Sample records for wireless relay network

  1. Relay Selection for Cooperative Relaying in Wireless Energy Harvesting Networks

    NASA Astrophysics Data System (ADS)

    Zhu, Kaiyan; Wang, Fei; Li, Songsong; Jiang, Fengjiao; Cao, Lijie

    2018-01-01

    Energy harvesting from the surroundings is a promising solution to provide energy supply and extend the life of wireless sensor networks. Recently, energy harvesting has been shown as an attractive solution to prolong the operation of cooperative networks. In this paper, we propose a relay selection scheme to optimize the amplify-and-forward (AF) cooperative transmission in wireless energy harvesting cooperative networks. The harvesting energy and channel conditions are considered to select the optimal relay as cooperative relay to minimize the outage probability of the system. Simulation results show that our proposed relay selection scheme achieves better outage performance than other strategies.

  2. Wireless Cooperative Networks: Self-Configuration and Optimization

    DTIC Science & Technology

    2011-09-09

    TERMS wireless sensor networks , wireless cooperative networks, resource optimization, ultra-wideband, localization, ranging 16. SECURITY...Communications We consider two prevalent relay protocols for wireless sensor networks : decode-and-forward (DF) and amplify-and-forward (AF). To... sensor networks where each node may have its own sensing data to transmit, since they can maximally conserve energy while helping others as relays

  3. Outage Performance Analysis of Relay Selection Schemes in Wireless Energy Harvesting Cooperative Networks over Non-Identical Rayleigh Fading Channels †

    PubMed Central

    Do, Nhu Tri; Bao, Vo Nguyen Quoc; An, Beongku

    2016-01-01

    In this paper, we study relay selection in decode-and-forward wireless energy harvesting cooperative networks. In contrast to conventional cooperative networks, the relays harvest energy from the source’s radio-frequency radiation and then use that energy to forward the source information. Considering power splitting receiver architecture used at relays to harvest energy, we are concerned with the performance of two popular relay selection schemes, namely, partial relay selection (PRS) scheme and optimal relay selection (ORS) scheme. In particular, we analyze the system performance in terms of outage probability (OP) over independent and non-identical (i.n.i.d.) Rayleigh fading channels. We derive the closed-form approximations for the system outage probabilities of both schemes and validate the analysis by the Monte-Carlo simulation. The numerical results provide comprehensive performance comparison between the PRS and ORS schemes and reveal the effect of wireless energy harvesting on the outage performances of both schemes. Additionally, we also show the advantages and drawbacks of the wireless energy harvesting cooperative networks and compare to the conventional cooperative networks. PMID:26927119

  4. Outage Performance Analysis of Relay Selection Schemes in Wireless Energy Harvesting Cooperative Networks over Non-Identical Rayleigh Fading Channels.

    PubMed

    Do, Nhu Tri; Bao, Vo Nguyen Quoc; An, Beongku

    2016-02-26

    In this paper, we study relay selection in decode-and-forward wireless energy harvesting cooperative networks. In contrast to conventional cooperative networks, the relays harvest energy from the source's radio-frequency radiation and then use that energy to forward the source information. Considering power splitting receiver architecture used at relays to harvest energy, we are concerned with the performance of two popular relay selection schemes, namely, partial relay selection (PRS) scheme and optimal relay selection (ORS) scheme. In particular, we analyze the system performance in terms of outage probability (OP) over independent and non-identical (i.n.i.d.) Rayleigh fading channels. We derive the closed-form approximations for the system outage probabilities of both schemes and validate the analysis by the Monte-Carlo simulation. The numerical results provide comprehensive performance comparison between the PRS and ORS schemes and reveal the effect of wireless energy harvesting on the outage performances of both schemes. Additionally, we also show the advantages and drawbacks of the wireless energy harvesting cooperative networks and compare to the conventional cooperative networks.

  5. Secure relay selection based on learning with negative externality in wireless networks

    NASA Astrophysics Data System (ADS)

    Zhao, Caidan; Xiao, Liang; Kang, Shan; Chen, Guiquan; Li, Yunzhou; Huang, Lianfen

    2013-12-01

    In this paper, we formulate relay selection into a Chinese restaurant game. A secure relay selection strategy is proposed for a wireless network, where multiple source nodes send messages to their destination nodes via several relay nodes, which have different processing and transmission capabilities as well as security properties. The relay selection utilizes a learning-based algorithm for the source nodes to reach their best responses in the Chinese restaurant game. In particular, the relay selection takes into account the negative externality of relay sharing among the source nodes, which learn the capabilities and security properties of relay nodes according to the current signals and the signal history. Simulation results show that this strategy improves the user utility and the overall security performance in wireless networks. In addition, the relay strategy is robust against the signal errors and deviations of some user from the desired actions.

  6. Boarding Team Networking on the Move: Applying Unattended Relay Nodes

    DTIC Science & Technology

    2014-09-01

    below the main deck via a wireless ad-hoc network will enhance the situational awareness. Regarding the boarding of a non-compliant vessel, tracking...reaction time. 14. SUBJECT TERMS Maritime Interdiction Operations, Boarding Team Networking , Unattended Relay Nodes, Wireless Mesh Networks Onboard...the steel structures of naval vessels obstruct signals to propagate below the main deck. Extending the network below the main deck via a wireless ad

  7. Joint Resource Optimization for Cognitive Sensor Networks with SWIPT-Enabled Relay.

    PubMed

    Lu, Weidang; Lin, Yuanrong; Peng, Hong; Nan, Tian; Liu, Xin

    2017-09-13

    Energy-constrained wireless networks, such as wireless sensor networks (WSNs), are usually powered by fixed energy supplies (e.g., batteries), which limits the operation time of networks. Simultaneous wireless information and power transfer (SWIPT) is a promising technique to prolong the lifetime of energy-constrained wireless networks. This paper investigates the performance of an underlay cognitive sensor network (CSN) with SWIPT-enabled relay node. In the CSN, the amplify-and-forward (AF) relay sensor node harvests energy from the ambient radio-frequency (RF) signals using power splitting-based relaying (PSR) protocol. Then, it helps forward the signal of source sensor node (SSN) to the destination sensor node (DSN) by using the harvested energy. We study the joint resource optimization including the transmit power and power splitting ratio to maximize CSN's achievable rate with the constraint that the interference caused by the CSN to the primary users (PUs) is within the permissible threshold. Simulation results show that the performance of our proposed joint resource optimization can be significantly improved.

  8. STBC AF relay for unmanned aircraft system

    NASA Astrophysics Data System (ADS)

    Adachi, Fumiyuki; Miyazaki, Hiroyuki; Endo, Chikara

    2015-01-01

    If a large scale disaster similar to the Great East Japan Earthquake 2011 happens, some areas may be isolated from the communications network. Recently, unmanned aircraft system (UAS) based wireless relay communication has been attracting much attention since it is able to quickly re-establish the connection between isolated areas and the network. However, the channel between ground station (GS) and unmanned aircraft (UA) is unreliable due to UA's swing motion and as consequence, the relay communication quality degrades. In this paper, we introduce space-time block coded (STBC) amplify-and-forward (AF) relay for UAS based wireless relay communication to improve relay communication quality. A group of UAs forms single frequency network (SFN) to perform STBC-AF cooperative relay. In STBC-AF relay, only conjugate operation, block exchange and amplifying are required at UAs. Therefore, STBC-AF relay improves the relay communication quality while alleviating the complexity problem at UAs. It is shown by computer simulation that STBC-AF relay can achieve better throughput performance than conventional AF relay.

  9. A multi-sensor RSS spatial sensing-based robust stochastic optimization algorithm for enhanced wireless tethering.

    PubMed

    Parasuraman, Ramviyas; Fabry, Thomas; Molinari, Luca; Kershaw, Keith; Di Castro, Mario; Masi, Alessandro; Ferre, Manuel

    2014-12-12

    The reliability of wireless communication in a network of mobile wireless robot nodes depends on the received radio signal strength (RSS). When the robot nodes are deployed in hostile environments with ionizing radiations (such as in some scientific facilities), there is a possibility that some electronic components may fail randomly (due to radiation effects), which causes problems in wireless connectivity. The objective of this paper is to maximize robot mission capabilities by maximizing the wireless network capacity and to reduce the risk of communication failure. Thus, in this paper, we consider a multi-node wireless tethering structure called the "server-relay-client" framework that uses (multiple) relay nodes in between a server and a client node. We propose a robust stochastic optimization (RSO) algorithm using a multi-sensor-based RSS sampling method at the relay nodes to efficiently improve and balance the RSS between the source and client nodes to improve the network capacity and to provide redundant networking abilities. We use pre-processing techniques, such as exponential moving averaging and spatial averaging filters on the RSS data for smoothing. We apply a receiver spatial diversity concept and employ a position controller on the relay node using a stochastic gradient ascent method for self-positioning the relay node to achieve the RSS balancing task. The effectiveness of the proposed solution is validated by extensive simulations and field experiments in CERN facilities. For the field trials, we used a youBot mobile robot platform as the relay node, and two stand-alone Raspberry Pi computers as the client and server nodes. The algorithm has been proven to be robust to noise in the radio signals and to work effectively even under non-line-of-sight conditions.

  10. A Multi-Sensor RSS Spatial Sensing-Based Robust Stochastic Optimization Algorithm for Enhanced Wireless Tethering

    PubMed Central

    Parasuraman, Ramviyas; Fabry, Thomas; Molinari, Luca; Kershaw, Keith; Di Castro, Mario; Masi, Alessandro; Ferre, Manuel

    2014-01-01

    The reliability of wireless communication in a network of mobile wireless robot nodes depends on the received radio signal strength (RSS). When the robot nodes are deployed in hostile environments with ionizing radiations (such as in some scientific facilities), there is a possibility that some electronic components may fail randomly (due to radiation effects), which causes problems in wireless connectivity. The objective of this paper is to maximize robot mission capabilities by maximizing the wireless network capacity and to reduce the risk of communication failure. Thus, in this paper, we consider a multi-node wireless tethering structure called the “server-relay-client” framework that uses (multiple) relay nodes in between a server and a client node. We propose a robust stochastic optimization (RSO) algorithm using a multi-sensor-based RSS sampling method at the relay nodes to efficiently improve and balance the RSS between the source and client nodes to improve the network capacity and to provide redundant networking abilities. We use pre-processing techniques, such as exponential moving averaging and spatial averaging filters on the RSS data for smoothing. We apply a receiver spatial diversity concept and employ a position controller on the relay node using a stochastic gradient ascent method for self-positioning the relay node to achieve the RSS balancing task. The effectiveness of the proposed solution is validated by extensive simulations and field experiments in CERN facilities. For the field trials, we used a youBot mobile robot platform as the relay node, and two stand-alone Raspberry Pi computers as the client and server nodes. The algorithm has been proven to be robust to noise in the radio signals and to work effectively even under non-line-of-sight conditions. PMID:25615734

  11. Wireless Energy Harvesting Two-Way Relay Networks with Hardware Impairments.

    PubMed

    Peng, Chunling; Li, Fangwei; Liu, Huaping

    2017-11-13

    This paper considers a wireless energy harvesting two-way relay (TWR) network where the relay has energy-harvesting abilities and the effects of practical hardware impairments are taken into consideration. In particular, power splitting (PS) receiver is adopted at relay to harvests the power it needs for relaying the information between the source nodes from the signals transmitted by the source nodes, and hardware impairments is assumed suffered by each node. We analyze the effect of hardware impairments [-20]on both decode-and-forward (DF) relaying and amplify-and-forward (AF) relaying networks. By utilizing the obtained new expressions of signal-to-noise-plus-distortion ratios, the exact analytical expressions of the achievable sum rate and ergodic capacities for both DF and AF relaying protocols are derived. Additionally, the optimal power splitting (OPS) ratio that maximizes the instantaneous achievable sum rate is formulated and solved for both protocols. The performances of DF and AF protocols are evaluated via numerical results, which also show the effects of various network parameters on the system performance and on the OPS ratio design.

  12. Simultaneous Wireless Power Transfer and Secure Multicasting in Cooperative Decode-and-Forward Relay Networks.

    PubMed

    Lee, Jong-Ho; Sohn, Illsoo; Kim, Yong-Hwa

    2017-05-16

    In this paper, we investigate simultaneous wireless power transfer and secure multicasting via cooperative decode-and-forward (DF) relays in the presence of multiple energy receivers and eavesdroppers. Two scenarios are considered under a total power budget: maximizing the minimum harvested energy among the energy receivers under a multicast secrecy rate constraint; and maximizing the multicast secrecy rate under a minimum harvested energy constraint. For both scenarios, we solve the transmit power allocation and relay beamformer design problems by using semidefinite relaxation and bisection technique. We present numerical results to analyze the energy harvesting and secure multicasting performances in cooperative DF relay networks.

  13. Simultaneous Wireless Power Transfer and Secure Multicasting in Cooperative Decode-and-Forward Relay Networks

    PubMed Central

    Lee, Jong-Ho; Sohn, Illsoo; Kim, Yong-Hwa

    2017-01-01

    In this paper, we investigate simultaneous wireless power transfer and secure multicasting via cooperative decode-and-forward (DF) relays in the presence of multiple energy receivers and eavesdroppers. Two scenarios are considered under a total power budget: maximizing the minimum harvested energy among the energy receivers under a multicast secrecy rate constraint; and maximizing the multicast secrecy rate under a minimum harvested energy constraint. For both scenarios, we solve the transmit power allocation and relay beamformer design problems by using semidefinite relaxation and bisection technique. We present numerical results to analyze the energy harvesting and secure multicasting performances in cooperative DF relay networks. PMID:28509841

  14. Wireless Sensor Network Handles Image Data

    NASA Technical Reports Server (NTRS)

    2008-01-01

    To relay data from remote locations for NASA s Earth sciences research, Goddard Space Flight Center contributed to the development of "microservers" (wireless sensor network nodes), which are now used commercially as a quick and affordable means to capture and distribute geographical information, including rich sets of aerial and street-level imagery. NASA began this work out of a necessity for real-time recovery of remote sensor data. These microservers work much like a wireless office network, relaying information between devices. The key difference, however, is that instead of linking workstations within one office, the interconnected microservers operate miles away from one another. This attribute traces back to the technology s original use: The microservers were originally designed for seismology on remote glaciers and ice streams in Alaska, Greenland, and Antarctica-acquiring, storing, and relaying data wirelessly between ground sensors. The microservers boast three key attributes. First, a researcher in the field can establish a "managed network" of microservers and rapidly see the data streams (recovered wirelessly) on a field computer. This rapid feedback permits the researcher to reconfigure the network for different purposes over the course of a field campaign. Second, through careful power management, the microservers can dwell unsupervised in the field for up to 2 years, collecting tremendous amounts of data at a research location. The third attribute is the exciting potential to deploy a microserver network that works in synchrony with robotic explorers (e.g., providing ground truth validation for satellites, supporting rovers as they traverse the local environment). Managed networks of remote microservers that relay data unsupervised for up to 2 years can drastically reduce the costs of field instrumentation and data rec

  15. Connectivity Restoration in Wireless Sensor Networks via Space Network Coding.

    PubMed

    Uwitonze, Alfred; Huang, Jiaqing; Ye, Yuanqing; Cheng, Wenqing

    2017-04-20

    The problem of finding the number and optimal positions of relay nodes for restoring the network connectivity in partitioned Wireless Sensor Networks (WSNs) is Non-deterministic Polynomial-time hard (NP-hard) and thus heuristic methods are preferred to solve it. This paper proposes a novel polynomial time heuristic algorithm, namely, Relay Placement using Space Network Coding (RPSNC), to solve this problem, where Space Network Coding, also called Space Information Flow (SIF), is a new research paradigm that studies network coding in Euclidean space, in which extra relay nodes can be introduced to reduce the cost of communication. Unlike contemporary schemes that are often based on Minimum Spanning Tree (MST), Euclidean Steiner Minimal Tree (ESMT) or a combination of MST with ESMT, RPSNC is a new min-cost multicast space network coding approach that combines Delaunay triangulation and non-uniform partitioning techniques for generating a number of candidate relay nodes, and then linear programming is applied for choosing the optimal relay nodes and computing their connection links with terminals. Subsequently, an equilibrium method is used to refine the locations of the optimal relay nodes, by moving them to balanced positions. RPSNC can adapt to any density distribution of relay nodes and terminals, as well as any density distribution of terminals. The performance and complexity of RPSNC are analyzed and its performance is validated through simulation experiments.

  16. Mutual-Information-Based Incremental Relaying Communications for Wireless Biomedical Implant Systems

    PubMed Central

    Liao, Yangzhe; Cai, Qing; Ai, Qingsong; Liu, Quan

    2018-01-01

    Network lifetime maximization of wireless biomedical implant systems is one of the major research challenges of wireless body area networks (WBANs). In this paper, a mutual information (MI)-based incremental relaying communication protocol is presented where several on-body relay nodes and one coordinator are attached to the clothes of a patient. Firstly, a comprehensive analysis of a system model is investigated in terms of channel path loss, energy consumption, and the outage probability from the network perspective. Secondly, only when the MI value becomes smaller than the predetermined threshold is data transmission allowed. The communication path selection can be either from the implanted sensor to the on-body relay then forwards to the coordinator or from the implanted sensor to the coordinator directly, depending on the communication distance. Moreover, mathematical models of quality of service (QoS) metrics are derived along with the related subjective functions. The results show that the MI-based incremental relaying technique achieves better performance in comparison to our previous proposed protocol techniques regarding several selected performance metrics. The outcome of this paper can be applied to intra-body continuous physiological signal monitoring, artificial biofeedback-oriented WBANs, and telemedicine system design. PMID:29419784

  17. Mutual-Information-Based Incremental Relaying Communications for Wireless Biomedical Implant Systems.

    PubMed

    Liao, Yangzhe; Leeson, Mark S; Cai, Qing; Ai, Qingsong; Liu, Quan

    2018-02-08

    Network lifetime maximization of wireless biomedical implant systems is one of the major research challenges of wireless body area networks (WBANs). In this paper, a mutual information (MI)-based incremental relaying communication protocol is presented where several on-body relay nodes and one coordinator are attached to the clothes of a patient. Firstly, a comprehensive analysis of a system model is investigated in terms of channel path loss, energy consumption, and the outage probability from the network perspective. Secondly, only when the MI value becomes smaller than the predetermined threshold is data transmission allowed. The communication path selection can be either from the implanted sensor to the on-body relay then forwards to the coordinator or from the implanted sensor to the coordinator directly, depending on the communication distance. Moreover, mathematical models of quality of service (QoS) metrics are derived along with the related subjective functions. The results show that the MI-based incremental relaying technique achieves better performance in comparison to our previous proposed protocol techniques regarding several selected performance metrics. The outcome of this paper can be applied to intra-body continuous physiological signal monitoring, artificial biofeedback-oriented WBANs, and telemedicine system design.

  18. Reliability and throughput issues for optical wireless and RF wireless systems

    NASA Astrophysics Data System (ADS)

    Yu, Meng

    The fast development of wireless communication technologies has two main trends. On one hand, in point-to-point communications, the demand for higher throughput called for the emergence of wireless broadband techniques including optical wireless (OW). One the other hand, wireless networks are becoming pervasive. New application of wireless networks ask for more flexible system infrastructures beyond the point-to-point prototype to achieve better performance. This dissertation investigates two topics on the reliability and throughput issues of new wireless technologies. The first topic is to study the capacity, and practical forward error control strategies for OW systems. We investigate the performance of OW systems under weak atmospheric turbulence. We first investigate the capacity and power allocation for multi-laser and multi-detector systems. Our results show that uniform power allocation is a practically optimal solution for paralleled channels. We also investigate the performance of Reed Solomon (RS) codes and turbo codes for OW systems. We present RS codes as good candidates for OW systems. The second topic targets user cooperation in wireless networks. We evaluate the relative merits of amplify-forward (AF) and decode-forward (DF) in practical scenarios. Both analysis and simulations show that the overall system performance is critically affected by the quality of the inter-user channel. Following this result, we investigate two schemes to improve the overall system performance. We first investigate the impact of the relay location on the overall system performance and determine the optimal location of relay. A best-selective single-relay 1 system is proposed and evaluated. Through the analysis of the average capacity and outage, we show that a small candidate pool of 3 to 5 relays suffices to reap most of the "geometric" gain available to a selective system. Second, we propose a new user cooperation scheme to provide an effective better inter-user channel. Most user cooperation protocols work in a time sharing manner, where a node forwards others' messages and sends its own message at different sections within a provisioned time slot. In the proposed scheme the two messages are encoded together in a single codework using network coding and transmitted in the given time slot. We also propose a general multiple-user cooperation framework. Under this framework, we show that network coding can achieve better diversity and provide effective better inter-user channels than time sharing. The last part of the dissertation focuses on multi-relay packet transmission. We propose an adaptive and distributive coding scheme for the relay nodes to adaptively cooperate and forward messages. The adaptive scheme shows performance gain over fixed schemes. Then we shift our viewpoint and represent the network as part of encoders and part of decoders.

  19. Performance Evaluation of Relay Selection Schemes in Beacon-Assisted Dual-Hop Cognitive Radio Wireless Sensor Networks under Impact of Hardware Noises.

    PubMed

    Hieu, Tran Dinh; Duy, Tran Trung; Dung, Le The; Choi, Seong Gon

    2018-06-05

    To solve the problem of energy constraints and spectrum scarcity for cognitive radio wireless sensor networks (CR-WSNs), an underlay decode-and-forward relaying scheme is considered, where the energy constrained secondary source and relay nodes are capable of harvesting energy from a multi-antenna power beacon (PB) and using that harvested energy to forward the source information to the destination. Based on the time switching receiver architecture, three relaying protocols, namely, hybrid partial relay selection (H-PRS), conventional opportunistic relay selection (C-ORS), and best opportunistic relay selection (B-ORS) protocols are considered to enhance the end-to-end performance under the joint impact of maximal interference constraint and transceiver hardware impairments. For performance evaluation and comparison, we derive the exact and asymptotic closed-form expressions of outage probability (OP) and throughput (TP) to provide significant insights into the impact of our proposed protocols on the system performance over Rayleigh fading channel. Finally, simulation results validate the theoretical results.

  20. Exploiting Outage and Error Probability of Cooperative Incremental Relaying in Underwater Wireless Sensor Networks

    PubMed Central

    Nasir, Hina; Javaid, Nadeem; Sher, Muhammad; Qasim, Umar; Khan, Zahoor Ali; Alrajeh, Nabil; Niaz, Iftikhar Azim

    2016-01-01

    This paper embeds a bi-fold contribution for Underwater Wireless Sensor Networks (UWSNs); performance analysis of incremental relaying in terms of outage and error probability, and based on the analysis proposition of two new cooperative routing protocols. Subject to the first contribution, a three step procedure is carried out; a system model is presented, the number of available relays are determined, and based on cooperative incremental retransmission methodology, closed-form expressions for outage and error probability are derived. Subject to the second contribution, Adaptive Cooperation in Energy (ACE) efficient depth based routing and Enhanced-ACE (E-ACE) are presented. In the proposed model, feedback mechanism indicates success or failure of data transmission. If direct transmission is successful, there is no need for relaying by cooperative relay nodes. In case of failure, all the available relays retransmit the data one by one till the desired signal quality is achieved at destination. Simulation results show that the ACE and E-ACE significantly improves network performance, i.e., throughput, when compared with other incremental relaying protocols like Cooperative Automatic Repeat reQuest (CARQ). E-ACE and ACE achieve 69% and 63% more throughput respectively as compared to CARQ in hard underwater environment. PMID:27420061

  1. Constrained Low-Interference Relay Node Deployment for Underwater Acoustic Wireless Sensor Networks

    NASA Astrophysics Data System (ADS)

    Li, Deying; Li, Zheng; Ma, Wenkai; Chen, Wenping

    An Underwater Acoustic Wireless Sensor Network (UA-WSN) consists of many resource-constrained Underwater Sensor Nodes (USNs), which are deployed to perform collaborative monitoring tasks over a given region. One way to preserve network connectivity while guaranteing other network QoS is to deploy some Relay Nodes (RNs) in the networks, in which RNs' function is more powerful than USNs and their cost is more expensive. This paper addresses Constrained Low-interference Relay Node Deployment (C-LRND) problem for 3-D UA-WSNs in which the RNs are placed at a subset of candidate locations to ensure connectivity between the USNs, under both the number of RNs deployed and the value of total incremental interference constraints. We first prove that it is NP-hard, then present a general approximation algorithm framework and get two polynomial time O(1)-approximation algorithms.

  2. Coded Cooperation for Multiway Relaying in Wireless Sensor Networks †

    PubMed Central

    Si, Zhongwei; Ma, Junyang; Thobaben, Ragnar

    2015-01-01

    Wireless sensor networks have been considered as an enabling technology for constructing smart cities. One important feature of wireless sensor networks is that the sensor nodes collaborate in some manner for communications. In this manuscript, we focus on the model of multiway relaying with full data exchange where each user wants to transmit and receive data to and from all other users in the network. We derive the capacity region for this specific model and propose a coding strategy through coset encoding. To obtain good performance with practical codes, we choose spatially-coupled LDPC (SC-LDPC) codes for the coded cooperation. In particular, for the message broadcasting from the relay, we construct multi-edge-type (MET) SC-LDPC codes by repeatedly applying coset encoding. Due to the capacity-achieving property of the SC-LDPC codes, we prove that the capacity region can theoretically be achieved by the proposed MET SC-LDPC codes. Numerical results with finite node degrees are provided, which show that the achievable rates approach the boundary of the capacity region in both binary erasure channels and additive white Gaussian channels. PMID:26131675

  3. Coded Cooperation for Multiway Relaying in Wireless Sensor Networks.

    PubMed

    Si, Zhongwei; Ma, Junyang; Thobaben, Ragnar

    2015-06-29

    Wireless sensor networks have been considered as an enabling technology for constructing smart cities. One important feature of wireless sensor networks is that the sensor nodes collaborate in some manner for communications. In this manuscript, we focus on the model of multiway relaying with full data exchange where each user wants to transmit and receive data to and from all other users in the network. We derive the capacity region for this specific model and propose a coding strategy through coset encoding. To obtain good performance with practical codes, we choose spatially-coupled LDPC (SC-LDPC) codes for the coded cooperation. In particular, for the message broadcasting from the relay, we construct multi-edge-type (MET) SC-LDPC codes by repeatedly applying coset encoding. Due to the capacity-achieving property of the SC-LDPC codes, we prove that the capacity region can theoretically be achieved by the proposed MET SC-LDPC codes. Numerical results with finite node degrees are provided, which show that the achievable rates approach the boundary of the capacity region in both binary erasure channels and additive white Gaussian channels.

  4. Unattended Ground Sensors for Expeditionary Force 21 Intelligence Collections

    DTIC Science & Technology

    2015-06-01

    tamper. 55  Size: 3 ½ x 3 ½ x 1 ¾ inches.  Wireless RF networked communications.  Built in seismic, acoustic , magnetic, and PIR sensors ...Marine Corps VHF Very High Frequency WSN Wireless Sensor Network xvi THIS PAGE INTENTIONALLY LEFT BLANK xvii ACKNOWLEDGMENTS I want...that allow digital wireless RF communications from each sensor interfaced into a variety of network architectures to relay critical data to a final

  5. Autonomous Adaptive Acoustic Relay Positioning

    DTIC Science & Technology

    2013-09-01

    underwater acoustic sensor networks . In Proc. 1st ACM International Work- shop on Underwater Networks , pages 7–16, 2006. [4] A Alvarez, A...routing in underwater delay/disruption tolerant sensor networks . In Wireless on Demand Network Systems and Services, 2008. WONS 2008. Fifth Annual...the development of multi-vehicle applications in the ocean, and the main mode of wireless data transmission underwater is acoustic .

  6. Efficiently sphere-decodable physical layer transmission schemes for wireless storage networks

    NASA Astrophysics Data System (ADS)

    Lu, Hsiao-Feng Francis; Barreal, Amaro; Karpuk, David; Hollanti, Camilla

    2016-12-01

    Three transmission schemes over a new type of multiple-access channel (MAC) model with inter-source communication links are proposed and investigated in this paper. This new channel model is well motivated by, e.g., wireless distributed storage networks, where communication to repair a lost node takes place from helper nodes to a repairing node over a wireless channel. Since in many wireless networks nodes can come and go in an arbitrary manner, there must be an inherent capability of inter-node communication between every pair of nodes. Assuming that communication is possible between every pair of helper nodes, the newly proposed schemes are based on various smart time-sharing and relaying strategies. In other words, certain helper nodes will be regarded as relays, thereby converting the conventional uncooperative multiple-access channel to a multiple-access relay channel (MARC). The diversity-multiplexing gain tradeoff (DMT) of the system together with efficient sphere-decodability and low structural complexity in terms of the number of antennas required at each end is used as the main design objectives. While the optimal DMT for the new channel model is fully open, it is shown that the proposed schemes outperform the DMT of the simple time-sharing protocol and, in some cases, even the optimal uncooperative MAC DMT. While using a wireless distributed storage network as a motivating example throughout the paper, the MAC transmission techniques proposed here are completely general and as such applicable to any MAC communication with inter-source communication links.

  7. On Proper Selection of Multihop Relays for Future Enhancement of AeroMACS Networks

    NASA Technical Reports Server (NTRS)

    Kamali, Behnam; Kerczewski, Robert J.; Apaza, Rafael D.

    2015-01-01

    As the Aeronautical Mobile Airport Communications System (AeroMACS) has evolved from a technology concept to a deployed communications network over major US airports, it is now time to contemplate whether the existing capacity of AeroMACS is sufficient to meet the demands set forth by all fixed and mobile applications over the airport surface given the AeroMACS constraints regarding bandwidth and transmit power. The underlying idea in this article is to present IEEE 802.16j-based WiMAX as a technology that can address future capacity enhancements and therefore is most feasible for AeroMACS applications. The principal argument in favor IEEE 802.16j technology is the flexible and cost effective extension of radio coverage that is afforded by relay fortified networks, with virtually no increase in the power requirements and virtually no rise in interference levels to co-allocated applications. The IEEE 802.16j-based multihop relay systems are briefly described. The focus is on key features of this technology, frame structure, and its architecture. Next, AeroMACS is described as a WiMAX-based wireless network. The two major relay modes supported by IEEE 802.16j amendment, i.e., transparent and non-transparent are described. The benefits of employing multihop relays are listed. Some key challenges related to incorporating relays into AeroMACS networks are discussed. The selection of relay type in a broadband wireless network affects a number of network parameters such as latency, signal overhead, PHY (Scalable Physical Layer) and MAC (Media Access Layer) layer protocols, consequently it can alter key network quantities of throughput and QoS (Quality of Service).

  8. Performance Analysis of MIMO Relay Network via Propagation Measurement in L-Shaped Corridor Environment

    NASA Astrophysics Data System (ADS)

    Lertwiram, Namzilp; Tran, Gia Khanh; Mizutani, Keiichi; Sakaguchi, Kei; Araki, Kiyomichi

    Setting relays can address the shadowing problem between a transmitter (Tx) and a receiver (Rx). Moreover, the Multiple-Input Multiple-Output (MIMO) technique has been introduced to improve wireless link capacity. The MIMO technique can be applied in relay network to enhance system performance. However, the efficiency of relaying schemes and relay placement have not been well investigated with experiment-based study. This paper provides a propagation measurement campaign of a MIMO two-hop relay network in 5GHz band in an L-shaped corridor environment with various relay locations. Furthermore, this paper proposes a Relay Placement Estimation (RPE) scheme to identify the optimum relay location, i.e. the point at which the network performance is highest. Analysis results of channel capacity show that relaying technique is beneficial over direct transmission in strong shadowing environment while it is ineffective in non-shadowing environment. In addition, the optimum relay location estimated with the RPE scheme also agrees with the location where the network achieves the highest performance as identified by network capacity. Finally, the capacity analysis shows that two-way MIMO relay employing network coding has the best performance while cooperative relaying scheme is not effective due to shadowing effect weakening the signal strength of the direct link.

  9. Energy Efficient Medium Access Control Protocol for Clustered Wireless Sensor Networks with Adaptive Cross-Layer Scheduling.

    PubMed

    Sefuba, Maria; Walingo, Tom; Takawira, Fambirai

    2015-09-18

    This paper presents an Energy Efficient Medium Access Control (MAC) protocol for clustered wireless sensor networks that aims to improve energy efficiency and delay performance. The proposed protocol employs an adaptive cross-layer intra-cluster scheduling and an inter-cluster relay selection diversity. The scheduling is based on available data packets and remaining energy level of the source node (SN). This helps to minimize idle listening on nodes without data to transmit as well as reducing control packet overhead. The relay selection diversity is carried out between clusters, by the cluster head (CH), and the base station (BS). The diversity helps to improve network reliability and prolong the network lifetime. Relay selection is determined based on the communication distance, the remaining energy and the channel quality indicator (CQI) for the relay cluster head (RCH). An analytical framework for energy consumption and transmission delay for the proposed MAC protocol is presented in this work. The performance of the proposed MAC protocol is evaluated based on transmission delay, energy consumption, and network lifetime. The results obtained indicate that the proposed MAC protocol provides improved performance than traditional cluster based MAC protocols.

  10. A Lifetime Maximization Relay Selection Scheme in Wireless Body Area Networks.

    PubMed

    Zhang, Yu; Zhang, Bing; Zhang, Shi

    2017-06-02

    Network Lifetime is one of the most important metrics in Wireless Body Area Networks (WBANs). In this paper, a relay selection scheme is proposed under the topology constrains specified in the IEEE 802.15.6 standard to maximize the lifetime of WBANs through formulating and solving an optimization problem where relay selection of each node acts as optimization variable. Considering the diversity of the sensor nodes in WBANs, the optimization problem takes not only energy consumption rate but also energy difference among sensor nodes into account to improve the network lifetime performance. Since it is Non-deterministic Polynomial-hard (NP-hard) and intractable, a heuristic solution is then designed to rapidly address the optimization. The simulation results indicate that the proposed relay selection scheme has better performance in network lifetime compared with existing algorithms and that the heuristic solution has low time complexity with only a negligible performance degradation gap from optimal value. Furthermore, we also conduct simulations based on a general WBAN model to comprehensively illustrate the advantages of the proposed algorithm. At the end of the evaluation, we validate the feasibility of our proposed scheme via an implementation discussion.

  11. Energy Efficient Medium Access Control Protocol for Clustered Wireless Sensor Networks with Adaptive Cross-Layer Scheduling

    PubMed Central

    Sefuba, Maria; Walingo, Tom; Takawira, Fambirai

    2015-01-01

    This paper presents an Energy Efficient Medium Access Control (MAC) protocol for clustered wireless sensor networks that aims to improve energy efficiency and delay performance. The proposed protocol employs an adaptive cross-layer intra-cluster scheduling and an inter-cluster relay selection diversity. The scheduling is based on available data packets and remaining energy level of the source node (SN). This helps to minimize idle listening on nodes without data to transmit as well as reducing control packet overhead. The relay selection diversity is carried out between clusters, by the cluster head (CH), and the base station (BS). The diversity helps to improve network reliability and prolong the network lifetime. Relay selection is determined based on the communication distance, the remaining energy and the channel quality indicator (CQI) for the relay cluster head (RCH). An analytical framework for energy consumption and transmission delay for the proposed MAC protocol is presented in this work. The performance of the proposed MAC protocol is evaluated based on transmission delay, energy consumption, and network lifetime. The results obtained indicate that the proposed MAC protocol provides improved performance than traditional cluster based MAC protocols. PMID:26393608

  12. A Model for QoS – Aware Wireless Communication in Hospitals

    PubMed Central

    Alavikia, Zahra; Khadivi, Pejman; Hashemi, Masoud Reza

    2012-01-01

    In the recent decade, research regarding wireless applications in electronic health (e-Health) services has been increasing. The main benefits of using wireless technologies in e-Health applications are simple communications, fast delivery of medical information, reducing treatment cost and also reducing the medical workers’ error rate. However, using wireless communications in sensitive healthcare environment raises electromagnetic interference (EMI). One of the most effective methods to avoid the EMI problem is power management. To this end, some of methods have been proposed in the literature to reduce EMI effects in health care environments. However, using these methods may result in nonaccurate interference avoidance and also may increase network complexity. To overcome these problems, we introduce two approaches based on per-user location and hospital sectoring for power management in sensitive healthcare environments. Although reducing transmission power could avoid EMI, it causes a number of successful message deliveries to the access point to decrease and, hence, the quality of service requirements cannot be meet. In this paper, we propose the use of relays for decreasing the probability of outage in the aforementioned scenario. Relay placement is the main factor to enjoy the usefulness of relay station benefits in the network and, therefore, we use the genetic algorithm to compute the optimum positions of a fixed number of relays. We have considered delay and maximum blind point coverage as two main criteria in relay station problem. The performance of the proposed method in outage reduction is investigated through simulations. PMID:23493832

  13. A Model for QoS - Aware Wireless Communication in Hospitals.

    PubMed

    Alavikia, Zahra; Khadivi, Pejman; Hashemi, Masoud Reza

    2012-01-01

    In the recent decade, research regarding wireless applications in electronic health (e-Health) services has been increasing. The main benefits of using wireless technologies in e-Health applications are simple communications, fast delivery of medical information, reducing treatment cost and also reducing the medical workers' error rate. However, using wireless communications in sensitive healthcare environment raises electromagnetic interference (EMI). One of the most effective methods to avoid the EMI problem is power management. To this end, some of methods have been proposed in the literature to reduce EMI effects in health care environments. However, using these methods may result in nonaccurate interference avoidance and also may increase network complexity. To overcome these problems, we introduce two approaches based on per-user location and hospital sectoring for power management in sensitive healthcare environments. Although reducing transmission power could avoid EMI, it causes a number of successful message deliveries to the access point to decrease and, hence, the quality of service requirements cannot be meet. In this paper, we propose the use of relays for decreasing the probability of outage in the aforementioned scenario. Relay placement is the main factor to enjoy the usefulness of relay station benefits in the network and, therefore, we use the genetic algorithm to compute the optimum positions of a fixed number of relays. We have considered delay and maximum blind point coverage as two main criteria in relay station problem. The performance of the proposed method in outage reduction is investigated through simulations.

  14. Scalable Video Streaming Relay for Smart Mobile Devices in Wireless Networks

    PubMed Central

    Kwon, Dongwoo; Je, Huigwang; Kim, Hyeonwoo; Ju, Hongtaek; An, Donghyeok

    2016-01-01

    Recently, smart mobile devices and wireless communication technologies such as WiFi, third generation (3G), and long-term evolution (LTE) have been rapidly deployed. Many smart mobile device users can access the Internet wirelessly, which has increased mobile traffic. In 2014, more than half of the mobile traffic around the world was devoted to satisfying the increased demand for the video streaming. In this paper, we propose a scalable video streaming relay scheme. Because many collisions degrade the scalability of video streaming, we first separate networks to prevent excessive contention between devices. In addition, the member device controls the video download rate in order to adapt to video playback. If the data are sufficiently buffered, the member device stops the download. If not, it requests additional video data. We implemented apps to evaluate the proposed scheme and conducted experiments with smart mobile devices. The results showed that our scheme improves the scalability of video streaming in a wireless local area network (WLAN). PMID:27907113

  15. Scalable Video Streaming Relay for Smart Mobile Devices in Wireless Networks.

    PubMed

    Kwon, Dongwoo; Je, Huigwang; Kim, Hyeonwoo; Ju, Hongtaek; An, Donghyeok

    2016-01-01

    Recently, smart mobile devices and wireless communication technologies such as WiFi, third generation (3G), and long-term evolution (LTE) have been rapidly deployed. Many smart mobile device users can access the Internet wirelessly, which has increased mobile traffic. In 2014, more than half of the mobile traffic around the world was devoted to satisfying the increased demand for the video streaming. In this paper, we propose a scalable video streaming relay scheme. Because many collisions degrade the scalability of video streaming, we first separate networks to prevent excessive contention between devices. In addition, the member device controls the video download rate in order to adapt to video playback. If the data are sufficiently buffered, the member device stops the download. If not, it requests additional video data. We implemented apps to evaluate the proposed scheme and conducted experiments with smart mobile devices. The results showed that our scheme improves the scalability of video streaming in a wireless local area network (WLAN).

  16. Hop Optimization and Relay Node Selection in Multi-hop Wireless Ad-Hoc Networks

    NASA Astrophysics Data System (ADS)

    Li, Xiaohua(Edward)

    In this paper we propose an efficient approach to determine the optimal hops for multi-hop ad hoc wireless networks. Based on the assumption that nodes use successive interference cancellation (SIC) and maximal ratio combining (MRC) to deal with mutual interference and to utilize all the received signal energy, we show that the signal-to-interference-plus-noise ratio (SINR) of a node is determined only by the nodes before it, not the nodes after it, along a packet forwarding path. Based on this observation, we propose an iterative procedure to select the relay nodes and to calculate the path SINR as well as capacity of an arbitrary multi-hop packet forwarding path. The complexity of the algorithm is extremely low, and scaling well with network size. The algorithm is applicable in arbitrarily large networks. Its performance is demonstrated as desirable by simulations. The algorithm can be helpful in analyzing the performance of multi-hop wireless networks.

  17. Achieving Information Superiority Using Hastily Formed Networks and Emerging Technologies for the Royal Thai Armed Forces Counterinsurgency Operations in Southern Thailand

    DTIC Science & Technology

    2014-03-01

    38 2. Mobile Ad Hoc Networks ..................................................................39 3. Wireless Ad Hoc Sensor Networks...59 Figure 32. RENEWS with WiMAX and Wave Relay AP at C-IED Site.............................59 Figure 33. RENEWS Wind Turbine and Solar Panels at Hat...worldwide interoperability for microwave access WSN wireless sensor network xv ACKNOWLEDGMENTS We would like to express our sincerest gratitude

  18. Intercluster Connection in Cognitive Wireless Mesh Networks Based on Intelligent Network Coding

    NASA Astrophysics Data System (ADS)

    Chen, Xianfu; Zhao, Zhifeng; Jiang, Tao; Grace, David; Zhang, Honggang

    2009-12-01

    Cognitive wireless mesh networks have great flexibility to improve spectrum resource utilization, within which secondary users (SUs) can opportunistically access the authorized frequency bands while being complying with the interference constraint as well as the QoS (Quality-of-Service) requirement of primary users (PUs). In this paper, we consider intercluster connection between the neighboring clusters under the framework of cognitive wireless mesh networks. Corresponding to the collocated clusters, data flow which includes the exchanging of control channel messages usually needs four time slots in traditional relaying schemes since all involved nodes operate in half-duplex mode, resulting in significant bandwidth efficiency loss. The situation is even worse at the gateway node connecting the two colocated clusters. A novel scheme based on network coding is proposed in this paper, which needs only two time slots to exchange the same amount of information mentioned above. Our simulation shows that the network coding-based intercluster connection has the advantage of higher bandwidth efficiency compared with the traditional strategy. Furthermore, how to choose an optimal relaying transmission power level at the gateway node in an environment of coexisting primary and secondary users is discussed. We present intelligent approaches based on reinforcement learning to solve the problem. Theoretical analysis and simulation results both show that the intelligent approaches can achieve optimal throughput for the intercluster relaying in the long run.

  19. Improved Iterative Decoding of Network-Channel Codes for Multiple-Access Relay Channel.

    PubMed

    Majumder, Saikat; Verma, Shrish

    2015-01-01

    Cooperative communication using relay nodes is one of the most effective means of exploiting space diversity for low cost nodes in wireless network. In cooperative communication, users, besides communicating their own information, also relay the information of other users. In this paper we investigate a scheme where cooperation is achieved using a common relay node which performs network coding to provide space diversity for two information nodes transmitting to a base station. We propose a scheme which uses Reed-Solomon error correcting code for encoding the information bit at the user nodes and convolutional code as network code, instead of XOR based network coding. Based on this encoder, we propose iterative soft decoding of joint network-channel code by treating it as a concatenated Reed-Solomon convolutional code. Simulation results show significant improvement in performance compared to existing scheme based on compound codes.

  20. Performance Analysis of Relay Subset Selection for Amplify-and-Forward Cognitive Relay Networks

    PubMed Central

    Qureshi, Ijaz Mansoor; Malik, Aqdas Naveed; Zubair, Muhammad

    2014-01-01

    Cooperative communication is regarded as a key technology in wireless networks, including cognitive radio networks (CRNs), which increases the diversity order of the signal to combat the unfavorable effects of the fading channels, by allowing distributed terminals to collaborate through sophisticated signal processing. Underlay CRNs have strict interference constraints towards the secondary users (SUs) active in the frequency band of the primary users (PUs), which limits their transmit power and their coverage area. Relay selection offers a potential solution to the challenges faced by underlay networks, by selecting either single best relay or a subset of potential relay set under different design requirements and assumptions. The best relay selection schemes proposed in the literature for amplify-and-forward (AF) based underlay cognitive relay networks have been very well studied in terms of outage probability (OP) and bit error rate (BER), which is deficient in multiple relay selection schemes. The novelty of this work is to study the outage behavior of multiple relay selection in the underlay CRN and derive the closed-form expressions for the OP and BER through cumulative distribution function (CDF) of the SNR received at the destination. The effectiveness of relay subset selection is shown through simulation results. PMID:24737980

  1. Energy neutral and low power wireless communications

    NASA Astrophysics Data System (ADS)

    Orhan, Oner

    Wireless sensor nodes are typically designed to have low cost and small size. These design objectives impose restrictions on the capacity and efficiency of the transceiver components and energy storage units that can be used. As a result, energy becomes a bottleneck and continuous operation of the sensor network requires frequent battery replacements, increasing the maintenance cost. Energy harvesting and energy efficient transceiver architectures are able to overcome these challenges by collecting energy from the environment and utilizing the energy in an intelligent manner. However, due to the nature of the ambient energy sources, the amount of useful energy that can be harvested is limited and unreliable. Consequently, optimal management of the harvested energy and design of low power transceivers pose new challenges for wireless network design and operation. The first part of this dissertation is on energy neutral wireless networking, where optimal transmission schemes under different system setups and objectives are investigated. First, throughput maximization for energy harvesting two-hop networks with decode-and-forward half-duplex relays is studied. For a system with two parallel relays, various combinations of the following four transmission modes are considered: Broadcast from the source, multi-access from the relays, and successive relaying phases I and II. Next, the energy cost of the processing circuitry as well as the transmission energy are taken into account for communication over a broadband fading channel powered by an energy harvesting transmitter. Under this setup, throughput maximization, energy maximization, and transmission completion time minimization problems are studied. Finally, source and channel coding for an energy-limited wireless sensor node is investigated under various energy constraints including energy harvesting, processing and sampling costs. For each objective, optimal transmission policies are formulated as the solutions of a convex optimization problem, and the properties of these optimal policies are identified. In the second part of this thesis, low power transceiver design is considered for millimeter wave communication systems. In particular, using an additive quantization noise model, the effect of analog-digital conversion (ADC) resolution and bandwidth on the achievable rate is investigated for a multi-antenna system under a receiver power constraint. Two receiver architectures, analog and digital combining, are compared in terms of performance.

  2. Wireless Powered Cooperative Communications: Power-Splitting Relaying With Energy Accumulation (Author’s Manuscript)

    DTIC Science & Technology

    2016-03-21

    2016 2 i.e., wireless power transfer (WPT) and wireless information transfer (WIT), fundamental changes to the designs of green communication networks...simulta- neous wireless information and power transfer ,” IEEE Commun. Mag., vol. 53, no. 4, pp. 86–93, Apr. 2015. [6] H. Tabassum, E. Hossain, A...broadcasting for simultaneous wire- less information and power transfer ,” IEEE Trans. Wireless Commun., vol. 12, no. 5, pp. 1989–2001, May 2013. [9] K. Huang

  3. Highly Efficient Multi Channel Packet Forwarding with Round Robin Intermittent Periodic Transmit for Multihop Wireless Backhaul Networks

    PubMed Central

    Furukawa, Hiroshi

    2017-01-01

    Round Robin based Intermittent Periodic Transmit (RR-IPT) has been proposed which achieves highly efficient multi-hop relays in multi-hop wireless backhaul networks (MWBN) where relay nodes are 2-dimensionally deployed. This paper newly investigates multi-channel packet scheduling and forwarding scheme for RR-IPT. Downlink traffic is forwarded by RR-IPT via one of the channels, while uplink traffic and part of downlink are accommodated in the other channel. By comparing IPT and carrier sense multiple access with collision avoidance (CSMA/CA) for uplink/downlink packet forwarding channel, IPT is more effective in reducing packet loss rate whereas CSMA/CA is better in terms of system throughput and packet delay improvement. PMID:29137164

  4. Connectivity, Coverage and Placement in Wireless Sensor Networks

    PubMed Central

    Li, Ji; Andrew, Lachlan L.H.; Foh, Chuan Heng; Zukerman, Moshe; Chen, Hsiao-Hwa

    2009-01-01

    Wireless communication between sensors allows the formation of flexible sensor networks, which can be deployed rapidly over wide or inaccessible areas. However, the need to gather data from all sensors in the network imposes constraints on the distances between sensors. This survey describes the state of the art in techniques for determining the minimum density and optimal locations of relay nodes and ordinary sensors to ensure connectivity, subject to various degrees of uncertainty in the locations of the nodes. PMID:22408474

  5. Feasibility of Using Distributed Wireless Mesh Networks for Medical Emergency Response

    PubMed Central

    Braunstein, Brian; Trimble, Troy; Mishra, Rajesh; Manoj, B. S.; Rao, Ramesh; Lenert, Leslie

    2006-01-01

    Achieving reliable, efficient data communications networks at a disaster site is a difficult task. Network paradigms, such as Wireless Mesh Network (WMN) architectures, form one exemplar for providing high-bandwidth, scalable data communication for medical emergency response activity. WMNs are created by self-organized wireless nodes that use multi-hop wireless relaying for data transfer. In this paper, we describe our experience using a mesh network architecture we developed for homeland security and medical emergency applications. We briefly discuss the architecture and present the traffic behavioral observations made by a client-server medical emergency application tested during a large-scale homeland security drill. We present our traffic measurements, describe lessons learned, and offer functional requirements (based on field testing) for practical 802.11 mesh medical emergency response networks. With certain caveats, the results suggest that 802.11 mesh networks are feasible and scalable systems for field communications in disaster settings. PMID:17238308

  6. Modeling and Simulation of a Novel Relay Node Based Secure Routing Protocol Using Multiple Mobile Sink for Wireless Sensor Networks.

    PubMed

    Perumal, Madhumathy; Dhandapani, Sivakumar

    2015-01-01

    Data gathering and optimal path selection for wireless sensor networks (WSN) using existing protocols result in collision. Increase in collision further increases the possibility of packet drop. Thus there is a necessity to eliminate collision during data aggregation. Increasing the efficiency is the need of the hour with maximum security. This paper is an effort to come up with a reliable and energy efficient WSN routing and secure protocol with minimum delay. This technique is named as relay node based secure routing protocol for multiple mobile sink (RSRPMS). This protocol finds the rendezvous point for optimal transmission of data using a "splitting tree" technique in tree-shaped network topology and then to determine all the subsequent positions of a sink the "Biased Random Walk" model is used. In case of an event, the sink gathers the data from all sources, when they are in the sensing range of rendezvous point. Otherwise relay node is selected from its neighbor to transfer packets from rendezvous point to sink. A symmetric key cryptography is used for secure transmission. The proposed relay node based secure routing protocol for multiple mobile sink (RSRPMS) is experimented and simulation results are compared with Intelligent Agent-Based Routing (IAR) protocol to prove that there is increase in the network lifetime compared with other routing protocols.

  7. Wireless Sensor Networks for Ambient Assisted Living

    PubMed Central

    Aquino-Santos, Raúl; Martinez-Castro, Diego; Edwards-Block, Arthur; Murillo-Piedrahita, Andrés Felipe

    2013-01-01

    This paper introduces wireless sensor networks for Ambient Assisted Living as a proof of concept. Our workgroup has developed an arrhythmia detection algorithm that we evaluate in a closed space using a wireless sensor network to relay the information collected to where the information can be registered, monitored and analyzed to support medical decisions by healthcare providers. The prototype we developed is then evaluated using the TelosB platform. The proposed architecture considers very specific restrictions regarding the use of wireless sensor networks in clinical situations. The seamless integration of the system architecture enables both mobile node and network configuration, thus providing the versatile and robust characteristics necessary for real-time applications in medical situations. Likewise, this system architecture efficiently permits the different components of our proposed platform to interact efficiently within the parameters of this study. PMID:24351665

  8. Energy-efficient algorithm for broadcasting in ad hoc wireless sensor networks.

    PubMed

    Xiong, Naixue; Huang, Xingbo; Cheng, Hongju; Wan, Zheng

    2013-04-12

    Broadcasting is a common and basic operation used to support various network protocols in wireless networks. To achieve energy-efficient broadcasting is especially important for ad hoc wireless sensor networks because sensors are generally powered by batteries with limited lifetimes. Energy consumption for broadcast operations can be reduced by minimizing the number of relay nodes based on the observation that data transmission processes consume more energy than data reception processes in the sensor nodes, and how to improve the network lifetime is always an interesting issue in sensor network research. The minimum-energy broadcast problem is then equivalent to the problem of finding the minimum Connected Dominating Set (CDS) for a connected graph that is proved NP-complete. In this paper, we introduce an Efficient Minimum CDS algorithm (EMCDS) with help of a proposed ordered sequence list. EMCDS does not concern itself with node energy and broadcast operations might fail if relay nodes are out of energy. Next we have proposed a Minimum Energy-consumption Broadcast Scheme (MEBS) with a modified version of EMCDS, and aimed at providing an efficient scheduling scheme with maximized network lifetime. The simulation results show that the proposed EMCDS algorithm can find smaller CDS compared with related works, and the MEBS can help to increase the network lifetime by efficiently balancing energy among nodes in the networks.

  9. RoCoMAR: robots' controllable mobility aided routing and relay architecture for mobile sensor networks.

    PubMed

    Le, Duc Van; Oh, Hoon; Yoon, Seokhoon

    2013-07-05

    In a practical deployment, mobile sensor network (MSN) suffers from a low performance due to high node mobility, time-varying wireless channel properties, and obstacles between communicating nodes. In order to tackle the problem of low network performance and provide a desired end-to-end data transfer quality, in this paper we propose a novel ad hoc routing and relaying architecture, namely RoCoMAR (Robots' Controllable Mobility Aided Routing) that uses robotic nodes' controllable mobility. RoCoMAR repeatedly performs link reinforcement process with the objective of maximizing the network throughput, in which the link with the lowest quality on the path is identified and replaced with high quality links by placing a robotic node as a relay at an optimal position. The robotic node resigns as a relay if the objective is achieved or no more gain can be obtained with a new relay. Once placed as a relay, the robotic node performs adaptive link maintenance by adjusting its position according to the movements of regular nodes. The simulation results show that RoCoMAR outperforms existing ad hoc routing protocols for MSN in terms of network throughput and end-to-end delay.

  10. RoCoMAR: Robots' Controllable Mobility Aided Routing and Relay Architecture for Mobile Sensor Networks

    PubMed Central

    Van Le, Duc; Oh, Hoon; Yoon, Seokhoon

    2013-01-01

    In a practical deployment, mobile sensor network (MSN) suffers from a low performance due to high node mobility, time-varying wireless channel properties, and obstacles between communicating nodes. In order to tackle the problem of low network performance and provide a desired end-to-end data transfer quality, in this paper we propose a novel ad hoc routing and relaying architecture, namely RoCoMAR (Robots' Controllable Mobility Aided Routing) that uses robotic nodes' controllable mobility. RoCoMAR repeatedly performs link reinforcement process with the objective of maximizing the network throughput, in which the link with the lowest quality on the path is identified and replaced with high quality links by placing a robotic node as a relay at an optimal position. The robotic node resigns as a relay if the objective is achieved or no more gain can be obtained with a new relay. Once placed as a relay, the robotic node performs adaptive link maintenance by adjusting its position according to the movements of regular nodes. The simulation results show that RoCoMAR outperforms existing ad hoc routing protocols for MSN in terms of network throughput and end-to-end delay. PMID:23881134

  11. Increasing the coverage area through relay node deployment in long term evolution advanced cellular networks

    NASA Astrophysics Data System (ADS)

    Aldhaibani, Jaafar A.; Ahmad, R. B.; Yahya, A.; Azeez, Suzan A.

    2015-05-01

    Wireless multi-hop relay networks have become very important technologies in mobile communications. These networks ensure high throughput and coverage extension with a low cost. The poor capacity at cell edges is not enough to meet with growing demand of high capacity and throughput irrespective of user's placement in the cellular network. In this paper we propose optimal placement of relay node that provides maximum achievable rate at users and enhances the throughput and coverage at cell edge region. The proposed scheme is based on the outage probability at users and taken on account the interference between nodes. Numerical analyses along with simulation results indicated there are an improvement in capacity for users at the cell edge is 40% increment from all cell capacity.

  12. Resource Sharing via Planed Relay for [InlineEquation not available: see fulltext.

    NASA Astrophysics Data System (ADS)

    Shen, Chong; Rea, Susan; Pesch, Dirk

    2008-12-01

    We present an improved version of adaptive distributed cross-layer routing algorithm (ADCR) for hybrid wireless network with dedicated relay stations ([InlineEquation not available: see fulltext.]) in this paper. A mobile terminal (MT) may borrow radio resources that are available thousands mile away via secure multihop RNs, where RNs are placed at pre-engineered locations in the network. In rural places such as mountain areas, an MT may also communicate with the core network, when intermediate MTs act as relay node with mobility. To address cross-layer network layers routing issues, the cascaded ADCR establishes routing paths across MTs, RNs, and cellular base stations (BSs) and provides appropriate quality of service (QoS). We verify the routing performance benefits of [InlineEquation not available: see fulltext.] over other networks by intensive simulation.

  13. Cooperative wireless network control based health and activity monitoring system.

    PubMed

    Prakash, R; Ganesh, A Balaji; Girish, Siva V

    2016-10-01

    A real-time cooperative communication based wireless network is presented for monitoring health and activity of an end-user in their environment. The cooperative communication offers better energy consumption and also an opportunity to aware the current location of a user non-intrusively. The link between mobile sensor node and relay node is dynamically established by using Received Signal Strength Indicator (RSSI) and Link Quality Indicator (LQI) based on adaptive relay selection scheme. The study proposes a Linear Acceleration based Transmission Power Decision Control (LA-TPDC) algorithm to further enhance the energy efficiency of cooperative communication. Further, the occurrences of false alarms are carefully prevented by introducing three stages of sequential warning system. The real-time experiments are carried-out by using the nodes, namely mobile sensor node, relay nodes and a destination node which are indigenously developed by using a CC430 microcontroller integrated with an in-built transceiver at 868 MHz. The wireless node performance characteristics, such as energy consumption, Signal-Noise ratio (SNR), Bit Error Rate (BER), Packet Delivery Ratio (PDR) and transmission offset are evaluated for all the participated nodes. The experimental results observed that the proposed linear acceleration based transmission power decision control algorithm almost doubles the battery life time than energy efficient conventional cooperative communication.

  14. Simultaneous energy harvesting and information processing in wireless multiple relays with multiple antennas

    NASA Astrophysics Data System (ADS)

    Albaaj, Azhar; Makki, S. Vahab A.; Alabkhat, Qassem; Zahedi, Abdulhamid

    2017-07-01

    Wireless networks suffer from battery discharging specially in cooperative communications when multiple relays have an important role but they are energy constrained. To overcome this problem, energy harvesting from radio frequency signals is applied to charge the node battery. These intermediate nodes have the ability to harvest energy from the source signal and use the energy harvested to transmit information to the destination. In fact, the node tries to harvest energy and then transmit the data to destination. Division of energy harvesting and data transmission can be done in two algorithms: time-switching-based relaying protocol and power-splitting-based relaying protocol. These two algorithms also can be applied in delay-limited and delay-tolerant transmission systems. The previous works have assumed a single relay for energy harvesting, but in this article, the proposed method is concentrated on improving the outage probability and throughput by using multiple antennas in each relay node instead of using single antenna. According to our simulation results, when using multi-antenna relays, ability of energy harvesting is increased and thus system performance will be improved to great extent. Maximum ratio combining scheme has been used when the destination chooses the best signal of relays and antennas satisfying the required signal-to-noise ratio.

  15. Towards Reliable and Energy-Efficient Incremental Cooperative Communication for Wireless Body Area Networks.

    PubMed

    Yousaf, Sidrah; Javaid, Nadeem; Qasim, Umar; Alrajeh, Nabil; Khan, Zahoor Ali; Ahmed, Mansoor

    2016-02-24

    In this study, we analyse incremental cooperative communication for wireless body area networks (WBANs) with different numbers of relays. Energy efficiency (EE) and the packet error rate (PER) are investigated for different schemes. We propose a new cooperative communication scheme with three-stage relaying and compare it to existing schemes. Our proposed scheme provides reliable communication with less PER at the cost of surplus energy consumption. Analytical expressions for the EE of the proposed three-stage cooperative communication scheme are also derived, taking into account the effect of PER. Later on, the proposed three-stage incremental cooperation is implemented in a network layer protocol; enhanced incremental cooperative critical data transmission in emergencies for static WBANs (EInCo-CEStat). Extensive simulations are conducted to validate the proposed scheme. Results of incremental relay-based cooperative communication protocols are compared to two existing cooperative routing protocols: cooperative critical data transmission in emergencies for static WBANs (Co-CEStat) and InCo-CEStat. It is observed from the simulation results that incremental relay-based cooperation is more energy efficient than the existing conventional cooperation protocol, Co-CEStat. The results also reveal that EInCo-CEStat proves to be more reliable with less PER and higher throughput than both of the counterpart protocols. However, InCo-CEStat has less throughput with a greater stability period and network lifetime. Due to the availability of more redundant links, EInCo-CEStat achieves a reduced packet drop rate at the cost of increased energy consumption.

  16. Towards Reliable and Energy-Efficient Incremental Cooperative Communication for Wireless Body Area Networks

    PubMed Central

    Yousaf, Sidrah; Javaid, Nadeem; Qasim, Umar; Alrajeh, Nabil; Khan, Zahoor Ali; Ahmed, Mansoor

    2016-01-01

    In this study, we analyse incremental cooperative communication for wireless body area networks (WBANs) with different numbers of relays. Energy efficiency (EE) and the packet error rate (PER) are investigated for different schemes. We propose a new cooperative communication scheme with three-stage relaying and compare it to existing schemes. Our proposed scheme provides reliable communication with less PER at the cost of surplus energy consumption. Analytical expressions for the EE of the proposed three-stage cooperative communication scheme are also derived, taking into account the effect of PER. Later on, the proposed three-stage incremental cooperation is implemented in a network layer protocol; enhanced incremental cooperative critical data transmission in emergencies for static WBANs (EInCo-CEStat). Extensive simulations are conducted to validate the proposed scheme. Results of incremental relay-based cooperative communication protocols are compared to two existing cooperative routing protocols: cooperative critical data transmission in emergencies for static WBANs (Co-CEStat) and InCo-CEStat. It is observed from the simulation results that incremental relay-based cooperation is more energy efficient than the existing conventional cooperation protocol, Co-CEStat. The results also reveal that EInCo-CEStat proves to be more reliable with less PER and higher throughput than both of the counterpart protocols. However, InCo-CEStat has less throughput with a greater stability period and network lifetime. Due to the availability of more redundant links, EInCo-CEStat achieves a reduced packet drop rate at the cost of increased energy consumption. PMID:26927104

  17. Progressively Communicating Rich Telemetry from Autonomous Underwater Vehicles via Relays

    DTIC Science & Technology

    2012-06-01

    wireless sensor networks using an autonomous underwater vehicle. In Robotics and...communication over multiple kilometers. In addition to wireless com- munication methods , the recently developed Nereus[12] vehicle at WHOI spools out...A P T U R E M e ss a g e s P ro ce ss / T h re a d M a n a g e m e n t C o n fi g u ra ti o n P a rs in g Network Manager Frame Scheduling

  18. A Notional Battlespace for Simulating and Testing Dynamic Wireless Networks

    DTIC Science & Technology

    2006-06-01

    communications. The system is built with single and multiple-beam antenn provide more flexible coverage than its predecessor. The single steerable dish ante...The network recognizes inbound commercial satellite transmissions to the platoon are successful and through the relay back to the A-10s, the loop is

  19. The Study of Cross-layer Optimization for Wireless Rechargeable Sensor Networks Implemented in Coal Mines

    PubMed Central

    Ding, Xu; Shi, Lei; Han, Jianghong; Lu, Jingting

    2016-01-01

    Wireless sensor networks deployed in coal mines could help companies provide workers working in coal mines with more qualified working conditions. With the underground information collected by sensor nodes at hand, the underground working conditions could be evaluated more precisely. However, sensor nodes may tend to malfunction due to their limited energy supply. In this paper, we study the cross-layer optimization problem for wireless rechargeable sensor networks implemented in coal mines, of which the energy could be replenished through the newly-brewed wireless energy transfer technique. The main results of this article are two-fold: firstly, we obtain the optimal relay nodes’ placement according to the minimum overall energy consumption criterion through the Lagrange dual problem and KKT conditions; secondly, the optimal strategies for recharging locomotives and wireless sensor networks are acquired by solving a cross-layer optimization problem. The cyclic nature of these strategies is also manifested through simulations in this paper. PMID:26828500

  20. The Study of Cross-layer Optimization for Wireless Rechargeable Sensor Networks Implemented in Coal Mines.

    PubMed

    Ding, Xu; Shi, Lei; Han, Jianghong; Lu, Jingting

    2016-01-28

    Wireless sensor networks deployed in coal mines could help companies provide workers working in coal mines with more qualified working conditions. With the underground information collected by sensor nodes at hand, the underground working conditions could be evaluated more precisely. However, sensor nodes may tend to malfunction due to their limited energy supply. In this paper, we study the cross-layer optimization problem for wireless rechargeable sensor networks implemented in coal mines, of which the energy could be replenished through the newly-brewed wireless energy transfer technique. The main results of this article are two-fold: firstly, we obtain the optimal relay nodes' placement according to the minimum overall energy consumption criterion through the Lagrange dual problem and KKT conditions; secondly, the optimal strategies for recharging locomotives and wireless sensor networks are acquired by solving a cross-layer optimization problem. The cyclic nature of these strategies is also manifested through simulations in this paper.

  1. Time and Energy Efficient Relay Transmission for Multi-Hop Wireless Sensor Networks.

    PubMed

    Kim, Jin-Woo; Barrado, José Ramón Ramos; Jeon, Dong-Keun

    2016-06-27

    The IEEE 802.15.4 standard is widely recognized as one of the most successful enabling technologies for short range low rate wireless communications and it is used in IoT applications. It covers all the details related to the MAC and PHY layers of the IoT protocol stack. Due to the nature of IoT, the wireless sensor networks are autonomously self-organized networks without infrastructure support. One of the issues in IoT is the network scalability. To address this issue, it is necessary to support the multi-hop topology. The IEEE 802.15.4 network can support a star, peer-to-peer, or cluster-tree topology. One of the IEEE 802.15.4 topologies suited for the high predictability of performance guarantees and energy efficient behavior is a cluster-tree topology where sensor nodes can switch off their transceivers and go into a sleep state to save energy. However, the IEEE 802.15.4 cluster-tree topology may not be able to provide sufficient bandwidth for the increased traffic load and the additional information may not be delivered successfully. The common drawback of the existing approaches is that they do not address the poor bandwidth utilization problem in IEEE 802.15.4 cluster-tree networks, so it is difficult to increase the network performance. Therefore, to solve this problem in this paper we study a relay transmission protocol based on the standard protocol in the IEEE 802.15.4 MAC. In the proposed scheme, the coordinators can relay data frames to their parent devices or their children devices without contention and can provide bandwidth for the increased traffic load or the number of devices. We also evaluate the performance of the proposed scheme through simulation. The simulation results demonstrate that the proposed scheme can improve the reliability, the end-to-end delay, and the energy consumption.

  2. Time and Energy Efficient Relay Transmission for Multi-Hop Wireless Sensor Networks

    PubMed Central

    Kim, Jin-Woo; Barrado, José Ramón Ramos; Jeon, Dong-Keun

    2016-01-01

    The IEEE 802.15.4 standard is widely recognized as one of the most successful enabling technologies for short range low rate wireless communications and it is used in IoT applications. It covers all the details related to the MAC and PHY layers of the IoT protocol stack. Due to the nature of IoT, the wireless sensor networks are autonomously self-organized networks without infrastructure support. One of the issues in IoT is the network scalability. To address this issue, it is necessary to support the multi-hop topology. The IEEE 802.15.4 network can support a star, peer-to-peer, or cluster-tree topology. One of the IEEE 802.15.4 topologies suited for the high predictability of performance guarantees and energy efficient behavior is a cluster-tree topology where sensor nodes can switch off their transceivers and go into a sleep state to save energy. However, the IEEE 802.15.4 cluster-tree topology may not be able to provide sufficient bandwidth for the increased traffic load and the additional information may not be delivered successfully. The common drawback of the existing approaches is that they do not address the poor bandwidth utilization problem in IEEE 802.15.4 cluster-tree networks, so it is difficult to increase the network performance. Therefore, to solve this problem in this paper we study a relay transmission protocol based on the standard protocol in the IEEE 802.15.4 MAC. In the proposed scheme, the coordinators can relay data frames to their parent devices or their children devices without contention and can provide bandwidth for the increased traffic load or the number of devices. We also evaluate the performance of the proposed scheme through simulation. The simulation results demonstrate that the proposed scheme can improve the reliability, the end-to-end delay, and the energy consumption. PMID:27355952

  3. Radio Relays Improve Wireless Products

    NASA Technical Reports Server (NTRS)

    2009-01-01

    Signal Hill, California-based XCOM Wireless Inc. developed radio frequency micromachine (RF MEMS) relays with a Phase II Small Business Innovation Research (SBIR) contract through NASA?s Jet Propulsion Laboratory. In order to improve satellite communication systems, XCOM produced wireless RF MEMS relays and tunable capacitors that use metal-to-metal contact and have the potential to outperform most semiconductor technologies while using less power. These relays are used in high-frequency test equipment and instrumentation, where increased speed can mean significant cost savings. Applications now also include mainstream wireless applications and greatly improved tactical radios.

  4. An Outline of Data Aggregation Security in Heterogeneous Wireless Sensor Networks.

    PubMed

    Boubiche, Sabrina; Boubiche, Djallel Eddine; Bilami, Azzedine; Toral-Cruz, Homero

    2016-04-12

    Data aggregation processes aim to reduce the amount of exchanged data in wireless sensor networks and consequently minimize the packet overhead and optimize energy efficiency. Securing the data aggregation process is a real challenge since the aggregation nodes must access the relayed data to apply the aggregation functions. The data aggregation security problem has been widely addressed in classical homogeneous wireless sensor networks, however, most of the proposed security protocols cannot guarantee a high level of security since the sensor node resources are limited. Heterogeneous wireless sensor networks have recently emerged as a new wireless sensor network category which expands the sensor nodes' resources and capabilities. These new kinds of WSNs have opened new research opportunities where security represents a most attractive area. Indeed, robust and high security level algorithms can be used to secure the data aggregation at the heterogeneous aggregation nodes which is impossible in classical homogeneous WSNs. Contrary to the homogeneous sensor networks, the data aggregation security problem is still not sufficiently covered and the proposed data aggregation security protocols are numberless. To address this recent research area, this paper describes the data aggregation security problem in heterogeneous wireless sensor networks and surveys a few proposed security protocols. A classification and evaluation of the existing protocols is also introduced based on the adopted data aggregation security approach.

  5. Bluetooth-based distributed measurement system

    NASA Astrophysics Data System (ADS)

    Tang, Baoping; Chen, Zhuo; Wei, Yuguo; Qin, Xiaofeng

    2007-07-01

    A novel distributed wireless measurement system, which is consisted of a base station, wireless intelligent sensors and relay nodes etc, is established by combining of Bluetooth-based wireless transmission, virtual instrument, intelligent sensor, and network. The intelligent sensors mounted on the equipments to be measured acquire various parameters and the Bluetooth relay nodes get the acquired data modulated and sent to the base station, where data analysis and processing are done so that the operational condition of the equipment can be evaluated. The establishment of the distributed measurement system is discussed with a measurement flow chart for the distributed measurement system based on Bluetooth technology, and the advantages and disadvantages of the system are analyzed at the end of the paper and the measurement system has successfully been used in Daqing oilfield, China for measurement of parameters, such as temperature, flow rate and oil pressure at an electromotor-pump unit.

  6. Towards Efficient Wireless Body Area Network Using Two-Way Relay Cooperation.

    PubMed

    Waheed, Maham; Ahmad, Rizwan; Ahmed, Waqas; Drieberg, Micheal; Alam, Muhammad Mahtab

    2018-02-13

    The fabrication of lightweight, ultra-thin, low power and intelligent body-borne sensors leads to novel advances in wireless body area networks (WBANs). Depending on the placement of the nodes, it is characterized as in/on body WBAN; thus, the channel is largely affected by body posture, clothing, muscle movement, body temperature and climatic conditions. The energy resources are limited and it is not feasible to replace the sensor's battery frequently. In order to keep the sensor in working condition, the channel resources should be reserved. The lifetime of the sensor is very crucial and it highly depends on transmission among sensor nodes and energy consumption. The reliability and energy efficiency in WBAN applications play a vital role. In this paper, the analytical expressions for energy efficiency (EE) and packet error rate (PER) are formulated for two-way relay cooperative communication. The results depict better reliability and efficiency compared to direct and one-way relay communication. The effective performance range of direct vs. cooperative communication is separated by a threshold distance. Based on EE calculations, an optimal packet size is observed that provides maximum efficiency over a certain link length. A smart and energy efficient system is articulated that utilizes all three communication modes, namely direct, one-way relay and two-way relay, as the direct link performs better for a certain range, but the cooperative communication gives better results for increased distance in terms of EE. The efficacy of the proposed hybrid scheme is also demonstrated over a practical quasi-static channel. Furthermore, link length extension and diversity is achieved by joint network-channel (JNC) coding the cooperative link.

  7. Towards Efficient Wireless Body Area Network Using Two-Way Relay Cooperation

    PubMed Central

    Waheed, Maham; Ahmad, Rizwan; Ahmed, Waqas

    2018-01-01

    The fabrication of lightweight, ultra-thin, low power and intelligent body-borne sensors leads to novel advances in wireless body area networks (WBANs). Depending on the placement of the nodes, it is characterized as in/on body WBAN; thus, the channel is largely affected by body posture, clothing, muscle movement, body temperature and climatic conditions. The energy resources are limited and it is not feasible to replace the sensor’s battery frequently. In order to keep the sensor in working condition, the channel resources should be reserved. The lifetime of the sensor is very crucial and it highly depends on transmission among sensor nodes and energy consumption. The reliability and energy efficiency in WBAN applications play a vital role. In this paper, the analytical expressions for energy efficiency (EE) and packet error rate (PER) are formulated for two-way relay cooperative communication. The results depict better reliability and efficiency compared to direct and one-way relay communication. The effective performance range of direct vs. cooperative communication is separated by a threshold distance. Based on EE calculations, an optimal packet size is observed that provides maximum efficiency over a certain link length. A smart and energy efficient system is articulated that utilizes all three communication modes, namely direct, one-way relay and two-way relay, as the direct link performs better for a certain range, but the cooperative communication gives better results for increased distance in terms of EE. The efficacy of the proposed hybrid scheme is also demonstrated over a practical quasi-static channel. Furthermore, link length extension and diversity is achieved by joint network-channel (JNC) coding the cooperative link. PMID:29438278

  8. Spatially Controlled Relay Beamforming

    NASA Astrophysics Data System (ADS)

    Kalogerias, Dionysios

    This thesis is about fusion of optimal stochastic motion control and physical layer communications. Distributed, networked communication systems, such as relay beamforming networks (e.g., Amplify & Forward (AF)), are typically designed without explicitly considering how the positions of the respective nodes might affect the quality of the communication. Optimum placement of network nodes, which could potentially improve the quality of the communication, is not typically considered. However, in most practical settings in physical layer communications, such as relay beamforming, the Channel State Information (CSI) observed by each node, per channel use, although it might be (modeled as) random, it is both spatially and temporally correlated. It is, therefore, reasonable to ask if and how the performance of the system could be improved by (predictively) controlling the positions of the network nodes (e.g., the relays), based on causal side (CSI) information, and exploitting the spatiotemporal dependencies of the wireless medium. In this work, we address this problem in the context of AF relay beamforming networks. This novel, cyber-physical system approach to relay beamforming is termed as "Spatially Controlled Relay Beamforming". First, we discuss wireless channel modeling, however, in a rigorous, Bayesian framework. Experimentally accurate and, at the same time, technically precise channel modeling is absolutely essential for designing and analyzing spatially controlled communication systems. In this work, we are interested in two distinct spatiotemporal statistical models, for describing the behavior of the log-scale magnitude of the wireless channel: 1. Stationary Gaussian Fields: In this case, the channel is assumed to evolve as a stationary, Gaussian stochastic field in continuous space and discrete time (say, for instance, time slots). Under such assumptions, spatial and temporal statistical interactions are determined by a set of time and space invariant parameters, which completely determine the mean and covariance of the underlying Gaussian measure. This model is relatively simple to describe, and can be sufficiently characterized, at least for our purposes, both statistically and topologically. Additionally, the model is rather versatile and there is existing experimental evidence, supporting its practical applicability. Our contributions are summarized in properly formulating the whole spatiotemporal model in a completely rigorous mathematical setting, under a convenient measure theoretic framework. Such framework greatly facilitates formulation of meaningful stochastic control problems, where the wireless channel field (or a function of it) can be regarded as a stochastic optimization surface.. 2. Conditionally Gaussian Fields, when conditioned on a Markovian channel state: This is a completely novel approach to wireless channel modeling. In this approach, the communication medium is assumed to behave as a partially observable (or hidden) system, where a hidden, global, temporally varying underlying stochastic process, called the channel state, affects the spatial interactions of the actual channel magnitude, evaluated at any set of locations in the plane. More specifically, we assume that, conditioned on the channel state, the wireless channel constitutes an observable, conditionally Gaussian stochastic process. The channel state evolves in time according to a known, possibly non stationary, non Gaussian, low dimensional Markov kernel. Recognizing the intractability of general nonlinear state estimation, we advocate the use of grid based approximate nonlinear filters as an effective and robust means for recursive tracking of the channel state. We also propose a sequential spatiotemporal predictor for tracking the channel gains at any point in time and space, providing real time sequential estimates for the respective channel gain map. In this context, our contributions are multifold. Except for the introduction of the layered channel model previously described, this line of research has resulted in a number of general, asymptotic convergence results, advancing the theory of grid-based approximate nonlinear stochastic filtering. In particular, sufficient conditions, ensuring asymptotic optimality are relaxed, and, at the same time, the mode of convergence is strengthened. Although the need for such results initiated as an attempt to theoretically characterize the performance of the proposed approximate methods for statistical inference, in regard to the proposed channel modeling approach, they turn out to be of fundamental importance in the areas of nonlinear estimation and stochastic control. The experimental validation of the proposed channel model, as well as the related parameter estimation problem, termed as "Markovian Channel Profiling (MCP)", fundamentally important for any practical deployment, are subject of current, ongoing research. Second, adopting the first of the two aforementioned channel modeling approaches, we consider the spatially controlled relay beamforming problem for an AF network with a single source, a single destination, and multiple, controlled at will, relay nodes. (Abstract shortened by ProQuest.).

  9. An Outline of Data Aggregation Security in Heterogeneous Wireless Sensor Networks

    PubMed Central

    Boubiche, Sabrina; Boubiche, Djallel Eddine; Bilami, Azzedine; Toral-Cruz, Homero

    2016-01-01

    Data aggregation processes aim to reduce the amount of exchanged data in wireless sensor networks and consequently minimize the packet overhead and optimize energy efficiency. Securing the data aggregation process is a real challenge since the aggregation nodes must access the relayed data to apply the aggregation functions. The data aggregation security problem has been widely addressed in classical homogeneous wireless sensor networks, however, most of the proposed security protocols cannot guarantee a high level of security since the sensor node resources are limited. Heterogeneous wireless sensor networks have recently emerged as a new wireless sensor network category which expands the sensor nodes’ resources and capabilities. These new kinds of WSNs have opened new research opportunities where security represents a most attractive area. Indeed, robust and high security level algorithms can be used to secure the data aggregation at the heterogeneous aggregation nodes which is impossible in classical homogeneous WSNs. Contrary to the homogeneous sensor networks, the data aggregation security problem is still not sufficiently covered and the proposed data aggregation security protocols are numberless. To address this recent research area, this paper describes the data aggregation security problem in heterogeneous wireless sensor networks and surveys a few proposed security protocols. A classification and evaluation of the existing protocols is also introduced based on the adopted data aggregation security approach. PMID:27077866

  10. Effectiveness of a Littoral Combat Ship as a Major Node in a Wireless Mesh Network

    DTIC Science & Technology

    2017-03-01

    17 Figure 6. Cloud Relay Groups . Source: Persistent Systems (2014a). .......................18 Figure 7. SolarWinds Network Performance Monitor...CIG Commander’s Initiative Group CLI Command Line Interface CN Core Network CODA Common Optical Digital Architecture CPS Cyber-Physical Systems...CSBA Center for Strategic and Budgetary CSG Carrier Strike Group DAMA Demand Assigned Multiple Access DDG Guided Missile Destroyer DL Distributed

  11. Wireless Relay Selection in Pocket Switched Networks Based on Spatial Regularity of Human Mobility †

    PubMed Central

    Huang, Jianhui; Cheng, Xiuzhen; Bi, Jingping; Chen, Biao

    2016-01-01

    Pocket switched networks (PSNs) take advantage of human mobility to deliver data. Investigations on real-world trace data indicate that human mobility shows an obvious spatial regularity: a human being usually visits a few places at high frequencies. These most frequently visited places form the home of a node, which is exploited in this paper to design two HomE based Relay selectiOn (HERO) algorithms. Both algorithms input single data copy into the network at any time. In the basic HERO, only the first node encountered by the source and whose home overlaps a destination’s home is selected as a relay while the enhanced HERO keeps finding more optimal relay that visits the destination’s home with higher probability. The two proposed algorithms only require the relays to exchange the information of their home and/or the visiting frequencies to their home when two nodes meet. As a result, the information update is reduced and there is no global status information that needs to be maintained. This causes light loads on relays because of the low communication cost and storage requirements. Additionally, only simple operations are needed in the two proposed algorithms, resulting in little computation overhead at relays. At last, a theoretical analysis is performed on some key metrics and then the real-world based simulations indicate that the two HERO algorithms are efficient and effective through employing only one or a few relays. PMID:26797609

  12. Cluster Cooperation in Wireless-Powered Sensor Networks: Modeling and Performance Analysis.

    PubMed

    Zhang, Chao; Zhang, Pengcheng; Zhang, Weizhan

    2017-09-27

    A wireless-powered sensor network (WPSN) consisting of one hybrid access point (HAP), a near cluster and the corresponding far cluster is investigated in this paper. These sensors are wireless-powered and they transmit information by consuming the harvested energy from signal ejected by the HAP. Sensors are able to harvest energy as well as store the harvested energy. We propose that if sensors in near cluster do not have their own information to transmit, acting as relays, they can help the sensors in a far cluster to forward information to the HAP in an amplify-and-forward (AF) manner. We use a finite Markov chain to model the dynamic variation process of the relay battery, and give a general analyzing model for WPSN with cluster cooperation. Though the model, we deduce the closed-form expression for the outage probability as the metric of this network. Finally, simulation results validate the start point of designing this paper and correctness of theoretical analysis and show how parameters have an effect on system performance. Moreover, it is also known that the outage probability of sensors in far cluster can be drastically reduced without sacrificing the performance of sensors in near cluster if the transmit power of HAP is fairly high. Furthermore, in the aspect of outage performance of far cluster, the proposed scheme significantly outperforms the direct transmission scheme without cooperation.

  13. Cluster Cooperation in Wireless-Powered Sensor Networks: Modeling and Performance Analysis

    PubMed Central

    Zhang, Chao; Zhang, Pengcheng; Zhang, Weizhan

    2017-01-01

    A wireless-powered sensor network (WPSN) consisting of one hybrid access point (HAP), a near cluster and the corresponding far cluster is investigated in this paper. These sensors are wireless-powered and they transmit information by consuming the harvested energy from signal ejected by the HAP. Sensors are able to harvest energy as well as store the harvested energy. We propose that if sensors in near cluster do not have their own information to transmit, acting as relays, they can help the sensors in a far cluster to forward information to the HAP in an amplify-and-forward (AF) manner. We use a finite Markov chain to model the dynamic variation process of the relay battery, and give a general analyzing model for WPSN with cluster cooperation. Though the model, we deduce the closed-form expression for the outage probability as the metric of this network. Finally, simulation results validate the start point of designing this paper and correctness of theoretical analysis and show how parameters have an effect on system performance. Moreover, it is also known that the outage probability of sensors in far cluster can be drastically reduced without sacrificing the performance of sensors in near cluster if the transmit power of HAP is fairly high. Furthermore, in the aspect of outage performance of far cluster, the proposed scheme significantly outperforms the direct transmission scheme without cooperation. PMID:28953231

  14. Optimizing Retransmission Threshold in Wireless Sensor Networks

    PubMed Central

    Bi, Ran; Li, Yingshu; Tan, Guozhen; Sun, Liang

    2016-01-01

    The retransmission threshold in wireless sensor networks is critical to the latency of data delivery in the networks. However, existing works on data transmission in sensor networks did not consider the optimization of the retransmission threshold, and they simply set the same retransmission threshold for all sensor nodes in advance. The method did not take link quality and delay requirement into account, which decreases the probability of a packet passing its delivery path within a given deadline. This paper investigates the problem of finding optimal retransmission thresholds for relay nodes along a delivery path in a sensor network. The object of optimizing retransmission thresholds is to maximize the summation of the probability of the packet being successfully delivered to the next relay node or destination node in time. A dynamic programming-based distributed algorithm for finding optimal retransmission thresholds for relay nodes along a delivery path in the sensor network is proposed. The time complexity is OnΔ·max1≤i≤n{ui}, where ui is the given upper bound of the retransmission threshold of sensor node i in a given delivery path, n is the length of the delivery path and Δ is the given upper bound of the transmission delay of the delivery path. If Δ is greater than the polynomial, to reduce the time complexity, a linear programming-based (1+pmin)-approximation algorithm is proposed. Furthermore, when the ranges of the upper and lower bounds of retransmission thresholds are big enough, a Lagrange multiplier-based distributed O(1)-approximation algorithm with time complexity O(1) is proposed. Experimental results show that the proposed algorithms have better performance. PMID:27171092

  15. Information-Driven Blind Doppler Shift Estimation and Compensation Methods for Underwater Wireless Sensor Networks

    DTIC Science & Technology

    2015-08-24

    SUPPLEMENTARY NOTES 12. DISTRIBUTION AVAILIBILITY STATEMENT 6. AUTHORS 7. PERFORMING ORGANIZATION NAMES AND ADDRESSES 15. SUBJECT TERMS b. ABSTRACT 2...network keeping constraints such as transmission rate, transmission delay, Signal-to-Interference and Noise Ratio (SINR) under consideration. Table...distances. It is advantageous to accomplish such transmission using sensors in a multi-hop relay form keeping constraints such as transmission rate

  16. A Survey on Wireless Body Area Networks for eHealthcare Systems in Residential Environments

    PubMed Central

    Ghamari, Mohammad; Janko, Balazs; Sherratt, R. Simon; Harwin, William; Piechockic, Robert; Soltanpur, Cinna

    2016-01-01

    Current progress in wearable and implanted health monitoring technologies has strong potential to alter the future of healthcare services by enabling ubiquitous monitoring of patients. A typical health monitoring system consists of a network of wearable or implanted sensors that constantly monitor physiological parameters. Collected data are relayed using existing wireless communication protocols to a base station for additional processing. This article provides researchers with information to compare the existing low-power communication technologies that can potentially support the rapid development and deployment of WBAN systems, and mainly focuses on remote monitoring of elderly or chronically ill patients in residential environments. PMID:27338377

  17. A Survey on Wireless Body Area Networks for eHealthcare Systems in Residential Environments.

    PubMed

    Ghamari, Mohammad; Janko, Balazs; Sherratt, R Simon; Harwin, William; Piechockic, Robert; Soltanpur, Cinna

    2016-06-07

    Current progress in wearable and implanted health monitoring technologies has strong potential to alter the future of healthcare services by enabling ubiquitous monitoring of patients. A typical health monitoring system consists of a network of wearable or implanted sensors that constantly monitor physiological parameters. Collected data are relayed using existing wireless communication protocols to a base station for additional processing. This article provides researchers with information to compare the existing low-power communication technologies that can potentially support the rapid development and deployment of WBAN systems, and mainly focuses on remote monitoring of elderly or chronically ill patients in residential environments.

  18. Data Relay Board with Protocol for High-Speed, Free-Space Optical Communications

    NASA Technical Reports Server (NTRS)

    Wright, Malcolm; Clare, Loren; Gould, Gary; Pedyash, Maxim

    2004-01-01

    In a free-space optical communication system, the mitigation of transient outages through the incorporation of error-control methods is of particular concern, the outages being caused by scintillation fades and obscurants. The focus of this innovative technology is the development of a data relay system for a reliable high-data-rate free-spacebased optical-transport network. The data relay boards will establish the link, maintain synchronous connection, group the data into frames, and provide for automatic retransmission (ARQ) of lost or erred frames. A certain Quality of Service (QoS) can then be ensured, compatible with the required data rate. The protocol to be used by the data relay system is based on the draft CCSDS standard data-link protocol Proximity-1, selected by orbiters to multiple lander assets in the Mars network, for example. In addition to providing data-link protocol capabilities for the free-space optical link and buffering the data, the data relay system will interface directly with user applications over Gigabit Ethernet and/or with highspeed storage resources via Fibre Channel. The hardware implementation is built on a network-processor-based architecture. This technology combines the power of a hardware switch capable of data switching and packet routing at Gbps rates, with the flexibility of a software- driven processor that can host highly adaptive and reconfigurable protocols used, for example, in wireless local-area networks (LANs). The system will be implemented in a modular multi-board fashion. The main hardware elements of the data relay system are the new data relay board developed by Rockwell Scientific, a COTS Gigabit Ethernet board for user interface, and a COTS Fibre Channel board that connects to local storage. The boards reside in a cPCI back plane, and can be housed in a VME-type enclosure.

  19. A Study of LoRa: Long Range & Low Power Networks for the Internet of Things

    PubMed Central

    Augustin, Aloÿs; Yi, Jiazi; Clausen, Thomas; Townsley, William Mark

    2016-01-01

    LoRa is a long-range, low-power, low-bitrate, wireless telecommunications system, promoted as an infrastructure solution for the Internet of Things: end-devices use LoRa across a single wireless hop to communicate to gateway(s), connected to the Internet and which act as transparent bridges and relay messages between these end-devices and a central network server. This paper provides an overview of LoRa and an in-depth analysis of its functional components. The physical and data link layer performance is evaluated by field tests and simulations. Based on the analysis and evaluations, some possible solutions for performance enhancements are proposed. PMID:27618064

  20. A Study of LoRa: Long Range & Low Power Networks for the Internet of Things.

    PubMed

    Augustin, Aloÿs; Yi, Jiazi; Clausen, Thomas; Townsley, William Mark

    2016-09-09

    LoRa is a long-range, low-power, low-bitrate, wireless telecommunications system, promoted as an infrastructure solution for the Internet of Things: end-devices use LoRa across a single wireless hop to communicate to gateway(s), connected to the Internet and which act as transparent bridges and relay messages between these end-devices and a central network server. This paper provides an overview of LoRa and an in-depth analysis of its functional components. The physical and data link layer performance is evaluated by field tests and simulations. Based on the analysis and evaluations, some possible solutions for performance enhancements are proposed.

  1. Power allocation strategies to minimize energy consumption in wireless body area networks.

    PubMed

    Kailas, Aravind

    2011-01-01

    The wide scale deployment of wireless body area networks (WBANs) hinges on designing energy efficient communication protocols to support the reliable communication as well as to prolong the network lifetime. Cooperative communications, a relatively new idea in wireless communications, offers the benefits of multi-antenna systems, thereby improving the link reliability and boosting energy efficiency. In this short paper, the advantages of resorting to cooperative communications for WBANs in terms of minimized energy consumption are investigated. Adopting an energy model that encompasses energy consumptions in the transmitter and receiver circuits, and transmitting energy per bit, it is seen that cooperative transmission can improve energy efficiency of the wireless network. In particular, the problem of optimal power allocation is studied with the constraint of targeted outage probability. Two strategies of power allocation are considered: power allocation with and without posture state information. Using analysis and simulation-based results, two key points are demonstrated: (i) allocating power to the on-body sensors making use of the posture information can reduce the total energy consumption of the WBAN; and (ii) when the channel condition is good, it is better to recruit less relays for cooperation to enhance energy efficiency.

  2. Resource Optimization Scheme for Multimedia-Enabled Wireless Mesh Networks

    PubMed Central

    Ali, Amjad; Ahmed, Muhammad Ejaz; Piran, Md. Jalil; Suh, Doug Young

    2014-01-01

    Wireless mesh networking is a promising technology that can support numerous multimedia applications. Multimedia applications have stringent quality of service (QoS) requirements, i.e., bandwidth, delay, jitter, and packet loss ratio. Enabling such QoS-demanding applications over wireless mesh networks (WMNs) require QoS provisioning routing protocols that lead to the network resource underutilization problem. Moreover, random topology deployment leads to have some unused network resources. Therefore, resource optimization is one of the most critical design issues in multi-hop, multi-radio WMNs enabled with multimedia applications. Resource optimization has been studied extensively in the literature for wireless Ad Hoc and sensor networks, but existing studies have not considered resource underutilization issues caused by QoS provisioning routing and random topology deployment. Finding a QoS-provisioned path in wireless mesh networks is an NP complete problem. In this paper, we propose a novel Integer Linear Programming (ILP) optimization model to reconstruct the optimal connected mesh backbone topology with a minimum number of links and relay nodes which satisfies the given end-to-end QoS demands for multimedia traffic and identification of extra resources, while maintaining redundancy. We further propose a polynomial time heuristic algorithm called Link and Node Removal Considering Residual Capacity and Traffic Demands (LNR-RCTD). Simulation studies prove that our heuristic algorithm provides near-optimal results and saves about 20% of resources from being wasted by QoS provisioning routing and random topology deployment. PMID:25111241

  3. Resource optimization scheme for multimedia-enabled wireless mesh networks.

    PubMed

    Ali, Amjad; Ahmed, Muhammad Ejaz; Piran, Md Jalil; Suh, Doug Young

    2014-08-08

    Wireless mesh networking is a promising technology that can support numerous multimedia applications. Multimedia applications have stringent quality of service (QoS) requirements, i.e., bandwidth, delay, jitter, and packet loss ratio. Enabling such QoS-demanding applications over wireless mesh networks (WMNs) require QoS provisioning routing protocols that lead to the network resource underutilization problem. Moreover, random topology deployment leads to have some unused network resources. Therefore, resource optimization is one of the most critical design issues in multi-hop, multi-radio WMNs enabled with multimedia applications. Resource optimization has been studied extensively in the literature for wireless Ad Hoc and sensor networks, but existing studies have not considered resource underutilization issues caused by QoS provisioning routing and random topology deployment. Finding a QoS-provisioned path in wireless mesh networks is an NP complete problem. In this paper, we propose a novel Integer Linear Programming (ILP) optimization model to reconstruct the optimal connected mesh backbone topology with a minimum number of links and relay nodes which satisfies the given end-to-end QoS demands for multimedia traffic and identification of extra resources, while maintaining redundancy. We further propose a polynomial time heuristic algorithm called Link and Node Removal Considering Residual Capacity and Traffic Demands (LNR-RCTD). Simulation studies prove that our heuristic algorithm provides near-optimal results and saves about 20% of resources from being wasted by QoS provisioning routing and random topology deployment.

  4. Configuration of Wireless Cooperative/Sensor Networks

    DTIC Science & Technology

    2008-05-25

    WSN), the advantages of cooperation can be further exploited by optimally allocating the energy and bandwidth resources among users based on the... consumption and extend system lifetime [Sin98]. The implementation of a minimum energy routing protocol is discussed in [Dos02a, Dos02b]. An online...power consumption in the network given the required SER at the destination. For example, with source power Ps=20dB, the EP algorithm requires one relay

  5. A Secure Scheme for Distributed Consensus Estimation against Data Falsification in Heterogeneous Wireless Sensor Networks.

    PubMed

    Mi, Shichao; Han, Hui; Chen, Cailian; Yan, Jian; Guan, Xinping

    2016-02-19

    Heterogeneous wireless sensor networks (HWSNs) can achieve more tasks and prolong the network lifetime. However, they are vulnerable to attacks from the environment or malicious nodes. This paper is concerned with the issues of a consensus secure scheme in HWSNs consisting of two types of sensor nodes. Sensor nodes (SNs) have more computation power, while relay nodes (RNs) with low power can only transmit information for sensor nodes. To address the security issues of distributed estimation in HWSNs, we apply the heterogeneity of responsibilities between the two types of sensors and then propose a parameter adjusted-based consensus scheme (PACS) to mitigate the effect of the malicious node. Finally, the convergence property is proven to be guaranteed, and the simulation results validate the effectiveness and efficiency of PACS.

  6. Near field wireless power transfer using curved relay resonators for extended transfer distance

    NASA Astrophysics Data System (ADS)

    Zhu, D.; Clare, L.; Stark, B. H.; Beeby, S. P.

    2015-12-01

    This paper investigates the performance of a near field wireless power transfer system that uses curved relay resonator to extend transfer distance. Near field wireless power transfer operates based on the near-field electromagnetic coupling of coils. Such a system can transfer energy over a relatively short distance which is of the same order of dimensions of the coupled coils. The energy transfer distance can be increased using flat relay resonators. Recent developments in printing electronics and e-textiles have seen increasing demand of embedding electronics into fabrics. Near field wireless power transfer is one of the most promising methods to power electronics on fabrics. The concept can be applied to body-worn textiles by, for example, integrating a transmitter coil into upholstery, and a flexible receiver coil into garments. Flexible textile coils take on the shape of the supporting materials such as garments, and therefore curved resonator and receiver coils are investigated in this work. Experimental results showed that using curved relay resonator can effectively extend the wireless power transfer distance. However, as the curvature of the coil increases, the performance of the wireless power transfer, especially the maximum received power, deteriorates.

  7. Real-time monitoring of ubiquitous wireless ECG sensor node for medical care using ZigBee

    NASA Astrophysics Data System (ADS)

    Vijayalakshmi, S. R.; Muruganand, S.

    2012-01-01

    Sensor networks have the potential to impact many aspects of medical care greatly. By outfitting patients with wireless, wearable vital sign sensors, collecting detailed real-time data on physiological status can be greatly simplified. In this article, we propose the system architecture for smart sensor platform based on advanced wireless sensor networks. An emerging application for wireless sensor networks involves their use in medical care. In hospitals or clinics, outfitting every patient with tiny, wearable wireless vital sign sensors would allow doctors, nurses and other caregivers to continuously monitor the status of their patients. In an emergency or disaster scenario, the same technology would enable medics to more effectively care for a large number of casualties. First responders could receive immediate notifications on any changes in patient status, such as respiratory failure or cardiac arrest. Wireless sensor network is a set of small, autonomous devices, working together to solve different problems. It is a relatively new technology, experiencing true expansion in the past decade. People have realised that integration of small and cheap microcontrollers with sensors can result in the production of extremely useful devices, which can be used as an integral part of the sensor nets. These devices are called sensor nodes. Today, sensor nets are used in agriculture, ecology and tourism, but medicine is the area where they certainly meet the greatest potential. This article presents a medical smart sensor node platform. This article proposes a wireless two-lead EKG. These devices collect heart rate and EKG data and relay it over a short-range (300 m) wireless network to any number of receiving devices, including PDAs, laptops or ambulance-based terminals.

  8. Design and implementation of a mobile-care system over wireless sensor network for home healthcare applications.

    PubMed

    Lee, Ren-Guey; Lai, Chien-Chih; Chiang, Shao-Shan; Liu, Hsin-Sheng; Chen, Chun-Chang; Hsieh, Guan-Yu

    2006-01-01

    According to home healthcare requirement of chronic patients, this paper proposes a mobile-care system integrated with a variety of vital-sign monitoring, where all the front-end vital-sign measuring devices are portable and have the ability of short-range wireless communication. In order to make the system more suitable for home applications, the technology of wireless sensor network is introduced to transmit the captured vital signs to the residential gateway by means of multi-hop relay. Then the residential gateway uploads data to the care server via Internet to carry out patient's condition monitoring and the management of pathological data. Furthermore, the system is added in the alarm mechanism, which the portable care device is able to immediately perceive the critical condition of the patient and to send a warning message to medical and nursing personnels in order to achieve the goal of prompt rescue.

  9. Investigation on iterative multiuser detection physical layer network coding in two-way relay free-space optical links with turbulences and pointing errors.

    PubMed

    Abu-Almaalie, Zina; Ghassemlooy, Zabih; Bhatnagar, Manav R; Le-Minh, Hoa; Aslam, Nauman; Liaw, Shien-Kuei; Lee, It Ee

    2016-11-20

    Physical layer network coding (PNC) improves the throughput in wireless networks by enabling two nodes to exchange information using a minimum number of time slots. The PNC technique is proposed for two-way relay channel free space optical (TWR-FSO) communications with the aim of maximizing the utilization of network resources. The multipair TWR-FSO is considered in this paper, where a single antenna on each pair seeks to communicate via a common receiver aperture at the relay. Therefore, chip interleaving is adopted as a technique to separate the different transmitted signals at the relay node to perform PNC mapping. Accordingly, this scheme relies on the iterative multiuser technique for detection of users at the receiver. The bit error rate (BER) performance of the proposed system is examined under the combined influences of atmospheric loss, turbulence-induced channel fading, and pointing errors (PEs). By adopting the joint PNC mapping with interleaving and multiuser detection techniques, the BER results show that the proposed scheme can achieve a significant performance improvement against the degrading effects of turbulences and PEs. It is also demonstrated that a larger number of simultaneous users can be supported with this new scheme in establishing a communication link between multiple pairs of nodes in two time slots, thereby improving the channel capacity.

  10. A novel power efficient location-based cooperative routing with transmission power-upper-limit for wireless sensor networks.

    PubMed

    Shi, Juanfei; Calveras, Anna; Cheng, Ye; Liu, Kai

    2013-05-15

    The extensive usage of wireless sensor networks (WSNs) has led to the development of many power- and energy-efficient routing protocols. Cooperative routing in WSNs can improve performance in these types of networks. In this paper we discuss the existing proposals and we propose a routing algorithm for wireless sensor networks called Power Efficient Location-based Cooperative Routing with Transmission Power-upper-limit (PELCR-TP). The algorithm is based on the principle of minimum link power and aims to take advantage of nodes cooperation to make the link work well in WSNs with a low transmission power. In the proposed scheme, with a determined transmission power upper limit, nodes find the most appropriate next nodes and single-relay nodes with the proposed algorithm. Moreover, this proposal subtly avoids non-working nodes, because we add a Bad nodes Avoidance Strategy (BAS). Simulation results show that the proposed algorithm with BAS can significantly improve the performance in reducing the overall link power, enhancing the transmission success rate and decreasing the retransmission rate.

  11. Balancing energy consumption with hybrid clustering and routing strategy in wireless sensor networks.

    PubMed

    Xu, Zhezhuang; Chen, Liquan; Liu, Ting; Cao, Lianyang; Chen, Cailian

    2015-10-20

    Multi-hop data collection in wireless sensor networks (WSNs) is a challenge issue due to the limited energy resource and transmission range of wireless sensors. The hybrid clustering and routing (HCR) strategy has provided an effective solution, which can generate a connected and efficient cluster-based topology for multi-hop data collection in WSNs. However, it suffers from imbalanced energy consumption, which results in the poor performance of the network lifetime. In this paper, we evaluate the energy consumption of HCR and discover an important result: the imbalanced energy consumption generally appears in gradient k = 1, i.e., the nodes that can communicate with the sink directly. Based on this observation, we propose a new protocol called HCR-1, which includes the adaptive relay selection and tunable cost functions to balance the energy consumption. The guideline of setting the parameters in HCR-1 is provided based on simulations. The analytical and numerical results prove that, with minor modification of the topology in Sensors 2015, 15 26584 gradient k = 1, the HCR-1 protocol effectively balances the energy consumption and prolongs the network lifetime.

  12. A Novel Power Efficient Location-Based Cooperative Routing with Transmission Power-Upper-Limit for Wireless Sensor Networks

    PubMed Central

    Shi, Juanfei; Calveras, Anna; Cheng, Ye; Liu, Kai

    2013-01-01

    The extensive usage of wireless sensor networks (WSNs) has led to the development of many power- and energy-efficient routing protocols. Cooperative routing in WSNs can improve performance in these types of networks. In this paper we discuss the existing proposals and we propose a routing algorithm for wireless sensor networks called Power Efficient Location-based Cooperative Routing with Transmission Power-upper-limit (PELCR-TP). The algorithm is based on the principle of minimum link power and aims to take advantage of nodes cooperation to make the link work well in WSNs with a low transmission power. In the proposed scheme, with a determined transmission power upper limit, nodes find the most appropriate next nodes and single-relay nodes with the proposed algorithm. Moreover, this proposal subtly avoids non-working nodes, because we add a Bad nodes Avoidance Strategy (BAS). Simulation results show that the proposed algorithm with BAS can significantly improve the performance in reducing the overall link power, enhancing the transmission success rate and decreasing the retransmission rate. PMID:23676625

  13. A Secure Region-Based Geographic Routing Protocol (SRBGR) for Wireless Sensor Networks

    PubMed Central

    Adnan, Ali Idarous; Hanapi, Zurina Mohd; Othman, Mohamed; Zukarnain, Zuriati Ahmad

    2017-01-01

    Due to the lack of dependency for routing initiation and an inadequate allocated sextant on responding messages, the secure geographic routing protocols for Wireless Sensor Networks (WSNs) have attracted considerable attention. However, the existing protocols are more likely to drop packets when legitimate nodes fail to respond to the routing initiation messages while attackers in the allocated sextant manage to respond. Furthermore, these protocols are designed with inefficient collection window and inadequate verification criteria which may lead to a high number of attacker selections. To prevent the failure to find an appropriate relay node and undesirable packet retransmission, this paper presents Secure Region-Based Geographic Routing Protocol (SRBGR) to increase the probability of selecting the appropriate relay node. By extending the allocated sextant and applying different message contention priorities more legitimate nodes can be admitted in the routing process. Moreover, the paper also proposed the bound collection window for a sufficient collection time and verification cost for both attacker identification and isolation. Extensive simulation experiments have been performed to evaluate the performance of the proposed protocol in comparison with other existing protocols. The results demonstrate that SRBGR increases network performance in terms of the packet delivery ratio and isolates attacks such as Sybil and Black hole. PMID:28121992

  14. A Secure Region-Based Geographic Routing Protocol (SRBGR) for Wireless Sensor Networks.

    PubMed

    Adnan, Ali Idarous; Hanapi, Zurina Mohd; Othman, Mohamed; Zukarnain, Zuriati Ahmad

    2017-01-01

    Due to the lack of dependency for routing initiation and an inadequate allocated sextant on responding messages, the secure geographic routing protocols for Wireless Sensor Networks (WSNs) have attracted considerable attention. However, the existing protocols are more likely to drop packets when legitimate nodes fail to respond to the routing initiation messages while attackers in the allocated sextant manage to respond. Furthermore, these protocols are designed with inefficient collection window and inadequate verification criteria which may lead to a high number of attacker selections. To prevent the failure to find an appropriate relay node and undesirable packet retransmission, this paper presents Secure Region-Based Geographic Routing Protocol (SRBGR) to increase the probability of selecting the appropriate relay node. By extending the allocated sextant and applying different message contention priorities more legitimate nodes can be admitted in the routing process. Moreover, the paper also proposed the bound collection window for a sufficient collection time and verification cost for both attacker identification and isolation. Extensive simulation experiments have been performed to evaluate the performance of the proposed protocol in comparison with other existing protocols. The results demonstrate that SRBGR increases network performance in terms of the packet delivery ratio and isolates attacks such as Sybil and Black hole.

  15. Interference-Assisted Techniques for Transmission and Multiple Access in Optical Communications

    NASA Astrophysics Data System (ADS)

    Guan, Xun

    Optical communications can be in wired or wireless form. Fiber optics communication (FOC) connects transmitters and receivers with optical fiber. Benefiting from its high bandwidth, low cost per volume and stability, it gains a significant market share in long-haul networks, access networks and data centers. Meanwhile, optical wireless communication (OWC) is also emerging as a crucial player in the communication market. In OWC, free-space optical communication (FSO) and visible light communication (VLC) are being studied and commercially deployed extensively. Interference is a common phenomenon in multi-user communication systems. In both FOC and OWC, interference has long been treated as a detrimental effect. However, it could also be beneficial to system applications. The effort of harnessing interference has spurred numerous innovations. Interesting examples are physical-layer network coding (PNC) and non-orthogonal multiple access (NOMA). The first part of this thesis in on the topic of PNC. PNC was firstly proposed in wireless communication to improve the throughput of a two-way relay network (TWRN). As a variation of network coding (NC), PNC turns the common channel interference (CCI) as a natural network coding operation. In this thesis, PNC is introduced into optical communication. Three schemes are proposed in different scenarios. Firstly, PNC is applied to a coherent optical orthogonal frequency division multiplexing (CO-OFDM) system so as to improve the throughput of the multicast network. The optical signal to noise ratio (OSNR) penalty is quite low. Secondly, we investigate the application of PNC in an OFDM passive optical network (OFDM-PON) supporting heterogeneous services. It is found that only minor receiver power penalties are observed to realize PNC-based virtual private networks (VPN), both in the wired service part and the wireless service part in an OFDM-PON with heterogeneous services. Thirdly, we innovate relay-based visible light communication (VLC) by adopting PNC, with a newly proposed phase-aligning method. PNC could improve the throughput at the bottlenecking relay node in a VLC system, and the proposed phase aligning method can improve the BER performance. The second part of this thesis discusses another interference-assisted technology in communication, that is, non-orthogonal multiple access (NOMA). NOMA multiplexes signals from multiple users in another dimension: power domain, with a non-orthogonal multiplexing in other dimensions such as time, frequency and code. Three schemes are proposed in this part. The first and the second schemes both realize NOMA in VLC, with different multiuser detection (MUD) techniques and a proposed phase pre-distortion method. Although both can decrease the system BER compared to conventional NOMA, the scheme using joint detection (JD) outperforms the one using successive interference cancellation (SIC). The third scheme investigated in this part is a combination of NOMA and a multicarrier precoding (MP) technology based on an orthogonal circulant transform matrix (OCT). This combination can avoid the complicated adaptive bit loading or electronic equalization, making NOMA more attractive in a practical system.

  16. Wireless remote monitoring of toxic gases in shipbuilding.

    PubMed

    Pérez-Garrido, Carlos; González-Castaño, Francisco J; Chaves-Díeguez, David; Rodríguez-Hernández, Pedro S

    2014-02-14

    Large-scale wireless sensor networks have not achieved market impact, so far. Nevertheless, this technology may be applied successfully to small-scale niche markets. Shipyards are hazardous working environments with many potential risks to worker safety. Toxic gases generated in soldering processes in enclosed spaces (e.g., cargo holds) are one such risk. The dynamic environment of a ship under construction makes it very difficult to plan gas detection fixed infrastructures connected to external monitoring stations via wired links. While portable devices with gas level indicators exist, they require workers to monitor measurements, often in situations where they are focused on other tasks for relatively long periods. In this work, we present a wireless multihop remote gas monitoring system for shipyard environments that has been tested in a real ship under construction. Using this system, we validate IEEE 802.15.4/Zigbee wireless networks as a suitable technology to connect gas detectors to control stations outside the ships. These networks have the added benefit that they reconfigure themselves dynamically in case of network failure or redeployment, for example when a relay is moved to a new location. Performance measurements include round trip time (which determines the alert response time for safety teams) and link quality indicator and packet error rate (which determine communication robustness).

  17. Wireless Remote Monitoring of Toxic Gases in Shipbuilding

    PubMed Central

    Pérez-Garrido, Carlos; González-Castaño, Francisco J.; Chaves-Diéguez, David; Rodríguez-Hernández, Pedro S.

    2014-01-01

    Large-scale wireless sensor networks have not achieved market impact, so far. Nevertheless, this technology may be applied successfully to small-scale niche markets. Shipyards are hazardous working environments with many potential risks to worker safety. Toxic gases generated in soldering processes in enclosed spaces (e.g., cargo holds) are one such risk. The dynamic environment of a ship under construction makes it very difficult to plan gas detection fixed infrastructures connected to external monitoring stations via wired links. While portable devices with gas level indicators exist, they require workers to monitor measurements, often in situations where they are focused on other tasks for relatively long periods. In this work, we present a wireless multihop remote gas monitoring system for shipyard environments that has been tested in a real ship under construction. Using this system, we validate IEEE 802.15.4/Zigbee wireless networks as a suitable technology to connect gas detectors to control stations outside the ships. These networks have the added benefit that they reconfigure themselves dynamically in case of network failure or redeployment, for example when a relay is moved to a new location. Performance measurements include round trip time (which determines the alert response time for safety teams) and link quality indicator and packet error rate (which determine communication robustness). PMID:24534919

  18. Secure Communications in CIoT Networks with a Wireless Energy Harvesting Untrusted Relay

    PubMed Central

    Hu, Hequn; Liao, Xuewen

    2017-01-01

    The Internet of Things (IoT) represents a bright prospect that a variety of common appliances can connect to one another, as well as with the rest of the Internet, to vastly improve our lives. Unique communication and security challenges have been brought out by the limited hardware, low-complexity, and severe energy constraints of IoT devices. In addition, a severe spectrum scarcity problem has also been stimulated by the use of a large number of IoT devices. In this paper, cognitive IoT (CIoT) is considered where an IoT network works as the secondary system using underlay spectrum sharing. A wireless energy harvesting (EH) node is used as a relay to improve the coverage of an IoT device. However, the relay could be a potential eavesdropper to intercept the IoT device’s messages. This paper considers the problem of secure communication between the IoT device (e.g., sensor) and a destination (e.g., controller) via the wireless EH untrusted relay. Since the destination can be equipped with adequate energy supply, secure schemes based on destination-aided jamming are proposed based on power splitting (PS) and time splitting (TS) policies, called intuitive secure schemes based on PS (Int-PS), precoded secure scheme based on PS (Pre-PS), intuitive secure scheme based on TS (Int-TS) and precoded secure scheme based on TS (Pre-TS), respectively. The secure performances of the proposed schemes are evaluated through the metric of probability of successfully secure transmission (PSST), which represents the probability that the interference constraint of the primary user is satisfied and the secrecy rate is positive. PSST is analyzed for the proposed secure schemes, and the closed form expressions of PSST for Pre-PS and Pre-TS are derived and validated through simulation results. Numerical results show that the precoded secure schemes have better PSST than the intuitive secure schemes under similar power consumption. When the secure schemes based on PS and TS polices have similar PSST, the average transmit power consumption of the secure scheme based on TS is lower. The influences of power splitting and time slitting ratios are also discussed through simulations. PMID:28869540

  19. Adaptive search in mobile peer-to-peer databases

    NASA Technical Reports Server (NTRS)

    Wolfson, Ouri (Inventor); Xu, Bo (Inventor)

    2010-01-01

    Information is stored in a plurality of mobile peers. The peers communicate in a peer to peer fashion, using a short-range wireless network. Occasionally, a peer initiates a search for information in the peer to peer network by issuing a query. Queries and pieces of information, called reports, are transmitted among peers that are within a transmission range. For each search additional peers are utilized, wherein these additional peers search and relay information on behalf of the originator of the search.

  20. Connecting the snowpack to the internet of things: an IPv6 architecture for providing real-time measurements of hydrologic systems

    NASA Astrophysics Data System (ADS)

    Kerkez, B.; Zhang, Z.; Oroza, C.; Glaser, S. D.; Bales, R. C.

    2012-12-01

    We describe our improved, robust, and scalable architecture by which to rapidly instrument large-scale watersheds, while providing the resulting data in real-time. Our system consists of more than twenty wireless sensor networks and thousands of sensors, which will be deployed in the American River basin (5000 sq. km) of California. The core component of our system is known as a mote, a tiny, ultra-low-power, embedded wireless computer that can be used for any number of sensing applications. Our new generation of motes is equipped with IPv6 functionality, effectively giving each sensor in the field its own unique IP address, thus permitting users to remotely interact with the devices without going through intermediary services. Thirty to fifty motes will be deployed across 1-2 square kilometer regions to form a mesh-based wireless sensor network. Redundancy of local wireless links will ensure that data will always be able to traverse the network, even if hash wintertime conditions adversely affect some network nodes. These networks will be used to develop spatial estimates of a number of hydrologic parameters, focusing especially on snowpack. Each wireless sensor network has one main network controller, which is responsible with interacting with an embedded Linux computer to relay information across higher-powered, long-range wireless links (cell modems, satellite, WiFi) to neighboring networks and remote, offsite servers. The network manager is also responsible for providing an Internet connection to each mote. Data collected by the sensors can either be read directly by remote hosts, or stored on centralized servers for future access. With 20 such networks deployed in the American River, our system will comprise an unprecedented cyber-physical architecture for measuring hydrologic parameters in large-scale basins. The spatiotemporal density and real-time nature of the data is also expected to significantly improve operational hydrology and water resource management in the basin.

  1. On Several Fundamental Problems of Optimization, Estimation, and Scheduling in Wireless Communications

    NASA Astrophysics Data System (ADS)

    Gao, Qian

    For both the conventional radio frequency and the comparably recent optical wireless communication systems, extensive effort from the academia had been made in improving the network spectrum efficiency and/or reducing the error rate. To achieve these goals, many fundamental challenges such as power efficient constellation design, nonlinear distortion mitigation, channel training design, network scheduling and etc. need to be properly addressed. In this dissertation, novel schemes are proposed accordingly to deal with specific problems falling in category of these challenges. Rigorous proofs and analyses are provided for each of our work to make a fair comparison with the corresponding peer works to clearly demonstrate the advantages. The first part of this dissertation considers a multi-carrier optical wireless system employing intensity modulation (IM) and direct detection (DD). A block-wise constellation design is presented, which treats the DC-bias that conventionally used solely for biasing purpose as an information basis. Our scheme, we term it MSM-JDCM, takes advantage of the compactness of sphere packing in a higher dimensional space, and in turn power efficient constellations are obtained by solving an advanced convex optimization problem. Besides the significant power gains, the MSM-JDCM has many other merits such as being capable of mitigating nonlinear distortion by including a peak-to-power ratio (PAPR) constraint, minimizing inter-symbol-interference (ISI) caused by frequency-selective fading with a novel precoder designed and embedded, and further reducing the bit-error-rate (BER) by combining with an optimized labeling scheme. The second part addresses several optimization problems in a multi-color visible light communication system, including power efficient constellation design, joint pre-equalizer and constellation design, and modeling of different structured channels with cross-talks. Our novel constellation design scheme, termed CSK-Advanced, is compared with the conventional decoupled system with the same spectrum efficiency to demonstrate the power efficiency. Crucial lighting requirements are included as optimization constraints. To control non-linear distortion, the optical peak-to-average-power ratio (PAPR) of LEDs can be individually constrained. With a SVD-based pre-equalizer designed and employed, our scheme can achieve lower BER than counterparts applying zero-forcing (ZF) or linear minimum-mean-squared-error (LMMSE) based post-equalizers. Besides, a binary switching algorithm (BSA) is applied to improve BER performance. The third part looks into a problem of two-phase channel estimation in a relayed wireless network. The channel estimates in every phase are obtained by the linear minimum mean squared error (LMMSE) method. Inaccurate estimate of the relay to destination (RtD) channel in phase 1 could affect estimate of the source to relay (StR) channel in phase 2, which is made erroneous. We first derive a close-form expression for the averaged Bayesian mean-square estimation error (ABMSE) for both phase estimates in terms of the length of source and relay training slots, based on which an iterative searching algorithm is then proposed that optimally allocates training slots to the two phases such that estimation errors are balanced. Analysis shows how the ABMSE of the StD channel estimation varies with the lengths of relay training and source training slots, the relay amplification gain, and the channel prior information respectively. The last part deals with a transmission scheduling problem in a uplink multiple-input-multiple-output (MIMO) wireless network. Code division multiple access (CDMA) is assumed as a multiple access scheme and pseudo-random codes are employed for different users. We consider a heavy traffic scenario, in which each user always has packets to transmit in the scheduled time slots. If the relay is scheduled for transmission together with users, then it operates in a full-duplex mode, where the packets previously collected from users are transmitted to the destination while new packets are being collected from users. A novel expression of throughput is first derived and then used to develop a scheduling algorithm to maximize the throughput. Our full-duplex scheduling is compared with a half-duplex scheduling, random access, and time division multiple access (TDMA), and simulation results illustrate its superiority. Throughput gains due to employment of both MIMO and CDMA are observed.

  2. Reliable Wireless Broadcast with Linear Network Coding for Multipoint-to-Multipoint Real-Time Communications

    NASA Astrophysics Data System (ADS)

    Kondo, Yoshihisa; Yomo, Hiroyuki; Yamaguchi, Shinji; Davis, Peter; Miura, Ryu; Obana, Sadao; Sampei, Seiichi

    This paper proposes multipoint-to-multipoint (MPtoMP) real-time broadcast transmission using network coding for ad-hoc networks like video game networks. We aim to achieve highly reliable MPtoMP broadcasting using IEEE 802.11 media access control (MAC) that does not include a retransmission mechanism. When each node detects packets from the other nodes in a sequence, the correctly detected packets are network-encoded, and the encoded packet is broadcasted in the next sequence as a piggy-back for its native packet. To prevent increase of overhead in each packet due to piggy-back packet transmission, network coding vector for each node is exchanged between all nodes in the negotiation phase. Each user keeps using the same coding vector generated in the negotiation phase, and only coding information that represents which user signal is included in the network coding process is transmitted along with the piggy-back packet. Our simulation results show that the proposed method can provide higher reliability than other schemes using multi point relay (MPR) or redundant transmissions such as forward error correction (FEC). We also implement the proposed method in a wireless testbed, and show that the proposed method achieves high reliability in a real-world environment with a practical degree of complexity when installed on current wireless devices.

  3. User Needs and Advances in Space Wireless Sensing and Communications

    NASA Technical Reports Server (NTRS)

    Kegege, Obadiah

    2017-01-01

    Decades of space exploration and technology trends for future missions show the need for new approaches in space/planetary sensor networks, observatories, internetworking, and communications/data delivery to Earth. The User Needs to be discussed in this talk includes interviews with several scientists and reviews of mission concepts for the next generation of sensors, observatories, and planetary surface missions. These observatories, sensors are envisioned to operate in extreme environments, with advanced autonomy, whereby sometimes communication to Earth is intermittent and delayed. These sensor nodes require software defined networking capabilities in order to learn and adapt to the environment, collect science data, internetwork, and communicate. Also, some user cases require the level of intelligence to manage network functions (either as a host), mobility, security, and interface data to the physical radio/optical layer. For instance, on a planetary surface, autonomous sensor nodes would create their own ad-hoc network, with some nodes handling communication capabilities between the wireless sensor networks and orbiting relay satellites. A section of this talk will cover the advances in space communication and internetworking to support future space missions. NASA's Space Communications and Navigation (SCaN) program continues to evolve with the development of optical communication, a new vision of the integrated network architecture with more capabilities, and the adoption of CCSDS space internetworking protocols. Advances in wireless communications hardware and electronics have enabled software defined networking (DVB-S2, VCM, ACM, DTN, Ad hoc, etc.) protocols for improved wireless communication and network management. Developing technologies to fulfil these user needs for wireless communications and adoption of standardized communication/internetworking protocols will be a huge benefit to future planetary missions, space observatories, and manned missions to other planets.

  4. Fuzzy Logic-Based Guaranteed Lifetime Protocol for Real-Time Wireless Sensor Networks.

    PubMed

    Shah, Babar; Iqbal, Farkhund; Abbas, Ali; Kim, Ki-Il

    2015-08-18

    Few techniques for guaranteeing a network lifetime have been proposed despite its great impact on network management. Moreover, since the existing schemes are mostly dependent on the combination of disparate parameters, they do not provide additional services, such as real-time communications and balanced energy consumption among sensor nodes; thus, the adaptability problems remain unresolved among nodes in wireless sensor networks (WSNs). To solve these problems, we propose a novel fuzzy logic model to provide real-time communication in a guaranteed WSN lifetime. The proposed fuzzy logic controller accepts the input descriptors energy, time and velocity to determine each node's role for the next duration and the next hop relay node for real-time packets. Through the simulation results, we verified that both the guaranteed network's lifetime and real-time delivery are efficiently ensured by the new fuzzy logic model. In more detail, the above-mentioned two performance metrics are improved up to 8%, as compared to our previous work, and 14% compared to existing schemes, respectively.

  5. Wake-up transceivers for structural health monitoring of bridges

    NASA Astrophysics Data System (ADS)

    Kumberg, T.; Kokert, J.; Younesi, V.; Koenig, S.; Reindl, L. M.

    2016-04-01

    In this article we present a wireless sensor network to monitor the structural health of a large-scale highway bridge in Germany. The wireless sensor network consists of several sensor nodes that use wake-up receivers to realize latency free and low-power communication. The sensor nodes are either equipped with very accurate tilt sensor developed by Northrop Grumman LITEF GmbH or with a Novatel OEM615 GNSS receiver. Relay nodes are required to forward measurement data to a base station located on the bridge. The base station is a gateway that transmits the local measurement data to a remote server where it can be further analyzed and processed. Further on, we present an energy harvesting system to supply the energy demanding GNSS sensor nodes to realize long term monitoring.

  6. A Time Tree Medium Access Control for Energy Efficiency and Collision Avoidance in Wireless Sensor Networks

    PubMed Central

    Lee, Kilhung

    2010-01-01

    This paper presents a medium access control and scheduling scheme for wireless sensor networks. It uses time trees for sending data from the sensor node to the base station. For an energy efficient operation of the sensor networks in a distributed manner, time trees are built in order to reduce the collision probability and to minimize the total energy required to send data to the base station. A time tree is a data gathering tree where the base station is the root and each sensor node is either a relaying or a leaf node of the tree. Each tree operates in a different time schedule with possibly different activation rates. Through the simulation, the proposed scheme that uses time trees shows better characteristics toward burst traffic than the previous energy and data arrival rate scheme. PMID:22319270

  7. A wireless sensor tag platform for container security and integrity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amaya, Ivan A.; Cree, Johnathan V.; Mauss, Fredrick J.

    Cargo containers onboard ships are widely used in the global supply chain. The need for container security is evidenced by the Container Security Initiative launched by the U.S. Bureau of Customs and Border Protection (CBP). One method of monitoring cargo containers is using low power wireless sensor tags. The wireless sensor tags are used to set up a network that is comprised of tags internal to the container and a central device. The sensor network reports alarms and other anomalies to a central device, which then relays the message to an outside network upon arrival at the destination port. Thismore » allows the port authorities to have knowledge of potential security or integrity issues before physically examining the container. Challenges of using wireless sensor tag networks for container security include battery life, size, environmental conditions, information security, and cost among others. PNNL developed an active wireless sensor tag platform capable of reporting data wirelessly to a central node as well as logging data to nonvolatile memory. The tags, operate at 2.4 GHz over an IEEE 802.15.4 protocol, and were designed to be distributed throughout the inside of a shipping container in the upper support frame. The tags are mounted in a housing that allows for simple and efficient installation or removal prior to, during, or after shipment. The distributed tags monitor the entire container volume. The sensor tag platform utilizes low power electronics and provides an extensible sensor interface for incorporating a wide range of sensors including chemical, biological, and environmental sensors.« less

  8. A wireless sensor tag platform for container security and integrity

    NASA Astrophysics Data System (ADS)

    Amaya, Ivan A.; Cree, Johnathan V.; Mauss, Fredrick J.

    2011-04-01

    Cargo containers onboard ships are widely used in the global supply chain. The need for container security is evidenced by the Container Security Initiative launched by the U.S. Bureau of Customs and Border Protection (CBP). One method of monitoring cargo containers is using low power wireless sensor tags. The wireless sensor tags are used to set up a network that is comprised of tags internal to the container and a central device. The sensor network reports alarms and other anomalies to a central device, which then relays the message to an outside network upon arrival at the destination port. This allows the port authorities to have knowledge of potential security or integrity issues before physically examining the container. Challenges of using wireless sensor tag networks for container security include battery life, size, environmental conditions, information security, and cost among others. PNNL developed an active wireless sensor tag platform capable of reporting data wirelessly to a central node as well as logging data to nonvolatile memory. The tags, operate at 2.4 GHz over an IEEE 802.15.4 protocol, and were designed to be distributed throughout the inside of a shipping container in the upper support frame. The tags are mounted in a housing that allows for simple and efficient installation or removal prior to, during, or after shipment. The distributed tags monitor the entire container volume. The sensor tag platform utilizes low power electronics and provides an extensible sensor interface for incorporating a wide range of sensors including chemical, biological, and environmental sensors.

  9. A comprehensive survey of energy-aware routing protocols in wireless body area sensor networks.

    PubMed

    Effatparvar, Mehdi; Dehghan, Mehdi; Rahmani, Amir Masoud

    2016-09-01

    Wireless body area sensor network is a special purpose wireless sensor network that, employing wireless sensor nodes in, on, or around the human body, makes it possible to measure biological parameters of a person for specific applications. One of the most fundamental concerns in wireless body sensor networks is accurate routing in order to send data promptly and properly, and therefore overcome some of the challenges. Routing protocols for such networks are affected by a large number of factors including energy, topology, temperature, posture, the radio range of sensors, and appropriate quality of service in sensor nodes. Since energy is highly important in wireless body area sensor networks, and increasing the network lifetime results in benefiting greatly from sensor capabilities, improving routing performance with reduced energy consumption presents a major challenge. This paper aims to study wireless body area sensor networks and the related routing methods. It also presents a thorough, comprehensive review of routing methods in wireless body area sensor networks from the perspective of energy. Furthermore, different routing methods affecting the parameter of energy will be classified and compared according to their advantages and disadvantages. In this paper, fundamental concepts of wireless body area sensor networks are provided, and then the advantages and disadvantages of these networks are investigated. Since one of the most fundamental issues in wireless body sensor networks is to perform routing so as to transmit data precisely and promptly, we discuss the same issue. As a result, we propose a classification of the available relevant literature with respect to the key challenge of energy in the routing process. With this end in view, all important papers published between 2000 and 2015 are classified under eight categories including 'Mobility-Aware', 'Thermal-Aware', 'Restriction of Location and Number of Relays', 'Link-aware', 'Cluster- and Tree-Based', 'Cross-Layer', 'Opportunistic', and 'Medium Access Control'. We, then, provide a full description of the statistical analysis of each category in relation to all papers, current hybrid protocols, and the type of simulators used in each paper. Next, we analyze the distribution of papers in each category during various years. Moreover, for each category, the advantages and disadvantages as well as the number of issued papers in different years are given. We also analyze the type of layer and deployment of mathematical models or algorithmic techniques in each category. Finally, after introducing certain important protocols for each category, the goals, advantages, and disadvantages of the protocols are discussed and compared with each other.

  10. Downlink Cooperative Broadcast Transmission Based on Superposition Coding in a Relaying System for Future Wireless Sensor Networks.

    PubMed

    Liu, Yang; Han, Guangjie; Shi, Sulong; Li, Zhengquan

    2018-06-20

    This study investigates the superiority of cooperative broadcast transmission over traditional orthogonal schemes when applied in a downlink relaying broadcast channel (RBC). Two proposed cooperative broadcast transmission protocols, one with an amplify-and-forward (AF) relay, and the other with a repetition-based decode-and-forward (DF) relay, are investigated. By utilizing superposition coding (SupC), the source and the relay transmit the private user messages simultaneously instead of sequentially as in traditional orthogonal schemes, which means the channel resources are reused and an increased channel degree of freedom is available to each user, hence the half-duplex penalty of relaying is alleviated. To facilitate a performance evaluation, theoretical outage probability expressions of the two broadcast transmission schemes are developed, based on which, we investigate the minimum total power consumption of each scheme for a given traffic requirement by numerical simulation. The results provide details on the overall system performance and fruitful insights on the essential characteristics of cooperative broadcast transmission in RBCs. It is observed that better overall outage performances and considerable power gains can be obtained by utilizing cooperative broadcast transmissions compared to traditional orthogonal schemes.

  11. Fuzzy Logic-Based Guaranteed Lifetime Protocol for Real-Time Wireless Sensor Networks

    PubMed Central

    Shah, Babar; Iqbal, Farkhund; Abbas, Ali; Kim, Ki-Il

    2015-01-01

    Few techniques for guaranteeing a network lifetime have been proposed despite its great impact on network management. Moreover, since the existing schemes are mostly dependent on the combination of disparate parameters, they do not provide additional services, such as real-time communications and balanced energy consumption among sensor nodes; thus, the adaptability problems remain unresolved among nodes in wireless sensor networks (WSNs). To solve these problems, we propose a novel fuzzy logic model to provide real-time communication in a guaranteed WSN lifetime. The proposed fuzzy logic controller accepts the input descriptors energy, time and velocity to determine each node’s role for the next duration and the next hop relay node for real-time packets. Through the simulation results, we verified that both the guaranteed network’s lifetime and real-time delivery are efficiently ensured by the new fuzzy logic model. In more detail, the above-mentioned two performance metrics are improved up to 8%, as compared to our previous work, and 14% compared to existing schemes, respectively. PMID:26295238

  12. Wireless Sensor Network Metrics for Real-Time Systems

    DTIC Science & Technology

    2009-05-20

    to compute the probability of end-to-end packet delivery as a function of latency, the expected radio energy consumption on the nodes from relaying... schedules for WSNs. Particularly, we focus on the impact scheduling has on path diversity, using short repeating schedules and Greedy Maximal Matching...a greedy algorithm for constructing a mesh routing topology. Finally, we study the implications of using distributed scheduling schemes to generate

  13. Longitudinal hopping in intervehicle communication: Theory and simulations on modeled and empirical trajectory data

    NASA Astrophysics Data System (ADS)

    Thiemann, Christian; Treiber, Martin; Kesting, Arne

    2008-09-01

    Intervehicle communication enables vehicles to exchange messages within a limited broadcast range and thus self-organize into dynamical and geographically embedded wireless ad hoc networks. We study the longitudinal hopping mode in which messages are transported using equipped vehicles driving in the same direction as a relay. Given a finite communication range, we investigate the conditions where messages can percolate through the network, i.e., a linked chain of relay vehicles exists between the sender and receiver. We simulate message propagation in different traffic scenarios and for different fractions of equipped vehicles. Simulations are done with both, modeled and empirical traffic data. These results are used to test the limits of applicability of an analytical model assuming a Poissonian distance distribution between the relays. We found a good agreement for homogeneous traffic scenarios and sufficiently low percentages of equipped vehicles. For higher percentages, the observed connectivity was higher than that of the model while in stop-and-go traffic situations it was lower. We explain these results in terms of correlations of the distances between the relay vehicles. Finally, we introduce variable transmission ranges and found that this additional stochastic component generally increased connectivity compared to a deterministic transmission with the same mean.

  14. Amplify-and-forward cooperative diversity for green UWB-based WBSNs.

    PubMed

    Shaban, Heba; Abou El-Nasr, Mohamad

    2013-01-01

    This paper proposes a novel green cooperative diversity technique based on suboptimal template-based ultra-wideband (UWB) wireless body sensor networks (WBSNs) using amplify-and-forward (AF) relays. In addition, it analyzes the bit-error-rate (BER) performance of the proposed nodes. The analysis is based on the moment-generating function (MGF) of the total signal-to-noise ratio (SNR) at the destination. It also provides an approximate value for the total SNR. The analysis studies the performance of equally correlated binary pulse position modulation (EC-BPPM) assuming the sinusoidal and square suboptimal template pulses. Numerical results are provided for the performance evaluation of optimal and suboptimal template-based nodes with and without relay cooperation. Results show that one relay node provides ~23 dB performance enhancement at 1e - 3 BER, which mitigates the effect of the nondesirable non-line-of-sight (NLOS) links in WBSNs.

  15. Amplify-and-Forward Cooperative Diversity for Green UWB-Based WBSNs

    PubMed Central

    2013-01-01

    This paper proposes a novel green cooperative diversity technique based on suboptimal template-based ultra-wideband (UWB) wireless body sensor networks (WBSNs) using amplify-and-forward (AF) relays. In addition, it analyzes the bit-error-rate (BER) performance of the proposed nodes. The analysis is based on the moment-generating function (MGF) of the total signal-to-noise ratio (SNR) at the destination. It also provides an approximate value for the total SNR. The analysis studies the performance of equally correlated binary pulse position modulation (EC-BPPM) assuming the sinusoidal and square suboptimal template pulses. Numerical results are provided for the performance evaluation of optimal and suboptimal template-based nodes with and without relay cooperation. Results show that one relay node provides ~23 dB performance enhancement at 1e − 3 BER, which mitigates the effect of the nondesirable non-line-of-sight (NLOS) links in WBSNs. PMID:24307880

  16. Utilities bullish on meter-reading technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garner, W.L.

    1995-01-15

    By the end of 1996, the 400,000 customers of Kansas City Power & Light Company (KCPL) will have their electric meters read by a real-time wireless network that will relay electrical consumption readings back to computers at the utility`s customer service office. KCPL`s executives believe the new radio and cellular network will greatly improve the company`s ability to control its power distribution, manage its load requirements, monitor outages, and in the near future, allow time-of-use and offpeak pricing. The KCPL system represents the first systemwide, commercial application of wireless automated meter reading (AMR) by a U.S. utility. The article alsomore » describes other AMR systems for reading water and gas meters, along with saying that $18 billion in future power plant investments can be avoided by using time-of-use pricing for residential customers.« less

  17. Cross Layer Design for Optimizing Transmission Reliability, Energy Efficiency, and Lifetime in Body Sensor Networks.

    PubMed

    Chen, Xi; Xu, Yixuan; Liu, Anfeng

    2017-04-19

    High transmission reliability, energy efficiency, and long lifetime are pivotal issues for wireless body area networks (WBANs. However, these performance metrics are not independent of each other, making it hard to obtain overall improvements through optimizing one single aspect. Therefore, a Cross Layer Design Optimal (CLDO) scheme is proposed to simultaneously optimize transmission reliability, energy efficiency, and lifetime of WBANs from several layers. Firstly, due to the fact that the transmission power of nodes directly influences the reliability of links, the optimized transmission power of different nodes is deduced, which is able to maximize energy efficiency in theory under the premise that requirements on delay and jitter are fulfilled. Secondly, a relay decision algorithm is proposed to choose optimized relay nodes. Using this algorithm, nodes will choose relay nodes that ensure a balance of network energy consumption, provided that all nodes transmit with optimized transmission power and the same packet size. Thirdly, the energy consumption of nodes is still unbalanced even with optimized transmission power because of their different locations in the topology of the network. In addition, packet size also has an impact on final performance metrics. Therefore, a synthesized cross layer method for optimization is proposed. With this method, the transmission power of nodes with more residual energy will be enhanced while suitable packet size is determined for different links in the network, leading to further improvements in the WBAN system. Both our comprehensive theoretical analysis and experimental results indicate that the performance of our proposed scheme is better than reported in previous studies. Relative to the relay selection and power control game (RSPCG) scheme, the CLDO scheme can enhance transmission reliability by more than 44.6% and prolong the lifetime by as much as 33.2%.

  18. Cross Layer Design for Optimizing Transmission Reliability, Energy Efficiency, and Lifetime in Body Sensor Networks

    PubMed Central

    Chen, Xi; Xu, Yixuan; Liu, Anfeng

    2017-01-01

    High transmission reliability, energy efficiency, and long lifetime are pivotal issues for wireless body area networks (WBANs). However, these performance metrics are not independent of each other, making it hard to obtain overall improvements through optimizing one single aspect. Therefore, a Cross Layer Design Optimal (CLDO) scheme is proposed to simultaneously optimize transmission reliability, energy efficiency, and lifetime of WBANs from several layers. Firstly, due to the fact that the transmission power of nodes directly influences the reliability of links, the optimized transmission power of different nodes is deduced, which is able to maximize energy efficiency in theory under the premise that requirements on delay and jitter are fulfilled. Secondly, a relay decision algorithm is proposed to choose optimized relay nodes. Using this algorithm, nodes will choose relay nodes that ensure a balance of network energy consumption, provided that all nodes transmit with optimized transmission power and the same packet size. Thirdly, the energy consumption of nodes is still unbalanced even with optimized transmission power because of their different locations in the topology of the network. In addition, packet size also has an impact on final performance metrics. Therefore, a synthesized cross layer method for optimization is proposed. With this method, the transmission power of nodes with more residual energy will be enhanced while suitable packet size is determined for different links in the network, leading to further improvements in the WBAN system. Both our comprehensive theoretical analysis and experimental results indicate that the performance of our proposed scheme is better than reported in previous studies. Relative to the relay selection and power control game (RSPCG) scheme, the CLDO scheme can enhance transmission reliability by more than 44.6% and prolong the lifetime by as much as 33.2%. PMID:28422062

  19. Moving multiple sinks through wireless sensor networks for lifetime maximization.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petrioli, Chiara; Carosi, Alessio; Basagni, Stefano

    2008-01-01

    Unattended sensor networks typically watch for some phenomena such as volcanic events, forest fires, pollution, or movements in animal populations. Sensors report to a collection point periodically or when they observe reportable events. When sensors are too far from the collection point to communicate directly, other sensors relay messages for them. If the collection point location is static, sensor nodes that are closer to the collection point relay far more messages than those on the periphery. Assuming all sensor nodes have roughly the same capabilities, those with high relay burden experience battery failure much faster than the rest of themore » network. However, since their death disconnects the live nodes from the collection point, the whole network is then dead. We consider the problem of moving a set of collectors (sinks) through a wireless sensor network to balance the energy used for relaying messages, maximizing the lifetime of the network. We show how to compute an upper bound on the lifetime for any instance using linear and integer programming. We present a centralized heuristic that produces sink movement schedules that produce network lifetimes within 1.4% of the upper bound for realistic settings. We also present a distributed heuristic that produces lifetimes at most 25:3% below the upper bound. More specifically, we formulate a linear program (LP) that is a relaxation of the scheduling problem. The variables are naturally continuous, but the LP relaxes some constraints. The LP has an exponential number of constraints, but we can satisfy them all by enforcing only a polynomial number using a separation algorithm. This separation algorithm is a p-median facility location problem, which we can solve efficiently in practice for huge instances using integer programming technology. This LP selects a set of good sensor configurations. Given the solution to the LP, we can find a feasible schedule by selecting a subset of these configurations, ordering them via a traveling salesman heuristic, and computing feasible transitions using matching algorithms. This algorithm assumes sinks can get a schedule from a central server or a leader sink. If the network owner prefers the sinks make independent decisions, they can use our distributed heuristic. In this heuristic, sinks maintain estimates of the energy distribution in the network and move greedily (with some coordination) based on local search. This application uses the new SUCASA (Solver Utility for Customization with Automatic Symbol Access) facility within the PICO (Parallel Integer and Combinatorial Optimizer) integer programming solver system. SUCASA allows rapid development of customized math programming (search-based) solvers using a problem's natural multidimensional representation. In this case, SUCASA also significantly improves runtime compared to implementations in the ampl math programming language or in perl.« less

  20. Secure Communications in CIoT Networks with a Wireless Energy Harvesting Untrusted Relay.

    PubMed

    Hu, Hequn; Gao, Zhenzhen; Liao, Xuewen; Leung, Victor C M

    2017-09-04

    The Internet of Things (IoT) represents a bright prospect that a variety of common appliances can connect to one another, as well as with the rest of the Internet, to vastly improve our lives. Unique communication and security challenges have been brought out by the limited hardware, low-complexity, and severe energy constraints of IoT devices. In addition, a severe spectrum scarcity problem has also been stimulated by the use of a large number of IoT devices. In this paper, cognitive IoT (CIoT) is considered where an IoT network works as the secondary system using underlay spectrum sharing. A wireless energy harvesting (EH) node is used as a relay to improve the coverage of an IoT device. However, the relay could be a potential eavesdropper to intercept the IoT device's messages. This paper considers the problem of secure communication between the IoT device (e.g., sensor) and a destination (e.g., controller) via the wireless EH untrusted relay. Since the destination can be equipped with adequate energy supply, secure schemes based on destination-aided jamming are proposed based on power splitting (PS) and time splitting (TS) policies, called intuitive secure schemes based on PS (Int-PS), precoded secure scheme based on PS (Pre-PS), intuitive secure scheme based on TS (Int-TS) and precoded secure scheme based on TS (Pre-TS), respectively. The secure performances of the proposed schemes are evaluated through the metric of probability of successfully secure transmission ( P S S T ), which represents the probability that the interference constraint of the primary user is satisfied and the secrecy rate is positive. P S S T is analyzed for the proposed secure schemes, and the closed form expressions of P S S T for Pre-PS and Pre-TS are derived and validated through simulation results. Numerical results show that the precoded secure schemes have better P S S T than the intuitive secure schemes under similar power consumption. When the secure schemes based on PS and TS polices have similar P S S T , the average transmit power consumption of the secure scheme based on TS is lower. The influences of power splitting and time slitting ratios are also discussed through simulations.

  1. Diversity Performance Analysis on Multiple HAP Networks.

    PubMed

    Dong, Feihong; Li, Min; Gong, Xiangwu; Li, Hongjun; Gao, Fengyue

    2015-06-30

    One of the main design challenges in wireless sensor networks (WSNs) is achieving a high-data-rate transmission for individual sensor devices. The high altitude platform (HAP) is an important communication relay platform for WSNs and next-generation wireless networks. Multiple-input multiple-output (MIMO) techniques provide the diversity and multiplexing gain, which can improve the network performance effectively. In this paper, a virtual MIMO (V-MIMO) model is proposed by networking multiple HAPs with the concept of multiple assets in view (MAV). In a shadowed Rician fading channel, the diversity performance is investigated. The probability density function (PDF) and cumulative distribution function (CDF) of the received signal-to-noise ratio (SNR) are derived. In addition, the average symbol error rate (ASER) with BPSK and QPSK is given for the V-MIMO model. The system capacity is studied for both perfect channel state information (CSI) and unknown CSI individually. The ergodic capacity with various SNR and Rician factors for different network configurations is also analyzed. The simulation results validate the effectiveness of the performance analysis. It is shown that the performance of the HAPs network in WSNs can be significantly improved by utilizing the MAV to achieve overlapping coverage, with the help of the V-MIMO techniques.

  2. A Feasibility Study on Crash Avoidance at Four-Way Stop-Sign-Controlled Intersections Using Wireless Sensor Networks

    NASA Astrophysics Data System (ADS)

    Kim, Do Hyun; Choi, Kyoung Ho; Kim, Kyeong Tae; Li, Ki Joune

    In this letter, we propose a novel approach using wireless sensor networks (WSNs) to enhance the safety and efficiency of four-way stop-sign-controlled (FWSC) intersections. The proposed algorithm provides right of way (RoW) and crash avoidance information by means of an intelligent WSN system. The system is composed of magnetic sensors, embedded in the center of a lane, with relay nodes and a base station placed on the side of the road. The experimental results show that the vehicle detection accuracy is over 99% and the sensor node battery life expectancy is over 3 years for traffic of 5, 800 vehicles per day. For the traffic application we consider, a strong effect is observed as the projected conflict rate was reduced by 72% compared to an FWSC intersection operated with only driver perception.

  3. International Space Station Future Correlation Analysis Improvements

    NASA Technical Reports Server (NTRS)

    Laible, Michael R.; Pinnamaneni, Murthy; Sugavanam, Sujatha; Grygier, Michael

    2018-01-01

    Ongoing modal analyses and model correlation are performed on different configurations of the International Space Station (ISS). These analyses utilize on-orbit dynamic measurements collected using four main ISS instrumentation systems: External Wireless Instrumentation System (EWIS), Internal Wireless Instrumentation System (IWIS), Space Acceleration Measurement System (SAMS), and Structural Dynamic Measurement System (SDMS). Remote Sensor Units (RSUs) are network relay stations that acquire flight data from sensors. Measured data is stored in the Remote Sensor Unit (RSU) until it receives a command to download data via RF to the Network Control Unit (NCU). Since each RSU has its own clock, it is necessary to synchronize measurements before analysis. Imprecise synchronization impacts analysis results. A study was performed to evaluate three different synchronization techniques: (i) measurements visually aligned to analytical time-response data using model comparison, (ii) Frequency Domain Decomposition (FDD), and (iii) lag from cross-correlation to align measurements. This paper presents the results of this study.

  4. A Wireless Multi-Sensor Dielectric Impedance Spectroscopy Platform

    PubMed Central

    Ghaffari, Seyed Alireza; Caron, William-O.; Loubier, Mathilde; Rioux, Maxime; Viens, Jeff; Gosselin, Benoit; Messaddeq, Younes

    2015-01-01

    This paper describes the development of a low-cost, miniaturized, multiplexed, and connected platform for dielectric impedance spectroscopy (DIS), designed for in situ measurements and adapted to wireless network architectures. The platform has been tested and used as a DIS sensor node on ZigBee mesh and was able to interface up to three DIS sensors at the same time and relay the information through the network for data analysis and storage. The system is built from low-cost commercial microelectronics components, performs dielectric spectroscopy ranging from 5 kHz to 100 kHz, and benefits from an on-the-fly calibration system that makes sensor calibration easy. The paper describes the microelectronics design, the Nyquist impedance response, the measurement sensitivity and accuracy, and the testing of the platform for in situ dielectric impedance spectroscopy applications pertaining to fertilizer sensing, water quality sensing, and touch sensing. PMID:26393587

  5. Wireless Sensor Network-Based Greenhouse Environment Monitoring and Automatic Control System for Dew Condensation Prevention

    PubMed Central

    Park, Dae-Heon; Park, Jang-Woo

    2011-01-01

    Dew condensation on the leaf surface of greenhouse crops can promote diseases caused by fungus and bacteria, affecting the growth of the crops. In this paper, we present a WSN (Wireless Sensor Network)-based automatic monitoring system to prevent dew condensation in a greenhouse environment. The system is composed of sensor nodes for collecting data, base nodes for processing collected data, relay nodes for driving devices for adjusting the environment inside greenhouse and an environment server for data storage and processing. Using the Barenbrug formula for calculating the dew point on the leaves, this system is realized to prevent dew condensation phenomena on the crop’s surface acting as an important element for prevention of diseases infections. We also constructed a physical model resembling the typical greenhouse in order to verify the performance of our system with regard to dew condensation control. PMID:22163813

  6. Wireless sensor network-based greenhouse environment monitoring and automatic control system for dew condensation prevention.

    PubMed

    Park, Dae-Heon; Park, Jang-Woo

    2011-01-01

    Dew condensation on the leaf surface of greenhouse crops can promote diseases caused by fungus and bacteria, affecting the growth of the crops. In this paper, we present a WSN (Wireless Sensor Network)-based automatic monitoring system to prevent dew condensation in a greenhouse environment. The system is composed of sensor nodes for collecting data, base nodes for processing collected data, relay nodes for driving devices for adjusting the environment inside greenhouse and an environment server for data storage and processing. Using the Barenbrug formula for calculating the dew point on the leaves, this system is realized to prevent dew condensation phenomena on the crop's surface acting as an important element for prevention of diseases infections. We also constructed a physical model resembling the typical greenhouse in order to verify the performance of our system with regard to dew condensation control.

  7. On the Capability of Smartphones to Perform as Communication Gateways in Medical Wireless Personal Area Networks

    PubMed Central

    Morón, María José; Luque, Rafael; Casilari, Eduardo

    2014-01-01

    This paper evaluates and characterizes the technical performance of medical wireless personal area networks (WPANs) that are based on smartphones. For this purpose, a prototype of a health telemonitoring system is presented. The prototype incorporates a commercial Android smartphone, which acts as a relay point, or “gateway”, between a set of wireless medical sensors and a data server. Additionally, the paper investigates if the conventional capabilities of current commercial smartphones can be affected by their use as gateways or “Holters” in health monitoring applications. Specifically, the profiling has focused on the CPU and power consumption of the mobile devices. These metrics have been measured under several test conditions modifying the smartphone model, the type of sensors connected to the WPAN, the employed Bluetooth profile (SPP (serial port profile) or HDP (health device profile)), the use of other peripherals, such as a GPS receiver, the impact of the use of the Wi-Fi interface or the employed method to encode and forward the data that are collected from the sensors. PMID:24451456

  8. On the capability of smartphones to perform as communication gateways in medical wireless personal area networks.

    PubMed

    Morón, María José; Luque, Rafael; Casilari, Eduardo

    2014-01-02

    This paper evaluates and characterizes the technical performance of medical wireless personal area networks (WPANs) that are based on smartphones. For this purpose,a prototype of a health telemonitoring system is presented. The prototype incorporates a commercial Android smartphone, which acts as a relay point, or "gateway", between a set of wireless medical sensors and a data server. Additionally, the paper investigates if the conventional capabilities of current commercial smartphones can be affected by their use as gateways or "Holters" in health monitoring applications. Specifically, the profiling has focused on the CPU and power consumption of the mobile devices. These metrics have been measured under several test conditions modifying the smartphone model, the type of sensors connected to the WPAN, the employed Bluetooth profile (SPP (serial port profile) orHDP (health device profile)), the use of other peripherals, such as a GPS receiver, the impact of the use of the Wi-Fi interface or the employed method to encode and forward the data that are collected from the sensors.

  9. Fundamental Lifetime Mechanisms in Routing Protocols for Wireless Sensor Networks: A Survey and Open Issues

    PubMed Central

    Eslaminejad, Mohammadreza; Razak, Shukor Abd

    2012-01-01

    Wireless sensor networks basically consist of low cost sensor nodes which collect data from environment and relay them to a sink, where they will be subsequently processed. Since wireless nodes are severely power-constrained, the major concern is how to conserve the nodes' energy so that network lifetime can be extended significantly. Employing one static sink can rapidly exhaust the energy of sink neighbors. Furthermore, using a non-optimal single path together with a maximum transmission power level may quickly deplete the energy of individual nodes on the route. This all results in unbalanced energy consumption through the sensor field, and hence a negative effect on the network lifetime. In this paper, we present a comprehensive taxonomy of the various mechanisms applied for increasing the network lifetime. These techniques, whether in the routing or cross-layer area, fall within the following types: multi-sink, mobile sink, multi-path, power control and bio-inspired algorithms, depending on the protocol operation. In this taxonomy, special attention has been devoted to the multi-sink, power control and bio-inspired algorithms, which have not yet received much consideration in the literature. Moreover, each class covers a variety of the state-of-the-art protocols, which should provide ideas for potential future works. Finally, we compare these mechanisms and discuss open research issues. PMID:23202008

  10. Fundamental lifetime mechanisms in routing protocols for wireless sensor networks: a survey and open issues.

    PubMed

    Eslaminejad, Mohammadreza; Razak, Shukor Abd

    2012-10-09

    Wireless sensor networks basically consist of low cost sensor nodes which collect data from environment and relay them to a sink, where they will be subsequently processed. Since wireless nodes are severely power-constrained, the major concern is how to conserve the nodes' energy so that network lifetime can be extended significantly. Employing one static sink can rapidly exhaust the energy of sink neighbors. Furthermore, using a non-optimal single path together with a maximum transmission power level may quickly deplete the energy of individual nodes on the route. This all results in unbalanced energy consumption through the sensor field, and hence a negative effect on the network lifetime. In this paper, we present a comprehensive taxonomy of the various mechanisms applied for increasing the network lifetime. These techniques, whether in the routing or cross-layer area, fall within the following types: multi-sink, mobile sink, multi-path, power control and bio-inspired algorithms, depending on the protocol operation. In this taxonomy, special attention has been devoted to the multi-sink, power control and bio-inspired algorithms, which have not yet received much consideration in the literature. Moreover, each class covers a variety of the state-of-the-art protocols, which should provide ideas for potential future works. Finally, we compare these mechanisms and discuss open research issues.

  11. Cooperative Energy Harvesting-Adaptive MAC Protocol for WBANs

    PubMed Central

    Esteves, Volker; Antonopoulos, Angelos; Kartsakli, Elli; Puig-Vidal, Manel; Miribel-Català, Pere; Verikoukis, Christos

    2015-01-01

    In this paper, we introduce a cooperative medium access control (MAC) protocol, named cooperative energy harvesting (CEH)-MAC, that adapts its operation to the energy harvesting (EH) conditions in wireless body area networks (WBANs). In particular, the proposed protocol exploits the EH information in order to set an idle time that allows the relay nodes to charge their batteries and complete the cooperation phase successfully. Extensive simulations have shown that CEH-MAC significantly improves the network performance in terms of throughput, delay and energy efficiency compared to the cooperative operation of the baseline IEEE 802.15.6 standard. PMID:26029950

  12. IEEE Committee on Man and Radiation--COMAR technical information statement radiofrequency safety and utility Smart Meters.

    PubMed

    Bushberg, Jerrold T; Foster, Kenneth R; Hatfield, James B; Thansandote, Arthur; Tell, Richard A

    2015-03-01

    This Technical Information Statement describes Smart Meter technology as used with modern electric power metering systems and focuses on the radio frequency (RF) emissions associated with their operation relative to human RF exposure limits. Smart Meters typically employ low power (-1 W or less) transmitters that wirelessly send electric energy usage data to the utility company several times per day in the form of brief, pulsed emissions in the unlicensed frequency bands of 902-928 MHz and 2.4-2.48 GHz or on other nearby frequencies. Most Smart Meters operate as wireless mesh networks where each Smart Meter can communicate with other neighboring meters to relay data to a data collection point in the region. This communication process includes RF emissions from Smart Meters representing energy usage as well as the relaying of data from other meters and emissions associated with maintaining the meter's hierarchy within the wireless network. As a consequence, most Smart Meters emit RF pulses throughout the day, more at certain times and less at others. However, the duty cycle associated with all of these emissions is very small, typically less than 1%, and most of the time far less than 1%, meaning that most Smart Meters actually transmit RF fields for only a few minutes per day at most. The low peak power of Smart Meters and the very low duty cycles lead to the fact that accessible RF fields near Smart Meters are far below both U.S. and international RF safety limits whether judged on the basis of instantaneous peak power densities or time-averaged exposures. This conclusion holds for Smart Meters alone or installed in large banks of meters.

  13. Exploiting node mobility for energy optimization in wireless sensor networks

    NASA Astrophysics Data System (ADS)

    El-Moukaddem, Fatme Mohammad

    Wireless Sensor Networks (WSNs) have become increasingly available for data-intensive applications such as micro-climate monitoring, precision agriculture, and audio/video surveillance. A key challenge faced by data-intensive WSNs is to transmit the sheer amount of data generated within an application's lifetime to the base station despite the fact that sensor nodes have limited power supplies such as batteries or small solar panels. The availability of numerous low-cost robotic units (e.g. Robomote and Khepera) has made it possible to construct sensor networks consisting of mobile sensor nodes. It has been shown that the controlled mobility offered by mobile sensors can be exploited to improve the energy efficiency of a network. In this thesis, we propose schemes that use mobile sensor nodes to reduce the energy consumption of data-intensive WSNs. Our approaches differ from previous work in two main aspects. First, our approaches do not require complex motion planning of mobile nodes, and hence can be implemented on a number of low-cost mobile sensor platforms. Second, we integrate the energy consumption due to both mobility and wireless communications into a holistic optimization framework. We consider three problems arising from the limited energy in the sensor nodes. In the first problem, the network consists of mostly static nodes and contains only a few mobile nodes. In the second and third problems, we assume essentially that all nodes in the WSN are mobile. We first study a new problem called max-data mobile relay configuration (MMRC ) that finds the positions of a set of mobile sensors, referred to as relays, that maximize the total amount of data gathered by the network during its lifetime. We show that the MMRC problem is surprisingly complex even for a trivial network topology due to the joint consideration of the energy consumption of both wireless communication and mechanical locomotion. We present optimal MMRC algorithms and practical distributed implementations for several important network topologies and applications. Second, we consider the problem of minimizing the total energy consumption of a network. We design an iterative algorithm that improves a given configuration by relocating nodes to new positions. We show that this algorithm converges to the optimal configuration for the given transmission routes. Moreover, we propose an efficient distributed implementation that does not require explicit synchronization. Finally, we consider the problem of maximizing the lifetime of the network. We propose an approach that exploits the mobility of the nodes to balance the energy consumption throughout the network. We develop efficient algorithms for single and multiple round approaches. For all three problems, we evaluate the efficiency of our algorithms through simulations. Our simulation results based on realistic energy models obtained from existing mobile and static sensor platforms show that our approaches significantly improve the network's performance and outperform existing approaches.

  14. Adapting Wireless Technology to Lighting Control and Environmental Sensing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dana Teasdale; Francis Rubinstein; Dave Watson

    The high cost of retrofitting buildings with advanced lighting control systems is a barrier to adoption of this energy-saving technology. Wireless technology, however, offers a solution to mounting installation costs since it requires no additional wiring to implement. To demonstrate the feasibility of such a system, a prototype wirelessly-controlled advanced lighting system was designed and built. The system includes the following components: a wirelessly-controllable analog circuit module (ACM), a wirelessly-controllable electronic dimmable ballast, a T8 3-lamp fixture, an environmental multi-sensor, a current transducer, and control software. The ACM, dimmable ballast, multi-sensor, and current transducer were all integrated with SmartMesh{trademark} wirelessmore » mesh networking nodes, called motes, enabling wireless communication, sensor monitoring, and actuator control. Each mote-enabled device has a reliable communication path to the SmartMesh Manager, a single board computer that controls network functions and connects the wireless network to a PC running lighting control software. The ACM is capable of locally driving one or more standard 0-10 Volt electronic dimmable ballasts through relay control and a 0-10 Volt controllable output. The mote-integrated electronic dimmable ballast is designed to drive a standard 3-lamp T8 light fixture. The environmental multi-sensor measures occupancy, light level and temperature. The current transducer is used to measure the power consumed by the fixture. Control software was developed to implement advanced lighting algorithms, including daylight ramping, occupancy control, and demand response. Engineering prototypes of each component were fabricated and tested in a bench-scale system. Based on standard industry practices, a cost analysis was conducted. It is estimated that the installation cost of a wireless advanced lighting control system for a retrofit application is at least 30% lower than a comparable wired system for a typical 16,000 square-foot office building, with a payback period of less than 3 years.« less

  15. A Fully Integrated Wireless Compressed Sensing Neural Signal Acquisition System for Chronic Recording and Brain Machine Interface.

    PubMed

    Liu, Xilin; Zhang, Milin; Xiong, Tao; Richardson, Andrew G; Lucas, Timothy H; Chin, Peter S; Etienne-Cummings, Ralph; Tran, Trac D; Van der Spiegel, Jan

    2016-07-18

    Reliable, multi-channel neural recording is critical to the neuroscience research and clinical treatment. However, most hardware development of fully integrated, multi-channel wireless neural recorders to-date, is still in the proof-of-concept stage. To be ready for practical use, the trade-offs between performance, power consumption, device size, robustness, and compatibility need to be carefully taken into account. This paper presents an optimized wireless compressed sensing neural signal recording system. The system takes advantages of both custom integrated circuits and universal compatible wireless solutions. The proposed system includes an implantable wireless system-on-chip (SoC) and an external wireless relay. The SoC integrates 16-channel low-noise neural amplifiers, programmable filters and gain stages, a SAR ADC, a real-time compressed sensing module, and a near field wireless power and data transmission link. The external relay integrates a 32 bit low-power microcontroller with Bluetooth 4.0 wireless module, a programming interface, and an inductive charging unit. The SoC achieves high signal recording quality with minimized power consumption, while reducing the risk of infection from through-skin connectors. The external relay maximizes the compatibility and programmability. The proposed compressed sensing module is highly configurable, featuring a SNDR of 9.78 dB with a compression ratio of 8×. The SoC has been fabricated in a 180 nm standard CMOS technology, occupying 2.1 mm × 0.6 mm silicon area. A pre-implantable system has been assembled to demonstrate the proposed paradigm. The developed system has been successfully used for long-term wireless neural recording in freely behaving rhesus monkey.

  16. Dynamic subframe allocation for mobile broadband m-health using IEEE 802.16j mobile multihop relay networks.

    PubMed

    Alinejad, Ali; Istepanian, R S H; Philip, N

    2012-01-01

    The concept of 4G health will be one of the key focus areas of future m-health research and enterprise activities in the coming years. WiMAX technology is one of the constituent 4G wireless technologies that provides broadband wireless access (BWA). Despite the fact that WiMAX is able to provide a high data rate in a relatively large coverage; this technology has specific limitations such as: coverage, signal attenuation problems due to shadowing or path loss, and limited available spectrum. The IEEE 802.16j mobile multihop relay (MMR) technology is a pragmatic solution designed to overcome these limitations. The aim of IEEE 802.16j MMR is to expand the IEEE 802.16e's capabilities with multihop features. In particular, the uplink (UL) and downlink (DL) subframe allocation in WiMAX network is usually fixed. However, dynamic frame allocation is a useful mechanism to optimize uplink and downlink subframe size dynamically based on the traffic conditions through real-time traffic monitoring. This particular mechanism is important for future WiMAX based m-health applications as it allows the tradeoff in both UL and DL channels. In this paper, we address the dynamic frame allocation issue in IEEE 802.16j MMR network for m-health applications. A comparative performance analysis of the proposed approach is validated using the OPNET Modeler(®). The simulation results have shown an improved performance of resource allocation and end-to-end delay performance for typical medical video streaming application.

  17. Self-Adaptive Strategy Based on Fuzzy Control Systems for Improving Performance in Wireless Sensors Networks.

    PubMed

    Hernández Díaz, Vicente; Martínez, José-Fernán; Lucas Martínez, Néstor; del Toro, Raúl M

    2015-09-18

    The solutions to cope with new challenges that societies have to face nowadays involve providing smarter daily systems. To achieve this, technology has to evolve and leverage physical systems automatic interactions, with less human intervention. Technological paradigms like Internet of Things (IoT) and Cyber-Physical Systems (CPS) are providing reference models, architectures, approaches and tools that are to support cross-domain solutions. Thus, CPS based solutions will be applied in different application domains like e-Health, Smart Grid, Smart Transportation and so on, to assure the expected response from a complex system that relies on the smooth interaction and cooperation of diverse networked physical systems. The Wireless Sensors Networks (WSN) are a well-known wireless technology that are part of large CPS. The WSN aims at monitoring a physical system, object, (e.g., the environmental condition of a cargo container), and relaying data to the targeted processing element. The WSN communication reliability, as well as a restrained energy consumption, are expected features in a WSN. This paper shows the results obtained in a real WSN deployment, based on SunSPOT nodes, which carries out a fuzzy based control strategy to improve energy consumption while keeping communication reliability and computational resources usage among boundaries.

  18. Self-Adaptive Strategy Based on Fuzzy Control Systems for Improving Performance in Wireless Sensors Networks

    PubMed Central

    Hernández Díaz, Vicente; Martínez, José-Fernán; Lucas Martínez, Néstor; del Toro, Raúl M.

    2015-01-01

    The solutions to cope with new challenges that societies have to face nowadays involve providing smarter daily systems. To achieve this, technology has to evolve and leverage physical systems automatic interactions, with less human intervention. Technological paradigms like Internet of Things (IoT) and Cyber-Physical Systems (CPS) are providing reference models, architectures, approaches and tools that are to support cross-domain solutions. Thus, CPS based solutions will be applied in different application domains like e-Health, Smart Grid, Smart Transportation and so on, to assure the expected response from a complex system that relies on the smooth interaction and cooperation of diverse networked physical systems. The Wireless Sensors Networks (WSN) are a well-known wireless technology that are part of large CPS. The WSN aims at monitoring a physical system, object, (e.g., the environmental condition of a cargo container), and relaying data to the targeted processing element. The WSN communication reliability, as well as a restrained energy consumption, are expected features in a WSN. This paper shows the results obtained in a real WSN deployment, based on SunSPOT nodes, which carries out a fuzzy based control strategy to improve energy consumption while keeping communication reliability and computational resources usage among boundaries. PMID:26393612

  19. Diversity Performance Analysis on Multiple HAP Networks

    PubMed Central

    Dong, Feihong; Li, Min; Gong, Xiangwu; Li, Hongjun; Gao, Fengyue

    2015-01-01

    One of the main design challenges in wireless sensor networks (WSNs) is achieving a high-data-rate transmission for individual sensor devices. The high altitude platform (HAP) is an important communication relay platform for WSNs and next-generation wireless networks. Multiple-input multiple-output (MIMO) techniques provide the diversity and multiplexing gain, which can improve the network performance effectively. In this paper, a virtual MIMO (V-MIMO) model is proposed by networking multiple HAPs with the concept of multiple assets in view (MAV). In a shadowed Rician fading channel, the diversity performance is investigated. The probability density function (PDF) and cumulative distribution function (CDF) of the received signal-to-noise ratio (SNR) are derived. In addition, the average symbol error rate (ASER) with BPSK and QPSK is given for the V-MIMO model. The system capacity is studied for both perfect channel state information (CSI) and unknown CSI individually. The ergodic capacity with various SNR and Rician factors for different network configurations is also analyzed. The simulation results validate the effectiveness of the performance analysis. It is shown that the performance of the HAPs network in WSNs can be significantly improved by utilizing the MAV to achieve overlapping coverage, with the help of the V-MIMO techniques. PMID:26134102

  20. Wireless Instrumentation System and Power Management Scheme Therefore

    NASA Technical Reports Server (NTRS)

    Perotti, Jose (Inventor); Lucena, Angel (Inventor); Eckhoff, Anthony (Inventor); Mata, Carlos T. (Inventor); Blalock, Norman N. (Inventor); Medelius, Pedro J. (Inventor)

    2007-01-01

    A wireless instrumentation system enables a plurality of low power wireless transceivers to transmit measurement data from a plurality of remote station sensors to a central data station accurately and reliably. The system employs a relay based communications scheme where remote stations that cannot communicate directly with the central station due to interference, poor signal strength, etc., are instructed to communicate with other of the remote stations that act as relays to the central station. A unique power management scheme is also employed to minimize power usage at each remote station and thereby maximize battery life. Each of the remote stations prefembly employs a modular design to facilitate easy reconfiguration of the stations as required.

  1. The Balanced Cross-Layer Design Routing Algorithm in Wireless Sensor Networks Using Fuzzy Logic.

    PubMed

    Li, Ning; Martínez, José-Fernán; Hernández Díaz, Vicente

    2015-08-10

    Recently, the cross-layer design for the wireless sensor network communication protocol has become more and more important and popular. Considering the disadvantages of the traditional cross-layer routing algorithms, in this paper we propose a new fuzzy logic-based routing algorithm, named the Balanced Cross-layer Fuzzy Logic (BCFL) routing algorithm. In BCFL, we use the cross-layer parameters' dispersion as the fuzzy logic inference system inputs. Moreover, we give each cross-layer parameter a dynamic weight according the value of the dispersion. For getting a balanced solution, the parameter whose dispersion is large will have small weight, and vice versa. In order to compare it with the traditional cross-layer routing algorithms, BCFL is evaluated through extensive simulations. The simulation results show that the new routing algorithm can handle the multiple constraints without increasing the complexity of the algorithm and can achieve the most balanced performance on selecting the next hop relay node. Moreover, the Balanced Cross-layer Fuzzy Logic routing algorithm can adapt to the dynamic changing of the network conditions and topology effectively.

  2. The Balanced Cross-Layer Design Routing Algorithm in Wireless Sensor Networks Using Fuzzy Logic

    PubMed Central

    Li, Ning; Martínez, José-Fernán; Díaz, Vicente Hernández

    2015-01-01

    Recently, the cross-layer design for the wireless sensor network communication protocol has become more and more important and popular. Considering the disadvantages of the traditional cross-layer routing algorithms, in this paper we propose a new fuzzy logic-based routing algorithm, named the Balanced Cross-layer Fuzzy Logic (BCFL) routing algorithm. In BCFL, we use the cross-layer parameters’ dispersion as the fuzzy logic inference system inputs. Moreover, we give each cross-layer parameter a dynamic weight according the value of the dispersion. For getting a balanced solution, the parameter whose dispersion is large will have small weight, and vice versa. In order to compare it with the traditional cross-layer routing algorithms, BCFL is evaluated through extensive simulations. The simulation results show that the new routing algorithm can handle the multiple constraints without increasing the complexity of the algorithm and can achieve the most balanced performance on selecting the next hop relay node. Moreover, the Balanced Cross-layer Fuzzy Logic routing algorithm can adapt to the dynamic changing of the network conditions and topology effectively. PMID:26266412

  3. Multi-Hop Link Capacity of Multi-Route Multi-Hop MRC Diversity for a Virtual Cellular Network

    NASA Astrophysics Data System (ADS)

    Daou, Imane; Kudoh, Eisuke; Adachi, Fumiyuki

    In virtual cellular network (VCN), proposed for high-speed mobile communications, the signal transmitted from a mobile terminal is received by some wireless ports distributed in each virtual cell and relayed to the central port that acts as a gateway to the core network. In this paper, we apply the multi-route MHMRC diversity in order to decrease the transmit power and increase the multi-hop link capacity. The transmit power, the interference power and the link capacity are evaluated for DS-CDMA multi-hop VCN by computer simulation. The multi-route MHMRC diversity can be applied to not only DS-CDMA but also other access schemes (i. e. MC-CDMA, OFDM, etc.).

  4. Adapting Wireless Technology to Lighting Control and Environmental Sensing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dana Teasdale; Francis Rubinstein; David S. Watson

    Although advanced lighting control systems offer significant energy savings, the high cost of retrofitting buildings with advanced lighting control systems is a barrier to adoption of this energy-saving technology. Wireless technology, however, offers a solution to mounting installation costs since it requires no additional wiring to implement. To demonstrate the feasibility of such a system, a prototype wirelessly-controlled advanced lighting system was designed and built. The system includes the following components: a wirelessly-controllable analog circuit module (ACM), a wirelessly-controllable electronic dimmable ballast, a T8 3-lamp fixture, an environmental multi-sensor, a current transducer, and control software. The ACM, dimmable ballast, multi-sensor,more » and current transducer were all integrated with SmartMesh{trademark} wireless mesh networking nodes, called motes, enabling wireless communication, sensor monitoring, and actuator control. Each mote-enabled device has a reliable communication path to the SmartMesh Manager, a single board computer that controls network functions and connects the wireless network to a PC running lighting control software. The ACM is capable of locally driving one or more standard 0-10 Volt electronic dimmable ballasts through relay control and a 0-10 Volt controllable output, in addition to 0-24 Volt and 0-10 Volt inputs. The mote-integrated electronic dimmable ballast is designed to drive a standard 3-lamp T8 light fixture. The environmental multisensor measures occupancy, light level and temperature. The current transducer is used to measure the power consumed by the fixture. Control software was developed to implement advanced lighting algorithms, including open and closed-loop daylight ramping, occupancy control, and demand response. Engineering prototypes of each component were fabricated and tested in a bench-scale system. Based on standard industry practices, a cost analysis was conducted. It is estimated that the installation cost of a wireless advanced lighting control system for a retrofit application is at least 20% lower than a comparable wired system for a typical 16,000 square-foot office building, with a payback period of less than 3 years. At 30% market penetration saturation, a cumulative 695 Billion kWh of energy could be saved through 2025, a cost savings of $52 Billion.« less

  5. A Multi-Agent Framework for Packet Routing in Wireless Sensor Networks

    PubMed Central

    Ye, Dayon; Zhang, Minji; Yang, Yu

    2015-01-01

    Wireless sensor networks (WSNs) have been widely investigated in recent years. One of the fundamental issues in WSNs is packet routing, because in many application domains, packets have to be routed from source nodes to destination nodes as soon and as energy efficiently as possible. To address this issue, a large number of routing approaches have been proposed. Although every existing routing approach has advantages, they also have some disadvantages. In this paper, a multi-agent framework is proposed that can assist existing routing approaches to improve their routing performance. This framework enables each sensor node to build a cooperative neighbour set based on past routing experience. Such cooperative neighbours, in turn, can help the sensor to effectively relay packets in the future. This framework is independent of existing routing approaches and can be used to assist many existing routing approaches. Simulation results demonstrate the good performance of this framework in terms of four metrics: average delivery latency, successful delivery ratio, number of live nodes and total sensing coverage. PMID:25928063

  6. Miniature Wireless BioSensor for Remote Endoscopic Monitoring

    NASA Astrophysics Data System (ADS)

    Nemiroski, Alex; Brown, Keith; Issadore, David; Westervelt, Robert; Thompson, Chris; Obstein, Keith; Laine, Michael

    2009-03-01

    We have built a miniature wireless biosensor with fluorescence detection capability that explores the miniaturization limit for a self-powered sensor device assembled from the latest off-the-shelf technology. The device is intended as a remote medical sensor to be inserted endoscopically and remainin a patient's gastrointestinal tract for a period of weeks, recording and transmitting data as necessary. A sensing network may be formed by using multiple such devices within the patient, routing information to an external receiver that communicates through existing mobilephone networks to relay data remotely. By using a monolithic IC chip with integrated processor, memory, and 2.4 GHz radio,combined with a photonic sensor and miniature battery, we have developed a fully functional computing device in a form factorcompliantwith insertion through the narrowest endoscopic channels (less than 3mm x 3mm x 20mm). We envision similar devices with various types of sensors to be used in many different areas of the human body.

  7. A Power-Optimized Cooperative MAC Protocol for Lifetime Extension in Wireless Sensor Networks.

    PubMed

    Liu, Kai; Wu, Shan; Huang, Bo; Liu, Feng; Xu, Zhen

    2016-10-01

    In wireless sensor networks, in order to satisfy the requirement of long working time of energy-limited nodes, we need to design an energy-efficient and lifetime-extended medium access control (MAC) protocol. In this paper, a node cooperation mechanism that one or multiple nodes with higher channel gain and sufficient residual energy help a sender relay its data packets to its recipient is employed to achieve this objective. We first propose a transmission power optimization algorithm to prolong network lifetime by optimizing the transmission powers of the sender and its cooperative nodes to maximize their minimum residual energy after their data packet transmissions. Based on it, we propose a corresponding power-optimized cooperative MAC protocol. A cooperative node contention mechanism is designed to ensure that the sender can effectively select a group of cooperative nodes with the lowest energy consumption and the best channel quality for cooperative transmissions, thus further improving the energy efficiency. Simulation results show that compared to typical MAC protocol with direct transmissions and energy-efficient cooperative MAC protocol, the proposed cooperative MAC protocol can efficiently improve the energy efficiency and extend the network lifetime.

  8. A Power-Optimized Cooperative MAC Protocol for Lifetime Extension in Wireless Sensor Networks

    PubMed Central

    Liu, Kai; Wu, Shan; Huang, Bo; Liu, Feng; Xu, Zhen

    2016-01-01

    In wireless sensor networks, in order to satisfy the requirement of long working time of energy-limited nodes, we need to design an energy-efficient and lifetime-extended medium access control (MAC) protocol. In this paper, a node cooperation mechanism that one or multiple nodes with higher channel gain and sufficient residual energy help a sender relay its data packets to its recipient is employed to achieve this objective. We first propose a transmission power optimization algorithm to prolong network lifetime by optimizing the transmission powers of the sender and its cooperative nodes to maximize their minimum residual energy after their data packet transmissions. Based on it, we propose a corresponding power-optimized cooperative MAC protocol. A cooperative node contention mechanism is designed to ensure that the sender can effectively select a group of cooperative nodes with the lowest energy consumption and the best channel quality for cooperative transmissions, thus further improving the energy efficiency. Simulation results show that compared to typical MAC protocol with direct transmissions and energy-efficient cooperative MAC protocol, the proposed cooperative MAC protocol can efficiently improve the energy efficiency and extend the network lifetime. PMID:27706079

  9. Optimal Location through Distributed Algorithm to Avoid Energy Hole in Mobile Sink WSNs

    PubMed Central

    Qing-hua, Li; Wei-hua, Gui; Zhi-gang, Chen

    2014-01-01

    In multihop data collection sensor network, nodes near the sink need to relay on remote data and, thus, have much faster energy dissipation rate and suffer from premature death. This phenomenon causes energy hole near the sink, seriously damaging the network performance. In this paper, we first compute energy consumption of each node when sink is set at any point in the network through theoretical analysis; then we propose an online distributed algorithm, which can adjust sink position based on the actual energy consumption of each node adaptively to get the actual maximum lifetime. Theoretical analysis and experimental results show that the proposed algorithms significantly improve the lifetime of wireless sensor network. It lowers the network residual energy by more than 30% when it is dead. Moreover, the cost for moving the sink is relatively smaller. PMID:24895668

  10. A Scalable QoS-Aware VoD Resource Sharing Scheme for Next Generation Networks

    NASA Astrophysics Data System (ADS)

    Huang, Chenn-Jung; Luo, Yun-Cheng; Chen, Chun-Hua; Hu, Kai-Wen

    In network-aware concept, applications are aware of network conditions and are adaptable to the varying environment to achieve acceptable and predictable performance. In this work, a solution for video on demand service that integrates wireless and wired networks by using the network aware concepts is proposed to reduce the blocking probability and dropping probability of mobile requests. Fuzzy logic inference system is employed to select appropriate cache relay nodes to cache published video streams and distribute them to different peers through service oriented architecture (SOA). SIP-based control protocol and IMS standard are adopted to ensure the possibility of heterogeneous communication and provide a framework for delivering real-time multimedia services over an IP-based network to ensure interoperability, roaming, and end-to-end session management. The experimental results demonstrate that effectiveness and practicability of the proposed work.

  11. The queueing perspective of asynchronous network coding in two-way relay network

    NASA Astrophysics Data System (ADS)

    Liang, Yaping; Chang, Qing; Li, Xianxu

    2018-04-01

    Asynchronous network coding (NC) has potential to improve the wireless network performance compared with a routing or the synchronous network coding. Recent researches concentrate on the optimization between throughput/energy consuming and delay with a couple of independent input flow. However, the implementation of NC requires a thorough investigation of its impact on relevant queueing systems where few work focuses on. Moreover, few works study the probability density function (pdf) in network coding scenario. In this paper, the scenario with two independent Poisson input flows and one output flow is considered. The asynchronous NC-based strategy is that a new arrival evicts a head packet holding in its queue when waiting for another packet from the other flow to encode. The pdf for the output flow which contains both coded and uncoded packets is derived. Besides, the statistic characteristics of this strategy are analyzed. These results are verified by numerical simulations.

  12. The Earth Based Ground Stations Element of the Lunar Program

    NASA Technical Reports Server (NTRS)

    Gal-Edd, Jonathan; Fatig, Curtis; Schier, James; Lee, Charles

    2007-01-01

    The Lunar Architecture Team (LAT) is responsible for developing a concept for building and supporting a lunar outpost with several exploration capabilities such as rovers, colonization, and observatories. The lunar outpost is planned to be located at the Moon's South Pole. The LAT Communications and Navigation Team (C&N) is responsible for defining the network infrastructure to support the lunar outpost. The following elements are needed to support lunar outpost activities: A Lunar surface network based on industry standard wireless 802.xx protocols, relay satellites positioned 180 degrees apart to provide South Pole coverage for the half of the lunar 28-day orbit that is obscured from Earth view, earth-based ground stations deployed at geographical locations 120 degrees apart. This paper will focus on the Earth ground stations of the lunar architecture. Two types of ground station networks are discussed. One provides Direct to Earth (DTE) support to lunar users using Kaband 23/26Giga-Hertz (GHz) communication frequencies. The second supports the Lunar Relay Satellite (LRS) that will be using Ka-band 40/37GHz (Q-band). This paper will discuss strategies to provide a robust operational network in support of various lunar missions and trades of building new antennas at non-NASA facilities, to improve coverage and provide site diversification for handling rain attenuation.

  13. Cooperative Opportunistic Pressure Based Routing for Underwater Wireless Sensor Networks.

    PubMed

    Javaid, Nadeem; Muhammad; Sher, Arshad; Abdul, Wadood; Niaz, Iftikhar Azim; Almogren, Ahmad; Alamri, Atif

    2017-03-19

    In this paper, three opportunistic pressure based routing techniques for underwater wireless sensor networks (UWSNs) are proposed. The first one is the cooperative opportunistic pressure based routing protocol (Co-Hydrocast), second technique is the improved Hydrocast (improved-Hydrocast), and third one is the cooperative improved Hydrocast (Co-improved Hydrocast). In order to minimize lengthy routing paths between the source and the destination and to avoid void holes at the sparse networks, sensor nodes are deployed at different strategic locations. The deployment of sensor nodes at strategic locations assure the maximum monitoring of the network field. To conserve the energy consumption and minimize the number of hops, greedy algorithm is used to transmit data packets from the source to the destination. Moreover, the opportunistic routing is also exploited to avoid void regions by making backward transmissions to find reliable path towards the destination in the network. The relay cooperation mechanism is used for reliable data packet delivery, when signal to noise ratio (SNR) of the received signal is not within the predefined threshold then the maximal ratio combining (MRC) is used as a diversity technique to improve the SNR of the received signals at the destination. Extensive simulations validate that our schemes perform better in terms of packet delivery ratio and energy consumption than the existing technique; Hydrocast.

  14. Cooperative Opportunistic Pressure Based Routing for Underwater Wireless Sensor Networks

    PubMed Central

    Javaid, Nadeem; Muhammad; Sher, Arshad; Abdul, Wadood; Niaz, Iftikhar Azim; Almogren, Ahmad; Alamri, Atif

    2017-01-01

    In this paper, three opportunistic pressure based routing techniques for underwater wireless sensor networks (UWSNs) are proposed. The first one is the cooperative opportunistic pressure based routing protocol (Co-Hydrocast), second technique is the improved Hydrocast (improved-Hydrocast), and third one is the cooperative improved Hydrocast (Co-improved Hydrocast). In order to minimize lengthy routing paths between the source and the destination and to avoid void holes at the sparse networks, sensor nodes are deployed at different strategic locations. The deployment of sensor nodes at strategic locations assure the maximum monitoring of the network field. To conserve the energy consumption and minimize the number of hops, greedy algorithm is used to transmit data packets from the source to the destination. Moreover, the opportunistic routing is also exploited to avoid void regions by making backward transmissions to find reliable path towards the destination in the network. The relay cooperation mechanism is used for reliable data packet delivery, when signal to noise ratio (SNR) of the received signal is not within the predefined threshold then the maximal ratio combining (MRC) is used as a diversity technique to improve the SNR of the received signals at the destination. Extensive simulations validate that our schemes perform better in terms of packet delivery ratio and energy consumption than the existing technique; Hydrocast. PMID:28335494

  15. Sink-oriented Dynamic Location Service Protocol for Mobile Sinks with an Energy Efficient Grid-Based Approach.

    PubMed

    Jeon, Hyeonjae; Park, Kwangjin; Hwang, Dae-Joon; Choo, Hyunseung

    2009-01-01

    Sensor nodes transmit the sensed information to the sink through wireless sensor networks (WSNs). They have limited power, computational capacities and memory. Portable wireless devices are increasing in popularity. Mechanisms that allow information to be efficiently obtained through mobile WSNs are of significant interest. However, a mobile sink introduces many challenges to data dissemination in large WSNs. For example, it is important to efficiently identify the locations of mobile sinks and disseminate information from multi-source nodes to the multi-mobile sinks. In particular, a stationary dissemination path may no longer be effective in mobile sink applications, due to sink mobility. In this paper, we propose a Sink-oriented Dynamic Location Service (SDLS) approach to handle sink mobility. In SDLS, we propose an Eight-Direction Anchor (EDA) system that acts as a location service server. EDA prevents intensive energy consumption at the border sensor nodes and thus provides energy balancing to all the sensor nodes. Then we propose a Location-based Shortest Relay (LSR) that efficiently forwards (or relays) data from a source node to a sink with minimal delay path. Our results demonstrate that SDLS not only provides an efficient and scalable location service, but also reduces the average data communication overhead in scenarios with multiple and moving sinks and sources.

  16. NetCoDer: A Retransmission Mechanism for WSNs Based on Cooperative Relays and Network Coding

    PubMed Central

    Valle, Odilson T.; Montez, Carlos; Medeiros de Araujo, Gustavo; Vasques, Francisco; Moraes, Ricardo

    2016-01-01

    Some of the most difficult problems to deal with when using Wireless Sensor Networks (WSNs) are related to the unreliable nature of communication channels. In this context, the use of cooperative diversity techniques and the application of network coding concepts may be promising solutions to improve the communication reliability. In this paper, we propose the NetCoDer scheme to address this problem. Its design is based on merging cooperative diversity techniques and network coding concepts. We evaluate the effectiveness of the NetCoDer scheme through both an experimental setup with real WSN nodes and a simulation assessment, comparing NetCoDer performance against state-of-the-art TDMA-based (Time Division Multiple Access) retransmission techniques: BlockACK, Master/Slave and Redundant TDMA. The obtained results highlight that the proposed NetCoDer scheme clearly improves the network performance when compared with other retransmission techniques. PMID:27258280

  17. Gas Main Sensor and Communications Network System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hagen Schempf

    Automatika, Inc. was contracted by the Department of Energy (DOE) and with co-funding from the Northeast Gas Association (NGA), to develop an in-pipe natural gas prototype measurement and wireless communications system for assessing and monitoring distribution networks. This projected was completed in April 2006, and culminated in the installation of more than 2 dozen GasNet nodes in both low- and high-pressure cast-iron and steel mains owned by multiple utilities in the northeastern US. Utilities are currently logging data (off-line) and monitoring data in real time from single and multiple networked sensors over cellular networks and collecting data using wireless bluetoothmore » PDA systems. The system was designed to be modular, using in-pipe sensor-wands capable of measuring, flow, pressure, temperature, water-content and vibration. Internal antennae allowed for the use of the pipe-internals as a waveguide for setting up a sensor network to collect data from multiple nodes simultaneously. Sensor nodes were designed to be installed with low- and no-blow techniques and tools. Using a multi-drop bus technique with a custom protocol, all electronics were designed to be buriable and allow for on-board data-collection (SD-card), wireless relaying and cellular network forwarding. Installation options afforded by the design included direct-burial and external polemounted variants. Power was provided by one or more batteries, direct AC-power (Class I Div.2) and solar-array. The utilities are currently in a data-collection phase and intend to use the collected (and processed) data to make capital improvement decisions, compare it to Stoner model predictions and evaluate the use of such a system for future expansion, technology-improvement and commercialization starting later in 2006.« less

  18. Performance analysis of optimal power allocation in wireless cooperative communication systems

    NASA Astrophysics Data System (ADS)

    Babikir Adam, Edriss E.; Samb, Doudou; Yu, Li

    2013-03-01

    Cooperative communication has been recently proposed in wireless communication systems for exploring the inherent spatial diversity in relay channels.The Amplify-and-Forward (AF) cooperation protocols with multiple relays have not been sufficiently investigated even if it has a low complexity in term of implementation. We consider in this work a cooperative diversity system in which a source transmits some information to a destination with the help of multiple relay nodes with AF protocols and investigate the optimality of allocating powers both at the source and the relays system by optimizing the symbol error rate (SER) performance in an efficient way. Firstly we derive a closedform SER formulation for MPSK signal using the concept of moment generating function and some statistical approximations in high signal to noise ratio (SNR) for the system under studied. We then find a tight corresponding lower bound which converges to the same limit as the theoretical upper bound and develop an optimal power allocation (OPA) technique with mean channel gains to minimize the SER. Simulation results show that our scheme outperforms the equal power allocation (EPA) scheme and is tight to the theoretical approximation based on the SER upper bound in high SNR for different number of relays.

  19. Alternative Path Communication in Wide-Scale Cluster-Tree Wireless Sensor Networks Using Inactive Periods

    PubMed Central

    Leão, Erico; Montez, Carlos; Moraes, Ricardo; Portugal, Paulo; Vasques, Francisco

    2017-01-01

    The IEEE 802.15.4/ZigBee cluster-tree topology is a suitable technology to deploy wide-scale Wireless Sensor Networks (WSNs). These networks are usually designed to support convergecast traffic, where all communication paths go through the PAN (Personal Area Network) coordinator. Nevertheless, peer-to-peer communication relationships may be also required for different types of WSN applications. That is the typical case of sensor and actuator networks, where local control loops must be closed using a reduced number of communication hops. The use of communication schemes optimised just for the support of convergecast traffic may result in higher network congestion and in a potentially higher number of communication hops. Within this context, this paper proposes an Alternative-Route Definition (ARounD) communication scheme for WSNs. The underlying idea of ARounD is to setup alternative communication paths between specific source and destination nodes, avoiding congested cluster-tree paths. These alternative paths consider shorter inter-cluster paths, using a set of intermediate nodes to relay messages during their inactive periods in the cluster-tree network. Simulation results show that the ARounD communication scheme can significantly decrease the end-to-end communication delay, when compared to the use of standard cluster-tree communication schemes. Moreover, the ARounD communication scheme is able to reduce the network congestion around the PAN coordinator, enabling the reduction of the number of message drops due to queue overflows in the cluster-tree network. PMID:28481245

  20. Alternative Path Communication in Wide-Scale Cluster-Tree Wireless Sensor Networks Using Inactive Periods.

    PubMed

    Leão, Erico; Montez, Carlos; Moraes, Ricardo; Portugal, Paulo; Vasques, Francisco

    2017-05-06

    The IEEE 802.15.4/ZigBee cluster-tree topology is a suitable technology to deploy wide-scale Wireless Sensor Networks (WSNs). These networks are usually designed to support convergecast traffic, where all communication paths go through the PAN (Personal Area Network) coordinator. Nevertheless, peer-to-peer communication relationships may be also required for different types of WSN applications. That is the typical case of sensor and actuator networks, where local control loops must be closed using a reduced number of communication hops. The use of communication schemes optimised just for the support of convergecast traffic may result in higher network congestion and in a potentially higher number of communication hops. Within this context, this paper proposes an Alternative-Route Definition (ARounD) communication scheme for WSNs. The underlying idea of ARounD is to setup alternative communication paths between specific source and destination nodes, avoiding congested cluster-tree paths. These alternative paths consider shorter inter-cluster paths, using a set of intermediate nodes to relay messages during their inactive periods in the cluster-tree network. Simulation results show that the ARounD communication scheme can significantly decrease the end-to-end communication delay, when compared to the use of standard cluster-tree communication schemes. Moreover, the ARounD communication scheme is able to reduce the network congestion around the PAN coordinator, enabling the reduction of the number of message drops due to queue overflows in the cluster-tree network.

  1. Fuzzy-Logic Based Distributed Energy-Efficient Clustering Algorithm for Wireless Sensor Networks.

    PubMed

    Zhang, Ying; Wang, Jun; Han, Dezhi; Wu, Huafeng; Zhou, Rundong

    2017-07-03

    Due to the high-energy efficiency and scalability, the clustering routing algorithm has been widely used in wireless sensor networks (WSNs). In order to gather information more efficiently, each sensor node transmits data to its Cluster Head (CH) to which it belongs, by multi-hop communication. However, the multi-hop communication in the cluster brings the problem of excessive energy consumption of the relay nodes which are closer to the CH. These nodes' energy will be consumed more quickly than the farther nodes, which brings the negative influence on load balance for the whole networks. Therefore, we propose an energy-efficient distributed clustering algorithm based on fuzzy approach with non-uniform distribution (EEDCF). During CHs' election, we take nodes' energies, nodes' degree and neighbor nodes' residual energies into consideration as the input parameters. In addition, we take advantage of Takagi, Sugeno and Kang (TSK) fuzzy model instead of traditional method as our inference system to guarantee the quantitative analysis more reasonable. In our scheme, each sensor node calculates the probability of being as CH with the help of fuzzy inference system in a distributed way. The experimental results indicate EEDCF algorithm is better than some current representative methods in aspects of data transmission, energy consumption and lifetime of networks.

  2. Reliable and energy-efficient communications for wireless biomedical implant systems.

    PubMed

    Ntouni, Georgia D; Lioumpas, Athanasios S; Nikita, Konstantina S

    2014-11-01

    Implant devices are used to measure biological parameters and transmit their results to remote off-body devices. As implants are characterized by strict requirements on size, reliability, and power consumption, applying the concept of cooperative communications to wireless body area networks offers several benefits. In this paper, we aim to minimize the power consumption of the implant device by utilizing on-body wearable devices, while providing the necessary reliability in terms of outage probability and bit error rate. Taking into account realistic power considerations and wireless propagation environments based on the IEEE P802.l5 channel model, an exact theoretical analysis is conducted for evaluating several communication scenarios with respect to the position of the wearable device and the motion of the human body. The derived closed-form expressions are employed toward minimizing the required transmission power, subject to a minimum quality-of-service requirement. In this way, the complexity and power consumption are transferred from the implant device to the on-body relay, which is an efficient approach since they can be easily replaced, in contrast to the in-body implants.

  3. Outage analysis of relay-assisted underwater wireless optical communication systems

    NASA Astrophysics Data System (ADS)

    Tabeshnezhad, Azadeh; Pourmina, Mohammad Ali

    2017-12-01

    In this paper, we theoretically evaluate the outage probabilities of underwater wireless optical communication (UWOC) systems. Our derivations are general as the channel model under consideration takes into account all of the channel degrading effects, namely absorption, scattering, and turbulence-induced fading. We numerically show that the UWOC systems, due to the severe channel impairments, cannot typically support longer link ranges than 100 m. Therefore, in this paper, in order to increase the transmission reliability and hence extend the viable communication range of UWOC systems, we apply decode-and-forward (DF) relay-assisted communications either in the form of multi-hop transmission, where multiple intermediate relays are serially employed between the source and destination, or parallel relaying in which multiple DF relays are distributed among the source-to-destination path to cooperate in the end-to-end transmission. Our numerical results reveal that multi-hop transmission, owing to the distance-dependency of all of the channel degrading effects, can tremendously improve the end-to-end outage probability and increase the accessible link ranges to hundreds of meter. For example, a dual-hop transmission in a 45 m coastal water link can provide up to 41 dB performance improvement at the outage probability of 10-9.

  4. A Novel Cross-Layer Routing Protocol Based on Network Coding for Underwater Sensor Networks.

    PubMed

    Wang, Hao; Wang, Shilian; Bu, Renfei; Zhang, Eryang

    2017-08-08

    Underwater wireless sensor networks (UWSNs) have attracted increasing attention in recent years because of their numerous applications in ocean monitoring, resource discovery and tactical surveillance. However, the design of reliable and efficient transmission and routing protocols is a challenge due to the low acoustic propagation speed and complex channel environment in UWSNs. In this paper, we propose a novel cross-layer routing protocol based on network coding (NCRP) for UWSNs, which utilizes network coding and cross-layer design to greedily forward data packets to sink nodes efficiently. The proposed NCRP takes full advantages of multicast transmission and decode packets jointly with encoded packets received from multiple potential nodes in the entire network. The transmission power is optimized in our design to extend the life cycle of the network. Moreover, we design a real-time routing maintenance protocol to update the route when detecting inefficient relay nodes. Substantial simulations in underwater environment by Network Simulator 3 (NS-3) show that NCRP significantly improves the network performance in terms of energy consumption, end-to-end delay and packet delivery ratio compared with other routing protocols for UWSNs.

  5. Event Coverage Detection and Event Source Determination in Underwater Wireless Sensor Networks.

    PubMed

    Zhou, Zhangbing; Xing, Riliang; Duan, Yucong; Zhu, Yueqin; Xiang, Jianming

    2015-12-15

    With the advent of the Internet of Underwater Things, smart things are deployed in the ocean space and establish underwater wireless sensor networks for the monitoring of vast and dynamic underwater environments. When events are found to have possibly occurred, accurate event coverage should be detected, and potential event sources should be determined for the enactment of prompt and proper responses. To address this challenge, a technique that detects event coverage and determines event sources is developed in this article. Specifically, the occurrence of possible events corresponds to a set of neighboring sensor nodes whose sensory data may deviate from a normal sensing range in a collective fashion. An appropriate sensor node is selected as the relay node for gathering and routing sensory data to sink node(s). When sensory data are collected at sink node(s), the event coverage is detected and represented as a weighted graph, where the vertices in this graph correspond to sensor nodes and the weight specified upon the edges reflects the extent of sensory data deviating from a normal sensing range. Event sources are determined, which correspond to the barycenters in this graph. The results of the experiments show that our technique is more energy efficient, especially when the network topology is relatively steady.

  6. Event Coverage Detection and Event Source Determination in Underwater Wireless Sensor Networks

    PubMed Central

    Zhou, Zhangbing; Xing, Riliang; Duan, Yucong; Zhu, Yueqin; Xiang, Jianming

    2015-01-01

    With the advent of the Internet of Underwater Things, smart things are deployed in the ocean space and establish underwater wireless sensor networks for the monitoring of vast and dynamic underwater environments. When events are found to have possibly occurred, accurate event coverage should be detected, and potential event sources should be determined for the enactment of prompt and proper responses. To address this challenge, a technique that detects event coverage and determines event sources is developed in this article. Specifically, the occurrence of possible events corresponds to a set of neighboring sensor nodes whose sensory data may deviate from a normal sensing range in a collective fashion. An appropriate sensor node is selected as the relay node for gathering and routing sensory data to sink node(s). When sensory data are collected at sink node(s), the event coverage is detected and represented as a weighted graph, where the vertices in this graph correspond to sensor nodes and the weight specified upon the edges reflects the extent of sensory data deviating from a normal sensing range. Event sources are determined, which correspond to the barycenters in this graph. The results of the experiments show that our technique is more energy efficient, especially when the network topology is relatively steady. PMID:26694394

  7. Wireless sensor network

    NASA Astrophysics Data System (ADS)

    Perotti, Jose M.; Lucena, Angel R.; Mullenix, Pamela A.; Mata, Carlos T.

    2006-05-01

    Current and future requirements of aerospace sensors and transducers demand the design and development of a new family of sensing devices, with emphasis on reduced weight, power consumption, and physical size. This new generation of sensors and transducers will possess a certain degree of intelligence in order to provide the end user with critical data in a more efficient manner. Communication between networks of traditional or next-generation sensors can be accomplished by a Wireless Sensor Network (WSN) developed by NASA's Instrumentation Branch and ASRC Aerospace Corporation at Kennedy Space Center (KSC), consisting of at least one central station and several remote stations and their associated software. The central station is application-dependent and can be implemented on different computer hardware, including industrial, handheld, or PC-104 single-board computers, on a variety of operating systems: embedded Windows, Linux, VxWorks, etc. The central stations and remote stations share a similar radio frequency (RF) core module hardware that is modular in design. The main components of the remote stations are an RF core module, a sensor interface module, batteries, and a power management module. These modules are stackable, and a common bus provides the flexibility to stack other modules for additional memory, increased processing, etc. WSN can automatically reconfigure to an alternate frequency if interference is encountered during operation. In addition, the base station will autonomously search for a remote station that was perceived to be lost, using relay stations and alternate frequencies. Several wireless remote-station types were developed and tested in the laboratory to support different sensing technologies, such as resistive temperature devices, silicon diodes, strain gauges, pressure transducers, and hydrogen leak detectors.

  8. Secure communication via an energy-harvesting untrusted relay in the presence of an eavesdropper

    NASA Astrophysics Data System (ADS)

    Tuan, Van Phu; Kong, Hyung Yun

    2018-02-01

    This article studies a secure communication of a simultaneous wireless information and power transfer system in which an energy-constrained untrusted relay, which harvests energy from the wireless signals, helps the communication between the source and destination and is able to decode the source's confidential signal. Additionally, the source's confidential signal is also overheard by a passive eavesdropper. To create positive secrecy capacity, a destination-assisted jamming signal that is completely cancelled at the destination is adopted. Moreover, the jamming signal is also exploited as an additional energy source. To evaluate the secrecy performance, analytical expressions for the secrecy outage probability (SOP) and the average secrecy capacity are derived. Moreover, a high-power approximation for the SOP is presented. The accuracy of the analytical results is verified by Monte Carlo simulations. Numerical results provide valuable insights into the effect of various system parameters, such as the energy-harvesting efficiency, secrecy rate threshold, power-splitting ratio, transmit powers, and locations of the relay and eavesdropper, on the secrecy performance.

  9. 47 CFR 11.20 - State Relay Network.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 1 2011-10-01 2011-10-01 false State Relay Network. 11.20 Section 11.20... Network. This network is composed of State Relay (SR) sources, leased common carrier communications facilities or any other available communication facilities. The network distributes State EAS messages...

  10. 47 CFR 11.20 - State Relay Network.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false State Relay Network. 11.20 Section 11.20... Network. This network is composed of State Relay (SR) sources, leased common carrier communications facilities or any other available communication facilities. The network distributes State EAS messages...

  11. An implementation of a data-transmission pipelining algorithm on Imote2 platforms

    NASA Astrophysics Data System (ADS)

    Li, Xu; Dorvash, Siavash; Cheng, Liang; Pakzad, Shamim

    2011-04-01

    Over the past several years, wireless network systems and sensing technologies have been developed significantly. This has resulted in the broad application of wireless sensor networks (WSNs) in many engineering fields and in particular structural health monitoring (SHM). The movement of traditional SHM toward the new generation of SHM, which utilizes WSNs, relies on the advantages of this new approach such as relatively low costs, ease of implementation and the capability of onboard data processing and management. In the particular case of long span bridge monitoring, a WSN should be capable of transmitting commands and measurement data over long network geometry in a reliable manner. While using single-hop data transmission in such geometry requires a long radio range and consequently a high level of power supply, multi-hop communication may offer an effective and reliable way for data transmissions across the network. Using a multi-hop communication protocol, the network relays data from a remote node to the base station via intermediary nodes. We have proposed a data-transmission pipelining algorithm to enable an effective use of the available bandwidth and minimize the energy consumption and the delay performance by the multi-hop communication protocol. This paper focuses on the implementation aspect of the pipelining algorithm on Imote2 platforms for SHM applications, describes its interaction with underlying routing protocols, and presents the solutions to various implementation issues of the proposed pipelining algorithm. Finally, the performance of the algorithm is evaluated based on the results of an experimental implementation.

  12. Internet of Things (IoT) Based Design of a Secure and Lightweight Body Area Network (BAN) Healthcare System.

    PubMed

    Deng, Yong-Yuan; Chen, Chin-Ling; Tsaur, Woei-Jiunn; Tang, Yung-Wen; Chen, Jung-Hsuan

    2017-12-15

    As sensor networks and cloud computation technologies have rapidly developed over recent years, many services and applications integrating these technologies into daily life have come together as an Internet of Things (IoT). At the same time, aging populations have increased the need for expanded and more efficient elderly care services. Fortunately, elderly people can now wear sensing devices which relay data to a personal wireless device, forming a body area network (BAN). These personal wireless devices collect and integrate patients' personal physiological data, and then transmit the data to the backend of the network for related diagnostics. However, a great deal of the information transmitted by such systems is sensitive data, and must therefore be subject to stringent security protocols. Protecting this data from unauthorized access is thus an important issue in IoT-related research. In regard to a cloud healthcare environment, scholars have proposed a secure mechanism to protect sensitive patient information. Their schemes provide a general architecture; however, these previous schemes still have some vulnerability, and thus cannot guarantee complete security. This paper proposes a secure and lightweight body-sensor network based on the Internet of Things for cloud healthcare environments, in order to address the vulnerabilities discovered in previous schemes. The proposed authentication mechanism is applied to a medical reader to provide a more comprehensive architecture while also providing mutual authentication, and guaranteeing data integrity, user untraceability, and forward and backward secrecy, in addition to being resistant to replay attack.

  13. Hybrid Mobile Communication Networks for Planetary Exploration

    NASA Technical Reports Server (NTRS)

    Alena, Richard; Lee, Charles; Walker, Edward; Osenfort, John; Stone, Thom

    2007-01-01

    A paper discusses the continuing work of the Mobile Exploration System Project, which has been performing studies toward the design of hybrid communication networks for future exploratory missions to remote planets. A typical network could include stationary radio transceivers on a remote planet, mobile radio transceivers carried by humans and robots on the planet, terrestrial units connected via the Internet to an interplanetary communication system, and radio relay transceivers aboard spacecraft in orbit about the planet. Prior studies have included tests on prototypes of these networks deployed in Arctic and desert regions chosen to approximate environmental conditions on Mars. Starting from the findings of the prior studies, the paper discusses methods of analysis, design, and testing of the hybrid communication networks. It identifies key radio-frequency (RF) and network engineering issues. Notable among these issues is the study of wireless LAN throughput loss due to repeater use, RF signal strength, and network latency variations. Another major issue is that of using RF-link analysis to ensure adequate link margin in the face of statistical variations in signal strengths.

  14. LPTA: Location Predictive and Time Adaptive Data Gathering Scheme with Mobile Sink for Wireless Sensor Networks

    PubMed Central

    Rodrigues, Joel J. P. C.

    2014-01-01

    This paper exploits sink mobility to prolong the lifetime of sensor networks while maintaining the data transmission delay relatively low. A location predictive and time adaptive data gathering scheme is proposed. In this paper, we introduce a sink location prediction principle based on loose time synchronization and deduce the time-location formulas of the mobile sink. According to local clocks and the time-location formulas of the mobile sink, nodes in the network are able to calculate the current location of the mobile sink accurately and route data packets timely toward the mobile sink by multihop relay. Considering that data packets generating from different areas may be different greatly, an adaptive dwelling time adjustment method is also proposed to balance energy consumption among nodes in the network. Simulation results show that our data gathering scheme enables data routing with less data transmission time delay and balance energy consumption among nodes. PMID:25302327

  15. BioNet Digital Communications Framework

    NASA Technical Reports Server (NTRS)

    Gifford, Kevin; Kuzminsky, Sebastian; Williams, Shea

    2010-01-01

    BioNet v2 is a peer-to-peer middleware that enables digital communication devices to talk to each other. It provides a software development framework, standardized application, network-transparent device integration services, a flexible messaging model, and network communications for distributed applications. BioNet is an implementation of the Constellation Program Command, Control, Communications and Information (C3I) Interoperability specification, given in CxP 70022-01. The system architecture provides the necessary infrastructure for the integration of heterogeneous wired and wireless sensing and control devices into a unified data system with a standardized application interface, providing plug-and-play operation for hardware and software systems. BioNet v2 features a naming schema for mobility and coarse-grained localization information, data normalization within a network-transparent device driver framework, enabling of network communications to non-IP devices, and fine-grained application control of data subscription band width usage. BioNet directly integrates Disruption Tolerant Networking (DTN) as a communications technology, enabling networked communications with assets that are only intermittently connected including orbiting relay satellites and planetary rover vehicles.

  16. Autonomous vision networking: miniature wireless sensor networks with imaging technology

    NASA Astrophysics Data System (ADS)

    Messinger, Gioia; Goldberg, Giora

    2006-09-01

    The recent emergence of integrated PicoRadio technology, the rise of low power, low cost, System-On-Chip (SOC) CMOS imagers, coupled with the fast evolution of networking protocols and digital signal processing (DSP), created a unique opportunity to achieve the goal of deploying large-scale, low cost, intelligent, ultra-low power distributed wireless sensor networks for the visualization of the environment. Of all sensors, vision is the most desired, but its applications in distributed sensor networks have been elusive so far. Not any more. The practicality and viability of ultra-low power vision networking has been proven and its applications are countless, from security, and chemical analysis to industrial monitoring, asset tracking and visual recognition, vision networking represents a truly disruptive technology applicable to many industries. The presentation discusses some of the critical components and technologies necessary to make these networks and products affordable and ubiquitous - specifically PicoRadios, CMOS imagers, imaging DSP, networking and overall wireless sensor network (WSN) system concepts. The paradigm shift, from large, centralized and expensive sensor platforms, to small, low cost, distributed, sensor networks, is possible due to the emergence and convergence of a few innovative technologies. Avaak has developed a vision network that is aided by other sensors such as motion, acoustic and magnetic, and plans to deploy it for use in military and commercial applications. In comparison to other sensors, imagers produce large data files that require pre-processing and a certain level of compression before these are transmitted to a network server, in order to minimize the load on the network. Some of the most innovative chemical detectors currently in development are based on sensors that change color or pattern in the presence of the desired analytes. These changes are easily recorded and analyzed by a CMOS imager and an on-board DSP processor. Image processing at the sensor node level may also be required for applications in security, asset management and process control. Due to the data bandwidth requirements posed on the network by video sensors, new networking protocols or video extensions to existing standards (e.g. Zigbee) are required. To this end, Avaak has designed and implemented an ultra-low power networking protocol designed to carry large volumes of data through the network. The low power wireless sensor nodes that will be discussed include a chemical sensor integrated with a CMOS digital camera, a controller, a DSP processor and a radio communication transceiver, which enables relaying of an alarm or image message, to a central station. In addition to the communications, identification is very desirable; hence location awareness will be later incorporated to the system in the form of Time-Of-Arrival triangulation, via wide band signaling. While the wireless imaging kernel already exists specific applications for surveillance and chemical detection are under development by Avaak, as part of a co-founded program from ONR and DARPA. Avaak is also designing vision networks for commercial applications - some of which are undergoing initial field tests.

  17. Relay discovery and selection for large-scale P2P streaming

    PubMed Central

    Zhang, Chengwei; Wang, Angela Yunxian

    2017-01-01

    In peer-to-peer networks, application relays have been commonly used to provide various networking services. The service performance often improves significantly if a relay is selected appropriately based on its network location. In this paper, we studied the location-aware relay discovery and selection problem for large-scale P2P streaming networks. In these large-scale and dynamic overlays, it incurs significant communication and computation cost to discover a sufficiently large relay candidate set and further to select one relay with good performance. The network location can be measured directly or indirectly with the tradeoffs between timeliness, overhead and accuracy. Based on a measurement study and the associated error analysis, we demonstrate that indirect measurements, such as King and Internet Coordinate Systems (ICS), can only achieve a coarse estimation of peers’ network location and those methods based on pure indirect measurements cannot lead to a good relay selection. We also demonstrate that there exists significant error amplification of the commonly used “best-out-of-K” selection methodology using three RTT data sets publicly available. We propose a two-phase approach to achieve efficient relay discovery and accurate relay selection. Indirect measurements are used to narrow down a small number of high-quality relay candidates and the final relay selection is refined based on direct probing. This two-phase approach enjoys an efficient implementation using the Distributed-Hash-Table (DHT). When the DHT is constructed, the node keys carry the location information and they are generated scalably using indirect measurements, such as the ICS coordinates. The relay discovery is achieved efficiently utilizing the DHT-based search. We evaluated various aspects of this DHT-based approach, including the DHT indexing procedure, key generation under peer churn and message costs. PMID:28410384

  18. Relay discovery and selection for large-scale P2P streaming.

    PubMed

    Zhang, Chengwei; Wang, Angela Yunxian; Hei, Xiaojun

    2017-01-01

    In peer-to-peer networks, application relays have been commonly used to provide various networking services. The service performance often improves significantly if a relay is selected appropriately based on its network location. In this paper, we studied the location-aware relay discovery and selection problem for large-scale P2P streaming networks. In these large-scale and dynamic overlays, it incurs significant communication and computation cost to discover a sufficiently large relay candidate set and further to select one relay with good performance. The network location can be measured directly or indirectly with the tradeoffs between timeliness, overhead and accuracy. Based on a measurement study and the associated error analysis, we demonstrate that indirect measurements, such as King and Internet Coordinate Systems (ICS), can only achieve a coarse estimation of peers' network location and those methods based on pure indirect measurements cannot lead to a good relay selection. We also demonstrate that there exists significant error amplification of the commonly used "best-out-of-K" selection methodology using three RTT data sets publicly available. We propose a two-phase approach to achieve efficient relay discovery and accurate relay selection. Indirect measurements are used to narrow down a small number of high-quality relay candidates and the final relay selection is refined based on direct probing. This two-phase approach enjoys an efficient implementation using the Distributed-Hash-Table (DHT). When the DHT is constructed, the node keys carry the location information and they are generated scalably using indirect measurements, such as the ICS coordinates. The relay discovery is achieved efficiently utilizing the DHT-based search. We evaluated various aspects of this DHT-based approach, including the DHT indexing procedure, key generation under peer churn and message costs.

  19. A Novel Cross-Layer Routing Protocol Based on Network Coding for Underwater Sensor Networks

    PubMed Central

    Wang, Hao; Wang, Shilian; Bu, Renfei; Zhang, Eryang

    2017-01-01

    Underwater wireless sensor networks (UWSNs) have attracted increasing attention in recent years because of their numerous applications in ocean monitoring, resource discovery and tactical surveillance. However, the design of reliable and efficient transmission and routing protocols is a challenge due to the low acoustic propagation speed and complex channel environment in UWSNs. In this paper, we propose a novel cross-layer routing protocol based on network coding (NCRP) for UWSNs, which utilizes network coding and cross-layer design to greedily forward data packets to sink nodes efficiently. The proposed NCRP takes full advantages of multicast transmission and decode packets jointly with encoded packets received from multiple potential nodes in the entire network. The transmission power is optimized in our design to extend the life cycle of the network. Moreover, we design a real-time routing maintenance protocol to update the route when detecting inefficient relay nodes. Substantial simulations in underwater environment by Network Simulator 3 (NS-3) show that NCRP significantly improves the network performance in terms of energy consumption, end-to-end delay and packet delivery ratio compared with other routing protocols for UWSNs. PMID:28786915

  20. Capturing 3D resistivity of semi-arid karstic subsurface in varying moisture conditions using a wireless sensor network

    NASA Astrophysics Data System (ADS)

    Barnhart, K.; Oden, C. P.

    2012-12-01

    The dissolution of soluble bedrock results in surface and subterranean karst channels, which comprise 7-10% of the dry earth's surface. Karst serves as a preferential conduit to focus surface and subsurface water but it is difficult to exploit as a water resource or protect from pollution because of irregular structure and nonlinear hydrodynamic behavior. Geophysical characterization of karst commonly employs resistivity and seismic methods, but difficulties arise due to low resistivity contrast in arid environments and insufficient resolution of complex heterogeneous structures. To help reduce these difficulties, we employ a state-of-the-art wireless geophysical sensor array, which combines low-power radio telemetry and solar energy harvesting to enable long-term in-situ monitoring. The wireless aspect removes topological constraints common with standard wired resistivity equipment, which facilitates better coverage and/or sensor density to help improve aspect ratio and resolution. Continuous in-situ deployment allows data to be recorded according to nature's time scale; measurements are made during infrequent precipitation events which can increase resistivity contrast. The array is coordinated by a smart wireless bridge that continuously monitors local soil moisture content to detect when precipitation occurs, schedules resistivity surveys, and periodically relays data to the cloud via 3G cellular service. Traditional 2/3D gravity and seismic reflection surveys have also been conducted to clarify and corroborate results.

  1. Seamonster: A Smart Sensor Web in Southeast Alaska

    NASA Astrophysics Data System (ADS)

    Fatland, D. R.; Heavner, M. J.; Hood, E.; Connor, C.; Nagorski, S.

    2006-12-01

    The NASA Research Opportunities in Space and Earth Science (ROSES) program is supporting a wireless sensor network project as part of its Advanced Information Systems Technology "Smart Sensor Web" initiative. The project, entitled Seamonster (for SouthEast Alaska MONitoring Network for Science, Telecomm, and Education Research) is led by the University of Alaska Southeast (Juneau) in collaboration with Microsoft- Vexcel in Boulder Colorado. This paper describes both the data acquisition components and science research objectives of Seamonster. The underlying data acquisition concept is to facilitate geophysics data acquisition by providing a wireless backbone for data recovery. Other researchers would be encouraged to emplace their own sensors together with short-range wireless (ZigBee, Bluetooth, etc). Through a common protocol the backbone will receive data from these sensors and relay them to a wired server. This means that the investigator can receive their data via email on a daily basis thereby cutting cost and monitoring sensor health. With environmental hardening and fairly high bandwidth and long range (100kbps/50km to 5mpbs/15km per hop) the network is intended to cover large areas and operate in harsh environments. Low power sensors and intelligent power management within the backbone are the dual ideas to contend with typical power/cost/data dilemmas. Seamonster science will focus over the next three years on hydrology and glaciology in a succession of valleys near Juneau in various stages of deglaciation, in effect providing a synopsis of a millennium-timescale process in a single moment. The instrumentation will include GPS, geophones, digital photography, met stations, and a suite of stream state and water quality sensors. Initial focus is on the Lemon Creek watershed with expansion to follow in subsequent years. The project will ideally expand to include marine and biological monitoring components.

  2. Harvesting electrostatic energy using super-hydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Pociecha, Dominik; Zylka, Pawel

    2016-11-01

    Almost all environments are now being extensively populated by miniaturized, nano-powered electronic sensor devices communicated together through wireless sensor networks building Internet of Things (IoT). Various energy harvesting techniques are being more and more frequently proposed for battery-less powering of such remote, unattended, implantable or wearable sensors or other low-power electronic gadgets. Energy harvesting relays on extracting energy from the ambient sources readily accessible at the sensor location and converting it into electrical power. The paper exploits possibility of generating electric energy safely accessible for nano-power electronics using tribo-electric and electrostatic induction phenomena displayed at super-hydrophobic surfaces impinged by water droplets. Mechanism of such interaction is discussed and illustrated by experimental results.

  3. The Application of Social Characteristic and L1 Optimization in the Error Correction for Network Coding in Wireless Sensor Networks

    PubMed Central

    Zhang, Guangzhi; Cai, Shaobin; Xiong, Naixue

    2018-01-01

    One of the remarkable challenges about Wireless Sensor Networks (WSN) is how to transfer the collected data efficiently due to energy limitation of sensor nodes. Network coding will increase network throughput of WSN dramatically due to the broadcast nature of WSN. However, the network coding usually propagates a single original error over the whole network. Due to the special property of error propagation in network coding, most of error correction methods cannot correct more than C/2 corrupted errors where C is the max flow min cut of the network. To maximize the effectiveness of network coding applied in WSN, a new error-correcting mechanism to confront the propagated error is urgently needed. Based on the social network characteristic inherent in WSN and L1 optimization, we propose a novel scheme which successfully corrects more than C/2 corrupted errors. What is more, even if the error occurs on all the links of the network, our scheme also can correct errors successfully. With introducing a secret channel and a specially designed matrix which can trap some errors, we improve John and Yi’s model so that it can correct the propagated errors in network coding which usually pollute exactly 100% of the received messages. Taking advantage of the social characteristic inherent in WSN, we propose a new distributed approach that establishes reputation-based trust among sensor nodes in order to identify the informative upstream sensor nodes. With referred theory of social networks, the informative relay nodes are selected and marked with high trust value. The two methods of L1 optimization and utilizing social characteristic coordinate with each other, and can correct the propagated error whose fraction is even exactly 100% in WSN where network coding is performed. The effectiveness of the error correction scheme is validated through simulation experiments. PMID:29401668

  4. The Application of Social Characteristic and L1 Optimization in the Error Correction for Network Coding in Wireless Sensor Networks.

    PubMed

    Zhang, Guangzhi; Cai, Shaobin; Xiong, Naixue

    2018-02-03

    One of the remarkable challenges about Wireless Sensor Networks (WSN) is how to transfer the collected data efficiently due to energy limitation of sensor nodes. Network coding will increase network throughput of WSN dramatically due to the broadcast nature of WSN. However, the network coding usually propagates a single original error over the whole network. Due to the special property of error propagation in network coding, most of error correction methods cannot correct more than C /2 corrupted errors where C is the max flow min cut of the network. To maximize the effectiveness of network coding applied in WSN, a new error-correcting mechanism to confront the propagated error is urgently needed. Based on the social network characteristic inherent in WSN and L1 optimization, we propose a novel scheme which successfully corrects more than C /2 corrupted errors. What is more, even if the error occurs on all the links of the network, our scheme also can correct errors successfully. With introducing a secret channel and a specially designed matrix which can trap some errors, we improve John and Yi's model so that it can correct the propagated errors in network coding which usually pollute exactly 100% of the received messages. Taking advantage of the social characteristic inherent in WSN, we propose a new distributed approach that establishes reputation-based trust among sensor nodes in order to identify the informative upstream sensor nodes. With referred theory of social networks, the informative relay nodes are selected and marked with high trust value. The two methods of L1 optimization and utilizing social characteristic coordinate with each other, and can correct the propagated error whose fraction is even exactly 100% in WSN where network coding is performed. The effectiveness of the error correction scheme is validated through simulation experiments.

  5. Greedy data transportation scheme with hard packet deadlines for wireless ad hoc networks.

    PubMed

    Lee, HyungJune

    2014-01-01

    We present a greedy data transportation scheme with hard packet deadlines in ad hoc sensor networks of stationary nodes and multiple mobile nodes with scheduled trajectory path and arrival time. In the proposed routing strategy, each stationary ad hoc node en route decides whether to relay a shortest-path stationary node toward destination or a passing-by mobile node that will carry closer to destination. We aim to utilize mobile nodes to minimize the total routing cost as far as the selected route can satisfy the end-to-end packet deadline. We evaluate our proposed routing algorithm in terms of routing cost, packet delivery ratio, packet delivery time, and usability of mobile nodes based on network level simulations. Simulation results show that our proposed algorithm fully exploits the remaining time till packet deadline to turn into networking benefits of reducing the overall routing cost and improving packet delivery performance. Also, we demonstrate that the routing scheme guarantees packet delivery with hard deadlines, contributing to QoS improvement in various network services.

  6. Greedy Data Transportation Scheme with Hard Packet Deadlines for Wireless Ad Hoc Networks

    PubMed Central

    Lee, HyungJune

    2014-01-01

    We present a greedy data transportation scheme with hard packet deadlines in ad hoc sensor networks of stationary nodes and multiple mobile nodes with scheduled trajectory path and arrival time. In the proposed routing strategy, each stationary ad hoc node en route decides whether to relay a shortest-path stationary node toward destination or a passing-by mobile node that will carry closer to destination. We aim to utilize mobile nodes to minimize the total routing cost as far as the selected route can satisfy the end-to-end packet deadline. We evaluate our proposed routing algorithm in terms of routing cost, packet delivery ratio, packet delivery time, and usability of mobile nodes based on network level simulations. Simulation results show that our proposed algorithm fully exploits the remaining time till packet deadline to turn into networking benefits of reducing the overall routing cost and improving packet delivery performance. Also, we demonstrate that the routing scheme guarantees packet delivery with hard deadlines, contributing to QoS improvement in various network services. PMID:25258736

  7. Noncoherent Physical-Layer Network Coding with FSK Modulation: Relay Receiver Design Issues

    DTIC Science & Technology

    2011-03-01

    222 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 59, NO. 9, SEPTEMBER 2011 2595 Noncoherent Physical-Layer Network Coding with FSK Modulation: Relay... noncoherent reception, channel estima- tion. I. INTRODUCTION IN the two-way relay channel (TWRC), a pair of sourceterminals exchange information...2011 4. TITLE AND SUBTITLE Noncoherent Physical-Layer Network Coding with FSK Modulation:Relay Receiver Design Issues 5a. CONTRACT NUMBER 5b

  8. Internet of Things (IoT) Based Design of a Secure and Lightweight Body Area Network (BAN) Healthcare System

    PubMed Central

    Deng, Yong-Yuan; Chen, Chin-Ling; Tsaur, Woei-Jiunn; Tang, Yung-Wen; Chen, Jung-Hsuan

    2017-01-01

    As sensor networks and cloud computation technologies have rapidly developed over recent years, many services and applications integrating these technologies into daily life have come together as an Internet of Things (IoT). At the same time, aging populations have increased the need for expanded and more efficient elderly care services. Fortunately, elderly people can now wear sensing devices which relay data to a personal wireless device, forming a body area network (BAN). These personal wireless devices collect and integrate patients’ personal physiological data, and then transmit the data to the backend of the network for related diagnostics. However, a great deal of the information transmitted by such systems is sensitive data, and must therefore be subject to stringent security protocols. Protecting this data from unauthorized access is thus an important issue in IoT-related research. In regard to a cloud healthcare environment, scholars have proposed a secure mechanism to protect sensitive patient information. Their schemes provide a general architecture; however, these previous schemes still have some vulnerability, and thus cannot guarantee complete security. This paper proposes a secure and lightweight body-sensor network based on the Internet of Things for cloud healthcare environments, in order to address the vulnerabilities discovered in previous schemes. The proposed authentication mechanism is applied to a medical reader to provide a more comprehensive architecture while also providing mutual authentication, and guaranteeing data integrity, user untraceability, and forward and backward secrecy, in addition to being resistant to replay attack. PMID:29244776

  9. Spreading Sequence System for Full Connectivity Relay Network

    NASA Technical Reports Server (NTRS)

    Kwon, Hyuck M. (Inventor); Pham, Khanh D. (Inventor); Yang, Jie (Inventor)

    2018-01-01

    Fully connected uplink and downlink fully connected relay network systems using pseudo-noise spreading and despreading sequences subjected to maximizing the signal-to-interference-plus-noise ratio. The relay network systems comprise one or more transmitting units, relays, and receiving units connected via a communication network. The transmitting units, relays, and receiving units each may include a computer for performing the methods and steps described herein and transceivers for transmitting and/or receiving signals. The computer encodes and/or decodes communication signals via optimum adaptive PN sequences found by employing Cholesky decompositions and singular value decompositions (SVD). The PN sequences employ channel state information (CSI) to more effectively and more securely computing the optimal sequences.

  10. The Laser Communications Relay and the Path to the Next Generation Near Earth Relay

    NASA Technical Reports Server (NTRS)

    Israel, David J.

    2015-01-01

    NASA Goddard Space Flight Center is currently developing the Laser Communications Relay Demonstration (LCRD) as a Path to the Next Generation Near Earth Space Communication Network. The current NASA Space Network or Tracking and Data Relay Satellite System is comprised of a constellation of Tracking and Data Relay Satellites (TDRS) in geosynchronous orbit and associated ground stations and operation centers. NASA is currently targeting a next generation of relay capability on orbit in the 2025 timeframe.

  11. A two-hop wireless power transfer system with an efficiency-enhanced power receiver for motion-free capsule endoscopy inspection.

    PubMed

    Sun, Tianjia; Xie, Xiang; Li, Guolin; Gu, Yingke; Deng, Yangdong; Wang, Zhihua

    2012-11-01

    This paper presents a wireless power transfer system for a motion-free capsule endoscopy inspection. Conventionally, a wireless power transmitter in a specifically designed jacket has to be connected to a strong power source with a long cable. To avoid the power cable and allow patients to walk freely in a room, this paper proposes a two-hop wireless power transfer system. First, power is transferred from a floor to a power relay in the patient's jacket via strong coupling. Next, power is delivered from the power relay to the capsule via loose coupling. Besides making patients much more conformable, the proposed techniques eliminate the sources of reliability issues arisen from the moving cable and connectors. In the capsule, it is critical to enhance the power conversion efficiency. This paper develops a switch-mode rectifier (rectifying efficiency of 93.6%) and a power combination circuit (enhances combining efficiency by 18%). Thanks to the two-hop transfer mechanism and the novel circuit techniques, this system is able to transfer an average power of 24 mW and a peak power of 90 mW from the floor to a 13 mm × 27 mm capsule over a distance of 1 m with the maximum dc-to-dc power efficiency of 3.04%.

  12. AES based secure low energy adaptive clustering hierarchy for WSNs

    NASA Astrophysics Data System (ADS)

    Kishore, K. R.; Sarma, N. V. S. N.

    2013-01-01

    Wireless sensor networks (WSNs) provide a low cost solution in diversified application areas. The wireless sensor nodes are inexpensive tiny devices with limited storage, computational capability and power. They are being deployed in large scale in both military and civilian applications. Security of the data is one of the key concerns where large numbers of nodes are deployed. Here, an energy-efficient secure routing protocol, secure-LEACH (Low Energy Adaptive Clustering Hierarchy) for WSNs based on the Advanced Encryption Standard (AES) is being proposed. This crypto system is a session based one and a new session key is assigned for each new session. The network (WSN) is divided into number of groups or clusters and a cluster head (CH) is selected among the member nodes of each cluster. The measured data from the nodes is aggregated by the respective CH's and then each CH relays this data to another CH towards the gateway node in the WSN which in turn sends the same to the Base station (BS). In order to maintain confidentiality of data while being transmitted, it is necessary to encrypt the data before sending at every hop, from a node to the CH and from the CH to another CH or to the gateway node.

  13. Real-time network traffic classification technique for wireless local area networks based on compressed sensing

    NASA Astrophysics Data System (ADS)

    Balouchestani, Mohammadreza

    2017-05-01

    Network traffic or data traffic in a Wireless Local Area Network (WLAN) is the amount of network packets moving across a wireless network from each wireless node to another wireless node, which provide the load of sampling in a wireless network. WLAN's Network traffic is the main component for network traffic measurement, network traffic control and simulation. Traffic classification technique is an essential tool for improving the Quality of Service (QoS) in different wireless networks in the complex applications such as local area networks, wireless local area networks, wireless personal area networks, wireless metropolitan area networks, and wide area networks. Network traffic classification is also an essential component in the products for QoS control in different wireless network systems and applications. Classifying network traffic in a WLAN allows to see what kinds of traffic we have in each part of the network, organize the various kinds of network traffic in each path into different classes in each path, and generate network traffic matrix in order to Identify and organize network traffic which is an important key for improving the QoS feature. To achieve effective network traffic classification, Real-time Network Traffic Classification (RNTC) algorithm for WLANs based on Compressed Sensing (CS) is presented in this paper. The fundamental goal of this algorithm is to solve difficult wireless network management problems. The proposed architecture allows reducing False Detection Rate (FDR) to 25% and Packet Delay (PD) to 15 %. The proposed architecture is also increased 10 % accuracy of wireless transmission, which provides a good background for establishing high quality wireless local area networks.

  14. Wireless security in mobile health.

    PubMed

    Osunmuyiwa, Olufolabi; Ulusoy, Ali Hakan

    2012-12-01

    Mobile health (m-health) is an extremely broad term that embraces mobile communication in the health sector and data packaging. The four broad categories of wireless networks are wireless personal area network, wireless metropolitan area network, wireless wide area network, and wireless local area network. Wireless local area network is the most notable of the wireless networking tools obtainable in the health sector. Transfer of delicate and critical information on radio frequencies should be secure, and the right to use must be meticulous. This article covers the business opportunities in m-health, threats faced by wireless networks in hospitals, and methods of mitigating these threats.

  15. The network and transmission of based on the principle of laser multipoint communication

    NASA Astrophysics Data System (ADS)

    Fu, Qiang; Liu, Xianzhu; Jiang, Huilin; Hu, Yuan; Jiang, Lun

    2014-11-01

    Space laser communication is the perfectly choose to the earth integrated information backbone network in the future. This paper introduces the structure of the earth integrated information network that is a large capacity integrated high-speed broadband information network, a variety of communications platforms were densely interconnected together, such as the land, sea, air and deep air users or aircraft, the technologies of the intelligent high-speed processing, switching and routing were adopt. According to the principle of maximum effective comprehensive utilization of information resources, get accurately information, fast processing and efficient transmission through inter-satellite, satellite earth, sky and ground station and other links. Namely it will be a space-based, air-based and ground-based integrated information network. It will be started from the trends of laser communication. The current situation of laser multi-point communications were expounded, the transmission scheme of the dynamic multi-point between wireless laser communication n network has been carefully studied, a variety of laser communication network transmission schemes the corresponding characteristics and scope described in detail , described the optical multiplexer machine that based on the multiport form of communication is applied to relay backbone link; the optical multiplexer-based on the form of the segmentation receiver field of view is applied to small angle link, the optical multiplexer-based form of three concentric spheres structure is applied to short distances, motorized occasions, and the multi-point stitching structure based on the rotation paraboloid is applied to inter-satellite communications in detail. The multi-point laser communication terminal apparatus consist of the transmitting and receiving antenna, a relay optical system, the spectroscopic system, communication system and communication receiver transmitter system. The communication forms of optical multiplexer more than four goals or more, the ratio of received power and volume weight will be Obvious advantages, and can track multiple moving targets in flexible.It would to provide reference for the construction of earth integrated information networks.

  16. Capacity Limit, Link Scheduling and Power Control in Wireless Networks

    ERIC Educational Resources Information Center

    Zhou, Shan

    2013-01-01

    The rapid advancement of wireless technology has instigated the broad deployment of wireless networks. Different types of networks have been developed, including wireless sensor networks, mobile ad hoc networks, wireless local area networks, and cellular networks. These networks have different structures and applications, and require different…

  17. Relay Support for the Mars Science Laboratory and the Coming Decade of Mars Relay Network Evolution

    NASA Technical Reports Server (NTRS)

    Edwards, Charles D., Jr.; Arnold, Bradford W.; Bell, David J.; Bruvold, Kristoffer N.; Gladden, Roy E.; Ilott, Peter A.; Lee, Charles H.

    2012-01-01

    In the past decade, an evolving network of Mars relay orbiters has provided telecommunication relay services to the Mars Exploration Rovers, Spirit and Opportunity, and to the Mars Phoenix Lander, enabling high-bandwidth, energy-efficient data transfer and greatly increasing the volume of science data that can be returned from the Martian surface, compared to conventional direct-to-Earth links. The current relay network, consisting of NASA's Odyssey and Mars Reconnaissance Orbiter and augmented by ESA's Mars Express Orbiter, stands ready to support the Mars Science Laboratory, scheduled to arrive at Mars on Aug 6, 2012, with new capabilities enabled by the Electra and Electra-Lite transceivers carried by MRO and MSL, respectively. The MAVEN orbiter, planned for launch in 2013, and the ExoMars/Trace Gas Orbiter, planned for launch in 2016, will replenish the on-orbit relay network as the current orbiter approach their end of life. Currently planned support scenarios for this future relay network include an ESA EDL Demonstrator Module deployed by the 2016 ExoMars/TGO orbiter, and the 2018 NASA/ESA Joint Rover, representing the first step in a multimission Mars Sample Return campaign.

  18. IEEE 802.16J-Relay Fortified Aeromacs Networks; Benefits and Challenges

    NASA Technical Reports Server (NTRS)

    Kamali, Behnam; Apaza, Rafael D.

    2014-01-01

    Aeronautical Mobile Airport Communications System (AeroMACS) is an IEEE 802.16 standard-based (WiMAX) broadband aviation transmission technology, developed to provide safety critical communications coverage for airport surface in support of fixed and mobile ground to ground applications and services. We have previously demonstrated that IEEE 802.16j-amendment-based WiMAX is most feasible for AeroMACS applications. The principal argument in favor of application of IEEE 802.16j technology is the flexible and cost effective extension of radio coverage that is afforded by relay fortified WiMAX networks, with virtually no increase in the power requirements. In this article, following introductory remarks on airport surface communications, WiMAX and AeroMACS; the IEEE 802.16j-based WiMAX technology and multihop relay systems are briefly described. The two modes of relay operation supported by IEEE 802.16j amendment; i.e., transparent (TRS) and non-transparent (NTRS) modes, are discussed in some detail. Advantages and disadvantages of using TRS and NTRS in AeroMACS networks are summarized in a table. Practical issues vis--vis the inclusion of relays in AeroMACS networks are addressed. It is argued that the selection of relay type may affect a number of network parameters. A discussion on specific benefits and challenges of inclusion of relays in AeroMACS networks is provided. The article concludes that in case it is desired or necessary to exclusively employ one type of relay mode for all applications throughout an AeroMACS network, the proper selection would be the non-transparent mode.

  19. [Research on the High Efficiency Data Communication Repeater Based on STM32F103].

    PubMed

    Zhang, Yahui; Li, Zheng; Chen, Guangfei

    2015-11-01

    To improve the radio frequency (RF) transmission distance of the wireless terminal of the medical internet of things (LOT), to realize the real-time and efficient data communication, the intelligent relay system based on STM32F103 single chip microcomputer (SCM) is proposed. The system used nRF905 chip to achieve the collection, of medical and health information of patients in the 433 MHz band, used SCM to control the serial port to Wi-Fi module to transmit information from 433 MHz to 2.4 GHz wireless Wi-Fi band, and used table look-up algorithm of ready list to improve the efficiency of data communications. The design can realize real-time and efficient data communication. The relay which is easy to use with high practical value can extend the distance and mode of data transmission and achieve real-time transmission of data.

  20. DAWN: Dynamic Ad-hoc Wireless Network

    DTIC Science & Technology

    2016-06-19

    DAWN: Dynamic Ad-hoc Wireless Network The DAWN (Dynamic Ad-hoc Wireless Networks) project is developing a general theory of complex and dynamic... wireless communication networks. To accomplish this, DAWN adopts a very different approach than those followed in the past and summarized above. DAWN... wireless communication networks. The members of DAWN investigated difference aspects of wireless mobile ad hoc networks (MANET). The views, opinions and/or

  1. The Physical Layer Security Experiments of Cooperative Communication System with Different Relay Behaviors.

    PubMed

    Su, Yishan; Han, Guangyao; Fu, Xiaomei; Xu, Naishen; Jin, Zhigang

    2017-04-06

    Physical layer security is an attractive security mechanism, which exploits the randomness characteristics of wireless transmission channel to achieve security. However, it is hampered by the limitation of the channel condition that the main channel must be better than the eavesdropper channel. To alleviate the limitation, cooperative communication is introduced. Few studies have investigated the physical layer security of the relay transmission model. In this paper, we performed some experiments to evaluate the physical layer security of a cooperative communication system, with a relay operating in decode-and-forward (DF) cooperative mode, selfish and malicious behavior in real non-ideal transmission environment. Security performance is evaluated in terms of the probability of non-zero secrecy capacity. Experiments showed some different results compared to theoretical simulation: (1) to achieve the maximum secrecy capacity, the optimal relay power according to the experiments result is larger than that of ideal theoretical results under both cooperative and selfish behavior relay; (2) the relay in malicious behavior who forwards noise to deteriorate the main channel may deteriorate the eavesdropper channel more seriously than the main channel; (3) the optimal relay positions under cooperative and selfish behavior relay cases are both located near the destination because of non-ideal transmission.

  2. Semi-Autonomous Vehicle Project

    NASA Technical Reports Server (NTRS)

    Stewart, Christopher

    2016-01-01

    The primary objective this summer is "evaluating standards for wireless architecture for the internet of things". The Internet of Things is the network of physical objects or "things" embedded with electronics, software, sensors and network connectivity which enables these objects to collect and exchange data and make decisions based on said data. This was accomplished by creating a semi-autonomous vehicle that takes advantage of multiple sensors, cameras, and onboard computers and combined them with a mesh network which enabled communication across large distances with little to no interruption. The mesh network took advantage of what is known as DTN - Disruption Tolerant Networking which according to NASA is the new communications protocol that is "the first step towards interplanetary internet." The use of DTN comes from the fact that it will store information if an interruption in communications is detected and even forward that information via other relays within range so that the data is not lost. This translates well into the project because as the car moves further away from whatever is sending it commands (in this case a joystick), the information can still be forwarded to the car with little to no loss of information thanks to the mesh nodes around the driving area.

  3. Multiple-access relaying with network coding: iterative network/channel decoding with imperfect CSI

    NASA Astrophysics Data System (ADS)

    Vu, Xuan-Thang; Renzo, Marco Di; Duhamel, Pierre

    2013-12-01

    In this paper, we study the performance of the four-node multiple-access relay channel with binary Network Coding (NC) in various Rayleigh fading scenarios. In particular, two relay protocols, decode-and-forward (DF) and demodulate-and-forward (DMF) are considered. In the first case, channel decoding is performed at the relay before NC and forwarding. In the second case, only demodulation is performed at the relay. The contributions of the paper are as follows: (1) two joint network/channel decoding (JNCD) algorithms, which take into account possible decoding error at the relay, are developed in both DF and DMF relay protocols; (2) both perfect channel state information (CSI) and imperfect CSI at receivers are studied. In addition, we propose a practical method to forward the relays error characterization to the destination (quantization of the BER). This results in a fully practical scheme. (3) We show by simulation that the number of pilot symbols only affects the coding gain but not the diversity order, and that quantization accuracy affects both coding gain and diversity order. Moreover, when compared with the recent results using DMF protocol, our proposed DF protocol algorithm shows an improvement of 4 dB in fully interleaved Rayleigh fading channels and 0.7 dB in block Rayleigh fading channels.

  4. Relay Support for the Mars Science Laboratory and the Coming Decade of Mars Relay Network Evolution

    NASA Technical Reports Server (NTRS)

    Edwards, Charles D., Jr.; Arnold, Bradford W.; Bell, David J.; Bruvold, Kristoffer N.; Gladden, Roy E.; Ilott, Peter A.; Lee, Charles H.

    2012-01-01

    Mars Relay Network is prepared to support MSL: a) ODY/MRO/MEX will all provide critical event comm support during EDL. b) New Electra/Electra-Lite capabilities on the MSL-MRO link will support >250 Mb/sol MSL data return. 2013 MAVEN orbiter will replenish on-orbit relay infrastructure as prior orbiters approach end-of-life. While NASA has withdrawn from the 2016 EMTGO and 2018 Joint Rover missions, analysis of the potential link shows a path to Gbit/sol relay capability 2012.

  5. Sparsity-aware multiple relay selection in large multi-hop decode-and-forward relay networks

    NASA Astrophysics Data System (ADS)

    Gouissem, A.; Hamila, R.; Al-Dhahir, N.; Foufou, S.

    2016-12-01

    In this paper, we propose and investigate two novel techniques to perform multiple relay selection in large multi-hop decode-and-forward relay networks. The two proposed techniques exploit sparse signal recovery theory to select multiple relays using the orthogonal matching pursuit algorithm and outperform state-of-the-art techniques in terms of outage probability and computation complexity. To reduce the amount of collected channel state information (CSI), we propose a limited-feedback scheme where only a limited number of relays feedback their CSI. Furthermore, a detailed performance-complexity tradeoff investigation is conducted for the different studied techniques and verified by Monte Carlo simulations.

  6. Cognitive radio wireless sensor networks: applications, challenges and research trends.

    PubMed

    Joshi, Gyanendra Prasad; Nam, Seung Yeob; Kim, Sung Won

    2013-08-22

    A cognitive radio wireless sensor network is one of the candidate areas where cognitive techniques can be used for opportunistic spectrum access. Research in this area is still in its infancy, but it is progressing rapidly. The aim of this study is to classify the existing literature of this fast emerging application area of cognitive radio wireless sensor networks, highlight the key research that has already been undertaken, and indicate open problems. This paper describes the advantages of cognitive radio wireless sensor networks, the difference between ad hoc cognitive radio networks, wireless sensor networks, and cognitive radio wireless sensor networks, potential application areas of cognitive radio wireless sensor networks, challenges and research trend in cognitive radio wireless sensor networks. The sensing schemes suited for cognitive radio wireless sensor networks scenarios are discussed with an emphasis on cooperation and spectrum access methods that ensure the availability of the required QoS. Finally, this paper lists several open research challenges aimed at drawing the attention of the readers toward the important issues that need to be addressed before the vision of completely autonomous cognitive radio wireless sensor networks can be realized.

  7. Measurement-Device-Independent Quantum Key Distribution over Untrustful Metropolitan Network

    NASA Astrophysics Data System (ADS)

    Tang, Yan-Lin; Yin, Hua-Lei; Zhao, Qi; Liu, Hui; Sun, Xiang-Xiang; Huang, Ming-Qi; Zhang, Wei-Jun; Chen, Si-Jing; Zhang, Lu; You, Li-Xing; Wang, Zhen; Liu, Yang; Lu, Chao-Yang; Jiang, Xiao; Ma, Xiongfeng; Zhang, Qiang; Chen, Teng-Yun; Pan, Jian-Wei

    2016-01-01

    Quantum cryptography holds the promise to establish an information-theoretically secure global network. All field tests of metropolitan-scale quantum networks to date are based on trusted relays. The security critically relies on the accountability of the trusted relays, which will break down if the relay is dishonest or compromised. Here, we construct a measurement-device-independent quantum key distribution (MDIQKD) network in a star topology over a 200-square-kilometer metropolitan area, which is secure against untrustful relays and against all detection attacks. In the field test, our system continuously runs through one week with a secure key rate 10 times larger than previous results. Our results demonstrate that the MDIQKD network, combining the best of both worlds—security and practicality, constitutes an appealing solution to secure metropolitan communications.

  8. Relay selection in energy harvesting cooperative networks with rateless codes

    NASA Astrophysics Data System (ADS)

    Zhu, Kaiyan; Wang, Fei

    2018-04-01

    This paper investigates the relay selection in energy harvesting cooperative networks, where the relays harvests energy from the radio frequency (RF) signals transmitted by a source, and the optimal relay is selected and uses the harvested energy to assist the information transmission from the source to its destination. Both source and the selected relay transmit information using rateless code, which allows the destination recover original information after collecting codes bits marginally surpass the entropy of original information. In order to improve transmission performance and efficiently utilize the harvested power, the optimal relay is selected. The optimization problem are formulated to maximize the achievable information rates of the system. Simulation results demonstrate that our proposed relay selection scheme outperform other strategies.

  9. Wireless Networks: New Meaning to Ubiquitous Computing.

    ERIC Educational Resources Information Center

    Drew, Wilfred, Jr.

    2003-01-01

    Discusses the use of wireless technology in academic libraries. Topics include wireless networks; standards (IEEE 802.11); wired versus wireless; why libraries implement wireless technology; wireless local area networks (WLANs); WLAN security; examples of wireless use at Indiana State University and Morrisville College (New York); and useful…

  10. Spatial-Temporal Data Collection with Compressive Sensing in Mobile Sensor Networks

    PubMed Central

    Li, Jiayin; Guo, Wenzhong; Chen, Zhonghui; Xiong, Neal

    2017-01-01

    Compressive sensing (CS) provides an energy-efficient paradigm for data gathering in wireless sensor networks (WSNs). However, the existing work on spatial-temporal data gathering using compressive sensing only considers either multi-hop relaying based or multiple random walks based approaches. In this paper, we exploit the mobility pattern for spatial-temporal data collection and propose a novel mobile data gathering scheme by employing the Metropolis-Hastings algorithm with delayed acceptance, an improved random walk algorithm for a mobile collector to collect data from a sensing field. The proposed scheme exploits Kronecker compressive sensing (KCS) for spatial-temporal correlation of sensory data by allowing the mobile collector to gather temporal compressive measurements from a small subset of randomly selected nodes along a random routing path. More importantly, from the theoretical perspective we prove that the equivalent sensing matrix constructed from the proposed scheme for spatial-temporal compressible signal can satisfy the property of KCS models. The simulation results demonstrate that the proposed scheme can not only significantly reduce communication cost but also improve recovery accuracy for mobile data gathering compared to the other existing schemes. In particular, we also show that the proposed scheme is robust in unreliable wireless environment under various packet losses. All this indicates that the proposed scheme can be an efficient alternative for data gathering application in WSNs. PMID:29117152

  11. Simulation of Greenhouse Climate Monitoring and Control with Wireless Sensor Network and Event-Based Control

    PubMed Central

    Pawlowski, Andrzej; Guzman, Jose Luis; Rodríguez, Francisco; Berenguel, Manuel; Sánchez, José; Dormido, Sebastián

    2009-01-01

    Monitoring and control of the greenhouse environment play a decisive role in greenhouse production processes. Assurance of optimal climate conditions has a direct influence on crop growth performance, but it usually increases the required equipment cost. Traditionally, greenhouse installations have required a great effort to connect and distribute all the sensors and data acquisition systems. These installations need many data and power wires to be distributed along the greenhouses, making the system complex and expensive. For this reason, and others such as unavailability of distributed actuators, only individual sensors are usually located in a fixed point that is selected as representative of the overall greenhouse dynamics. On the other hand, the actuation system in greenhouses is usually composed by mechanical devices controlled by relays, being desirable to reduce the number of commutations of the control signals from security and economical point of views. Therefore, and in order to face these drawbacks, this paper describes how the greenhouse climate control can be represented as an event-based system in combination with wireless sensor networks, where low-frequency dynamics variables have to be controlled and control actions are mainly calculated against events produced by external disturbances. The proposed control system allows saving costs related with wear minimization and prolonging the actuator life, but keeping promising performance results. Analysis and conclusions are given by means of simulation results. PMID:22389597

  12. Spatial-Temporal Data Collection with Compressive Sensing in Mobile Sensor Networks.

    PubMed

    Zheng, Haifeng; Li, Jiayin; Feng, Xinxin; Guo, Wenzhong; Chen, Zhonghui; Xiong, Neal

    2017-11-08

    Compressive sensing (CS) provides an energy-efficient paradigm for data gathering in wireless sensor networks (WSNs). However, the existing work on spatial-temporal data gathering using compressive sensing only considers either multi-hop relaying based or multiple random walks based approaches. In this paper, we exploit the mobility pattern for spatial-temporal data collection and propose a novel mobile data gathering scheme by employing the Metropolis-Hastings algorithm with delayed acceptance, an improved random walk algorithm for a mobile collector to collect data from a sensing field. The proposed scheme exploits Kronecker compressive sensing (KCS) for spatial-temporal correlation of sensory data by allowing the mobile collector to gather temporal compressive measurements from a small subset of randomly selected nodes along a random routing path. More importantly, from the theoretical perspective we prove that the equivalent sensing matrix constructed from the proposed scheme for spatial-temporal compressible signal can satisfy the property of KCS models. The simulation results demonstrate that the proposed scheme can not only significantly reduce communication cost but also improve recovery accuracy for mobile data gathering compared to the other existing schemes. In particular, we also show that the proposed scheme is robust in unreliable wireless environment under various packet losses. All this indicates that the proposed scheme can be an efficient alternative for data gathering application in WSNs .

  13. Simulation of greenhouse climate monitoring and control with wireless sensor network and event-based control.

    PubMed

    Pawlowski, Andrzej; Guzman, Jose Luis; Rodríguez, Francisco; Berenguel, Manuel; Sánchez, José; Dormido, Sebastián

    2009-01-01

    Monitoring and control of the greenhouse environment play a decisive role in greenhouse production processes. Assurance of optimal climate conditions has a direct influence on crop growth performance, but it usually increases the required equipment cost. Traditionally, greenhouse installations have required a great effort to connect and distribute all the sensors and data acquisition systems. These installations need many data and power wires to be distributed along the greenhouses, making the system complex and expensive. For this reason, and others such as unavailability of distributed actuators, only individual sensors are usually located in a fixed point that is selected as representative of the overall greenhouse dynamics. On the other hand, the actuation system in greenhouses is usually composed by mechanical devices controlled by relays, being desirable to reduce the number of commutations of the control signals from security and economical point of views. Therefore, and in order to face these drawbacks, this paper describes how the greenhouse climate control can be represented as an event-based system in combination with wireless sensor networks, where low-frequency dynamics variables have to be controlled and control actions are mainly calculated against events produced by external disturbances. The proposed control system allows saving costs related with wear minimization and prolonging the actuator life, but keeping promising performance results. Analysis and conclusions are given by means of simulation results.

  14. Development of a Wireless Network of Temperature Sensors for Yellowstone National Park (USA)

    NASA Astrophysics Data System (ADS)

    Munday, D. A.; Hutter, T.; Minolli, M.; Obraczka, K.; Manduchi, R.; Petersen, S.; Lowenstern, J. B.; Heasler, H.

    2007-12-01

    Temperature sensors deployed at Yellowstone clearly document that thermal features can vary in temperature on a variety of timescales and show regional correlations unrelated to meteorological variables such as air temperature. Yellowstone National Park (YNP) staff currently measures temperatures at over 40 thermal features and streams within the park, utilizing USGS stream gaging stations and portable data loggers deployed in geyser basins. The latter measure temperature every 1 to 15 minutes, and the data are physically downloaded after about 30 days. Installation of a wireless sensor network would: 1) save considerable time and effort in data retrieval, 2) minimize lost data due to equipment failure, and 3) provide a means to monitor thermal perturbations in near-real time. To meet this need, we developed a wireless sensor network capable of in-situ monitoring of air and water temperature. Temperature sensors are dispersed as nodes that communicate among themselves and through relays to a single base-station linked to the Internet. The small, weatherproof sensors operate unattended for over six months at temperatures as low as -40°C. Each uses an ultra-low-power Texas Instruments' MSP430 microcontroller and an SD card as mass storage. They are powered by 15Ah, 3.6 v, inert Li-ion batteries and transmit data via 900MHz radio modules with a 1-km range. The initial prototype consists of 4 nodes, and is designed to scale with additional nodes for finer spatial resolution and broader coverage. Temperature measurements are asynchronous from node to node, with intervals as frequent as 30 seconds. Data are stored internally to withstand temporary communication failures; underlying intelligent software is capable of re-routing data through alternative nodes to the base station and a MySQL data archiving system. We also developed a Google-Maps-based, front-end that displays the data, recent trends and sensor locations. The system was tested in the Santa Cruz Mountains and will be used at Yellowstone National Park during Fall 2007.

  15. Cognitive Radio Wireless Sensor Networks: Applications, Challenges and Research Trends

    PubMed Central

    Joshi, Gyanendra Prasad; Nam, Seung Yeob; Kim, Sung Won

    2013-01-01

    A cognitive radio wireless sensor network is one of the candidate areas where cognitive techniques can be used for opportunistic spectrum access. Research in this area is still in its infancy, but it is progressing rapidly. The aim of this study is to classify the existing literature of this fast emerging application area of cognitive radio wireless sensor networks, highlight the key research that has already been undertaken, and indicate open problems. This paper describes the advantages of cognitive radio wireless sensor networks, the difference between ad hoc cognitive radio networks, wireless sensor networks, and cognitive radio wireless sensor networks, potential application areas of cognitive radio wireless sensor networks, challenges and research trend in cognitive radio wireless sensor networks. The sensing schemes suited for cognitive radio wireless sensor networks scenarios are discussed with an emphasis on cooperation and spectrum access methods that ensure the availability of the required QoS. Finally, this paper lists several open research challenges aimed at drawing the attention of the readers toward the important issues that need to be addressed before the vision of completely autonomous cognitive radio wireless sensor networks can be realized. PMID:23974152

  16. Design and implementation of green intelligent lights based on the ZigBee

    NASA Astrophysics Data System (ADS)

    Gan, Yong; Jia, Chunli; Zou, Dongyao; Yang, Jiajia; Guo, Qianqian

    2013-03-01

    By analysis of the low degree of intelligence of the traditional lighting control methods, the paper uses the singlechip microcomputer for the control core, and uses a pyroelectric infrared technology to detect the existence of the human body, light sensors to sense the light intensity; the interface uses infrared sensor module, photosensitive sensor module, relay module to transmit the signal, which based on ZigBee wireless network. The main function of the design is to realize that the lighting can intelligently adjust the brightness according to the indoor light intensity when people in door, and it can turn off the light when people left. The circuit and program design of this system is flexible, and the system achieves the effect of intelligent energy saving control.

  17. Performance Evaluation of a Prototyped Wireless Ground Sensor Network

    DTIC Science & Technology

    2005-03-01

    the network was capable of dynamic adaptation to failure and degradation. 14. SUBJECT TERMS: Wireless Sensor Network , Unmanned Sensor, Unattended...2 H. WIRELESS SENSOR NETWORKS .................................................................... 3...zation, and network traffic. The evaluated scenarios included outdoor, urban and indoor environments. The characteristics of wireless sensor networks , types

  18. Development and Testing of a Two-UAV Communication Relay System.

    PubMed

    Li, Boyang; Jiang, Yifan; Sun, Jingxuan; Cai, Lingfeng; Wen, Chih-Yung

    2016-10-13

    In the development of beyond-line-of-sight (BLOS) Unmanned Aerial Vehicle (UAV) systems, communication between the UAVs and the ground control station (GCS) is of critical importance. The commonly used economical wireless modules are restricted by the short communication range and are easily blocked by obstacles. The use of a communication relay system provides a practical way to solve these problems, improving the performance of UAV communication in BLOS and cross-obstacle operations. In this study, a communication relay system, in which a quadrotor was used to relay radio communication for another quadrotor was developed and tested. First, the UAVs used as the airborne platform were constructed, and the hardware for the communication relay system was selected and built up. Second, a set of software programs and protocol for autonomous mission control, communication relay control, and ground control were developed. Finally, the system was fully integrated into the airborne platform and tested both indoor and in-flight. The Received Signal Strength Indication (RSSI) and noise value in two typical application scenarios were recorded. The test results demonstrated the ability of this system to extend the communication range and build communication over obstacles. This system also shows the feasibility to coordinate multiple UAVs' communication with the same relay structure.

  19. Development and Testing of a Two-UAV Communication Relay System

    PubMed Central

    Li, Boyang; Jiang, Yifan; Sun, Jingxuan; Cai, Lingfeng; Wen, Chih-Yung

    2016-01-01

    In the development of beyond-line-of-sight (BLOS) Unmanned Aerial Vehicle (UAV) systems, communication between the UAVs and the ground control station (GCS) is of critical importance. The commonly used economical wireless modules are restricted by the short communication range and are easily blocked by obstacles. The use of a communication relay system provides a practical way to solve these problems, improving the performance of UAV communication in BLOS and cross-obstacle operations. In this study, a communication relay system, in which a quadrotor was used to relay radio communication for another quadrotor was developed and tested. First, the UAVs used as the airborne platform were constructed, and the hardware for the communication relay system was selected and built up. Second, a set of software programs and protocol for autonomous mission control, communication relay control, and ground control were developed. Finally, the system was fully integrated into the airborne platform and tested both indoor and in-flight. The Received Signal Strength Indication (RSSI) and noise value in two typical application scenarios were recorded. The test results demonstrated the ability of this system to extend the communication range and build communication over obstacles. This system also shows the feasibility to coordinate multiple UAVs’ communication with the same relay structure. PMID:27754369

  20. Network Coding in Relay-based Device-to-Device Communications

    PubMed Central

    Huang, Jun; Gharavi, Hamid; Yan, Huifang; Xing, Cong-cong

    2018-01-01

    Device-to-Device (D2D) communications has been realized as an effective means to improve network throughput, reduce transmission latency, and extend cellular coverage in 5G systems. Network coding is a well-established technique known for its capability to reduce the number of retransmissions. In this article, we review state-of-the-art network coding in relay-based D2D communications, in terms of application scenarios and network coding techniques. We then apply two representative network coding techniques to dual-hop D2D communications and present an efficient relay node selecting mechanism as a case study. We also outline potential future research directions, according to the current research challenges. Our intention is to provide researchers and practitioners with a comprehensive overview of the current research status in this area and hope that this article may motivate more researchers to participate in developing network coding techniques for different relay-based D2D communications scenarios. PMID:29503504

  1. Innovative Free-range Resonant Electrical Energy Delivery system (FREE-D System) for a ventricular assist device using wireless power.

    PubMed

    Waters, Benjamin H; Smith, Joshua R; Bonde, Pramod

    2014-01-01

    Technological innovation of a smaller, single moving part has an advantage over earlier large pulsatile ventricular assist devices (VADs) prone to mechanical failure. Drivelines limit the potential for extended patient survival durations with newer pumps and act as source for infection, increased morbidity, rehospitalizations, and reduced quality of life. The Free-range Resonant Electrical Energy Delivery (FREE-D) wireless power system uses magnetically coupled resonators to efficiently transfer power. We demonstrate the efficiency over distance of this system. The experimental setup consists of an radiofrequency amplifier and control board which drives the transmit resonator coil, and a receiver unit consisting of a resonant coil attached to a radiofrequency rectifier and power management module. The power management module supplies power to the axial pump, which was set at 9,600 rpm. To achieve a seamless wireless delivery in any room size, we introduced a third relay coil. This relay coil can be installed throughout a room, whereas a single relay coil could be built into a jacket worn by the patient, which would always be within range of the receive coil implanted in the patient's body. The power was delivered over a meter distance without interruptions or fluctuations with coil, rectifier, and regulator efficiency more than 80% and overall system efficiency of 61%. The axial pump worked well throughout the 8 hours of continuous operation. Having same setup on the opposite side can double the distance. A tether-free operation of a VAD can be achieved by FREE-D system in room-size distances. It has the potential to make the VAD therapy more acceptable from the patient perspective.

  2. Wireless mesh networks.

    PubMed

    Wang, Xinheng

    2008-01-01

    Wireless telemedicine using GSM and GPRS technologies can only provide low bandwidth connections, which makes it difficult to transmit images and video. Satellite or 3G wireless transmission provides greater bandwidth, but the running costs are high. Wireless networks (WLANs) appear promising, since they can supply high bandwidth at low cost. However, the WLAN technology has limitations, such as coverage. A new wireless networking technology named the wireless mesh network (WMN) overcomes some of the limitations of the WLAN. A WMN combines the characteristics of both a WLAN and ad hoc networks, thus forming an intelligent, large scale and broadband wireless network. These features are attractive for telemedicine and telecare because of the ability to provide data, voice and video communications over a large area. One successful wireless telemedicine project which uses wireless mesh technology is the Emergency Room Link (ER-LINK) in Tucson, Arizona, USA. There are three key characteristics of a WMN: self-organization, including self-management and self-healing; dynamic changes in network topology; and scalability. What we may now see is a shift from mobile communication and satellite systems for wireless telemedicine to the use of wireless networks based on mesh technology, since the latter are very attractive in terms of cost, reliability and speed.

  3. MaROS Strategic Relay Planning and Coordination Interfaces

    NASA Technical Reports Server (NTRS)

    Allard, Daniel A.

    2010-01-01

    The Mars Relay Operations Service (MaROS) is designed to provide planning and analysis tools in support of ongoing Mars Network relay operations. Strategic relay planning requires coordination between lander and orbiter mission ground data system (GDS) teams to schedule and execute relay communications passes. MaROS centralizes this process, correlating all data relevant to relay coordination to provide a cohesive picture of the relay state. Service users interact with the system through thin-layer command line and web user interface client applications. Users provide and utilize data such as lander view periods of orbiters, Deep Space Network (DSN) antenna tracks, and reports of relay pass performance. Users upload and download relevant relay data via formally defined and documented file structures including some described in Extensible Markup Language (XML). Clients interface with the system via an http-based Representational State Transfer (ReST) pattern using Javascript Object Notation (JSON) formats. This paper will provide a general overview of the service architecture and detail the software interfaces and considerations for interface design.

  4. Quantum network with trusted and untrusted relays

    NASA Astrophysics Data System (ADS)

    Ma, Xiongfeng; Annabestani, Razieh; Fung, Chi-Hang Fred; Lo, Hoi-Kwong; Lütkenhaus, Norbert; PitkäNen, David; Razavi, Mohsen

    2012-02-01

    Quantum key distribution offers two distant users to establish a random secure key by exploiting properties of quantum mechanics, whose security has proven in theory. In practice, many lab and field demonstrations have been performed in the last 20 years. Nowadays, quantum network with quantum key distribution systems are tested around the world, such as in China, Europe, Japan and US. In this talk, I will give a brief introduction of recent development for quantum network. For the untrusted relay part, I will introduce the measurement-device-independent quantum key distribution scheme and a quantum relay with linear optics. The security of such scheme is proven without assumptions on the detection devices, where most of quantum hacking strategies are launched. This scheme can be realized with current technology. For the trusted relay part, I will introduce so-called delayed privacy amplification, with which no error correction and privacy amplification is necessarily to be performed between users and the relay. In this way, classical communications and computational power requirement on the relay site will be reduced.

  5. The broadcast classical-quantum capacity region of a two-phase bidirectional relaying channel

    NASA Astrophysics Data System (ADS)

    Boche, Holger; Cai, Minglai; Deppe, Christian

    2015-10-01

    We studied a three-node quantum network that enables bidirectional communication between two nodes with a half-duplex relay node for transmitting classical messages. A decode-and-forward protocol is used to perform the communication in two phases. In the first phase, the messages of two nodes are transmitted to the relay node. The capacity of the first phase is well known by previous works. In the second phase, the relay node broadcasts a re-encoded composition to the two nodes. We determine the capacity region of the broadcast phase. To the best of our knowledge, this is the first paper analyzing quantum bidirectional relay networks.

  6. Teach for America, Relay Graduate School, and the Charter School Networks: The Making of a Parallel Education Structure

    ERIC Educational Resources Information Center

    Mungal, Angus Shiva

    2016-01-01

    In New York City, a partnership between Teach For America (TFA), the New York City Department of Education (NYCDOE), the Relay Graduate School of Education (Relay), and three charter school networks produced a "parallel education structure" within the public school system. Driving the partnership and the parallel education structure are…

  7. Implementation of Pass Through PPTP Relay System with Authentication at Each Gateway and Its Performance Evaluations

    NASA Astrophysics Data System (ADS)

    Saito, Shoichi; Uehara, Tetsutaro; Izumi, Yutaka; Kunieda, Yoshitoshi

    The VPN (Virtual Private Network) technique becomes more and more popular to protect contents of messages and to achieve secure communication from incidents, such as tapping. However, it grow in usage that a VPN server is used on a sub-network in part of an office-wide network. But, a PPTP system included in Windows operating systems cannot establish nested VPN links. Moreover encrypted communication by VPN hides a user of the VPN connection. Consequently, any administrators of network systems can’t find out the users of the VPN connection via firewall, moreover can’t decide whether if the user is legal or not. In order to solve this problem, we developed a multi step PPTP relay system on a firewall. This system solves all the problems of our previously developed PPTP relay system(1). The new relay system improves security by encrypting through the whole end-to-end communication and abolishing of prior registration of passwords for the next step. Furthermore, transport speed is accelerated, and the restriction of the number of steps on relay is also abolished. By these features the multi step PPTP relay system expands usability.

  8. Potential uses of a wireless network in physical security systems.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Witzke, Edward L.

    2010-07-01

    Many possible applications requiring or benefiting from a wireless network are available for bolstering physical security and awareness at high security installations or facilities. These enhancements are not always straightforward and may require careful analysis, selection, tuning, and implementation of wireless technologies. In this paper, an introduction to wireless networks and the task of enhancing physical security is first given. Next, numerous applications of a wireless network are brought forth. The technical issues that arise when using a wireless network to support these applications are then discussed. Finally, a summary is presented.

  9. Time Synchronization in Wireless Sensor Networks

    DTIC Science & Technology

    2003-01-01

    University of California Los Angeles Time Synchronization in Wireless Sensor Networks A dissertation submitted in partial satisfaction of the...4. TITLE AND SUBTITLE Time Synchronization in Wireless Sensor Networks 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6...1 1.1 Wireless Sensor Networks . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Time Synchronization in Sensor Networks

  10. Open-WiSe: a solar powered wireless sensor network platform.

    PubMed

    González, Apolinar; Aquino, Raúl; Mata, Walter; Ochoa, Alberto; Saldaña, Pedro; Edwards, Arthur

    2012-01-01

    Because battery-powered nodes are required in wireless sensor networks and energy consumption represents an important design consideration, alternate energy sources are needed to provide more effective and optimal function. The main goal of this work is to present an energy harvesting wireless sensor network platform, the Open Wireless Sensor node (WiSe). The design and implementation of the solar powered wireless platform is described including the hardware architecture, firmware, and a POSIX Real-Time Kernel. A sleep and wake up strategy was implemented to prolong the lifetime of the wireless sensor network. This platform was developed as a tool for researchers investigating Wireless sensor network or system integrators.

  11. New Applications for the Testing and Visualization of Wireless Networks

    NASA Technical Reports Server (NTRS)

    Griffin, Robert I.; Cauley, Michael A.; Pleva, Michael A.; Seibert, Marc A.; Lopez, Isaac

    2005-01-01

    Traditional techniques for examining wireless networks use physical link characteristics such as Signal-to-Noise (SNR) ratios to assess the performance of wireless networks. Such measurements may not be reliable indicators of available bandwidth. This work describes two new software applications developed at NASA Glenn Research Center for the investigation of wireless networks. GPSIPerf combines measurements of Transmission Control Protocol (TCP) throughput with Global Positioning System (GPS) coordinates to give users a map of wireless bandwidth for outdoor environments where a wireless infrastructure has been deployed. GPSIPerfView combines the data provided by GPSIPerf with high-resolution digital elevation maps (DEM) to help users visualize and assess the impact of elevation features on wireless networks in a given sample area. These applications were used to examine TCP throughput in several wireless network configurations at desert field sites near Hanksville, Utah during May of 2004. Use of GPSIPerf and GPSIPerfView provides a geographically referenced picture of the extent and deterioration of TCP throughput in tested wireless network configurations. GPSIPerf results from field-testing in Utah suggest that it can be useful in assessing other wireless network architectures, and may be useful to future human-robotic exploration missions.

  12. The study and implementation of the wireless network data security model

    NASA Astrophysics Data System (ADS)

    Lin, Haifeng

    2013-03-01

    In recent years, the rapid development of Internet technology and the advent of information age, people are increasing the strong demand for the information products and the market for information technology. Particularly, the network security requirements have become more sophisticated. This paper analyzes the wireless network in the data security vulnerabilities. And a list of wireless networks in the framework is the serious defects with the related problems. It has proposed the virtual private network technology and wireless network security defense structure; and it also given the wireless networks and related network intrusion detection model for the detection strategies.

  13. Research on dynamic routing mechanisms in wireless sensor networks.

    PubMed

    Zhao, A Q; Weng, Y N; Lu, Y; Liu, C Y

    2014-01-01

    WirelessHART is the most widely applied standard in wireless sensor networks nowadays. However, it does not provide any dynamic routing mechanism, which is important for the reliability and robustness of the wireless network applications. In this paper, a collection tree protocol based, dynamic routing mechanism was proposed for WirelessHART network. The dynamic routing mechanism was evaluated through several simulation experiments in three aspects: time for generating the topology, link quality, and stability of network. Besides, the data transmission efficiency of this routing mechanism was analyzed. The simulation and evaluation results show that this mechanism can act as a dynamic routing mechanism for the TDMA-based wireless sensor network.

  14. Linking Simulation with Formal Verification and Modeling of Wireless Sensor Network in TLA+

    NASA Astrophysics Data System (ADS)

    Martyna, Jerzy

    In this paper, we present the results of the simulation of a wireless sensor network based on the flooding technique and SPIN protocols. The wireless sensor network was specified and verified by means of the TLA+ specification language [1]. For a model of wireless sensor network built this way simulation was carried with the help of specially constructed software tools. The obtained results allow us to predict the behaviour of the wireless sensor network in various topologies and spatial densities. Visualization of the output data enable precise examination of some phenomenas in wireless sensor networks, such as a hidden terminal, etc.

  15. Service Demand Discovery Mechanism for Mobile Social Networks.

    PubMed

    Wu, Dapeng; Yan, Junjie; Wang, Honggang; Wang, Ruyan

    2016-11-23

    In the last few years, the service demand for wireless data over mobile networks has continually been soaring at a rapid pace. Thereinto, in Mobile Social Networks (MSNs), users can discover adjacent users for establishing temporary local connection and thus sharing already downloaded contents with each other to offload the service demand. Due to the partitioned topology, intermittent connection and social feature in such a network, the service demand discovery is challenging. In particular, the service demand discovery is exploited to identify the best relay user through the service registration, service selection and service activation. In order to maximize the utilization of limited network resources, a hybrid service demand discovery architecture, such as a Virtual Dictionary User (VDU) is proposed in this paper. Based on the historical data of movement, users can discover their relationships with others. Subsequently, according to the users activity, VDU is selected to facilitate the service registration procedure. Further, the service information outside of a home community can be obtained through the Global Active User (GAU) to support the service selection. To provide the Quality of Service (QoS), the Service Providing User (SPU) is chosen among multiple candidates. Numerical results show that, when compared with other classical service algorithms, the proposed scheme can improve the successful service demand discovery ratio by 25% under reduced overheads.

  16. Development of a Relay Performance Web Tool for the Mars Network

    NASA Technical Reports Server (NTRS)

    Allard, Daniel A.; Edwards, Charles D.

    2009-01-01

    Modern Mars surface missions rely upon orbiting spacecraft to relay communications to and from Earth systems. An important component of this multi-mission relay process is the collection of relay performance statistics supporting strategic trend analysis and tactical anomaly identification and tracking.

  17. Capacity Building for Research and Education in GIS/GPS Technology and Systems

    DTIC Science & Technology

    2015-05-20

    In multi- sensor area Wireless Sensor Networking (WSN) fields will be explored. As a step forward the research to be conducted in WSN field is to...Agriculture Using Technology for Crops Scouting in Agriculture Application of Technology in Precision Agriculture Wireless Sensor Network (WSN) in...Cooperative Engagement Capability Range based algorithms for Wireless Sensor Network Self-configurable Wireless Sensor Network Energy Efficient Wireless

  18. Wireless Sensor Network With Geolocation

    DTIC Science & Technology

    2006-11-01

    WIRELESS SENSOR NETWORK WITH GEOLOCATION James Silverstrim and Roderick Passmore Innovative Wireless Technologies Forest, VA 24551 Dr...TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE Wireless Sensor Network With Geolocation 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM...Locationing in distributed ad-hoc wireless sensor networks ”, IEEE ICASSP, May 2001. D. W. Hanson, Fundamentals of Two-Way Time Transfer by Satellite

  19. Relay-based information broadcast in complex networks

    NASA Astrophysics Data System (ADS)

    Fan, Zhongyan; Han, Zeyu; Tang, Wallace K. S.; Lin, Dong

    2018-04-01

    Information broadcast (IB) is a critical process in complex network, usually accomplished by flooding mechanism. Although flooding is simple and no prior topological information is required, it consumes a lot of transmission overhead. Another extreme is the tree-based broadcast (TB), for which information is disseminated via a spanning tree. It achieves the minimal transmission overhead but the maintenance of spanning tree for every node is an obvious obstacle for implementation. Motivated by the success of scale-free network models for real-world networks, in this paper, we investigate the issues in IB by considering an alternative solution in-between these two extremes. A novel relay-based broadcast (RB) mechanism is proposed by employing a subset of nodes as relays. Information is firstly forwarded to one of these relays and then re-disseminated to others through the spanning tree whose root is the relay. This mechanism provides a trade-off solution between flooding and TB. On one hand, it saves up a lot of transmission overhead as compared to flooding; on the other hand, it costs much less resource for maintenance than TB as only a few spanning trees are needed. Based on two major criteria, namely the transmission overhead and the convergence time, the effectiveness of RB is confirmed. The impacts of relay assignment and network structures on performance are also studied in this work.

  20. 78 FR 1264 - CalAmp Wireless Networks Corporation, Waseca, MN; Notice of Negative Determination Regarding...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-08

    ... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-81,646] CalAmp Wireless Networks...; CalAmp Wireless Networks Corporation, Waseca, Minnesota; expires on December 2, 2013). Conclusion Due to the eligibility of workers and former workers of CalAmp Wireless Networks Corporation, Waseca...

  1. Open-WiSe: A Solar Powered Wireless Sensor Network Platform

    PubMed Central

    González, Apolinar; Aquino, Raúl; Mata, Walter; Ochoa, Alberto; Saldaña, Pedro; Edwards, Arthur

    2012-01-01

    Because battery-powered nodes are required in wireless sensor networks and energy consumption represents an important design consideration, alternate energy sources are needed to provide more effective and optimal function. The main goal of this work is to present an energy harvesting wireless sensor network platform, the Open Wireless Sensor node (WiSe). The design and implementation of the solar powered wireless platform is described including the hardware architecture, firmware, and a POSIX Real-Time Kernel. A sleep and wake up strategy was implemented to prolong the lifetime of the wireless sensor network. This platform was developed as a tool for researchers investigating Wireless sensor network or system integrators. PMID:22969396

  2. Survey on Monitoring and Quality Controlling of the Mobile Biosignal Delivery.

    PubMed

    Pawar, Pravin A; Edla, Damodar R; Edoh, Thierry; Shinde, Vijay; van Beijnum, Bert-Jan

    2017-10-31

    A Mobile Patient Monitoring System (MPMS) acquires patient's biosignals and transmits them using wireless network connection to the decision-making module or healthcare professional for the assessment of patient's condition. A variety of wireless network technologies such as wireless personal area networks (e.g., Bluetooth), mobile ad-hoc networks (MANET), and infrastructure-based networks (e.g., WLAN and cellular networks) are in practice for biosignals delivery. The wireless network quality-of-service (QoS) requirements of biosignals delivery are mainly specified in terms of required bandwidth, acceptable delay, and tolerable error rate. An important research challenge in the MPMS is how to satisfy QoS requirements of biosignals delivery in the environment characterized by patient mobility, deployment of multiple wireless network technologies, and variable QoS characteristics of the wireless networks. QoS requirements are mainly application specific, while available QoS is largely dependent on QoS provided by wireless network in use. QoS provisioning refers to providing support for improving QoS experience of networked applications. In resource poor conditions, application adaptation may also be required to make maximum use of available wireless network QoS. This survey paper presents a survey of recent developments in the area of QoS provisioning for MPMS. In particular, our contributions are as follows: (1) overview of wireless networks and network QoS requirements of biosignals delivery; (2) survey of wireless networks' QoS performance evaluation for the transmission of biosignals; and (3) survey of QoS provisioning mechanisms for biosignals delivery in MPMS. We also propose integrating end-to-end QoS monitoring and QoS provisioning strategies in a mobile patient monitoring system infrastructure to support optimal delivery of biosignals to the healthcare professionals.

  3. Considerations for an Earth Relay Satellite with RF and Optical Trunklines

    NASA Technical Reports Server (NTRS)

    Israel, David J.

    2016-01-01

    Support for user platforms through the use of optical links to geosynchronous relay spacecraft are expected to be part of the future space communications architecture. The European Data Relay Satellite System (EDRS) has its first node, EDRS-A, in orbit. The EDRS architecture includes space-to-space optical links with a Ka-Band feeder link or trunkline. NASA's Laser Communications Relay Demonstration (LCRD) mission, originally baselined to support a space-to-space optical link relayed with an optical trunkline, has added an Radio Frequency (RF) trunkline. The use of an RF trunkline avoids the outages suffered by an optical trunkline due to clouds, but an RF trunkline will be bandwidth limited. A space relay architecture with both RF and optical trunklines could relay critical realtime data, while also providing a high data volume capacity. This paper considers the relay user scenarios that could be supported, and the implications to the space relay system and operations. System trades such as the amount of onboard processing and storage required, the use of link layer switching vs. network layer routing, and the use of Delay/Disruption Tolerant Networking (DTN) are discussed.

  4. Wireless Network Communications Overview for Space Mission Operations

    NASA Technical Reports Server (NTRS)

    Fink, Patrick W.

    2009-01-01

    The mission of the On-Board Wireless Working Group (WWG) is to serve as a general CCSDS focus group for intra-vehicle wireless technologies. The WWG investigates and makes recommendations pursuant to standardization of applicable wireless network protocols, ensuring the interoperability of independently developed wireless communication assets. This document presents technical background information concerning uses and applicability of wireless networking technologies for space missions. Agency-relevant driving scenarios, for which wireless network communications will provide a significant return-on-investment benefiting the participating international agencies, are used to focus the scope of the enclosed technical information.

  5. Reputation-Based Internet Protocol Security: A Multilayer Security Framework for Mobile Ad Hoc Networks

    DTIC Science & Technology

    2010-09-01

    secure ad-hoc networks of mobile sensors deployed in a hostile environment . These sensors are normally small 86 and resource...Communications Magazine, 51, 2008. 45. Kumar, S.A. “Classification and Review of Security Schemes in Mobile Comput- ing”. Wireless Sensor Network , 2010... Networks ”. Wireless /Mobile Network Security , 2008. 85. Xiao, Y. “Accountability for Wireless LANs, Ad Hoc Networks , and Wireless

  6. Contemporary, emerging, and ratified wireless security standards: an update for the networked dental office.

    PubMed

    Mupparapu, Muralidhar

    2006-02-15

    Wireless networking is not new to contemporary dental offices around the country. Wireless routers and network cards have made access to patient records within the office handy and, thereby, saving valuable chair side time and increasing productivity. As is the case with any rapidly developing technology, wireless technology also changes with the same rate. Unless, the users of the wireless networking understand the implications of these changes and keep themselves updated periodically, the office network will become obsolete very quickly. This update of the emerging security protocols and pertaining to ratified wireless 802.11 standards will be timely for the contemporary dentist whose office is wirelessly networked. This article brings the practicing dentist up-to-date on the newer versions and standards in wireless networking that are changing at a fast pace. The introduction of newer 802.11 standards like super G, Super AG, Multiple Input Multiple Output (MIMO), and pre-n are changing the pace of adaptation of this technology. Like any other rapidly transforming technology, information pertaining to wireless networking should be a priority for the contemporary dentist, an eventual end-user in order to be a well-informed and techno-savvy consumer.

  7. An Embedded Multi-Agent Systems Based Industrial Wireless Sensor Network

    PubMed Central

    Brennan, Robert W.

    2017-01-01

    With the emergence of cyber-physical systems, there has been a growing interest in network-connected devices. One of the key requirements of a cyber-physical device is the ability to sense its environment. Wireless sensor networks are a widely-accepted solution for this requirement. In this study, an embedded multi-agent systems-managed wireless sensor network is presented. A novel architecture is proposed, along with a novel wireless sensor network architecture. Active and passive wireless sensor node types are defined, along with their communication protocols, and two application-specific examples are presented. A series of three experiments is conducted to evaluate the performance of the agent-embedded wireless sensor network. PMID:28906452

  8. An Embedded Multi-Agent Systems Based Industrial Wireless Sensor Network.

    PubMed

    Taboun, Mohammed S; Brennan, Robert W

    2017-09-14

    With the emergence of cyber-physical systems, there has been a growing interest in network-connected devices. One of the key requirements of a cyber-physical device is the ability to sense its environment. Wireless sensor networks are a widely-accepted solution for this requirement. In this study, an embedded multi-agent systems-managed wireless sensor network is presented. A novel architecture is proposed, along with a novel wireless sensor network architecture. Active and passive wireless sensor node types are defined, along with their communication protocols, and two application-specific examples are presented. A series of three experiments is conducted to evaluate the performance of the agent-embedded wireless sensor network.

  9. Exact outage analysis of the effect of co-channel interference on secured multi-hop relaying networks

    NASA Astrophysics Data System (ADS)

    Quang Nguyen, Sang; Kong, Hyung Yun

    2016-11-01

    In this article, the presence of multi-hop relaying, eavesdropper and co-channel interference (CCI) in the same system model is investigated. Specifically, the effect of CCI on a secured multi-hop relaying network is studied, in which the source communicates with the destination via multi-relay-hopping under the presence of an eavesdropper and CCI at each node. The optimal relay at each cluster is selected to help forward the message from the source to the destination. We apply two relay selection approaches to such a system model, i.e. the optimal relay is chosen based on (1) the maximum channel gain from the transmitter to all relays in the desired cluster and (2) the minimum channel gain from the eavesdropper to all relays in each cluster. For the performance evaluation and comparison, we derived the exact closed form of the secrecy outage probability of the two approaches. That analysis is verified by Monte Carlo simulation. Finally, the effects of the number of hops, the transmit power at the source, relays and the external sources, the distance between the external sources and each node in the system, and the location of the eavesdropper are presented and discussed.

  10. The Coverage Problem in Video-Based Wireless Sensor Networks: A Survey

    PubMed Central

    Costa, Daniel G.; Guedes, Luiz Affonso

    2010-01-01

    Wireless sensor networks typically consist of a great number of tiny low-cost electronic devices with limited sensing and computing capabilities which cooperatively communicate to collect some kind of information from an area of interest. When wireless nodes of such networks are equipped with a low-power camera, visual data can be retrieved, facilitating a new set of novel applications. The nature of video-based wireless sensor networks demands new algorithms and solutions, since traditional wireless sensor networks approaches are not feasible or even efficient for that specialized communication scenario. The coverage problem is a crucial issue of wireless sensor networks, requiring specific solutions when video-based sensors are employed. In this paper, it is surveyed the state of the art of this particular issue, regarding strategies, algorithms and general computational solutions. Open research areas are also discussed, envisaging promising investigation considering coverage in video-based wireless sensor networks. PMID:22163651

  11. Performance Analysis of Millimeter-Wave Multi-hop Machine-to-Machine Networks Based on Hop Distance Statistics

    PubMed Central

    2018-01-01

    As an intrinsic part of the Internet of Things (IoT) ecosystem, machine-to-machine (M2M) communications are expected to provide ubiquitous connectivity between machines. Millimeter-wave (mmWave) communication is another promising technology for the future communication systems to alleviate the pressure of scarce spectrum resources. For this reason, in this paper, we consider multi-hop M2M communications, where a machine-type communication (MTC) device with the limited transmit power relays to help other devices using mmWave. To be specific, we focus on hop distance statistics and their impacts on system performances in multi-hop wireless networks (MWNs) with directional antenna arrays in mmWave for M2M communications. Different from microwave systems, in mmWave communications, wireless channel suffers from blockage by obstacles that heavily attenuate line-of-sight signals, which may result in limited per-hop progress in MWNs. We consider two routing strategies aiming at different types of applications and derive the probability distributions of their hop distances. Moreover, we provide their baseline statistics assuming the blockage-free scenario to quantify the impact of blockages. Based on the hop distance analysis, we propose a method to estimate the end-to-end performances (e.g., outage probability, hop count, and transmit energy) of the mmWave MWNs, which provides important insights into mmWave MWN design without time-consuming and repetitive end-to-end simulation. PMID:29329248

  12. Performance Analysis of Millimeter-Wave Multi-hop Machine-to-Machine Networks Based on Hop Distance Statistics.

    PubMed

    Jung, Haejoon; Lee, In-Ho

    2018-01-12

    As an intrinsic part of the Internet of Things (IoT) ecosystem, machine-to-machine (M2M) communications are expected to provide ubiquitous connectivity between machines. Millimeter-wave (mmWave) communication is another promising technology for the future communication systems to alleviate the pressure of scarce spectrum resources. For this reason, in this paper, we consider multi-hop M2M communications, where a machine-type communication (MTC) device with the limited transmit power relays to help other devices using mmWave. To be specific, we focus on hop distance statistics and their impacts on system performances in multi-hop wireless networks (MWNs) with directional antenna arrays in mmWave for M2M communications. Different from microwave systems, in mmWave communications, wireless channel suffers from blockage by obstacles that heavily attenuate line-of-sight signals, which may result in limited per-hop progress in MWNs. We consider two routing strategies aiming at different types of applications and derive the probability distributions of their hop distances. Moreover, we provide their baseline statistics assuming the blockage-free scenario to quantify the impact of blockages. Based on the hop distance analysis, we propose a method to estimate the end-to-end performances (e.g., outage probability, hop count, and transmit energy) of the mmWave MWNs, which provides important insights into mmWave MWN design without time-consuming and repetitive end-to-end simulation.

  13. Wireless Sensor Network Applications for the Combat Air Forces

    DTIC Science & Technology

    2006-06-13

    WIRELESS SENSOR NETWORK APPLICATIONS FOR THE COMBAT AIR FORCES GRADUATE RESEARCH PROJECT...Government. AFIT/IC4/ENG/06-05 WIRELESS SENSOR NETWORK APPLICATIONS FOR THE COMBAT AIR FORCES GRADUATE RESEARCH PROJECT Presented to the...Major, USAF June 2006 APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED AFIT/IC4/ENG/06-05 WIRELESS SENSOR NETWORK APPLICATIONS

  14. Wireless Sensor Node for Autonomous Monitoring and Alerts in Remote Environments

    NASA Technical Reports Server (NTRS)

    Panangadan, Anand V. (Inventor); Monacos, Steve P. (Inventor)

    2015-01-01

    A method, apparatus, system, and computer program products provides personal alert and tracking capabilities using one or more nodes. Each node includes radio transceiver chips operating at different frequency ranges, a power amplifier, sensors, a display, and embedded software. The chips enable the node to operate as either a mobile sensor node or a relay base station node while providing a long distance relay link between nodes. The power amplifier enables a line-of-sight communication between the one or more nodes. The sensors provide a GPS signal, temperature, and accelerometer information (used to trigger an alert condition). The embedded software captures and processes the sensor information, provides a multi-hop packet routing protocol to relay the sensor information to and receive alert information from a command center, and to display the alert information on the display.

  15. A Microstrip Patch-Fed Short Backfire Antenna for the Tracking and Data Relay Satellite System-Continuation (TDRSS-C) Multiple Access (MA) Array

    NASA Technical Reports Server (NTRS)

    Nessel, James A.; Kory, Carol L.; Lambert, Kevin M.; Acosta, Roberto J.

    2006-01-01

    Short Backfire Antennas (SBAs) are widely utilized for mobile satellite communications, tracking, telemetry, and wireless local area network (WLAN) applications due to their compact structure and excellent radiation characteristics [1-3]. Typically, these SBA s consist of an excitation element (i.e., a half-wavelength dipole), a reflective bottom plane, a planar sub-reflector located above the "exciter", and an outer circular rim. This configuration is capable of achieving gains on the order of 13-15 dBi, but with relatively narrow bandwidths (approx.3%-5%), making it incompatible with the requirements of the next generation enhanced Tracking and Data Relay Satellite System-Continuation (TDRSS-C) Multiple Access (MA) array [1]. Several attempts have been made to enhance the bandwidth performance of the common dipole-fed SBA by employing various other feeding mechanisms (e.g., waveguide, slot) with moderate success [4-5]. In this paper, a novel method of using a microstrip patch is employed for the first time to excite an SBA. The patch element is fed via two H-shaped slots electromagnetically coupled to a broadband hybrid coupler to maintain a wide bandwidth, as well as provide for dual circular polarization capabilities.

  16. Relay communications strategies for Mars exploration through 2020

    NASA Technical Reports Server (NTRS)

    Edwards, Charles D., Jr.; Arnold, B.; DePaula, R.; Kazz, G.; Lee, C.; Noreen, G.

    2005-01-01

    In this paper we will examine NASA's strategy for relay communications support of missions planned for this decade, and discuss options for longer-term relay network evolution in support of second-decade missions.

  17. A feedback-based secure path approach for wireless sensor network data collection.

    PubMed

    Mao, Yuxin; Wei, Guiyi

    2010-01-01

    The unattended nature of wireless sensor networks makes them very vulnerable to malicious attacks. Therefore, how to preserve secure data collection is an important issue to wireless sensor networks. In this paper, we propose a novel approach of secure data collection for wireless sensor networks. We explore secret sharing and multipath routing to achieve secure data collection in wireless sensor network with compromised nodes. We present a novel tracing-feedback mechanism, which makes full use of the routing functionality of wireless sensor networks, to improve the quality of data collection. The major advantage of the approach is that the secure paths are constructed as a by-product of data collection. The process of secure routing causes little overhead to the sensor nodes in the network. Compared with existing works, the algorithms of the proposed approach are easy to implement and execute in resource-constrained wireless sensor networks. According to the result of a simulation experiment, the performance of the approach is better than the recent approaches with a similar purpose.

  18. A Martian Telecommunications Network: UHF Relay Support of the Mars Exploration Rovers by the Mars Global Surveyor, Mars Odyssey, and Mars Express Orbiters

    NASA Technical Reports Server (NTRS)

    Edwards, Charles D., Jr.; Barbieri, A.; Brower, E.; Estabrook, P.; Gibbs, R.; Horttor, R.; Ludwinski, J.; Mase, R.; McCarthy, C.; Schmidt, R.; hide

    2004-01-01

    NASA and ESA have established an international network of Mars orbiters, outfitted with relay communications payloads, to support robotic exploration of the red planet. Starting in January, 2004, this network has provided the Mars Exploration Rovers with telecommunications relay services, significantly increasing rover engineering and science data return while enhancing mission robustness and operability. Augmenting the data return capabilities of their X-band direct-to-Earth links, the rovers are equipped with UHF transceivers allowing data to be relayed at high rate to the Mars Global Surveyor (MGS), Mars Odyssey, and Mars Express orbiters. As of 21 July, 2004, over 50 Gbits of MER data have been obtained, with nearly 95% of that data returned via the MGS and Odyssey UHF relay paths, allowing a large increase in science return from the Martian surface relative to the X-band direct-to-Earth link. The MGS spacecraft also supported high-rate UHF communications of MER engineering telemetry during the critical period of entry, descent, and landing (EDL), augmenting the very low-rate EDL data collected on the X-band direct-to-Earth link. Through adoption of the new CCSDS Proximity-1 Link Protocol, NASA and ESA have achieved interoperability among these Mars assets, as validated by a successful relay demonstration between Spirit and Mars Express, enabling future interagency cross-support and establishing a truly international relay network at Mars.

  19. Implementing Remote Image Capture/Control in a Wireless Sensor Network Utilizing the IEEE 802.15.4 Standard

    DTIC Science & Technology

    2009-09-01

    with the flexibility provided by a wireless sensor network , could provide such enhancements. The objective of this research was to explore the...feasibility of remote management and control of a low-power/low-cost wireless sensor network by implementing a point-to-point wireless network utilizing IEEE

  20. The sequence relay selection strategy based on stochastic dynamic programming

    NASA Astrophysics Data System (ADS)

    Zhu, Rui; Chen, Xihao; Huang, Yangchao

    2017-07-01

    Relay-assisted (RA) network with relay node selection is a kind of effective method to improve the channel capacity and convergence performance. However, most of the existing researches about the relay selection did not consider the statically channel state information and the selection cost. This shortage limited the performance and application of RA network in practical scenarios. In order to overcome this drawback, a sequence relay selection strategy (SRSS) was proposed. And the performance upper bound of SRSS was also analyzed in this paper. Furthermore, in order to make SRSS more practical, a novel threshold determination algorithm based on the stochastic dynamic program (SDP) was given to work with SRSS. Numerical results are also presented to exhibit the performance of SRSS with SDP.

  1. Outage Analysis of Dual-hop Cognitive Networks with Relay Selection over Nakagami-m Fading Environment

    NASA Astrophysics Data System (ADS)

    Zhang, Zongsheng; Pi, Xurong

    2014-09-01

    In this paper, we investigate the outage performance of decode-and-forward cognitive relay networks for Nakagami-m fading channels, with considering both best relay selection and interference constraints. Focusing on the relay selection and making use of the underlay cognitive approach, an exact closed-form outage probability expression is derived in an independent, non-identical distributed Nakagami-m environment. The closed-form outage probability provides an efficient means to evaluate the effects of the maximum allowable interference power, number of cognitive relays, and channel conditions between the primary user and cognitive users. Finally, we present numerical results to validate the theory analysis. Moreover, from the simulation results, we obtain that the system can obtain the full diversity.

  2. Adaptive Flow Control for Enabling Quality of Service in Tactical Ad Hoc Wireless Networks

    DTIC Science & Technology

    2010-12-01

    environment in wireless networks , we use sensors in the network routers to detect and respond to congestion. We use backpressure techniques... wireless mesh network . In the current approach, we used OLSR as the routing scheme. However, B.A.T.M.A.N. offers the significant advantage of being based...Control and QoS Routing in Multi-Channel Wireless Mesh Networks ,” 68-77. ACM International Symposium on Mobile Ad Hoc Networking &

  3. Modeling, Evaluation and Detection of Jamming Attacks in Time-Critical Wireless Applications

    DTIC Science & Technology

    2014-08-01

    computing, modeling and analysis of wireless networks , network topol- ogy, and architecture design. Dr. Wang has been a Member of the Association for...important, yet open research question is how to model and detect jamming attacks in such wireless networks , where communication traffic is more time...against time-critical wireless networks with applications to the smart grid. In contrast to communication networks where packets-oriented metrics

  4. Community Wireless Networks

    ERIC Educational Resources Information Center

    Feld, Harold

    2005-01-01

    With increasing frequency, communities are seeing the arrival of a new class of noncommercial broadband providers: community wireless networks (CWNs). Utilizing the same wireless technologies that many colleges and universities have used to create wireless networks on campus, CWNs are creating broadband access for free or at costs well below…

  5. Finite-SNR analysis for partial relaying cooperation with channel coding and opportunistic relay selection

    NASA Astrophysics Data System (ADS)

    Vu, Thang X.; Duhamel, Pierre; Chatzinotas, Symeon; Ottersten, Bjorn

    2017-12-01

    This work studies the performance of a cooperative network which consists of two channel-coded sources, multiple relays, and one destination. To achieve high spectral efficiency, we assume that a single time slot is dedicated to relaying. Conventional network-coded-based cooperation (NCC) selects the best relay which uses network coding to serve the two sources simultaneously. The bit error rate (BER) performance of NCC with channel coding, however, is still unknown. In this paper, we firstly study the BER of NCC via a closed-form expression and analytically show that NCC only achieves diversity of order two regardless of the number of available relays and the channel code. Secondly, we propose a novel partial relaying-based cooperation (PARC) scheme to improve the system diversity in the finite signal-to-noise ratio (SNR) regime. In particular, closed-form expressions for the system BER and diversity order of PARC are derived as a function of the operating SNR value and the minimum distance of the channel code. We analytically show that the proposed PARC achieves full (instantaneous) diversity order in the finite SNR regime, given that an appropriate channel code is used. Finally, numerical results verify our analysis and demonstrate a large SNR gain of PARC over NCC in the SNR region of interest.

  6. Data aggregation in wireless sensor networks using the SOAP protocol

    NASA Astrophysics Data System (ADS)

    Al-Yasiri, A.; Sunley, A.

    2007-07-01

    Wireless sensor networks (WSN) offer an increasingly attractive method of data gathering in distributed system architectures and dynamic access via wireless connectivity. Wireless sensor networks have physical and resource limitations, this leads to increased complexity for application developers and often results in applications that are closely coupled with network protocols. In this paper, a data aggregation framework using SOAP (Simple Object Access Protocol) on wireless sensor networks is presented. The framework works as a middleware for aggregating data measured by a number of nodes within a network. The aim of the study is to assess the suitability of the protocol in such environments where resources are limited compared to traditional networks.

  7. A New Method for Setting Calculation Sequence of Directional Relay Protection in Multi-Loop Networks

    NASA Astrophysics Data System (ADS)

    Haijun, Xiong; Qi, Zhang

    2016-08-01

    Workload of relay protection setting calculation in multi-loop networks may be reduced effectively by optimization setting calculation sequences. A new method of setting calculation sequences of directional distance relay protection in multi-loop networks based on minimum broken nodes cost vector (MBNCV) was proposed to solve the problem experienced in current methods. Existing methods based on minimum breakpoint set (MBPS) lead to more break edges when untying the loops in dependent relationships of relays leading to possibly more iterative calculation workloads in setting calculations. A model driven approach based on behavior trees (BT) was presented to improve adaptability of similar problems. After extending the BT model by adding real-time system characters, timed BT was derived and the dependency relationship in multi-loop networks was then modeled. The model was translated into communication sequence process (CSP) models and an optimization setting calculation sequence in multi-loop networks was finally calculated by tools. A 5-nodes multi-loop network was applied as an example to demonstrate effectiveness of the modeling and calculation method. Several examples were then calculated with results indicating the method effectively reduces the number of forced broken edges for protection setting calculation in multi-loop networks.

  8. Continuous-variable Measurement-device-independent Quantum Relay Network with Phase-sensitive Amplifiers

    NASA Astrophysics Data System (ADS)

    Li, Fei; Zhao, Wei; Guo, Ying

    2018-01-01

    Continuous-variable (CV) measurement-device-independent (MDI) quantum cryptography is now heading towards solving the practical problem of implementing scalable quantum networks. In this paper, we show that a solution can come from deploying an optical amplifier in the CV-MDI system, aiming to establish a high-rate quantum network. We suggest an improved CV-MDI protocol using the EPR states coupled with optical amplifiers. It can implement a practical quantum network scheme, where the legal participants create the secret correlations by using EPR states connecting to an untrusted relay via insecure links and applying the multi-entangled Greenberger-Horne-Zeilinger (GHZ) state analysis at relay station. Despite the possibility that the relay could be completely tampered with and imperfect links are subject to the powerful attacks, the legal participants are still able to extract a secret key from network communication. The numerical simulation indicates that the quantum network communication can be achieved in an asymmetric scenario, fulfilling the demands of a practical quantum network. Furthermore, we show that the use of optical amplifiers can compensate the inherent imperfections and improve the secret key rate of the CV-MDI system.

  9. Techno-Economic Analysis of FiWi Access Networks Based on 802.11ac WLAN and NG-PON2 Networks

    NASA Astrophysics Data System (ADS)

    Breskovic, Damir; Begusic, Dinko

    2017-05-01

    In this article, techno-economic analysis of a fiber-wireless access network is presented. With high bandwidth capacity of the gigabit passive optical network and with cost-effectiveness of very high throughput 802.11ac wireless local area networks that enable user mobility in the wireless segment, fiber-wireless access networks can be considered as an alternative to the fiber-to-the-home architecture for next generation access networks. Analysis based on the proposed scenario here, shows that a fiber-wireless access network is a more cost-effective solution in densely populated areas, but with some introduced improvements, even other geotypes can be considered as a commercially-viable solution.

  10. Wireless Sensor Network Radio Power Management and Simulation Models

    DTIC Science & Technology

    2010-01-01

    The Open Electrical & Electronic Engineering Journal, 2010, 4, 21-31 21 1874-1290/10 2010 Bentham Open Open Access Wireless Sensor Network Radio...Air Force Institute of Technology, Wright-Patterson AFB, OH, USA Abstract: Wireless sensor networks (WSNs) create a new frontier in collecting and...consumption. Keywords: Wireless sensor network , power management, energy-efficiency, medium access control (MAC), simulation pa- rameters. 1

  11. Wireless Sensor Networks: Monitoring and Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hastbacka, Mildred; Ponoum, Ratcharit; Bouza, Antonio

    2013-05-31

    The article discusses wireless sensor technologies for building energy monitoring and control. This article, also, addresses wireless sensor networks as well as benefits and challenges of using wireless sensors. The energy savings and market potential of wireless sensors are reviewed.

  12. 47 CFR 27.1305 - Shared wireless broadband network.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Shared wireless broadband network. 27.1305... broadband network. The Shared Wireless Broadband Network developed by the 700 MHz Public/Private Partnership must be designed to meet requirements associated with a nationwide, public safety broadband network. At...

  13. 47 CFR 90.1405 - Shared wireless broadband network.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Shared wireless broadband network. 90.1405... broadband network. The Shared Wireless Broadband Network developed by the 700 MHz Public/Private Partnership must be designed to meet requirements associated with a nationwide, public safety broadband network. At...

  14. 47 CFR 27.1305 - Shared wireless broadband network.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 2 2011-10-01 2011-10-01 false Shared wireless broadband network. 27.1305... broadband network. The Shared Wireless Broadband Network developed by the 700 MHz Public/Private Partnership must be designed to meet requirements associated with a nationwide, public safety broadband network. At...

  15. 47 CFR 90.1405 - Shared wireless broadband network.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Shared wireless broadband network. 90.1405... broadband network. The Shared Wireless Broadband Network developed by the 700 MHz Public/Private Partnership must be designed to meet requirements associated with a nationwide, public safety broadband network. At...

  16. 47 CFR 27.1305 - Shared wireless broadband network.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 2 2012-10-01 2012-10-01 false Shared wireless broadband network. 27.1305... broadband network. The Shared Wireless Broadband Network developed by the 700 MHz Public/Private Partnership must be designed to meet requirements associated with a nationwide, public safety broadband network. At...

  17. 47 CFR 90.1405 - Shared wireless broadband network.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Shared wireless broadband network. 90.1405... broadband network. The Shared Wireless Broadband Network developed by the 700 MHz Public/Private Partnership must be designed to meet requirements associated with a nationwide, public safety broadband network. At...

  18. Wireless Local Area Networks: The Next Evolutionary Step.

    ERIC Educational Resources Information Center

    Wodarz, Nan

    2001-01-01

    The Institute of Electrical and Electronics Engineers recently approved a high-speed wireless standard that enables devices from different manufacturers to communicate through a common backbone, making wireless local area networks more feasible in schools. Schools can now use wireless access points and network cards to provide flexible…

  19. Distributed Estimation, Coding, and Scheduling in Wireless Visual Sensor Networks

    ERIC Educational Resources Information Center

    Yu, Chao

    2013-01-01

    In this thesis, we consider estimation, coding, and sensor scheduling for energy efficient operation of wireless visual sensor networks (VSN), which consist of battery-powered wireless sensors with sensing (imaging), computation, and communication capabilities. The competing requirements for applications of these wireless sensor networks (WSN)…

  20. Design and Implementation of Secure Area Expansion Scheme for Public Wireless LAN Services

    NASA Astrophysics Data System (ADS)

    Watanabe, Ryu; Tanaka, Toshiaki

    Recently, wireless LAN (WLAN) technology has become a major wireless communication method. The communication bandwidth is increasing and speeds have attained rates exceeding 100 Mbps. Therefore, WLAN technology is regarded as one of the promising communication methods for future networks. In addition, public WLAN connection services can be used in many locations. However, the number of the access points (AP) is insufficient for seamless communication and it cannot be said that users can use the service ubiquitously. An ad-hoc network style connection can be used to expand the coverage area of a public WLAN service. By relaying the user messages among the user nodes, a node can obtain an Internet connection via an AP, even though the node is located outside the AP's direct wireless connection area. Such a coverage area extending technology has many advantages thanks to the feature that no additional infrastructure is required. Therefore, there is a strong demand for this technology as it allows the cost-effective construction of future networks. When a secure ad-hoc routing protocol is used for message exchange in the WLAN service, the message routes are protected from malicious behavior such as route forging and can be maintained appropriately. To do this, however, a new node that wants to join the WLAN service has to obtain information such as the public key certificate and IP address in order to start secure ad-hoc routing. In other words, an initial setup is required for every network node to join the WLAN service properly. Ordinarily, such information should be assigned from the AP. However, new nodes cannot always contact an AP directly. Therefore, there are problems about information delivery in the initial setup of a network node. These problems originate in the multi hop connection based on the ad-hoc routing protocols. In order to realize an expanded area WLAN service, in this paper, the authors propose a secure public key certificate and address provision scheme during the initial setup phase on mobile nodes for the service. The proposed scheme also considers the protection of user privacy. Accordingly, none of the user nodes has to reveal their unique and persistent information to other nodes. Instead of using such information, temporary values are sent by an AP to mobile nodes and used for secure ad-hoc routing operations. Therefore, our proposed scheme prevents tracking by malicious parties by avoiding the use of unique information. Moreover, a test bed was also implemented based on the proposal and an evaluation was carried out in order to confirm performance. In addition, the authors describe a countermeasure against denial of service (DoS) attacks based on the approach to privacy protection described in our proposal.

  1. Random matrix models, double-time Painlevé equations, and wireless relaying

    NASA Astrophysics Data System (ADS)

    Chen, Yang; Haq, Nazmus S.; McKay, Matthew R.

    2013-06-01

    This paper gives an in-depth study of a multiple-antenna wireless communication scenario in which a weak signal received at an intermediate relay station is amplified and then forwarded to the final destination. The key quantity determining system performance is the statistical properties of the signal-to-noise ratio (SNR) γ at the destination. Under certain assumptions on the encoding structure, recent work has characterized the SNR distribution through its moment generating function, in terms of a certain Hankel determinant generated via a deformed Laguerre weight. Here, we employ two different methods to describe the Hankel determinant. First, we make use of ladder operators satisfied by orthogonal polynomials to give an exact characterization in terms of a "double-time" Painlevé differential equation, which reduces to Painlevé V under certain limits. Second, we employ Dyson's Coulomb fluid method to derive a closed form approximation for the Hankel determinant. The two characterizations are used to derive closed-form expressions for the cumulants of γ, and to compute performance quantities of engineering interest.

  2. A Feedback-Based Secure Path Approach for Wireless Sensor Network Data Collection

    PubMed Central

    Mao, Yuxin; Wei, Guiyi

    2010-01-01

    The unattended nature of wireless sensor networks makes them very vulnerable to malicious attacks. Therefore, how to preserve secure data collection is an important issue to wireless sensor networks. In this paper, we propose a novel approach of secure data collection for wireless sensor networks. We explore secret sharing and multipath routing to achieve secure data collection in wireless sensor network with compromised nodes. We present a novel tracing-feedback mechanism, which makes full use of the routing functionality of wireless sensor networks, to improve the quality of data collection. The major advantage of the approach is that the secure paths are constructed as a by-product of data collection. The process of secure routing causes little overhead to the sensor nodes in the network. Compared with existing works, the algorithms of the proposed approach are easy to implement and execute in resource-constrained wireless sensor networks. According to the result of a simulation experiment, the performance of the approach is better than the recent approaches with a similar purpose. PMID:22163424

  3. Multistage Security Mechanism For Hybrid, Large-Scale Wireless Sensor Networks

    DTIC Science & Technology

    2007-06-01

    sensor network . Building on research in the areas of the wireless sensor networks (WSN) and the mobile ad hoc networks (MANET), this thesis proposes an...A wide area network consisting of ballistic missile defense satellites and terrestrial nodes can be viewed as a hybrid, large-scale mobile wireless

  4. Probabilistic QoS Analysis In Wireless Sensor Networks

    DTIC Science & Technology

    2012-04-01

    and A.O. Fapojuwo. TDMA scheduling with optimized energy efficiency and minimum delay in clustered wireless sensor networks . IEEE Trans. on Mobile...Research Computer Science and Engineering, Department of 5-1-2012 Probabilistic QoS Analysis in Wireless Sensor Networks Yunbo Wang University of...Wang, Yunbo, "Probabilistic QoS Analysis in Wireless Sensor Networks " (2012). Computer Science and Engineering: Theses, Dissertations, and Student

  5. Implementation Of Secure 6LoWPAN Communications For Tactical Wireless Sensor Networks

    DTIC Science & Technology

    2016-09-01

    wireless sensor networks (WSN) consist of power -constrained devices spread throughout a region-of-interest to provide data extraction in real time...1  A.  LOW POWER WIRELESS SENSOR NETWORKS ............................1  B.  INTRODUCTION TO...communication protocol for low power wireless personal area networks Since the IEEE 802.15.4 standard only defines the first two layers of the Open

  6. RF Characteristics of Mica-Z Wireless Sensor Network Motes

    DTIC Science & Technology

    2006-03-01

    MICA-Z WIRELESS SENSOR NETWORK MOTES by Swee Jin Koh March 2006 Thesis Advisor: Gurminder Singh Thesis Co-Advisor: John C...Mica-Z Wireless Sensor Network Motes 6. AUTHOR(S) : Swee Jin Koh 5. FUNDING NUMBERS 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Naval...ad-hoc deployment. 15. NUMBER OF PAGES 83 14. SUBJECT TERMS: Wireless Sensor Network 16. PRICE CODE 17. SECURITY CLASSIFICATION OF

  7. Path Calculation and Packet Translation for UAV Surveillance in Support of Wireless Sensor Networks

    DTIC Science & Technology

    2006-09-01

    AND PACKET TRANSLATION FOR UAV SURVEILLANCE IN SUPPORT OF WIRELESS SENSOR NETWORKS by Stephen Schall September 2006 Thesis Advisor...Calculation and Packet Translation for UAV Surveillance in Support of Wireless Sensor Networks 6. AUTHOR(S) Stephen Schall 5. FUNDING NUMBERS 7...200 words) Wireless Sensor Networks (WSNs) are a relatively new technology with many potential applications, including military and

  8. Performance Evaluation of a Routing Protocol in Wireless Sensor Network

    DTIC Science & Technology

    2005-12-01

    OF A ROUTING PROTOCOL IN WIRELESS SENSOR NETWORKS by Cheng Kiat Amos, Teo December 2005 Thesis Advisors: Gurminder Singh John C...Evaluation of a Routing Protocol in Wireless Sensor Network 6. AUTHOR(S) Cheng Kiat Amos, Teo 5. FUNDING NUMBERS 7. PERFORMING ORGANIZATION NAME(S...need to be strategically positioned and have topologies engineered. As such, recent research into wireless sensor networks has attracted great

  9. Source Localization in Wireless Sensor Networks with Randomly Distributed Elements under Multipath Propagation Conditions

    DTIC Science & Technology

    2009-03-01

    IN WIRELESS SENSOR NETWORKS WITH RANDOMLY DISTRIBUTED ELEMENTS UNDER MULTIPATH PROPAGATION CONDITIONS by Georgios Tsivgoulis March 2009...COVERED Engineer’s Thesis 4. TITLE Source Localization in Wireless Sensor Networks with Randomly Distributed Elements under Multipath Propagation...the non-line-of-sight information. 15. NUMBER OF PAGES 111 14. SUBJECT TERMS Wireless Sensor Network , Direction of Arrival, DOA, Random

  10. Implementation of WirelessHART in the NS-2 Simulator and Validation of Its Correctness

    PubMed Central

    Zand, Pouria; Mathews, Emi; Havinga, Paul; Stojanovski, Spase; Sisinni, Emiliano; Ferrari, Paolo

    2014-01-01

    One of the first standards in the wireless sensor networks domain, WirelessHART (HART (Highway Addressable Remote Transducer)), was introduced to address industrial process automation and control requirements. This standard can be used as a reference point to evaluate other wireless protocols in the domain of industrial monitoring and control. This makes it worthwhile to set up a reliable WirelessHART simulator in order to achieve that reference point in a relatively easy manner. Moreover, it offers an alternative to expensive testbeds for testing and evaluating the performance of WirelessHART. This paper explains our implementation of WirelessHART in the NS-2 network simulator. According to our knowledge, this is the first implementation that supports the WirelessHART network manager, as well as the whole stack (all OSI (Open Systems Interconnection model) layers) of the WirelessHART standard. It also explains our effort to validate the correctness of our implementation, namely through the validation of the implementation of the WirelessHART stack protocol and of the network manager. We use sniffed traffic from a real WirelessHART testbed installed in the Idrolab plant for these validations. This confirms the validity of our simulator. Empirical analysis shows that the simulated results are nearly comparable to the results obtained from real networks. We also demonstrate the versatility and usability of our implementation by providing some further evaluation results in diverse scenarios. For example, we evaluate the performance of the WirelessHART network by applying incremental interference in a multi-hop network. PMID:24841245

  11. A Sensible Approach to Wireless Networking.

    ERIC Educational Resources Information Center

    Ahmed, S. Faruq

    2002-01-01

    Discusses radio frequency (R.F.) wireless technology, including industry standards, range (coverage) and throughput (data rate), wireless compared to wired networks, and considerations before embarking on a large-scale wireless project. (EV)

  12. Physical parameters collection based on wireless senor network

    NASA Astrophysics Data System (ADS)

    Chen, Xin; Wu, Hong; Ji, Lei

    2013-12-01

    With the development of sensor technology, wireless senor network has been applied in the medical, military, entertainment field and our daily life. But the existing available wireless senor networks applied in human monitoring system still have some problems, such as big power consumption, low security and so on. To improve senor network applied in health monitoring system, the paper introduces a star wireless senor networks based on msp430 and DSP. We design a low-cost heart-rate monitor senor node. The communication between senor node and sink node is realized according to the newest protocol proposed by the IEEE 802.15.6 Task Group. This wireless senor network will be more energy-efficient and faster compared to traditional senor networks.

  13. Source Localization Using Wireless Sensor Networks

    DTIC Science & Technology

    2006-06-01

    performance of the hybrid SI/ML estimation method. A wireless sensor network is simulated in NS-2 to study the network throughput, delay and jitter...indicate that the wireless sensor network has low delay and can support fast information exchange needed in counter-sniper applications.

  14. Realistic Modeling of Wireless Network Environments

    DTIC Science & Technology

    2015-03-01

    wireless environment, namely vehicular networks. We also made a number of improvements to an emulation-based wireless testbed to improve channel model...and the two wireless devices used in the experiment (bottom). This testbed was used for point-point vehicular wireless experiments that used the...DSRC-based vehicular networks (~5.9 GHz). We were able to meet that goal, as described below. Figure 3: DSP Card 3.3 System design and

  15. Multipath Routing in Wireless Sensor Networks: Survey and Research Challenges

    PubMed Central

    Radi, Marjan; Dezfouli, Behnam; Bakar, Kamalrulnizam Abu; Lee, Malrey

    2012-01-01

    A wireless sensor network is a large collection of sensor nodes with limited power supply and constrained computational capability. Due to the restricted communication range and high density of sensor nodes, packet forwarding in sensor networks is usually performed through multi-hop data transmission. Therefore, routing in wireless sensor networks has been considered an important field of research over the past decade. Nowadays, multipath routing approach is widely used in wireless sensor networks to improve network performance through efficient utilization of available network resources. Accordingly, the main aim of this survey is to present the concept of the multipath routing approach and its fundamental challenges, as well as the basic motivations for utilizing this technique in wireless sensor networks. In addition, we present a comprehensive taxonomy on the existing multipath routing protocols, which are especially designed for wireless sensor networks. We highlight the primary motivation behind the development of each protocol category and explain the operation of different protocols in detail, with emphasis on their advantages and disadvantages. Furthermore, this paper compares and summarizes the state-of-the-art multipath routing techniques from the network application point of view. Finally, we identify open issues for further research in the development of multipath routing protocols for wireless sensor networks. PMID:22368490

  16. Multipath routing in wireless sensor networks: survey and research challenges.

    PubMed

    Radi, Marjan; Dezfouli, Behnam; Abu Bakar, Kamalrulnizam; Lee, Malrey

    2012-01-01

    A wireless sensor network is a large collection of sensor nodes with limited power supply and constrained computational capability. Due to the restricted communication range and high density of sensor nodes, packet forwarding in sensor networks is usually performed through multi-hop data transmission. Therefore, routing in wireless sensor networks has been considered an important field of research over the past decade. Nowadays, multipath routing approach is widely used in wireless sensor networks to improve network performance through efficient utilization of available network resources. Accordingly, the main aim of this survey is to present the concept of the multipath routing approach and its fundamental challenges, as well as the basic motivations for utilizing this technique in wireless sensor networks. In addition, we present a comprehensive taxonomy on the existing multipath routing protocols, which are especially designed for wireless sensor networks. We highlight the primary motivation behind the development of each protocol category and explain the operation of different protocols in detail, with emphasis on their advantages and disadvantages. Furthermore, this paper compares and summarizes the state-of-the-art multipath routing techniques from the network application point of view. Finally, we identify open issues for further research in the development of multipath routing protocols for wireless sensor networks.

  17. Performance Analysis of IIUM Wireless Campus Network

    NASA Astrophysics Data System (ADS)

    Abd Latif, Suhaimi; Masud, Mosharrof H.; Anwar, Farhat

    2013-12-01

    International Islamic University Malaysia (IIUM) is one of the leading universities in the world in terms of quality of education that has been achieved due to providing numerous facilities including wireless services to every enrolled student. The quality of this wireless service is controlled and monitored by Information Technology Division (ITD), an ISO standardized organization under the university. This paper aims to investigate the constraints of wireless campus network of IIUM. It evaluates the performance of the IIUM wireless campus network in terms of delay, throughput and jitter. QualNet 5.2 simulator tool has employed to measure these performances of IIUM wireless campus network. The observation from the simulation result could be one of the influencing factors in improving wireless services for ITD and further improvement.

  18. A Wireless Platform for Energy Efficient Building Control Retrofits

    DTIC Science & Technology

    2012-08-01

    University of Illinois at Urbana Champaign UTRC United Technologies Research Center VFD variable frequency drive WSN wireless sensor network ...demonstration area. .............................................................. 16 Table 4. Cost model for wireless sensor network ...buildings with MPC-based whole-building optimal control and (2) reduction in first costs achievable with a wireless sensor network (WSN)-based

  19. Development and Implementation of Low-Cost Mobile Sensor Platforms Within a Wireless Sensor Network

    DTIC Science & Technology

    2010-09-01

    WIRELESS SENSOR NETWORK by Michael Jay Tozzi September 2010 Thesis Advisor: Rachel Goshorn Second Reader: Duane Davis Approved for...Platforms Within a Wireless Sensor Network 6. AUTHOR(S) Tozzi, Michael Jay 5. FUNDING NUMBERS 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Naval...IMPLEMENTATION OF LOW-COST MOBILE SENSOR PLATFORMS WITHIN A WIRELESS SENSOR NETWORK Michael Jay Tozzi Lieutenant, United States Navy B.S., United

  20. Distributed Detection with Collisions in a Random, Single-Hop Wireless Sensor Network

    DTIC Science & Technology

    2013-05-26

    public release; distribution is unlimited. Distributed detection with collisions in a random, single-hop wireless sensor network The views, opinions...1274 2 ABSTRACT Distributed detection with collisions in a random, single-hop wireless sensor network Report Title We consider the problem of... WIRELESS SENSOR NETWORK Gene T. Whipps?† Emre Ertin† Randolph L. Moses† ?U.S. Army Research Laboratory, Adelphi, MD 20783 †The Ohio State University

  1. A Study on Wireless Charging for Prolonging the Lifetime of Wireless Sensor Networks.

    PubMed

    Tu, Weijian; Xu, Xianghua; Ye, Tingcong; Cheng, Zongmao

    2017-07-04

    Wireless charging is an important issue in wireless sensor networks, since it can provide an emerging and effective solution in the absence of other power supplies. The state-of-the-art methods employ a mobile car and a predefined moving path to charge the sensor nodes in the network. Previous studies only consider a factor of the network (i.e., residual energy of sensor node) as a constraint to design the wireless charging strategy. However, other factors, such as the travelled distance of the mobile car, can also affect the effectiveness of wireless charging strategy. In this work, we study wireless charging strategy based on the analysis of a combination of two factors, including the residual energy of sensor nodes and the travelled distance of the charging car. Firstly, we theoretically analyze the limited size of the sensor network to match the capability of a charging car. Then, the networked factors are selected as the weights of traveling salesman problem (TSP) to design the moving path of the charging car. Thirdly, the charging time of each sensor node is computed based on the linear programming problem for the charging car. Finally, a charging period for the network is studied. The experimental results show that the proposed approach can significantly maximize the lifetime of the wireless sensor network.

  2. Scalable Video Streaming in Wireless Mesh Networks for Education

    ERIC Educational Resources Information Center

    Liu, Yan; Wang, Xinheng; Zhao, Liqiang

    2011-01-01

    In this paper, a video streaming system for education based on a wireless mesh network is proposed. A wireless mesh network is a self-organizing, self-managing and reliable intelligent network, which allows educators to deploy a network quickly. Video streaming plays an important role in this system for multimedia data transmission. This new…

  3. Emerging Needs for Pervasive Passive Wireless Sensor Networks on Aerospace Vehicles

    NASA Technical Reports Server (NTRS)

    Wilson, William C.; Juarez, Peter D.

    2014-01-01

    NASA is investigating passive wireless sensor technology to reduce instrumentation mass and volume in ground testing, air flight, and space exploration applications. Vehicle health monitoring systems (VHMS) are desired on all aerospace programs to ensure the safety of the crew and the vehicles. Pervasive passive wireless sensor networks facilitate VHMS on aerospace vehicles. Future wireless sensor networks on board aerospace vehicles will be heterogeneous and will require active and passive network systems. Since much has been published on active wireless sensor networks, this work will focus on the need for passive wireless sensor networks on aerospace vehicles. Several passive wireless technologies such as microelectromechanical systems MEMS, SAW, backscatter, and chipless RFID techniques, have all shown potential to meet the pervasive sensing needs for aerospace VHMS applications. A SAW VHMS application will be presented. In addition, application areas including ground testing, hypersonic aircraft and spacecraft will be explored along with some of the harsh environments found in aerospace applications.

  4. Experience of wireless local area network in a radiation oncology department.

    PubMed

    Mandal, Abhijit; Asthana, Anupam Kumar; Aggarwal, Lalit Mohan

    2010-01-01

    The aim of this work is to develop a wireless local area network (LAN) between different types of users (Radiation Oncologists, Radiological Physicists, Radiation Technologists, etc) for efficient patient data management and to made easy the availability of information (chair side) to improve the quality of patient care in Radiation Oncology department. We have used mobile workstations (Laptops) and stationary workstations, all equipped with wireless-fidelity (Wi-Fi) access. Wireless standard 802.11g (as recommended by Institute of Electrical and Electronic Engineers (IEEE, Piscataway, NJ) has been used. The wireless networking was configured with the Service Set Identifier (SSID), Media Access Control (MAC) address filtering, and Wired Equivalent Privacy (WEP) network securities. We are successfully using this wireless network in sharing the indigenously developed patient information management software. The proper selection of the hardware and the software combined with a secure wireless LAN setup will lead to a more efficient and productive radiation oncology department.

  5. Sensor Network Architectures for Monitoring Underwater Pipelines

    PubMed Central

    Mohamed, Nader; Jawhar, Imad; Al-Jaroodi, Jameela; Zhang, Liren

    2011-01-01

    This paper develops and compares different sensor network architecture designs that can be used for monitoring underwater pipeline infrastructures. These architectures are underwater wired sensor networks, underwater acoustic wireless sensor networks, RF (Radio Frequency) wireless sensor networks, integrated wired/acoustic wireless sensor networks, and integrated wired/RF wireless sensor networks. The paper also discusses the reliability challenges and enhancement approaches for these network architectures. The reliability evaluation, characteristics, advantages, and disadvantages among these architectures are discussed and compared. Three reliability factors are used for the discussion and comparison: the network connectivity, the continuity of power supply for the network, and the physical network security. In addition, the paper also develops and evaluates a hierarchical sensor network framework for underwater pipeline monitoring. PMID:22346669

  6. Sensor network architectures for monitoring underwater pipelines.

    PubMed

    Mohamed, Nader; Jawhar, Imad; Al-Jaroodi, Jameela; Zhang, Liren

    2011-01-01

    This paper develops and compares different sensor network architecture designs that can be used for monitoring underwater pipeline infrastructures. These architectures are underwater wired sensor networks, underwater acoustic wireless sensor networks, RF (radio frequency) wireless sensor networks, integrated wired/acoustic wireless sensor networks, and integrated wired/RF wireless sensor networks. The paper also discusses the reliability challenges and enhancement approaches for these network architectures. The reliability evaluation, characteristics, advantages, and disadvantages among these architectures are discussed and compared. Three reliability factors are used for the discussion and comparison: the network connectivity, the continuity of power supply for the network, and the physical network security. In addition, the paper also develops and evaluates a hierarchical sensor network framework for underwater pipeline monitoring.

  7. Evolving earth-based and in-situ satellite network architectures for Mars communications and navigation support

    NASA Technical Reports Server (NTRS)

    Hastrup, Rolf; Weinberg, Aaron; Mcomber, Robert

    1991-01-01

    Results of on-going studies to develop navigation/telecommunications network concepts to support future robotic and human missions to Mars are presented. The performance and connectivity improvements provided by the relay network will permit use of simpler, lower performance, and less costly telecom subsystems for the in-situ mission exploration elements. Orbiting relay satellites can serve as effective navigation aids by supporting earth-based tracking as well as providing Mars-centered radiometric data for mission elements approaching, in orbit, or on the surface of Mars. The relay satellite orbits may be selected to optimize navigation aid support and communication coverage for specific mission sets.

  8. Evolving earth-based and in-situ satellite network architectures for Mars communications and navigation support

    NASA Astrophysics Data System (ADS)

    Hastrup, Rolf; Weinberg, Aaron; McOmber, Robert

    1991-09-01

    Results of on-going studies to develop navigation/telecommunications network concepts to support future robotic and human missions to Mars are presented. The performance and connectivity improvements provided by the relay network will permit use of simpler, lower performance, and less costly telecom subsystems for the in-situ mission exploration elements. Orbiting relay satellites can serve as effective navigation aids by supporting earth-based tracking as well as providing Mars-centered radiometric data for mission elements approaching, in orbit, or on the surface of Mars. The relay satellite orbits may be selected to optimize navigation aid support and communication coverage for specific mission sets.

  9. Seamless interworking architecture for WBAN in heterogeneous wireless networks with QoS guarantees.

    PubMed

    Khan, Pervez; Ullah, Niamat; Ullah, Sana; Kwak, Kyung Sup

    2011-10-01

    The IEEE 802.15.6 standard is a communication standard optimized for low-power and short-range in-body/on-body nodes to serve a variety of medical, consumer electronics and entertainment applications. Providing high mobility with guaranteed Quality of Service (QoS) to a WBAN user in heterogeneous wireless networks is a challenging task. A WBAN uses a Personal Digital Assistant (PDA) to gather data from body sensors and forwards it to a remote server through wide range wireless networks. In this paper, we present a coexistence study of WBAN with Wireless Local Area Networks (WLAN) and Wireless Wide Area Networks (WWANs). The main issue is interworking of WBAN in heterogenous wireless networks including seamless handover, QoS, emergency services, cooperation and security. We propose a Seamless Interworking Architecture (SIA) for WBAN in heterogenous wireless networks based on a cost function. The cost function is based on power consumption and data throughput costs. Our simulation results show that the proposed scheme outperforms typical approaches in terms of throughput, delay and packet loss rate.

  10. Real time network traffic monitoring for wireless local area networks based on compressed sensing

    NASA Astrophysics Data System (ADS)

    Balouchestani, Mohammadreza

    2017-05-01

    A wireless local area network (WLAN) is an important type of wireless networks which connotes different wireless nodes in a local area network. WLANs suffer from important problems such as network load balancing, large amount of energy, and load of sampling. This paper presents a new networking traffic approach based on Compressed Sensing (CS) for improving the quality of WLANs. The proposed architecture allows reducing Data Delay Probability (DDP) to 15%, which is a good record for WLANs. The proposed architecture is increased Data Throughput (DT) to 22 % and Signal to Noise (S/N) ratio to 17 %, which provide a good background for establishing high qualified local area networks. This architecture enables continuous data acquisition and compression of WLAN's signals that are suitable for a variety of other wireless networking applications. At the transmitter side of each wireless node, an analog-CS framework is applied at the sensing step before analog to digital converter in order to generate the compressed version of the input signal. At the receiver side of wireless node, a reconstruction algorithm is applied in order to reconstruct the original signals from the compressed signals with high probability and enough accuracy. The proposed algorithm out-performs existing algorithms by achieving a good level of Quality of Service (QoS). This ability allows reducing 15 % of Bit Error Rate (BER) at each wireless node.

  11. Analysis and Testing of Mobile Wireless Networks

    NASA Technical Reports Server (NTRS)

    Alena, Richard; Evenson, Darin; Rundquist, Victor; Clancy, Daniel (Technical Monitor)

    2002-01-01

    Wireless networks are being used to connect mobile computing elements in more applications as the technology matures. There are now many products (such as 802.11 and 802.11b) which ran in the ISM frequency band and comply with wireless network standards. They are being used increasingly to link mobile Intranet into Wired networks. Standard methods of analyzing and testing their performance and compatibility are needed to determine the limits of the technology. This paper presents analytical and experimental methods of determining network throughput, range and coverage, and interference sources. Both radio frequency (BE) domain and network domain analysis have been applied to determine wireless network throughput and range in the outdoor environment- Comparison of field test data taken under optimal conditions, with performance predicted from RF analysis, yielded quantitative results applicable to future designs. Layering multiple wireless network- sooners can increase performance. Wireless network components can be set to different radio frequency-hopping sequences or spreading functions, allowing more than one sooner to coexist. Therefore, we ran multiple 802.11-compliant systems concurrently in the same geographical area to determine interference effects and scalability, The results can be used to design of more robust networks which have multiple layers of wireless data communication paths and provide increased throughput overall.

  12. Multimedia information processing in the SWAN mobile networked computing system

    NASA Astrophysics Data System (ADS)

    Agrawal, Prathima; Hyden, Eoin; Krzyzanowsji, Paul; Srivastava, Mani B.; Trotter, John

    1996-03-01

    Anytime anywhere wireless access to databases, such as medical and inventory records, can simplify workflow management in a business, and reduce or even eliminate the cost of moving paper documents. Moreover, continual progress in wireless access technology promises to provide per-user bandwidths of the order of a few Mbps, at least in indoor environments. When combined with the emerging high-speed integrated service wired networks, it enables ubiquitous and tetherless access to and processing of multimedia information by mobile users. To leverage on this synergy an indoor wireless network based on room-sized cells and multimedia mobile end-points is being developed at AT&T Bell Laboratories. This research network, called SWAN (Seamless Wireless ATM Networking), allows users carrying multimedia end-points such as PDAs, laptops, and portable multimedia terminals, to seamlessly roam while accessing multimedia data streams from the wired backbone network. A distinguishing feature of the SWAN network is its use of end-to-end ATM connectivity as opposed to the connectionless mobile-IP connectivity used by present day wireless data LANs. This choice allows the wireless resource in a cell to be intelligently allocated amongst various ATM virtual circuits according to their quality of service requirements. But an efficient implementation of ATM in a wireless environment requires a proper mobile network architecture. In particular, the wireless link and medium-access layers need to be cognizant of the ATM traffic, while the ATM layers need to be cognizant of the mobility enabled by the wireless layers. This paper presents an overview of SWAN's network architecture, briefly discusses the issues in making ATM mobile and wireless, and describes initial multimedia applications for SWAN.

  13. A Fast and Scalable Algorithm for Calculating the Achievable Capacity of a Wireless Mesh Network

    DTIC Science & Technology

    2016-04-10

    to interference from a given transmission . We then use our algorithm to perform a network capacity analysis comparing different wireless technologies...A Fast and Scalable Algorithm for Calculating the Achievable Capacity of a Wireless Mesh Network Greg Kuperman, Jun Sun, and Aradhana Narula-Tam MIT...the maximum achievable capacity of a multi-hop wireless mesh network subject to interference constraints. Being able to quickly determine the maximum

  14. Software-defined Radio Based Measurement Platform for Wireless Networks

    PubMed Central

    Chao, I-Chun; Lee, Kang B.; Candell, Richard; Proctor, Frederick; Shen, Chien-Chung; Lin, Shinn-Yan

    2015-01-01

    End-to-end latency is critical to many distributed applications and services that are based on computer networks. There has been a dramatic push to adopt wireless networking technologies and protocols (such as WiFi, ZigBee, WirelessHART, Bluetooth, ISA100.11a, etc.) into time-critical applications. Examples of such applications include industrial automation, telecommunications, power utility, and financial services. While performance measurement of wired networks has been extensively studied, measuring and quantifying the performance of wireless networks face new challenges and demand different approaches and techniques. In this paper, we describe the design of a measurement platform based on the technologies of software-defined radio (SDR) and IEEE 1588 Precision Time Protocol (PTP) for evaluating the performance of wireless networks. PMID:27891210

  15. Software-defined Radio Based Measurement Platform for Wireless Networks.

    PubMed

    Chao, I-Chun; Lee, Kang B; Candell, Richard; Proctor, Frederick; Shen, Chien-Chung; Lin, Shinn-Yan

    2015-10-01

    End-to-end latency is critical to many distributed applications and services that are based on computer networks. There has been a dramatic push to adopt wireless networking technologies and protocols (such as WiFi, ZigBee, WirelessHART, Bluetooth, ISA100.11a, etc. ) into time-critical applications. Examples of such applications include industrial automation, telecommunications, power utility, and financial services. While performance measurement of wired networks has been extensively studied, measuring and quantifying the performance of wireless networks face new challenges and demand different approaches and techniques. In this paper, we describe the design of a measurement platform based on the technologies of software-defined radio (SDR) and IEEE 1588 Precision Time Protocol (PTP) for evaluating the performance of wireless networks.

  16. The middleware architecture supports heterogeneous network systems for module-based personal robot system

    NASA Astrophysics Data System (ADS)

    Choo, Seongho; Li, Vitaly; Choi, Dong Hee; Jung, Gi Deck; Park, Hong Seong; Ryuh, Youngsun

    2005-12-01

    On developing the personal robot system presently, the internal architecture is every module those occupy separated functions are connected through heterogeneous network system. This module-based architecture supports specialization and division of labor at not only designing but also implementation, as an effect of this architecture, it can reduce developing times and costs for modules. Furthermore, because every module is connected among other modules through network systems, we can get easy integrations and synergy effect to apply advanced mutual functions by co-working some modules. In this architecture, one of the most important technologies is the network middleware that takes charge communications among each modules connected through heterogeneous networks systems. The network middleware acts as the human nerve system inside of personal robot system; it relays, transmits, and translates information appropriately between modules that are similar to human organizations. The network middleware supports various hardware platform, heterogeneous network systems (Ethernet, Wireless LAN, USB, IEEE 1394, CAN, CDMA-SMS, RS-232C). This paper discussed some mechanisms about our network middleware to intercommunication and routing among modules, methods for real-time data communication and fault-tolerant network service. There have designed and implemented a layered network middleware scheme, distributed routing management, network monitoring/notification technology on heterogeneous networks for these goals. The main theme is how to make routing information in our network middleware. Additionally, with this routing information table, we appended some features. Now we are designing, making a new version network middleware (we call 'OO M/W') that can support object-oriented operation, also are updating program sources itself for object-oriented architecture. It is lighter, faster, and can support more operation systems and heterogeneous network systems, but other general purposed middlewares like CORBA, UPnP, etc. can support only one network protocol or operating system.

  17. A Wireless Communications Laboratory on Cellular Network Planning

    ERIC Educational Resources Information Center

    Dawy, Z.; Husseini, A.; Yaacoub, E.; Al-Kanj, L.

    2010-01-01

    The field of radio network planning and optimization (RNPO) is central for wireless cellular network design, deployment, and enhancement. Wireless cellular operators invest huge sums of capital on deploying, launching, and maintaining their networks in order to ensure competitive performance and high user satisfaction. This work presents a lab…

  18. Performance Analysis of Physical Layer Security of Opportunistic Scheduling in Multiuser Multirelay Cooperative Networks

    PubMed Central

    Shim, Kyusung; Do, Nhu Tri; An, Beongku

    2017-01-01

    In this paper, we study the physical layer security (PLS) of opportunistic scheduling for uplink scenarios of multiuser multirelay cooperative networks. To this end, we propose a low-complexity, yet comparable secrecy performance source relay selection scheme, called the proposed source relay selection (PSRS) scheme. Specifically, the PSRS scheme first selects the least vulnerable source and then selects the relay that maximizes the system secrecy capacity for the given selected source. Additionally, the maximal ratio combining (MRC) technique and the selection combining (SC) technique are considered at the eavesdropper, respectively. Investigating the system performance in terms of secrecy outage probability (SOP), closed-form expressions of the SOP are derived. The developed analysis is corroborated through Monte Carlo simulation. Numerical results show that the PSRS scheme significantly improves the secure ability of the system compared to that of the random source relay selection scheme, but does not outperform the optimal joint source relay selection (OJSRS) scheme. However, the PSRS scheme drastically reduces the required amount of channel state information (CSI) estimations compared to that required by the OJSRS scheme, specially in dense cooperative networks. PMID:28212286

  19. Engineering of Sensor Network Structure for Dependable Fusion

    DTIC Science & Technology

    2014-08-15

    Lossy Wireless Sensor Networks , IEEE/ACM Transactions on Networking , (04 2013): 0. doi: 10.1109/TNET.2013.2256795 Soumik Sarkar, Kushal Mukherjee...Phoha, Bharat B. Madan, Asok Ray. Distributed Network Control for Mobile Multi-Modal Wireless Sensor Networks , Journal of Parallel and Distributed...Deadline Constraints, IEEE Transactions on Automatic Control special issue on Wireless Sensor and Actuator Networks , (01 2011): 1. doi: Eric Keller

  20. Aerial Networking for the Implementation of Cooperative Control on Small Unmanned Aerial Systems

    DTIC Science & Technology

    2013-03-01

    the relay aircraft to an optimal location. Secondly, a mesh network was configured and tested. This configuration successfully relayed aircraft...functionality, such as updating navigation waypoints to each aircraft. The results suggest the system be updated with more capable modems in a mesh ...

  1. That Article: Frame Relay.

    ERIC Educational Resources Information Center

    Schuyler, Michael

    1994-01-01

    Compares Frame Relay with digital and analog alternatives for connecting sites on a Wide Area Network. Cost considerations, the concepts on which the technology is based, its carrying capacity, the use of CD-ROM and Graphical User Interface (GUI) on Frame Relay, and engineering bandwidth limitations are covered. (KRN)

  2. 76 FR 67118 - Structure and Practices of the Video Relay Service Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-31

    ... Practices of the Video Relay Service Program AGENCY: Federal Communications Commission. ACTION: Proposed... Commission's Structure and Practices of the Video Relay Service Program, Further Notice of Proposed..., and video using wired telecommunications networks. Transmission facilities may be based on a single...

  3. Design and evaluation of a wireless sensor network based aircraft strength testing system.

    PubMed

    Wu, Jian; Yuan, Shenfang; Zhou, Genyuan; Ji, Sai; Wang, Zilong; Wang, Yang

    2009-01-01

    The verification of aerospace structures, including full-scale fatigue and static test programs, is essential for structure strength design and evaluation. However, the current overall ground strength testing systems employ a large number of wires for communication among sensors and data acquisition facilities. The centralized data processing makes test programs lack efficiency and intelligence. Wireless sensor network (WSN) technology might be expected to address the limitations of cable-based aeronautical ground testing systems. This paper presents a wireless sensor network based aircraft strength testing (AST) system design and its evaluation on a real aircraft specimen. In this paper, a miniature, high-precision, and shock-proof wireless sensor node is designed for multi-channel strain gauge signal conditioning and monitoring. A cluster-star network topology protocol and application layer interface are designed in detail. To verify the functionality of the designed wireless sensor network for strength testing capability, a multi-point WSN based AST system is developed for static testing of a real aircraft undercarriage. Based on the designed wireless sensor nodes, the wireless sensor network is deployed to gather, process, and transmit strain gauge signals and monitor results under different static test loads. This paper shows the efficiency of the wireless sensor network based AST system, compared to a conventional AST system.

  4. Design and Evaluation of a Wireless Sensor Network Based Aircraft Strength Testing System

    PubMed Central

    Wu, Jian; Yuan, Shenfang; Zhou, Genyuan; Ji, Sai; Wang, Zilong; Wang, Yang

    2009-01-01

    The verification of aerospace structures, including full-scale fatigue and static test programs, is essential for structure strength design and evaluation. However, the current overall ground strength testing systems employ a large number of wires for communication among sensors and data acquisition facilities. The centralized data processing makes test programs lack efficiency and intelligence. Wireless sensor network (WSN) technology might be expected to address the limitations of cable-based aeronautical ground testing systems. This paper presents a wireless sensor network based aircraft strength testing (AST) system design and its evaluation on a real aircraft specimen. In this paper, a miniature, high-precision, and shock-proof wireless sensor node is designed for multi-channel strain gauge signal conditioning and monitoring. A cluster-star network topology protocol and application layer interface are designed in detail. To verify the functionality of the designed wireless sensor network for strength testing capability, a multi-point WSN based AST system is developed for static testing of a real aircraft undercarriage. Based on the designed wireless sensor nodes, the wireless sensor network is deployed to gather, process, and transmit strain gauge signals and monitor results under different static test loads. This paper shows the efficiency of the wireless sensor network based AST system, compared to a conventional AST system. PMID:22408521

  5. Smart Grid Communications System Blueprint

    NASA Astrophysics Data System (ADS)

    Clark, Adrian; Pavlovski, Chris

    2010-10-01

    Telecommunications operators are well versed in deploying 2G and 3G wireless networks. These networks presently support the mobile business user and/or retail consumer wishing to place conventional voice calls and data connections. The electrical power industry has recently commenced transformation of its distribution networks by deploying smart monitoring and control devices throughout their networks. This evolution of the network into a `smart grid' has also motivated the need to deploy wireless technologies that bridge the communication gap between the smart devices and information technology systems. The requirements of these networks differ from traditional wireless networks that communications operators have deployed, which have thus far forced energy companies to consider deploying their own wireless networks. We present our experience in deploying wireless networks to support the smart grid and highlight the key properties of these networks. These characteristics include application awareness, support for large numbers of simultaneous cell connections, high service coverage and prioritized routing of data. We also outline our target blueprint architecture that may be useful to the industry in building wireless and fixed networks to support the smart grid. By observing our experiences, telecommunications operators and equipment manufacturers will be able to augment their current networks and products in a way that accommodates the needs of the emerging industry of smart grids and intelligent electrical networks.

  6. Method and system for spatial data input, manipulation and distribution via an adaptive wireless transceiver

    NASA Technical Reports Server (NTRS)

    Wang, Ray (Inventor)

    2009-01-01

    A method and system for spatial data manipulation input and distribution via an adaptive wireless transceiver. The method and system include a wireless transceiver for automatically and adaptively controlling wireless transmissions using a Waveform-DNA method. The wireless transceiver can operate simultaneously over both the short and long distances. The wireless transceiver is automatically adaptive and wireless devices can send and receive wireless digital and analog data from various sources rapidly in real-time via available networks and network services.

  7. Distributed Localization of Active Transmitters in a Wireless Sensor Network

    DTIC Science & Technology

    2012-03-01

    Distributed Localization of Active Transmitters in a Wireless Sensor Network THESIS Oba L. Vincent, 2nd Lieutenant, USAF AFIT/GE/ENG/12-41 DEPARTMENT...protection in the United States. AFIT/GE/ENG/12-41 Distributed Localization of Active Transmitters in a Wireless Sensor Network THESIS Presented to the...Transmitters in a Wireless Sensor Network Oba L. Vincent, B.S.E.E. 2nd Lieutenant, USAF Approved: /signed/ 29 Feb 2012 Maj. Mark D. Silvius, Ph.D. (Chairman

  8. A Study on Wireless Charging for Prolonging the Lifetime of Wireless Sensor Networks

    PubMed Central

    Tu, Weijian; Xu, Xianghua; Ye, Tingcong; Cheng, Zongmao

    2017-01-01

    Wireless charging is an important issue in wireless sensor networks, since it can provide an emerging and effective solution in the absence of other power supplies. The state-of-the-art methods employ a mobile car and a predefined moving path to charge the sensor nodes in the network. Previous studies only consider a factor of the network (i.e., residual energy of sensor node) as a constraint to design the wireless charging strategy. However, other factors, such as the travelled distance of the mobile car, can also affect the effectiveness of wireless charging strategy. In this work, we study wireless charging strategy based on the analysis of a combination of two factors, including the residual energy of sensor nodes and the travelled distance of the charging car. Firstly, we theoretically analyze the limited size of the sensor network to match the capability of a charging car. Then, the networked factors are selected as the weights of traveling salesman problem (TSP) to design the moving path of the charging car. Thirdly, the charging time of each sensor node is computed based on the linear programming problem for the charging car. Finally, a charging period for the network is studied. The experimental results show that the proposed approach can significantly maximize the lifetime of the wireless sensor network. PMID:28677639

  9. The QKD network: model and routing scheme

    NASA Astrophysics Data System (ADS)

    Yang, Chao; Zhang, Hongqi; Su, Jinhai

    2017-11-01

    Quantum key distribution (QKD) technology can establish unconditional secure keys between two communicating parties. Although this technology has some inherent constraints, such as the distance and point-to-point mode limits, building a QKD network with multiple point-to-point QKD devices can overcome these constraints. Considering the development level of current technology, the trust relaying QKD network is the first choice to build a practical QKD network. However, the previous research didn't address a routing method on the trust relaying QKD network in detail. This paper focuses on the routing issues, builds a model of the trust relaying QKD network for easily analysing and understanding this network, and proposes a dynamical routing scheme for this network. From the viewpoint of designing a dynamical routing scheme in classical network, the proposed scheme consists of three components: a Hello protocol helping share the network topology information, a routing algorithm to select a set of suitable paths and establish the routing table and a link state update mechanism helping keep the routing table newly. Experiments and evaluation demonstrates the validity and effectiveness of the proposed routing scheme.

  10. Flexible network wireless transceiver and flexible network telemetry transceiver

    DOEpatents

    Brown, Kenneth D.

    2008-08-05

    A transceiver for facilitating two-way wireless communication between a baseband application and other nodes in a wireless network, wherein the transceiver provides baseband communication networking and necessary configuration and control functions along with transmitter, receiver, and antenna functions to enable the wireless communication. More specifically, the transceiver provides a long-range wireless duplex communication node or channel between the baseband application, which is associated with a mobile or fixed space, air, water, or ground vehicle or other platform, and other nodes in the wireless network or grid. The transceiver broadly comprises a communication processor; a flexible telemetry transceiver including a receiver and a transmitter; a power conversion and regulation mechanism; a diplexer; and a phased array antenna system, wherein these various components and certain subcomponents thereof may be separately enclosed and distributable relative to the other components and subcomponents.

  11. Cross Layered Multi-Meshed Tree Scheme for Cognitive Networks

    DTIC Science & Technology

    2011-06-01

    Meshed Tree Routing protocol wireless ad hoc networks ,” Second IEEE International Workshop on Enabling Technologies and Standards for Wireless Mesh ...and Sensor Networks , 2004 43. Chen G.; Stojmenovic I., “Clustering and routing in mobile wireless networks ,” Technical Report TR-99-05, SITE, June...Cross-layer optimization, intra-cluster routing , packet forwarding, inter-cluster routing , mesh network communications,

  12. Performance analysis of dual-hop optical wireless communication systems over k-distribution turbulence channel with pointing error

    NASA Astrophysics Data System (ADS)

    Mishra, Neha; Sriram Kumar, D.; Jha, Pranav Kumar

    2017-06-01

    In this paper, we investigate the performance of the dual-hop free space optical (FSO) communication systems under the effect of strong atmospheric turbulence together with misalignment effects (pointing error). We consider a relay assisted link using decode and forward (DF) relaying protocol between source and destination with the assumption that Channel State Information is available at both transmitting and receiving terminals. The atmospheric turbulence channels are modeled by k-distribution with pointing error impairment. The exact closed form expression is derived for outage probability and bit error rate and illustrated through numerical plots. Further BER results are compared for the different modulation schemes.

  13. Review: Security in Wireless Technologies in Business

    NASA Astrophysics Data System (ADS)

    Sattarova, F. Y.; Kim, Tai-Hoon

    Wireless technology seems to be everywhere now - but it is still relatively in its infancy. New standards and protocols continue to emerge and problems and bugs are discovered. Nevertheless, wireless networks make many things much more convenient and it appears that wireless networks are here to stay. The differences and similarities of wireless and wired security, the new threats brought by mobility, the security of networks and devices and effects of security, or lack of it are shortly discussed in this review paper.

  14. New transmission scheme to enhance throughput of DF relay network using rate and power adaptation

    NASA Astrophysics Data System (ADS)

    Taki, Mehrdad; Heshmati, Milad

    2017-09-01

    This paper presents a new transmission scheme for a decode and forward (DF) relay network using continuous power adaptation while independent average power constraints are provisioned for each node. To have analytical insight, the achievable throughputs are analysed using continuous adaptation of the rates and the powers. As shown by numerical evaluations, a considerable outperformance is seen by continuous power adaptation compared to the case where constant powers are utilised. Also for practical systems, a new throughput maximised transmission scheme is developed using discrete rate adaptation (adaptive modulation and coding) and continuous transmission power adaptation. First a 2-hop relay network is considered and then the scheme is extended for an N-hop network. Numerical evaluations show the efficiency of the designed schemes.

  15. An efficient management system for wireless sensor networks.

    PubMed

    Ma, Yi-Wei; Chen, Jiann-Liang; Huang, Yueh-Min; Lee, Mei-Yu

    2010-01-01

    Wireless sensor networks have garnered considerable attention recently. Networks typically have many sensor nodes, and are used in commercial, medical, scientific, and military applications for sensing and monitoring the physical world. Many researchers have attempted to improve wireless sensor network management efficiency. A Simple Network Management Protocol (SNMP)-based sensor network management system was developed that is a convenient and effective way for managers to monitor and control sensor network operations. This paper proposes a novel WSNManagement system that can show the connections stated of relationships among sensor nodes and can be used for monitoring, collecting, and analyzing information obtained by wireless sensor networks. The proposed network management system uses collected information for system configuration. The function of performance analysis facilitates convenient management of sensors. Experimental results show that the proposed method enhances the alive rate of an overall sensor node system, reduces the packet lost rate by roughly 5%, and reduces delay time by roughly 0.2 seconds. Performance analysis demonstrates that the proposed system is effective for wireless sensor network management.

  16. Demonstration of a roving-host wireless sensor network for rapid assessment monitoring of structural health

    NASA Astrophysics Data System (ADS)

    Mascarenas, David D. L.; Flynn, Eric; Lin, Kaisen; Farinholt, Kevin; Park, Gyuhae; Gupta, Rajesh; Todd, Michael; Farrar, Charles

    2008-03-01

    A major challenge impeding the deployment of wireless sensor networks for structural health monitoring (SHM) is developing means to supply power to the sensor nodes in a cost-effective manner. In this work an initial test of a roving-host wireless sensor network was performed on a bridge near Truth or Consequences, NM in August of 2007. The roving-host wireless sensor network features a radio controlled helicopter responsible for wirelessly delivering energy to sensor nodes on an "as-needed" basis. In addition, the helicopter also serves as a central data repository and processing center for the information collected by the sensor network. The sensor nodes used on the bridge were developed for measuring the peak displacement of the bridge, as well as measuring the preload of some of the bolted joints in the bridge. These sensors and sensor nodes were specifically designed to be able to operate from energy supplied wirelessly from the helicopter. The ultimate goal of this research is to ease the requirement for battery power supplies in wireless sensor networks.

  17. Real-Time Wireless Data Acquisition System

    NASA Technical Reports Server (NTRS)

    Valencia, Emilio J.; Perotti, Jose; Lucena, Angel; Mata, Carlos

    2007-01-01

    Current and future aerospace requirements demand the creation of a new breed of sensing devices, with emphasis on reduced weight, power consumption, and physical size. This new generation of sensors must possess a high degree of intelligence to provide critical data efficiently and in real-time. Intelligence will include self-calibration, self-health assessment, and pre-processing of raw data at the sensor level. Most of these features are already incorporated in the Wireless Sensors Network (SensorNet(TradeMark)), developed by the Instrumentation Group at Kennedy Space Center (KSC). A system based on the SensorNet(TradeMark) architecture consists of data collection point(s) called Central Stations (CS) and intelligent sensors called Remote Stations (RS) where one or more CSs can be accommodated depending on the specific application. The CS's major function is to establish communications with the Remote Stations and to poll each RS for data and health information. The CS also collects, stores and distributes these data to the appropriate systems requiring the information. The system has the ability to perform point-to-point, multi-point and relay mode communications with an autonomous self-diagnosis of each communications link. Upon detection of a communication failure, the system automatically reconfigures to establish new communication paths. These communication paths are automatically and autonomously selected as the best paths by the system based on the existing operating environment. The data acquisition system currently under development at KSC consists of the SensorNet(TradeMark) wireless sensors as the remote stations and the central station called the Radio Frequency Health Node (RFHN). The RFF1N is the central station which remotely communicates with the SensorNet(TradeMark) sensors to control them and to receive data. The system's salient feature is the ability to provide deterministic sensor data with accurate time stamps for both time critical and non-time critical applications. Current wireless standards such as Zigbee(TradeMark) and Bluetooth(Registered TradeMark) do not have these capabilities and can not meet the needs that are provided by the SensorNet technology. Additionally, the system has the ability to automatically reconfigure the wireless communication link to a secondary frequency if interference is encountered and can autonomously search for a sensor that was perceived to be lost using the relay capabilities of the sensors and the secondary frequency. The RFHN and the SensorNet designs are based on modular architectures that allow for future increases in capability and the ability to expand or upgrade with relative ease. The RFHN and SensorNet sensors .can also perform data processing which forms a distributed processing architecture allowing the system to pass along information rather than just sending "raw data points" to the next higher level system. With a relatively small size, weight and power consumption, this system has the potential for both spacecraft and aircraft applications as well as ground applications that require time critical data.

  18. Analysis of physical layer performance of hybrid optical-wireless access network

    NASA Astrophysics Data System (ADS)

    Shaddad, R. Q.; Mohammad, A. B.; Al-hetar, A. M.

    2011-09-01

    The hybrid optical-wireless access network (HOWAN) is a favorable architecture for next generation access network. It is an optimal combination of an optical backhaul and a wireless front-end for an efficient access network. In this paper, the HOWAN architecture is designed based on a wavelengths division multiplexing/time division multiplexing passive optical network (WDM/TDM PON) at the optical backhaul and a wireless fidelity (WiFi) technology at the wireless front-end. The HOWAN is proposed that can provide blanket coverage of broadband and flexible connection for end-users. Most of the existing works, based on performance evaluation are concerned on network layer aspects. This paper reports physical layer performance in terms of the bit error rate (BER), eye diagram, and signal-to-noise ratio (SNR) of the communication system. It accommodates 8 wavelength channels with 32 optical network unit/wireless access points (ONU/APs). It is demonstrated that downstream and upstream of 2 Gb/s can be achieved by optical backhaul for each wavelength channel along optical fiber length of 20 km and a data rate of 54 Mb/s per ONU/AP along a 50 m outdoor wireless link.

  19. Traffic Profiling in Wireless Sensor Networks

    DTIC Science & Technology

    2006-12-01

    components, that can be used for traffic profiling and monitoring of a wireless sensor network . The work demostrates how the IDS should capture and...observed and analyzed. Finally, initial indications from basic analysis of wireless sensor network traffic demonstrated a high degree of self-similarity.

  20. Sinkhole Avoidance Routing in Wireless Sensor Networks

    DTIC Science & Technology

    2011-05-09

    sensor network consists of individual sensor nodes that work cooperatively to collect and communicate environmental data. In a surveillance role, a WSN...Wireless sensor networks, or WSNs, are an emerging commercial technology that may have practical applications on the modern battlefield. A wireless

  1. Topological Analysis of Wireless Networks (TAWN)

    DTIC Science & Technology

    2016-05-31

    transmissions from any other node. Definition 1. A wireless network vulnerability is its susceptibility to becoming disconnected when a single source of...19b. TELEPHONE NUMBER (Include area code) 31-05-2016 FINAL REPORT 12-02-2015 -- 31-05-2016 Topological Analysis of Wireless Networks (TAWN) Robinson...Release, Distribution Unlimited) N/A The goal of this project was to develop topological methods to detect and localize vulnerabilities of wireless

  2. Wireless Communications in Reverberant Environments

    DTIC Science & Technology

    2015-01-01

    Secure Wireless Agent Testbed (SWAT), the Protocol Engineering Advanced Networking (PROTEAN) Research Group, the Data Fusion Laboratory (DFL), and the...constraints of their application. 81 Bibliography [1] V. Gungor and G. Hancke, “Industrial wireless sensor networks : Challenges, design principles, and...Bhattacharya, “Path loss estimation for a wireless sensor network for application in ship,” Int. J. of Comput. Sci. and Mobile Computing, vol. 2, no. 6, pp

  3. Wireless body sensor networks for health-monitoring applications.

    PubMed

    Hao, Yang; Foster, Robert

    2008-11-01

    Current wireless technologies, such as wireless body area networks and wireless personal area networks, provide promising applications in medical monitoring systems to measure specified physiological data and also provide location-based information, if required. With the increasing sophistication of wearable and implantable medical devices and their integration with wireless sensors, an ever-expanding range of therapeutic and diagnostic applications is being pursued by research and commercial organizations. This paper aims to provide a comprehensive review of recent developments in wireless sensor technology for monitoring behaviour related to human physiological responses. It presents background information on the use of wireless technology and sensors to develop a wireless physiological measurement system. A generic miniature platform and other available technologies for wireless sensors have been studied in terms of hardware and software structural requirements for a low-cost, low-power, non-invasive and unobtrusive system.

  4. Counterfactual quantum cryptography network with untrusted relay

    NASA Astrophysics Data System (ADS)

    Chen, Yuanyuan; Gu, Xuemei; Jiang, Dong; Xie, Ling; Chen, Lijun

    2015-07-01

    Counterfactual quantum cryptography allows two remote parties to share a secret key even though a physical particle is not in fact transmitted through the quantum channel. In order to extend the scope of counterfactual quantum cryptography, we use an untrusted relay to construct a multi-user network. The implementation issues are discussed to show that the scheme can be realized with current technologies. We also prove the practical security advantages of the scheme by eliminating the probability that an eavesdropper can directly access the signal or an untrusted relay can perform false operations.

  5. Effects of Distributed Generation on Overcurrent Relay Coordination and an Adaptive Protection Scheme

    NASA Astrophysics Data System (ADS)

    Ilik, Semih C.; Arsoy, Aysen B.

    2017-07-01

    Integration of distributed generation (DG) such as renewable energy sources to electrical network becomes more prevalent in recent years. Grid connection of DG has effects on load flow directions, voltage profile, short circuit power and especially protection selectivity. Applying traditional overcurrent protection scheme is inconvenient when system reliability and sustainability are considered. If a fault happens in DG connected network, short circuit contribution of DG, creates additional branch element feeding the fault current; compels to consider directional overcurrent (OC) protection scheme. Protection coordination might get lost for changing working conditions when DG sources are connected. Directional overcurrent relay parameters are determined for downstream and upstream relays when different combinations of DG connected singular or plural, on radial test system. With the help of proposed flow chart, relay parameters are updated and coordination between relays kept sustained for different working conditions in DigSILENT PowerFactory program.

  6. World Without Wires: Is Your District Ready to Go Wireless?

    ERIC Educational Resources Information Center

    Villano, Matt

    2005-01-01

    In this article, the author presents the latest wireless equipments available in market. For starters, wireless networks offer mobility and flexibility: users of laptops, PDAs, tablet PCs, and wireless Voice over IP telephones can move freely about campus while staying connected to the Internet. There are two kinds of wireless networks: ad-hoc, or…

  7. Network Coding Opportunities for Wireless Grids Formed by Mobile Devices

    NASA Astrophysics Data System (ADS)

    Nielsen, Karsten Fyhn; Madsen, Tatiana K.; Fitzek, Frank H. P.

    Wireless grids have potential in sharing communication, computa-tional and storage resources making these networks more powerful, more robust, and less cost intensive. However, to enjoy the benefits of cooperative resource sharing, a number of issues should be addressed and the cost of the wireless link should be taken into account. We focus on the question how nodes can efficiently communicate and distribute data in a wireless grid. We show the potential of a network coding approach when nodes have the possibility to combine packets thus increasing the amount of information per transmission. Our implementation demonstrates the feasibility of network coding for wireless grids formed by mobile devices.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Long, John P.; Hamill, Michael J.; Mitchell, M. G.

    A major portion of the Wireless Networking Project at Sandia National Laboratories over the last few years has been to examine IEEE 802.11 wireless networking for possible use at Sandia and if practical, introduce this technology. This project team deployed 802.11a, b, and g Wireless Local Area Networking at Sandia. This report examines the basics of wireless networking and captures key results from project tests and experiments. It also records project members thoughts and designs on wireless LAN architecture and security issues. It documents some of the actions and milestones of this project, including pilot and production deployment of wirelessmore » networking equipment, and captures the team's rationale behind some of the decisions made. Finally, the report examines lessons learned, future directions, and conclusions.« less

  9. Rate Control for Network-Coded Multipath Relaying with Time-Varying Connectivity

    DTIC Science & Technology

    2010-12-10

    Armen Babikyan, Nathaniel M. Jones, Thomas H. Shake, and Andrew P. Worthen MIT Lincoln Laboratory 244 Wood Street Lexington, MA 02420 DDRE, 1777...delay U U U U SAR 11 Zach Sweet 781-981-5997 1 Rate Control for Network-Coded Multipath Relaying with Time-Varying Connectivity Brooke Shrader, Armen

  10. Multiantenna Relay Beamforming Design for QoS Discrimination in Two-Way Relay Networks

    PubMed Central

    Xiong, Ke; Zhang, Yu; Li, Dandan; Zhong, Zhangdui

    2013-01-01

    This paper investigates the relay beamforming design for quality of service (QoS) discrimination in two-way relay networks. The purpose is to keep legitimate two-way relay users exchange their information via a helping multiantenna relay with QoS guarantee while avoiding the exchanged information overhearing by unauthorized receiver. To this end, we propose a physical layer method, where the relay beamforming is jointly designed with artificial noise (AN) which is used to interfere in the unauthorized user's reception. We formulate the joint beamforming and AN (BFA) design into an optimization problem such that the received signal-to-interference-ratio (SINR) at the two legitimate users is over a predefined QoS threshold while limiting the received SINR at the unauthorized user which is under a certain secure threshold. The objective of the optimization problem is to seek the optimal AN and beamforming vectors to minimize the total power consumed by the relay node. Since the optimization problem is nonconvex, we solve it by using semidefinite program (SDP) relaxation. For comparison, we also study the optimal relay beamforming without using AN (BFO) under the same QoS discrimination constraints. Simulation results show that both the proposed BFA and BFO can achieve the QoS discrimination of the two-way transmission. However, the proposed BFA yields significant power savings and lower infeasible rates compared with the BFO method. PMID:24391459

  11. Implementation of a Relay Coordination System for the Mars Network

    NASA Technical Reports Server (NTRS)

    Allard, Daniel A.

    2010-01-01

    Mars network relay operations involve the coordination of lander and orbiter teams through long-term and short-term planning, tactical changes and post-pass analysis. Much of this coordination is managed through email traffic and point-to-point file data exchanges. It is often difficult to construct a complete and accurate picture of the relay situation at any given moment, as there is no centralized store of correlated relay data. The Mars Relay Operations Service (MaROS) is being implemented to address the problem of relay coordination for current and next-generation relay missions. The service is provided for the purpose of coordinating communications sessions between landed spacecraft assets and orbiting spacecraft assets at Mars. The service centralizes a set of functions previously distributed across multiple spacecraft operations teams, and as such greatly improves visibility into the end-to-end strategic coordination process. Most of the process revolves around the scheduling of communications sessions between the spacecraft during periods of time when a landed asset on Mars is geometrically visible by an orbiting spacecraft. These "relay" sessions are used to transfer data both to and from the landed asset via the orbiting asset on behalf of Earth-based spacecraft operators. This paper will discuss the relay coordination problem space, overview the architecture and design selected to meet system requirements, and describe the first phase of system implementation

  12. Apparatus and method supporting wireless access to multiple security layers in an industrial control and automation system or other system

    DOEpatents

    Chen, Yu-Gene T.

    2013-04-16

    A method includes receiving a message at a first wireless node. The first wireless node is associated with a first wired network, and the first wired network is associated with a first security layer. The method also includes transmitting the message over the first wired network when at least one destination of the message is located in the first security layer. The method further includes wirelessly transmitting the message for delivery to a second wireless node when at least one destination of the message is located in a second security layer. The second wireless node is associated with a second wired network, and the second wired network is associated with the second security layer. The first and second security layers may be associated with different security paradigms and/or different security domains. Also, the message could be associated with destinations in the first and second security layers.

  13. Tips for Implementing a Wireless Network

    ERIC Educational Resources Information Center

    Walery, Darrell

    2005-01-01

    This article provides a quick start guide to provide educators with the basic points to consider before installing a wireless network in the school. Since many school districts have already implemented wireless networks, there is a lot of information available online to assist in the process.

  14. Joint Transmit Antenna Selection and Power Allocation for ISDF Relaying Mobile-to-Mobile Sensor Networks

    PubMed Central

    Xu, Lingwei; Zhang, Hao; Gulliver, T. Aaron

    2016-01-01

    The outage probability (OP) performance of multiple-relay incremental-selective decode-and-forward (ISDF) relaying mobile-to-mobile (M2M) sensor networks with transmit antenna selection (TAS) over N-Nakagami fading channels is investigated. Exact closed-form OP expressions for both optimal and suboptimal TAS schemes are derived. The power allocation problem is formulated to determine the optimal division of transmit power between the broadcast and relay phases. The OP performance under different conditions is evaluated via numerical simulation to verify the analysis. These results show that the optimal TAS scheme has better OP performance than the suboptimal scheme. Further, the power allocation parameter has a significant influence on the OP performance. PMID:26907282

  15. An End-to-End Loss Discrimination Scheme for Multimedia Transmission over Wireless IP Networks

    NASA Astrophysics Data System (ADS)

    Zhao, Hai-Tao; Dong, Yu-Ning; Li, Yang

    As the rapid growth of wireless IP networks, wireless IP access networks have a lot of potential applications in a variety of fields in civilian and military environments. Many of these applications, such as realtime audio/video streaming, will require some form of end-to-end QoS assurance. In this paper, an algorithm WMPLD (Wireless Multimedia Packet Loss Discrimination) is proposed for multimedia transmission control over wired-wireless hybrid IP networks. The relationship between packet length and packet loss rate in the Gilbert wireless error model is investigated. Furthermore, the algorithm can detect the nature of packet losses by sending large and small packets alternately, and control the sending rate of nodes. In addition, by means of updating factor K, this algorithm can adapt to the changes of network states quickly. Simulation results show that, compared to previous algorithms, WMPLD algorithm can improve the networks throughput as well as reduce the congestion loss rate in various situations.

  16. Wireless local area network for the dental office.

    PubMed

    Mupparapu, Muralidhar

    2004-01-01

    Dental offices are no exception to the implementation of new and advanced technology, especially if it enhances productivity. In a rapidly transforming digital world, wireless technology has a special place, as it has truly "retired the wire" and contributed to the ease and efficient access to patient data and other software-based applications for diagnosis and treatment. If the office or the clinic is networked, access to patient management software, imaging software and treatment planning tools is enhanced. Access will be further enhanced and unrestricted if the entire network is wireless. As with any new, emerging technology, there will be issues that should be kept in mind before adapting to the wireless environment. Foremost is the network security involved in the installation and use of these wireless networks. This short, technical manuscript deals with standards and choices in wireless technology currently available for implementation within a dental office. The benefits of each network security protocol available to protect patient data and boost the efficiency of a modern dental office are discussed.

  17. A wireless sensor enabled by wireless power.

    PubMed

    Lee, Da-Sheng; Liu, Yu-Hong; Lin, Chii-Ruey

    2012-11-22

    Through harvesting energy by wireless charging and delivering data by wireless communication, this study proposes the concept of a wireless sensor enabled by wireless power (WPWS) and reports the fabrication of a prototype for functional tests. One WPWS node consists of wireless power module and sensor module with different chip-type sensors. Its main feature is the dual antenna structure. Following RFID system architecture, a power harvesting antenna was designed to gather power from a standard reader working in the 915 MHz band. Referring to the Modbus protocol, the other wireless communication antenna was integrated on a node to send sensor data in parallel. The dual antenna structure integrates both the advantages of an RFID system and a wireless sensor. Using a standard UHF RFID reader, WPWS can be enabled in a distributed area with a diameter up to 4 m. Working status is similar to that of a passive tag, except that a tag can only be queried statically, while the WPWS can send dynamic data from the sensors. The function is the same as a wireless sensor node. Different WPWSs equipped with temperature and humidity, optical and airflow velocity sensors are tested in this study. All sensors can send back detection data within 8 s. The accuracy is within 8% deviation compared with laboratory equipment. A wireless sensor network enabled by wireless power should be a totally wireless sensor network using WPWS. However, distributed WPWSs only can form a star topology, the simplest topology for constructing a sensor network. Because of shielding effects, it is difficult to apply other complex topologies. Despite this limitation, WPWS still can be used to extend sensor network applications in hazardous environments. Further research is needed to improve WPWS to realize a totally wireless sensor network.

  18. A Wireless Sensor Enabled by Wireless Power

    PubMed Central

    Lee, Da-Sheng; Liu, Yu-Hong; Lin, Chii-Ruey

    2012-01-01

    Through harvesting energy by wireless charging and delivering data by wireless communication, this study proposes the concept of a wireless sensor enabled by wireless power (WPWS) and reports the fabrication of a prototype for functional tests. One WPWS node consists of wireless power module and sensor module with different chip-type sensors. Its main feature is the dual antenna structure. Following RFID system architecture, a power harvesting antenna was designed to gather power from a standard reader working in the 915 MHz band. Referring to the Modbus protocol, the other wireless communication antenna was integrated on a node to send sensor data in parallel. The dual antenna structure integrates both the advantages of an RFID system and a wireless sensor. Using a standard UHF RFID reader, WPWS can be enabled in a distributed area with a diameter up to 4 m. Working status is similar to that of a passive tag, except that a tag can only be queried statically, while the WPWS can send dynamic data from the sensors. The function is the same as a wireless sensor node. Different WPWSs equipped with temperature and humidity, optical and airflow velocity sensors are tested in this study. All sensors can send back detection data within 8 s. The accuracy is within 8% deviation compared with laboratory equipment. A wireless sensor network enabled by wireless power should be a totally wireless sensor network using WPWS. However, distributed WPWSs only can form a star topology, the simplest topology for constructing a sensor network. Because of shielding effects, it is difficult to apply other complex topologies. Despite this limitation, WPWS still can be used to extend sensor network applications in hazardous environments. Further research is needed to improve WPWS to realize a totally wireless sensor network. PMID:23443370

  19. A comparative study of wireless sensor networks and their routing protocols.

    PubMed

    Bhattacharyya, Debnath; Kim, Tai-hoon; Pal, Subhajit

    2010-01-01

    Recent developments in the area of micro-sensor devices have accelerated advances in the sensor networks field leading to many new protocols specifically designed for wireless sensor networks (WSNs). Wireless sensor networks with hundreds to thousands of sensor nodes can gather information from an unattended location and transmit the gathered data to a particular user, depending on the application. These sensor nodes have some constraints due to their limited energy, storage capacity and computing power. Data are routed from one node to other using different routing protocols. There are a number of routing protocols for wireless sensor networks. In this review article, we discuss the architecture of wireless sensor networks. Further, we categorize the routing protocols according to some key factors and summarize their mode of operation. Finally, we provide a comparative study on these various protocols.

  20. The Brave New World of Wireless Technologies: A Primer for Educators.

    ERIC Educational Resources Information Center

    Boerner, Gerald L.

    2002-01-01

    Discusses the use of wireless local area networks (WLANs) on college campuses. Highlights include traditional wired networks; cost, speed, and reliability; wireless networking standards; mobility; installation speed, simplicity, and flexibility; reduced cost of ownership; scalability; security issues; and a glossary of WLAN terms. (LRW)

  1. Shipboard Wireless Sensor Networks Utilizing Zigbee Technology

    DTIC Science & Technology

    2006-09-01

    This thesis studies the feasibility of utilizing Zigbee standard devices to create a shipboard wireless sensor network . Two primary methods were used...the research effort would be a completely wireless sensor network which would result in a net savings in man hours required to maintain and monitor

  2. Wireless sensor network for irrigation application in cotton

    USDA-ARS?s Scientific Manuscript database

    A wireless sensor network was deployed in a cotton field to monitor soil water status for irrigation. The network included two systems, a Decagon system and a microcontroller-based system. The Decagon system consists of soil volumetric water-content sensors, wireless data loggers, and a central data...

  3. Water Catchment and Storage Monitoring

    NASA Astrophysics Data System (ADS)

    Bruenig, Michael; Dunbabin, Matt; Moore, Darren

    2010-05-01

    Sensors and Sensor Networks technologies provide the means for comprehensive understanding of natural processes in the environment by radically increasing the availability of empirical data about the natural world. This step change is achieved through a dramatic reduction in the cost of data acquisition and many orders of magnitude increase in the spatial and temporal granularity of measurements. Australia's Commonwealth Scientific and Industrial Research Organisation (CSIRO) is undertaking a strategic research program developing wireless sensor network technology for environmental monitoring. As part of this research initiative, we are engaging with government agencies to densely monitor water catchments and storages, thereby enhancing understanding of the environmental processes that affect water quality. In the Gold Coast hinterland in Queensland, Australia, we are building sensor networks to monitor restoration of rainforest within the catchment, and to monitor methane flux release and water quality in the water storages. This poster will present our ongoing work in this region of eastern Australia. The Springbrook plateau in the Gold Coast hinterland lies within a World Heritage listed area, has uniquely high rainfall, hosts a wide range of environmental gradients, and forms part of the catchment for Gold Coast's water storages. Parts of the plateau are being restored from agricultural grassland to native rainforest vegetation. Since April 2008, we have had a 10-node, multi-hop sensor network deployed there to monitor microclimate variables. This network will be expanded to 50-nodes in February 2010, and to around 200-nodes and 1000 sensors by mid-2011, spread over an area of approximately 0.8 square kilometers. The extremely dense microclimate sensing will enhance knowledge of the environmental factors that enhance or inhibit the regeneration of native rainforest. The final network will also include nodes with acoustic and image sensing capability for monitoring higher level parameters such as fauna diversity. The regenerating rainforest environment presents a number of interesting challenges for wireless sensor networks related to energy harvesting and to reliable low-power wireless communications through dense and wet vegetation. Located downstream from the Springbrook plateau, the Little Nerang and Hinze dams are the two major water supply storages for the Gold Coast region. In September 2009 we fitted methane, light, wind, and sonar sensors to our autonomous electric boat platform and successfully demonstrated autonomous collection of methane flux release data on Little Nerang Dam. Sensor and boat status data were relayed back to a human operator on the shore of the dam via a small network of our Fleck™ nodes. The network also included 4 floating nodes each fitted with a string of 6 temperature sensors for profiling temperature at different water depths. We plan to expand the network further during 2010 to incorporate floating methane nodes, additional temperature sensing nodes, as well as land-based microclimate nodes. The overall monitoring system will provide significant data to understand the connected catchment-to-storage system and will provide continuous data to monitor and understand change trends within this world heritage area.

  4. MQCC: Maximum Queue Congestion Control for Multipath Networks with Blockage

    DTIC Science & Technology

    2015-10-19

    higher error rates in wireless networks result in a great deal of “false” congestion indications, resulting in underutilization of the network [4...approaches that are relevant to lossy wireless networks . Multipath TCP (MPTCP) schemes [9], [10] explore the design and implementation of multipath...attempts to “fix” TCP to work with lossy wireless networks using existing techniques. The authors have taken the view that because packet losses are

  5. Real-Time Optimization in Complex Stochastic Environment

    DTIC Science & Technology

    2015-06-24

    simpler ones, thus addressing scalability and the limited resources of networked wireless devices. This, however, comes at the expense of increased...Maximization of Wireless Sensor Networks with Non-ideal Batteries”, IEEE Trans. on Control of Network Systems, Vol. 1, 1, pp. 86-98, 2014. [27...C.G., “Optimal Energy-Efficient Downlink Transmission Scheduling for Real-Time Wireless Networks ”, subm. to IEEE Trans. on Control of Network Systems

  6. 78 FR 72885 - Information Collections Being Submitted for Review and Approval to the Office of Management and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-04

    ... toll free service provider, or transfer control of a toll free number from a VRS or IP Relay provider... sections imposed differing requirements on the broadcast and wireless entities, although the issue is the... shall determine operating power by the indirect method (see Sec. 73.51). Upon the completion of the...

  7. Primary path reservation using enhanced slot assignment in TDMA for session admission.

    PubMed

    Koneri Chandrasekaran, Suresh; Savarimuthu, Prakash; Andi Elumalai, Priya; Ayyaswamy, Kathirvel

    2015-01-01

    Mobile ad hoc networks (MANET) is a self-organized collection of nodes that communicates without any infrastructure. Providing quality of service (QoS) in such networks is a competitive task due to unreliable wireless link, mobility, lack of centralized coordination, and channel contention. The success of many real time applications is purely based on the QoS, which can be achieved by quality aware routing (QAR) and admission control (AC). Recently proposed QoS mechanisms do focus completely on either reservation or admission control but are not better enough. In MANET, high mobility causes frequent path break due to the fact that every time the source node must find the route. In such cases the QoS session is affected. To admit a QoS session, admission control protocols must ensure the bandwidth of the relaying path before transmission starts; reservation of such bandwidth noticeably improves the admission control performance. Many TDMA based reservation mechanisms are proposed but need some improvement over slot reservation procedures. In order to overcome this specific issue, we propose a framework-PRAC (primary path reservation admission control protocol), which achieves improved QoS by making use of backup route combined with resource reservation. A network topology has been simulated and our approach proves to be a mechanism that admits the session effectively.

  8. Research on trust calculation of wireless sensor networks based on time segmentation

    NASA Astrophysics Data System (ADS)

    Su, Yaoxin; Gao, Xiufeng; Qiao, Wenxin

    2017-05-01

    Because the wireless sensor network is different from the traditional network characteristics, it is easy to accept the intrusion from the compromise node. The trust mechanism is the most effective way to defend against internal attacks. Aiming at the shortcomings of the existing trust mechanism, a method of calculating the trust of wireless sensor networks based on time segmentation is proposed. It improves the security of the network and extends the life of the network

  9. Methodically Modeling the Tor Network

    DTIC Science & Technology

    2012-08-01

    relays for their circuits: the choice is weighted by the rela- tive difference in the perceived throughput of each relay in an attempt to balance...network. A lack of details about and justifications for such choices obscures the level of faithfulness to the live network and decreases confidence...first byte of the data payload is shown in (a) and (b), and time to the last byte in (c) and (d), for various download sizes. ping process . File download

  10. Theoretical study of network design methodologies for the aerial relay system. [energy consumption and air traffic control

    NASA Technical Reports Server (NTRS)

    Rivera, J. M.; Simpson, R. W.

    1980-01-01

    The aerial relay system network design problem is discussed. A generalized branch and bound based algorithm is developed which can consider a variety of optimization criteria, such as minimum passenger travel time and minimum liner and feeder operating costs. The algorithm, although efficient, is basically useful for small size networks, due to its nature of exponentially increasing computation time with the number of variables.

  11. Designing Robust and Resilient Tactical MANETs

    DTIC Science & Technology

    2014-09-25

    Bounds on the Throughput Efficiency of Greedy Maximal Scheduling in Wireless Networks , IEEE/ACM Transactions on Networking , (06 2011): 0. doi: N... Wireless Sensor Networks and Effects of Long Range Dependant Data, Special IWSM Issue of Sequential Analysis, (11 2012): 0. doi: A. D. Dominguez...Bushnell, R. Poovendran. A Convex Optimization Approach for Clone Detection in Wireless Sensor Networks , Pervasive and Mobile Computing, (01 2012

  12. Mobility and Cloud: Operating in Intermittent, Austere Network Conditions

    DTIC Science & Technology

    2014-09-01

    consume information, and are connected to cloud-based servers over wired or wireless network connections. For mobile clients, this connection, by...near future. In addition to intermittent connectivity issues, many wireless networks introduce additional delay due to excessive buffering. This can...requirements, commercial cloud applications have grown at a fast rate. Similar to other mobile systems, navy ships connected over wireless networks

  13. The Systems Librarian: Implementing Wireless Networks without Compromising Security

    ERIC Educational Resources Information Center

    Breeding, Marshall

    2005-01-01

    Many libraries are or soon will be offering Wi-Fi, also known as wireless networks. The largest perceived barriers to providing this service are concerns about security. The prime rule when deploying Wi-Fi is segregation, having a clear separation between a public wireless network and the rest of the library?s network. A number of devices can be…

  14. Communication protocol in chassis detecting wireless transmission system based on WiFi

    USDA-ARS?s Scientific Manuscript database

    In chassis detecting wireless transmission system, the wireless network communication protocol plays a key role in the information exchange and synchronization between the host and chassis PDA. This paper presents a wireless network transmission protocol based on TCP/IP which makes the rules of info...

  15. Wireless sensor network for monitoring soil moisture and weather conditions

    USDA-ARS?s Scientific Manuscript database

    A wireless sensor network (WSN) was developed and deployed in three fields to monitor soil water status and collect weather data for irrigation scheduling. The WSN consists of soil-water sensors, weather sensors, wireless data loggers, and a wireless modem. Soil-water sensors were installed at three...

  16. Integrating legacy medical data sensors in a wireless network infrastucture.

    PubMed

    Dembeyiotis, S; Konnis, G; Koutsouris, D

    2005-01-01

    In the process of developing a wireless networking solution to provide effective field-deployable communications and telemetry support for rescuers during major natural disasters, we are faced with the task of interfacing the multitude of medical and other legacy data collection sensors to the network grid. In this paper, we detail a number of solutions, with particular attention given to the issue of data security. The chosen implementation allows for sensor control and management from remote network locations, while the sensors can wirelessly transmit their data to nearby network nodes securely, utilizing the latest commercially available cryptography solutions. Initial testing validates the design choices, while the network-enabled sensors are being integrated in the overall wireless network security framework.

  17. Reputation-Based Trust for a Cooperative, Agent-Based Backup Protection Scheme for Power Networks

    DTIC Science & Technology

    2010-03-01

    85 Appendix B . Performance Charts for Data by Scenario...protection for that line. For example Relay 3 provides zone 1 coverage for line B and zone 3 coverage for line C. Relay 4 would also provide zone 1...coverage for line B but zone 3 coverage for line A instead since it is directional. Relay 1 and relay 6 would provide zone 3 coverage for line B . A

  18. Intrusion detection and monitoring for wireless networks.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, Eric D.; Van Randwyk, Jamie A.; Lee, Erik J.

    Wireless computer networks are increasing exponentially around the world. They are being implemented in both the unlicensed radio frequency (RF) spectrum (IEEE 802.11a/b/g) and the licensed spectrum (e.g., Firetide [1] and Motorola Canopy [2]). Wireless networks operating in the unlicensed spectrum are by far the most popular wireless computer networks in existence. The open (i.e., proprietary) nature of the IEEE 802.11 protocols and the availability of ''free'' RF spectrum have encouraged many producers of enterprise and common off-the-shelf (COTS) computer networking equipment to jump into the wireless arena. Competition between these companies has driven down the price of 802.11 wirelessmore » networking equipment and has improved user experiences with such equipment. The end result has been an increased adoption of the equipment by businesses and consumers, the establishment of the Wi-Fi Alliance [3], and widespread use of the Alliance's ''Wi-Fi'' moniker to describe these networks. Consumers use 802.11 equipment at home to reduce the burden of running wires in existing construction, facilitate the sharing of broadband Internet services with roommates or neighbors, and increase their range of ''connectedness''. Private businesses and government entities (at all levels) are deploying wireless networks to reduce wiring costs, increase employee mobility, enable non-employees to access the Internet, and create an added revenue stream to their existing business models (coffee houses, airports, hotels, etc.). Municipalities (Philadelphia; San Francisco; Grand Haven, MI) are deploying wireless networks so they can bring broadband Internet access to places lacking such access; offer limited-speed broadband access to impoverished communities; offer broadband in places, such as marinas and state parks, that are passed over by traditional broadband providers; and provide themselves with higher quality, more complete network coverage for use by emergency responders and other municipal agencies. In short, these Wi-Fi networks are being deployed everywhere. Much thought has been and is being put into evaluating cost-benefit analyses of wired vs. wireless networks and issues such as how to effectively cover an office building or municipality, how to efficiently manage a large network of wireless access points (APs), and how to save money by replacing an Internet service provider (ISP) with 802.11 technology. In comparison, very little thought and money are being focused on wireless security and monitoring for security purposes.« less

  19. Wireless local area network security.

    PubMed

    Bergeron, Bryan P

    2004-01-01

    Wireless local area networks (WLANs) are increasingly popular in clinical settings because they facilitate the use of wireless PDAs, laptops, and other pervasive computing devices at the point of care. However, because of the relative immaturity of wireless network technology and evolving standards, WLANs, if improperly configured, can present significant security risks. Understanding the security limitations of the technology and available fixes can help minimize the risks of clinical data loss and maintain compliance with HIPAA guidelines.

  20. The New Space Network: the Tracking and Data Relay Satellite System

    NASA Technical Reports Server (NTRS)

    Froehlich, W.

    1986-01-01

    When the Tracking and Data Relay Satellite System (TDRSS)is completed, the system, together with its various NASA support elements will be known simply as the Space Networks. It will substantially increase information exchanges between low-orbiting spacecraft and the ground. The structural design, functions, earth-based links, and present and future use are discussed.

  1. Ground wave emergency network final operational capability: Environmental assessment for northwestern Nebraska relay node, site number RN 8C930NE

    NASA Astrophysics Data System (ADS)

    1993-02-01

    The Ground Wave Emergency Network (GWEN) is a radio communication system designed to relay emergency messages between strategic military areas in the continental United States. The system is immune to the effects of high-altitude electromagnetic pulse (HEMP) energy surges caused by nuclear bursts in the ionosphere that would disrupt conventional communications equipment such as telephones and shortwave radios. A failure of such equipment would prevent timely communications among top military and civilian leaders and strategic Air Force locations and prevent U.S. assessment and retaliation during an attack. GWEN is an essential part of a defense modernization program to upgrade and improve our nation's communications system, thereby strengthening deterrence. The GWEN system consists of a network of relay nodes, receive-only stations, and input/output stations. Each relay node, such as the one proposed in northwestern Nebraska, consists of a guyed radio tower facility similar to those used by commercial AM broadcast transmitters.

  2. Ground wave emergency network environmental assessment for northwestern Colorado relay node site number RN 8C924CO

    NASA Astrophysics Data System (ADS)

    1993-02-01

    The Ground Wave Emergency Network (GWEN) is a radio communication system designed to relay emergency messages between strategic military areas in the continental United States. The system is immune to the effects of high-altitude electromagnetic pulse (HEMP) energy surges caused by nuclear bursts in the ionosphere that would disrupt conventional communications equipment such as telephones and shortwave radios. A failure of such equipment would prevent timely communications among top military and civilian leaders and strategic Air Force locations and prevent U.S. assessment and retaliation during an attack. GWEN is an essential part of a defense modernization program to upgrade and improve our nation's communications system, thereby strengthening deterrence. The GWEN system consists of a network of relay nodes, receive-only stations, and input/output stations. Each relay node, such as the one proposed in southern Nevada consists of a guyed radio tower facility similar to those used by commercial AM broadcast transmitters.

  3. Ground wave emergency network final operational capability: Environmental assessment for southern Nevada relay node site number RN 8W918NV

    NASA Astrophysics Data System (ADS)

    1993-03-01

    The Ground Wave Emergency Network (GWEN) is a radio communication system designed to relay emergency messages between strategic military areas in the continental United States. The system is immune to the effects of high-altitude electromagnetic pulse (HEMP) energy surges caused by nuclear bursts in the ionosphere that would disrupt conventional communications equipment such as telephones and shortwave radios. A failure of such equipment would prevent timely communications among top military and civilian leaders and strategic Air Force locations and prevent U.S. assessment and retaliation during an attack. GWEN is an essential part of a defense modernization program to upgrade and improve our nation's communications system, thereby strengthening deterrence. The GWEN system consists of a network of relay nodes, receive-only stations, and input/output stations. Each relay node, such as the one proposed in southern Nevada consists of a guyed radio tower facility similar to those used by commercial AM broadcast transmitters.

  4. Enhanced Security and Pairing-free Handover Authentication Scheme for Mobile Wireless Networks

    NASA Astrophysics Data System (ADS)

    Chen, Rui; Shu, Guangqiang; Chen, Peng; Zhang, Lijun

    2017-10-01

    With the widely deployment of mobile wireless networks, we aim to propose a secure and seamless handover authentication scheme that allows users to roam freely in wireless networks without worrying about security and privacy issues. Given the open characteristic of wireless networks, safety and efficiency should be considered seriously. Several previous protocols are designed based on a bilinear pairing mapping, which is time-consuming and inefficient work, as well as unsuitable for practical situations. To address these issues, we designed a new pairing-free handover authentication scheme for mobile wireless networks. This scheme is an effective improvement of the protocol by Xu et al., which is suffer from the mobile node impersonation attack. Security analysis and simulation experiment indicate that the proposed protocol has many excellent security properties when compared with other recent similar handover schemes, such as mutual authentication and resistance to known network threats, as well as requiring lower computation and communication cost.

  5. Impact of in-band interference on a wake-up radio system in wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Lebreton, J. M.; Murad, N. M.; Lorion, R.

    2017-05-01

    The energy efficiency of Wireless Sensor Networks (WSNs) is considerably improved with Wake-up Radio (WuR) systems. However, their resilience to interference is often neglected in the literature. This might be an issue due to the proliferation of wireless devices and the growing field of internet of things. In this paper, we evaluate the impact of in-band interference from wireless devices on a WuR system. The approach proves that WuR systems are still performing well when coexisting with external wireless networks, even if the energy-efficiency is slightly reduced.

  6. Bluetooth-based wireless sensor networks

    NASA Astrophysics Data System (ADS)

    You, Ke; Liu, Rui Qiang

    2007-11-01

    In this work a Bluetooth-based wireless sensor network is proposed. In this bluetooth-based wireless sensor networks, information-driven star topology and energy-saved mode are used, through which a blue master node can control more than seven slave node, the energy of each sensor node is reduced and secure management of each sensor node is improved.

  7. 78 FR 1252 - CalAmp Wireless Networks Corporation (CWNC), Satellite Products Division, Including On-Site...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-08

    ... Select Staffing, Oxnard, CA; CalAmp Wireless Networks Corporation (CWNC), Including On- Site Leased... Division, including on-site leased workers from Select Staffing, Oxnard, California (TA-W-80,399). The...-site leased workers from Select Staffing, Oxnard, California (TA-W-80,399) and CalAmp Wireless Networks...

  8. Emulation Platform for Cyber Analysis of Wireless Communication Network Protocols

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Leeuwen, Brian P.; Eldridge, John M.

    Wireless networking and mobile communications is increasing around the world and in all sectors of our lives. With increasing use, the density and complexity of the systems increase with more base stations and advanced protocols to enable higher data throughputs. The security of data transported over wireless networks must also evolve with the advances in technologies enabling more capable wireless networks. However, means for analysis of the effectiveness of security approaches and implementations used on wireless networks are lacking. More specifically a capability to analyze the lower-layer protocols (i.e., Link and Physical layers) is a major challenge. An analysis approachmore » that incorporates protocol implementations without the need for RF emissions is necessary. In this research paper several emulation tools and custom extensions that enable an analysis platform to perform cyber security analysis of lower layer wireless networks is presented. A use case of a published exploit in the 802.11 (i.e., WiFi) protocol family is provided to demonstrate the effectiveness of the described emulation platform.« less

  9. Dynamic Hierarchical Sleep Scheduling for Wireless Ad-Hoc Sensor Networks

    PubMed Central

    Wen, Chih-Yu; Chen, Ying-Chih

    2009-01-01

    This paper presents two scheduling management schemes for wireless sensor networks, which manage the sensors by utilizing the hierarchical network structure and allocate network resources efficiently. A local criterion is used to simultaneously establish the sensing coverage and connectivity such that dynamic cluster-based sleep scheduling can be achieved. The proposed schemes are simulated and analyzed to abstract the network behaviors in a number of settings. The experimental results show that the proposed algorithms provide efficient network power control and can achieve high scalability in wireless sensor networks. PMID:22412343

  10. Dynamic hierarchical sleep scheduling for wireless ad-hoc sensor networks.

    PubMed

    Wen, Chih-Yu; Chen, Ying-Chih

    2009-01-01

    This paper presents two scheduling management schemes for wireless sensor networks, which manage the sensors by utilizing the hierarchical network structure and allocate network resources efficiently. A local criterion is used to simultaneously establish the sensing coverage and connectivity such that dynamic cluster-based sleep scheduling can be achieved. The proposed schemes are simulated and analyzed to abstract the network behaviors in a number of settings. The experimental results show that the proposed algorithms provide efficient network power control and can achieve high scalability in wireless sensor networks.

  11. Wireless Augmented Reality Communication System

    NASA Technical Reports Server (NTRS)

    Agan, Martin (Inventor); Devereaux, Ann (Inventor); Jedrey, Thomas (Inventor)

    2015-01-01

    A portable unit is for video communication to select a user name in a user name network. A transceiver wirelessly accesses a communication network through a wireless connection to a general purpose node coupled to the communication network. A user interface can receive user input to log on to a user name network through the communication network. The user name network has a plurality of user names, at least one of the plurality of user names is associated with a remote portable unit, logged on to the user name network and available for video communication.

  12. Wireless Augmented Reality Communication System

    NASA Technical Reports Server (NTRS)

    Jedrey, Thomas (Inventor); Agan, Martin (Inventor); Devereaux, Ann (Inventor)

    2017-01-01

    A portable unit is for video communication to select a user name in a user name network. A transceiver wirelessly accesses a communication network through a wireless connection to a general purpose node coupled to the communication network. A user interface can receive user input to log on to a user name network through the communication network. The user name network has a plurality of user names, at least one of the plurality of user names is associated with a remote portable unit, logged on to the user name network and available for video communication.

  13. (abstract) Experimental Results From Internetworking Data Applications Over Various Wireless Networks Using a Single Flexible Error Control Protocol

    NASA Technical Reports Server (NTRS)

    Kanai, T.; Kramer, M.; McAuley, A. J.; Nowack, S.; Pinck, D. S.; Ramirez, G.; Stewart, I.; Tohme, H.; Tong, L.

    1995-01-01

    This paper describes results from several wireless field trials in New Jersey, California, and Colorado, conducted jointly by researchers at Bellcore, JPL, and US West over the course of 1993 and 1994. During these trials, applications communicated over multiple wireless networks including satellite, low power PCS, high power cellular, packet data, and the wireline Public Switched Telecommunications Network (PSTN). Key goals included 1) designing data applications and an API suited to mobile users, 2) investigating internetworking issues, 3) characterizing wireless networks under various field conditions, and 4) comparing the performance of different protocol mechanisms over the diverse networks and applications. We describe experimental results for different protocol mechanisms and parameters, such as acknowledgment schemes and packet sizes. We show the need for powerful error control mechanisms such as selective acknowledgements and combining data from multiple transmissions. We highlight the possibility of a common protocol for all wireless networks, from micro-cellular PCS to satellite networks.

  14. The Role of Wireless Computing Technology in the Design of Schools.

    ERIC Educational Resources Information Center

    Nair, Prakash

    This document discusses integrating computers logically and affordably into a school building's infrastructure through the use of wireless technology. It begins by discussing why wireless networks using mobile computers are preferable to desktop machines in each classoom. It then explains the features of a wireless local area network (WLAN) and…

  15. High Fidelity Simulations of Large-Scale Wireless Networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Onunkwo, Uzoma; Benz, Zachary

    The worldwide proliferation of wireless connected devices continues to accelerate. There are 10s of billions of wireless links across the planet with an additional explosion of new wireless usage anticipated as the Internet of Things develops. Wireless technologies do not only provide convenience for mobile applications, but are also extremely cost-effective to deploy. Thus, this trend towards wireless connectivity will only continue and Sandia must develop the necessary simulation technology to proactively analyze the associated emerging vulnerabilities. Wireless networks are marked by mobility and proximity-based connectivity. The de facto standard for exploratory studies of wireless networks is discrete event simulationsmore » (DES). However, the simulation of large-scale wireless networks is extremely difficult due to prohibitively large turnaround time. A path forward is to expedite simulations with parallel discrete event simulation (PDES) techniques. The mobility and distance-based connectivity associated with wireless simulations, however, typically doom PDES and fail to scale (e.g., OPNET and ns-3 simulators). We propose a PDES-based tool aimed at reducing the communication overhead between processors. The proposed solution will use light-weight processes to dynamically distribute computation workload while mitigating communication overhead associated with synchronizations. This work is vital to the analytics and validation capabilities of simulation and emulation at Sandia. We have years of experience in Sandia’s simulation and emulation projects (e.g., MINIMEGA and FIREWHEEL). Sandia’s current highly-regarded capabilities in large-scale emulations have focused on wired networks, where two assumptions prevent scalable wireless studies: (a) the connections between objects are mostly static and (b) the nodes have fixed locations.« less

  16. Wireless Power Control for Tactical MANET: Power Rate Bounds

    DTIC Science & Technology

    2016-09-01

    signals and by their inherent interference.” Figure 1. Transmission and interference in a two-link wireless network. Wireless power control seeks to...e.g., shutting off transmissions to measure the interference is impractical.) In a wireless power control system, the receiver sets its transmitter’s...Travassos Ro- mano [2013] Transmission Power Control for Opportunistic QoS Provision in Wireless Networks, IEEE Transactions on Control Systems Technology

  17. Watchdog Sensor Network with Multi-Stage RF Signal Identification and Cooperative Intrusion Detection

    DTIC Science & Technology

    2012-03-01

    detection and physical layer authentication in mobile Ad Hoc networks and wireless sensor networks (WSNs) have been investigated. Résume Le rapport...IEEE 802.16 d and e (WiMAX); (b) IEEE 802.11 (Wi-Fi) family of a, b, g, n, and s (c) Sensor networks based on IEEE 802.15.4: Wireless USB, Bluetooth... sensor network are investigated for standard compatible wireless signals. The proposed signal existence detection and identification process consists

  18. Availability Issues in Wireless Visual Sensor Networks

    PubMed Central

    Costa, Daniel G.; Silva, Ivanovitch; Guedes, Luiz Affonso; Vasques, Francisco; Portugal, Paulo

    2014-01-01

    Wireless visual sensor networks have been considered for a large set of monitoring applications related with surveillance, tracking and multipurpose visual monitoring. When sensors are deployed over a monitored field, permanent faults may happen during the network lifetime, reducing the monitoring quality or rendering parts or the entire network unavailable. In a different way from scalar sensor networks, camera-enabled sensors collect information following a directional sensing model, which changes the notions of vicinity and redundancy. Moreover, visual source nodes may have different relevancies for the applications, according to the monitoring requirements and cameras' poses. In this paper we discuss the most relevant availability issues related to wireless visual sensor networks, addressing availability evaluation and enhancement. Such discussions are valuable when designing, deploying and managing wireless visual sensor networks, bringing significant contributions to these networks. PMID:24526301

  19. Transport Protocols for Wireless Mesh Networks

    NASA Astrophysics Data System (ADS)

    Eddie Law, K. L.

    Transmission control protocol (TCP) provides reliable connection-oriented services between any two end systems on the Internet. With TCP congestion control algorithm, multiple TCP connections can share network and link resources simultaneously. These TCP congestion control mechanisms have been operating effectively in wired networks. However, performance of TCP connections degrades rapidly in wireless and lossy networks. To sustain the throughput performance of TCP connections in wireless networks, design modifications may be required accordingly in the TCP flow control algorithm, and potentially, in association with other protocols in other layers for proper adaptations. In this chapter, we explain the limitations of the latest TCP congestion control algorithm, and then review some popular designs for TCP connections to operate effectively in wireless mesh network infrastructure.

  20. Routing Protocols in Wireless Sensor Networks

    PubMed Central

    Villalba, Luis Javier García; Orozco, Ana Lucila Sandoval; Cabrera, Alicia Triviño; Abbas, Cláudia Jacy Barenco

    2009-01-01

    The applications of wireless sensor networks comprise a wide variety of scenarios. In most of them, the network is composed of a significant number of nodes deployed in an extensive area in which not all nodes are directly connected. Then, the data exchange is supported by multihop communications. Routing protocols are in charge of discovering and maintaining the routes in the network. However, the appropriateness of a particular routing protocol mainly depends on the capabilities of the nodes and on the application requirements. This paper presents a review of the main routing protocols proposed for wireless sensor networks. Additionally, the paper includes the efforts carried out by Spanish universities on developing optimization techniques in the area of routing protocols for wireless sensor networks. PMID:22291515

  1. Routing protocols in wireless sensor networks.

    PubMed

    Villalba, Luis Javier García; Orozco, Ana Lucila Sandoval; Cabrera, Alicia Triviño; Abbas, Cláudia Jacy Barenco

    2009-01-01

    The applications of wireless sensor networks comprise a wide variety of scenarios. In most of them, the network is composed of a significant number of nodes deployed in an extensive area in which not all nodes are directly connected. Then, the data exchange is supported by multihop communications. Routing protocols are in charge of discovering and maintaining the routes in the network. However, the appropriateness of a particular routing protocol mainly depends on the capabilities of the nodes and on the application requirements. This paper presents a review of the main routing protocols proposed for wireless sensor networks. Additionally, the paper includes the efforts carried out by Spanish universities on developing optimization techniques in the area of routing protocols for wireless sensor networks.

  2. Making Wireless Networks Secure for NASA Mission Critical Applications using Virtual Private Network (VPN) Technology

    NASA Technical Reports Server (NTRS)

    Nichols, Kelvin F.; Best, Susan; Schneider, Larry

    2004-01-01

    With so many security issues involved with wireless networks, the technology has not been fully utilized in the area of mission critical applications. These applications would include the areas of telemetry, commanding, voice and video. Wireless networking would allow payload operators the mobility to take computers outside of the control room to their offices and anywhere else in the facility that the wireless network was extended. But the risk is too great of having someone sit just inside of your wireless network coverage and intercept enough of your network traffic to steal proprietary data from a payload experiment or worse yet hack back into your system and do even greater harm by issuing harmful commands. Wired Equivalent Privacy (WEP) is improving but has a ways to go before it can be trusted to protect mission critical data. Today s hackers are becoming more aggressive and innovative, and in order to take advantage of the benefits that wireless networking offer, appropriate security measures need to be in place that will thwart hackers. The Virtual Private Network (VPN) offers a solution to the security problems that have kept wireless networks from being used for mission critical applications. VPN provides a level of encryption that will ensure that data is protected while it is being transmitted over a wireless local area network (IAN). The VPN allows a user to authenticate to the site that the user needs to access. Once this authentication has taken place the network traffic between that site and the user is encapsulated in VPN packets with the Triple Data Encryption Standard (3DES). 3DES is an encryption standard that uses a single secret key to encrypt and decrypt data. The length of the encryption key is 168 bits as opposed to its predecessor DES that has a 56-bit encryption key. Even though 3DES is the common encryption standard for today, the Advance Encryption Standard (AES), which provides even better encryption at a lower cycle cost is growing acceptance. The user computer running the VPN client and the. target site that is running the . VPN firewall exchange this encryption key and therefore are the only ones that are able to decipher the data. The level of encryption offered by the VPN is making it possible for wireless networks to pass the strict security policies that have kept them from being used in the past. Now people will be able to benefit from the many advantages that wireless networking has to offer in the area of mission critical applications.

  3. Making Wireless Networks Secure for NASA Mission Critical Applications Using Virtual Private Network (VPN) Technology

    NASA Technical Reports Server (NTRS)

    Nichols, Kelvin F.; Best, Susan; Schneider, Larry

    2004-01-01

    With so many security issues involved with wireless networks, the technology has not been fully utilized in the area of mission critical applications. These applications would include the areas of telemetry, commanding, voice and video. Wireless networking would allow payload operators the mobility to take computers outside of the control room to their off ices and anywhere else in the facility that the wireless network was extended. But the risk is too great of having someone sit just inside of your wireless network coverage and intercept enough of your network traffic to steal proprietary data from a payload experiment or worse yet hack back into your system and do even greater harm by issuing harmful commands. Wired Equivalent Privacy (WEP) is improving but has a ways to go before it can be trusted to protect mission critical data. Today s hackers are becoming more aggressive and innovative, and in order to take advantage of the benefits that wireless networking offer, appropriate security measures need to be in place that will thwart hackers. The Virtual Private Network (VPN) offers a solution to the security problems that have kept wireless networks from being used for mission critical applications. VPN provides a level of encryption that will ensure that data is protected while it is being transmitted over a wireless local area network (LAN). The VPN allows a user to authenticate to the site that the user needs to access. Once this authentication has taken place the network traffic between that site and the user is encapsulated in VPN packets with the Triple Data Encryption Standard (3DES). 3DES is an encryption standard that uses a single secret key to encrypt and decrypt data. The length of the encryption key is 168 bits as opposed to its predecessor DES that has a 56-bit encryption key. Even though 3DES is the common encryption standard for today, the Advance Encryption Standard (AES), which provides even better encryption at a lower cycle cost is growing acceptance. The user computer running the VPN client and the target site that is running the VPN firewall exchange this encryption key and therefore are the only ones that are able to decipher the data. The level of encryption offered by the VPN is making it possible for wireless networks to pass the strict security policies that have kept them from being used in the past. Now people will be able to benefit from the many advantages that wireless networking has to offer in the area of mission critical applications.

  4. Sensor4PRI: A Sensor Platform for the Protection of Railway Infrastructures

    PubMed Central

    Cañete, Eduardo; Chen, Jaime; Díaz, Manuel; Llopis, Luis; Rubio, Bartolomé

    2015-01-01

    Wireless Sensor Networks constitute pervasive and distributed computing systems and are potentially one of the most important technologies of this century. They have been specifically identified as a good candidate to become an integral part of the protection of critical infrastructures. In this paper we focus on railway infrastructure protection and we present the details of a sensor platform designed to be integrated into a slab track system in order to carry out both installation and maintenance monitoring activities. In the installation phase, the platform helps operators to install the slab tracks in the right position. In the maintenance phase, the platform collects information about the structural health and behavior of the infrastructure when a train travels along it and relays the readings to a base station. The base station uses trains as data mules to upload the information to the internet. The use of a train as a data mule is especially suitable for collecting information from remote or inaccessible places which do not have a direct connection to the internet and require less network infrastructure. The overall aim of the system is to deploy a permanent economically viable monitoring system to improve the safety of railway infrastructures. PMID:25734648

  5. Traffic prediction using wireless cellular networks : final report.

    DOT National Transportation Integrated Search

    2016-03-01

    The major objective of this project is to obtain traffic information from existing wireless : infrastructure. : In this project freeway traffic is identified and modeled using data obtained from existing : wireless cellular networks. Most of the prev...

  6. Using digital watermarking to enhance security in wireless medical image transmission.

    PubMed

    Giakoumaki, Aggeliki; Perakis, Konstantinos; Banitsas, Konstantinos; Giokas, Konstantinos; Tachakra, Sapal; Koutsouris, Dimitris

    2010-04-01

    During the last few years, wireless networks have been increasingly used both inside hospitals and in patients' homes to transmit medical information. In general, wireless networks suffer from decreased security. However, digital watermarking can be used to secure medical information. In this study, we focused on combining wireless transmission and digital watermarking technologies to better secure the transmission of medical images within and outside the hospital. We utilized an integrated system comprising the wireless network and the digital watermarking module to conduct a series of tests. The test results were evaluated by medical consultants. They concluded that the images suffered no visible quality degradation and maintained their diagnostic integrity. The proposed integrated system presented reasonable stability, and its performance was comparable to that of a fixed network. This system can enhance security during the transmission of medical images through a wireless channel.

  7. Stochastic Control of Multi-Scale Networks: Modeling, Analysis and Algorithms

    DTIC Science & Technology

    2014-10-20

    Theory, (02 2012): 0. doi: B. T. Swapna, Atilla Eryilmaz, Ness B. Shroff. Throughput-Delay Analysis of Random Linear Network Coding for Wireless ... Wireless Sensor Networks and Effects of Long-Range Dependent Data, Sequential Analysis , (10 2012): 0. doi: 10.1080/07474946.2012.719435 Stefano...Sequential Analysis , (10 2012): 0. doi: John S. Baras, Shanshan Zheng. Sequential Anomaly Detection in Wireless Sensor Networks andEffects of Long

  8. Multimedia-Based Integration of Cross-Layer Techniques

    DTIC Science & Technology

    2014-06-01

    wireless networks play a critical role in net-centric warfare, including the sharing of the time-sensitive battlefield information among military nodes for...layer protocols are key enablers in effectively deploying the military wireless network. This report discusses the design of cross-layer protocols...2 1.0 INTRODUCTION 1.1 Motivation The Air Force (AF) Wireless Networks (also denoted as military networks in this report) must be capable of

  9. Performance evaluation of complete data transfer of physical layer according to IEEE 802.15.4 standard

    NASA Astrophysics Data System (ADS)

    Raju, Kota Solomon; Merugu, Naresh Babu; Neetu, Babu, E. Ram

    2016-03-01

    ZigBee is well-accepted industrial standard for wireless sensor networks based on IEEE 802.15.4 standard. Wireless Sensor Networks is the major concern of communication these days. These Wireless Sensor Networks investigate the properties of networks of small battery-powered sensors with wireless communication. The communication between any two wireless nodes of wireless sensor networks is carried out through a protocol stack. This protocol stack has been designed by different vendors in various ways. Every custom vendor possesses his own protocol stack and algorithms especially at the MAC layer. But, many applications require modifications in their algorithms at various layers as per their requirements, especially energy efficient protocols at MAC layer that are simulated in Wireless sensor Network Simulators which are not being tested in real time systems because vendors do not allow the programmability of each layer in their protocol stack. This problem can be quoted as Vendor-Interoperability. The solution is to develop the programmable protocol stack where we can design our own application as required. As a part of the task first we tried implementing physical layer and transmission of data using physical layer. This paper describes about the transmission of the total number of bytes of Frame according to the IEEE 802.15.4 standard using Physical Layer.

  10. Design and Analysis of Secure Routing Protocol for Wireless Sensor Networks

    NASA Astrophysics Data System (ADS)

    Wang, Jiong; Zhang, Hua

    2017-09-01

    In recent years, with the development of science and technology and the progress of the times, China's wireless network technology has become increasingly prosperous and it plays an important role in social production and life. In this context, in order to further to enhance the stability of wireless network data transmission and security enhancements, the staff need to focus on routing security and carry out related work. Based on this, this paper analyzes the design of wireless sensor based on secure routing protocol.

  11. Mobility management techniques for the next-generation wireless networks

    NASA Astrophysics Data System (ADS)

    Sun, Junzhao; Howie, Douglas P.; Sauvola, Jaakko J.

    2001-10-01

    The tremendous demands from social market are pushing the booming development of mobile communications faster than ever before, leading to plenty of new advanced techniques emerging. With the converging of mobile and wireless communications with Internet services, the boundary between mobile personal telecommunications and wireless computer networks is disappearing. Wireless networks of the next generation need the support of all the advances on new architectures, standards, and protocols. Mobility management is an important issue in the area of mobile communications, which can be best solved at the network layer. One of the key features of the next generation wireless networks is all-IP infrastructure. This paper discusses the mobility management schemes for the next generation mobile networks through extending IP's functions with mobility support. A global hierarchical framework model for the mobility management of wireless networks is presented, in which the mobility management is divided into two complementary tasks: macro mobility and micro mobility. As the macro mobility solution, a basic principle of Mobile IP is introduced, together with the optimal schemes and the advances in IPv6. The disadvantages of the Mobile IP on solving the micro mobility problem are analyzed, on the basis of which three main proposals are discussed as the micro mobility solutions for mobile communications, including Hierarchical Mobile IP (HMIP), Cellular IP, and Handoff-Aware Wireless Access Internet Infrastructure (HAWAII). A unified model is also described in which the different micro mobility solutions can coexist simultaneously in mobile networks.

  12. GSFC network operations with Tracking and Data Relay Satellites

    NASA Astrophysics Data System (ADS)

    Spearing, R.; Perreten, D. E.

    The Tracking and Data Relay Satellite System (TDRSS) Network (TN) has been developed to provide services to all NASA User spacecraft in near-earth orbits. Three inter-relating entities will provide these services. The TN has been transformed from a network continuously changing to meet User specific requirements to a network which is flexible to meet future needs without significant changes in operational concepts. Attention is given to the evolution of the TN network, the TN capabilities-space segment, forward link services, tracking services, return link services, the three basic capabilities, single access services, multiple access services, simulation services, the White Sands Ground Terminal, the NASA communications network, and the network control center.

  13. GSFC network operations with Tracking and Data Relay Satellites

    NASA Technical Reports Server (NTRS)

    Spearing, R.; Perreten, D. E.

    1984-01-01

    The Tracking and Data Relay Satellite System (TDRSS) Network (TN) has been developed to provide services to all NASA User spacecraft in near-earth orbits. Three inter-relating entities will provide these services. The TN has been transformed from a network continuously changing to meet User specific requirements to a network which is flexible to meet future needs without significant changes in operational concepts. Attention is given to the evolution of the TN network, the TN capabilities-space segment, forward link services, tracking services, return link services, the three basic capabilities, single access services, multiple access services, simulation services, the White Sands Ground Terminal, the NASA communications network, and the network control center.

  14. Detecting and Preventing Sybil Attacks in Wireless Sensor Networks Using Message Authentication and Passing Method.

    PubMed

    Dhamodharan, Udaya Suriya Raj Kumar; Vayanaperumal, Rajamani

    2015-01-01

    Wireless sensor networks are highly indispensable for securing network protection. Highly critical attacks of various kinds have been documented in wireless sensor network till now by many researchers. The Sybil attack is a massive destructive attack against the sensor network where numerous genuine identities with forged identities are used for getting an illegal entry into a network. Discerning the Sybil attack, sinkhole, and wormhole attack while multicasting is a tremendous job in wireless sensor network. Basically a Sybil attack means a node which pretends its identity to other nodes. Communication to an illegal node results in data loss and becomes dangerous in the network. The existing method Random Password Comparison has only a scheme which just verifies the node identities by analyzing the neighbors. A survey was done on a Sybil attack with the objective of resolving this problem. The survey has proposed a combined CAM-PVM (compare and match-position verification method) with MAP (message authentication and passing) for detecting, eliminating, and eventually preventing the entry of Sybil nodes in the network. We propose a scheme of assuring security for wireless sensor network, to deal with attacks of these kinds in unicasting and multicasting.

  15. Detecting and Preventing Sybil Attacks in Wireless Sensor Networks Using Message Authentication and Passing Method

    PubMed Central

    Dhamodharan, Udaya Suriya Raj Kumar; Vayanaperumal, Rajamani

    2015-01-01

    Wireless sensor networks are highly indispensable for securing network protection. Highly critical attacks of various kinds have been documented in wireless sensor network till now by many researchers. The Sybil attack is a massive destructive attack against the sensor network where numerous genuine identities with forged identities are used for getting an illegal entry into a network. Discerning the Sybil attack, sinkhole, and wormhole attack while multicasting is a tremendous job in wireless sensor network. Basically a Sybil attack means a node which pretends its identity to other nodes. Communication to an illegal node results in data loss and becomes dangerous in the network. The existing method Random Password Comparison has only a scheme which just verifies the node identities by analyzing the neighbors. A survey was done on a Sybil attack with the objective of resolving this problem. The survey has proposed a combined CAM-PVM (compare and match-position verification method) with MAP (message authentication and passing) for detecting, eliminating, and eventually preventing the entry of Sybil nodes in the network. We propose a scheme of assuring security for wireless sensor network, to deal with attacks of these kinds in unicasting and multicasting. PMID:26236773

  16. Advanced wireless mobile collaborative sensing network for tactical and strategic missions

    NASA Astrophysics Data System (ADS)

    Xu, Hao

    2017-05-01

    In this paper, an advanced wireless mobile collaborative sensing network will be developed. Through properly combining wireless sensor network, emerging mobile robots and multi-antenna sensing/communication techniques, we could demonstrate superiority of developed sensing network. To be concrete, heterogeneous mobile robots including unmanned aerial vehicle (UAV) and unmanned ground vehicle (UGV) are equipped with multi-model sensors and wireless transceiver antennas. Through real-time collaborative formation control, multiple mobile robots can team the best formation that can provide most accurate sensing results. Also, formatting multiple mobile robots can also construct a multiple-input multiple-output (MIMO) communication system that can provide a reliable and high performance communication network.

  17. Utilising eduroam[TM] Architecture in Building Wireless Community Networks

    ERIC Educational Resources Information Center

    Huhtanen, Karri; Vatiainen, Heikki; Keski-Kasari, Sami; Harju, Jarmo

    2008-01-01

    Purpose: eduroam[TM] has already been proved to be a scalable, secure and feasible way for universities and research institutions to connect their wireless networks into a WLAN roaming community, but the advantages of eduroam[TM] have not yet been fully discovered in the wireless community networks aimed at regular consumers. This aim of this…

  18. The Study of Collective Actions in a University Anchored Community Wireless Network

    ERIC Educational Resources Information Center

    Kuchibhotla, Hari N.

    2012-01-01

    The emergence of wireless devices and the ease in setting up wireless devices has created opportunities for various entities, and in particular to universities, by partnering with their local communities in the form of a university anchored community wireless network. This provides opportunities for students to be part of the community-based…

  19. A performance analysis in AF full duplex relay selection network

    NASA Astrophysics Data System (ADS)

    Ngoc, Long Nguyen; Hong, Nhu Nguyen; Loan, Nguyen Thi Phuong; Kieu, Tam Nguyen; Voznak, Miroslav; Zdralek, Jaroslav

    2018-04-01

    This paper studies on the relaying selective matter in amplify-and-forward (AF) cooperation communication with full-duplex (FD) activity. Various relay choice models supposing the present of different instant information are investigated. We examine a maximal relaying choice that optimizes the instant FD channel capacity and asks for global channel state information (CSI) as well as partial CSI learning. To make comparison easy, accurate outage probability clauses and asymptote form of these strategies that give a diversity rank are extracted. From that, we can see clearly that the number of relays, noise factor, the transmittance coefficient as well as the information transfer power had impacted on their performance. Besides, the optimal relay selection (ORS) model can promote than that of the partial relay selection (PRS) model.

  20. Exploiting Spatial Channel Occupancy Information in WLANs

    DTIC Science & Technology

    2014-05-15

    transmit signal UDP user datagram protocol WLAN wireless local area network ix Acknowledgements I owe a great debt of gratitude to my advisor, Professor...information. Unlike in wired networks , each node in a wireless network observes a different medium depending on its location. As a result, standard local... wireless LANs [15, 23, 29]. In [23], Li et. al. model the throughput of an 802.11 network using full spatial information. Their approach is from a

  1. The Audacity of Fiber-Wireless (FiWi) Networks

    NASA Astrophysics Data System (ADS)

    Maier, Martin; Ghazisaidi, Navid; Reisslein, Martin

    A plethora of enabling optical and wireless technologies have been emerging that can be used to build future-proof bimodal fiber-wireless (FiWi) broadband access networks. After overviewing key enabling radio-over-fiber (RoF) and radio-and-fiber (R&F) technologies and briefly surveying the state of the art of FiWi networks, we introduce an Ethernet-based access-metro FiWi network, called SuperMAN, that integrates next-generation WiFi and WiMAX networks with WDM-enhanced EPON and RPR networks. Throughout the paper we pay close attention to the technical challenges and opportunities of FiWi networks, but also elaborate on their societal benefits and potential to shift the current research focus from optical-wireless networking to the exploitation of personal and in-home computing facilities to create new unforeseen services and applications as we are about to enter the Petabyte age.

  2. On computer vision in wireless sensor networks.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berry, Nina M.; Ko, Teresa H.

    Wireless sensor networks allow detailed sensing of otherwise unknown and inaccessible environments. While it would be beneficial to include cameras in a wireless sensor network because images are so rich in information, the power cost of transmitting an image across the wireless network can dramatically shorten the lifespan of the sensor nodes. This paper describe a new paradigm for the incorporation of imaging into wireless networks. Rather than focusing on transmitting images across the network, we show how an image can be processed locally for key features using simple detectors. Contrasted with traditional event detection systems that trigger an imagemore » capture, this enables a new class of sensors which uses a low power imaging sensor to detect a variety of visual cues. Sharing these features among relevant nodes cues specific actions to better provide information about the environment. We report on various existing techniques developed for traditional computer vision research which can aid in this work.« less

  3. Research Trends in Wireless Visual Sensor Networks When Exploiting Prioritization

    PubMed Central

    Costa, Daniel G.; Guedes, Luiz Affonso; Vasques, Francisco; Portugal, Paulo

    2015-01-01

    The development of wireless sensor networks for control and monitoring functions has created a vibrant investigation scenario, where many critical topics, such as communication efficiency and energy consumption, have been investigated in the past few years. However, when sensors are endowed with low-power cameras for visual monitoring, a new scope of challenges is raised, demanding new research efforts. In this context, the resource-constrained nature of sensor nodes has demanded the use of prioritization approaches as a practical mechanism to lower the transmission burden of visual data over wireless sensor networks. Many works in recent years have considered local-level prioritization parameters to enhance the overall performance of those networks, but global-level policies can potentially achieve better results in terms of visual monitoring efficiency. In this paper, we make a broad review of some recent works on priority-based optimizations in wireless visual sensor networks. Moreover, we envisage some research trends when exploiting prioritization, potentially fostering the development of promising optimizations for wireless sensor networks composed of visual sensors. PMID:25599425

  4. An Implementation of Wireless Body Area Networks for Improving Priority Data Transmission Delay.

    PubMed

    Gündoğdu, Köksal; Çalhan, Ali

    2016-03-01

    The rapid growth of wireless sensor networks has enabled the human health monitoring of patients using body sensor nodes that gather and evaluate human body parameters and movements. This study describes both simulation model and implementation of a new traffic sensitive wireless body area network by using non-preemptive priority queue discipline. A wireless body area network implementation employing TDMA is designed with three different priorities of data traffics. Besides, a coordinator node having the non-preemptive priority queue is performed in this study. We have also developed, modeled and simulated example network scenarios by using the Riverbed Modeler simulation software with the purpose of verifying the implementation results. The simulation results obtained under various network load conditions are consistent with the implementation results.

  5. Topological Interference Management for K-User Downlink Massive MIMO Relay Network Channel.

    PubMed

    Selvaprabhu, Poongundran; Chinnadurai, Sunil; Li, Jun; Lee, Moon Ho

    2017-08-17

    In this paper, we study the emergence of topological interference alignment and the characterizing features of a multi-user broadcast interference relay channel. We propose an alternative transmission strategy named the relay space-time interference alignment (R-STIA) technique, in which a K -user multiple-input-multiple-output (MIMO) interference channel has massive antennas at the transmitter and relay. Severe interference from unknown transmitters affects the downlink relay network channel and degrades the system performance. An additional (unintended) receiver is introduced in the proposed R-STIA technique to overcome the above problem, since it has the ability to decode the desired signals for the intended receiver by considering cooperation between the receivers. The additional receiver also helps in recovering and reconstructing the interference signals with limited channel state information at the relay (CSIR). The Alamouti space-time transmission technique and minimum mean square error (MMSE) linear precoder are also used in the proposed scheme to detect the presence of interference signals. Numerical results show that the proposed R-STIA technique achieves a better performance in terms of the bit error rate (BER) and sum-rate compared to the existing broadcast channel schemes.

  6. Implementing Strategic Planning Capabilities Within the Mars Relay Operations Service

    NASA Technical Reports Server (NTRS)

    Hy, Franklin; Gladden, Roy; Allard, Dan; Wallick, Michael

    2011-01-01

    Since the Mars Exploration Rovers (MER), Spirit and Opportunity, began their travels across the Martian surface in January of 2004, orbiting spacecraft such as the Mars 2001 Odyssey orbiter have relayed the majority of their collected scientific and operational data to and from Earth. From the beginning of those missions, it was evident that using orbiters to relay data to and from the surface of Mars was a vastly more efficient communications strategy in terms of power consumption and bandwidth compared to direct-to-Earth means. However, the coordination between the various spacecraft, which are largely managed independently and on differing commanding timelines, has always proven to be a challenge. Until recently, the ground operators of all these spacecraft have coordinated the movement of data through this network using a collection of ad hoc human interfaces and various, independent software tools. The Mars Relay Operations Service (MaROS) has been developed to manage the evolving needs of the Mars relay network, and specifically to standardize and integrate the relay planning and coordination data into a centralized infrastructure. This paper explores the journey of developing the MaROS system, from inception to delivery and acceptance by the Mars mission users.

  7. Topological Interference Management for K-User Downlink Massive MIMO Relay Network Channel

    PubMed Central

    Li, Jun; Lee, Moon Ho

    2017-01-01

    In this paper, we study the emergence of topological interference alignment and the characterizing features of a multi-user broadcast interference relay channel. We propose an alternative transmission strategy named the relay space-time interference alignment (R-STIA) technique, in which a K-user multiple-input-multiple-output (MIMO) interference channel has massive antennas at the transmitter and relay. Severe interference from unknown transmitters affects the downlink relay network channel and degrades the system performance. An additional (unintended) receiver is introduced in the proposed R-STIA technique to overcome the above problem, since it has the ability to decode the desired signals for the intended receiver by considering cooperation between the receivers. The additional receiver also helps in recovering and reconstructing the interference signals with limited channel state information at the relay (CSIR). The Alamouti space-time transmission technique and minimum mean square error (MMSE) linear precoder are also used in the proposed scheme to detect the presence of interference signals. Numerical results show that the proposed R-STIA technique achieves a better performance in terms of the bit error rate (BER) and sum-rate compared to the existing broadcast channel schemes. PMID:28817071

  8. System and method for time synchronization in a wireless network

    DOEpatents

    Gonia, Patrick S.; Kolavennu, Soumitri N.; Mahasenan, Arun V.; Budampati, Ramakrishna S.

    2010-03-30

    A system includes multiple wireless nodes forming a cluster in a wireless network, where each wireless node is configured to communicate and exchange data wirelessly based on a clock. One of the wireless nodes is configured to operate as a cluster master. Each of the other wireless nodes is configured to (i) receive time synchronization information from a parent node, (ii) adjust its clock based on the received time synchronization information, and (iii) broadcast time synchronization information based on the time synchronization information received by that wireless node. The time synchronization information received by each of the other wireless nodes is based on time synchronization information provided by the cluster master so that the other wireless nodes substantially synchronize their clocks with the clock of the cluster master.

  9. The Optimization Based Dynamic and Cyclic Working Strategies for Rechargeable Wireless Sensor Networks with Multiple Base Stations and Wireless Energy Transfer Devices

    PubMed Central

    Ding, Xu; Han, Jianghong; Shi, Lei

    2015-01-01

    In this paper, the optimal working schemes for wireless sensor networks with multiple base stations and wireless energy transfer devices are proposed. The wireless energy transfer devices also work as data gatherers while charging sensor nodes. The wireless sensor network is firstly divided into sub networks according to the concept of Voronoi diagram. Then, the entire energy replenishing procedure is split into the pre-normal and normal energy replenishing stages. With the objective of maximizing the sojourn time ratio of the wireless energy transfer device, a continuous time optimization problem for the normal energy replenishing cycle is formed according to constraints with which sensor nodes and wireless energy transfer devices should comply. Later on, the continuous time optimization problem is reshaped into a discrete multi-phased optimization problem, which yields the identical optimality. After linearizing it, we obtain a linear programming problem that can be solved efficiently. The working strategies of both sensor nodes and wireless energy transfer devices in the pre-normal replenishing stage are also discussed in this paper. The intensive simulations exhibit the dynamic and cyclic working schemes for the entire energy replenishing procedure. Additionally, a way of eliminating “bottleneck” sensor nodes is also developed in this paper. PMID:25785305

  10. The optimization based dynamic and cyclic working strategies for rechargeable wireless sensor networks with multiple base stations and wireless energy transfer devices.

    PubMed

    Ding, Xu; Han, Jianghong; Shi, Lei

    2015-03-16

    In this paper, the optimal working schemes for wireless sensor networks with multiple base stations and wireless energy transfer devices are proposed. The wireless energy transfer devices also work as data gatherers while charging sensor nodes. The wireless sensor network is firstly divided into sub networks according to the concept of Voronoi diagram. Then, the entire energy replenishing procedure is split into the pre-normal and normal energy replenishing stages. With the objective of maximizing the sojourn time ratio of the wireless energy transfer device, a continuous time optimization problem for the normal energy replenishing cycle is formed according to constraints with which sensor nodes and wireless energy transfer devices should comply. Later on, the continuous time optimization problem is reshaped into a discrete multi-phased optimization problem, which yields the identical optimality. After linearizing it, we obtain a linear programming problem that can be solved efficiently. The working strategies of both sensor nodes and wireless energy transfer devices in the pre-normal replenishing stage are also discussed in this paper. The intensive simulations exhibit the dynamic and cyclic working schemes for the entire energy replenishing procedure. Additionally, a way of eliminating "bottleneck" sensor nodes is also developed in this paper.

  11. Wirelessly Networked Digital Phased Array: Analysis and Development of a Phase Synchronization Concept

    DTIC Science & Technology

    2007-09-01

    NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS Approved for public release; distribution is unlimited WIRELESSLY NETWORKED...DIGITAL PHASED ARRAY: ANALYSIS AND DEVELOPMENT OF A PHASE SYNCHRONIZATION CONCEPT by Micael Grahn September 2007 Thesis Advisor...September 2007 3. REPORT TYPE AND DATES COVERED Master’s Thesis 4. TITLE AND SUBTITLE Wirelessly Networked Digital Phased Array: Analysis and

  12. WiFiSiM: An Educational Tool for the Study and Design of Wireless Networks

    ERIC Educational Resources Information Center

    Mateo Sanguino, T. J.; Serrano Lopez, C.; Marquez Hernandez, F. A.

    2013-01-01

    A new educational simulation tool designed for the generic study of wireless networks, the Wireless Fidelity Simulator (WiFiSim), is presented in this paper. The goal of this work was to create and implement a didactic tool to improve the teaching and learning of computer networks by means of two complementary strategies: simulating the behavior…

  13. Top 6 Wireless Challenges: How Schools Are Improving Their Mobile Infrastructure

    ERIC Educational Resources Information Center

    Schaffhauser, Dian

    2012-01-01

    Colleges and universities have got a big problem: how to bake a wireless network as good as Mom's. The problem is that enterprise wireless networks "tend to be a little more finicky" than the home ones. While the home devices are plug-and-play, enterprise networks force IT departments to manage client issues such as drivers and settings. It's a…

  14. Data security issues arising from integration of wireless access into healthcare networks.

    PubMed

    Frenzel, John C

    2003-04-01

    The versatility of having Ethernet speed connectivity without wires is rapidly driving adoption of wireless data networking by end users across all types of industry. Designed to be easy to configure and work among diverse platforms, wireless brings online data to mobile users. This functionality is particularly useful in modern clinical medicine. Wireless presents operators of networks containing or transmitting sensitive and confidential data with several new types of security vulnerabilities, and potentially opens previously protected core network resources to outside attack. Herein, we review the types of vulnerabilities, the tools necessary to exploit them, and strategies to thwart a successful attack.

  15. Wireless Sensor Network Optimization: Multi-Objective Paradigm.

    PubMed

    Iqbal, Muhammad; Naeem, Muhammad; Anpalagan, Alagan; Ahmed, Ashfaq; Azam, Muhammad

    2015-07-20

    Optimization problems relating to wireless sensor network planning, design, deployment and operation often give rise to multi-objective optimization formulations where multiple desirable objectives compete with each other and the decision maker has to select one of the tradeoff solutions. These multiple objectives may or may not conflict with each other. Keeping in view the nature of the application, the sensing scenario and input/output of the problem, the type of optimization problem changes. To address different nature of optimization problems relating to wireless sensor network design, deployment, operation, planing and placement, there exist a plethora of optimization solution types. We review and analyze different desirable objectives to show whether they conflict with each other, support each other or they are design dependent. We also present a generic multi-objective optimization problem relating to wireless sensor network which consists of input variables, required output, objectives and constraints. A list of constraints is also presented to give an overview of different constraints which are considered while formulating the optimization problems in wireless sensor networks. Keeping in view the multi facet coverage of this article relating to multi-objective optimization, this will open up new avenues of research in the area of multi-objective optimization relating to wireless sensor networks.

  16. D-MSR: a distributed network management scheme for real-time monitoring and process control applications in wireless industrial automation.

    PubMed

    Zand, Pouria; Dilo, Arta; Havinga, Paul

    2013-06-27

    Current wireless technologies for industrial applications, such as WirelessHART and ISA100.11a, use a centralized management approach where a central network manager handles the requirements of the static network. However, such a centralized approach has several drawbacks. For example, it cannot cope with dynamicity/disturbance in large-scale networks in a real-time manner and it incurs a high communication overhead and latency for exchanging management traffic. In this paper, we therefore propose a distributed network management scheme, D-MSR. It enables the network devices to join the network, schedule their communications, establish end-to-end connections by reserving the communication resources for addressing real-time requirements, and cope with network dynamicity (e.g., node/edge failures) in a distributed manner. According to our knowledge, this is the first distributed management scheme based on IEEE 802.15.4e standard, which guides the nodes in different phases from joining until publishing their sensor data in the network. We demonstrate via simulation that D-MSR can address real-time and reliable communication as well as the high throughput requirements of industrial automation wireless networks, while also achieving higher efficiency in network management than WirelessHART, in terms of delay and overhead.

  17. D-MSR: A Distributed Network Management Scheme for Real-Time Monitoring and Process Control Applications in Wireless Industrial Automation

    PubMed Central

    Zand, Pouria; Dilo, Arta; Havinga, Paul

    2013-01-01

    Current wireless technologies for industrial applications, such as WirelessHART and ISA100.11a, use a centralized management approach where a central network manager handles the requirements of the static network. However, such a centralized approach has several drawbacks. For example, it cannot cope with dynamicity/disturbance in large-scale networks in a real-time manner and it incurs a high communication overhead and latency for exchanging management traffic. In this paper, we therefore propose a distributed network management scheme, D-MSR. It enables the network devices to join the network, schedule their communications, establish end-to-end connections by reserving the communication resources for addressing real-time requirements, and cope with network dynamicity (e.g., node/edge failures) in a distributed manner. According to our knowledge, this is the first distributed management scheme based on IEEE 802.15.4e standard, which guides the nodes in different phases from joining until publishing their sensor data in the network. We demonstrate via simulation that D-MSR can address real-time and reliable communication as well as the high throughput requirements of industrial automation wireless networks, while also achieving higher efficiency in network management than WirelessHART, in terms of delay and overhead. PMID:23807687

  18. Exponential Arithmetic Based Self-Healing Group Key Distribution Scheme with Backward Secrecy under the Resource-Constrained Wireless Networks

    PubMed Central

    Guo, Hua; Zheng, Yandong; Zhang, Xiyong; Li, Zhoujun

    2016-01-01

    In resource-constrained wireless networks, resources such as storage space and communication bandwidth are limited. To guarantee secure communication in resource-constrained wireless networks, group keys should be distributed to users. The self-healing group key distribution (SGKD) scheme is a promising cryptographic tool, which can be used to distribute and update the group key for the secure group communication over unreliable wireless networks. Among all known SGKD schemes, exponential arithmetic based SGKD (E-SGKD) schemes reduce the storage overhead to constant, thus is suitable for the the resource-constrained wireless networks. In this paper, we provide a new mechanism to achieve E-SGKD schemes with backward secrecy. We first propose a basic E-SGKD scheme based on a known polynomial-based SGKD, where it has optimal storage overhead while having no backward secrecy. To obtain the backward secrecy and reduce the communication overhead, we introduce a novel approach for message broadcasting and self-healing. Compared with other E-SGKD schemes, our new E-SGKD scheme has the optimal storage overhead, high communication efficiency and satisfactory security. The simulation results in Zigbee-based networks show that the proposed scheme is suitable for the resource-restrained wireless networks. Finally, we show the application of our proposed scheme. PMID:27136550

  19. Semantic Visualization of Wireless Sensor Networks for Elderly Monitoring

    NASA Astrophysics Data System (ADS)

    Stocklöw, Carsten; Kamieth, Felix

    In the area of Ambient Intelligence, Wireless Sensor Networks are commonly used for user monitoring purposes like health monitoring and user localization. Existing work on visualization of wireless sensor networks focuses mainly on displaying individual nodes and logical, graph-based topologies. This way, the relation to the real-world deployment is lost. This paper presents a novel approach for visualization of wireless sensor networks and interaction with complex services on the nodes. The environment is realized as a 3D model, and multiple nodes, that are worn by a single individual, are grouped together to allow an intuitive interface for end users. We describe application examples and show that our approach allows easier access to network information and functionality by comparing it with existing solutions.

  20. Joint subchannel pairing and power control for cognitive radio networks with amplify-and-forward relaying.

    PubMed

    Shen, Yanyan; Wang, Shuqiang; Wei, Zhiming

    2014-01-01

    Dynamic spectrum sharing has drawn intensive attention in cognitive radio networks. The secondary users are allowed to use the available spectrum to transmit data if the interference to the primary users is maintained at a low level. Cooperative transmission for secondary users can reduce the transmission power and thus improve the performance further. We study the joint subchannel pairing and power allocation problem in relay-based cognitive radio networks. The objective is to maximize the sum rate of the secondary user that is helped by an amplify-and-forward relay. The individual power constraints at the source and the relay, the subchannel pairing constraints, and the interference power constraints are considered. The problem under consideration is formulated as a mixed integer programming problem. By the dual decomposition method, a joint optimal subchannel pairing and power allocation algorithm is proposed. To reduce the computational complexity, two suboptimal algorithms are developed. Simulations have been conducted to verify the performance of the proposed algorithms in terms of sum rate and average running time under different conditions.

  1. Statistical-QoS Guaranteed Energy Efficiency Optimization for Energy Harvesting Wireless Sensor Networks

    PubMed Central

    Cheng, Wenchi; Zhang, Hailin

    2017-01-01

    Energy harvesting, which offers a never-ending energy supply, has emerged as a prominent technology to prolong the lifetime and reduce costs for the battery-powered wireless sensor networks. However, how to improve the energy efficiency while guaranteeing the quality of service (QoS) for energy harvesting based wireless sensor networks is still an open problem. In this paper, we develop statistical delay-bounded QoS-driven power control policies to maximize the effective energy efficiency (EEE), which is defined as the spectrum efficiency under given specified QoS constraints per unit harvested energy, for energy harvesting based wireless sensor networks. For the battery-infinite wireless sensor networks, our developed QoS-driven power control policy converges to the Energy harvesting Water Filling (E-WF) scheme and the Energy harvesting Channel Inversion (E-CI) scheme under the very loose and stringent QoS constraints, respectively. For the battery-finite wireless sensor networks, our developed QoS-driven power control policy becomes the Truncated energy harvesting Water Filling (T-WF) scheme and the Truncated energy harvesting Channel Inversion (T-CI) scheme under the very loose and stringent QoS constraints, respectively. Furthermore, we evaluate the outage probabilities to theoretically analyze the performance of our developed QoS-driven power control policies. The obtained numerical results validate our analysis and show that our developed optimal power control policies can optimize the EEE over energy harvesting based wireless sensor networks. PMID:28832509

  2. Statistical-QoS Guaranteed Energy Efficiency Optimization for Energy Harvesting Wireless Sensor Networks.

    PubMed

    Gao, Ya; Cheng, Wenchi; Zhang, Hailin

    2017-08-23

    Energy harvesting, which offers a never-ending energy supply, has emerged as a prominent technology to prolong the lifetime and reduce costs for the battery-powered wireless sensor networks. However, how to improve the energy efficiency while guaranteeing the quality of service (QoS) for energy harvesting based wireless sensor networks is still an open problem. In this paper, we develop statistical delay-bounded QoS-driven power control policies to maximize the effective energy efficiency (EEE), which is defined as the spectrum efficiency under given specified QoS constraints per unit harvested energy, for energy harvesting based wireless sensor networks. For the battery-infinite wireless sensor networks, our developed QoS-driven power control policy converges to the Energy harvesting Water Filling (E-WF) scheme and the Energy harvesting Channel Inversion (E-CI) scheme under the very loose and stringent QoS constraints, respectively. For the battery-finite wireless sensor networks, our developed QoS-driven power control policy becomes the Truncated energy harvesting Water Filling (T-WF) scheme and the Truncated energy harvesting Channel Inversion (T-CI) scheme under the very loose and stringent QoS constraints, respectively. Furthermore, we evaluate the outage probabilities to theoretically analyze the performance of our developed QoS-driven power control policies. The obtained numerical results validate our analysis and show that our developed optimal power control policies can optimize the EEE over energy harvesting based wireless sensor networks.

  3. E-bra with nanosensors, smart electronics and smart phone communication network for heart rate monitoring

    NASA Astrophysics Data System (ADS)

    Varadan, Vijay K.; Kumar, Prashanth S.; Oh, Sechang; Mathur, Gyanesh N.; Rai, Pratyush; Kegley, Lauren

    2011-04-01

    Heart related ailments have been a major cause for deaths in both men and women in United States. Since 1985, more women than men have died due to cardiac or cardiovascular ailments for reasons that are not well understood as yet. Lack of a deterministic understanding of this phenomenon makes continuous real time monitoring of cardiovascular health the best approach for both early detection of pathophysiological changes and events indicative of chronic cardiovascular diseases in women. This approach requires sensor systems to be seamlessly mounted on day to day clothing for women. With this application in focus, this paper describes a e-bra platform for sensors towards heart rate monitoring. The sensors, nanomaterial or textile based dry electrodes, capture the heart activity signals in form Electrocardiograph (ECG) and relay it to a compact textile mountable amplifier-wireless transmitter module for relay to a smart phone. The ECG signal, acquired on the smart phone, can be transmitted to the cyber space for post processing. As an example, the paper discusses the heart rate estimation and heart rate variability. The data flow from sensor to smart phone to server (cyber infrastructure) has been discussed. The cyber infrastructure based signal post processing offers an opportunity for automated emergency response that can be initiated from the server or the smartphone itself. Detailed protocols for both the scenarios have been presented and their relevance to the present emergency healthcare response system has been discussed.

  4. HiCoDG: a hierarchical data-gathering scheme using cooperative multiple mobile elements.

    PubMed

    Van Le, Duc; Oh, Hoon; Yoon, Seokhoon

    2014-12-17

    In this paper, we study mobile element (ME)-based data-gathering schemes in wireless sensor networks. Due to the physical speed limits of mobile elements, the existing data-gathering schemes that use mobile elements can suffer from high data-gathering latency. In order to address this problem, this paper proposes a new hierarchical and cooperative data-gathering (HiCoDG) scheme that enables multiple mobile elements to cooperate with each other to collect and relay data. In HiCoDG, two types of mobile elements are used: the mobile collector (MC) and the mobile relay (MR). MCs collect data from sensors and forward them to the MR, which will deliver them to the sink. In this work, we also formulated an integer linear programming (ILP) optimization problem to find the optimal trajectories for MCs and the MR, such that the traveling distance of MEs is minimized. Two variants of HiCoDG, intermediate station (IS)-based and cooperative movement scheduling (CMS)-based, are proposed to facilitate cooperative data forwarding from MCs to the MR. An analytical model for estimating the average data-gathering latency in HiCoDG was also designed. Simulations were performed to compare the performance of the IS and CMS variants, as well as a multiple traveling salesman problem (mTSP)-based approach. The simulation results show that HiCoDG outperforms mTSP in terms of latency. The results also show that CMS can achieve the lowest latency with low energy consumption.

  5. HiCoDG: A Hierarchical Data-Gathering Scheme Using Cooperative Multiple Mobile Elements †

    PubMed Central

    Van Le, Duc; Oh, Hoon; Yoon, Seokhoon

    2014-01-01

    In this paper, we study mobile element (ME)-based data-gathering schemes in wireless sensor networks. Due to the physical speed limits of mobile elements, the existing data-gathering schemes that use mobile elements can suffer from high data-gathering latency. In order to address this problem, this paper proposes a new hierarchical and cooperative data-gathering (HiCoDG) scheme that enables multiple mobile elements to cooperate with each other to collect and relay data. In HiCoDG, two types of mobile elements are used: the mobile collector (MC) and the mobile relay (MR). MCs collect data from sensors and forward them to the MR, which will deliver them to the sink. In this work, we also formulated an integer linear programming (ILP) optimization problem to find the optimal trajectories for MCs and the MR, such that the traveling distance of MEs is minimized. Two variants of HiCoDG, intermediate station (IS)-based and cooperative movement scheduling (CMS)-based, are proposed to facilitate cooperative data forwarding from MCs to the MR. An analytical model for estimating the average data-gathering latency in HiCoDG was also designed. Simulations were performed to compare the performance of the IS and CMS variants, as well as a multiple traveling salesman problem (mTSP)-based approach. The simulation results show that HiCoDG outperforms mTSP in terms of latency. The results also show that CMS can achieve the lowest latency with low energy consumption. PMID:25526356

  6. Wireless sensor placement for structural monitoring using information-fusing firefly algorithm

    NASA Astrophysics Data System (ADS)

    Zhou, Guang-Dong; Yi, Ting-Hua; Xie, Mei-Xi; Li, Hong-Nan

    2017-10-01

    Wireless sensor networks (WSNs) are promising technology in structural health monitoring (SHM) applications for their low cost and high efficiency. The limited wireless sensors and restricted power resources in WSNs highlight the significance of optimal wireless sensor placement (OWSP) during designing SHM systems to enable the most useful information to be captured and to achieve the longest network lifetime. This paper presents a holistic approach, including an optimization criterion and a solution algorithm, for optimally deploying self-organizing multi-hop WSNs on large-scale structures. The combination of information effectiveness represented by the modal independence and the network performance specified by the network connectivity and network lifetime is first formulated to evaluate the performance of wireless sensor configurations. Then, an information-fusing firefly algorithm (IFFA) is developed to solve the OWSP problem. The step sizes drawn from a Lévy distribution are adopted to drive fireflies toward brighter individuals. Following the movement with Lévy flights, information about the contributions of wireless sensors to the objective function as carried by the fireflies is fused and applied to move inferior wireless sensors to better locations. The reliability of the proposed approach is verified via a numerical example on a long-span suspension bridge. The results demonstrate that the evaluation criterion provides a good performance metric of wireless sensor configurations, and the IFFA outperforms the simple discrete firefly algorithm.

  7. Using Reputation Systems and Non-Deterministic Routing to Secure Wireless Sensor Networks

    PubMed Central

    Moya, José M.; Vallejo, Juan Carlos; Fraga, David; Araujo, Álvaro; Villanueva, Daniel; de Goyeneche, Juan-Mariano

    2009-01-01

    Security in wireless sensor networks is difficult to achieve because of the resource limitations of the sensor nodes. We propose a trust-based decision framework for wireless sensor networks coupled with a non-deterministic routing protocol. Both provide a mechanism to effectively detect and confine common attacks, and, unlike previous approaches, allow bad reputation feedback to the network. This approach has been extensively simulated, obtaining good results, even for unrealistically complex attack scenarios. PMID:22412345

  8. Data-Driven Design of Intelligent Wireless Networks: An Overview and Tutorial.

    PubMed

    Kulin, Merima; Fortuna, Carolina; De Poorter, Eli; Deschrijver, Dirk; Moerman, Ingrid

    2016-06-01

    Data science or "data-driven research" is a research approach that uses real-life data to gain insight about the behavior of systems. It enables the analysis of small, simple as well as large and more complex systems in order to assess whether they function according to the intended design and as seen in simulation. Data science approaches have been successfully applied to analyze networked interactions in several research areas such as large-scale social networks, advanced business and healthcare processes. Wireless networks can exhibit unpredictable interactions between algorithms from multiple protocol layers, interactions between multiple devices, and hardware specific influences. These interactions can lead to a difference between real-world functioning and design time functioning. Data science methods can help to detect the actual behavior and possibly help to correct it. Data science is increasingly used in wireless research. To support data-driven research in wireless networks, this paper illustrates the step-by-step methodology that has to be applied to extract knowledge from raw data traces. To this end, the paper (i) clarifies when, why and how to use data science in wireless network research; (ii) provides a generic framework for applying data science in wireless networks; (iii) gives an overview of existing research papers that utilized data science approaches in wireless networks; (iv) illustrates the overall knowledge discovery process through an extensive example in which device types are identified based on their traffic patterns; (v) provides the reader the necessary datasets and scripts to go through the tutorial steps themselves.

  9. Data-Driven Design of Intelligent Wireless Networks: An Overview and Tutorial

    PubMed Central

    Kulin, Merima; Fortuna, Carolina; De Poorter, Eli; Deschrijver, Dirk; Moerman, Ingrid

    2016-01-01

    Data science or “data-driven research” is a research approach that uses real-life data to gain insight about the behavior of systems. It enables the analysis of small, simple as well as large and more complex systems in order to assess whether they function according to the intended design and as seen in simulation. Data science approaches have been successfully applied to analyze networked interactions in several research areas such as large-scale social networks, advanced business and healthcare processes. Wireless networks can exhibit unpredictable interactions between algorithms from multiple protocol layers, interactions between multiple devices, and hardware specific influences. These interactions can lead to a difference between real-world functioning and design time functioning. Data science methods can help to detect the actual behavior and possibly help to correct it. Data science is increasingly used in wireless research. To support data-driven research in wireless networks, this paper illustrates the step-by-step methodology that has to be applied to extract knowledge from raw data traces. To this end, the paper (i) clarifies when, why and how to use data science in wireless network research; (ii) provides a generic framework for applying data science in wireless networks; (iii) gives an overview of existing research papers that utilized data science approaches in wireless networks; (iv) illustrates the overall knowledge discovery process through an extensive example in which device types are identified based on their traffic patterns; (v) provides the reader the necessary datasets and scripts to go through the tutorial steps themselves. PMID:27258286

  10. Competition in the domain of wireless networks security

    NASA Astrophysics Data System (ADS)

    Bednarczyk, Mariusz

    2017-04-01

    Wireless networks are very popular and have found wide spread usage amongst various segments, also in military environment. The deployment of wireless infrastructures allow to reduce the time it takes to install and dismantle communications networks. With wireless, users are more mobile and can easily get access to the network resources all the time. However, wireless technologies like WiFi or Bluetooth have security issues that hackers have extensively exploited over the years. In the paper several serious security flaws in wireless technologies are presented. Most of them enable to get access to the internal networks and easily carry out man-in-the-middle attacks. Very often, they are used to launch massive denial of service attacks that target the physical infrastructure as well as the RF spectrum. For instance, there are well known instances of Bluetooth connection spoofing in order to steal WiFi password stored in the mobile device. To raise the security awareness and protect wireless networks against an adversary attack, an analysis of attack methods and tools over time is presented in the article. The particular attention is paid to the severity, possible targets as well as the ability to persist in the context of protective measures. Results show that an adversary can take complete control of the victims' mobile device features if the users forget to use simple safety principles.

  11. Smart border: ad-hoc wireless sensor networks for border surveillance

    NASA Astrophysics Data System (ADS)

    He, Jun; Fallahi, Mahmoud; Norwood, Robert A.; Peyghambarian, Nasser

    2011-06-01

    Wireless sensor networks have been proposed as promising candidates to provide automated monitoring, target tracking, and intrusion detection for border surveillance. In this paper, we demonstrate an ad-hoc wireless sensor network system for border surveillance. The network consists of heterogeneously autonomous sensor nodes that distributively cooperate with each other to enable a smart border in remote areas. This paper also presents energy-aware and sleeping algorithms designed to maximize the operating lifetime of the deployed sensor network. Lessons learned in building the network and important findings from field experiments are shared in the paper.

  12. Network Coding on Heterogeneous Multi-Core Processors for Wireless Sensor Networks

    PubMed Central

    Kim, Deokho; Park, Karam; Ro, Won W.

    2011-01-01

    While network coding is well known for its efficiency and usefulness in wireless sensor networks, the excessive costs associated with decoding computation and complexity still hinder its adoption into practical use. On the other hand, high-performance microprocessors with heterogeneous multi-cores would be used as processing nodes of the wireless sensor networks in the near future. To this end, this paper introduces an efficient network coding algorithm developed for the heterogenous multi-core processors. The proposed idea is fully tested on one of the currently available heterogeneous multi-core processors referred to as the Cell Broadband Engine. PMID:22164053

  13. A survey on bio inspired meta heuristic based clustering protocols for wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Datta, A.; Nandakumar, S.

    2017-11-01

    Recent studies have shown that utilizing a mobile sink to harvest and carry data from a Wireless Sensor Network (WSN) can improve network operational efficiency as well as maintain uniform energy consumption by the sensor nodes in the network. Due to Sink mobility, the path between two sensor nodes continuously changes and this has a profound effect on the operational longevity of the network and a need arises for a protocol which utilizes minimal resources in maintaining routes between the mobile sink and the sensor nodes. Swarm Intelligence based techniques inspired by the foraging behavior of ants, termites and honey bees can be artificially simulated and utilized to solve real wireless network problems. The author presents a brief survey on various bio inspired swarm intelligence based protocols used in routing data in wireless sensor networks while outlining their general principle and operation.

  14. Energy Aware Clustering Algorithms for Wireless Sensor Networks

    NASA Astrophysics Data System (ADS)

    Rakhshan, Noushin; Rafsanjani, Marjan Kuchaki; Liu, Chenglian

    2011-09-01

    The sensor nodes deployed in wireless sensor networks (WSNs) are extremely power constrained, so maximizing the lifetime of the entire networks is mainly considered in the design. In wireless sensor networks, hierarchical network structures have the advantage of providing scalable and energy efficient solutions. In this paper, we investigate different clustering algorithms for WSNs and also compare these clustering algorithms based on metrics such as clustering distribution, cluster's load balancing, Cluster Head's (CH) selection strategy, CH's role rotation, node mobility, clusters overlapping, intra-cluster communications, reliability, security and location awareness.

  15. The National Aeronautics and Space Administration (NASA) Tracking and Data Relay Satellite System (TDRSS) program Economic and programmatic, considerations

    NASA Technical Reports Server (NTRS)

    Aller, R. O.

    1985-01-01

    The Tracking and Data Relay Satellite System (TDRSS) represents the principal element of a new space-based tracking and communication network which will support NASA spaceflight missions in low earth orbit. In its complete configuration, the TDRSS network will include a space segment consisting of three highly specialized communication satellites in geosynchronous orbit, a ground segment consisting of an earth terminal, and associated data handling and control facilities. The TDRSS network has the objective to provide communication and data relay services between the earth-orbiting spacecraft and their ground-based mission control and data handling centers. The first TDRSS spacecraft has been now in service for two years. The present paper is concerned with the TDRSS experience from the perspective of the various programmatic and economic considerations which relate to the program.

  16. Amplitude death induced by mixed attractive and repulsive coupling in the relay system

    NASA Astrophysics Data System (ADS)

    Zhao, Nannan; Sun, Zhongkui; Xu, Wei

    2018-01-01

    The amplitude death (AD) phenomenon is found in the relay system in the presence of the mixed couplings composed of attractive coupling and repulsive coupling. The generation mechanism of AD is revealed and shows that the middle oscillator achieving AD is a prerequisite to further suppress oscillation of the outermost oscillators for the paradigmatic Stuart-Landau and Rössler models. Moreover, regarding the Stuart-Landau relay system as a small motif of star network, we also observe that the mixed couplings can facilitate AD state of the whole network system. Particularly, the threshold of coupling strength is invariable with the change of network size. Our findings may shed a new insight to explore the effects of hybrid coupling on complex systems, also provide a new strategy to control dynamic behaviors in engineering science and neuroscience fields.

  17. Network Coded Cooperative Communication in a Real-Time Wireless Hospital Sensor Network.

    PubMed

    Prakash, R; Balaji Ganesh, A; Sivabalan, Somu

    2017-05-01

    The paper presents a network coded cooperative communication (NC-CC) enabled wireless hospital sensor network architecture for monitoring health as well as postural activities of a patient. A wearable device, referred as a smartband is interfaced with pulse rate, body temperature sensors and an accelerometer along with wireless protocol services, such as Bluetooth and Radio-Frequency transceiver and Wi-Fi. The energy efficiency of wearable device is improved by embedding a linear acceleration based transmission duty cycling algorithm (NC-DRDC). The real-time demonstration is carried-out in a hospital environment to evaluate the performance characteristics, such as power spectral density, energy consumption, signal to noise ratio, packet delivery ratio and transmission offset. The resource sharing and energy efficiency features of network coding technique are improved by proposing an algorithm referred as network coding based dynamic retransmit/rebroadcast decision control (LA-TDC). From the experimental results, it is observed that the proposed LA-TDC algorithm reduces network traffic and end-to-end delay by an average of 27.8% and 21.6%, respectively than traditional network coded wireless transmission. The wireless architecture is deployed in a hospital environment and results are then successfully validated.

  18. Socially Aware Heterogeneous Wireless Networks

    PubMed Central

    Kosmides, Pavlos; Adamopoulou, Evgenia; Demestichas, Konstantinos; Theologou, Michael; Anagnostou, Miltiades; Rouskas, Angelos

    2015-01-01

    The development of smart cities has been the epicentre of many researchers’ efforts during the past decade. One of the key requirements for smart city networks is mobility and this is the reason stable, reliable and high-quality wireless communications are needed in order to connect people and devices. Most research efforts so far, have used different kinds of wireless and sensor networks, making interoperability rather difficult to accomplish in smart cities. One common solution proposed in the recent literature is the use of software defined networks (SDNs), in order to enhance interoperability among the various heterogeneous wireless networks. In addition, SDNs can take advantage of the data retrieved from available sensors and use them as part of the intelligent decision making process contacted during the resource allocation procedure. In this paper, we propose an architecture combining heterogeneous wireless networks with social networks using SDNs. Specifically, we exploit the information retrieved from location based social networks regarding users’ locations and we attempt to predict areas that will be crowded by using specially-designed machine learning techniques. By recognizing possible crowded areas, we can provide mobile operators with recommendations about areas requiring datacell activation or deactivation. PMID:26110402

  19. Collaboration in a Wireless Grid Innovation Testbed by Virtual Consortium

    NASA Astrophysics Data System (ADS)

    Treglia, Joseph; Ramnarine-Rieks, Angela; McKnight, Lee

    This paper describes the formation of the Wireless Grid Innovation Testbed (WGiT) coordinated by a virtual consortium involving academic and non-academic entities. Syracuse University and Virginia Tech are primary university partners with several other academic, government, and corporate partners. Objectives include: 1) coordinating knowledge sharing, 2) defining key parameters for wireless grids network applications, 3) dynamically connecting wired and wireless devices, content and users, 4) linking to VT-CORNET, Virginia Tech Cognitive Radio Network Testbed, 5) forming ad hoc networks or grids of mobile and fixed devices without a dedicated server, 6) deepening understanding of wireless grid application, device, network, user and market behavior through academic, trade and popular publications including online media, 7) identifying policy that may enable evaluated innovations to enter US and international markets and 8) implementation and evaluation of the international virtual collaborative process.

  20. Self organization of wireless sensor networks using ultra-wideband radios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dowla, Farid U; Nekoogar, Franak; Spiridon, Alex

    A novel UWB communications method and system that provides self-organization for wireless sensor networks is introduced. The self-organization is in terms of scalability, power conservation, channel estimation, and node synchronization in wireless sensor networks. The UWB receiver in the present invention adds two new tasks to conventional TR receivers. The two additional units are SNR enhancing unit and timing acquisition and tracking unit.

  1. WiFi in Schools, Electromagnetic Fields and Cell Phones: Alberta Health Fact Sheet

    ERIC Educational Resources Information Center

    Alberta Education, 2012

    2012-01-01

    Wireless devices and the networks that support them are becoming more common in Alberta schools. WiFi is a wireless networking technology that allows computers and other devices to communicate over a wireless signal. Typically the signal is carried by radio waves over an area of up to 100 meters. Through the implementation of a WiFi network,…

  2. Fluid Analysis of Network Content Dissemination and Cloud Systems

    DTIC Science & Technology

    2017-03-06

    orchestration of multiple transfers , within the constraints of the communication substrate. In unstructured or aggressive environments where wireless ad...previous AFOSR/SOARD project, concerns peer-to-peer dissemination in wireless ad-hoc networks. We focus on the necessary tradeoff between an efficient...use of the network substrate, and the necessary reciprocity between peers, aspects that may be in conflict in the wireless setting. Our results

  3. Secure Sensor Semantic Web and Information Fusion

    DTIC Science & Technology

    2014-06-25

    data acquired and transmitted by wireless sensor networks (WSNs). In a WSN, due to a need for robustness of monitoring and low cost of the nodes...3 S. Ozdemir and Y. Xiao, “Secure data aggregation in wireless sensor networks : A comprehensive overview...Elisa Bertino, and Somesh Jha: Secure data aggregation technique for wireless sensor networks in the presence of collusion attacks. To appear in

  4. Theoretical Foundations of Wireless Networks

    DTIC Science & Technology

    2015-07-22

    Optimal transmission over a fading channel with imperfect channel state information,” in Global Telecommun. Conf., pp. 1–5, Houston TX , December 5-9...SECURITY CLASSIFICATION OF: The goal of this project is to develop a formal theory of wireless networks providing a scientific basis to understand...randomness and optimality. Randomness, in the form of fading, is a defining characteristic of wireless networks. Optimality is a suitable design

  5. On the Probability of Error and Stochastic Resonance in Discrete Memoryless Channels

    DTIC Science & Technology

    2013-12-01

    Information - Driven Doppler Shift Estimation and Compensation Methods for Underwater Wireless Sensor Networks ”, which is to analyze and develop... underwater wireless sensor networks . We formulated an analytic relationship that relates the average probability of error to the systems parameters, the...thesis, we studied the performance of Discrete Memoryless Channels (DMC), arising in the context of cooperative underwater wireless sensor networks

  6. Radio/antenna mounting system for wireless networking under row-crop agriculture conditions

    USDA-ARS?s Scientific Manuscript database

    Interest in and deployment of wireless monitoring systems is increasing in many diverse environments, including row-crop agricultural fields. While many studies have been undertaken to evaluate various aspects of wireless monitoring and networking, such as electronic hardware components, data-colle...

  7. Real-time stress monitoring of highway bridges with a secured wireless sensor network.

    DOT National Transportation Integrated Search

    2011-12-01

    "This collaborative research aims to develop a real-time stress monitoring system for highway bridges with a secured wireless sensor network. The near term goal is to collect wireless sensor data under different traffic patterns from local highway br...

  8. A guide to wireless networking by light

    NASA Astrophysics Data System (ADS)

    Haas, Harald; Chen, Cheng; O'Brien, Dominic

    2017-09-01

    The lack of wireless spectrum in the radio frequency bands has led to a rapid growth in research in wireless networking using light, known as LiFi (light fidelity). In this paper an overview of the subsystems, challenges and techniques required to achieve this is presented.

  9. A Visual Language for Situational Awareness

    DTIC Science & Technology

    2016-12-01

    listening. The arrival of the information age has delivered the ability to transfer larger volumes of data at far greater rates. Wireless digital... wireless infrastructure for use in large-scale events where domestic power and private wireless networks are overloaded or unavailable. States should...lacking by responders using ANSI INCITS 415 symbols sets.226 When combined with the power of a wireless network, a situational awareness metalanguage is

  10. Wireless Sensors and Networks for Advanced Energy Management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hardy, J.E.

    Numerous national studies and working groups have identified low-cost, very low-power wireless sensors and networks as a critical enabling technology for increasing energy efficiency, reducing waste, and optimizing processes. Research areas for developing such sensor and network platforms include microsensor arrays, ultra-low power electronics and signal conditioning, data/control transceivers, and robust wireless networks. A review of some of the research in the following areas will be discussed: (1) Low-cost, flexible multi-sensor array platforms (CO{sub 2}, NO{sub x}, CO, humidity, NH{sub 3}, O{sub 2}, occupancy, etc.) that enable energy and emission reductions in applications such as buildings and manufacturing; (2) Modelingmore » investments (energy usage and savings to drive capital investment decisions) and estimated uptime improvements through pervasive gathering of equipment and process health data and its effects on energy; (3) Robust, self-configuring wireless sensor networks for energy management; and (4) Quality-of-service for secure and reliable data transmission from widely distributed sensors. Wireless communications is poised to support technical innovations in the industrial community, with widespread use of wireless sensors forecasted to improve manufacturing production and energy efficiency and reduce emissions. Progress being made in wireless system components, as described in this paper, is helping bring these projected improvements to reality.« less

  11. Auction-based Security Game for Multiuser Cooperative Networks

    NASA Astrophysics Data System (ADS)

    Wang, An; Cai, Yueming; Yang, Wendong; Cheng, Yunpeng

    2013-04-01

    In this paper, we develop an auction-based algorithm to allocate the relay power efficiently to improve the system secrecy rate in a cooperative network, where several source-destination pairs and one cooperative relay are involved. On the one hand, the cooperative relay assists these pairs to transmit under a peak power constraint. On the other hand, the relay is untrusty and is also a passive eavesdropper. The whole auction process is completely distributed and no instantaneous channel state information exchange is needed. We also prove the existence and uniqueness of the Nash Equilibrium (NE) for the proposed power auction game. Moreover, the Pareto optimality is also validated. Simulation results show that our proposed auction-based algorithm can effectively improve the system secrecy rate. Besides, the proposed auction-based algorithm can converge to the unique NE point within a finite number of iterations. More interestingly, we also find that the proposed power auction mechanism is cheat-proof.

  12. Wireless Security Within Hastily Formed Networks

    DTIC Science & Technology

    2006-09-01

    WLAN DEVICES (STEP ONE) ............34 1. Personal Firewalls..............................................................................34 2. Anti ...includes client devices , access points, network infrastructure, network management, and delivery of mobility services to maintain network security and...Technology Special Publication 800-48, Wireless Network Security, 802.11, Bluetooth , and Handheld Devices . Available at http://csrc.nist.gov

  13. Application of Game Theory Approaches in Routing Protocols for Wireless Networks

    NASA Astrophysics Data System (ADS)

    Javidi, Mohammad M.; Aliahmadipour, Laya

    2011-09-01

    An important and essential issue for wireless networks is routing protocol design that is a major technical challenge due to the function of the network. Game theory is a powerful mathematical tool that analyzes the strategic interactions among multiple decision makers and the results of researches show that applied game theory in routing protocol lead to improvement the network performance through reduce overhead and motivates selfish nodes to collaborate in the network. This paper presents a review and comparison for typical representatives of routing protocols designed that applied game theory approaches for various wireless networks such as ad hoc networks, mobile ad hoc networks and sensor networks that all of them lead to improve the network performance.

  14. Breaking Free with Wireless Networks.

    ERIC Educational Resources Information Center

    Fleischman, John

    2002-01-01

    Discusses wireless local area networks (LANs) which typically consist of laptop computers that connect to fixed access points via infrared or radio signals. Topics include wide area networks; personal area networks; problems, including limitations of available bandwidth, interference, and security concerns; use in education; interoperability;…

  15. Communication devices for network-hopping communications and methods of network-hopping communications

    DOEpatents

    Buttles, John W [Idaho Falls, ID

    2011-12-20

    Wireless communication devices include a software-defined radio coupled to processing circuitry. The processing circuitry is configured to execute computer programming code. Storage media is coupled to the processing circuitry and includes computer programming code configured to cause the processing circuitry to configure and reconfigure the software-defined radio to operate on each of a plurality of communication networks according to a selected sequence. Methods for communicating with a wireless device and methods of wireless network-hopping are also disclosed.

  16. Communication devices for network-hopping communications and methods of network-hopping communications

    DOEpatents

    Buttles, John W

    2013-04-23

    Wireless communication devices include a software-defined radio coupled to processing circuitry. The system controller is configured to execute computer programming code. Storage media is coupled to the system controller and includes computer programming code configured to cause the system controller to configure and reconfigure the software-defined radio to operate on each of a plurality of communication networks according to a selected sequence. Methods for communicating with a wireless device and methods of wireless network-hopping are also disclosed.

  17. Information Assurance in Wireless Networks

    NASA Astrophysics Data System (ADS)

    Kabara, Joseph; Krishnamurthy, Prashant; Tipper, David

    2001-09-01

    Emerging wireless networks will contain a hybrid infrastructure based on fixed, mobile and ad hoc topologies and technologies. In such a dynamic architecture, we define information assurance as the provisions for both information security and information availability. The implications of this definition are that the wireless network architecture must (a) provide sufficient security measures, (b) be survivable under node or link attack or failure and (c) be designed such that sufficient capacity remains for all critical services (and preferably most other services) in the event of attack or component failure. We have begun a research project to investigate the provision of information assurance for wireless networks viz. survivability, security and availability and here discuss the issues and challenges therein.

  18. Energy efficient wireless sensor network for structural health monitoring using distributed embedded piezoelectric transducers

    NASA Astrophysics Data System (ADS)

    Li, Peng; Olmi, Claudio; Song, Gangbing

    2010-04-01

    Piezoceramic based transducers are widely researched and used for structural health monitoring (SHM) systems due to the piezoceramic material's inherent advantage of dual sensing and actuation. Wireless sensor network (WSN) technology benefits from advances made in piezoceramic based structural health monitoring systems, allowing easy and flexible installation, low system cost, and increased robustness over wired system. However, piezoceramic wireless SHM systems still faces some drawbacks, one of these is that the piezoceramic based SHM systems require relatively high computational capabilities to calculate damage information, however, battery powered WSN sensor nodes have strict power consumption limitation and hence limited computational power. On the other hand, commonly used centralized processing networks require wireless sensors to transmit all data back to the network coordinator for analysis. This signal processing procedure can be problematic for piezoceramic based SHM applications as it is neither energy efficient nor robust. In this paper, we aim to solve these problems with a distributed wireless sensor network for piezoceramic base structural health monitoring systems. Three important issues: power system, waking up from sleep impact detection, and local data processing, are addressed to reach optimized energy efficiency. Instead of sweep sine excitation that was used in the early research, several sine frequencies were used in sequence to excite the concrete structure. The wireless sensors record the sine excitations and compute the time domain energy for each sine frequency locally to detect the energy change. By comparing the data of the damaged concrete frame with the healthy data, we are able to find out the damage information of the concrete frame. A relative powerful wireless microcontroller was used to carry out the sampling and distributed data processing in real-time. The distributed wireless network dramatically reduced the data transmission between wireless sensor and the wireless coordinator, which in turn reduced the power consumption of the overall system.

  19. Practice brief. Securing wireless technology for healthcare.

    PubMed

    Retterer, John; Casto, Brian W

    2004-05-01

    Wireless networking can be a very complex science, requiring an understanding of physics and the electromagnetic spectrum. While the radio theory behind the technology can be challenging, a basic understanding of wireless networking can be sufficient for small-scale deployment. Numerous security mechanisms are available to wireless technologies, making it practical, scalable, and affordable for healthcare organizations. The decision on the selected security model should take into account the needs for additional server hardware and administrative costs. Where wide area network connections exist between cooperative organizations, deployment of a distributed security model can be considered to reduce administrative overhead. The wireless approach chosen should be dynamic and concentrate on the organization's specific environmental needs. Aspects of organizational mission, operations, service level, and budget allotment as well as an organization's risk tolerance are all part of the balance in the decision to deploy wireless technology.

  20. Command and Control of Space Assets Through Internet-Based Technologies Demonstrated

    NASA Technical Reports Server (NTRS)

    Foltz, David A.

    2002-01-01

    The NASA Glenn Research Center successfully demonstrated a transmission-control-protocol/ Internet-protocol- (TCP/IP) based approach to the command and control of onorbit assets over a secure network. This is a significant accomplishment because future NASA missions will benefit by using Internet-standards-based protocols. Benefits of this Internet-based space command and control system architecture include reduced mission costs and increased mission efficiency. The demonstration proved that this communications architecture is viable for future NASA missions. This demonstration was a significant feat involving multiple NASA organizations and industry. Phillip Paulsen, from Glenn's Project Development and Integration Office, served as the overall project lead, and David Foltz, from Glenn's Satellite Networks and Architectures Branch, provided the hybrid networking support for the required Internet connections. The goal was to build a network that would emulate a connection between a space experiment on the International Space Station and a researcher accessing the experiment from anywhere on the Internet, as shown. The experiment was interfaced to a wireless 802.11 network inside the demonstration area. The wireless link provided connectivity to the Tracking and Data Relay Satellite System (TDRSS) Internet Link Terminal (TILT) satellite uplink terminal located 300 ft away in a parking lot on top of a panel van. TILT provided a crucial link in this demonstration. Leslie Ambrose, NASA Goddard Space Flight Center, provided the TILT/TDRSS support. The TILT unit transmitted the signal to TDRS 6 and was received at the White Sands Second TDRSS Ground Station. This station provided the gateway to the Internet. Coordination also took place at the White Sands station to install a Veridian Firewall and automated security incident measurement (ASIM) system to the Second TDRSS Ground Station Internet gateway. The firewall provides a trusted network for the simulated space experiment. A second Internet connection at the demonstration area was implemented to provide Internet connectivity to a group of workstations to serve as platforms for controlling the simulated space experiment. Installation of this Internet connection was coordinated with an Internet service provider (ISP) and local NASA Johnson Space Center personnel. Not only did this TCP/IP-based architecture prove that a principal investigator on the Internet can securely command and control on-orbit assets, it also demonstrated that valuable virtual testing of planned on-orbit activities can be conducted over the Internet prior to actual deployment in space.

  1. On the Design of Smart Parking Networks in the Smart Cities: An Optimal Sensor Placement Model

    PubMed Central

    Bagula, Antoine; Castelli, Lorenzo; Zennaro, Marco

    2015-01-01

    Smart parking is a typical IoT application that can benefit from advances in sensor, actuator and RFID technologies to provide many services to its users and parking owners of a smart city. This paper considers a smart parking infrastructure where sensors are laid down on the parking spots to detect car presence and RFID readers are embedded into parking gates to identify cars and help in the billing of the smart parking. Both types of devices are endowed with wired and wireless communication capabilities for reporting to a gateway where the situation recognition is performed. The sensor devices are tasked to play one of the three roles: (1) slave sensor nodes located on the parking spot to detect car presence/absence; (2) master nodes located at one of the edges of a parking lot to detect presence and collect the sensor readings from the slave nodes; and (3) repeater sensor nodes, also called “anchor” nodes, located strategically at specific locations in the parking lot to increase the coverage and connectivity of the wireless sensor network. While slave and master nodes are placed based on geographic constraints, the optimal placement of the relay/anchor sensor nodes in smart parking is an important parameter upon which the cost and efficiency of the parking system depends. We formulate the optimal placement of sensors in smart parking as an integer linear programming multi-objective problem optimizing the sensor network engineering efficiency in terms of coverage and lifetime maximization, as well as its economic gain in terms of the number of sensors deployed for a specific coverage and lifetime. We propose an exact solution to the node placement problem using single-step and two-step solutions implemented in the Mosel language based on the Xpress-MPsuite of libraries. Experimental results reveal the relative efficiency of the single-step compared to the two-step model on different performance parameters. These results are consolidated by simulation results, which reveal that our solution outperforms a random placement in terms of both energy consumption, delay and throughput achieved by a smart parking network. PMID:26134104

  2. On the Design of Smart Parking Networks in the Smart Cities: An Optimal Sensor Placement Model.

    PubMed

    Bagula, Antoine; Castelli, Lorenzo; Zennaro, Marco

    2015-06-30

    Smart parking is a typical IoT application that can benefit from advances in sensor, actuator and RFID technologies to provide many services to its users and parking owners of a smart city. This paper considers a smart parking infrastructure where sensors are laid down on the parking spots to detect car presence and RFID readers are embedded into parking gates to identify cars and help in the billing of the smart parking. Both types of devices are endowed with wired and wireless communication capabilities for reporting to a gateway where the situation recognition is performed. The sensor devices are tasked to play one of the three roles: (1) slave sensor nodes located on the parking spot to detect car presence/absence; (2) master nodes located at one of the edges of a parking lot to detect presence and collect the sensor readings from the slave nodes; and (3) repeater sensor nodes, also called "anchor" nodes, located strategically at specific locations in the parking lot to increase the coverage and connectivity of the wireless sensor network. While slave and master nodes are placed based on geographic constraints, the optimal placement of the relay/anchor sensor nodes in smart parking is an important parameter upon which the cost and efficiency of the parking system depends. We formulate the optimal placement of sensors in smart parking as an integer linear programming multi-objective problem optimizing the sensor network engineering efficiency in terms of coverage and lifetime maximization, as well as its economic gain in terms of the number of sensors deployed for a specific coverage and lifetime. We propose an exact solution to the node placement problem using single-step and two-step solutions implemented in the Mosel language based on the Xpress-MPsuite of libraries. Experimental results reveal the relative efficiency of the single-step compared to the two-step model on different performance parameters. These results are consolidated by simulation results, which reveal that our solution outperforms a random placement in terms of both energy consumption, delay and throughput achieved by a smart parking network.

  3. Butterfly Encryption Scheme for Resource-Constrained Wireless Networks †

    PubMed Central

    Sampangi, Raghav V.; Sampalli, Srinivas

    2015-01-01

    Resource-constrained wireless networks are emerging networks such as Radio Frequency Identification (RFID) and Wireless Body Area Networks (WBAN) that might have restrictions on the available resources and the computations that can be performed. These emerging technologies are increasing in popularity, particularly in defence, anti-counterfeiting, logistics and medical applications, and in consumer applications with growing popularity of the Internet of Things. With communication over wireless channels, it is essential to focus attention on securing data. In this paper, we present an encryption scheme called Butterfly encryption scheme. We first discuss a seed update mechanism for pseudorandom number generators (PRNG), and employ this technique to generate keys and authentication parameters for resource-constrained wireless networks. Our scheme is lightweight, as in it requires less resource when implemented and offers high security through increased unpredictability, owing to continuously changing parameters. Our work focuses on accomplishing high security through simplicity and reuse. We evaluate our encryption scheme using simulation, key similarity assessment, key sequence randomness assessment, protocol analysis and security analysis. PMID:26389899

  4. Emerging Trends in Healthcare Adoption of Wireless Body Area Networks.

    PubMed

    Rangarajan, Anuradha

    2016-01-01

    Real-time personal health monitoring is gaining new ground with advances in wireless communications. Wireless body area networks (WBANs) provide a means for low-powered sensors, affixed either on the human body or in vivo, to communicate with each other and with external telecommunication networks. The healthcare benefits of WBANs include continuous monitoring of patient vitals, measuring postacute rehabilitation time, and improving quality of medical care provided in medical emergencies. This study sought to examine emerging trends in WBAN adoption in healthcare. To that end, a systematic literature survey was undertaken against the PubMed database. The search criteria focused on peer-reviewed articles that contained the keywords "wireless body area network" and "healthcare" or "wireless body area network" and "health care." A comprehensive review of these articles was performed to identify adoption dimensions, including underlying technology framework, healthcare subdomain, and applicable lessons-learned. This article benefits healthcare technology professionals by identifying gaps in implementation of current technology and highlighting opportunities for improving products and services.

  5. Butterfly Encryption Scheme for Resource-Constrained Wireless Networks.

    PubMed

    Sampangi, Raghav V; Sampalli, Srinivas

    2015-09-15

    Resource-constrained wireless networks are emerging networks such as Radio Frequency Identification (RFID) and Wireless Body Area Networks (WBAN) that might have restrictions on the available resources and the computations that can be performed. These emerging technologies are increasing in popularity, particularly in defence, anti-counterfeiting, logistics and medical applications, and in consumer applications with growing popularity of the Internet of Things. With communication over wireless channels, it is essential to focus attention on securing data. In this paper, we present an encryption scheme called Butterfly encryption scheme. We first discuss a seed update mechanism for pseudorandom number generators (PRNG), and employ this technique to generate keys and authentication parameters for resource-constrained wireless networks. Our scheme is lightweight, as in it requires less resource when implemented and offers high security through increased unpredictability, owing to continuously changing parameters. Our work focuses on accomplishing high security through simplicity and reuse. We evaluate our encryption scheme using simulation, key similarity assessment, key sequence randomness assessment, protocol analysis and security analysis.

  6. Link Investigation of IEEE 802.15.4 Wireless Sensor Networks in Forests

    PubMed Central

    Ding, Xingjian; Sun, Guodong; Yang, Gaoxiang; Shang, Xinna

    2016-01-01

    Wireless sensor networks are expected to automatically monitor the ecological evolution and wildlife habits in forests. Low-power links (transceivers) are often adopted in wireless sensor network applications, in order to save the precious sensor energy and then achieve long-term, unattended monitoring. Recent research has presented some performance characteristics of such low-power wireless links under laboratory or outdoor scenarios with less obstacles, and they have found that low-power wireless links are unreliable and prone to be affected by the target environment. However, there is still less understanding about how well the low-power wireless link performs in real-world forests and to what extent the complex in-forest surrounding environments affect the link performances. In this paper, we empirically evaluate the low-power links of wireless sensors in three typical different forest environments. Our experiment investigates the performance of the link layer compatible with the IEEE 802.15.4 standard and analyzes the variation patterns of the packet reception ratio (PRR), the received signal strength indicator (RSSI) and the link quality indicator (LQI) under diverse experimental settings. Some observations of this study are inconsistent with or even contradict prior results that are achieved in open fields or relatively clean environments and thus, provide new insights both into effectively evaluating the low-power wireless links and into efficiently deploying wireless sensor network systems in forest environments. PMID:27355957

  7. Link Investigation of IEEE 802.15.4 Wireless Sensor Networks in Forests.

    PubMed

    Ding, Xingjian; Sun, Guodong; Yang, Gaoxiang; Shang, Xinna

    2016-06-27

    Wireless sensor networks are expected to automatically monitor the ecological evolution and wildlife habits in forests. Low-power links (transceivers) are often adopted in wireless sensor network applications, in order to save the precious sensor energy and then achieve long-term, unattended monitoring. Recent research has presented some performance characteristics of such low-power wireless links under laboratory or outdoor scenarios with less obstacles, and they have found that low-power wireless links are unreliable and prone to be affected by the target environment. However, there is still less understanding about how well the low-power wireless link performs in real-world forests and to what extent the complex in-forest surrounding environments affect the link performances. In this paper, we empirically evaluate the low-power links of wireless sensors in three typical different forest environments. Our experiment investigates the performance of the link layer compatible with the IEEE 802.15.4 standard and analyzes the variation patterns of the packet reception ratio (PRR), the received signal strength indicator (RSSI) and the link quality indicator (LQI) under diverse experimental settings. Some observations of this study are inconsistent with or even contradict prior results that are achieved in open fields or relatively clean environments and thus, provide new insights both into effectively evaluating the low-power wireless links and into efficiently deploying wireless sensor network systems in forest environments.

  8. The benefits of soft sensor and multi-rate control for the implementation of Wireless Networked Control Systems.

    PubMed

    Mansano, Raul K; Godoy, Eduardo P; Porto, Arthur J V

    2014-12-18

    Recent advances in wireless networking technology and the proliferation of industrial wireless sensors have led to an increasing interest in using wireless networks for closed loop control. The main advantages of Wireless Networked Control Systems (WNCSs) are the reconfigurability, easy commissioning and the possibility of installation in places where cabling is impossible. Despite these advantages, there are two main problems which must be considered for practical implementations of WNCSs. One problem is the sampling period constraint of industrial wireless sensors. This problem is related to the energy cost of the wireless transmission, since the power supply is limited, which precludes the use of these sensors in several closed-loop controls. The other technological concern in WNCS is the energy efficiency of the devices. As the sensors are powered by batteries, the lowest possible consumption is required to extend battery lifetime. As a result, there is a compromise between the sensor sampling period, the sensor battery lifetime and the required control performance for the WNCS. This paper develops a model-based soft sensor to overcome these problems and enable practical implementations of WNCSs. The goal of the soft sensor is generating virtual data allowing an actuation on the process faster than the maximum sampling period available for the wireless sensor. Experimental results have shown the soft sensor is a solution to the sampling period constraint problem of wireless sensors in control applications, enabling the application of industrial wireless sensors in WNCSs. Additionally, our results demonstrated the soft sensor potential for implementing energy efficient WNCS through the battery saving of industrial wireless sensors.

  9. Efficient Deployment of Key Nodes for Optimal Coverage of Industrial Mobile Wireless Networks

    PubMed Central

    Li, Xiaomin; Li, Di; Dong, Zhijie; Hu, Yage; Liu, Chengliang

    2018-01-01

    In recent years, industrial wireless networks (IWNs) have been transformed by the introduction of mobile nodes, and they now offer increased extensibility, mobility, and flexibility. Nevertheless, mobile nodes pose efficiency and reliability challenges. Efficient node deployment and management of channel interference directly affect network system performance, particularly for key node placement in clustered wireless networks. This study analyzes this system model, considering both industrial properties of wireless networks and their mobility. Then, static and mobile node coverage problems are unified and simplified to target coverage problems. We propose a novel strategy for the deployment of clustered heads in grouped industrial mobile wireless networks (IMWNs) based on the improved maximal clique model and the iterative computation of new candidate cluster head positions. The maximal cliques are obtained via a double-layer Tabu search. Each cluster head updates its new position via an improved virtual force while moving with full coverage to find the minimal inter-cluster interference. Finally, we develop a simulation environment. The simulation results, based on a performance comparison, show the efficacy of the proposed strategies and their superiority over current approaches. PMID:29439439

  10. Receiver-Assisted Congestion Control to Achieve High Throughput in Lossy Wireless Networks

    NASA Astrophysics Data System (ADS)

    Shi, Kai; Shu, Yantai; Yang, Oliver; Luo, Jiarong

    2010-04-01

    Many applications would require fast data transfer in high-speed wireless networks nowadays. However, due to its conservative congestion control algorithm, Transmission Control Protocol (TCP) cannot effectively utilize the network capacity in lossy wireless networks. In this paper, we propose a receiver-assisted congestion control mechanism (RACC) in which the sender performs loss-based control, while the receiver is performing delay-based control. The receiver measures the network bandwidth based on the packet interarrival interval and uses it to compute a congestion window size deemed appropriate for the sender. After receiving the advertised value feedback from the receiver, the sender then uses the additive increase and multiplicative decrease (AIMD) mechanism to compute the correct congestion window size to be used. By integrating the loss-based and the delay-based congestion controls, our mechanism can mitigate the effect of wireless losses, alleviate the timeout effect, and therefore make better use of network bandwidth. Simulation and experiment results in various scenarios show that our mechanism can outperform conventional TCP in high-speed and lossy wireless environments.

  11. Lunar Relay Satellite Network for Space Exploration: Architecture, Technologies and Challenges

    NASA Technical Reports Server (NTRS)

    Bhasin, Kul B.; Hackenberg, Anthony W.; Slywczak, Richard A.; Bose, Prasanta; Bergamo, Marcos; Hayden, Jeffrey L.

    2006-01-01

    NASA is planning a series of short and long duration human and robotic missions to explore the Moon and then Mars. A key objective of these missions is to grow, through a series of launches, a system of systems infrastructure with the capability for safe and sustainable autonomous operations at minimum cost while maximizing the exploration capabilities and science return. An incremental implementation process will enable a buildup of the communication, navigation, networking, computing, and informatics architectures to support human exploration missions in the vicinities and on the surfaces of the Moon and Mars. These architectures will support all space and surface nodes, including other orbiters, lander vehicles, humans in spacesuits, robots, rovers, human habitats, and pressurized vehicles. This paper describes the integration of an innovative MAC and networking technology with an equally innovative position-dependent, data routing, network technology. The MAC technology provides the relay spacecraft with the capability to autonomously discover neighbor spacecraft and surface nodes, establish variable-rate links and communicate simultaneously with multiple in-space and surface clients at varying and rapidly changing distances while making optimum use of the available power. The networking technology uses attitude sensors, a time synchronization protocol and occasional orbit-corrections to maintain awareness of its instantaneous position and attitude in space as well as the orbital or surface location of its communication clients. A position-dependent data routing capability is used in the communication relay satellites to handle the movement of data among any of multiple clients (including Earth) that may be simultaneously in view; and if not in view, the relay will temporarily store the data from a client source and download it when the destination client comes into view. The integration of the MAC and data routing networking technologies would enable a relay satellite system to provide end-to-end communication services for robotic and human missions in the vicinity, or on the surface of the Moon with a minimum of Earth-based operational support.

  12. Networking via wireless bridge produces greater speed and flexibility, lowers cost.

    PubMed

    1998-10-01

    Wireless computer networking. Computer connectivity is essential in today's high-tech health care industry. But telephone lines aren't fast enough, and high-speed connections like T-1 lines are costly. Read about an Ohio community hospital that installed a wireless network "bridge" to connect buildings that are miles apart, creating a reliable high-speed link that costs one-tenth of a T-1 line.

  13. Defense Advanced Research Projects Agency: Key Factors Drive Transition of Technologies, but Better Training and Data Dissemination Can Increase Success

    DTIC Science & Technology

    2015-11-01

    more detail. Table 1: Overview of DARPA Programs Selected for GAO Case Study Analyses Program name Program description Advanced Wireless Networks ...Selected DARPA Programs Program name According to DARPA portfolio-level database According to GAO analysis Advanced Wireless Networks for the Soldier...with potential transition partners Achievement of clearly defined technical goals Successful transition Advanced Wireless Networks for Soldier

  14. Wireless Sensor Network Optimization: Multi-Objective Paradigm

    PubMed Central

    Iqbal, Muhammad; Naeem, Muhammad; Anpalagan, Alagan; Ahmed, Ashfaq; Azam, Muhammad

    2015-01-01

    Optimization problems relating to wireless sensor network planning, design, deployment and operation often give rise to multi-objective optimization formulations where multiple desirable objectives compete with each other and the decision maker has to select one of the tradeoff solutions. These multiple objectives may or may not conflict with each other. Keeping in view the nature of the application, the sensing scenario and input/output of the problem, the type of optimization problem changes. To address different nature of optimization problems relating to wireless sensor network design, deployment, operation, planing and placement, there exist a plethora of optimization solution types. We review and analyze different desirable objectives to show whether they conflict with each other, support each other or they are design dependent. We also present a generic multi-objective optimization problem relating to wireless sensor network which consists of input variables, required output, objectives and constraints. A list of constraints is also presented to give an overview of different constraints which are considered while formulating the optimization problems in wireless sensor networks. Keeping in view the multi facet coverage of this article relating to multi-objective optimization, this will open up new avenues of research in the area of multi-objective optimization relating to wireless sensor networks. PMID:26205271

  15. Two-layer wireless distributed sensor/control network based on RF

    NASA Astrophysics Data System (ADS)

    Feng, Li; Lin, Yuchi; Zhou, Jingjing; Dong, Guimei; Xia, Guisuo

    2006-11-01

    A project of embedded Wireless Distributed Sensor/Control Network (WDSCN) based on RF is presented after analyzing the disadvantages of traditional measure and control system. Because of high-cost and complexity, such wireless techniques as Bluetooth and WiFi can't meet the needs of WDSCN. The two-layer WDSCN is designed based on RF technique, which operates in the ISM free frequency channel with low power and high transmission speed. Also the network is low cost, portable and moveable, integrated with the technologies of computer network, sensor, microprocessor and wireless communications. The two-layer network topology is selected in the system; a simple but efficient self-organization net protocol is designed to fit the periodic data collection, event-driven and store-and-forward. Furthermore, adaptive frequency hopping technique is adopted for anti-jamming apparently. The problems about power reduction and synchronization of data in wireless system are solved efficiently. Based on the discussion above, a measure and control network is set up to control such typical instruments and sensors as temperature sensor and signal converter, collect data, and monitor environmental parameters around. This system works well in different rooms. Experiment results show that the system provides an efficient solution to WDSCN through wireless links, with high efficiency, low power, high stability, flexibility and wide working range.

  16. Underwater Sensor Network Redeployment Algorithm Based on Wolf Search

    PubMed Central

    Jiang, Peng; Feng, Yang; Wu, Feng

    2016-01-01

    This study addresses the optimization of node redeployment coverage in underwater wireless sensor networks. Given that nodes could easily become invalid under a poor environment and the large scale of underwater wireless sensor networks, an underwater sensor network redeployment algorithm was developed based on wolf search. This study is to apply the wolf search algorithm combined with crowded degree control in the deployment of underwater wireless sensor networks. The proposed algorithm uses nodes to ensure coverage of the events, and it avoids the prematurity of the nodes. The algorithm has good coverage effects. In addition, considering that obstacles exist in the underwater environment, nodes are prevented from being invalid by imitating the mechanism of avoiding predators. Thus, the energy consumption of the network is reduced. Comparative analysis shows that the algorithm is simple and effective in wireless sensor network deployment. Compared with the optimized artificial fish swarm algorithm, the proposed algorithm exhibits advantages in network coverage, energy conservation, and obstacle avoidance. PMID:27775659

  17. Effective Utilization of Commercial Wireless Networking Technology in Planetary Environments

    NASA Technical Reports Server (NTRS)

    Caulev, Michael (Technical Monitor); Phillip, DeLeon; Horan, Stephen; Borah, Deva; Lyman, Ray

    2005-01-01

    The purpose of this research is to investigate the use of commercial, off-the-shelf wireless networking technology in planetary exploration applications involving rovers and sensor webs. The three objectives of this research project are to: 1) simulate the radio frequency environment of proposed landing sites on Mars using actual topographic data, 2) analyze the performance of current wireless networking standards in the simulated radio frequency environment, and 3) propose modifications to the standards for more efficient utilization. In this annual report, we present our results for the second year of research. During this year, the effort has focussed on the second objective of analyzing the performance of the IEEE 802.11a and IEEE 802.1lb wireless networking standards in the simulated radio frequency environment of Mars. The approach builds upon our previous results which deterministically modelled the RF environment at selected sites on Mars using high-resolution topographical data. These results provide critical information regarding antenna coverage patterns, maximum link distances, effects of surface clutter, and multipath effects. Using these previous results, the physical layer of these wireless networking standards has now been simulated and analyzed in the Martian environment. We are looking to extending these results to the and medium access layer next. Our results give us critical information regarding the performance (data rates, packet error rates, link distances, etc.) of IEEE 802.1 la/b wireless networks. This information enables a critical examination of how these wireless networks may be utilized in future Mars missions and how they may be possibly modified for more optimal usage.

  18. ShakeNet: a portable wireless sensor network for instrumenting large civil structures

    USGS Publications Warehouse

    Kohler, Monica D.; Hao, Shuai; Mishra, Nilesh; Govindan, Ramesh; Nigbor, Robert

    2015-08-03

    We report our findings from a U.S. Geological Survey (USGS) National Earthquake Hazards Reduction Program-funded project to develop and test a wireless, portable, strong-motion network of up to 40 triaxial accelerometers for structural health monitoring. The overall goal of the project was to record ambient vibrations for several days from USGS-instrumented structures. Structural health monitoring has important applications in fields like civil engineering and the study of earthquakes. The emergence of wireless sensor networks provides a promising means to such applications. However, while most wireless sensor networks are still in the experimentation stage, very few take into consideration the realistic earthquake engineering application requirements. To collect comprehensive data for structural health monitoring for civil engineers, high-resolution vibration sensors and sufficient sampling rates should be adopted, which makes it challenging for current wireless sensor network technology in the following ways: processing capabilities, storage limit, and communication bandwidth. The wireless sensor network has to meet expectations set by wired sensor devices prevalent in the structural health monitoring community. For this project, we built and tested an application-realistic, commercially based, portable, wireless sensor network called ShakeNet for instrumentation of large civil structures, especially for buildings, bridges, or dams after earthquakes. Two to three people can deploy ShakeNet sensors within hours after an earthquake to measure the structural response of the building or bridge during aftershocks. ShakeNet involved the development of a new sensing platform (ShakeBox) running a software suite for networking, data collection, and monitoring. Deployments reported here on a tall building and a large dam were real-world tests of ShakeNet operation, and helped to refine both hardware and software. 

  19. Are Wireless Networks the Wave of the Future?

    ERIC Educational Resources Information Center

    Young, Jeffrey R.

    1999-01-01

    Some college administrators feel the next major trend in educational technology will be wireless networks that let students and professors connect to the Internet with radio waves rather than cumbersome cables. Several universities are already using the less expensive technology. However, some find the slower speed of available wireless services…

  20. Architectural and Mobility Management Designs in Internet-Based Infrastructure Wireless Mesh Networks

    ERIC Educational Resources Information Center

    Zhao, Weiyi

    2011-01-01

    Wireless mesh networks (WMNs) have recently emerged to be a cost-effective solution to support large-scale wireless Internet access. They have numerous applications, such as broadband Internet access, building automation, and intelligent transportation systems. One research challenge for Internet-based WMNs is to design efficient mobility…

Top