Science.gov

Sample records for wireless medical telemetry

  1. Implantable and ingestible medical devices with wireless telemetry functionalities: a review of current status and challenges.

    PubMed

    Kiourti, Asimina; Psathas, Konstantinos A; Nikita, Konstantina S

    2014-01-01

    Wireless medical telemetry permits the measurement of physiological signals at a distance through wireless technologies. One of the latest applications is in the field of implantable and ingestible medical devices (IIMDs) with integrated antennas for wireless radiofrequency (RF) communication (telemetry) with exterior monitoring/control equipment. Implantable medical devices (MDs) perform an expanding variety of diagnostic and therapeutic functions, while ingestible MDs receive significant attention in gastrointestinal endoscopy. Design of such wireless IIMD telemetry systems is highly intriguing and deals with issues related to: operation frequency selection, electronics and powering, antenna design and performance, and modeling of the wireless channel. In this paper, we attempt to comparatively review the current status and challenges of IIMDs with wireless telemetry functionalities. Full solutions of commercial IIMDs are also recorded. The objective is to provide a comprehensive reference for scientists and developers in the field, while indicating directions for future research. © 2013 Wiley Periodicals, Inc.

  2. 47 CFR 95.1121 - Specific requirements for wireless medical telemetry devices operating in the 1395-1400 and 1427...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Specific requirements for wireless medical... SERVICES Wireless Medical Telemetry Service (WMTS) General Provisions § 95.1121 Specific requirements for wireless medical telemetry devices operating in the 1395-1400 and 1427-1432 MHz bands. Due to the critical...

  3. 47 CFR 95.1121 - Specific requirements for wireless medical telemetry devices operating in the 1395-1400 and 1427...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... wireless medical telemetry devices operating in the 1395-1400 and 1427-1432 MHz bands. Due to the critical... 47 Telecommunication 5 2010-10-01 2010-10-01 false Specific requirements for wireless medical telemetry devices operating in the 1395-1400 and 1427-1432 MHz bands. 95.1121 Section 95.1121...

  4. Medical Telemetry

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Telemetry is the process whereby physiological or other data is acquired by instruments, translated into radio signals and j sent to a receiving station where the signals are decoded and recorded. Extensively used in I space operations, it is finding new Earth applications, among them transmission of medical data between emergency vehicles and hospitals. For example, transmission of an electrocardiogram from an ambulance to a hospital enables a physician to read the telemetered EKG and advise ambulance attendants on emergency procedures. Central Medical Emergency Dispatch (CMED) operates as a regional emergency medical communications center for Cleveland, Ohio and Cuyahoga County. The CMED system includes radio and telephone communications from hospital-to-hospital and from ambulance-to-hospital, but for improved emergency life support CMED sought to add a county-wide telemetry capability. The problem was that there were only eight radio frequencies available for telemetry and there were more than 30 potential users in Cleveland alone. NASA's Lewis Research Center volunteered its expert assistance. The Center's engineers studied the systems of other telemetry using cities, surveyed area hospitals to assure compatibility of telemetry equipment, and advised what types of equipment would be needed in emergency vehicles and at the various hospitals. The Lewis plan suggested that CMED be designated the central coordinating agency for the Cuyahoga County system, monitoring all telemetry frequencies and, when requested, assigning one not in use or one to be used at a sufficient distance that it would create no interference problem.

  5. 47 CFR 95.1121 - Specific requirements for wireless medical telemetry devices operating in the 1395-1400 and 1427...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Specific requirements for wireless medical... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PERSONAL RADIO SERVICES Wireless Medical Telemetry Service (WMTS) General Provisions § 95.1121 Specific requirements for...

  6. High-Performance Wireless Telemetry

    NASA Technical Reports Server (NTRS)

    Griebeler, Elmer; Nawash, Nuha; Buckley, James

    2011-01-01

    Prior technology for machinery data acquisition used slip rings, FM radio communication, or non-real-time digital communication. Slip rings are often noisy, require much space that may not be available, and require access to the shaft, which may not be possible. FM radio is not accurate or stable, and is limited in the number of channels, often with channel crosstalk, and intermittent as the shaft rotates. Non-real-time digital communication is very popular, but complex, with long development time, and objections from users who need continuous waveforms from many channels. This innovation extends the amount of information conveyed from a rotating machine to a data acquisition system while keeping the development time short and keeping the rotating electronics simple, compact, stable, and rugged. The data are all real time. The product of the number of channels, times the bit resolution, times the update rate, gives a data rate higher than available by older methods. The telemetry system consists of a data-receiving rack that supplies magnetically coupled power to a rotating instrument amplifier ring in the machine being monitored. The ring digitizes the data and magnetically couples the data back to the rack, where it is made available. The transformer is generally a ring positioned around the axis of rotation with one side of the transformer free to rotate and the other side held stationary. The windings are laid in the ring; this gives the data immunity to any rotation that may occur. A medium-frequency sine-wave power source in a rack supplies power through a cable to a rotating ring transformer that passes the power on to a rotating set of electronics. The electronics power a set of up to 40 sensors and provides instrument amplifiers for the sensors. The outputs from the amplifiers are filtered and multiplexed into a serial ADC. The output from the ADC is connected to another rotating ring transformer that conveys the serial data from the rotating section to

  7. Wireless powering and data telemetry for biomedical implants.

    PubMed

    Young, Darrin J

    2009-01-01

    Wireless powering and data telemetry techniques for two biomedical implant studies based on (1) wireless in vivo EMG sensor for intelligent prosthetic control and (2) adaptively RF powered implantable bio-sensing microsystem for real-time genetically engineered mice monitoring are presented. Inductive-coupling-based RF powering and passive data telemetry is effective for wireless in vivo EMG sensing, where the internal and external RF coils are positioned with a small separation distance and fixed orientation. Adaptively controlled RF powering and active data transmission are critical for mobile implant application such as real-time physiological monitoring of untethered laboratory animals. Animal implant studies have been successfully completed to demonstrate the wireless and batteryless in vivo sensing capabilities.

  8. Flexible network wireless transceiver and flexible network telemetry transceiver

    DOEpatents

    Brown, Kenneth D.

    2008-08-05

    A transceiver for facilitating two-way wireless communication between a baseband application and other nodes in a wireless network, wherein the transceiver provides baseband communication networking and necessary configuration and control functions along with transmitter, receiver, and antenna functions to enable the wireless communication. More specifically, the transceiver provides a long-range wireless duplex communication node or channel between the baseband application, which is associated with a mobile or fixed space, air, water, or ground vehicle or other platform, and other nodes in the wireless network or grid. The transceiver broadly comprises a communication processor; a flexible telemetry transceiver including a receiver and a transmitter; a power conversion and regulation mechanism; a diplexer; and a phased array antenna system, wherein these various components and certain subcomponents thereof may be separately enclosed and distributable relative to the other components and subcomponents.

  9. Wireless Telemetry and Command (T and C) Program

    NASA Technical Reports Server (NTRS)

    Jiang, Hui; Horan, Stephen

    2000-01-01

    The Wireless Telemetry and Command (T&C) program is to investigate methods of using commercial telecommunications service providers to support command and telemetry services between a remote user and a base station. While the initial development is based on ground networks, the development is being done with an eye towards future space communications needs. Both NASA and the Air Force have indicated a plan to consider the use of commercial telecommunications providers to support their space missions. To do this, there will need to be an understanding of the requirements and limitations of interfacing with the commercial providers. The eventual payoff will be the reduced operations cost and the ability to tap into commercial services being developed by the commercial networks. This should enable easier realization of EP services to the end points, commercial routing of data, and quicker integration of new services into the space mission operations. Therefore, the ultimate goal of this program is not just to provide wireless radio communications for T&C services but to enhance those services through wireless networking and provider enhancements that come with the networks. In the following chapters, the detailed technical procedure will be showed step by step. Chapter 2 will talk about the general idea of simulation as well as the implementation of data acquisition including sensor array data and GPS data. Chapter 3 will talk about how to use LabVEEW and Component Works to do wireless communication simulation and how to distribute the real-time information over the Internet by using Visual Basic and ActiveX controls. Also talk about the test configuration and validation. Chapter 4 will show the test results both from In-Lab test and Networking Test. Chapter 5 will summarize the whole procedure and give the perspective for the future consideration.

  10. Wearable Wireless Telemetry System for Implantable BioMEMS Sensors

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Miranda, Felix A.; Wilson, Jeffrey D.; Simons, Renita E.

    2008-01-01

    Telemetry systems of a type that have been proposed for the monitoring of physiological functions in humans would include the following subsystems: Surgically implanted or ingested units that would comprise combinations of microelectromechanical systems (MEMS)- based sensors [bioMEMS sensors] and passive radio-frequency (RF) readout circuits that would include miniature loop antennas. Compact radio transceiver units integrated into external garments for wirelessly powering and interrogating the implanted or ingested units. The basic principles of operation of these systems are the same as those of the bioMEMS-sensor-unit/external-RFpowering- and-interrogating-unit systems described in "Printed Multi-Turn Loop Antennas for Biotelemetry" (LEW-17879-1) NASA Tech Briefs, Vol. 31, No. 6 (June 2007), page 48, and in the immediately preceding article, "Hand-Held Units for Short-Range Wireless Biotelemetry" (LEW-17483-1). The differences between what is reported here and what was reported in the cited prior articles lie in proposed design features and a proposed mode of operation. In a specific system of the type now proposed, the sensor unit would comprise mainly a capacitive MEMS pressure sensor located in the annular region of a loop antenna (more specifically, a square spiral inductor/ antenna), all fabricated as an integral unit on a high-resistivity silicon chip. The capacitor electrodes, the spiral inductor/antenna, and the conductor lines interconnecting them would all be made of gold. The dimensions of the sensor unit have been estimated to be about 110.4 mm. The external garment-mounted powering/ interrogating unit would include a multi-turn loop antenna and signal-processing circuits. During operation, this external unit would be positioned in proximity to the implanted or ingested unit to provide for near-field, inductive coupling between the loop antennas, which we have as the primary and secondary windings of an electrical transformer.

  11. Micropower circuits for bidirectional wireless telemetry in neural recording applications.

    PubMed

    Neihart, Nathan M; Harrison, Reid R

    2005-11-01

    State-of-the art neural recording systems require electronics allowing for transcutaneous, bidirectional data transfer. As these circuits will be implanted near the brain, they must be small and low power. We have developed micropower integrated circuits for recovering clock and data signals over a transcutaneous power link. The data recovery circuit produces a digital data signal from an ac power waveform that has been amplitude modulated. We have also developed an FM transmitter with the lowest power dissipation reported for biosignal telemetry. The FM transmitter consists of a low-noise biopotential amplifier and a voltage controlled oscillator used to transmit amplified neural signals at a frequency near 433 MHz. All circuits were fabricated in a standard 0.5-microm CMOS VLSI process. The resulting chip is powered through a wireless inductive link. The power consumption of the clock and data recovery circuits is measured to be 129 microW; the power consumption of the transmitter is measured to be 465 microW when using an external surface mount inductor. Using a parasitic antenna less than 2 mm long, a received power level was measured to be -59.73 dBm at a distance of one meter.

  12. A system-level view of optimizing high-channel-count wireless biosignal telemetry.

    PubMed

    Chandler, Rodney J; Gibson, Sarah; Karkare, Vaibhav; Farshchi, Shahin; Marković, Dejan; Judy, Jack W

    2009-01-01

    In this paper we perform a system-level analysis of a wireless biosignal telemetry system. We perform an analysis of each major system component (e.g., analog front end, analog-to-digital converter, digital signal processor, and wireless link), in which we consider physical, algorithmic, and design limitations. Since there are a wide range applications for wireless biosignal telemetry systems, each with their own unique set of requirements for key parameters (e.g., channel count, power dissipation, noise level, number of bits, etc.), our analysis is equally broad. The net result is a set of plots, in which the power dissipation for each component and as the system as a whole, are plotted as a function of the number of channels for different architectural strategies. These results are also compared to existing implementations of complete wireless biosignal telemetry systems.

  13. Wearable Wireless Telemetry System for Implantable Bio-MEMS Sensors

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Miranda, Felix A.; Wilson, Jeffrey D.; Simons, Renita E.

    2006-01-01

    In this paper, a telemetry and contact-less powering system consisting of an implantable bio-MEMS sensor with a miniature printed square spiral chip antenna and an external wearable garment with printed loop antenna is investigated. The wearable garment pick-up antenna and the implantable chip antenna are in close proximity to each other and hence couple inductively through their near-fields and behave as the primary and the secondary circuits of a transformer, respectively. The numerical and experimental results are graphically presented, and include the design parameter values as a function of the geometry, the relative RF magnetic near-field intensity as a function of the distance and angle, and the current density on the strip conductors, for the implantable chip antenna.

  14. Wireless multichannel biopotential recording using an integrated FM telemetry circuit.

    PubMed

    Mohseni, Pedram; Najafi, Khalil; Eliades, Steven J; Wang, Xiaoqin

    2005-09-01

    This paper presents a four-channel telemetric microsystem featuring on-chip alternating current amplification, direct current baseline stabilization, clock generation, time-division multiplexing, and wireless frequency-modulation transmission of microvolt- and millivolt-range input biopotentials in the very high frequency band of 94-98 MHz over a distance of approximately 0.5 m. It consists of a 4.84-mm2 integrated circuit, fabricated using a 1.5-microm double-poly double-metal n-well standard complementary metal-oxide semiconductor process, interfaced with only three off-chip components on a custom-designed printed-circuit board that measures 1.7 x 1.2 x 0.16 cm3, and weighs 1.1 g including two miniature 1.5-V batteries. We characterize the microsystem performance, operating in a truly wireless fashion in single-channel and multichannel operation modes, via extensive benchtop and in vitro tests in saline utilizing two different micromachined neural recording microelectrodes, while dissipating approximately 2.2 mW from a 3-V power supply. Moreover, we demonstrate successful wireless in vivo recording of spontaneous neural activity at 96.2 MHz from the auditory cortex of an awake marmoset monkey at several transmission distances ranging from 10 to 50 cm with signal-to-noise ratios in the range of 8.4-9.5 dB.

  15. Wireless Amperometric Neurochemical Monitoring Using an Integrated Telemetry Circuit

    PubMed Central

    Roham, Masoud; Halpern, Jeffrey M.; Martin, Heidi B.; Chiel, Hillel J.

    2015-01-01

    An integrated circuit for wireless real-time monitoring of neurochemical activity in the nervous system is described. The chip is capable of conducting high-resolution amperometric measurements in four settings of the input current. The chip architecture includes a first-order ΔΣ modulator (ΔΣM) and a frequency-shift-keyed (FSK) voltage-controlled oscillator (VCO) operating near 433 MHz. It is fabricated using the AMI 0.5 μm double-poly triple-metal n-well CMOS process, and requires only one off-chip component for operation. Measured dc current resolutions of ~250 fA, ~1.5 pA, ~4.5 pA, and ~17 pA were achieved for input currents in the range of ±5, ±37, ±150, and ±600 nA, respectively. The chip has been interfaced with a diamond-coated, quartz-insulated, microneedle, tungsten electrode, and successfully recorded dopamine concentration levels as low as 0.5 μM wirelessly over a transmission distance of ~0.5 m in flow injection analysis experiments. PMID:18990633

  16. Wireless amperometric neurochemical monitoring using an integrated telemetry circuit.

    PubMed

    Roham, Masoud; Halpern, Jeffrey M; Martin, Heidi B; Chiel, Hillel J; Mohseni, Pedram

    2008-11-01

    An integrated circuit for wireless real-time monitoring of neurochemical activity in the nervous system is described. The chip is capable of conducting high-resolution amperometric measurements in four settings of the input current. The chip architecture includes a first-order Delta Sigma modulator (Delta Sigma M) and a frequency-shift-keyed (FSK) voltage-controlled oscillator (VCO) operating near 433 MHz. It is fabricated using the AMI 0.5 microm double-poly triple-metal n-well CMOS process, and requires only one off-chip component for operation. Measured dc current resolutions of approximately 250 fA, approximately 1.5 pA, approximately 4.5 pA, and approximately 17 pA were achieved for input currents in the range of +/-5, +/-37, +/-150, and +/-600 nA, respectively. The chip has been interfaced with a diamond-coated, quartz-insulated, microneedle, tungsten electrode, and successfully recorded dopamine concentration levels as low as 0.5 microM wirelessly over a transmission distance of approximately 0.5 m in flow injection analysis experiments.

  17. Design of a telemetry system based on wireless power transmission for physiological parameter monitoring

    NASA Astrophysics Data System (ADS)

    Jia, Zhiwei; Yan, Guozheng; Zhu, Bingquan

    2015-04-01

    An implanted telemetry system for experimental animals with or without anaesthesia can be used to continuously monitor physiological parameters. This system is significant not only in the study of organisms but also in the evaluation of drug efficacy, artificial organs, and auxiliary devices. The system is composed of a miniature electronic capsule, a wireless power transmission module, a data-recording device, and a processing module. An electrocardiograph, a temperature sensor, and a pressure sensor are integrated in the miniature electronic capsule, in which the signals are transmitted in vitro by wireless communication after filtering, amplification, and A/D sampling. To overcome the power shortage of batteries, a wireless power transmission module based on electromagnetic induction was designed. The transmitting coil of a rectangular-section solenoid and a 3D receiving coil are proposed according to stability and safety constraints. Experiments show that at least 150 mW of power could pick up on the load in a volume of Φ10.5 mm × 11 mm, with a transmission efficiency of 2.56%. Vivisection experiments verified the feasibility of the integrated radio-telemetry system.

  18. Development of a methodology to measure the effect of ergot alkaloids on forestomach motility using real-time wireless telemetry

    USDA-ARS?s Scientific Manuscript database

    The objectives of these experiments were to characterize rumen motility patterns of cattle fed once daily using a real-time wireless telemetry system, determine when to measure rumen motility with this system, and determine the effect of ruminal dosing of ergot alkaloids on rumen motility. Ruminally...

  19. Integrating legacy medical data sensors in a wireless network infrastucture.

    PubMed

    Dembeyiotis, S; Konnis, G; Koutsouris, D

    2005-01-01

    In the process of developing a wireless networking solution to provide effective field-deployable communications and telemetry support for rescuers during major natural disasters, we are faced with the task of interfacing the multitude of medical and other legacy data collection sensors to the network grid. In this paper, we detail a number of solutions, with particular attention given to the issue of data security. The chosen implementation allows for sensor control and management from remote network locations, while the sensors can wirelessly transmit their data to nearby network nodes securely, utilizing the latest commercially available cryptography solutions. Initial testing validates the design choices, while the network-enabled sensors are being integrated in the overall wireless network security framework.

  20. A Wireless FSCV Monitoring IC With Analog Background Subtraction and UWB Telemetry.

    PubMed

    Dorta-Quiñones, Carlos I; Wang, Xiao Y; Dokania, Rajeev K; Gailey, Alycia; Lindau, Manfred; Apsel, Alyssa B

    2016-04-01

    A 30-μW wireless fast-scan cyclic voltammetry monitoring integrated circuit for ultra-wideband (UWB) transmission of dopamine release events in freely-behaving small animals is presented. On-chip integration of analog background subtraction and UWB telemetry yields a 32-fold increase in resolution versus standard Nyquist-rate conversion alone, near a four-fold decrease in the volume of uplink data versus single-bit, third-order, delta-sigma modulation, and more than a 20-fold reduction in transmit power versus narrowband transmission for low data rates. The 1.5- mm(2) chip, which was fabricated in 65-nm CMOS technology, consists of a low-noise potentiostat frontend, a two-step analog-to-digital converter (ADC), and an impulse-radio UWB transmitter (TX). The duty-cycled frontend and ADC/UWB-TX blocks draw 4 μA and 15 μA from 3-V and 1.2-V supplies, respectively. The chip achieves an input-referred current noise of 92 pA(rms) and an input current range of ±430 nA at a conversion rate of 10 kHz. The packaged device operates from a 3-V coin-cell battery, measures 4.7 × 1.9 cm(2), weighs 4.3 g (including the battery and antenna), and can be carried by small animals. The system was validated by wirelessly recording flow-injection of dopamine with concentrations in the range of 250 nM to 1 μM with a carbon-fiber microelectrode (CFM) using 300-V/s FSCV.

  1. A Wireless FSCV Monitoring IC with Analog Background Subtraction and UWB Telemetry

    PubMed Central

    Dorta-Quiñones, Carlos I.; Wang, Xiao Y.; Dokania, Rajeev K.; Gailey, Alycia; Lindau, Manfred; Apsel, Alyssa B.

    2015-01-01

    A 30-μW wireless fast-scan cyclic voltammetry monitoring integrated circuit for ultra-wideband (UWB) transmission of dopamine release events in freely-behaving small animals is presented. On-chip integration of analog background subtraction and UWB telemetry yields a 32-fold increase in resolution versus standard Nyquist-rate conversion alone, near a four-fold decrease in the volume of uplink data versus single-bit, third-order, delta-sigma modulation, and more than a 20-fold reduction in transmit power versus narrowband transmission for low data rates. The 1.5-mm2 chip, which was fabricated in 65-nm CMOS technology, consists of a low-noise potentiostat frontend, a two-step analog-to-digital converter (ADC), and an impulse-radio UWB transmitter (TX). The duty-cycled frontend and ADC/UWB-TX blocks draw 4 μA and 15 μA from 3-V and 1.2-V supplies, respectively. The chip achieves an input-referred current noise of 92 pArms and an input current range of ±430 nA at a conversion rate of 10 kHz. The packaged device operates from a 3-V coin-cell battery, measures 4.7 × 1.9 cm2, weighs 4.3 g (including the battery and antenna), and can be carried by small animals. The system was validated by wirelessly recording flow-injection of dopamine with concentrations in the range of 250 nM to 1 μM with a carbon-fiber microelectrode (CFM) using 300-V/s FSCV. PMID:26057983

  2. Wireless communication with implanted medical devices using the conductive properties of the body.

    PubMed

    Ferguson, John E; Redish, A David

    2011-07-01

    Many medical devices that are implanted in the body use wires or wireless radiofrequency telemetry to communicate with circuitry outside the body. However, the wires are a common source of surgical complications, including breakage, infection and electrical noise. In addition, radiofrequency telemetry requires large amounts of power and results in low-efficiency transmission through biological tissue. As an alternative, the conductive properties of the body can be used to enable wireless communication with implanted devices. In this article, several methods of intrabody communication are described and compared. In addition to reducing the complications that occur with current implantable medical devices, intrabody communication can enable novel types of miniature devices for research and clinical applications.

  3. Embedded Acoustic Sensor Array for Engine Fan Noise Source Diagnostic Test: Feasibility of Noise Telemetry via Wireless Smart Sensors

    NASA Technical Reports Server (NTRS)

    Zaman, Afroz; Bauch, Matthew; Raible, Daniel

    2011-01-01

    Aircraft engines have evolved into a highly complex system to meet ever-increasing demands. The evolution of engine technologies has primarily been driven by fuel efficiency, reliability, as well as engine noise concerns. One of the sources of engine noise is pressure fluctuations that are induced on the stator vanes. These local pressure fluctuations, once produced, propagate and coalesce with the pressure waves originating elsewhere on the stator to form a spinning pressure pattern. Depending on the duct geometry, air flow, and frequency of fluctuations, these spinning pressure patterns are self-sustaining and result in noise which eventually radiate to the far-field from engine. To investigate the nature of vane pressure fluctuations and the resulting engine noise, unsteady pressure signatures from an array of embedded acoustic sensors are recorded as a part of vane noise source diagnostics. Output time signatures from these sensors are routed to a control and data processing station adding complexity to the system and cable loss to the measured signal. "Smart" wireless sensors have data processing capability at the sensor locations which further increases the potential of wireless sensors. Smart sensors can process measured data locally and transmit only the important information through wireless communication. The aim of this wireless noise telemetry task was to demonstrate a single acoustic sensor wireless link for unsteady pressure measurement, and thus, establish the feasibility of distributed smart sensors scheme for aircraft engine vane surface unsteady pressure data transmission and characterization.

  4. SMS-Based Medical Diagnostic Telemetry Data Transmission Protocol for Medical Sensors

    PubMed Central

    Townsend, Ben; Abawajy, Jemal; Kim, Tai-Hoon

    2011-01-01

    People with special medical monitoring needs can, these days, be sent home and remotely monitored through the use of data logging medical sensors and a transmission base-station. While this can improve quality of life by allowing the patient to spend most of their time at home, most current technologies rely on hardwired landline technology or expensive mobile data transmissions to transmit data to a medical facility. The aim of this paper is to investigate and develop an approach to increase the freedom of a monitored patient and decrease costs by utilising mobile technologies and SMS messaging to transmit data from patient to medico. To this end, we evaluated the capabilities of SMS and propose a generic communications protocol which can work within the constraints of the SMS format, but provide the necessary redundancy and robustness to be used for the transmission of non-critical medical telemetry from data logging medical sensors. PMID:22163845

  5. National Training Course. Emergency Medical Technician. Paramedic. Instructor's Lesson Plans. Module XV. Telemetry and Communications.

    ERIC Educational Resources Information Center

    National Highway Traffic Safety Administration (DOT), Washington, DC.

    This instructor's lesson plan guide on telemetry and communications is one of fifteen modules designed for use in the training of emergency medical technicians (paramedics). Two units of study are presented: (1) emergency medical services communications systems (items of equipment and such radio communications concepts as frequency allocation,…

  6. RIPPLE: Scalable Medical Telemetry System for Supporting Combat Rescue

    DTIC Science & Technology

    2014-01-09

    This reduces the burden of transporting multiple systems. For Ripple, we prototyped a system that combined a pulse oximeter , an electrocardiogram, a...o Nonin OEM III Module or Nonin XPOD Pulse Oximeters o Nonin 8000 series PureLight sensors o Shimmer Sensing ECG Board Identify applicable...equipment, e.g. pulse and respiration rate. Advances in wireless communications and miniaturization of electronics has led to the development and

  7. A Differential Pressure Instrument with Wireless Telemetry for In-Situ Measurement of Fluid Flow across Sediment-Water Boundaries

    PubMed Central

    Gardner, Alan T.; Karam, Hanan N.; Mulligan, Ann E.; Harvey, Charles F.; Hammar, Terence R.; Hemond, Harold F.

    2009-01-01

    An instrument has been built to carry out continuous in-situ measurement of small differences in water pressure, conductivity and temperature, in natural surface water and groundwater systems. A low-cost data telemetry system provides data on shore in real time if desired. The immediate purpose of measurements by this device is to continuously infer fluxes of water across the sediment-water interface in a complex estuarine system; however, direct application to assessment of sediment-water fluxes in rivers, lakes, and other systems is also possible. Key objectives of the design include both low cost, and accuracy of the order of ±0.5 mm H2O in measured head difference between the instrument's two pressure ports. These objectives have been met, although a revision to the design of one component was found to be necessary. Deployments of up to nine months, and wireless range in excess of 300 m have been demonstrated. PMID:22389608

  8. Wireless power-receiving assembly for a telemetry system in a high-temperature environment of a combustion turbine engine

    SciTech Connect

    Bevly, III, Alex J.; McConkey, Joshua S.

    In a telemetry system (100) in a high-temperature environment of a combustion turbine engine (10), a wireless power-receiving coil assembly (116) may be affixed to a movable component (104) of the turbine engine. Power-receiving coil assembly (116) may include a radio-frequency transparent housing (130) having an opening (132). A lid (134) may be provided to close the opening of the housing. Lid (134) may be positioned to provide support against a surface (120) of the movable component. An induction coil (133) is disposed in the housing distally away from the lid and encased between a first layer (136) and amore » last layer (140) of a potting adhesive. Lid (134) is arranged to provide vibrational buffering between the surface (120) of the movable component (104) and the layers encasing the induction coil.« less

  9. Development of a methodology to measure the effect of ergot alkaloids on forestomach motility using real-time wireless telemetry

    NASA Astrophysics Data System (ADS)

    Egert, Amanda; Klotz, James; McLeod, Kyle; Harmon, David

    2014-10-01

    The objectives of these experiments were to characterize rumen motility patterns of cattle fed once daily using a real-time wireless telemetry system, determine when to measure rumen motility with this system, and determine the effect of ruminal dosing of ergot alkaloids on rumen motility. Ruminally cannulated Holstein steers (n = 8) were fed a basal diet of alfalfa cubes once daily. Rumen motility was measured by monitoring real-time pressure changes within the rumen using wireless telemetry and pressure transducers. Experiment 1 consisted of three 24-h rumen pressure collections beginning immediately after feeding. Data were recorded, stored, and analyzed using iox2 software and the rhythmic analyzer. All motility variables differed (P < 0.01) between hours and thirds (8-h periods) of the day. There were no differences between days for most variables. The variance of the second 8-h period of the day was less than (P < 0.01) the first for area and less than the third for amplitude, frequency, duration, and area (P < 0.05). These data demonstrated that the second 8-h period of the day was the least variable for many measures of motility and would provide the best opportunity for testing differences in motility due to treatments. In Exp. 2, the steers (n = 8) were pair-fed the basal diet of Exp. 1 and dosed with endophyte-free (E-) or endophyte-infected (E+; 0 or 10 μg ergovaline + ergovalinine / kg BW; respectively) tall fescue seed before feeding for 15 d. Rumen motility was measured for 8 h beginning 8 h after feeding for the first 14 d of seed dosing. Blood samples were taken on d 1, 7, and 15, and rumen content samples were taken on d 15. Baseline (P = 0.06) and peak (P = 0.04) pressure were lower for E+ steers. Water intake tended (P = 0.10) to be less for E+ steers the first 8 hour period after feeding. The E+ seed treatment at this dosage under thermoneutral conditions did not significantly affect rumen motility, ruminal fill, or dry matter of rumen

  10. In Vivo Characterization of a Wireless Telemetry Module for a Capsule Endoscopy System Utilizing a Conformal Antenna.

    PubMed

    Faerber, Julia; Cummins, Gerard; Pavuluri, Sumanth Kumar; Record, Paul; Rodriguez, Adrian R Ayastuy; Lay, Holly S; McPhillips, Rachael; Cox, Benjamin F; Connor, Ciaran; Gregson, Rachael; Clutton, Richard Eddie; Khan, Sadeque Reza; Cochran, Sandy; Desmulliez, Marc P Y

    2018-02-01

    This paper describes the design, fabrication, packaging, and performance characterization of a conformal helix antenna created on the outside of a capsule endoscope designed to operate at a carrier frequency of 433 MHz within human tissue. Wireless data transfer was established between the integrated capsule system and an external receiver. The telemetry system was tested within a tissue phantom and in vivo porcine models. Two different types of transmission modes were tested. The first mode, replicating normal operating conditions, used data packets at a steady power level of 0 dBm, while the capsule was being withdrawn at a steady rate from the small intestine. The second mode, replicating the worst-case clinical scenario of capsule retention within the small bowel, sent data with stepwise increasing power levels of -10, 0, 6, and 10 dBm, with the capsule fixed in position. The temperature of the tissue surrounding the external antenna was monitored at all times using thermistors embedded within the capsule shell to observe potential safety issues. The recorded data showed, for both modes of operation, a low error transmission of 10 -3 packet error rate and 10 -5 bit error rate and no temperature increase of the tissue according to IEEE standards.

  11. Privacy Challenges for Wireless Medical Devices

    SciTech Connect

    Lagesse, Brent J

    2010-01-01

    Implantable medical devices are becoming more pervasive as new technologies increase their reliability and safety. Furthermore, these devices are becoming increasingly reliant on wireless communication for interaction with the device. Such technologies have the potential to leak information that could be utilized by an attacker to threaten the lives of patients. Privacy of patient information is essential; however, this information is not the only privacy issue that must be considered. In this paper, we discuss why information privacy is insufficient for protecting patients from some attacks and how information regarding the presence of individual devices can leak vulnerabilities. Furthermore, wemore » examine existing privacy enhancing algorithms and discuss their applicability to implantable medical devices.« less

  12. Low-power wireless medical sensor platform.

    PubMed

    Dolgov, Arseny B; Zane, Regan

    2006-01-01

    Long-term, low duty cycle monitoring of patients with a variety of disabilities or health concerns is often required. In this paper, we discuss the design considerations and implementation of an ultra-low power wireless medical sensor platform, suitable for a wide range of medical and sports applications. A hardware demonstration prototype based on readily available components is presented with sensors for 3-axis acceleration, temperature and galvanic skin response. Detailed power measurements and operation results are shown, demonstrating a sensor life span of more than 10 years on a single 200 mAh lithium watch battery using low current standby techniques with an average power of less than 5 muW and a 10 second sample interval.

  13. Implantable Wireless MEMS Sensors for Medical Uses

    NASA Technical Reports Server (NTRS)

    Chimbayo, Alexander

    2006-01-01

    Sensors designed and fabricated according to the principles of microelectromechanical systems (MEMS) are being developed for several medical applications in outer space and on Earth. The designs of these sensors are based on a core design family of pressure sensors, small enough to fit into the eye of a needle, that are fabricated by a "dissolved wafer" process. The sensors are expected to be implantable, batteryless, and wireless. They would be both powered and interrogated by hand-held radio transceivers from distances up to about 6 in. (about 15 cm). One type of sensor would be used to measure blood pressure, particularly for congestive heart failure. Another type would be used to monitor fluids in patients who have hydrocephalus (high brain pressure). Still other types would be used to detect errors in delivery of drugs and to help patients having congestive heart failure.

  14. In Vitro Testing of an Implantable Wireless Telemetry System for Long-Term Electromyography Recordings in Large Animals.

    PubMed

    Kneisz, Lukas; Unger, Ewald; Lanmüller, Hermann; Mayr, Winfried

    2015-10-01

    Multichannel bio-signal recording in undisturbed in vivo conditions is a frequent demand in experimental work for development of methodology and associated equipment for functional electrical stimulation (FES) application, limb prosthesis, and diagnostic tools in contemporary rehabilitation efforts. Intramuscular electromyogram (EMG) recordings can provide comprehensive insight in complex interactions of agonistic and antagonistic muscles during movement tasks and in contrast act as reliable control signals for both neuroprosthesis and mechanical prosthesis. We fabricated a fully implantable device, which is capable of recording electromyography signals from inside a body and transmit these signals wirelessly to an external receiver. The developed analog front end uses only two electrodes per channel, provides a gain of 60 dB, and incorporates a band pass filter with lower cut-off frequency of 4 Hz and upper cut-off frequency of 480 Hz. The bidirectional wireless data link, which operates in the 2.4 GHz Industrial, Scientific and Medical band, is designed for transmission distances of 10 m using an application data rate of 1 kSps for each of the two channels. Performed in vitro tests with the devices coated in epoxy resin and inserted into a phantom with tissue-equivalent characteristics confirmed the functionality of our concept and the measurement results are consistent with those from preceding simulations. Copyright © 2015 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  15. Bluetooth Low Energy: Wireless Connectivity for Medical Monitoring

    PubMed Central

    Omre, Alf Helge

    2010-01-01

    Electronic wireless sensors could cut medical costs by enabling physicians to remotely monitor vital signs such as blood pressure, blood glucose, and blood oxygenation while patients remain at home. According to the IDC report “Worldwide Bluetooth Semiconductor 2008-2012 Forecast,” published November 2008, a forthcoming radio frequency communication (“wireless connectivity”) standard, Bluetooth low energy, will link wireless sensors via radio signals to the 70% of cell phones and computers likely to be fitted with the next generation of Bluetooth wireless technology, leveraging a ready-built infrastructure for data transmission. Analysis of trends indicated by this data can help physicians better manage diseases such as diabetes. The technology also addresses the concerns of cost, compatibility, and interoperability that have previously stalled widespread adoption of wireless technology in medical applications. PMID:20307407

  16. Bluetooth low energy: wireless connectivity for medical monitoring.

    PubMed

    Omre, Alf Helge

    2010-03-01

    Electronic wireless sensors could cut medical costs by enabling physicians to remotely monitor vital signs such as blood pressure, blood glucose, and blood oxygenation while patients remain at home. According to the IDC report "Worldwide Bluetooth Semiconductor 2008-2012 Forecast," published November 2008, a forthcoming radio frequency communication ("wireless connectivity") standard, Bluetooth low energy, will link wireless sensors via radio signals to the 70% of cell phones and computers likely to be fitted with the next generation of Bluetooth wireless technology, leveraging a ready-built infrastructure for data transmission. Analysis of trends indicated by this data can help physicians better manage diseases such as diabetes. The technology also addresses the concerns of cost, compatibility, and interoperability that have previously stalled widespread adoption of wireless technology in medical applications. (c) 2010 Diabetes Technology Society.

  17. 30 pJ/b, 67 Mbps, Centimeter-to-Meter Range Data Telemetry With an IR-UWB Wireless Link.

    PubMed

    Ebrazeh, Ali; Mohseni, Pedram

    2015-06-01

    This paper reports an energy-efficient, impulse radio ultra wideband (IR-UWB) wireless link operating in 3-5 GHz for data telemetry over centimeter-to-meter range distances at rates extended to tens of Mbps. The link comprises an all-digital, integrated transmitter (TX) fabricated in 90 nm 1P/9M CMOS that incorporates a waveform-synthesis pulse generator and a timing generator for on-off-keying (OOK) pulse modulation and phase scrambling. The link also incorporates an energy-detection receiver (RX) realized with commercial off-the-shelf (COTS) components that performs radio-frequency (RF) filtering, amplification, logarithmic power detection for data demodulation and automatic level control for robust operation in the presence of distance variations. Employing a miniaturized, UWB, chip antenna for the TX and RX, wireless transmission of pseudo-random binary sequence (PRBS) data at rates up to 50 Mbps over 10 cm-1 m is shown. Further, employing a high-gain horn antenna for the RX, wireless transmission of PRBS data at rates up to 67 Mbps over 50 cm-4 m is shown with a TX energy consumption of 30 pJ/b (i.e., power consumption of 2 mW) from 1.2 V. The measured bit error rate (BER) in both cases is < 10(-7) . Results from wireless recording of the background current of a carbon-fiber microelectrode (CFM) in one fast-scan cyclic voltammetry (FSCV) scan using the IR-UWB link are also included, exhibiting excellent match with those obtained from a conventional frequency-shift-keyed (FSK) link at ~433 MHz.

  18. ``Low Power Wireless Technologies: An Approach to Medical Applications''

    NASA Astrophysics Data System (ADS)

    Bellido O., Francisco J.; González R., Miguel; Moreno M., Antonio; de La Cruz F, José Luis

    Wireless communication supposed a great both -quantitative and qualitative, jump in the management of the information, allowing the access and interchange of it without the need of a physical cable connection. The wireless transmission of voice and information has remained in constant evolution, arising new standards like BluetoothTM, WibreeTM or ZigbeeTM developed under the IEEE 802.15 norm. These newest wireless technologies are oriented to systems of communication of short-medium distance and optimized for a low cost and minor consume, becoming recognized as a flexible and reliable medium for data communications across a broad range of applications due to the potential that the wireless networks presents to operate in demanding environments providing clear advantages in cost, size, power, flexibility, and distributed intelligence. About the medical applications, the remote health or telecare (also called eHealth) is getting a bigger place into the manufacturers and medical companies, in order to incorporate products for assisted living and remote monitoring of health parameteres. At this point, the IEEE 1073, Personal Health Devices Working Group, stablish the framework for these kind of applications. Particularly, the 1073.3.X describes the physical and transport layers, where the new ultra low power short range wireless technologies can play a big role, providing solutions that allow the design of products which are particularly appropriate for monitor people’s health with interoperability requirements.

  19. Wireless Distribution Systems To Support Medical Response to Disasters

    PubMed Central

    Arisoylu, Mustafa; Mishra, Rajesh; Rao, Ramesh; Lenert, Leslie A.

    2005-01-01

    We discuss the design of multi-hop access networks with multiple gateways that supports medical response to disasters. We examine and implement protocols to ensure high bandwidth, robust, self-healing and secure wireless multi-hop access networks for extreme conditions. Address management, path setup, gateway discovery and selection protocols are described. Future directions and plans are also considered. PMID:16779171

  20. Open-Source Telemedicine Platform for Wireless Medical Video Communication

    PubMed Central

    Panayides, A.; Eleftheriou, I.; Pantziaris, M.

    2013-01-01

    An m-health system for real-time wireless communication of medical video based on open-source software is presented. The objective is to deliver a low-cost telemedicine platform which will allow for reliable remote diagnosis m-health applications such as emergency incidents, mass population screening, and medical education purposes. The performance of the proposed system is demonstrated using five atherosclerotic plaque ultrasound videos. The videos are encoded at the clinically acquired resolution, in addition to lower, QCIF, and CIF resolutions, at different bitrates, and four different encoding structures. Commercially available wireless local area network (WLAN) and 3.5G high-speed packet access (HSPA) wireless channels are used to validate the developed platform. Objective video quality assessment is based on PSNR ratings, following calibration using the variable frame delay (VFD) algorithm that removes temporal mismatch between original and received videos. Clinical evaluation is based on atherosclerotic plaque ultrasound video assessment protocol. Experimental results show that adequate diagnostic quality wireless medical video communications are realized using the designed telemedicine platform. HSPA cellular networks provide for ultrasound video transmission at the acquired resolution, while VFD algorithm utilization bridges objective and subjective ratings. PMID:23573082

  1. Open-source telemedicine platform for wireless medical video communication.

    PubMed

    Panayides, A; Eleftheriou, I; Pantziaris, M

    2013-01-01

    An m-health system for real-time wireless communication of medical video based on open-source software is presented. The objective is to deliver a low-cost telemedicine platform which will allow for reliable remote diagnosis m-health applications such as emergency incidents, mass population screening, and medical education purposes. The performance of the proposed system is demonstrated using five atherosclerotic plaque ultrasound videos. The videos are encoded at the clinically acquired resolution, in addition to lower, QCIF, and CIF resolutions, at different bitrates, and four different encoding structures. Commercially available wireless local area network (WLAN) and 3.5G high-speed packet access (HSPA) wireless channels are used to validate the developed platform. Objective video quality assessment is based on PSNR ratings, following calibration using the variable frame delay (VFD) algorithm that removes temporal mismatch between original and received videos. Clinical evaluation is based on atherosclerotic plaque ultrasound video assessment protocol. Experimental results show that adequate diagnostic quality wireless medical video communications are realized using the designed telemedicine platform. HSPA cellular networks provide for ultrasound video transmission at the acquired resolution, while VFD algorithm utilization bridges objective and subjective ratings.

  2. A low noise remotely controllable wireless telemetry system for single-unit recording in rats navigating in a vertical maze.

    PubMed

    Chen, Hsin-Yung; Wu, Jin-Shang; Hyland, Brian; Lu, Xiao-Dong; Chen, Jia Jin Jason

    2008-08-01

    The use of cables for recording neural activity limits the scope of behavioral tests used in conscious free-moving animals. Particularly, cable attachments make it impossible to record in three-dimensional (3D) mazes where levels are vertically stacked or in enclosed spaces. Such environments are of particular interest in investigations of hippocampal place cells, in which neural activity is correlated with spatial position in the environment. We developed a flexible miniaturized Bluetooth-based wireless data acquisition system. The wireless module included an 8-channel analogue front end, digital controller, and Bluetooth transceiver mounted on a backpack. Our bidirectional wireless design allowed all data channels to be previewed at 1 kHz sample rate, and one channel, selected by remote control, to be sampled at 10 kHz. Extracellular recordings of neuronal activity are highly susceptible to ambient electrical noise due to the high electrode impedance. Through careful design of appropriate shielding and hardware configuration to avoid ground loops, mains power and Bluetooth hopping frequency noise were reduced sufficiently to yield signal quality comparable to those recorded by wired systems. With this system we were able to obtain single-unit recordings of hippocampal place cells in rats running an enclosed vertical maze, over a range of 5 m.

  3. Security Belt for Wireless Implantable Medical Devices.

    PubMed

    Kulaç, Selman

    2017-09-19

    In this study, a new protective design compatible with existing non-secure systems was proposed, since it is focused on the secure communication of wireless IMD systems in all transmissions. This new protector is an external wearable device and appears to be a belt fitted around for the patients IMD implanted. However, in order to provide effective full duplex transmissions and physical layer security, some sophisticated transceiver antennas have been placed on the belt. In this approach, beam-focused multi-antennas in optimal positions on the belt are randomly switched when transmissions to the IMD are performed and multi-jammer switching with MRC combining or majority-rule based receiving techniques are applied when transmissions from the IMD are carried out. This approach can also reduce the power consumption of the IMDs and contribute to the prolongation of the IMD's battery life.

  4. Wireless medical sensor networks: design requirements and enabling technologies.

    PubMed

    Vallejos de Schatz, Cecilia H; Medeiros, Henry Ponti; Schneider, Fabio K; Abatti, Paulo J

    2012-06-01

    This article analyzes wireless communication protocols that could be used in healthcare environments (e.g., hospitals and small clinics) to transfer real-time medical information obtained from noninvasive sensors. For this purpose the features of the three currently most widely used protocols-namely, Bluetooth(®) (IEEE 802.15.1), ZigBee (IEEE 802.15.4), and Wi-Fi (IEEE 802.11)-are evaluated and compared. The important features under consideration include data bandwidth, frequency band, maximum transmission distance, encryption and authentication methods, power consumption, and current applications. In addition, an overview of network requirements with respect to medical sensor features, patient safety and patient data privacy, quality of service, and interoperability between other sensors is briefly presented. Sensor power consumption is also discussed because it is considered one of the main obstacles for wider adoption of wireless networks in medical applications. The outcome of this assessment will be a useful tool in the hands of biomedical engineering researchers. It will provide parameters to select the most effective combination of protocols to implement a specific wireless network of noninvasive medical sensors to monitor patients remotely in the hospital or at home.

  5. Telemetry Technology

    NASA Technical Reports Server (NTRS)

    1997-01-01

    In 1990, Avtec Systems, Inc. developed its first telemetry boards for Goddard Space Flight Center. Avtec products now include PC/AT, PCI and VME-based high speed I/O boards and turn-key systems. The most recent and most successful technology transfer from NASA to Avtec is the Programmable Telemetry Processor (PTP), a personal computer- based, multi-channel telemetry front-end processing system originally developed to support the NASA communication (NASCOM) network. The PTP performs data acquisition, real-time network transfer, and store and forward operations. There are over 100 PTP systems located in NASA facilities and throughout the world.

  6. Telemetry Standards

    DTIC Science & Technology

    1999-01-01

    fMr- ir ») 5<s © oo vo «o vo vo t- 3 -6 TABLE 3 - 3 . REFERENCE SIGNAL USAGE Reference Frequencies for Tape Speed and Flutter Compensation...maximum frequency response of tables 3 -1 and 3 -2, !K. M. Uglow, Noise and Bandwidth in FM/FM Radio Telemetry. IRE Transaction on Telemetry and...t4 u N s O i Q • I-H D-12 Bit Rate Clock Input ’ r if ir it if , IF RNRZ-L Data 1 2 3 15 - Stage Shift Register 13

  7. Wireless energy transfer platform for medical sensors and implantable devices.

    PubMed

    Zhang, Fei; Hackworth, Steven A; Liu, Xiaoyu; Chen, Haiyan; Sclabassi, Robert J; Sun, Mingui

    2009-01-01

    Witricity is a newly developed technique for wireless energy transfer. This paper presents a frequency adjustable witricity system to power medical sensors and implantable devices. New witricity resonators are designed for both energy transmission and reception. A prototype platform is described, including an RF power source, two resonators with new structures, and inductively coupled input and output stages. In vitro experiments, both in open air and using a human head phantom consisting of simulated tissues, are employed to verify the feasibility of this platform. An animal model is utilized to evaluate in vivo energy transfer within the body of a laboratory pig. Our experiments indicate that witricity is an effective new tool for providing a variety of medical sensors and devices with power.

  8. Wireless clinical alerts for physiologic, laboratory and medication data.

    PubMed Central

    Shabot, M. M.; LoBue, M.; Chen, J.

    2000-01-01

    A fully interfaced clinical information system (CIS) contains physiologic, laboratory, blood gas, medication and other data that can be used as the information base for a comprehensive alerting system. Coupled with an event driven rules engine, a CIS can generate clinical alerts which may both prevent medical errors and assist caregivers in responding to critical events in a timely way. The authors have developed a clinical alerting system which delivers alerts and reminders to clinicians in real time via a alphanumeric display pagers. This paper will describe the system, the type and number of alerts generated, and the impact on clinical practice. A major issue remains in measuring the impact of wireless alerts on patient outcomes. PMID:11079992

  9. Using digital watermarking to enhance security in wireless medical image transmission.

    PubMed

    Giakoumaki, Aggeliki; Perakis, Konstantinos; Banitsas, Konstantinos; Giokas, Konstantinos; Tachakra, Sapal; Koutsouris, Dimitris

    2010-04-01

    During the last few years, wireless networks have been increasingly used both inside hospitals and in patients' homes to transmit medical information. In general, wireless networks suffer from decreased security. However, digital watermarking can be used to secure medical information. In this study, we focused on combining wireless transmission and digital watermarking technologies to better secure the transmission of medical images within and outside the hospital. We utilized an integrated system comprising the wireless network and the digital watermarking module to conduct a series of tests. The test results were evaluated by medical consultants. They concluded that the images suffered no visible quality degradation and maintained their diagnostic integrity. The proposed integrated system presented reasonable stability, and its performance was comparable to that of a fixed network. This system can enhance security during the transmission of medical images through a wireless channel.

  10. On-line telemetry: prospective assessment of accuracy in an all-volunteer emergency medical service system.

    PubMed

    Hollander, J E; Delagi, R; Sciammarella, J; Viccellio, P; Ortiz, J; Henry, M C

    1995-04-01

    To evaluate the need for on-line telemetry control in an all-volunteer, predominantly advanced emergency medical technician (A-EMT) ambulance system. Emergency medical service (EMS) advanced life support (ALS) providers were asked to transmit the ECG rhythms of monitored patients over a six-month period in 1993. The ECG rhythm interpretations of volunteer EMS personnel were compared with those of the on-line medical control physician. All discordant readings were reviewed by a panel of physicians to decide whether the misdiagnosis would have resulted in treatment aberrations had transmission been unavailable. Patients were monitored and rhythms were transmitted in 1,825 cases. 1,642 of 1,825 rhythms were correctly interpreted by the EMS providers (90%; 95% CI 89-91%). The accuracy of the EMS providers was dependent on the patient's rhythm (chi-square, p < 0.00001), the chief complaint (chi-square, p = 0.0001), and the provider's level of training (chi-square, p = 0.02). Correct ECG rhythm interpretations were more common when the out-of-hospital interpretation was sinus rhythm (95%), ventricular fibrillation (87%), paced rhythm (94%), or agonal rhythm (96%). The EMS providers were frequently incorrect when the out-of-hospital rhythm interpretation was atrial fibrillation/flutter (71%), supraventricular tachycardia (46%), ventricular tachycardia (59%), or atrioventricular block (50%). Of the 183 discordant cases, 124 (68%) involved missing a diagnosis of, or incorrectly diagnosing, atrial fibrillation/flutter. Review of the discordant readings identified 11 cases that could have resulted in treatment errors had the rhythms not been transmitted, one of which might have resulted in an adverse outcome. In this all-volunteer, predominantly A-EMT ALS system, patients with a field interpretation of a sinus rhythm do not require ECG rhythm transmission. Field interpretations of atrial fibrillation/flutter, supraventricular tachycardia, ventricular tachycardia, and

  11. 106 17 Telemetry Standards Chapter 2

    DTIC Science & Technology

    2017-07-31

    high frequency STC space -time code SOQPSK shaped offset quadrature phase shift keying UHF ultra- high frequency US&P United States...and Possessions VCO voltage-controlled oscillator VHF very- high frequency WCS Wireless Communication Service Telemetry Standards, RCC Standard...get interference. a. Telemetry Bands Air and space -to-ground telemetering is allocated in the ultra- high frequency (UHF) bands 1435 to 1535, 2200

  12. Factors that influence the acceptance of telemetry by emergency medical technicians in ambulances: an application of the extended technology acceptance model.

    PubMed

    Hwang, Ji Young; Kim, Ki Young; Lee, Kang Hyun

    2014-12-01

    The aim of the study was to verify the effects of patient factors perceived by emergency medical technicians (EMTs) as well as their social and organizational factors on prehospital telemetry use intention based on the technology use intention and elaboration likelihood models. This is a retrospective empirical study. Questionnaires were developed on the basis of clinical factors of 72,907 patients assessed by prehospital telemetry from January 1, 2009 to April 30, 2012 by reviewing their prehospital medical care records and in-hospital medical records. Questionnaires regarding the social and organizational factors of EMTs were created on the basis of a literature review. To verify which factors affect the utilization of telemetry, we developed a partial least-squares route model on the basis of each characteristic. In total, 136 EMTs who had experience in using prehospital telemetry were surveyed from April 1 to April 7, 2013. Reliability, validity, hypotheses, and the model goodness of fit of the study tools were tested. The clinical factors of the patients (path coefficient=-0.12; t=2.38), subjective norm (path coefficient=0.18; t=2.63), and job fit (path coefficient=0.45; t=5.29) positively affected the perceived usefulness (p<0.010). Meanwhile, the clinical factors of the patients (path coefficients=-0.19; t=4.46), subjective norm (path coefficient=0.08; t=1.97), loyalty incentives (path coefficient=-0.17; t=3.83), job fit (path coefficient=-0.32; t=7.06), organizational facilitations (path coefficient=0.08; t=1.99), and technical factors (i.e., usefulness and ease of use) positively affected attitudes (path coefficient=0.10, 0.58; t=2.62, 5.81; p<0.010). Attitudes and perceived usefulness significantly positively affected use intention. Factors that influence the use of telemetry by EMTs in ambulances included patients' clinical factors, as well as complex organizational and environmental factors surrounding the EMTs' occupational environments. This suggests

  13. Telemetry Standards

    DTIC Science & Technology

    2000-01-01

    07040188), Washington, DC 20603. 1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE January 2000 3 . REPORT TYPE AND DATES COVERED 4. TITLE AND...2.3.1.3 1530 to 1535 MHz ’.’ 2- 3 2.3.2 Allocation of the S Band (2200 to 2300 MHz) 2- 3 2.3.2.1 2200 to 2290 MHz 2- 3 2.3.2.2 2290 to 2300 MHz 2- 3 ...2.3.3 Allocation of the Upper S Band (2310 to 2390 MHz) 2- 3 2.3.3.1 2310 to 2360 MHz 2- 3 2.3.3.2 2360 to 2390 MHz 2- 3 2.4 UHF Telemetry Transmitter

  14. DS-MAC: differential service medium access control design for wireless medical information systems.

    PubMed

    Yuan, Xiaojing; Bagga, Sumegha; Shen, Jian; Balakrishnan, M; Benhaddou, D

    2008-01-01

    The integration of wireless networking technologies with medical information systems (telemedicine) have a significant impact on healthcare services provided to our society. Applications of telemedicine range from personalized medicine to affordable healthcare for underserved population. Though wireless technologies and medical informatics are individually progressing rapidly, wireless networking for healthcare systems is still at a very premature stage. In this paper we first present our open architecture for medical information systems that integrates both wired and wireless networked data acquisition systems. We then present the implementation at the physical layer and differential service MAC design that adapts channel provisioning based on the information criticality. Performance evaluation using analytical modeling and simulation shows that our DS-MAC provides differentiated services for emergency, warning, and normal traffic.

  15. A Mutual Authentication Framework for Wireless Medical Sensor Networks.

    PubMed

    Srinivas, Jangirala; Mishra, Dheerendra; Mukhopadhyay, Sourav

    2017-05-01

    Wireless medical sensor networks (WMSN) comprise of distributed sensors, which can sense human physiological signs and monitor the health condition of the patient. It is observed that providing privacy to the patient's data is an important issue and can be challenging. The information passing is done via the public channel in WMSN. Thus, the patient, sensitive information can be obtained by eavesdropping or by unauthorized use of handheld devices which the health professionals use in monitoring the patient. Therefore, there is an essential need of restricting the unauthorized access to the patient's medical information. Hence, the efficient authentication scheme for the healthcare applications is needed to preserve the privacy of the patients' vital signs. To ensure secure and authorized communication in WMSN, we design a symmetric key based authentication protocol for WMSN environment. The proposed protocol uses only computationally efficient operations to achieve lightweight attribute. We analyze the security of the proposed protocol. We use a formal security proof algorithm to show the scheme security against known attacks. We also use the Automated Validation of Internet Security Protocols and Applications (AVISPA) simulator to show protocol secure against man-in-the-middle attack and replay attack. Additionally, we adopt an informal analysis to discuss the key attributes of the proposed scheme. From the formal proof of security, we can see that an attacker has a negligible probability of breaking the protocol security. AVISPA simulator also demonstrates the proposed scheme security against active attacks, namely, man-in-the-middle attack and replay attack. Additionally, through the comparison of computational efficiency and security attributes with several recent results, proposed scheme seems to be battered.

  16. 47 CFR 95.1123 - Protection of medical equipment.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Protection of medical equipment. 95.1123... SERVICES PERSONAL RADIO SERVICES Wireless Medical Telemetry Service (WMTS) General Provisions § 95.1123 Protection of medical equipment. The manufacturers, installers and users of WMTS equipment are cautioned that...

  17. 47 CFR 90.238 - Telemetry operations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... MHz band (as available in the Public Safety Pool for bio-medical telemetry operations). (i) For... with § 90.257 and subject to the rules governing the use of that band). (b) 154.45625, 154.46375, 154...-470 MHz band, telemetry operations will be authorized on a secondary basis with a transmitter output...

  18. 78 FR 49529 - Radio Frequency Wireless Technology in Medical Devices; Guidance for Industry and Food and Drug...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-14

    ..., including selection of wireless technology, quality of service, coexistence, security, and electromagnetic... is an increasing concern because the electromagnetic environments where medical devices are used...

  19. Feasibility of Using Distributed Wireless Mesh Networks for Medical Emergency Response

    PubMed Central

    Braunstein, Brian; Trimble, Troy; Mishra, Rajesh; Manoj, B. S.; Rao, Ramesh; Lenert, Leslie

    2006-01-01

    Achieving reliable, efficient data communications networks at a disaster site is a difficult task. Network paradigms, such as Wireless Mesh Network (WMN) architectures, form one exemplar for providing high-bandwidth, scalable data communication for medical emergency response activity. WMNs are created by self-organized wireless nodes that use multi-hop wireless relaying for data transfer. In this paper, we describe our experience using a mesh network architecture we developed for homeland security and medical emergency applications. We briefly discuss the architecture and present the traffic behavioral observations made by a client-server medical emergency application tested during a large-scale homeland security drill. We present our traffic measurements, describe lessons learned, and offer functional requirements (based on field testing) for practical 802.11 mesh medical emergency response networks. With certain caveats, the results suggest that 802.11 mesh networks are feasible and scalable systems for field communications in disaster settings. PMID:17238308

  20. Next Generation RFID-Based Medical Service Management System Architecture in Wireless Sensor Network

    NASA Astrophysics Data System (ADS)

    Tolentino, Randy S.; Lee, Kijeong; Kim, Yong-Tae; Park, Gil-Cheol

    Radio Frequency Identification (RFID) and Wireless Sensor Network (WSN) are two important wireless technologies that have wide variety of applications and provide unlimited future potentials most especially in healthcare systems. RFID is used to detect presence and location of objects while WSN is used to sense and monitor the environment. Integrating RFID with WSN not only provides identity and location of an object but also provides information regarding the condition of the object carrying the sensors enabled RFID tag. However, there isn't any flexible and robust communication infrastructure to integrate these devices into an emergency care setting. An efficient wireless communication substrate for medical devices that addresses ad hoc or fixed network formation, naming and discovery, transmission efficiency of data, data security and authentication, as well as filtration and aggregation of vital sign data need to be study and analyze. This paper proposed an efficient next generation architecture for RFID-based medical service management system in WSN that possesses the essential elements of each future medical application that are integrated with existing medical practices and technologies in real-time, remote monitoring, in giving medication, and patient status tracking assisted by embedded wearable wireless sensors which are integrated in wireless sensor network.

  1. Advanced Telemetry System Development.

    DTIC Science & Technology

    Progress in advanced telemetry system development is described. Discussions are included of studies leading to the specification for design...characteristics of adaptive and analytical telemetry systems in which the information efficiently utilizes the data channel capacity. Also discussed are...Progress indicates that further sophistication of existing designs in telemetry will be less advantageous than the development of new systems of

  2. An integrated biomedical telemetry system for sleep monitoring employing a portable body area network of sensors (SENSATION).

    PubMed

    Astaras, Alexander; Arvanitidou, Marina; Chouvarda, Ioanna; Kilintzis, Vassilis; Koutkias, Vassilis; Sanchez, Eduardo Monton; Stalidis, George; Triantafyllidis, Andreas; Maglaveras, Nicos

    2008-01-01

    A flexible, scaleable and cost-effective medical telemetry system is described for monitoring sleep-related disorders in the home environment. The system was designed and built for real-time data acquisition and processing, allowing for additional use in intensive care unit scenarios where rapid medical response is required in case of emergency. It comprises a wearable body area network of Zigbee-compatible wireless sensors worn by the subject, a central database repository residing in the medical centre and thin client workstations located at the subject's home and in the clinician's office. The system supports heterogeneous setup configurations, involving a variety of data acquisition sensors to suit several medical applications. All telemetry data is securely transferred and stored in the central database under the clinicians' ownership and control.

  3. Transmit coil design for Wireless Power Transfer for medical implants.

    PubMed

    Lemdiasov, Rosti; Venkatasubramanian, Arun

    2017-07-01

    A new design approach for the design of transmit coils for Wireless Power Transfer (WPT) is presented. The theoretical formulation involves a figure of merit that has to be maximized to solve for the surface current. Numerical predictions and comparisons with practical measurements for the coil parameters (inductance. resistance) underscore the success of this approach in terms of achieving strong coupling with a receive coil while maintaining low resistance.

  4. Biomedical Wireless Ambulatory Crew Monitor

    NASA Technical Reports Server (NTRS)

    Chmiel, Alan; Humphreys, Brad

    2009-01-01

    A compact, ambulatory biometric data acquisition system has been developed for space and commercial terrestrial use. BioWATCH (Bio medical Wireless and Ambulatory Telemetry for Crew Health) acquires signals from biomedical sensors using acquisition modules attached to a common data and power bus. Several slots allow the user to configure the unit by inserting sensor-specific modules. The data are then sent real-time from the unit over any commercially implemented wireless network including 802.11b/g, WCDMA, 3G. This system has a distributed computing hierarchy and has a common data controller on each sensor module. This allows for the modularity of the device along with the tailored ability to control the cards using a relatively small master processor. The distributed nature of this system affords the modularity, size, and power consumption that betters the current state of the art in medical ambulatory data acquisition. A new company was created to market this technology.

  5. Wireless Medical Devices for MRI-Guided Interventions

    NASA Astrophysics Data System (ADS)

    Venkateswaran, Madhav

    Wireless techniques can play an important role in next-generation, image-guided surgical techniques with integration strategies being the key. We present our investigations on three wireless applications. First, we validate a position and orientation independent method to noninvasively monitor wireless power delivery using current perturbation measurements of switched load modulation of the RF carrier. This is important for safe and efficient powering without using bulky batteries or invasive cables. Use of MRI transmit RF pulses for simultaneous powering is investigated in the second part. We develop system models for the MRI transmit chain, wireless powering circuits and a typical load. Detailed analysis and validation of nonlinear and cascaded modeling strategies are performed, useful for decoupled optimization of the harvester coil and RF-DC converter. MRI pulse sequences are investigated for suitability for simultaneous powering. Simulations indicate that a 1.8V, 2 mA load can be powered with a 100% duty cycle using a 30° fGRE sequence, despite the RF duty cycle being 44 mW for a 30° flip angle, consistent with model predictions. Investigations on imaging artifacts indicates that distortion is mostly restricted to within the physical span of the harvester coil in the imaging volume, with the homogeneous B1+ transmit field providing positioning flexibility to minimize this for simultaneous powering. The models are potentially valuable in designing wireless powering solutions for implantable devices with simultaneous real-time imaging in MRI-guided surgical suites. Finally in the last section, we model endovascular MRI coil coupling during RF transmit. FEM models for a series-resonant multimode coil and quadrature birdcage coil fields are developed and computationally efficient, circuit and full-wave simulations are used to model inductive coupling. The Bloch Siegert B1 mapping sequence is used for validating at 24, 28 and 34 microT background excitation

  6. [Mobile phone-computer wireless interactive graphics transmission technology and its medical application].

    PubMed

    Huang, Shuo; Liu, Jing

    2010-05-01

    Application of clinical digital medical imaging has raised many tough issues to tackle, such as data storage, management, and information sharing. Here we investigated a mobile phone based medical image management system which is capable of achieving personal medical imaging information storage, management and comprehensive health information analysis. The technologies related to the management system spanning the wireless transmission technology, the technical capabilities of phone in mobile health care and management of mobile medical database were discussed. Taking medical infrared images transmission between phone and computer as an example, the working principle of the present system was demonstrated.

  7. 47 CFR 95.1119 - Specific requirements for wireless medical telemetry devices operating in the 608-614 MHz band.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... frequency range 608-614 MHz and that will be located near the radio astronomy observatories listed below..., and obtain the written concurrence of, the director of the affected radio astronomy observatory before the equipment can be installed or operated (a) Within 80 kilometers of: (1) National Astronomy and...

  8. 47 CFR 95.1119 - Specific requirements for wireless medical telemetry devices operating in the 608-614 MHz band.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... frequency range 608-614 MHz and that will be located near the radio astronomy observatories listed below..., and obtain the written concurrence of, the director of the affected radio astronomy observatory before the equipment can be installed or operated (a) Within 80 kilometers of: (1) National Astronomy and...

  9. 47 CFR 95.1119 - Specific requirements for wireless medical telemetry devices operating in the 608-614 MHz band.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... frequency range 608-614 MHz and that will be located near the radio astronomy observatories listed below..., and obtain the written concurrence of, the director of the affected radio astronomy observatory before the equipment can be installed or operated (a) Within 80 kilometers of: (1) National Astronomy and...

  10. 47 CFR 95.1119 - Specific requirements for wireless medical telemetry devices operating in the 608-614 MHz band.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... frequency range 608-614 MHz and that will be located near the radio astronomy observatories listed below..., and obtain the written concurrence of, the director of the affected radio astronomy observatory before the equipment can be installed or operated (a) Within 80 kilometers of: (1) National Astronomy and...

  11. 47 CFR 95.1119 - Specific requirements for wireless medical telemetry devices operating in the 608-614 MHz band.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... frequency range 608-614 MHz and that will be located near the radio astronomy observatories listed below..., and obtain the written concurrence of, the director of the affected radio astronomy observatory before the equipment can be installed or operated (a) Within 80 kilometers of: (1) National Astronomy and...

  12. Electromagnetic limits to radiofrequency (RF) neuronal telemetry.

    PubMed

    Diaz, R E; Sebastian, T

    2013-12-18

    The viability of a radiofrequency (RF) telemetry channel for reporting individual neuron activity wirelessly from an embedded antenna to an external receiver is determined. Comparing the power at the transmitting antenna required for the desired Channel Capacity, to the maximum power that this antenna can dissipate in the body without altering or damaging surrounding tissue reveals the severe penalty incurred by miniaturization of the antenna. Using both Specific Absorption Rate (SAR) and thermal damage limits as constraints, and 300 Kbps as the required capacity for telemetry streams 100 ms in duration, the model shows that conventional antennas smaller than 0.1 mm could not support human neuronal telemetry to a remote receiver (1 m away.) Reducing the antenna to 10 microns in size to enable the monitoring of single human neuron signals to a receiver at the surface of the head would require operating with a channel capacity of only 0.3 bps.

  13. A low power medium access control protocol for wireless medical sensor networks.

    PubMed

    Lamprinos, I; Prentza, A; Sakka, E; Koutsouris, D

    2004-01-01

    The concept of a wireless integrated network of sensors, already applied in several sectors of our everyday life, such as security, transportation and environment monitoring, can as well provide an advanced monitor and control resource for healthcare services. By networking medical sensors wirelessly, attaching them in patient's body, we create the appropriate infrastructure for continuous and real-time monitoring of patient without discomforting him. This infrastructure can improve healthcare by providing the means for flexible acquisition of vital signs, while at the same time it provides more convenience to the patient. Given the type of wireless network, traditional medium access control (MAC) protocols cannot take advantage of the application specific requirements and information characteristics occurring in medical sensor networks, such as the demand for low power consumption and the rather limited and asymmetric data traffic. In this paper, we present the architecture of a low power MAC protocol, designated to support wireless networks of medical sensors. This protocol aims to improve energy efficiency by exploiting the inherent application features and requirements. It is oriented towards the avoidance of main energy wastage sources, such as idle listening, collision and power outspending.

  14. 76 FR 34845 - Medical Devices; Ear, Nose, and Throat Devices; Classification of the Wireless Air-Conduction...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-15

    ... control by other users with a similar medical device. Exposure to non-ionizing radiation Wireless... Administration (FDA) is classifying the wireless air-conduction hearing aid into class II (special controls). The Agency is classifying the device into class II (special controls) in order to provide a reasonable...

  15. A Micromachined Capacitive Pressure Sensor Using a Cavity-Less Structure with Bulk-Metal/Elastomer Layers and Its Wireless Telemetry Application

    PubMed Central

    Takahata, Kenichi; Gianchandani, Yogesh B.

    2008-01-01

    This paper reports a micromachined capacitive pressure sensor intended for applications that require mechanical robustness. The device is constructed with two micromachined metal plates and an intermediate polymer layer that is soft enough to deform in a target pressure range. The plates are formed of micromachined stainless steel fabricated by batch-compatible micro-electro-discharge machining. A polyurethane room-temperature-vulcanizing liquid rubber of 38-μm thickness is used as the deformable material. This structure eliminates both the vacuum cavity and the associated lead transfer challenges common to micromachined capacitive pressure sensors. For frequency-based interrogation of the capacitance, passive inductor-capacitor tanks are fabricated by combining the capacitive sensor with an inductive coil. The coil has 40 turns of a 127-μm-diameter copper wire. Wireless sensing is demonstrated in liquid by monitoring the variation in the resonant frequency of the tank via an external coil that is magnetically coupled with the tank. The sensitivity at room temperature is measured to be 23-33 ppm/KPa over a dynamic range of 340 KPa, which is shown to match a theoretical estimation. Temperature dependence of the tank is experimentally evaluated. PMID:27879824

  16. Optimisation Issues of High Throughput Medical Data and Video Streaming Traffic in 3G Wireless Environments.

    PubMed

    Istepanian, R S H; Philip, N

    2005-01-01

    In this paper we describe some of the optimisation issues relevant to the requirements of high throughput of medical data and video streaming traffic in 3G wireless environments. In particular we present a challenging 3G mobile health care application that requires a demanding 3G medical data throughput. We also describe the 3G QoS requirement of mObile Tele-Echography ultra-Light rObot system (OTELO that is designed to provide seamless 3G connectivity for real-time ultrasound medical video streams and diagnosis from a remote site (robotic and patient station) manipulated by an expert side (specialists) that is controlling the robotic scanning operation and presenting a real-time feedback diagnosis using 3G wireless communication links.

  17. Security issues in healthcare applications using wireless medical sensor networks: a survey.

    PubMed

    Kumar, Pardeep; Lee, Hoon-Jae

    2012-01-01

    Healthcare applications are considered as promising fields for wireless sensor networks, where patients can be monitored using wireless medical sensor networks (WMSNs). Current WMSN healthcare research trends focus on patient reliable communication, patient mobility, and energy-efficient routing, as a few examples. However, deploying new technologies in healthcare applications without considering security makes patient privacy vulnerable. Moreover, the physiological data of an individual are highly sensitive. Therefore, security is a paramount requirement of healthcare applications, especially in the case of patient privacy, if the patient has an embarrassing disease. This paper discusses the security and privacy issues in healthcare application using WMSNs. We highlight some popular healthcare projects using wireless medical sensor networks, and discuss their security. Our aim is to instigate discussion on these critical issues since the success of healthcare application depends directly on patient security and privacy, for ethic as well as legal reasons. In addition, we discuss the issues with existing security mechanisms, and sketch out the important security requirements for such applications. In addition, the paper reviews existing schemes that have been recently proposed to provide security solutions in wireless healthcare scenarios. Finally, the paper ends up with a summary of open security research issues that need to be explored for future healthcare applications using WMSNs.

  18. Security Issues in Healthcare Applications Using Wireless Medical Sensor Networks: A Survey

    PubMed Central

    Kumar, Pardeep; Lee, Hoon-Jae

    2012-01-01

    Healthcare applications are considered as promising fields for wireless sensor networks, where patients can be monitored using wireless medical sensor networks (WMSNs). Current WMSN healthcare research trends focus on patient reliable communication, patient mobility, and energy-efficient routing, as a few examples. However, deploying new technologies in healthcare applications without considering security makes patient privacy vulnerable. Moreover, the physiological data of an individual are highly sensitive. Therefore, security is a paramount requirement of healthcare applications, especially in the case of patient privacy, if the patient has an embarrassing disease. This paper discusses the security and privacy issues in healthcare application using WMSNs. We highlight some popular healthcare projects using wireless medical sensor networks, and discuss their security. Our aim is to instigate discussion on these critical issues since the success of healthcare application depends directly on patient security and privacy, for ethic as well as legal reasons. In addition, we discuss the issues with existing security mechanisms, and sketch out the important security requirements for such applications. In addition, the paper reviews existing schemes that have been recently proposed to provide security solutions in wireless healthcare scenarios. Finally, the paper ends up with a summary of open security research issues that need to be explored for future healthcare applications using WMSNs. PMID:22368458

  19. UAV telemetry communications using ZigBee protocol

    NASA Astrophysics Data System (ADS)

    Nasution, T. H.; Siregar, I.; Yasir, M.

    2017-10-01

    Wireless communication has been widely used in various fields or disciplines such as agriculture, health, engineering, military, and aerospace so as to support the work in that field. The communication technology is typically used for controlling devices and data monitoring. One development of wireless communication is the widely used telemetry system used to reach areas that cannot be reached by humans using UAV (Unmanned Aerial Vehicle) or unmanned aircraft. In this paper we discuss the design of telemetry system in UAV using ZigBee protocol. From the test obtained the system can work well with visualization displays without pause is 20 data per second with a maximum data length of 120 characters.

  20. Spitzer Telemetry Processing System

    NASA Technical Reports Server (NTRS)

    Stanboli, Alice; Martinez, Elmain M.; McAuley, James M.

    2013-01-01

    The Spitzer Telemetry Processing System (SirtfTlmProc) was designed to address objectives of JPL's Multi-mission Image Processing Lab (MIPL) in processing spacecraft telemetry and distributing the resulting data to the science community. To minimize costs and maximize operability, the software design focused on automated error recovery, performance, and information management. The system processes telemetry from the Spitzer spacecraft and delivers Level 0 products to the Spitzer Science Center. SirtfTlmProc is a unique system with automated error notification and recovery, with a real-time continuous service that can go quiescent after periods of inactivity. The software can process 2 GB of telemetry and deliver Level 0 science products to the end user in four hours. It provides analysis tools so the operator can manage the system and troubleshoot problems. It automates telemetry processing in order to reduce staffing costs.

  1. An Efficient and Secure Certificateless Authentication Protocol for Healthcare System on Wireless Medical Sensor Networks

    PubMed Central

    Guo, Rui; Wen, Qiaoyan; Jin, Zhengping; Zhang, Hua

    2013-01-01

    Sensor networks have opened up new opportunities in healthcare systems, which can transmit patient's condition to health professional's hand-held devices in time. The patient's physiological signals are very sensitive and the networks are extremely vulnerable to many attacks. It must be ensured that patient's privacy is not exposed to unauthorized entities. Therefore, the control of access to healthcare systems has become a crucial challenge. An efficient and secure authentication protocol will thus be needed in wireless medical sensor networks. In this paper, we propose a certificateless authentication scheme without bilinear pairing while providing patient anonymity. Compared with other related protocols, the proposed scheme needs less computation and communication cost and preserves stronger security. Our performance evaluations show that this protocol is more practical for healthcare system in wireless medical sensor networks. PMID:23710147

  2. An efficient and secure certificateless authentication protocol for healthcare system on wireless medical sensor networks.

    PubMed

    Guo, Rui; Wen, Qiaoyan; Jin, Zhengping; Zhang, Hua

    2013-01-01

    Sensor networks have opened up new opportunities in healthcare systems, which can transmit patient's condition to health professional's hand-held devices in time. The patient's physiological signals are very sensitive and the networks are extremely vulnerable to many attacks. It must be ensured that patient's privacy is not exposed to unauthorized entities. Therefore, the control of access to healthcare systems has become a crucial challenge. An efficient and secure authentication protocol will thus be needed in wireless medical sensor networks. In this paper, we propose a certificateless authentication scheme without bilinear pairing while providing patient anonymity. Compared with other related protocols, the proposed scheme needs less computation and communication cost and preserves stronger security. Our performance evaluations show that this protocol is more practical for healthcare system in wireless medical sensor networks.

  3. Design and Implementation of a Secure Wireless Mote-Based Medical Sensor Network

    PubMed Central

    Malasri, Kriangsiri; Wang, Lan

    2009-01-01

    A medical sensor network can wirelessly monitor vital signs of humans, making it useful for long-term health care without sacrificing patient comfort and mobility. For such a network to be viable, its design must protect data privacy and authenticity given that medical data are highly sensitive. We identify the unique security challenges of such a sensor network and propose a set of resource-efficient mechanisms to address these challenges. Our solution includes (1) a novel two-tier scheme for verifying the authenticity of patient data, (2) a secure key agreement protocol to set up shared keys between sensor nodes and base stations, and (3) symmetric encryption/decryption for protecting data confidentiality and integrity. We have implemented the proposed mechanisms on a wireless mote platform, and our results confirm their feasibility. PMID:22454585

  4. Design and implementation of a secure wireless mote-based medical sensor network.

    PubMed

    Malasri, Kriangsiri; Wang, Lan

    2009-01-01

    A medical sensor network can wirelessly monitor vital signs of humans, making it useful for long-term health care without sacrificing patient comfort and mobility. For such a network to be viable, its design must protect data privacy and authenticity given that medical data are highly sensitive. We identify the unique security challenges of such a sensor network and propose a set of resource-efficient mechanisms to address these challenges. Our solution includes (1) a novel two-tier scheme for verifying the authenticity of patient data, (2) a secure key agreement protocol to set up shared keys between sensor nodes and base stations, and (3) symmetric encryption/decryption for protecting data confidentiality and integrity. We have implemented the proposed mechanisms on a wireless mote platform, and our results confirm their feasibility.

  5. A Secure Cloud-Assisted Wireless Body Area Network in Mobile Emergency Medical Care System.

    PubMed

    Li, Chun-Ta; Lee, Cheng-Chi; Weng, Chi-Yao

    2016-05-01

    Recent advances in medical treatment and emergency applications, the need of integrating wireless body area network (WBAN) with cloud computing can be motivated by providing useful and real time information about patients' health state to the doctors and emergency staffs. WBAN is a set of body sensors carried by the patient to collect and transmit numerous health items to medical clouds via wireless and public communication channels. Therefore, a cloud-assisted WBAN facilitates response in case of emergency which can save patients' lives. Since the patient's data is sensitive and private, it is important to provide strong security and protection on the patient's medical data over public and insecure communication channels. In this paper, we address the challenge of participant authentication in mobile emergency medical care systems for patients supervision and propose a secure cloud-assisted architecture for accessing and monitoring health items collected by WBAN. For ensuring a high level of security and providing a mutual authentication property, chaotic maps based authentication and key agreement mechanisms are designed according to the concept of Diffie-Hellman key exchange, which depends on the CMBDLP and CMBDHP problems. Security and performance analyses show how the proposed system guaranteed the patient privacy and the system confidentiality of sensitive medical data while preserving the low computation property in medical treatment and remote medical monitoring.

  6. An Energy-Efficient ASIC for Wireless Body Sensor Networks in Medical Applications.

    PubMed

    Xiaoyu Zhang; Hanjun Jiang; Lingwei Zhang; Chun Zhang; Zhihua Wang; Xinkai Chen

    2010-02-01

    An energy-efficient application-specific integrated circuit (ASIC) featured with a work-on-demand protocol is designed for wireless body sensor networks (WBSNs) in medical applications. Dedicated for ultra-low-power wireless sensor nodes, the ASIC consists of a low-power microcontroller unit (MCU), a power-management unit (PMU), reconfigurable sensor interfaces, communication ports controlling a wireless transceiver, and an integrated passive radio-frequency (RF) receiver with energy harvesting ability. The MCU, together with the PMU, provides quite flexible communication and power-control modes for energy-efficient operations. The always-on passive RF receiver with an RF energy harvesting block offers the sensor nodes the capability of work-on-demand with zero standby power. Fabricated in standard 0.18-¿m complementary metal-oxide semiconductor technology, the ASIC occupies a die area of 2 mm × 2.5 mm. A wireless body sensor network sensor-node prototype using this ASIC only consumes < 10-nA current under the passive standby mode, and < 10 ¿A under the active standby mode, when supplied by a 3-V battery.

  7. A wireless medical monitoring over a heterogeneous sensor network.

    PubMed

    Yuce, Mehmet R; Ng, Peng Choong; Lee, Chin K; Khan, Jamil Y; Liu, Wentai

    2007-01-01

    This paper presents a heterogeneous sensor network system that has the capability to monitor physiological parameters from multiple patient bodies by means of different communication standards. The system uses the recently opened medical band called MICS (Medical Implant Communication Service) between the sensor nodes and a remote central control unit (CCU) that behaves as a base station. The CCU communicates with another network standard (the internet or a mobile network) for a long distance data transfer. The proposed system offers mobility to patients and flexibility to medical staff to obtain patient's physiological data on demand basis via Internet. A prototype sensor network including hardware, firmware and software designs has been implemented and tested by incorporating temperature and pulse rate sensors on nodes. The developed system has been optimized for power consumption by having the nodes sleep when there is no communication via a bidirectional communication.

  8. Ubiquitous Emergency Medical Service System Based on Wireless Biosensors, Traffic Information, and Wireless Communication Technologies: Development and Evaluation

    PubMed Central

    Tan, Tan-Hsu; Gochoo, Munkhjargal; Chen, Yung-Fu; Hu, Jin-Jia; Chiang, John Y.; Chang, Ching-Su; Lee, Ming-Huei; Hsu, Yung-Nian; Hsu, Jiin-Chyr

    2017-01-01

    This study presents a new ubiquitous emergency medical service system (UEMS) that consists of a ubiquitous tele-diagnosis interface and a traffic guiding subsystem. The UEMS addresses unresolved issues of emergency medical services by managing the sensor wires for eliminating inconvenience for both patients and paramedics in an ambulance, providing ubiquitous accessibility of patients’ biosignals in remote areas where the ambulance cannot arrive directly, and offering availability of real-time traffic information which can make the ambulance reach the destination within the shortest time. In the proposed system, patient’s biosignals and real-time video, acquired by wireless biosensors and a webcam, can be simultaneously transmitted to an emergency room for pre-hospital treatment via WiMax/3.5 G networks. Performances of WiMax and 3.5 G, in terms of initialization time, data rate, and average end-to-end delay are evaluated and compared. A driver can choose the route of the shortest time among the suggested routes by Google Maps after inspecting the current traffic conditions based on real-time CCTV camera streams and traffic information. The destination address can be inputted vocally for easiness and safety in driving. A series of field test results validates the feasibility of the proposed system for application in real-life scenarios. PMID:28117724

  9. Ubiquitous Emergency Medical Service System Based on Wireless Biosensors, Traffic Information, and Wireless Communication Technologies: Development and Evaluation.

    PubMed

    Tan, Tan-Hsu; Gochoo, Munkhjargal; Chen, Yung-Fu; Hu, Jin-Jia; Chiang, John Y; Chang, Ching-Su; Lee, Ming-Huei; Hsu, Yung-Nian; Hsu, Jiin-Chyr

    2017-01-21

    This study presents a new ubiquitous emergency medical service system (UEMS) that consists of a ubiquitous tele-diagnosis interface and a traffic guiding subsystem. The UEMS addresses unresolved issues of emergency medical services by managing the sensor wires for eliminating inconvenience for both patients and paramedics in an ambulance, providing ubiquitous accessibility of patients' biosignals in remote areas where the ambulance cannot arrive directly, and offering availability of real-time traffic information which can make the ambulance reach the destination within the shortest time. In the proposed system, patient's biosignals and real-time video, acquired by wireless biosensors and a webcam, can be simultaneously transmitted to an emergency room for pre-hospital treatment via WiMax/3.5 G networks. Performances of WiMax and 3.5 G, in terms of initialization time, data rate, and average end-to-end delay are evaluated and compared. A driver can choose the route of the shortest time among the suggested routes by Google Maps after inspecting the current traffic conditions based on real-time CCTV camera streams and traffic information. The destination address can be inputted vocally for easiness and safety in driving. A series of field test results validates the feasibility of the proposed system for application in real-life scenarios.

  10. Descriptive Analysis of Medication Administration During Inpatient Cardiopulmonary Arrest Resuscitation (from the Mayo Registry for Telemetry Efficacy in Arrest Study).

    PubMed

    Snipelisky, David; Ray, Jordan; Matcha, Gautam; Roy, Archana; Dumitrascu, Adrian; Harris, Dana; Bosworth, Veronica; Clark, Brooke; Thomas, Colleen S; Heckman, Michael G; Vadeboncoeur, Tyler; Kusumoto, Fred; Burton, M Caroline

    2016-05-15

    Advanced cardiovascular life support guidelines exist, yet there are variations in clinical practice. Our study aims to describe the utilization of medications during resuscitation from in-hospital cardiopulmonary arrest. A retrospective review of patients who suffered a cardiopulmonary arrest from May 2008 to June 2014 was performed. Clinical and resuscitation data, including timing and dose of medications used, were extracted from the electronic medical record and comparisons made. A total of 94 patients were included in the study. Patients were divided into different groups based on the medication combination used during resuscitation: (1) epinephrine; (2) epinephrine and bicarbonate; (3) epinephrine, bicarbonate, and calcium; (4) epinephrine, bicarbonate, and epinephrine drip; and (5) epinephrine, bicarbonate, calcium, and epinephrine drip. No difference in baseline demographics or clinical data was present, apart from history of dementia and the use of calcium channel blockers. The number of medications given was correlated with resuscitation duration (Spearman's rank correlation = 0.50, p <0.001). The proportion of patients who died during the arrest was 12.5% in those who received epinephrine alone, 30.0% in those who received only epinephrine and bicarbonate, and 46.7% to 57.9% in the remaining groups. Patients receiving only epinephrine had shorter resuscitation durations compared to that of the other groups (p <0.001) and improved survival (p = 0.003). In conclusion, providers frequently use nonguideline medications in resuscitation efforts for in-hospital cardiopulmonary arrests. Increased duration and mortality rates were found in those resuscitations compared with epinephrine alone, likely due to the longer resuscitation duration in the former groups. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Telemetry System Data Latency

    DTIC Science & Technology

    2017-07-13

    ec o n d s Data Rate TELEMETRY SYSTEM DATA LATENCY 15 of 31 Document: JT3-AFC-SRPT-17172-0005 Revision...250 So ft w ar e D ec o m L at en cy N T im es G re at er T h an D xD ec o m L at en cy Data Rate TELEMETRY SYSTEM DATA LATENCY 16 of...20.0 30.0 40.0 50.0 60.0 70.0 M ill is ec o n d s Data Rate TELEMETRY SYSTEM DATA LATENCY 17 of 31 Document:

  12. Downhole telemetry system

    DOEpatents

    Normann, R.A.; Kadlec, E.R.

    1994-11-08

    A downhole telemetry system is described for optically communicating to the surface operating parameters of a drill bit during ongoing drilling operations. The downhole telemetry system includes sensors mounted with a drill bit for monitoring at least one operating parameter of the drill bit and generating a signal representative thereof. The downhole telemetry system includes means for transforming and optically communicating the signal to the surface as well as means at the surface for producing a visual display of the optically communicated operating parameters of the drill bit. 7 figs.

  13. Downhole telemetry system

    DOEpatents

    Normann, Randy A.; Kadlec, Emil R.

    1994-01-01

    A downhole telemetry system is described for optically communicating to the surface operating parameters of a drill bit during ongoing drilling operations. The downhole telemetry system includes sensors mounted with a drill bit for monitoring at least one operating parameter of the drill bit and generating a signal representative thereof. The downhole telemetry system includes means for transforming and optically communicating the signal to the surface as well as means at the surface for producing a visual display of the optically communicated operating parameters of the drill bit.

  14. Ultra Wideband Wireless Body Area Network for Medical Applications

    DTIC Science & Technology

    2010-04-01

    gastrointestinal tract. They originally were devised to transmit still images of the digestive tract for subsequent diagnosis and detection of gastrointestinal...considered nondispersive and the skin layer is omitted. As depicted in Figure 6, the model is a semicylinder centred at the origin with radius br . All...Medical Applications RTO-MP-HFM-182 42 - 11 z x y Tumour Fat Skin Chest Figure 8: A Simple Hemispherical Brest Model. Table 2

  15. Telemetry and Telestimulation via Implanted Devices Necessary in Long-Term Experiments Using Conscious Untethered Animals for the Development of New Medical Treatments

    NASA Astrophysics Data System (ADS)

    Sugimachi, Masaru; Kawada, Toru; Uemura, Kazunori

    Effective countermeasures against explosive increase in healthcare expenditures are urgently needed. A paradigm shift in healthcare is called for, and academics and governments worldwide are working hard on the application of information and communication technologies (ICT) as a feasible and effective measure for reducing medical cost. The more prevalent the disease and the easier disease outcome can be improved, the more efficient is medical ICT in reducing healthcare cost. Hypertension and diabetes mellitus are such examples. Chronic heart failure is another disease in which patients may benefit from ICT-based medical practice. It is conceivable that daily monitoring of hemodynamics together with appropriate treatments may obviate the expensive hospitalization. ICT potentially permit continuous monitoring with wearable or implantable medical devices. ICT may also help accelerate the development of new therapeutic devices. Traditionally effectiveness of treatments is sequentially examined by sacrificing a number of animals at a given time point. These inefficient and inaccurate methods can be replaced by applying ICT to the devices used in chronic animal experiments. These devices allow researchers to obtain biosignals and images from live animals without killing them. They include implantable telemetric devices, implantable telestimulation devices, and imaging devices. Implanted rather than wired monitoring and stimulation devices permit experiments to be conducted under even more physiological conditions, i.e., untethered, free-moving states. Wireless communication and ICT are indispensible technologies for the development of such telemetric and telestimulation devices.

  16. Securing the communication of medical information using local biometric authentication and commercial wireless links.

    PubMed

    Ivanov, Vladimir I; Yu, Paul L; Baras, John S

    2010-09-01

    Medical information is extremely sensitive in nature - a compromise, such as eavesdropping or tampering by a malicious third party, may result in identity theft, incorrect diagnosis and treatment, and even death. Therefore, it is important to secure the transfer of medical information from the patient to the recording system. We consider a portable, wireless device transferring medical information to a remote server. We decompose this problem into two sub-problems and propose security solutions to each of them: (1) to secure the link between the patient and the portable device, and (2) to secure the link between the portable device and the network. Thus we push the limits of the network security to the edge by authenticating the user using their biometric information; authenticating the device to the network at the physical layer; and strengthening the security of the wireless link with a key exchange mechanism. The proposed authentication methods can be used for recording the readings of medical data in a central database and for accessing medical records in various settings.

  17. Transportable telemetry workstation

    NASA Technical Reports Server (NTRS)

    Collins, Aaron S.

    1989-01-01

    The goal was to complete the design of a prototype for a Transportable Telemetry Workstation (TTW). The Macintosh 2 is used to provide a low-cost system which can house real-time cards mounted on the NuBus inside the Macintosh 2 plus provide a standardized user interface on the Macintosh 2 console. Prior to a telemetry run, the user will be able to configure his real-time telemetry processing functions from the Macintosh 2 console. During a telemetry run, the real-time cards will store the telemetry data directly on a hard disk while permitting viewing of the data cards on the Macintosh 2 console on various selectable formats. The user will view the cards in terms of the functions they perform and the selectable paths through the cards, it is not required to become involved directly in hardware issue except in terms of the functional configuration of the system components. The TTW will accept telemetry data from an RS422 serial input data bus, pass it through a frame synchronizer card and on to a real time controller card via a telemetry backplane bus. The controller card will then route the data to a hard disk through a SCSI interface, and/or to a user interface on the Macintosh 2 console by way of the Macintosh 2 NuBus. The three major components to be designed, therefore, are the TTW Controller Card, the TTW Synchronizer Card, and the NuBus/Macintosh 2 User Interface. Design and prototyping of this state-of-the-art, transportable, low-cost, easy-to-use multiprocessor telemetry system is continuing. Other functions are planned for the future.

  18. Transportable telemetry workstation

    NASA Astrophysics Data System (ADS)

    Collins, Aaron S.

    1989-09-01

    The goal was to complete the design of a prototype for a Transportable Telemetry Workstation (TTW). The Macintosh 2 is used to provide a low-cost system which can house real-time cards mounted on the NuBus inside the Macintosh 2 plus provide a standardized user interface on the Macintosh 2 console. Prior to a telemetry run, the user will be able to configure his real-time telemetry processing functions from the Macintosh 2 console. During a telemetry run, the real-time cards will store the telemetry data directly on a hard disk while permitting viewing of the data cards on the Macintosh 2 console on various selectable formats. The user will view the cards in terms of the functions they perform and the selectable paths through the cards, it is not required to become involved directly in hardware issue except in terms of the functional configuration of the system components. The TTW will accept telemetry data from an RS422 serial input data bus, pass it through a frame synchronizer card and on to a real time controller card via a telemetry backplane bus. The controller card will then route the data to a hard disk through a SCSI interface, and/or to a user interface on the Macintosh 2 console by way of the Macintosh 2 NuBus. The three major components to be designed, therefore, are the TTW Controller Card, the TTW Synchronizer Card, and the NuBus/Macintosh 2 User Interface. Design and prototyping of this state-of-the-art, transportable, low-cost, easy-to-use multiprocessor telemetry system is continuing. Other functions are planned for the future.

  19. The UTCOMS: a wireless video capsule nanoendoscope

    NASA Astrophysics Data System (ADS)

    Lee, Mike M.; Lee, Eun-Mi; Cho, Byung Lok; Eshraghian, Kamran; Kim, Yun-Hyun

    2006-02-01

    This research shows a 1mW Low Power and real-time imaging Tx/Rx communication system via RF-delay smart Antenna using up to 10GHz UWB(Ultra WideBand) as a concept of Wireless Medical Telemetry Service (WMTS). This UTCOMS (COMmunication System for Nano-scale USLI designed Endoscope using UWB technology) results in less body loss(about 6~13dB) at high frequency, disposable and ingestible compact size of 5×10 mm2 and multifunction, bidirectional communications, independent subsystem control multichannel, and high sensitivity smart receiving antenna of three-dimensional image captured still and moving images.

  20. Distributed network, wireless and cloud computing enabled 3-D ultrasound; a new medical technology paradigm.

    PubMed

    Meir, Arie; Rubinsky, Boris

    2009-11-19

    Medical technologies are indispensable to modern medicine. However, they have become exceedingly expensive and complex and are not available to the economically disadvantaged majority of the world population in underdeveloped as well as developed parts of the world. For example, according to the World Health Organization about two thirds of the world population does not have access to medical imaging. In this paper we introduce a new medical technology paradigm centered on wireless technology and cloud computing that was designed to overcome the problems of increasing health technology costs. We demonstrate the value of the concept with an example; the design of a wireless, distributed network and central (cloud) computing enabled three-dimensional (3-D) ultrasound system. Specifically, we demonstrate the feasibility of producing a 3-D high end ultrasound scan at a central computing facility using the raw data acquired at the remote patient site with an inexpensive low end ultrasound transducer designed for 2-D, through a mobile device and wireless connection link between them. Producing high-end 3D ultrasound images with simple low-end transducers reduces the cost of imaging by orders of magnitude. It also removes the requirement of having a highly trained imaging expert at the patient site, since the need for hand-eye coordination and the ability to reconstruct a 3-D mental image from 2-D scans, which is a necessity for high quality ultrasound imaging, is eliminated. This could enable relatively untrained medical workers in developing nations to administer imaging and a more accurate diagnosis, effectively saving the lives of people.

  1. Distributed Network, Wireless and Cloud Computing Enabled 3-D Ultrasound; a New Medical Technology Paradigm

    PubMed Central

    Meir, Arie; Rubinsky, Boris

    2009-01-01

    Medical technologies are indispensable to modern medicine. However, they have become exceedingly expensive and complex and are not available to the economically disadvantaged majority of the world population in underdeveloped as well as developed parts of the world. For example, according to the World Health Organization about two thirds of the world population does not have access to medical imaging. In this paper we introduce a new medical technology paradigm centered on wireless technology and cloud computing that was designed to overcome the problems of increasing health technology costs. We demonstrate the value of the concept with an example; the design of a wireless, distributed network and central (cloud) computing enabled three-dimensional (3-D) ultrasound system. Specifically, we demonstrate the feasibility of producing a 3-D high end ultrasound scan at a central computing facility using the raw data acquired at the remote patient site with an inexpensive low end ultrasound transducer designed for 2-D, through a mobile device and wireless connection link between them. Producing high-end 3D ultrasound images with simple low-end transducers reduces the cost of imaging by orders of magnitude. It also removes the requirement of having a highly trained imaging expert at the patient site, since the need for hand-eye coordination and the ability to reconstruct a 3-D mental image from 2-D scans, which is a necessity for high quality ultrasound imaging, is eliminated. This could enable relatively untrained medical workers in developing nations to administer imaging and a more accurate diagnosis, effectively saving the lives of people. PMID:19936236

  2. Bluetooth telemetry system for a wearable electrocardiogram

    NASA Astrophysics Data System (ADS)

    Green, Ryan B.

    The rise of wireless networks has led to a new market in medicine: remote patient monitoring. Practitioners now desire to monitor the health conditions of their patients after hospital release. With the large number of cardiac related deaths and this new demand in medicine being the motivation, this study developed a BluetoothRTM telemetry system for a wearable Electrocardiogram. This study also developed a compression t-shirt to hold the ECG and telemetry system. This device communicates the ECG signal of a patient to an Android device within the ISM frequency bands (2.4-2.48 GHz) where the data is displayed and stored in real time. This study is a stepping stone toward more portable heart monitoring that can communicate with the doctor in real time from remote locations.

  3. Wireless telemetry system for floating bodies

    NASA Technical Reports Server (NTRS)

    Fain, L. T.; Cribb, H. E.

    1974-01-01

    Unit includes rugged waterproof cables and equipment containers, low power, sturdy antenna construction, and easy equipment setup and serviceability. Accuracy and reliability of entire measurement system were not sacrificed.

  4. An overview of recent end-to-end wireless medical video telemedicine systems using 3G.

    PubMed

    Panayides, A; Pattichis, M S; Pattichis, C S; Schizas, C N; Spanias, A; Kyriacou, E

    2010-01-01

    Advances in video compression, network technologies, and computer technologies have contributed to the rapid growth of mobile health (m-health) systems and services. Wide deployment of such systems and services is expected in the near future, and it's foreseen that they will soon be incorporated in daily clinical practice. This study focuses in describing the basic components of an end-to-end wireless medical video telemedicine system, providing a brief overview of the recent advances in the field, while it also highlights future trends in the design of telemedicine systems that are diagnostically driven.

  5. Automatic identification of solid-phase medication intake using wireless wearable accelerometers.

    PubMed

    Rui Wang; Sitova, Zdenka; Xiaoqing Jia; Xiang He; Abramson, Tobi; Gasti, Paolo; Balagani, Kiran S; Farajidavar, Aydin

    2014-01-01

    We have proposed a novel solution to a fundamental problem encountered in implementing non-ingestion based medical adherence monitoring systems, namely, how to reliably identify pill medication intake. We show how wireless wearable devices with tri-axial accelerometer can be used to detect and classify hand gestures of users during solid-phase medication intake. Two devices were worn on the wrists of each user. Users were asked to perform two activities in the way that is natural and most comfortable to them: (1) taking empty gelatin capsules with water, and (2) drinking water and wiping mouth. 25 users participated in this study. The signals obtained from the devices were filtered and the patterns were identified using dynamic time warping algorithm. Using hand gesture signals, we achieved 84.17 percent true positive rate and 13.33 percent false alarm rate, thus demonstrating that the hand gestures could be used to effectively identify pill taking activity.

  6. Real-time monitoring of ubiquitous wireless ECG sensor node for medical care using ZigBee

    NASA Astrophysics Data System (ADS)

    Vijayalakshmi, S. R.; Muruganand, S.

    2012-01-01

    Sensor networks have the potential to impact many aspects of medical care greatly. By outfitting patients with wireless, wearable vital sign sensors, collecting detailed real-time data on physiological status can be greatly simplified. In this article, we propose the system architecture for smart sensor platform based on advanced wireless sensor networks. An emerging application for wireless sensor networks involves their use in medical care. In hospitals or clinics, outfitting every patient with tiny, wearable wireless vital sign sensors would allow doctors, nurses and other caregivers to continuously monitor the status of their patients. In an emergency or disaster scenario, the same technology would enable medics to more effectively care for a large number of casualties. First responders could receive immediate notifications on any changes in patient status, such as respiratory failure or cardiac arrest. Wireless sensor network is a set of small, autonomous devices, working together to solve different problems. It is a relatively new technology, experiencing true expansion in the past decade. People have realised that integration of small and cheap microcontrollers with sensors can result in the production of extremely useful devices, which can be used as an integral part of the sensor nets. These devices are called sensor nodes. Today, sensor nets are used in agriculture, ecology and tourism, but medicine is the area where they certainly meet the greatest potential. This article presents a medical smart sensor node platform. This article proposes a wireless two-lead EKG. These devices collect heart rate and EKG data and relay it over a short-range (300 m) wireless network to any number of receiving devices, including PDAs, laptops or ambulance-based terminals.

  7. ICE telemetry performance

    NASA Technical Reports Server (NTRS)

    Layland, J. W.

    1986-01-01

    Acquiring telemetry data from the International Cometary Explorer (ICE) at its encounter with the comet Giacobini-Zinner on September 11, 1985 proved to be among the more difficult challenges the DSN has met in recent years. The ICE spacecraft began its life as an Earth orbiting monitor of the Solar Wind. At the comet, ICE was nearly 50 times as distant as in its initial role, with its signal strength diminished nearly 2500 times. Collecting enough of that weak signal to provide meaningful scientific data about the comet required unique new telemetry capabilities and special handling by the DSN. This article describes the development and validation of the DSN telemetry capability for ICE from its early planning stages through the successful comet encounter.

  8. 47 CFR 90.238 - Telemetry operations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... in the Public Safety and Industrial/Business Pools and in accordance with § 90.259). (e) In the 450... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PRIVATE LAND... MHz band (as available in the Public Safety Pool for bio-medical telemetry operations). (i) For...

  9. 47 CFR 90.238 - Telemetry operations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... in the Public Safety and Industrial/Business Pools and in accordance with § 90.259). (e) In the 450... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PRIVATE LAND... MHz band (as available in the Public Safety Pool for bio-medical telemetry operations). (i) For...

  10. Wireless access to a pharmaceutical database: a demonstrator for data driven Wireless Application Protocol (WAP) applications in medical information processing.

    PubMed

    Schacht Hansen, M; Dørup, J

    2001-01-01

    The Wireless Application Protocol technology implemented in newer mobile phones has built-in facilities for handling much of the information processing needed in clinical work. To test a practical approach we ported a relational database of the Danish pharmaceutical catalogue to Wireless Application Protocol using open source freeware at all steps. We used Apache 1.3 web software on a Linux server. Data containing the Danish pharmaceutical catalogue were imported from an ASCII file into a MySQL 3.22.32 database using a Practical Extraction and Report Language script for easy update of the database. Data were distributed in 35 interrelated tables. Each pharmaceutical brand name was given its own card with links to general information about the drug, active substances, contraindications etc. Access was available through 1) browsing therapeutic groups and 2) searching for a brand name. The database interface was programmed in the server-side scripting language PHP3. A free, open source Wireless Application Protocol gateway to a pharmaceutical catalogue was established to allow dial-in access independent of commercial Wireless Application Protocol service providers. The application was tested on the Nokia 7110 and Ericsson R320s cellular phones. We have demonstrated that Wireless Application Protocol-based access to a dynamic clinical database can be established using open source freeware. The project opens perspectives for a further integration of Wireless Application Protocol phone functions in clinical information processing: Global System for Mobile communication telephony for bilateral communication, asynchronous unilateral communication via e-mail and Short Message Service, built-in calculator, calendar, personal organizer, phone number catalogue and Dictaphone function via answering machine technology. An independent Wireless Application Protocol gateway may be placed within hospital firewalls, which may be an advantage with respect to security. However, if

  11. Wireless access to a pharmaceutical database: A demonstrator for data driven Wireless Application Protocol applications in medical information processing

    PubMed Central

    Hansen, Michael Schacht

    2001-01-01

    Background The Wireless Application Protocol technology implemented in newer mobile phones has built-in facilities for handling much of the information processing needed in clinical work. Objectives To test a practical approach we ported a relational database of the Danish pharmaceutical catalogue to Wireless Application Protocol using open source freeware at all steps. Methods We used Apache 1.3 web software on a Linux server. Data containing the Danish pharmaceutical catalogue were imported from an ASCII file into a MySQL 3.22.32 database using a Practical Extraction and Report Language script for easy update of the database. Data were distributed in 35 interrelated tables. Each pharmaceutical brand name was given its own card with links to general information about the drug, active substances, contraindications etc. Access was available through 1) browsing therapeutic groups and 2) searching for a brand name. The database interface was programmed in the server-side scripting language PHP3. Results A free, open source Wireless Application Protocol gateway to a pharmaceutical catalogue was established to allow dial-in access independent of commercial Wireless Application Protocol service providers. The application was tested on the Nokia 7110 and Ericsson R320s cellular phones. Conclusions We have demonstrated that Wireless Application Protocol-based access to a dynamic clinical database can be established using open source freeware. The project opens perspectives for a further integration of Wireless Application Protocol phone functions in clinical information processing: Global System for Mobile communication telephony for bilateral communication, asynchronous unilateral communication via e-mail and Short Message Service, built-in calculator, calendar, personal organizer, phone number catalogue and Dictaphone function via answering machine technology. An independent Wireless Application Protocol gateway may be placed within hospital firewalls, which may be an

  12. On the Capability of Smartphones to Perform as Communication Gateways in Medical Wireless Personal Area Networks

    PubMed Central

    Morón, María José; Luque, Rafael; Casilari, Eduardo

    2014-01-01

    This paper evaluates and characterizes the technical performance of medical wireless personal area networks (WPANs) that are based on smartphones. For this purpose, a prototype of a health telemonitoring system is presented. The prototype incorporates a commercial Android smartphone, which acts as a relay point, or “gateway”, between a set of wireless medical sensors and a data server. Additionally, the paper investigates if the conventional capabilities of current commercial smartphones can be affected by their use as gateways or “Holters” in health monitoring applications. Specifically, the profiling has focused on the CPU and power consumption of the mobile devices. These metrics have been measured under several test conditions modifying the smartphone model, the type of sensors connected to the WPAN, the employed Bluetooth profile (SPP (serial port profile) or HDP (health device profile)), the use of other peripherals, such as a GPS receiver, the impact of the use of the Wi-Fi interface or the employed method to encode and forward the data that are collected from the sensors. PMID:24451456

  13. On the capability of smartphones to perform as communication gateways in medical wireless personal area networks.

    PubMed

    Morón, María José; Luque, Rafael; Casilari, Eduardo

    2014-01-02

    This paper evaluates and characterizes the technical performance of medical wireless personal area networks (WPANs) that are based on smartphones. For this purpose,a prototype of a health telemonitoring system is presented. The prototype incorporates a commercial Android smartphone, which acts as a relay point, or "gateway", between a set of wireless medical sensors and a data server. Additionally, the paper investigates if the conventional capabilities of current commercial smartphones can be affected by their use as gateways or "Holters" in health monitoring applications. Specifically, the profiling has focused on the CPU and power consumption of the mobile devices. These metrics have been measured under several test conditions modifying the smartphone model, the type of sensors connected to the WPAN, the employed Bluetooth profile (SPP (serial port profile) orHDP (health device profile)), the use of other peripherals, such as a GPS receiver, the impact of the use of the Wi-Fi interface or the employed method to encode and forward the data that are collected from the sensors.

  14. Rapidly Deployed Modular Telemetry System

    NASA Technical Reports Server (NTRS)

    Varnavas, Kosta A. (Inventor); Sims, William Herbert, III (Inventor)

    2013-01-01

    The present invention is a telemetry system, and more specifically is a rapidly deployed modular telemetry apparatus which utilizes of SDR technology and the FPGA programming capability to reduce the number of hardware components and programming required to deploy a telemetry system.

  15. Wideband EMG telemetry system

    NASA Technical Reports Server (NTRS)

    Rosatino, S. A.; Westbrook, R. M.

    1979-01-01

    Miniature, individual crystal-controlled RF transmitters located in EMG pressure sensors simplifies multichannel EMG telemetry for electronic gait monitoring. Transmitters which are assigned operating frequencies within 174 - 216 MHz band have linear frequency response from 20 - 2000 Hz and operate over range of 15 m.

  16. Accelerometer telemetry system

    NASA Technical Reports Server (NTRS)

    Konigsberg, E. (Inventor)

    1976-01-01

    An accelerometer telemetry system incorporated in a finger ring is used for monitoring the motor responses of a subject. The system includes an accelerometer, battery, and transmitter and provides information to a remote receiver regarding hand movements of a subject wearing the ring, without the constraints of wires. Possible applications include the detection of fatigue from the hand movements of the wearer.

  17. Telemetry Applications Handbook

    DTIC Science & Technology

    2006-05-01

    Guidelines .......................................................... 3-2 3.4 References for Chapter 3...and Discriminators ............................................................. 4-45 4.8 Receiving/Recording System Parameter Selection Guidelines ...2-176 Figure 2-199. DSQ- 50 telemetry transmitter + BPF + LNA. ........................................... 2-177

  18. Phoenix Telemetry Processor

    NASA Technical Reports Server (NTRS)

    Stanboli, Alice

    2013-01-01

    Phxtelemproc is a C/C++ based telemetry processing program that processes SFDU telemetry packets from the Telemetry Data System (TDS). It generates Experiment Data Records (EDRs) for several instruments including surface stereo imager (SSI); robotic arm camera (RAC); robotic arm (RA); microscopy, electrochemistry, and conductivity analyzer (MECA); and the optical microscope (OM). It processes both uncompressed and compressed telemetry, and incorporates unique subroutines for the following compression algorithms: JPEG Arithmetic, JPEG Huffman, Rice, LUT3, RA, and SX4. This program was in the critical path for the daily command cycle of the Phoenix mission. The products generated by this program were part of the RA commanding process, as well as the SSI, RAC, OM, and MECA image and science analysis process. Its output products were used to advance science of the near polar regions of Mars, and were used to prove that water is found in abundance there. Phxtelemproc is part of the MIPL (Multi-mission Image Processing Laboratory) system. This software produced Level 1 products used to analyze images returned by in situ spacecraft. It ultimately assisted in operations, planning, commanding, science, and outreach.

  19. Remote down-hole well telemetry

    DOEpatents

    Briles, Scott D [Los Alamos, NM; Neagley, Daniel L [Albuquerque, NM; Coates, Don M [Santa Fe, NM; Freund, Samuel M [Los Alamos, NM

    2004-07-20

    The present invention includes an apparatus and method for telemetry communication with oil-well monitoring and recording instruments located in the vicinity of the bottom of gas or oil recovery pipes. Such instruments are currently monitored using electrical cabling that is inserted into the pipes; cabling has a short life in this environment, and requires periodic replacement with the concomitant, costly shutdown of the well. Modulated reflectance, a wireless communication method that does not require signal transmission power from the telemetry package will provide a long-lived and reliable way to monitor down-hole conditions. Normal wireless technology is not practical since batteries and capacitors have to frequently be replaced or recharged, again with the well being removed from service. RF energy generated above ground can also be received, converted and stored down-hole without the use of wires, for actuating down-hole valves, as one example. Although modulated reflectance reduces or eliminates the loss of energy at the sensor package because energy is not consumed, during the transmission process, additional stored extra energy down-hole is needed.

  20. [Telemetry in the clinical setting].

    PubMed

    Hilbel, Thomas; Helms, Thomas M; Mikus, Gerd; Katus, Hugo A; Zugck, Christian

    2008-09-01

    Telemetric cardiac monitoring was invented in 1949 by Norman J Holter. Its clinical use started in the early 1960s. In the hospital, biotelemetry allows early mobilization of patients with cardiovascular risk and addresses the need for arrhythmia or oxygen saturation monitoring. Nowadays telemetry either uses vendor-specific UHF band broadcasting or the digital ISM band (Industrial, Scientific, and Medical Band) standardized Wi-Fi network technology. Modern telemetry radio transmitters can measure and send multiple physiological parameters like multi-channel ECG, NIPB and oxygen saturation. The continuous measurement of oxygen saturation is mandatory for the remote monitoring of patients with cardiac pacemakers. Real 12-lead ECG systems with diagnostic quality are an advantage for monitoring patients with chest pain syndromes or in drug testing wards. Modern systems are light-weight and deliver a maximum of carrying comfort due to optimized cable design. Important for the system selection is a sophisticated detection algorithm with a maximum reduction of artifacts. Home-monitoring of implantable cardiac devices with telemetric functionalities are becoming popular because it allows remote diagnosis of proper device functionality and also optimization of the device settings. Continuous real-time monitoring at home for patients with chronic disease may be possible in the future using Digital Video Broadcasting Terrestrial (DVB-T) technology in Europe, but is currently not yet available.

  1. E-SAP: Efficient-Strong Authentication Protocol for Healthcare Applications Using Wireless Medical Sensor Networks

    PubMed Central

    Kumar, Pardeep; Lee, Sang-Gon; Lee, Hoon-Jae

    2012-01-01

    A wireless medical sensor network (WMSN) can sense humans’ physiological signs without sacrificing patient comfort and transmit patient vital signs to health professionals’ hand-held devices. The patient physiological data are highly sensitive and WMSNs are extremely vulnerable to many attacks. Therefore, it must be ensured that patients’ medical signs are not exposed to unauthorized users. Consequently, strong user authentication is the main concern for the success and large scale deployment of WMSNs. In this regard, this paper presents an efficient, strong authentication protocol, named E-SAP, for healthcare application using WMSNs. The proposed E-SAP includes: (1) a two-factor (i.e., password and smartcard) professional authentication; (2) mutual authentication between the professional and the medical sensor; (3) symmetric encryption/decryption for providing message confidentiality; (4) establishment of a secure session key at the end of authentication; and (5) professionals can change their password. Further, the proposed protocol requires three message exchanges between the professional, medical sensor node and gateway node, and achieves efficiency (i.e., low computation and communication cost). Through the formal analysis, security analysis and performance analysis, we demonstrate that E-SAP is more secure against many practical attacks, and allows a tradeoff between the security and the performance cost for healthcare application using WMSNs. PMID:22438729

  2. E-SAP: efficient-strong authentication protocol for healthcare applications using wireless medical sensor networks.

    PubMed

    Kumar, Pardeep; Lee, Sang-Gon; Lee, Hoon-Jae

    2012-01-01

    A wireless medical sensor network (WMSN) can sense humans' physiological signs without sacrificing patient comfort and transmit patient vital signs to health professionals' hand-held devices. The patient physiological data are highly sensitive and WMSNs are extremely vulnerable to many attacks. Therefore, it must be ensured that patients' medical signs are not exposed to unauthorized users. Consequently, strong user authentication is the main concern for the success and large scale deployment of WMSNs. In this regard, this paper presents an efficient, strong authentication protocol, named E-SAP, for healthcare application using WMSNs. The proposed E-SAP includes: (1) a two-factor (i.e., password and smartcard) professional authentication; (2) mutual authentication between the professional and the medical sensor; (3) symmetric encryption/decryption for providing message confidentiality; (4) establishment of a secure session key at the end of authentication; and (5) professionals can change their password. Further, the proposed protocol requires three message exchanges between the professional, medical sensor node and gateway node, and achieves efficiency (i.e., low computation and communication cost). Through the formal analysis, security analysis and performance analysis, we demonstrate that E-SAP is more secure against many practical attacks, and allows a tradeoff between the security and the performance cost for healthcare application using WMSNs.

  3. Privacy-Preserving Self-Helped Medical Diagnosis Scheme Based on Secure Two-Party Computation in Wireless Sensor Networks

    PubMed Central

    Wen, Qiaoyan; Zhang, Yudong; Li, Wenmin

    2014-01-01

    With the continuing growth of wireless sensor networks in pervasive medical care, people pay more and more attention to privacy in medical monitoring, diagnosis, treatment, and patient care. On one hand, we expect the public health institutions to provide us with better service. On the other hand, we would not like to leak our personal health information to them. In order to balance this contradiction, in this paper we design a privacy-preserving self-helped medical diagnosis scheme based on secure two-party computation in wireless sensor networks so that patients can privately diagnose themselves by inputting a health card into a self-helped medical diagnosis ATM to obtain a diagnostic report just like drawing money from a bank ATM without revealing patients' health information and doctors' diagnostic skill. It makes secure self-helped disease diagnosis feasible and greatly benefits patients as well as relieving the heavy pressure of public health institutions. PMID:25126107

  4. Privacy-preserving self-helped medical diagnosis scheme based on secure two-party computation in wireless sensor networks.

    PubMed

    Sun, Yi; Wen, Qiaoyan; Zhang, Yudong; Li, Wenmin

    2014-01-01

    With the continuing growth of wireless sensor networks in pervasive medical care, people pay more and more attention to privacy in medical monitoring, diagnosis, treatment, and patient care. On one hand, we expect the public health institutions to provide us with better service. On the other hand, we would not like to leak our personal health information to them. In order to balance this contradiction, in this paper we design a privacy-preserving self-helped medical diagnosis scheme based on secure two-party computation in wireless sensor networks so that patients can privately diagnose themselves by inputting a health card into a self-helped medical diagnosis ATM to obtain a diagnostic report just like drawing money from a bank ATM without revealing patients' health information and doctors' diagnostic skill. It makes secure self-helped disease diagnosis feasible and greatly benefits patients as well as relieving the heavy pressure of public health institutions.

  5. A MAC Protocol for Medical Monitoring Applications of Wireless Body Area Networks

    PubMed Central

    Shu, Minglei; Yuan, Dongfeng; Zhang, Chongqing; Wang, Yinglong; Chen, Changfang

    2015-01-01

    Targeting the medical monitoring applications of wireless body area networks (WBANs), a hybrid medium access control protocol using an interrupt mechanism (I-MAC) is proposed to improve the energy and time slot utilization efficiency and to meet the data delivery delay requirement at the same time. Unlike existing hybrid MAC protocols, a superframe structure with a longer length is adopted to avoid unnecessary beacons. The time slots are mostly allocated to nodes with periodic data sources. Short interruption slots are inserted into the superframe to convey the urgent data and to guarantee the real-time requirements of these data. During these interruption slots, the coordinator can break the running superframe and start a new superframe. A contention access period (CAP) is only activated when there are more data that need to be delivered. Experimental results show the effectiveness of the proposed MAC protocol in WBANs with low urgent traffic. PMID:26046596

  6. Secure Publish-Subscribe Protocols for Heterogeneous Medical Wireless Body Area Networks

    PubMed Central

    Picazo-Sanchez, Pablo; Tapiador, Juan E.; Peris-Lopez, Pedro; Suarez-Tangil, Guillermo

    2014-01-01

    Security and privacy issues in medical wireless body area networks (WBANs) constitute a major unsolved concern because of the challenges posed by the scarcity of resources in WBAN devices and the usability restrictions imposed by the healthcare domain. In this paper, we describe a WBAN architecture based on the well-known publish-subscribe paradigm. We present two protocols for publishing data and sending commands to a sensor that guarantee confidentiality and fine-grained access control. Both protocols are based on a recently proposed ciphertext policy attribute-based encryption (CP-ABE) scheme that is lightweight enough to be embedded into wearable sensors. We show how sensors can implement lattice-based access control (LBAC) policies using this scheme, which are highly appropriate for the eHealth domain. We report experimental results with a prototype implementation demonstrating the suitability of our proposed solution. PMID:25460814

  7. A novel Smart Routing Protocol for remote health monitoring in Medical Wireless Networks.

    PubMed

    Sundararajan, T V P; Sumithra, M G; Maheswar, R

    2014-01-01

    In a Medical Wireless Network (MWN), sensors constantly monitor patient's physiological condition and movement. Inter-MWN communications are set up between the Patient Server and one or more Centralized Coordinators. However, MWNs require protocols with little energy consumption and the self-organizing attribute perceived in ad-hoc networks. The proposed Smart Routing Protocol (SRP) selects only the nodes with a higher residual energy and lower traffic density for routing. This approach enhances cooperation among the nodes of a Mobile Ad Hoc Network. Consequently, SRP produces better results than the existing protocols, namely Conditional Min-Max Battery Cost Routing, Min-Max Battery Cost Routing and AdHoc On-demand Distance Vector in terms of network parameters. The performance of the erstwhile schemes for routing protocols is evaluated using the network simulator Qualnet v 4.5.

  8. Telemetry methods for monitoring physiological parameters

    NASA Technical Reports Server (NTRS)

    Fryer, T. B.; Sandler, H.

    1982-01-01

    The use of telemetry to monitor various physiological functions is discussed. The advantages of the technique and the parameters that it can monitor are assessed, and the main telemetry systems, including pressure telemetry, flow telemetry, and multichannel telemetry, are detailed. Human applications of implanted flow transducers, total implant versus backpack telemetry, the use of power sources and integrated circuits in telemetry, and the future prospects of the technique in hypertension treatment and research are discussed.

  9. Secure Authentication for Remote Patient Monitoring with Wireless Medical Sensor Networks †

    PubMed Central

    Hayajneh, Thaier; Mohd, Bassam J; Imran, Muhammad; Almashaqbeh, Ghada; Vasilakos, Athanasios V.

    2016-01-01

    There is broad consensus that remote health monitoring will benefit all stakeholders in the healthcare system and that it has the potential to save billions of dollars. Among the major concerns that are preventing the patients from widely adopting this technology are data privacy and security. Wireless Medical Sensor Networks (MSNs) are the building blocks for remote health monitoring systems. This paper helps to identify the most challenging security issues in the existing authentication protocols for remote patient monitoring and presents a lightweight public-key-based authentication protocol for MSNs. In MSNs, the nodes are classified into sensors that report measurements about the human body and actuators that receive commands from the medical staff and perform actions. Authenticating these commands is a critical security issue, as any alteration may lead to serious consequences. The proposed protocol is based on the Rabin authentication algorithm, which is modified in this paper to improve its signature signing process, making it suitable for delay-sensitive MSN applications. To prove the efficiency of the Rabin algorithm, we implemented the algorithm with different hardware settings using Tmote Sky motes and also programmed the algorithm on an FPGA to evaluate its design and performance. Furthermore, the proposed protocol is implemented and tested using the MIRACL (Multiprecision Integer and Rational Arithmetic C/C++) library. The results show that secure, direct, instant and authenticated commands can be delivered from the medical staff to the MSN nodes. PMID:27023540

  10. Secure Authentication for Remote Patient Monitoring with Wireless Medical Sensor Networks.

    PubMed

    Hayajneh, Thaier; Mohd, Bassam J; Imran, Muhammad; Almashaqbeh, Ghada; Vasilakos, Athanasios V

    2016-03-24

    There is broad consensus that remote health monitoring will benefit all stakeholders in the healthcare system and that it has the potential to save billions of dollars. Among the major concerns that are preventing the patients from widely adopting this technology are data privacy and security. Wireless Medical Sensor Networks (MSNs) are the building blocks for remote health monitoring systems. This paper helps to identify the most challenging security issues in the existing authentication protocols for remote patient monitoring and presents a lightweight public-key-based authentication protocol for MSNs. In MSNs, the nodes are classified into sensors that report measurements about the human body and actuators that receive commands from the medical staff and perform actions. Authenticating these commands is a critical security issue, as any alteration may lead to serious consequences. The proposed protocol is based on the Rabin authentication algorithm, which is modified in this paper to improve its signature signing process, making it suitable for delay-sensitive MSN applications. To prove the efficiency of the Rabin algorithm, we implemented the algorithm with different hardware settings using Tmote Sky motes and also programmed the algorithm on an FPGA to evaluate its design and performance. Furthermore, the proposed protocol is implemented and tested using the MIRACL (Multiprecision Integer and Rational Arithmetic C/C++) library. The results show that secure, direct, instant and authenticated commands can be delivered from the medical staff to the MSN nodes.

  11. Telemetry Attributes Transfer Standard (TMATS) Handbook

    DTIC Science & Technology

    2015-07-01

    Example ......................... 6-1 Appendix A. Extensible Markup Language TMATS Differences ...................................... A-1 Appendix B...return-to-zero - level TG Telemetry Group TM telemetry TMATS Telemetry Attributes Transfer Standard XML eXtensible Markup Language Telemetry... Markup Language) format. The initial version of a standard 1 Range Commanders Council. Telemetry

  12. Wireless Biological Electronic Sensors.

    PubMed

    Cui, Yue

    2017-10-09

    The development of wireless biological electronic sensors could open up significant advances for both fundamental studies and practical applications in a variety of areas, including medical diagnosis, environmental monitoring, and defense applications. One of the major challenges in the development of wireless bioelectronic sensors is the successful integration of biosensing units and wireless signal transducers. In recent years, there are a few types of wireless communication systems that have been integrated with biosensing systems to construct wireless bioelectronic sensors. To successfully construct wireless biological electronic sensors, there are several interesting questions: What types of biosensing transducers can be used in wireless bioelectronic sensors? What types of wireless systems can be integrated with biosensing transducers to construct wireless bioelectronic sensors? How are the electrical sensing signals generated and transmitted? This review will highlight the early attempts to address these questions in the development of wireless biological electronic sensors.

  13. Wireless Biological Electronic Sensors

    PubMed Central

    Cui, Yue

    2017-01-01

    The development of wireless biological electronic sensors could open up significant advances for both fundamental studies and practical applications in a variety of areas, including medical diagnosis, environmental monitoring, and defense applications. One of the major challenges in the development of wireless bioelectronic sensors is the successful integration of biosensing units and wireless signal transducers. In recent years, there are a few types of wireless communication systems that have been integrated with biosensing systems to construct wireless bioelectronic sensors. To successfully construct wireless biological electronic sensors, there are several interesting questions: What types of biosensing transducers can be used in wireless bioelectronic sensors? What types of wireless systems can be integrated with biosensing transducers to construct wireless bioelectronic sensors? How are the electrical sensing signals generated and transmitted? This review will highlight the early attempts to address these questions in the development of wireless biological electronic sensors. PMID:28991220

  14. Next-Generation Telemetry Workstation

    NASA Technical Reports Server (NTRS)

    2008-01-01

    A next-generation telemetry workstation has been developed to replace the one currently used to test and control Range Safety systems. Improving upon the performance of the original system, the new telemetry workstation uses dual-channel telemetry boards for better synchronization of the two uplink telemetry streams. The new workstation also includes an Interrange Instrumentation Group/Global Positioning System (IRIG/GPS) time code receiver board for independent, local time stamping of return-link data. The next-generation system will also record and play back return-link data for postlaunch analysis.

  15. [Current status of the development of wireless sensors for medical applications].

    PubMed

    Moor, C; Braecklein, M; Jörns, N

    2005-01-01

    Wireless near-field transmission has been a challenge for scientists developing medical sensors for a long time. Here, instruments which measure a patient's ECG, oxygen saturation, blood pressure, peak flow, weight, blood glucose etc. are to be equipped with suitable transmission technology. Application scenarios for these sensors can be found in all medical areas where cable connections are irritating for the doctor, patient and other care personnel. This problem is especially common in sport medicine, sleep medicine, emergency medicine and intensive care. Based on its beneficial properties with regard to power consumption, range, data security and network capability, the worldwide standard radio technology Bluetooth was selected to transmit measurements. Since digital data is sent to a receiving station via Bluetooth, the measurement pre-processing now takes place in the patient sensor itself, instead of being processed by the monitor. In this article, a Bluetooth ECG, Bluetooth pulse oximeter, Bluetooth peak flow meter and Bluetooth event recorder will be introduced. On the one hand, systems can be realized with these devices, which allow patients to be monitored online (ECG, pulse oximeter). These devices can also be integrated in disease management programs (peak flow meter) and can be used to monitor high-risk patients in their home environment (event recorder).

  16. Active implantable medical device EMI assessment for wireless power transfer operating in LF and HF bands.

    PubMed

    Hikage, Takashi; Nojima, Toshio; Fujimoto, Hiroshi

    2016-06-21

    The electromagnetic interference (EMI) imposed on active implantable medical devices by wireless power transfer systems (WPTSs) is discussed based upon results of in vitro experiments. The purpose of this study is to present comprehensive EMI test results gathered from implantable-cardiac pacemakers and implantable cardioverter defibrillators exposed to the electromagnetic field generated by several WPTSs operating in low-frequency (70 kHz-460 kHz) and high-frequency (6.78 MHz) bands. The constructed in vitro experimental test system based upon an Irnich's flat torso phantom was applied. EMI test experiments are conducted on 14 types of WPTSs including Qi-compliant system and EV-charging WPT system mounted on current production EVs. In addition, a numerical simulation model for active implantable medical device (AIMD) EMI estimation based on the experimental test system is newly proposed. The experimental results demonstrate the risk of WPTSs emitting intermittent signal to affect the correct behavior of AIMDs when operating at very short distances. The proposed numerical simulation model is applicable to obtain basically the EMI characteristics of various types of WPTSs.

  17. Active implantable medical device EMI assessment for wireless power transfer operating in LF and HF bands

    NASA Astrophysics Data System (ADS)

    Hikage, Takashi; Nojima, Toshio; Fujimoto, Hiroshi

    2016-06-01

    The electromagnetic interference (EMI) imposed on active implantable medical devices by wireless power transfer systems (WPTSs) is discussed based upon results of in vitro experiments. The purpose of this study is to present comprehensive EMI test results gathered from implantable-cardiac pacemakers and implantable cardioverter defibrillators exposed to the electromagnetic field generated by several WPTSs operating in low-frequency (70 kHz-460 kHz) and high-frequency (6.78 MHz) bands. The constructed in vitro experimental test system based upon an Irnich’s flat torso phantom was applied. EMI test experiments are conducted on 14 types of WPTSs including Qi-compliant system and EV-charging WPT system mounted on current production EVs. In addition, a numerical simulation model for active implantable medical device (AIMD) EMI estimation based on the experimental test system is newly proposed. The experimental results demonstrate the risk of WPTSs emitting intermittent signal to affect the correct behavior of AIMDs when operating at very short distances. The proposed numerical simulation model is applicable to obtain basically the EMI characteristics of various types of WPTSs.

  18. DSN telemetry system data records

    NASA Technical Reports Server (NTRS)

    Gatz, E. C.

    1976-01-01

    The DSN telemetry system now includes the capability to provide a complete magnetic tape record, within 24 hours of reception, of all telemetry data received from a spacecraft. This record, the intermediate data record, is processed and generated almost entirely automatically, and provides a detailed accounting of any missing data.

  19. A new radio propagation model at 2.4 GHz for wireless medical body sensors in outdoor environment.

    PubMed

    Yang, Daniel S

    2013-01-01

    This study investigates the effect of antenna height, receive antenna placement on human body, and distance between transmitter and receiver on the loss of wireless signal power in order to develop a wireless propagation model for wireless body sensors. Although many studies looked at the effect of distance, few studies were found that investigated methodically the effect of antenna height and antenna placement on the human body. Transmit antenna heights of 1, 2, and 3 meters, receive antenna heights of 1 and 1.65 meters, "on-body" and "off-body" placements of receive antenna, and a total of 11 distances ranging from 1 to 45 meters are tested in relation to received power in dBm. Multiple regression is used to analyze the data. Significance of a variable is tested by comparing its p-value with alpha, and model fit is assessed using adjusted R(2) and s of residuals. It is found that an increase in antenna height would increase power--but only for transmit antenna. The receive antenna height has a surprising, opposite effect in the on-body case and an insignificant effect in the off-body case. To formalize the propagation model, coefficient values from multiple regression are incorporated in an extension of the log-distance model to produce a new empirical model for on-body and off-body cases, and the new empirical model could conceivably be utilized to design more reliable wireless links for medical body sensors.

  20. 802.11 Wireless Infrastructure To Enhance Medical Response to Disasters

    PubMed Central

    Arisoylu, Mustafa; Mishra, Rajesh; Rao, Ramesh; Lenert, Leslie A.

    2005-01-01

    802.11 (WiFi) is a well established network communications protocol that has wide applicability in civil infrastructure. This paper describes research that explores the design of 802.11 networks enhanced to support data communications in disaster environments. The focus of these efforts is to create network infrastructure to support operations by Metropolitan Medical Response System (MMRS) units and Federally-sponsored regional teams that respond to mass casualty events caused by a terrorist attack with chemical, biological, nuclear or radiological weapons or by a hazardous materials spill. In this paper, we describe an advanced WiFi-based network architecture designed to meet the needs of MMRS operations. This architecture combines a Wireless Distribution Systems for peer-to-peer multihop connectivity between access points with flexible and shared access to multiple cellular backhauls for robust connectivity to the Internet. The architecture offers a high bandwidth data communications infrastructure that can penetrate into buildings and structures while also supporting commercial off-the-shelf end-user equipment such as PDAs. It is self-configuring and is self-healing in the event of a loss of a portion of the infrastructure. Testing of prototype units is ongoing. PMID:16778990

  1. A novel and lightweight system to secure wireless medical sensor networks.

    PubMed

    He, Daojing; Chan, Sammy; Tang, Shaohua

    2014-01-01

    Wireless medical sensor networks (MSNs) are a key enabling technology in e-healthcare that allows the data of a patient's vital body parameters to be collected by the wearable or implantable biosensors. However, the security and privacy protection of the collected data is a major unsolved issue, with challenges coming from the stringent resource constraints of MSN devices, and the high demand for both security/privacy and practicality. In this paper, we propose a lightweight and secure system for MSNs. The system employs hash-chain based key updating mechanism and proxy-protected signature technique to achieve efficient secure transmission and fine-grained data access control. Furthermore, we extend the system to provide backward secrecy and privacy preservation. Our system only requires symmetric-key encryption/decryption and hash operations and is thus suitable for the low-power sensor nodes. This paper also reports the experimental results of the proposed system in a network of resource-limited motes and laptop PCs, which show its efficiency in practice. To the best of our knowledge, this is the first secure data transmission and access control system for MSNs until now.

  2. A 2.4-GHz Energy-Efficient Transmitter for Wireless Medical Applications.

    PubMed

    Qi Zhang; Peng Feng; Zhiqing Geng; Xiaozhou Yan; Nanjian Wu

    2011-02-01

    A 2.4-GHz energy-efficient transmitter (TX) for wireless medical applications is presented in this paper. It consists of four blocks: a phase-locked loop (PLL) synthesizer with a direct frequency presetting technique, a class-B power amplifier, a digital processor, and nonvolatile memory (NVM). The frequency presetting technique can accurately preset the carrier frequency of the voltage-controlled oscillator and reduce the lock-in time of the PLL synthesizer, further increasing the data rate of communication with low power consumption. The digital processor automatically compensates preset frequency variation with process, voltage, and temperature. The NVM stores the presetting signals and calibration data so that the TX can avoid the repetitive calibration process and save the energy in practical applications. The design is implemented in 0.18- μm radio-frequency complementary metal-oxide semiconductor process and the active area is 1.3 mm (2). The TX achieves 0-dBm output power with a maximum data rate of 4 Mb/s/2 Mb/s and dissipates 2.7-mA/5.4-mA current from a 1.8-V power supply for on-off keying/frequency-shift keying modulation, respectively. The corresponding energy efficiency is 1.2 nJ/b·mW and 4.8 nJ/b· mW when normalized to the transmitting power.

  3. Wireless induction coils embedded in diamond for power transfer in medical implants.

    PubMed

    Sikder, Md Kabir Uddin; Fallon, James; Shivdasani, Mohit N; Ganesan, Kumaravelu; Seligman, Peter; Garrett, David J

    2017-08-26

    Wireless power and data transfer to medical implants is a research area where improvements in current state-of-the-art technologies are needed owing to the continuing efforts for miniaturization. At present, lithographical patterning of evaporated metals is widely used for miniature coil fabrication. This method produces coils that are limited to low micron or nanometer thicknesses leading to high impedance values and thus limiting their potential quality. In the present work we describe a novel technique, whereby trenches were milled into a diamond substrate and filled with silver active braze alloy, enabling the manufacture of small, high cross-section, low impedance microcoils capable of transferring up to 10 mW of power up to a distance of 6 mm. As a substitute for a metallic braze line used for hermetic sealing, a continuous metal loop when placed parallel and close to the coil surface reduced power transfer efficiency by 43%, but not significantly, when placed perpendicular to the microcoil surface. Encapsulation of the coil by growth of a further layer of diamond reduced the quality factor by an average of 38%, which can be largely avoided by prior oxygen plasma treatment. Furthermore, an accelerated ageing test after encapsulation showed that these coils are long lasting. Our results thus collectively highlight the feasibility of fabricating a high-cross section, biocompatible and long lasting miniaturized microcoil that could be used in either a neural recording or neuromuscular stimulation device.

  4. A wireless magnetic resonance energy transfer system for micro implantable medical sensors.

    PubMed

    Li, Xiuhan; Zhang, Hanru; Peng, Fei; Li, Yang; Yang, Tianyang; Wang, Bo; Fang, Dongming

    2012-01-01

    Based on the magnetic resonance coupling principle, in this paper a wireless energy transfer system is designed and implemented for the power supply of micro-implantable medical sensors. The entire system is composed of the in vitro part, including the energy transmitting circuit and resonant transmitter coils, and in vivo part, including the micro resonant receiver coils and signal shaping chip which includes the rectifier module and LDO voltage regulator module. Transmitter and receiver coils are wound by Litz wire, and the diameter of the receiver coils is just 1.9 cm. The energy transfer efficiency of the four-coil system is greatly improved compared to the conventional two-coil system. When the distance between the transmitter coils and the receiver coils is 1.5 cm, the transfer efficiency is 85% at the frequency of 742 kHz. The power transfer efficiency can be optimized by adding magnetic enhanced resonators. The receiving voltage signal is converted to a stable output voltage of 3.3 V and a current of 10 mA at the distance of 2 cm. In addition, the output current varies with changes in the distance. The whole implanted part is packaged with PDMS of excellent biocompatibility and the volume of it is about 1 cm(3).

  5. Video electroencephalogram telemetry in temporal lobe epilepsy

    PubMed Central

    Mani, Jayanti

    2014-01-01

    Temporal lobe epilepsy (TLE) is the most commonly encountered medically refractory epilepsy. It is also the substrate of refractory epilepsy that gives the most gratifying results in any epilepsy surgery program, with a minimum use of resources. Correlation of clinical behavior and the ictal patterns during ictal behavior is mandatory for success at epilepsy surgery. Video electroencephalogram (EEG) telemetry achieves this goal and hence plays a pivotal role in pre-surgical assessment. The role of telemetry is continuously evolving with the advent of digital EEG technology, of high-resolution volumetric magnetic resonance imaging and other functional imaging techniques. Most of surgical selection in patients with TLE can be done with a scalp video EEG monitoring. However, the limitations of the scalp EEG technique demand invasive recordings in a selected group of TLE patients. This subset of the patients can be a challenge to the epileptologist. PMID:24791089

  6. Single frequency multitransmitter telemetry

    NASA Technical Reports Server (NTRS)

    Carreno, Victor A. (Inventor)

    1986-01-01

    The invention relates to a single frequency multitransmitter telemetry system that will deliver a substantial amount of data at low cost. The invention consists essentially of a plurality of sensor transmitter units at different locations, with individual signal conditioning and logic, which send sampled data signals to a single receiver. The transmitters operate independently on the same frequency in a frequency shift keying modulation system and are not synchronized to the receiver. The problem of reception of data from more than one transmitter simultaneously is solved by discarding the data - when there is overlap of data from two or more transmitters, the data is discarded and when there is no overlap the data is retained. The invention utilizes a unique overlap detection technique to determine if data should be retained or discarded. When data is received from a transmitter, it goes into a shift register.

  7. An optimized compression algorithm for real-time ECG data transmission in wireless network of medical information systems.

    PubMed

    Cho, Gyoun-Yon; Lee, Seo-Joon; Lee, Tae-Ro

    2015-01-01

    Recent medical information systems are striving towards real-time monitoring models to care patients anytime and anywhere through ECG signals. However, there are several limitations such as data distortion and limited bandwidth in wireless communications. In order to overcome such limitations, this research focuses on compression. Few researches have been made to develop a specialized compression algorithm for ECG data transmission in real-time monitoring wireless network. Not only that, recent researches' algorithm is not appropriate for ECG signals. Therefore this paper presents a more developed algorithm EDLZW for efficient ECG data transmission. Results actually showed that the EDLZW compression ratio was 8.66, which was a performance that was 4 times better than any other recent compression method widely used today.

  8. Using a wireless motion controller for 3D medical image catheter interactions

    NASA Astrophysics Data System (ADS)

    Vitanovski, Dime; Hahn, Dieter; Daum, Volker; Hornegger, Joachim

    2009-02-01

    State-of-the-art morphological imaging techniques usually provide high resolution 3D images with a huge number of slices. In clinical practice, however, 2D slice-based examinations are still the method of choice even for these large amounts of data. Providing intuitive interaction methods for specific 3D medical visualization applications is therefore a critical feature for clinical imaging applications. For the domain of catheter navigation and surgery planning, it is crucial to assist the physician with appropriate visualization techniques, such as 3D segmentation maps, fly-through cameras or virtual interaction approaches. There has been an ongoing development and improvement for controllers that help to interact with 3D environments in the domain of computer games. These controllers are based on both motion and infrared sensors and are typically used to detect 3D position and orientation. We have investigated how a state-of-the-art wireless motion sensor controller (Wiimote), developed by Nintendo, can be used for catheter navigation and planning purposes. By default the Wiimote controller only measure rough acceleration over a range of +/- 3g with 10% sensitivity and orientation. Therefore, a pose estimation algorithm was developed for computing accurate position and orientation in 3D space regarding 4 Infrared LEDs. Current results show that for the translation it is possible to obtain a mean error of (0.38cm, 0.41cm, 4.94cm) and for the rotation (0.16, 0.28) respectively. Within this paper we introduce a clinical prototype that allows steering of a virtual fly-through camera attached to the catheter tip by the Wii controller on basis of a segmented vessel tree.

  9. Implantable telemetry for small animals

    NASA Astrophysics Data System (ADS)

    1982-03-01

    A series of totally implantable telemetry devices for use in measuring deep body parameters in small animals were developed. Under a collaborative agreement with NASA, several of these systems; the continuous wave Doppler ultrasonic flowmeter, the multichannel telemetry system, and the inductively-powered dual channel cardiac pacer were evaluated in a series of ten mongrel dogs (15 to 20 kg.). These systems were used to measure ascending aortic and coronary blood flow, aortic pressure, and subcutaneous EKG.

  10. Implantable telemetry for small animals

    NASA Technical Reports Server (NTRS)

    1982-01-01

    A series of totally implantable telemetry devices for use in measuring deep body parameters in small animals were developed. Under a collaborative agreement with NASA, several of these systems; the continuous wave Doppler ultrasonic flowmeter, the multichannel telemetry system, and the inductively-powered dual channel cardiac pacer were evaluated in a series of ten mongrel dogs (15 to 20 kg.). These systems were used to measure ascending aortic and coronary blood flow, aortic pressure, and subcutaneous EKG.

  11. Adaptable Transponder for Multiple Telemetry Systems

    NASA Technical Reports Server (NTRS)

    Sims, William Herbert, III (Inventor); Varnavas, Kosta A. (Inventor)

    2014-01-01

    The present invention is a stackable telemetry circuit board for use in telemetry systems for satellites and other purposes. The present invention incorporates previously-qualified interchangeable circuit boards, or "decks," that perform functions such as power, signal receiving and transmission, and processing. Each deck is adapted to serve a range of telemetry applications. This provides flexibility in the construction of the stackable telemetry circuit board and significantly reduces the cost and time necessary to develop a telemetry system.

  12. Telemetry-Enhancing Scripts

    NASA Technical Reports Server (NTRS)

    Maimone, Mark W.

    2009-01-01

    Scripts Providing a Cool Kit of Telemetry Enhancing Tools (SPACKLE) is a set of software tools that fill gaps in capabilities of other software used in processing downlinked data in the Mars Exploration Rovers (MER) flight and test-bed operations. SPACKLE tools have helped to accelerate the automatic processing and interpretation of MER mission data, enabling non-experts to understand and/or use MER query and data product command simulation software tools more effectively. SPACKLE has greatly accelerated some operations and provides new capabilities. The tools of SPACKLE are written, variously, in Perl or the C or C++ language. They perform a variety of search and shortcut functions that include the following: Generating text-only, Event Report-annotated, and Web-enhanced views of command sequences; Labeling integer enumerations with their symbolic meanings in text messages and engineering channels; Systematic detecting of corruption within data products; Generating text-only displays of data-product catalogs including downlink status; Validating and labeling of commands related to data products; Performing of convenient searches of detailed engineering data spanning multiple Martian solar days; Generating tables of initial conditions pertaining to engineering, health, and accountability data; Simplified construction and simulation of command sequences; and Fast time format conversions and sorting.

  13. A mobile clinical e-portfolio for nursing and medical students, using wireless personal digital assistants (PDAs).

    PubMed

    Garrett, Bernard Mark; Jackson, Cathryn

    2006-12-01

    This paper outlines the development and evaluation of a wireless personal digital assistant (PDA) based clinical learning tool designed to promote professional reflection for health professionals. The "Clinical e-portfolio" was developed at the University of British Columbia School of Nursing to enable students immediately to access clinical expertise and resources remotely, and record their clinical experiences in a variety of media (text, audio and images). The PDA e-portfolio tool was developed to demonstrate the potential use of mobile networked technologies to support and improve clinical learning; promote reflective learning in practice; engage students in the process of knowledge translation; help contextualize and embed clinical knowledge whilst in the workplace; and to help prevent the isolation of students whilst engaged in supervised clinical practice. The mobile e-portfolio was developed to synchronise wirelessly with a user's personal Web based portfolio from any remote location where a cellular telephone signal or wireless (Wi-Fi) connection could be obtained. An evaluation of the tool was undertaken with nurse practitioner and medical students, revealing positive attitudes to the use of PDA based tools and portfolios, but limits to the use of the PDA portfolio due to the inherent interface restrictions of the PDA.

  14. LBMR: Load-Balanced Multipath Routing for Wireless Data-Intensive Transmission in Real-Time Medical Monitoring

    PubMed Central

    Tseng, Chinyang Henry

    2016-01-01

    In wireless networks, low-power Zigbee is an excellent network solution for wireless medical monitoring systems. Medical monitoring generally involves transmission of a large amount of data and easily causes bottleneck problems. Although Zigbee’s AODV mesh routing provides extensible multi-hop data transmission to extend network coverage, it originally does not, and needs to support some form of load balancing mechanism to avoid bottlenecks. To guarantee a more reliable multi-hop data transmission for life-critical medical applications, we have developed a multipath solution, called Load-Balanced Multipath Routing (LBMR) to replace Zigbee’s routing mechanism. LBMR consists of three main parts: Layer Routing Construction (LRC), a Load Estimation Algorithm (LEA), and a Route Maintenance (RM) mechanism. LRC assigns nodes into different layers based on the node’s distance to the medical data gateway. Nodes can have multiple next-hops delivering medical data toward the gateway. All neighboring layer-nodes exchange flow information containing current load, which is the used by the LEA to estimate future load of next-hops to the gateway. With LBMR, nodes can choose the neighbors with the least load as the next-hops and thus can achieve load balancing and avoid bottlenecks. Furthermore, RM can detect route failures in real-time and perform route redirection to ensure routing robustness. Since LRC and LEA prevent bottlenecks while RM ensures routing fault tolerance, LBMR provides a highly reliable routing service for medical monitoring. To evaluate these accomplishments, we compare LBMR with Zigbee’s AODV and another multipath protocol, AOMDV. The simulation results demonstrate LBMR achieves better load balancing, less unreachable nodes, and better packet delivery ratio than either AODV or AOMDV. PMID:27258297

  15. LBMR: Load-Balanced Multipath Routing for Wireless Data-Intensive Transmission in Real-Time Medical Monitoring.

    PubMed

    Tseng, Chinyang Henry

    2016-05-31

    In wireless networks, low-power Zigbee is an excellent network solution for wireless medical monitoring systems. Medical monitoring generally involves transmission of a large amount of data and easily causes bottleneck problems. Although Zigbee's AODV mesh routing provides extensible multi-hop data transmission to extend network coverage, it originally does not, and needs to support some form of load balancing mechanism to avoid bottlenecks. To guarantee a more reliable multi-hop data transmission for life-critical medical applications, we have developed a multipath solution, called Load-Balanced Multipath Routing (LBMR) to replace Zigbee's routing mechanism. LBMR consists of three main parts: Layer Routing Construction (LRC), a Load Estimation Algorithm (LEA), and a Route Maintenance (RM) mechanism. LRC assigns nodes into different layers based on the node's distance to the medical data gateway. Nodes can have multiple next-hops delivering medical data toward the gateway. All neighboring layer-nodes exchange flow information containing current load, which is the used by the LEA to estimate future load of next-hops to the gateway. With LBMR, nodes can choose the neighbors with the least load as the next-hops and thus can achieve load balancing and avoid bottlenecks. Furthermore, RM can detect route failures in real-time and perform route redirection to ensure routing robustness. Since LRC and LEA prevent bottlenecks while RM ensures routing fault tolerance, LBMR provides a highly reliable routing service for medical monitoring. To evaluate these accomplishments, we compare LBMR with Zigbee's AODV and another multipath protocol, AOMDV. The simulation results demonstrate LBMR achieves better load balancing, less unreachable nodes, and better packet delivery ratio than either AODV or AOMDV.

  16. Design considerations on ultra-low-power wireless transmitters for wearable medical devices.

    PubMed

    Manstretta, Danilo

    2010-01-01

    A wireless transmitter for wearable bio-sensing applications must fulfill very specialized requirements. It has been estimated that for truly wearable systems it must operate with an average power consumption of less than 140 microW. The alternatives, pitfalls, and realistic performance of robust, low power signal transmission will be addressed.

  17. A double-helix and cross-patterned solenoid used as a wirelessly powered receiver for medical implants

    NASA Astrophysics Data System (ADS)

    Mao, Shitong; Wang, Hao; Mao, Zhi-Hong; Sun, Mingui

    2018-05-01

    Many medical implants need to be designed in the shape of a cylinder (rod), a cuboid or a capsule in order to adapt to a specific site within the human body or facilitate the implantation procedure. In order to wirelessly power these types of implants, a pair of coils, one is located inside the human body and one is outside, is often used. Since most organs such as major muscles, blood vessels, and nerve bundles are anatomically parallel to the body surface, the most desired wireless power transfer (WPT) direction is from the external power transmission pad (a planar coil) to the lateral surface of the implant. However, to obtain optimal coupling, the currently used solenoid coil requires being positioned perpendicular to the body surface, which is often medically or anatomically unacceptable. In this research, a concentric double-helix (DH) coil with an air core is presented for use in implantable devices. Two helical coils are tilted at opposite angles (±45 degrees) to form a cross pattern. The WPT system is designed using the magnetic resonance concept for wireless power transfer (MR-WPT). The power transfer efficiency (PTE) relies on the near-field magnetic coupling which is closely related to the location and orientation of the DH coil. We explain how the novel structure of the DH solenoid magnifies the mutual inductance with the widely adopted circular planner coil and how the PTE is improved in comparison to the case of the conventional solenoid coil. We also study an important case where the double-helix power reception coil is laterally and angularly misaligned with the transmitter. Finally, our computational study using the finite element method and experimental study with actually constructed prototypes are presented which have proven our new double-helix coil design.

  18. Telemetry data via communications relay

    NASA Astrophysics Data System (ADS)

    Strock, O. J.; Witchey, Michael

    This paper responds to a test range engineer's need to relay one or more channels of various types of telemetry data from a remotely-located receiving station to the central telemetry station at range headquarters for real-time processing and display. Several types of data are identified, and specific equipment and technology for multiplexing, transmission, and demultiplexing up to eight streams from a variety of sources is discussed. The widely-used T3 communications link, also known as DS-3, can relay data via satellite, microwave link, or other high-speed path at 44.736 megabits per second, of which about 95 percent can be actual telemetry data; other standard links operate at lower aggregate rates. Several links and rates are discussed, with emphasis in the high-rate T3 link.

  19. 21 CFR 882.1855 - Electroencephalogram (EEG) telemetry system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Electroencephalogram (EEG) telemetry system. 882.1855 Section 882.1855 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Diagnostic Devices § 882.1855...

  20. 21 CFR 882.1855 - Electroencephalogram (EEG) telemetry system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Electroencephalogram (EEG) telemetry system. 882.1855 Section 882.1855 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Diagnostic Devices § 882.1855...

  1. Design and simulation of printed spiral coil used in wireless power transmission systems for implant medical devices.

    PubMed

    Wu, Wei; Fang, Qiang

    2011-01-01

    Printed Spiral Coil (PSC) is a coil antenna for near-field wireless power transmission to the next generation implant medical devices. PSC for implant medical device should be power efficient and low electromagnetic radiation to human tissues. We utilized a physical model of printed spiral coil and applied our algorithm to design PSC operating at 13.56 MHz. Numerical and electromagnetic simulation of power transfer efficiency of PSC in air medium is 77.5% and 71.1%, respectively. The simulation results show that the printed spiral coil which is optimized for air will keep 15.2% power transfer efficiency in human subcutaneous tissues. In addition, the Specific Absorption Ratio (SAR) for this coil antenna in subcutaneous at 13.56 MHz is below 1.6 W/Kg, which suggests this coil is implantable safe based on IEEE C95.1 safety guideline.

  2. A battery-free multichannel digital neural/EMG telemetry system for flying insects.

    PubMed

    Thomas, Stewart J; Harrison, Reid R; Leonardo, Anthony; Reynolds, Matthew S

    2012-10-01

    This paper presents a digital neural/EMG telemetry system small enough and lightweight enough to permit recording from insects in flight. It has a measured flight package mass of only 38 mg. This system includes a single-chip telemetry integrated circuit (IC) employing RF power harvesting for battery-free operation, with communication via modulated backscatter in the UHF (902-928 MHz) band. An on-chip 11-bit ADC digitizes 10 neural channels with a sampling rate of 26.1 kSps and 4 EMG channels at 1.63 kSps, and telemeters this data wirelessly to a base station. The companion base station transceiver includes an RF transmitter of +36 dBm (4 W) output power to wirelessly power the telemetry IC, and a digital receiver with a sensitivity of -70 dBm for 10⁻⁵ BER at 5.0 Mbps to receive the data stream from the telemetry IC. The telemetry chip was fabricated in a commercial 0.35 μ m 4M1P (4 metal, 1 poly) CMOS process. The die measures 2.36 × 1.88 mm, is 250 μm thick, and is wire bonded into a flex circuit assembly measuring 4.6 × 6.8 mm.

  3. Safety considerations for wireless delivery of continuous power to implanted medical devices.

    PubMed

    Lucke, Lori; Bluvshtein, Vlad

    2014-01-01

    Wireless power systems for use with implants are referred to as transcutaneous energy transmission systems (TETS) and consist of an implanted secondary coil and an external primary coil along with supporting electronics. A TETS system could be used to power ventricular assist systems and eliminate driveline infections. There are both direct and indirect safety concerns that must be addressed when continuously transferring power through the skin. Direct safety concerns include thermal tissue damage caused by exposure to the electromagnetic fields, coil heating effects, and potential unwanted nerve stimulation. Indirect concerns are those caused by potential interference of the TETS system with other implanted devices. Wireless power systems are trending towards higher frequency operation. Understanding the limits for safe operation of a TETS system across a range of frequencies is important. A low frequency and a high frequency implementation are simulated to demonstrate the impact of this trend for a VAD application.

  4. 106-17 Telemetry Standards Chapter 1

    DTIC Science & Technology

    2017-07-01

    Telemetry Standards , RCC Standard 106-17 Chapter 1, July 2017 1-1 CHAPTER 1 Introduction The Telemetry Standards address the here-to-date...generally devoted to a different element of the telemetry system or process . Chapters 21 through 28 address the topic of network telemetry. These...Commonly used terms are defined in standard reference glossaries and dictionaries. Definitions of terms with special applications are included when

  5. XTCE. XML Telemetry and Command Exchange Tutorial

    NASA Technical Reports Server (NTRS)

    Rice, Kevin; Kizzort, Brad; Simon, Jerry

    2010-01-01

    An XML Telemetry Command Exchange (XTCE) tutoral oriented towards packets or minor frames is shown. The contents include: 1) The Basics; 2) Describing Telemetry; 3) Describing the Telemetry Format; 4) Commanding; 5) Forgotten Elements; 6) Implementing XTCE; and 7) GovSat.

  6. Acoustic telemetry and fisheries management

    USGS Publications Warehouse

    Crossin, Glenn T.; Heupel, Michelle R.; Holbrook, Christopher; Hussey, Nigel E.; Lowerre-Barbieri, Susan K.; Nguyen, Vivian M.; Raby, Graham D.; Cooke, Steven J.

    2017-01-01

    This paper reviews the use of acoustic telemetry as a tool for addressing issues in fisheries management, and serves as the lead to the special Feature Issue of Ecological Applications titled “Acoustic Telemetry and Fisheries Management”. Specifically, we provide an overview of the ways in which acoustic telemetry can be used to inform issues central to the ecology, conservation, and management of exploited and/or imperiled fish species. Despite great strides in this area in recent years, there are comparatively few examples where data have been applied directly to influence fisheries management and policy. We review the literature on this issue, identify the strengths and weaknesses of work done to date, and highlight knowledge gaps and difficulties in applying empirical fish telemetry studies to fisheries policy and practice. We then highlight the key areas of management and policy addressed, as well as the challenges that needed to be overcome to do this. We conclude with a set of recommendations about how researchers can, in consultation with stock assessment scientists and managers, formulate testable scientific questions to address and design future studies to generate data that can be used in a meaningful way by fisheries management and conservation practitioners. We also urge the involvement of relevant stakeholders (managers, fishers, conservation societies, etc.) early on in the process (i.e. in the co-creation of research projects), so that all priority questions and issues can be addressed effectively.

  7. BROADBAND DIGITAL GEOPHYSICAL TELEMETRY SYSTEM.

    USGS Publications Warehouse

    Seeley, Robert L.; Daniels, Jeffrey J.

    1984-01-01

    A system has been developed to simultaneously sample and transmit digital data from five remote geophysical data receiver stations to a control station that processes, displays, and stores the data. A microprocessor in each remote station receives commands from the control station over a single telemetry channel.

  8. [Evaluation of an Experimental Production Wireless Dose Monitoring System for Radiation Exposure Management of Medical Staff].

    PubMed

    Fujibuchi, Toshioh; Murazaki, Hiroo; Kuramoto, Taku; Umedzu, Yoshiyuki; Ishigaki, Yung

    2015-08-01

    Because of the more advanced and more complex procedures in interventional radiology, longer treatment times have become necessary. Therefore, it is important to determine the exposure doses received by operators and patients. The aim of our study was to evaluate an experimental production wireless dose monitoring system for pulse radiation in diagnostic X-ray. The energy, dose rate, and pulse fluoroscopy dependence were evaluated as the basic characteristics of this system for diagnostic X-ray using a fully digital fluoroscopy system. The error of 1 cm dose equivalent rate was less than 15% from 35.1 keV to 43.2 keV with energy correction using metal filter. It was possible to accurately measure the dose rate dependence of this system, which was highly linear until 100 μSv/h. This system showed a constant response to the pulse fluoroscopy. This system will become useful wireless dosimeter for the individual exposure management by improving the high dose rate and the energy characteristics.

  9. A Wireless, Fully-Passive Recorder for Medical Applications (2016 Version)

    NASA Astrophysics Data System (ADS)

    Lee, Cedric W.

    This dissertation presents a fully-passive wireless neurorecording system for moni- toring very low level neuropotential. The subject new recording device has no battery, power harvester or regulator. As a result, it addresses concerns related to: (1) exter- nal wired connection (causing lack of mobility and risk of infection in patients), and (2) heat generation that may impact neural functioning. The developed sensor also exhibits large bandwidth and extremely high sensitivity down to 20 muVpp. Specifi- cally, this minimum detectable voltage is 25 times lower than previous fully-passive wireless neurorecorder. Further, for the first time, it allows detection of signals up to 5000 Hz. As a result, it can detect all neural signals of interest. A key aspect of the proposed sensors increased sensitivity is the introduction of an anti-parallel diode pair (APDP) to greatly reduce the second harmonic mixing conversion loss in the implant. Also, a smaller size antenna allows for a less intrusive implant. The implant is excited by an external interrogator possibly integrated within a baseball cap, to power the implanted recorder and reading the neurosignal.

  10. A coded tracking telemetry system

    USGS Publications Warehouse

    Howey, P.W.; Seegar, W.S.; Fuller, M.R.; Titus, K.; Amlaner, Charles J.

    1989-01-01

    We describe the general characteristics of an automated radio telemetry system designed to operate for prolonged periods on a single frequency. Each transmitter sends a unique coded signal to a receiving system that encodes and records only the appropriater, pre-programmed codes. A record of the time of each reception is stored on diskettes in a micro-computer. This system enables continuous monitoring of infrequent signals (e.g. one per minute or one per hour), thus extending operation life or allowing size reduction of the transmitter, compared to conventional wildlife telemetry. Furthermore, when using unique codes transmitted on a single frequency, biologists can monitor many individuals without exceeding the radio frequency allocations for wildlife.

  11. Astronomy. Laser telemetry from space.

    PubMed

    Bland-Hawthorn, Joss; Harwit, Alex; Harwit, Martin

    2002-07-26

    Space missions currently on the drawing boards are expected to gather data at rates exceeding the transmission capabilities of today's telemetry systems by many orders of magnitude. Even on current missions, onboard data compression techniques are being implemented to compensate for lack of transmission speed. But while data compression can minimize the loss of data, it is no substitute for transmitting all of the data through a faster communications link. The transmission problem will soon reach crisis proportions and will affect astronomical, Earth resources, geophysical, meteorological, planetary and other space science missions. To overcome this communications bottleneck, the authors advocate the implementation of telemetry systems based on near-infrared laser transmission techniques. The fiber-optics communications industry has developed most of the basic components required for signal transmission in this wavelength band, which should make such a system affordable on scales relevant to the cost of anticipated space science missions.

  12. Analysis of survival data from telemetry projects

    USGS Publications Warehouse

    Bunck, C.M.; Winterstein, S.R.; Pollock, K.H.

    1985-01-01

    Telemetry techniques can be used to study the survival rates of animal populations and are particularly suitable for species or settings for which band recovery models are not. Statistical methods for estimating survival rates and parameters of survival distributions from observations of radio-tagged animals will be described. These methods have been applied to medical and engineering studies and to the study of nest success. Estimates and tests based on discrete models, originally introduced by Mayfield, and on continuous models, both parametric and nonparametric, will be described. Generalizations, including staggered entry of subjects into the study and identification of mortality factors will be considered. Additional discussion topics will include sample size considerations, relocation frequency for subjects, and use of covariates.

  13. Network Science Research Laboratory (NSRL) Telemetry Warehouse

    DTIC Science & Technology

    2016-06-01

    Functionality and architecture of the NSRL Telemetry Warehouse are also described as well as the web interface, data structure, security aspects, and...Experiment Controller 6 4.5 Telemetry Sensors 7 4.6 Custom Data Processing Nodes 7 5. Web Interface 8 6. Data Structure 8 6.1 Measurements 8...telemetry in comma-separated value (CSV) format from the web interface or via custom applications developed by researchers using the client application

  14. The Venus Balloon Project telemetry processing

    NASA Technical Reports Server (NTRS)

    Urech, J. M.; Chamarro, A.; Morales, J. L.; Urech, M. A.

    1986-01-01

    The peculiarities of the Venus Balloon telemetry system required the development of a new methodology for the telemetry processing, since the capabilities of the Deep Space Network (DSN) telemetry system do not include burst processing of short frames with two different bit rates and first bit acquisition. A software package was produced for the non-real time detection, demodulation, and decoding of the telemetry streams obtained from an open loop recording utilizing the DSN spectrum processing subsystem-radio science (DSP-RS). A general description of the resulting software package (DMO-5539-SP) and its adaptability to the real mission's variations is contained.

  15. Low Duty-Cycling MAC Protocol for Low Data-Rate Medical Wireless Body Area Networks

    PubMed Central

    Zhang, Chongqing; Wang, Yinglong; Liang, Yongquan; Shu, Minglei; Zhang, Jinquan; Ni, Lina

    2017-01-01

    Wireless body area networks (WBANs) are severely energy constrained, and how to improve the energy efficiency so as to prolong the network lifetime as long as possible is one of the most important goals of WBAN research. Low data-rate WBANs are promising to cut down the energy consumption and extend the network lifetime. Considering the characteristics and demands of low data-rate WBANs, a low duty-cycling medium access control (MAC) protocol is specially designed for this kind of WBAN in this paper. Longer superframes are exploited to cut down the energy consumed on the transmissions and receptions of redundant beacon frames. Insertion time slots are embedded into the inactive part of a superframe to deliver the frames and satisfy the quality of service (QoS) requirements. The number of the data subsections in an insertion time slot can be adaptively adjusted so as to accommodate low data-rate WBANs with different traffic. Simulation results show that the proposed MAC protocol performs well under the condition of low data-rate monitoring traffic. PMID:28509849

  16. Radio telemetry devices to monitor breathing in non-sedated animals.

    PubMed

    Samson, Nathalie; Dumont, Sylvain; Specq, Marie-Laure; Praud, Jean-Paul

    2011-12-15

    Radio telemetry equipment has significantly improved over the last 10-15 years and is increasingly being used in research for monitoring a variety of physiological parameters in non-sedated animals. The aim of this review is to provide an update on the current state of development of radio telemetry for recording respiration. Our literature review found only rare reports of respiratory studies via radio telemetry. Much of this article will hence report our experience with our custom-built radio telemetry devices designed for recording respiratory signals, together with numerous other physiological signals in lambs. Our current radio telemetry system allows to record 24 simultaneous signals 24h/day for several days. To our knowledge, this is the highest number of physiological signals, which can be recorded wirelessly. Our devices have been invaluable for studying respiration in our ovine models of preterm birth, reflux laryngitis, postnatal exposure to cigarette smoke, respiratory syncytial virus infection and nasal ventilation, all of which are relevant to neonatal respiratory problems. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. 106-17 Telemetry Standards Digitized Audio Telemetry Standard Chapter 5

    DTIC Science & Technology

    2017-07-01

    RCC Standard 106-17 Chapter 5, July 2017 5-3 5.8 CVSD Bit Rate Determination The following discussion provides a procedure for determining the...Telemetry Standards , RCC Standard 106-17 Chapter 5, July 2017 CHAPTER 5 Digitized Audio Telemetry Standard Table of Contents Chapter 5...Digitized Audio Telemetry Standard ............................................................... 5-1 5.1 General

  18. Disposable telemetry cable deployment system

    DOEpatents

    Holcomb, David Joseph

    2000-01-01

    A disposable telemetry cable deployment system for facilitating information retrieval while drilling a well includes a cable spool adapted for insertion into a drill string and an unarmored fiber optic cable spooled onto the spool cable and having a downhole end and a stinger end. Connected to the cable spool is a rigid stinger which extends through a kelly of the drilling apparatus. A data transmission device for transmitting data to a data acquisition system is disposed either within or on the upper end of the rigid stinger.

  19. Telemetry Options for LDB Payloads

    NASA Technical Reports Server (NTRS)

    Stilwell, Bryan D.; Field, Christopher J.

    2016-01-01

    The Columbia Scientific Balloon Facility provides Telemetry and Command systems necessary for balloon operations and science support. There are various Line-Of-Sight (LOS) and Over-The-Horizon (OTH) systems and interfaces that provide communications to and from a science payload. This presentation will discuss the current data throughput options available and future capabilities that may be incorporated in the LDB Support Instrumentation Package (SIP) such as doubling the TDRSS data rate. We will also explore some new technologies that could potentially expand the data throughput of OTH communications.

  20. Radio telemetry equipment and applications for carnivores

    USGS Publications Warehouse

    Fuller, Mark R.; Fuller, Todd K.; Boitani, Luigi; Powell, Roger A.

    2012-01-01

    Radio-telemetry was not included in the first comprehensive manual of wildlife research techniques (Mosby 1960) because the first published papers were about physiological wildlife telemetry (LeMunyan et al. 1959) and because research using telemetry in field ecology was just being initiated (Marshall et al. 1962; Cochran and Lord 1963). Among the first uses of telemetry to study wildlife, however, was a study of carnivores (Craighead et al. 1963), and telemetry has become a common method for studying numerous topics of carnivore biology. Our goals for this chapter are to provide basic information about radio-telemetry equipment and procedures. Although we provide many references to studies using telemetry equipment and methods, we recommend Kenward's (2001) comprehensive book, A manual of wildlife radio tagging for persons who are unfamiliar with radio-telemetry, Fuller et al. (2005), and Tomkiewicz et al. (2010). Compendia of uses of radio-telemetry in animal research appear regularly as chapters in manuals (Cochran 1980; Samuel and Fuller 1994), in books about equipment, field procedures, study design, and applications (Amlaner and Macdonald 1980; Anderka 1987; Amlaner 1989; White and Garrott 1990; Priede and Swift 1992; Kenward 2001; Millspaugh and Marzluff 2001; Mech and Barber 2002), and in reviews highlighting new developments (Cooke et al. 2004; Rutz and Hays 2009; Cagnacci et al. 2010). Some animal telemetry products and techniques have remained almost unchanged for years, but new technologies and approaches emerge and replace previously available equipment at an increasing pace. Here, we emphasize recent studies for which telemetry was used with carnivores.

  1. Noncausal telemetry data recovery techniques

    NASA Technical Reports Server (NTRS)

    Tsou, H.; Lee, R.; Mileant, A.; Hinedi, S.

    1995-01-01

    Cost efficiency is becoming a major driver in future space missions. Because of the constraints on total cost, including design, implementation, and operation, future spacecraft are limited in terms of their size power and complexity. Consequently, it is expected that future missions will operate on marginal space-to-ground communication links that, in turn, can pose an additional risk on the successful scientific data return of these missions. For low data-rate and low downlink-margin missions, the buffering of the telemetry signal for further signal processing to improve data return is a possible strategy; it has been adopted for the Galileo S-band mission. This article describes techniques used for postprocessing of buffered telemetry signal segments (called gaps) to recover data lost during acquisition and resynchronization. Two methods, one for a closed-loop and the other one for an open-loop configuration, are discussed in this article. Both of them can be used in either forward or backward processing of signal segments, depending on where a gap is specifically situated in a pass.

  2. A three channel telemetry system

    NASA Technical Reports Server (NTRS)

    Lesho, Jeffery C.; Eaton, Harry A. C.

    1993-01-01

    A three channel telemetry system intended for biomedical applications is described. The transmitter is implemented in a single chip using a 2 micron BiCMOS processes. The operation of the system and the test results from the latest chip are discussed. One channel is always dedicated to temperature measurement while the other two channels are generic. The generic channels carry information from transducers that are interfaced to the system through on-chip general purpose operational amplifiers. The generic channels have different bandwidths: one from dc to 250 Hz and the other from dc to 1300 Hz. Each generic channel modulates a current controlled oscillator to produce a frequency modulated signal. The two frequency modulated signals are summed and used to amplitude modulate the temperature signal which acts as a carrier. A near-field inductive link telemeters the combined signals over a short distance. The chip operates on a supply voltage anywhere from 2.5 to 3.6 Volts and draws less than 1 mA when transmitting a signal. The chip can be incorporated into ingestible, implantable and other configurations. The device can free the patient from tethered data collection systems and reduces the possibility of infection from subcutaneous leads. Data telemetry can increase patient comfort leading to a greater acceptance of monitoring.

  3. Telemetry Simulation Assembly Implementation in the DSN

    NASA Technical Reports Server (NTRS)

    Alberda, M. E.

    1984-01-01

    The telemetry simulation was implemented as part of the MARK IV network implementation project. The telemetry simulation assembly (TSA) is replacing the Simulation Conversion Assembly (SCA) throughout the DSN. The development of the TSA is discussed, and the design is described to the block diagram level.

  4. Impedance-matched drilling telemetry system

    DOEpatents

    Normann, Randy A [Edgewood, NM; Mansure, Arthur J [Albuquerque, NM

    2008-04-22

    A downhole telemetry system that uses inductance or capacitance as a mode through which signal is communicated across joints between assembled lengths of pipe wherein efficiency of signal propagation through a drill string, for example, over multiple successive pipe segments is enhanced through matching impedances associated with the various telemetry system components.

  5. System for Configuring Modular Telemetry Transponders

    NASA Technical Reports Server (NTRS)

    Varnavas, Kosta A. (Inventor); Sims, William Herbert, III (Inventor)

    2014-01-01

    A system for configuring telemetry transponder cards uses a database of error checking protocol data structures, each containing data to implement at least one CCSDS protocol algorithm. Using a user interface, a user selects at least one telemetry specific error checking protocol from the database. A compiler configures an FPGA with the data from the data structures to implement the error checking protocol.

  6. Wireless and Low-Weight Technologies: Advanced Medical Assistance During a Cave Rescue: A Case Report.

    PubMed

    Petrucci, Emiliano; Pizzi, Barbara; Scimia, Paolo; Conti, Giuseppe; Di Carlo, Stefano; Santini, Antonella; Fusco, Pierfrancesco

    2018-06-01

    Trauma care in cave rescue is a unique situation that requires an advanced and organized approach with medical and technical assistance because of the extreme environmental conditions and logistical factors. In caving accidents, the most common injuries involve lower limbs. We describe an advanced medical rescue performed by the Italian Corpo Nazionale del Soccorso Alpino e Speleologico, in which extended focused assessment with sonography for trauma and an ultrasound-guided adductor canal block were performed on a patient with a knee distortion directly in the cave. The rescue team inside the cave shared data on patient monitoring and the ultrasound scanning in real time with rescuers at the entrance, using a video conference powered by the new Ermes system. The use of handheld, battery-powered, low-weight, multiparametric monitors, ultrasound machines, and digital data transmission systems could ensure complete medical assistance in harsh environmental conditions such as those found in a cave. Copyright © 2018 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.

  7. Comparison of Medical and Consumer Wireless EEG Systems for Use in Clinical Trials.

    PubMed

    Ratti, Elena; Waninger, Shani; Berka, Chris; Ruffini, Giulio; Verma, Ajay

    2017-01-01

    Objectives: To compare quantitative EEG signal and test-retest reliability of medical grade and consumer EEG systems. Methods: Resting state EEG was acquired by two medical grade (B-Alert, Enobio) and two consumer (Muse, Mindwave) EEG systems in five healthy subjects during two study visits. EEG patterns, power spectral densities (PSDs) and test/retest reliability in eyes closed and eyes open conditions were compared across the four systems, focusing on Fp1, the only common electrode. Fp1 PSDs were obtained using Welch's modified periodogram method and averaged for the five subjects for each visit. The test/retest results were calculated as a ratio of Visit 1/Visit 2 Fp1 channel PSD at each 1 s epoch. Results: B-Alert, Enobio, and Mindwave Fp1 power spectra were similar. Muse showed a broadband increase in power spectra and the highest relative variation across test-retest acquisitions. Consumer systems were more prone to artifact due to eye blinks and muscle movement in the frontal region. Conclusions: EEG data can be successfully collected from all four systems tested. Although there was slightly more time required for application, medical systems offer clear advantages in data quality, reliability, and depth of analysis over the consumer systems. Significance: This evaluation provides evidence for informed selection of EEG systemsappropriate for clinical trials.

  8. An implementation of wireless medical image transmission system on mobile devices.

    PubMed

    Lee, SangBock; Lee, Taesoo; Jin, Gyehwan; Hong, Juhyun

    2008-12-01

    The advanced technology of computing system was followed by the rapid improvement of medical instrumentation and patient record management system. The typical examples are hospital information system (HIS) and picture archiving and communication system (PACS), which computerized the management procedure of medical records and images in hospital. Because these systems were built and used in hospitals, doctors out of hospital have problems to access them immediately on emergent cases. To solve these problems, this paper addressed the realization of system that could transmit the images acquired by medical imaging systems in hospital to the remote doctors' handheld PDA's using CDMA cellular phone network. The system consists of server and PDA. The server was developed to manage the accounts of doctors and patients and allocate the patient images to each doctor. The PDA was developed to display patient images through remote server connection. To authenticate the personal user, remote data access (RDA) method was used in PDA accessing the server database and file transfer protocol (FTP) was used to download patient images from the remove server. In laboratory experiments, it was calculated to take ninety seconds to transmit thirty images with 832 x 488 resolution and 24 bit depth and 0.37 Mb size. This result showed that the developed system has no problems for remote doctors to receive and review the patient images immediately on emergent cases.

  9. The Biolink Implantable Telemetry System

    NASA Technical Reports Server (NTRS)

    Betancourt-Zamora, Rafael J.

    1999-01-01

    Most biotelemetry applications deal with the moderated data rates of biological signals. Few people have studied the problem of transcutaneous data transmission at the rates required by NASA's Life Sciences-Advanced BioTelemetry System (LS-ABTS). Implanted telemetry eliminate the problems associated with wire breaking the skin, and permits experiments with awake and unrestrained subjects. Our goal is to build a low-power 174-216MHz Radio Frequency (RF) transmitter suitable for short range biosensor and implantable use. The BioLink Implantable Telemetry System (BITS) is composed of three major units: an Analog Data Module (ADM), a Telemetry Transmitter Module (TTM), and a Command Receiver Module (CRM). BioLink incorporates novel low-power techniques to implement a monolithic digital RF transmitter operating at 100kbps, using quadrature phase shift keying (QPSK) modulation in the 174-216MHz ISM band. As the ADM will be specific for each application, we focused on solving the problems associated with a monolithic implementation of the TTM and CRM, and this is the emphasis of this report. A system architecture based on a Frequency-Locked Loop (FLL) Frequency Synthesizer is presented, and a novel differential frequency that eliminates the need for a frequency divider is also shown. A self sizing phase modulation scheme suitable for low power implementation was also developed. A full system-level simulation of the FLL was performed and loop filter parameters were determined. The implantable antenna has been designed, simulated and constructed. An implant package compatible with the ABTS requirements is also being proposed. Extensive work performed at 200MHz in 0.5um complementary metal oxide semiconductors (CMOS) showed the feasibility of integrating the RF transmitter circuits in a single chip. The Hajimiri phase noise model was used to optimize the Voltage Controlled Oscillator (VCO) for minimum power consumption. Two test chips were fabricated in a 0.5pm, 3V CMOS

  10. Downhole tool adapted for telemetry

    DOEpatents

    Hall, David R.; Fox, Joe

    2010-12-14

    A cycleable downhole tool such as a Jar, a hydraulic hammer, and a shock absorber adapted for telemetry. This invention applies to other tools where the active components of the tool are displaced when the tool is rotationally or translationally cycled. The invention consists of inductive or contact transmission rings that are connected by an extensible conductor. The extensible conductor permits the transmission of the signal before, after, and during the cycling of the tool. The signal may be continuous or intermittent during cycling. The invention also applies to downhole tools that do not cycle, but in operation are under such stress that an extensible conductor is beneficial. The extensible conductor may also consist of an extensible portion and a fixed portion. The extensible conductor also features clamps that maintain the conductor under stresses greater than that seen by the tool, and seals that are capable of protecting against downhole pressure and contamination.

  11. Telemetry: Summary of concept and rationale

    NASA Astrophysics Data System (ADS)

    1987-12-01

    This report presents the concept and supporting rationale for the telemetry system developed by the Consultative Committee for Space Data Systems (CCSDS). The concepts, protocols and data formats developed for the telemetry system are designed for flight and ground data systems supporting conventional, contemporary free-flyer spacecraft. Data formats are designed with efficiency as a primary consideration, i.e., format overhead is minimized. The results reflect the consensus of experts from many space agencies. An overview of the CCSDS telemetry system introduces the notion of architectural layering to achieve transparent and reliable delivery of scientific and engineering sensor data (generated aboard space vehicles) to users located in space or on earth. The system is broken down into two major conceptual categories: a packet telemetry concept and a telemetry channel coding concept. Packet telemetry facilitates data transmission from source to user in a standardized and highly automated manner. It provides a mechanism for implementing common data structures and protocols which can enhance the development and operation of space mission systems. Telemetry channel coding is a method by which data can be sent from a source to a destination by processing it in such a way that distinct messages are created which are easily distinguishable from one another. This allows construction of the data with low error probability, thus improving performance of the channel.

  12. Tissue Variability and Antennas for Power Transfer to Wireless Implantable Medical Devices

    PubMed Central

    Bocan, Kara N.; Mickle, Marlin H.

    2017-01-01

    The design of effective transcutaneous systems demands the consideration of inevitable variations in tissue characteristics, which vary across body areas, among individuals, and over time. The purpose of this paper was to design and evaluate several printed antenna topologies for ultrahigh frequency (UHF) transcutaneous power transfer to implantable medical devices, and to investigate the effects of variations in tissue properties on dipole and loop topologies. Here, we show that a loop antenna topology provides the greatest achievable gain with the smallest implanted antenna, while a dipole system provides higher impedance for conjugate matching and the ability to increase gain with a larger external antenna. In comparison to the dipole system, the loop system exhibits greater sensitivity to changes in tissue structure and properties in terms of power gain, but provides higher gain when the separation is on the order of the smaller antenna dimension. The dipole system was shown to provide higher gain than the loop system at greater implant depths for the same implanted antenna area, and was less sensitive to variations in tissue properties and structure in terms of power gain at all investigated implant depths. The results show the potential of easily-fabricated, low-cost printed antenna topologies for UHF transcutaneous power, and the importance of environmental considerations in choosing the antenna topology. PMID:29018637

  13. Tissue Variability and Antennas for Power Transfer to Wireless Implantable Medical Devices.

    PubMed

    Bocan, Kara N; Mickle, Marlin H; Sejdic, Ervin

    2017-01-01

    The design of effective transcutaneous systems demands the consideration of inevitable variations in tissue characteristics, which vary across body areas, among individuals, and over time. The purpose of this paper was to design and evaluate several printed antenna topologies for ultrahigh frequency (UHF) transcutaneous power transfer to implantable medical devices, and to investigate the effects of variations in tissue properties on dipole and loop topologies. Here, we show that a loop antenna topology provides the greatest achievable gain with the smallest implanted antenna, while a dipole system provides higher impedance for conjugate matching and the ability to increase gain with a larger external antenna. In comparison to the dipole system, the loop system exhibits greater sensitivity to changes in tissue structure and properties in terms of power gain, but provides higher gain when the separation is on the order of the smaller antenna dimension. The dipole system was shown to provide higher gain than the loop system at greater implant depths for the same implanted antenna area, and was less sensitive to variations in tissue properties and structure in terms of power gain at all investigated implant depths. The results show the potential of easily-fabricated, low-cost printed antenna topologies for UHF transcutaneous power, and the importance of environmental considerations in choosing the antenna topology.

  14. Evolution of the LBT Telemetry System

    NASA Astrophysics Data System (ADS)

    Summers, K.; Biddick, C.; De La Peña, M. D.; Summers, D.

    2014-05-01

    The Large Binocular Telescope (LBT) Telescope Control System (TCS) records about 10GB of telemetry data per night. Additionally, the vibration monitoring system records about 9GB of telemetry data per night. Through 2013, we have amassed over 6TB of Hierarchical Data Format (HDF5) files and almost 9TB in a MySQL database of TCS and vibration data. The LBT telemetry system, in its third major revision since 2004, provides the mechanism to capture and store this data. The telemetry system has evolved from a simple HDF file system with MySQL stream definitions within the TCS, to a separate system using a MySQL database system for the definitions and data, and finally to no database use at all, using HDF5 files.

  15. A Systematic Approach to Error Free Telemetry

    DTIC Science & Technology

    2017-06-28

    A SYSTEMATIC APPROACH TO ERROR FREE TELEMETRY 412TW-TIM-17-03 DISTRIBUTION A: Approved for public release. Distribution is...Systematic Approach to Error-Free Telemetry) was submitted by the Commander, 412th Test Wing, Edwards AFB, California 93524. Prepared by...Technical Information Memorandum 3. DATES COVERED (From - Through) February 2016 4. TITLE AND SUBTITLE A Systematic Approach to Error-Free

  16. High performance VLSI telemetry data systems

    NASA Technical Reports Server (NTRS)

    Chesney, J.; Speciale, N.; Horner, W.; Sabia, S.

    1990-01-01

    NASA's deployment of major space complexes such as Space Station Freedom (SSF) and the Earth Observing System (EOS) will demand increased functionality and performance from ground based telemetry acquisition systems well above current system capabilities. Adaptation of space telemetry data transport and processing standards such as those specified by the Consultative Committee for Space Data Systems (CCSDS) standards and those required for commercial ground distribution of telemetry data, will drive these functional and performance requirements. In addition, budget limitations will force the requirement for higher modularity, flexibility, and interchangeability at lower cost in new ground telemetry data system elements. At NASA's Goddard Space Flight Center (GSFC), the design and development of generic ground telemetry data system elements, over the last five years, has resulted in significant solutions to these problems. This solution, referred to as the functional components approach includes both hardware and software components ready for end user application. The hardware functional components consist of modern data flow architectures utilizing Application Specific Integrated Circuits (ASIC's) developed specifically to support NASA's telemetry data systems needs and designed to meet a range of data rate requirements up to 300 Mbps. Real-time operating system software components support both embedded local software intelligence, and overall system control, status, processing, and interface requirements. These components, hardware and software, form the superstructure upon which project specific elements are added to complete a telemetry ground data system installation. This paper describes the functional components approach, some specific component examples, and a project example of the evolution from VLSI component, to basic board level functional component, to integrated telemetry data system.

  17. An Advanced Commanding and Telemetry System

    NASA Astrophysics Data System (ADS)

    Hill, Maxwell G. G.

    The Loral Instrumentation System 500 configured as an Advanced Commanding and Telemetry System (ACTS) supports the acquisition of multiple telemetry downlink streams, and simultaneously supports multiple uplink command streams for today's satellite vehicles. By using industry and federal standards, the system is able to support, without relying on a host computer, a true distributed dataflow architecture that is complemented by state-of-the-art RISC-based workstations and file servers.

  18. Mobile Telemetry Van Remote Control Upgrade

    DTIC Science & Technology

    2012-05-17

    Advantages of Remote Control System Upgrade • Summary Overview • Remote control of Telemetry Mobile Ground Support ( TMGS ) Van proposed to allow...NWC) personnel provided valuable data for full-function remote control of telemetry tracking vans Background • TMGS Vans support Flight Test...control capability from main TM site at Building 5790 currently allows support via TMGS Van at nearby C- 15 Site, Plant 42 in Palmdale, and as far

  19. Wireless sensors powered by microbial fuel cells.

    PubMed

    Shantaram, Avinash; Beyenal, Haluk; Raajan, Raaja; Veluchamy, Angathevar; Lewandowski, Zbigniew

    2005-07-01

    Monitoring parameters characterizing water quality, such as temperature, pH, and concentrations of heavy metals in natural waters, is often followed by transmitting the data to remote receivers using telemetry systems. Such systems are commonly powered by batteries, which can be inconvenient at times because batteries have a limited lifetime and must be recharged or replaced periodically to ensure that sufficient energy is available to power the electronics. To avoid these inconveniences, a microbial fuel cell was designed to power electrochemical sensors and small telemetry systems to transmit the data acquired by the sensors to remote receivers. The microbial fuel cell was combined with low-power, high-efficiency electronic circuitry providing a stable power source for wireless data transmission. To generate enough power for the telemetry system, energy produced by the microbial fuel cell was stored in a capacitor and used in short bursts when needed. Since commercial electronic circuits require a minimum 3.3 V input and our cell was able to deliver a maximum of 2.1 V, a DC-DC converter was used to boost the potential. The DC-DC converter powered a transmitter, which gathered the data from the sensor and transmitted it wirelessly to a remote receiver. To demonstrate the utility of the system, temporal variations in temperature were measured, and the data were wirelessly transmitted to a remote receiver.

  20. Emergency Medical Service

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Lewis Research Center helped design the complex EMS Communication System, originating from space operated telemetry, including the telemetry link between ambulances and hospitals for advanced life support services. In emergency medical use telemetry links ambulances and hospitals for advanced life support services and allows transmission of physiological data -- an electrocardiogram from an ambulance to a hospital emergency room where a physician reads the telemetered message and prescribes emergency procedures to ambulance attendants.

  1. Watershed Allied Telemetry Experimental Research

    NASA Astrophysics Data System (ADS)

    Li, Xin; Li, Xiaowen; Li, Zengyuan; Ma, Mingguo; Wang, Jian; Xiao, Qing; Liu, Qiang; Che, Tao; Chen, Erxue; Yan, Guangjian; Hu, Zeyong; Zhang, Lixin; Chu, Rongzhong; Su, Peixi; Liu, Qinhuo; Liu, Shaomin; Wang, Jindi; Niu, Zheng; Chen, Yan; Jin, Rui; Wang, Weizhen; Ran, Youhua; Xin, Xiaozhou; Ren, Huazhong

    2009-11-01

    The Watershed Allied Telemetry Experimental Research (WATER) is a simultaneous airborne, satellite-borne, and ground-based remote sensing experiment aiming to improve the observability, understanding, and predictability of hydrological and related ecological processes at a catchment scale. WATER consists of the cold region, forest, and arid region hydrological experiments as well as a hydrometeorology experiment and took place in the Heihe River Basin, a typical inland river basin in the northwest of China. The field campaigns have been completed, with an intensive observation period lasting from 7 March to 12 April, from 15 May to 22 July, and from 23 August to 5 September 2008: in total, 120 days. Twenty-five airborne missions were flown. Airborne sensors including microwave radiometers at L, K, and Ka bands, imaging spectrometer, thermal imager, CCD, and lidar were used. Various satellite data were collected. Ground measurements were carried out at four scales, that is, key experimental area, foci experimental area, experiment site, and elementary sampling plot, using ground-based remote sensing instruments, densified network of automatic meteorological stations, flux towers, and hydrological stations. On the basis of these measurements, the remote sensing retrieval models and algorithms of water cycle variables are to be developed or improved, and a catchment-scale land/hydrological data assimilation system is being developed. This paper reviews the background, scientific objectives, experiment design, filed campaign implementation, and current status of WATER. The analysis of the data will continue over the next 2 years, and limited revisits to the field are anticipated.

  2. Review of research methodologies for tigers: telemetry.

    PubMed

    Miller, Clayton S; Hebblewhite, Mark; Goodrich, John M; Miquelle, Dale G

    2010-12-01

    Over the past half century, wildlife research has relied on technological advances to gain additional insight into the secretive lives of animals. This revolution started in the 1960s with the development of radio telemetry and continues today with the use of Global Positioning System (GPS)-based research techniques. In the present paper we review the history of radio telemetry from its origins with grizzly bears in Yellowstone to its early applications in tiger research and conservation in Asia. We address the different types of data that are available using radio telemetry as opposed to using other research techniques, such as behavioral observations, camera trapping, DNA analysis and scat analysis. In the late 1990s, the rapid development of GPS collar technology revolutionized wildlife research. This new technology has enabled researchers to dramatically improve their ability to gather data on animal movements and ecology. Despite the ecological and conservation benefits of radio telemetry, there have been few telemetry studies of tigers in the wild, and most have been on the Bengal or Amur subspecies. We close with an assessment of the current tiger conservation efforts using GPS technology and discuss how this new information can help to preserve tigers for future generations. © 2010 ISZS, Blackwell Publishing and IOZ/CAS.

  3. New Jersey Tide Telemetry System

    USGS Publications Warehouse

    Hoppe, Heidi L.

    2007-01-01

    Each summer the population of the barrier-island communities of New Jersey increases by tens of thousands. When a coastal storm threatens these communities, the limited number of bridges and causeways that connect the islands with the mainland become overcrowded, making evacuations from the barrier islands to the mainland difficult. Timely evacuation depends on well-defined emergency evacuation plans used in conjunction with accurate flood forecasting and up to the minute (real-time) tide-level information. The 'Great Nor'easter' storm that struck the coastal areas of New Jersey on December 11, 1992, caused about $270 million in insured damages to public and private property (Dorr and others, 1995). Most of the damage was due to tidal flooding and storm surge, which were especially severe along the back bay areas. Comprehensive and reliable tide-level and meteorological data for the back bays was needed to make accurate flood forecasts. Collection of tidal data for the ocean and large bays was adequately covered by the National Oceanic and Atmospheric Administration's National Ocean Service (NOAA's NOS), but in New Jersey little to no data are available for the back-bay areas. The back bays behave quite differently than the ocean as a result of the complex interaction between the winds and the geometry of the inlets and bays. A slow moving Nor'easter can keep tide levels in back bays several feet higher than the ocean tide by not allowing tides to recede, resulting in flooding of bridges and causeways that link the barrier islands to the mainland. The U.S. Geological Survey (USGS), in cooperation with the New Jersey Department of Transportation (NJDOT), designed and installed the New Jersey Tide Telemetry System (NJTTS) with assistance from NOAA's NOS in 1997. This system is part of a statewide network of tide gages, weather stations, and stream gages that collect data in real time. The NJTTS supplies comprehensive, reliable real-time tide-level and meteorological

  4. Miniature infrared data acquisition and telemetry system

    NASA Technical Reports Server (NTRS)

    Stokes, J. H.; Ward, S. M.

    1985-01-01

    The Miniature Infrared Data Acquisition and Telemetry (MIRDAT) Phase 1 study was performed to determine the technical and commercial feasibility of producing a miniaturized electro-optical telemetry system. This system acquires and transmits experimental data from aircraft scale models for realtime monitoring in wind tunnels. During the Phase 1 study, miniature prototype MIRDAT telemetry devices were constructed, successfully tested in the laboratory and delivered to the user for wind tunnel testing. A search was conducted for commercially available components and advanced hybrid techniques to further miniaturize the system during Phase 2 development. A design specification was generated from laboratory testing, user requirements and discussions with component manufacturers. Finally, a preliminary design of the proposed MIRDAT system was documented for Phase 2 development.

  5. Single frequency RF powered ECG telemetry system

    NASA Technical Reports Server (NTRS)

    Ko, W. H.; Hynecek, J.; Homa, J.

    1979-01-01

    It has been demonstrated that a radio frequency magnetic field can be used to power implanted electronic circuitry for short range telemetry to replace batteries. A substantial reduction in implanted volume can be achieved by using only one RF tank circuit for receiving the RF power and transmitting the telemetered information. A single channel telemetry system of this type, using time sharing techniques, was developed and employed to transmit the ECG signal from Rhesus monkeys in primate chairs. The signal from the implant is received during the period when the RF powering radiation is interrupted. The ECG signal is carried by 20-microsec pulse position modulated pulses, referred to the trailing edge of the RF powering pulse. Satisfactory results have been obtained with this single frequency system. The concept and the design presented may be useful for short-range long-term implant telemetry systems.

  6. [Exploration of the design of media access control layer of wireless body area network for medical healthcare].

    PubMed

    Liu, Xuemei; Ge, Baofeng

    2012-04-01

    This paper proposes a media access control (MAC) layer design for wireless body area network (WBAN) systems. WBAN is a technology that targets for wireless networking of wearable and implantable body sensors which monitor vital body signs, such as heart-rate, body temperature, blood pressure, etc. It has been receiving attentions from international organizations, e. g. the Institute of Electrical and Electronics Engineers (IEEE), due to its capability of providing efficient healthcare services and clinical management. This paper reviews the standardization procedure of WBAN and summarizes the challenge of the MAC layer design. It also discusses the methods of improving power consumption performance, which is one of the major issues of WBAN systems.

  7. Using Onboard Telemetry for MAVEN Orbit Determination

    NASA Technical Reports Server (NTRS)

    Lam, Try; Trawny, Nikolas; Lee, Clifford

    2013-01-01

    Determination of the spacecraft state has been traditional done using radiometric tracking data before and after the atmosphere drag pass. This paper describes our approach and results to include onboard telemetry measurements in addition to radiometric observables to refine the reconstructed trajectory estimate for the Mars Atmosphere and Volatile Evolution Mission (MAVEN). Uncertainties in the Mars atmosphere models, combined with non-continuous tracking degrade navigation accuracy, making MAVEN a key candidate for using onboard telemetry data to help complement its orbit determination process.

  8. Test Telemetry And Command System (TTACS)

    NASA Technical Reports Server (NTRS)

    Fogel, Alvin J.

    1994-01-01

    The Jet Propulsion Laboratory has developed a multimission Test Telemetry and Command System (TTACS) which provides a multimission telemetry and command data system in a spacecraft test environment. TTACS reuses, in the spacecraft test environment, components of the same data system used for flight operations; no new software is developed for the spacecraft test environment. Additionally, the TTACS is transportable to any spacecraft test site, including the launch site. The TTACS is currently operational in the Galileo spacecraft testbed; it is also being provided to support the Cassini and Mars Surveyor Program projects. Minimal personnel data system training is required in the transition from pre-launch spacecraft test to post-launch flight operations since test personnel are already familiar with the data system's operation. Additionally, data system components, e.g. data display, can be reused to support spacecraft software development; and the same data system components will again be reused during the spacecraft integration and system test phases. TTACS usage also results in early availability of spacecraft data to data system development and, as a result, early data system development feedback to spacecraft system developers. The TTACS consists of a multimission spacecraft support equipment interface and components of the multimission telemetry and command software adapted for a specific project. The TTACS interfaces to the spacecraft, e.g., Command Data System (CDS), support equipment. The TTACS telemetry interface to the CDS support equipment performs serial (RS-422)-to-ethernet conversion at rates between 1 bps and 1 mbps, telemetry data blocking and header generation, guaranteed data transmission to the telemetry data system, and graphical downlink routing summary and control. The TTACS command interface to the CDS support equipment is nominally a command file transferred in non-real-time via ethernet. The CDS support equipment is responsible for

  9. Investigating Wireless Power Transfer

    ERIC Educational Resources Information Center

    St. John, Stuart A.

    2017-01-01

    Understanding Physics is a great end in itself, but is also crucial to keep pace with developments in modern technology. Wireless power transfer, known to many only as a means to charge electric toothbrushes, will soon be commonplace in charging phones, electric cars and implanted medical devices. This article outlines how to produce and use a…

  10. Building the Wireless Campus

    ERIC Educational Resources Information Center

    Gerraughty, James F.; Shanafelt, Michael E.

    2005-01-01

    This prototype is a continuation of a series of wireless prototypes which began in August 2001 and was reported on again in August 2002. This is the final year of this prototype. This continuation allowed Saint Francis University's Center of Excellence for Remote and Medically Under-Served Areas (CERMUSA) to refine the existing WLAN for the Saint…

  11. Control of Fan Blade Vibrations Using Piezoelectrics and Bi-Directional Telemetry

    NASA Technical Reports Server (NTRS)

    Provenza, Andrew J.; Morrison, Carlos R.

    2011-01-01

    A novel wireless device which transfers supply power through induction to rotating operational amplifiers and transmits low voltage AC signals to and from a rotating body by way of radio telemetry has been successfully demonstrated in the NASA Glenn Research Center (GRC) Dynamic Spin Test Facility. In the demonstration described herein, a rotating operational amplifier provides controllable AC power to a piezoelectric patch epoxied to the surface of a rotating Ti plate. The amplitude and phase of the sinusoidal voltage command signal, transmitted wirelessly to the amplifier, was tuned to completely suppress the 3rd bending resonant vibration of the plate. The plate's 3rd bending resonance was excited using rotating magnetic bearing excitation while it spun at slow speed in a vacuum chamber. A second patch on the opposite side of the plate was used as a sensor. This paper discusses the characteristics of this novel device, the details of a spin test, results from a preliminary demonstration, and future plans.

  12. Monitoring fetal pH by telemetry

    NASA Technical Reports Server (NTRS)

    Blum, A.; Donahoe, T.; Jhabvala, M. D.; Ryan, W.

    1980-01-01

    Telemetry unit has been developed for possible use in measuring scalp-tissue pH and heart rate of unborn infant. Unit radius data to receiver as much as 50 ft. away. Application exists during hours just prior to childbirth to give warning of problems that might require cesarean delivery.

  13. Advanced Data Acquisition and Telemetry System

    NASA Image and Video Library

    2016-09-15

    The Advanced Data Acquisition and Telemetry System team includes front row from left Mario Soto, Sam Habbal, Tiffany Titas, RIchard Hang, Randy Torres, Thang Quach, Otto Schnarr, Matthew Waldersen, Karen Estes, Andy Olvera, Stanley Wertenberger and Rick Cordes. In the second row from left are John Atherly, Doug Boston, Tom Horn, Brady Rennie, Chris Birkinbine, Jim McNally, Martin Munday and Tony Lorek.

  14. Telemetry, Tracking, and Control Working Group report

    NASA Technical Reports Server (NTRS)

    Campbell, Richard; Rogers, L. Joseph

    1986-01-01

    After assessing the design implications and the criteria to be used in technology selection, the technical problems that face the telemetry, tracking, and control (TTC) area were defined. For each of the problems identified, recommendations were made for needed technology developments. These recommendations are listed and ranked according to priority.

  15. Telemetry Standards, RCC Standard 106-17. Chapter 3. Frequency Division Multiplexing Telemetry Standards

    DTIC Science & Technology

    2017-07-01

    any of the listed reference frequencies may be used provided the requirements for compensation rate of change are satisfied. If the reference...for in present discriminator systems when the nominal response rating of the channels is employed and a reference frequency is recorded with the...Telemetry Standards, RCC Standard 106-17 Chapter 3, July 2017 3-i CHAPTER 3 Frequency Division Multiplexing Telemetry Standards Acronyms

  16. Implantable telemetry capsule for monitoring arterial oxygen saturation and heartbeat.

    PubMed

    Kuwana, K; Dohi, T; Hashimoto, Y; Matsumoto, K; Shimoyama, I

    2008-01-01

    In this study, we have developed an implantable telemetry capsule for monitoring heartbeat. The capsule has three main functions, monitoring vital signs, transmitting the vital signs, and receiving energy for driving the capsule without wires. We used two wavelengths of LEDs and a photodiode sensitive to the two wavelengths for heartbeat sensor. The arterial oxygen saturation is calculated from the amplitude of the heartbeat signal. We fabricated an FM transmitter whose carrier frequency was 80 MHz. Though the GHz range frequency is generally used in transmission, the attenuation in the human body is large. The size of a common linear antenna is about a quarter of its operating wavelength. We employed a coil-based antenna which can reduce size below the quarter of the wavelength. We fabricated a miniaturized transmitter with the coil-based antenna at lower frequency. Our capsule was driven intermittently. We used a rechargeable battery. When the battery ran down, the battery was charged by wireless using the induced electromotive force. This means that the capsule is capable of monitoring vital signs over the long term. We measured the heartbeat from the middle finger of hand in a water tank as a model of a human body.

  17. Packet loss mitigation for biomedical signals in healthcare telemetry.

    PubMed

    Garudadri, Harinath; Baheti, Pawan K

    2009-01-01

    In this work, we propose an effective application layer solution for packet loss mitigation in the context of Body Sensor Networks (BSN) and healthcare telemetry. Packet losses occur due to many reasons including excessive path loss, interference from other wireless systems, handoffs, congestion, system loading, etc. A call for action is in order, as packet losses can have extremely adverse impact on many healthcare applications relying on BAN and WAN technologies. Our approach for packet loss mitigation is based on Compressed Sensing (CS), an emerging signal processing concept, wherein significantly fewer sensor measurements than that suggested by Shannon/Nyquist sampling theorem can be used to recover signals with arbitrarily fine resolution. We present simulation results demonstrating graceful degradation of performance with increasing packet loss rate. We also compare the proposed approach with retransmissions. The CS based packet loss mitigation approach was found to maintain up to 99% beat-detection accuracy at packet loss rates of 20%, with a constant latency of less than 2.5 seconds.

  18. A Telemetry Browser Built with Java Components

    NASA Astrophysics Data System (ADS)

    Poupart, E.

    In the context of CNES balloon scientific campaigns and telemetry survey field, a generic telemetry processing product, called TelemetryBrowser in the following, was developed reusing COTS, Java Components for most of them. Connection between those components relies on a software architecture based on parameter producers and parameter consumers. The first one transmit parameter values to the second one which has registered to it. All of those producers and consumers can be spread over the network thanks to Corba, and over every kind of workstation thanks to Java. This gives a very powerful mean to adapt to constraints like network bandwidth, or workstations processing or memory. It's also very useful to display and correlate at the same time information coming from multiple and various sources. An important point of this architecture is that the coupling between parameter producers and parameter consumers is reduced to the minimum and that transmission of information on the network is made asynchronously. So, if a parameter consumer goes down or runs slowly, there is no consequence on the other consumers, because producers don't wait for their consumers to finish their data processing before sending it to other consumers. An other interesting point is that parameter producers, also called TelemetryServers in the following are generated nearly automatically starting from a telemetry description using Flavori component. Keywords Java components, Corba, distributed application, OpenORBii, software reuse, COTS, Internet, Flavor. i Flavor (Formal Language for Audio-Visual Object Representation) is an object-oriented media representation language being developed at Columbia University. It is designed as an extension of Java and C++ and simplifies the development of applications that involve a significant media processing component (encoding, decoding, editing, manipulation, etc.) by providing bitstream representation semantics. (flavor.sourceforge.net) ii Open

  19. An inductive narrow-pulse RFID telemetry system for gastric slow waves monitoring.

    PubMed

    Javan-Khoskholgh, Amir; Abukhalaf, Zaid; Ji Li; Miller, Larry S; Kiani, Mehdi; Farajidavar, Aydin

    2016-08-01

    We present a passive data telemetry system for real-time monitoring of gastric electrical activity of a living subject. The system is composed of three subsystems: an implantable unit (IU), a wearable unit (WU), and a stationary unit (SU). Data communication between the IU and WU is based on a radio-frequency identification (RFID) link operating at 13.56 MHz. Since wireless power transmission and reverse data telemetry system share the same inductive interface, a load shift keying (LSK)-based differential pulse position (DPP) coding data communication with only 6.25% duty cycle is developed to guarantee consistent wireless downlink power transmission and uplink high data transfer rate, simultaneously. The clock and data are encoded into one signal by an MSP430 microcontroller (MCU) at the IU side. This signal is sent to the WU through the inductive link, where decoded by an MSP432 MCU. Finally, the retrieved data at the WU are transmitted to the SU connected to a PC via a 2.4 GHz transceiver for real-time display and analysis. The results of the measurements on the implemented test bench, demonstrate IU-WU 125 kb/s and WU-SU 2 Mb/s data transmission rate with no observed mismatch, while the data stream was randomly generated, and matching between the transmitted data by the IU and received by the SU verified by a custom-made automated software.

  20. LANDSAT-D data format control book. Volume 2: Telemetry

    NASA Technical Reports Server (NTRS)

    Talipsky, R.

    1982-01-01

    The formats used for the transmission of LANDSAT-D and LANDSAT-D Prime spacecraft telemetry data through either the TDRS/GSTDN via the NASCOM Network to the CSF are described as well as the telemetry flow from the command and data handling subsystem, a telemetry list and telemetry matrix assignment for the mission and engineering formats. The on-board computer (OBC) controlled format and the dwell format are also discussed. The OBCs contribution to telemetry, and the format of the reports, are covered. The high rate data channel includes the payload correction data format, the narrowband tape recorder and the OBC dump formats.

  1. The wireless Web and patient care.

    PubMed

    Bergeron, B P

    2001-01-01

    Wireless computing, when integrated with the Web, is poised to revolutionize the practice and teaching of medicine. As vendors introduce wireless Web technologies in the medical community that have been used successfully in the business and consumer markets, clinicians can expect profound increases in the amount of patient data, as well as the ease with which those data are acquired, analyzed, and disseminated. The enabling technologies involved in this transformation to the wireless Web range from the new generation of wireless PDAs, eBooks, and wireless data acquisition peripherals to new wireless network protocols. The rate-limiting step in the application of this technology in medicine is not technology per se but rather how quickly clinicians and their patients come to accept and appreciate the benefits and limitations of the application of wireless Web technology.

  2. Telemetry location error in a forested habitat

    USGS Publications Warehouse

    Chu, D.S.; Hoover, B.A.; Fuller, M.R.; Geissler, P.H.; Amlaner, Charles J.

    1989-01-01

    The error associated with locations estimated by radio-telemetry triangulation can be large and variable in a hardwood forest. We assessed the magnitude and cause of telemetry location errors in a mature hardwood forest by using a 4-element Yagi antenna and compass bearings toward four transmitters, from 21 receiving sites. The distance error from the azimuth intersection to known transmitter locations ranged from 0 to 9251 meters. Ninety-five percent of the estimated locations were within 16 to 1963 meters, and 50% were within 99 to 416 meters of actual locations. Angles with 20o of parallel had larger distance errors than other angles. While angle appeared most important, greater distances and the amount of vegetation between receivers and transmitters also contributed to distance error.

  3. Telemetry Data Collection from Oscar Satellite

    NASA Technical Reports Server (NTRS)

    Haddock, Paul C.; Horan, Stephen

    1998-01-01

    This paper discusses the design, configuration, and operation of a satellite station built for the Center for Space Telemetering and Telecommunications Laboratory in the Klipsch School of Electrical and Computer Engineering Engineering at New Mexico State University (NMSU). This satellite station consists of a computer-controlled antenna tracking system, 2m/70cm transceiver, satellite tracking software, and a demodulator. The satellite station receives satellite,telemetry, allows for voice communications, and will be used in future classes. Currently this satellite station is receiving telemetry from an amateur radio satellite, UoSAT-OSCAR-11. Amateur radio satellites are referred to as Orbiting Satellites Carrying Amateur Radio (OSCAR) satellites as discussed in the next section.

  4. Evolutionary Telemetry and Command Processor (TCP) architecture

    NASA Technical Reports Server (NTRS)

    Schneider, John R.

    1992-01-01

    A low cost, modular, high performance, and compact Telemetry and Command Processor (TCP) is being built as the foundation of command and data handling subsystems for the next generation of satellites. The TCP product line will support command and telemetry requirements for small to large spacecraft and from low to high rate data transmission. It is compatible with the latest TDRSS, STDN and SGLS transponders and provides CCSDS protocol communications in addition to standard TDM formats. Its high performance computer provides computing resources for hosted flight software. Layered and modular software provides common services using standardized interfaces to applications thereby enhancing software re-use, transportability, and interoperability. The TCP architecture is based on existing standards, distributed networking, distributed and open system computing, and packet technology. The first TCP application is planned for the 94 SDIO SPAS 3 mission. The architecture enhances rapid tailoring of functions thereby reducing costs and schedules developed for individual spacecraft missions.

  5. Telemetry Tests Of The Advanced Receiver II

    NASA Technical Reports Server (NTRS)

    Hinedi, Sami M.; Bevan, Roland P.; Marina, Miguel

    1993-01-01

    Report describes telemetry tests of Advanced Receiver II (ARX-II): digital radio receiving subsystem operating on intermediate-frequency output of another receiving subsystem called "multimission receiver" (MMR), detecting carrier, subcarrier, and data-symbol signals transmitted by spacecraft, and extracts Doppler information from signals. Analysis of data shows performance of MMR/ARX-II system comparable and sometimes superior to performances of Blk-III/BPA and Blk-III/SDA/SSA systems.

  6. Equalization in Aeronautical Telemetry Using Multiple Antennas

    DTIC Science & Technology

    2014-04-01

    Multiple Antennas April 2014 DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited. Test Resource Management Center...Telemetry Using Multiple Antennas 5a. CONTRACT NUMBER: W900KK-13-C- 0026 5b. GRANT NUMBER: N/A 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Michael...employing two transmit antennas and as a method for exploiting partial channel state information by the transmitter. The generalization involves

  7. 106-17 Telemetry Standards Front Matter

    DTIC Science & Technology

    2017-07-01

    IS UNLIMITED ABERDEEN TEST CENTER DUGWAY PROVING GROUND REAGAN TEST SITE REDSTONE TEST CENTER WHITE SANDS MISSILE RANGE YUMA PROVING GROUND...Council US Army White Sands Missile Range, New Mexico 88002-5110 This page intentionally left blank. Telemetry Standards, IRIG Standard 106-17...TM receiver commands for interoperability. f. Task TG-141: Update IRIG 106 with Standards for Data Quality Metrics (DQM) and Data Quality

  8. Wireless Cybersecurity

    DTIC Science & Technology

    2013-04-01

    completely change the entire landscape. For example, under the quantum computing regime, factoring prime numbers requires only polynomial time (i.e., Shor’s...AFRL-OSR-VA-TR-2013-0206 Wireless Cybersecurity Biao Chen Syracuse University April 2013 Final Report DISTRIBUTION A...19a. NAME OF RESPONSIBLE PERSON 19b. TELEPHONE NUMBER (Include area code) 21-02-2013 FINAL REPORT 01-04-2009 TO 30-11-2012 Wireless Cybersecurity

  9. Spiral Chip Implantable Radiator and Printed Loop External Receptor for RF Telemetry in Bio-Sensor Systems

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Hall, David G.; Miranda, Felix A.

    2004-01-01

    The paper describes the operation of a patented wireless RF telemetry system, consisting of a bio-MEMS implantable sensor and an external hand held unit, operating over the frequency range of few hundreds of MHz. A MEMS capacitive pressure sensor integrated with a miniature inductor/antenna together constitute the implantable sensor. Signal processing circuits collocated with a printed loop antenna together form the hand held unit, capable of inductively powering and also receiving the telemetry signals from the sensor. The paper in addition, demonstrates a technique to enhance the quality factor and inductance of the inductor in the presence of a lower ground plane and also presents the radiation characteristics of the loop antenna.

  10. Mayo Registry for Telemetry Efficacy in Arrest Study: An Assessment of the Utility of Telemetry in Predicting Clinical Decompensation.

    PubMed

    Snipelisky, David; Ray, Jordan; Matcha, Gautam; Roy, Archana; Harris, Dana; Bosworth, Veronica; Dumitrascu, Adrian; Clark, Brooke; Vadeboncoeur, Tyler; Kusumoto, Fred; Bowman, Cammi; Burton, M Caroline

    2018-03-01

    Our study assesses the utility of telemetry in identifying decompensation in patients with documented cardiopulmonary arrest. A retrospective review of inpatients who experienced a cardiopulmonary arrest from May 1, 2008, until June 30, 2014, was performed. Telemetry records 24 hours prior to and immediately preceding cardiopulmonary arrest were reviewed. Patient subanalyses based on clinical demographics were made as well as analyses of survival comparing patients with identifiable rhythm changes in telemetry to those without. Of 242 patients included in the study, 75 (31.0%) and 110 (45.5%) experienced telemetry changes at the 24-hour and immediately preceding time periods, respectively. Of the telemetry changes, the majority were classified as nonmalignant (n = 50, 66.7% and n = 66, 55.5% at 24 hours prior and immediately preceding, respectively). There was no difference in telemetry changes between intensive care unit (ICU) and non-ICU patients and among patients stratified according to the American Heart Association telemetry indications. There was no difference in survival when comparing patients with telemetry changes immediately preceding and at 24 hours prior to an event (n = 30, 27.3% and n = 15, 20.0%) to those without telemetry changes during the same periods (n = 27, 20.5% and n = 42, 25.2%; P = .22 and .39). Telemetry has limited utility in predicting clinical decompensation in the inpatient setting.

  11. A Configurable Internet Telemetry Server / Remote Client System

    NASA Astrophysics Data System (ADS)

    Boyd, W. T.; Hopkins, A.; Abbott, M. J.; Girouard, F. R.

    2000-05-01

    We have created a general, object-oriented software framework in Java for remote viewing of telemetry over the Internet. The general system consists of a data server and a remote client that can be extended by any project that uses telemetry to implement a remote telemetry viewer. We have implemented a system that serves live telemetry from NASA's Extreme Ultraviolet Explorer satellite and a client that can display the telemetry at a remote location. An authenticated user may run a standalone graphical or text-based client, or an applet on a web page, to view EUVE telemetry. In the case of the GUI client, a user can build displays to his/her own specifications using a GUI view-building tool. This work was supported by grants NCC2-947 and NCC2-966 from NASA Ames Research Center and grant JPL-960684 from NASA Jet Propulsion Laboratory.

  12. Optimization of radio telemetry receiving systems: Chapter 5.2

    USGS Publications Warehouse

    Evans, Scott D.; Stevenson, John R.; Adams, Noah S.; Beeman, John W.; Eiler, John H.

    2012-01-01

    Telemetry provides a powerful and flexible tool for studying fish and other aquatic animals, and its use has become increasingly commonplace. However, telemetry is gear intensive and typically requires more specialized knowledge and training than many other field techniques. As with other scientific methods, collecting good data is dependent on an understanding of the underlying principles behind the approach, knowing how to use the equipment and techniques properly, and recognizing what to do with the data collected. This book provides a road map for using telemetry to study aquatic animals, and provides the basic information needed to plan, implement, and conduct a telemetry study under field conditions. Topics include acoustic or radio telemetry study design, tag implantation techniques, radio and acoustic telemetry principles and case studies, and data management and analysis.

  13. A history of telemetry in fishery research: Chapter 2

    USGS Publications Warehouse

    Hockersmith, Eric; Beeman, John W.; Adams, Noah S.; Beeman, John W.; Eiler, John H.

    2012-01-01

    Telemetry provides a powerful and flexible tool for studying fish and other aquatic animals, and its use has become increasingly commonplace. However, telemetry is gear intensive and typically requires more specialized knowledge and training than many other field techniques. As with other scientific methods, collecting good data is dependent on an understanding of the underlying principles behind the approach, knowing how to use the equipment and techniques properly, and recognizing what to do with the data collected. This book provides a road map for using telemetry to study aquatic animals, and provides the basic information needed to plan, implement, and conduct a telemetry study under field conditions. Topics include acoustic or radio telemetry study design, tag implantation techniques, radio and acoustic telemetry principles and case studies, and data management and analysis.

  14. Implantable physiologic controller for left ventricular assist devices with telemetry capability.

    PubMed

    Asgari, Siavash S; Bonde, Pramod

    2014-01-01

    Rotary type left ventricular assist devices have mitigated the problem of durability associated with earlier pulsatile pumps and demonstrated improved survival. However, the compromise is the loss of pulsatility due to continuous flow and retained percutaneous driveline leading to increased mortality and morbidity. Lack of pulsatility is implicated in increased gastrointestinal bleeding, aortic incompetence, and diastolic hypertension. We present a novel, wirelessly powered, ultra-compact, implantable physiologic controller capable of running a left ventricular assist device in a pulsatile mode with wireless power delivery. The schematic of our system was laid out on a circuit board to wirelessly receive power and run a left ventricular assist device with required safety and backup measures. We have embedded an antenna and wireless network for telemetry. Multiple signal processing steps and controlling algorithm were incorporated. The controller was tested in in vitro and in vivo experiments. The controller drove left ventricular assist devices continuously for 2 weeks in an in vitro setup and in vivo without any failure. Our controller is more power efficient than the current Food and Drug Administration-approved left ventricular assist device controllers. When used with electrocardiography synchronization, the controller allowed on-demand customization of operation with instantaneous flow and revolutions per minute changes, resulting in a pulsatile flow with adjustable pulse pressure. Our test results prove the system to be remarkably safe, accurate, and efficient. The unique combination of wireless powering and small footprint makes this system an ideal totally implantable physiologic left ventricular assist device system. Copyright © 2014 The American Association for Thoracic Surgery. Published by Mosby, Inc. All rights reserved.

  15. XTCE: XML Telemetry and Command Exchange Tutorial, XTCE Version 1

    NASA Technical Reports Server (NTRS)

    Rice, Kevin; Kizzort, Brad

    2008-01-01

    These presentation slides are a tutorial on XML Telemetry and Command Exchange (XTCE). The goal of XTCE is to provide an industry standard mechanism for describing telemetry and command streams (particularly from satellites.) it wiill lower cost and increase validation over traditional formats, and support exchange or native format.XCTE is designed to describe bit streams, that are typical of telemetry and command in the historic space domain.

  16. Application of harmonic detection technology in methane telemetry

    NASA Astrophysics Data System (ADS)

    Huo, Yuehua; Fan, Weiqiang

    2017-08-01

    Methane telemetry plays a vital role in ensuring the safe production of coal mines and monitoring the leakage of natural gas pipelines. Harmonic detection is the key technology of methane telemetry accuracy and sensitivity, but the current telemetry distance is short, the relationship between different modulation parameters is complex, and the harmonic signal is affected by noise interference. These factors seriously affect the development of harmonic detection technology. In this paper, the principle of methane telemetry based on harmonic detection technology is introduced. The present situation and characteristics of harmonic detection technology are expounded. The problems existing in harmonic detection are analyzed. Finally, the future development trend is discussed.

  17. [Development of Bluetooth wireless sensors].

    PubMed

    Moor, C; Schwaibold, M; Roth, H; Schöchlin, J; Bolz, A

    2002-01-01

    Wireless communication could help to overcome current obstacles in medical devices and could enable medical services to offer completely new scenarios in health care. The Bluetooth technology which is the upcoming global market leader in wireless communication turned out to be perfectly suited not only for consumer market products but also in the medical environment [1]. It offers a low power, low cost connection in the medium range of 1-100 m with a bandwidth of currently 723.2 kbaud. This paper describes the development of a wireless ECG device and a Pulse Oximeter. Equipped with a Bluetooth port, the measurement devices are enabled to transmit data between the sensor and a Bluetooth-monitor. Therefore, CSR's Bluetooth protocol embedded two-processor and embedded single-processor architecture has been used.

  18. A 100-Channel Hermetically Sealed Implantable Device for Chronic Wireless Neurosensing Applications

    PubMed Central

    Yin, Ming; Borton, David A.; Aceros, Juan; Patterson, William R.; Nurmikko, Arto V.

    2014-01-01

    A 100-channel fully implantable wireless broadband neural recording system was developed. It features 100 parallel broadband (0.1 Hz–7.8 kHz) neural recording channels, a medical grade 200 mAh Li-ion battery recharged inductively at 150 kHz, and data telemetry using 3.2 GHz to 3.8 GHz FSK modulated wireless link for 48 Mbps Manchester encoded data. All active electronics are hermetically sealed in a titanium enclosure with a sapphire window for electromagnetic transparency. A custom, high-density configuration of 100 individual hermetic feedthrough pins enable connection to an intracortical neural recording microelectrode array. A 100 MHz bandwidth custom receiver was built to remotely receive the FSK signal and achieved −77.7 dBm sensitivity with 10−8 BER at 48 Mbps data rate. ESD testing on all the electronic inputs and outputs has proven that the implantable device satisfies the HBM Class-1B ESD Standard. In addition, the evaluation of the worst-case charge density delivered to the tissue from each I/O pin verifies the patient safety of the device in the event of failure. Finally, the functionality and reliability of the complete device has been tested on-bench and further validated chronically in ongoing freely moving swine and monkey animal trials for more than one year to date. PMID:23853294

  19. Wireless body sensor networks for health-monitoring applications.

    PubMed

    Hao, Yang; Foster, Robert

    2008-11-01

    Current wireless technologies, such as wireless body area networks and wireless personal area networks, provide promising applications in medical monitoring systems to measure specified physiological data and also provide location-based information, if required. With the increasing sophistication of wearable and implantable medical devices and their integration with wireless sensors, an ever-expanding range of therapeutic and diagnostic applications is being pursued by research and commercial organizations. This paper aims to provide a comprehensive review of recent developments in wireless sensor technology for monitoring behaviour related to human physiological responses. It presents background information on the use of wireless technology and sensors to develop a wireless physiological measurement system. A generic miniature platform and other available technologies for wireless sensors have been studied in terms of hardware and software structural requirements for a low-cost, low-power, non-invasive and unobtrusive system.

  20. The Influence of Wireless Self-Monitoring Program on the Relationship Between Patient Activation and Health Behaviors, Medication Adherence, and Blood Pressure Levels in Hypertensive Patients: A Substudy of a Randomized Controlled Trial.

    PubMed

    Kim, Ju Young; Wineinger, Nathan E; Steinhubl, Steven R

    2016-06-22

    Active engagement in the management of hypertension is important in improving self-management behaviors and clinical outcomes. Mobile phone technology using wireless monitoring tools are now widely available to help individuals monitor their blood pressure, but little is known about the conditions under which such technology can effect positive behavior changes or clinical outcomes. To study the influence of wireless self-monitoring program and patient activation measures on health behaviors, medication adherence, and blood pressure levels as well as control of blood pressure in hypertensive patients. We examined a subset of 95 hypertensive participants from a 6-month randomized controlled trial designed to determine the utility of a wireless self-monitoring program (n=52 monitoring program, n=43 control), which consisted of a blood pressure monitoring device connected with a mobile phone, reminders for self-monitoring, a Web-based disease management program, and a mobile app for monitoring and education, compared with the control group receiving a standard disease management program. Study participants provided measures of patient activation, health behaviors including smoking, drinking, and exercise, medication adherence, and blood pressure levels. We assessed the influence of wireless self-monitoring as a moderator of the relationship between patient activation and health behaviors, medication adherence, and control of blood pressure. Improvements in patient activation were associated with improvements in cigarette smoking (beta=-0.46, P<.001) and blood pressure control (beta=0.04, P=.02). This relationship was further strengthened in reducing cigarettes (beta=-0.60, P<.001), alcohol drinking (beta=-0.26, P=.01), and systolic (beta=-0.27, P=.02) and diastolic blood pressure (beta=-0.34, P=.007) at 6 months among individuals participating in the wireless self-monitoring program. No differences were observed with respect to medication adherence. Participation in a

  1. 47 CFR 95.1115 - General technical requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...) In the 1395-1400 MHz and 1427-1432 MHz bands, no specific channels are specified. Wireless medical telemetry devices may operate on any channel within the bands authorized for wireless medical telemetry use in this part. (2) In the 608-614 MHz band, wireless medical telemetry devices utilizing broadband...

  2. Test Methods for Telemetry Systems and Subsystems. Volume 2: Test Methods for Telemetry Radio Frequency (RF) Subsystems

    DTIC Science & Technology

    2012-09-01

    downconverters; telemetry RF preamplifiers; telemetry multicouplers; telemetry receivers 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT Same as...Continuing Engineering Education Program, George Washington University , 1994. A-5 Figure A-2. Graphical representation of intercept point...NFdb) is expressed in decibels and noise factor (nf ) in decimal units. For example, a noise figure of 3 dB corresponds to a noise factor of 2

  3. Telemetry Boards Interpret Rocket, Airplane Engine Data

    NASA Technical Reports Server (NTRS)

    2009-01-01

    For all the data gathered by the space shuttle while in orbit, NASA engineers are just as concerned about the information it generates on the ground. From the moment the shuttle s wheels touch the runway to the break of its electrical umbilical cord at 0.4 seconds before its next launch, sensors feed streams of data about the status of the vehicle and its various systems to Kennedy Space Center s shuttle crews. Even while the shuttle orbiter is refitted in Kennedy s orbiter processing facility, engineers constantly monitor everything from power levels to the testing of the mechanical arm in the orbiter s payload bay. On the launch pad and up until liftoff, the Launch Control Center, attached to the large Vehicle Assembly Building, screens all of the shuttle s vital data. (Once the shuttle clears its launch tower, this responsibility shifts to Mission Control at Johnson Space Center, with Kennedy in a backup role.) Ground systems for satellite launches also generate significant amounts of data. At Cape Canaveral Air Force Station, across the Banana River from Kennedy s location on Merritt Island, Florida, NASA rockets carrying precious satellite payloads into space flood the Launch Vehicle Data Center with sensor information on temperature, speed, trajectory, and vibration. The remote measurement and transmission of systems data called telemetry is essential to ensuring the safe and successful launch of the Agency s space missions. When a launch is unsuccessful, as it was for this year s Orbiting Carbon Observatory satellite, telemetry data also provides valuable clues as to what went wrong and how to remedy any problems for future attempts. All of this information is streamed from sensors in the form of binary code: strings of ones and zeros. One small company has partnered with NASA to provide technology that renders raw telemetry data intelligible not only for Agency engineers, but also for those in the private sector.

  4. A detachable mobile and adjustable telemetry system

    PubMed Central

    Parker, Tommy S; Persons, William E; Bradley, Joseph G; Gregg, Margaret; Gonzales, Shinelle K; Helton, Jesse S

    2013-01-01

    Many traditional mobile telemetry systems require permanently mounting a rod through the cabin of a vehicle to serve as the mast for a directional antenna. In this article we present an alternative to this configuration by providing a platform that can be placed atop the vehicle in which the antenna mast can be mounted and controlled from the cabin of the vehicle. Thereby making this design a viable option for researchers who share vehicles with others that may not approve of permanent vehicle modifications such as placing a hole in the roof of the vehicle as required by traditional mobile configurations. We tested the precision and accuracy of detachable mobile and adjustable telemetry system (DMATS) in an urban park with varying terrain, tree stands, overhead wires, and other structures that can contribute to signal deflection. We placed three radiocollars 50 m apart and 1.2 m above the ground then established three testing stations ∼280 m from the location of the radiocollars. The DMATS platform required 12 h for completion and cost $1059 USD. Four technicians were randomly assigned radio collars to triangulate using DMATS and a handheld telemetry system. We used a one-way analysis of variance (ANOVA) with a Scheffe post hoc test to compare error ellipses between azimuths taken using DMATS and the hand held system. Average error ellipses for all testers was 1.96 ± 1.22 ha. No significant differences were found between error ellipses of testers (P = 0.292). Our design, the DMATS, does not require any vehicle modification; thereby, making this a viable option for researchers sharing vehicles with others that may not approve of permanent vehicle alterations. PMID:23919133

  5. Accuracy of telemetry signal power loss in a filter as an estimate for telemetry degradation

    NASA Technical Reports Server (NTRS)

    Koerner, M. A.

    1989-01-01

    When telemetry data is transmitted through a communication link, some degradation in telemetry performance occurs as a result of the imperfect frequency response of the channel. The term telemetry degradation as used here is the increase in received signal power required to offset this filtering. The usual approach to assessing this degradation is to assume that it is equal to the signal power loss in the filtering, which is easily calculated. However, this approach neglects the effects of the nonlinear phase response of the filter, the effect of any reduction of the receiving system noise due to the filter, and intersymbol interference. Here, an exact calculation of the telemetry degradation, which includes all of the above effects, is compared with the signal power loss calculation for RF filtering of NRZ data on a carrier. The signal power loss calculation is found to be a reasonable approximation when the filter follows the point at which the receiving system noise is introduced, especially if the signal power loss is less than 0.5 dB. The signal power loss approximation is less valid when the receiving system noise is not filtered.

  6. Telemetry and Science Data Software System

    NASA Technical Reports Server (NTRS)

    Bates, Lakesha; Hong, Liang

    2011-01-01

    The Telemetry and Science Data Software System (TSDSS) was designed to validate the operational health of a spacecraft, ease test verification, assist in debugging system anomalies, and provide trending data and advanced science analysis. In doing so, the system parses, processes, and organizes raw data from the Aquarius instrument both on the ground and while in space. In addition, it provides a user-friendly telemetry viewer, and an instant pushbutton test report generator. Existing ground data systems can parse and provide simple data processing, but have limitations in advanced science analysis and instant report generation. The TSDSS functions as an offline data analysis system during I&T (integration and test) and mission operations phases. After raw data are downloaded from an instrument, TSDSS ingests the data files, parses, converts telemetry to engineering units, and applies advanced algorithms to produce science level 0, 1, and 2 data products. Meanwhile, it automatically schedules upload of the raw data to a remote server and archives all intermediate and final values in a MySQL database in time order. All data saved in the system can be straightforwardly retrieved, exported, and migrated. Using TSDSS s interactive data visualization tool, a user can conveniently choose any combination and mathematical computation of interesting telemetry points from a large range of time periods (life cycle of mission ground data and mission operations testing), and display a graphical and statistical view of the data. With this graphical user interface (GUI), the data queried graphs can be exported and saved in multiple formats. This GUI is especially useful in trending data analysis, debugging anomalies, and advanced data analysis. At the request of the user, mission-specific instrument performance assessment reports can be generated with a simple click of a button on the GUI. From instrument level to observatory level, the TSDSS has been operating supporting

  7. Space Telemetry for the Energy Industry

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Space telemetry is the process whereby information acquired in orbit is relayed to Earth. In 1981, Bill Sheen, President of Nu-Tech Industries, Inc., saw a need for a better way of monitoring flow, due to high costs of oil and gas, increasing oil field theft and a mounting requirement for more timely information to speed up accounting procedures. Sheen turned to NASA for assistance which was provided by Kerr Industrial Applications Center (KIAC). The system that emerged from two years of research, now in production at Nu-Tech's Fort Worth Texas facility, is known as the Remote Measurement and Control Network.

  8. Wireless Communications

    NASA Astrophysics Data System (ADS)

    1991-01-01

    A technology utilization project led to the commercial adaptation of a Space Shuttle Orbiter wireless infrared voice communications system. The technology was adapted to a LAN system by Wilton Industries, one of the participants. Because the system is cable-free, installation charges are saved, and it can be used where cable is impractical. Resultant products include the IRplex 6000. Transceivers can be located anywhere and can include mobile receivers. The system provides wireless LAN coverage up to 44,000 square feet. applications include stock exchange communications, trade shows, emergency communications, etc.

  9. Optimal Design of a Planar Textile Antenna for Industrial Scientific Medical (ISM) 2.4 GHz Wireless Body Area Networks (WBAN) with the CRO-SL Algorithm.

    PubMed

    Sánchez-Montero, Rocío; Camacho-Gómez, Carlos; López-Espí, Pablo-Luís; Salcedo-Sanz, Sancho

    2018-06-21

    This paper proposes a low-profile textile-modified meander line Inverted-F Antenna (IFA) with variable width and spacing meanders, for Industrial Scientific Medical (ISM) 2.4-GHz Wireless Body Area Networks (WBAN), optimized with a novel metaheuristic algorithm. Specifically, a metaheuristic known as Coral Reefs Optimization with Substrate Layer (CRO-SL) is used to obtain an optimal antenna for sensor systems, which allows covering properly and resiliently the 2.4⁻2.45-GHz industrial scientific medical bandwidth. Flexible pad foam has been used to make the designed prototype with a 1.1-mm thickness. We have used a version of the algorithm that is able to combine different searching operators within a single population of solutions. This approach is ideal to deal with hard optimization problems, such as the design of the proposed meander line IFA. During the optimization phase with the CRO-SL, the proposed antenna has been simulated using CST Microwave Studio software, linked to the CRO-SL by means of MATLAB implementation and Visual Basic Applications (VBA) code. We fully describe the antenna design process, the adaptation of the CRO-SL approach to this problem and several practical aspects of the optimization and details on the algorithm’s performance. To validate the simulation results, we have constructed and measured two prototypes of the antenna, designed with the proposed algorithm. Several practical aspects such as sensitivity during the antenna manufacturing or the agreement between the simulated and constructed antenna are also detailed in the paper.

  10. Internet Distribution of Spacecraft Telemetry Data

    NASA Technical Reports Server (NTRS)

    Specht, Ted; Noble, David

    2006-01-01

    Remote Access Multi-mission Processing and Analysis Ground Environment (RAMPAGE) is a Java-language server computer program that enables near-real-time display of spacecraft telemetry data on any authorized client computer that has access to the Internet and is equipped with Web-browser software. In addition to providing a variety of displays of the latest available telemetry data, RAMPAGE can deliver notification of an alarm by electronic mail. Subscribers can then use RAMPAGE displays to determine the state of the spacecraft and formulate a response to the alarm, if necessary. A user can query spacecraft mission data in either binary or comma-separated-value format by use of a Web form or a Practical Extraction and Reporting Language (PERL) script to automate the query process. RAMPAGE runs on Linux and Solaris server computers in the Ground Data System (GDS) of NASA's Jet Propulsion Laboratory and includes components designed specifically to make it compatible with legacy GDS software. The client/server architecture of RAMPAGE and the use of the Java programming language make it possible to utilize a variety of competitive server and client computers, thereby also helping to minimize costs.

  11. Wireless, Ultra-Low-Power Implantable Sensor for Chronic Bladder Pressure Monitoring.

    PubMed

    Majerus, Steve J A; Garverick, Steven L; Suster, Michael A; Fletter, Paul C; Damaser, Margot S

    2012-06-01

    The wireless implantable/intracavity micromanometer (WIMM) system was designed to fulfill the unmet need for a chronic bladder pressure sensing device in urological fields such as urodynamics for diagnosis and neuromodulation for bladder control. Neuromodulation in particular would benefit from a wireless bladder pressure sensor which could provide real-time pressure feedback to an implanted stimulator, resulting in greater bladder capacity while using less power. The WIMM uses custom integrated circuitry, a MEMS transducer, and a wireless antenna to transmit pressure telemetry at a rate of 10 Hz. Aggressive power management techniques yield an average current draw of 9 μ A from a 3.6-Volt micro-battery, which minimizes the implant size. Automatic pressure offset cancellation circuits maximize the sensing dynamic range to account for drifting pressure offset due to environmental factors, and a custom telemetry protocol allows transmission with minimum overhead. Wireless operation of the WIMM has demonstrated that the external receiver can receive the telemetry packets, and the low power consumption allows for at least 24 hours of operation with a 4-hour wireless recharge session.

  12. Wireless, Ultra-Low-Power Implantable Sensor for Chronic Bladder Pressure Monitoring

    PubMed Central

    MAJERUS, STEVE J. A.; GARVERICK, STEVEN L.; SUSTER, MICHAEL A.; FLETTER, PAUL C.; DAMASER, MARGOT S.

    2015-01-01

    The wireless implantable/intracavity micromanometer (WIMM) system was designed to fulfill the unmet need for a chronic bladder pressure sensing device in urological fields such as urodynamics for diagnosis and neuromodulation for bladder control. Neuromodulation in particular would benefit from a wireless bladder pressure sensor which could provide real-time pressure feedback to an implanted stimulator, resulting in greater bladder capacity while using less power. The WIMM uses custom integrated circuitry, a MEMS transducer, and a wireless antenna to transmit pressure telemetry at a rate of 10 Hz. Aggressive power management techniques yield an average current draw of 9 μA from a 3.6-Volt micro-battery, which minimizes the implant size. Automatic pressure offset cancellation circuits maximize the sensing dynamic range to account for drifting pressure offset due to environmental factors, and a custom telemetry protocol allows transmission with minimum overhead. Wireless operation of the WIMM has demonstrated that the external receiver can receive the telemetry packets, and the low power consumption allows for at least 24 hours of operation with a 4-hour wireless recharge session. PMID:26778926

  13. Wireless Protection.

    ERIC Educational Resources Information Center

    Conforti, Fred

    2003-01-01

    Discusses wireless access-control equipment in the school and university setting, particularly the integrated reader lock at the door with a panel interface module at the control panel. Describes its benefits, how it works, and its reliability and security. (EV)

  14. Wireless Technician

    ERIC Educational Resources Information Center

    Tech Directions, 2011

    2011-01-01

    One of the hottest areas in technology is invisible. Wireless communications allow people to transmit voice messages, data, and other signals through the air without physically connecting senders to receivers with cables or wires. And the technology is spreading at lightning speed. Cellular phones, personal digital assistants, and wireless…

  15. Wireless Tots

    ERIC Educational Resources Information Center

    Scott, Lee-Allison

    2003-01-01

    The first wireless technology program for preschoolers was implemented in January at the Primrose School at Bentwater in Atlanta, Georgia, a new corporate school operated by Primrose School Franchising Co. The new school serves as a testing and training facility for groundbreaking educational approaches, including emerging innovations in…

  16. Spacecraft operations automation: Automatic alarm notification and web telemetry display

    NASA Astrophysics Data System (ADS)

    Short, Owen G.; Leonard, Robert E.; Bucher, Allen W.; Allen, Bryan

    1999-11-01

    In these times of Faster, Better, Cheaper (FBC) spacecraft, Spacecraft Operations Automation is an area that is targeted by many Operations Teams. To meet the challenges of the FBC environment, the Mars Global Surveyor (MGS) Operations Team designed and quickly implemented two new low-cost technologies: one which monitors spacecraft telemetry, checks the status of the telemetry, and contacts technical experts by pager when any telemetry datapoints exceed alarm limits, and a second which allows quick and convenient remote access to data displays. The first new technology is Automatic Alarm Notification (AAN). AAN monitors spacecraft telemetry and will notify engineers automatically if any telemetry is received which creates an alarm condition. The second new technology is Web Telemetry Display (WTD). WTD captures telemetry displays generated by the flight telemetry system and makes them available to the project web server. This allows engineers to check the health and status of the spacecraft from any computer capable of connecting to the global internet, without needing normally-required specialized hardware and software. Both of these technologies have greatly reduced operations costs by alleviating the need to have operations engineers monitor spacecraft performance on a 24 hour per day, 7 day per week basis from a central Mission Support Area. This paper gives details on the design and implementation of AAN and WTD, discusses their limitations, and lists the ongoing benefits which have accrued to MGS Flight Operations since their implementation in late 1996.

  17. 106-17 Telemetry Standards Metadata Configuration Chapter 23

    DTIC Science & Technology

    2017-07-01

    23-1 23.2 Metadata Description Language ...Chapter 23, July 2017 iii Acronyms HTML Hypertext Markup Language MDL Metadata Description Language PCM pulse code modulation TMATS Telemetry...Attributes Transfer Standard W3C World Wide Web Consortium XML eXtensible Markup Language XSD XML schema document Telemetry Network Standard

  18. Applicability of implantable telemetry systems in cardiovascular research.

    NASA Technical Reports Server (NTRS)

    Krutz, R. W.; Rader, R. D.; Meehan, J. P.; Henry, J. P.

    1971-01-01

    This paper briefly describes the results of an experimental program undertaken to develop and apply implanted telemetry to cardiovascular research. Because of the role the kidney may play in essential hypertension, emphasis is placed on telemetry's applicability in the study of renal physiology. Consequently, the relationship between pressure, flow, and hydraulic impedance are stressed. Results of an exercise study are given.

  19. DSN telemetry system performance with convolutionally code data

    NASA Technical Reports Server (NTRS)

    Mulhall, B. D. L.; Benjauthrit, B.; Greenhall, C. A.; Kuma, D. M.; Lam, J. K.; Wong, J. S.; Urech, J.; Vit, L. D.

    1975-01-01

    The results obtained to date and the plans for future experiments for the DSN telemetry system were presented. The performance of the DSN telemetry system in decoding convolutionally coded data by both sequential and maximum likelihood techniques is being determined by testing at various deep space stations. The evaluation of performance models is also an objective of this activity.

  20. Development of a biosensor telemetry system for monitoring fermentation in craft breweries.

    PubMed

    Farina, Donatella; Zinellu, Manuel; Fanari, Mauro; Porcu, Maria Cristina; Scognamillo, Sergio; Puggioni, Giulia Maria Grazia; Rocchitta, Gaia; Serra, Pier Andrea; Pretti, Luca

    2017-03-01

    The development and applications of biosensors in the food industry has had a rapid grown due to their sensitivity, specificity and simplicity of use with respect to classical analytical methods. In this study, glucose and ethanol amperometric biosensors integrated with a wireless telemetry system were developed and used for the monitoring of top and bottom fermentations in beer wort samples. The collected data were in good agreement with those obtained by reference methods. The simplicity of construction, the low cost and the short time of analysis, combined with easy interpretation of the results, suggest that these devices could be a valuable alternative to conventional methods for monitoring fermentation processes in the food industry. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Incorporating CCSDS telemetry standards and philosophy on Cassini

    NASA Technical Reports Server (NTRS)

    Day, John C.; Elson, Anne B.

    1995-01-01

    The Cassini project at the Jet Propulsion Laboratory (JPL) is implementing a spacecraft telemetry system based on the Consultative Committee for Space Data Systems (CCSDS) packet telemetry standards. Resolving the CCSDS concepts with a Ground Data System designed to handle time-division-multiplexed telemetry and also handling constraints unique to a deep-space planetary spacecraft (such as fixed downlink opportunities, small downlink rates and requirements for on-board data storage) have resulted in spacecraft and ground system design challenges. Solving these design challenges involved adapting and extending the CCSDS telemetry standards as well as changes to the spacecraft and ground system designs. The resulting spacecraft/ground system design is an example of how new ideas and philosophies can be incorporated into existing systems and design approaches without requiring significant rework. In addition, it shows that the CCSDS telemetry standards can be successfully applied to deep-space planetary spacecraft.

  2. Wireless technologies for closed-loop retinal prostheses.

    PubMed

    Ng, David C; Bai, Shun; Yang, Jiawei; Tran, Nhan; Skafidas, Efstratios

    2009-12-01

    In this paper, we discuss various technologies needed to develop retinal prostheses with wireless power and data telemetry operation. In addition to the need to communicate with the implanted device, supply of power to the retinal prosthesis is especially difficult. This is because, in the implanted state, the device is not fixed in position due to constant motion of the eye. Furthermore, a retinal prosthesis incorporating a high density electrode array of more than 1000 electrodes is expected to consume approximately 45 mW of power and require 300 kbps of image and stimulation data. The front end of the wireless power and data transmission, the antenna, needs to be small compared to the size of the eye. Also, the wireless module is expected to operate in the reactive near-field region due to small separation between the transmit and receive antennas compared to their size and corresponding operating wavelength. An inductive link is studied as a means to transfer power and for data telemetry between the implant and external unit. In this work, the use of integrated circuit and microfabrication technologies for implementing inductive links is discussed. A closed-loop approach is taken to improve performance and reach optimum operation condition. Design and simulation data are presented as the basis for development of viable wireless module prototypes.

  3. Wireless technologies for closed-loop retinal prostheses

    NASA Astrophysics Data System (ADS)

    Ng, David C.; Bai, Shun; Yang, Jiawei; Tran, Nhan; Skafidas, Efstratios

    2009-12-01

    In this paper, we discuss various technologies needed to develop retinal prostheses with wireless power and data telemetry operation. In addition to the need to communicate with the implanted device, supply of power to the retinal prosthesis is especially difficult. This is because, in the implanted state, the device is not fixed in position due to constant motion of the eye. Furthermore, a retinal prosthesis incorporating a high density electrode array of more than 1000 electrodes is expected to consume approximately 45 mW of power and require 300 kbps of image and stimulation data. The front end of the wireless power and data transmission, the antenna, needs to be small compared to the size of the eye. Also, the wireless module is expected to operate in the reactive near-field region due to small separation between the transmit and receive antennas compared to their size and corresponding operating wavelength. An inductive link is studied as a means to transfer power and for data telemetry between the implant and external unit. In this work, the use of integrated circuit and microfabrication technologies for implementing inductive links is discussed. A closed-loop approach is taken to improve performance and reach optimum operation condition. Design and simulation data are presented as the basis for development of viable wireless module prototypes.

  4. Multi-purpose ECG telemetry system.

    PubMed

    Marouf, Mohamed; Vukomanovic, Goran; Saranovac, Lazar; Bozic, Miroslav

    2017-06-19

    The Electrocardiogram ECG is one of the most important non-invasive tools for cardiac diseases diagnosis. Taking advantage of the developed telecommunication infrastructure, several approaches that address the development of telemetry cardiac devices were introduced recently. Telemetry ECG devices allow easy and fast ECG monitoring of patients with suspected cardiac issues. Choosing the right device with the desired working mode, signal quality, and the device cost are still the main obstacles to massive usage of these devices. In this paper, we introduce design, implementation, and validation of a multi-purpose telemetry system for recording, transmission, and interpretation of ECG signals in different recording modes. The system consists of an ECG device, a cloud-based analysis pipeline, and accompanied mobile applications for physicians and patients. The proposed ECG device's mechanical design allows laypersons to easily record post-event short-term ECG signals, using dry electrodes without any preparation. Moreover, patients can use the device to record long-term signals in loop and holter modes, using wet electrodes. In order to overcome the problem of signal quality fluctuation due to using different electrodes types and different placements on subject's chest, customized ECG signal processing and interpretation pipeline is presented for each working mode. We present the evaluation of the novel short-term recorder design. Recording of an ECG signal was performed for 391 patients using a standard 12-leads golden standard ECG and the proposed patient-activated short-term post-event recorder. In the validation phase, a sample of validation signals followed peer review process wherein two experts annotated the signals in terms of signal acceptability for diagnosis.We found that 96% of signals allow detecting arrhythmia and other signal's abnormal changes. Additionally, we compared and presented the correlation coefficient and the automatic QRS delineation results

  5. Ultrasonic ranging and data telemetry system

    DOEpatents

    Brashear, Hugh R.; Blair, Michael S.; Phelps, James E.; Bauer, Martin L.; Nowlin, Charles H.

    1990-01-01

    An ultrasonic ranging and data telemetry system determines a surveyor's position and automatically links it with other simultaneously taken survey data. An ultrasonic and radio frequency (rf) transmitter are carried by the surveyor in a backpack. The surveyor's position is determined by calculations that use the measured transmission times of an airborne ultrasonic pulse transmitted from the backpack to two or more prepositioned ultrasonic transceivers. Once a second, rf communications are used both to synchronize the ultrasonic pulse transmission-time measurements and to transmit other simultaneously taken survey data. The rf communications are interpreted by a portable receiver and microcomputer which are brought to the property site. A video display attached to the computer provides real-time visual monitoring of the survey progress and site coverage.

  6. Electromechanical transducer for acoustic telemetry system

    DOEpatents

    Drumheller, D.S.

    1993-06-22

    An improved electromechanical transducer is provided for use in an acoustic telemetry system. The transducer of this invention comprises a stack of ferroelectric ceramic disks interleaved with a plurality of spaced electrodes which are used to electrically pole the ceramic disks. The ceramic stack is housed in a metal tubular drill collar segment. The electrodes are preferably alternatively connected to ground potential and driving potential. This alternating connection of electrodes to ground and driving potential subjects each disk to an equal electric field; and the direction of the field alternates to match the alternating direction of polarization of the ceramic disks. Preferably, a thin metal foil is sandwiched between electrodes to facilitate the electrical connection. Alternatively, a thicker metal spacer plate is selectively used in place of the metal foil in order to promote thermal cooling of the ceramic stack.

  7. Electromechanical transducer for acoustic telemetry system

    DOEpatents

    Drumheller, Douglas S.

    1993-01-01

    An improved electromechanical transducer is provided for use in an acoustic telemetry system. The transducer of this invention comprises a stack of ferroelectric ceramic disks interleaved with a plurality of spaced electrodes which are used to electrically pole the ceramic disks. The ceramic stack is housed in a metal tubular drill collar segment. The electrodes are preferably alternatively connected to ground potential and driving potential. This alternating connection of electrodes to ground and driving potential subjects each disk to an equal electric field; and the direction of the field alternates to match the alternating direction of polarization of the ceramic disks. Preferably, a thin metal foil is sandwiched between electrodes to facilitate the electrical connection. Alternatively, a thicker metal spacer plate is selectively used in place of the metal foil in order to promote thermal cooling of the ceramic stack.

  8. Telemetry and Communication IP Video Player

    NASA Technical Reports Server (NTRS)

    OFarrell, Zachary L.

    2011-01-01

    Aegis Video Player is the name of the video over IP system for the Telemetry and Communications group of the Launch Services Program. Aegis' purpose is to display video streamed over a network connection to be viewed during launches. To accomplish this task, a VLC ActiveX plug-in was used in C# to provide the basic capabilities of video streaming. The program was then customized to be used during launches. The VLC plug-in can be configured programmatically to display a single stream, but for this project multiple streams needed to be accessed. To accomplish this, an easy to use, informative menu system was added to the program to enable users to quickly switch between videos. Other features were added to make the player more useful, such as watching multiple videos and watching a video in full screen.

  9. Gigabit Wireless for Network Connectivity

    ERIC Educational Resources Information Center

    Schoedel, Eric

    2009-01-01

    Uninterrupted, high-bandwidth network connectivity is crucial for higher education. Colleges and universities increasingly adopt gigabit wireless solutions because of their fiber-equivalent performance, quick implementation, and significant return on investment. For just those reasons, Rush University Medical Center switched from free space optics…

  10. Bidirectional Telemetry Controller for Neuroprosthetic Devices

    PubMed Central

    Sharma, Vishnu; McCreery, Douglas B.; Han, Martin; Pikov, Victor

    2010-01-01

    We present versatile multifunctional programmable controller with bidirectional data telemetry, implemented using existing commercial microchips and standard Bluetooth protocol, which adds convenience, reliability, and ease-of-use to neuroprosthetic devices. Controller, weighing 190 g, is placed on animal's back and provides bidirectional sustained telemetry rate of 500 kb/s, allowing real-time control of stimulation parameters and viewing of acquired data. In continuously-active state, controller consumes ∼420 mW and operates without recharge for 8 h. It features independent 16-channel current-controlled stimulation, allowing current steering; customizable stimulus current waveforms; recording of stimulus voltage waveforms and evoked neuronal responses with stimulus artifact blanking circuitry. Flexibility, scalability, cost-efficiency, and a user-friendly computer interface of this device allow use in animal testing for variety of neuroprosthetic applications. Initial testing of the controller has been done in a feline model of brainstem auditory prosthesis. In this model, the electrical stimulation is applied to the array of microelectrodes implanted in the ventral cochlear nucleus, while the evoked neuronal activity was recorded with the electrode implanted in the contralateral inferior colliculus. Stimulus voltage waveforms to monitor the access impedance of the electrodes were acquired at the rate of 312 kilosamples/s. Evoked neuronal activity in the inferior colliculus was recorded after the blanking (transient silencing) of the recording amplifier during the stimulus pulse, allowing the detection of neuronal responses within 100 μs after the end of the stimulus pulse applied in the cochlear nucleus. PMID:19933010

  11. A Real-Time Telemetry Simulator of the IUS Spacecraft

    NASA Technical Reports Server (NTRS)

    Drews, Michael E.; Forman, Douglas A.; Baker, Damon M.; Khazoyan, Louis B.; Viazzo, Danilo

    1998-01-01

    A real-time telemetry simulator of the IUS spacecraft has recently entered operation to train Flight Control Teams for the launch of the AXAF telescope from the Shuttle. The simulator has proven to be a successful higher fidelity implementation of its predecessor, while affirming the rapid development methodology used in its design. Although composed of COTS hardware and software, the system simulates the full breadth of the mission: Launch, Pre-Deployment-Checkout, Burn Sequence, and AXAF/IUS separation. Realism is increased through patching the system into the operations facility to simulate IUS telemetry, Shuttle telemetry, and the Tracking Station link (commands and status message).

  12. Investigating wireless power transfer

    NASA Astrophysics Data System (ADS)

    St John, Stuart A.

    2017-09-01

    Understanding Physics is a great end in itself, but is also crucial to keep pace with developments in modern technology. Wireless power transfer, known to many only as a means to charge electric toothbrushes, will soon be commonplace in charging phones, electric cars and implanted medical devices. This article outlines how to produce and use a simple set of equipment to both demonstrate and investigate this phenomenon. It presents some initial findings and aims to encourage Physics educators and their students to conduct further research, pushing the bounds of their understanding.

  13. Mouthguard biosensor with telemetry system for monitoring of saliva glucose: A novel cavitas sensor.

    PubMed

    Arakawa, Takahiro; Kuroki, Yusuke; Nitta, Hiroki; Chouhan, Prem; Toma, Koji; Sawada, Shin-Ichi; Takeuchi, Shuhei; Sekita, Toshiaki; Akiyoshi, Kazunari; Minakuchi, Shunsuke; Mitsubayashi, Kohji

    2016-10-15

    We develop detachable "Cavitas sensors" to apply to the human oral cavity for non-invasive monitoring of saliva glucose. A salivary biosensor incorporating Pt and Ag/AgCl electrodes on a mouthguard support with an enzyme membrane is developed and tested. Electrodes are formed on the polyethylene terephthalate glycol (PETG) surface of the mouthguard. The Pt working electrode is coated with a glucose oxidase (GOD) membrane. The biosensor seamlessly is integrated with a glucose sensor and a wireless measurement system. When investigating in-vitro performance, the biosensor exhibits a robust relationship between output current and glucose concentration. In artificial saliva composed of salts and proteins, the glucose sensor is capable of highly sensitive detection over a range of 5-1000µmol/L of glucose, which encompasses the range of glucose concentrations found in human saliva. We demonstrate the ability of the sensor and wireless communication module to monitor saliva glucose in a phantom jaw imitating the structure of the human oral cavity. Stable and long-term real-time monitoring (exceeding 5h) with the telemetry system is achieved. The mouthguard biosensor will be useful as a novel method for real-time non-invasive saliva glucose monitoring for better management of dental patients. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Definition and maintenance of a telemetry database dictionary

    NASA Technical Reports Server (NTRS)

    Knopf, William P. (Inventor)

    2007-01-01

    A telemetry dictionary database includes a component for receiving spreadsheet workbooks of telemetry data over a web-based interface from other computer devices. Another component routes the spreadsheet workbooks to a specified directory on the host processing device. A process then checks the received spreadsheet workbooks for errors, and if no errors are detected the spreadsheet workbooks are routed to another directory to await initiation of a remote database loading process. The loading process first converts the spreadsheet workbooks to comma separated value (CSV) files. Next, a network connection with the computer system that hosts the telemetry dictionary database is established and the CSV files are ported to the computer system that hosts the telemetry dictionary database. This is followed by a remote initiation of a database loading program. Upon completion of loading a flatfile generation program is manually initiated to generate a flatfile to be used in a mission operations environment by the core ground system.

  15. Animal Telemetry Network Data Assembly Center: Phase 2

    DTIC Science & Technology

    2015-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Animal telemetry network data assembly center: Phase...2 Barbara Block & Randy Kochevar Hopkins Marine Station Stanford University 120 Oceanview Blvd. Pacific Grove, Ca phone: (831) 655-6236...prior development for tag data management (e.g. TOPP, GTOPP, GulfTOPP) of animal telemetry data management into a single system (DAC) with an

  16. Experience with the EURECA Packet Telemetry and Packet Telecommand system

    NASA Technical Reports Server (NTRS)

    Sorensen, Erik Mose; Ferri, Paolo

    1994-01-01

    The European Retrieval Carrier (EURECA) was launched on its first flight on the 31st of July 1992 and retrieved on the 29th of June 1993. EURECA is characterized by several new on-board features, most notably Packet telemetry, and a partial implementation of packet telecommanding, the first ESA packetised spacecraft. Today more than one year after the retrieval the data from the EURECA mission has to a large extent been analysed and we can present some of the interesting results. This paper concentrates on the implementation and operational experience with the EURECA Packet Telemetry and Packet Telecommanding. We already discovered during the design of the ground system that the use of packet telemetry has major impact on the overall design and that processing of packet telemetry may have significant effect on the computer loading and sizing. During the mission a number of problems were identified with the on-board implementation resulting in very strange anomalous behaviors. Many of these problems directly violated basic assumptions for the design of the ground segment adding to the strange behavior. The paper shows that the design of a telemetry packet system should be flexible enough to allow a rapid configuration of the telemetry processing in order to adapt it to the new situation in case of an on-board failure. The experience gained with the EURECA mission control should be used to improve ground systems for future missions.

  17. Comprehension of Spacecraft Telemetry Using Hierarchical Specifications of Behavior

    NASA Technical Reports Server (NTRS)

    Havelund, Klaus; Joshi, Rajeev

    2014-01-01

    A key challenge in operating remote spacecraft is that ground operators must rely on the limited visibility available through spacecraft telemetry in order to assess spacecraft health and operational status. We describe a tool for processing spacecraft telemetry that allows ground operators to impose structure on received telemetry in order to achieve a better comprehension of system state. A key element of our approach is the design of a domain-specific language that allows operators to express models of expected system behavior using partial specifications. The language allows behavior specifications with data fields, similar to other recent runtime verification systems. What is notable about our approach is the ability to develop hierarchical specifications of behavior. The language is implemented as an internal DSL in the Scala programming language that synthesizes rules from patterns of specification behavior. The rules are automatically applied to received telemetry and the inferred behaviors are available to ground operators using a visualization interface that makes it easier to understand and track spacecraft state. We describe initial results from applying our tool to telemetry received from the Curiosity rover currently roving the surface of Mars, where the visualizations are being used to trend subsystem behaviors, in order to identify potential problems before they happen. However, the technology is completely general and can be applied to any system that generates telemetry such as event logs.

  18. Electromagnetic anti-jam telemetry tool

    DOEpatents

    Ganesan, Harini [Sugar Land, TX; Mayzenberg, Nataliya [Missouri City, TX

    2008-02-12

    A mud-pulse telemetry tool includes a tool housing, a motor disposed in the tool housing, and a magnetic coupling coupled to the motor and having an inner shaft and an outer shaft. The tool may also include a stator coupled to the tool housing, a restrictor disposed proximate the stator and coupled to the magnetic coupling, so that the restrictor and the stator adapted to generate selected pulses in a drilling fluid when the restrictor is selectively rotated. The tool may also include a first anti-jam magnet coupled to the too housing, and an second anti-jam magnet disposed proximate the first anti-jam magnet and coupled to the inner shaft and/or the outer shaft, wherein at least one of the first anti-jam magnet and the second anti-jam magnet is an electromagnet, and wherein the first anti-jam magnet and the second anti-jam magnet are positioned with adjacent like poles.

  19. Telemetry experiments with a hibernating black bear

    NASA Technical Reports Server (NTRS)

    Craighead, J. J.; Varney, J. R.; Sumner, J. S.; Craighead, F. C., Jr.

    1972-01-01

    The objectives of this research were to develop and test telemetry equipment suitable for monitoring physiological parameters and activity of a hibernating bear in its den, to monitor this data and other environmental information with the Nimbus 3 IRLS data collection system, and to refine immobilizing, handling, and other techniques required in future work with wild bears under natural conditions. A temperature-telemetering transmitter was implanted in the abdominal cavity of a captive black bear and body temperature data was recorded continuously during a 3 month hibernation period. Body temperatures ranging between 37.5 and 31.8 C were observed. Body temperature and overall activity were influenced by disturbances and ambient den temperature. Nychthemeral temperature changes were not noticable. A load cell weight recording device was tested for determining weight loss during hibernation. Monitoring of data by satellite was not attempted. The implanted transmitter was removed and the bear was released with a radiolocation collar at the conclusion of the experiment.

  20. ECG telemetry in conscious guinea pigs.

    PubMed

    Ruppert, Sabine; Vormberge, Thomas; Igl, Bernd-Wolfgang; Hoffmann, Michael

    2016-01-01

    During preclinical drug development, monitoring of the electrocardiogram (ECG) is an important part of cardiac safety assessment. To detect potential pro-arrhythmic liabilities of a drug candidate and for internal decision-making during early stage drug development an in vivo model in small animals with translatability to human cardiac function is required. Over the last years, modifications/improvements regarding animal housing, ECG electrode placement, and data evaluation have been introduced into an established model for ECG recordings using telemetry in conscious, freely moving guinea pigs. Pharmacological validation using selected reference compounds affecting different mechanisms relevant for cardiac electrophysiology (quinidine, flecainide, atenolol, dl-sotalol, dofetilide, nifedipine, moxifloxacin) was conducted and findings were compared with results obtained in telemetered Beagle dogs. Under standardized conditions, reliable ECG data with low variability allowing largely automated evaluation were obtained from the telemetered guinea pig model. The model is sensitive to compounds blocking cardiac sodium channels, hERG K(+) channels and calcium channels, and appears to be even more sensitive to β-blockers as observed in dogs at rest. QT interval correction according to Bazett and Sarma appears to be appropriate methods in conscious guinea pigs. Overall, the telemetered guinea pig is a suitable model for the conduct of early stage preclinical ECG assessment. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. SCA Waveform Development for Space Telemetry

    NASA Technical Reports Server (NTRS)

    Mortensen, Dale J.; Kifle, Multi; Hall, C. Steve; Quinn, Todd M.

    2004-01-01

    The NASA Glenn Research Center is investigating and developing suitable reconfigurable radio architectures for future NASA missions. This effort is examining software-based open-architectures for space based transceivers, as well as common hardware platform architectures. The Joint Tactical Radio System's (JTRS) Software Communications Architecture (SCA) is a candidate for the software approach, but may need modifications or adaptations for use in space. An in-house SCA compliant waveform development focuses on increasing understanding of software defined radio architectures and more specifically the JTRS SCA. Space requirements put a premium on size, mass, and power. This waveform development effort is key to evaluating tradeoffs with the SCA for space applications. Existing NASA telemetry links, as well as Space Exploration Initiative scenarios, are the basis for defining the waveform requirements. Modeling and simulations are being developed to determine signal processing requirements associated with a waveform and a mission-specific computational burden. Implementation of the waveform on a laboratory software defined radio platform is proceeding in an iterative fashion. Parallel top-down and bottom-up design approaches are employed.

  2. Automatic Satellite Telemetry Analysis for SSA using Artificial Intelligence Techniques

    NASA Astrophysics Data System (ADS)

    Stottler, R.; Mao, J.

    In April 2016, General Hyten, commander of Air Force Space Command, announced the Space Enterprise Vision (SEV) (http://www.af.mil/News/Article-Display/Article/719941/hyten-announces-space-enterprise-vision/). The SEV addresses increasing threats to space-related systems. The vision includes an integrated approach across all mission areas (communications, positioning, navigation and timing, missile warning, and weather data) and emphasizes improved access to data across the entire enterprise and the ability to protect space-related assets and capabilities. "The future space enterprise will maintain our nation's ability to deliver critical space effects throughout all phases of conflict," Hyten said. Satellite telemetry is going to become available to a new audience. While that telemetry information should be valuable for achieving Space Situational Awareness (SSA), these new satellite telemetry data consumers will not know how to utilize it. We were tasked with applying AI techniques to build an infrastructure to process satellite telemetry into higher abstraction level symbolic space situational awareness and to initially populate that infrastructure with useful data analysis methods. We are working with two organizations, Montana State University (MSU) and the Air Force Academy, both of whom control satellites and therefore currently analyze satellite telemetry to assess the health and circumstances of their satellites. The design which has resulted from our knowledge elicitation and cognitive task analysis is a hybrid approach which combines symbolic processing techniques of Case-Based Reasoning (CBR) and Behavior Transition Networks (BTNs) with current Machine Learning approaches. BTNs are used to represent the process and associated formulas to check telemetry values against anticipated problems and issues. CBR is used to represent and retrieve BTNs that represent an investigative process that should be applied to the telemetry in certain circumstances

  3. 47 CFR 95.1111 - Frequency coordination.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... notify the frequency coordinator whenever a medical telemetry device is permanently taken out of service... SERVICES Wireless Medical Telemetry Service (WMTS) General Provisions § 95.1111 Frequency coordination. (a) Prior to operation, authorized health care providers who desire to use wireless medical telemetry...

  4. 47 CFR 95.1111 - Frequency coordination.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... notify the frequency coordinator whenever a medical telemetry device is permanently taken out of service... SERVICES Wireless Medical Telemetry Service (WMTS) General Provisions § 95.1111 Frequency coordination. (a) Prior to operation, authorized health care providers who desire to use wireless medical telemetry...

  5. Recording EEG in immature rats with a novel miniature telemetry system

    PubMed Central

    Zayachkivsky, A.; Lehmkuhle, M. J.; Fisher, J. H.; Ekstrand, J. J.

    2013-01-01

    Serial EEG recordings from immature rat pups are extremely difficult to obtain but important for analyzing animal models of neonatal seizures and other pediatric neurological conditions as well as normal physiology. In this report, we describe the features and applications of a novel miniature telemetry system designed to record EEG in rat pups as young as postnatal day 6 (P6). First, we have recorded electrographic seizure activity in two animal models of neonatal seizures, hypoxia- and kainate-induced seizures at P7. Second, we describe a viable approach for long-term continuous EEG monitoring of naturally reared rat pups implanted with EEG at P6. Third, we have used serial EEG recordings to record age-dependent changes in the background EEG signal as the animals matured from P7 to P11. The important advantages of using miniature wireless EEG technology are: 1) minimally invasive surgical implantation; 2) a device form-factor that is compatible with housing of rat pups with the dam and littermates; 3) serial recordings of EEG activity; and 4) low power consumption of the unit, theoretically allowing continuous monitoring for up to 2 yr without surgical reimplantation. The miniature EEG telemetry system provides a technical advance that allows researchers to record continuous and serial EEG recordings in neonatal rodent models of human neurological disorders, study the progression of the disease, and then assess possible therapies using quantitative EEG as an outcome measure. This new technical approach should improve animal models of human conditions that rely on EEG monitoring for diagnosis and therapy. PMID:23114207

  6. A wireless sensor enabled by wireless power.

    PubMed

    Lee, Da-Sheng; Liu, Yu-Hong; Lin, Chii-Ruey

    2012-11-22

    Through harvesting energy by wireless charging and delivering data by wireless communication, this study proposes the concept of a wireless sensor enabled by wireless power (WPWS) and reports the fabrication of a prototype for functional tests. One WPWS node consists of wireless power module and sensor module with different chip-type sensors. Its main feature is the dual antenna structure. Following RFID system architecture, a power harvesting antenna was designed to gather power from a standard reader working in the 915 MHz band. Referring to the Modbus protocol, the other wireless communication antenna was integrated on a node to send sensor data in parallel. The dual antenna structure integrates both the advantages of an RFID system and a wireless sensor. Using a standard UHF RFID reader, WPWS can be enabled in a distributed area with a diameter up to 4 m. Working status is similar to that of a passive tag, except that a tag can only be queried statically, while the WPWS can send dynamic data from the sensors. The function is the same as a wireless sensor node. Different WPWSs equipped with temperature and humidity, optical and airflow velocity sensors are tested in this study. All sensors can send back detection data within 8 s. The accuracy is within 8% deviation compared with laboratory equipment. A wireless sensor network enabled by wireless power should be a totally wireless sensor network using WPWS. However, distributed WPWSs only can form a star topology, the simplest topology for constructing a sensor network. Because of shielding effects, it is difficult to apply other complex topologies. Despite this limitation, WPWS still can be used to extend sensor network applications in hazardous environments. Further research is needed to improve WPWS to realize a totally wireless sensor network.

  7. A Wireless Sensor Enabled by Wireless Power

    PubMed Central

    Lee, Da-Sheng; Liu, Yu-Hong; Lin, Chii-Ruey

    2012-01-01

    Through harvesting energy by wireless charging and delivering data by wireless communication, this study proposes the concept of a wireless sensor enabled by wireless power (WPWS) and reports the fabrication of a prototype for functional tests. One WPWS node consists of wireless power module and sensor module with different chip-type sensors. Its main feature is the dual antenna structure. Following RFID system architecture, a power harvesting antenna was designed to gather power from a standard reader working in the 915 MHz band. Referring to the Modbus protocol, the other wireless communication antenna was integrated on a node to send sensor data in parallel. The dual antenna structure integrates both the advantages of an RFID system and a wireless sensor. Using a standard UHF RFID reader, WPWS can be enabled in a distributed area with a diameter up to 4 m. Working status is similar to that of a passive tag, except that a tag can only be queried statically, while the WPWS can send dynamic data from the sensors. The function is the same as a wireless sensor node. Different WPWSs equipped with temperature and humidity, optical and airflow velocity sensors are tested in this study. All sensors can send back detection data within 8 s. The accuracy is within 8% deviation compared with laboratory equipment. A wireless sensor network enabled by wireless power should be a totally wireless sensor network using WPWS. However, distributed WPWSs only can form a star topology, the simplest topology for constructing a sensor network. Because of shielding effects, it is difficult to apply other complex topologies. Despite this limitation, WPWS still can be used to extend sensor network applications in hazardous environments. Further research is needed to improve WPWS to realize a totally wireless sensor network. PMID:23443370

  8. Evaluation of a GPS used in conjunction with aerial telemetry

    USGS Publications Warehouse

    Olexa, E.M.; Gogan, P.J.P.; Podruzny, K.M.; Eiler, John; Alcorn, Doris J.; Neuman, Michael R.

    2001-01-01

    We investigated the use of a non-correctable Global Positioning System (NGPS) in association with aerial telemetry to determine animal locations. Average error was determined for 3 components of the location process: use of a NGPS receiver on the ground, use of a NGPS receiver in a aircraft while flying over a visual marker, and use of the same receiver while flying over a location determined by standard aerial telemetry. Average errors were 45.3, 88.1 and 137.4 m, respectively. A directional bias of <35 m was present for the telemetry component only. Tests indicated that use of NGPS to determine aircraft, and thereby animal, location is an efficient alternative to interpolation from topographic maps. This method was more accurate than previously reported Long-Range Navigation system, version C (LORAN-C) and Argos satellite telemetry. It has utility in areas where animal-borne GPS receivers are not practical due to a combination of topography, canopy coverage, weight or cost of animal-borne GPS units. Use of NGPS technology in conjunction with aerial telemetry will provide the location accuracy required for identification of gross movement patterns and coarse-grained habitat use.

  9. Wireless pilot monitoring system for extreme race conditions.

    PubMed

    Pino, Esteban J; Arias, Diego E; Aqueveque, Pablo; Melin, Pedro; Curtis, Dorothy W

    2012-01-01

    This paper presents the design and implementation of an assistive device to monitor car drivers under extreme conditions. In particular, this system is designed in preparation for the 2012 Atacama Solar Challenge to be held in the Chilean desert. Actual preliminary results show the feasibility of such a project including physiological and ambient sensors, real-time processing algorithms, wireless data transmission and a remote monitoring station. Implementation details and field results are shown along with a discussion of the main problems found in real-life telemetry monitoring.

  10. The Wireless War Dance.

    ERIC Educational Resources Information Center

    Moriarty, Laura Joyce

    2001-01-01

    Discusses the use of wireless technology on college campuses. Explores why colleges may want to use the technology, when they should begin to take it seriously, the culture pushing the change, and how schools should approach wireless technology. (EV)

  11. Reliable intraocular pressure measurement using automated radio-wave telemetry

    PubMed Central

    Paschalis, Eleftherios I; Cade, Fabiano; Melki, Samir; Pasquale, Louis R; Dohlman, Claes H; Ciolino, Joseph B

    2014-01-01

    Purpose To present an autonomous intraocular pressure (IOP) measurement technique using a wireless implantable transducer (WIT) and a motion sensor. Methods The WIT optical aid was implanted within the ciliary sulcus of a normotensive rabbit eye after extracapsular clear lens extraction. An autonomous wireless data system (AWDS) comprising of a WIT and an external antenna aided by a motion sensor provided continuous IOP readings. The sensitivity of the technique was determined by the ability to detect IOP changes resulting from the administration of latanoprost 0.005% or dorzolamide 2%, while the reliability was determined by the agreement between baseline and vehicle (saline) IOP. Results On average, 12 diurnal and 205 nocturnal IOP measurements were performed with latanoprost, and 26 diurnal and 205 nocturnal measurements with dorzolamide. No difference was found between mean baseline IOP (13.08±2.2 mmHg) and mean vehicle IOP (13.27±2.1 mmHg) (P=0.45), suggesting good measurement reliability. Both antiglaucoma medications caused significant IOP reduction compared to baseline; latanoprost reduced mean IOP by 10% (1.3±3.54 mmHg; P<0.001), and dorzolamide by 5% (0.62±2.22 mmHg; P<0.001). Use of latanoprost resulted in an overall twofold higher IOP reduction compared to dorzolamide (P<0.001). Repeatability was ±1.8 mmHg, assessed by the variability of consecutive IOP measurements performed in a short period of time (≤1 minute), during which the IOP is not expected to change. Conclusion IOP measurements in conscious rabbits obtained without the need for human interactions using the AWDS are feasible and provide reproducible results. PMID:24531415

  12. Reliable intraocular pressure measurement using automated radio-wave telemetry.

    PubMed

    Paschalis, Eleftherios I; Cade, Fabiano; Melki, Samir; Pasquale, Louis R; Dohlman, Claes H; Ciolino, Joseph B

    2014-01-01

    To present an autonomous intraocular pressure (IOP) measurement technique using a wireless implantable transducer (WIT) and a motion sensor. The WIT optical aid was implanted within the ciliary sulcus of a normotensive rabbit eye after extracapsular clear lens extraction. An autonomous wireless data system (AWDS) comprising of a WIT and an external antenna aided by a motion sensor provided continuous IOP readings. The sensitivity of the technique was determined by the ability to detect IOP changes resulting from the administration of latanoprost 0.005% or dorzolamide 2%, while the reliability was determined by the agreement between baseline and vehicle (saline) IOP. On average, 12 diurnal and 205 nocturnal IOP measurements were performed with latanoprost, and 26 diurnal and 205 nocturnal measurements with dorzolamide. No difference was found between mean baseline IOP (13.08±2.2 mmHg) and mean vehicle IOP (13.27±2.1 mmHg) (P=0.45), suggesting good measurement reliability. Both antiglaucoma medications caused significant IOP reduction compared to baseline; latanoprost reduced mean IOP by 10% (1.3±3.54 mmHg; P<0.001), and dorzolamide by 5% (0.62±2.22 mmHg; P<0.001). Use of latanoprost resulted in an overall twofold higher IOP reduction compared to dorzolamide (P<0.001). Repeatability was ±1.8 mmHg, assessed by the variability of consecutive IOP measurements performed in a short period of time (≤1 minute), during which the IOP is not expected to change. IOP measurements in conscious rabbits obtained without the need for human interactions using the AWDS are feasible and provide reproducible results.

  13. The advanced receiver 2: Telemetry test results in CTA 21

    NASA Technical Reports Server (NTRS)

    Hinedi, S.; Bevan, R.; Marina, M.

    1991-01-01

    Telemetry tests with the Advanced Receiver II (ARX II) in Compatibility Test Area 21 are described. The ARX II was operated in parallel with a Block-III Receiver/baseband processor assembly combination (BLK-III/BPA) and a Block III Receiver/subcarrier demodulation assembly/symbol synchronization assembly combination (BLK-III/SDA/SSA). The telemetry simulator assembly provided the test signal for all three configurations, and the symbol signal to noise ratio as well as the symbol error rates were measured and compared. Furthermore, bit error rates were also measured by the system performance test computer for all three systems. Results indicate that the ARX-II telemetry performance is comparable and sometimes superior to the BLK-III/BPA and BLK-III/SDA/SSA combinations.

  14. Wireless steganography

    NASA Astrophysics Data System (ADS)

    Agaian, Sos S.; Akopian, David; D'Souza, Sunil

    2006-02-01

    Modern mobile devices are some of the most technologically advanced devices that people use on a daily basis and the current trends in mobile phone technology indicate that tasks achievable by mobile devices will soon exceed our imagination. This paper undertakes a case study of the development and implementation of one of the first known steganography (data hiding) applications on a mobile device. Steganography is traditionally accomplished using the high processing speeds of desktop or notebook computers. With the introduction of mobile platform operating systems, there arises an opportunity for the users to develop and embed their own applications. We take advantage of this opportunity with the introduction of wireless steganographic algorithms. Thus we demonstrates that custom applications, popular with security establishments, can be developed also on mobile systems independent of both the mobile device manufacturer and mobile service provider. For example, this might be a very important feature if the communication is to be controlled exclusively by authorized personnel. The paper begins by reviewing the technological capabilities of modern mobile devices. Then we address a suitable development platform which is based on Symbian TM/Series60 TM architecture. Finally, two data hiding applications developed for Symbian TM/Series60 TM mobile phones are presented.

  15. Wireless on Campus.

    ERIC Educational Resources Information Center

    Dominick, Jay

    2000-01-01

    Discussion of wireless technology focuses on whether there is enough value in a wireless infrastructure for schools to justify the cost. Considers issues campuses must face, including access to the Internet, telecommunications, and networking; explains technical details; and describes wireless initiatives at Wake Forest University. (LRW)

  16. Community Wireless Networks

    ERIC Educational Resources Information Center

    Feld, Harold

    2005-01-01

    With increasing frequency, communities are seeing the arrival of a new class of noncommercial broadband providers: community wireless networks (CWNs). Utilizing the same wireless technologies that many colleges and universities have used to create wireless networks on campus, CWNs are creating broadband access for free or at costs well below…

  17. Space-Based Telemetry and Range Safety (STARS) Study

    NASA Technical Reports Server (NTRS)

    Hogie, Keith; Crisuolo, Ed; Parise, Ron

    2004-01-01

    This presentation will describe the design, development, and testing of a system to collect telemetry, format it into UDP/IP packets, and deliver it to a ground test range using standard IP technologies over a TDRSS link. This presentation will discuss the goal of the STARS IP Formatter along with the overall design. It will also present performance results of the current version of the IP formatter. Finally, it will discuss key issues for supporting constant rate telemetry data delivery when using standard components such as PCI/104 processors, the Linux operating system, Internet Protocols, and synchronous serial interfaces.

  18. Wireless Infrared Data Link

    NASA Technical Reports Server (NTRS)

    Roth, Timothy E.

    1995-01-01

    Infrared transmitter and receiver designed for wireless transmission of information on measured physical quantity (for example, temperature) from transducer device to remote-acquisition system. In transmitter, output of transducer amplified and shifted with respect to bias or reference level, then fed to voltage-to-frequency converter to control frequency of repetition of current pulses applied to infrared-light-emitting diode. In receiver, frequency of repetition of pulses converted back into voltage indicative of temperature or other measured quantity. Potential applications include logging data while drilling for oil, transmitting measurements from rotors in machines without using slip rings, remote monitoring of temperatures and pressures in hazardous locations, and remote continuous monitoring of temperatures and blood pressures in medical patients, who thus remain mobile.

  19. Process and methodology of developing Cassini G and C Telemetry Dictionary

    NASA Technical Reports Server (NTRS)

    Kan, Edwin P.

    1994-01-01

    While the Cassini spacecraft telemetry design had taken on the new approach of 'packetized telemetry', the AACS (Attitude and Articulation Subsystem) had further extended into the design of 'mini-packets' in its telemetry system. Such telemetry packet and mini-packet design produced the AACS Telemetry Dictionary; iterations of the latter in turn provided changes to the former. The ultimate goals were to achieve maximum telemetry packing density, optimize the 'freshness' of more time-critical data, and to effect flexibility, i.e., multiple AACS data collection schemes, without needing to change the overall spacecraft telemetry mode. This paper describes such a systematic process and methodology, evidenced by various design products related to, or as part of, the AACS Telemetry Dictionary.

  20. An Evaluation and Demonstration of a Network Based Aircraft Telemetry System

    NASA Technical Reports Server (NTRS)

    Waldersen, Matt; Schnarr, Otto, III

    2017-01-01

    The primary topics of this presentation describe the testing of network based telemetry and RF modulation techniques. The overall intend is to aid the aerospace industry in transitioning to a network based telemetry system.

  1. Communication strategies and timeliness of response to life critical telemetry alarms.

    PubMed

    Bonzheim, Kimberly A; Gebara, Rani I; O'Hare, Bridget M; Ellis, R Darin; Brand, Monique A; Balar, Salil D; Stockman, Rita; Sciberras, Annette M; Haines, David E

    2011-05-01

    A centralized electrocardiogram telemetry monitoring system (TMS) facilitates early identification of critical arrhythmias and acute medical decompensation. Timely intervention can only be performed if abnormalities are communicated rapidly to the direct caregiver. The study objectives were to measure effectiveness of bi-directional voice communication badges versus one-way alphanumeric pagers for telemetry alarm response and communication loop closure. A sequential observational pilot study of nursing response to TMS alarms compared communication technologies on four nursing units in a 1,061 bed tertiary care hospital with 264 TMS channels of telemetry over a 2-year period. Subsequently, the communication technologies were compared in a randomized fashion on a 68-bed progressive cardiac care unit. Caregivers were blinded to the protocol. All alarm responses were recorded during two periods using either pagers or voice communication devices. Alarm response time and closure of the communication loop were analyzed in a blinded fashion. The direct communication functionality of the badge significantly shortened the time to first contact, time to completion, and rate of closure of the communication loop in both the pilot and study phases. Median time to first contact with the communication badge was 0.5  min, compared to 1.6  min with pager communication (p < 0.0003). Communication loop closure was achieved in 100% of clinical alarms using the badge versus 19% with the pager (p < 0.0001). Communication badge technology reduced alarm time to first contact and completion as well as facilitated communication loop closures. Immediate two-way communication significantly impacted practice, alarm management, and resulted in faster bedside care.

  2. Wireless Telemetry of In-Flight Collision Avoidance Neural Signals in Insects

    DTIC Science & Technology

    2010-09-01

    with a high LQ product, along with vertical npn transistors (Q1 and Q2) providing a high gm/I ratio with relatively low parasitic capacitance allows...species (pigeon: Sun and Frost, 1998; frog: Kang and Nakagawa, 2006; fish : Preuss et al., 2006; fruit fly: Fotowat et al., 2009). In locusts, this...Eur. J. Neurosci. 7, 981-992. Houweling, A. R. and Brecht, M. (2008). Behavioural report of single neuron stimulation in somatosensory cortex

  3. LEAK DETECTION AND WIRELESS TELEMETRY FOR WATER DISTRIBUTION AND SEWERAGE SYSTEMS - PHASE I

    EPA Science Inventory

    According to the study EPA 2000 Community Water System Survey Data on Pipe Assets, the infrastructure for water distribution and sewerage systems is aging and requires replacement.  In addition, in EPA’s September 2002 report Clean Water and Drinking Water Infr...

  4. Satellite Telemetry and Command using Big LEO Mobile Telecommunications Systems

    NASA Technical Reports Server (NTRS)

    Huegel, Fred

    1998-01-01

    Various issues associated with satellite telemetry and command using Big LEO mobile telecommunications systems are presented in viewgraph form. Specific topics include: 1) Commercial Satellite system overviews: Globalstar, ICO, and Iridium; 2) System capabilities and cost reduction; 3) Satellite constellations and contact limitations; 4) Capabilities of Globalstar, ICO and Iridium with emphasis on Globalstar; and 5) Flight transceiver issues and security.

  5. Radio frequency telemetry system for sensors and actuators

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N. (Inventor); Miranda, Felix A. (Inventor)

    2003-01-01

    The present invention discloses and teaches apparatus for combining Radio Frequency (RF) technology with novel micro-inductor antennas and signal processing circuits for RF telemetry of real time, measured data, from microelectromechanical system (MEMS) sensors, through electromagnetic coupling with a remote powering/receiving device. Such technology has many applications, but is especially useful in the biomedical area.

  6. Evaluating CMA Equalization of SOQPSK-TG for Aeronautical Telemetry

    DTIC Science & Technology

    2015-03-01

    Program through the U.S. Army Program Executive Office for Simulation, Training and Instrumentation (PEO STRI) under contract W900KK-13-C-0026 ( PAQ ...Report: Preamble assisted equalization for aeronautical telemetry ( PAQ ),‖ Brigham Young University, Technical Report, 2014, submitted to the Spectrum

  7. Telemetry with an Optical Fiber Revisited: An Alternative Strategy

    ERIC Educational Resources Information Center

    Kraftmakher, Yaakov

    2014-01-01

    With a new data-acquisition system developed by PASCO scientific, an experiment on telemetry with an optical fiber can be made easier and more accurate. For this aim, an alternative strategy of the remote temperature measurements is proposed: the frequency of light pulses transmitted via the light guide numerically equals the temperature using…

  8. RF Telemetry System for an Implantable Bio-MEMS Sensor

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Hall, David G.; Miranda, Felix A.

    2004-01-01

    In this paper, a novel miniature inductor and a pick-up antenna for contact less powering and RF telemetry from implantable bio-MEMS sensors are presented. The design of the inductor and the pick-up antenna are discussed. In addition, the measured characteristics at the design frequency of 330 MHz have been shown.

  9. Flight instrument and telemetry response and its inversion

    NASA Technical Reports Server (NTRS)

    Weinberger, M. R.

    1971-01-01

    Mathematical models of rate gyros, servo accelerometers, pressure transducers, and telemetry systems were derived and their parameters were obtained from laboratory tests. Analog computer simulations were used extensively for verification of the validity for fast and large input signals. An optimal inversion method was derived to reconstruct input signals from noisy output signals and a computer program was prepared.

  10. Precise timing correlation in telemetry recording and processing systems

    NASA Technical Reports Server (NTRS)

    Pickett, R. B.; Matthews, F. L.

    1973-01-01

    Independent PCM telemetry data signals received from missiles must be correlated to within + or - 100 microseconds for comparison with radar data. Tests have been conducted to determine RF antenna receiving system delays; delays associated with wideband analog tape recorders used in the recording, dubbing and repdocuing processes; and uncertainties associated with computer processed time tag data. Several methods used in the recording of timing are evaluated. Through the application of a special time tagging technique, the cumulative timing bias from all sources is determined and the bias removed from final data. Conclusions show that relative time differences in receiving, recording, playback and processing of two telemetry links can be accomplished with a + or - 4 microseconds accuracy. In addition, the absolute time tag error (with respect to UTC) can be reduced to less than 15 microseconds. This investigation is believed to be the first attempt to identify the individual error contributions within the telemetry system and to describe the methods of error reduction within the telemetry system and to describe the methods of error reduction and correction.

  11. Radio Frequency Telemetry System for Sensors and Actuators

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N. (Inventor); Miranda, Felix A. (Inventor)

    2003-01-01

    The present invention discloses and teaches apparatus for combining Radio Frequency (RF) technology with novel micro-inductor antennas and signal processing circuits for RF telemetry of real time, measured data, from microelectromechanical system (MEMS) sensors, through electromagnetic coupling with a remote poweringheceiving device. Such technology has many applications, but is especially useful in the biomedical area.

  12. Eliminating Inappropriate Telemetry Monitoring: An Evidence-Based Implementation Guide.

    PubMed

    Yeow, Raymond Y; Strohbehn, Garth W; Kagan, Calvin M; Petrilli, Christopher M; Krishnan, Jamuna K; Edholm, Karli; Sussman, L Scott; Blanck, Jaime F; Popa, Remus I; Pahwa, Amit K

    2018-06-04

    In-hospital continuous electrocardiographic monitoring, commonly referred to as telemetry, has allowed for rapid recognition of life-threatening conditions, including complex arrhythmias and myocardial ischemia. However, inappropriate use can lead to unnecessary downstream testing from "false alarms," which in turn affects clinician efficiency and increases health care costs without benefiting patients. For these reasons, the Society of Hospital Medicine's Choosing Wisely campaign recommended use of a protocol-driven discontinuation of telemetry. The American Heart Association (AHA) developed a set of Practice Standards for the appropriate use of telemetry monitoring in 2004, which they updated in 2017. Unfortunately, the AHA Practice Standards have not been widely adopted-with as many as 43% of monitored patients lacking a recommended indication for monitoring. Thus, we created an overview discussing the safety and efficacy of incorporating the AHA Practice Standards and a review of studies highlighting their successful incorporation within patient care workflow. We conclude by outlining an "implementation blueprint" for health system professionals and administrators seeking to change their institution's culture of telemetry use. As the health care landscape continues to shift, enacting high-value initiatives that improve patient safety and efficiency of care will be critical.

  13. Innovation and Translation Efforts in Wireless Medical Connectivity, Telemedicine and eMedicine: A Story from the RFID Center of Excellence at the University of Pittsburgh

    PubMed Central

    Sejdić, Ervin; Rothfuss, Michael; Stachel, Joshua R.; Franconi, Nicholas G.; Bocan, Kara; Lovell, Michael R.; Mickle, Marlin H.

    2016-01-01

    Translational research has recently been rediscovered as one of the basic tenants of engineering. Although many people have numerous ideas of how to accomplish this successfully, the fundamental method is to provide an innovative and creative environment. The University of Pittsburgh has been accomplishing this goal though a variety of methodologies. The contents of this paper are exemplary of what can be achieved though the interaction of students, staff, faculty and, in one example, high school teachers. While the projects completed within the groups involved in this paper have spanned other areas, the focus of this paper is on the biomedical devices, that is, towards improving and maintaining health in a variety of areas. The spirit of the translational research is discovery, invention, intellectual property protection, and the creation of value through the spinning off of companies while providing better health care and creating jobs. All but one of these projects involve wireless radio frequency energy for delivery. The remaining device can be wirelessly connected for data collection. PMID:23897048

  14. A telemetry system embedded in clothes for indoor localization and elderly health monitoring.

    PubMed

    Charlon, Yoann; Fourty, Nicolas; Campo, Eric

    2013-09-04

    This paper presents a telemetry system used in a combined trilateration method for the precise indoor localization of the elderly who need health monitoring. The system is based on the association of two wireless technologies: ultrasonic and 802.15.4. The use of the 802.15.4 RF signal gives the reference starting time of the ultrasonic emission (time difference of arrival method). A time of flight measurement of the ultrasonic pulses provides the distances between the mobile node and three anchor points. These distance measurements are then used to locate the mobile node using the trilateration method with an accuracy of a few centimetres. The originality of our work lies in embedding the mobile node in clothes. The system is embedded in clothes in two ways: on a shoe in order to form a "smart" shoe and in a hat in order to form a "smart" hat. Both accessories allow movements, gait speed and distance covered to be monitored for health applications. Experiments in a test room are presented to show the effectiveness of our system.

  15. Reception of Multiple Telemetry Signals via One Dish Antenna

    NASA Technical Reports Server (NTRS)

    Mukai, Ryan; Vilnrotter, Victor

    2010-01-01

    A microwave aeronautical-telemetry receiver system includes an antenna comprising a seven-element planar array of receiving feed horns centered at the focal point of a paraboloidal dish reflector that is nominally aimed at a single aircraft or at multiple aircraft flying in formation. Through digital processing of the signals received by the seven feed horns, the system implements a method of enhanced cancellation of interference, such that it becomes possible to receive telemetry signals in the same frequency channel simultaneously from either or both of two aircraft at slightly different angular positions within the field of view of the antenna, even in the presence of multipath propagation. The present system is an advanced version of the system described in Spatio- Temporal Equalizer for a Receiving-Antenna Feed Array NPO-43077, NASA Tech Briefs, Vol. 34, No. 2 (February 2010), page 32. To recapitulate: The radio-frequency telemetry signals received by the seven elements of the array are digitized, converted to complex baseband form, and sent to a spatio-temporal equalizer that consists mostly of a bank of seven adaptive finite-impulse-response (FIR) filters (one for each element in the array) plus a unit that sums the outputs of the filters. The combination of the spatial diversity of the feedhorn array and the temporal diversity of the filter bank affords better multipath suppression performance than is achievable by means of temporal equalization alone. The FIR filter bank adapts itself in real time to enable reception of telemetry at a low bit error rate, even in the presence of frequency-selective multipath propagation like that commonly found at flight-test ranges. The combination of the array and the filter bank makes it possible to constructively add multipath incoming signals to the corresponding directly arriving signals, thereby enabling reductions in telemetry bit-error rates.

  16. Guideline-based intervention to reduce telemetry rates in a large tertiary centre.

    PubMed

    Ramkumar, Satish; Tsoi, Edward H; Raghunath, Ajay; Dias, Floyd F; Li Wai Suen, Christopher; Tsoi, Andrew H; Mansfield, Darren R

    2017-07-01

    Inappropriate cardiac telemetry use is associated with reduced patient flow and increased healthcare costs. To evaluate the outcomes of guideline-based application of cardiac telemetry. Phase I involved a prospective audit (March to August 2011) of telemetry use at a tertiary hospital. Data were collected on indication for telemetry and clinical outcomes. Phase II prospectively included patients more than 18 years under general medicine requiring ward-based telemetry. As phase II occurred at a time remotely from phase I, an audit similar to phase I (phase II - baseline) was completed prior to a 3-month intervention (May to August 2015). The intervention consisted of a daily telemetry ward round and an admission form based on the American Heart Association guidelines (class I, telemetry indicated; class II, telemetry maybe indicated; class III, telemetry not indicated). Patient demographics, telemetry data, and clinical outcomes were studied. Primary endpoint was the percentage reduction of class III indications, while secondary endpoint included telemetry duration. In phase I (n = 200), 38% were admitted with a class III indication resulting in no change in clinical management. A total of 74 patients was included in phase II baseline (mean ± standard deviation (SD) age 73 years ± 14.9, 57% male), whilst 65 patients were included in the intervention (mean ± SD age 71 years ± 18.4, 35% male). Both groups had similar baseline characteristics. There was a reduction in class III admissions post-intervention from 38% to 11%, P < 0.001. Intervention was associated with a reduction in median telemetry duration (1.8 ± 1.8 vs 2.4 ± 2.5 days, P = 0.047); however, length of stay was similar in both groups (P > 0.05). Guideline-based telemetry admissions and a regular telemetry ward round are associated with a reduction in inappropriate telemetry use. © 2017 Royal Australasian College of Physicians.

  17. Wireless Sensor Networks for Ambient Assisted Living

    PubMed Central

    Aquino-Santos, Raúl; Martinez-Castro, Diego; Edwards-Block, Arthur; Murillo-Piedrahita, Andrés Felipe

    2013-01-01

    This paper introduces wireless sensor networks for Ambient Assisted Living as a proof of concept. Our workgroup has developed an arrhythmia detection algorithm that we evaluate in a closed space using a wireless sensor network to relay the information collected to where the information can be registered, monitored and analyzed to support medical decisions by healthcare providers. The prototype we developed is then evaluated using the TelosB platform. The proposed architecture considers very specific restrictions regarding the use of wireless sensor networks in clinical situations. The seamless integration of the system architecture enables both mobile node and network configuration, thus providing the versatile and robust characteristics necessary for real-time applications in medical situations. Likewise, this system architecture efficiently permits the different components of our proposed platform to interact efficiently within the parameters of this study. PMID:24351665

  18. Wireless mesh networks.

    PubMed

    Wang, Xinheng

    2008-01-01

    Wireless telemedicine using GSM and GPRS technologies can only provide low bandwidth connections, which makes it difficult to transmit images and video. Satellite or 3G wireless transmission provides greater bandwidth, but the running costs are high. Wireless networks (WLANs) appear promising, since they can supply high bandwidth at low cost. However, the WLAN technology has limitations, such as coverage. A new wireless networking technology named the wireless mesh network (WMN) overcomes some of the limitations of the WLAN. A WMN combines the characteristics of both a WLAN and ad hoc networks, thus forming an intelligent, large scale and broadband wireless network. These features are attractive for telemedicine and telecare because of the ability to provide data, voice and video communications over a large area. One successful wireless telemedicine project which uses wireless mesh technology is the Emergency Room Link (ER-LINK) in Tucson, Arizona, USA. There are three key characteristics of a WMN: self-organization, including self-management and self-healing; dynamic changes in network topology; and scalability. What we may now see is a shift from mobile communication and satellite systems for wireless telemedicine to the use of wireless networks based on mesh technology, since the latter are very attractive in terms of cost, reliability and speed.

  19. Wireless implantable electronic platform for chronic fluorescent-based biosensors.

    PubMed

    Valdastri, Pietro; Susilo, Ekawahyu; Förster, Thilo; Strohhöfer, Christof; Menciassi, Arianna; Dario, Paolo

    2011-06-01

    The development of a long-term wireless implantable biosensor based on fluorescence intensity measurement poses a number of technical challenges, ranging from biocompatibility to sensor stability over time. One of these challenges is the design of a power efficient and miniaturized electronics, enabling the biosensor to move from bench testing to long term validation, up to its final application in human beings. In this spirit, we present a wireless programmable electronic platform for implantable chronic monitoring of fluorescent-based autonomous biosensors. This system is able to achieve extremely low power operation with bidirectional telemetry, based on the IEEE802.15.4-2003 protocol, thus enabling over three-year battery lifetime and wireless networking of multiple sensors. During the performance of single fluorescent-based sensor measurements, the circuit drives a laser diode, for sensor excitation, and acquires the amplified signals from four different photodetectors. In vitro functionality was preliminarily tested for both glucose and calcium monitoring, simply by changing the analyte-binding protein of the biosensor. Electronics performance was assessed in terms of timing, power consumption, tissue exposure to electromagnetic fields, and in vivo wireless connectivity. The final goal of the presented platform is to be integrated in a complete system for blood glucose level monitoring that may be implanted for at least one year under the skin of diabetic patients. Results reported in this paper may be applied to a wide variety of biosensors based on fluorescence intensity measurement.

  20. Over-the-horizon, connected home/office (OCHO): situation management of environmental, medical, and security conditions at remote premises via broadband wireless access

    NASA Astrophysics Data System (ADS)

    Hortos, William S.

    2010-04-01

    Broadband wireless access standards, together with advances in the development of commercial sensing and actuator devices, enable the feasibility of a consumer service for a multi-sensor system that monitors the conditions within a residence or office: the environment/infrastructure, patient-occupant health, and physical security. The proposed service is a broadband reimplementation and combination of existing services to allow on-demand reports on and management of the conditions by remote subscribers. The flow of on-demand reports to subscribers and to specialists contracted to mitigate out-of-tolerance conditions is the foreground process. Service subscribers for an over-the-horizon connected home/office (OCHO) monitoring system are the occupant of the premises and agencies, contracted by the service provider, to mitigate or resolve any observed out-of-tolerance condition(s) at the premises. Collectively, these parties are the foreground users of the OCHO system; the implemented wireless standards allow the foreground users to be mobile as they request situation reports on demand from the subsystems on remote conditions that comprise OCHO via wireless devices. An OCHO subscriber, i.e., a foreground user, may select the level of detail found in on-demand reports, i.e., the amount of information displayed in the report of monitored conditions at the premises. This is one context of system operations. While foreground reports are sent only periodically to subscribers, the information generated by the monitored conditions at the premises is continuous and is transferred to a background configuration of servers on which databases reside. These databases are each used, generally, in non-real time, for the assessment and management of situations defined by attributes like those being monitored in the foreground by OCHO. This is the second context of system operations. Context awareness and management of conditions at the premises by a second group of analysts and

  1. Wireless Command-and-Control of UAV-Based Imaging LANs

    NASA Technical Reports Server (NTRS)

    Herwitz, Stanley; Dunagan, S. E.; Sullivan, D. V.; Slye, R. E.; Leung, J. G.; Johnson, L. F.

    2006-01-01

    Dual airborne imaging system networks were operated using a wireless line-of-sight telemetry system developed as part of a 2002 unmanned aerial vehicle (UAV) imaging mission over the USA s largest coffee plantation on the Hawaiian island of Kauai. A primary mission objective was the evaluation of commercial-off-the-shelf (COTS) 802.11b wireless technology for reduction of payload telemetry costs associated with UAV remote sensing missions. Predeployment tests with a conventional aircraft demonstrated successful wireless broadband connectivity between a rapidly moving airborne imaging local area network (LAN) and a fixed ground station LAN. Subsequently, two separate LANs with imaging payloads, packaged in exterior-mounted pressure pods attached to the underwing of NASA's Pathfinder-Plus UAV, were operated wirelessly by ground-based LANs over independent Ethernet bridges. Digital images were downlinked from the solar-powered aircraft at data rates of 2-6 megabits per second (Mbps) over a range of 6.5 9.5 km. An integrated wide area network enabled payload monitoring and control through the Internet from a range of ca. 4000 km during parts of the mission. The recent advent of 802.11g technology is expected to boost the system data rate by about a factor of five.

  2. Validation of a real-time wireless telemedicine system, using bluetooth protocol and a mobile phone, for remote monitoring patient in medical practice.

    PubMed

    Yousef, Jasemian; Lars, A N

    2005-06-22

    This paper validates the integration of a generic real-time wireless telemedicine system utilising Global System for Mobile Communications (GSM), BLUETOOTH protocol and General Packet Radio Service (GPRS) for cellular network in clinical practice. In the first experiment, the system was tested on 24 pacemaker patients at Aalborg Hospital (Denmark), in order to see if the pacemaker implant would be affected by the system. I the second experiment, the system was tested on 15 non risky arrhythmia heart patients, in order to evaluate and validate the system application in clinical practice, for patient monitoring. Electrocardiograms were selected as the continuously monitored parameter in the present study. The results showed that the system had no negative effects on the pacemaker implants. The experiment results showed, that in a realistic environment for the patients, the system had 96.1 % up-time, 3.2 (kbps) throughput, 10(-3) (packet/s) Packet Error Rate and 10(-3) (packet/s) Packet Lost Rate. During 24 hours test the network did not respond for 57 minutes, from which 83.1 % was in the range of 0-3 minutes, 15.4 % was in the range of 3-5 minutes, and only 0.7 % of the down-time was > or = 5 and < or = 6 minutes. By a subjective evaluation, it was demonstrated that the system is applicable and the patients as well as the healthcare personals were highly confident with the system. Moreover, the patients had high degree of mobility and freedom, employing the system. In conclusion, this generic telemedicine system showed a high reliability, quality and performance, and the design can provide a basic principle for real-time wireless remote monitoring systems used in clinical practice.

  3. Implemented a wireless communication system for VGA capsule endoscope.

    PubMed

    Moon, Yeon-Kwan; Lee, Jyung Hyun; Park, Hee-Joon; Cho, Jin-Ho; Choi, Hyun-Chul

    2014-01-01

    Recently, several medical devices that use wireless communication are under development. In this paper, the small size frequency shift keying (FSK) transmitter and a monofilar antenna for the capsule endoscope, enabling the medical device to transmit VGA-size images of the intestine. To verify the functionality of the proposed wireless communication system, computer simulations and animal experiments were performed with the implemented capsule endoscope that includes the proposed wireless communication system. Several fundamental experiments are carried out using the implemented transmitter and antenna, and animal in-vivo experiments were performed to verify VGA image transmission.

  4. Feasibility Study on Active Back Telemetry and Power Transmission Through an Inductive Link for Millimeter-Sized Biomedical Implants.

    PubMed

    Yeon, Pyungwoo; Mirbozorgi, S Abdollah; Lim, Jaemyung; Ghovanloo, Maysam

    2017-12-01

    This paper presents a feasibility study of wireless power and data transmission through an inductive link to a 1-mm 2 implant, to be used as a free-floating neural probe, distributed across a brain area of interest. The proposed structure utilizes a four-coil inductive link for back telemetry, shared with a three-coil link for wireless power transmission. We propose a design procedure for geometrical optimization of the inductive link in terms of power transmission efficiency (PTE) considering specific absorption rate and data rate. We have designed a low-power pulse-based active data transmission circuit and characterized performance of the proposed inductive link in terms of its data rate and bit error rate (BER). The 1-mm 2 data-Tx/power-Rx coil is implemented using insulated bonding wire with diameter, resulting in measured PTE in tissue media of 2.01% at 131 MHz and 1.8-cm coil separation distance when the resonator coil inner radius is 1 cm. The measured BER at 1-Mbps data rate was and in the air and tissue environments, respectively.

  5. Wireless security in mobile health.

    PubMed

    Osunmuyiwa, Olufolabi; Ulusoy, Ali Hakan

    2012-12-01

    Mobile health (m-health) is an extremely broad term that embraces mobile communication in the health sector and data packaging. The four broad categories of wireless networks are wireless personal area network, wireless metropolitan area network, wireless wide area network, and wireless local area network. Wireless local area network is the most notable of the wireless networking tools obtainable in the health sector. Transfer of delicate and critical information on radio frequencies should be secure, and the right to use must be meticulous. This article covers the business opportunities in m-health, threats faced by wireless networks in hospitals, and methods of mitigating these threats.

  6. Implementation of body area networks based on MICS/WMTS medical bands for healthcare systems.

    PubMed

    Yuce, Mehmet R; Ho, Chee Keong

    2008-01-01

    A multi-hoping sensor network system has been implemented to monitor physiological parameters from multiple patient bodies by means of medical communication standards MICS (Medical Implant Communication Service) and WMTS (Wireless Medical Telemetry Service). Unlike the other medical sensor networks (they usually use 2.4 GHz ISM band), we used the two medical standards occupying the frequency bands that are mainly assigned to medical applications. The prototype system uses the MICS band (402-405 MHz) between the sensor nodes and a remote central control unit (CCU). And WMTS frequencies (608-614MHz) are used between the CCUs and the remote base stations allowing for a much larger range acting as an intermediate node. The sensor nodes in the prototype can measure up to four body signals (i.e. 4-channel) where one is dedicated to a continuous physiological signal such as ECC/EEG. The system includes firmware and software designs that can provide a long distance data transfer through the internet or a mobile network.

  7. Using Geostationary Communications Satellites as a Sensor: Telemetry Search Algorithms

    NASA Astrophysics Data System (ADS)

    Cahoy, K.; Carlton, A.; Lohmeyer, W. Q.

    2014-12-01

    For decades, operators and manufacturers have collected large amounts of telemetry from geostationary (GEO) communications satellites to monitor system health and performance, yet this data is rarely mined for scientific purposes. The goal of this work is to mine data archives acquired from commercial operators using new algorithms that can detect when a space weather (or non-space weather) event of interest has occurred or is in progress. We have developed algorithms to statistically analyze power amplifier current and temperature telemetry and identify deviations from nominal operations or other trends of interest. We then examine space weather data to see what role, if any, it might have played. We also closely examine both long and short periods of time before an anomaly to determine whether or not the anomaly could have been predicted.

  8. CCSDS telemetry systems experience at the Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Carper, Richard D.; Stallings, William H., III

    1990-01-01

    NASA Goddard Space Flight Center (GSFC) designs, builds, manages, and operates science and applications spacecraft in near-earth orbit, and provides data capture, data processing, and flight control services for these spacecraft. In addition, GSFC has the responsibility of providing space-ground and ground-ground communications for near-earth orbiting spacecraft, including those of the manned spaceflight programs. The goal of reducing both the developmental and operating costs of the end-to-end information system has led the GSFC to support and participate in the standardization activities of the Consultative Committee for Space Data Systems (CCSDS), including those for packet telemetry. The environment in which such systems function is described, and the GSFC experience with CCSDS packet telemetry in the context of the Gamma-Ray Observatory project is discussed.

  9. A miniaturized digital telemetry system for physiological data transmission

    NASA Technical Reports Server (NTRS)

    Portnoy, W. M.; Stotts, L. J.

    1978-01-01

    A physiological date telemetry system, consisting basically of a portable unit and a ground base station was designed, built, and tested. The portable unit to be worn by the subject is composed of a single crystal controlled transmitter with AM transmission of digital data and narrowband FM transmission of voice; a crystal controlled FM receiver; thirteen input channels follwed by a PCM encoder (three of these channels are designed for ECG data); a calibration unit; and a transponder control system. The ground base station consists of a standard telemetry reciever, a decoder, and an FM transmitter for transmission of voice and transponder signals to the portable unit. The ground base station has complete control of power to all subsystems in the portable unit. The phase-locked loop circuit which is used to decode the data, remains in operation even when the signal from the portable unit is interrupted.

  10. The ESA standard for telemetry and telecommand packet utilisation: PUS

    NASA Technical Reports Server (NTRS)

    Kaufeler, Jean-Francois

    1994-01-01

    ESA has developed standards for packet telemetry and telecommand, which are derived from the recommendations of the Inter-Agency Consultative Committee for Space Data Systems (CCSDS). These standards are now mandatory for future ESA programs as well as for many programs currently under development. However, while these packet standards address the end-to-end transfer of telemetry and telecommand data between applications on the ground and Application Processes on-board, they leave open the internal structure or content of the packets. This paper presents the ESA Packet Utilization Standard (PUS) which addresses this very subject and, as such, serves to extend and complement the ESA packet standards. The goal of the PUS is to be applicable to future ESA missions in all application areas (Telecommunications, Science, Earth Resources, microgravity, etc.). The production of the PUS falls under the responsibility of the ESA Committee for Operations and EGSE Standards (COES).

  11. A spatial mark–resight model augmented with telemetry data

    USGS Publications Warehouse

    Sollmann, Rachel; Gardner, Beth; Parsons, Arielle W.; Stocking, Jessica J.; McClintock, Brett T.; Simons, Theodore R.; Pollock, Kenneth H.; O’Connell, Allan F.

    2013-01-01

    Abundance and population density are fundamental pieces of information for population ecology and species conservation, but they are difficult to estimate for rare and elusive species. Mark-resight models are popular for estimating population abundance because they are less invasive and expensive than traditional mark-recapture. However, density estimation using mark-resight is difficult because the area sampled must be explicitly defined, historically using ad-hoc approaches. We develop a spatial mark-resight model for estimating population density that combines spatial resighting data and telemetry data. Incorporating telemetry data allows us to inform model parameters related to movement and individual location. Our model also allows 2. The model presented here will have widespread utility in future applications, especially for species that are not naturally marked.

  12. Wireless magnetoelastic transducers for biomedical applications

    NASA Astrophysics Data System (ADS)

    Green, S. R.; Gianchandani, Y. B.

    2017-05-01

    This paper highlights emerging medical applications for magnetoelastic sensing and actuation, each taking advantage of the wireless capabilities and small form factor enabled by the magnetoelastic transduction technique. Magnetoelastic transduction leverages the strong coupling between stress, strain, and magnetization intrinsic to some materials - notably amorphous metals and rare earth crystalline alloys. This coupling provides inherently wireless transduction that does not require any onboard power; these traits are especially advantageous in diagnostic and therapeutic medical implant applications. This paper first describes the basic transduction technique, and considerations for design and fabrication of medical systems which utilize the technique. These considerations include material selection, magnetic biasing, packaging, and interrogation approaches. The first application highlighted is stent monitoring, in which the masssensitive magnetoelastic resonator is integrated along the inner sidewall of the stent to provide early detection of stent occlusion. Prototype tests indicate clinical feasibility and a full scale range from zero stent occlusion to full stent occlusion. Wireless ranges of up to 15 cm in situ have been achieved using 25 mm long resonators. The second application is wireless strain sensing, which can be useful for orthopedic implants and orthodontia. A differential strain sensor is described, with a dynamic range of 0-1.85 mstrain - accommodating typical palatal expander strain - and a sensitivity of 12.5x103 ppm/mstrain. Finally, a wireless actuator intended to agitate fluid for mitigation of encapsulation of glaucoma drainage devices is shown. Peak actuator vibration amplitudes of 1.5 μm - sufficient to affect cell adhesion in other studies - are recorded at a wireless range of 25-30 mm.

  13. 106-17 Telemetry Management Resources Chapter 25

    DTIC Science & Technology

    2017-07-01

    aspects of the TmNS system . There are two primary protocols for accessing the management resources: Simple Network Management Protocol (SNMP) and... management resources as well as a basic HTTP clients and servers for a more RESTful approach to system management . Both tools are available from the...Telemetry Standards, RCC Standard 106-17 Chapter 25, July 2017 i CHAPTER 25 Management Resources Acronyms

  14. A multichannel EEG telemetry system utilizing a PCM subcarrier

    NASA Technical Reports Server (NTRS)

    Fryer, T. B.

    1974-01-01

    A multichannel personal-type telemetry system is described that utilizes PCM encoding for the most effective range with minimum RF bandwidth and noise interference. Recent IC developments (COS MOS) make it possible to implement a sophisticated encoding system (PCM) within the low power and size constraints necessary for a personal biotelemetry system. This system includes low-level high-impedance preamplifiers to make the system suitable for EEG recording.

  15. Hubble Space Telescope: the new telemetry archiving system

    NASA Astrophysics Data System (ADS)

    Miebach, Manfred P.

    2000-07-01

    The Hubble Space Telescope (HST), the first of NASA's Great Observatories, was launched on April 24, 1990. The HST was designed for a minimum fifteen-year mission with on-orbit servicing by the Space Shuttle System planned at approximately three-year intervals. Major changes to the HST ground system have been implemented for the third servicing mission in December 1999. The primary objectives of the ground system re- engineering effort, a project called 'Vision 2000 Control Center System (CCS),' are to reduce both development and operating costs significantly for the remaining years of HST's lifetime. Development costs are reduced by providing a more modern hardware and software architecture and utilizing commercial off the shelf (COTS) products wherever possible. Part of CCS is a Space Telescope Engineering Data Store, the design of which is based on current Data Warehouse technology. The Data Warehouse (Red Brick), as implemented in the CCS Ground System that operates and monitors the Hubble Space Telescope, represents the first use of a commercial Data Warehouse to manage engineering data. The purpose of this data store is to provide a common data source of telemetry data for all HST subsystems. This data store will become the engineering data archive and will provide a queryable database for the user to analyze HST telemetry. The access to the engineering data in the Data Warehouse is platform-independent from an office environment using commercial standards (Unix, Windows98/NT). The latest Internet technology is used to reach the HST engineering community. A WEB-based user interface allows easy access to the data archives. This paper will provide a CCS system overview and will illustrate some of the CCS telemetry capabilities: in particular the use of the new Telemetry Archiving System. Vision 20001 is an ambitious project, but one that is well under way. It will allow the HST program to realize reduced operations costs for the Third Servicing Mission and

  16. Real-Time CMA Equalization of SOQPSK for Aeronautical Telemetry

    DTIC Science & Technology

    2014-06-01

    1 2 4 6 Channel Length 9 20 19 4 No. of Non-zero taps 3 8 9 4 EXPERIMENTAL SETUP Implementation of the CMA for PAQ For this...through the U.S. Army Program Exectuve Offcie for Simulation, Training and Instrumentation (PEO STRI) under contract W900KK_13-C-0026 ( PAQ ...telemetry ( PAQ ),” Brigham Young University, Technical Report, 2014, submitted to the Spectrum Efficient Technologies (SET) Office of the Science

  17. Ground equipment for the support of packet telemetry and telecommand

    NASA Technical Reports Server (NTRS)

    Hell, Wolfgang

    1994-01-01

    This paper describes ground equipment for packet telemetry and telecommand which has been recently developed by industry for the European Space Agency. The architectural concept for this type of equipment is outlined and the actual implementation is presented. Focus is put on issues related to cross support and telescience as far as they affect the design of the interfaces to the users of the services provided by the equipment and to the management entities in charge of equipment control and monitoring.

  18. Determination of fish swimming speed by ultrasonic telemetry.

    PubMed

    Voegeli, F A; Pincock, D G

    1980-01-01

    Design of a small and simple sensor for direct measurement of swimming speed of fish and its incorporation into ultrasonic telemetry transmitters is described. The sensor used measures the speed of rotation of a free-wheeling propeller which is exposed to water flow. Two transmitters incorporating this sensor are described. The first is a very simple one providing swimming speed while the second incorporates two temperature sensors as well.

  19. Field tests of acoustic telemetry for a portable coastal observatory

    USGS Publications Warehouse

    Martini, M.; Butman, B.; Ware, J.; Frye, D.

    2006-01-01

    Long-term field tests of a low-cost acoustic telemetry system were carried out at two sites in Massachusetts Bay. At each site, an acoustic Doppler current profiler mounted on a bottom tripod was fitted with an acoustic modem to transmit data to a surface buoy; electronics mounted on the buoy relayed these data to shore via radio modem. The mooring at one site (24 m water depth) was custom-designed for the telemetry application, with a custom designed small buoy, a flexible electro-mechanical buoy to mooring joint using a molded chain connection to the buoy, quick-release electro-mechanical couplings, and dual hydrophones suspended 7 m above the bottom. The surface buoy at the second site (33 m water depth) was a U.S. Coast Guard (USCG) channel buoy fitted with telemetry electronics and clamps to hold the hydrophones. The telemetry was tested in several configurations for a period of about four years. The custom-designed buoy and mooring provided nearly error-free data transmission through the acoustic link under a variety of oceanographic conditions for 261 days at the 24 m site. The electro mechanical joint, cables and couplings required minimal servicing and were very reliable, lasting 862 days deployed before needing repairs. The acoustic communication results from the USCG buoy were poor, apparently due to the hard cobble bottom, noise from the all-steel buoy, and failure of the hydrophone assembly. Access to the USCG buoy at sea required ideal weather. ??2006 IEEE.

  20. Generic controller dedicated to telemetry-controlled microsystems.

    PubMed

    Sodagar, Amir M; Wise, Kensall D; Najafi, Khalil

    2006-01-01

    This paper introduces a generic controller designed for telemetry-controlled microsystems. This controller receives a data packet through a serial link carrying a command word and the associated data, and is capable of generating a variety of control/timing signals according to the definition of the received command. The flexible microprogrammed architecture of the controller allows for defining the commands functions in an on-chip mask-programmable read-only memory.

  1. Telemetry link for an automatic salmon migration monitor

    NASA Technical Reports Server (NTRS)

    Baldwin, H. A.; Freyman, R. W.

    1973-01-01

    The antenna and transmitter described in this report were designed for integration into the remote acoustic assessment system for detection of sockeye salmon in the Bristol Bay region of the Bering Sea. The assessment system configuration consists of an upward directed sonar buoy anchored 150 ft below the surface and attached by cable to a spar buoy tethered some 300 ft laterally. The spar buoy contains a telemetry transmitter, power supply, data processing electronics, an antenna and a beacon light.

  2. High data rate coding for the space station telemetry links.

    NASA Technical Reports Server (NTRS)

    Lumb, D. R.; Viterbi, A. J.

    1971-01-01

    Coding systems for high data rates were examined from the standpoint of potential application in space-station telemetry links. Approaches considered included convolutional codes with sequential, Viterbi, and cascaded-Viterbi decoding. It was concluded that a high-speed (40 Mbps) sequential decoding system best satisfies the requirements for the assumed growth potential and specified constraints. Trade-off studies leading to this conclusion are viewed, and some sequential (Fano) algorithm improvements are discussed, together with real-time simulation results.

  3. A high-rate PCI-based telemetry processor system

    NASA Astrophysics Data System (ADS)

    Turri, R.

    2002-07-01

    The high performances reached by the Satellite on-board telemetry generation and transmission, as consequently, will impose the design of ground facilities with higher processing capabilities at low cost to allow a good diffusion of these ground station. The equipment normally used are based on complex, proprietary bus and computing architectures that prevent the systems from exploiting the continuous and rapid increasing in computing power available on market. The PCI bus systems now allow processing of high-rate data streams in a standard PC-system. At the same time the Windows NT operating system supports multitasking and symmetric multiprocessing, giving the capability to process high data rate signals. In addition, high-speed networking, 64 bit PCI-bus technologies and the increase in processor power and software, allow creating a system based on COTS products (which in future may be easily and inexpensively upgraded). In the frame of EUCLID RTP 9.8 project, a specific work element was dedicated to develop the architecture of a system able to acquire telemetry data of up to 600 Mbps. Laben S.p.A - a Finmeccanica Company -, entrusted of this work, has designed a PCI-based telemetry system making possible the communication between a satellite down-link and a wide area network at the required rate.

  4. Flight Avionics Sequencing Telemetry (FAST) DIV Latching Display

    NASA Technical Reports Server (NTRS)

    Moore, Charlotte

    2010-01-01

    The NASA Engineering (NE) Directorate at Kennedy Space Center provides engineering services to major programs such as: Space Shuttle, Inter national Space Station, and the Launch Services Program (LSP). The Av ionics Division within NE, provides avionics and flight control syste ms engineering support to LSP. The Launch Services Program is respons ible for procuring safe and reliable services for transporting critical, one of a kind, NASA payloads into orbit. As a result, engineers mu st monitor critical flight events during countdown and launch to asse ss anomalous behavior or any unexpected occurrence. The goal of this project is to take a tailored Systems Engineering approach to design, develop, and test Iris telemetry displays. The Flight Avionics Sequen cing Telemetry Delta-IV (FAST-D4) displays will provide NASA with an improved flight event monitoring tool to evaluate launch vehicle heal th and performance during system-level ground testing and flight. Flight events monitored will include data from the Redundant Inertial Fli ght Control Assembly (RIFCA) flight computer and launch vehicle comma nd feedback data. When a flight event occurs, the flight event is ill uminated on the display. This will enable NASA Engineers to monitor c ritical flight events on the day of launch. Completion of this project requires rudimentary knowledge of launch vehicle Guidance, Navigatio n, and Control (GN&C) systems, telemetry, and console operation. Work locations for the project include the engineering office, NASA telem etry laboratory, and Delta launch sites.

  5. Advanced telemetry systems for payloads. Technology needs, objectives and issues

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The current trends in advanced payload telemetry are the new developments in advanced modulation/coding, the applications of intelligent techniques, data distribution processing, and advanced signal processing methodologies. Concerted efforts will be required to design ultra-reliable man-rated software to cope with these applications. The intelligence embedded and distributed throughout various segments of the telemetry system will need to be overridden by an operator in case of life-threatening situations, making it a real-time integration issue. Suitable MIL standards on physical interfaces and protocols will be adopted to suit the payload telemetry system. New technologies and techniques will be developed for fast retrieval of mass data. Currently, these technology issues are being addressed to provide more efficient, reliable, and reconfigurable systems. There is a need, however, to change the operation culture. The current role of NASA as a leader in developing all the new innovative hardware should be altered to save both time and money. We should use all the available hardware/software developed by the industry and use the existing standards rather than inventing our own.

  6. Improving estimation of flight altitude in wildlife telemetry studies

    USGS Publications Warehouse

    Poessel, Sharon; Duerr, Adam E.; Hall, Jonathan C.; Braham, Melissa A.; Katzner, Todd

    2018-01-01

    Altitude measurements from wildlife tracking devices, combined with elevation data, are commonly used to estimate the flight altitude of volant animals. However, these data often include measurement error. Understanding this error may improve estimation of flight altitude and benefit applied ecology.There are a number of different approaches that have been used to address this measurement error. These include filtering based on GPS data, filtering based on behaviour of the study species, and use of state-space models to correct measurement error. The effectiveness of these approaches is highly variable.Recent studies have based inference of flight altitude on misunderstandings about avian natural history and technical or analytical tools. In this Commentary, we discuss these misunderstandings and suggest alternative strategies both to resolve some of these issues and to improve estimation of flight altitude. These strategies also can be applied to other measures derived from telemetry data.Synthesis and applications. Our Commentary is intended to clarify and improve upon some of the assumptions made when estimating flight altitude and, more broadly, when using GPS telemetry data. We also suggest best practices for identifying flight behaviour, addressing GPS error, and using flight altitudes to estimate collision risk with anthropogenic structures. Addressing the issues we describe would help improve estimates of flight altitude and advance understanding of the treatment of error in wildlife telemetry studies.

  7. Warming Up to Wireless

    ERIC Educational Resources Information Center

    Milner, Jacob

    2005-01-01

    In districts big and small across the U.S., students, teachers, and administrators alike have come to appreciate the benefits of wireless technology. Because the technology delivers Internet signals on airborne radio frequencies, wireless networking allows users of all portable devices to move freely on a school's campus and stay connected to the…

  8. Predicting severe injury using vehicle telemetry data.

    PubMed

    Ayoung-Chee, Patricia; Mack, Christopher D; Kaufman, Robert; Bulger, Eileen

    2013-01-01

    In 2010, the National Highway Traffic Safety Administration standardized collision data collected by event data recorders, which may help determine appropriate emergency medical service (EMS) response. Previous models (e.g., General Motors ) predict severe injury (Injury Severity Score [ISS] > 15) using occupant demographics and collision data. Occupant information is not automatically available, and 12% of calls from advanced automatic collision notification providers are unanswered. To better inform EMS triage, our goal was to create a predictive model only using vehicle collision data. Using the National Automotive Sampling System Crashworthiness Data System data set, we included front-seat occupants in late-model vehicles (2000 and later) in nonrollover and rollover crashes in years 2000 to 2010. Telematic (change in velocity, direction of force, seat belt use, vehicle type and curb weight, as well as multiple impact) and nontelematic variables (maximum intrusion, narrow impact, and passenger ejection) were included. Missing data were multiply imputed. The University of Washington model was tested to predict severe injury before application of guidelines (Step 0) and for occupants who did not meet Steps 1 and 2 criteria (Step 3) of the Centers for Disease Control and Prevention Field Triage Guidelines. A probability threshold of 20% was chosen in accordance with Centers for Disease Control and Prevention recommendations. There were 28,633 crashes, involving 33,956 vehicles and 52,033 occupants, of whom 9.9% had severe injury. At Step 0, the University of Washington model sensitivity was 40.0% and positive predictive value (PPV) was 20.7%. At Step 3, the sensitivity was 32.3 % and PPV was 10.1%. Model analysis excluding nontelematic variables decreased sensitivity and PPV. The sensitivity of the re-created General Motors model was 38.5% at Step 0 and 28.1% at Step 3. We designed a model using only vehicle collision data that was predictive of severe injury at

  9. Missile telemetry systems for flight tests and EMC tests on EED's

    NASA Astrophysics Data System (ADS)

    Freymann, D.

    1985-06-01

    This paper describes telemetry systems developed for use in the 'Roland', 'MLRS AT2' and 'Kormoran' missiles. The main design effort required to obtain a high performance of telemetry data acquisition and transmission under extreme environmental conditions are discussed, along with test results. Considered are different types of PCM telemetry systems where the data is either transmitted directly to the ground via an RF or fiber optic link or stored in an onboard solid-state memory. The safety of EEDs in the presence of unwanted electromagnetic fields or currents is very important in weapon-systems. Therefore another type of telemetry system is reported here allowing the measurement of extremely small DC- and RF-currents induced on EEDs during EMC ground-tests. These telemetry signals are transmitted via fiber optics, to avoid additional coupling. Finally, there is a brief commentary on the future design philosophy of missile telemetry systems.

  10. A Simulation Testbed for Adaptive Modulation and Coding in Airborne Telemetry

    DTIC Science & Technology

    2014-05-29

    its modulation waveforms and LDPC for the FEC codes . It also uses several sets of published telemetry channel sounding data as its channel models...waveforms and LDPC for the FEC codes . It also uses several sets of published telemetry channel sounding data as its channel models. Within the context...check ( LDPC ) codes with tunable code rates, and both static and dynamic telemetry channel models are included. In an effort to maximize the

  11. Fatal collision? Are wireless headsets a risk in treating patients?

    PubMed

    Sage, Cindy; Hardell, Lennart

    2018-02-05

    Wireless-enabled headsets that connect to the internet can provide remote transcribing of patient examination notes. Audio and video can be captured and transmitted by wireless signals sent from the computer screen in the frame of the glasses. But using wireless glass-type devices can expose the user to a specific absorption rates (SAR) of 1.11-1.46 W/kg of radiofrequency radiation. That RF intensity is as high as or higher than RF emissions of some cell phones. Prolonged use of cell phones used ipsilaterally at the head has been associated with statistically significant increased risk of glioma and acoustic neuroma. Using wireless glasses for extended periods to teach, to perform surgery, or conduct patient exams will expose the medical professional to similar RF exposures which may impair brain performance, cognition and judgment, concentration and attention and increase the risk for brain tumors. The quality of medical care may be compromised by extended use of wireless-embedded devices in health care settings. Both medical professionals and their patients should know the risks of such devices and have a choice about allowing their use during patient exams. Transmission of sensitive patient data over wireless networks may increase the risk of hacking and security breaches leading to losses of private patient medical and financial data that are strictly protected under HIPPA health information privacy laws.

  12. Satellite relay telemetry of seismic data in earthquake prediction and control

    USGS Publications Warehouse

    Jackson, Wayne H.; Eaton, Jerry P.

    1971-01-01

    The Satellite Telemetry Earthquake Monitoring Program was started in FY 1968 to evaluate the applicability of satellite relay telemetry in the collection of seismic data from a large number of dense seismograph clusters laid out along the major fault systems of western North America. Prototype clusters utilizing phone-line telemetry were then being installed by the National Center for Earthquake Research (NCER) in 3 regions along the San Andreas fault in central California; and the experience of installing and operating the clusters and in reducing and analyzing the seismic data from them was to provide the raw materials for evaluation in the satellite relay telemetry project.

  13. Wireless energizing system for an automated implantable sensor

    SciTech Connect

    Swain, Biswaranjan; Nayak, Praveen P.; Kar, Durga P.

    The wireless drive of an automated implantable electronic sensor has been explored for health monitoring applications. The proposed system comprises of an automated biomedical sensing system which is energized through resonant inductive coupling. The implantable sensor unit is able to monitor the body temperature parameter and sends back the corresponding telemetry data wirelessly to the data recoding unit. It has been observed that the wireless power delivery system is capable of energizing the automated biomedical implantable electronic sensor placed over a distance of 3 cm from the power transmitter with an energy transfer efficiency of 26% at the operating resonantmore » frequency of 562 kHz. This proposed method ensures real-time monitoring of different human body temperatures around the clock. The monitored temperature data have been compared with a calibrated temperature measurement system to ascertain the accuracy of the proposed system. The investigated technique can also be useful for monitoring other body parameters such as blood pressure, bladder pressure, and physiological signals of the patient in vivo using various implantable sensors.« less

  14. Wireless energizing system for an automated implantable sensor.

    PubMed

    Swain, Biswaranjan; Nayak, Praveen P; Kar, Durga P; Bhuyan, Satyanarayan; Mishra, Laxmi P

    2016-07-01

    The wireless drive of an automated implantable electronic sensor has been explored for health monitoring applications. The proposed system comprises of an automated biomedical sensing system which is energized through resonant inductive coupling. The implantable sensor unit is able to monitor the body temperature parameter and sends back the corresponding telemetry data wirelessly to the data recoding unit. It has been observed that the wireless power delivery system is capable of energizing the automated biomedical implantable electronic sensor placed over a distance of 3 cm from the power transmitter with an energy transfer efficiency of 26% at the operating resonant frequency of 562 kHz. This proposed method ensures real-time monitoring of different human body temperatures around the clock. The monitored temperature data have been compared with a calibrated temperature measurement system to ascertain the accuracy of the proposed system. The investigated technique can also be useful for monitoring other body parameters such as blood pressure, bladder pressure, and physiological signals of the patient in vivo using various implantable sensors.

  15. [Changes of telemetry electrical activity in the infralimbic cortex of morphine-dependent rats with extinguished drug-seeking behavior].

    PubMed

    Li, Jing; Pan, Qunwan; Zhu, Zaiman; Li, Min; Bai, Yu; Yu, Ran

    2015-05-01

    To investigate the changes of telemetry electrical activity in the infralimbic cortex (IL) of morphine-dependent rats with extinguished drug-seeking behavior. SD rats were randomly divided into model group and control group and received operations of brain stereotaxic electrode embedding in the IL. The rats in the model group were induced to acquire morphine dependence and then received subsequent extinction training, and the changes of electrical activity in the IL were recorded with a physical wireless telemetry system. In rats with morphine dependence, the time staying in the white box was significantly longer on days 1 and 2 after withdrawal than that before morphine injection and that of the control rats, but was obviously reduced on days 1 and 2 after extinction training to the control level. Compared with the control group, the morphine-dependent rats on day 2 following withdrawal showed significantly increased β wave and decreased δ wave when they stayed in the white box but significantly increased δ wave and decreased α wave and β wave when they shuttled from the black to the white box. On day 2 of extinction, the model rats, when staying in the white box, showed significantly decreased θ wave compared with that of the control rats group but decreased β wave and θ wave and increased δ wave compared with those in the withdrawal period. When they shuttled from black to white box, the model rats showed decreased δ wave and increased α wave and β wave compared with those in the withdrawal period. Morphine-dependent rats have abnormal changes of electrical activity in the IL in drug-seeking extinction to affect their drug-seeking motive and inhibit the expression and maintenance of drug-seeking behaviors.

  16. Monitoring Spacecraft Telemetry Via Optical or RF Link

    NASA Technical Reports Server (NTRS)

    Fielhauer, K. B.; Boone, B. G.

    2011-01-01

    A patent disclosure document discusses a photonic method for connecting a spacecraft with a launch vehicle upper-stage telemetry system as a means for monitoring a spacecraft fs health and status during and right after separation and deployment. This method also provides an efficient opto-coupled capability for prelaunch built-in-test (BIT) on the ground to enable more efficient and timely integration, preflight checkout, and a means to obviate any local EMI (electromagnetic interference) during integration and test. Additional utility can be envisioned for BIT on other platforms, such as the International Space Station (ISS). The photonic telemetry system implements an optical free-space link with a divergent laser transmitter beam spoiled over a significant cone angle to accommodate changes in spacecraft position without having to angle track it during deployment. Since the spacecraft may lose attitude control and tumble during deployment, the transmitted laser beam interrogates any one of several low-profile meso-scale retro-reflective spatial light modulators (SLMs) deployed over the surface of the spacecraft. The return signal beam, modulated by the SLMs, contains health, status, and attitude information received back at the launch vehicle. Very compact low-power opto-coupler technology already exists for the received signal (requiring relatively low bandwidths, e.g., .200 kbps) to enable transfer to a forward pass RF relay from the launch vehicle to TDRSS (Tracking and Data Relay Satellite System) or another recipient. The link would be active during separation and post-separation to monitor spacecraft health, status, attitude, or other data inventories until attitude recovery and ground control can be re-established. An optical link would not interfere with the existing upper stage telemetry and beacon systems, thus meeting launch vehicle EMI environmental constraints.

  17. Field Instrumentation With Bricks: Wireless Networks Built From Tough, Cheap, Reliable Field Computers

    NASA Astrophysics Data System (ADS)

    Fatland, D. R.; Anandakrishnan, S.; Heavner, M.

    2004-12-01

    We describe tough, cheap, reliable field computers configured as wireless networks for distributed high-volume data acquisition and low-cost data recovery. Running under the GNU/Linux open source model these network nodes ('Bricks') are intended for either autonomous or managed deployment for many months in harsh Arctic conditions. We present here results from Generation-1 Bricks used in 2004 for glacier seismology research in Alaska and Antarctica and describe future generation Bricks in terms of core capabilities and a growing list of field applications. Subsequent generations of Bricks will feature low-power embedded architecture, large data storage capacity (GB), long range telemetry (15 km+ up from 3 km currently), and robust operational software. The list of Brick applications is growing to include Geodetic GPS, Bioacoustics (bats to whales), volcano seismicity, tracking marine fauna, ice sounding via distributed microwave receivers and more. This NASA-supported STTR project capitalizes on advancing computer/wireless technology to get scientists more data per research budget dollar, solving system integration problems and thereby getting researchers out of the hardware lab and into the field. One exemplary scenario: An investigator can install a Brick network in a remote polar environment to collect data for several months and then fly over the site to recover the data via wireless telemetry. In the past year Brick networks have moved beyond proof-of-concept to the full-bore development and testing stage; they will be a mature and powerful tool available for IPY 2007-8.

  18. DSN telemetry system performance using a maximum likelihood convolutional decoder

    NASA Technical Reports Server (NTRS)

    Benjauthrit, B.; Kemp, R. P.

    1977-01-01

    Results are described of telemetry system performance testing using DSN equipment and a Maximum Likelihood Convolutional Decoder (MCD) for code rates 1/2 and 1/3, constraint length 7 and special test software. The test results confirm the superiority of the rate 1/3 over that of the rate 1/2. The overall system performance losses determined at the output of the Symbol Synchronizer Assembly are less than 0.5 db for both code rates. Comparison of the performance is also made with existing mathematical models. Error statistics of the decoded data are examined. The MCD operational threshold is found to be about 1.96 db.

  19. ISTAR: Intelligent System for Telemetry Analysis in Real-time

    NASA Technical Reports Server (NTRS)

    Simmons, Charles

    1994-01-01

    The intelligent system for telemetry analysis in real-time (ISTAR) is an advanced vehicle monitoring environment incorporating expert systems, analysis tools, and on-line hypermedia documentation. The system was developed for the Air Force Space and Missile Systems Center (SMC) in Los Angeles, California, in support of the inertial upper stage (IUS) booster vehicle. Over a five year period the system progressed from rapid prototype to operational system. ISTAR has been used to support five IUS missions and countless mission simulations. There were a significant number of lessons learned with respect to integrating an expert system capability into an existing ground system.

  20. Radio telemetry for black-footed ferret research and monitoring

    USGS Publications Warehouse

    Biggins, Dean E.; Godbey, Jerry L.; Miller, Brian J.; Hanebury, Louis R.

    2006-01-01

    By 1973, radio telemetry was regarded as an important potential tool for studying the elusive, nocturnal, and semifossorial black-footed ferret (Mustela nigripes), but fears of using invasive techniques on this highly endangered mammal caused delays. We began radio collaring ferrets in 1981. Use of radio telemetry on ferrets proved to be both challenging and rewarding. We document two decades of development and use that led to the present radio-tagging techniques and methods for radio tracking. The 7-g radio collar commonly used after 1992 was smaller and lighter, relative to mass and size of subjects, than collars used in studies of other Mustela. Other important developments were a Teflon® coating to shed mud, a highly flexible stainless steel cable for whip antennas, and a nondurable wool collar. Although collar-caused neck abrasions have continued to occur sporadically, a retrospective assessment of minimum survival rates for 724 reintroduced ferrets (392 radio tagged), using data from spotlight surveys, failed to detect negative effects of radio-collars. In a South Dakota study, ferrets that were found to have hair loss or neck abrasions when collars were removed did not exhibit movements significantly different from those of radio-tagged ferrets with no evidence of neck problems. Prototype transmitters designed for surgical implantation had insufficient power output for effective use on ferrets. Early attempts at tracking radio-tagged ferrets by following the signal on foot quickly gave way to following movements by triangulation, which does not disturb the subjects. The most effective tracking stations were camper trailers fitted with rotatable, 11-element, dual-beam Yagi antennas on 6-m masts. We used radio telemetry to produce 83,275 lines of data (44,191 indications of status and 39,084 positional fixes via triangulation) for 340 radio-collared ferrets during the reintroduction program. Tracking by hand and from aircraft augmented triangulation, allowing

  1. Plant Habitat Telemetry / Command Interface and E-MIST

    NASA Technical Reports Server (NTRS)

    Walker, Uriae M.

    2013-01-01

    Plant Habitat (PH) is an experiment to be taken to the International Space Station (ISS) in 2016. It is critical that ground support computers have the ability to uplink commands to control PH, and that ISS computers have the ability to downlink PH telemetry data to ground support. This necessitates communication software that can send, receive, and process, PH specific commands and telemetry. The objective of the Plant Habitat Telemetry/ Command Interface is to provide this communication software, and to couple it with an intuitive Graphical User Interface (GUI). Initial investigation of the project objective led to the decision that code be written in C++ because of its compatibility with existing source code infrastructures and robustness. Further investigation led to a determination that multiple Ethernet packet structures would need to be created to effectively transmit data. Setting a standard for packet structures would allow us to distinguish these packets that would range from command type packets to sub categories of telemetry packets. In order to handle this range of packet types, the conclusion was made to take an object-oriented programming approach which complemented our decision to use the C++ programming language. In addition, extensive utilization of port programming concepts was required to implement the core functionality of the communication software. Also, a concrete understanding of a packet processing software was required in order to put aU the components of ISS-to-Ground Support Equipment (GSE) communication together and complete the objective. A second project discussed in this paper is Exposing Microbes to the Stratosphere (EMIST). This project exposes microbes into the stratosphere to observe how they are impacted by atmospheric effects. This paper focuses on the electrical and software expectations of the project, specifically drafting the printed circuit board, and programming the on-board sensors. The Eagle Computer-Aided Drafting

  2. Consequences of antenna design in telemetry studies of small passerines

    USGS Publications Warehouse

    Dougill, Steve J.; Johnson, Luanne; Banko, Paul C.; Goltz, Dan M.; Wiley, Michael R.; Semones, John D.

    2000-01-01

    Entanglement and mortality of Palila (Loxioides bailleui), an endangered Hawaiian honeycreeper, occurred when birds were radio-tagged with transmitters equipped with a long, limp, solder-tipped antenna. Birds were found suspended in trees by their transmitter antenna on eight occasions. Although these birds eventually freed themselves or were freed by us, at least one bird died afterwards. For radio telemetry studies of small passerine species we recommend avoiding transmitters equipped with an antenna that is bulbous at the tip, >16 cm in length, limp, and shiny.

  3. Error in telemetry studies: Effects of animal movement on triangulation

    USGS Publications Warehouse

    Schmutz, Joel A.; White, Gary C.

    1990-01-01

    We used Monte Carlo simulations to investigate the effects of animal movement on error of estimated animal locations derived from radio-telemetry triangulation of sequentially obtained bearings. Simulated movements of 0-534 m resulted in up to 10-fold increases in average location error but <10% decreases in location precision when observer-to-animal distances were <1,000 m. Location error and precision were minimally affected by censorship of poor locations with Chi-square goodness-of-fit tests. Location error caused by animal movement can only be eliminated by taking simultaneous bearings.

  4. Progressively Communicating Rich Telemetry from Autonomous Underwater Vehicles via Relays

    DTIC Science & Technology

    2012-06-01

    wireless sensor networks using an autonomous underwater vehicle. In Robotics and...communication over multiple kilometers. In addition to wireless com- munication methods , the recently developed Nereus[12] vehicle at WHOI spools out...A P T U R E M e ss a g e s P ro ce ss / T h re a d M a n a g e m e n t C o n fi g u ra ti o n P a rs in g Network Manager Frame Scheduling

  5. Development, evaluation and implementation of video-EEG telemetry at home.

    PubMed

    Brunnhuber, Franz; Amin, Devyani; Nguyen, Yan; Goyal, Sushma; Richardson, Mark P

    2014-05-01

    To describe the development and implementation of video EEG telemetry (VT) in the patient's home (home video telemetry, HVT) in a single centre. HVT met the UK Medical Research Council definition of a complex intervention, and we used its guidance to evaluate the process of piloting, evaluating, developing and implementing this new clinical service. The first phase was a feasibility study, comparing inpatient VT (IVT) with HVT in a test-retest design (n=5), to assess data quality and yield of clinically relevant events. The second phase was a pre-implementation study (n=8), to examine acceptability and satisfaction as well as the costs of IVT and HVT. Subsequently, we implemented the service, and reviewed the outcomes of the first 34 patients. The feasibility study found no difference in the quality of recording or clinical yield between IVT and HVT. The pre-implementation study showed excellent patient satisfaction. We also discuss the findings of the main stakeholder survey (consultants and technicians). Our economic modelling demonstrates a clear financial superiority of HVT over IVT. Our findings show that diagnostic HVT for seizure classification and polysomnographies can be carried out safely in the patients' home and poses no security risks for staff. HVT can be effectively integrated into an existing tertiary care service as a routine home or community-based procedure. We hope to encourage other clinical neurophysiology departments and epilepsy centres to take advantage of our experience and consider adopting and implementing HVT, with the aim of a nationwide coverage. Copyright © 2014 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.

  6. Wireless Sensor Networks: Monitoring and Control

    SciTech Connect

    Hastbacka, Mildred; Ponoum, Ratcharit; Bouza, Antonio

    2013-05-31

    The article discusses wireless sensor technologies for building energy monitoring and control. This article, also, addresses wireless sensor networks as well as benefits and challenges of using wireless sensors. The energy savings and market potential of wireless sensors are reviewed.

  7. Secure dissemination of electronic healthcare records in distributed wireless environments.

    PubMed

    Belsis, Petros; Vassis, Dimitris; Skourlas, Christos; Pantziou, Grammati

    2008-01-01

    A new networking paradigm has emerged with the appearance of wireless computing. Among else ad-hoc networks, mobile and ubiquitous environments can boost the performance of systems in which they get applied. Among else, medical environments are a convenient example of their applicability. With the utilisation of wireless infrastructures, medical data may be accessible to healthcare practitioners, enabling continuous access to medical data. Due to the critical nature of medical information, the design and implementation of these infrastructures demands special treatment in order to meet specific requirements; among else, special care should be taken in order to manage interoperability, security, and in order to deal with bandwidth and hardware resource constraints that characterize the wireless topology. In this paper we present an architecture that attempts to deal with these issues; moreover, in order to prove the validity of our approach we have also evaluated the performance of our platform through simulation in different operating scenarios.

  8. Identification of Program Signatures from Cloud Computing System Telemetry Data

    SciTech Connect

    Nichols, Nicole M.; Greaves, Mark T.; Smith, William P.

    Malicious cloud computing activity can take many forms, including running unauthorized programs in a virtual environment. Detection of these malicious activities while preserving the privacy of the user is an important research challenge. Prior work has shown the potential viability of using cloud service billing metrics as a mechanism for proxy identification of malicious programs. Previously this novel detection method has been evaluated in a synthetic and isolated computational environment. In this paper we demonstrate the ability of billing metrics to identify programs, in an active cloud computing environment, including multiple virtual machines running on the same hypervisor. The openmore » source cloud computing platform OpenStack, is used for private cloud management at Pacific Northwest National Laboratory. OpenStack provides a billing tool (Ceilometer) to collect system telemetry measurements. We identify four different programs running on four virtual machines under the same cloud user account. Programs were identified with up to 95% accuracy. This accuracy is dependent on the distinctiveness of telemetry measurements for the specific programs we tested. Future work will examine the scalability of this approach for a larger selection of programs to better understand the uniqueness needed to identify a program. Additionally, future work should address the separation of signatures when multiple programs are running on the same virtual machine.« less

  9. Instrumentation and Baseband Telemetry for RLV-TD HEX Mission

    NASA Astrophysics Data System (ADS)

    Jose, Smitha; Varghese, Bibin; Chauhan, Akshay; Elizabeth, Sheba; Sreelal, S.; Sreekumar, S.; Vinod, P.; Mookiah, T.

    2017-12-01

    In this work, the salient requirements and features of the baseband telemetry system used in Reusable Launch Vehicle—Technology Demonstrator Hypersonic Experiment mission are discussed. The configuration of the overall system, subsystem components and their features are described in brief. The unique requirements of the telemetry system, when compared to that in a conventional launch vehicle, by way of a large number of temperature and strain measurements that enable the assessment of structural integrity and mission performance in re-entry mission, are dealt with, along with the system configuration to cater to these. Subsequently, two new units have been described—Strain Data Acquisition Unit and Multiplexed Data Acquisition Unit that were inducted specifically to cater to strain measurements using strain gauges and temperature measurements using thermocouples respectively. The optimized subsystem configurations for these units are described and their field performance during flight is analyzed. This work further discusses a novel method of data recovery for those measurements affected by the baseline offset shift caused by the presence of a chassis voltage and poor isolation of sensor to chassis.

  10. Florida Atlantic Coast Telemetry (FACT) Array: A Working Partnership

    NASA Technical Reports Server (NTRS)

    Scheidt, Douglas; Ault, Erick; Ellis, Robert D.; Gruber, Samuel; Iafrate, Joseph; Kalinowsky, Chris; Kessel, Steven; Reyier, Eric; Snyder, David; Watwood, Stephanie; hide

    2015-01-01

    The Florida Atlantic Coast Telemetry (FACT) Array is a collaborative partnership of researchers from 24 different organizations using passive acoustic telemetry to document site fidelity, habitat preferences, seasonal migration patterns, and reproductive strategies of valuable sportfish, sharks, and marine turtles. FACT partners have found that by bundling resources, they can leverage a smaller investment to track highly mobile animals beyond a study area typically restrained in scale by funds and manpower. FACT is guided by several simple rules: use of the same type of equipment, locate receivers in areas that are beneficial to all researchers when feasible, maintain strong scientific ethics by recognizing that detection data on any receiver belongs to the tag owner, do not use other members detection data without permission and acknowledge FACT in publications. Partners have access to a network of 480 receivers deployed along a continuum of habitats from freshwater rivers to offshore reefs and covers 1100 km of coastline from the Dry Tortugas, Florida to South Carolina and extends to the Bahamas. Presently, 49 species, (25 covered by Fisheries Management Plans and five covered by the Endangered Species Act) have been tagged with 2736 tags in which 1767 tags are still active.

  11. Design and Testing of Space Telemetry SCA Waveform

    NASA Technical Reports Server (NTRS)

    Mortensen, Dale J.; Handler, Louis M.; Quinn, Todd M.

    2006-01-01

    A Software Communications Architecture (SCA) Waveform for space telemetry is being developed at the NASA Glenn Research Center (GRC). The space telemetry waveform is implemented in a laboratory testbed consisting of general purpose processors, field programmable gate arrays (FPGAs), analog-to-digital converters (ADCs), and digital-to-analog converters (DACs). The radio hardware is integrated with an SCA Core Framework and other software development tools. The waveform design is described from both the bottom-up signal processing and top-down software component perspectives. Simulations and model-based design techniques used for signal processing subsystems are presented. Testing with legacy hardware-based modems verifies proper design implementation and dynamic waveform operations. The waveform development is part of an effort by NASA to define an open architecture for space based reconfigurable transceivers. Use of the SCA as a reference has increased understanding of software defined radio architectures. However, since space requirements put a premium on size, mass, and power, the SCA may be impractical for today s space ready technology. Specific requirements for an SCA waveform and other lessons learned from this development are discussed.

  12. An alternative index of satellite telemetry location error

    USGS Publications Warehouse

    Keating, Kim A.

    1994-01-01

    Existing indices of satellite telemetry error offer objective standards for censoring poor locations, but have drawbacks. Examining distances and relative directions between consecutive satellite telemetry locations, I developed an alternative error index, ξ, and compared its performance with that of the location quality index, NQ (Serv. Argos 1988). In controlled tests, ξ was more (P ≤ 0.005) effective for improving precision than was a threshold of NQ > 1. The ξ index also conferred greater control over the trade off between sample size and precision, making ξ more cost-effective than NQ. Performances of ξ and NQ were otherwise comparable. In field tests with bighorn sheep (Ovis canadensis), rejecting locations where ξ ≥ 1.5 km reduced (P 1 and 63% fewer data were censored, so that the extent of animals' movements was better indicated by using ξ rather than NQ. Because use of ξ may lead to underestimating the number of long-range, short-term forays (especially when the frequency of forays is high relative to sampling frequency), potential bias should be considered before using ξ. Nonetheless, ξ should be a useful alternative to NQ in many animal-tracking studies.

  13. Synchronisation, acquisition and tracking for telemetry and data reception

    NASA Astrophysics Data System (ADS)

    Vandoninck, A.

    1992-06-01

    The important parameters of synchronization, acquisition, and tracking are addressed, and each function is highlighted separately. The following sequence is such as the functions occur in the system in time and for the type of data to be received, with distinction between telemetry and data reception, between direct carrier modulation or the use of a subcarrier, and between deep space and normal reception. For the telemetry reception the acquisition is described taking into account the difference in performances as geostationary or polar orbits, and the dependencies on the different Doppler offsets and rates are distinguished. The related functions and parameters are covered and the specifications of an average receiver are summarized. The synchronization of the valid data is described with a distinction for data directly modulated or via a subcarrier, the type of modulation and bitrate. The relevant functions and parameters of the average receiver/demodulator are summarized. The tracking of the signal in the course of the operational phase is described and relevant parameters of an actual system are presented. The reception of real data is handled and a sequence of acquisition, synchronization, and tracking is applied. Here higher bitrates and direct modulation schemes play an important role. The market equipment with the relevant parameters are discussed. The three functions in cases where deep reception is needed are covered. The high performance receiver/demodulator functions and how the acquisition, synchronization, and tracking is handled in such application, are explained.

  14. Advanced Biotelemetry Systems for Space Life Sciences: PH Telemetry

    NASA Technical Reports Server (NTRS)

    Hines, John W.; Somps, Chris; Ricks, Robert; Kim, Lynn; Connolly, John P. (Technical Monitor)

    1995-01-01

    The SENSORS 2000! (S2K!) program at NASA's Ames Research Center is currently developing a biotelemetry system for monitoring pH and temperature in unrestrained subjects. This activity is part of a broader scope effort to provide an Advanced Biotelemetry System (ABTS) for use in future space life sciences research. Many anticipated research endeavors will require biomedical and biochemical sensors and related instrumentation to make continuous inflight measurements in a variable-gravity environment. Since crew time is limited, automated data acquisition, data processing, data storage, and subject health monitoring are required. An automated biochemical and physiological data acquisition system based on non invasive or implantable biotelemetry technology will meet these requirements. The ABTS will ultimately acquire a variety of physiological measurands including temperature, biopotentials (e.g. ECG, EEG, EMG, EOG), blood pressure, flow and dimensions, as well as chemical and biological parameters including pH. Development activities are planned in evolutionary, leveraged steps. Near-term activities include 1) development of a dual channel pH/temperature telemetry system, and 2) development of a low bandwidth, 4-channel telemetry system, that measures temperature, heart rate, pressure, and pH. This abstract describes the pH/temperature telemeter.

  15. Browser-Based Application for Telemetry Monitoring of Robotic Assets

    NASA Technical Reports Server (NTRS)

    Breed, Kelly S.; Powell, Mark W.; Shams, Khawaja S.; Petras, Richard D.

    2010-01-01

    AEGSE Virtuoso Charting is an application that enables animated, real-time charting of telemetry streams of data from a rover. These automatically scaled charts are completely interactive, and allow users to choose the variables that they want to monitor. The charts can process data from streams with many variables. This application allows for the simultaneous viewing of up to four individually configured charts on a small touch-screen laptop. The charting application has been tested and found to be extremely robust during long operations. It was left running overnight, with incoming telemetry at 100 Hz, and it did not experience any signs of lost functionality or memory leaks. This robustness is critical for an application that will be used to support vital tests for the Mars Science Laboratory rover. The charting component also provides an interactive interface that allows the engineers to decide how many charts they want on their screen, and which attributes should be plotted on each chart. The application is optimized to make the charts on display take up as much of the available space as possible to maximize the use of the screen real estate. Engineers are also able to plot multiple attributes on the same chart, which enables them to observe the correlation between various attributes.

  16. Acoustic telemetry reveals cryptic residency of whale sharks.

    PubMed

    Cagua, E Fernando; Cochran, Jesse E M; Rohner, Christoph A; Prebble, Clare E M; Sinclair-Taylor, Tane H; Pierce, Simon J; Berumen, Michael L

    2015-04-01

    Although whale sharks (Rhincodon typus) have been documented to move thousands of kilometres, they are most frequently observed at a few predictable seasonal aggregation sites. The absence of sharks at the surface during visual surveys has led to the assumption that sharks disperse to places unknown during the long 'off-seasons' at most of these locations. Here we compare 2 years of R. typus visual sighting records from Mafia Island in Tanzania to concurrent acoustic telemetry of tagged individuals. Sightings revealed a clear seasonal pattern with a peak between October and February and no sharks observed at other times. By contrast, acoustic telemetry demonstrated year-round residency of R. typus. The sharks use a different habitat in the off-season, swimming deeper and further away from shore, presumably in response to prey distributions. This behavioural change reduces the sharks' visibility, giving the false impression that they have left the area. We demonstrate, for the first time to our knowledge, year-round residency of unprovisioned, individual R. typus at an aggregation site, and highlight the importance of using multiple techniques to study the movement ecology of marine megafauna. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  17. Dynamic habitat models: using telemetry data to project fisheries bycatch

    PubMed Central

    Žydelis, Ramūnas; Lewison, Rebecca L.; Shaffer, Scott A.; Moore, Jeffrey E.; Boustany, Andre M.; Roberts, Jason J.; Sims, Michelle; Dunn, Daniel C.; Best, Benjamin D.; Tremblay, Yann; Kappes, Michelle A.; Halpin, Patrick N.; Costa, Daniel P.; Crowder, Larry B.

    2011-01-01

    Fisheries bycatch is a recognized threat to marine megafauna. Addressing bycatch of pelagic species however is challenging owing to the dynamic nature of marine environments and vagility of these organisms. In order to assess the potential for species to overlap with fisheries, we propose applying dynamic habitat models to determine relative probabilities of species occurrence for specific oceanographic conditions. We demonstrate this approach by modelling habitats for Laysan (Phoebastria immutabilis) and black-footed albatrosses (Phoebastria nigripes) using telemetry data and relating their occurrence probabilities to observations of Hawaii-based longline fisheries in 1997–2000. We found that modelled habitat preference probabilities of black-footed albatrosses were high within some areas of the fishing range of the Hawaiian fleet and such preferences were important in explaining bycatch occurrence. Conversely, modelled habitats of Laysan albatrosses overlapped little with Hawaii-based longline fisheries and did little to explain the bycatch of this species. Estimated patterns of albatross habitat overlap with the Hawaiian fleet corresponded to bycatch observations: black-footed albatrosses were more frequently caught in this fishery despite being 10 times less abundant than Laysan albatrosses. This case study demonstrates that dynamic habitat models based on telemetry data may help to project interactions with pelagic animals relative to environmental features and that such an approach can serve as a tool to guide conservation and management decisions. PMID:21429921

  18. Acoustic telemetry reveals cryptic residency of whale sharks

    PubMed Central

    Cagua, E. Fernando; Cochran, Jesse E. M.; Rohner, Christoph A.; Prebble, Clare E. M.; Sinclair-Taylor, Tane H.; Pierce, Simon J.; Berumen, Michael L.

    2015-01-01

    Although whale sharks (Rhincodon typus) have been documented to move thousands of kilometres, they are most frequently observed at a few predictable seasonal aggregation sites. The absence of sharks at the surface during visual surveys has led to the assumption that sharks disperse to places unknown during the long ‘off-seasons’ at most of these locations. Here we compare 2 years of R. typus visual sighting records from Mafia Island in Tanzania to concurrent acoustic telemetry of tagged individuals. Sightings revealed a clear seasonal pattern with a peak between October and February and no sharks observed at other times. By contrast, acoustic telemetry demonstrated year-round residency of R. typus. The sharks use a different habitat in the off-season, swimming deeper and further away from shore, presumably in response to prey distributions. This behavioural change reduces the sharks' visibility, giving the false impression that they have left the area. We demonstrate, for the first time to our knowledge, year-round residency of unprovisioned, individual R. typus at an aggregation site, and highlight the importance of using multiple techniques to study the movement ecology of marine megafauna. PMID:25832816

  19. Wireless Networks: New Meaning to Ubiquitous Computing.

    ERIC Educational Resources Information Center

    Drew, Wilfred, Jr.

    2003-01-01

    Discusses the use of wireless technology in academic libraries. Topics include wireless networks; standards (IEEE 802.11); wired versus wireless; why libraries implement wireless technology; wireless local area networks (WLANs); WLAN security; examples of wireless use at Indiana State University and Morrisville College (New York); and useful…

  20. Radio telemetry methods for studying spotted owls in the Pacific Northwest.

    Treesearch

    J.H. Guetterman; J.A. Burns; J.A. Reid; R.B. Horn; C.C. Foster

    1991-01-01

    The paper is a practical guide to field methodology for conducting a radio telemetry study of spotted owls (Strix occidentalis) in mountainous terrain. It begins with a synopsis of spotted owl biology and basic telemetry. The criteria used to select which owls will carry transmitters are discussed as are location and capture methods. Instructions...

  1. A Silicon Carbide Wireless Temperature Sensing System for High Temperature Applications

    PubMed Central

    Yang, Jie

    2013-01-01

    In this article, an extreme environment-capable temperature sensing system based on state-of-art silicon carbide (SiC) wireless electronics is presented. In conjunction with a Pt-Pb thermocouple, the SiC wireless sensor suite is operable at 450 °C while under centrifugal load greater than 1,000 g. This SiC wireless temperature sensing system is designed to be non-intrusively embedded inside the gas turbine generators, acquiring the temperature information of critical components such as turbine blades, and wirelessly transmitting the information to the receiver located outside the turbine engine. A prototype system was developed and verified up to 450 °C through high temperature lab testing. The combination of the extreme temperature SiC wireless telemetry technology and integrated harsh environment sensors will allow for condition-based in-situ maintenance of power generators and aircraft turbines in field operation, and can be applied in many other industries requiring extreme environment monitoring and maintenance. PMID:23377189

  2. A Fully-Passive Wireless Microsystem for Recording of Neuropotentials using RF Backscattering Methods

    PubMed Central

    Xu, Wencheng; Shekhar, Sameer; Abbaspour-Tamijani, Abbas; Towe, Bruce C.; Miranda, Félix A.; Chae, Junseok

    2011-01-01

    The ability to safely monitor neuropotentials is essential in establishing methods to study the brain. Current research focuses on the wireless telemetry aspect of implantable sensors in order to make these devices ubiquitous and safe. Chronic implants necessitate superior reliability and durability of the integrated electronics. The power consumption of implanted electronics must also be limited to within several milliwatts to microwatts to minimize heat trauma in the human body. In order to address these severe requirements, we developed an entirely passive and wireless microsystem for recording neuropotentials. An external interrogator supplies a fundamental microwave carrier to the microsystem. The microsystem comprises varactors that perform nonlinear mixing of neuropotential and fundamental carrier signals. The varactors generate third-order mixing products that are wirelessly backscattered to the external interrogator where the original neuropotential signals are recovered. Performance of the neuro-recording microsystem was demonstrated by wireless recording of emulated and in vivo neuropotentials. The obtained results were wireless recovery of neuropotentials as low as approximately 500 microvolts peak-to-peak (μVpp) with a bandwidth of 10 Hz to 3 kHz (for emulated signals) and with 128 epoch signal averaging of repetitive signals (for in vivo signals). PMID:22267898

  3. Low-power wireless micromanometer system for acute and chronic bladder-pressure monitoring.

    PubMed

    Majerus, Steve J A; Fletter, Paul C; Damaser, Margot S; Garverick, Steven L

    2011-03-01

    This letter describes the design, fabrication, and testing of a wireless bladder-pressure-sensing system for chronic, point-of-care applications, such as urodynamics or closed-loop neuromodulation. The system consists of a miniature implantable device and an external RF receiver and wireless battery charger. The implant is small enough to be cystoscopically implanted within the bladder wall, where it is securely held and shielded from the urine stream. The implant consists of a custom application-specific integrated circuit (ASIC), a pressure transducer, a rechargeable battery, and wireless telemetry and recharging antennas. The ASIC includes instrumentation, wireless transmission, and power-management circuitry, and on an average draws less than 9 μA from the 3.6-V battery. The battery charge can be wirelessly replenished with daily 6-h recharge periods that can occur during the periods of sleep. Acute in vivo evaluation of the pressure-sensing system in canine models has demonstrated that the system can accurately capture lumen pressure from a submucosal implant location.

  4. [Wavelet packet extraction and entropy analysis of telemetry EEG from the prelimbic cortex of medial prefrontal cortex in morphine-induced CPP rats].

    PubMed

    Bai, Yu; Bai, Jia-Ming; Li, Jing; Li, Min; Yu, Ran; Pan, Qun-Wan

    2014-12-25

    The purpose of the present study is to analyze the relationship between the telemetry electroencephalogram (EEG) changes of the prelimbic (PL) cortex and the drug-seeking behavior of morphine-induced conditioned place preference (CPP) rats by using the wavelet packet extraction and entropy measurement. The recording electrode was stereotactically implanted into the PL cortex of rats. The animals were then divided randomly into operation-only control and morphine-induced CPP groups, respectively. A CPP video system in combination with an EEG wireless telemetry device was used for recording EEG of PL cortex when the rats shuttled between black-white or white-black chambers. The telemetry recorded EEGs were analyzed by wavelet packet extraction, Welch power spectrum estimate, normalized amplitude and Shannon entropy algorithm. The results showed that, compared with operation-only control group, the left PL cortex's EEG of morphine-induced CPP group during black-white chamber shuttling exhibited the following changes: (1) the amplitude of average EEG for each frequency bands extracted by wavelet packet was reduced; (2) the Welch power intensity was increased significantly in 10-50 Hz EEG band (P < 0.01 or P < 0.05); (3) Shannon entropy was increased in β, γ₁, and γ₂waves of the EEG (P < 0.01 or P < 0.05); and (4) the average information entropy was reduced (P < 0.01). The results suggest that above mentioned EEG changes in morphine-induced CPP group rat may be related to animals' drug-seeking motivation and behavior launching.

  5. Increased flexibility for modeling telemetry and nest-survival data using the multistate framework

    USGS Publications Warehouse

    Devineau, Olivier; Kendall, William L.; Doherty, Paul F.; Shenk, Tanya M.; White, Gary C.; Lukacs, Paul M.; Burnham, Kenneth P.

    2014-01-01

    Although telemetry is one of the most common tools used in the study of wildlife, advances in the analysis of telemetry data have lagged compared to progress in the development of telemetry devices. We demonstrate how standard known-fate telemetry and related nest-survival data analysis models are special cases of the more general multistate framework. We present a short theoretical development, and 2 case examples regarding the American black duck and the mallard. We also present a more complex lynx data analysis. Although not necessary in all situations, the multistate framework provides additional flexibility to analyze telemetry data, which may help analysts and biologists better deal with the vagaries of real-world data collection.

  6. Packet telemetry and packet telecommand - The new generation of spacecraft data handling techniques

    NASA Technical Reports Server (NTRS)

    Hooke, A. J.

    1983-01-01

    Because of rising costs and reduced reliability of spacecraft and ground network hardware and software customization, standardization Packet Telemetry and Packet Telecommand concepts are emerging as viable alternatives. Autonomous packets of data, within each concept, which are created within ground and space application processes through the use of formatting techniques, are switched end-to-end through the space data network to their destination application processes through the use of standard transfer protocols. This process may result in facilitating a high degree of automation and interoperability because of completely mission-independent-designed intermediate data networks. The adoption of an international guideline for future space telemetry formatting of the Packet Telemetry concept, and the advancement of the NASA-ESA Working Group's Packet Telecommand concept to a level of maturity parallel to the of Packet Telemetry are the goals of the Consultative Committee for Space Data Systems. Both the Packet Telemetry and Packet Telecommand concepts are reviewed.

  7. High-Rate Wireless Airborne Network Demonstration (HiWAND) Flight Test Results

    NASA Technical Reports Server (NTRS)

    Franz, Russell

    2007-01-01

    An increasing number of flight research and airborne science experiments now contain network-ready systems that could benefit from a high-rate bidirectional air-to-ground network link. A prototype system, the High-Rate Wireless Airborne Network Demonstration, was developed from commercial off-the-shelf components while leveraging the existing telemetry infrastructure on the Western Aeronautical Test Range. This approach resulted in a cost-effective, long-range, line-of-sight network link over the S and the L frequency bands using both frequency modulation and shaped-offset quadrature phase-shift keying modulation. This paper discusses system configuration and the flight test results.

  8. Wireless monitoring of the biological object state at microwave frequencies: A review

    NASA Astrophysics Data System (ADS)

    Vendik, I. B.; Vendik, O. G.; Kozlov, D. S.; Munina, I. V.; Pleskachev, V. V.; Rusakov, A. S.; Tural'chuk, P. A.

    2016-01-01

    Radio-frequency identification systems used for the remote diagnostics of diseases and contactless monitoring and assessment of human health are reviewed. The propagation of electromagnetic waves inside a biological medium and along interfaces between different media, as well as the problem of telemetry data acquisition from implanted systems or system on the human body surface using wireless sensors, is considered. Emphasis is on radio-frequency identification systems that use far-field electromagnetic radiation, since they are necessary in emergency situations to find injured people in hard-to-reach places and assess the state of emergency response workers.

  9. High-Rate Wireless Airborne Network Demonstration (HiWAND) Flight Test Results

    NASA Technical Reports Server (NTRS)

    Franz, Russell

    2008-01-01

    An increasing number of flight research and airborne science experiments now contain network-ready systems that could benefit from a high-rate bidirectional air-to-ground network link. A prototype system, the High-Rate Wireless Airborne Network Demonstration, was developed from commercial off-the-shelf components while leveraging the existing telemetry infrastructure on the Western Aeronautical Test Range. This approach resulted in a cost-effective, long-range, line-of-sight network link over the S and the L frequency bands using both frequency modulation and shaped-offset quadrature phase-shift keying modulation. This report discusses system configuration and the flight test results.

  10. PIC microcontroller-based RF wireless ECG monitoring system.

    PubMed

    Oweis, R J; Barhoum, A

    2007-01-01

    This paper presents a radio-telemetry system that provides the possibility of ECG signal transmission from a patient detection circuit via an RF data link. A PC then receives the signal through the National Instrument data acquisition card (NIDAQ). The PC is equipped with software allowing the received ECG signals to be saved, analysed, and sent by email to another part of the world. The proposed telemetry system consists of a patient unit and a PC unit. The amplified and filtered ECG signal is sampled 360 times per second, and the A/D conversion is performed by a PIC16f877 microcontroller. The major contribution of the final proposed system is that it detects, processes and sends patients ECG data over a wireless RF link to a maximum distance of 200 m. Transmitted ECG data with different numbers of samples were received, decoded by means of another PIC microcontroller, and displayed using MATLAB program. The designed software is presented in a graphical user interface utility.

  11. Wireless LAN security management with location detection capability in hospitals.

    PubMed

    Tanaka, K; Atarashi, H; Yamaguchi, I; Watanabe, H; Yamamoto, R; Ohe, K

    2012-01-01

    In medical institutions, unauthorized access points and terminals obstruct the stable operation of a large-scale wireless local area network (LAN) system. By establishing a real-time monitoring method to detect such unauthorized wireless devices, we can improve the efficiency of security management. We detected unauthorized wireless devices by using a centralized wireless LAN system and a location detection system at 370 access points at the University of Tokyo Hospital. By storing the detected radio signal strength and location information in a database, we evaluated the risk level from the detection history. We also evaluated the location detection performance in our hospital ward using Wi-Fi tags. The presence of electric waves outside the hospital and those emitted from portable game machines with wireless communication capability was confirmed from the detection result. The location detection performance showed an error margin of approximately 4 m in detection accuracy and approximately 5% in false detection. Therefore, it was effective to consider the radio signal strength as both an index of likelihood at the detection location and an index for the level of risk. We determined the location of wireless devices with high accuracy by filtering the detection results on the basis of radio signal strength and detection history. Results of this study showed that it would be effective to use the developed location database containing radio signal strength and detection history for security management of wireless LAN systems and more general-purpose location detection applications.

  12. A Wireless World: Charles County Public Schools Makes Wireless Universal

    ERIC Educational Resources Information Center

    Hoffman, Richard

    2007-01-01

    Wireless connectivity in schools is all the rage, and many school systems have at least gotten their feet wet with a wireless lab or a few portable laptop carts. But Bijaya Devkota, the chief information officer of Charles County Public Schools, has done what many school systems only dream of--implemented universal wireless access throughout his…

  13. Wireless Sensor Network With Geolocation

    DTIC Science & Technology

    2006-11-01

    WIRELESS SENSOR NETWORK WITH GEOLOCATION James Silverstrim and Roderick Passmore Innovative Wireless Technologies Forest, VA 24551 Dr...TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE Wireless Sensor Network With Geolocation 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM...Locationing in distributed ad-hoc wireless sensor networks ”, IEEE ICASSP, May 2001. D. W. Hanson, Fundamentals of Two-Way Time Transfer by Satellite

  14. Psychogenic nonepileptic seizures and suicidal behavior on a video/EEG telemetry unit: the need for psychiatric assessment and screening for suicide risk.

    PubMed

    Kaufman, Kenneth R; Struck, Peter J

    2010-12-01

    Patients with epilepsy and psychogenic nonepileptic seizures (PNES) have an increased prevalence of psychiatric illness and risk for suicidal ideation/suicidal behavior/suicide compared with the general population. Recent literature suggests that antiepileptic drugs (AEDs) used to treat epilepsy, pain, and psychiatric disorders increase the risk of suicide and that this increased risk may be AED selective. This case analyzes a suicide attempt on a video/EEG telemetry unit. Specific risk factors associated with increased risk of suicidal behaviors pertinent to this case are reviewed: epilepsy, multiple psychiatric diagnoses including affective disorder, AEDs, PNES, prior medically serious suicide attempt, and suicide attempt within the past month. Specific psychometric rating scales to screen for both psychiatric illness and suicide risk and psychiatric assessment should be integral components of the evaluation and treatment of patients on video/EEG telemetry units. Copyright © 2010 Elsevier Inc. All rights reserved.

  15. Wireless and acoustic hearing with bone-anchored hearing devices.

    PubMed

    Bosman, Arjan J; Mylanus, Emmanuel A M; Hol, Myrthe K S; Snik, Ad F M

    2015-07-01

    The efficacy of wireless connectivity in bone-anchored hearing was studied by comparing the wireless and acoustic performance of the Ponto Plus sound processor from Oticon Medical relative to the acoustic performance of its predecessor, the Ponto Pro. Nineteen subjects with more than two years' experience with a bone-anchored hearing device were included. Thirteen subjects were fitted unilaterally and six bilaterally. Subjects served as their own control. First, subjects were tested with the Ponto Pro processor. After a four-week acclimatization period performance the Ponto Plus processor was measured. In the laboratory wireless and acoustic input levels were made equal. In daily life equal settings of wireless and acoustic input were used when watching TV, however when using the telephone the acoustic input was reduced by 9 dB relative to the wireless input. Speech scores for microphone with Ponto Pro and for both input modes of the Ponto Plus processor were essentially equal when equal input levels of wireless and microphone inputs were used. Only the TV-condition showed a statistically significant (p <5%) lower speech reception threshold for wireless relative to microphone input. In real life, evaluation of speech quality, speech intelligibility in quiet and noise, and annoyance by ambient noise, when using landline phone, mobile telephone, and watching TV showed a clear preference (p <1%) for the Ponto Plus system with streamer over the microphone input. Due to the small number of respondents with landline phone (N = 7) the result for noise annoyance was only significant at the 5% level. Equal input levels for acoustic and wireless inputs results in equal speech scores, showing a (near) equivalence for acoustic and wireless sound transmission with Ponto Pro and Ponto Plus. The default 9-dB difference between microphone and wireless input when using the telephone results in a substantial wireless benefit when using the telephone. The preference of

  16. Wireless Acoustic Measurement System

    NASA Technical Reports Server (NTRS)

    Anderson, Paul D.; Dorland, Wade D.; Jolly, Ronald L.

    2007-01-01

    A prototype wireless acoustic measurement system (WAMS) is one of two main subsystems of the Acoustic Prediction/ Measurement Tool, which comprises software, acoustic instrumentation, and electronic hardware combined to afford integrated capabilities for predicting and measuring noise emitted by rocket and jet engines. The other main subsystem is described in the article on page 8. The WAMS includes analog acoustic measurement instrumentation and analog and digital electronic circuitry combined with computer wireless local-area networking to enable (1) measurement of sound-pressure levels at multiple locations in the sound field of an engine under test and (2) recording and processing of the measurement data. At each field location, the measurements are taken by a portable unit, denoted a field station. There are ten field stations, each of which can take two channels of measurements. Each field station is equipped with two instrumentation microphones, a micro- ATX computer, a wireless network adapter, an environmental enclosure, a directional radio antenna, and a battery power supply. The environmental enclosure shields the computer from weather and from extreme acoustically induced vibrations. The power supply is based on a marine-service lead-acid storage battery that has enough capacity to support operation for as long as 10 hours. A desktop computer serves as a control server for the WAMS. The server is connected to a wireless router for communication with the field stations via a wireless local-area network that complies with wireless-network standard 802.11b of the Institute of Electrical and Electronics Engineers. The router and the wireless network adapters are controlled by use of Linux-compatible driver software. The server runs custom Linux software for synchronizing the recording of measurement data in the field stations. The software includes a module that provides an intuitive graphical user interface through which an operator at the control server

  17. Wireless Acoustic Measurement System

    NASA Technical Reports Server (NTRS)

    Anderson, Paul D.; Dorland, Wade D.

    2005-01-01

    A prototype wireless acoustic measurement system (WAMS) is one of two main subsystems of the Acoustic Prediction/Measurement Tool, which comprises software, acoustic instrumentation, and electronic hardware combined to afford integrated capabilities for predicting and measuring noise emitted by rocket and jet engines. The other main subsystem is described in "Predicting Rocket or Jet Noise in Real Time" (SSC-00215-1), which appears elsewhere in this issue of NASA Tech Briefs. The WAMS includes analog acoustic measurement instrumentation and analog and digital electronic circuitry combined with computer wireless local-area networking to enable (1) measurement of sound-pressure levels at multiple locations in the sound field of an engine under test and (2) recording and processing of the measurement data. At each field location, the measurements are taken by a portable unit, denoted a field station. There are ten field stations, each of which can take two channels of measurements. Each field station is equipped with two instrumentation microphones, a micro-ATX computer, a wireless network adapter, an environmental enclosure, a directional radio antenna, and a battery power supply. The environmental enclosure shields the computer from weather and from extreme acoustically induced vibrations. The power supply is based on a marine-service lead-acid storage battery that has enough capacity to support operation for as long as 10 hours. A desktop computer serves as a control server for the WAMS. The server is connected to a wireless router for communication with the field stations via a wireless local-area network that complies with wireless-network standard 802.11b of the Institute of Electrical and Electronics Engineers. The router and the wireless network adapters are controlled by use of Linux-compatible driver software. The server runs custom Linux software for synchronizing the recording of measurement data in the field stations. The software includes a module that

  18. A Wireless Physiological Signal Monitoring System with Integrated Bluetooth and WiFi Technologies.

    PubMed

    Yu, Sung-Nien; Cheng, Jen-Chieh

    2005-01-01

    This paper proposes a wireless patient monitoring system which integrates Bluetooth and WiFi wireless technologies. A wireless portable multi-parameter device was designated to acquire physiological signals and transmit them to a local server via Bluetooth wireless technology. Four kinds of monitor units were designed to communicate via the WiFi wireless technology, including a local monitor unit, a control center, mobile devices (personal digital assistant; PDA), and a web page. The use of various monitor units is intending to meet different medical requirements for different medical personnel. This system was demonstrated to promote the mobility and flexibility for both the patients and the medical personnel, which further improves the quality of health care.

  19. Ultra low power signal oriented approach for wireless health monitoring.

    PubMed

    Marinkovic, Stevan; Popovici, Emanuel

    2012-01-01

    In recent years there is growing pressure on the medical sector to reduce costs while maintaining or even improving the quality of care. A potential solution to this problem is real time and/or remote patient monitoring by using mobile devices. To achieve this, medical sensors with wireless communication, computational and energy harvesting capabilities are networked on, or in, the human body forming what is commonly called a Wireless Body Area Network (WBAN). We present the implementation of a novel Wake Up Receiver (WUR) in the context of standardised wireless protocols, in a signal-oriented WBAN environment and present a novel protocol intended for wireless health monitoring (WhMAC). WhMAC is a TDMA-based protocol with very low power consumption. It utilises WBAN-specific features and a novel ultra low power wake up receiver technology, to achieve flexible and at the same time very low power wireless data transfer of physiological signals. As the main application is in the medical domain, or personal health monitoring, the protocol caters for different types of medical sensors. We define four sensor modes, in which the sensors can transmit data, depending on the sensor type and emergency level. A full power dissipation model is provided for the protocol, with individual hardware and application parameters. Finally, an example application shows the reduction in the power consumption for different data monitoring scenarios.

  20. Ultra Low Power Signal Oriented Approach for Wireless Health Monitoring

    PubMed Central

    Marinkovic, Stevan; Popovici, Emanuel

    2012-01-01

    In recent years there is growing pressure on the medical sector to reduce costs while maintaining or even improving the quality of care. A potential solution to this problem is real time and/or remote patient monitoring by using mobile devices. To achieve this, medical sensors with wireless communication, computational and energy harvesting capabilities are networked on, or in, the human body forming what is commonly called a Wireless Body Area Network (WBAN). We present the implementation of a novel Wake Up Receiver (WUR) in the context of standardised wireless protocols, in a signal-oriented WBAN environment and present a novel protocol intended for wireless health monitoring (WhMAC). WhMAC is a TDMA-based protocol with very low power consumption. It utilises WBAN-specific features and a novel ultra low power wake up receiver technology, to achieve flexible and at the same time very low power wireless data transfer of physiological signals. As the main application is in the medical domain, or personal health monitoring, the protocol caters for different types of medical sensors. We define four sensor modes, in which the sensors can transmit data, depending on the sensor type and emergency level. A full power dissipation model is provided for the protocol, with individual hardware and application parameters. Finally, an example application shows the reduction in the power consumption for different data monitoring scenarios. PMID:22969379

  1. Physical parameters collection based on wireless senor network

    NASA Astrophysics Data System (ADS)

    Chen, Xin; Wu, Hong; Ji, Lei

    2013-12-01

    With the development of sensor technology, wireless senor network has been applied in the medical, military, entertainment field and our daily life. But the existing available wireless senor networks applied in human monitoring system still have some problems, such as big power consumption, low security and so on. To improve senor network applied in health monitoring system, the paper introduces a star wireless senor networks based on msp430 and DSP. We design a low-cost heart-rate monitor senor node. The communication between senor node and sink node is realized according to the newest protocol proposed by the IEEE 802.15.6 Task Group. This wireless senor network will be more energy-efficient and faster compared to traditional senor networks.

  2. Long frame sync words for binary PSK telemetry

    NASA Technical Reports Server (NTRS)

    Levitt, B. K.

    1975-01-01

    Correlation criteria have previously been established for identifying whether a given binary sequence would be a good frame sync word for phase-shift keyed telemetry. In the past, the search for a good K-bit sync word has involved the application of these criteria to the entire set of 2 exponent K binary K-tuples. It is shown that restricting this search to a much smaller subset consisting of K-bit prefixes of pseudonoise sequences results in sync words of comparable quality, with greatly reduced computer search times for larger values of K. As an example, this procedure is used to find good sync words of length 16-63; from a storage viewpoint, each of these sequences can be generated by a 5- or 6-bit linear feedback shift register.

  3. A functional description of the Buffered Telemetry Demodulator (BTD)

    NASA Technical Reports Server (NTRS)

    Tsou, H.; Shah, B.; Lee, R.; Hinedi, S.

    1993-01-01

    This article gives a functional description of the buffered telemetry demodulator (BTD), which operates on recorded digital samples to extract the symbols from the received signal. The key advantages of the BTD are as follows: (1) its ability to reprocess the signal to reduce acquisition time; (2) its ability to use future information about the signal and to perform smoothing on past samples; and (3) its minimum transmission bandwidth requirement as each sub carrier harmonic is processed individually. The first application of the BTD would be the Galileo S-band contingency mission, where the signal is so weak that reprocessing to reduce the acquisition time is crucial. Moreover, in the event of employing antenna arraying with full spectrum combining, only the sub carrier harmonics need to be transmitted between sites, resulting in significant reduction in data rate transmission requirements. Software implementation of the BTD is described for various general-purpose computers.

  4. Applications of massively parallel computers in telemetry processing

    NASA Technical Reports Server (NTRS)

    El-Ghazawi, Tarek A.; Pritchard, Jim; Knoble, Gordon

    1994-01-01

    Telemetry processing refers to the reconstruction of full resolution raw instrumentation data with artifacts, of space and ground recording and transmission, removed. Being the first processing phase of satellite data, this process is also referred to as level-zero processing. This study is aimed at investigating the use of massively parallel computing technology in providing level-zero processing to spaceflights that adhere to the recommendations of the Consultative Committee on Space Data Systems (CCSDS). The workload characteristics, of level-zero processing, are used to identify processing requirements in high-performance computing systems. An example of level-zero functions on a SIMD MPP, such as the MasPar, is discussed. The requirements in this paper are based in part on the Earth Observing System (EOS) Data and Operation System (EDOS).

  5. Hydrologic Observatory Data Telemetry Network in an Extreme Environment

    NASA Astrophysics Data System (ADS)

    Irving, K.; Kane, D.

    2007-12-01

    A network of hydrological research data stations on the North Slope of Alaska using radio telemetry to gather data in "near real time" will be described. The network consists of approximately 25 research stations, 10 repeater stations, and 3 Internet-connected base stations (though data is also collected at repeater stations and research stations may also function as repeaters). With this operational network, radio link redundancy is sufficient to reach any research station from any base station. The data network is driven in "pull" mode using software running on computers in Fairbanks, and emphasis is placed on reliably collecting and storing data as found on the remote data loggers. Work is underway to deploy dynamic routing software on the controlling computers, at which point the network will be capable of automatically working around problems which may include icing on antennas, satellite sun outages, animal damage, and many others.

  6. Microcontroller-based underwater acoustic ECG telemetry system.

    PubMed

    Istepanian, R S; Woodward, B

    1997-06-01

    This paper presents a microcontroller-based underwater acoustic telemetry system for digital transmission of the electrocardiogram (ECG). The system is designed for the real time, through-water transmission of data representing any parameter, and it was used initially for transmitting in multiplexed format the heart rate, breathing rate and depth of a diver using self-contained underwater breathing apparatus (SCUBA). Here, it is used to monitor cardiovascular reflexes during diving and swimming. The programmable capability of the system provides an effective solution to the problem of transmitting data in the presence of multipath interference. An important feature of the paper is a comparative performance analysis of two encoding methods, Pulse Code Modulation (PCM) and Pulse Position Modulation (PPM).

  7. GlastCam: A Telemetry-Driven Spacecraft Visualization Tool

    NASA Technical Reports Server (NTRS)

    Stoneking, Eric T.; Tsai, Dean

    2009-01-01

    Developed for the GLAST project, which is now the Fermi Gamma-ray Space Telescope, GlastCam software ingests telemetry from the Integrated Test and Operations System (ITOS) and generates four graphical displays of geometric properties in real time, allowing visual assessment of the attitude, configuration, position, and various cross-checks. Four windows are displayed: a "cam" window shows a 3D view of the satellite; a second window shows the standard position plot of the satellite on a Mercator map of the Earth; a third window displays star tracker fields of view, showing which stars are visible from the spacecraft in order to verify star tracking; and the fourth window depicts

  8. A Programmable SDN+NFV Architecture for UAV Telemetry Monitoring

    NASA Technical Reports Server (NTRS)

    White, Kyle J. S.; Pezaros, Dimitrios P.; Denney, Ewen; Knudson, Matt D.

    2017-01-01

    With the explosive growth in UAV numbers forecast worldwide, a core concern is how to manage the ad-hoc network configuration required for mobility management. As UAVs migrate among ground control stations, associated network services, routing and operational control must also rapidly migrate to ensure a seamless transition. In this paper, we present a novel, lightweight and modular architecture which supports high mobility, resilience and flexibility through the application of SDN and NFV principles on top of the UAV infrastructure. By combining SDN programmability and Network Function Virtualization we can achieve resilient infrastructure migration of network services, such as network monitoring and anomaly detection, coupled with migrating UAVs to enable high mobility management. Our container-based monitoring and anomaly detection Network Functions (NFs) can be tuned to specific UAV models providing operators better insight during live, high-mobility deployments. We evaluate our architecture against telemetry from over 80flights from a scientific research UAV infrastructure.

  9. A compact presentation of DSN array telemetry performance

    NASA Technical Reports Server (NTRS)

    Greenhall, C. A.

    1982-01-01

    The telemetry performance of an arrayed receiver system, including radio losses, is often given by a family of curves giving bit error rate vs bit SNR, with tracking loop SNR at one receiver held constant along each curve. This study shows how to process this information into a more compact, useful format in which the minimal total signal power and optimal carrier suppression, for a given fixed bit error rate, are plotted vs data rate. Examples for baseband-only combining are given. When appropriate dimensionless variables are used for plotting, receiver arrays with different numbers of antennas and different threshold tracking loop bandwidths look much alike, and a universal curve for optimal carrier suppression emerges.

  10. Study of Tools for Command and Telemetry Dictionaries

    NASA Technical Reports Server (NTRS)

    Pires, Craig; Knudson, Matthew D.

    2017-01-01

    The Command and Telemetry Dictionary is at the heart of space missions. The C&T Dictionary represents all of the information that is exchanged between the various systems both in space and on the ground. Large amounts of ever-changing information has to be disseminated to all for the various systems and sub-systems throughout all phases of the mission. The typical approach of having each sub-system manage it's own information flow, results in a patchwork of methods within a mission. This leads to significant duplication of effort and potential errors. More centralized methods have been developed to manage this data flow. This presentation will compare two tools that have been developed for this purpose, CCDD and SCIMI that were designed to work with the Core Flight System (cFS).

  11. Monitoring of International Space Station Telemetry Using Shewhart Control Charts

    NASA Technical Reports Server (NTRS)

    Fitch, Jeffery T.; Simon, Alan L.; Gouveia, John A.; Hillin, Andrew M.; Hernandez, Steve A.

    2012-01-01

    Shewhart control charts have been established as an expedient method for analyzing dynamic, trending data in order to identify anomalous subsystem performance as soon as such performance would exceed a statistically established baseline. Additionally, this leading indicator tool integrates a selection methodology that reduces false positive indications, optimizes true leading indicator events, minimizes computer processor unit duty cycles, and addresses human factor concerns (i.e., the potential for flight-controller data overload). This innovation leverages statistical process control, and provides a relatively simple way to allow flight controllers to focus their attention on subtle system changes that could lead to dramatic off-nominal system performance. Finally, this capability improves response time to potential hardware damage and/or crew injury, thereby improving space flight safety. Shewhart control charts require normalized data. However, the telemetry from the ISS Early External Thermal Control System (EETCS) was not normally distributed. A method for normalizing the data was implemented, as was a means of selecting data windows, the number of standard deviations (Sigma Level), the number of consecutive points out of limits (Sequence), and direction (increasing or decreasing trend data). By varying these options, and treating them like dial settings, the number of nuisance alerts and leading indicators were optimized. The goal was to capture all leading indicators while minimizing the number of nuisances. Lean Six Sigma (L6S) design of experiment methodologies were employed. To optimize the results, Perl programming language was used to automate the massive amounts of telemetry data, control chart plots, and the data analysis.

  12. Architecture and performances of the AGILE Telemetry Preprocessing System (TMPPS)

    NASA Astrophysics Data System (ADS)

    Trifoglio, M.; Bulgarelli, A.; Gianotti, F.; Lazzarotto, F.; Di Cocco, G.; Fuschino, F.; Tavani, M.

    2008-07-01

    AGILE is an Italian Space Agency (ASI) satellite dedicated to high energy Astrophysics. It was launched successfully on 23 April 2007, and it has been operated by the AGILE Ground Segment, consisting of the Ground Station located in Malindi (Kenia), the Mission Operations Centre (MOC) and the AGILE Data Centre (ADC) established in Italy, at Telespazio in Fucino and at the ASI Science Data Centre (ASDC) in Frascati respectively. Due to the low equatorial orbit at ~ 530 Km. with inclination angle of ~ 2.5°, the satellite passes over the Ground Station every ~ 100'. During the visibility period of . ~ 12', the Telemetry (TM) is down linked through two separated virtual channels, VC0 and VC1. The former is devoted to the real time TM generated during the pass at the average rate of 50 Kbit/s and is directly relayed to the Control Centre. The latter is used to downlink TM data collected on the satellite on-board mass memory during the non visibility period. This generates at the Ground Station a raw TM file of up to 37 MByte. Within 20' after the end of the contact, both the real time and mass memory TM arrive at ADC through the dedicated VPN ASINet. Here they are automatically detected and ingested by the TMPPS pipeline in less than 5 minutes. The TMPPS archives each TM file and sorts its packets into one stream for each of the different TM layout. Each stream is processed in parallel in order to unpack the various telemetry field and archive them into suitable FITS files. Each operation is tracked into a MySQL data base which interfaces the TMPPS pipeline to the rest of the scientific pipeline running at ADC. In this paper the architecture and the performance of the TMPPS will be described and discussed.

  13. A low-power bidirectional telemetry device with a near-field charging feature for a cardiac microstimulator.

    PubMed

    Shuenn-Yuh Lee; Chih-Jen Cheng; Ming-Chun Liang

    2011-08-01

    In this paper, wireless telemetry using the near-field coupling technique with round-wire coils for an implanted cardiac microstimulator is presented. The proposed system possesses an external powering amplifier and an internal bidirectional microstimulator. The energy of the microstimulator is provided by a rectifier that can efficiently charge a rechargeable device. A fully integrated regulator and a charge pump circuit are included to generate a stable, low-voltage, and high-potential supply voltage, respectively. A miniature digital processor includes a phase-shift-keying (PSK) demodulator to decode the transmission data and a self-protective system controller to operate the entire system. To acquire the cardiac signal, a low-voltage and low-power monitoring analog front end (MAFE) performs immediate threshold detection and data conversion. In addition, the pacing circuit, which consists of a pulse generator (PG) and its digital-to-analog (D/A) controller, is responsible for stimulating heart tissue. The chip was fabricated by Taiwan Semiconductor Manufacturing Company (TSMC) with 0.35-μm complementary metal-oxide semiconductor technology to perform the monitoring and pacing functions with inductively powered communication. Using a model with lead and heart tissue on measurement, a -5-V pulse at a stimulating frequency of 60 beats per minute (bpm) is delivered while only consuming 31.5 μW of power.

  14. Wireless physical layer security

    NASA Astrophysics Data System (ADS)

    Poor, H. Vincent; Schaefer, Rafael F.

    2017-01-01

    Security in wireless networks has traditionally been considered to be an issue to be addressed separately from the physical radio transmission aspects of wireless systems. However, with the emergence of new networking architectures that are not amenable to traditional methods of secure communication such as data encryption, there has been an increase in interest in the potential of the physical properties of the radio channel itself to provide communications security. Information theory provides a natural framework for the study of this issue, and there has been considerable recent research devoted to using this framework to develop a greater understanding of the fundamental ability of the so-called physical layer to provide security in wireless networks. Moreover, this approach is also suggestive in many cases of coding techniques that can approach fundamental limits in practice and of techniques for other security tasks such as authentication. This paper provides an overview of these developments.

  15. Wireless physical layer security.

    PubMed

    Poor, H Vincent; Schaefer, Rafael F

    2017-01-03

    Security in wireless networks has traditionally been considered to be an issue to be addressed separately from the physical radio transmission aspects of wireless systems. However, with the emergence of new networking architectures that are not amenable to traditional methods of secure communication such as data encryption, there has been an increase in interest in the potential of the physical properties of the radio channel itself to provide communications security. Information theory provides a natural framework for the study of this issue, and there has been considerable recent research devoted to using this framework to develop a greater understanding of the fundamental ability of the so-called physical layer to provide security in wireless networks. Moreover, this approach is also suggestive in many cases of coding techniques that can approach fundamental limits in practice and of techniques for other security tasks such as authentication. This paper provides an overview of these developments.

  16. Wireless physical layer security

    PubMed Central

    Schaefer, Rafael F.

    2017-01-01

    Security in wireless networks has traditionally been considered to be an issue to be addressed separately from the physical radio transmission aspects of wireless systems. However, with the emergence of new networking architectures that are not amenable to traditional methods of secure communication such as data encryption, there has been an increase in interest in the potential of the physical properties of the radio channel itself to provide communications security. Information theory provides a natural framework for the study of this issue, and there has been considerable recent research devoted to using this framework to develop a greater understanding of the fundamental ability of the so-called physical layer to provide security in wireless networks. Moreover, this approach is also suggestive in many cases of coding techniques that can approach fundamental limits in practice and of techniques for other security tasks such as authentication. This paper provides an overview of these developments. PMID:28028211

  17. Terabit Wireless Communication Challenges

    NASA Technical Reports Server (NTRS)

    Hwu, Shian U.

    2012-01-01

    This presentation briefly discusses a research effort on Terabit Wireless communication systems for possible space applications. Recently, terahertz (THz) technology (300-3000 GHz frequency) has attracted a great deal of interest from academia and industry. This is due to a number of interesting features of THz waves, including the nearly unlimited bandwidths available, and the non-ionizing radiation nature which does not damage human tissues and DNA with minimum health threat. Also, as millimeter-wave communication systems mature, the focus of research is, naturally, moving to the THz range. Many scientists regard THz as the last great frontier of the electromagnetic spectrum, but finding new applications outside the traditional niches of radio astronomy, Earth and planetary remote sensing, and molecular spectroscopy particularly in biomedical imaging and wireless communications has been relatively slow. Radiologists find this area of study so attractive because t-rays are non-ionizing, which suggests no harm is done to tissue or DNA. They also offer the possibility of performing spectroscopic measurements over a very wide frequency range, and can even capture signatures from liquids and solids. According to Shannon theory, the broad bandwidth of the THz frequency bands can be used for terabit-per-second (Tb/s) wireless communication systems. This enables several new applications, such as cell phones with 360 degrees autostereoscopic displays, optic-fiber replacement, and wireless Tb/s file transferring. Although THz technology could satisfy the demand for an extremely high data rate, a number of technical challenges need to be overcome before its development. This presentation provides an overview the state-of-the- art in THz wireless communication and the technical challenges for an emerging application in Terabit wireless systems. The main issue for THz wave propagation is the high atmospheric attenuation, which is dominated by water vapor absorption in the THz

  18. Preliminary PANSAT ground station software design and use of an expert system to analyze telemetry

    NASA Astrophysics Data System (ADS)

    Lawrence, Gregory W.

    1994-03-01

    The Petite Amateur Navy Satellite (PANSAT) is a communications satellite designed to be used by civilian amateur radio operators. A master ground station is being built at the Naval Postgraduate School. This computer system performs satellite commands, displays telemetry, trouble-shoots problems, and passes messages. The system also controls an open loop tracking antenna. This paper concentrates on the telemetry display, decoding, and interpretation through artificial intelligence (AI). The telemetry is displayed in an easily interpretable format, so that any user can understand the current health of the satellite and be cued as to any problems and possible solutions. Only the master ground station has the ability to receive all telemetry and send commands to the spacecraft; civilian ham users do not have access to this information. The telemetry data is decommutated and analyzed before it is displayed to the user, so that the raw data will not have to be interpreted by ground users. The analysis will use CLIPS imbedded in the code, and derive its inputs from telemetry decommutation. The program is an expert system using a forward chaining set of rules based on the expected operation and parameters of the satellite. By building the rules during the construction and design of the satellite, the telemetry can be well understood and interpreted after the satellite is launched and the designers may no longer be available to provide input to the problem.

  19. Wireless sensor platform

    SciTech Connect

    Joshi, Pooran C.; Killough, Stephen M.; Kuruganti, Phani Teja

    A wireless sensor platform and methods of manufacture are provided. The platform involves providing a plurality of wireless sensors, where each of the sensors is fabricated on flexible substrates using printing techniques and low temperature curing. Each of the sensors can include planar sensor elements and planar antennas defined using the printing and curing. Further, each of the sensors can include a communications system configured to encode the data from the sensors into a spread spectrum code sequence that is transmitted to a central computer(s) for use in monitoring an area associated with the sensors.

  20. Wireless Testbed Bonsai

    DTIC Science & Technology

    2006-02-01

    wireless sensor device network, and a about 200 Stargate nodes higher-tier multi-hop peer- to-peer 802.11b wireless network. Leading up to the full ExScal...deployment, we conducted spatial scaling tests on our higher-tier protocols on a 7 × 7 grid of Stargates nodes 45m and with 90m separations respectively...onW and its scaled version W̃ . III. EXPERIMENTAL SETUP Description of Kansei testbed. A stargate is a single board linux-based computer [7]. It uses a

  1. Satellite telemetry and wildlife studies in India: Advantages, options and challenges

    USGS Publications Warehouse

    Javed, Sàlim; Higuchi, Hiroyoshi; Nagendran, Meenakshi; Takekawa, John Y.

    2003-01-01

    Greater spatial coverage, accuracy and non-invasiveness of satellite technology make it one of the best tools to track long-distance migrants, which is otherwise difficult using conventional radio telemetry. In this article, we review the evolution of satellite telemetry and its application. We provide examples of three recent studies in India that have demonstrated and created a widespread appreciation of the use and benefits of satellite telemetry among biologists and managers. We also discuss the future prospects of this technology vis-a-vis benefits and challenges in the Indian subcontinent.

  2. A graphic system for telemetry monitoring and procedure performing at the Telecom SCC

    NASA Technical Reports Server (NTRS)

    Loubeyre, Jean Philippe

    1994-01-01

    The increasing amount of telemetry parameters and the increasing complexity of procedures used for the in-orbit satellite follow-up has led to the development of new tools for telemetry monitoring and procedures performing. The name of the system presented here is Graphic Server. It provides an advanced graphic representation of the satellite subsystems, including real-time telemetry and alarm displaying, and a powerful help for decision making with on line contingency procedures. Used for 2.5 years at the TELECOM S.C.C. for procedure performing, it has become an essential part of the S.C.C.

  3. Wired vs. Wireless.

    ERIC Educational Resources Information Center

    Fielding, Randall

    2000-01-01

    Presents a debate on which technology will be in tomorrow's classrooms and the pros and cons of wiring classrooms and using a wireless network. Concluding comments address the likelihood, and desirability, of placing computers throughout the entire educational process and what types of computers and capabilities are needed. (GR)

  4. Wireless Sensors Network (Sensornet)

    NASA Technical Reports Server (NTRS)

    Perotti, J.

    2003-01-01

    The Wireless Sensor Network System presented in this paper provides a flexible reconfigurable architecture that could be used in a broad range of applications. It also provides a sensor network with increased reliability; decreased maintainability costs, and assured data availability by autonomously and automatically reconfiguring to overcome communication interferences.

  5. 47 CFR 95.1111 - Frequency coordination.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Frequency coordination. 95.1111 Section 95.1111... SERVICES Wireless Medical Telemetry Service (WMTS) General Provisions § 95.1111 Frequency coordination. (a) Prior to operation, authorized health care providers who desire to use wireless medical telemetry...

  6. 47 CFR 95.1111 - Frequency coordination.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Frequency coordination. 95.1111 Section 95.1111... SERVICES Wireless Medical Telemetry Service (WMTS) General Provisions § 95.1111 Frequency coordination. (a) Prior to operation, authorized health care providers who desire to use wireless medical telemetry...

  7. 47 CFR 95.1107 - Authorized locations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PERSONAL RADIO SERVICES Wireless Medical Telemetry Service (WMTS) General Provisions § 95.1107 Authorized locations. The operation of a wireless medical telemetry transmitter under this part is authorized anywhere within a health...

  8. 47 CFR 95.1101 - Scope.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PERSONAL RADIO SERVICES Wireless Medical Telemetry Service (WMTS) General Provisions § 95.1101 Scope. This subpart sets out the regulations governing the operation of Wireless Medical Telemetry Devices in the 608-614 MHz...

  9. 47 CFR 95.1103 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PERSONAL RADIO SERVICES Wireless Medical Telemetry Service (WMTS) General Provisions § 95.1103 Definitions. (a) Authorized... facility does not include an ambulance or other moving vehicle. (c) Wireless medical telemetry. The...

  10. 47 CFR 95.1101 - Scope.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PERSONAL RADIO SERVICES Wireless Medical Telemetry Service (WMTS) General Provisions § 95.1101 Scope. This subpart sets out the regulations governing the operation of Wireless Medical Telemetry Devices in the 608-614 MHz...

  11. 47 CFR 95.1115 - General technical requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 95.1115 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PERSONAL RADIO SERVICES Wireless Medical Telemetry Service (WMTS) General Provisions § 95.1115... averaging detector and a 1 MHz measurement bandwidth. (c) Emission types. A wireless medical telemetry...

  12. 47 CFR 95.1105 - Eligibility.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PERSONAL RADIO SERVICES Wireless Medical Telemetry Service (WMTS) General Provisions § 95.1105 Eligibility. Authorized health care providers are authorized by rule to operate transmitters in the Wireless Medical Telemetry...

  13. 47 CFR 95.1115 - General technical requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 95.1115 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PERSONAL RADIO SERVICES Wireless Medical Telemetry Service (WMTS) General Provisions § 95.1115... averaging detector and a 1 MHz measurement bandwidth. (c) Emission types. A wireless medical telemetry...

  14. 47 CFR 95.1109 - Equipment authorization requirement.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Section 95.1109 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PERSONAL RADIO SERVICES Wireless Medical Telemetry Service (WMTS) General Provisions § 95.1109 Equipment authorization requirement. (a) Wireless medical telemetry devices operating under this part must...

  15. 47 CFR 95.1101 - Scope.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PERSONAL RADIO SERVICES Wireless Medical Telemetry Service (WMTS) General Provisions § 95.1101 Scope. This subpart sets out the regulations governing the operation of Wireless Medical Telemetry Devices in the 608-614 MHz...

  16. 47 CFR 95.1101 - Scope.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... SERVICES Wireless Medical Telemetry Service (WMTS) General Provisions § 95.1101 Scope. This subpart sets out the regulations governing the operation of Wireless Medical Telemetry Devices in the 608-614 MHz, 1395-1400 MHz, and 1427-1432 MHz frequency bands. See § 95.630 regarding permissible frequencies. [75...

  17. NASA Bluetooth Wireless Communications

    NASA Technical Reports Server (NTRS)

    Miller, Robert D.

    2007-01-01

    NASA has been interested in wireless communications for many years, especially when the crew size of the International Space Station (ISS) was reduced to two members. NASA began a study to find ways to improve crew efficiency to make sure the ISS could be maintained with limited crew capacity and still be a valuable research testbed in Low-Earth Orbit (LEO). Currently the ISS audio system requires astronauts to be tethered to the audio system, specifically a device called the Audio Terminal Unit (ATU). Wireless communications would remove the tether and allow astronauts to freely float from experiment to experiment without having to worry about moving and reconnecting the associated cabling or finding the space equivalent of an extension cord. A wireless communication system would also improve safety and reduce system susceptibility to Electromagnetic Interference (EMI). Safety would be improved because a crewmember could quickly escape a fire while maintaining communications with the ground and other crewmembers at any location. In addition, it would allow the crew to overcome the volume limitations of the ISS ATU. This is especially important to the Portable Breathing Apparatus (PBA). The next generation of space vehicles and habitats also demand wireless attention. Orion will carry up to six crewmembers in a relatively small cabin. Yet, wireless could become a driving factor to reduce launch weight and increase habitable volume. Six crewmembers, each tethered to a panel, could result in a wiring mess even in nominal operations. In addition to Orion, research is being conducted to determine if Bluetooth is appropriate for Lunar Habitat applications.

  18. Satellite telemetry: A new tool for wildlife research and management

    USGS Publications Warehouse

    Fancy, Steven G.; Pank, Larry F.; Douglas, David C.; Curby, Catherine H.; Garner, Gerald W.; Amstrup, Steven C.; Regelin, Wayne L.

    1998-01-01

    The U.S. Fish and Wildlife Service and the Alaska Department of Fish and Game have cooperated since 1984 to develop and evaluate satellite telemetry as a means of overcoming the high costs and logistical problems of conventional VHF (very high frequency) radiotelemetry systems. Detailed locational and behavioral data on caribou (Rangifer tarandus), polar bears (Ursus maritimus), and other large mammals in Alaska have been obtained using the Argos Data Collection and Location System (DCLS). The Argos system, a cooperative project of the Centre National d'Études Spatiales of France, the National Oceanic and Atmospheric Administration, and the National Aeronautics and Space Administration, is designed to acquire environmental data on a routine basis from anywhere on earth. Transmitters weighing 1.6-2.0 kg and functioning approximately 12-18 months operated on a frequency of 401.650 MHz. Signals from the transmitters were received by Argos DCLS instruments aboard two Tiros-N weather satellites in sun-synchronous, nearpolar orbits. Data from the satellites were received at tracking stations, transferred to processing centers in Maryland and France, and made available to users via computer tape, printouts, or telephone links.During 1985 and 1986, more than 25,000 locations and an additional 28,000 sets of sensor data (transmitter temperature and short-term and long-term indices of animal activity) were acquired for caribou and polar bears. Locations were calculated from the Doppler shift in the transmitted signal as the satellite approached and then moved away from the transmitter. The mean locational error for transmitters at known locations (n - 1,265) was 829 m; 90% of the calculated locations were within 1,700 m of the true location. Caribou transmitters provided a mean of 3.1 (+5.0. SD) locations per day during 6h of daily operation, and polar bear transmitters provided 1.7 (+6.9SD) locations during 12h of operation every third day. During the first 6 months of

  19. Ground station software for receiving and handling Irecin telemetry data

    NASA Astrophysics Data System (ADS)

    Ferrante, M.; Petrozzi, M.; Di Ciolo, L.; Ortenzi, A.; Troso, G

    2004-11-01

    The on board resources, needed to perform the mission tasks, are very limited in nano-satellites. This paper proposes a software system to receive, manage and process in Real Time the Telemetry data coming from IRECIN nanosatellite and transmit operator manual commands and operative procedures. During the receiving phase, it shows the IRECIN subsystem physical values, visualizes the IRECIN attitude, and performs other suitable functions. The IRECIN Ground Station program is in charge to exchange information between IRECIN and the Ground segment. It carries out, in real time during IRECIN transmission phase, IRECIN attitude drawing, sun direction drawing, power supply received from Sun, visualization of the telemetry data, visualization of Earth magnetic field and more other functions. The received data are memorized and interpreted by a module, parser, and distribute to the suitable modules. Moreover it allows sending manual and automatic commands. Manual commands are delivered by an operator, on the other hand, automatic commands are provided by pre-configured operative procedures. Operative procedures development is realized in a previous phase called configuration phase. This program is also in charge to carry out a test session by mean the scheduler and commanding modules allowing execution of specific tasks without operator control. A log module to memorize received and transmitted data is realized. A phase to analyze, filter and visualize in off line the collected data, called post analysis, is based on the data extraction form the log module. At the same time, the Ground Station Software can work in network allowing managing, receiving and sending data/commands from different sites. The proposed system constitutes the software of IRECIN Ground Station. IRECIN is a modular nanosatellite weighting less than 2 kg, constituted by sixteen external sides with surface-mounted solar cells and three internal Al plates, kept together by four steel bars. Lithium

  20. A 32-channel fully implantable wireless neurosensor for simultaneous recording from two cortical regions.

    PubMed

    Aceros, Juan; Yin, Ming; Borton, David A; Patterson, William R; Nurmikko, Arto V

    2011-01-01

    We present a fully implantable, wireless, neurosensor for multiple-location neural interface applications. The device integrates two independent 16-channel intracortical microelectrode arrays and can simultaneously acquire 32 channels of broadband neural data from two separate cortical areas. The system-on-chip implantable sensor is built on a flexible Kapton polymer substrate and incorporates three very low power subunits: two cortical subunits connected to a common subcutaneous subunit. Each cortical subunit has an ultra-low power 16-channel preamplifier and multiplexer integrated onto a cortical microelectrode array. The subcutaneous epicranial unit has an inductively coupled power supply, two analog-to-digital converters, a low power digital controller chip, and microlaser-based infrared telemetry. The entire system is soft encapsulated with biocompatible flexible materials for in vivo applications. Broadband neural data is conditioned, amplified, and analog multiplexed by each of the cortical subunits and passed to the subcutaneous component, where it is digitized and combined with synchronization data and wirelessly transmitted transcutaneously using high speed infrared telemetry.

  1. Macintosh II based space Telemetry and Command (MacTac) system

    NASA Technical Reports Server (NTRS)

    Dominy, Carol T.; Chesney, James R.; Collins, Aaron S.; Kay, W. K.

    1991-01-01

    The general architecture and the principal functions of the Macintosh II based Telemetry and Command system, presently under development, are described, with attention given to custom telemetry cards, input/output interfaces, and the icon driven user interface. The MacTac is a low-cost, transportable, easy to use, compact system designed to meet the requirements specified by the Consultative Committeee for Space Data Systems while remaining flexible enough to support a wide variety of other user specific telemetry processing requirements, such as TDM data. In addition, the MacTac can accept or generate forward data (such as spacecraft commands), calculate and append a Polynomial Check Code, and output these data to NASCOM to provide full Telemetry and Command capability.

  2. The evolution of electronic tracking, optical, telemetry, and command systems at the Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Mcmurran, W. R. (Editor)

    1973-01-01

    A history is presented of the major electronic tracking, optical, telemetry, and command systems used at ETR in support of Apollo-Saturn and its forerunner vehicles launched under the jurisdiction of the Kennedy Space Center and its forerunner organizations.

  3. Wireless programmable electrochemical drug delivery micropump with fully integrated electrochemical dosing sensors.

    PubMed

    Sheybani, Roya; Cobo, Angelica; Meng, Ellis

    2015-08-01

    We present a fully integrated implantable electrolysis-based micropump with incorporated EI dosing sensors. Wireless powering and data telemetry (through amplitude and frequency modulation) were utilized to achieve variable flow control and a bi-directional data link with the sensors. Wireless infusion rate control (0.14-1.04 μL/min) and dose sensing (bolus resolution of 0.55-2 μL) were each calibrated separately with the final circuit architecture and then simultaneous wireless flow control and dose sensing were demonstrated. Recombination detection using the dosing system, as well as, effects of coil separation distance and misalignment in wireless power and data transfer were studied. A custom-made normally closed spring-loaded ball check valve was designed and incorporated at the reservoir outlet to prevent backflow of fluids as a result of the reverse pressure gradient caused by recombination of electrolysis gases. Successful delivery, infusion rate control, and dose sensing were achieved in simulated brain tissue.

  4. Estimating animal resource selection from telemetry data using point process models

    USGS Publications Warehouse

    Johnson, Devin S.; Hooten, Mevin B.; Kuhn, Carey E.

    2013-01-01

    To demonstrate the analysis of telemetry data with the point process approach, we analysed a data set of telemetry locations from northern fur seals (Callorhinus ursinus) in the Pribilof Islands, Alaska. Both a space–time and an aggregated space-only model were fitted. At the individual level, the space–time analysis showed little selection relative to the habitat covariates. However, at the study area level, the space-only model showed strong selection relative to the covariates.

  5. The usefulness of GPS telemetry to study wolf circadian and social activity

    USGS Publications Warehouse

    Merrill, Samuel B.; Mech, L. David

    2003-01-01

    This study describes circadian and social movement patterns of 9 wolves and illustrates capabilities and limitations of Global Positioning System (GPS) telemetry for analysis of animal activity patterns. Global Positioning System telemetry was useful in determining when pack members were traveling together or apart and how long a breeding female wolf spent near her pups (e.g., 10-month-old pups were left unattended by their mother for as long as 17 days).

  6. A Model for Real-Time Data Reputation Via Cyber Telemetry

    DTIC Science & Technology

    2016-06-01

    TIME DATA REPUTATION VIA CYBER TELEMETRY by Beau M. Houser June 2016 Thesis Advisor: Dorothy E. Denning Co-Advisor: Phyllis Schneck...information is estimated to average 1 hour per response, including the time for reviewing instruction, searching existing data sources, gathering and...Master’s Thesis 4. TITLE AND SUBTITLE A MODEL FOR REAL- TIME DATA REPUTATION VIA CYBER TELEMETRY 5. FUNDING NUMBERS 6. AUTHOR(S) Beau M

  7. Development of BION(TM) Technology for Functional Electrical Stimulation: Bidirectional Telemetry

    DTIC Science & Technology

    2001-10-25

    paralyzed limb , it is necessary to incorporate sensors and back telemetry to provide voluntary control and sensory feedback signals. We describe...requirements. Keywords - neural prostheses, electrical stimulation, implants, telemetry, sensors I. INTRODUCTION BIONs ( BIOnic Neurons) are modular...ents of a paralyzed limb will require a sophisticated control system that must be driven by two types of data from the patient: 1) command signals

  8. A Sensible Approach to Wireless Networking.

    ERIC Educational Resources Information Center

    Ahmed, S. Faruq

    2002-01-01

    Discusses radio frequency (R.F.) wireless technology, including industry standards, range (coverage) and throughput (data rate), wireless compared to wired networks, and considerations before embarking on a large-scale wireless project. (EV)

  9. Toward a national animal telemetry network for aquatic observations in the United States

    USGS Publications Warehouse

    Block, Barbara A.; Holbrook, Christopher; Simmons, Samantha E; Holland, Kim N; Ault, Jerald S.; Costa, Daniel P.; Mate, Bruce R; Seitz, Andrew C.; Arendt, Michael D.; Payne, John; Mahmoudi, Behzad; Moore, Peter L.; Price, James; J. J. Levenson,; Wilson, Doug; Kochevar, Randall E

    2016-01-01

    Animal telemetry is the science of elucidating the movements and behavior of animals in relation to their environment or habitat. Here, we focus on telemetry of aquatic species (marine mammals, sharks, fish, sea birds and turtles) and so are concerned with animal movements and behavior as they move through and above the world’s oceans, coastal rivers, estuaries and great lakes. Animal telemetry devices (“tags”) yield detailed data regarding animal responses to the coupled ocean–atmosphere and physical environment through which they are moving. Animal telemetry has matured and we describe a developing US Animal Telemetry Network (ATN) observing system that monitors aquatic life on a range of temporal and spatial scales that will yield both short- and long-term benefits, fill oceanographic observing and knowledge gaps and advance many of the U.S. National Ocean Policy Priority Objectives. ATN has the potential to create a huge impact for the ocean observing activities undertaken by the U.S. Integrated Ocean Observing System (IOOS) and become a model for establishing additional national-level telemetry networks worldwide.

  10. Animal movement constraints improve resource selection inference in the presence of telemetry error

    USGS Publications Warehouse

    Brost, Brian M.; Hooten, Mevin B.; Hanks, Ephraim M.; Small, Robert J.

    2016-01-01

    Multiple factors complicate the analysis of animal telemetry location data. Recent advancements address issues such as temporal autocorrelation and telemetry measurement error, but additional challenges remain. Difficulties introduced by complicated error structures or barriers to animal movement can weaken inference. We propose an approach for obtaining resource selection inference from animal location data that accounts for complicated error structures, movement constraints, and temporally autocorrelated observations. We specify a model for telemetry data observed with error conditional on unobserved true locations that reflects prior knowledge about constraints in the animal movement process. The observed telemetry data are modeled using a flexible distribution that accommodates extreme errors and complicated error structures. Although constraints to movement are often viewed as a nuisance, we use constraints to simultaneously estimate and account for telemetry error. We apply the model to simulated data, showing that it outperforms common ad hoc approaches used when confronted with measurement error and movement constraints. We then apply our framework to an Argos satellite telemetry data set on harbor seals (Phoca vitulina) in the Gulf of Alaska, a species that is constrained to move within the marine environment and adjacent coastlines.

  11. Wireless miniature implantable devices and ASICs for monitoring, treatment, and study of glaucoma and cardiac disease

    NASA Astrophysics Data System (ADS)

    Chow, Eric Y.

    Glaucoma affects about 65 million people and is the second leading cause of blindness in the world. Although the condition is irreversible and incurable, early detection is vital to slowing and even stopping the progression of the disease. Our work focuses on the design, fabrication, and assembly of a continuous active glaucoma intraocular pressure (IOP) monitor that provides clinicians with the necessary data to more accurately diagnose and treat patients. Major benefits of an active monitoring device include the potential to develop a closed-loop treatment system and to operate independently for extended periods of time. The fully wireless operation uses gigahertzfrequency electromagnetic wave propagation, which allows for an orientation independent transfer of power and data over reasonable distances. Our system is comprised of a MEMS capacitive sensor, capacitive power storage array, ASIC, and monopole antenna assembled into a biocompatible liquid crystal polymer (LCP) package. We have performed in vivo trials on rabbits, both chronic and acute, to validate system functionality, fully wireless feasibility, and biocompatibility. Heart failure (HF) affects approximately 2% of the adult population in developed countries and 6-10% of people over the age of 65. Continuous monitoring of blood pressure, flow, and chemistry from a minimally invasive device can serve as a diagnostic and early-warning system for cardiac health. We developed a miniaturized system attached to the outer surface of an FDA approved stent, used as both the antenna for wireless telemetry/powering and structural support. The system comprises of a MEMS pressure sensor, ASIC for the sensor interface and wireless capabilities, LCP substrate, and FDA approved stent. In vivo studies on pigs validated functionality and fully wireless operation and demonstrate the feasibility of a stent-based wireless implant for continuous monitoring of blood pressure as well as other parameters including oxygen, flow

  12. Satellite telemetry: performance of animal-tracking systems

    USGS Publications Warehouse

    Keating, Kim A.; Brewster, Wayne G.; Key, Carl H.

    1991-01-01

    t: We used 10 Telonics ST-3 platform transmitter terminals (PTT's) configured for wolves and ungulates to examine the performance of the Argos satellite telemetry system. Under near-optimal conditions, 68 percentile errors for location qualities (NQ) 1, 2, and 3 were 1,188, 903, and 361 m, respectively. Errors (rE) exceeded expected values for NQ = 2 and 3, varied greatly among PTT's, increased as the difference (HE) between the estimated and actual PTT elevations increased, and were correlated nonlinearly with maximum satellite pass height (P,). We present a model of the relationships among rE, HE, and PH. Errors were bimodally distributed along the east-west axis and tended to occur away from the satellite when HE was positive. A southeasterly bias increased with HE, probably due to the particular distribution of satellite passes and effects of HE on rE. Under near-optimal conditions, 21 sensor message was received for up to 64% of available (PH, 50) satellite passes, and a location (NQ 2 1) was calculated for up to 63% of such passes. Sampling frequencies of sensor and location data declined 13 and 70%, respectively, for PTT's in a valley bottom and 65 and 86%, respectively, for PTT's on animals that were in valley bottoms. Sampling frequencies were greater for ungulate than for wolf collars.

  13. Using an electronic compass to determine telemetry azimuths

    USGS Publications Warehouse

    Cox, R.R.; Scalf, J.D.; Jamison, B.E.; Lutz, R.S.

    2002-01-01

    Researchers typically collect azimuths from known locations to estimate locations of radiomarked animals. Mobile, vehicle-mounted telemetry receiving systems frequently are used to gather azimuth data. Use of mobile systems typically involves estimating the vehicle's orientation to grid north (vehicle azimuth), recording an azimuth to the transmitter relative to the vehicle azimuth from a fixed rosette around the antenna mast (relative azimuth), and subsequently calculating an azimuth to the transmitter (animal azimuth). We incorporated electronic compasses into standard null-peak antenna systems by mounting the compass sensors atop the antenna masts and evaluated the precision of this configuration. This system increased efficiency by eliminating vehicle orientation and calculations to determine animal azimuths and produced estimates of precision (azimuth SD=2.6 deg., SE=0.16 deg.) similar to systems that required orienting the mobile system to grid north. Using an electronic compass increased efficiency without sacrificing precision and should produce more accurate estimates of locations when marked animals are moving or when vehicle orientation is problematic.

  14. Performance Analysis of Digital Tracking Loops for Telemetry Ranging Applications

    NASA Astrophysics Data System (ADS)

    Vilnrotter, V.; Hamkins, J.; Xie, H.; Ashrafi, S.

    2015-08-01

    In this article, we analyze mathematical models of digital loops used to track the phase and timing of communications and navigation signals. The limits on the accuracy of phase and timing estimates play a critical role in the accuracy achievable in telemetry ranging applications. We describe in detail a practical algorithm to compute the loop parameters for discrete update (DU) and continuous update (CU) loop formulations, and we show that a simple power-series approximation to the DU model is valid over a large range of time-bandwidth product . Several numerical examples compare the estimation error variance of the DU and CU models to each other and to Cramer-Rao lower bounds. Finally, the results are applied to the problem of ranging, by evaluating the performance of a phase-locked loop designed to track a typical ambiguity-resolving pseudonoise (PN) code received and demodulated at the spacecraft on the uplink part of the two-way ranging link, and a data transition tracking loop (DTTL) on the downlink part.

  15. Method and apparatus for telemetry adaptive bandwidth compression

    NASA Technical Reports Server (NTRS)

    Graham, Olin L.

    1987-01-01

    Methods and apparatus are provided for automatic and/or manual adaptive bandwidth compression of telemetry. An adaptive sampler samples a video signal from a scanning sensor and generates a sequence of sampled fields. Each field and range rate information from the sensor are hence sequentially transmitted to and stored in a multiple and adaptive field storage means. The field storage means then, in response to an automatic or manual control signal, transfers the stored sampled field signals to a video monitor in a form for sequential or simultaneous display of a desired number of stored signal fields. The sampling ratio of the adaptive sample, the relative proportion of available communication bandwidth allocated respectively to transmitted data and video information, and the number of fields simultaneously displayed are manually or automatically selectively adjustable in functional relationship to each other and detected range rate. In one embodiment, when relatively little or no scene motion is detected, the control signal maximizes sampling ratio and causes simultaneous display of all stored fields, thus maximizing resolution and bandwidth available for data transmission. When increased scene motion is detected, the control signal is adjusted accordingly to cause display of fewer fields. If greater resolution is desired, the control signal is adjusted to increase the sampling ratio.

  16. A distributed computing model for telemetry data processing

    NASA Astrophysics Data System (ADS)

    Barry, Matthew R.; Scott, Kevin L.; Weismuller, Steven P.

    1994-05-01

    We present a new approach to distributing processed telemetry data among spacecraft flight controllers within the control centers at NASA's Johnson Space Center. This approach facilitates the development of application programs which integrate spacecraft-telemetered data and ground-based synthesized data, then distributes this information to flight controllers for analysis and decision-making. The new approach combines various distributed computing models into one hybrid distributed computing model. The model employs both client-server and peer-to-peer distributed computing models cooperating to provide users with information throughout a diverse operations environment. Specifically, it provides an attractive foundation upon which we are building critical real-time monitoring and control applications, while simultaneously lending itself to peripheral applications in playback operations, mission preparations, flight controller training, and program development and verification. We have realized the hybrid distributed computing model through an information sharing protocol. We shall describe the motivations that inspired us to create this protocol, along with a brief conceptual description of the distributed computing models it employs. We describe the protocol design in more detail, discussing many of the program design considerations and techniques we have adopted. Finally, we describe how this model is especially suitable for supporting the implementation of distributed expert system applications.

  17. A distributed computing model for telemetry data processing

    NASA Technical Reports Server (NTRS)

    Barry, Matthew R.; Scott, Kevin L.; Weismuller, Steven P.

    1994-01-01

    We present a new approach to distributing processed telemetry data among spacecraft flight controllers within the control centers at NASA's Johnson Space Center. This approach facilitates the development of application programs which integrate spacecraft-telemetered data and ground-based synthesized data, then distributes this information to flight controllers for analysis and decision-making. The new approach combines various distributed computing models into one hybrid distributed computing model. The model employs both client-server and peer-to-peer distributed computing models cooperating to provide users with information throughout a diverse operations environment. Specifically, it provides an attractive foundation upon which we are building critical real-time monitoring and control applications, while simultaneously lending itself to peripheral applications in playback operations, mission preparations, flight controller training, and program development and verification. We have realized the hybrid distributed computing model through an information sharing protocol. We shall describe the motivations that inspired us to create this protocol, along with a brief conceptual description of the distributed computing models it employs. We describe the protocol design in more detail, discussing many of the program design considerations and techniques we have adopted. Finally, we describe how this model is especially suitable for supporting the implementation of distributed expert system applications.

  18. Cognitive Medical Wireless Testbed System (COMWITS)

    DTIC Science & Technology

    2016-11-01

    Number: ...... ...... Sub Contractors (DD882) Names of other research staff Inventions (DD882) Scientific Progress This testbed merges two ARO grants...bit 64 bit CPU Intel Xeon Processor E5-1650v3 (6C, 3.5 GHz, Turbo, HT , 15M, 140W) Intel Core i7-3770 (3.4 GHz Quad Core, 77W) Dual Intel Xeon

  19. Miniaturized optoelectronic system for telemetry of in vivo voltammetric signals.

    PubMed

    De Simoni, M G; De Luigi, A; Imeri, L; Algeri, S

    1990-08-01

    In vivo voltammetry is an electrochemical technique that uses carbon fiber microelectrodes stereotaxically implanted in brain areas to monitor monoamine metabolism and release continuously, in freely moving animals. Electric wires connect the polarograph to the animal. A wire-less transmission system (optoelectronic transmission, OPT) of voltammetric signals is described here. It uses infrared diffused light, exploiting the diffusion of the transmitted light over walls and ceiling towards a receiver. The transmission system consists of a main unit and a satellite unit (40 x 30 x 5 mm) positioned on the animal's back. Voltammetric recordings obtained by the classical system (with wires) and by OPT are well defined and almost identical in shape. The power supply is provided by two thin lithium batteries (+/- 3V) that can record for up to 20 h. OPT permits detailed behavioral observations since the animal can be left free to move in a spacious environment. Voltammetry using OPT allows simultaneous recording of neuronal firing activity as well as electroencephalographic recordings (EEG) since there is no cross-talk between the circuits used. The results illustrate the reliability and usefulness of this wire-less transmission system for studying relationships between neurochemical, behavioral and electrophysiological activities.

  20. Real-Time and Secure Wireless Health Monitoring

    PubMed Central

    Dağtaş, S.; Pekhteryev, G.; Şahinoğlu, Z.; Çam, H.; Challa, N.

    2008-01-01

    We present a framework for a wireless health monitoring system using wireless networks such as ZigBee. Vital signals are collected and processed using a 3-tiered architecture. The first stage is the mobile device carried on the body that runs a number of wired and wireless probes. This device is also designed to perform some basic processing such as the heart rate and fatal failure detection. At the second stage, further processing is performed by a local server using the raw data transmitted by the mobile device continuously. The raw data is also stored at this server. The processed data as well as the analysis results are then transmitted to the service provider center for diagnostic reviews as well as storage. The main advantages of the proposed framework are (1) the ability to detect signals wirelessly within a body sensor network (BSN), (2) low-power and reliable data transmission through ZigBee network nodes, (3) secure transmission of medical data over BSN, (4) efficient channel allocation for medical data transmission over wireless networks, and (5) optimized analysis of data using an adaptive architecture that maximizes the utility of processing and computational capacity at each platform. PMID:18497866

  1. Wireless local area network security.

    PubMed

    Bergeron, Bryan P

    2004-01-01

    Wireless local area networks (WLANs) are increasingly popular in clinical settings because they facilitate the use of wireless PDAs, laptops, and other pervasive computing devices at the point of care. However, because of the relative immaturity of wireless network technology and evolving standards, WLANs, if improperly configured, can present significant security risks. Understanding the security limitations of the technology and available fixes can help minimize the risks of clinical data loss and maintain compliance with HIPAA guidelines.

  2. Wireless Communications in Reverberant Environments

    DTIC Science & Technology

    2015-01-01

    Secure Wireless Agent Testbed (SWAT), the Protocol Engineering Advanced Networking (PROTEAN) Research Group, the Data Fusion Laboratory (DFL), and the...constraints of their application. 81 Bibliography [1] V. Gungor and G. Hancke, “Industrial wireless sensor networks : Challenges, design principles, and...Bhattacharya, “Path loss estimation for a wireless sensor network for application in ship,” Int. J. of Comput. Sci. and Mobile Computing, vol. 2, no. 6, pp

  3. Wireless Seismometer for Venus

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.; Scardelletti, Maximilian C.; Taylor, Brandt; Beard, Steve; Clougherty, Brian; Meredith, Roger D.; Beheim, Glenn M.; Kiefer, Walter S.; Hunter, Gary W.

    2014-01-01

    Measuring the seismic activity of Venus is critical to understanding its composition and interior dynamics. Because Venus has an average surface temperature of 462 C and the challenge of providing cooling to multiple seismometers, a high temperature, wireless sensor using a wide bandgap semiconductor is an attractive option. This paper presents progress towards a seismometer sensor with wireless capabilities for Venus applications. A variation in inductance of a coil caused by a 1 cm movement of a ferrite probe held in the coil and attached to a balanced leaf-spring seismometer causes a variation of 80 MHz in the transmitted signal from the oscillator sensor system at 420 C, which correlates to a 10 kHz mm sensitivity when the ferrite probe is located at the optimum location in the coil.

  4. Wireless infrared computer control

    NASA Astrophysics Data System (ADS)

    Chen, George C.; He, Xiaofei

    2004-04-01

    Wireless mouse is not restricted by cable"s length and has advantage over its wired counterpart. However, all the mice available in the market have detection range less than 2 meters and angular coverage less than 180 degrees. Furthermore, commercial infrared mice are based on track ball and rollers to detect movements. This restricts them to be used in those occasions where users want to have dynamic movement, such as presentations and meetings etc. This paper presents our newly developed infrared wireless mouse, which has a detection range of 6 meters and angular coverage of 180 degrees. This new mouse uses buttons instead of traditional track ball and is developed to be a hand-held device like remote controller. It enables users to control cursor with a distance closed to computer and the mouse to be free from computer operation.

  5. Optical Wireless Communications

    NASA Astrophysics Data System (ADS)

    Arnon, Shlomi; Britz, David M.; Boucouvalas, Anthony C.; Kavehrad, Mohsen

    2005-01-01

    Call for Papers

    Optical Wireless Communications

    Submission Deadline: 1 February 2005

    Guest Editors:

  6. Adapting Future Wireless Technologies

    DTIC Science & Technology

    2002-01-01

    commercial satellite based systems remains to be proven. Even some of the more commercially successful satellite system (e.g.; the DirecTV direct...Space Data are all looking for private funds without much success . Once funded, estimated time frame for deploying first systems is minimum 3 to 4...of today. It is critical to the mission success that the terrestrial domain of the Army’s C4ISR is based on mobile, ad-hoc, self-healing wireless

  7. Wireless Internet Gateways (WINGS)

    DTIC Science & Technology

    1997-01-01

    WIRELESS INTERNET GATEWAYS (WINGS) J.J. Garcia-Luna-Aceves, Chane L. Fullmer, Ewerton Madruga Computer Engineering Department University of...rooftop.com Abstract— Today’s internetwork technology has been extremely success- ful in linking huge numbers of computers and users. However, to date...this technology has been oriented to computer interconnection in relatively stable operational environments, and thus cannot adequately support many of

  8. Wearable wireless photoplethysmography sensors

    NASA Astrophysics Data System (ADS)

    Spigulis, Janis; Erts, Renars; Nikiforovs, Vladimirs; Kviesis-Kipge, Edgars

    2008-04-01

    Wearable health monitoring sensors may support early detection of abnormal conditions and prevention of their consequences. Recent designs of three wireless photoplethysmography monitoring devices embedded in hat, glove and sock, and connected to PC or mobile phone by means of the Bluetooth technology, are described. First results of distant monitoring of heart rate and pulse wave transit time using the newly developed devices are presented.

  9. Insecurity of Wireless Networks

    SciTech Connect

    Sheldon, Frederick T; Weber, John Mark; Yoo, Seong-Moo

    Wireless is a powerful core technology enabling our global digital infrastructure. Wi-Fi networks are susceptible to attacks on Wired Equivalency Privacy, Wi-Fi Protected Access (WPA), and WPA2. These attack signatures can be profiled into a system that defends against such attacks on the basis of their inherent characteristics. Wi-Fi is the standard protocol for wireless networks used extensively in US critical infrastructures. Since the Wired Equivalency Privacy (WEP) security protocol was broken, the Wi-Fi Protected Access (WPA) protocol has been considered the secure alternative compatible with hardware developed for WEP. However, in November 2008, researchers developed an attack on WPA,more » allowing forgery of Address Resolution Protocol (ARP) packets. Subsequent enhancements have enabled ARP poisoning, cryptosystem denial of service, and man-in-the-middle attacks. Open source systems and methods (OSSM) have long been used to secure networks against such attacks. This article reviews OSSMs and the results of experimental attacks on WPA. These experiments re-created current attacks in a laboratory setting, recording both wired and wireless traffic. The article discusses methods of intrusion detection and prevention in the context of cyber physical protection of critical Internet infrastructure. The basis for this research is a specialized (and undoubtedly incomplete) taxonomy of Wi-Fi attacks and their adaptations to existing countermeasures and protocol revisions. Ultimately, this article aims to provide a clearer picture of how and why wireless protection protocols and encryption must achieve a more scientific basis for detecting and preventing such attacks.« less

  10. EMG amplifier with wireless data transmission

    NASA Astrophysics Data System (ADS)

    Kowalski, Grzegorz; Wildner, Krzysztof

    2017-08-01

    Wireless medical diagnostics is a trend in modern technology used in medicine. This paper presents a concept of realization, architecture of hardware and software implementation of an elecromyography signal (EMG) amplifier with wireless data transmission. This amplifier consists of three components: analogue processing of bioelectric signal module, micro-controller circuit and an application enabling data acquisition via a personal computer. The analogue bioelectric signal processing circuit receives electromyography signals from the skin surface, followed by initial analogue processing and preparation of the signals for further digital processing. The second module is a micro-controller circuit designed to wirelessly transmit the electromyography signals from the analogue signal converter to a personal computer. Its purpose is to eliminate the need for wired connections between the patient and the data logging device. The third block is a computer application designed to display the transmitted electromyography signals, as well as data capture and analysis. Its purpose is to provide a graphical representation of the collected data. The entire device has been thoroughly tested to ensure proper functioning. In use, the device displayed the captured electromyography signal from the arm of the patient. Amplitude- frequency characteristics were set in order to investigate the bandwidth and the overall gain of the device.

  11. Making Wireless Networks Secure for NASA Mission Critical Applications using Virtual Private Network (VPN) Technology

    NASA Technical Reports Server (NTRS)

    Nichols, Kelvin F.; Best, Susan; Schneider, Larry

    2004-01-01

    With so many security issues involved with wireless networks, the technology has not been fully utilized in the area of mission critical applications. These applications would include the areas of telemetry, commanding, voice and video. Wireless networking would allow payload operators the mobility to take computers outside of the control room to their offices and anywhere else in the facility that the wireless network was extended. But the risk is too great of having someone sit just inside of your wireless network coverage and intercept enough of your network traffic to steal proprietary data from a payload experiment or worse yet hack back into your system and do even greater harm by issuing harmful commands. Wired Equivalent Privacy (WEP) is improving but has a ways to go before it can be trusted to protect mission critical data. Today s hackers are becoming more aggressive and innovative, and in order to take advantage of the benefits that wireless networking offer, appropriate security measures need to be in place that will thwart hackers. The Virtual Private Network (VPN) offers a solution to the security problems that have kept wireless networks from being used for mission critical applications. VPN provides a level of encryption that will ensure that data is protected while it is being transmitted over a wireless local area network (IAN). The VPN allows a user to authenticate to the site that the user needs to access. Once this authentication has taken place the network traffic between that site and the user is encapsulated in VPN packets with the Triple Data Encryption Standard (3DES). 3DES is an encryption standard that uses a single secret key to encrypt and decrypt data. The length of the encryption key is 168 bits as opposed to its predecessor DES that has a 56-bit encryption key. Even though 3DES is the common encryption standard for today, the Advance Encryption Standard (AES), which provides even better encryption at a lower cycle cost is growing

  12. Making Wireless Networks Secure for NASA Mission Critical Applications Using Virtual Private Network (VPN) Technology

    NASA Technical Reports Server (NTRS)

    Nichols, Kelvin F.; Best, Susan; Schneider, Larry

    2004-01-01

    With so many security issues involved with wireless networks, the technology has not been fully utilized in the area of mission critical applications. These applications would include the areas of telemetry, commanding, voice and video. Wireless networking would allow payload operators the mobility to take computers outside of the control room to their off ices and anywhere else in the facility that the wireless network was extended. But the risk is too great of having someone sit just inside of your wireless network coverage and intercept enough of your network traffic to steal proprietary data from a payload experiment or worse yet hack back into your system and do even greater harm by issuing harmful commands. Wired Equivalent Privacy (WEP) is improving but has a ways to go before it can be trusted to protect mission critical data. Today s hackers are becoming more aggressive and innovative, and in order to take advantage of the benefits that wireless networking offer, appropriate security measures need to be in place that will thwart hackers. The Virtual Private Network (VPN) offers a solution to the security problems that have kept wireless networks from being used for mission critical applications. VPN provides a level of encryption that will ensure that data is protected while it is being transmitted over a wireless local area network (LAN). The VPN allows a user to authenticate to the site that the user needs to access. Once this authentication has taken place the network traffic between that site and the user is encapsulated in VPN packets with the Triple Data Encryption Standard (3DES). 3DES is an encryption standard that uses a single secret key to encrypt and decrypt data. The length of the encryption key is 168 bits as opposed to its predecessor DES that has a 56-bit encryption key. Even though 3DES is the common encryption standard for today, the Advance Encryption Standard (AES), which provides even better encryption at a lower cycle cost is growing

  13. X-36 on Ground after Radio and Telemetry Tests

    NASA Technical Reports Server (NTRS)

    1996-01-01

    A UH-1 helicopter lowers the X-36 Tailless Fighter Agility Research Aircraft to the ground after radio frequency and telemetry tests above Rogers Dry Lake at NASA Dryden Flight Research Center, Edwards, California, in November 1996. The purpose of taking the X-36 aloft for the radio and telemetry system checkouts was to test the systems more realistically while airborne. More taxi and radio frequency tests were conducted before the aircraft's first flight in early 1997. The NASA/Boeing X-36 Tailless Fighter Agility Research Aircraft program successfully demonstrated the tailless fighter design using advanced technologies to improve the maneuverability and survivability of possible future fighter aircraft. The program met or exceeded all project goals. For 31 flights during 1997 at the Dryden Flight Research Center, Edwards, California, the project team examined the aircraft's agility at low speed / high angles of attack and at high speed / low angles of attack. The aircraft's speed envelope reached up to 206 knots (234 mph). This aircraft was very stable and maneuverable. It handled very well. The X-36 vehicle was designed to fly without the traditional tail surfaces common on most aircraft. Instead, a canard forward of the wing was used as well as split ailerons and an advanced thrust-vectoring nozzle for directional control. The X-36 was unstable in both pitch and yaw axes, so an advanced, single-channel digital fly-by-wire control system (developed with some commercially available components) was put in place to stabilize the aircraft. Using a video camera mounted in the nose of the aircraft and an onboard microphone, the X-36 was remotely controlled by a pilot in a ground station virtual cockpit. A standard fighter-type head-up display (HUD) and a moving-map representation of the vehicle's position within the range in which it flew provided excellent situational awareness for the pilot. This pilot-in-the-loop approach eliminated the need for expensive and

  14. Identifying and mitigating errors in satellite telemetry of polar bears

    USGS Publications Warehouse

    Arthur, Stephen M.; Garner, Gerald W.; Olson, Tamara L.

    1998-01-01

    Satellite radiotelemetry is a useful method of tracking movements of animals that travel long distances or inhabit remote areas. However, the logistical constraints that encourage the use of satellite telemetry also inhibit efforts to assess accuracy of the resulting data. To investigate effectiveness of methods that might be used to improve the reliability of these data, we compared 3 sets of criteria designed to select the most plausible locations of polar bears (Ursus maritimus) that were tracked using satellite radiotelemetry in the Bering, Chukchi, East Siberian, Laptev, and Kara seas during 1988-93. We also evaluated several indices of location accuracy. Our results suggested that, although indices could provide information useful in evaluating location accuracy, no index or set of criteria was sufficient to identify all the implausible locations. Thus, it was necessary to examine the data and make subjective decisions about which locations to accept or reject. However, by using a formal set of selection criteria, we simplified the task of evaluating locations and ensured that decisions were made consistently. This approach also enabled us to evaluate biases that may be introduced by the criteria used to identify location errors. For our study, the best set of selection criteria comprised: (1) rejecting locations for which the distance to the nearest other point from the same day was >50 km; (2) determining the highest accuracy code (NLOC) for a particular day and rejecting locations from that day with lesser values; and (3) from the remaining locations for each day, selecting the location closest to the location chosen for the previous transmission period. Although our selection criteria seemed unlikely to bias studies of habitat use or geographic distribution, basing selection decisions on distances between points might bias studies of movement rates or distances. It is unlikely that any set of criteria will be best for all situations; to make efficient use

  15. Telemetry Monitoring and Display Using LabVIEW

    NASA Technical Reports Server (NTRS)

    Wells, George; Baroth, Edmund C.

    1993-01-01

    The Measurement Technology Center of the Instrumentation Section configures automated data acquisition systems to meet the diverse needs of JPL's experimental research community. These systems are based on personal computers or workstations (Apple, IBM/Compatible, Hewlett-Packard, and Sun Microsystems) and often include integrated data analysis, visualization and experiment control functions in addition to data acquisition capabilities. These integrated systems may include sensors, signal conditioning, data acquisition interface cards, software, and a user interface. Graphical programming is used to simplify configuration of such systems. Employment of a graphical programming language is the most important factor in enabling the implementation of data acquisition, analysis, display and visualization systems at low cost. Other important factors are the use of commercial software packages and off-the-shelf data acquisition hardware where possible. Understanding the experimenter's needs is also critical. An interactive approach to user interface construction and training of operators is also important. One application was created as a result of a competative effort between a graphical programming language team and a text-based C language programming team to verify the advantages of using a graphical programming language approach. With approximately eight weeks of funding over a period of three months, the text-based programming team accomplished about 10% of the basic requirements, while the Macintosh/LabVIEW team accomplished about 150%, having gone beyond the original requirements to simulate a telemetry stream and provide utility programs. This application verified that using graphical programming can significantly reduce software development time. As a result of this initial effort, additional follow-on work was awarded to the graphical programming team.

  16. Can telemetry data obviate the need for sleep studies in Pierre Robin Sequence?

    PubMed

    Aaronson, Nicole Leigh; Jabbour, Noel

    2017-09-01

    This study looks to correlate telemetry data gathered on patients with Pierre Robin Sequence (PRS) with sleep study data. Strong correlation might allow obstructive sleep apnea (OSA) to be reasonably predicted without the need for sleep study. Charts from forty-six infants with PRS who presented to our children's hospital between 2005 and 2015 and received a polysomnogram (PSG) prior to surgical intervention were retrospectively reviewed. Correlations and scatterplots were used to compare average daily oxygen nadir, overall oxygen nadir, and average number of daily desaturations from telemetry data with apnea-hypopnea index (AHI) and oxygen nadir on sleep study. Results were also categorized into groups of AHI ≥ or <10 and oxygen nadir ≥ or <80% for chi-squared analysis. Our data did not show significant correlations between telemetry data and sleep study data. Patients with O2 nadir below 80% on telemetry were not more likely to have an O2 nadir below 80% on sleep study. Patients with an average O2 nadir below 80% did show some correlation with having an AHI greater than 10 on sleep study but this relationship did not reach significance. Of 22 patients who did not have any desaturations on telemetry below 80%, 16 (73%) had an AHI >10 on sleep study. In the workup of infants with PRS, the index of suspicion is high for OSA. In our series, telemetry data was not useful in ruling out severe OSA. Thus our data do not support forgoing sleep study in patients with PRS and concern for OSA despite normal telemetry patterns. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Unpowered wireless generation and sensing of ultrasound

    NASA Astrophysics Data System (ADS)

    Huang, Haiying

    2013-04-01

    This paper presents a wireless ultrasound pitch-catch system that demonstrates the wireless generation and sensing of ultrasounds based on the principle of frequency conversion. The wireless ultrasound pitch-catch system consists of a wireless interrogator and two wireless ultrasound transducers. The wireless interrogator generates an ultrasound-modulated signal and a carrier signal, both at the microwave frequency, and transmits these two signals to the wireless ultrasound actuator using a pair of antennas. Upon receiving these two signals, the wireless ultrasound actuator recovers the ultrasound excitation signal using a passive mixer and then supplies it to a piezoelectric wafer sensor for ultrasound generation in the structure. For wireless ultrasound sensing, the frequency conversion process is reversed. The ultrasound sensing signal is up-converted to a microwave signal by the wireless ultrasound sensor and is recovered at the wireless interrogator using a homodyne receiver. To differentiate the wireless actuator from the wireless sensor, each wireless transducer is equipped with a narrowband microwave filter so that it only responds to the carrier frequency that matches the filter's operation bandwidth. The principle of operation of the wireless pitch-catch system, the hardware implementation, and the associated data processing algorithm to recover the ultrasound signal from the wirelessly received signal are described. The wirelessly acquired ultrasound signal is compared with those acquired using wired connection in both time and frequency domain.

  18. Unmanned Aerial Vehicle (UAV) Dynamic-Tracking Directional Wireless Antennas for Low Powered Applications that Require Reliable Extended Range Operations in Time Critical Scenarios

    SciTech Connect

    Scott G. Bauer; Matthew O. Anderson; James R. Hanneman

    2005-10-01

    The proven value of DOD Unmanned Aerial Vehicles (UAVs) will ultimately transition to National and Homeland Security missions that require real-time aerial surveillance, situation awareness, force protection, and sensor placement. Public services first responders who routinely risk personal safety to assess and report a situation for emergency actions will likely be the first to benefit from these new unmanned technologies. ‘Packable’ or ‘Portable’ small class UAVs will be particularly useful to the first responder. They require the least amount of training, no fixed infrastructure, and are capable of being launched and recovered from the point of emergency. All UAVs requiremore » wireless communication technologies for real- time applications. Typically on a small UAV, a low bandwidth telemetry link is required for command and control (C2), and systems health monitoring. If the UAV is equipped with a real-time Electro-Optical or Infrared (EO/Ir) video camera payload, a dedicated high bandwidth analog/digital link is usually required for reliable high-resolution imagery. In most cases, both the wireless telemetry and real-time video links will be integrated into the UAV with unity gain omni-directional antennas. With limited on-board power and payload capacity, a small UAV will be limited with the amount of radio-frequency (RF) energy it transmits to the users. Therefore, ‘packable’ and ‘portable’ UAVs will have limited useful operational ranges for first responders. This paper will discuss the limitations of small UAV wireless communications. The discussion will present an approach of utilizing a dynamic ground based real-time tracking high gain directional antenna to provide extend range stand-off operation, potential RF channel reuse, and assured telemetry and data communications from low-powered UAV deployed wireless assets.« less

  19. An Initial Look at Adjacent Band Interference Between Aeronautical Mobile Telemetry and Long-Term Evolution Wireless Service

    DTIC Science & Technology

    2016-07-04

    required analysis, and further testing. 15. SUBJECT TERMS Adjacent Channel Interference, ACI, LTE -A, LTE , PCM/FM, SOQPSK-TG, ARTM CPM, AWS-3, User...Interference, ACI, LTE -A, LTE , PCM/FM, SOQPSK-TG, ARTM CPM, AWS-3, User Equipment, UE, Evolved Node B, eNodeB, Resource Blocks INTRODUCTION “On...these questions make necessary an improved understanding of the interferers that can be obtained only by hands-on measurements . This work will

  20. Optical methods for wireless implantable sensing platforms

    NASA Astrophysics Data System (ADS)

    Mujeeb-U-Rahman, Muhammad; Chang, Chieh-Feng; Scherer, Axel

    2013-09-01

    Ultra small scale implants have gained lots of importance for both acute and chronic applications. Optical techniques hold the key to miniaturizing these devices to long sought sub-mm scale. This will lead towards long term use of these devices for medically relevant applications. It can also allow using multiple of these devices at the same time and forming a true body area network of sensors. In this paper, we present optical power transfer to such devices and the techniques to harness this power for different applications, for example high voltage or high current applications. We also present methods for wireless data transfer from such implants.

    1. 47 CFR 95.1103 - Definitions.

      Code of Federal Regulations, 2010 CFR

      2010-10-01

      ... SERVICES Wireless Medical Telemetry Service (WMTS) General Provisions § 95.1103 Definitions. (a) Authorized... in rendering medical treatment, and institutions and organizations regularly engaged in providing medical services through clinics, public health facilities, and similar establishments, including...

    2. Launching a Wireless Laptop Program

      ERIC Educational Resources Information Center

      Grignano, Domenic

      2007-01-01

      In this article, the author, as a technology director for East Rock Magnet School in New Haven, Connecticut, a federal government test site for laptop learning, shares his secrets to a successful implementation of a wireless laptop program: (1) Build a wireless foundation; (2) Do not choose the cheapest model just because of budget; (3) A sturdy…

    3. Unpowered wireless ultrasound tomography system

      NASA Astrophysics Data System (ADS)

      Zahedi, Farshad; Huang, Haiying

      2016-04-01

      In this paper, an unpowered wireless ultrasound tomography system is presented. The system consists of two subsystems; the wireless interrogation unit (WIU) and three wireless nodes installed on the structure. Each node is designed to work in generation and sensing modes, but operates at a specific microwave frequency. Wireless transmission of the ultrasound signals between the WIU and the wireless nodes is achieved by converting ultrasound signals to microwave signals and vice versa, using a microwave carrier signal. In the generation mode, both a carrier signal and an ultrasound modulated microwave signal are transmitted to the sensor nodes. Only the node whose operating frequency matches the carrier signal will receive these signals and demodulate them to recover the original ultrasound signal. In the sensing mode, a microwave carrier signal with two different frequency components matching the operating frequencies of the sensor nodes is broadcasted by the WIU. The sensor nodes, in turn, receive the corresponding carrier signals, modulate it with the ultrasound sensing signal, and wirelessly transmit the modulated signal back to the WIU. The demodulation of the sensing signals is performed in the WIU using a digital signal processing. Implementing a software receiver significantly reduces the complexity and the cost of the WIU. A wireless ultrasound tomography system is realized by interchanging the carrier frequencies so that the wireless transducers can take turn to serve as the actuator and sensors.

    4. Instrumentation and telemetry systems for free-flight drop model testing

      NASA Technical Reports Server (NTRS)

      Hyde, Charles R.; Massie, Jeffrey J.

      1993-01-01

      This paper presents instrumentation and telemetry system techniques used in free-flight research drop model testing at the NASA Langley Research Center. The free-flight drop model test technique is used to conduct flight dynamics research of high performance aircraft using dynamically scaled models. The free-flight drop model flight testing supplements research using computer analysis and wind tunnel testing. The drop models are scaled to approximately 20 percent of the size of the actual aircraft. This paper presents an introduction to the Free-Flight Drop Model Program which is followed by a description of the current instrumentation and telemetry systems used at the NASA Langley Research Center, Plum Tree Test Site. The paper describes three telemetry downlinks used to acquire the data, video, and radar tracking information from the model. Also described are two telemetry uplinks, one used to fly the model employing a ground-based flight control computer and a second to activate commands for visual tracking and parachute recovery of the model. The paper concludes with a discussion of free-flight drop model instrumentation and telemetry system development currently in progress for future drop model projects at the NASA Langley Research Center.

    5. Data mining spacecraft telemetry: towards generic solutions to automatic health monitoring and status characterisation

      NASA Astrophysics Data System (ADS)

      Royer, P.; De Ridder, J.; Vandenbussche, B.; Regibo, S.; Huygen, R.; De Meester, W.; Evans, D. J.; Martinez, J.; Korte-Stapff, M.

      2016-07-01

      We present the first results of a study aimed at finding new and efficient ways to automatically process spacecraft telemetry for automatic health monitoring. The goal is to reduce the load on the flight control team while extending the "checkability" to the entire telemetry database, and provide efficient, robust and more accurate detection of anomalies in near real time. We present a set of effective methods to (a) detect outliers in the telemetry or in its statistical properties, (b) uncover and visualise special properties of the telemetry and (c) detect new behavior. Our results are structured around two main families of solutions. For parameters visiting a restricted set of signal values, i.e. all status parameters and about one third of all the others, we focus on a transition analysis, exploiting properties of Poincare plots. For parameters with an arbitrarily high number of possible signal values, we describe the statistical properties of the signal via its Kernel Density Estimate. We demonstrate that this allows for a generic and dynamic approach of the soft-limit definition. Thanks to a much more accurate description of the signal and of its time evolution, we are more sensitive and more responsive to outliers than the traditional checks against hard limits. Our methods were validated on two years of Venus Express telemetry. They are generic for assisting in health monitoring of any complex system with large amounts of diagnostic sensor data. Not only spacecraft systems but also present-day astronomical observatories can benefit from them.

    6. Use of radio-telemetry to reduce bias in nest searching

      USGS Publications Warehouse

      Powell, L.A.; Lang, J.D.; Krementz, D.G.; Conroy, M.J.

      2005-01-01

      We used traditional searching, as well as radio-telemetry, to find 125 Wood Thrush (Hylocichla mustelina) nests during 1994?1996 at the Piedmont National Wildlife Refuge in Georgia, USA. We compared daily nest survival rates for 66 nests of radio-marked birds with 59 nests of birds found through systematic searching. By using radio-telemetry, we found Wood Thrush nests in higher elevation pine habitats, in addition to the more usual hardwood forests with moist soils. We found nests of radio-marked birds farther from streams than nests found by systematic searching. Thirty-two percent of radio-marked birds' nests were found at the tops of slopes, compared to 15% of the nests found by traditional searching. In addition, radio-marked birds generally moved up-slope for re-nesting attempts. Although the distribution of nests found with telemetry and searching varied, daily nest survival did not vary between the two groups. Radio-telemetry provided new information about Wood Thrush nesting habitats. We believe radio-telemetry can be a valuable addition to traditional searching techniques; it has the potential to provide a sample of nests free from a priori habitat biases.

    7. A strategy for recovering continuous behavioral telemetry data from Pacific walruses

      USGS Publications Warehouse

      Fischbach, Anthony S.; Jay, Chadwick V.

      2016-01-01

      Tracking animal behavior and movement with telemetry sensors can offer substantial insights required for conservation. Yet, the value of data collected by animal-borne telemetry systems is limited by bandwidth constraints. To understand the response of Pacific walruses (Odobenus rosmarus divergens) to rapid changes in sea ice availability, we required continuous geospatial chronologies of foraging behavior. Satellite telemetry offered the only practical means to systematically collect such data; however, data transmission constraints of satellite data-collection systems limited the data volume that could be acquired. Although algorithms exist for reducing sensor data volumes for efficient transmission, none could meet our requirements. Consequently, we developed an algorithm for classifying hourly foraging behavior status aboard a tag with limited processing power. We found a 98% correspondence of our algorithm's classification with a test classification based on time–depth data recovered and characterized through multivariate analysis in a separate study. We then applied our algorithm within a telemetry system that relied on remotely deployed satellite tags. Data collected by these tags from Pacific walruses across their range during 2007–2015 demonstrated the consistency of foraging behavior collected by this strategy with data collected by data logging tags; and demonstrated the ability to collect geospatial behavioral chronologies with minimal missing data where recovery of data logging tags is precluded. Our strategy for developing a telemetry system may be applicable to any study requiring intelligent algorithms to continuously monitor behavior, and then compress those data into meaningful information that can be efficiently transmitted.

    8. Review of the potential of a wireless MEMS and TFT microsystems for the measurement of pressure in the GI tract.

      PubMed

      Arshak, A; Arshak, K; Waldron, D; Morris, D; Korostynska, O; Jafer, E; Lyons, G

      2005-06-01

      Telemetry capsules have existed since the 1950s and were used to measure temperature, pH or pressure inside the gastrointestinal (GI) tract. It was hoped that these capsules would replace invasive techniques in the diagnosis of function disorders in the GI tract. However, problems such as signal loss and uncertainty of the pills position limited their use in a clinical setting. In this paper, a review of the capabilities of MicroElectroMechanical Systems (MEMS) and thick film technology (TFT) for the fabrication of a wireless pressure sensing microsystem is presented. The circuit requirements and methods of data transfer are examined. The available fabrication methods for MEMS sensors are also discussed and examples of wireless sensors are given. Finally the limitations of each technology are examined.

    9. Wireless Technology in K-12 Education

      ERIC Educational Resources Information Center

      Walery, Darrell

      2004-01-01

      Many schools begin implementing wireless technology slowly by creating wireless "hotspots" on the fly. This is accomplished by putting a wireless access point on a cart along with a set of wireless laptop computers. A teacher can then wheel the cart anywhere in the school that has a network drop, plug the access point in and have an…

    10. Clinical potential of implantable wireless sensors for orthopedic treatments.

      PubMed

      Karipott, Salil Sidharthan; Nelson, Bradley D; Guldberg, Robert E; Ong, Keat Ghee

      2018-04-01

      Implantable wireless sensors have been used for real-time monitoring of chemicals and physical conditions of bones, tendons and muscles to diagnose and study orthopedic diseases and injuries. Due to the importance of these sensors in orthopedic care, a critical review, which not only analyzes the underlying technologies but also their clinical implementations and challenges, will provide a landscape view on their current state and their future clinical role. Areas covered: By conducting an extensive literature search and following the leaders of orthopedic implantable wireless sensors, this review covers the battery-powered and battery-free wireless implantable sensor technologies, and describes their implementation for hips, knees, spine, and shoulder stress/strain monitoring. Their advantages, limitations, and clinical challenges are also described. Expert commentary: Currently, implantable wireless sensors are mostly limited for scientific investigations and demonstrative experiments. Although rapid advancement in sensors and wireless technologies will push the reliability and practicality of these sensors for clinical realization, regulatory constraints and financial viability in medical device industry may curtail their continuous adoption for clinical orthopedic applications. In the next five years, these sensors are expected to gain increased interest from researchers, but wide clinical adoption is still unlikely.

    11. Wireless Integrated Biosensors for Point-of-Care Diagnostic Applications

      PubMed Central

      Ghafar-Zadeh, Ebrahim

      2015-01-01

      Recent advances in integrated biosensors, wireless communication and power harvesting techniques are enticing researchers into spawning a new breed of point-of-care (POC) diagnostic devices that have attracted significant interest from industry. Among these, it is the ones equipped with wireless capabilities that drew our attention in this review paper. Indeed, wireless POC devices offer a great advantage, that of the possibility of exerting continuous monitoring of biologically relevant parameters, metabolites and other bio-molecules, relevant to the management of various morbid diseases such as diabetes, brain cancer, ischemia, and Alzheimer’s. In this review paper, we examine three major categories of miniaturized integrated devices, namely; the implantable Wireless Bio-Sensors (WBSs), the wearable WBSs and the handheld WBSs. In practice, despite the aforesaid progress made in developing wireless platforms, early detection of health imbalances remains a grand challenge from both the technological and the medical points of view. This paper addresses such challenges and reports the state-of-the-art in this interdisciplinary field. PMID:25648709

    12. Wireless Chemical Sensing Method

      NASA Technical Reports Server (NTRS)

      Taylor, Bryant D. (Inventor); Woodard, Stanley E. (Inventor); Oglesby, Donald M. (Inventor)

      2017-01-01

      A wireless chemical sensor includes an electrical conductor and a material separated therefrom by an electric insulator. The electrical conductor is an unconnected open-circuit shaped for storage of an electric field and a magnetic field. In the presence of a time-varying magnetic field, the first electrical conductor resonates to generate harmonic electric and magnetic field responses. The material is positioned at a location lying within at least one of the electric and magnetic field responses so-generated. The material changes in electrical conductivity in the presence of a chemical-of-interest.

    13. Deployable wireless Fresnel lens

      NASA Technical Reports Server (NTRS)

      Fink, Patrick W. (Inventor); Lin, Gregory Y. (Inventor); Kennedy, Timothy F. (Inventor); Chu, Andrew W. (Inventor)

      2013-01-01

      Apparatus and methods for enhancing the gain of a wireless signal are provided. In at least one specific embodiment, the apparatus can include a screen comprised of one or more electrically conductive regions for reflecting electromagnetic radiation and one or more non-conductive regions for permitting electromagnetic radiation therethrough. The one or more electrically conductive regions can be disposed adjacent to at least one of the one or more non-conductive regions. The apparatus can also include a support member disposed about at least a portion of the screen. The screen can be capable of collapsing by twisting the support member in opposite screw senses to form interleaved concentric sections.

    14. Wireless Headset Communication System

      NASA Technical Reports Server (NTRS)

      Lau, Wilfred K.; Swanson, Richard; Christensen, Kurt K.

      1995-01-01

      System combines features of pagers, walkie-talkies, and cordless telephones. Wireless headset communication system uses digital modulation on spread spectrum to avoid interference among units. Consists of base station, 4 radio/antenna modules, and as many as 16 remote units with headsets. Base station serves as network controller, audio-mixing network, and interface to such outside services as computers, telephone networks, and other base stations. Developed for use at Kennedy Space Center, system also useful in industrial maintenance, emergency operations, construction, and airport operations. Also, digital capabilities exploited; by adding bar-code readers for use in taking inventories.

    15. Wireless passive radiation sensor

      SciTech Connect

      Pfeifer, Kent B; Rumpf, Arthur N; Yelton, William G

      2013-12-03

      A novel measurement technique is employed using surface acoustic wave (SAW) devices, passive RF, and radiation-sensitive films to provide a wireless passive radiation sensor that requires no batteries, outside wiring, or regular maintenance. The sensor is small (<1 cm.sup.2), physically robust, and will operate unattended for decades. In addition, the sensor can be insensitive to measurement position and read distance due to a novel self-referencing technique eliminating the need to measure absolute responses that are dependent on RF transmitter location and power.

    16. Evaluation of the appropriateness and outcome of in-hospital telemetry monitoring.

      PubMed

      Fålun, Nina; Nordrehaug, Jan Erik; Hoff, Per Ivar; Langørgen, Jørund; Moons, Philip; Norekvål, Tone M

      2013-10-15

      The American Heart Association classifies monitored patients into 3 categories. The aims of this study were to (1) investigate how patients are assigned according to the American Heart Association classification, (2) determine the number and type of arrhythmic events experienced by these patients, and (3) describe subsequent changes in management. A prospective observational study design was used. All patients assigned to telemetry during a 3-month period were consecutively enrolled in our study. Data were collected 24/7. Only arrhythmias that might require a change in management were recorded. Monitor watchers at the central monitoring station completed a standard data sheet assessing 64 variables. These data, as well as medical records, were reviewed by the investigator. Overall, 1,194 patients were included. Eighteen percent of the patients were assigned to American Heart Association class I (monitoring indicated), 71% to class II (monitoring may be of benefit), and 11% to class III (monitoring not indicated). The overall arrhythmia event rate was 33%. Forty-three percent of class I patients, 28% of class II patients, and 47% of class III patients experienced arrhythmia events. Change in management occurred in 25% of class I patients, 14% of class II patients, and 29% of class III patients. Although the number of class III indications should have been reduced, nearly 1/2 of class III patients experienced arrhythmia events and 1/3 of them received management changes. This outcome challenges existing guidelines. In conclusion, most patients in this study were monitored appropriately, according to class I and II indications. Copyright © 2013 Elsevier Inc. All rights reserved.

    17. Telemetry packetization for improved mission operations. [instrument packages for Space Shuttle mission operations data management

      NASA Technical Reports Server (NTRS)

      Greene, E. P.

      1976-01-01

      The requirements for mission-operations data management will accelerate sharply when the Space Transportation System (i.e., Space Shuttle) becomes the primary vehicle for research from space. These demands can be satisfied most effectively by providing a higher-level source encoding function within the spaceborne vehicle. An Instrument Telemetry Packet (ITP) concept is described which represents an alternative to the conventional multiplexed telemetry frame approach for acquiring spaceborne instrument data. By providing excellent data-integrity protection at the source and a variable instrument bandwidth capability, this ITP concept represents a significant improvement over present data acquisition procedures. Realignments in the ground telemetry processing functions are described which are intended to take advantage of the ITP concept and to make the data management system more responsive to the scientific investigators.

    18. GTAG: architecture and design of miniature transmitter with position logging for radio telemetry

      NASA Astrophysics Data System (ADS)

      Řeřucha, Šimon; Bartonička, Tomáš; Jedlička, Petr

      2011-10-01

      The radio telemetry is a well-known technique used within zoological research to exploit the behaviour of animal species. A usage of GPS for a frequent and precise position recording gives interesting possibility for a further enhancement of this method. We present our proposal of an architecture and design concepts of telemetry transmitter with GPS module, called GTAG, that is suited for study of the Egyptian fruit bat (Rousettus aegyptiacus). The model group we study set particular constrains, especially the weight limit (9 g) and prevention of any power resources recharging technique. We discuss the aspect of physical realization and the energyconsumption issues. We have developed a reference implementation that has been already deployed during telemetry sessions and we evaluate the experience and compare the estimated performance of our device to a real data.

    19. DAWN: Dynamic Ad-hoc Wireless Network

      DTIC Science & Technology

      2016-06-19

      DAWN: Dynamic Ad-hoc Wireless Network The DAWN (Dynamic Ad-hoc Wireless Networks) project is developing a general theory of complex and dynamic... wireless communication networks. To accomplish this, DAWN adopts a very different approach than those followed in the past and summarized above. DAWN... wireless communication networks. The members of DAWN investigated difference aspects of wireless mobile ad hoc networks (MANET). The views, opinions and/or

    20. Household wireless electroencephalogram hat

      NASA Astrophysics Data System (ADS)

      Szu, Harold; Hsu, Charles; Moon, Gyu; Yamakawa, Takeshi; Tran, Binh

      2012-06-01

      We applied Compressive Sensing to design an affordable, convenient Brain Machine Interface (BMI) measuring the high spatial density, and real-time process of Electroencephalogram (EEG) brainwaves by a Smartphone. It is useful for therapeutic and mental health monitoring, learning disability biofeedback, handicap interfaces, and war gaming. Its spec is adequate for a biomedical laboratory, without the cables hanging over the head and tethered to a fixed computer terminal. Our improved the intrinsic signal to noise ratio (SNR) by using the non-uniform placement of the measuring electrodes to create the proximity of measurement to the source effect. We computing a spatiotemporal average the larger magnitude of EEG data centers in 0.3 second taking on tethered laboratory data, using fuzzy logic, and computing the inside brainwave sources, by Independent Component Analysis (ICA). Consequently, we can overlay them together by non-uniform electrode distribution enhancing the signal noise ratio and therefore the degree of sparseness by threshold. We overcame the conflicting requirements between a high spatial electrode density and precise temporal resolution (beyond Event Related Potential (ERP) P300 brainwave at 0.3 sec), and Smartphone wireless bottleneck of spatiotemporal throughput rate. Our main contribution in this paper is the quality and the speed of iterative compressed image recovery algorithm based on a Block Sparse Code (Baranuick et al, IEEE/IT 2008). As a result, we achieved real-time wireless dynamic measurement of EEG brainwaves, matching well with traditionally tethered high density EEG.