edges-close to users-can drastically reduce network bandwidth usage and improve content access delay. Such caching architectures are gaining increasing interest in recent years as a way of dealing with the explosive traffic growth, fuelled further by the downward slope in storage space price. In this work, we provide an overview of caching with a particular emphasis on emerging network architectures that enable caching at the radio access network. In this context, novel challenges arise due to the broadcast nature of the wireless medium, which allows simultaneously serving multiple users tuned into a multicast stream, and the mobility of the users who may be frequently handed off from one cell tower to another. Existing results indicate that caching at the wireless edge has a great potential in removing bottlenecks on the wired backbone networks. Taking into consideration the schedule of multicast service and mobility profiles is crucial to extract maximum benefit in network performance. © 2016 The Author(s).
Mobile and static sensors in a citizen-based observatory of water
NASA Astrophysics Data System (ADS)
Brauchli, Tristan; Weijs, Steven V.; Lehning, Michael; Huwald, Hendrik
2014-05-01
Understanding and forecasting water resources and components of the water cycle require spatially and temporally resolved observations of numerous water-related variables. Such observations are often obtained from wireless networks of automated weather stations. The "WeSenseIt" project develops a citizen- and community-based observatory of water to improve the water and risk management at the catchment scale and to support decision-making of stakeholders. It is implemented in three case studies addressing various questions related to flood, drought, water resource management, water quality and pollution. Citizens become potential observers and may transmit water-related measurements and information. Combining the use of recent technologies (wireless communication, internet, smartphone) with the development of innovative low cost sensors enables the implementation of heterogeneous observatories, which (a) empower citizens and (b) expand and complement traditional operational sensing networks. With the goal of increasing spatial coverage of observations and decreasing cost for sensors, this study presents the examples of measuring (a) flow velocity in streams using smartphones and (b) sensible heat flux using simple sensors at the nodes of wireless sensor networks.
Cardiac ultrasonography over 4G wireless networks using a tele-operated robot
Panayides, Andreas S.; Jossif, Antonis P.; Christoforou, Eftychios G.; Vieyres, Pierre; Novales, Cyril; Voskarides, Sotos; Pattichis, Constantinos S.
2016-01-01
This Letter proposes an end-to-end mobile tele-echography platform using a portable robot for remote cardiac ultrasonography. Performance evaluation investigates the capacity of long-term evolution (LTE) wireless networks to facilitate responsive robot tele-manipulation and real-time ultrasound video streaming that qualifies for clinical practice. Within this context, a thorough video coding standards comparison for cardiac ultrasound applications is performed, using a data set of ten ultrasound videos. Both objective and subjective (clinical) video quality assessment demonstrate that H.264/AVC and high efficiency video coding standards can achieve diagnostically-lossless video quality at bitrates well within the LTE supported data rates. Most importantly, reduced latencies experienced throughout the live tele-echography sessions allow the medical expert to remotely operate the robot in a responsive manner, using the wirelessly communicated cardiac ultrasound video to reach a diagnosis. Based on preliminary results documented in this Letter, the proposed robotised tele-echography platform can provide for reliable, remote diagnosis, achieving comparable quality of experience levels with in-hospital ultrasound examinations. PMID:27733929
Hardware platform for multiple mobile robots
NASA Astrophysics Data System (ADS)
Parzhuber, Otto; Dolinsky, D.
2004-12-01
This work is concerned with software and communications architectures that might facilitate the operation of several mobile robots. The vehicles should be remotely piloted or tele-operated via a wireless link between the operator and the vehicles. The wireless link will carry control commands from the operator to the vehicle, telemetry data from the vehicle back to the operator and frequently also a real-time video stream from an on board camera. For autonomous driving the link will carry commands and data between the vehicles. For this purpose we have developed a hardware platform which consists of a powerful microprocessor, different sensors, stereo- camera and Wireless Local Area Network (WLAN) for communication. The adoption of IEEE802.11 standard for the physical and access layer protocols allow a straightforward integration with the internet protocols TCP/IP. For the inspection of the environment the robots are equipped with a wide variety of sensors like ultrasonic, infrared proximity sensors and a small inertial measurement unit. Stereo cameras give the feasibility of the detection of obstacles, measurement of distance and creation of a map of the room.
Configuration and Management of Wireless Sensor Networks
2005-12-01
monitor network status. B. CONCLUSIONS AND FUTURE WORK WSNs are an exciting and useful technology which will be used in various areas in the...int h = getSize().height; Image resizedImage = null; ImageFilter replicate = new ReplicateScaleFilter(w, h); ImageProducer prod = new
Cross-layer Energy Optimization Under Image Quality Constraints for Wireless Image Transmissions.
Yang, Na; Demirkol, Ilker; Heinzelman, Wendi
2012-01-01
Wireless image transmission is critical in many applications, such as surveillance and environment monitoring. In order to make the best use of the limited energy of the battery-operated cameras, while satisfying the application-level image quality constraints, cross-layer design is critical. In this paper, we develop an image transmission model that allows the application layer (e.g., the user) to specify an image quality constraint, and optimizes the lower layer parameters of transmit power and packet length, to minimize the energy dissipation in image transmission over a given distance. The effectiveness of this approach is evaluated by applying the proposed energy optimization to a reference ZigBee system and a WiFi system, and also by comparing to an energy optimization study that does not consider any image quality constraint. Evaluations show that our scheme outperforms the default settings of the investigated commercial devices and saves a significant amount of energy at middle-to-large transmission distances.
Rothfuss, Michael A; Unadkat, Jignesh V; Gimbel, Michael L; Mickle, Marlin H; Sejdić, Ervin
2017-03-01
Totally implantable wireless ultrasonic blood flowmeters provide direct-access chronic vessel monitoring in hard-to-reach places without using wired bedside monitors or imaging equipment. Although wireless implantable Doppler devices are accurate for most applications, device size and implant lifetime remain vastly underdeveloped. We review past and current approaches to miniaturization and implant lifetime extension for wireless implantable Doppler devices and propose approaches to reduce device size and maximize implant lifetime for the next generation of devices. Additionally, we review current and past approaches to accurate blood flow measurements. This review points toward relying on increased levels of monolithic customization and integration to reduce size. Meanwhile, recommendations to maximize implant lifetime should include alternative sources of power, such as transcutaneous wireless power, that stand to extend lifetime indefinitely. Coupling together the results will pave the way for ultra-miniaturized totally implantable wireless blood flow monitors for truly chronic implantation. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Wireless local area network for the dental office.
Mupparapu, Muralidhar
2004-01-01
Dental offices are no exception to the implementation of new and advanced technology, especially if it enhances productivity. In a rapidly transforming digital world, wireless technology has a special place, as it has truly "retired the wire" and contributed to the ease and efficient access to patient data and other software-based applications for diagnosis and treatment. If the office or the clinic is networked, access to patient management software, imaging software and treatment planning tools is enhanced. Access will be further enhanced and unrestricted if the entire network is wireless. As with any new, emerging technology, there will be issues that should be kept in mind before adapting to the wireless environment. Foremost is the network security involved in the installation and use of these wireless networks. This short, technical manuscript deals with standards and choices in wireless technology currently available for implementation within a dental office. The benefits of each network security protocol available to protect patient data and boost the efficiency of a modern dental office are discussed.
Wireless, Acoustically Linked, Undersea, Magnetometer Sensor Network
2010-06-01
Hull Street, San Diego, CA 92152 mihajlo.tomic@navy.mil, sullivap@spawar.navy.mil, keyko.mcdonald.navy.mil Abstract—This paper presents a magnetometer...sensor node design that consists of a He3 nuclear precession total-field magne- tometer, data acquisition and recording electronics, and acoustic modem...detection range, thereby minimizing the overall number of required nodes to cover a given area. Given the aversion to continuously streaming data via the
Duke, Mila Morais; Wolfe, Jace; Schafer, Erin
2016-05-01
Cochlear implant (CI) recipients often experience difficulty understanding speech in noise and speech that originates from a distance. Many CI recipients also experience difficulty understanding speech originating from a television. Use of hearing assistance technology (HAT) may improve speech recognition in noise and for signals that originate from more than a few feet from the listener; however, there are no published studies evaluating the potential benefits of a wireless HAT designed to deliver audio signals from a television directly to a CI sound processor. The objective of this study was to compare speech recognition in quiet and in noise of CI recipients with the use of their CI alone and with the use of their CI and a wireless HAT (Cochlear Wireless TV Streamer). A two-way repeated measures design was used to evaluate performance differences obtained in quiet and in competing noise (65 dBA) with the CI sound processor alone and with the sound processor coupled to the Cochlear Wireless TV Streamer. Sixteen users of Cochlear Nucleus 24 Freedom, CI512, and CI422 implants were included in the study. Participants were evaluated in four conditions including use of the sound processor alone and use of the sound processor with the wireless streamer in quiet and in the presence of competing noise at 65 dBA. Speech recognition was evaluated in each condition with two full lists of Computer-Assisted Speech Perception Testing and Training Sentence-Level Test sentences presented from a light-emitting diode television. Speech recognition in noise was significantly better with use of the wireless streamer compared to participants' performance with their CI sound processor alone. There was also a nonsignificant trend toward better performance in quiet with use of the TV Streamer. Performance was significantly poorer when evaluated in noise compared to performance in quiet when the TV Streamer was not used. Use of the Cochlear Wireless TV Streamer designed to stream audio from a television directly to a CI sound processor provides better speech recognition in quiet and in noise when compared to performance obtained with use of the CI sound processor alone. American Academy of Audiology.
NASA Astrophysics Data System (ADS)
An, Yun-Kyu; Song, Homin; Sohn, Hoon
2014-09-01
This paper presents a wireless ultrasonic wavefield imaging (WUWI) technique for detecting hidden damage inside a steel box girder bridge. The proposed technique allows (1) complete wireless excitation of piezoelectric transducers and noncontact sensing of the corresponding responses using laser beams, (2) autonomous damage visualization without comparing against baseline data previously accumulated from the pristine condition of a target structure and (3) robust damage diagnosis even for real structures with complex structural geometries. First, a new WUWI hardware system was developed by integrating optoelectronic-based signal transmitting and receiving devices and a scanning laser Doppler vibrometer. Next, a damage visualization algorithm, self-referencing f-k filter (SRF), was introduced to isolate and visualize only crack-induced ultrasonic modes from measured ultrasonic wavefield images. Finally, the performance of the proposed technique was validated through hidden crack visualization at a decommissioned Ramp-G Bridge in South Korea. The experimental results reveal that the proposed technique instantaneously detects and successfully visualizes hidden cracks even in the complex structure of a real bridge.
Almeida, Jorge; Amaral, Lénia; Garcea, Frank E; Aguiar de Sousa, Diana; Xu, Shan; Mahon, Bradford Z; Martins, Isabel Pavão
2018-05-24
A major principle of organization of the visual system is between a dorsal stream that processes visuomotor information and a ventral stream that supports object recognition. Most research has focused on dissociating processing across these two streams. Here we focus on how the two streams interact. We tested neurologically-intact and impaired participants in an object categorization task over two classes of objects that depend on processing within both streams-hands and tools. We measured how unconscious processing of images from one of these categories (e.g., tools) affects the recognition of images from the other category (i.e., hands). Our findings with neurologically-intact participants demonstrated that processing an image of a hand hampers the subsequent processing of an image of a tool, and vice versa. These results were not present in apraxic patients (N = 3). These findings suggest local and global inhibitory processes working in tandem to co-register information across the two streams.
Adaptive Video Streaming Using Bandwidth Estimation for 3.5G Mobile Network
NASA Astrophysics Data System (ADS)
Nam, Hyeong-Min; Park, Chun-Su; Jung, Seung-Won; Ko, Sung-Jea
Currently deployed mobile networks including High Speed Downlink Packet Access (HSDPA) offer only best-effort Quality of Service (QoS). In wireless best effort networks, the bandwidth variation is a critical problem, especially, for mobile devices with small buffers. This is because the bandwidth variation leads to packet losses caused by buffer overflow as well as picture freezing due to high transmission delay or buffer underflow. In this paper, in order to provide seamless video streaming over HSDPA, we propose an efficient real-time video streaming method that consists of the available bandwidth (AB) estimation for the HSDPA network and the transmission rate control to prevent buffer overflows/underflows. In the proposed method, the client estimates the AB and the estimated AB is fed back to the server through real-time transport control protocol (RTCP) packets. Then, the server adaptively adjusts the transmission rate according to the estimated AB and the buffer state obtained from the RTCP feedback information. Experimental results show that the proposed method achieves seamless video streaming over the HSDPA network providing higher video quality and lower transmission delay.
CIFAR10-DVS: An Event-Stream Dataset for Object Classification
Li, Hongmin; Liu, Hanchao; Ji, Xiangyang; Li, Guoqi; Shi, Luping
2017-01-01
Neuromorphic vision research requires high-quality and appropriately challenging event-stream datasets to support continuous improvement of algorithms and methods. However, creating event-stream datasets is a time-consuming task, which needs to be recorded using the neuromorphic cameras. Currently, there are limited event-stream datasets available. In this work, by utilizing the popular computer vision dataset CIFAR-10, we converted 10,000 frame-based images into 10,000 event streams using a dynamic vision sensor (DVS), providing an event-stream dataset of intermediate difficulty in 10 different classes, named as “CIFAR10-DVS.” The conversion of event-stream dataset was implemented by a repeated closed-loop smooth (RCLS) movement of frame-based images. Unlike the conversion of frame-based images by moving the camera, the image movement is more realistic in respect of its practical applications. The repeated closed-loop image movement generates rich local intensity changes in continuous time which are quantized by each pixel of the DVS camera to generate events. Furthermore, a performance benchmark in event-driven object classification is provided based on state-of-the-art classification algorithms. This work provides a large event-stream dataset and an initial benchmark for comparison, which may boost algorithm developments in even-driven pattern recognition and object classification. PMID:28611582
CIFAR10-DVS: An Event-Stream Dataset for Object Classification.
Li, Hongmin; Liu, Hanchao; Ji, Xiangyang; Li, Guoqi; Shi, Luping
2017-01-01
Neuromorphic vision research requires high-quality and appropriately challenging event-stream datasets to support continuous improvement of algorithms and methods. However, creating event-stream datasets is a time-consuming task, which needs to be recorded using the neuromorphic cameras. Currently, there are limited event-stream datasets available. In this work, by utilizing the popular computer vision dataset CIFAR-10, we converted 10,000 frame-based images into 10,000 event streams using a dynamic vision sensor (DVS), providing an event-stream dataset of intermediate difficulty in 10 different classes, named as "CIFAR10-DVS." The conversion of event-stream dataset was implemented by a repeated closed-loop smooth (RCLS) movement of frame-based images. Unlike the conversion of frame-based images by moving the camera, the image movement is more realistic in respect of its practical applications. The repeated closed-loop image movement generates rich local intensity changes in continuous time which are quantized by each pixel of the DVS camera to generate events. Furthermore, a performance benchmark in event-driven object classification is provided based on state-of-the-art classification algorithms. This work provides a large event-stream dataset and an initial benchmark for comparison, which may boost algorithm developments in even-driven pattern recognition and object classification.
Ground-based thermal imaging of stream surface temperatures: Technique and evaluation
Bonar, Scott A.; Petre, Sally J.
2015-01-01
We evaluated a ground-based handheld thermal imaging system for measuring water temperatures using data from eight southwestern USA streams and rivers. We found handheld thermal imagers could provide considerably more spatial information on water temperature (for our unit one image = 19,600 individual temperature measurements) than traditional methods could supply without a prohibitive amount of effort. Furthermore, they could provide measurements of stream surface temperature almost instantaneously compared with most traditional handheld thermometers (e.g., >20 s/reading). Spatial temperature analysis is important for measurement of subtle temperature differences across waterways, and identification of warm and cold groundwater inputs. Handheld thermal imaging is less expensive and equipment intensive than airborne thermal imaging methods and is useful under riparian canopies. Disadvantages of handheld thermal imagers include their current higher expense than thermometers, their susceptibility to interference when used incorrectly, and their slightly lower accuracy than traditional temperature measurement methods. Thermal imagers can only measure surface temperature, but this usually corresponds to subsurface temperatures in well-mixed streams and rivers. Using thermal imaging in select applications, such as where spatial investigations of water temperature are needed, or in conjunction with stationary temperature data loggers or handheld electronic or liquid-in-glass thermometers to characterize stream temperatures by both time and space, could provide valuable information on stream temperature dynamics. These tools will become increasingly important to fisheries biologists as costs continue to decline.
Swallowable fluorometric capsule for wireless triage of gastrointestinal bleeding.
Nemiroski, A; Ryou, M; Thompson, C C; Westervelt, R M
2015-12-07
Real-time detection of gastrointestinal bleeding remains a major challenge because there does not yet exist a minimally invasive technology that can both i) monitor for blood from an active hemorrhage and ii) uniquely distinguish it from blood left over from an inactive hemorrhage. Such a device would be an important tool for clinical triage. One promising solution, which we have proposed previously, is to inject a fluorescent dye into the blood stream and to use it as a distinctive marker of active bleeding by monitoring leakage into the gastrointestinal tract with a wireless fluorometer. This paper reports, for the first time to our knowledge, the development of a swallowable, wireless capsule with a built-in fluorometer capable of detecting fluorescein in blood, and intended for monitoring gastrointestinal bleeding in the stomach. The embedded, compact fluorometer uses pinholes to define a microliter sensing volume and to eliminate bulky optical components. The proof-of-concept capsule integrates optics, low-noise analog sensing electronics, a microcontroller, battery, and low power Zigbee radio, all into a cylindrical package measuring 11 mm × 27 mm and weighing 10 g. Bench-top experiments demonstrate wireless fluorometry with a limit-of-detection of 20 nM aqueous fluorescein. This device represents a major step towards a technology that would enable simple, rapid detection of active gastrointestinal bleeding, a capability that would save precious time and resources and, ultimately, reduce complications in patients.
20-meter underwater wireless optical communication link with 1.5 Gbps data rate.
Shen, Chao; Guo, Yujian; Oubei, Hassan M; Ng, Tien Khee; Liu, Guangyu; Park, Ki-Hong; Ho, Kang-Ting; Alouini, Mohamed-Slim; Ooi, Boon S
2016-10-31
The video streaming, data transmission, and remote control in underwater call for high speed (Gbps) communication link with a long channel length (~10 meters). We present a compact and low power consumption underwater wireless optical communication (UWOC) system utilizing a 450-nm laser diode (LD) and a Si avalanche photodetector. With the LD operating at a driving current of 80 mA with an optical power of 51.3 mW, we demonstrated a high-speed UWOC link offering a data rate up to 2 Gbps over a 12-meter-long, and 1.5 Gbps over a record 20-meter-long underwater channel. The measured bit-error rate (BER) are 2.8 × 10-5, and 3.0 × 10-3, respectively, which pass well the forward error correction (FEC) criterion.
NASA Astrophysics Data System (ADS)
Jin, Di; Wong, Dennis; Li, Junxiang; Luo, Zhang; Guo, Yiran; Liu, Bifeng; Wu, Qiong; Ho, Chih-Ming; Fei, Peng
2015-12-01
Imaging of live cells in a region of interest is essential to life science research. Unlike the traditional way that mounts CO2 incubator onto a bulky microscope for observation, here we propose a wireless microscope (termed w-SCOPE) that is based on the “microscope-in-incubator” concept and can be easily housed into a standard CO2 incubator for prolonged on-site observation of the cells. The w-SCOPE is capable of tunable magnification, remote control and wireless image transmission. At the same time, it is compact, measuring only ~10 cm in each dimension, and cost-effective. With the enhancement of compressive sensing computation, the acquired images can achieve a wide field of view (FOV) of ~113 mm2 as well as a cellular resolution of ~3 μm, which enables various forms of follow-up image-based cell analysis. We performed 12 hours time-lapse study on paclitaxel-treated MCF-7 and HEK293T cell lines using w-SCOPE. The analytic results, such as the calculated viability and therapeutic window, from our device were validated by standard cell detection assays and imaging-based cytometer. In addition to those end-point detection methods, w-SCOPE further uncovered the time course of the cell’s response to the drug treatment over the whole period of drug exposure.
Jin, Di; Wong, Dennis; Li, Junxiang; Luo, Zhang; Guo, Yiran; Liu, Bifeng; Wu, Qiong; Ho, Chih-Ming; Fei, Peng
2015-01-01
Imaging of live cells in a region of interest is essential to life science research. Unlike the traditional way that mounts CO2 incubator onto a bulky microscope for observation, here we propose a wireless microscope (termed w-SCOPE) that is based on the “microscope-in-incubator” concept and can be easily housed into a standard CO2 incubator for prolonged on-site observation of the cells. The w-SCOPE is capable of tunable magnification, remote control and wireless image transmission. At the same time, it is compact, measuring only ~10 cm in each dimension, and cost-effective. With the enhancement of compressive sensing computation, the acquired images can achieve a wide field of view (FOV) of ~113 mm2 as well as a cellular resolution of ~3 μm, which enables various forms of follow-up image-based cell analysis. We performed 12 hours time-lapse study on paclitaxel-treated MCF-7 and HEK293T cell lines using w-SCOPE. The analytic results, such as the calculated viability and therapeutic window, from our device were validated by standard cell detection assays and imaging-based cytometer. In addition to those end-point detection methods, w-SCOPE further uncovered the time course of the cell’s response to the drug treatment over the whole period of drug exposure. PMID:26681552
Fully wireless pressure sensor based on endoscopy images
NASA Astrophysics Data System (ADS)
Maeda, Yusaku; Mori, Hirohito; Nakagawa, Tomoaki; Takao, Hidekuni
2018-04-01
In this paper, the result of developing a fully wireless pressure sensor based on endoscopy images for an endoscopic surgery is reported for the first time. The sensor device has structural color with a nm-scale narrow gap, and the gap is changed by air pressure. The structural color of the sensor is acquired from camera images. Pressure detection can be realized with existing endoscope configurations only. The inner air pressure of the human body should be measured under flexible-endoscope operation using the sensor. Air pressure monitoring, has two important purposes. The first is to quantitatively measure tumor size under a constant air pressure for treatment selection. The second purpose is to prevent the endangerment of a patient due to over transmission of air. The developed sensor was evaluated, and the detection principle based on only endoscopy images has been successfully demonstrated.
Yap, Florence G H; Yen, Hong-Hsu
2014-02-20
Wireless Visual Sensor Networks (WVSNs) where camera-equipped sensor nodes can capture, process and transmit image/video information have become an important new research area. As compared to the traditional wireless sensor networks (WSNs) that can only transmit scalar information (e.g., temperature), the visual data in WVSNs enable much wider applications, such as visual security surveillance and visual wildlife monitoring. However, as compared to the scalar data in WSNs, visual data is much bigger and more complicated so intelligent schemes are required to capture/process/ transmit visual data in limited resources (hardware capability and bandwidth) WVSNs. WVSNs introduce new multi-disciplinary research opportunities of topics that include visual sensor hardware, image and multimedia capture and processing, wireless communication and networking. In this paper, we survey existing research efforts on the visual sensor hardware, visual sensor coverage/deployment, and visual data capture/ processing/transmission issues in WVSNs. We conclude that WVSN research is still in an early age and there are still many open issues that have not been fully addressed. More new novel multi-disciplinary, cross-layered, distributed and collaborative solutions should be devised to tackle these challenging issues in WVSNs.
Yap, Florence G. H.; Yen, Hong-Hsu
2014-01-01
Wireless Visual Sensor Networks (WVSNs) where camera-equipped sensor nodes can capture, process and transmit image/video information have become an important new research area. As compared to the traditional wireless sensor networks (WSNs) that can only transmit scalar information (e.g., temperature), the visual data in WVSNs enable much wider applications, such as visual security surveillance and visual wildlife monitoring. However, as compared to the scalar data in WSNs, visual data is much bigger and more complicated so intelligent schemes are required to capture/process/transmit visual data in limited resources (hardware capability and bandwidth) WVSNs. WVSNs introduce new multi-disciplinary research opportunities of topics that include visual sensor hardware, image and multimedia capture and processing, wireless communication and networking. In this paper, we survey existing research efforts on the visual sensor hardware, visual sensor coverage/deployment, and visual data capture/processing/transmission issues in WVSNs. We conclude that WVSN research is still in an early age and there are still many open issues that have not been fully addressed. More new novel multi-disciplinary, cross-layered, distributed and collaborative solutions should be devised to tackle these challenging issues in WVSNs. PMID:24561401
Inductively coupled wireless RF coil arrays.
Bulumulla, S B; Fiveland, E; Park, K J; Foo, T K; Hardy, C J
2015-04-01
As the number of coils increases in multi-channel MRI receiver-coil arrays, RF cables and connectors become increasingly bulky and heavy, degrading patient comfort and slowing workflow. Inductive coupling of signals provides an attractive "wireless" approach, with the potential to reduce coil weight and cost while simplifying patient setup. In this work, multi-channel inductively coupled anterior arrays were developed and characterized for 1.5T imaging. These comprised MR receiver coils inductively (or "wirelessly") linked to secondary or "sniffer" coils whose outputs were transmitted via preamps to the MR system cabinet. The induced currents in the imaging coils were blocked by passive diode circuits during RF transmit. The imaging arrays were totally passive, obviating the need to deliver power to the coils, and providing lightweight, untethered signal reception with easily positioned coils. Single-shot fast spin echo images were acquired from 5 volunteers using a 7-element inductively coupled coil array and a conventionally cabled 7-element coil array of identical geometry, with the inductively-coupled array showing a relative signal-to-noise ratio of 0.86 +/- 0.07. The concept was extended to a larger 9-element coil array to demonstrate the effect of coil element size on signal transfer and RF-transmit blocking. Copyright © 2015 Elsevier Inc. All rights reserved.
Wireless-PDA-controlled image workflow from PACS: the next trend in the health care enterprise?
NASA Astrophysics Data System (ADS)
Erberich, Stephan G.; Documet, Jorge; Zhou, Michael Z.; Cao, Fei; Liu, Brent J.; Mogel, Greg T.; Huang, H. K.
2003-05-01
Image workflow in today's Picture Archiving and Communication Systems (PACS) is controlled from fixed Display Workstations (DW) using proprietary control interfaces. A remote access to the Hospital Information System (HIS) and Radiology Information System (RIS) for urgent patient information retrieval does not exist or gradually become available. The lack for remote access and workflow control for HIS and RIS is especially true when it comes to medical images of a PACS on Department or Hospital level. As images become more complex and data sizes expand rapidly with new image techniques like functional MRI, Mammography or routine spiral CT to name a few, the access and manageability becomes an important issue. Long image downloads or incomplete work lists cannot be tolerated in a busy health care environment. In addition, the domain of the PACS is no longer limited to the imaging department and PACS is also being used in the ER and emergency care units. Thus a prompt and secure access and manageability not only by the radiologist, but also from the physician becomes crucial to optimally utilize the PACS in the health care enterprise of the new millennium. The purpose of this paper is to introduce a concept and its implementation of a remote access and workflow control of the PACS combining wireless, Internet and Internet2 technologies. A wireless device, the Personal Digital Assistant (PDA), is used to communicate to a PACS web server that acts as a gateway controlling the commands for which the user has access to the PACS server. The commands implemented for this test-bed are query/retrieve of the patient list and study list including modality, examination, series and image selection and pushing any list items to a selected DW on the PACS network.
Retrieval of Sentence Sequences for an Image Stream via Coherence Recurrent Convolutional Networks.
Park, Cesc Chunseong; Kim, Youngjin; Kim, Gunhee
2018-04-01
We propose an approach for retrieving a sequence of natural sentences for an image stream. Since general users often take a series of pictures on their experiences, much online visual information exists in the form of image streams, for which it would better take into consideration of the whole image stream to produce natural language descriptions. While almost all previous studies have dealt with the relation between a single image and a single natural sentence, our work extends both input and output dimension to a sequence of images and a sequence of sentences. For retrieving a coherent flow of multiple sentences for a photo stream, we propose a multimodal neural architecture called coherence recurrent convolutional network (CRCN), which consists of convolutional neural networks, bidirectional long short-term memory (LSTM) networks, and an entity-based local coherence model. Our approach directly learns from vast user-generated resource of blog posts as text-image parallel training data. We collect more than 22 K unique blog posts with 170 K associated images for the travel topics of NYC, Disneyland , Australia, and Hawaii. We demonstrate that our approach outperforms other state-of-the-art image captioning methods for text sequence generation, using both quantitative measures and user studies via Amazon Mechanical Turk.
A simulator tool set for evaluating HEVC/SHVC streaming
NASA Astrophysics Data System (ADS)
Al Hadhrami, Tawfik; Nightingale, James; Wang, Qi; Grecos, Christos; Kehtarnavaz, Nasser
2015-02-01
Video streaming and other multimedia applications account for an ever increasing proportion of all network traffic. The recent adoption of High Efficiency Video Coding (HEVC) as the H.265 standard provides many opportunities for new and improved services multimedia services and applications in the consumer domain. Since the delivery of version one of H.265, the Joint Collaborative Team on Video Coding have been working towards standardisation of a scalable extension (SHVC) to the H.265 standard and a series of range extensions and new profiles. As these enhancements are added to the standard the range of potential applications and research opportunities will expend. For example the use of video is also growing rapidly in other sectors such as safety, security, defence and health with real-time high quality video transmission playing an important role in areas like critical infrastructure monitoring and disaster management. Each of which may benefit from the application of enhanced HEVC/H.265 and SHVC capabilities. The majority of existing research into HEVC/H.265 transmission has focussed on the consumer domain addressing issues such as broadcast transmission and delivery to mobile devices with the lack of freely available tools widely cited as an obstacle to conducting this type of research. In this paper we present a toolset which facilitates the transmission and evaluation of HEVC/H.265 and SHVC encoded video on the popular open source NCTUns simulator. Our toolset provides researchers with a modular, easy to use platform for evaluating video transmission and adaptation proposals on large scale wired, wireless and hybrid architectures. The toolset consists of pre-processing, transmission, SHVC adaptation and post-processing tools to gather and analyse statistics. It has been implemented using HM15 and SHM5, the latest versions of the HEVC and SHVC reference software implementations to ensure that currently adopted proposals for scalable and range extensions to the standard can be investigated. We demonstrate the effectiveness and usability of our toolset by evaluating SHVC streaming and adaptation to meet terminal constraints and network conditions in a range of wired, wireless, and large scale wireless mesh network scenarios, each of which is designed to simulate a realistic environment. Our results are compared to those for H264/SVC, the scalable extension to the existing H.264/AVC advanced video coding standard.
Low-complexity video encoding method for wireless image transmission in capsule endoscope.
Takizawa, Kenichi; Hamaguchi, Kiyoshi
2010-01-01
This paper presents a low-complexity video encoding method applicable for wireless image transmission in capsule endoscopes. This encoding method is based on Wyner-Ziv theory, in which side information available at a transmitter is treated as side information at its receiver. Therefore complex processes in video encoding, such as estimation of the motion vector, are moved to the receiver side, which has a larger-capacity battery. As a result, the encoding process is only to decimate coded original data through channel coding. We provide a performance evaluation for a low-density parity check (LDPC) coding method in the AWGN channel.
Wireless communication of real-time ultrasound data and control
NASA Astrophysics Data System (ADS)
Tobias, Richard J.
2015-03-01
The Internet of Things (IoT) is expected to grow to 26 billion connected devices by 2020, plus the PC, smart phone, and tablet segment that includes mobile Health (mHealth) connected devices is projected to account for another 7.3 billion units by 2020. This paper explores some of the real-time constraints on the data-flow and control of a wireless connected ultrasound machine. The paper will define an ultrasound server and the capabilities necessary for real-time use of the device. The concept of an ultrasound server wirelessly (or over any network) connected to multiple lightweight clients on devices like an iPad, iPhone, or Android-based tablet, smartphone and other network-attached displays (i.e., Google Glass) is explored. Latency in the ultrasound data stream is one of the key areas to measure and to focus on keeping as small as possible (<30ms) so that the ultrasound operator can see what is at the probe at that moment, instead of where the probe was a short period earlier. By keeping the latency less than 30ms, the operator will feel like the data he sees on the wireless connected devices is running in real-time with the operator. The second parameter is the management of bandwidth. At minimum we need to be able to see 20 frames-per- second. It is possible to achieve ultrasound in triplex mode at >20 frames-per-second on a properly configured wireless network. The ultrasound server needs to be designed to accept multiple ultrasound data clients and multiple control clients. A description of the server and some of its key features will be described.
NASA Astrophysics Data System (ADS)
Fragkoulis, Alexandros; Kondi, Lisimachos P.; Parsopoulos, Konstantinos E.
2015-03-01
We propose a method for the fair and efficient allocation of wireless resources over a cognitive radio system network to transmit multiple scalable video streams to multiple users. The method exploits the dynamic architecture of the Scalable Video Coding extension of the H.264 standard, along with the diversity that OFDMA networks provide. We use a game-theoretic Nash Bargaining Solution (NBS) framework to ensure that each user receives the minimum video quality requirements, while maintaining fairness over the cognitive radio system. An optimization problem is formulated, where the objective is the maximization of the Nash product while minimizing the waste of resources. The problem is solved by using a Swarm Intelligence optimizer, namely Particle Swarm Optimization. Due to the high dimensionality of the problem, we also introduce a dimension-reduction technique. Our experimental results demonstrate the fairness imposed by the employed NBS framework.
Secure Internet video conferencing for assessing acute medical problems in a nursing facility.
Weiner, M.; Schadow, G.; Lindbergh, D.; Warvel, J.; Abernathy, G.; Dexter, P.; McDonald, C. J.
2001-01-01
Although video-based teleconferencing is becoming more widespread in the medical profession, especially for scheduled consultations, applications for rapid assessment of acute medical problems are rare. Use of such a video system in a nursing facility may be especially beneficial, because physicians are often not immediately available to evaluate patients. We have assembled and tested a portable, wireless conferencing system to prepare for a randomized trial of the system s influence on resource utilization and satisfaction. The system includes a rolling cart with video conferencing hardware and software, a remotely controllable digital camera, light, wireless network, and battery. A semi-automated paging system informs physicians of patient s study status and indications for conferencing. Data transmission occurs wirelessly in the nursing home and then through Internet cables to the physician s home. This provides sufficient bandwidth to support quality motion images. IPsec secures communications. Despite human and technical challenges, this system is affordable and functional. Images Figure 1 PMID:11825286
NASA Astrophysics Data System (ADS)
Khan, Muazzam A.; Ahmad, Jawad; Javaid, Qaisar; Saqib, Nazar A.
2017-03-01
Wireless Sensor Networks (WSN) is widely deployed in monitoring of some physical activity and/or environmental conditions. Data gathered from WSN is transmitted via network to a central location for further processing. Numerous applications of WSN can be found in smart homes, intelligent buildings, health care, energy efficient smart grids and industrial control systems. In recent years, computer scientists has focused towards findings more applications of WSN in multimedia technologies, i.e. audio, video and digital images. Due to bulky nature of multimedia data, WSN process a large volume of multimedia data which significantly increases computational complexity and hence reduces battery time. With respect to battery life constraints, image compression in addition with secure transmission over a wide ranged sensor network is an emerging and challenging task in Wireless Multimedia Sensor Networks. Due to the open nature of the Internet, transmission of data must be secure through a process known as encryption. As a result, there is an intensive demand for such schemes that is energy efficient as well as highly secure since decades. In this paper, discrete wavelet-based partial image encryption scheme using hashing algorithm, chaotic maps and Hussain's S-Box is reported. The plaintext image is compressed via discrete wavelet transform and then the image is shuffled column-wise and row wise-wise via Piece-wise Linear Chaotic Map (PWLCM) and Nonlinear Chaotic Algorithm, respectively. To get higher security, initial conditions for PWLCM are made dependent on hash function. The permuted image is bitwise XORed with random matrix generated from Intertwining Logistic map. To enhance the security further, final ciphertext is obtained after substituting all elements with Hussain's substitution box. Experimental and statistical results confirm the strength of the anticipated scheme.
2010-12-22
Wireless crop water monitoring project: Dr. Chris Lund and Forrest Melton, California State University Monterey Bay research scientists who work at NASA Ames Research Center, check data being returned from a wireless soil moisture monitoring network, installed in an agricultural field. Data from the soil moisture sensor network will be used to assist in interpretation of the satellite estimates of crop water demand. Image of courtesy of Forrest S. Melton
Constantinescu, Liviu; Kim, Jinman; Feng, David Dagan
2012-01-01
With the advent of 4G and other long-term evolution (LTE) wireless networks, the traditional boundaries of patient record propagation are diminishing as networking technologies extend the reach of hospital infrastructure and provide on-demand mobile access to medical multimedia data. However, due to legacy and proprietary software, storage and decommissioning costs, and the price of centralization and redevelopment, it remains complex, expensive, and often unfeasible for hospitals to deploy their infrastructure for online and mobile use. This paper proposes the SparkMed data integration framework for mobile healthcare (m-Health), which significantly benefits from the enhanced network capabilities of LTE wireless technologies, by enabling a wide range of heterogeneous medical software and database systems (such as the picture archiving and communication systems, hospital information system, and reporting systems) to be dynamically integrated into a cloud-like peer-to-peer multimedia data store. Our framework allows medical data applications to share data with mobile hosts over a wireless network (such as WiFi and 3G), by binding to existing software systems and deploying them as m-Health applications. SparkMed integrates techniques from multimedia streaming, rich Internet applications (RIA), and remote procedure call (RPC) frameworks to construct a Self-managing, Pervasive Automated netwoRK for Medical Enterprise Data (SparkMed). Further, it is resilient to failure, and able to use mobile and handheld devices to maintain its network, even in the absence of dedicated server devices. We have developed a prototype of the SparkMed framework for evaluation on a radiological workflow simulation, which uses SparkMed to deploy a radiological image viewer as an m-Health application for telemedical use by radiologists and stakeholders. We have evaluated our prototype using ten devices over WiFi and 3G, verifying that our framework meets its two main objectives: 1) interactive delivery of medical multimedia data to mobile devices; and 2) attaching to non-networked medical software processes without significantly impacting their performance. Consistent response times of under 500 ms and graphical frame rates of over 5 frames per second were observed under intended usage conditions. Further, overhead measurements displayed linear scalability and low resource requirements.
Kameoka, Shinichi; Isoda, Shuhei; Hashimoto, Atsushi; Ito, Ryoei; Miyamoto, Satoru; Wada, Genki; Watanabe, Naoki; Yamakami, Takashi; Suzuki, Ken; Kameoka, Takaharu
2017-01-01
We have tried to develop the guidance system for farmers to cultivate using various phenological indices. As the sensing part of this system, we deployed a new Wireless Sensor Network (WSN). This system uses the 920 MHz radio wave based on the Wireless Smart Utility Network that enables long-range wireless communication. In addition, the data acquired by the WSN were standardized for the advanced web service interoperability. By using these standardized data, we can create a web service that offers various kinds of phenological indices as secondary information to the farmers in the field. We have also established the field management system using thermal image, fluorescent and X-ray fluorescent methods, which enable the nondestructive, chemical-free, simple, and rapid measurement of fruits or trees. We can get the information about the transpiration of plants through a thermal image. The fluorescence sensor gives us information, such as nitrate balance index (NBI), that shows the nitrate balance inside the leaf, chlorophyll content, flavonol content and anthocyanin content. These methods allow one to quickly check the health of trees and find ways to improve the tree vigor of weak ones. Furthermore, the fluorescent x-ray sensor has the possibility to quantify the loss of minerals necessary for fruit growth. PMID:28448452
Kameoka, Shinichi; Isoda, Shuhei; Hashimoto, Atsushi; Ito, Ryoei; Miyamoto, Satoru; Wada, Genki; Watanabe, Naoki; Yamakami, Takashi; Suzuki, Ken; Kameoka, Takaharu
2017-04-27
We have tried to develop the guidance system for farmers to cultivate using various phenological indices. As the sensing part of this system, we deployed a new Wireless Sensor Network (WSN). This system uses the 920 MHz radio wave based on the Wireless Smart Utility Network that enables long-range wireless communication. In addition, the data acquired by the WSN were standardized for the advanced web service interoperability. By using these standardized data, we can create a web service that offers various kinds of phenological indices as secondary information to the farmers in the field. We have also established the field management system using thermal image, fluorescent and X-ray fluorescent methods, which enable the nondestructive, chemical-free, simple, and rapid measurement of fruits or trees. We can get the information about the transpiration of plants through a thermal image. The fluorescence sensor gives us information, such as nitrate balance index (NBI), that shows the nitrate balance inside the leaf, chlorophyll content, flavonol content and anthocyanin content. These methods allow one to quickly check the health of trees and find ways to improve the tree vigor of weak ones. Furthermore, the fluorescent x-ray sensor has the possibility to quantify the loss of minerals necessary for fruit growth.
Applications of Time-Reversal Processing for Planetary Surface Communications
NASA Technical Reports Server (NTRS)
Barton, Richard J.
2007-01-01
Due to the power constraints imposed on wireless sensor and communication networks deployed on a planetary surface during exploration, energy efficient transfer of data becomes a critical issue. In situations where groups of nodes within a network are located in relatively close proximity, cooperative communication techniques can be utilized to improve the range, data rate, power efficiency, and lifetime of the network. In particular, if the point-to-point communication channels on the network are well modeled as frequency non-selective, distributed or cooperative beamforming can employed. For frequency-selective channels, beamforming itself is not generally appropriate, but a natural generalization of it, time-reversal communication (TRC), can still be effective. Time-reversal processing has been proposed and studied previously for other applications, including acoustical imaging, electromagnetic imaging, underwater acoustic communication, and wireless communication channels. In this paper, we study both the theoretical advantages and the experimental performance of cooperative TRC for wireless communication on planetary surfaces. We give a brief introduction to TRC and present several scenarios where TRC could be profitably employed during planetary exploration. We also present simulation results illustrating the performance of cooperative TRC employed in a complex multipath environment and discuss the optimality of cooperative TRC for data aggregation in wireless sensor networks
Nonlinear optimization-based device-free localization with outlier link rejection.
Xiao, Wendong; Song, Biao; Yu, Xiting; Chen, Peiyuan
2015-04-07
Device-free localization (DFL) is an emerging wireless technique for estimating the location of target that does not have any attached electronic device. It has found extensive use in Smart City applications such as healthcare at home and hospitals, location-based services at smart spaces, city emergency response and infrastructure security. In DFL, wireless devices are used as sensors that can sense the target by transmitting and receiving wireless signals collaboratively. Many DFL systems are implemented based on received signal strength (RSS) measurements and the location of the target is estimated by detecting the changes of the RSS measurements of the wireless links. Due to the uncertainty of the wireless channel, certain links may be seriously polluted and result in erroneous detection. In this paper, we propose a novel nonlinear optimization approach with outlier link rejection (NOOLR) for RSS-based DFL. It consists of three key strategies, including: (1) affected link identification by differential RSS detection; (2) outlier link rejection via geometrical positional relationship among links; (3) target location estimation by formulating and solving a nonlinear optimization problem. Experimental results demonstrate that NOOLR is robust to the fluctuation of the wireless signals with superior localization accuracy compared with the existing Radio Tomographic Imaging (RTI) approach.
Development of a Wireless Network of Temperature Sensors for Yellowstone National Park (USA)
NASA Astrophysics Data System (ADS)
Munday, D. A.; Hutter, T.; Minolli, M.; Obraczka, K.; Manduchi, R.; Petersen, S.; Lowenstern, J. B.; Heasler, H.
2007-12-01
Temperature sensors deployed at Yellowstone clearly document that thermal features can vary in temperature on a variety of timescales and show regional correlations unrelated to meteorological variables such as air temperature. Yellowstone National Park (YNP) staff currently measures temperatures at over 40 thermal features and streams within the park, utilizing USGS stream gaging stations and portable data loggers deployed in geyser basins. The latter measure temperature every 1 to 15 minutes, and the data are physically downloaded after about 30 days. Installation of a wireless sensor network would: 1) save considerable time and effort in data retrieval, 2) minimize lost data due to equipment failure, and 3) provide a means to monitor thermal perturbations in near-real time. To meet this need, we developed a wireless sensor network capable of in-situ monitoring of air and water temperature. Temperature sensors are dispersed as nodes that communicate among themselves and through relays to a single base-station linked to the Internet. The small, weatherproof sensors operate unattended for over six months at temperatures as low as -40°C. Each uses an ultra-low-power Texas Instruments' MSP430 microcontroller and an SD card as mass storage. They are powered by 15Ah, 3.6 v, inert Li-ion batteries and transmit data via 900MHz radio modules with a 1-km range. The initial prototype consists of 4 nodes, and is designed to scale with additional nodes for finer spatial resolution and broader coverage. Temperature measurements are asynchronous from node to node, with intervals as frequent as 30 seconds. Data are stored internally to withstand temporary communication failures; underlying intelligent software is capable of re-routing data through alternative nodes to the base station and a MySQL data archiving system. We also developed a Google-Maps-based, front-end that displays the data, recent trends and sensor locations. The system was tested in the Santa Cruz Mountains and will be used at Yellowstone National Park during Fall 2007.
Shellock, Frank G; Audet-Griffin, Annabelle J
2014-06-01
The objective of this investigation was to evaluate magnetic resonance imaging (MRI) issues (magnetic field interactions, MRI-related heating, and artifacts) for a wirelessly powered lead used for spinal cord stimulation (SCS). A newly developed, wirelessly powered lead (Freedom-4, Stimwave Technologies Inc., Scottsdale, AZ, USA) underwent evaluation for magnetic field interactions (translational attraction and torque) at 3 Tesla, MRI-related heating at 1.5 Tesla/64 MHz and 3 Tesla/128 MHz, and artifacts at 3 Tesla using standardized techniques. MRI-related heating tests were conducted by placing the lead in a gelled-saline-filled phantom and performing MRI procedures using relatively high levels of radiofrequency energy. Artifacts were characterized using T1-weighted, spin echo (SE), and gradient echo (GRE) pulse sequences. The lead exhibited minor magnetic field interactions (2 degree deflection angle and no torque). Heating was not substantial under 1.5 Tesla/64 MHz (highest temperature change, 2.3°C) and 3 Tesla/128 MHz (highest temperature change, 2.2°C) MRI conditions. Artifacts were moderate in size relative to the size and shape of the lead. These findings demonstrated that it is acceptable for a patient with this wirelessly powered lead used for SCS to undergo MRI under the conditions utilized in this investigation and according to other necessary guidelines. Artifacts seen on magnetic resonance images may pose possible problems if the area of interest is in the same area or close to this lead. © 2013 International Neuromodulation Society.
Wireless Data-Acquisition System for Testing Rocket Engines
NASA Technical Reports Server (NTRS)
Lin, Chujen; Lonske, Ben; Hou, Yalin; Xu, Yingjiu; Gang, Mei
2007-01-01
A prototype wireless data-acquisition system has been developed as a potential replacement for a wired data-acquisition system heretofore used in testing rocket engines. The traditional use of wires to connect sensors, signal-conditioning circuits, and data acquisition circuitry is time-consuming and prone to error, especially when, as is often the case, many sensors are used in a test. The system includes one master and multiple slave nodes. The master node communicates with a computer via an Ethernet connection. The slave nodes are powered by rechargeable batteries and are packaged in weatherproof enclosures. The master unit and each of the slave units are equipped with a time-modulated ultra-wide-band (TMUWB) radio transceiver, which spreads its RF energy over several gigahertz by transmitting extremely low-power and super-narrow pulses. In this prototype system, each slave node can be connected to as many as six sensors: two sensors can be connected directly to analog-to-digital converters (ADCs) in the slave node and four sensors can be connected indirectly to the ADCs via signal conditioners. The maximum sampling rate for streaming data from any given sensor is about 5 kHz. The bandwidth of one channel of the TM-UWB radio communication system is sufficient to accommodate streaming of data from five slave nodes when they are fully loaded with data collected through all possible sensor connections. TM-UWB radios have a much higher spatial capacity than traditional sinusoidal wave-based radios. Hence, this TM-UWB wireless data-acquisition can be scaled to cover denser sensor setups for rocket engine test stands. Another advantage of TM-UWB radios is that it will not interfere with existing wireless transmission. The maximum radio-communication range between the master node and a slave node for this prototype system is about 50 ft (15 m) when the master and slave transceivers are equipped with small dipole antennas. The range can be increased by changing to larger antennas and/or greater transmission power. The battery life of a slave node ranges from about six hours during operation at full capacity to as long as three days when the system is in a "sleep" mode used to conserve battery charge during times between setup and rocket-engine testing. Batteries can be added to prolong operational lifetimes. The radio transceiver dominates the power consumption.
Impact of different cloud deployments on real-time video applications for mobile video cloud users
NASA Astrophysics Data System (ADS)
Khan, Kashif A.; Wang, Qi; Luo, Chunbo; Wang, Xinheng; Grecos, Christos
2015-02-01
The latest trend to access mobile cloud services through wireless network connectivity has amplified globally among both entrepreneurs and home end users. Although existing public cloud service vendors such as Google, Microsoft Azure etc. are providing on-demand cloud services with affordable cost for mobile users, there are still a number of challenges to achieve high-quality mobile cloud based video applications, especially due to the bandwidth-constrained and errorprone mobile network connectivity, which is the communication bottleneck for end-to-end video delivery. In addition, existing accessible clouds networking architectures are different in term of their implementation, services, resources, storage, pricing, support and so on, and these differences have varied impact on the performance of cloud-based real-time video applications. Nevertheless, these challenges and impacts have not been thoroughly investigated in the literature. In our previous work, we have implemented a mobile cloud network model that integrates localized and decentralized cloudlets (mini-clouds) and wireless mesh networks. In this paper, we deploy a real-time framework consisting of various existing Internet cloud networking architectures (Google Cloud, Microsoft Azure and Eucalyptus Cloud) and a cloudlet based on Ubuntu Enterprise Cloud over wireless mesh networking technology for mobile cloud end users. It is noted that the increasing trend to access real-time video streaming over HTTP/HTTPS is gaining popularity among both research and industrial communities to leverage the existing web services and HTTP infrastructure in the Internet. To study the performance under different deployments using different public and private cloud service providers, we employ real-time video streaming over the HTTP/HTTPS standard, and conduct experimental evaluation and in-depth comparative analysis of the impact of different deployments on the quality of service for mobile video cloud users. Empirical results are presented and discussed to quantify and explain the different impacts resulted from various cloud deployments, video application and wireless/mobile network setting, and user mobility. Additionally, this paper analyses the advantages, disadvantages, limitations and optimization techniques in various cloud networking deployments, in particular the cloudlet approach compared with the Internet cloud approach, with recommendations of optimized deployments highlighted. Finally, federated clouds and inter-cloud collaboration challenges and opportunities are discussed in the context of supporting real-time video applications for mobile users.
Combining multi-layered bitmap files using network specific hardware
DuBois, David H [Los Alamos, NM; DuBois, Andrew J [Santa Fe, NM; Davenport, Carolyn Connor [Los Alamos, NM
2012-02-28
Images and video can be produced by compositing or alpha blending a group of image layers or video layers. Increasing resolution or the number of layers results in increased computational demands. As such, the available computational resources limit the images and videos that can be produced. A computational architecture in which the image layers are packetized and streamed through processors can be easily scaled so to handle many image layers and high resolutions. The image layers are packetized to produce packet streams. The packets in the streams are received, placed in queues, and processed. For alpha blending, ingress queues receive the packetized image layers which are then z sorted and sent to egress queues. The egress queue packets are alpha blended to produce an output image or video.
Detection of protruding lesion in wireless capsule endoscopy videos of small intestine
NASA Astrophysics Data System (ADS)
Wang, Chengliang; Luo, Zhuo; Liu, Xiaoqi; Bai, Jianying; Liao, Guobin
2018-02-01
Wireless capsule endoscopy (WCE) is a developed revolutionary technology with important clinical benefits. But the huge image data brings a heavy burden to the doctors for locating and diagnosing the lesion images. In this paper, a novel and efficient approach is proposed to help clinicians to detect protruding lesion images in small intestine. First, since there are many possible disturbances such as air bubbles and so on in WCE video frames, which add the difficulty of efficient feature extraction, the color-saliency region detection (CSD) method is developed for extracting the potentially saliency region of interest (SROI). Second, a novel color channels modelling of local binary pattern operator (CCLBP) is proposed to describe WCE images, which combines grayscale and color angle. The CCLBP feature is more robust to variation of illumination and more discriminative for classification. Moreover, support vector machine (SVM) classifier with CCLBP feature is utilized to detect protruding lesion images. Experimental results on real WCE images demonstrate that proposed method has higher accuracy on protruding lesion detection than some art-of-state methods.
[Development of a video image system for wireless capsule endoscopes based on DSP].
Yang, Li; Peng, Chenglin; Wu, Huafeng; Zhao, Dechun; Zhang, Jinhua
2008-02-01
A video image recorder to record video picture for wireless capsule endoscopes was designed. TMS320C6211 DSP of Texas Instruments Inc. is the core processor of this system. Images are periodically acquired from Composite Video Broadcast Signal (CVBS) source and scaled by video decoder (SAA7114H). Video data is transported from high speed buffer First-in First-out (FIFO) to Digital Signal Processor (DSP) under the control of Complex Programmable Logic Device (CPLD). This paper adopts JPEG algorithm for image coding, and the compressed data in DSP was stored to Compact Flash (CF) card. TMS320C6211 DSP is mainly used for image compression and data transporting. Fast Discrete Cosine Transform (DCT) algorithm and fast coefficient quantization algorithm are used to accelerate operation speed of DSP and decrease the executing code. At the same time, proper address is assigned for each memory, which has different speed;the memory structure is also optimized. In addition, this system uses plenty of Extended Direct Memory Access (EDMA) to transport and process image data, which results in stable and high performance.
Kim, Dong-Keun; Yoo, Sun K; Kim, Sun H
2005-01-01
The instant transmission of radiological images may be important for making rapid clinical decisions about emergency patients. We have examined an instant image transfer system based on a personal digital assistant (PDA) phone with a built-in camera. Images displayed on a picture archiving and communication systems (PACS) monitor can be captured by the camera in the PDA phone directly. Images can then be transmitted from an emergency centre to a remote physician via a wireless high-bandwidth network (CDMA 1 x EVDO). We reviewed the radiological lesions in 10 normal and 10 abnormal cases produced by modalities such as computerized tomography (CT), magnetic resonance (MR) and digital angiography. The images were of 24-bit depth and 1,144 x 880, 1,120 x 840, 1,024 x 768, 800 x 600, 640 x 480 and 320 x 240 pixels. Three neurosurgeons found that for satisfactory remote consultation a minimum size of 640 x 480 pixels was required for CT and MR images and 1,024 x 768 pixels for angiography images. Although higher resolution produced higher clinical satisfaction, it also required more transmission time. At the limited bandwidth employed, higher resolutions could not be justified.
Automated alignment system for optical wireless communication systems using image recognition.
Brandl, Paul; Weiss, Alexander; Zimmermann, Horst
2014-07-01
In this Letter, we describe the realization of a tracked line-of-sight optical wireless communication system for indoor data distribution. We built a laser-based transmitter with adaptive focus and ray steering by a microelectromechanical systems mirror. To execute the alignment procedure, we used a CMOS image sensor at the transmitter side and developed an algorithm for image recognition to localize the receiver's position. The receiver is based on a self-developed optoelectronic integrated chip with low requirements on the receiver optics to make the system economically attractive. With this system, we were able to set up the communication link automatically without any back channel and to perform error-free (bit error rate <10⁻⁹) data transmission over a distance of 3.5 m with a data rate of 3 Gbit/s.
A Survey of Mobile and Wireless Technologies for Augmented Reality Systems (Preprint)
2008-02-01
Windows XP. A number of researchers have started employing them in AR simulations such as Wagner et al [25], Newman et al [46] and specifically the Sony ...different music clubs and styles of music according to the selection and tastes of the listeners. In the intro sequence the user can select an animated...3-D character (avatar) as his or her virtual persona and visit the different music rooms in the virtual disco. Users can download or stream music in
Mobile Vehicle Teleoperated Over Wireless IP
2007-06-13
VideoLAN software suite. The VLC media player portion of this suite handles net- work streaming of video, as well as the receipt and display of the video...is found in appendix C.7. Video Display The video feed is displayed for the operator using VLC opened independently from the control sending program...This gives the operator the most choice in how to configure the display. To connect VLC to the feed all you need is the IP address from the Java
Swain, Paul; Toor, Arifa; Volke, Frank; Keller, Jutta; Gerber, Jeremy; Rabinovitz, Elisha; Rothstein, Richard I
2010-06-01
Remote manipulation of wireless capsule endoscopes might improve diagnostic accuracy and facilitate therapy. To test a new capsule-manipulation system. University hospital. A first-in-human study tested a new magnetic maneuverable wireless capsule in a volunteer. A wireless capsule endoscope was modified to include neodymium-iron-boron magnets. The capsule's magnetic switch was replaced with a thermal one and turned on by placing it in hot water. One imager was removed from the PillCam colon-based capsule, and the available space was used to house the magnets. A handheld external magnet was used to manipulate this capsule in the esophagus and stomach. The capsule was initiated by placing it in a microg of hot water. The capsule was swallowed and observed in the esophagus and stomach by using a gastroscope. Capsule images were viewed on a real-time viewer. The capsule was manipulated in the esophagus for 10 minutes. It was easy to make the capsule turn somersaults and to angulate at the cardioesophageal junction. In the stomach, it was easy to move the capsule back from the pylorus to the cardioesophageal junction and hold/spin the capsule at any position in the stomach. The capsule in the esophagus and stomach did not cause discomfort. Magnetic force varies with the fourth power of distance. This study suggests that remote manipulation of a capsule in the esophagus and stomach of a human is feasible and might enhance diagnostic endoscopy as well as enable therapeutic wireless capsule endoscopy. Copyright 2010 American Society for Gastrointestinal Endoscopy. Published by Mosby, Inc. All rights reserved.
2018-05-31
See a jet stream speeding through Jupiter's atmosphere in this new view taken by NASA's Juno spacecraft. The jet stream, called Jet N2, was captured along the dynamic northern temperate belts of the gas giant planet. It is the white stream visible from top left to bottom right in the image. The color-enhanced image was taken at 10:34 p.m. PST on May 23 (1:34 a.m. EST on May 24), as Juno performed its 13th close flyby of Jupiter. At the time the image was taken, the spacecraft was about 3,516 miles (5,659 kilometers) from the tops of the clouds of the planet at a northern latitude of 32.9 degrees. Citizen scientists Gerald Eichstädt and Seán Doran created this image using data from the spacecraft's JunoCam imager. The view is a composite of several separate JunoCam images that were re-projected, blended, and healed. https://photojournal.jpl.nasa.gov/catalog/PIA22422
THz and sub-THz (MMW)-over-Fiber Data Links and Radar Technology
2016-12-05
propagation loss in free-space or transmission line, and their inherent straight-line path of propagation affects connections and synchronization between the...effort is to realize photonic-network compatible wireless data link at data rate up to 100 Gbit/s, and to explore a real-time MMW radar imaging system...global village at terabit rate, hopefully wirelessly. Unfortunately, such high-volume data transmission over air consumes radio bandwidth—lots of it
THz and sub THz (MMW)-over-Fiber Data Links and Radar Technology
2016-11-30
propagation loss in free-space or transmission line, and their inherent straight-line path of propagation affects connections and synchronization between the...effort is to realize photonic-network compatible wireless data link at data rate up to 100 Gbit/s, and to explore a real-time MMW radar imaging system...global village at terabit rate, hopefully wirelessly. Unfortunately, such high-volume data transmission over air consumes radio bandwidth—lots of it
A New Digital Imaging and Analysis System for Plant and Ecosystem Phenological Studies
NASA Astrophysics Data System (ADS)
Ramirez, G.; Ramirez, G. A.; Vargas, S. A., Jr.; Luna, N. R.; Tweedie, C. E.
2015-12-01
Over the past decade, environmental scientists have increasingly used low-cost sensors and custom software to gather and analyze environmental data. Included in this trend has been the use of imagery from field-mounted static digital cameras. Published literature has highlighted the challenge scientists have encountered with poor and problematic camera performance and power consumption, limited data download and wireless communication options, general ruggedness of off the shelf camera solutions, and time consuming and hard-to-reproduce digital image analysis options. Data loggers and sensors are typically limited to data storage in situ (requiring manual downloading) and/or expensive data streaming options. Here we highlight the features and functionality of a newly invented camera/data logger system and coupled image analysis software suited to plant and ecosystem phenological studies (patent pending). The camera has resulted from several years of development and prototype testing supported by several grants funded by the US NSF. These inventions have several unique features and functionality and have been field tested in desert, arctic, and tropical rainforest ecosystems. The system can be used to acquire imagery/data from static and mobile platforms. Data is collected, preprocessed, and streamed to the cloud without the need of an external computer and can run for extended time periods. The camera module is capable of acquiring RGB, IR, and thermal (LWIR) data and storing it in a variety of formats including RAW. The system is full customizable with a wide variety of passive and smart sensors. The camera can be triggered by state conditions detected by sensors and/or select time intervals. The device includes USB, Wi-Fi, Bluetooth, serial, GSM, Ethernet, and Iridium connections and can be connected to commercial cloud servers such as Dropbox. The complementary image analysis software is compatible with all popular operating systems. Imagery can be viewed and analyzed in RGB, HSV, and l*a*b color space. Users can select a spectral index, which have been derived from published literature and/or choose to have analytical output reported as separate channel strengths for a given color space. Results of the analysis can be viewed in a plot and/or saved as a .csv file for additional analysis and visualization.
Kothari, Mihir; Kothari, Kedar; Kadam, Sanjay; Mota, Poonam; Chipade, Snehal
2015-01-01
To report the "do it yourself" method of converting an existing wired-halogen indirect ophthalmoscope (IO) to a wireless-light emitting diode (LED) IO and report the preferences of the patients and the ophthalmologists. In this prospective observational study, a conventional IO was converted to wireless-LED IO using easily available, affordable electrical components. Conventional and the converted IO were then used to perform photo-stress test and take the feedback of subjects and the ophthalmologists regarding its handling and illumination characteristics. The cost of conversion to wireless-LED was 815/- rupees. Twenty-nine subjects, mean age 34.3 [formula in text] 10 years with normal eyes were recruited in the study. Between the two illumination systems, there was no statistical difference in the magnitude of the visual acuity loss and the time to recovery of acuity and the bleached vision on photo-stress test, although the visual recovery was clinically faster with LED illumination. The heat sensation was more with halogen illumination than the LED (P = 0.009). The ophthalmologists rated wireless-LED IO higher than wired-halogen IO on the handling, examination comfort, patient's visual comfort and quality of the image. Twenty-two (81%) ophthalmologists wanted to change over to wireless-LED IO. Converting to wireless-LED IO is easy, cost-effective and preferred over a wired-halogen indirect ophthalmoscope.
Anderson, Adam L; Lin, Bingxiong; Sun, Yu
2013-12-01
This work first overviews a novel design, and prototype implementation, of a virtually transparent epidermal imagery (VTEI) system for laparo-endoscopic single-site (LESS) surgery. The system uses a network of multiple, micro-cameras and multiview mosaicking to obtain a panoramic view of the surgery area. The prototype VTEI system also projects the generated panoramic view on the abdomen area to create a transparent display effect that mimics equivalent, but higher risk, open-cavity surgeries. The specific research focus of this paper is on two important aspects of a VTEI system: 1) in vivo wireless high-definition (HD) video transmission and 2) multi-image processing-both of which play key roles in next-generation systems. For transmission and reception, this paper proposes a theoretical wireless communication scheme for high-definition video in situations that require extremely small-footprint image sensors and in zero-latency applications. In such situations the typical optimized metrics in communication schemes, such as power and data rate, are far less important than latency and hardware footprint that absolutely preclude their use if not satisfied. This work proposes the use of a novel Frequency-Modulated Voltage-Division Multiplexing (FM-VDM) scheme where sensor data is kept analog and transmitted via "voltage-multiplexed" signals that are also frequency-modulated. Once images are received, a novel Homographic Image Mosaicking and Morphing (HIMM) algorithm is proposed to stitch images from respective cameras, that also compensates for irregular surfaces in real-time, into a single cohesive view of the surgical area. In VTEI, this view is then visible to the surgeon directly on the patient to give an "open cavity" feel to laparoscopic procedures.
Time-optimum packet scheduling for many-to-one routing in wireless sensor networks
Song, W.-Z.; Yuan, F.; LaHusen, R.; Shirazi, B.
2007-01-01
This paper studies the wireless sensor networks (WSN) application scenario with periodical traffic from all sensors to a sink. We present a time-optimum and energy-efficient packet scheduling algorithm and its distributed implementation. We first give a general many-to-one packet scheduling algorithm for wireless networks, and then prove that it is time-optimum and costs [image omitted], N(u0)-1) time slots, assuming each node reports one unit of data in each round. Here [image omitted] is the total number of sensors, while [image omitted] denotes the number of sensors in a sink's largest branch subtree. With a few adjustments, we then show that our algorithm also achieves time-optimum scheduling in heterogeneous scenarios, where each sensor reports a heterogeneous amount of data in each round. Then we give a distributed implementation to let each node calculate its duty-cycle locally and maximize efficiency globally. In this packet-scheduling algorithm, each node goes to sleep whenever it is not transceiving, so that the energy waste of idle listening is also mitigated. Finally, simulations are conducted to evaluate network performance using the Qualnet simulator. Among other contributions, our study also identifies the maximum reporting frequency that a deployed sensor network can handle.
Joint Prior Learning for Visual Sensor Network Noisy Image Super-Resolution
Yue, Bo; Wang, Shuang; Liang, Xuefeng; Jiao, Licheng; Xu, Caijin
2016-01-01
The visual sensor network (VSN), a new type of wireless sensor network composed of low-cost wireless camera nodes, is being applied for numerous complex visual analyses in wild environments, such as visual surveillance, object recognition, etc. However, the captured images/videos are often low resolution with noise. Such visual data cannot be directly delivered to the advanced visual analysis. In this paper, we propose a joint-prior image super-resolution (JPISR) method using expectation maximization (EM) algorithm to improve VSN image quality. Unlike conventional methods that only focus on upscaling images, JPISR alternatively solves upscaling mapping and denoising in the E-step and M-step. To meet the requirement of the M-step, we introduce a novel non-local group-sparsity image filtering method to learn the explicit prior and induce the geometric duality between images to learn the implicit prior. The EM algorithm inherently combines the explicit prior and implicit prior by joint learning. Moreover, JPISR does not rely on large external datasets for training, which is much more practical in a VSN. Extensive experiments show that JPISR outperforms five state-of-the-art methods in terms of both PSNR, SSIM and visual perception. PMID:26927114
NASA Astrophysics Data System (ADS)
Klaus, Julian; Smettem, Keith; Pfister, Laurent; Harris, Nick
2017-04-01
There is ongoing interest in understanding and quantifying the travel times and dispersion of solutes moving through stream environments, including the hyporheic zone and/or in-channel dead zones where retention affects biogeochemical cycling processes that are critical to stream ecosystem functioning. Modelling these transport and retention processes requires acquisition of tracer data from injection experiments where the concentrations are recorded downstream. Such experiments are often time consuming and costly, which may be the reason many modelling studies of chemical transport have tended to rely on relatively few well documented field case studies. This leads to the need of fast and cheap distributed sensor arrays that respond instantly and record chemical transport at points of interest on timescales of seconds at various locations in the stream environment. To tackle this challenge we present data from several tracer experiments carried out in the Attert river catchment in Luxembourg employing low-cost (in the order of a euro per sensor) potentiometric chloride sensors in a distributed array. We injected NaCl under various baseflow conditions in streams of different morphologies and observed solute transport at various distances and locations. This data is used to benchmark the sensors to data obtained from more expensive electrical conductivity meters. Furthermore, the data allowed spatial resolution of hydrodynamic mixing processes and identification of chemical 'dead zones' in the study reaches.
NASA Astrophysics Data System (ADS)
Park, Minsuk; Kang, Jeeun; Lee, Gunho; Kim, Min; Song, Tai-Kyong
2016-04-01
Recently, a portable US imaging system using smart devices is highlighted for enhancing the portability of diagnosis. Especially, the system combination can enhance the user experience during whole US diagnostic procedures by employing the advanced wireless communication technology integrated in a smart device, e.g., WiFi, Bluetooth, etc. In this paper, an effective post-phase rotation-based dynamic receive beamforming (PRBF-POST) method is presented for wireless US imaging device integrating US probe system and commercial smart device. In conventional, the frame rate of conventional PRBF (PRBF-CON) method suffers from the large amount of calculations for the bifurcated processing paths of in-phase and quadrature signal components as the number of channel increase. Otherwise, the proposed PRBF-POST method can preserve the frame rate regardless of the number of channels by firstly aggregating the baseband IQ data along the channels whose phase quantization levels are identical ahead of phase rotation and summation procedures on a smart device. To evaluate the performance of the proposed PRBF-POST method, the pointspread functions of PRBF-CON and PRBF-POST methods were compared each other. Also, the frame rate of each PRBF method was measured 20-times to calculate the average frame rate and its standard deviation. As a result, the PRBFCON and PRBF-POST methods indicates identical beamforming performance in the Field-II simulation (correlation coefficient = 1). Also, the proposed PRBF-POST method indicates the consistent frame rate for varying number of channels (i.e., 44.25, 44.32, and 44.35 fps for 16, 64, and 128 channels, respectively), while the PRBF-CON method shows the decrease of frame rate as the number of channel increase (39.73, 13.19, and 3.8 fps). These results indicate that the proposed PRBF-POST method can be more advantageous for implementing the wireless US imaging system than the PRBF-CON method.
Takeuchi, Ryohei; Harada, Hiroshi; Masuda, Kohji; Ota, Gen-ichiro; Yokoi, Masaki; Teramura, Nobuyasu; Saito, Tomoyuki
2008-06-01
We report the testing of a mobile Robotic Tele-echo system that was placed in an ambulance and successfully transmitted clear real time echo imaging of a patient's abdomen to the destination hospital from where this device was being remotely operated. Two-way communication between the paramedics in this vehicle and a doctor standing by at the hospital was undertaken. The robot was equipped with an ultrasound probe which was remotely controlled by the clinician at the hospital and ultrasound images of the patient were transmitted wirelessly. The quality of the ultrasound images that were transmitted over the public mobile telephone networks and those transmitted over the Multimedia Wireless Access Network (a private networks) were compared. The transmission rate over the public networks and the private networks was approximately 256 Kbps, 3 Mbps respectively. Our results indicate that ultrasound images of far higher definition could be obtained through the private networks.
Promoting Wired Links in Wireless Mesh Networks: An Efficient Engineering Solution
Barekatain, Behrang; Raahemifar, Kaamran; Ariza Quintana, Alfonso; Triviño Cabrera, Alicia
2015-01-01
Wireless Mesh Networks (WMNs) cannot completely guarantee good performance of traffic sources such as video streaming. To improve the network performance, this study proposes an efficient engineering solution named Wireless-to-Ethernet-Mesh-Portal-Passageway (WEMPP) that allows effective use of wired communication in WMNs. WEMPP permits transmitting data through wired and stable paths even when the destination is in the same network as the source (Intra-traffic). Tested with four popular routing protocols (Optimized Link State Routing or OLSR as a proactive protocol, Dynamic MANET On-demand or DYMO as a reactive protocol, DYMO with spanning tree ability and HWMP), WEMPP considerably decreases the end-to-end delay, jitter, contentions and interferences on nodes, even when the network size or density varies. WEMPP is also cost-effective and increases the network throughput. Moreover, in contrast to solutions proposed by previous studies, WEMPP is easily implemented by modifying the firmware of the actual Ethernet hardware without altering the routing protocols and/or the functionality of the IP/MAC/Upper layers. In fact, there is no need for modifying the functionalities of other mesh components in order to work with WEMPPs. The results of this study show that WEMPP significantly increases the performance of all routing protocols, thus leading to better video quality on nodes. PMID:25793516
Tan, Tan-Hsu; Gochoo, Munkhjargal; Chen, Yung-Fu; Hu, Jin-Jia; Chiang, John Y.; Chang, Ching-Su; Lee, Ming-Huei; Hsu, Yung-Nian; Hsu, Jiin-Chyr
2017-01-01
This study presents a new ubiquitous emergency medical service system (UEMS) that consists of a ubiquitous tele-diagnosis interface and a traffic guiding subsystem. The UEMS addresses unresolved issues of emergency medical services by managing the sensor wires for eliminating inconvenience for both patients and paramedics in an ambulance, providing ubiquitous accessibility of patients’ biosignals in remote areas where the ambulance cannot arrive directly, and offering availability of real-time traffic information which can make the ambulance reach the destination within the shortest time. In the proposed system, patient’s biosignals and real-time video, acquired by wireless biosensors and a webcam, can be simultaneously transmitted to an emergency room for pre-hospital treatment via WiMax/3.5 G networks. Performances of WiMax and 3.5 G, in terms of initialization time, data rate, and average end-to-end delay are evaluated and compared. A driver can choose the route of the shortest time among the suggested routes by Google Maps after inspecting the current traffic conditions based on real-time CCTV camera streams and traffic information. The destination address can be inputted vocally for easiness and safety in driving. A series of field test results validates the feasibility of the proposed system for application in real-life scenarios. PMID:28117724
Tan, Tan-Hsu; Gochoo, Munkhjargal; Chen, Yung-Fu; Hu, Jin-Jia; Chiang, John Y; Chang, Ching-Su; Lee, Ming-Huei; Hsu, Yung-Nian; Hsu, Jiin-Chyr
2017-01-21
This study presents a new ubiquitous emergency medical service system (UEMS) that consists of a ubiquitous tele-diagnosis interface and a traffic guiding subsystem. The UEMS addresses unresolved issues of emergency medical services by managing the sensor wires for eliminating inconvenience for both patients and paramedics in an ambulance, providing ubiquitous accessibility of patients' biosignals in remote areas where the ambulance cannot arrive directly, and offering availability of real-time traffic information which can make the ambulance reach the destination within the shortest time. In the proposed system, patient's biosignals and real-time video, acquired by wireless biosensors and a webcam, can be simultaneously transmitted to an emergency room for pre-hospital treatment via WiMax/3.5 G networks. Performances of WiMax and 3.5 G, in terms of initialization time, data rate, and average end-to-end delay are evaluated and compared. A driver can choose the route of the shortest time among the suggested routes by Google Maps after inspecting the current traffic conditions based on real-time CCTV camera streams and traffic information. The destination address can be inputted vocally for easiness and safety in driving. A series of field test results validates the feasibility of the proposed system for application in real-life scenarios.
Autonomous vision networking: miniature wireless sensor networks with imaging technology
NASA Astrophysics Data System (ADS)
Messinger, Gioia; Goldberg, Giora
2006-09-01
The recent emergence of integrated PicoRadio technology, the rise of low power, low cost, System-On-Chip (SOC) CMOS imagers, coupled with the fast evolution of networking protocols and digital signal processing (DSP), created a unique opportunity to achieve the goal of deploying large-scale, low cost, intelligent, ultra-low power distributed wireless sensor networks for the visualization of the environment. Of all sensors, vision is the most desired, but its applications in distributed sensor networks have been elusive so far. Not any more. The practicality and viability of ultra-low power vision networking has been proven and its applications are countless, from security, and chemical analysis to industrial monitoring, asset tracking and visual recognition, vision networking represents a truly disruptive technology applicable to many industries. The presentation discusses some of the critical components and technologies necessary to make these networks and products affordable and ubiquitous - specifically PicoRadios, CMOS imagers, imaging DSP, networking and overall wireless sensor network (WSN) system concepts. The paradigm shift, from large, centralized and expensive sensor platforms, to small, low cost, distributed, sensor networks, is possible due to the emergence and convergence of a few innovative technologies. Avaak has developed a vision network that is aided by other sensors such as motion, acoustic and magnetic, and plans to deploy it for use in military and commercial applications. In comparison to other sensors, imagers produce large data files that require pre-processing and a certain level of compression before these are transmitted to a network server, in order to minimize the load on the network. Some of the most innovative chemical detectors currently in development are based on sensors that change color or pattern in the presence of the desired analytes. These changes are easily recorded and analyzed by a CMOS imager and an on-board DSP processor. Image processing at the sensor node level may also be required for applications in security, asset management and process control. Due to the data bandwidth requirements posed on the network by video sensors, new networking protocols or video extensions to existing standards (e.g. Zigbee) are required. To this end, Avaak has designed and implemented an ultra-low power networking protocol designed to carry large volumes of data through the network. The low power wireless sensor nodes that will be discussed include a chemical sensor integrated with a CMOS digital camera, a controller, a DSP processor and a radio communication transceiver, which enables relaying of an alarm or image message, to a central station. In addition to the communications, identification is very desirable; hence location awareness will be later incorporated to the system in the form of Time-Of-Arrival triangulation, via wide band signaling. While the wireless imaging kernel already exists specific applications for surveillance and chemical detection are under development by Avaak, as part of a co-founded program from ONR and DARPA. Avaak is also designing vision networks for commercial applications - some of which are undergoing initial field tests.
Combining Fog Computing with Sensor Mote Machine Learning for Industrial IoT.
Lavassani, Mehrzad; Forsström, Stefan; Jennehag, Ulf; Zhang, Tingting
2018-05-12
Digitalization is a global trend becoming ever more important to our connected and sustainable society. This trend also affects industry where the Industrial Internet of Things is an important part, and there is a need to conserve spectrum as well as energy when communicating data to a fog or cloud back-end system. In this paper we investigate the benefits of fog computing by proposing a novel distributed learning model on the sensor device and simulating the data stream in the fog, instead of transmitting all raw sensor values to the cloud back-end. To save energy and to communicate as few packets as possible, the updated parameters of the learned model at the sensor device are communicated in longer time intervals to a fog computing system. The proposed framework is implemented and tested in a real world testbed in order to make quantitative measurements and evaluate the system. Our results show that the proposed model can achieve a 98% decrease in the number of packets sent over the wireless link, and the fog node can still simulate the data stream with an acceptable accuracy of 97%. We also observe an end-to-end delay of 180 ms in our proposed three-layer framework. Hence, the framework shows that a combination of fog and cloud computing with a distributed data modeling at the sensor device for wireless sensor networks can be beneficial for Industrial Internet of Things applications.
Combining Fog Computing with Sensor Mote Machine Learning for Industrial IoT
Lavassani, Mehrzad; Jennehag, Ulf; Zhang, Tingting
2018-01-01
Digitalization is a global trend becoming ever more important to our connected and sustainable society. This trend also affects industry where the Industrial Internet of Things is an important part, and there is a need to conserve spectrum as well as energy when communicating data to a fog or cloud back-end system. In this paper we investigate the benefits of fog computing by proposing a novel distributed learning model on the sensor device and simulating the data stream in the fog, instead of transmitting all raw sensor values to the cloud back-end. To save energy and to communicate as few packets as possible, the updated parameters of the learned model at the sensor device are communicated in longer time intervals to a fog computing system. The proposed framework is implemented and tested in a real world testbed in order to make quantitative measurements and evaluate the system. Our results show that the proposed model can achieve a 98% decrease in the number of packets sent over the wireless link, and the fog node can still simulate the data stream with an acceptable accuracy of 97%. We also observe an end-to-end delay of 180 ms in our proposed three-layer framework. Hence, the framework shows that a combination of fog and cloud computing with a distributed data modeling at the sensor device for wireless sensor networks can be beneficial for Industrial Internet of Things applications. PMID:29757227
Liu, Wei; Kulin, Merima; Kazaz, Tarik; Shahid, Adnan; Moerman, Ingrid; De Poorter, Eli
2017-09-12
Driven by the fast growth of wireless communication, the trend of sharing spectrum among heterogeneous technologies becomes increasingly dominant. Identifying concurrent technologies is an important step towards efficient spectrum sharing. However, due to the complexity of recognition algorithms and the strict condition of sampling speed, communication systems capable of recognizing signals other than their own type are extremely rare. This work proves that multi-model distribution of the received signal strength indicator (RSSI) is related to the signals' modulation schemes and medium access mechanisms, and RSSI from different technologies may exhibit highly distinctive features. A distinction is made between technologies with a streaming or a non-streaming property, and appropriate feature spaces can be established either by deriving parameters such as packet duration from RSSI or directly using RSSI's probability distribution. An experimental study shows that even RSSI acquired at a sub-Nyquist sampling rate is able to provide sufficient features to differentiate technologies such as Wi-Fi, Long Term Evolution (LTE), Digital Video Broadcasting-Terrestrial (DVB-T) and Bluetooth. The usage of the RSSI distribution-based feature space is illustrated via a sample algorithm. Experimental evaluation indicates that more than 92% accuracy is achieved with the appropriate configuration. As the analysis of RSSI distribution is straightforward and less demanding in terms of system requirements, we believe it is highly valuable for recognition of wideband technologies on constrained devices in the context of dynamic spectrum access.
Liu, Wei; Kulin, Merima; Kazaz, Tarik; De Poorter, Eli
2017-01-01
Driven by the fast growth of wireless communication, the trend of sharing spectrum among heterogeneous technologies becomes increasingly dominant. Identifying concurrent technologies is an important step towards efficient spectrum sharing. However, due to the complexity of recognition algorithms and the strict condition of sampling speed, communication systems capable of recognizing signals other than their own type are extremely rare. This work proves that multi-model distribution of the received signal strength indicator (RSSI) is related to the signals’ modulation schemes and medium access mechanisms, and RSSI from different technologies may exhibit highly distinctive features. A distinction is made between technologies with a streaming or a non-streaming property, and appropriate feature spaces can be established either by deriving parameters such as packet duration from RSSI or directly using RSSI’s probability distribution. An experimental study shows that even RSSI acquired at a sub-Nyquist sampling rate is able to provide sufficient features to differentiate technologies such as Wi-Fi, Long Term Evolution (LTE), Digital Video Broadcasting-Terrestrial (DVB-T) and Bluetooth. The usage of the RSSI distribution-based feature space is illustrated via a sample algorithm. Experimental evaluation indicates that more than 92% accuracy is achieved with the appropriate configuration. As the analysis of RSSI distribution is straightforward and less demanding in terms of system requirements, we believe it is highly valuable for recognition of wideband technologies on constrained devices in the context of dynamic spectrum access. PMID:28895879
NASA Astrophysics Data System (ADS)
Prusten, Mark J.; McIntyre, Michelle; Landis, Marvin
2006-02-01
A 3D workflow pipeline is presented for High Dynamic Range (HDR) image capture of projected scenes or objects for presentation in CAVE virtual environments. The methods of HDR digital photography of environments vs. objects are reviewed. Samples of both types of virtual authoring being the actual CAVE environment and a sculpture are shown. A series of software tools are incorporated into a pipeline called CAVEPIPE, allowing for high-resolution objects and scenes to be composited together in natural illumination environments [1] and presented in our CAVE virtual reality environment. We also present a way to enhance the user interface for CAVE environments. The traditional methods of controlling the navigation through virtual environments include: glove, HUD's and 3D mouse devices. By integrating a wireless network that includes both WiFi (IEEE 802.11b/g) and Bluetooth (IEEE 802.15.1) protocols the non-graphical input control device can be eliminated. Therefore wireless devices can be added that would include: PDA's, Smart Phones, TabletPC's, Portable Gaming consoles, and PocketPC's.
NASA Astrophysics Data System (ADS)
Zhou, Hao; Hirose, Mitsuhito; Greenwood, William; Xiao, Yong; Lynch, Jerome; Zekkos, Dimitrios; Kamat, Vineet
2016-04-01
Unmanned aerial vehicles (UAVs) can serve as a powerful mobile sensing platform for assessing the health of civil infrastructure systems. To date, the majority of their uses have been dedicated to vision and laser-based spatial imaging using on-board cameras and LiDAR units, respectively. Comparatively less work has focused on integration of other sensing modalities relevant to structural monitoring applications. The overarching goal of this study is to explore the ability for UAVs to deploy a network of wireless sensors on structures for controlled vibration testing. The study develops a UAV platform with an integrated robotic gripper that can be used to install wireless sensors in structures, drop a heavy weight for the introduction of impact loads, and to uninstall wireless sensors for reinstallation elsewhere. A pose estimation algorithm is embedded in the UAV to estimate the location of the UAV during sensor placement and impact load introduction. The Martlet wireless sensor network architecture is integrated with the UAV to provide the UAV a mobile sensing capability. The UAV is programmed to command field deployed Martlets, aggregate and temporarily store data from the wireless sensor network, and to communicate data to a fixed base station on site. This study demonstrates the integrated UAV system using a simply supported beam in the lab with Martlet wireless sensors placed by the UAV and impact load testing performed. The study verifies the feasibility of the integrated UAV-wireless monitoring system architecture with accurate modal characteristics of the beam estimated by modal analysis.
Dispersion and nonlinear effects in OFDM-RoF system
NASA Astrophysics Data System (ADS)
Alhasson, Bader H.; Bloul, Albe M.; Matin, M.
2010-08-01
The radio-over-fiber (RoF) network has been a proven technology to be the best candidate for the wireless-access technology, and the orthogonal frequency division multiplexing (OFDM) technique has been established as the core technology in the physical layer of next generation wireless communication system, as a result OFDM-RoF has drawn attentions worldwide and raised many new research topics recently. At the present time, the trend of information industry is towards mobile, wireless, digital and broadband. The next generation network (NGN) has motivated researchers to study higher-speed wider-band multimedia communication to transmit (voice, data, and all sorts of media such as video) at a higher speed. The NGN would offer services that would necessitate broadband networks with bandwidth higher than 2Mbit/s per radio channel. Many new services emerged, such as Internet Protocol TV (IPTV), High Definition TV (HDTV), mobile multimedia and video stream media. Both speed and capacity have been the key objectives in transmission. In the meantime, the demand for transmission bandwidth increased at a very quick pace. The coming of 4G and 5G era will provide faster data transmission and higher bit rate and bandwidth. Taking advantages of both optical communication and wireless communication, OFDM Radio over Fiber (OFDM-RoF) system is characterized by its high speed, large capacity and high spectral efficiency. However, up to the present there are some problems to be solved, such as dispersion and nonlinearity effects. In this paper we will study the dispersion and nonlinearity effects and their elimination in OFDM-radio-over-fiber system.
NASA Astrophysics Data System (ADS)
Johansen, Kasper; Grove, James; Denham, Robert; Phinn, Stuart
2013-01-01
Stream bank condition is an important physical form indicator for streams related to the environmental condition of riparian corridors. This research developed and applied an approach for mapping bank condition from airborne light detection and ranging (LiDAR) and high-spatial resolution optical image data in a temperate forest/woodland/urban environment. Field observations of bank condition were related to LiDAR and optical image-derived variables, including bank slope, plant projective cover, bank-full width, valley confinement, bank height, bank top crenulation, and ground vegetation cover. Image-based variables, showing correlation with the field measurements of stream bank condition, were used as input to a cumulative logistic regression model to estimate and map bank condition. The highest correlation was achieved between field-assessed bank condition and image-derived average bank slope (R2=0.60, n=41), ground vegetation cover (R=0.43, n=41), bank width/height ratio (R=0.41, n=41), and valley confinement (producer's accuracy=100%, n=9). Cross-validation showed an average misclassification error of 0.95 from an ordinal scale from 0 to 4 using the developed model. This approach was developed to support the remotely sensed mapping of stream bank condition for 26,000 km of streams in Victoria, Australia, from 2010 to 2012.
Handcock, Rebecca N.; Swain, Dave L.; Bishop-Hurley, Greg J.; Patison, Kym P.; Wark, Tim; Valencia, Philip; Corke, Peter; O'Neill, Christopher J.
2009-01-01
Remote monitoring of animal behaviour in the environment can assist in managing both the animal and its environmental impact. GPS collars which record animal locations with high temporal frequency allow researchers to monitor both animal behaviour and interactions with the environment. These ground-based sensors can be combined with remotely-sensed satellite images to understand animal-landscape interactions. The key to combining these technologies is communication methods such as wireless sensor networks (WSNs). We explore this concept using a case-study from an extensive cattle enterprise in northern Australia and demonstrate the potential for combining GPS collars and satellite images in a WSN to monitor behavioural preferences and social behaviour of cattle. PMID:22412327
UniSat-5: a space-based optical system for space debris monitoring
NASA Astrophysics Data System (ADS)
Di Roberto, Riccardo; Cappelletti, Chantal
2012-07-01
Micro-satellite missions, thanks to the miniaturization process of electronic components, now have a broader range of applications. Gauss Group at School of Aerospace Engineering has been a pioneer in educational micro-satellites, namely with UNISAT and EDUSAT missions. Moreover it has been long involved in space debris related studies, such as optical observations as well as mitigation. A new project is under development for a compact digital imaging system. The purpose will be in situ observation of space debris on board Unisat-5 micro-satellite. One of the key elements of observing on orbit is that many atmospheric phenomena would be avoided, such as diffraction and EM absorption. Hence images would gain more contrast and solar spectral irradiance would be higher for the whole visible spectrum Earlier limitations of power and instrument size prevented the inclusion of these payloads in educational satellite missions. The system is composed of an optical tube, a camera, C band and S band transceivers and two antennas. The system is independent from the rest of the spacecraft. The optical tube is a Schmidt-Cassegrain reflector, and the magnitude limit is 13. The camera is equipped with a panchromatic 5Mpix sensor, capable of direct video streaming, as well as local storage of recorded images. The transceivers operate on ISM 2.4GHz and 5 GHz Wi-Fi bands, and they provide stand-alone communication capabilities to the payload, and Unisat-5 OBDH can switch between the two. Both transceivers are connected to their respective custom-designed patch antenna. The ground segment is constituted of a high gain antenna dish, which will use the same transceiver on board the spacecraft as the feed, in order to establish a TCP/IP wireless link. Every component of this system is a consumer grade product. Therefore price reduction of cutting edge imaging technology now allows the use of professional instruments, that combined with the new wireless technology developed for commercially available RF equipment, allows for an affordable, stand-alone system for digital imaging in space. The space debris observation will work in pair with the attitude determination system, as well as the orbit determination system. UniSat-5 micro-satellite will be launched during Q4 2012 by a Kosmotras DNEPR LV, and it will be injected in a Sun Synchronous Orbit. UniSat-5 will be a the first university satellite for space debris monitoring, and it will test the technology for the future design of a formation flight for on orbit optical debris detection. This paper deals with the space debris observation system boarded on UniSat-5 and the observation strategies adopted considering the mission proposed.
NASA Astrophysics Data System (ADS)
Sana, Ajaz; Hussain, Shahab; Ali, Mohammed A.; Ahmed, Samir
2007-09-01
In this paper we proposes a novel Passive Optical Network (PON) based broadband wireless access network architecture to provide multimedia services (video telephony, video streaming, mobile TV, mobile emails etc) to mobile users. In the conventional wireless access networks, the base stations (Node B) and Radio Network Controllers (RNC) are connected by point to point T1/E1 lines (Iub interface). The T1/E1 lines are expensive and add up to operating costs. Also the resources (transceivers and T1/E1) are designed for peak hours traffic, so most of the time the dedicated resources are idle and wasted. Further more the T1/E1 lines are not capable of supporting bandwidth (BW) required by next generation wireless multimedia services proposed by High Speed Packet Access (HSPA, Rel.5) for Universal Mobile Telecommunications System (UMTS) and Evolution Data only (EV-DO) for Code Division Multiple Access 2000 (CDMA2000). The proposed PON based back haul can provide Giga bit data rates and Iub interface can be dynamically shared by Node Bs. The BW is dynamically allocated and the unused BW from lightly loaded Node Bs is assigned to heavily loaded Node Bs. We also propose a novel algorithm to provide end to end Quality of Service (QoS) (between RNC and user equipment).The algorithm provides QoS bounds in the wired domain as well as in wireless domain with compensation for wireless link errors. Because of the air interface there can be certain times when the user equipment (UE) is unable to communicate with Node B (usually referred to as link error). Since the link errors are bursty and location dependent. For a proposed approach, the scheduler at the Node B maps priorities and weights for QoS into wireless MAC. The compensations for errored links is provided by the swapping of services between the active users and the user data is divided into flows, with flows allowed to lag or lead. The algorithm guarantees (1)delay and throughput for error-free flows,(2)short term fairness among error-free flows,(3)long term fairness among errored and error-free flows,(4)graceful degradation for leading flows and graceful compensation for lagging flows.
Wireless OAM transmission system based on elliptical microstrip patch antenna.
Chen, Jia Jia; Lu, Qian Nan; Dong, Fei Fei; Yang, Jing Jing; Huang, Ming
2016-05-30
The multiplexing transmission has always been a focus of attention for communication technology. In this paper, the radiation characteristics of circular microstrip patch antenna was firstly analyzed based on cavity model theory, and then spiral beams carrying orbital angular momentum (OAM) were generated, using elliptical microstrip patch antenna, with a single feed probe instead of a standard circular patch with two feedpoints. Moreover, by combining the proposed elliptic microstrip patch antenna with Universal Software Radio Peripheral (USRP), a wireless OAM transmission system was established and the real-time transmission of text, image and video in a real channel environment was realized. Since the wireless OAM transmission has the advantage of good safety and high spectrum utilization efficiency, this work has theoretical significance and potential application.
Counter-streaming flows in a giant quiet-Sun filament observed in the extreme ultraviolet
NASA Astrophysics Data System (ADS)
Diercke, A.; Kuckein, C.; Verma, M.; Denker, C.
2018-03-01
Aim. The giant solar filament was visible on the solar surface from 2011 November 8-23. Multiwavelength data from the Solar Dynamics Observatory (SDO) were used to examine counter-streaming flows within the spine of the filament. Methods: We use data from two SDO instruments, the Atmospheric Imaging Assembly (AIA) and the Helioseismic and Magnetic Imager (HMI), covering the whole filament, which stretched over more than half a solar diameter. Hα images from the Kanzelhöhe Solar Observatory (KSO) provide context information of where the spine of the filament is defined and the barbs are located. We apply local correlation tracking (LCT) to a two-hour time series on 2011 November 16 of the AIA images to derive horizontal flow velocities of the filament. To enhance the contrast of the AIA images, noise adaptive fuzzy equalization (NAFE) is employed, which allows us to identify and quantify counter-streaming flows in the filament. We observe the same cool filament plasma in absorption in both Hα and EUV images. Hence, the counter-streaming flows are directly related to this filament material in the spine. In addition, we use directional flow maps to highlight the counter-streaming flows. Results: We detect counter-streaming flows in the filament, which are visible in the time-lapse movies in all four examined AIA wavelength bands (λ171 Å, λ193 Å, λ304 Å, and λ211 Å). In the time-lapse movies we see that these persistent flows lasted for at least two hours, although they became less prominent towards the end of the time series. Furthermore, by applying LCT to the images we clearly determine counter-streaming flows in time series of λ171 Å and λ193 Å images. In the λ304 Å wavelength band, we only see minor indications for counter-streaming flows with LCT, while in the λ211 Å wavelength band the counter-streaming flows are not detectable with this method. The diverse morphology of the filament in Hα and EUV images is caused by different absorption processes, i.e., spectral line absorption and absorption by hydrogen and helium continua, respectively. The horizontal flows reach mean flow speeds of about 0.5 km s-1 for all wavelength bands. The highest horizontal flow speeds are identified in the λ171 Å band with flow speeds of up to 2.5 km s-1. The results are averaged over a time series of 90 minutes. Because the LCT sampling window has finite width, a spatial degradation cannot be avoided leading to lower estimates of the flow velocities as compared to feature tracking or Doppler measurements. The counter-streaming flows cover about 15-20% of the whole area of the EUV filament channel and are located in the central part of the spine. Conclusions: Compared to the ground-based observations, the absence of seeing effects in AIA observations reveal counter-streaming flows in the filament even with a moderate image scale of 0. ''6 pixel-1. Using a contrast enhancement technique, these flows can be detected and quantified with LCT in different wavelengths. We confirm the omnipresence of counter-streaming flows also in giant quiet-Sun filaments. A movie associated to Fig. 6 is available at http://https://www.aanda.org
Wireless networking for the dental office: current wireless standards and security protocols.
Mupparapu, Muralidhar; Arora, Sarika
2004-11-15
Digital radiography has gained immense popularity in dentistry today in spite of the early difficulty for the profession to embrace the technology. The transition from film to digital has been happening at a faster pace in the fields of Orthodontics, Oral Surgery, Endodontics, Periodontics, and other specialties where the radiographic images (periapical, bitewing, panoramic, cephalometric, and skull radiographs) are being acquired digitally, stored within a server locally, and eventually accessed for diagnostic purposes, along with the rest of the patient data via the patient management software (PMS). A review of the literature shows the diagnostic performance of digital radiography is at least comparable to or even better than that of conventional radiography. Similarly, other digital diagnostic tools like caries detectors, cephalometric analysis software, and digital scanners were used for many years for the diagnosis and treatment planning purposes. The introduction of wireless charged-coupled device (CCD) sensors in early 2004 (Schick Technologies, Long Island City, NY) has moved digital radiography a step further into the wireless era. As with any emerging technology, there are concerns that should be looked into before adapting to the wireless environment. Foremost is the network security involved in the installation and usage of these wireless networks. This article deals with the existing standards and choices in wireless technologies that are available for implementation within a contemporary dental office. The network security protocols that protect the patient data and boost the efficiency of modern day dental clinics are enumerated.
Xiao Jia; Meng, Max Q-H
2017-07-01
Gastrointestinal (GI) bleeding detection plays an essential role in wireless capsule endoscopy (WCE) examination. In this paper, we present a new approach for WCE bleeding detection that combines handcrafted (HC) features and convolutional neural network (CNN) features. Compared with our previous work, a smaller-scale CNN architecture is constructed to lower the computational cost. In experiments, we show that the proposed strategy is highly capable when training data is limited, and yields comparable or better results than the latest methods.
Retained Wireless Capsule Endoscope in a Girl with suspected Crohn's Disease.
Herle, Koushik; Jehangir, Susan
2016-01-01
Wireless capsule endoscopy (WCE) is one of the great milestones in the field of gastroenterology. It is versatile in image acquisition, painless and can reach parts of the small bowel not amenable to conventional endoscopy. The commonest complication with WCE is retention of the capsule. We report a case of retained capsule in a child who was being investigated for obscure gastrointestinal bleeding (OGIB). Operative intervention was required for its retrieval after two weeks of expectant management.
An FEC Adaptive Multicast MAC Protocol for Providing Reliability in WLANs
NASA Astrophysics Data System (ADS)
Basalamah, Anas; Sato, Takuro
For wireless multicast applications like multimedia conferencing, voice over IP and video/audio streaming, a reliable transmission of packets within short delivery delay is needed. Moreover, reliability is crucial to the performance of error intolerant applications like file transfer, distributed computing, chat and whiteboard sharing. Forward Error Correction (FEC) is frequently used in wireless multicast to enhance Packet Error Rate (PER) performance, but cannot assure full reliability unless coupled with Automatic Repeat Request forming what is knows as Hybrid-ARQ. While reliable FEC can be deployed at different levels of the protocol stack, it cannot be deployed on the MAC layer of the unreliable IEEE802.11 WLAN due to its inability to exchange ACKs with multiple recipients. In this paper, we propose a Multicast MAC protocol that enhances WLAN reliability by using Adaptive FEC and study it's performance through mathematical analysis and simulation. Our results show that our protocol can deliver high reliability and throughput performance.
Provably Secure Heterogeneous Access Control Scheme for Wireless Body Area Network.
Omala, Anyembe Andrew; Mbandu, Angolo Shem; Mutiria, Kamenyi Domenic; Jin, Chunhua; Li, Fagen
2018-04-28
Wireless body area network (WBAN) provides a medium through which physiological information could be harvested and transmitted to application provider (AP) in real time. Integrating WBAN in a heterogeneous Internet of Things (IoT) ecosystem would enable an AP to monitor patients from anywhere and at anytime. However, the IoT roadmap of interconnected 'Things' is still faced with many challenges. One of the challenges in healthcare is security and privacy of streamed medical data from heterogeneously networked devices. In this paper, we first propose a heterogeneous signcryption scheme where a sender is in a certificateless cryptographic (CLC) environment while a receiver is in identity-based cryptographic (IBC) environment. We then use this scheme to design a heterogeneous access control protocol. Formal security proof for indistinguishability against adaptive chosen ciphertext attack and unforgeability against adaptive chosen message attack in random oracle model is presented. In comparison with some of the existing access control schemes, our scheme has lower computation and communication cost.
Content-Aware Video Adaptation under Low-Bitrate Constraint
NASA Astrophysics Data System (ADS)
Hsiao, Ming-Ho; Chen, Yi-Wen; Chen, Hua-Tsung; Chou, Kuan-Hung; Lee, Suh-Yin
2007-12-01
With the development of wireless network and the improvement of mobile device capability, video streaming is more and more widespread in such an environment. Under the condition of limited resource and inherent constraints, appropriate video adaptations have become one of the most important and challenging issues in wireless multimedia applications. In this paper, we propose a novel content-aware video adaptation in order to effectively utilize resource and improve visual perceptual quality. First, the attention model is derived from analyzing the characteristics of brightness, location, motion vector, and energy features in compressed domain to reduce computation complexity. Then, through the integration of attention model, capability of client device and correlational statistic model, attractive regions of video scenes are derived. The information object- (IOB-) weighted rate distortion model is used for adjusting the bit allocation. Finally, the video adaptation scheme dynamically adjusts video bitstream in frame level and object level. Experimental results validate that the proposed scheme achieves better visual quality effectively and efficiently.
Dynamic spectrum management: an impact on EW systems
NASA Astrophysics Data System (ADS)
Gajewski, P.; Łopatka, J.; Suchanski, M.
2017-04-01
Rapid evolution of wireless systems caused an enormous growth of data streams transmitted through the networks and, as a consequence, an accompanying demand concerning spectrum resources (SR). An avoidance of advisable disturbances is one of the main demands in military communications. To solve the interference problems, dynamic spectrum management (DSM) techniques can be used. Two main techniques are possible: centralized Coordinated Dynamic Spectrum Access (CDSA) and distributed Opportunistic Spectrum Access (OSA). CDSA enables the wireless networks planning automation, and systems dynamic reaction to random changes of Radio Environment (RE). For OSA, cognitive radio (CR) is the most promising technology that enables avoidance of interference with the other spectrum users due to CR's transmission parameters adaptation to the current radio situation, according to predefined Radio Policies rules. If DSM techniques are used, the inherent changes in EW systems are also needed. On one hand, new techniques of jamming should be elaborated, on the other hand, the rules and protocols of cooperation between communication network and EW systems should be developed.
Video-based measurements for wireless capsule endoscope tracking
NASA Astrophysics Data System (ADS)
Spyrou, Evaggelos; Iakovidis, Dimitris K.
2014-01-01
The wireless capsule endoscope is a swallowable medical device equipped with a miniature camera enabling the visual examination of the gastrointestinal (GI) tract. It wirelessly transmits thousands of images to an external video recording system, while its location and orientation are being tracked approximately by external sensor arrays. In this paper we investigate a video-based approach to tracking the capsule endoscope without requiring any external equipment. The proposed method involves extraction of speeded up robust features from video frames, registration of consecutive frames based on the random sample consensus algorithm, and estimation of the displacement and rotation of interest points within these frames. The results obtained by the application of this method on wireless capsule endoscopy videos indicate its effectiveness and improved performance over the state of the art. The findings of this research pave the way for a cost-effective localization and travel distance measurement of capsule endoscopes in the GI tract, which could contribute in the planning of more accurate surgical interventions.
A short-range optical wireless transmission method based on LED
NASA Astrophysics Data System (ADS)
Miao, Meiyuan; Chen, Ailin; Zhu, Mingxing; Li, Ping; Gao, Yingming; Zou, Nianyu
2016-10-01
As to electromagnetic wave interfere and only one to one transmission problem of Bluetooth, a short-range LED optical wireless transmission method is proposed to be complementary technology in this paper. Furthermore achieved image transmission through this method. The system makes C52 to be the mater controller, transmitter got data from terminals by USB and sends modulated signals with LED. Optical signal is detected by PD, through amplified, filtered with shaping wave from, and demodulated on receiver. Then send to terminals like PC and reverted back to original image. Analysis the performance from peak power and average power, power consumption of transmitter, relationship of bit error rate and modulation mode, and influence of ambient light, respectively. The results shows that image can be received accurately which uses this method. The most distant transmission distance can get to 1m with transmitter LED source of 1w, and the transfer rate is 14.4Kbit/s with OOK modulation mode on stabilization system, the ambient light effect little to LED transmission system in normal light environment. The method is a convenient to carry LED wireless short range transmission for mobile transmission equipment as a supplement of Bluetooth short-range transmission for its ISM band interfere, and the analysis method in this paper can be a reference for other similar systems. It also proves the system is feasibility for next study.
Rube, Martin A.; Holbrook, Andrew B.; Cox, Benjamin F.; Buciuc, Razvan; Melzer, Andreas
2015-01-01
Purpose A wireless interactive display and control device combined with a platform-independent web-based User Interface (UI) was developed to improve the workflow for interventional Magnetic Resonance Imaging (iMRI). Methods The iMRI-UI enables image acquisition of up to three independent slices using various pulse sequences with different contrast weighting. Pulse sequence, scan geometry and related parameters can be changed on the fly via the iMRI-UI using a tablet computer for improved lesion detection and interventional device targeting. The iMRI-UI was validated for core biopsies with a liver phantom (n=40) and Thiel soft-embalmed human cadavers (n=24) in a clinical 1.5T MRI scanner. Results The iMRI-UI components and setup were tested and found conditionally MRI-safe to use according to current ASTM standards. Despite minor temporary touchscreen interference at a close distance to the bore (<20 cm), no other issues regarding quality or imaging artefacts were observed. The 3D root-mean-square distance error was 2.8±1.0 (phantom) / 2.9±0.8 mm (cadaver) and overall procedure times ranged between 12–22 (phantom) / 20–55 minutes (cadaver). Conclusions The wireless iMRI-UI control setup enabled fast and accurate interventional biopsy needle placements along complex trajectories and improved the workflow for percutaneous interventions under MRI guidance in a preclinical trial. PMID:25179151
Wearable, multimodal, vitals acquisition unit for intelligent field triage.
Beck, Christoph; Georgiou, Julius
2016-09-01
In this Letter, the authors describe the characterisation design and development of the authors' wearable, multimodal vitals acquisition unit for intelligent field triage. The unit is able to record the standard electrocardiogram, blood oxygen and body temperature parameters and also has the unique capability to record up to eight custom designed acoustic streams for heart and lung sound auscultation. These acquisition channels are highly synchronised to fully maintain the time correlation of the signals. The unit is a key component enabling systematic and intelligent field triage to continuously acquire vital patient information. With the realised unit a novel data-set with highly synchronised vital signs was recorded. The new data-set may be used for algorithm design in vital sign analysis or decision making. The monitoring unit is the only known body worn system that records standard emergency parameters plus eight multi-channel auscultatory streams and stores the recordings and wirelessly transmits them to mobile response teams.
Dental MRI using wireless intraoral coils
NASA Astrophysics Data System (ADS)
Ludwig, Ute; Eisenbeiss, Anne-Katrin; Scheifele, Christian; Nelson, Katja; Bock, Michael; Hennig, Jürgen; von Elverfeldt, Dominik; Herdt, Olga; Flügge, Tabea; Hövener, Jan-Bernd
2016-03-01
Currently, the gold standard for dental imaging is projection radiography or cone-beam computed tomography (CBCT). These methods are fast and cost-efficient, but exhibit poor soft tissue contrast and expose the patient to ionizing radiation (X-rays). The need for an alternative imaging modality e.g. for soft tissue management has stimulated a rising interest in dental magnetic resonance imaging (MRI) which provides superior soft tissue contrast. Compared to X-ray imaging, however, so far the spatial resolution of MRI is lower and the scan time is longer. In this contribution, we describe wireless, inductively-coupled intraoral coils whose local sensitivity enables high resolution MRI of dental soft tissue. In comparison to CBCT, a similar image quality with complementary contrast was obtained ex vivo. In-vivo, a voxel size of the order of 250•250•500 μm3 was achieved in 4 min only. Compared to dental MRI acquired with clinical equipment, the quality of the images was superior in the sensitive volume of the coils and is expected to improve the planning of interventions and monitoring thereafter. This method may enable a more accurate dental diagnosis and avoid unnecessary interventions, improving patient welfare and bringing MRI a step closer to becoming a radiation-free alternative for dental imaging.
Managing healthcare information using short message service (SMS) in wireless broadband networks
NASA Astrophysics Data System (ADS)
Documet, Jorge; Tsao, Sinchai; Documet, Luis; Liu, Brent J.; Zhou, Zheng; Joseph, Anika O.
2007-03-01
Due to the ubiquity of cell phones, SMS (Short Message Service) has become an ideal means to wirelessly manage a Healthcare environment and in particular PACS (Picture Archival and Communications System) data. SMS is a flexible and mobile method for real-time access and control of Healthcare information systems such as HIS (Hospital Information System) or PACS. Unlike conventional wireless access methods, SMS' mobility is not limited by the presence of a WiFi network or any other localized signal. It provides a simple, reliable yet flexible method to communicate with an information system. In addition, SMS services are widely available for low costs from cellular phone service providers and allows for more mobility than other services such as wireless internet. This paper aims to describe a use case of SMS as a means of remotely communicating with a PACS server. Remote access to a PACS server and its Query-Retrieve services allows for a more convenient, flexible and streamlined radiology workflow. Wireless access methods such as SMS will increase dedicated PACS workstation availability for more specialized DICOM (Digital Imaging and Communications in Medicine) workflow management. This implementation will address potential security, performance and cost issues of applying SMS as part of a healthcare information management system. This is in an effort to design a wireless communication system with optimal mobility and flexibility at minimum material and time costs.
High throughput analysis of samples in flowing liquid
Ambrose, W. Patrick; Grace, W. Kevin; Goodwin, Peter M.; Jett, James H.; Orden, Alan Van; Keller, Richard A.
2001-01-01
Apparatus and method enable imaging multiple fluorescent sample particles in a single flow channel. A flow channel defines a flow direction for samples in a flow stream and has a viewing plane perpendicular to the flow direction. A laser beam is formed as a ribbon having a width effective to cover the viewing plane. Imaging optics are arranged to view the viewing plane to form an image of the fluorescent sample particles in the flow stream, and a camera records the image formed by the imaging optics.
Content-based image retrieval on mobile devices
NASA Astrophysics Data System (ADS)
Ahmad, Iftikhar; Abdullah, Shafaq; Kiranyaz, Serkan; Gabbouj, Moncef
2005-03-01
Content-based image retrieval area possesses a tremendous potential for exploration and utilization equally for researchers and people in industry due to its promising results. Expeditious retrieval of desired images requires indexing of the content in large-scale databases along with extraction of low-level features based on the content of these images. With the recent advances in wireless communication technology and availability of multimedia capable phones it has become vital to enable query operation in image databases and retrieve results based on the image content. In this paper we present a content-based image retrieval system for mobile platforms, providing the capability of content-based query to any mobile device that supports Java platform. The system consists of light-weight client application running on a Java enabled device and a server containing a servlet running inside a Java enabled web server. The server responds to image query using efficient native code from selected image database. The client application, running on a mobile phone, is able to initiate a query request, which is handled by a servlet in the server for finding closest match to the queried image. The retrieved results are transmitted over mobile network and images are displayed on the mobile phone. We conclude that such system serves as a basis of content-based information retrieval on wireless devices and needs to cope up with factors such as constraints on hand-held devices and reduced network bandwidth available in mobile environments.
Appleby, Ryan; Zur Linden, Alex; Sears, William
2017-05-01
Diagnostic imaging plays an important role in the operating room, providing surgeons with a reference and surgical plan. Surgeon autonomy in the operating room has been suggested to decrease errors that stem from communication mistakes. A standard computer mouse was compared to a wireless remote-control style controller for computer game consoles (Wiimote) for the navigation of diagnostic imaging studies by sterile personnel in this prospective survey study. Participants were recruited from a cohort of residents and faculty that use the surgical suites at our institution. Outcome assessments were based on survey data completed by study participants following each use of either the mouse or Wiimote, and compared using an analysis of variance. The mouse was significantly preferred by the study participants in the categories of handling, accuracy and efficiency, and overall satisfaction (P <0.05). The mouse was preferred to both the Wiimote and to no device, when participants were asked to rank options for image navigation. This indicates the need for the implementation of intraoperative image navigation devices, to increase surgeon autonomy in the operating room. © 2017 American College of Veterinary Radiology.
A wireless high-speed data acquisition system for geotechnical centrifuge model testing
NASA Astrophysics Data System (ADS)
Gaudin, C.; White, D. J.; Boylan, N.; Breen, J.; Brown, T.; DeCatania, S.; Hortin, P.
2009-09-01
This paper describes a novel high-speed wireless data acquisition system (WDAS) developed at the University of Western Australia for operation onboard a geotechnical centrifuge, in an enhanced gravitational field of up to 300 times Earth's gravity. The WDAS system consists of up to eight separate miniature units distributed around the circumference of a 0.8 m diameter drum centrifuge, communicating with the control room via wireless Ethernet. Each unit is capable of powering and monitoring eight instrument channels at a sampling rate of up to 1 MHz at 16-bit resolution. The data are stored within the logging unit in solid-state memory, but may also be streamed in real-time at low frequency (up to 10 Hz) to the centrifuge control room, via wireless transmission. The high-speed logging runs continuously within a circular memory (buffer), allowing for storage of a pre-trigger segment of data prior to an event. To suit typical geotechnical modelling applications, the system can record low-speed data continuously, until a burst of high-speed acquisition is triggered when an experimental event occurs, after which the system reverts back to low-speed acquisition to monitor the aftermath of the event. Unlike PC-based data acquisition solutions, this system performs the full sequence of amplification, conditioning, digitization and storage on a single circuit board via an independent micro-controller allocated to each pair of instrumented channels. This arrangement is efficient, compact and physically robust to suit the centrifuge environment. This paper details the design specification of the WDAS along with the software interface developed to control the units. Results from a centrifuge test of a submarine landslide are used to illustrate the performance of the new WDAS.
Live broadcast of laparoscopic surgery to handheld computers.
Gandsas, A; McIntire, K; Park, A
2004-06-01
Thanks to advances in computer power and miniaturization technology, portable electronic devices are now being used to assist physicians with various applications that extend far beyond Web browsing or sending e-mail. Handheld computers are used for electronic medical records, billing, coding, and to enable convenient access to electronic journals for reference purposes. The results of diagnostic investigations, such as laboratory results, study reports, and still radiographic pictures, can also be downloaded into portable devices for later view. Handheld computer technology, combined with wireless protocols and streaming video technology, has the added potential to become a powerful educational tool for medical students and residents. The purpose of this study was to assess the feasibility of transferring multimedia data in real time to a handheld computer via a wireless network and displaying them on the computer screens of clients at remote locations. A live laparoscopic splenectomy was transmitted live to eight handheld computers simultaneously through our institution's wireless network. All eight viewers were able to view the procedure and to hear the surgeon's comments throughout the entire duration of the operation. Handheld computer technology can play a key role in surgical education by delivering information to surgical residents or students when they are geographically distant from the actual event. Validation of this new technology by conducting clinical research is still needed to determine whether resident physicians or medical students can benefit from the use of handheld computers.
Architecture of portable electronic medical records system integrated with streaming media.
Chen, Wei; Shih, Chien-Chou
2012-02-01
Due to increasing occurrence of accidents and illness during business trips, travel, or overseas studies, the requirement for portable EMR (Electronic Medical Records) has increased. This study proposes integrating streaming media technology into the EMR system to facilitate referrals, contracted laboratories, and disease notification among hospitals. The current study encoded static and dynamic medical images of patients into a streaming video format and stored them in a Flash Media Server (FMS). Based on the Taiwan Electronic Medical Record Template (TMT) standard, EMR records can be converted into XML documents and used to integrate description fields with embedded streaming videos. This investigation implemented a web-based portable EMR interchanging system using streaming media techniques to expedite exchanging medical image information among hospitals. The proposed architecture of the portable EMR retrieval system not only provides local hospital users the ability to acquire EMR text files from a previous hospital, but also helps access static and dynamic medical images as reference for clinical diagnosis and treatment. The proposed method protects property rights of medical images through information security mechanisms of the Medical Record Interchange Service Center and Health Certificate Authorization to facilitate proper, efficient, and continuous treatment of patients.
NASA Astrophysics Data System (ADS)
DiFilippo, Frank P.; Patel, Sagar
2009-06-01
A multi-pinhole collimation device for small animal single photon emission computed tomography (SPECT) uses the gamma camera detectors of a standard clinical SPECT scanner. The collimator and animal bed move independently of the detectors, and therefore their motions must be synchronized. One approach is manual triggering of the SPECT acquisition simultaneously with a programmed motion sequence for the device. However, some data blurring and loss of image quality result, and true electronic synchronization is preferred. An off-the-shelf digital gyroscope with integrated Bluetooth interface provides a wireless solution to device synchronization. The sensor attaches to the SPECT gantry and reports its rotational speed to a notebook computer controlling the device. Software processes the rotation data in real-time, averaging the signal and issuing triggers while compensating for baseline drift. Motion commands are sent to the collimation device with minimal delay, within approximately 0.5 second of the start of SPECT gantry rotation. Test scans of a point source demonstrate an increase in true counts and a reduction in background counts compared to manual synchronization. The wireless rotation sensor provides robust synchronization of the collimation device with the clinical SPECT scanner and enhances image quality.
Authentication, privacy, security can exploit brainwave by biomarker
NASA Astrophysics Data System (ADS)
Jenkins, Jeffrey; Sweet, Charles; Sweet, James; Noel, Steven; Szu, Harold
2014-05-01
We seek to augment the current Common Access Control (CAC) card and Personal Identification Number (PIN) verification systems with an additional layer of classified access biometrics. Among proven devices such as fingerprint readers and cameras that can sense the human eye's iris pattern, we introduced a number of users to a sequence of 'grandmother images', or emotionally evoked stimuli response images from other users, as well as one of their own, for the purpose of authentication. We performed testing and evaluation of the Authenticity Privacy and Security (APS) brainwave biometrics, similar to the internal organ of the human eye's iris which cannot easily be altered. `Aha' recognition through stimulus-response habituation can serve as a biomarker, similar to keystroke dynamics analysis for inter and intra key fluctuation time of a memorized PIN number (FIST). Using a non-tethered Electroencephalogram (EEG) wireless smartphone/pc monitor interface, we explore the appropriate stimuli-response biomarker present in DTAB low frequency group waves. Prior to login, the user is shown a series of images on a computer display. They have been primed to click their mouse when the image is presented. DTAB waves are collected with a wireless EEG and are sent via Smartphone to a cloud based processing infrastructure. There, we measure fluctuations in DTAB waves from a wireless, non-tethered, single node EEG device between the Personal Graphic Image Number (PGIN) stimulus image and the response time from an individual's mental performance baseline. Towards that goal, we describe an infrastructure that supports distributed verification for web-based EEG authentication. The performance of machine learning on the relative Power Spectral Density EEG data may uncover features required for subsequent access to web or media content. Our approach provides a scalable framework wrapped into a robust Neuro-Informatics toolkit, viable for use in the Biomedical and mental health communities, as well as numerous consumer applications.
Chen, Juan; Snow, Jacqueline C; Culham, Jody C; Goodale, Melvyn A
2018-04-01
Images of tools induce stronger activation than images of nontools in a left-lateralized network that includes ventral-stream areas implicated in tool identification and dorsal-stream areas implicated in tool manipulation. Importantly, however, graspable tools tend to be elongated rather than stubby, and so the tool-selective responses in some of these areas may, to some extent, reflect sensitivity to elongation rather than "toolness" per se. Using functional magnetic resonance imaging, we investigated the role of elongation in driving tool-specific activation in the 2 streams and their interconnections. We showed that in some "tool-selective" areas, the coding of toolness and elongation coexisted, but in others, elongation and toolness were coded independently. Psychophysiological interaction analysis revealed that toolness, but not elongation, had a strong modulation of the connectivity between the ventral and dorsal streams. Dynamic causal modeling revealed that viewing tools (either elongated or stubby) increased the connectivity from the ventral- to the dorsal-stream tool-selective areas, but only viewing elongated tools increased the reciprocal connectivity between these areas. Overall, these data disentangle how toolness and elongation affect the activation and connectivity of the tool network and help to resolve recent controversies regarding the relative contribution of "toolness" versus elongation in driving dorsal-stream "tool-selective" areas.
Lightweight multi-carrier modulation for IoT
NASA Astrophysics Data System (ADS)
Hussein, Ahmed F.; Elgala, Hany
2018-01-01
Visible light communications (VLC) based on intensity-modulation with direct-detection (IM/DD) is a promising technology to offer broadband wireless Internet access. A VLC system based on the well-known multi-carrier orthogonal frequency-division multiplexing (OFDM) modulation has the potential to coexist with radio frequency (RF) technologies such as WiFi. Recently, the VLC technology is considered to enable wireless connectivity of resource limited devices, thus enabling the Internet-of-Things (IoT) vision. This paper presents a novel concept for modulating multiple light sources to realize a lightweight version of OFDM communication chain suitable for resource limited IoT devices. In such proposed system, different sinusoidal streams from an array of light sources are carrying the encoded OFDM time-domain samples, thus enabling the realization of the Fourier transformation in the optical domain. Accordingly, the fast Fourier transform (FFT) operation required for the demodulation at the receiver side is eliminated, which is crucial for resource limited IoT devices. In addition, the proposed concept, (1) offers the same spectral efficiency as the well-known asymmetrically clipped optical OFDM (ACO-OFDM), (2) reduces the bandwidth requirement from individual light sources, (3) reduces the peak-to-average power ratio (PAPR) of the signal formed and transmitted over the optical channel, and (4) supports simultaneous sensing applications using the different sinusoidal streams that are acting as unique beaconing signals. The proposed concept is numerically evaluated and compared with ACO-OFDM. The obtained results reveal a clear reduction in the PAPR with ˜ 5dB at a complementary cumulative distribution function (CCDF) of 10-2 and remarkable enhancement in bit-error performance.
Mosier, Jarrod; Joseph, Bellal; Sakles, John C
2013-02-01
Since the first remote intubation with telemedicine guidance, wireless technology has advanced to enable more portable methods of telemedicine involvement in remote airway management. Three voice over Internet protocol (VoIP) services were evaluated for quality of image transmitted, data lag, and audio quality with remotely observed and assisted intubations in an academic emergency department. The VoIP clients evaluated were Apple (Cupertino, CA) FaceTime(®), Skype™ (a division of Microsoft, Luxembourg City, Luxembourg), and Tango(®) (TangoMe, Palo Alto, CA). Each client was tested over a Wi-Fi network as well as cellular third generation (3G) (Skype and Tango). All three VoIP clients provided acceptable image and audio quality. There is a significant data lag in image transmission and quality when VoIP clients are used over cellular broadband (3G) compared with Wi-Fi. Portable remote telemedicine guidance is possible with newer technology devices such as a smartphone or tablet, as well as VoIP clients used over Wi-Fi or cellular broadband.
Distributing Data to Hand-Held Devices in a Wireless Network
NASA Technical Reports Server (NTRS)
Hodges, Mark; Simmons, Layne
2008-01-01
ADROIT is a developmental computer program for real-time distribution of complex data streams for display on Web-enabled, portable terminals held by members of an operational team of a spacecraft-command-and-control center who may be located away from the center. Examples of such terminals include personal data assistants, laptop computers, and cellular telephones. ADROIT would make it unnecessary to equip each terminal with platform- specific software for access to the data streams or with software that implements the information-sharing protocol used to deliver telemetry data to clients in the center. ADROIT is a combination of middleware plus software specific to the center. (Middleware enables one application program to communicate with another by performing such functions as conversion, translation, consolidation, and/or integration.) ADROIT translates a data stream (voice, video, or alphanumerical data) from the center into Extensible Markup Language, effectuates a subscription process to determine who gets what data when, and presents the data to each user in real time. Thus, ADROIT is expected to enable distribution of operations and to reduce the cost of operations by reducing the number of persons required to be in the center.
Activity Recognition on Streaming Sensor Data.
Krishnan, Narayanan C; Cook, Diane J
2014-02-01
Many real-world applications that focus on addressing needs of a human, require information about the activities being performed by the human in real-time. While advances in pervasive computing have lead to the development of wireless and non-intrusive sensors that can capture the necessary activity information, current activity recognition approaches have so far experimented on either a scripted or pre-segmented sequence of sensor events related to activities. In this paper we propose and evaluate a sliding window based approach to perform activity recognition in an on line or streaming fashion; recognizing activities as and when new sensor events are recorded. To account for the fact that different activities can be best characterized by different window lengths of sensor events, we incorporate the time decay and mutual information based weighting of sensor events within a window. Additional contextual information in the form of the previous activity and the activity of the previous window is also appended to the feature describing a sensor window. The experiments conducted to evaluate these techniques on real-world smart home datasets suggests that combining mutual information based weighting of sensor events and adding past contextual information into the feature leads to best performance for streaming activity recognition.
NASA Astrophysics Data System (ADS)
Näthe, Paul; Becker, Rolf
2014-05-01
Soil moisture and plant available water are important environmental parameters that affect plant growth and crop yield. Hence, they are significant parameters for vegetation monitoring and precision agriculture. However, validation through ground-based soil moisture measurements is necessary for accessing soil moisture, plant canopy temperature, soil temperature and soil roughness with airborne hyperspectral imaging systems in a corresponding hyperspectral imaging campaign as a part of the INTERREG IV A-Project SMART INSPECTORS. At this point, commercially available sensors for matric potential, plant available water and volumetric water content are utilized for automated measurements with smart sensor nodes which are developed on the basis of open-source 868MHz radio modules, featuring a full-scale microcontroller unit that allows an autarkic operation of the sensor nodes on batteries in the field. The generated data from each of these sensor nodes is transferred wirelessly with an open-source protocol to a central node, the so-called "gateway". This gateway collects, interprets and buffers the sensor readings and, eventually, pushes the data-time series onto a server-based database. The entire data processing chain from the sensor reading to the final storage of data-time series on a server is realized with open-source hardware and software in such a way that the recorded data can be accessed from anywhere through the internet. It will be presented how this open-source based wireless sensor network is developed and specified for the application of ground truthing. In addition, the system's perspectives and potentials with respect to usability and applicability for vegetation monitoring and precision agriculture shall be pointed out. Regarding the corresponding hyperspectral imaging campaign, results from ground measurements will be discussed in terms of their contributing aspects to the remote sensing system. Finally, the significance of the wireless sensor network for the application of ground truthing shall be determined.
Wireless technologies for closed-loop retinal prostheses.
Ng, David C; Bai, Shun; Yang, Jiawei; Tran, Nhan; Skafidas, Efstratios
2009-12-01
In this paper, we discuss various technologies needed to develop retinal prostheses with wireless power and data telemetry operation. In addition to the need to communicate with the implanted device, supply of power to the retinal prosthesis is especially difficult. This is because, in the implanted state, the device is not fixed in position due to constant motion of the eye. Furthermore, a retinal prosthesis incorporating a high density electrode array of more than 1000 electrodes is expected to consume approximately 45 mW of power and require 300 kbps of image and stimulation data. The front end of the wireless power and data transmission, the antenna, needs to be small compared to the size of the eye. Also, the wireless module is expected to operate in the reactive near-field region due to small separation between the transmit and receive antennas compared to their size and corresponding operating wavelength. An inductive link is studied as a means to transfer power and for data telemetry between the implant and external unit. In this work, the use of integrated circuit and microfabrication technologies for implementing inductive links is discussed. A closed-loop approach is taken to improve performance and reach optimum operation condition. Design and simulation data are presented as the basis for development of viable wireless module prototypes.
Wireless technologies for closed-loop retinal prostheses
NASA Astrophysics Data System (ADS)
Ng, David C.; Bai, Shun; Yang, Jiawei; Tran, Nhan; Skafidas, Efstratios
2009-12-01
In this paper, we discuss various technologies needed to develop retinal prostheses with wireless power and data telemetry operation. In addition to the need to communicate with the implanted device, supply of power to the retinal prosthesis is especially difficult. This is because, in the implanted state, the device is not fixed in position due to constant motion of the eye. Furthermore, a retinal prosthesis incorporating a high density electrode array of more than 1000 electrodes is expected to consume approximately 45 mW of power and require 300 kbps of image and stimulation data. The front end of the wireless power and data transmission, the antenna, needs to be small compared to the size of the eye. Also, the wireless module is expected to operate in the reactive near-field region due to small separation between the transmit and receive antennas compared to their size and corresponding operating wavelength. An inductive link is studied as a means to transfer power and for data telemetry between the implant and external unit. In this work, the use of integrated circuit and microfabrication technologies for implementing inductive links is discussed. A closed-loop approach is taken to improve performance and reach optimum operation condition. Design and simulation data are presented as the basis for development of viable wireless module prototypes.
Mineral resource of the month: thallium
Bi, Xiaoyu
2007-01-01
Thallium is known as a poison, its use initially suspected in the recent death of a Russian spy, but it has a variety of more important applications in everything from medical imaging to wireless communications.
NASA Astrophysics Data System (ADS)
Liu, Brent; Lee, Jasper; Documet, Jorge; Guo, Bing; King, Nelson; Huang, H. K.
2006-03-01
By implementing a tracking and verification system, clinical facilities can effectively monitor workflow and heighten information security in today's growing demand towards digital imaging informatics. This paper presents the technical design and implementation experiences encountered during the development of a Location Tracking and Verification System (LTVS) for a clinical environment. LTVS integrates facial biometrics with wireless tracking so that administrators can manage and monitor patient and staff through a web-based application. Implementation challenges fall into three main areas: 1) Development and Integration, 2) Calibration and Optimization of Wi-Fi Tracking System, and 3) Clinical Implementation. An initial prototype LTVS has been implemented within USC's Healthcare Consultation Center II Outpatient Facility, which currently has a fully digital imaging department environment with integrated HIS/RIS/PACS/VR (Voice Recognition).
Optimized OFDM Transmission of Encrypted Image Over Fading Channel
NASA Astrophysics Data System (ADS)
Eldin, Salwa M. Serag
2014-11-01
This paper compares the quality of diffusion-based and permutation-based encrypted image transmission using orthogonal frequency division multiplexing (OFDM) over wireless fading channel. Sensitivity to carrier frequency offsets (CFOs) is one of the limitations in OFDM transmission that was compensated here. Different OFDM diffusions are investigated to study encrypted image transmission optimization. Peak signal-to-noise ratio between the original image and the decrypted image is used to evaluate the received image quality. Chaotic encrypted image modulated with CFOs compensated FFT-OFDM was found to give outstanding performance against other encryption and modulation techniques.
Mai, Tuan V; Ahn, David T; Phillips, Colin T; Agan, Donna L; Kimura, Bruce J
2013-01-01
Background. The potential of pocket-sized ultrasound devices (PUDs) to improve global healthcare delivery is limited by the lack of a suitable imaging protocol and trained users. Therefore, we investigated the feasibility of performing a brief, evidence-based cardiac limited ultrasound exam (CLUE) through wireless guidance of novice users. Methods. Three trainees applied PUDs on 27 subjects while directed by an off-site cardiologist to obtain a CLUE to screen for LV systolic dysfunction (LVSD), LA enlargement (LAE), ultrasound lung comets (ULC+), and elevated CVP (eCVP). Real-time remote audiovisual guidance and interpretation by the cardiologist were performed using the iPhone 4/iPod (FaceTime, Apple, Inc.) attached to the PUD and transmitted data wirelessly. Accuracy and technical quality of transmitted images were compared to on-site, gold-standard echo thresholds. Results. Novice versus sonographer imaging yielded technically adequate views in 122/135 (90%) versus 130/135 (96%) (P < 0.05). CLUE's combined SN, SP, and ACC were 0.67, 0.96, and 0.90. Technical adequacy (%) and accuracy for each abnormality (n) were LVSD (85%, 0.93, n = 5), LAE (89%, 0.74, n = 16), ULC+ (100%, 0.94, n = 5), and eCVP (78%, 0.91, n = 1). Conclusion. A novice can perform the CLUE using PUD when wirelessly guided by an expert. This method could facilitate PUD use for off-site bedside medical decision making and triaging of patients.
Image-Based Localization for Indoor Environment Using Mobile Phone
NASA Astrophysics Data System (ADS)
Huang, Y.; Wang, H.; Zhan, K.; Zhao, J.; Gui, P.; Feng, T.
2015-05-01
Real-time indoor localization based on supporting infrastructures like wireless devices and QR codes are usually costly and labor intensive to implement. In this study, we explored a cheap alternative approach based on images for indoor localization. A user can localize him/herself by just shooting a photo of the surrounding indoor environment using the mobile phone. No any other equipment is required. This is achieved by employing image-matching and searching techniques with a dataset of pre-captured indoor images. In the beginning, a database of structured images of the indoor environment is constructed by using image matching and the bundle adjustment algorithm. Then each image's relative pose (its position and orientation) is estimated and the semantic locations of images are tagged. A user's location can then be determined by comparing a photo taken by the mobile phone to the database. This is done by combining quick image searching, matching and the relative orientation. This study also try to explore image acquisition plans and the processing capacity of off-the-shell mobile phones. During the whole pipeline, a collection of indoor images with both rich and poor textures are examined. Several feature detectors are used and compared. Pre-processing of complex indoor photo is also implemented on the mobile phone. The preliminary experimental results prove the feasibility of this method. In the future, we are trying to raise the efficiency of matching between indoor images and explore the fast 4G wireless communication to ensure the speed and accuracy of the localization based on a client-server framework.
Morchel, Herman; Ogedegbe, Chinwe; Chaplin, William; Cheney, Brianna; Zakharchenko, Svetlana; Misch, David; Schwartz, Matthew; Feldman, Joseph; Kaul, Sanjeev
2018-03-01
To determine if physicians trained in ultrasound interpretation perceive a difference in image quality and usefulness between Extended Focused Assessment with Sonography ultrasound examinations performed at bedside in a hospital vs. by emergency medical technicians minimally trained in medical ultrasound on a moving ambulance and transmitted to the hospital via a novel wireless system. In particular, we sought to demonstrate that useful images could be obtained from patients in less than optimal imaging conditions; that is, while they were in transport. Emergency medical technicians performed the examinations during transport of blunt trauma patients. Upon patient arrival at the hospital, a bedside Extended Focused Assessment with Sonography examination was performed by a physician. Both examinations were recorded and later reviewed by physicians trained in ultrasound interpretation. Data were collected on 20 blunt trauma patients over a period of 13 mo. Twenty ultrasound-trained physicians blindly compared transmitted vs. bedside images using 11 Questionnaire for User Interaction Satisfaction scales. Four paired samples t-tests were conducted to assess mean differences between ratings for ambulatory and base images. Although there is a slight tendency for the average rating across all subjects and raters to be slightly higher in the base than in the ambulatory condition, none of these differences are statistically significant. These results suggest that the quality of the ambulatory images was viewed as essentially as good as the quality of the base images.
Chandra, Rohit; Balasingham, Ilangko
2015-01-01
A microwave imaging-based technique for 3D localization of an in-body RF source is presented. Such a technique can be useful for localization of an RF source as in wireless capsule endoscopes for positioning of any abnormality in the gastrointestinal tract. Microwave imaging is used to determine the dielectric properties (relative permittivity and conductivity) of the tissues that are required for a precise localization. A 2D microwave imaging algorithm is used for determination of the dielectric properties. Calibration method is developed for removing any error due to the used 2D imaging algorithm on the imaging data of a 3D body. The developed method is tested on a simple 3D heterogeneous phantom through finite-difference-time-domain simulations. Additive white Gaussian noise at the signal-to-noise ratio of 30 dB is added to the simulated data to make them more realistic. The developed calibration method improves the imaging and the localization accuracy. Statistics on the localization accuracy are generated by randomly placing the RF source at various positions inside the small intestine of the phantom. The cumulative distribution function of the localization error is plotted. In 90% of the cases, the localization accuracy was found within 1.67 cm, showing the capability of the developed method for 3D localization.
Development of a mini-mobile digital radiography system by using wireless smart devices.
Jeong, Chang-Won; Joo, Su-Chong; Ryu, Jong-Hyun; Lee, Jinseok; Kim, Kyong-Woo; Yoon, Kwon-Ha
2014-08-01
The current technologies that trend in digital radiology (DR) are toward systems using portable smart mobile as patient-centered care. We aimed to develop a mini-mobile DR system by using smart devices for wireless connection into medical information systems. We developed a mini-mobile DR system consisting of an X-ray source and a Complementary Metal-Oxide Semiconductor (CMOS) sensor based on a flat panel detector for small-field diagnostics in patients. It is used instead of the systems that are difficult to perform with a fixed traditional device. We also designed a method for embedded systems in the development of portable DR systems. The external interface used the fast and stable IEEE 802.11n wireless protocol, and we adapted the device for connections with Picture Archiving and Communication System (PACS) and smart devices. The smart device could display images on an external monitor other than the monitor in the DR system. The communication modules, main control board, and external interface supporting smart devices were implemented. Further, a smart viewer based on the external interface was developed to display image files on various smart devices. In addition, the advantage of operators is to reduce radiation dose when using remote smart devices. It is integrated with smart devices that can provide X-ray imaging services anywhere. With this technology, it can permit image observation on a smart device from a remote location by connecting to the external interface. We evaluated the response time of the mini-mobile DR system to compare to mobile PACS. The experimental results show that our system outperforms conventional mobile PACS in this regard.
Multiple description distributed image coding with side information for mobile wireless transmission
NASA Astrophysics Data System (ADS)
Wu, Min; Song, Daewon; Chen, Chang Wen
2005-03-01
Multiple description coding (MDC) is a source coding technique that involves coding the source information into multiple descriptions, and then transmitting them over different channels in packet network or error-prone wireless environment to achieve graceful degradation if parts of descriptions are lost at the receiver. In this paper, we proposed a multiple description distributed wavelet zero tree image coding system for mobile wireless transmission. We provide two innovations to achieve an excellent error resilient capability. First, when MDC is applied to wavelet subband based image coding, it is possible to introduce correlation between the descriptions in each subband. We consider using such a correlation as well as potentially error corrupted description as side information in the decoding to formulate the MDC decoding as a Wyner Ziv decoding problem. If only part of descriptions is lost, however, their correlation information is still available, the proposed Wyner Ziv decoder can recover the description by using the correlation information and the error corrupted description as side information. Secondly, in each description, single bitstream wavelet zero tree coding is very vulnerable to the channel errors. The first bit error may cause the decoder to discard all subsequent bits whether or not the subsequent bits are correctly received. Therefore, we integrate the multiple description scalar quantization (MDSQ) with the multiple wavelet tree image coding method to reduce error propagation. We first group wavelet coefficients into multiple trees according to parent-child relationship and then code them separately by SPIHT algorithm to form multiple bitstreams. Such decomposition is able to reduce error propagation and therefore improve the error correcting capability of Wyner Ziv decoder. Experimental results show that the proposed scheme not only exhibits an excellent error resilient performance but also demonstrates graceful degradation over the packet loss rate.
Multispectral Imaging Broadens Cellular Analysis
NASA Technical Reports Server (NTRS)
2007-01-01
Amnis Corporation, a Seattle-based biotechnology company, developed ImageStream to produce sensitive fluorescence images of cells in flow. The company responded to an SBIR solicitation from Ames Research Center, and proposed to evaluate several methods of extending the depth of field for its ImageStream system and implement the best as an upgrade to its commercial products. This would allow users to view whole cells at the same time, rather than just one section of each cell. Through Phase I and II SBIR contracts, Ames provided Amnis the funding the company needed to develop this extended functionality. For NASA, the resulting high-speed image flow cytometry process made its way into Medusa, a life-detection instrument built to collect, store, and analyze sample organisms from erupting hydrothermal vents, and has the potential to benefit space flight health monitoring. On the commercial end, Amnis has implemented the process in ImageStream, combining high-resolution microscopy and flow cytometry in a single instrument, giving researchers the power to conduct quantitative analyses of individual cells and cell populations at the same time, in the same experiment. ImageStream is also built for many other applications, including cell signaling and pathway analysis; classification and characterization of peripheral blood mononuclear cell populations; quantitative morphology; apoptosis (cell death) assays; gene expression analysis; analysis of cell conjugates; molecular distribution; and receptor mapping and distribution.
Development of a Wireless Computer Vision Instrument to Detect Biotic Stress in Wheat
Casanova, Joaquin J.; O'Shaughnessy, Susan A.; Evett, Steven R.; Rush, Charles M.
2014-01-01
Knowledge of crop abiotic and biotic stress is important for optimal irrigation management. While spectral reflectance and infrared thermometry provide a means to quantify crop stress remotely, these measurements can be cumbersome. Computer vision offers an inexpensive way to remotely detect crop stress independent of vegetation cover. This paper presents a technique using computer vision to detect disease stress in wheat. Digital images of differentially stressed wheat were segmented into soil and vegetation pixels using expectation maximization (EM). In the first season, the algorithm to segment vegetation from soil and distinguish between healthy and stressed wheat was developed and tested using digital images taken in the field and later processed on a desktop computer. In the second season, a wireless camera with near real-time computer vision capabilities was tested in conjunction with the conventional camera and desktop computer. For wheat irrigated at different levels and inoculated with wheat streak mosaic virus (WSMV), vegetation hue determined by the EM algorithm showed significant effects from irrigation level and infection. Unstressed wheat had a higher hue (118.32) than stressed wheat (111.34). In the second season, the hue and cover measured by the wireless computer vision sensor showed significant effects from infection (p = 0.0014), as did the conventional camera (p < 0.0001). Vegetation hue obtained through a wireless computer vision system in this study is a viable option for determining biotic crop stress in irrigation scheduling. Such a low-cost system could be suitable for use in the field in automated irrigation scheduling applications. PMID:25251410
Shrestha, Ravi; Mohammed, Shahed K; Hasan, Md Mehedi; Zhang, Xuechao; Wahid, Khan A
2016-08-01
Wireless capsule endoscopy (WCE) plays an important role in the diagnosis of gastrointestinal (GI) diseases by capturing images of human small intestine. Accurate diagnosis of endoscopic images depends heavily on the quality of captured images. Along with image and frame rate, brightness of the image is an important parameter that influences the image quality which leads to the design of an efficient illumination system. Such design involves the choice and placement of proper light source and its ability to illuminate GI surface with proper brightness. Light emitting diodes (LEDs) are normally used as sources where modulated pulses are used to control LED's brightness. In practice, instances like under- and over-illumination are very common in WCE, where the former provides dark images and the later provides bright images with high power consumption. In this paper, we propose a low-power and efficient illumination system that is based on an automated brightness algorithm. The scheme is adaptive in nature, i.e., the brightness level is controlled automatically in real-time while the images are being captured. The captured images are segmented into four equal regions and the brightness level of each region is calculated. Then an adaptive sigmoid function is used to find the optimized brightness level and accordingly a new value of duty cycle of the modulated pulse is generated to capture future images. The algorithm is fully implemented in a capsule prototype and tested with endoscopic images. Commercial capsules like Pillcam and Mirocam were also used in the experiment. The results show that the proposed algorithm works well in controlling the brightness level accordingly to the environmental condition, and as a result, good quality images are captured with an average of 40% brightness level that saves power consumption of the capsule.
New insights on the formation and assembly of M83 from deep near-infrared imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barnes, Kate L.; Van Zee, Liese; Dale, Daniel A.
2014-07-10
We present results from new near-infrared (NIR) imaging from the Spitzer Space Telescope that trace the low surface brightness features of the outer disk and stellar stream in the nearby spiral galaxy, M83. Previous observations have shown that M83 hosts a faint stellar stream to the northwest and a star-forming disk that extends to ∼3 times the optical radius (R{sub 25}). By combining the NIR imaging with archival far-ultraviolet (FUV) and H I imaging, we study the star formation history of the system. The NIR surface brightness profile has a break at ∼5.'8 (equivalent to 8.1 kpc and 0.9 R{submore » 25}) with a shallower slope beyond this radius, which may result from the recent accretion of gas onto the outer disk and subsequent star formation. Additionally, the ratio of FUV to NIR flux increases with increasing radius in several arms throughout the extended star forming disk, indicating an increase in the ratio of the present to past star formation rate with increasing radius. This sort of inside-out disk formation is consistent with observations of gas infall onto the outer disk of M83. Finally, the flux, size, and shape of the stellar stream are measured and the origin of the stream is explored. The stream has a total NIR flux of 11.6 mJy, which implies a stellar mass of 1 × 10{sup 8} M{sub ☉} in an area subtending ∼80°. No FUV emission is detected in the stream at a level greater than the noise, confirming an intermediate-age or old stellar population in the stream.« less
Video Transmission for Third Generation Wireless Communication Systems
Gharavi, H.; Alamouti, S. M.
2001-01-01
This paper presents a twin-class unequal protected video transmission system over wireless channels. Video partitioning based on a separation of the Variable Length Coded (VLC) Discrete Cosine Transform (DCT) coefficients within each block is considered for constant bitrate transmission (CBR). In the splitting process the fraction of bits assigned to each of the two partitions is adjusted according to the requirements of the unequal error protection scheme employed. Subsequently, partitioning is applied to the ITU-T H.263 coding standard. As a transport vehicle, we have considered one of the leading third generation cellular radio standards known as WCDMA. A dual-priority transmission system is then invoked on the WCDMA system where the video data, after being broken into two streams, is unequally protected. We use a very simple error correction coding scheme for illustration and then propose more sophisticated forms of unequal protection of the digitized video signals. We show that this strategy results in a significantly higher quality of the reconstructed video data when it is transmitted over time-varying multipath fading channels. PMID:27500033
Frequency division multiplexed radio-over-fiber transmission using an optically injected laser diode
NASA Astrophysics Data System (ADS)
Chan, Sze-Chun
2008-04-01
Nonlinear dynamics of semiconductor lasers have recently attracted much attention in the area of microwave photonics. By invoking the nonlinear dynamics of an optically injected laser diode, high-speed microwave oscillation can be generated using the period-one oscillation state. The oscillation is harnessed for application as a photonic microwave source in radio-over-fiber (RoF) systems. It is advantageous over conventional direct current modulation because it alleviates the modulation bandwidth limitation and naturally generates single sideband signals. The method is thus applicable to wireless communication systems even when the subcarrier frequency increases to 60 GHz. Because RoF is usually incorporated with standard wireless schemes that involve frequency division multiplexing (FDM), we investigate the performance of the optical injection system under simultaneous current injection of multiple data streams. Frequency mixings and competition for locking among subcarriers result in intermodulation distortion (IMD). The relative weightings of different channels should be optimized to ensure acceptable signal qualities. The results illustrate the feasibility of applying the optical injection system for FDM RoF transmission at high subcarrier frequencies.
Ahn, Jungmo; Park, JaeYeon; Park, Donghwan; Paek, Jeongyeup; Ko, JeongGil
2018-01-01
With the introduction of various advanced deep learning algorithms, initiatives for image classification systems have transitioned over from traditional machine learning algorithms (e.g., SVM) to Convolutional Neural Networks (CNNs) using deep learning software tools. A prerequisite in applying CNN to real world applications is a system that collects meaningful and useful data. For such purposes, Wireless Image Sensor Networks (WISNs), that are capable of monitoring natural environment phenomena using tiny and low-power cameras on resource-limited embedded devices, can be considered as an effective means of data collection. However, with limited battery resources, sending high-resolution raw images to the backend server is a burdensome task that has direct impact on network lifetime. To address this problem, we propose an energy-efficient pre- and post- processing mechanism using image resizing and color quantization that can significantly reduce the amount of data transferred while maintaining the classification accuracy in the CNN at the backend server. We show that, if well designed, an image in its highly compressed form can be well-classified with a CNN model trained in advance using adequately compressed data. Our evaluation using a real image dataset shows that an embedded device can reduce the amount of transmitted data by ∼71% while maintaining a classification accuracy of ∼98%. Under the same conditions, this process naturally reduces energy consumption by ∼71% compared to a WISN that sends the original uncompressed images.
He, Longjun; Ming, Xing; Liu, Qian
2014-04-01
With computing capability and display size growing, the mobile device has been used as a tool to help clinicians view patient information and medical images anywhere and anytime. However, for direct interactive 3D visualization, which plays an important role in radiological diagnosis, the mobile device cannot provide a satisfactory quality of experience for radiologists. This paper developed a medical system that can get medical images from the picture archiving and communication system on the mobile device over the wireless network. In the proposed application, the mobile device got patient information and medical images through a proxy server connecting to the PACS server. Meanwhile, the proxy server integrated a range of 3D visualization techniques, including maximum intensity projection, multi-planar reconstruction and direct volume rendering, to providing shape, brightness, depth and location information generated from the original sectional images for radiologists. Furthermore, an algorithm that changes remote render parameters automatically to adapt to the network status was employed to improve the quality of experience. Finally, performance issues regarding the remote 3D visualization of the medical images over the wireless network of the proposed application were also discussed. The results demonstrated that this proposed medical application could provide a smooth interactive experience in the WLAN and 3G networks.
An open source, wireless capable miniature microscope system
NASA Astrophysics Data System (ADS)
Liberti, William A., III; Perkins, L. Nathan; Leman, Daniel P.; Gardner, Timothy J.
2017-08-01
Objective. Fluorescence imaging through head-mounted microscopes in freely behaving animals is becoming a standard method to study neural circuit function. Flexible, open-source designs are needed to spur evolution of the method. Approach. We describe a miniature microscope for single-photon fluorescence imaging in freely behaving animals. The device is made from 3D printed parts and off-the-shelf components. These microscopes weigh less than 1.8 g, can be configured to image a variety of fluorophores, and can be used wirelessly or in conjunction with active commutators. Microscope control software, based in Swift for macOS, provides low-latency image processing capabilities for closed-loop, or BMI, experiments. Main results. Miniature microscopes were deployed in the songbird premotor region HVC (used as a proper name), in singing zebra finches. Individual neurons yield temporally precise patterns of calcium activity that are consistent over repeated renditions of song. Several cells were tracked over timescales of weeks and months, providing an opportunity to study learning related changes in HVC. Significance. 3D printed miniature microscopes, composed completely of consumer grade components, are a cost-effective, modular option for head-mounting imaging. These easily constructed and customizable tools provide access to cell-type specific neural ensembles over timescales of weeks.
Simulation and training of ultrasound supported anaesthesia: a low-cost approach
NASA Astrophysics Data System (ADS)
Schaaf, T.; Lamontain, M.; Hilpert, J.; Schilling, F.; Tolxdorff, T.
2010-03-01
The use of ultrasound imaging technology during techniques of peripheral nerve blockade offers several clinical benefits. Here we report on a new method to educate residents in ultrasound-guided regional anesthesia. The daily challenge for the anesthesiologists is the 3D angle-depending handling of the stimulation needle and the ultrasound probe while watching the 2D ultrasound image on the monitor. Purpose: Our approach describes how a computer-aided simulation and training set for ultrasound-guided regional anesthesia could be built based on wireless low-cost devices and an interactive simulation of a 2D ultrasound image. For training purposes the injection needle and the ultrasound probe are replaced by wireless Bluetooth-connected 3D tracking devices, which are embedded in WII-mote controllers (Nintendo-Brand). In correlation to the tracked 3D positions of the needle and transducer models the visibility and position of the needle should be simulated in the 2D generated ultrasound image. Conclusion: In future, this tracking and visualization software module could be integrated in a more complex training set, where complex injection paths could be trained based on a 3D segmented model and the training results could be part of a curricular e-learning module.
NASA Astrophysics Data System (ADS)
Wei, Minsong; Xing, Fei; You, Zheng
2017-01-01
The advancing growth of micro- and nano-satellites requires miniaturized sun sensors which could be conveniently applied in the attitude determination subsystem. In this work, a profile detecting technology based high accurate wireless digital sun sensor was proposed, which could transform a two-dimensional image into two-linear profile output so that it can realize a high update rate under a very low power consumption. A multiple spots recovery approach with an asymmetric mask pattern design principle was introduced to fit the multiplexing image detector method for accuracy improvement of the sun sensor within a large Field of View (FOV). A FOV determination principle based on the concept of FOV region was also proposed to facilitate both sub-FOV analysis and the whole FOV determination. A RF MCU, together with solar cells, was utilized to achieve the wireless and self-powered functionality. The prototype of the sun sensor is approximately 10 times lower in size and weight compared with the conventional digital sun sensor (DSS). Test results indicated that the accuracy of the prototype was 0.01° within a cone FOV of 100°. Such an autonomous DSS could be equipped flexibly on a micro- or nano-satellite, especially for highly accurate remote sensing applications.
Riffe, Matthew J.; Twieg, Michael D.; Gudino, Natalia; Blumenthal, Colin J.; Heilman, Jeremy A.; Griswold, Mark A.
2013-01-01
Purpose Single sideband amplitude modulation (SSB) is an appealing platform for highly parallel wireless MRI detector arrays because the spacing between channels is ideally limited only by the MRI signal bandwidth. However this assumes that no other sources of interference are present outside that bandwidth. This work investigates the practical interference between multiple SSB-encoded MRI signals. Methods Noise from coil preamplifiers and carrier bleed-through are identified as sources of interference. Two different SSB systems were designed for 1.5T with different noise filtering properties. We show how the differences between the filtered noise profiles impact the received MR signal’s dynamic range (DRsig) and image signal-to-noise ratio (SNR) through simulation, bench measurements, and phantom imaging experiments. Results When operating individually in the MR scanner, both SSB systems were shown to minimally impact the original DRsig and SNR. On the other hand, when all eight channels were operating simultaneously, an average SNR loss was observed to be 12% in the one system, while a second system with more complex filtering was able to achieve a 3% loss in SNR. Conclusion Successful wireless transmission of multiple SSB-encoded MRI signals is possible as long as channel interference is properly managed through design and simulation. PMID:23413242
An asymmetric resonant coupling wireless power transmission link for Micro-Ball Endoscopy.
Sun, Tianjia; Xie, Xiang; Li, Guolin; Gu, Yingke; Deng, Yangdong; Wang, Ziqiang; Wang, Zhihua
2010-01-01
This paper investigates the design and optimization of a wireless power transmission link targeting Micro-Ball Endoscopy applications. A novel asymmetric resonant coupling structure is proposed to deliver power to an endoscopic Micro-Ball system for image read-out after it is excreted. Such a technology enables many key medical applications with stringent requirements for small system volume and high power delivery efficiency. A prototyping power transmission sub-system of the Micro-Ball system was implemented. It consists of primary coil, middle resonant coil, and cube-like full-direction secondary receiving coils. Our experimental results proved that 200mW of power can be successfully delivered. Such a wireless power transmission capability could satisfy the requirements of the Micro-Ball based endoscopy application. The transmission efficiency is in the range of 41% (worst working condition) to 53% (best working condition). Comparing to conventional structures, Asymmetric Resonant Coupling Structure improves power efficiency by 13%.
Modular "plug-and-play" capsules for multi-capsule environment in the gastrointestinal tract.
Phee, S J; Ting, E K; Lin, L; Huynh, V A; Kencana, A P; Wong, K J; Tan, S L
2009-01-01
The invention of wireless capsule endoscopy has opened new ways of diagnosing and treating diseases in the gastrointestinal tract. Current wireless capsules can perform simple operations such as imaging and data collection (like temperature, pressure, and pH) in the gastrointestinal tract. Researchers are now focusing on adding more sophisticated functions such as drug delivery, surgical clips/tags deployment, and tissue samples collection. The finite on-board power on these capsules is one of the factors that limits the functionalities of these wireless capsules. Thus multiple application-specific capsules would be needed to complete an endoscopic operation. This would give rise to a multi-capsule environment. Having a modular "plug-and-play" capsule design would facilitate doctors in configuring multiple application-specific capsules, e.g. tagging capsule, for use in the gastrointestinal tract. This multi-capsule environment also has the advantage of reducing power consumption through asymmetric multi-hop communication.
Wireless Multimedia Sensor Networks: Current Trends and Future Directions
Almalkawi, Islam T.; Zapata, Manel Guerrero; Al-Karaki, Jamal N.; Morillo-Pozo, Julian
2010-01-01
Wireless Multimedia Sensor Networks (WMSNs) have emerged and shifted the focus from the typical scalar wireless sensor networks to networks with multimedia devices that are capable to retrieve video, audio, images, as well as scalar sensor data. WMSNs are able to deliver multimedia content due to the availability of inexpensive CMOS cameras and microphones coupled with the significant progress in distributed signal processing and multimedia source coding techniques. In this paper, we outline the design challenges of WMSNs, give a comprehensive discussion of the proposed architectures, algorithms and protocols for the different layers of the communication protocol stack for WMSNs, and evaluate the existing WMSN hardware and testbeds. The paper will give the reader a clear view of the state of the art at all aspects of this research area, and shed the light on its main current challenges and future trends. We also hope it will foster discussions and new research ideas among its researchers. PMID:22163571
Alanazi, Adwan; Elleithy, Khaled
2016-01-01
Successful transmission of online multimedia streams in wireless multimedia sensor networks (WMSNs) is a big challenge due to their limited bandwidth and power resources. The existing WSN protocols are not completely appropriate for multimedia communication. The effectiveness of WMSNs varies, and it depends on the correct location of its sensor nodes in the field. Thus, maximizing the multimedia coverage is the most important issue in the delivery of multimedia contents. The nodes in WMSNs are either static or mobile. Thus, the node connections change continuously due to the mobility in wireless multimedia communication that causes an additional energy consumption, and synchronization loss between neighboring nodes. In this paper, we introduce an Optimized Hidden Node Detection (OHND) paradigm. The OHND consists of three phases: hidden node detection, message exchange, and location detection. These three phases aim to maximize the multimedia node coverage, and improve energy efficiency, hidden node detection capacity, and packet delivery ratio. OHND helps multimedia sensor nodes to compute the directional coverage. Furthermore, an OHND is used to maintain a continuous node– continuous neighbor discovery process in order to handle the mobility of the nodes. We implement our proposed algorithms by using a network simulator (NS2). The simulation results demonstrate that nodes are capable of maintaining direct coverage and detecting hidden nodes in order to maximize coverage and multimedia node mobility. To evaluate the performance of our proposed algorithms, we compared our results with other known approaches. PMID:27618048
Alanazi, Adwan; Elleithy, Khaled
2016-09-07
Successful transmission of online multimedia streams in wireless multimedia sensor networks (WMSNs) is a big challenge due to their limited bandwidth and power resources. The existing WSN protocols are not completely appropriate for multimedia communication. The effectiveness of WMSNs varies, and it depends on the correct location of its sensor nodes in the field. Thus, maximizing the multimedia coverage is the most important issue in the delivery of multimedia contents. The nodes in WMSNs are either static or mobile. Thus, the node connections change continuously due to the mobility in wireless multimedia communication that causes an additional energy consumption, and synchronization loss between neighboring nodes. In this paper, we introduce an Optimized Hidden Node Detection (OHND) paradigm. The OHND consists of three phases: hidden node detection, message exchange, and location detection. These three phases aim to maximize the multimedia node coverage, and improve energy efficiency, hidden node detection capacity, and packet delivery ratio. OHND helps multimedia sensor nodes to compute the directional coverage. Furthermore, an OHND is used to maintain a continuous node- continuous neighbor discovery process in order to handle the mobility of the nodes. We implement our proposed algorithms by using a network simulator (NS2). The simulation results demonstrate that nodes are capable of maintaining direct coverage and detecting hidden nodes in order to maximize coverage and multimedia node mobility. To evaluate the performance of our proposed algorithms, we compared our results with other known approaches.
Improving Situational Awareness for First Responders via Mobile Computing
NASA Technical Reports Server (NTRS)
Betts, Bradley J.; Mah, Robert W.; Papasin, Richard; Del Mundo, Rommel; McIntosh, Dawn M.; Jorgensen, Charles
2005-01-01
This project looks to improve first responder situational awareness using tools and techniques of mobile computing. The prototype system combines wireless communication, real-time location determination, digital imaging, and three-dimensional graphics. Responder locations are tracked in an outdoor environment via GPS and uploaded to a central server via GPRS or an 802.11 network. Responders can also wirelessly share digital images and text reports, both with other responders and with the incident commander. A pre-built three dimensional graphics model of a particular emergency scene is used to visualize responder and report locations. Responders have a choice of information end points, ranging from programmable cellular phones to tablet computers. The system also employs location-aware computing to make responders aware of particular hazards as they approach them. The prototype was developed in conjunction with the NASA Ames Disaster Assistance and Rescue Team and has undergone field testing during responder exercise at NASA Ames.
Improving Situational Awareness for First Responders via Mobile Computing
NASA Technical Reports Server (NTRS)
Betts, Bradley J.; Mah, Robert W.; Papasin, Richard; Del Mundo, Rommel; McIntosh, Dawn M.; Jorgensen, Charles
2006-01-01
This project looks to improve first responder incident command, and an appropriately managed flow of situational awareness using mobile computing techniques. The prototype system combines wireless communication, real-time location determination, digital imaging, and three-dimensional graphics. Responder locations are tracked in an outdoor environment via GPS and uploaded to a central server via GPRS or an 802. II network. Responders can also wireless share digital images and text reports, both with other responders and with the incident commander. A pre-built three dimensional graphics model of the emergency scene is used to visualize responder and report locations. Responders have a choice of information end points, ranging from programmable cellular phones to tablet computers. The system also employs location-aware computing to make responders aware of particular hazards as they approach them. The prototype was developed in conjunction with the NASA Ames Disaster Assistance and Rescue Team and has undergone field testing during responder exercises at NASA Ames.
Two-Stream Transformer Networks for Video-based Face Alignment.
Liu, Hao; Lu, Jiwen; Feng, Jianjiang; Zhou, Jie
2017-08-01
In this paper, we propose a two-stream transformer networks (TSTN) approach for video-based face alignment. Unlike conventional image-based face alignment approaches which cannot explicitly model the temporal dependency in videos and motivated by the fact that consistent movements of facial landmarks usually occur across consecutive frames, our TSTN aims to capture the complementary information of both the spatial appearance on still frames and the temporal consistency information across frames. To achieve this, we develop a two-stream architecture, which decomposes the video-based face alignment into spatial and temporal streams accordingly. Specifically, the spatial stream aims to transform the facial image to the landmark positions by preserving the holistic facial shape structure. Accordingly, the temporal stream encodes the video input as active appearance codes, where the temporal consistency information across frames is captured to help shape refinements. Experimental results on the benchmarking video-based face alignment datasets show very competitive performance of our method in comparisons to the state-of-the-arts.
USDA-ARS?s Scientific Manuscript database
Night and day temperature images from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) remote sensing images are used to identify ephemeral and perennial stream reaches for use in the calibration of an integrated hydrologic model of an ungauged basin. The concept is based on a...
Wearable, multimodal, vitals acquisition unit for intelligent field triage
Georgiou, Julius
2016-01-01
In this Letter, the authors describe the characterisation design and development of the authors’ wearable, multimodal vitals acquisition unit for intelligent field triage. The unit is able to record the standard electrocardiogram, blood oxygen and body temperature parameters and also has the unique capability to record up to eight custom designed acoustic streams for heart and lung sound auscultation. These acquisition channels are highly synchronised to fully maintain the time correlation of the signals. The unit is a key component enabling systematic and intelligent field triage to continuously acquire vital patient information. With the realised unit a novel data-set with highly synchronised vital signs was recorded. The new data-set may be used for algorithm design in vital sign analysis or decision making. The monitoring unit is the only known body worn system that records standard emergency parameters plus eight multi-channel auscultatory streams and stores the recordings and wirelessly transmits them to mobile response teams. PMID:27733926
Event Management of RFID Data Streams: Fast Moving Consumer Goods Supply Chains
NASA Astrophysics Data System (ADS)
Mo, John P. T.; Li, Xue
Radio Frequency Identification (RFID) is a wireless communication technology that uses radio-frequency waves to transfer information between tagged objects and readers without line of sight. This creates tremendous opportunities for linking real world objects into a world of "Internet of things". Application of RFID to Fast Moving Consumer Goods sector will introduce billions of RFID tags in the world. Almost everything is tagged for tracking and identification purposes. This phenomenon will impose a new challenge not only to the network capacity but also to the scalability of processing of RFID events and data. This chapter uses two national demonstrator projects in Australia as case studies to introduce an event managementframework to process high volume RFID data streams in real time and automatically transform physical RFID observations into business-level events. The model handles various temporal event patterns, both simple and complex, with temporal constraints. The model can be implemented in a data management architecture that allows global RFID item tracking and enables fast, large-scale RFID deployment.
Internet Teleoperation of a Robot with Streaming Buffer System under Varying Time Delays
NASA Astrophysics Data System (ADS)
Park, Jahng-Hyon; Shin, Wanjae
It is known that existence of irregular transmission time delay is a major bottleneck for application of advanced robot control schemes to internet telerobotic systems. In the internet teleoperation system, the irregular transmission time delay causes a critical problem, which includes instability and inaccuracy. This paper suggests a practical internet teleoperation system with streaming buffer system, which consists of a buffer, a buffer manager, and a control timer. The proposed system converts the irregular transmission time delay to a constant. So, the system effectively transmits the control input to a remote site to operate a robot stably and accurately. This feature enables short control input intervals. That means the entire system has a large control bandwidth. The validity of the proposed method is demonstrated by experiments of teleoperation from USC (University of Southern California in U. S.A.) to HYU (Hanyang Univ. in Korea) through the Internet. The proposed method is also demonstrated by experiments of teleoperation through the wireless internet.
A Streaming PCA VLSI Chip for Neural Data Compression.
Wu, Tong; Zhao, Wenfeng; Guo, Hongsun; Lim, Hubert H; Yang, Zhi
2017-12-01
Neural recording system miniaturization and integration with low-power wireless technologies require compressing neural data before transmission. Feature extraction is a procedure to represent data in a low-dimensional space; its integration into a recording chip can be an efficient approach to compress neural data. In this paper, we propose a streaming principal component analysis algorithm and its microchip implementation to compress multichannel local field potential (LFP) and spike data. The circuits have been designed in a 65-nm CMOS technology and occupy a silicon area of 0.06 mm. Throughout the experiments, the chip compresses LFPs by 10 at the expense of as low as 1% reconstruction errors and 144-nW/channel power consumption; for spikes, the achieved compression ratio is 25 with 8% reconstruction errors and 3.05-W/channel power consumption. In addition, the algorithm and its hardware architecture can swiftly adapt to nonstationary spiking activities, which enables efficient hardware sharing among multiple channels to support a high-channel count recorder.
Critical Hydrologic and Atmospheric Measurements in Complex Alpine Regions
NASA Astrophysics Data System (ADS)
Parlange, M. B.; Bou-Zeid, E.; Barrenetxea, G.; Krichane, M.; Ingelrest, F.; Couach, O.; Luyet, V.; Vetterli, M.; Lehning, M.; Duffy, C.; Tobin, C.; Selker, J.; Kumar, M.
2007-12-01
The Alps are often referred to as the « Water Towers of Europe » and as such play an essential role in European water resources. The impact of climatic change is expected to be particularly pronounced in the Alps and the lack of detailed hydrologic field observations is problematic for predictions of hydrologic and hazard assessment. Advances in information technology and communications provide important possibilities to improve the situation with relatively few measurements. We will present sensorscope technology (arrays of wireless weather stations including soil moisture, pressure, and temperature) that has now been deployed at the Le Genepi and Grand St. Bernard pass. In addition, a Distributed Temperature Sensor array on the stream beds has been deployed and stream discharge monitored. The high spatial resolution data collected in these previously "ungaged" regions are used in conjunction with new generation hydrologic models. The framework as to what is possible today with sensor arrays and modeling in extreme mountain environments is discussed.
Application Level Processing for Long-Lived and Information Rich Wireless Sensor Networks
NASA Astrophysics Data System (ADS)
Wilkins, R.; Gaura, E.; Brusey, J.
2013-12-01
A primary design goal in Wireless Sensor Networks (WSNs) is to ensure the longest possible node lifetime with the available power budget while still meeting application requirements. Since radio transmissions often consume the most power in WSN devices, it follows that a node should aim to maximise its lifetime by transmitting only the data or information required to enable the motivating application. Full raw data streams are often not required since summaries of data are sufficient to meet application needs summaries are often performed at a central point after collection). When raw data is not a requirement, it makes sense to perform as much application-specific processing on-node as possible to minimise the amount of transmissions a node must make. For example, in home environment monitoring, the amount of time a room spends within an acceptable temperature range is more important than the raw stream of temperature measurements. The work presents Bare Necessities (BN) which implements the calculation of application-specific summaries on-node. In the case of knowing the amount time a room spends within an acceptable temperature range, BN encodes the raw signal as a distribution over bins (e.g. a bin might comprise temperatures between 18 °C and 22 °C). BN conserves power by only transmitting when changes to the distribution occur only sending the bare necessities of information the end user is interested in (thus the algorithm name). In the case of home monitoring it has been shown that BN can lead to a packet transmission reduction of 99.98%, increasing a nodes lifetime by a factor of 14 when compared to sense-and-send nodes. A summary of the Bare Necessities process at the node.
Joseph, Wout; Pareit, Daan; Vermeeren, Günter; Naudts, Dries; Verloock, Leen; Martens, Luc; Moerman, Ingrid
2013-01-01
Wireless Local Area Networks (WLANs) are commonly deployed in various environments. The WLAN data packets are not transmitted continuously but often worst-case exposure of WLAN is assessed, assuming 100% activity and leading to huge overestimations. Actual duty cycles of WLAN are thus of importance for time-averaging of exposure when checking compliance with international guidelines on limiting adverse health effects. In this paper, duty cycles of WLAN using Wi-Fi technology are determined for exposure assessment on large scale at 179 locations for different environments and activities (file transfer, video streaming, audio, surfing on the internet, etc.). The median duty cycle equals 1.4% and the 95th percentile is 10.4% (standard deviation SD = 6.4%). Largest duty cycles are observed in urban and industrial environments. For actual applications, the theoretical upper limit for the WLAN duty cycle is 69.8% and 94.7% for maximum and minimum physical data rate, respectively. For lower data rates, higher duty cycles will occur. Although counterintuitive at first sight, poor WLAN connections result in higher possible exposures. File transfer at maximum data rate results in median duty cycles of 47.6% (SD = 16%), while it results in median values of 91.5% (SD = 18%) at minimum data rate. Surfing and audio streaming are less intensively using the wireless medium and therefore have median duty cycles lower than 3.2% (SD = 0.5-7.5%). For a specific example, overestimations up to a factor 8 for electric fields occur, when considering 100% activity compared to realistic duty cycles. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kazanskiy, Nikolay; Protsenko, Vladimir; Serafimovich, Pavel
2016-03-01
This research article contains an experiment with implementation of image filtering task in Apache Storm and IBM InfoSphere Streams stream data processing systems. The aim of presented research is to show that new technologies could be effectively used for sliding window filtering of image sequences. The analysis of execution was focused on two parameters: throughput and memory consumption. Profiling was performed on CentOS operating systems running on two virtual machines for each system. The experiment results showed that IBM InfoSphere Streams has about 1.5 to 13.5 times lower memory footprint than Apache Storm, but could be about 2.0 to 2.5 slower on a real hardware.
Manfredini, Marco; Arginelli, Federica; Dunsby, Christopher; French, Paul; Talbot, Clifford; König, Karsten; Pellacani, Giovanni; Ponti, Giovanni; Seidenari, Stefania
2013-02-01
The aim of this study was to compare morphological aspects of basal cell carcinoma (BCC) as assessed by two different imaging methods: in vivo reflectance confocal microscopy (RCM) and multiphoton tomography with fluorescence lifetime imaging implementation (MPT-FLIM). The study comprised 16 BCCs for which a complete set of RCM and MPT-FLIM images were available. The presence of seven MPT-FLIM descriptors was evaluated. The presence of seven RCM equivalent parameters was scored in accordance to their extension. Chi-squared test with Fisher's exact test and Spearman's rank correlation coefficient were determined between MPT-FLIM scores and adjusted-RCM scores. MPT-FLIM and RCM descriptors of BCC were coupled to match the descriptors that define the same pathological structures. The comparison included: Streaming and Aligned elongated cells, Streaming with multiple directions and Double alignment, Palisading (RCM) and Palisading (MPT-FLIM), Typical tumor islands, and Cell islands surrounded by fibers, Dark silhouettes and Phantom islands, Plump bright cells and Melanophages, Vessels (RCM), and Vessels (MPT-FLIM). The parameters that were significantly correlated were Melanophages/Plump Bright Cells, Aligned elongated cells/Streaming, Double alignment/Streaming with multiple directions, and Palisading (MPT-FLIM)/Palisading (RCM). According to our data, both methods are suitable to image BCC's features. The concordance between MPT-FLIM and RCM is high, with some limitations due to the technical differences between the two devices. The hardest difficulty when comparing the images generated by the two imaging modalities is represented by their different field of view. © 2012 John Wiley & Sons A/S.
A secure cluster-based multipath routing protocol for WMSNs.
Almalkawi, Islam T; Zapata, Manel Guerrero; Al-Karaki, Jamal N
2011-01-01
The new characteristics of Wireless Multimedia Sensor Network (WMSN) and its design issues brought by handling different traffic classes of multimedia content (video streams, audio, and still images) as well as scalar data over the network, make the proposed routing protocols for typical WSNs not directly applicable for WMSNs. Handling real-time multimedia data requires both energy efficiency and QoS assurance in order to ensure efficient utility of different capabilities of sensor resources and correct delivery of collected information. In this paper, we propose a Secure Cluster-based Multipath Routing protocol for WMSNs, SCMR, to satisfy the requirements of delivering different data types and support high data rate multimedia traffic. SCMR exploits the hierarchical structure of powerful cluster heads and the optimized multiple paths to support timeliness and reliable high data rate multimedia communication with minimum energy dissipation. Also, we present a light-weight distributed security mechanism of key management in order to secure the communication between sensor nodes and protect the network against different types of attacks. Performance evaluation from simulation results demonstrates a significant performance improvement comparing with existing protocols (which do not even provide any kind of security feature) in terms of average end-to-end delay, network throughput, packet delivery ratio, and energy consumption.
A Secure Cluster-Based Multipath Routing Protocol for WMSNs
Almalkawi, Islam T.; Zapata, Manel Guerrero; Al-Karaki, Jamal N.
2011-01-01
The new characteristics of Wireless Multimedia Sensor Network (WMSN) and its design issues brought by handling different traffic classes of multimedia content (video streams, audio, and still images) as well as scalar data over the network, make the proposed routing protocols for typical WSNs not directly applicable for WMSNs. Handling real-time multimedia data requires both energy efficiency and QoS assurance in order to ensure efficient utility of different capabilities of sensor resources and correct delivery of collected information. In this paper, we propose a Secure Cluster-based Multipath Routing protocol for WMSNs, SCMR, to satisfy the requirements of delivering different data types and support high data rate multimedia traffic. SCMR exploits the hierarchical structure of powerful cluster heads and the optimized multiple paths to support timeliness and reliable high data rate multimedia communication with minimum energy dissipation. Also, we present a light-weight distributed security mechanism of key management in order to secure the communication between sensor nodes and protect the network against different types of attacks. Performance evaluation from simulation results demonstrates a significant performance improvement comparing with existing protocols (which do not even provide any kind of security feature) in terms of average end-to-end delay, network throughput, packet delivery ratio, and energy consumption. PMID:22163854
Exploration of exposure conditions with a novel wireless detector for bedside digital radiography
NASA Astrophysics Data System (ADS)
Bosmans, Hilde; Nens, Joris; Delzenne, Louis; Marshall, Nicholas; Pauwels, Herman; De Wever, Walter; Oyen, Raymond
2012-03-01
We propose, apply and validate an optimization scheme for a new wireless CsI based DR detector in combination with a regular mobile X-ray system for bedside imaging applications. Three different grids were tested in this combination. Signal-difference-to-noise was investigated in two ways, using a 1mm Cu piece in combination with different thicknesses of PMMA and by means of the CDRAD phantom using 10 images per condition and an automated evaluation method. A Figure of Merit (FOM), namely SDNR2/Imparted Energy, was calculated for a large range of exposure conditions, without and with grid in place. Misalignment of the grids was evaluated via the same FOMs. This optimization study was validated with comparative X-ray acquisitions performed on dead bodies. An experienced radiologist scored the quality of several specific aspects for all these exposures. Signal difference to noise ratios measured with the Cu method correlated well with the threshold contrasts from the CDRAD analysis (R2 > 0.9). The analysis showed optimal FOM with detector air kerma rates as typically used in clinical practice. Lower tube voltages provide higher FOM than the higher values but their practical use depends on the limitations of X-ray tubes, linked to patient motion artefacts. The use of high resolution grids should be encouraged, as the FOM increases with 47% at 75kV. These scores from the Visual grading study confirmed the results obtained with the FOM. The switch to (wireless) DR technology for bedside imaging could benefit from devices to improve grid positioning or any scatter reduction technique.
Muhammad, Khan; Sajjad, Muhammad; Baik, Sung Wook
2016-05-01
In this paper, the problem of secure transmission of sensitive contents over the public network Internet is addressed by proposing a novel data hiding method in encrypted images with dual-level security. The secret information is divided into three blocks using a specific pattern, followed by an encryption mechanism based on the three-level encryption algorithm (TLEA). The input image is scrambled using a secret key, and the encrypted sub-message blocks are then embedded in the scrambled image by cyclic18 least significant bit (LSB) substitution method, utilizing LSBs and intermediate LSB planes. Furthermore, the cover image and its planes are rotated at different angles using a secret key prior to embedding, deceiving the attacker during data extraction. The usage of message blocks division, TLEA, image scrambling, and the cyclic18 LSB method results in an advanced security system, maintaining the visual transparency of resultant images and increasing the security of embedded data. In addition, employing various secret keys for image scrambling, data encryption, and data hiding using the cyclic18 LSB method makes the data recovery comparatively more challenging for attackers. Experimental results not only validate the effectiveness of the proposed framework in terms of visual quality and security compared to other state-of-the-art methods, but also suggest its feasibility for secure transmission of diagnostically important keyframes to healthcare centers and gastroenterologists during wireless capsule endoscopy.
Han, Ruizhen; He, Yong; Liu, Fei
2012-01-01
This paper presents a feasibility study on a real-time in field pest classification system design based on Blackfin DSP and 3G wireless communication technology. This prototype system is composed of remote on-line classification platform (ROCP), which uses a digital signal processor (DSP) as a core CPU, and a host control platform (HCP). The ROCP is in charge of acquiring the pest image, extracting image features and detecting the class of pest using an Artificial Neural Network (ANN) classifier. It sends the image data, which is encoded using JPEG 2000 in DSP, to the HCP through the 3G network at the same time for further identification. The image transmission and communication are accomplished using 3G technology. Our system transmits the data via a commercial base station. The system can work properly based on the effective coverage of base stations, no matter the distance from the ROCP to the HCP. In the HCP, the image data is decoded and the pest image displayed in real-time for further identification. Authentication and performance tests of the prototype system were conducted. The authentication test showed that the image data were transmitted correctly. Based on the performance test results on six classes of pests, the average accuracy is 82%. Considering the different live pests’ pose and different field lighting conditions, the result is satisfactory. The proposed technique is well suited for implementation in field pest classification on-line for precision agriculture. PMID:22736996
Han, Ruizhen; He, Yong; Liu, Fei
2012-01-01
This paper presents a feasibility study on a real-time in field pest classification system design based on Blackfin DSP and 3G wireless communication technology. This prototype system is composed of remote on-line classification platform (ROCP), which uses a digital signal processor (DSP) as a core CPU, and a host control platform (HCP). The ROCP is in charge of acquiring the pest image, extracting image features and detecting the class of pest using an Artificial Neural Network (ANN) classifier. It sends the image data, which is encoded using JPEG 2000 in DSP, to the HCP through the 3G network at the same time for further identification. The image transmission and communication are accomplished using 3G technology. Our system transmits the data via a commercial base station. The system can work properly based on the effective coverage of base stations, no matter the distance from the ROCP to the HCP. In the HCP, the image data is decoded and the pest image displayed in real-time for further identification. Authentication and performance tests of the prototype system were conducted. The authentication test showed that the image data were transmitted correctly. Based on the performance test results on six classes of pests, the average accuracy is 82%. Considering the different live pests' pose and different field lighting conditions, the result is satisfactory. The proposed technique is well suited for implementation in field pest classification on-line for precision agriculture.
NASA Astrophysics Data System (ADS)
Dou, P.
2017-12-01
Guangzhou has experienced a rapid urbanization period called "small change in three years and big change in five years" since the reform of China, resulting in significant land use/cover changes(LUC). To overcome the disadvantages of single classifier for remote sensing image classification accuracy, a multiple classifier system (MCS) is proposed to improve the quality of remote sensing image classification. The new method combines advantages of different learning algorithms, and achieves higher accuracy (88.12%) than any single classifier did. With the proposed MCS, land use/cover (LUC) on Landsat images from 1987 to 2015 was obtained, and the LUCs were used on three watersheds (Shijing river, Chebei stream, and Shahe stream) to estimate the impact of urbanization on water flood. The results show that with the high accuracy LUC, the uncertainty in flood simulations are reduced effectively (for Shijing river, Chebei stream, and Shahe stream, the uncertainty reduced 15.5%, 17.3% and 19.8% respectively).
ERIC Educational Resources Information Center
Liou, Wei-Kai; Bhagat, Kaushal Kumar; Chang, Chun-Yen
2018-01-01
The aim of this study is to design and implement a digital interactive globe system (DIGS), by integrating low-cost equipment to make DIGS cost-effective. DIGS includes a data processing unit, a wireless control unit, an image-capturing unit, a laser emission unit, and a three-dimensional hemispheric body-imaging screen. A quasi-experimental study…
Application of wireless power transmission systems in wireless capsule endoscopy: an overview.
Basar, Md Rubel; Ahmad, Mohd Yazed; Cho, Jongman; Ibrahim, Fatimah
2014-06-19
Wireless capsule endoscopy (WCE) is a promising technology for direct diagnosis of the entire small bowel to detect lethal diseases, including cancer and obscure gastrointestinal bleeding (OGIB). To improve the quality of diagnosis, some vital specifications of WCE such as image resolution, frame rate and working time need to be improved. Additionally, future multi-functioning robotic capsule endoscopy (RCE) units may utilize advanced features such as active system control over capsule motion, drug delivery systems, semi-surgical tools and biopsy. However, the inclusion of the above advanced features demands additional power that make conventional power source methods impractical. In this regards, wireless power transmission (WPT) system has received attention among researchers to overcome this problem. Systematic reviews on techniques of using WPT for WCE are limited, especially when involving the recent technological advancements. This paper aims to fill that gap by providing a systematic review with emphasis on the aspects related to the amount of transmitted power, the power transmission efficiency, the system stability and patient safety. It is noted that, thus far the development of WPT system for this WCE application is still in initial stage and there is room for improvements, especially involving system efficiency, stability, and the patient safety aspects.
A real-time TV logo tracking method using template matching
NASA Astrophysics Data System (ADS)
Li, Zhi; Sang, Xinzhu; Yan, Binbin; Leng, Junmin
2012-11-01
A fast and accurate TV Logo detection method is presented based on real-time image filtering, noise eliminating and recognition of image features including edge and gray level information. It is important to accurately extract the optical template using the time averaging method from the sample video stream, and then different templates are used to match different logos in separated video streams with different resolution based on the topology features of logos. 12 video streams with different logos are used to verify the proposed method, and the experimental result demonstrates that the achieved accuracy can be up to 99%.
Steganography anomaly detection using simple one-class classification
NASA Astrophysics Data System (ADS)
Rodriguez, Benjamin M.; Peterson, Gilbert L.; Agaian, Sos S.
2007-04-01
There are several security issues tied to multimedia when implementing the various applications in the cellular phone and wireless industry. One primary concern is the potential ease of implementing a steganography system. Traditionally, the only mechanism to embed information into a media file has been with a desktop computer. However, as the cellular phone and wireless industry matures, it becomes much simpler for the same techniques to be performed using a cell phone. In this paper, two methods are compared that classify cell phone images as either an anomaly or clean, where a clean image is one in which no alterations have been made and an anomalous image is one in which information has been hidden within the image. An image in which information has been hidden is known as a stego image. The main concern in detecting steganographic content with machine learning using cell phone images is in training specific embedding procedures to determine if the method has been used to generate a stego image. This leads to a possible flaw in the system when the learned model of stego is faced with a new stego method which doesn't match the existing model. The proposed solution to this problem is to develop systems that detect steganography as anomalies, making the embedding method irrelevant in detection. Two applicable classification methods for solving the anomaly detection of steganographic content problem are single class support vector machines (SVM) and Parzen-window. Empirical comparison of the two approaches shows that Parzen-window outperforms the single class SVM most likely due to the fact that Parzen-window generalizes less.
Eye vision system using programmable micro-optics and micro-electronics
NASA Astrophysics Data System (ADS)
Riza, Nabeel A.; Amin, M. Junaid; Riza, Mehdi N.
2014-02-01
Proposed is a novel eye vision system that combines the use of advanced micro-optic and microelectronic technologies that includes programmable micro-optic devices, pico-projectors, Radio Frequency (RF) and optical wireless communication and control links, energy harvesting and storage devices and remote wireless energy transfer capabilities. This portable light weight system can measure eye refractive powers, optimize light conditions for the eye under test, conduct color-blindness tests, and implement eye strain relief and eye muscle exercises via time sequenced imaging. Described is the basic design of the proposed system and its first stage system experimental results for vision spherical lens refractive error correction.
Tsiourlis, Georgios; Andreadakis, Stamatis; Konstantinidis, Pavlos
2009-01-01
The SITHON system, a fully wireless optical imaging system, integrating a network of in-situ optical cameras linking to a multi-layer GIS database operated by Control Operating Centres, has been developed in response to the need for early detection, notification and monitoring of forest fires. This article presents in detail the architecture and the components of SITHON, and demonstrates the first encouraging results of an experimental test with small controlled fires over Sithonia Peninsula in Northern Greece. The system has already been scheduled to be installed in some fire prone areas of Greece. PMID:22408536
A mobile robots experimental environment with event-based wireless communication.
Guinaldo, María; Fábregas, Ernesto; Farias, Gonzalo; Dormido-Canto, Sebastián; Chaos, Dictino; Sánchez, José; Dormido, Sebastián
2013-07-22
An experimental platform to communicate between a set of mobile robots through a wireless network has been developed. The mobile robots get their position through a camera which performs as sensor. The video images are processed in a PC and a Waspmote card sends the corresponding position to each robot using the ZigBee standard. A distributed control algorithm based on event-triggered communications has been designed and implemented to bring the robots into the desired formation. Each robot communicates to its neighbors only at event times. Furthermore, a simulation tool has been developed to design and perform experiments with the system. An example of usage is presented.
Multi-Parameter Wireless Monitoring and Telecommand of a Rocket Payload: Design and Implementation
NASA Astrophysics Data System (ADS)
Pamungkas, Arga C.; Putra, Alma A.; Puspitaningayu, Pradini; Fransisca, Yulia; Widodo, Arif
2018-04-01
A rocket system generally consists of two parts, the rocket motor and the payload. The payload system is built of several sensors such as accelerometer, gyroscope, magnetometer, and also a surveillance camera. These sensors are used to monitor the rocket in a three-dimensional axis which determine its attitude. Additionally, the payload must be able to perform image capturing in a certain distance using telecommand. This article is intended to describe the design and also the implementation of a rocket payload which has attitude monitoring and telecommand ability from the ground control station using a long-range wireless module Digi XBee Pro 900 HP.
Low Power Transmitter for Wireless Capsule Endoscope
NASA Astrophysics Data System (ADS)
Lioe, D. X.; Shafie, S.; Ramiah, H.; Sulaiman, N.; Halin, I. A.
2013-04-01
This paper presents the transmitter circuit designed for the application of wireless capsule endoscope to overcome the limitation of conventional endoscope. The design is performed using CMOS 0.13 μm technology. The transmitter is designed to operate at centre frequency of 433.92 MHz, which is one of the ISM band. Active mixer and ring oscillator made up the transmitter and it consumes 1.57 mA of current using a supply voltage of 1.2 V, brings the dc power consumption of the transmitter to be 1.88 mW. Data rate of 3.5 Mbps ensure it can transmit high quality medical imaging.
Terabit Wireless Communication Challenges
NASA Technical Reports Server (NTRS)
Hwu, Shian U.
2012-01-01
This presentation briefly discusses a research effort on Terabit Wireless communication systems for possible space applications. Recently, terahertz (THz) technology (300-3000 GHz frequency) has attracted a great deal of interest from academia and industry. This is due to a number of interesting features of THz waves, including the nearly unlimited bandwidths available, and the non-ionizing radiation nature which does not damage human tissues and DNA with minimum health threat. Also, as millimeter-wave communication systems mature, the focus of research is, naturally, moving to the THz range. Many scientists regard THz as the last great frontier of the electromagnetic spectrum, but finding new applications outside the traditional niches of radio astronomy, Earth and planetary remote sensing, and molecular spectroscopy particularly in biomedical imaging and wireless communications has been relatively slow. Radiologists find this area of study so attractive because t-rays are non-ionizing, which suggests no harm is done to tissue or DNA. They also offer the possibility of performing spectroscopic measurements over a very wide frequency range, and can even capture signatures from liquids and solids. According to Shannon theory, the broad bandwidth of the THz frequency bands can be used for terabit-per-second (Tb/s) wireless communication systems. This enables several new applications, such as cell phones with 360 degrees autostereoscopic displays, optic-fiber replacement, and wireless Tb/s file transferring. Although THz technology could satisfy the demand for an extremely high data rate, a number of technical challenges need to be overcome before its development. This presentation provides an overview the state-of-the- art in THz wireless communication and the technical challenges for an emerging application in Terabit wireless systems. The main issue for THz wave propagation is the high atmospheric attenuation, which is dominated by water vapor absorption in the THz frequency band. The technical challenges in design such a system and the techniques to overcome the challenges will be discussed in this presentation.
Technical note: real-time web-based wireless visual guidance system for radiotherapy.
Lee, Danny; Kim, Siyong; Palta, Jatinder R; Kim, Taeho
2017-06-01
Describe a Web-based wireless visual guidance system that mitigates issues associated with hard-wired audio-visual aided patient interactive motion management systems that are cumbersome to use in routine clinical practice. Web-based wireless visual display duplicates an existing visual display of a respiratory-motion management system for visual guidance. The visual display of the existing system is sent to legacy Web clients over a private wireless network, thereby allowing a wireless setting for real-time visual guidance. In this study, active breathing coordinator (ABC) trace was used as an input for visual display, which captured and transmitted to Web clients. Virtual reality goggles require two (left and right eye view) images for visual display. We investigated the performance of Web-based wireless visual guidance by quantifying (1) the network latency of visual displays between an ABC computer display and Web clients of a laptop, an iPad mini 2 and an iPhone 6, and (2) the frame rate of visual display on the Web clients in frames per second (fps). The network latency of visual display between the ABC computer and Web clients was about 100 ms and the frame rate was 14.0 fps (laptop), 9.2 fps (iPad mini 2) and 11.2 fps (iPhone 6). In addition, visual display for virtual reality goggles was successfully shown on the iPhone 6 with 100 ms and 11.2 fps. A high network security was maintained by utilizing the private network configuration. This study demonstrated that a Web-based wireless visual guidance can be a promising technique for clinical motion management systems, which require real-time visual display of their outputs. Based on the results of this study, our approach has the potential to reduce clutter associated with wired-systems, reduce space requirements, and extend the use of medical devices from static usage to interactive and dynamic usage in a radiotherapy treatment vault.
Flexible Display Technologies...Do They Have a Role in the Cockpit?
2005-03-01
can be updated as needed via wireless technology. The main element of Radio PaperTM is an electronic ink, consisting of millions of microcapsules ...creating black text and images against an otherwise white (negatively charged) background. The microcapsules can retain their charge (and hence the image...for as long as months without additional power. Figure 3. Example of eltrophoretic display (Source: E-Ink Corporation). The microcapsules are
Sensors to Support the Soldier
2005-02-01
limited by the need to be man- portable . The Marine infantryman relies on mobility , aggressiveness, and training 2 rather than elaborate equipment to...the ab- sence of conventional GPS guidance, including man- portable inertial inea- surement units, and digital imaging sensors combined with image...cell phones and 802.11 networks shows that walls and floors are not impenentra- ble to wireless signals; it is a question of power, range, and frequency
NASA Astrophysics Data System (ADS)
Puji Asmoro, Cahyo; Wijaya, Agus Fany Chandra; Dwi Ardi, Nanang; Abdurrohman, Arman; Aria Utama, Judhistira; Sutiadi, Asep; Hikmat; Ramlan Ramalis, Taufik; Suyardi, Bintang
2016-11-01
The Assembled Solar Eclipse Package (ASEP) is not only an integrated apparatus constructed to obtain imaging data during solar eclipse, but also it involved sky brightness and live streaming requirement. Main four parts of ASEP are composed by two imaging data recorders, one high definition video streaming camera, and a sky quality meter instrument (SQM) linked by a personal computer and motorized mounting. The parts are common instruments which are used for education or personal use. The first part is used to capture corona and prominence image during totality. For the second part, video is powerful data in order to educate public through web streaming lively. The last part, SQM is used to confirm our imaging data during obscuration. The perfect prominence picture was obtained by one of the data capture using William-Optics F=388mm with Nikon DSLR D3100. In addition, the diamond ring and corona were recorded by the second imaging tool using Sky Watcher F=910mm with Canon DSLR 60D. The third instrument is the Sony HXR MC5 streaming set to be able to broadcast to public domain area via official website. From the SQM, the value of the darkness during totality is quiet similar as a dawn condition. Finally, ASEP was entirely successful and be able to fulfil our competency as educational researcher in university.
Motion analysis for duplicate frame removal in wireless capsule endoscope
NASA Astrophysics Data System (ADS)
Lee, Hyun-Gyu; Choi, Min-Kook; Lee, Sang-Chul
2011-03-01
Wireless capsule endoscopy (WCE) has been intensively researched recently due to its convenience for diagnosis and extended detection coverage of some diseases. Typically, a full recording covering entire human digestive system requires about 8 to 12 hours for a patient carrying a capsule endoscope and a portable image receiver/recorder unit, which produces 120,000 image frames on average. In spite of the benefits of close examination, WCE based test has a barrier for quick diagnosis such that a trained diagnostician must examine a huge amount of images for close investigation, normally over 2 hours. The main purpose of our work is to present a novel machine vision approach to reduce diagnosis time by automatically detecting duplicated recordings caused by backward camera movement, typically containing redundant information, in small intestine. The developed technique could be integrated with a visualization tool which supports intelligent inspection method, such as automatic play speed control. Our experimental result shows high accuracy of the technique by detecting 989 duplicate image frames out of 10,000, equivalently to 9.9% data reduction, in a WCE video from a real human subject. With some selected parameters, we achieved the correct detection ratio of 92.85% and the false detection ratio of 13.57%.
Video streaming technologies using ActiveX and LabVIEW
NASA Astrophysics Data System (ADS)
Panoiu, M.; Rat, C. L.; Panoiu, C.
2015-06-01
The goal of this paper is to present the possibilities of remote image processing through data exchange between two programming technologies: LabVIEW and ActiveX. ActiveX refers to the process of controlling one program from another via ActiveX component; where one program acts as the client and the other as the server. LabVIEW can be either client or server. Both programs (client and server) exist independent of each other but are able to share information. The client communicates with the ActiveX objects that the server opens to allow the sharing of information [7]. In the case of video streaming [1] [2], most ActiveX controls can only display the data, being incapable of transforming it into a data type that LabVIEW can process. This becomes problematic when the system is used for remote image processing. The LabVIEW environment itself provides little if any possibilities for video streaming, and the methods it does offer are usually not high performance, but it possesses high performance toolkits and modules specialized in image processing, making it ideal for processing the captured data. Therefore, we chose to use existing software, specialized in video streaming along with LabVIEW and to capture the data provided by them, for further use, within LabVIEW. The software we studied (the ActiveX controls of a series of media players that utilize streaming technology) provide high quality data and a very small transmission delay, ensuring the reliability of the results of the image processing.
Study of strong turbulence effects for optical wireless links
NASA Astrophysics Data System (ADS)
Yuksel, Heba; Meric, Hasim; Kunter, Fulya
2012-10-01
Strong turbulence measurements that are taken using real time optical wireless experimental setups are valuable when studying the effects of turbulence regimes on a propagating optical beam. In any kind of FSO system, for us to know the strength of the turbulence thus the refractive index structure constant, is beneficial for having an optimum bandwidth of communication. Even if the FSO Link is placed very well-high-above the ground just to have weak enough turbulence effects, there can be severe atmospheric conditions that can change the turbulence regime. Having a successful theory that will cover all regimes will give us the chance of directly processing the image in existing or using an additional hardware thus deciding on the optimum bandwidth of the communication line at firsthand. For this purpose, Strong Turbulence data has been collected using an outdoor optical wireless setup placed about 85 centimeters above the ground with an acceptable declination and a path length of about 250 meters inducing strong turbulence to the propagating beam. Variations of turbulence strength estimation methods as well as frame image analysis techniques are then been applied to the experimental data in order to study the effects of different parameters on the result. Such strong turbulence data is compared with existing weak and intermediate turbulence data. Aperture Averaging Factor for different turbulence regimes is also investigated.
Cutting-edge analysis of extracellular microparticles using ImageStream(X) imaging flow cytometry.
Headland, Sarah E; Jones, Hefin R; D'Sa, Adelina S V; Perretti, Mauro; Norling, Lucy V
2014-06-10
Interest in extracellular vesicle biology has exploded in the past decade, since these microstructures seem endowed with multiple roles, from blood coagulation to inter-cellular communication in pathophysiology. In order for microparticle research to evolve as a preclinical and clinical tool, accurate quantification of microparticle levels is a fundamental requirement, but their size and the complexity of sample fluids present major technical challenges. Flow cytometry is commonly used, but suffers from low sensitivity and accuracy. Use of Amnis ImageStream(X) Mk II imaging flow cytometer afforded accurate analysis of calibration beads ranging from 1 μm to 20 nm; and microparticles, which could be observed and quantified in whole blood, platelet-rich and platelet-free plasma and in leukocyte supernatants. Another advantage was the minimal sample preparation and volume required. Use of this high throughput analyzer allowed simultaneous phenotypic definition of the parent cells and offspring microparticles along with real time microparticle generation kinetics. With the current paucity of reliable techniques for the analysis of microparticles, we propose that the ImageStream(X) could be used effectively to advance this scientific field.
Mendoza, Beatriz R.; Rodríguez, Silvestre; Pérez-Jiménez, Rafael; Ayala, Alejandro; González, Oswaldo
2016-01-01
In general, the use of angle-diversity receivers makes it possible to reduce the impact of ambient light noise, path loss and multipath distortion, in part by exploiting the fact that they often receive the desired signal from different directions. Angle-diversity detection can be performed using a composite receiver with multiple detector elements looking in different directions. These are called non-imaging angle-diversity receivers. In this paper, a comparison of three non-imaging angle-diversity receivers as input sensors of nodes for an indoor infrared (IR) wireless sensor network is presented. The receivers considered are the conventional angle-diversity receiver (CDR), the sectored angle-diversity receiver (SDR), and the self-orienting receiver (SOR), which have been proposed or studied by research groups in Spain. To this end, the effective signal-collection area of the three receivers is modelled and a Monte-Carlo-based ray-tracing algorithm is implemented which allows us to investigate the effect on the signal to noise ratio and main IR channel parameters, such as path loss and rms delay spread, of using the three receivers in conjunction with different combination techniques in IR links operating at low bit rates. Based on the results of the simulations, we show that the use of a conventional angle-diversity receiver in conjunction with the equal-gain combining technique provides the solution with the best signal to noise ratio, the lowest computational capacity and the lowest transmitted power requirements, which comprise the main limitations for sensor nodes in an indoor infrared wireless sensor network. PMID:27428966
Gettman, Matthew T; Swain, Paul
2009-05-01
Cystoscopy remains one of the most important diagnostic procedures for the lower urinary tract. Wireless capsule endoscopy was introduced in the 1990s but use to date is limited to gastroenterology. We evaluated the feasibility in the pig model of using wireless capsule endoscopes (WCEs) for cystoscopy. Experimental evaluation of capsule cystoscopy was performed in a 50-kg farm pig. The capsule was deployed into the bladder through a custom access sheath. Images were continuously transmitted at a rate of four frames per second to a laptop computer and processed using proprietary software. Manipulation of the WCE within the bladder was performed using a set protocol. The animal was then euthanized and gross inspection was performed. We measured the ability to deploy and manipulate the capsule within the bladder. Feasibility of capturing and retrieving images in real time was also assessed. The WCE was efficiently deployed and manipulated within the bladder passively and with the use of external magnets. The entire bladder mucosa was visualized. Real-time image transmission and capture were successful. No complications were seen during capsule cystoscopy. Minor urethral bleeding was observed after the experiment, likely related to placement of the access sheath required for deployment of the WCE. Limitations are that the evaluation of WCE was performed in the pig model, in only one female animal, using a nonsurvival approach. Furthermore, the study was not designed to differentiate normal from abnormal mucosal findings and focused solely on inspection of the bladder. This report suggests that cystoscopy with a WCE is feasible. With this device, all aspects of the bladder mucosa could be visualized, and ongoing technologic and procedural developments are warranted for this new approach.
Mylonaki, M; Fritscher-Ravens, A; Swain, P
2003-01-01
Background: The development of wireless capsule endoscopy allows painless imaging of the small intestine. Its clinical use is not yet defined. The aim of this study was to compare the clinical efficacy and technical performance of capsule endoscopy and push enteroscopy in a series of 50 patients with colonoscopy and gastroscopy negative gastrointestinal bleeding. Methods: A wireless capsule endoscope was used containing a CMOS colour video imager, transmitter, and batteries. Approximately 50 000 transmitted images are received by eight abdominal aerials and stored on a portable solid state recorder, which is carried on a belt. Push enteroscopy was performed using a 240 cm Olympus video enteroscope. Results: Studies in 14 healthy volunteers gave information on normal anatomical appearances and preparation. In 50 patients with gastrointestinal bleeding and negative colonoscopy and gastroscopy, push enteroscopy was compared with capsule endoscopy. A bleeding source was discovered in the small intestine in 34 of 50 patients (68%). These included angiodysplasia (16), focal fresh bleeding (eight), apthous ulceration suggestive of Crohn’s disease (three), tumour (two), Meckel’s diverticulum (two), ileal ulcer (one), jejunitis (one), and ulcer due to intussusception (one). One additional intestinal diagnosis was made by enteroscopy. The yield of push enteroscopy in evaluating obscure bleeding was 32% (16/50). The capsule identified significantly more small intestinal bleeding sources than push enteroscopy (p<0.05). Patients preferred capsule endoscopy to push enteroscopy (p<0.001). Conclusions: In this study capsule endoscopy was superior to push enteroscopy in the diagnosis of recurrent bleeding in patients who had a negative gastroscopy and colonoscopy. It was safe and well tolerated. PMID:12865269
Minimum Requirements for Accurate and Efficient Real-Time On-Chip Spike Sorting
Navajas, Joaquin; Barsakcioglu, Deren Y.; Eftekhar, Amir; Jackson, Andrew; Constandinou, Timothy G.; Quiroga, Rodrigo Quian
2014-01-01
Background Extracellular recordings are performed by inserting electrodes in the brain, relaying the signals to external power-demanding devices, where spikes are detected and sorted in order to identify the firing activity of different putative neurons. A main caveat of these recordings is the necessity of wires passing through the scalp and skin in order to connect intracortical electrodes to external amplifiers. The aim of this paper is to evaluate the feasibility of an implantable platform (i.e. a chip) with the capability to wirelessly transmit the neural signals and perform real-time on-site spike sorting. New Method We computationally modelled a two-stage implementation for online, robust, and efficient spike sorting. In the first stage, spikes are detected on-chip and streamed to an external computer where mean templates are created and sent back to the chip. In the second stage, spikes are sorted in real-time through template matching. Results We evaluated this procedure using realistic simulations of extracellular recordings and describe a set of specifications that optimise performance while keeping to a minimum the signal requirements and the complexity of the calculations. Comparison with Existing Methods A key bottleneck for the development of long-term BMIs is to find an inexpensive method for real-time spike sorting. Here, we simulated a solution to this problem that uses both offline and online processing of the data. Conclusions Hardware implementations of this method therefore enable low-power long-term wireless transmission of multiple site extracellular recordings, with application to wireless BMIs or closed-loop stimulation designs. PMID:24769170
Zhu, Lingyun; Li, Lianjie; Meng, Chunyan
2014-12-01
There have been problems in the existing multiple physiological parameter real-time monitoring system, such as insufficient server capacity for physiological data storage and analysis so that data consistency can not be guaranteed, poor performance in real-time, and other issues caused by the growing scale of data. We therefore pro posed a new solution which was with multiple physiological parameters and could calculate clustered background data storage and processing based on cloud computing. Through our studies, a batch processing for longitudinal analysis of patients' historical data was introduced. The process included the resource virtualization of IaaS layer for cloud platform, the construction of real-time computing platform of PaaS layer, the reception and analysis of data stream of SaaS layer, and the bottleneck problem of multi-parameter data transmission, etc. The results were to achieve in real-time physiological information transmission, storage and analysis of a large amount of data. The simulation test results showed that the remote multiple physiological parameter monitoring system based on cloud platform had obvious advantages in processing time and load balancing over the traditional server model. This architecture solved the problems including long turnaround time, poor performance of real-time analysis, lack of extensibility and other issues, which exist in the traditional remote medical services. Technical support was provided in order to facilitate a "wearable wireless sensor plus mobile wireless transmission plus cloud computing service" mode moving towards home health monitoring for multiple physiological parameter wireless monitoring.
NASA Astrophysics Data System (ADS)
Yang, Keon Ho; Jung, Haijo; Kang, Won-Suk; Jang, Bong Mun; Kim, Joong Il; Han, Dong Hoon; Yoo, Sun-Kook; Yoo, Hyung-Sik; Kim, Hee-Joung
2006-03-01
The wireless mobile service with a high bit rate using CDMA-1X EVDO is now widely used in Korea. Mobile devices are also increasingly being used as the conventional communication mechanism. We have developed a web-based mobile system that communicates patient information and images, using CDMA-1X EVDO for emergency diagnosis. It is composed of a Mobile web application system using the Microsoft Windows 2003 server and an internet information service. Also, a mobile web PACS used for a database managing patient information and images was developed by using Microsoft access 2003. A wireless mobile emergency patient information and imaging communication system is developed by using Microsoft Visual Studio.NET, and JPEG 2000 ActiveX control for PDA phone was developed by using the Microsoft Embedded Visual C++. Also, the CDMA-1X EVDO is used for connections between mobile web servers and the PDA phone. This system allows fast access to the patient information database, storing both medical images and patient information anytime and anywhere. Especially, images were compressed into a JPEG2000 format and transmitted from a mobile web PACS inside the hospital to the radiologist using a PDA phone located outside the hospital. Also, this system shows radiological images as well as physiological signal data, including blood pressure, vital signs and so on, in the web browser of the PDA phone so radiologists can diagnose more effectively. Also, we acquired good results using an RW-6100 PDA phone used in the university hospital system of the Sinchon Severance Hospital in Korea.
A Two-Stream Deep Fusion Framework for High-Resolution Aerial Scene Classification
Liu, Fuxian
2018-01-01
One of the challenging problems in understanding high-resolution remote sensing images is aerial scene classification. A well-designed feature representation method and classifier can improve classification accuracy. In this paper, we construct a new two-stream deep architecture for aerial scene classification. First, we use two pretrained convolutional neural networks (CNNs) as feature extractor to learn deep features from the original aerial image and the processed aerial image through saliency detection, respectively. Second, two feature fusion strategies are adopted to fuse the two different types of deep convolutional features extracted by the original RGB stream and the saliency stream. Finally, we use the extreme learning machine (ELM) classifier for final classification with the fused features. The effectiveness of the proposed architecture is tested on four challenging datasets: UC-Merced dataset with 21 scene categories, WHU-RS dataset with 19 scene categories, AID dataset with 30 scene categories, and NWPU-RESISC45 dataset with 45 challenging scene categories. The experimental results demonstrate that our architecture gets a significant classification accuracy improvement over all state-of-the-art references. PMID:29581722
A Two-Stream Deep Fusion Framework for High-Resolution Aerial Scene Classification.
Yu, Yunlong; Liu, Fuxian
2018-01-01
One of the challenging problems in understanding high-resolution remote sensing images is aerial scene classification. A well-designed feature representation method and classifier can improve classification accuracy. In this paper, we construct a new two-stream deep architecture for aerial scene classification. First, we use two pretrained convolutional neural networks (CNNs) as feature extractor to learn deep features from the original aerial image and the processed aerial image through saliency detection, respectively. Second, two feature fusion strategies are adopted to fuse the two different types of deep convolutional features extracted by the original RGB stream and the saliency stream. Finally, we use the extreme learning machine (ELM) classifier for final classification with the fused features. The effectiveness of the proposed architecture is tested on four challenging datasets: UC-Merced dataset with 21 scene categories, WHU-RS dataset with 19 scene categories, AID dataset with 30 scene categories, and NWPU-RESISC45 dataset with 45 challenging scene categories. The experimental results demonstrate that our architecture gets a significant classification accuracy improvement over all state-of-the-art references.
Waterborne spectral induced polarization imaging to investigate stream-aquifer exchange
NASA Astrophysics Data System (ADS)
Hoehn, Philipp; Flores Orozco, Adrián; Hofmann, Thilo
2017-04-01
Detailed information about the geometrical and hydraulic properties of a streambed's colmation layer is critical for accurate numerical modelling of stream-aquifer exchange, which in turn is of pivotal importance for adequate groundwater management at bank filtration sites. Inverse methods in numerical groundwater modeling tend to bear high spatial uncertainty and existing methods are limited, e.g. fiber-optic distributed temperature sensing (FO-DTS) by its unidirectional sensitivity towards groundwater discharge. To overcome such deficiencies we propose the application of high resolution spectral induced polarization (SIP) imaging. The objective was to elucidate its capability to provide spatial estimates of parameters of a Cauchy-type boundary condition in groundwater flow modeling, namely hydraulic conductivity and thickness of potentially colmated substream sediment as well as stream stage. SIP measurements were collected along selected reaches of a losing-disconnected subalpine stream in a broad frequency bandwidth (0.063-225 Hz) using an array of 32 electrodes (at 1 m spacing), which was fully submerged at the stream bottom, while the equipment was mounted on a stationary-positioned inflatable rubber boat. A total of 32 transient infiltration tests, using an open-bottom standpipe (4.2 cm inner diameter), were performed to determine vertical hydraulic conductivity (kv) of the streambed at discrete positions along the electrical arrays. Imaging results of the real component of the complex electrical conductivity (σ') permitted to delineate stream stage and the general substream architecture; whereas the imaginary component (σ") revealed larger variability within the substream sediment, likely related to changes in the textural parameters. The kv dataset confirms the textural variability with values varying between 3•10-2 and 5•10-7 ms-1. The electrical imaging results exhibit the strongest polarization response at 75 Hz, suggesting that fine grains, as the dominating length scale, are enhancing the polarization response. The relationship between σ" and kv reveals an inverse linear relationship, in accordance with laboratory studies, with higher correlation observed at 75 Hz. Yet, the σ"-kv correlation is rather weak, likely due to (i) the differences in the volume of investigation considering the given 4-electrode array in the SIP data (3m) and the punctual kv measurements (0.042 m) and (ii) sample disturbance when installing standpipes in streambed sediment. Nevertheless, in the frequency range around 75 Hz, patterns of the first derivatives of σ" as a function of depth suggest the possibility to extract the distribution of stream stage in agreement with measured values. Furthermore, SIP imaging results permitted to delineate the geometry of an immediate sub-stream layer, associated to the strongest polarization effect, as expected of a streambed colmation layer, commonly related to lower hydraulic conductivity compared to the underlying aquifer material. Our results demonstrate the potential of SIP images to improve groundwater flow modeling by providing necessary estimates for Cauchy-type boundary conditions at longer stream-aquifer interfaces; yet, the quantification of hydraulic conductivity based on SIP images at the field scale remains an open area of research.
2014-02-26
This dramatic image observed by NASA Mars Reconnaissance Orbiter shows dark rippled bodies of sand, sometimes in the form of dunes, streaming through Ganges Chasma. The floor of the canyon is covered by hills and mesas.
Ohta, Hidetoshi; Kawashima, Makoto
2014-01-01
A few types of steerable capsule endoscopes have been proposed but disappointingly their systems were not applicable to common endoscopic treatment or pathological diagnosis. This study validates the possibility of treatment and biopsy by using an internet-linked (wireless control via the internet) robotic capsule endoscope (iRoboCap). iRoboCap consisted of three parts: an imaging unit, a movement control unit and a therapeutic tool unit. Two types of iRoboCaps were designed, one was a submarine type (iRoboCap-S) and the other was an amphibious type (iRoboCap-A). They were remotely and wirelessly steered by a portable tablet device using Bluetooth and via the internet. The success rates of biopsy or clipping were evaluated in a phantom. Although the two prototypes have various problems that need improving, we hope that our robotic and wireless innovations have opened the door to new endoscopic procedures and will pioneer various new applications in medicine.
Biomonitoring with Wireless Communications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Budinger, Thomas F.
2003-03-01
This review is divided into three sections: technologies for monitoring physiological parameters; biosensors for chemical assays and wireless communications technologies including image transmissions. Applications range from monitoring high risk patients for heart, respiratory activity and falls to sensing levels of physical activity in military, rescue, and sports personnel. The range of measurements include, heart rate, pulse wave form, respiratory rate, blood oxygen, tissue pCO2, exhaled carbon dioxide and physical activity. Other feasible measurements will employ miniature chemical laboratories on silicon or plastic chips. The measurements can be extended to clinical chemical assays ranging from common blood assays to protein ormore » specialized protein measurements (e.g., troponin, creatine, and cytokines such as TNF and IL6). Though the feasibility of using wireless technology to communicate vital signs has been demonstrated 32 years ago (1) it has been only recently that practical and portable devices and communications net works have become generally available for inexpensive deployment of comfortable and affordable devices and systems.« less
Application of wireless networks-peer-to-peer information sharing
NASA Astrophysics Data System (ADS)
ellappan, Vijayan; chaki, suchismita; kumar, avn
2017-11-01
Peer to Peer communications and its applications have gotten to be ordinary construction modelling in the wired network environment. But then, they have not been successfully adjusted with the wireless environment. Unlike the traditional client-server framework, in a P2P framework, each node can play the role of client as well as server simultaneously and exchange data or information with others. We aim to design an application which can adapt to the wireless ad-hoc networks. Peer to Peer communication can help people to share their files (information, image, audio, video and so on) and communicate with each other without relying on a particular network infrastructure or limited data usage. Here there is a central server with the help of which, the peers will have the capability to get the information about the other peers in the network. Indeed, even without the Internet, devices have the potential to allow users to connect and communicate in a special way through short range remote protocols such Wi-Fi.
Recent (circa 1998 to 2011) channel-migration rates of selected streams in Indiana
Robinson, Bret A.
2013-01-01
An investigation was completed to document recent (circa 1998 to 2011) channel-migration rates at 970 meander bends along 38 of the largest streams in Indiana. Data collection was completed by using the Google Earth™ platform and, for each selected site, identifying two images with capture dates separated by multiple years. Within each image, the position of the meander-bend cutbank was measured relative to a fixed local landscape feature visible in both images, and an average channel-migration rate was calculated at the point of maximum cutbank displacement. From these data it was determined that 65 percent of the measured sites have recently been migrating at a rate less than 1 ft/yr, 75 percent of the sites have been migrating at a rate less than 10 ft/yr, and while some sites are migrating in excess of 20 ft/yr, these occurrences are rare. In addition, it is shown that recent channel-migration activity is not evenly distributed across Indiana. For the stream reaches studied, far northern and much of far southern Indiana are drained by streams that recently have been relatively stationary. At the same time, this study shows that most of the largest streams in west-central Indiana and many of the largest streams in east-central Indiana have shown significant channel-migration activity during the recent past. It is anticipated that these results will support several fluvial-erosion-hazard mitigation activities currently being undertaken in Indiana.
Noninvasive biosensor and wireless interrogating system for glucose in blood
NASA Astrophysics Data System (ADS)
Varadan, Vijay K.; Whitchurch, Ashwin K.; Sarukesi, K.
2003-07-01
Hypoglycemia-abnormal decrease in blood sugar-is a major obstacle in the management of diabetes and prevention of long-term complications, and it may impose serious effects on the brain, including impairment of memory and other cognitive functions. This paper presents the development of a non-invasive sensor with miniaturized telemetry device in a wrist-watch for monitoring glucose concentration in blood. The sensor concept is based on optical chirality of glucose level in the interstitial fluid. The wrist watch consists of a laser power source of the wavelength compatible with the glucose. A nanofilm with specific chirality is placed at the bottom of the watch. The light then passes through the film and illuminates a small area on the skin. It has been documented that there is certain concentration of sugar level is taken by the intertitial fluid from the blood stream and deposit a portion of it at the dead skin. The wrist-watch when in contact with the outer skin of the human will thus monitor the glucose concentration. A wireless monitoring system in the watch then downloads the data from the watch to a Palm or a laptop computer.
Li, Kejia; Warren, Steve
2012-06-01
Pulse oximeters are central to the move toward wearable health monitoring devices and medical electronics either hosted by, e.g., smart phones or physically embedded in their design. This paper presents a small, low-cost pulse oximeter design appropriate for wearable and surface-based applications that also produces quality, unfiltered photo-plethysmograms (PPGs) ideal for emerging diagnostic algorithms. The design's "filter-free" embodiment, which employs only digital baseline subtraction as a signal compensation mechanism, distinguishes it from conventional pulse oximeters that incorporate filters for signal extraction and noise reduction. This results in high-fidelity PPGs with thousands of peak-to-peak digitization levels that are sampled at 240 Hz to avoid noise aliasing. Electronic feedback controls make these PPGs more resilient in the face of environmental changes (e.g., the device can operate in full room light), and data stream in real time across either a ZigBee wireless link or a wired USB connection to a host. On-board flash memory is available for store-and-forward applications. This sensor has demonstrated an ability to gather high-integrity data at fingertip, wrist, earlobe, palm, and temple locations from a group of 48 subjects (20 to 64 years old).
Simeoni, Ricardo
2015-06-11
This paper presents the configuration and digital signal processing details of a tablet-based hearing aid transmitting wirelessly to standard earphones, whereby the tablet performs full sound processing rather than solely providing a means of setting adjustment by streaming to conventional digital hearing aids. The presented device confirms the recognized advantages of this tablet-based approach (e.g., in relation to cost, frequency domain processing, amplification range, versatility of functionality, component battery rechargeability), and flags the future wider-spread availability of such hearing solutions within mainstream healthcare. The use of a relatively high sampling frequency was found to be beneficial for device performance, while the use of optional off-the-shelf add-on components (e.g., data acquisition device, high fidelity microphone, compact wireless transmitter/receiver, wired headphones) are also discussed in relation to performance optimization. The easy-to-follow configuration utilized is well suited to student learning/research instrumentation projects within the health and biomedical sciences. In this latter regard, the presented device was pedagogically integrated into a flipped classroom approach for the teaching of bioinstrumentation within an Allied Health Sciences School, with the subsequent establishment of positive student engagement outcomes.
Low-cost embedded systems for democratizing ocean sensor technology in the coastal zone
NASA Astrophysics Data System (ADS)
Glazer, B. T.; Lio, H. I.
2017-12-01
Environmental sciences suffer from undersampling. Enabling sustained and unattended data collection in the coastal zone typically involves expensive instrumentation and infrastructure deployed as cabled observatories or moorings with little flexibility in deployment location following initial installation. High costs of commercially-available or custom instruments have limited the number of sensor sites that can be targeted by academic researchers, and have also limited engagement with the public. We have developed a novel, low-cost, open-source sensor and software platform to enable wireless data transfer of biogeochemical sensors in the coastal zone. The platform is centered upon widely available, low-cost, single board computers and microcontrollers. We have used a blend of on-hand research-grade sensors and low-cost open-source electronics that can be assembled by tech-savvy non-engineers. Robust, open-source code that remains customizable for specific miniNode configurations can match a specific site's measurement needs, depending on the scientific research priorities. We have demonstrated prototype capabilities and versatility through lab testing and field deployments of multiple sensor nodes with multiple sensor inputs, all of which are streaming near-real-time data from Kaneohe Bay over wireless RF links to a shore-based base station.
Layered Wyner-Ziv video coding.
Xu, Qian; Xiong, Zixiang
2006-12-01
Following recent theoretical works on successive Wyner-Ziv coding (WZC), we propose a practical layered Wyner-Ziv video coder using the DCT, nested scalar quantization, and irregular LDPC code based Slepian-Wolf coding (or lossless source coding with side information at the decoder). Our main novelty is to use the base layer of a standard scalable video coder (e.g., MPEG-4/H.26L FGS or H.263+) as the decoder side information and perform layered WZC for quality enhancement. Similar to FGS coding, there is no performance difference between layered and monolithic WZC when the enhancement bitstream is generated in our proposed coder. Using an H.26L coded version as the base layer, experiments indicate that WZC gives slightly worse performance than FGS coding when the channel (for both the base and enhancement layers) is noiseless. However, when the channel is noisy, extensive simulations of video transmission over wireless networks conforming to the CDMA2000 1X standard show that H.26L base layer coding plus Wyner-Ziv enhancement layer coding are more robust against channel errors than H.26L FGS coding. These results demonstrate that layered Wyner-Ziv video coding is a promising new technique for video streaming over wireless networks.
Study on an agricultural environment monitoring server system using Wireless Sensor Networks.
Hwang, Jeonghwan; Shin, Changsun; Yoe, Hyun
2010-01-01
This paper proposes an agricultural environment monitoring server system for monitoring information concerning an outdoors agricultural production environment utilizing Wireless Sensor Network (WSN) technology. The proposed agricultural environment monitoring server system collects environmental and soil information on the outdoors through WSN-based environmental and soil sensors, collects image information through CCTVs, and collects location information using GPS modules. This collected information is converted into a database through the agricultural environment monitoring server consisting of a sensor manager, which manages information collected from the WSN sensors, an image information manager, which manages image information collected from CCTVs, and a GPS manager, which processes location information of the agricultural environment monitoring server system, and provides it to producers. In addition, a solar cell-based power supply is implemented for the server system so that it could be used in agricultural environments with insufficient power infrastructure. This agricultural environment monitoring server system could even monitor the environmental information on the outdoors remotely, and it could be expected that the use of such a system could contribute to increasing crop yields and improving quality in the agricultural field by supporting the decision making of crop producers through analysis of the collected information.
Evans blue dye-enhanced capillary-resolution photoacoustic microscopy in vivo
NASA Astrophysics Data System (ADS)
Yao, Junjie; Maslov, Konstantin; Hu, Song; Wang, Lihong V.
2009-09-01
Complete and continuous imaging of microvascular networks is crucial for a wide variety of biomedical applications. Photoacoustic tomography can provide high resolution microvascular imaging using hemoglobin within red blood cells (RBCs) as an endogenic contrast agent. However, intermittent RBC flow in capillaries results in discontinuous and fragmentary capillary images. To overcome this problem, we use Evans blue (EB) dye as a contrast agent for in vivo photoacoustic imaging. EB has strong optical absorption and distributes uniformly in the blood stream by chemically binding to albumin. With the help of EB, complete and continuous microvascular networks--especially capillaries--are imaged. The diffusion dynamics of EB leaving the blood stream and the clearance dynamics of the EB-albumin complex are also quantitatively investigated.
Coupling Solute and Fine Particle Transport with Sand Bed Morphodynamics within a Field Experiment
NASA Astrophysics Data System (ADS)
Phillips, C. B.; Ortiz, C. P.; Schumer, R.; Jerolmack, D. J.; Packman, A. I.
2017-12-01
Fine suspended particles are typically considered to pass through streams and rivers as wash load without interacting with the bed, however experiments have demonstrated that hyporheic flow causes advective exchange of fine particles with the stream bed, yielding accumulation of fine particle deposits within the bed. Ultimately, understanding river morphodynamics and ecosystem dynamics requires coupling both fine particle and solute transport with bed morphodynamics. To better understand the coupling between these processes we analyze a novel dataset from a controlled field experiment conducted on Clear Run, a 2nd order sand bed stream located within the North Carolina coastal plain. Data include concentrations of continuously injected conservative solutes and fine particulate tracers measured at various depths within the stream bed, overhead time lapse images of bed forms, stream discharge, and geomorphological surveys of the stream. We use image analysis of bed morphodynamics to assess exchange, retention, and remobilization of solutes and fine particles during constant discharge and a short duration experimental flood. From the images, we extract a time series of bedform elevations and scour depths for the duration of the experiment. The high-resolution timeseries of bed elevation enables us to assess coupling of bed morphodynamics with both the solute and fine particle flux during steady state mobile bedforms prior to the flood and to changing bedforms during the flood. These data allow the application of a stochastic modeling framework relating bed elevation fluctuations to fine particle residence times. This combined experimental and modeling approach ultimately informs our ability to predict not only the fate of fine particulate matter but also associated nutrient and carbon dynamics within streams and rivers.
Campbell, Carlene E-A; Khan, Shafiullah; Singh, Dhananjay; Loo, Kok-Keong
2011-01-01
The next generation surveillance and multimedia systems will become increasingly deployed as wireless sensor networks in order to monitor parks, public places and for business usage. The convergence of data and telecommunication over IP-based networks has paved the way for wireless networks. Functions are becoming more intertwined by the compelling force of innovation and technology. For example, many closed-circuit TV premises surveillance systems now rely on transmitting their images and data over IP networks instead of standalone video circuits. These systems will increase their reliability in the future on wireless networks and on IEEE 802.11 networks. However, due to limited non-overlapping channels, delay, and congestion there will be problems at sink nodes. In this paper we provide necessary conditions to verify the feasibility of round robin technique in these networks at the sink nodes by using a technique to regulate multi-radio multichannel assignment. We demonstrate through simulations that dynamic channel assignment scheme using multi-radio, and multichannel configuration at a single sink node can perform close to optimal on the average while multiple sink node assignment also performs well. The methods proposed in this paper can be a valuable tool for network designers in planning network deployment and for optimizing different performance objectives.
Multi-Channel Multi-Radio Using 802.11 Based Media Access for Sink Nodes in Wireless Sensor Networks
Campbell, Carlene E.-A.; Khan, Shafiullah; Singh, Dhananjay; Loo, Kok-Keong
2011-01-01
The next generation surveillance and multimedia systems will become increasingly deployed as wireless sensor networks in order to monitor parks, public places and for business usage. The convergence of data and telecommunication over IP-based networks has paved the way for wireless networks. Functions are becoming more intertwined by the compelling force of innovation and technology. For example, many closed-circuit TV premises surveillance systems now rely on transmitting their images and data over IP networks instead of standalone video circuits. These systems will increase their reliability in the future on wireless networks and on IEEE 802.11 networks. However, due to limited non-overlapping channels, delay, and congestion there will be problems at sink nodes. In this paper we provide necessary conditions to verify the feasibility of round robin technique in these networks at the sink nodes by using a technique to regulate multi-radio multichannel assignment. We demonstrate through simulations that dynamic channel assignment scheme using multi-radio, and multichannel configuration at a single sink node can perform close to optimal on the average while multiple sink node assignment also performs well. The methods proposed in this paper can be a valuable tool for network designers in planning network deployment and for optimizing different performance objectives. PMID:22163883
Low-power circuits design for the wireless force measurement system of the total knee arthroplasty.
Chen, Hong; Liu, Ming; Wan, Weiyi; Jia, Chen; Zhang, Chun; Wang, Zihua
2010-01-01
This paper proposes a novel wireless force measurement system for the Total Knee Arthroplasty (TKA) to improve the ligament balancing procedure during TKA. The force measurement system is comprised of a Wireless Force Measurement Spacer (WFMS) and the display part. They communicate with each other by the Radio Frequency (RF) signal. The WFMS is designed to measure the force between the WFMS and the femoral component of the artificial implants and to transmit the force data wirelessly by a low power transceiver. The display part demonstrates the force data in 3D images in real time. The WFMS composes of a sensors array, a Universal Transducer Interfaces (UTIs) array, a low-power sub-threshold microprocessor and a transceiver. The sub-threshold 8-bit microprocessor is taped out with 0.18 microm CMOS technology. The testing results of the microprocessor show that the leakage power of 46nW and the dynamic power of 385nW@165kHz are achieved with the operating voltage of 350 mV. The test results of the system are given and the errors of the system are analyzed. The results verified the reliability of the system. The future work is to design the microprocessor and a lower power transceiver within a single chip.
Garrett, Bernard Mark; Jackson, Cathryn
2006-12-01
This paper outlines the development and evaluation of a wireless personal digital assistant (PDA) based clinical learning tool designed to promote professional reflection for health professionals. The "Clinical e-portfolio" was developed at the University of British Columbia School of Nursing to enable students immediately to access clinical expertise and resources remotely, and record their clinical experiences in a variety of media (text, audio and images). The PDA e-portfolio tool was developed to demonstrate the potential use of mobile networked technologies to support and improve clinical learning; promote reflective learning in practice; engage students in the process of knowledge translation; help contextualize and embed clinical knowledge whilst in the workplace; and to help prevent the isolation of students whilst engaged in supervised clinical practice. The mobile e-portfolio was developed to synchronise wirelessly with a user's personal Web based portfolio from any remote location where a cellular telephone signal or wireless (Wi-Fi) connection could be obtained. An evaluation of the tool was undertaken with nurse practitioner and medical students, revealing positive attitudes to the use of PDA based tools and portfolios, but limits to the use of the PDA portfolio due to the inherent interface restrictions of the PDA.
Asymptotically reliable transport of multimedia/graphics over wireless channels
NASA Astrophysics Data System (ADS)
Han, Richard Y.; Messerschmitt, David G.
1996-03-01
We propose a multiple-delivery transport service tailored for graphics and video transported over connections with wireless access. This service operates at the interface between the transport and application layers, balancing the subjective delay and image quality objectives of the application with the low reliability and limited bandwidth of the wireless link. While techniques like forward-error correction, interleaving and retransmission improve reliability over wireless links, they also increase latency substantially when bandwidth is limited. Certain forms of interactive multimedia datatypes can benefit from an initial delivery of a corrupt packet to lower the perceptual latency, as long as reliable delivery occurs eventually. Multiple delivery of successively refined versions of the received packet, terminating when a sufficiently reliable version arrives, exploits the redundancy inherently required to improve reliability without a traffic penalty. Modifications to acknowledgment-repeat-request (ARQ) methods to implement this transport service are proposed, which we term `leaky ARQ'. For the specific case of pixel-coded window-based text/graphics, we describe additional functions needed to more effectively support urgent delivery and asymptotic reliability. X server emulation suggests that users will accept a multi-second delay between a (possibly corrupt) packet and the ultimate reliably-delivered version. The relaxed delay for reliable delivery can be exploited for traffic capacity improvement using scheduling of retransmissions.
Ramírez De La Pinta, Javier; Maestre Torreblanca, José María; Jurado, Isabel; Reyes De Cozar, Sergio
2017-03-06
In this paper, we explore the possibilities offered by the integration of home automation systems and service robots. In particular, we examine how advanced computationally expensive services can be provided by using a cloud computing approach to overcome the limitations of the hardware available at the user's home. To this end, we integrate two wireless low-cost, off-the-shelf systems in this work, namely, the service robot Rovio and the home automation system Z-wave. Cloud computing is used to enhance the capabilities of these systems so that advanced sensing and interaction services based on image processing and voice recognition can be offered.
Off the Shelf Cloud Robotics for the Smart Home: Empowering a Wireless Robot through Cloud Computing
Ramírez De La Pinta, Javier; Maestre Torreblanca, José María; Jurado, Isabel; Reyes De Cozar, Sergio
2017-01-01
In this paper, we explore the possibilities offered by the integration of home automation systems and service robots. In particular, we examine how advanced computationally expensive services can be provided by using a cloud computing approach to overcome the limitations of the hardware available at the user’s home. To this end, we integrate two wireless low-cost, off-the-shelf systems in this work, namely, the service robot Rovio and the home automation system Z-wave. Cloud computing is used to enhance the capabilities of these systems so that advanced sensing and interaction services based on image processing and voice recognition can be offered. PMID:28272305
A Mobile Robots Experimental Environment with Event-Based Wireless Communication
Guinaldo, María; Fábregas, Ernesto; Farias, Gonzalo; Dormido-Canto, Sebastián; Chaos, Dictino; Sánchez, José; Dormido, Sebastián
2013-01-01
An experimental platform to communicate between a set of mobile robots through a wireless network has been developed. The mobile robots get their position through a camera which performs as sensor. The video images are processed in a PC and a Waspmote card sends the corresponding position to each robot using the ZigBee standard. A distributed control algorithm based on event-triggered communications has been designed and implemented to bring the robots into the desired formation. Each robot communicates to its neighbors only at event times. Furthermore, a simulation tool has been developed to design and perform experiments with the system. An example of usage is presented. PMID:23881139
Thermal imagers: from ancient analog video output to state-of-the-art video streaming
NASA Astrophysics Data System (ADS)
Haan, Hubertus; Feuchter, Timo; Münzberg, Mario; Fritze, Jörg; Schlemmer, Harry
2013-06-01
The video output of thermal imagers stayed constant over almost two decades. When the famous Common Modules were employed a thermal image at first was presented to the observer in the eye piece only. In the early 1990s TV cameras were attached and the standard output was CCIR. In the civil camera market output standards changed to digital formats a decade ago with digital video streaming being nowadays state-of-the-art. The reasons why the output technique in the thermal world stayed unchanged over such a long time are: the very conservative view of the military community, long planning and turn-around times of programs and a slower growth of pixel number of TIs in comparison to consumer cameras. With megapixel detectors the CCIR output format is not sufficient any longer. The paper discusses the state-of-the-art compression and streaming solutions for TIs.
Oechslin, Mathias S; Gschwind, Markus; James, Clara E
2018-04-01
As a functional homolog for left-hemispheric syntax processing in language, neuroimaging studies evidenced involvement of right prefrontal regions in musical syntax processing, of which underlying white matter connectivity remains unexplored so far. In the current experiment, we investigated the underlying pathway architecture in subjects with 3 levels of musical expertise. Employing diffusion tensor imaging tractography, departing from seeds from our previous functional magnetic resonance imaging study on music syntax processing in the same participants, we identified a pathway in the right ventral stream that connects the middle temporal lobe with the inferior frontal cortex via the extreme capsule, and corresponds to the left hemisphere ventral stream, classically attributed to syntax processing in language comprehension. Additional morphometric consistency analyses allowed dissociating tract core from more dispersed fiber portions. Musical expertise related to higher tract consistency of the right ventral stream pathway. Specifically, tract consistency in this pathway predicted the sensitivity for musical syntax violations. We conclude that enduring musical practice sculpts ventral stream architecture. Our results suggest that training-related pathway plasticity facilitates the right hemisphere ventral stream information transfer, supporting an improved sound-to-meaning mapping in music.
Ad Hoc Network Architecture for Multi-Media Networks
2007-12-01
sensor network . Video traffic is modeled and simulations are performed via the use of the Sun Small Programmable Object Technology (Sun SPOT) Java...characteristics of video traffic must be studied and understood. This thesis focuses on evaluating the possibility of routing video images over a wireless
Laissez-Faire : Fully Asymmetric Backscatter Communication
Hu, Pan; Zhang, Pengyu; Ganesan, Deepak
2016-01-01
Backscatter provides dual-benefits of energy harvesting and low-power communication, making it attractive to a broad class of wireless sensors. But the design of a protocol that enables extremely power-efficient radios for harvesting-based sensors as well as high-rate data transfer for data-rich sensors presents a conundrum. In this paper, we present a new fully asymmetric backscatter communication protocol where nodes blindly transmit data as and when they sense. This model enables fully flexible node designs, from extraordinarily power-efficient backscatter radios that consume barely a few micro-watts to high-throughput radios that can stream at hundreds of Kbps while consuming a paltry tens of micro-watts. The challenge, however, lies in decoding concurrent streams at the reader, which we achieve using a novel combination of time-domain separation of interleaved signal edges, and phase-domain separation of colliding transmissions. We provide an implementation of our protocol, LF-Backscatter, and show that it can achieve an order of magnitude or more improvement in throughput, latency and power over state-of-art alternatives. PMID:28286885
Content based image retrieval using local binary pattern operator and data mining techniques.
Vatamanu, Oana Astrid; Frandeş, Mirela; Lungeanu, Diana; Mihalaş, Gheorghe-Ioan
2015-01-01
Content based image retrieval (CBIR) concerns the retrieval of similar images from image databases, using feature vectors extracted from images. These feature vectors globally define the visual content present in an image, defined by e.g., texture, colour, shape, and spatial relations between vectors. Herein, we propose the definition of feature vectors using the Local Binary Pattern (LBP) operator. A study was performed in order to determine the optimum LBP variant for the general definition of image feature vectors. The chosen LBP variant is then subsequently used to build an ultrasound image database, and a database with images obtained from Wireless Capsule Endoscopy. The image indexing process is optimized using data clustering techniques for images belonging to the same class. Finally, the proposed indexing method is compared to the classical indexing technique, which is nowadays widely used.
2017-12-08
Acquisition Date: February 28, 1985 The Sierra de Velasco Mountains dominate this image in northern Argentina. The Catamarca province is in the northern part of the image, and the La Rioja province is to the south. The streams are fed by runoff from the snow in the Andes Mountains to the north. These intermittent streams can dry up rapidly. The larger urban area near the bottom of the image is La Rioja, the capital of the province of La Rioja. Credit: NASA/GSFC/Landsat/USGS To learn more about Landsat and to see the orginal high res file go to: landsat.usgs.gov/gallery_view.php?category=greenflag&...
Documet, Jorge; Liu, Brent J; Documet, Luis; Huang, H K
2006-07-01
This paper describes a picture archiving and communication system (PACS) tool based on Web technology that remotely manages medical images between a PACS archive and remote destinations. Successfully implemented in a clinical environment and also demonstrated for the past 3 years at the conferences of various organizations, including the Radiological Society of North America, this tool provides a very practical and simple way to manage a PACS, including off-site image distribution and disaster recovery. The application is robust and flexible and can be used on a standard PC workstation or a Tablet PC, but more important, it can be used with a personal digital assistant (PDA). With a PDA, the Web application becomes a powerful wireless and mobile image management tool. The application's quick and easy-to-use features allow users to perform Digital Imaging and Communications in Medicine (DICOM) queries and retrievals with a single interface, without having to worry about the underlying configuration of DICOM nodes. In addition, this frees up dedicated PACS workstations to perform their specialized roles within the PACS workflow. This tool has been used at Saint John's Health Center in Santa Monica, California, for 2 years. The average number of queries per month is 2,021, with 816 C-MOVE retrieve requests. Clinical staff members can use PDAs to manage image workflow and PACS examination distribution conveniently for off-site consultations by referring physicians and radiologists and for disaster recovery. This solution also improves radiologists' effectiveness and efficiency in health care delivery both within radiology departments and for off-site clinical coverage.
Shchelokova, Alena V; van den Berg, Cornelis A T; Dobrykh, Dmitry A; Glybovski, Stanislav B; Zubkov, Mikhail A; Brui, Ekaterina A; Dmitriev, Dmitry S; Kozachenko, Alexander V; Efimtcev, Alexander Y; Sokolov, Andrey V; Fokin, Vladimir A; Melchakova, Irina V; Belov, Pavel A
2018-02-09
Design and characterization of a new inductively driven wireless coil (WLC) for wrist imaging at 1.5 T with high homogeneity operating due to focusing the B 1 field of a birdcage body coil. The WLC design has been proposed based on a volumetric self-resonant periodic structure of inductively coupled split-loop resonators with structural capacitance. The WLC was optimized and studied regarding radiofrequency fields and interaction to the birdcage coil (BC) by electromagnetic simulations. The manufactured WLC was characterized by on-bench measurements and in vivo and phantom study in comparison to a standard cable-connected receive-only coil. The WLC placed into BC gave the measured B1+ increase of the latter by 8.6 times for the same accepted power. The phantom and in vivo wrist imaging showed that the BC in receiving with the WLC inside reached equal or higher signal-to-noise ratio than the conventional clinical setup comprising the transmit-only BC and a commercial receive-only flex-coil and created no artifacts. Simulations and on-bench measurements proved safety in terms of specific absorption rate and reflected transmit power. The results showed that the proposed WLC could be an alternative to standard cable-connected receive coils in clinical magnetic resonance imaging. As an example, with no cable connection, the WLC allowed wrist imaging on a 1.5 T clinical machine using a full-body BC for transmitting and receive with the desired signal-to-noise ratio, image quality, and safety. © 2018 International Society for Magnetic Resonance in Medicine.
Thin client performance for remote 3-D image display.
Lai, Albert; Nieh, Jason; Laine, Andrew; Starren, Justin
2003-01-01
Several trends in biomedical computing are converging in a way that will require new approaches to telehealth image display. Image viewing is becoming an "anytime, anywhere" activity. In addition, organizations are beginning to recognize that healthcare providers are highly mobile and optimal care requires providing information wherever the provider and patient are. Thin-client computing is one way to support image viewing this complex environment. However little is known about the behavior of thin client systems in supporting image transfer in modern heterogeneous networks. Our results show that using thin-clients can deliver acceptable performance over conditions commonly seen in wireless networks if newer protocols optimized for these conditions are used.
Distinct Contributions of the Magnocellular and Parvocellular Visual Streams to Perceptual Selection
Denison, Rachel N.; Silver, Michael A.
2014-01-01
During binocular rivalry, conflicting images presented to the two eyes compete for perceptual dominance, but the neural basis of this competition is disputed. In interocular switch (IOS) rivalry, rival images periodically exchanged between the two eyes generate one of two types of perceptual alternation: 1) a fast, regular alternation between the images that is time-locked to the stimulus switches and has been proposed to arise from competition at lower levels of the visual processing hierarchy, or 2) a slow, irregular alternation spanning multiple stimulus switches that has been associated with higher levels of the visual system. The existence of these two types of perceptual alternation has been influential in establishing the view that rivalry may be resolved at multiple hierarchical levels of the visual system. We varied the spatial, temporal, and luminance properties of IOS rivalry gratings and found, instead, an association between fast, regular perceptual alternations and processing by the magnocellular stream and between slow, irregular alternations and processing by the parvocellular stream. The magnocellular and parvocellular streams are two early visual pathways that are specialized for the processing of motion and form, respectively. These results provide a new framework for understanding the neural substrates of binocular rivalry that emphasizes the importance of parallel visual processing streams, and not only hierarchical organization, in the perceptual resolution of ambiguities in the visual environment. PMID:21861685
Blood detection in wireless capsule endoscopy using expectation maximization clustering
NASA Astrophysics Data System (ADS)
Hwang, Sae; Oh, JungHwan; Cox, Jay; Tang, Shou Jiang; Tibbals, Harry F.
2006-03-01
Wireless Capsule Endoscopy (WCE) is a relatively new technology (FDA approved in 2002) allowing doctors to view most of the small intestine. Other endoscopies such as colonoscopy, upper gastrointestinal endoscopy, push enteroscopy, and intraoperative enteroscopy could be used to visualize up to the stomach, duodenum, colon, and terminal ileum, but there existed no method to view most of the small intestine without surgery. With the miniaturization of wireless and camera technologies came the ability to view the entire gestational track with little effort. A tiny disposable video capsule is swallowed, transmitting two images per second to a small data receiver worn by the patient on a belt. During an approximately 8-hour course, over 55,000 images are recorded to a worn device and then downloaded to a computer for later examination. Typically, a medical clinician spends more than two hours to analyze a WCE video. Research has been attempted to automatically find abnormal regions (especially bleeding) to reduce the time needed to analyze the videos. The manufacturers also provide the software tool to detect the bleeding called Suspected Blood Indicator (SBI), but its accuracy is not high enough to replace human examination. It was reported that the sensitivity and the specificity of SBI were about 72% and 85%, respectively. To address this problem, we propose a technique to detect the bleeding regions automatically utilizing the Expectation Maximization (EM) clustering algorithm. Our experimental results indicate that the proposed bleeding detection method achieves 92% and 98% of sensitivity and specificity, respectively.
A low-cost test-bed for real-time landmark tracking
NASA Astrophysics Data System (ADS)
Csaszar, Ambrus; Hanan, Jay C.; Moreels, Pierre; Assad, Christopher
2007-04-01
A low-cost vehicle test-bed system was developed to iteratively test, refine and demonstrate navigation algorithms before attempting to transfer the algorithms to more advanced rover prototypes. The platform used here was a modified radio controlled (RC) car. A microcontroller board and onboard laptop computer allow for either autonomous or remote operation via a computer workstation. The sensors onboard the vehicle represent the types currently used on NASA-JPL rover prototypes. For dead-reckoning navigation, optical wheel encoders, a single axis gyroscope, and 2-axis accelerometer were used. An ultrasound ranger is available to calculate distance as a substitute for the stereo vision systems presently used on rovers. The prototype also carries a small laptop computer with a USB camera and wireless transmitter to send real time video to an off-board computer. A real-time user interface was implemented that combines an automatic image feature selector, tracking parameter controls, streaming video viewer, and user generated or autonomous driving commands. Using the test-bed, real-time landmark tracking was demonstrated by autonomously driving the vehicle through the JPL Mars yard. The algorithms tracked rocks as waypoints. This generated coordinates calculating relative motion and visually servoing to science targets. A limitation for the current system is serial computing-each additional landmark is tracked in order-but since each landmark is tracked independently, if transferred to appropriate parallel hardware, adding targets would not significantly diminish system speed.
Wireless IR Image Transfer System for Autonomous Vehicles
2003-12-01
the camera can operate between 0 and 500 C; this uniquely suites it for employment on autonomous vehicles in rugged environments. The camera is...system is suitable for used on autonomous vehicles under varying antenna orientations. • The third is the use of MDS transceivers allows the received
Video monitoring system for car seat
NASA Technical Reports Server (NTRS)
Elrod, Susan Vinz (Inventor); Dabney, Richard W. (Inventor)
2004-01-01
A video monitoring system for use with a child car seat has video camera(s) mounted in the car seat. The video images are wirelessly transmitted to a remote receiver/display encased in a portable housing that can be removably mounted in the vehicle in which the car seat is installed.
UAVs Being Used for Environmental Surveying
Chung, Sandra
2017-12-09
UAVs, are much more sophisticated than your typical remote-controlled plane. INL robotics and remote sensing experts have added state-of-the-art imaging and wireless technology to the UAVs to create intelligent remote surveillance craft that can rapidly survey a wide area for damage and track down security threats.
A micro-Doppler sonar for acoustic surveillance in sensor networks
NASA Astrophysics Data System (ADS)
Zhang, Zhaonian
Wireless sensor networks have been employed in a wide variety of applications, despite the limited energy and communication resources at each sensor node. Low power custom VLSI chips implementing passive acoustic sensing algorithms have been successfully integrated into an acoustic surveillance unit and demonstrated for detection and location of sound sources. In this dissertation, I explore active and passive acoustic sensing techniques, signal processing and classification algorithms for detection and classification in a multinodal sensor network environment. I will present the design and characterization of a continuous-wave micro-Doppler sonar to image objects with articulated moving components. As an example application for this system, we use it to image gaits of humans and four-legged animals. I will present the micro-Doppler gait signatures of a walking person, a dog and a horse. I will discuss the resolution and range of this micro-Doppler sonar and use experimental results to support the theoretical analyses. In order to reduce the data rate and make the system amenable to wireless sensor networks, I will present a second micro-Doppler sonar that uses bandpass sampling for data acquisition. Speech recognition algorithms are explored for biometric identifications from one's gait, and I will present and compare the classification performance of the two systems. The acoustic micro-Doppler sonar design and biometric identification results are the first in the field as the previous work used either video camera or microwave technology. I will also review bearing estimation algorithms and present results of applying these algorithms for bearing estimation and tracking of moving vehicles. Another major source of the power consumption at each sensor node is the wireless interface. To address the need of low power communications in a wireless sensor network, I will also discuss the design and implementation of ultra wideband transmitters in a three dimensional silicon on insulator process. Lastly, a prototype of neuromorphic interconnects using ultra wideband radio will be presented.
Earth Observations taken by the Expedition 17 Crew
2008-08-19
ISS017-E-013789 (19 Aug. 2008) --- Desert erosion in Libya is featured in this image photographed by an Expedition 17 crewmember on the International Space Station. This detailed view (covering 13 kilometers) shows the classic patterns of an erosional desert landscape located 300 kilometers south of Libya's Mediterranean coast. Widespread indented patterns are low escarpments and stream terraces generated by stream erosion -- on those few occasions in any decade when enough rain falls for streams to flow. The only areas with active sediment deposition are the stream beds which appear in this image as sinuous zones with a distinct component of black minerals, resulting in a darker coloration than adjacent low escarpments. Sediment is transported into the area from a volcanic landscape immediately upstream to the west. Other stream-generated features are several relict stream banks, one of which even shows both of the original parallel banks. According to scientists, the ancient stream banks are preserved from erosion by various hardening cements (mainly calcium carbonate and gypsum) introduced by the streams when they were active, probably during wetter climates in the past two million years. Relict stream courses show prior positions of streams, and also provide Earth analogs for similar features on Mars. The lack of vegetation is the first indication of the great aridity of the region, but sand dunes also appear as sinuous lines oriented perpendicular to the dominant northeasterly wind direction (transverse dunes). Assuming the dominant wind direction remains the same, these transverse dunes are expected to move further to the southwest over time. Some of the dunes cross the river courses, showing how seldom the river flows.
McGregor, Douglas S.; Shultis, John K.; Rice, Blake B.; McNeil, Walter J.; Solomon, Clell J.; Patterson, Eric L.; Bellinger, Steven L.
2010-12-21
Non-streaming high-efficiency perforated semiconductor neutron detectors, method of making same and measuring wands and detector modules utilizing same are disclosed. The detectors have improved mechanical structure, flattened angular detector responses, and reduced leakage current. A plurality of such detectors can be assembled into imaging arrays, and can be used for neutron radiography, remote neutron sensing, cold neutron imaging, SNM monitoring, and various other applications.
Thoma, Volker; Henson, Richard N.
2011-01-01
The effects of attention and object configuration on the neural responses to short-lag visual image repetition were investigated with fMRI. Attention to one of two object images in a prime display was cued spatially. The images were either intact or split vertically; a manipulation that negates the influence of view-based representations. A subsequent single intact probe image was named covertly. Behavioural priming observed as faster button presses was found for attended primes in both intact and split configurations, but only for uncued primes in the intact configuration. In a voxel-wise analysis, fMRI repetition suppression (RS) was observed in a left mid-fusiform region for attended primes, both intact and split, whilst a right intraparietal region showed repetition enhancement (RE) for intact primes, regardless of attention. In a factorial analysis across regions of interest (ROIs) defined from independent localiser contrasts, RS for attended objects in the ventral stream was significantly left-lateralised, whilst repetition effects in ventral and dorsal ROIs correlated with the amount of priming in specific conditions. These fMRI results extend hybrid theories of object recognition, implicating left ventral stream regions in analytic processing (requiring attention), consistent with prior hypotheses about hemispheric specialisation, and implicating dorsal stream regions in holistic processing (independent of attention). PMID:21554967
Reyt, Ida; Bailliet, Hélène; Valière, Jean-Christophe
2014-01-01
Measurements of streaming velocity are performed by means of Laser Doppler Velocimetry and Particle Image Velociimetry in an experimental apparatus consisting of a cylindrical waveguide having one loudspeaker at each end for high intensity sound levels. The case of high nonlinear Reynolds number ReNL is particularly investigated. The variation of axial streaming velocity with respect to the axial and to the transverse coordinates are compared to available Rayleigh streaming theory. As expected, the measured streaming velocity agrees well with the Rayleigh streaming theory for small ReNL but deviates significantly from such predictions for high ReNL. When the nonlinear Reynolds number is increased, the outer centerline axial streaming velocity gets distorted towards the acoustic velocity nodes until counter-rotating additional vortices are generated near the acoustic velocity antinodes. This kind of behavior is followed by outer streaming cells only and measurements in the near wall region show that inner streaming vortices are less affected by this substantial evolution of fast streaming pattern. Measurements of the transient evolution of streaming velocity provide an additional insight into the evolution of fast streaming.
Observation of the Kelvin–Helmholtz Instability in a Solar Prominence
NASA Astrophysics Data System (ADS)
Yang, Heesu; Xu, Zhi; Lim, Eun-Kyung; Kim, Sujin; Cho, Kyung-Suk; Kim, Yeon-Han; Chae, Jongchul; Cho, Kyuhyoun; Ji, Kaifan
2018-04-01
Many solar prominences end their lives in eruptions or abrupt disappearances that are associated with dynamical or thermal instabilities. Such instabilities are important because they may be responsible for energy transport and conversion. We present a clear observation of a streaming kink-mode Kelvin–Helmholtz Instability (KHI) taking place in a solar prominence using the Hα Lyot filter installed at the New Vacuum Solar Telescope, Fuxian-lake Solar Observatory in Yunnan, China. On one side of the prominence, a series of plasma blobs floated up from the chromosphere and streamed parallel to the limb. The plasma stream was accelerated to about 20–60 km s‑1 and then undulated. We found that 2″- and 5″-size vortices formed, floated along the stream, and then broke up. After the 5″-size vortex, a plasma ejection out of the stream was detected in the Solar Dynamics Observatory/Atmospheric Imaging Assembly images. Just before the formation of the 5″-size vortex, the stream displayed an oscillatory transverse motion with a period of 255 s with the amplitude growing at the rate of 0.001 s‑1. We attribute this oscillation of the stream and the subsequent formation of the vortex to the KHI triggered by velocity shear between the stream, guided by the magnetic field and the surrounding media. The plasma ejection suggests the transport of prominence material into the upper layer by the KHI in its nonlinear stage.
Temperature of the Gulf Stream
NASA Technical Reports Server (NTRS)
2002-01-01
The Gulf Stream is one of the strong ocean currents that carries warm water from the sunny tropics to higher latitudes. The current stretches from the Gulf of Mexico up the East Coast of the United States, departs from North America south of the Chesapeake Bay, and heads across the Atlantic to the British Isles. The water within the Gulf Stream moves at the stately pace of 4 miles per hour. Even though the current cools as the water travels thousands of miles, it remains strong enough to moderate the Northern European climate. The image above was derived from the infrared measurements of the Moderate-resolution Imaging Spectroradiometer (MODIS) on a nearly cloud-free day over the east coast of the United States. The coldest waters are shown as purple, with blue, green, yellow, and red representing progressively warmer water. Temperatures range from about 7 to 22 degrees Celsius. The core of the Gulf Stream is very apparent as the warmest water, dark red. It departs from the coast at Cape Hatteras, North Carolina. The cool, shelf water from the north entrains the warmer outflows from the Chesapeake and Delaware Bays. The north wall of the Gulf Stream reveals very complex structure associated with frontal instabilities that lead to exchanges between the Gulf Stream and inshore waters. Several clockwise-rotating warm core eddies are evident north of the core of the Gulf Stream, which enhance the exchange of heat and water between the coastal and deep ocean. Cold core eddies, which rotate counter clockwise, are seen south of the Gulf Stream. The one closest to Cape Hatteras is entraining very warm Gulf Stream waters on its northwest circumference. Near the coast, shallower waters have warmed due to solar heating, while the deeper waters offshore are markedly cooler (dark blue). MODIS made this observation on May 8, 2000, at 11:45 a.m. EDT. For more information, see the MODIS-Ocean web page. The sea surface temperature image was created at the University of Miami using the 11- and 12-micron bands, by Bob Evans, Peter Minnett, and co-workers.
Ludwig, Karin; Kathmann, Norbert; Sterzer, Philipp; Hesselmann, Guido
2015-01-01
Recent behavioral and neuroimaging studies using continuous flash suppression (CFS) have suggested that action-related processing in the dorsal visual stream might be independent of perceptual awareness, in line with the "vision-for-perception" versus "vision-for-action" distinction of the influential dual-stream theory. It remains controversial if evidence suggesting exclusive dorsal stream processing of tool stimuli under CFS can be explained by their elongated shape alone or by action-relevant category representations in dorsal visual cortex. To approach this question, we investigated category- and shape-selective functional magnetic resonance imaging-blood-oxygen level-dependent responses in both visual streams using images of faces and tools. Multivariate pattern analysis showed enhanced decoding of elongated relative to non-elongated tools, both in the ventral and dorsal visual stream. The second aim of our study was to investigate whether the depth of interocular suppression might differentially affect processing in dorsal and ventral areas. However, parametric modulation of suppression depth by varying the CFS mask contrast did not yield any evidence for differential modulation of category-selective activity. Together, our data provide evidence for shape-selective processing under CFS in both dorsal and ventral stream areas and, therefore, do not support the notion that dorsal "vision-for-action" processing is exclusively preserved under interocular suppression. © 2014 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swadling, G. F.; Lebedev, S. V.; Hall, G. N.
2016-05-01
Experiments have been carried out to investigate the collisional dynamics of ablation streams produced by cylindrical wire array z-pinches. A combination of laser interferometric imaging, Thomson scattering, and Faraday rotation imaging has been used to make a range of measurements of the temporal evolution of various plasma and flow parameters. Our paper presents a summary of previously published data, drawing together a range of different measurements in order to give an overview of the key results. The paper focuses mainly on the results of experiments with tungsten wire arrays. Early interferometric imaging measurements are reviewed, then more recent Thomson scatteringmore » measurements are discussed; these measurements provided the first direct evidence of ablation stream interpenetration in a wire array experiment. Combining the data from these experiments gives a view of the temporal evolution of the tungsten stream collisional dynamics. In the final part of the paper, we present new experimental measurements made using an imaging Faraday rotation diagnostic. Our experiments investigated the structure of magnetic fields near the array axis directly; the presence of a magnetic field has previously been inferred based on Thomson scattering measurements of ion deflection near the array axis. Although the Thomson and Faraday measurements are not in full quantitative agreement, the Faraday data do qualitatively supports the conjecture that the observed deflections are induced by a static toroidal magnetic field, which has been advected to the array axis by the ablation streams. It is likely that detailed modeling will be needed in order to fully understand the dynamics observed in the experiment.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swadling, G. F.; Lebedev, S. V.; Hall, G. N.
2016-05-15
Experiments have been carried out to investigate the collisional dynamics of ablation streams produced by cylindrical wire array z-pinches. A combination of laser interferometric imaging, Thomson scattering, and Faraday rotation imaging has been used to make a range of measurements of the temporal evolution of various plasma and flow parameters. This paper presents a summary of previously published data, drawing together a range of different measurements in order to give an overview of the key results. The paper focuses mainly on the results of experiments with tungsten wire arrays. Early interferometric imaging measurements are reviewed, then more recent Thomson scatteringmore » measurements are discussed; these measurements provided the first direct evidence of ablation stream interpenetration in a wire array experiment. Combining the data from these experiments gives a view of the temporal evolution of the tungsten stream collisional dynamics. In the final part of the paper, we present new experimental measurements made using an imaging Faraday rotation diagnostic. These experiments investigated the structure of magnetic fields near the array axis directly; the presence of a magnetic field has previously been inferred based on Thomson scattering measurements of ion deflection near the array axis. Although the Thomson and Faraday measurements are not in full quantitative agreement, the Faraday data do qualitatively supports the conjecture that the observed deflections are induced by a static toroidal magnetic field, which has been advected to the array axis by the ablation streams. It is likely that detailed modeling will be needed in order to fully understand the dynamics observed in the experiment.« less
Seamonster: A Smart Sensor Web in Southeast Alaska
NASA Astrophysics Data System (ADS)
Fatland, D. R.; Heavner, M. J.; Hood, E.; Connor, C.; Nagorski, S.
2006-12-01
The NASA Research Opportunities in Space and Earth Science (ROSES) program is supporting a wireless sensor network project as part of its Advanced Information Systems Technology "Smart Sensor Web" initiative. The project, entitled Seamonster (for SouthEast Alaska MONitoring Network for Science, Telecomm, and Education Research) is led by the University of Alaska Southeast (Juneau) in collaboration with Microsoft- Vexcel in Boulder Colorado. This paper describes both the data acquisition components and science research objectives of Seamonster. The underlying data acquisition concept is to facilitate geophysics data acquisition by providing a wireless backbone for data recovery. Other researchers would be encouraged to emplace their own sensors together with short-range wireless (ZigBee, Bluetooth, etc). Through a common protocol the backbone will receive data from these sensors and relay them to a wired server. This means that the investigator can receive their data via email on a daily basis thereby cutting cost and monitoring sensor health. With environmental hardening and fairly high bandwidth and long range (100kbps/50km to 5mpbs/15km per hop) the network is intended to cover large areas and operate in harsh environments. Low power sensors and intelligent power management within the backbone are the dual ideas to contend with typical power/cost/data dilemmas. Seamonster science will focus over the next three years on hydrology and glaciology in a succession of valleys near Juneau in various stages of deglaciation, in effect providing a synopsis of a millennium-timescale process in a single moment. The instrumentation will include GPS, geophones, digital photography, met stations, and a suite of stream state and water quality sensors. Initial focus is on the Lemon Creek watershed with expansion to follow in subsequent years. The project will ideally expand to include marine and biological monitoring components.
NASA Astrophysics Data System (ADS)
Glazer, B. T.
2016-02-01
Here, we describe the development of novel, low-cost, open-source instrumentation to enable wireless data transfer of biogeochemical sensors in the coastal zone. The platform is centered upon the Beaglebone Black single board computer. Process-inquiry in environmental sciences suffers from undersampling; enabling sustained and unattended data collection typically involves expensive instrumentation and infrastructure deployed as cabled observatories with little flexibility in deployment location following initial installation. High cost of commercially-available or custom electronic packages have not only limited the number of sensor node sites that can be targeted by reasonably well-funded academic researchers, but have also entirely prohibited widespread engagement with K-12, public non-profit, and `citizen scientist' STEM audiences. The new platform under development represents a balanced blend of research-grade sensors and low-cost open-source electronics that are easily assembled. Custom, robust, open-source code that remains customizable for specific node configurations can match a specific deployment's measurement needs, depending on the scientific research priorities. We have demonstrated prototype capabilities and versatility through lab testing and field deployments of multiple sensor nodes with multiple sensor inputs, all of which are streaming near-real-time data over wireless RF links to a shore-based base station. On shore, first-pass data processing QA/QC takes place and near-real-time plots are made available on the World Wide Web. Specifically, we have worked closely with an environmental and cultural management and restoration non-profit organization, and middle and high school science classes, engaging their interest in STEM application to local watershed processes. Ultimately, continued successful development of this pilot project can lead to a coastal oceanographic analogue of the popular Weather Underground personal weather station model.
A review on "A Novel Technique for Image Steganography Based on Block-DCT and Huffman Encoding"
NASA Astrophysics Data System (ADS)
Das, Rig; Tuithung, Themrichon
2013-03-01
This paper reviews the embedding and extraction algorithm proposed by "A. Nag, S. Biswas, D. Sarkar and P. P. Sarkar" on "A Novel Technique for Image Steganography based on Block-DCT and Huffman Encoding" in "International Journal of Computer Science and Information Technology, Volume 2, Number 3, June 2010" [3] and shows that the Extraction of Secret Image is Not Possible for the algorithm proposed in [3]. 8 bit Cover Image of size is divided into non joint blocks and a two dimensional Discrete Cosine Transformation (2-D DCT) is performed on each of the blocks. Huffman Encoding is performed on an 8 bit Secret Image of size and each bit of the Huffman Encoded Bit Stream is embedded in the frequency domain by altering the LSB of the DCT coefficients of Cover Image blocks. The Huffman Encoded Bit Stream and Huffman Table
Stream Temperature Estimation From Thermal Infrared Images
NASA Astrophysics Data System (ADS)
Handcock, R. N.; Kay, J. E.; Gillespie, A.; Naveh, N.; Cherkauer, K. A.; Burges, S. J.; Booth, D. B.
2001-12-01
Stream temperature is an important water quality indicator in the Pacific Northwest where endangered fish populations are sensitive to elevated water temperature. Cold water refugia are essential for the survival of threatened salmon when events such as the removal of riparian vegetation result in elevated stream temperatures. Regional assessment of stream temperatures is limited by sparse sampling of temperatures in both space and time. If critical watersheds are to be properly managed it is necessary to have spatially extensive temperature measurements of known accuracy. Remotely sensed thermal infrared (TIR) imagery can be used to derive spatially distributed estimates of the skin temperature (top 100 nm) of streams. TIR imagery has long been used to estimate skin temperatures of the ocean, where split-window techniques have been used to compensate for atmospheric affects. Streams are a more complex environment because 1) most are unresolved in typical TIR images, and 2) the near-bank environment of stream corridors may consist of tall trees or hot rocks and soils that irradiate the stream surface. As well as compensating for atmospheric effects, key problems to solve in estimating stream temperatures include both subpixel unmixing and multiple scattering. Additionally, fine resolution characteristics of the stream surface such as evaporative cooling due to wind, and water surface roughness, will effect measurements of radiant skin temperatures with TIR devices. We apply these corrections across the Green River and Yakima River watersheds in Washington State to assess the accuracy of remotely sensed stream surface temperature estimates made using fine resolution TIR imagery from a ground-based sensor (FLIR), medium resolution data from the airborne MASTER sensor, and coarse-resolution data from the Terra-ASTER satellite. We use linear spectral mixture analysis to isolate the fraction of land-leaving radiance originating from unresolved streams. To compensate the data for atmospheric effects we combine radiosonde profiles with a physically based radiative transfer model (MODTRAN) and an in-scene relative correction adapted from the ISAC algorithm. Laboratory values for water emissivities are used as a baseline estimate of stream emissivities. Emitted radiance reflected by trees in the stream near-bank environment is estimated from the height and canopy temperature, using a radiosity model.
Energy Efficiency Maximization of Practical Wireless Communication Systems
NASA Astrophysics Data System (ADS)
Eraslan, Eren
Energy consumption of the modern wireless communication systems is rapidly growing due to the ever-increasing data demand and the advanced solutions employed in order to address this demand, such as multiple-input multiple-output (MIMO) and orthogonal frequency division multiplexing (OFDM) techniques. These MIMO systems are power hungry, however, they are capable of changing the transmission parameters, such as number of spatial streams, number of transmitter/receiver antennas, modulation, code rate, and transmit power. They can thus choose the best mode out of possibly thousands of modes in order to optimize an objective function. This problem is referred to as the link adaptation problem. In this work, we focus on the link adaptation for energy efficiency maximization problem, which is defined as choosing the optimal transmission mode to maximize the number of successfully transmitted bits per unit energy consumed by the link. We model the energy consumption and throughput performances of a MIMO-OFDM link and develop a practical link adaptation protocol, which senses the channel conditions and changes its transmission mode in real-time. It turns out that the brute force search, which is usually assumed in previous works, is prohibitively complex, especially when there are large numbers of transmit power levels to choose from. We analyze the relationship between the energy efficiency and transmit power, and prove that energy efficiency of a link is a single-peaked quasiconcave function of transmit power. This leads us to develop a low-complexity algorithm that finds a near-optimal transmit power and take this dimension out of the search space. We further prune the search space by analyzing the singular value decomposition of the channel and excluding the modes that use higher number of spatial streams than the channel can support. These algorithms and our novel formulations provide simpler computations and limit the search space into a much smaller set; hence reducing the computational complexity by orders of magnitude without sacrificing the performance. The result of this work is a highly practical link adaptation protocol for maximizing the energy efficiency of modern wireless communication systems. Simulation results show orders of magnitude gain in the energy efficiency of the link. We also implemented the link adaptation protocol on real-time MIMO-OFDM radios and we report on the experimental results. To the best of our knowledge, this is the first reported testbed that is capable of performing energy-efficient fast link adaptation using PHY layer information.
Torres Delgado, Saraí M; Kinahan, David J; Nirupa Julius, Lourdes Albina; Mallette, Adam; Ardila, David Sáenz; Mishra, Rohit; Miyazaki, Celina M; Korvink, Jan G; Ducrée, Jens; Mager, Dario
2018-06-30
In this paper we present a wirelessly powered array of 128 centrifugo-pneumatic valves that can be thermally actuated on demand during spinning. The valves can either be triggered by a predefined protocol, wireless signal transmission via Bluetooth, or in response to a sensor monitoring a parameter like the temperature, or homogeneity of the dispersion. Upon activation of a resistive heater, a low-melting membrane (Parafilm™) is removed to vent an entrapped gas pocket, thus letting the incoming liquid wet an intermediate dissolvable film and thereby open the valve. The proposed system allows up to 12 heaters to be activated in parallel, with a response time below 3 s, potentially resulting in 128 actuated valves in under 30 s. We demonstrate, with three examples of common and standard procedures, how the proposed technology could become a powerful tool for implementing diagnostic assays on Lab-on-a-Disc. First, we implement wireless actuation of 64 valves during rotation in a freely programmable sequence, or upon user input in real time. Then, we show a closed-loop centrifugal flow control sequence for which the state of mixing of reagents, evaluated from stroboscopically recorded images, triggers the opening of the valves. In our last experiment, valving and closed-loop control are used to facilitate centrifugal processing of whole blood. Copyright © 2018 Elsevier B.V. All rights reserved.
2002-08-06
A student gets ready to catch a plastic tube carrying a small fluid bottle and a wireless video camera. As it arced through the air, the container was in free-fall -- just like astronauts in space -- and the TV camera broadcast images of how the fluid behaved. The activity was part of the Space Research and You education event held by NASA's Office of Biological and Physical Research on June 25, 2002, in Arlington, VA, to highlight the research that will be conducted on STS-107. (Digital camera image; no film original.
Farahmand, Farid; Khadivi, Kevin O.; Rodrigues, Joel J. P. C.
2009-01-01
The utility of a novel, high-precision, non-intrusive, wireless, accelerometer-based patient orientation monitoring system (APOMS) in determining orientation change in patients undergoing radiation treatment is reported here. Using this system a small wireless accelerometer sensor is placed on a patient’s skin, broadcasting its orientation to the receiving station connected to a PC in the control area. A threshold-based algorithm is developed to identify the exact amount of the patient’s head orientation change. Through real-time measurements, an audible alarm can alert the radiation therapist if the user-defined orientation threshold is violated. Our results indicate that, in spite of its low-cost and simplicity, the APOMS is highly sensitive and offers accurate measurements. Furthermore, the APOMS is patient friendly, vendor neutral, and requires minimal user training. The versatile architecture of the APOMS makes it potentially suitable for variety of applications, including study of correlation between external and internal markers during Image-Guided Radiation Therapy (IGRT), with no major changes in hardware setup or algorithm. PMID:22423196
Purdy, Martin; Heikkinen, Markku; Juvonen, Petri; Voutilainen, Markku; Eskelinen, Matti
2011-01-01
A capsule endoscope is a wireless miniature camera used to take images of the small bowel mucosa. Retention of the wireless capsule endoscope (WCE), defined as at least two weeks' retention or an obstruction demanding removal by laparotomy, is the main and practically only complication of the procedure. The aim of this study was to evaluate the characteristics of patients with a retained WCE necessitating laparotomy for removal of the capsule or capsule fragments. The medical records of 555 patients who had undergone the WCE procedure over a 7-year period (2002-2008) were reviewed. The indications for the WCE procedure were, obscure gastrointestinal bleeding, Crohn's disease, abdominal pain and suspicion of malignancy. A retained WCE requiring operative treatment was found in 10 cases (in nine patients, twice in one patient). The WCE retention frequency of 1.8% (10/555) equalled that in the literature. The retention rate of WCE capsules is low and routine examination of the small bowel with MRI or CT is not necessary before WCE. These examinations were enable to predict WCE retention according to our results.
Streaming Multiframe Deconvolutions on GPUs
NASA Astrophysics Data System (ADS)
Lee, M. A.; Budavári, T.
2015-09-01
Atmospheric turbulence distorts all ground-based observations, which is especially detrimental to faint detections. The point spread function (PSF) defining this blur is unknown for each exposure and varies significantly over time, making image analysis difficult. Lucky imaging and traditional co-adding throws away lots of information. We developed blind deconvolution algorithms that can simultaneously obtain robust solutions for the background image and all the PSFs. It is done in a streaming setting, which makes it practical for large number of big images. We implemented a new tool that runs of GPUs and achieves exceptional running times that can scale to the new time-domain surveys. Our code can quickly and effectively recover high-resolution images exceeding the quality of traditional co-adds. We demonstrate the power of the method on the repeated exposures in the Sloan Digital Sky Survey's Stripe 82.
Sharma, Ved P.; Beaty, Brian T.; Patsialou, Antonia; Liu, Huiping; Clarke, Michael; Cox, Dianne; Condeelis, John S.; Eddy, Robert J.
2014-01-01
In mammary tumors, intravital imaging techniques have uncovered an essential role for macrophages during tumor cell invasion and metastasis mediated by an epidermal growth factor (EGF)/colony stimulating factor-1 (CSF-1) paracrine loop. It was previously demonstrated that mammary tumors in mice derived from rat carcinoma cells (MTLn3) exhibited high velocity migration on extracellular matrix (ECM) fibers. These cells form paracrine loop-dependent linear assemblies of alternating host macrophages and tumor cells known as “streams.” Here, we confirm by intravital imaging that similar streams form in close association with ECM fibers in a highly metastatic patient-derived orthotopic mammary tumor (TN1). To understand the in vivo cell motility behaviors observed in streams, an in vitro model of fibrillar tumor ECM utilizing adhesive 1D micropatterned substrates was developed. MTLn3 cells on 1D fibronectin or type I collagen substrates migrated with higher velocity than on 2D substrates and displayed enhanced lamellipodial protrusion and increased motility upon local interaction and pairing with bone marrow-derived macrophages (BMMs). Inhibitors of EGF or CSF-1 signaling disrupted this interaction and reduced tumor cell velocity and protrusion, validating the requirement for an intact paracrine loop. Both TN1 and MTLn3 cells in the presence of BMMs were capable of co-assembling into linear arrays of alternating tumor cells and BMMs that resembled streams in vivo, suggesting the stream assembly is cell autonomous and can be reconstituted on 1D substrates. Our results validate the use of 1D micropatterned substrates as a simple and defined approach to study fibrillar ECM-dependent cell pairing, migration and relay chemotaxis as a complementary tool to intravital imaging. PMID:24634804
DDO 68: A flea with smaller fleas that on him prey
NASA Astrophysics Data System (ADS)
Annibali, Francesca
2016-10-01
With the Large Binocular Cameras on the LBT, we have recently discovered a stellar stream apparently connected to DDO 68, one of the most metal-poor and isolated star-forming dwarf galaxies, with a stellar mass of only 10^8 solar masses. Here we propose HST/WFC3 follow-up imaging of the stream to accurately measure, map and characterize its individual stars, in order to: a) constrain its precise distance through the red giant branch tip, and confirm its physical association with DDO 68; and b) infer the evolution of its stellar population. At DDO 68' s distance of about 12 Mpc, only HST can resolve the stream into individual stars. We have previously obtained ACS imaging of DDO 68. Those data, which only capture a small portion of the stream, provide tentative evidence that it is indeed at the distance of the galaxy. We also used the previous ACS data to derive DDO 68' s star formation history, and combined the results with new N-body simulations which reproduce both DDO 68' s distorted morphology and the position of the stream. This analysis suggests that DDO 68 has cannibalized a ten times smaller companion. Our proposed observations will image the full extent of the stream, and are critical for not only understanding the true nature of this structure, but may also enable us to trace it further, beyond the extent apparent in the LBT data. DDO 68 will be the least massive dwarf galaxy with direct evidence for accretion of a satellite thus far if confirmed with the proposed observations. This study will be extremely important to test the self-similarity of the hierarchical galaxy formation process at all scales.
NASA Astrophysics Data System (ADS)
O'Connor, Sean M.; Zhang, Yilan; Lynch, Jerome; Ettouney, Mohammed; van der Linden, Gwen
2014-04-01
A worthy goal for the structural health monitoring field is the creation of a scalable monitoring system architecture that abstracts many of the system details (e.g., sensors, data) from the structure owner with the aim of providing "actionable" information that aids in their decision making process. While a broad array of sensor technologies have emerged, the ability for sensing systems to generate large amounts of data have far outpaced advances in data management and processing. To reverse this trend, this study explores the creation of a cyber-enabled wireless SHM system for highway bridges. The system is designed from the top down by considering the damage mechanisms of concern to bridge owners and then tailoring the sensing and decision support system around those concerns. The enabling element of the proposed system is a powerful data repository system termed SenStore. SenStore is designed to combine sensor data with bridge meta-data (e.g., geometric configuration, material properties, maintenance history, sensor locations, sensor types, inspection history). A wireless sensor network deployed to a bridge autonomously streams its measurement data to SenStore via a 3G cellular connection for storage. SenStore securely exposes the bridge meta- and sensor data to software clients that can process the data to extract information relevant to the decision making process of the bridge owner. To validate the proposed cyber-enable SHM system, the system is implemented on the Telegraph Road Bridge (Monroe, MI). The Telegraph Road Bridge is a traditional steel girder-concrete deck composite bridge located along a heavily travelled corridor in the Detroit metropolitan area. A permanent wireless sensor network has been installed to measure bridge accelerations, strains and temperatures. System identification and damage detection algorithms are created to automatically mine bridge response data stored in SenStore over an 18-month period. Tools like Gaussian Process (GP) regression are used to predict changes in the bridge behavior as a function of environmental parameters. Based on these analyses, pertinent behavioral information relevant to bridge management is autonomously extracted.
Design of multifunction anti-terrorism robotic system based on police dog
NASA Astrophysics Data System (ADS)
You, Bo; Liu, Suju; Xu, Jun; Li, Dongjie
2007-11-01
Aimed at some typical constraints of police dogs and robots used in the areas of reconnaissance and counterterrorism currently, the multifunction anti-terrorism robotic system based on police dog has been introduced. The system is made up of two parts: portable commanding device and police dog robotic system. The portable commanding device consists of power supply module, microprocessor module, LCD display module, wireless data receiving and dispatching module and commanding module, which implements the remote control to the police dogs and takes real time monitor to the video and images. The police dog robotic system consists of microprocessor module, micro video module, wireless data transmission module, power supply module and offence weapon module, which real time collects and transmits video and image data of the counter-terrorism sites, and gives military attack based on commands. The system combines police dogs' biological intelligence with micro robot. Not only does it avoid the complexity of general anti-terrorism robots' mechanical structure and the control algorithm, but it also widens the working scope of police dog, which meets the requirements of anti-terrorism in the new era.
Characterization of RF front-ends by long-tail pulse response
NASA Astrophysics Data System (ADS)
Mazzaro, Gregory J.; Ranney, Kenneth I.
2010-04-01
The recognition of unauthorized communications devices at the entry-point of a secure location is one way to guard against the compromise of sensitive information by wireless transmission. Such recognition may be achieved by backscatter x-ray and millimeter-wave imaging; however, implementation of these systems is expensive, and the ability to image the contours of the human body has raised privacy concerns. In this paper, we present a cheaper and less-invasive radio-frequency (RF) alternative for recognizing wireless communications devices. Characterization of the device-under-test (DUT) is accomplished using a stepped-frequency radar waveform. Single-frequency pulses excite resonance in the device's RF front-end. Microsecond periods of zero-signal are placed between each frequency transition to listen for the resonance. The stepped-frequency transmission is swept through known communications bands. Reception of a long-tail decay response between active pulses indicates the presence of a narrowband filter and implies the presence of a front-end circuit. The frequency of the received resonance identifies its communications band. In this work, cellular-band and handheld-radio filters are characterized.
Bao, Guanqun; Mi, Liang; Geng, Yishuang; Zhou, Mingda; Pahlavan, Kaveh
2014-01-01
Wireless Capsule Endoscopy (WCE) is progressively emerging as one of the most popular non-invasive imaging tools for gastrointestinal (GI) tract inspection. As a critical component of capsule endoscopic examination, physicians need to know the precise position of the endoscopic capsule in order to identify the position of intestinal disease. For the WCE, the position of the capsule is defined as the linear distance it is away from certain fixed anatomical landmarks. In order to measure the distance the capsule has traveled, a precise knowledge of how fast the capsule moves is urgently needed. In this paper, we present a novel computer vision based speed estimation technique that is able to extract the speed of the endoscopic capsule by analyzing the displacements between consecutive frames. The proposed approach is validated using a virtual testbed as well as the real endoscopic images. Results show that the proposed method is able to precisely estimate the speed of the endoscopic capsule with 93% accuracy on average, which enhances the localization accuracy of the WCE to less than 2.49 cm.
Fine-Tuning ADAS Algorithm Parameters for Optimizing Traffic ...
With the development of the Connected Vehicle technology that facilitates wirelessly communication among vehicles and road-side infrastructure, the Advanced Driver Assistance Systems (ADAS) can be adopted as an effective tool for accelerating traffic safety and mobility optimization at various highway facilities. To this end, the traffic management centers identify the optimal ADAS algorithm parameter set that enables the maximum improvement of the traffic safety and mobility performance, and broadcast the optimal parameter set wirelessly to individual ADAS-equipped vehicles. After adopting the optimal parameter set, the ADAS-equipped drivers become active agents in the traffic stream that work collectively and consistently to prevent traffic conflicts, lower the intensity of traffic disturbances, and suppress the development of traffic oscillations into heavy traffic jams. Successful implementation of this objective requires the analysis capability of capturing the impact of the ADAS on driving behaviors, and measuring traffic safety and mobility performance under the influence of the ADAS. To address this challenge, this research proposes a synthetic methodology that incorporates the ADAS-affected driving behavior modeling and state-of-the-art microscopic traffic flow modeling into a virtually simulated environment. Building on such an environment, the optimal ADAS algorithm parameter set is identified through an optimization programming framework to enable th
Brown, KK; Shaw, PB; Mead, KR; Kovein, RJ; Voorhees, RT; Brandes, AR
2016-01-01
The purpose of this project was to research and develop a direct-reading exposure assessment method that combined a real-time location system with a wireless direct-reading personal chemical sensor. The personal chemical sensor was a photoionization device for detecting volatile organic compounds. The combined system was calibrated and tested against the same four standard gas concentrations and calibrated at one standard location and tested at four locations that included the standard locations. Data were wirelessly collected from the chemical sensor every 1.4 seconds, for volatile organic compounds concentration, location, temperature, humidity, and time. Regression analysis of the photo-ionization device voltage response against calibration gases showed the chemical sensor had a limit of detection of 0.2 ppm. The real-time location system was accurate to 13 cm ± 6 cm (standard deviation) in an open area and to 57 cm ± 31 cm in a closed room where the radio frequency has to penetrate drywall-finished walls. The streaming data were collected and graphically displayed as a three-dimensional hazard map for assessment of peak exposure with location. A real-time personal exposure assessment device with indoor positioning was practical and provided new knowledge on direct reading exposure assessment methods. PMID:26786234
Brown, K K; Shaw, P B; Mead, K R; Kovein, R J; Voorhees, R T; Brandes, A R
2016-01-01
The purpose of this article was to research and develop a direct-reading exposure assessment method that combined a real-time location system with a wireless direct-reading personal chemical sensor. The personal chemical sensor was a photoionization device for detecting volatile organic compounds. The combined system was calibrated and tested against the same four standard gas concentrations and calibrated at one standard location and tested at four locations that included the standard locations. Data were wirelessly collected from the chemical sensor every 1.4 sec, for volatile organic compounds concentration, location, temperature, humidity, and time. Regression analysis of the photo-ionization device voltage response against calibration gases showed the chemical sensor had a limit of detection of 0.2 ppm. The real-time location system was accurate to 13 cm ± 6 cm (standard deviation) in an open area and to 57 cm ± 31 cm in a closed room where the radio frequency has to penetrate drywall-finished walls. The streaming data were collected and graphically displayed as a three-dimensional hazard map for assessment of peak exposure with location. A real-time personal exposure assessment device with indoor positioning was practical and provided new knowledge on direct reading exposure assessment methods.
vMon-mobile provides wireless connection to the electronic patient record
NASA Astrophysics Data System (ADS)
Oliveira, Pedro P., Jr.; Rebelo, Marina; Pilon, Paulo E.; Gutierrez, Marco A.; Tachinardi, Umberto
2002-05-01
This work presents the development of a set of tools to help doctors to continuously monitor critical patients. Real-time monitoring signals are displayed via a Web Based Electronic Patient Record (Web-EPR) developed at the Heart Institute. Any computer on the Hospital's Intranet can access the Web-EPR that will open a browser plug-in called vMon. Recently vMon was adapted to wireless mobile devices providing the same real-time visualization of vital signals of its desktop counterpart. The monitoring network communicates with the hospital network through a gateway using HL7 messages and has the ability to export waveforms in real time using the multicast protocol through an API library. A dedicated ActiveX component was built that establishes the streaming of the biomedical signals under monitoring and displays them on an Internet Explorer 5.x browser. The mobile version - called vMon-mobile - will parse the browser window and deliver it to a PDA device connected to a local area network. The result is a virtual monitor presenting real-time data on a mobile device. All parameters and signals acquired from the moment the patient is connected to the monitors are stored for a few days. The most clinically relevant information is added to patient's EPR.
A Robust and Device-Free System for the Recognition and Classification of Elderly Activities.
Li, Fangmin; Al-Qaness, Mohammed Abdulaziz Aide; Zhang, Yong; Zhao, Bihai; Luan, Xidao
2016-12-01
Human activity recognition, tracking and classification is an essential trend in assisted living systems that can help support elderly people with their daily activities. Traditional activity recognition approaches depend on vision-based or sensor-based techniques. Nowadays, a novel promising technique has obtained more attention, namely device-free human activity recognition that neither requires the target object to wear or carry a device nor install cameras in a perceived area. The device-free technique for activity recognition uses only the signals of common wireless local area network (WLAN) devices available everywhere. In this paper, we present a novel elderly activities recognition system by leveraging the fluctuation of the wireless signals caused by human motion. We present an efficient method to select the correct data from the Channel State Information (CSI) streams that were neglected in previous approaches. We apply a Principle Component Analysis method that exposes the useful information from raw CSI. Thereafter, Forest Decision (FD) is adopted to classify the proposed activities and has gained a high accuracy rate. Extensive experiments have been conducted in an indoor environment to test the feasibility of the proposed system with a total of five volunteer users. The evaluation shows that the proposed system is applicable and robust to electromagnetic noise.
A battery-free multichannel digital neural/EMG telemetry system for flying insects.
Thomas, Stewart J; Harrison, Reid R; Leonardo, Anthony; Reynolds, Matthew S
2012-10-01
This paper presents a digital neural/EMG telemetry system small enough and lightweight enough to permit recording from insects in flight. It has a measured flight package mass of only 38 mg. This system includes a single-chip telemetry integrated circuit (IC) employing RF power harvesting for battery-free operation, with communication via modulated backscatter in the UHF (902-928 MHz) band. An on-chip 11-bit ADC digitizes 10 neural channels with a sampling rate of 26.1 kSps and 4 EMG channels at 1.63 kSps, and telemeters this data wirelessly to a base station. The companion base station transceiver includes an RF transmitter of +36 dBm (4 W) output power to wirelessly power the telemetry IC, and a digital receiver with a sensitivity of -70 dBm for 10⁻⁵ BER at 5.0 Mbps to receive the data stream from the telemetry IC. The telemetry chip was fabricated in a commercial 0.35 μ m 4M1P (4 metal, 1 poly) CMOS process. The die measures 2.36 × 1.88 mm, is 250 μm thick, and is wire bonded into a flex circuit assembly measuring 4.6 × 6.8 mm.
Real-Time QoS Routing Protocols in Wireless Multimedia Sensor Networks: Study and Analysis.
Alanazi, Adwan; Elleithy, Khaled
2015-09-02
Many routing protocols have been proposed for wireless sensor networks. These routing protocols are almost always based on energy efficiency. However, recent advances in complementary metal-oxide semiconductor (CMOS) cameras and small microphones have led to the development of Wireless Multimedia Sensor Networks (WMSN) as a class of wireless sensor networks which pose additional challenges. The transmission of imaging and video data needs routing protocols with both energy efficiency and Quality of Service (QoS) characteristics in order to guarantee the efficient use of the sensor nodes and effective access to the collected data. Also, with integration of real time applications in Wireless Senor Networks (WSNs), the use of QoS routing protocols is not only becoming a significant topic, but is also gaining the attention of researchers. In designing an efficient QoS routing protocol, the reliability and guarantee of end-to-end delay are critical events while conserving energy. Thus, considerable research has been focused on designing energy efficient and robust QoS routing protocols. In this paper, we present a state of the art research work based on real-time QoS routing protocols for WMSNs that have already been proposed. This paper categorizes the real-time QoS routing protocols into probabilistic and deterministic protocols. In addition, both categories are classified into soft and hard real time protocols by highlighting the QoS issues including the limitations and features of each protocol. Furthermore, we have compared the performance of mobility-aware query based real-time QoS routing protocols from each category using Network Simulator-2 (NS2). This paper also focuses on the design challenges and future research directions as well as highlights the characteristics of each QoS routing protocol.
Real-Time QoS Routing Protocols in Wireless Multimedia Sensor Networks: Study and Analysis
Alanazi, Adwan; Elleithy, Khaled
2015-01-01
Many routing protocols have been proposed for wireless sensor networks. These routing protocols are almost always based on energy efficiency. However, recent advances in complementary metal-oxide semiconductor (CMOS) cameras and small microphones have led to the development of Wireless Multimedia Sensor Networks (WMSN) as a class of wireless sensor networks which pose additional challenges. The transmission of imaging and video data needs routing protocols with both energy efficiency and Quality of Service (QoS) characteristics in order to guarantee the efficient use of the sensor nodes and effective access to the collected data. Also, with integration of real time applications in Wireless Senor Networks (WSNs), the use of QoS routing protocols is not only becoming a significant topic, but is also gaining the attention of researchers. In designing an efficient QoS routing protocol, the reliability and guarantee of end-to-end delay are critical events while conserving energy. Thus, considerable research has been focused on designing energy efficient and robust QoS routing protocols. In this paper, we present a state of the art research work based on real-time QoS routing protocols for WMSNs that have already been proposed. This paper categorizes the real-time QoS routing protocols into probabilistic and deterministic protocols. In addition, both categories are classified into soft and hard real time protocols by highlighting the QoS issues including the limitations and features of each protocol. Furthermore, we have compared the performance of mobility-aware query based real-time QoS routing protocols from each category using Network Simulator-2 (NS2). This paper also focuses on the design challenges and future research directions as well as highlights the characteristics of each QoS routing protocol. PMID:26364639
Design of UAV high resolution image transmission system
NASA Astrophysics Data System (ADS)
Gao, Qiang; Ji, Ming; Pang, Lan; Jiang, Wen-tao; Fan, Pengcheng; Zhang, Xingcheng
2017-02-01
In order to solve the problem of the bandwidth limitation of the image transmission system on UAV, a scheme with image compression technology for mini UAV is proposed, based on the requirements of High-definition image transmission system of UAV. The video codec standard H.264 coding module and key technology was analyzed and studied for UAV area video communication. Based on the research of high-resolution image encoding and decoding technique and wireless transmit method, The high-resolution image transmission system was designed on architecture of Android and video codec chip; the constructed system was confirmed by experimentation in laboratory, the bit-rate could be controlled easily, QoS is stable, the low latency could meets most applied requirement not only for military use but also for industrial applications.
A PIV Study of Slotted Air Injection for Jet Noise Reduction
NASA Technical Reports Server (NTRS)
Henderson, Brenda S.; Wernet, Mark P.
2012-01-01
Results from acoustic and Particle Image Velocimetry (PIV) measurements are presented for single and dual-stream jets with fluidic injection on the core stream. The fluidic injection nozzles delivered air to the jet through slots on the interior of the nozzle at the nozzle trailing edge. The investigations include subsonic and supersonic jet conditions. Reductions in broadband shock noise and low frequency mixing noise were obtained with the introduction of fluidic injection on single stream jets. Fluidic injection was found to eliminate shock cells, increase jet mixing, and reduce turbulent kinetic energy levels near the end of the potential core. For dual-stream subsonic jets, the introduction of fluidic injection reduced low frequency noise in the peak jet noise direction and enhanced jet mixing. For dual-stream jets with supersonic fan streams and subsonic core streams, the introduction of fluidic injection in the core stream impacted the jet shock cell structure but had little effect on mixing between the core and fan streams.
Multi-offset GPR methods for hyporheic zone investigations
Brosten, T.R.; Bradford, J.H.; McNamara, J.P.; Gooseff, M.N.; Zarnetske, J.P.; Bowden, W.B.; Johnston, M.E.
2009-01-01
Porosity of stream sediments has a direct effect on hyporheic exchange patterns and rates. Improved estimates of porosity heterogeneity will yield enhanced simulation of hyporheic exchange processes. Ground-penetrating radar (GPR) velocity measurements are strongly controlled by water content thus accurate measures of GPR velocity in saturated sediments provides estimates of porosity beneath stream channels using petrophysical relationships. Imaging the substream system using surface based reflection measurements is particularly challenging due to large velocity gradients that occur at the transition from open water to saturated sediments. The continuous multi-offset method improves the quality of subsurface images through stacking and provides measurements of vertical and lateral velocity distributions. We applied the continuous multi-offset method to stream sites on the North Slope, Alaska and the Sawtooth Mountains near Boise, Idaho, USA. From the continuous multi-offset data, we measure velocity using reflection tomography then estimate water content and porosity using the Topp equation. These values provide detailed measurements for improved stream channel hydraulic and thermal modelling. ?? 2009 European Association of Geoscientists & Engineers.
NASA Astrophysics Data System (ADS)
Li, Jiafu; Xiang, Shuiying; Wang, Haoning; Gong, Junkai; Wen, Aijun
2018-03-01
In this paper, a novel image encryption algorithm based on synchronization of physical random bit generated in a cascade-coupled semiconductor ring lasers (CCSRL) system is proposed, and the security analysis is performed. In both transmitter and receiver parts, the CCSRL system is a master-slave configuration consisting of a master semiconductor ring laser (M-SRL) with cross-feedback and a solitary SRL (S-SRL). The proposed image encryption algorithm includes image preprocessing based on conventional chaotic maps, pixel confusion based on control matrix extracted from physical random bit, and pixel diffusion based on random bit stream extracted from physical random bit. Firstly, the preprocessing method is used to eliminate the correlation between adjacent pixels. Secondly, physical random bit with verified randomness is generated based on chaos in the CCSRL system, and is used to simultaneously generate the control matrix and random bit stream. Finally, the control matrix and random bit stream are used for the encryption algorithm in order to change the position and the values of pixels, respectively. Simulation results and security analysis demonstrate that the proposed algorithm is effective and able to resist various typical attacks, and thus is an excellent candidate for secure image communication application.
Zhang, Xiaoliang
2017-04-01
Traveling wave MR uses the far fields in signal excitation and reception, therefore its acquisition efficiency is low in contrast to the conventional near field magnetic resonance (MR). Here we show a simple and efficient method based on the local resonator to improving sensitivity of traveling wave MR technique. The proposed method utilizes a standalone or free local resonator to amplify the radio frequency magnetic fields in the interested target. The resonators have no wire connections to the MR system and thus can be conveniently placed to any place around imaging simples. A rectangular loop L/C resonator to be used as the free local resonator was tuned to the proton Larmor frequency at 7T. Traveling wave MR experiments with and without the wireless free local resonator were performed on a living rat using a 7T whole body MR scanner. The signal-to-noise ratio (SNR) or sensitivity of the images acquired was compared and evaluated. In vivo 7T imaging results show that traveling wave MR with a wireless free local resonator placed near the head of a living rat achieves at least 10-fold SNR gain over the images acquired on the same rat using conventional traveling wave MR method, i.e. imaging with no free local resonators. The proposed free local resonator technique is able to enhance the MR sensitivity and acquisition efficiency of traveling wave MR at ultrahigh fields in vivo . This method can be a simple solution to alleviating low sensitivity problem of traveling wave MRI.
NASA Astrophysics Data System (ADS)
Mackiewicz, Michal W.; Fisher, Mark; Jamieson, Crawford
2008-03-01
Wireless Capsule Endoscopy (WCE) is a colour imaging technology that enables detailed examination of the interior of the gastrointestinal tract. A typical WCE examination takes ~ 8 hours and captures ~ 40,000 useful images. After the examination, the images are viewed as a video sequence, which generally takes a clinician over an hour to analyse. The manufacturers of the WCE provide certain automatic image analysis functions e.g. Given Imaging offers in their Rapid Reader software: The Suspected Blood Indicator (SBI), which is designed to report the location in the video of areas of active bleeding. However, this tool has been reported to have insufficient specificity and sensitivity. Therefore it does not free the specialist from reviewing the entire footage and was suggested only to be used as a fast screening tool. In this paper we propose a method of bleeding detection that uses in its first stage Hue-Saturation-Intensity colour histograms to track a moving background and bleeding colour distributions over time. Such an approach addresses the problem caused by drastic changes in blood colour distribution that occur when it is altered by gastrointestinal fluids and allow detection of other red lesions, which although are usually "less red" than fresh bleeding, they can still be detected when the difference between their colour distributions and the background is large enough. In the second stage of our method, we analyse all candidate blood frames, by extracting colour (HSI) and texture (LBP) features from the suspicious image regions (obtained in the first stage) and their neighbourhoods and classifying them using Support Vector Classifier into Bleeding, Lesion and Normal classes. We show that our algorithm compares favourably with the SBI on the test set of 84 full length videos.
Quality Scalability Aware Watermarking for Visual Content.
Bhowmik, Deepayan; Abhayaratne, Charith
2016-11-01
Scalable coding-based content adaptation poses serious challenges to traditional watermarking algorithms, which do not consider the scalable coding structure and hence cannot guarantee correct watermark extraction in media consumption chain. In this paper, we propose a novel concept of scalable blind watermarking that ensures more robust watermark extraction at various compression ratios while not effecting the visual quality of host media. The proposed algorithm generates scalable and robust watermarked image code-stream that allows the user to constrain embedding distortion for target content adaptations. The watermarked image code-stream consists of hierarchically nested joint distortion-robustness coding atoms. The code-stream is generated by proposing a new wavelet domain blind watermarking algorithm guided by a quantization based binary tree. The code-stream can be truncated at any distortion-robustness atom to generate the watermarked image with the desired distortion-robustness requirements. A blind extractor is capable of extracting watermark data from the watermarked images. The algorithm is further extended to incorporate a bit-plane discarding-based quantization model used in scalable coding-based content adaptation, e.g., JPEG2000. This improves the robustness against quality scalability of JPEG2000 compression. The simulation results verify the feasibility of the proposed concept, its applications, and its improved robustness against quality scalable content adaptation. Our proposed algorithm also outperforms existing methods showing 35% improvement. In terms of robustness to quality scalable video content adaptation using Motion JPEG2000 and wavelet-based scalable video coding, the proposed method shows major improvement for video watermarking.
Landsat TM image maps of the Shirase and Siple Coast ice streams, West Antarctica
Ferrigno, Jane G.; Mullins, Jerry L.; Stapleton, Jo Anne; Bindschadler, Robert; Scambos, Ted A.; Bellisime, Lynda B.; Bowell, Jo-Ann; Acosta, Alex V.
1994-01-01
Fifteen 1: 250000 and one 1: 1000 000 scale Landsat Thematic Mapper (TM) image mosaic maps are currently being produced of the West Antarctic ice streams on the Shirase and Siple Coasts. Landsat TM images were acquired between 1984 and 1990 in an area bounded approximately by 78°-82.5°S and 120°- 160° W. Landsat TM bands 2, 3 and 4 were combined to produce a single band, thereby maximizing data content and improving the signal-to-noise ratio. The summed single band was processed with a combination of high- and low-pass filters to remove longitudinal striping and normalize solar elevation-angle effects. The images were mosaicked and transformed to a Lambert conformal conic projection using a cubic-convolution algorithm. The projection transformation was controled with ten weighted geodetic ground-control points and internal image-to-image pass points with annotation of major glaciological features. The image maps are being published in two formats: conventional printed map sheets and on a CD-ROM.
Stereo multiplexed holographic particle image velocimeter
Adrian, Ronald J.; Barnhart, Donald H.; Papen, George A.
1996-01-01
A holographic particle image velocimeter employs stereoscopic recording of particle images, taken from two different perspectives and at two distinct points in time for each perspective, on a single holographic film plate. The different perspectives are provided by two optical assemblies, each including a collecting lens, a prism and a focusing lens. Collimated laser energy is pulsed through a fluid stream, with elements carried in the stream scattering light, some of which is collected by each collecting lens. The respective focusing lenses are configured to form images of the scattered light near the holographic plate. The particle images stored on the plate are reconstructed using the same optical assemblies employed in recording, by transferring the film plate and optical assemblies as a single integral unit to a reconstruction site. At the reconstruction site, reconstruction beams, phase conjugates of the reference beams used in recording the image, are directed to the plate, then selectively through either one of the optical assemblies, to form an image reflecting the chosen perspective at the two points in time.
Stereo multiplexed holographic particle image velocimeter
Adrian, R.J.; Barnhart, D.H.; Papen, G.A.
1996-08-20
A holographic particle image velocimeter employs stereoscopic recording of particle images, taken from two different perspectives and at two distinct points in time for each perspective, on a single holographic film plate. The different perspectives are provided by two optical assemblies, each including a collecting lens, a prism and a focusing lens. Collimated laser energy is pulsed through a fluid stream, with elements carried in the stream scattering light, some of which is collected by each collecting lens. The respective focusing lenses are configured to form images of the scattered light near the holographic plate. The particle images stored on the plate are reconstructed using the same optical assemblies employed in recording, by transferring the film plate and optical assemblies as a single integral unit to a reconstruction site. At the reconstruction site, reconstruction beams, phase conjugates of the reference beams used in recording the image, are directed to the plate, then selectively through either one of the optical assemblies, to form an image reflecting the chosen perspective at the two points in time. 13 figs.
Studies on the interference of wings and propeller slipstreams
NASA Technical Reports Server (NTRS)
Prabhu, R. K.; Tiwari, S. N.
1985-01-01
The small disturbance potential flow theory is applied to determine the lift of an airfoil in a nonuniform parallel stream. The given stream is replaced by an equivalent stream with a certain number of velocity discontinuities, and the influence of these discontinuities is obtained by the method of images. Next, this method is extended to the problem of an airfoil in a nonuniform stream of smooth velocity profile. This model allows perturbation velocity potential in a rotational undisturbed stream. A comparison of these results with numerical solutions of Euler equations indicates that, although approximate, the present method provides useful information about the interaction problem while avoiding the need to solve the Euler equations.
Lin, Frank Yeong-Sung; Hsiao, Chiu-Han; Yen, Hong-Hsu; Hsieh, Yu-Jen
2013-01-01
One of the important applications in Wireless Sensor Networks (WSNs) is video surveillance that includes the tasks of video data processing and transmission. Processing and transmission of image and video data in WSNs has attracted a lot of attention in recent years. This is known as Wireless Visual Sensor Networks (WVSNs). WVSNs are distributed intelligent systems for collecting image or video data with unique performance, complexity, and quality of service challenges. WVSNs consist of a large number of battery-powered and resource constrained camera nodes. End-to-end delay is a very important Quality of Service (QoS) metric for video surveillance application in WVSNs. How to meet the stringent delay QoS in resource constrained WVSNs is a challenging issue that requires novel distributed and collaborative routing strategies. This paper proposes a Near-Optimal Distributed QoS Constrained (NODQC) routing algorithm to achieve an end-to-end route with lower delay and higher throughput. A Lagrangian Relaxation (LR)-based routing metric that considers the “system perspective” and “user perspective” is proposed to determine the near-optimal routing paths that satisfy end-to-end delay constraints with high system throughput. The empirical results show that the NODQC routing algorithm outperforms others in terms of higher system throughput with lower average end-to-end delay and delay jitter. In this paper, for the first time, the algorithm shows how to meet the delay QoS and at the same time how to achieve higher system throughput in stringently resource constrained WVSNs.
Embedding intensity image into a binary hologram with strong noise resistant capability
NASA Astrophysics Data System (ADS)
Zhuang, Zhaoyong; Jiao, Shuming; Zou, Wenbin; Li, Xia
2017-11-01
A digital hologram can be employed as a host image for image watermarking applications to protect information security. Past research demonstrates that a gray level intensity image can be embedded into a binary Fresnel hologram by error diffusion method or bit truncation coding method. However, the fidelity of the retrieved watermark image from binary hologram is generally not satisfactory, especially when the binary hologram is contaminated with noise. To address this problem, we propose a JPEG-BCH encoding method in this paper. First, we employ the JPEG standard to compress the intensity image into a binary bit stream. Next, we encode the binary bit stream with BCH code to obtain error correction capability. Finally, the JPEG-BCH code is embedded into the binary hologram. By this way, the intensity image can be retrieved with high fidelity by a BCH-JPEG decoder even if the binary hologram suffers from serious noise contamination. Numerical simulation results show that the image quality of retrieved intensity image with our proposed method is superior to the state-of-the-art work reported.
High data volume and transfer rate techniques used at NASA's image processing facility
NASA Technical Reports Server (NTRS)
Heffner, P.; Connell, E.; Mccaleb, F.
1978-01-01
Data storage and transfer operations at a new image processing facility are described. The equipment includes high density digital magnetic tape drives and specially designed controllers to provide an interface between the tape drives and computerized image processing systems. The controller performs the functions necessary to convert the continuous serial data stream from the tape drive to a word-parallel blocked data stream which then goes to the computer-based system. With regard to the tape packing density, 1.8 times 10 to the tenth data bits are stored on a reel of one-inch tape. System components and their operation are surveyed, and studies on advanced storage techniques are summarized.
SAR data compression: Application, requirements, and designs
NASA Technical Reports Server (NTRS)
Curlander, John C.; Chang, C. Y.
1991-01-01
The feasibility of reducing data volume and data rate is evaluated for the Earth Observing System (EOS) Synthetic Aperture Radar (SAR). All elements of data stream from the sensor downlink data stream to electronic delivery of browse data products are explored. The factors influencing design of a data compression system are analyzed, including the signal data characteristics, the image quality requirements, and the throughput requirements. The conclusion is that little or no reduction can be achieved in the raw signal data using traditional data compression techniques (e.g., vector quantization, adaptive discrete cosine transform) due to the induced phase errors in the output image. However, after image formation, a number of techniques are effective for data compression.
NASA Astrophysics Data System (ADS)
Shugay, Yu. S.; Slemzin, V. A.; Rod'kin, D. G.
2017-11-01
Coronal sources and parameters of solar wind streams during a strong and prolonged geomagnetic disturbance in June 2015 have been considered. Correspondence between coronal sources and solar wind streams at 1 AU has been determined using an analysis of solar images, catalogs of flares and coronal mass ejections, solar wind parameters including the ionic composition. The sources of disturbances in the considered period were a sequence of five coronal mass ejections that propagated along the recurrent solar wind streams from coronal holes. The observed differences from typical in magnetic and kinetic parameters of solar wind streams have been associated with the interactions of different types of solar wind. The ionic composition has proved to be a good additional marker for highlighting components in a mixture of solar wind streams, which can be associated with different coronal sources.
Rich media streaming for just-in-time training of first responders
NASA Astrophysics Data System (ADS)
Bandera, Cesar; Marsico, Michael
2005-05-01
The diversity of first responders and of asymmetric threats precludes the effectiveness of any single training syllabus. Just-in-time training (JITT) addresses this variability, but requires training content to be quickly tailored to the subject (the threat), the learner (the responder), and the infrastructure (the C2 chain from DHS to the responder"s equipment). We present a distributed system for personalized just-in-time training of first responders. The authoring and delivery of interactive rich media and simulations, and the integration of JITT with C2 centers, are demonstrated. Live and archived video, imagery, 2-D and 3-D models, and simulations are autonomously (1) aggregated from object-oriented databases into SCORM-compliant objects, (2) tailored to the individual learner"s training history, preferences, connectivity and computing platform (from workstations to wireless PDAs), (3) conveyed as secure and reliable MPEG-4 compliant streams with data rights management, and (4) rendered as interactive high-definition rich media that promotes knowledge retention and the refinement of learner skills without the need of special hardware. We review the object-oriented implications of SCORM and the higher level profiles of the MPEG-4 standard, and show how JITT can be integrated into - and improve the ROI of - existing training infrastructures, including COTS content authoring tools, LMS/CMS, man-in-the-loop simulators, and legacy content. Lastly, we compare the audiovisual quality of different streaming platforms under varying connectivity conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
- PNNL, Harold Trease
2012-10-10
ASSA is a software application that processes binary data into summarized index tables that can be used to organize features contained within the data. ASSA's index tables can also be used to search for user specified features. ASSA is designed to organize and search for patterns in unstructured binary data streams or archives, such as video, images, audio, and network traffic. ASSA is basically a very general search engine used to search for any pattern in any binary data stream. It has uses in video analytics, image analysis, audio analysis, searching hard-drives, monitoring network traffic, etc.
3-D Image Encryption Based on Rubik's Cube and RC6 Algorithm
NASA Astrophysics Data System (ADS)
Helmy, Mai; El-Rabaie, El-Sayed M.; Eldokany, Ibrahim M.; El-Samie, Fathi E. Abd
2017-12-01
A novel encryption algorithm based on the 3-D Rubik's cube is proposed in this paper to achieve 3D encryption of a group of images. This proposed encryption algorithm begins with RC6 as a first step for encrypting multiple images, separately. After that, the obtained encrypted images are further encrypted with the 3-D Rubik's cube. The RC6 encrypted images are used as the faces of the Rubik's cube. From the concepts of image encryption, the RC6 algorithm adds a degree of diffusion, while the Rubik's cube algorithm adds a degree of permutation. The simulation results demonstrate that the proposed encryption algorithm is efficient, and it exhibits strong robustness and security. The encrypted images are further transmitted over wireless Orthogonal Frequency Division Multiplexing (OFDM) system and decrypted at the receiver side. Evaluation of the quality of the decrypted images at the receiver side reveals good results.
Feeding People's Curiosity: Leveraging the Cloud for Automatic Dissemination of Mars Images
NASA Technical Reports Server (NTRS)
Knight, David; Powell, Mark
2013-01-01
Smartphones and tablets have made wireless computing ubiquitous, and users expect instant, on-demand access to information. The Mars Science Laboratory (MSL) operations software suite, MSL InterfaCE (MSLICE), employs a different back-end image processing architecture compared to that of the Mars Exploration Rovers (MER) in order to better satisfy modern consumer-driven usage patterns and to offer greater server-side flexibility. Cloud services are a centerpiece of the server-side architecture that allows new image data to be delivered automatically to both scientists using MSLICE and the general public through the MSL website (http://mars.jpl.nasa.gov/msl/).
Apodized RFI filtering of synthetic aperture radar images
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doerry, Armin Walter
2014-02-01
Fine resolution Synthetic Aperture Radar (SAR) systems necessarily require wide bandwidths that often overlap spectrum utilized by other wireless services. These other emitters pose a source of Radio Frequency Interference (RFI) to the SAR echo signals that degrades SAR image quality. Filtering, or excising, the offending spectral contaminants will mitigate the interference, but at a cost of often degrading the SAR image in other ways, notably by raising offensive sidelobe levels. This report proposes borrowing an idea from nonlinear sidelobe apodization techniques to suppress interference without the attendant increase in sidelobe levels. The simple post-processing technique is termed Apodized RFImore » Filtering (ARF).« less
Autonomous watersheds: Reducing flooding and stream erosion through real-time control
NASA Astrophysics Data System (ADS)
Kerkez, B.; Wong, B. P.
2017-12-01
We introduce an analytical toolchain, based on dynamical system theory and feedback control, to determine how many control points (valves, gates, pumps, etc.) are needed to transform urban watersheds from static to adaptive. Advances and distributed sensing and control stand to fundamentally change how we manage urban watersheds. In lieu of new and costly infrastructure, the real-time control of stormwater systems will reduce flooding, mitigate stream erosion, and improve the treatment of polluted runoff. We discuss the how open source technologies, in the form of wireless sensor nodes and remotely-controllable valves (open-storm.org), have been deployed to build "smart" stormwater systems in the Midwestern US. Unlike "static" infrastructure, which cannot readily adapt to changing inputs and land uses, these distributed control assets allow entire watersheds to be reconfigured on a storm-by-storm basis. Our results show how the control of even just a few valves within urban catchments (1-10km^2) allows for the real-time "shaping" of hydrographs, which reduces downstream erosion and flooding. We also introduce an equivalence framework that can be used by decision-makers to objectively compare investments into "smart" system to more traditional solutions, such as gray and green stormwater infrastructure.
Augmenting the spectral efficiency of enhanced PAM-DMT-based optical wireless communications.
Islim, Mohamed Sufyan; Haas, Harald
2016-05-30
The energy efficiency of pulse-amplitude-modulated discrete multitone modulation (PAM-DMT) decreases as the modulation order of M-PAM modulation increases. Enhanced PAM-DMT (ePAM-DMT) was proposed as a solution to the reduced energy efficiency of PAM-DMT. This was achieved by allowing multiple streams of PAM-DMT to be superimposed and successively demodulated at the receiver side. In order to maintain a distortion-free unipolar ePAM-DMT system, the multiple time-domain PAM-DMT streams are required to be aligned. However, aligning the antisymmetry in ePAM-DMT is complex and results in efficiency losses. In this paper, a novel simplified method to apply the superposition modulation on M-PAM modulated discrete multitone (DMT) is introduced. Contrary to ePAM-DMT, the signal generation of the proposed system, termed augmented spectral efficiency discrete multitone (ASE-DMT), occurs in the frequency domain. This results in an improved spectral and energy efficiency. The analytical bit error rate (BER) performance bound of the proposed system is derived and compared with Monte-Carlo simulations. The system performance is shown to offer significant electrical and optical energy savings compared with ePAM-DMT and DC-biased optical orthogonal frequency division multiplexing (DCO-OFDM).
2010-12-22
Wireless crop water monitoring project: Dr. Chris Lund, a scientist at the California State University Monterey Bay who is working on the NASA project at NASA Ames installs soil mositure probes in an agricultural field. The soil mositure measurements will be used to assist in interpretation of the satelite estimates of crop water deamand. Image of courtesy of Forrest S. Melton
Cannibalization and Rebirth in the NGC 5387 System. I. The Stellar Stream and Star-forming Region
NASA Astrophysics Data System (ADS)
Beaton, Rachael L.; Martínez-Delgado, David; Majewski, Steven R.; D'Onghia, Elena; Zibetti, Stefano; Gabany, R. Jay; Johnson, Kelsey E.; Blanton, Michael; Verbiscer, Anne
2014-08-01
We have identified a low surface brightness stellar stream from visual inspection of Sloan Digital Sky Survey (SDSS) imaging for the edge-on, spiral galaxy NGC 5387. An optically blue overdensity coincident with the stream intersection with the NGC 5387 disk was also identified in SDSS and in the Galaxy Evolution Explorer Deep Imaging Survey contributing 38% of the total far-UV integrated flux from NGC 5387. Deeper optical imaging was acquired with the Vatican Advanced Technology Telescope that confirmed the presence of both features. The stellar stream is red in color, (B - V) = 0.7, has a stellar mass of 6 × 108 M ⊙, which implies a 1:50 merger ratio, has a circular radius, R circ ~ 11.7 kpc, formed in ~240 Myr, and the progenitor had a total mass of ~4 × 1010 M ⊙. Spectroscopy from LBT+MODS1 was used to determine that the blue overdensity is at the same redshift as NGC 5387, consists of young stellar populations (~10 Myr), is metal-poor (12 + log (O/H) = 8.03), and is forming stars at an enhanced rate (~1-3 M ⊙ yr-1). The most likely interpretations are that the blue overdensity is (1) a region of enhanced star formation in the outer disk of NGC 5387 induced by the minor accretion event or (2) the progenitor of the stellar stream experiencing enhanced star formation. Additional exploration of these scenarios is presented in a companion paper. Based on observations with the VATT: the Alice P. Lennon Telescope and the Thomas J. Bannan Astrophysics Facility.
Photoacoustic microscopy using Evans Blue dye as a contrast agent
NASA Astrophysics Data System (ADS)
Yao, Junjie; Maslov, Konstantin I.; Hu, Song; Wang, Lihong V.
2010-02-01
Complete and continuous imaging of microvascular networks is crucial for a wide variety of biomedical applications. Photoacoustic tomography can provide high resolution microvascular imaging using hemoglobin within red blood cells (RBC) as an endogenous contrast agent. However, intermittent RBC flow in capillaries results in discontinuous and fragmentary capillary images. To overcome this problem, we used Evans Blue (EB) dye as a contrast agent for in vivo photoacoustic imaging. EB has strong optical absorption at 610 nm and distributes uniformly in the blood stream by chemically binding to albumin. By intravenous injection of EB (6%, 200 μL), complete and continuous microvascular networks-especially capillaries-of the ears of nude mice were imaged. The diffusion of EB (3%, 100 μL) leaving the blood stream was monitored for 2 hours. At lower administration dose of EB (3%, 50 μL), the clearance of the EB-albumin complex was imaged for 10 days and quantitatively investigated using a two-compartment model.
Lee, Hyung-Min; Howell, Bryan; Grill, Warren M; Ghovanloo, Maysam
2018-05-01
The purpose of this study was to test the feasibility of using a switched-capacitor discharge stimulation (SCDS) system for electrical stimulation, and, subsequently, determine the overall energy saved compared to a conventional stimulator. We have constructed a computational model by pairing an image-based volume conductor model of the cat head with cable models of corticospinal tract (CST) axons and quantified the theoretical stimulation efficiency of rectangular and decaying exponential waveforms, produced by conventional and SCDS systems, respectively. Subsequently, the model predictions were tested in vivo by activating axons in the posterior internal capsule and recording evoked electromyography (EMG) in the contralateral upper arm muscles. Compared to rectangular waveforms, decaying exponential waveforms with time constants >500 μs were predicted to require 2%-4% less stimulus energy to activate directly models of CST axons and 0.4%-2% less stimulus energy to evoke EMG activity in vivo. Using the calculated wireless input energy of the stimulation system and the measured stimulus energies required to evoke EMG activity, we predict that an SCDS implantable pulse generator (IPG) will require 40% less input energy than a conventional IPG to activate target neural elements. A wireless SCDS IPG that is more energy efficient than a conventional IPG will reduce the size of an implant, require that less wireless energy be transmitted through the skin, and extend the lifetime of the battery in the external power transmitter.
Scott, Marion W.
1990-01-01
A laser source is operated continuously and modulated periodically (typicy sinusoidally). A receiver imposes another periodic modulation on the received optical signal, the modulated signal being detected by an array of detectors of the integrating type. Range to the target determined by measuring the phase shift of the intensity modulation on the received optical beam relative to a reference. The receiver comprises a photoemitter for converting the reflected, periodically modulated, return beam to an accordingly modulated electron stream. The electron stream is modulated by a local demodulation signal source and subsequently converted back to a photon stream by a detector. A charge coupled device (CCD) array then averages and samples the photon stream to provide an electrical signal in accordance with the photon stream.
Scott, M.W.
1990-06-19
A laser source is operated continuously and modulated periodically (typically sinusoidally). A receiver imposes another periodic modulation on the received optical signal, the modulated signal being detected by an array of detectors of the integrating type. Range to the target determined by measuring the phase shift of the intensity modulation on the received optical beam relative to a reference. The receiver comprises a photoemitter for converting the reflected, periodically modulated, return beam to an accordingly modulated electron stream. The electron stream is modulated by a local demodulation signal source and subsequently converted back to a photon stream by a detector. A charge coupled device (CCD) array then averages and samples the photon stream to provide an electrical signal in accordance with the photon stream. 2 figs.
NASA Astrophysics Data System (ADS)
Zhang, Miao; Tong, Xiaojun
2017-07-01
This paper proposes a joint image encryption and compression scheme based on a new hyperchaotic system and curvelet transform. A new five-dimensional hyperchaotic system based on the Rabinovich system is presented. By means of the proposed hyperchaotic system, a new pseudorandom key stream generator is constructed. The algorithm adopts diffusion and confusion structure to perform encryption, which is based on the key stream generator and the proposed hyperchaotic system. The key sequence used for image encryption is relation to plain text. By means of the second generation curvelet transform, run-length coding, and Huffman coding, the image data are compressed. The joint operation of compression and encryption in a single process is performed. The security test results indicate the proposed methods have high security and good compression effect.
Interactive numerical flow visualization using stream surfaces
NASA Technical Reports Server (NTRS)
Hultquist, J. P. M.
1990-01-01
Particle traces and ribbons are often used to depict the structure of three-dimensional flowfields, but images produced using these models can be ambiguous. Stream surfaces offer a more visually intuitive method for the depiction of flowfields, but interactive response is needed to allow the user to place surfaces which reveal the essential features of a given flowfield. FLORA, a software package which supports the interactive calculation and display of stream surfaces on silicon graphics workstations, is described. Alternative methods for the integration of particle traces are examined, and calculation through computational space is found to provide rapid results with accuracy adequate for most purposes. Rapid calculation of traces is teamed with progressive refinement of appoximated surfaces. An initial approximation provides immediate user feedback, and subsequent improvement of the surface ensures that the final image is an accurate representation of the flowfield.
A novel image encryption algorithm based on chaos maps with Markov properties
NASA Astrophysics Data System (ADS)
Liu, Quan; Li, Pei-yue; Zhang, Ming-chao; Sui, Yong-xin; Yang, Huai-jiang
2015-02-01
In order to construct high complexity, secure and low cost image encryption algorithm, a class of chaos with Markov properties was researched and such algorithm was also proposed. The kind of chaos has higher complexity than the Logistic map and Tent map, which keeps the uniformity and low autocorrelation. An improved couple map lattice based on the chaos with Markov properties is also employed to cover the phase space of the chaos and enlarge the key space, which has better performance than the original one. A novel image encryption algorithm is constructed on the new couple map lattice, which is used as a key stream generator. A true random number is used to disturb the key which can dynamically change the permutation matrix and the key stream. From the experiments, it is known that the key stream can pass SP800-22 test. The novel image encryption can resist CPA and CCA attack and differential attack. The algorithm is sensitive to the initial key and can change the distribution the pixel values of the image. The correlation of the adjacent pixels can also be eliminated. When compared with the algorithm based on Logistic map, it has higher complexity and better uniformity, which is nearer to the true random number. It is also efficient to realize which showed its value in common use.
Poliva, Oren; Bestelmeyer, Patricia E G; Hall, Michelle; Bultitude, Janet H; Koller, Kristin; Rafal, Robert D
2015-09-01
To use functional magnetic resonance imaging to map the auditory cortical fields that are activated, or nonreactive, to sounds in patient M.L., who has auditory agnosia caused by trauma to the inferior colliculi. The patient cannot recognize speech or environmental sounds. Her discrimination is greatly facilitated by context and visibility of the speaker's facial movements, and under forced-choice testing. Her auditory temporal resolution is severely compromised. Her discrimination is more impaired for words differing in voice onset time than place of articulation. Words presented to her right ear are extinguished with dichotic presentation; auditory stimuli in the right hemifield are mislocalized to the left. We used functional magnetic resonance imaging to examine cortical activations to different categories of meaningful sounds embedded in a block design. Sounds activated the caudal sub-area of M.L.'s primary auditory cortex (hA1) bilaterally and her right posterior superior temporal gyrus (auditory dorsal stream), but not the rostral sub-area (hR) of her primary auditory cortex or the anterior superior temporal gyrus in either hemisphere (auditory ventral stream). Auditory agnosia reflects dysfunction of the auditory ventral stream. The ventral and dorsal auditory streams are already segregated as early as the primary auditory cortex, with the ventral stream projecting from hR and the dorsal stream from hA1. M.L.'s leftward localization bias, preserved audiovisual integration, and phoneme perception are explained by preserved processing in her right auditory dorsal stream.
NASA Astrophysics Data System (ADS)
Alsaadi, Fuad E.
2016-03-01
Optical wireless systems are promising candidates for next-generation indoor communication networks. Optical wireless technology offers freedom from spectrum regulations and, compared to current radio-frequency networks, higher data rates and increased security. This paper presents a fast adaptation method for multibeam angle and delay adaptation systems and a new spot-diffusing geometry, and also considers restrictions needed for complying with eye safety regulations. The fast adaptation algorithm reduces the computational load required to reconfigure the transmitter in the case of transmitter and/or receiver mobility. The beam clustering approach enables the transmitter to assign power to spots within the pixel's field of view (FOV) and increases the number of such spots. Thus, if the power per spot is restricted to comply with eye safety standards, the new approach, in which more spots are visible within the FOV of the pixel, leads to enhanced signal-to-noise ratio (SNR). Simulation results demonstrate that the techniques proposed in this paper lead to SNR improvements that enable reliable operation at data rates as high as 15 Gbit/s. These results are based on simulation and not on actual measurements or experiments.
Wireless Augmented Reality Prototype (WARP)
NASA Technical Reports Server (NTRS)
Devereaux, A. S.
1999-01-01
Initiated in January, 1997, under NASA's Office of Life and Microgravity Sciences and Applications, the Wireless Augmented Reality Prototype (WARP) is a means to leverage recent advances in communications, displays, imaging sensors, biosensors, voice recognition and microelectronics to develop a hands-free, tetherless system capable of real-time personal display and control of computer system resources. Using WARP, an astronaut may efficiently operate and monitor any computer-controllable activity inside or outside the vehicle or station. The WARP concept is a lightweight, unobtrusive heads-up display with a wireless wearable control unit. Connectivity to the external system is achieved through a high-rate radio link from the WARP personal unit to a base station unit installed into any system PC. The radio link has been specially engineered to operate within the high- interference, high-multipath environment of a space shuttle or space station module. Through this virtual terminal, the astronaut will be able to view and manipulate imagery, text or video, using voice commands to control the terminal operations. WARP's hands-free access to computer-based instruction texts, diagrams and checklists replaces juggling manuals and clipboards, and tetherless computer system access allows free motion throughout a cabin while monitoring and operating equipment.
Measurement of motion detection of wireless capsule endoscope inside large intestine.
Zhou, Mingda; Bao, Guanqun; Pahlavan, Kaveh
2014-01-01
Wireless Capsule Endoscope (WCE) provides a noninvasive way to inspect the entire Gastrointestinal (GI) tract, including large intestine, where intestinal diseases most likely occur. As a critical component of capsule endoscopic examination, physicians need to know the precise position of the endoscopic capsule in order to identify the position of detected intestinal diseases. Knowing how the capsule moves inside the large intestine would greatly complement the existing wireless localization systems by providing the motion information. Since the most recently released WCE can take up to 6 frames per second, it's possible to estimate the movement of the capsule by processing the successive image sequence. In this paper, a computer vision based approach without utilizing any external device is proposed to estimate the motion of WCE inside the large intestine. The proposed approach estimate the displacement and rotation of the capsule by calculating entropy and mutual information between frames using Fibonacci method. The obtained results of this approach show its stability and better performance over other existing approaches of motion measurements. Meanwhile, findings of this paper lay a foundation for motion pattern of WCEs inside the large intestine, which will benefit other medical applications.
Wireless Self-Acquistion of 12-Lead ECG via Android Smart Phone
NASA Technical Reports Server (NTRS)
Schlegel, Todd T.
2012-01-01
Researchers at NASA s Johnson Space Center and at Orbital Research, Inc. (a NASA SBIR grant recipient) have recently developed a dry-electrode harness that allows for self-acquisition of resting 12-lead ECGs by minimally trained laypersons. When used in conjunction with commercial wireless (e.g., Bluetooth(TM) or 802.11-enabled) 12-lead ECG devices and custom smart phone-based software, the collected 12-lead ECG data can also immediately be forwarded from any geographic location within cellular range to the user s physician(s) of choice. The system can also be used to immediately forward to central receiving stations 12-lead ECG data collected during space flight or during activities in any remote terrestrial location supported by an internet or cellular phone infrastructure. The main novel aspects of the system are first, the dry-electrode 12-lead ECG harness itself, and second, an accompanying Android(TM) smart phone-based wireless 12-lead ECG capability. The ECG harness nominally employs dry electrodes manufactured by Orbital Research, Inc, recently cleared through the Food and Drug Administration (FDA). However, other dry electrodes that are not yet FDA cleared, for example those recently developed by Nanosonic, Inc as part of another NASA SBIR grant, can also be used. The various advantageous features of the harness include: 1) laypersons can be quickly instructed on its correct use, remotely if necessary; 2) all tangled "leadwire spaghetti" is eliminated, as is the common clinical problem of "leadwire reversal"; 3) all adhesives and disposables are also eliminated, the harness being fully reusable; if multiple individuals intend to use use the same harness, then standard antimicrobial wipes can be employed to sterilize the dry electrodes (and harness surface if needed) between users; 5) padded cushions at the lateral sides of the torso function to press the left arm (LA) and right arm (RA) dry electrodes mounted on the cushions against sideward or downward-rested arms of the subject; 6) sufficient distal placement of the arm electrodes achieves good electrode abutment to the arms without the need for adhesives, straps, bands, bracelets, or gloves; 7) padding over the sternum avoids "tenting" in the V1 through V3 (and, when present, the V3R) electrode positions; 8) easy-to-don, one-piece design with an adjustable, front-side single point of connection and an adjustable shoulder strap; and 9) Lund or "modified Lund" placement of the dry electrodes, the results of which more effectively reproduce results from "standard" 12-lead ECG placements than do results from Mason-Likar placements. The main limitation of the harness is that "one size does not fit all", meaning that an appropriately sized harness (small, medium, large, etc) must be chosen on the basis of an individual's size. To facilitate the use of the harness with inexpensive, commodity-grade cell phones and tablet devices, 12-lead ECG software is also being developed to accompany the harness for wireless use with Android. For this part of the project, NASA has teamed with TopCoder, Inc and the Harvard-affiliated NASA Tournament Lab in sponsoring java-based software programming contests through TopCoder. While ECG signals from the harness can already be wirelessly received and thoroughly processed (locally or remotely) by commercial-grade conventional (as well as advanced) 12-lead ECG software running on Microsoft Windows(TM), the Android-based software, once completed, will "cast a wider net" by allowing for a greater percentage of cell phone owners to participate in inexpensive, store-and-forward recordings of 12-lead ECGs worldwide, including for example Android cell phone users in many remote, third-world locations. At the time of writing, the Android 12-lead ECG software platform consists of a basic but expanding graphical user interface and accompanying software that: 1) wirelessly receives the 12-lead ECG data stream from a Bluetooth-based, FDA-cleared 12-leaCG device attached to the harness; 2) locally stores the same data in binary format to the SD card on the Android cell phone; and 3) makes the data stream in available in real time, for now to TopCoder's java programming contestants.
Cardenas, M.B.; Harvey, J.W.; Packman, A.I.; Scott, D.T.
2008-01-01
Temperature is a primary physical and biogeochemical variable in aquatic systems. Field-based measurement of temperature at discrete sampling points has revealed temperature variability in fluvial systems, but traditional techniques do not readily allow for synoptic sampling schemes that can address temperature-related questions with broad, yet detailed, coverage. We present results of thermal infrared imaging at different stream discharge (base flow and peak flood) conditions using a handheld IR camera. Remotely sensed temperatures compare well with those measured with a digital thermometer. The thermal images show that periphyton, wood, and sandbars induce significant thermal heterogeneity during low stages. Moreover, the images indicate temperature variability within the periphyton community and within the partially submerged bars. The thermal heterogeneity was diminished during flood inundation, when the areas of more slowly moving water to the side of the stream differed in their temperature. The results have consequences for thermally sensitive hydroelogical processes and implications for models of those processes, especially those that assume an effective stream temperature. Copyright ?? 2008 John Wiley & Sons, Ltd.
Recognition of degraded handwritten digits using dynamic Bayesian networks
NASA Astrophysics Data System (ADS)
Likforman-Sulem, Laurence; Sigelle, Marc
2007-01-01
We investigate in this paper the application of dynamic Bayesian networks (DBNs) to the recognition of handwritten digits. The main idea is to couple two separate HMMs into various architectures. First, a vertical HMM and a horizontal HMM are built observing the evolving streams of image columns and image rows respectively. Then, two coupled architectures are proposed to model interactions between these two streams and to capture the 2D nature of character images. Experiments performed on the MNIST handwritten digit database show that coupled architectures yield better recognition performances than non-coupled ones. Additional experiments conducted on artificially degraded (broken) characters demonstrate that coupled architectures better cope with such degradation than non coupled ones and than discriminative methods such as SVMs.
Wu, Vincent Wing-Cheung; Tang, Fuk-hay; Cheung, Wai-kwan; Chan, Kit-chi
2013-02-01
In localisation of radiotherapy treatment field, the oncologist is present at the simulator to approve treatment details produced by the therapist. Problems may arise if the oncologist is not available and the patient requires urgent treatment. The development of a tele-localisation system is a potential solution, where the oncologist uses a personal digital assistant (PDA) to localise the treatment field on the image sent from the simulator through wireless communication and returns the information to the therapist after his or her approval. Our team developed the first tele-localisation prototype, which consisted of a server workstation (simulator) for the administration of digital imaging and communication in medicine localisation images including viewing and communication with the PDA via a Wi-Fi network; a PDA (oncologist's site) installed with the custom-built programme that synchronises with the server workstation and performs treatment field editing. Trial tests on accuracy and speed of the prototype system were conducted on 30 subjects with the treatment regions covering the neck, skull, chest and pelvis. The average time required in performing the localisation using the PDA was less than 1.5 min, with the blocked field longer than the open field. The transmission speed of the four treatment regions was similar. The average physical distortion of the images was within 4.4% and the accuracy of field size indication was within 5.3%. Compared with the manual method, the tele-localisation system presented with an average deviation of 5.5%. The prototype system fulfilled the planned objectives of tele-localisation procedure with reasonable speed and accuracy. © 2012 The Authors. Journal of Medical Imaging and Radiation Oncology © 2012 The Royal Australian and New Zealand College of Radiologists.
Unpowered wireless generation and sensing of ultrasound
NASA Astrophysics Data System (ADS)
Huang, Haiying
2013-04-01
This paper presents a wireless ultrasound pitch-catch system that demonstrates the wireless generation and sensing of ultrasounds based on the principle of frequency conversion. The wireless ultrasound pitch-catch system consists of a wireless interrogator and two wireless ultrasound transducers. The wireless interrogator generates an ultrasound-modulated signal and a carrier signal, both at the microwave frequency, and transmits these two signals to the wireless ultrasound actuator using a pair of antennas. Upon receiving these two signals, the wireless ultrasound actuator recovers the ultrasound excitation signal using a passive mixer and then supplies it to a piezoelectric wafer sensor for ultrasound generation in the structure. For wireless ultrasound sensing, the frequency conversion process is reversed. The ultrasound sensing signal is up-converted to a microwave signal by the wireless ultrasound sensor and is recovered at the wireless interrogator using a homodyne receiver. To differentiate the wireless actuator from the wireless sensor, each wireless transducer is equipped with a narrowband microwave filter so that it only responds to the carrier frequency that matches the filter's operation bandwidth. The principle of operation of the wireless pitch-catch system, the hardware implementation, and the associated data processing algorithm to recover the ultrasound signal from the wirelessly received signal are described. The wirelessly acquired ultrasound signal is compared with those acquired using wired connection in both time and frequency domain.
Posterior Parietal Cortex Drives Inferotemporal Activations During Three-Dimensional Object Vision.
Van Dromme, Ilse C; Premereur, Elsie; Verhoef, Bram-Ernst; Vanduffel, Wim; Janssen, Peter
2016-04-01
The primate visual system consists of a ventral stream, specialized for object recognition, and a dorsal visual stream, which is crucial for spatial vision and actions. However, little is known about the interactions and information flow between these two streams. We investigated these interactions within the network processing three-dimensional (3D) object information, comprising both the dorsal and ventral stream. Reversible inactivation of the macaque caudal intraparietal area (CIP) during functional magnetic resonance imaging (fMRI) reduced fMRI activations in posterior parietal cortex in the dorsal stream and, surprisingly, also in the inferotemporal cortex (ITC) in the ventral visual stream. Moreover, CIP inactivation caused a perceptual deficit in a depth-structure categorization task. CIP-microstimulation during fMRI further suggests that CIP projects via posterior parietal areas to the ITC in the ventral stream. To our knowledge, these results provide the first causal evidence for the flow of visual 3D information from the dorsal stream to the ventral stream, and identify CIP as a key area for depth-structure processing. Thus, combining reversible inactivation and electrical microstimulation during fMRI provides a detailed view of the functional interactions between the two visual processing streams.
Posterior Parietal Cortex Drives Inferotemporal Activations During Three-Dimensional Object Vision
Van Dromme, Ilse C.; Premereur, Elsie; Verhoef, Bram-Ernst; Vanduffel, Wim; Janssen, Peter
2016-01-01
The primate visual system consists of a ventral stream, specialized for object recognition, and a dorsal visual stream, which is crucial for spatial vision and actions. However, little is known about the interactions and information flow between these two streams. We investigated these interactions within the network processing three-dimensional (3D) object information, comprising both the dorsal and ventral stream. Reversible inactivation of the macaque caudal intraparietal area (CIP) during functional magnetic resonance imaging (fMRI) reduced fMRI activations in posterior parietal cortex in the dorsal stream and, surprisingly, also in the inferotemporal cortex (ITC) in the ventral visual stream. Moreover, CIP inactivation caused a perceptual deficit in a depth-structure categorization task. CIP-microstimulation during fMRI further suggests that CIP projects via posterior parietal areas to the ITC in the ventral stream. To our knowledge, these results provide the first causal evidence for the flow of visual 3D information from the dorsal stream to the ventral stream, and identify CIP as a key area for depth-structure processing. Thus, combining reversible inactivation and electrical microstimulation during fMRI provides a detailed view of the functional interactions between the two visual processing streams. PMID:27082854
Wireless Networks: New Meaning to Ubiquitous Computing.
ERIC Educational Resources Information Center
Drew, Wilfred, Jr.
2003-01-01
Discusses the use of wireless technology in academic libraries. Topics include wireless networks; standards (IEEE 802.11); wired versus wireless; why libraries implement wireless technology; wireless local area networks (WLANs); WLAN security; examples of wireless use at Indiana State University and Morrisville College (New York); and useful…
NASA Astrophysics Data System (ADS)
Bosch, R.; Ward, D.
2017-12-01
Investigation of erosion rates and processes at knickpoints in surface bedrock streams is an active area of research, involving complex feedbacks in the coupled relationships between dissolution, abrasion, and plucking that have not been sufficiently addressed. Even less research has addressed how these processes operate to propagate knickpoints through cave passages in layered sedimentary rocks, despite these features being common along subsurface streams. In both settings, there is evidence for mechanical and chemical erosion, but in cave passages the different hydrologic and hydraulic regimes, combined with an important role for the dissolution process, affect the relative roles and coupled interactions between these processes, and distinguish them from surface stream knickpoints. Using a novel approach of imaging cave passages using Structure from Motion (SFM), we create 3D geometry meshes to explore these systems using multiphysics simulation, and compare the processes as they occur in caves with those in surface streams. Here we focus on four field sites with actively eroding streambeds that include knickpoints: Upper River Acheron and Devil's Cooling Tub in Mammoth Cave, Kentucky; and two surface streams in Clermont County, Ohio, Avey's Run and Fox Run. SFM 3D reconstructions are built using images exported from 4K video shot at each field location. We demonstrate that SFM is a viable imaging approach for reconstructing cave passages with complex morphologies. We then use these reconstructions to create meshes upon which to run multiphysics simulations using STAR-CCM+. Our approach incorporates multiphase free-surface computational fluid dynamics simulations with sediment transport modeled using discrete element method grains. Physical and chemical properties of the water, bedrock, and sediment enable computation of shear stress, sediment impact forces, and chemical kinetic conditions at the bed surface. Preliminary results prove the efficacy of commercially available multiphysics simulation software for modeling various flow conditions, erosional processes, and their complex coupled interactions in cave passages and in surface stream channels to expand knowledge and understanding of overall cave system development and river profile erosion.
Neural Substrates for Processing Task-Irrelevant Sad Images in Adolescents
ERIC Educational Resources Information Center
Wang, Lihong; Huettel, Scott; De Bellis, Michael D.
2008-01-01
Neural systems related to cognitive and emotional processing were examined in adolescents using event-related functional magnetic resonance imaging (fMRI). Ten healthy adolescents performed an emotional oddball task. Subjects detected infrequent circles (targets) within a continual stream of phase-scrambled images (standards). Sad and neutral…
Um, Ki Sung; Kwak, Yun Sik; Cho, Hune; Kim, Il Kon
2005-11-01
A basic assumption of Health Level Seven (HL7) protocol is 'No limitation of message length'. However, most existing commercial HL7 interface engines do limit message length because they use the string array method, which is run in the main memory for the HL7 message parsing process. Specifically, messages with image and multi-media data create a long string array and thus cause the computer system to raise critical and fatal problem. Consequently, HL7 messages cannot handle the image and multi-media data necessary in modern medical records. This study aims to solve this problem with the 'streaming algorithm' method. This new method for HL7 message parsing applies the character-stream object which process character by character between the main memory and hard disk device with the consequence that the processing load on main memory could be alleviated. The main functions of this new engine are generating, parsing, validating, browsing, sending, and receiving HL7 messages. Also, the engine can parse and generate XML-formatted HL7 messages. This new HL7 engine successfully exchanged HL7 messages with 10 megabyte size images and discharge summary information between two university hospitals.
Doppler flow imaging of cytoplasmic streaming using spectral domain phase microscopy
NASA Astrophysics Data System (ADS)
Choma, Michael A.; Ellerbee, Audrey K.; Yazdanfar, Siavash; Izatt, Joseph A.
2006-03-01
Spectral domain phase microscopy (SDPM) is a function extension of spectral domain optical coherence tomography. SDPM achieves exquisite levels of phase stability by employing common-path interferometry. We discuss the theory and limitations of Doppler flow imaging using SDPM, demonstrate monitoring the thermal contraction of a glass sample with nanometer per second velocity sensitivity, and apply this technique to measurement of cytoplasmic streaming in an Amoeba proteus pseudopod. We observe reversal of cytoplasmic flow induced by extracellular CaCl2, and report results that suggest parabolic flow of cytoplasm in the A. proteus pseudopod.
Using wireless (Pocket)PCs in Large Introductory Courses to Expand Discourse and Interactivity
NASA Astrophysics Data System (ADS)
van der Pluijm, B. A.; Knoop, P. A.; Samson, P. J.; Teasley, S. D.
2005-12-01
Teaching methods in introductory, undergraduate courses traditionally rely on static textbooks and/or course packs, with presentation delivered as a monologue in front of a mostly passive, large audience. The concepts presented in class are often best illustrated using visualizations and/or demonstrations, but even the most stunning of images or spectacular exhibits, while motivating, offer students only passive participation in the learning process. Add to this the advent of course websites with lecture notes and PowerPoint presentations and the students are left with little incentive to attend, much less participate. Clearly this model does not provide much opportunity or motivation for today's students to learn and think more critically about the arguments being developed. What is needed is a coupling of the rich imagery of many fields with advances in technology and in learning, toward revitalizing pedagogical approaches in survey-level courses and student-instructor interaction. Our IT-enhanced classroom project couples the use of peer instruction techniques in large classes (as originally described by Mazur, 1997) with the use of interactive spatial concept challenges, utilizing wireless PocketPCs (handhelds) or student-owned wireless-enabled laptops. The technologies employed (web, PocketPC/laptop, WiFi) are off-the-shelf technologies and the Peer Instruction technique is increasingly documented in undergraduate science classes. However, the combination is not employed due to its initial cost, wrongly perceived level of effort to implement, availability of engaging activities and modest volume of data on student learning. We'll show our development, implementation and preliminary cognitive assessment efforts of this IT-enhanced classroom experience, involving interactive image quizzes and data manipulation in large introductory classes at the University of Michigan.
Black, Robert W.; Haggland, Alan; Crosby, Greg
2003-01-01
Instream hydraulic and riparian habitat conditions and stream temperatures were characterized for selected stream segments in the Upper White River Basin, Washington. An aerial multispectral imaging system used digital cameras to photograph the stream segments across multiple wavelengths to characterize fish habitat and temperature conditions. All imageries were georeferenced. Fish habitat features were photographed at a resolution of 0.5 meter and temperature imageries were photographed at a 1.0-meter resolution. The digital multispectral imageries were classified using commercially available software. Aerial photographs were taken on September 21, 1999. Field habitat data were collected from August 23 to October 12, 1999, to evaluate the measurement accuracy and effectiveness of the multispectral imaging in determining the extent of the instream habitat variables. Fish habitat types assessed by this method were the abundance of instream hydraulic features such as pool and riffle habitats, turbulent and non-turbulent habitats, riparian composition, the abundance of large woody debris in the stream and riparian zone, and stream temperatures. Factors such as the abundance of instream woody debris, the location and frequency of pools, and stream temperatures generally are known to have a significant impact on salmon. Instream woody debris creates the habitat complexity necessary to maintain a diverse and healthy salmon population. The abundance of pools is indicative of a stream's ability to support fish and other aquatic organisms. Changes in water temperature can affect aquatic organisms by altering metabolic rates and oxygen requirements, altering their sensitivity to toxic materials and affecting their ability to avoid predators. The specific objectives of this project were to evaluate the use of an aerial multispectral imaging system to accurately identify instream hydraulic features and surface-water temperatures in the Upper White River Basin, to use the multispectral system to help establish baseline instream/riparian habitat conditions in the study area, and to qualitatively assess the imaging system for possible use in other Puget Sound rivers. For the most part, all multispectral imagery-based estimates of total instream riffle and pool area were less than field measurements. The imagery-based estimates for riffle habitat area ranged from 35.5 to 83.3 percent less than field measurements. Pool habitat estimates ranged from 139.3 percent greater than field measurements to 94.0 percent less than field measurements. Multispectral imagery-based estimates of turbulent habitat conditions ranged from 9.3 percent greater than field measurements to 81.6 percent less than field measurements. Multispectral imagery-based estimates of non-turbulent habitat conditions ranged from 27.7 to 74.1 percent less than field measurements. The absolute average percentage of difference between field and imagery-based habitat type areas was less for the turbulent and non-turbulent habitat type categories than for pools and riffles. The estimate of woody debris by multispectral imaging was substantially different than field measurements; percentage of differences ranged from +373.1 to -100 percent. Although the total area of riffles, pools, and turbulent and non-turbulent habitat types measured in the field were all substantially higher than those estimated from the multispectral imagery, the percentage of composition of each habitat type was not substantially different between the imagery-based estimates and field measurements.
Indoor magnetic navigation for the blind.
Riehle, Timothy H; Anderson, Shane M; Lichter, Patrick A; Giudice, Nicholas A; Sheikh, Suneel I; Knuesel, Robert J; Kollmann, Daniel T; Hedin, Daniel S
2012-01-01
Indoor navigation technology is needed to support seamless mobility for the visually impaired. This paper describes the construction of and evaluation of a navigation system that infers the users' location using only magnetic sensing. It is well known that the environments within steel frame structures are subject to significant magnetic distortions. Many of these distortions are persistent and have sufficient strength and spatial characteristics to allow their use as the basis for a location technology. This paper describes the development and evaluation of a prototype magnetic navigation system consisting of a wireless magnetometer placed at the users' hip streaming magnetic readings to a smartphone processing location algorithms. Human trials were conducted to assess the efficacy of the system by studying route-following performance with blind and sighted subjects using the navigation system for real-time guidance.
Freely Tunable Broadband Polarization Rotator for Terahertz Waves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fan, Ren-Hao; Zhou, Yu; Ren, Xiao-Ping
2014-12-28
A freely tunable polarization rotator for broadband terahertz waves is demonstrated using a three-rotating-layer metallic grating structure, which can conveniently rotate the polarization of a linearly polarized terahertz wave to any desired direction with nearly perfect conversion efficiency. This low-cost, high-efficiency, and freely tunable device has potential applications as material analysis, wireless communication, and THz imaging.
NASA Astrophysics Data System (ADS)
Märk, J.; Benoit, D.; Balasse, L.; Benoit, M.; Clémens, J. C.; Fieux, S.; Fougeron, D.; Graber-Bolis, J.; Janvier, B.; Jevaud, M.; Genoux, A.; Gisquet-Verrier, P.; Menouni, M.; Pain, F.; Pinot, L.; Tourvielle, C.; Zimmer, L.; Morel, C.; Laniece, P.
2013-07-01
The investigation of neurophysiological mechanisms underlying the functional specificity of brain regions requires the development of technologies that are well adjusted to in vivo studies in small animals. An exciting challenge remains the combination of brain imaging and behavioural studies, which associates molecular processes of neuronal communications to their related actions. A pixelated intracerebral probe (PIXSIC) presents a novel strategy using a submillimetric probe for beta+ radiotracer detection based on a pixelated silicon diode that can be stereotaxically implanted in the brain region of interest. This fully autonomous detection system permits time-resolved high sensitivity measurements of radiotracers with additional imaging features in freely moving rats. An application-specific integrated circuit (ASIC) allows for parallel signal processing of each pixel and enables the wireless operation. All components of the detector were tested and characterized. The beta+ sensitivity of the system was determined with the probe dipped into radiotracer solutions. Monte Carlo simulations served to validate the experimental values and assess the contribution of gamma noise. Preliminary implantation tests on anaesthetized rats proved PIXSIC's functionality in brain tissue. High spatial resolution allows for the visualization of radiotracer concentration in different brain regions with high temporal resolution.
Robotic Inspection System for Non-Destructive Evaluation (nde) of Pipes
NASA Astrophysics Data System (ADS)
Mackenzie, L. D.; Pierce, S. G.; Hayward, G.
2009-03-01
The demand for remote inspection of pipework in the processing cells of nuclear plant provides significant challenges of access, navigation, inspection technique and data communication. Such processing cells typically contain several kilometres of densely packed pipework whose actual physical layout may be poorly documented. Access to these pipes is typically afforded through the radiation shield via a small removable concrete plug which may be several meters from the actual inspection site, thus considerably complicating practical inspection. The current research focuses on the robotic deployment of multiple NDE payloads for weld inspection along non-ferritic steel pipework (thus precluding use of magnetic traction options). A fully wireless robotic inspection platform has been developed that is capable of travelling along the outside of a pipe at any orientation, while avoiding obstacles such as pipe hangers and delivering a variety of NDE payloads. An eddy current array system provides rapid imaging capabilities for surface breaking defects while an on-board camera, in addition to assisting with navigation tasks, also allows real time image processing to identify potential defects. All sensor data can be processed by the embedded microcontroller or transmitted wirelessly back to the point of access for post-processing analysis.
Reduction of capsule endoscopy reading times by unsupervised image mining.
Iakovidis, D K; Tsevas, S; Polydorou, A
2010-09-01
The screening of the small intestine has become painless and easy with wireless capsule endoscopy (WCE) that is a revolutionary, relatively non-invasive imaging technique performed by a wireless swallowable endoscopic capsule transmitting thousands of video frames per examination. The average time required for the visual inspection of a full 8-h WCE video ranges from 45 to 120min, depending on the experience of the examiner. In this paper, we propose a novel approach to WCE reading time reduction by unsupervised mining of video frames. The proposed methodology is based on a data reduction algorithm which is applied according to a novel scheme for the extraction of representative video frames from a full length WCE video. It can be used either as a video summarization or as a video bookmarking tool, providing the comparative advantage of being general, unbounded by the finiteness of a training set. The number of frames extracted is controlled by a parameter that can be tuned automatically. Comprehensive experiments on real WCE videos indicate that a significant reduction in the reading times is feasible. In the case of the WCE videos used this reduction reached 85% without any loss of abnormalities.
High-latitude observations of solar wind streams and coronal holes
NASA Technical Reports Server (NTRS)
Ricket, B. J.; Sime, D. G.; Crockett, W. R.; Tousey, R.; Sheeley, N. R., Jr.
1976-01-01
Interplanetary scintillation observations of the solar wind velocity during 1973 and the first part of 1974 reveal several corotating high-speed streams. These streams, of heliographic latitudes from +40 deg to -60 deg, have been mapped back to the vicinity of the sun and have been compared with coronal holes identified in wide band XUV solar images taken during the manned portions of the Skylab mission. There is some evidence that the high-speed streams are preferentially associated with coronal holes and that they can spread out from the hole boundaries up to about 20 deg in latitude. However, this association is not one to one; streams are observed which do not map back to coronal holes, and holes are observed which do not lie at the base of streams. To the extent that a statistical interpretation is possible the association is not highly significant, but individual consideration of streams and holes suggests that the statistical result is biased somewhat against a strong correlation.
NASA Astrophysics Data System (ADS)
Liu, Xiaoqi; Wang, Chengliang; Bai, Jianying; Liao, Guobin
2018-02-01
Portal hypertensive gastropathy (PHG) is common in gastrointestinal (GI) diseases, and a severe stage of PHG (S-PHG) is a source of gastrointestinal active bleeding. Generally, the diagnosis of PHG is made visually during endoscopic examination; compared with traditional endoscopy, (wireless capsule endoscopy) WCE with noninvasive and painless is chosen as a prevalent tool for visual observation of PHG. However, accurate measurement of WCE images with PHG is a difficult task due to faint contrast and confusing variations in background gastric mucosal tissue for physicians. Therefore, this paper proposes a comprehensive methodology to automatically detect S-PHG images in WCE video to help physicians accurately diagnose S-PHG. Firstly, a rough dominatecolor-tone extraction approach is proposed for better describing global color distribution information of gastric mucosa. Secondly, a hybrid two-layer texture acquisition model is designed by integrating co-occurrence matrix into local binary pattern to depict complex and unique gastric mucosal microstructure local variation. Finally, features of mucosal color and microstructure texture are merged into linear support vector machine to accomplish this automatic classification task. Experiments were implemented on an annotated data set including 1,050 SPHG and 1,370 normal images collected from 36 real patients of different nationalities, ages and genders. By comparison with three traditional texture extraction methods, our method, combined with experimental results, performs best in detection of S-PHG images in WCE video: the maximum of accuracy, sensitivity and specificity reach 0.90, 0.92 and 0.92 respectively.
Wireless device monitoring methods, wireless device monitoring systems, and articles of manufacture
McCown, Steven H [Rigby, ID; Derr, Kurt W [Idaho Falls, ID; Rohde, Kenneth W [Idaho Falls, ID
2012-05-08
Wireless device monitoring methods, wireless device monitoring systems, and articles of manufacture are described. According to one embodiment, a wireless device monitoring method includes accessing device configuration information of a wireless device present at a secure area, wherein the device configuration information comprises information regarding a configuration of the wireless device, accessing stored information corresponding to the wireless device, wherein the stored information comprises information regarding the configuration of the wireless device, comparing the device configuration information with the stored information, and indicating the wireless device as one of authorized and unauthorized for presence at the secure area using the comparing.
Ur Rehman, Yasar Abbas; Tariq, Muhammad; Khan, Omar Usman
2015-01-01
Object localization plays a key role in many popular applications of Wireless Multimedia Sensor Networks (WMSN) and as a result, it has acquired a significant status for the research community. A significant body of research performs this task without considering node orientation, object geometry and environmental variations. As a result, the localized object does not reflect the real world scenarios. In this paper, a novel object localization scheme for WMSN has been proposed that utilizes range free localization, computer vision, and principle component analysis based algorithms. The proposed approach provides the best possible approximation of distance between a wmsn sink and an object, and the orientation of the object using image based information. Simulation results report 99% efficiency and an error ratio of 0.01 (around 1 ft) when compared to other popular techniques. PMID:26528919
NASA Astrophysics Data System (ADS)
Morita, Shinji; Yamazawa, Kazumasa; Yokoya, Naokazu
2003-01-01
This paper describes a new networked telepresence system which realizes virtual tours into a visualized dynamic real world without significant time delay. Our system is realized by the following three steps: (1) video-rate omnidirectional image acquisition, (2) transportation of an omnidirectional video stream via internet, and (3) real-time view-dependent perspective image generation from the omnidirectional video stream. Our system is applicable to real-time telepresence in the situation where the real world to be seen is far from an observation site, because the time delay from the change of user"s viewing direction to the change of displayed image is small and does not depend on the actual distance between both sites. Moreover, multiple users can look around from a single viewpoint in a visualized dynamic real world in different directions at the same time. In experiments, we have proved that the proposed system is useful for internet telepresence.
Deshmukh, Nishikant P; Kang, Hyun Jae; Billings, Seth D; Taylor, Russell H; Hager, Gregory D; Boctor, Emad M
2014-01-01
A system for real-time ultrasound (US) elastography will advance interventions for the diagnosis and treatment of cancer by advancing methods such as thermal monitoring of tissue ablation. A multi-stream graphics processing unit (GPU) based accelerated normalized cross-correlation (NCC) elastography, with a maximum frame rate of 78 frames per second, is presented in this paper. A study of NCC window size is undertaken to determine the effect on frame rate and the quality of output elastography images. This paper also presents a novel system for Online Tracked Ultrasound Elastography (O-TRuE), which extends prior work on an offline method. By tracking the US probe with an electromagnetic (EM) tracker, the system selects in-plane radio frequency (RF) data frames for generating high quality elastograms. A novel method for evaluating the quality of an elastography output stream is presented, suggesting that O-TRuE generates more stable elastograms than generated by untracked, free-hand palpation. Since EM tracking cannot be used in all systems, an integration of real-time elastography and the da Vinci Surgical System is presented and evaluated for elastography stream quality based on our metric. The da Vinci surgical robot is outfitted with a laparoscopic US probe, and palpation motions are autonomously generated by customized software. It is found that a stable output stream can be achieved, which is affected by both the frequency and amplitude of palpation. The GPU framework is validated using data from in-vivo pig liver ablation; the generated elastography images identify the ablated region, outlined more clearly than in the corresponding B-mode US images.
Deshmukh, Nishikant P.; Kang, Hyun Jae; Billings, Seth D.; Taylor, Russell H.; Hager, Gregory D.; Boctor, Emad M.
2014-01-01
A system for real-time ultrasound (US) elastography will advance interventions for the diagnosis and treatment of cancer by advancing methods such as thermal monitoring of tissue ablation. A multi-stream graphics processing unit (GPU) based accelerated normalized cross-correlation (NCC) elastography, with a maximum frame rate of 78 frames per second, is presented in this paper. A study of NCC window size is undertaken to determine the effect on frame rate and the quality of output elastography images. This paper also presents a novel system for Online Tracked Ultrasound Elastography (O-TRuE), which extends prior work on an offline method. By tracking the US probe with an electromagnetic (EM) tracker, the system selects in-plane radio frequency (RF) data frames for generating high quality elastograms. A novel method for evaluating the quality of an elastography output stream is presented, suggesting that O-TRuE generates more stable elastograms than generated by untracked, free-hand palpation. Since EM tracking cannot be used in all systems, an integration of real-time elastography and the da Vinci Surgical System is presented and evaluated for elastography stream quality based on our metric. The da Vinci surgical robot is outfitted with a laparoscopic US probe, and palpation motions are autonomously generated by customized software. It is found that a stable output stream can be achieved, which is affected by both the frequency and amplitude of palpation. The GPU framework is validated using data from in-vivo pig liver ablation; the generated elastography images identify the ablated region, outlined more clearly than in the corresponding B-mode US images. PMID:25541954
Shed a light of wireless technology on portable mobile design of NIRS
NASA Astrophysics Data System (ADS)
Sun, Yunlong; Li, Ting
2016-03-01
Mobile internet is growing rapidly driven by high-tech companies including the popular Apple and Google. The wireless mini-NIRS is believed to deserve a great spread future, while there is sparse report on wireless NIRS device and even for the reported wireless NIRS, its wireless design is scarcely presented. Here we focused on the wireless design of NIRS devices. The widely-used wireless communication standards and wireless communication typical solutions were employed into our NIRS design and then compared on communication efficiency, distance, error rate, low-cost, power consumption, and stabilities, based on the requirements of NIRS applications. The properly-performed wireless communication methods matched with the characteristics of NIRS are picked out. Finally, we realized one recommended wireless communication in our NIRS, developed a test platform on wireless NIRS and tested the full properties on wireless communication. This study elaborated the wireless communication methods specified for NIRS and suggested one implementation with one example fully illustrated, which support the future mobile design on NIRS devices.
An approach to integrate the human vision psychology and perception knowledge into image enhancement
NASA Astrophysics Data System (ADS)
Wang, Hui; Huang, Xifeng; Ping, Jiang
2009-07-01
Image enhancement is very important image preprocessing technology especially when the image is captured in the poor imaging condition or dealing with the high bits image. The benefactor of image enhancement either may be a human observer or a computer vision process performing some kind of higher-level image analysis, such as target detection or scene understanding. One of the main objects of the image enhancement is getting a high dynamic range image and a high contrast degree image for human perception or interpretation. So, it is very necessary to integrate either empirical or statistical human vision psychology and perception knowledge into image enhancement. The human vision psychology and perception claims that humans' perception and response to the intensity fluctuation δu of visual signals are weighted by the background stimulus u, instead of being plainly uniform. There are three main laws: Weber's law, Weber- Fechner's law and Stevens's Law that describe this phenomenon in the psychology and psychophysics. This paper will integrate these three laws of the human vision psychology and perception into a very popular image enhancement algorithm named Adaptive Plateau Equalization (APE). The experiments were done on the high bits star image captured in night scene and the infrared-red image both the static image and the video stream. For the jitter problem in the video stream, this algorithm reduces this problem using the difference between the current frame's plateau value and the previous frame's plateau value to correct the current frame's plateau value. Considering the random noise impacts, the pixel value mapping process is not only depending on the current pixel but the pixels in the window surround the current pixel. The window size is usually 3×3. The process results of this improved algorithms is evaluated by the entropy analysis and visual perception analysis. The experiments' result showed the improved APE algorithms improved the quality of the image, the target and the surrounding assistant targets could be identified easily, and the noise was not amplified much. For the low quality image, these improved algorithms augment the information entropy and improve the image and the video stream aesthetic quality, while for the high quality image they will not debase the quality of the image.
Simple Scaling of Multi-Stream Jet Plumes for Aeroacoustic Modeling
NASA Technical Reports Server (NTRS)
Bridges, James
2015-01-01
When creating simplified, semi-empirical models for the noise of simple single-stream jets near surfaces it has proven useful to be able to generalize the geometry of the jet plume. Having a model that collapses the mean and turbulent velocity fields for a range of flows allows the problem to become one of relating the normalized jet field and the surface. However, most jet flows of practical interest involve jets of two or more co-annular flows for which standard models for the plume geometry do not exist. The present paper describes one attempt to relate the mean and turbulent velocity fields of multi-stream jets to that of an equivalent single-stream jet. The normalization of single-stream jets is briefly reviewed, from the functional form of the flow model to the results of the modeling. Next, PIV (Particle Image Velocimetry) data from a number of multi-stream jets is analyzed in a similar fashion. The results of several single-stream approximations of the multi-stream jet plume are demonstrated, with a 'best' approximation determined and the shortcomings of the model highlighted.
Wireless device monitoring systems and monitoring devices, and associated methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCown, Steven H; Derr, Kurt W; Rohde, Kenneth W
Wireless device monitoring systems and monitoring devices include a communications module for receiving wireless communications of a wireless device. Processing circuitry is coupled with the communications module and configured to process the wireless communications to determine whether the wireless device is authorized or unauthorized to be present at the monitored area based on identification information of the wireless device. Methods of monitoring for the presence and identity of wireless devices are also provided.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carnegie Mellon University
2008-09-30
Carnegie Mellon University (CMU) under contract from Department of Energy/National Energy Technology Laboratory (DoE/NETL) and co-funding from the Northeast Gas Association (NGA), has completed the overall system design, field-trial and Magnetic Flux Leakage (MFL) sensor evaluation program for the next-generation Explorer-II (X-II) live gas main Non-destructive Evaluation (NDE) and visual inspection robot platform. The design is based on the Explorer-I prototype which was built and field-tested under a prior (also DoE- and NGA co-funded) program, and served as the validation that self-powered robots under wireless control could access and navigate live natural gas distribution mains. The X-II system design ({approx}8more » ft. and 66 lbs.) was heavily based on the X-I design, yet was substantially expanded to allow the addition of NDE sensor systems (while retaining its visual inspection capability), making it a modular system, and expanding its ability to operate at pressures up to 750 psig (high-pressure and unpiggable steel-pipe distribution mains). A new electronics architecture and on-board software kernel were added to again improve system performance. A locating sonde system was integrated to allow for absolute position-referencing during inspection (coupled with external differential GPS) and emergency-locating. The power system was upgraded to utilize lithium-based battery-cells for an increase in mission-time. The resulting robot-train system with CAD renderings of the individual modules. The system architecture now relies on a dual set of end camera-modules to house the 32-bit processors (Single-Board Computer or SBC) as well as the imaging and wireless (off-board) and CAN-based (on-board) communication hardware and software systems (as well as the sonde-coil and -electronics). The drive-module (2 ea.) are still responsible for bracing (and centering) to drive in push/pull fashion the robot train into and through the pipes and obstacles. The steering modules and their arrangement, still allow the robot to configure itself to perform any-angle (up to 90 deg) turns in any orientation (incl. vertical), and enable the live launching and recovery of the system using custom fittings and a (to be developed) launch-chamber/-tube. The battery modules are used to power the system, by providing power to the robot's bus. The support modules perform the functions of centration for the rest of the train as well as odometry pickups using incremental encoding schemes. The electronics architecture is based on a distributed (8-bit) microprocessor architecture (at least 1 in ea. module) communicating to a (one of two) 32-bit SBC, which manages all video-processing, posture and motion control as well as CAN and wireless communications. The operator controls the entire system from an off-board (laptop) controller, which is in constant wireless communication with the robot train in the pipe. The sensor modules collect data and forward it to the robot operator computer (via the CAN-wireless communications chain), who then transfers it to a dedicated NDE data-storage and post-processing computer for further (real-time or off-line) analysis. The prototype robot system was built and tested indoors and outdoors, outfitted with a Remote-Field Eddy Current (RFEC) sensor integrated as its main NDE sensor modality. An angled launcher, allowing for live launching and retrieval, was also built to suit custom angled launch-fittings from TDW. The prototype vehicle and launcher systems are shown. The complete system, including the in-pipe robot train, launcher, integrated NDE-sensor and real-time video and control console and NDE-data collection and -processing and real-time display, were demonstrated to all sponsors prior to proceeding into final field-trials--the individual components and setting for said acceptance demonstration are shown. The launcher-tube was also used to verify that the vehicle system is capable of operating in high-pressure environments, and is safely deployable using proper evacuating/purging techniques for operation in the potentially explosive natural gas environment. The test-setting and environment for safety-certification of the X-II robot platform and the launch and recovery procedures, is shown. Field-trials were successfully carried out in a live steel pipeline in Northwestern Pennsylvania. The robot was launched and recovered multiple times, travelling thousands of feet and communicating in real time with video and command-and-control (C&C) data under remote operator control from a laptop, with NDE sensor-data streaming to a second computer for storage, display and post-processing. Representative images of the activities and systems used in the week-long field-trial are shown. CMU also evaluated the ability of the X-II design to be able to integrate an MFL sensor, by adding additional drive-/battery-/steering- and support-modules to extend the X-II train.« less
NASA Astrophysics Data System (ADS)
Hester, David; Brownjohn, James; Bocian, Mateusz; Xu, Yan; Quattrone, Antonino
2018-05-01
This paper explores the use of wireless Inertial Measurement Units (IMU) originally developed for bio-mechanical research applications for modal testing of civil engineering infrastructure. Due to their biomechanics origin, these devices combine a triaxial accelerometer with gyroscopes and magnetometers for orientation, as well as on board data logging capability and wireless communication for optional data streaming and to coordinate synchronisation with other IMUs in a network. The motivation for application to civil structures is that their capabilities and simple operating procedures make them suitable for modal testing of many types of civil infrastructure of limited dimension including footbridges and floors while also enabling recovering of dynamic forces generated and applied to structures by moving humans. To explore their capabilities in civil applications, the IMUs are evaluated through modal tests on three different structures with increasing challenge of spatial and environmental complexity. These are, a full-scale floor mock-up in a laboratory, a short span road bridge and a seven story office tower. For each case, the results from the IMUs are compared with those from a conventional wired system to identify the limitations. The main conclusion is that the relatively high noise floor and limited communication range will not be a serious limitation in the great majority of typical civil modal test applications where convenient operation is a significant advantage over conventional wired systems.
An inductive narrow-pulse RFID telemetry system for gastric slow waves monitoring.
Javan-Khoskholgh, Amir; Abukhalaf, Zaid; Ji Li; Miller, Larry S; Kiani, Mehdi; Farajidavar, Aydin
2016-08-01
We present a passive data telemetry system for real-time monitoring of gastric electrical activity of a living subject. The system is composed of three subsystems: an implantable unit (IU), a wearable unit (WU), and a stationary unit (SU). Data communication between the IU and WU is based on a radio-frequency identification (RFID) link operating at 13.56 MHz. Since wireless power transmission and reverse data telemetry system share the same inductive interface, a load shift keying (LSK)-based differential pulse position (DPP) coding data communication with only 6.25% duty cycle is developed to guarantee consistent wireless downlink power transmission and uplink high data transfer rate, simultaneously. The clock and data are encoded into one signal by an MSP430 microcontroller (MCU) at the IU side. This signal is sent to the WU through the inductive link, where decoded by an MSP432 MCU. Finally, the retrieved data at the WU are transmitted to the SU connected to a PC via a 2.4 GHz transceiver for real-time display and analysis. The results of the measurements on the implemented test bench, demonstrate IU-WU 125 kb/s and WU-SU 2 Mb/s data transmission rate with no observed mismatch, while the data stream was randomly generated, and matching between the transmitted data by the IU and received by the SU verified by a custom-made automated software.
Wireless link and microelectronics design for retinal prostheses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Wentai
2012-02-29
This project focuses on delivering power and data to the artificial retinal implant inside the eye and the implant microstimulator electronics which delivers the current pulses to stimulate the retinal layer to elicit visual perception. Since the use of invasive means such as tethering wires to transmit power and data results in discomfort to the patients which could eventually cause infection due to the abrasion caused by the wire and contact of the internals of the eye to the external environment, a completely wireless approach is used to transfer both power and data. Power is required inside the eye formore » the microelectronic implant which uses a dual voltage supply scheme (positive and negative) to deliver biphasic (anodic and cathodic) current pulses. Data in the form of digital bits from the data transmitter external to the eye, carries information about the amplitude, phase width, interphase delay, stimulation sequence for each implant electrode. The data receiver unit decodes the digital stream and the microstimulator unit generates the appropriate current stimuli. Since the external unit consisting of the power transmitter can experience coupling a variation with the power receiver due to the patient’s movements, a closed loop approach is used which varies the transmitted power dynamically to automatically compensate for such movements. This report presents the salient features of this research activities and results.« less
Digital implementation of a neural network for imaging
NASA Astrophysics Data System (ADS)
Wood, Richard; McGlashan, Alex; Yatulis, Jay; Mascher, Peter; Bruce, Ian
2012-10-01
This paper outlines the design and testing of a digital imaging system that utilizes an artificial neural network with unsupervised and supervised learning to convert streaming input (real time) image space into parameter space. The primary objective of this work is to investigate the effectiveness of using a neural network to significantly reduce the information density of streaming images so that objects can be readily identified by a limited set of primary parameters and act as an enhanced human machine interface (HMI). Many applications are envisioned including use in biomedical imaging, anomaly detection and as an assistive device for the visually impaired. A digital circuit was designed and tested using a Field Programmable Gate Array (FPGA) and an off the shelf digital camera. Our results indicate that the networks can be readily trained when subject to limited sets of objects such as the alphabet. We can also separate limited object sets with rotational and positional invariance. The results also show that limited visual fields form with only local connectivity.
A novel attack method about double-random-phase-encoding-based image hiding method
NASA Astrophysics Data System (ADS)
Xu, Hongsheng; Xiao, Zhijun; Zhu, Xianchen
2018-03-01
By using optical image processing techniques, a novel text encryption and hiding method applied by double-random phase-encoding technique is proposed in the paper. The first step is that the secret message is transformed into a 2-dimension array. The higher bits of the elements in the array are used to fill with the bit stream of the secret text, while the lower bits are stored specific values. Then, the transformed array is encoded by double random phase encoding technique. Last, the encoded array is embedded on a public host image to obtain the image embedded with hidden text. The performance of the proposed technique is tested via analytical modeling and test data stream. Experimental results show that the secret text can be recovered either accurately or almost accurately, while maintaining the quality of the host image embedded with hidden data by properly selecting the method of transforming the secret text into an array and the superimposition coefficient.