Value of wireless personal digital assistants for practice: perceptions of advanced practice nurses.
Garrett, Bernard; Klein, Gerri
2008-08-01
The aims were to explore advanced practice nurses' perceptions on wireless Personal Digital Assistant technologies, to establish the type and range of tools that would be useful to support their practice and to identify any requirements and limitations that may impact the implementation of wireless Personal Digital Assistants in practice. The wireless Personal Digital Assistant is becoming established as a hand-held computing tool for healthcare professionals. The reflections of advanced practice nurses' about the value of wireless Personal Digital Assistants and its potential to contribute to improved patient care has not been investigated. A qualitative interpretivist design was used to explore advanced practice nurses' perceptions on the value of wireless Personal Digital Assistant technologies to support their practice. The data were collected using survey questionnaires and individual and focus group interviews with nurse practitioners, clinical nurse specialists and information technology managers based in British Columbia, Canada. An open-coding content analysis was performed using qualitative data analysis software. Wireless Personal Digital Assistant's use supports the principles of pervasivity and is a technology rapidly being adopted by advanced practice nurses. Some nurses indicated a reluctance to integrate wireless Personal Digital Assistant technologies into their practices because of the cost and the short technological life cycle of these devices. Many of the barriers which precluded the use of wireless networks within facilities are being removed. Nurses demonstrated a complex understanding of wireless Personal Digital Assistant technologies and gave good rationales for its integration in their practice. Nurses identified improved client care as the major benefit of this technology in practice and the type and range of tools they identified included clinical reference tools such as drug and diagnostic/laboratory reference applications and wireless communications. Nurses in this study support integrating wireless mobile computing technologies into their practice to improve client care.
Technology of short-distance wireless communication and its application based on equipment support
NASA Astrophysics Data System (ADS)
Yu, Yang; Zheng, Liping; Zhu, Jianjie; Cao, Yingxiu; Hu, Bei
2018-04-01
This paper briefly introduces some common short-region wireless communication technologies, comprehensively compares the application characteristics of each technology, and summarizes the application prospect of these technologies in equipment support.
Mobilize Your instruction Program with Wireless Technology.
ERIC Educational Resources Information Center
Mathias, Molly Susan; Heser, Steven
2002-01-01
Describes the use of wireless technology for library bibliographic instruction at the Milwaukee Area Technical College. Highlights include a wireless mobile cart that holds laptop computers; faculty support; future plans; and recommendations, including investigating technology infrastructure and marketing. (LRW)
The Use of SMS Support in Programming Education
ERIC Educational Resources Information Center
Kert, Serhat Bahadir
2011-01-01
The rapid developments in the communication technologies today render possible the use of new technological support tools in learning processes. Wireless, or mobile wireless, technologies are the tools whose potential contributions to education are investigated. The potential effects of these technologies on learning are explored through studies…
New Methods and Models in Wireless Networks: Multigraphs--Games--Mechanism Design
ERIC Educational Resources Information Center
Tran, Dung Trung
2010-01-01
The recent evolution of wireless technology makes wireless devices ever more powerful and intelligent. One trend is that wireless devices are becoming more inexpensive and more diverse. As a result, new technologies make it possible to equip wireless nodes with several radio transmitters/receivers. Each radio may support multiple channels which…
Wireless Instrumentation Use on Launch Vehicles
NASA Technical Reports Server (NTRS)
Sherman, Aaron
2010-01-01
This slide presentation reviews the results of a study on the use of wireless instrumentation and sensors on future launch vehicles. The use of wireless technologies would if feasible would allow for fewer wires, and allow for more flexibility. However, it was generally concluded that wireless solutions are not currently ready to replace wired technologies for launch vehicles. The recommendations of the study were to continue to use wired sensors as the primary choice for vehicle instrumentation, and to continue to assess needs and use wireless instrumentation where appropriate. The future work includes support efforts for wireless technologies, and continue to monitor the development of wireless solutions.
Wireless Internet and Student-Centered Learning: A Partial Least-Squares Model
ERIC Educational Resources Information Center
Lu, Eric Y.; Ma, Hongyan; Turner, Sandra; Huang, Wayne
2007-01-01
Wireless Internet technology is gaining a foothold on more and more campuses, yet few studies have investigated how wireless Internet supports and enhances a student-centered learning environment. This study seeks to fill the gap by developing an instrument to measure how wireless Internet supports student-centered learning. A web survey was…
Path Calculation and Packet Translation for UAV Surveillance in Support of Wireless Sensor Networks
2006-09-01
AND PACKET TRANSLATION FOR UAV SURVEILLANCE IN SUPPORT OF WIRELESS SENSOR NETWORKS by Stephen Schall September 2006 Thesis Advisor...Calculation and Packet Translation for UAV Surveillance in Support of Wireless Sensor Networks 6. AUTHOR(S) Stephen Schall 5. FUNDING NUMBERS 7...200 words) Wireless Sensor Networks (WSNs) are a relatively new technology with many potential applications, including military and
NASA Astrophysics Data System (ADS)
Gunes-Lasnet, Sev; Dufour, Jean-Francois
2012-08-01
The potential uses and benefits of wireless technologies in space are very broad. Since many years the CCSDS SOIS wireless working group has worked at the identification of key applications for which wireless would bring benefits, and at supporting the deployment of wireless in space thanks to documents, in particular a Green informative book and magenta books presenting recommended practices.The Smart Sensor Inter-Agency Research Test bench (SSIART) is being designed to provide the space Agencies and the Industry with a reference smart sensor platform to test wireless sensor technologies in reference representative applications and RF propagation environments, while promoting these technologies at the same time.
ERIC Educational Resources Information Center
Kim, Sang Hyun; Holmes, Kerry; Mims, Clif
2005-01-01
People commonly use technology in their daily lives. Within an increasingly complex society, individuals, organizations and other entities continue to look for new technologies that support their goals. Since the 1990s, there has been movement toward mobile wireless technology in education. Like the wired technology that came before, mobile…
Tradeoff Analysis for Combat Service Support Wireless Communications Alternatives
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burnette, John R.; Thibodeau, Christopher C.; Greitzer, Frank L.
2002-02-28
As the Army moves toward more mobile and agile forces and continued sustainment of numerous high-cost legacy logistics management systems, the requirement for wireless connectivity and a wireless network to supporting organizations has become ever more critical. There are currently several Army communications initiatives underway to resolve this wireless connectivity issue. However, to fully appreciate and understand the value of these initiatives, a Tradeoff Analysis is needed. The present study seeks to identify and assess solutions. The analysis identified issues that impede Interim Brigade Combat Team (IBCT) communication system integration and outlined core requirements for sharing of logistics data betweenmore » the field and Army battle command systems. Then, the analysis examined wireless communication alternatives as possible solutions for IBCT logistics communications problems. The current baseline system was compared with possible alternatives involving tactical radio systems, wireless/near term digital radio, cellular satellite, and third-generation (3G) wireless technologies. Cellular satellite and 3G wireless technologies offer clear advantages and should be considered for later IBCTs.« less
Wireless Technologies in Support of ISS Experimentation and Operations
NASA Technical Reports Server (NTRS)
Wagner, Raymond; Fink, Patrick
2012-01-01
Presentation reviews: (1) Wireless Communications (a) Internal (b) External (2) RFID (Radio Frequency Identification) (a) Existing and R&D (3) Wireless Sensor Networks (a) Existing and R&D (4) Ultra-Wide Band (UWB) (a) R&D
Smart Grid Communications System Blueprint
NASA Astrophysics Data System (ADS)
Clark, Adrian; Pavlovski, Chris
2010-10-01
Telecommunications operators are well versed in deploying 2G and 3G wireless networks. These networks presently support the mobile business user and/or retail consumer wishing to place conventional voice calls and data connections. The electrical power industry has recently commenced transformation of its distribution networks by deploying smart monitoring and control devices throughout their networks. This evolution of the network into a `smart grid' has also motivated the need to deploy wireless technologies that bridge the communication gap between the smart devices and information technology systems. The requirements of these networks differ from traditional wireless networks that communications operators have deployed, which have thus far forced energy companies to consider deploying their own wireless networks. We present our experience in deploying wireless networks to support the smart grid and highlight the key properties of these networks. These characteristics include application awareness, support for large numbers of simultaneous cell connections, high service coverage and prioritized routing of data. We also outline our target blueprint architecture that may be useful to the industry in building wireless and fixed networks to support the smart grid. By observing our experiences, telecommunications operators and equipment manufacturers will be able to augment their current networks and products in a way that accommodates the needs of the emerging industry of smart grids and intelligent electrical networks.
NASA Technical Reports Server (NTRS)
Alexandrov, Natalia; Holmes, Bruce J.; Hahn, Andrew S.
2016-01-01
We report on an examination of potential benefits of infusing wireless technologies into various areas of aircraft and airspace operations. The analysis is done in support of a NASA seedling project Efficient Reconfigurable Cockpit Design and Fleet Operations Using Software Intensive, Network Enabled Wireless Architecture (ECON). The study has two objectives. First, we investigate one of the main benefit hypotheses of the ECON proposal: that the replacement of wired technologies with wireless would lead to significant weight reductions on an aircraft, among other benefits. Second, we advance a list of wireless technology applications and discuss their system benefits. With regard to the primary hypothesis, we conclude that the promise of weight reduction is premature. Specificity of the system domain and aircraft, criticality of components, reliability of wireless technologies, the weight of replacement or augmentation equipment, and the cost of infusion must all be taken into account among other considerations, to produce a reliable estimate of weight savings or increase.
Wireless networks of opportunity in support of secure field operations
NASA Astrophysics Data System (ADS)
Stehle, Roy H.; Lewis, Mark
1997-02-01
Under funding from the Defense Advanced Research Projects Agency (DARPA) for joint military and law enforcement technologies, demonstrations of secure information transfer in support of law enforcement and military operations other than war, using wireless and wired technology, were held in September 1996 at several locations in the United States. In this paper, the network architecture, protocols, and equipment supporting the demonstration's scenarios are presented, together with initial results, including lessons learned and desired system enhancements. Wireless networks of opportunity encompassed in-building (wireless-LAN), campus-wide (Metricom Inc.), metropolitan (AMPS cellular, CDPD), and national (one- and two-way satellite) systems. Evolving DARPA-sponsored packet radio technology was incorporated. All data was encrypted, using multilevel information system security initiative (MISSI)FORTEZZA technology, for carriage over unsecured and unclassified commercial networks. The identification and authentication process inherent in the security system permitted logging for database accesses and provided an audit trail useful in evidence gathering. Wireless and wireline communications support, to and between modeled crisis management centers, was demonstrated. Mechanisms for the guarded transport of data through the secret-high military tactical Internet were included, to support joint law enforcement and crisis management missions. A secure World Wide Web (WWW) browser forms the primary, user-friendly interface for information retrieval and submission. The WWW pages were structured to be sensitive to the bandwidth, error rate, and cost of the communications medium in use (e.g., the use of and resolution for graphical data). Both still and motion compressed video were demonstrated, along with secure voice transmission from laptop computers in the field. Issues of network bandwidth, airtime costs, and deployment status are discussed.
From teaching to learning in a mobile, wireless world.
Billings, Diane M
2005-08-01
What research evidence justifies this shift from teaching to learning in the mobile, wireless world? We do not need evidence to answer questions such as, "Will the mobile, wireless device technology support teaching and learning?" (we already know it will), or "Will distance learning with mobile, wireless devices be as effective as that in the classroom?" (abundant evidence indicates there will be no significant differences). However, we do need to know, "How can we use these learning technologies to improve student learning and the outcomes of our academic programs?" Answers to this question will ultimately help educators prepare students to deliver safe and competent patient care in the mobile, wireless world.
M-Learning: An Experiment in Using SMS to Support Learning New English Language Words
ERIC Educational Resources Information Center
Cavus, Nadire; Ibrahim, Dogan
2009-01-01
There is an increase use of wireless technologies in education all over the world. In fact, wireless technologies such as laptop computers, palmtop computers and mobile phones are revolutionizing education and transforming the traditional classroom-based learning and teaching into "anytime" and "anywhere" education. This paper investigates the use…
Implementing Wireless Mobile Instructional Labs: Planning Issues and Case Study
ERIC Educational Resources Information Center
McKimmy, Paul B.
2005-01-01
In April 2002, the Technology Advisory Committee of the University of Hawaii-Manoa College of Education (COE) prioritized the upgrade of existing instructional computer labs. Following several weeks of research and discussion, a decision was made to support wireless and mobile technologies during the upgrade. In June 2002, the first of three…
2014-09-01
power. The wireless infrastructure is an expansion of the current DOD IE which can be leveraged to connect mobile capabilities and technologies. The...DOD must focus on three critical areas central to mobility : the wireless infrastructure , the devices themselves, and the applications the devices use... infrastructure to support mobile devices. – The intent behind this goal is to improve the existing wireless backbone to support secure voice, data, and video
Potential uses of a wireless network in physical security systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Witzke, Edward L.
2010-07-01
Many possible applications requiring or benefiting from a wireless network are available for bolstering physical security and awareness at high security installations or facilities. These enhancements are not always straightforward and may require careful analysis, selection, tuning, and implementation of wireless technologies. In this paper, an introduction to wireless networks and the task of enhancing physical security is first given. Next, numerous applications of a wireless network are brought forth. The technical issues that arise when using a wireless network to support these applications are then discussed. Finally, a summary is presented.
Wireless Internet Gateways (WINGS)
1997-01-01
WIRELESS INTERNET GATEWAYS (WINGS) J.J. Garcia-Luna-Aceves, Chane L. Fullmer, Ewerton Madruga Computer Engineering Department University of...rooftop.com Abstract— Today’s internetwork technology has been extremely success- ful in linking huge numbers of computers and users. However, to date...this technology has been oriented to computer interconnection in relatively stable operational environments, and thus cannot adequately support many of
Jacob, Eufemia; Pavlish, Carol; Duran, Joana; Stinson, Jennifer; Lewis, Mary Ann; Zeltzer, Lonnie
2013-01-01
Use of wireless devices has the potential to transform delivery of primary care services for persons with sickle cell disease (SCD). The study examined text message communications between patients and an advanced practice registered nurse (APRN) and the different primary care activities that emerged with use of wireless technology. Patients (N = 37; mean age 13.9 ± 1.8 years; 45.9% male and 54.1% female) engaged in intermittent text conversations with the APRN as part of the Wireless Pain Intervention Program. Content analyses were used to analyze the content of text message exchanges between patients and the APRN. The primary care needs that emerged were related to pain and symptom management and sickle cell crisis prevention. Two primary care categories (collaborating and coaching), four primary care subcategories (screening, referring, informing, and supporting), and 16 primary care activities were evident in text conversations. The use of wireless technology may facilitate screening, prompt management of pain and symptoms, prevention or reduction of SCD-related complications, more efficient referral for treatments, timely patient education, and psychosocial support in children and adolescents with SCD. Copyright © 2013 National Association of Pediatric Nurse Practitioners. Published by Mosby, Inc. All rights reserved.
Wireless technology applied to GIS
NASA Astrophysics Data System (ADS)
Casademont, Jordi; Lopez-Aguilera, Elena; Paradells, Josep; Rojas, Alfonso; Calveras, Anna; Barceló, Francisco; Cotrina, Josep
2004-07-01
At present, there is a growing interest in wireless applications, due to the fact that the technology begins to support them at reasonable costs. In this paper, we present the technology currently available for use in wireless environments, focusing on Geographic Information Systems. As an example, we present a newly developed platform for the commercialization of advanced geographical information services for use in portable devices. This platform uses available mobile telephone networks and wireless local area networks, but it is completely scalable to new technologies such as third generation mobile networks. Users access the service using a vector map player that runs on a Personal Digital Assistant with wireless access facilities and a Global Positioning System receiver. Before accessing the information, the player will request authorization from the server and download the requested map from it, if necessary. The platform also includes a system for improving Global Positioning System localization with the Real Time Differential Global Positioning System, which uses short GSM messages as the transmission medium.
Baker, Paul M A; Moon, Nathan W
2008-01-01
The near universal deployment in the United States of a wide variety of information and communications technologies, both wired and wireless, creates potential barriers to use for several key populations, including the poor, people with disabilities, and the aging. Equal access to wireless technologies and services can be achieved through a variety of mechanisms, including legislation and regulations, market-based solutions, and awareness and outreach-based approaches. This article discusses the results of policy research conducted by the Rehabilitation Engineering Research Center on Wireless Technologies (Wireless RERC) using policy Delphi polling methodology to probe stakeholders' opinions on key access barrier issues and to explore potential policy responses. Participants included disability advocates, disability/wireless technology policy makers, and product developers/manufacturers. Respondent input informed subsequent development of potential policy initiatives to increase access to these technologies. The findings from the Delphi suggest that awareness issues remain most important, especially manufacturer awareness of user needs and availability of consumer information for selecting the most appropriate wireless devices and services. Other key issues included the ability of people with disabilities to afford technologies and inadequacies in legislation and policy making for ensuring their general accessibility, as well as usefulness in emergencies. Technical issues, including interoperability, speech-to-text conversion, and hearing aid compatibility, were also identified by participating stakeholders as important. To address all these issues, Delphi respondents favored goals and options congruent with voluntary market-driven solutions where possible but also supported federal involvement, where necessary, to aid this process.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-01
... centers.\\4\\ \\4\\ The vendors supporting wireless transmission of CME data will install equipment on... wireless connectivity and obtain the lower latency transmission of data from third parties and NASDAQ that... Proposed Rule Change 1. Purpose Wireless technology has been in existence for many years, used primarily by...
E-Rate to Support Wireless E-Mail, Internet Calling
ERIC Educational Resources Information Center
Trotter, Andrew
2006-01-01
This article deals with federal E-rate program's support of school leaders' Blackberry habit. The Federal Communications Commission (FCC) has cleared the way to allow money from the $2.25 billion program of subsidies for school technology to apply to e-mail service for mobile, wireless devices, such as the BlackBerry, which are increasingly…
Avionics Architectures for Exploration: Wireless Technologies and Human Spaceflight
NASA Technical Reports Server (NTRS)
Goforth, Montgomery B.; Ratliff, James E.; Barton, Richard J.; Wagner, Raymond S.; Lansdowne, Chatwin
2014-01-01
The authors describe ongoing efforts by the Avionics Architectures for Exploration (AAE) project chartered by NASA's Advanced Exploration Systems (AES) Program to evaluate new avionics architectures and technologies, provide objective comparisons of them, and mature selected technologies for flight and for use by other AES projects. The AAE project team includes members from most NASA centers and from industry. This paper provides an overview of recent AAE efforts, with particular emphasis on the wireless technologies being evaluated under AES to support human spaceflight.
Evolving telemedicine/ehealth technology.
Ferrante, Frank E
2005-06-01
This paper describes emerging technologies to support a rapidly changing and expanding scope of telemedicine/telehealth applications. Of primary interest here are wireless systems, emerging broadband, nanotechnology, intelligent agent applications, and grid computing. More specifically, the paper describes the changes underway in wireless designs aimed at enhancing security; some of the current work involving the development of nanotechnology applications and research into the use of intelligent agents/artificial intelligence technology to establish what are termed "Knowbots"; and a sampling of the use of Web services, such as grid computing capabilities, to support medical applications. In addition, the expansion of these technologies and the need for cost containment to sustain future health care for an increasingly mobile and aging population is discussed.
Wireless avionics for space applications of fundamental physics
NASA Astrophysics Data System (ADS)
Wang, Linna; Zeng, Guiming
2016-07-01
Fundamental physics (FP) research in space relies on a strong support of spacecraft. New types of spacecraft including reusable launch vehicles, reentry space vehicles, long-term on-orbit spacecraft or other new type of spacecraft will pave the way for FP missions. In order to test FP theories in space, flight conditions have to be controlled to a very high precision, data collection and handling abilities have to be improved, real-time and reliable communications in critical environments are needed. These challenge the existing avionics of spacecraft. Avionics consists of guidance, navigation & control, TT&C, the vehicle management, etc. Wireless avionics is one of the enabling technologies to address the challenges. Reasons are expatiated of why it is of great advantage. This paper analyses the demands for wireless avionics by reviewing the FP missions and on-board wireless systems worldwide. Main types of wireless communication are presented. Preliminary system structure of wireless avionics are given. The characteristics of wireless network protocols and wireless sensors are introduced. Key technologies and design considerations for wireless avionics in space applications are discussed.
DOT National Transportation Integrated Search
1997-06-06
Shared resource projects offer an opportunity for public transportation agencies to leverage property assets in exchange for support for transportation programs. Intelligent transportation systems (ITS) require wireline infrastructure in roadway ROW ...
ERIC Educational Resources Information Center
Blackbourn, J. M.; Fillingim, Jennifer G.; McCelland, Susan; Elrod, G. Franklin; Medley, Meagan B.; Kritsonis, Mary Alice; Ray, Jan
2008-01-01
This study examines the use of wireless laptop technology to support the application of problem-based learning (PBL) in a special education methods course. This field based course used a progressive disclosure process in weekly seminars to address issues posed in a case study. Eight scenarios, all related to the case, were presented to upper level…
Antenna Design Considerations for the Advanced Extravehicular Mobility Unit
NASA Technical Reports Server (NTRS)
Bakula, Casey J.; Theofylaktos, Onoufrios
2015-01-01
NASA is designing an Advanced Extravehicular Mobility Unit (AEMU)to support future manned missions beyond low-Earth orbit (LEO). A key component of the AEMU is the communications assembly that allows for the wireless transfer of voice, video, and suit telemetry. The Extravehicular Mobility Unit (EMU) currently used on the International Space Station (ISS) contains a radio system with a single omni-directional resonant cavity antenna operating slightly above 400 MHz capable of transmitting and receiving data at a rate of about 125 kbps. Recent wireless communications architectures are calling for the inclusion of commercial wireless standards such as 802.11 that operate in higher frequency bands at much higher data rates. The current AEMU radio design supports a 400 MHz band for low-rate mission-critical data and a high-rate band based on commercial wireless local area network (WLAN) technology to support video, communication with non-extravehicular activity (EVA) assets such as wireless sensors and robotic assistants, and a redundant path for mission-critical EVA data. This paper recommends the replacement of the existing EMU antenna with a new antenna that maintains the performance characteristics of the current antenna but with lower weight and volume footprints. NASA has funded several firms to develop such an antenna over the past few years, and the most promising designs are variations on the basic patch antenna. This antenna technology at UHF is considered by the authors to be mature and ready for infusion into NASA AEMU technology development programs.
Fault Tolerance in ZigBee Wireless Sensor Networks
NASA Technical Reports Server (NTRS)
Alena, Richard; Gilstrap, Ray; Baldwin, Jarren; Stone, Thom; Wilson, Pete
2011-01-01
Wireless sensor networks (WSN) based on the IEEE 802.15.4 Personal Area Network standard are finding increasing use in the home automation and emerging smart energy markets. The network and application layers, based on the ZigBee 2007 PRO Standard, provide a convenient framework for component-based software that supports customer solutions from multiple vendors. This technology is supported by System-on-a-Chip solutions, resulting in extremely small and low-power nodes. The Wireless Connections in Space Project addresses the aerospace flight domain for both flight-critical and non-critical avionics. WSNs provide the inherent fault tolerance required for aerospace applications utilizing such technology. The team from Ames Research Center has developed techniques for assessing the fault tolerance of ZigBee WSNs challenged by radio frequency (RF) interference or WSN node failure.
WiFi in Schools, Electromagnetic Fields and Cell Phones: Alberta Health Fact Sheet
ERIC Educational Resources Information Center
Alberta Education, 2012
2012-01-01
Wireless devices and the networks that support them are becoming more common in Alberta schools. WiFi is a wireless networking technology that allows computers and other devices to communicate over a wireless signal. Typically the signal is carried by radio waves over an area of up to 100 meters. Through the implementation of a WiFi network,…
Mobile access to the Internet: from personal bubble to satellites
NASA Astrophysics Data System (ADS)
Gerla, Mario
2001-10-01
Mobile, wireless access and networking has emerged in the last few years as one of the most important directions of Internet growth. The popularity of mobile, and, more generally, nomadic Internet access is due to many enabling factors including: (a) emergence of meaningful applications tailored to the individual on the move; (b) small form factor and long battery life; (c) efficient middleware designed to support mobility; and, (d) efficient wireless networking technologies. A key player in the mobile Internet access is the nomad, i.e. the individual equipped with various computing and I/O gadgets (cellular phone, earphones, GPS navigator, palm pilot, beeper, portable scanner, digital camera, etc.). These devices form his/her Personal Area Network or PAN or personal bubble. The connectivity within the bubble is wireless (using for example a low cost, low power wireless LAN such as Bluetooth). The bubble can expand and contract dynamically depending on needs. It may temporarily include sensors and actuators as the nomad walks into a new environment. In this paper, we identify the need for the interconnection of the PAN with other wireless networks in order to achieve costeffective mobile access to the Internet. We will overview some key networking technologies required to support the PAN (eg, Bluetooth). We will also discuss an emerging technology, Ad Hoc wireless networking which is the natural complement of the PAN in sparsely populated areas. Finally, we will identify the need for intelligent routers to assist the mobile user in the selection of the best Internet access strategy.
NASA Astrophysics Data System (ADS)
Mohammed, H. A.; Sibley, M. J. N.; Mather, P. J.
2012-05-01
The merging of Orthogonal Frequency Division Multiplexing (OFDM) with Multiple-input multiple-output (MIMO) is a promising mobile air interface solution for next generation wireless local area networks (WLANs) and 4G mobile cellular wireless systems. This paper details the design of a highly robust and efficient OFDM-MIMO system to support permanent accessibility and higher data rates to users moving at high speeds, such as users travelling on trains. It has high relevance for next generation wireless local area networks (WLANs) and 4G mobile cellular wireless systems. The paper begins with a comprehensive literature review focused on both technologies. This is followed by the modelling of the OFDM-MIMO physical layer based on Simulink/Matlab that takes into consideration high vehicular mobility. Then the entire system is simulated and analysed under different encoding and channel estimation algorithms. The use of High Altitude Platform system (HAPs) technology is considered and analysed.
Optical wireless communication in data centers
NASA Astrophysics Data System (ADS)
Arnon, Shlomi
2018-01-01
In the last decade data centers have become a crucial element in modern human society. However, to keep pace with internet data rate growth, new technologies supporting data center should develop. Integration of optical wireless communication (OWC) in data centers is one of the proposed technologies as augmented technology to the fiber network. One implementation of the OWC technology is deployment of optical wireless transceiver on top of the existing cable/fiber network as extension to the top of rack (TOR) switch; in this way, a dynamic and flexible network is created. Optical wireless communication could reduce energy consumption, increase the data rate, reduce the communication latency, increase flexibility and scalability, and reduce maintenance time and cost, in comparison to extra fiber network deployment. In this paper we review up to date literature in the field, propose an implementation scheme of OWC network, discuss ways to reduce energy consumption by parallel link communication and report preliminary measurement result of university data center environment.
Survey on Monitoring and Quality Controlling of the Mobile Biosignal Delivery.
Pawar, Pravin A; Edla, Damodar R; Edoh, Thierry; Shinde, Vijay; van Beijnum, Bert-Jan
2017-10-31
A Mobile Patient Monitoring System (MPMS) acquires patient's biosignals and transmits them using wireless network connection to the decision-making module or healthcare professional for the assessment of patient's condition. A variety of wireless network technologies such as wireless personal area networks (e.g., Bluetooth), mobile ad-hoc networks (MANET), and infrastructure-based networks (e.g., WLAN and cellular networks) are in practice for biosignals delivery. The wireless network quality-of-service (QoS) requirements of biosignals delivery are mainly specified in terms of required bandwidth, acceptable delay, and tolerable error rate. An important research challenge in the MPMS is how to satisfy QoS requirements of biosignals delivery in the environment characterized by patient mobility, deployment of multiple wireless network technologies, and variable QoS characteristics of the wireless networks. QoS requirements are mainly application specific, while available QoS is largely dependent on QoS provided by wireless network in use. QoS provisioning refers to providing support for improving QoS experience of networked applications. In resource poor conditions, application adaptation may also be required to make maximum use of available wireless network QoS. This survey paper presents a survey of recent developments in the area of QoS provisioning for MPMS. In particular, our contributions are as follows: (1) overview of wireless networks and network QoS requirements of biosignals delivery; (2) survey of wireless networks' QoS performance evaluation for the transmission of biosignals; and (3) survey of QoS provisioning mechanisms for biosignals delivery in MPMS. We also propose integrating end-to-end QoS monitoring and QoS provisioning strategies in a mobile patient monitoring system infrastructure to support optimal delivery of biosignals to the healthcare professionals.
Shed a light of wireless technology on portable mobile design of NIRS
NASA Astrophysics Data System (ADS)
Sun, Yunlong; Li, Ting
2016-03-01
Mobile internet is growing rapidly driven by high-tech companies including the popular Apple and Google. The wireless mini-NIRS is believed to deserve a great spread future, while there is sparse report on wireless NIRS device and even for the reported wireless NIRS, its wireless design is scarcely presented. Here we focused on the wireless design of NIRS devices. The widely-used wireless communication standards and wireless communication typical solutions were employed into our NIRS design and then compared on communication efficiency, distance, error rate, low-cost, power consumption, and stabilities, based on the requirements of NIRS applications. The properly-performed wireless communication methods matched with the characteristics of NIRS are picked out. Finally, we realized one recommended wireless communication in our NIRS, developed a test platform on wireless NIRS and tested the full properties on wireless communication. This study elaborated the wireless communication methods specified for NIRS and suggested one implementation with one example fully illustrated, which support the future mobile design on NIRS devices.
Mahoney, Diane F; Tarlow, Barbara
2006-01-01
Research has demonstrated the health and financial cost to working caregivers of older adults and the cost to business in lost productivity. This paper describes the implementation of the Worker Interactive Networking (WIN) project, a Web-based program designed to support employed caregivers at work. WIN innovatively linked working caregivers via the Internet to home to monitor elders' status using wireless sensor technology and included an online information and support group for a six-month period. Twenty-seven employees from thirteen business sites participated. Despite problems with wireless carrier service, feasibility outcomes were achieved. We were able to collect six months of continuous real time data wirelessly from multiple types of homes across 4 states. This model demonstrates that businesses can offer a similar program and not be overwhelmed by employee demand or abuse of technology access. Reluctance to consider home monitoring was apparent and was influenced by familial relationships and values of privacy and independence.
Theory, Design, and Algorithms for Optimal Control of wireless Networks
2010-06-09
The implementation of network-centric warfare technologies is an abiding, critical interest of Air Force Science and Technology efforts for the Warfighter. Wireless communications, strategic signaling are areas of critical Air Force Mission need. Autonomous networks of multiple, heterogeneous Throughput enhancement and robust connectivity in communications and sensor networks are critical factors in net-centric USAF operations. This research directly supports the Air Force vision of information dominance and the development of anywhere, anytime operational readiness.
What is a missing link among wireless persistent surveillance?
NASA Astrophysics Data System (ADS)
Hsu, Charles; Szu, Harold
2011-06-01
The next generation surveillance system will equip with versatile sensor devices and information focus capable of conducting regular and irregular surveillance and security environments worldwide. The community of the persistent surveillance must invest the limited energy and money effectively into researching enabling technologies such as nanotechnology, wireless networks, and micro-electromechanical systems (MEMS) to develop persistent surveillance applications for the future. Wireless sensor networks can be used by the military for a number of purposes such as monitoring militant activity in remote areas and force protection. Being equipped with appropriate sensors these networks can enable detection of enemy movement, identification of enemy force and analysis of their movement and progress. Among these sensor network technologies, covert communication is one of the challenging tasks in the persistent surveillance because it is highly demanded to provide secured sensor nodes and linkage for fear of deliberate sabotage. Due to the matured VLSI/DSP technologies, affordable COTS of UWB technology with noise-like direct sequence (DS) time-domain pulses is a potential solution to support low probability of intercept and low probability of detection (LPI/LPD) data communication and transmission. This paper will describe a number of technical challenges in wireless persistent surveillance development include covert communication, network control and routing, collaborating signal and information processing, and etc. The paper concludes by presenting Hermitian Wavelets to enhance SNR in support of secured communication.
ERIC Educational Resources Information Center
Peng, Hsinyi; Chuang, Po-Ya; Hwang, Gwo-Jen; Chu, Hui-Chun; Wu, Ting-Ting; Huang, Shu-Xian
2009-01-01
Researchers have conducted various studies on applying wireless communication and ubiquitous computing technologies to education, so that the technologies can provide learners and educators with more active and adaptive support. This study proposes a Ubiquitous Performance-support System (UPSS) that can facilitate the seamless use of powerful new…
Introduction and comparison of next-generation mobile wireless technologies
NASA Astrophysics Data System (ADS)
Zaidi, Syed R.; Hussain, Shahab; Ali, M. A.; Sana, Ajaz; Saddawi, Samir; Carranza, Aparicio
2010-01-01
Mobile networks and services have gone further than voice-only communication services and are rapidly developing towards data-centric services. Emerging mobile data services are expected to see the same explosive growth in demand that Internet and wireless voice services have seen in recent years. To support such a rapid increase in traffic, active users, and advanced multimedia services implied by this growth rate along with the diverse quality of service (QoS) and rate requirements set by these services, mobile operator need to rapidly transition to a simple and cost-effective, flat, all IP-network. This has accelerated the development and deployment of new wireless broadband access technologies including fourth-generation (4G) mobile WiMAX and cellular Long-Term Evolution (LTE). Mobile WiMAX and LTE are two different (but not necessarily competing) technologies that will eventually be used to achieve data speeds of up to 100 Mbps. Speeds that are fast enough to potentially replace wired broadband connections with wireless. This paper introduces both of these next generation technologies and then compares them in the end.
Routing and Scheduling Algorithms for WirelessHART Networks: A Survey
Nobre, Marcelo; Silva, Ivanovitch; Guedes, Luiz Affonso
2015-01-01
Wireless communication is a trend nowadays for the industrial environment. A number of different technologies have emerged as solutions satisfying strict industrial requirements (e.g., WirelessHART, ISA100.11a, WIA-PA). As the industrial environment presents a vast range of applications, adopting an adequate solution for each case is vital to obtain good performance of the system. In this context, the routing and scheduling schemes associated with these technologies have a direct impact on important features, like latency and energy consumption. This situation has led to the development of a vast number of routing and scheduling schemes. In the present paper, we focus on the WirelessHART technology, emphasizing its most important routing and scheduling aspects in order to guide both end users and the developers of new algorithms. Furthermore, we provide a detailed literature review of the newest routing and scheduling techniques for WirelessHART, discussing each of their features. These routing algorithms have been evaluated in terms of their objectives, metrics, the usage of the WirelessHART structures and validation method. In addition, the scheduling algorithms were also evaluated by metrics, validation, objectives and, in addition, by multiple superframe support, as well as by the redundancy method used. Moreover, this paper briefly presents some insights into the main WirelessHART simulation modules available, in order to provide viable test platforms for the routing and scheduling algorithms. Finally, some open issues in WirelessHART routing and scheduling algorithms are discussed. PMID:25919371
Interface Supports Multiple Broadcast Transceivers for Flight Applications
NASA Technical Reports Server (NTRS)
Block, Gary L.; Whitaker, William D.; Dillon, James W.; Lux, James P.; Ahmad, Mohammad
2011-01-01
A wireless avionics interface provides a mechanism for managing multiple broadcast transceivers. This interface isolates the control logic required to support multiple transceivers so that the flight application does not have to manage wireless transceivers. All of the logic to select transceivers, detect transmitter and receiver faults, and take autonomous recovery action is contained in the interface, which is not restricted to using wireless transceivers. Wired, wireless, and mixed transceiver technologies are supported. This design s use of broadcast data technology provides inherent cross strapping of data links. This greatly simplifies the design of redundant flight subsystems. The interface fully exploits the broadcast data link to determine the health of other transceivers used to detect and isolate faults for fault recovery. The interface uses simplified control logic, which can be implemented as an intellectual-property (IP) core in a field-programmable gate array (FPGA). The interface arbitrates the reception of inbound data traffic appearing on multiple receivers. It arbitrates the transmission of outbound traffic. This system also monitors broadcast data traffic to determine the health of transmitters in the network, and then uses this health information to make autonomous decisions for routing traffic through transceivers. Multiple selection strategies are supported, like having an active transceiver with the secondary transceiver powered off except to send periodic health status reports. Transceivers can operate in round-robin for load-sharing and graceful degradation.
Design of nodes for embedded and ultra low-power wireless sensor networks
NASA Astrophysics Data System (ADS)
Xu, Jun; You, Bo; Cui, Juan; Ma, Jing; Li, Xin
2008-10-01
Sensor network integrates sensor technology, MEMS (Micro-Electro-Mechanical system) technology, embedded computing, wireless communication technology and distributed information management technology. It is of great value to use it where human is quite difficult to reach. Power consumption and size are the most important consideration when nodes are designed for distributed WSN (wireless sensor networks). Consequently, it is of great importance to decrease the size of a node, reduce its power consumption and extend its life in network. WSN nodes have been designed using JN5121-Z01-M01 module produced by jennic company and IEEE 802.15.4/ZigBee technology. Its new features include support for CPU sleep modes and a long-term ultra low power sleep mode for the entire node. In low power configuration the node resembles existing small low power nodes. An embedded temperature sensor node has been developed to verify and explore our architecture. The experiment results indicate that the WSN has the characteristic of high reliability, good stability and ultra low power consumption.
WEB - A Wireless Experiment Box for the Dextre Pointing Package ELC Payload
NASA Technical Reports Server (NTRS)
Bleier, Leor Z.; Marrero-Fontanez, Victor J.; Sparacino, Pietro A.; Moreau, Michael C.; Mitchell, Jason William
2012-01-01
The Wireless Experiment Box (WEB) was proposed to work with the International Space Station (ISS) External Wireless Communication (EWC) system to support high-definition video from the Dextre Pointing Package (DPP). DPP/WEB was a NASA GSFC proposed ExPRESS Logistics Carrier (ELC) payload designed to flight test an integrated suite of Autonomous Rendezvous and Docking (AR&D) technologies to enable a wide spectrum of future missions across NASA and other US Government agencies. The ISS EWC uses COTS Wireless Access Points (WAPs) to provide high-rate bi-directional communications to ISS. In this paper, we discuss WEB s packaging, operation, antenna development, and performance testing.
Web: A Wireless Experiment Box for the Dextre Pointing Package ELC Payload
NASA Technical Reports Server (NTRS)
Bleier, Leor Z.; Marrero-Fontanez, Victor J.; Sparacino, Pietro A.; Moreau, Michael C.; Mitchell, Jason W.
2012-01-01
The Wireless Experiment Box (WEB) was proposed to work with the International Space Station (ISS) External Wireless Communication (EWC) system to support high-definition video from the Dextre Pointing Package (DPP). DPP/WEB was a NASA GSFC proposed ExPRESS Logistics Carrier (ELC) payload designed to flight test an integrated suite of Autonomous Rendezvous and Docking (AR&D) technologies to enable a wide spectrum of future missions across NASA and other US Government agencies. The ISS EWC uses COTS Wireless Access Points (WAPs) to provide high-rate bi-directional communications to ISS. In this paper, we discuss WEB s packaging, operation, antenna development, and performance testing.
Wearable wireless photoplethysmography sensors
NASA Astrophysics Data System (ADS)
Spigulis, Janis; Erts, Renars; Nikiforovs, Vladimirs; Kviesis-Kipge, Edgars
2008-04-01
Wearable health monitoring sensors may support early detection of abnormal conditions and prevention of their consequences. Recent designs of three wireless photoplethysmography monitoring devices embedded in hat, glove and sock, and connected to PC or mobile phone by means of the Bluetooth technology, are described. First results of distant monitoring of heart rate and pulse wave transit time using the newly developed devices are presented.
DOT National Transportation Integrated Search
2010-08-01
Radio frequency identification device (RFID) technology provides the capability to store a unique identification : number and some basic attribute information, which can be retrieved wirelessly. This research project studied : the feasibility of usin...
Public health implications of wireless technologies.
Sage, Cindy; Carpenter, David O
2009-08-01
Global exposures to emerging wireless technologies from applications including mobile phones, cordless phones, DECT phones, WI-FI, WLAN, WiMAX, wireless internet, baby monitors, and others may present serious public health consequences. Evidence supporting a public health risk is documented in the BioInitiative Report. New, biologically based public exposure standards for chronic exposure to low-intensity exposures are warranted. Existing safety standards are obsolete because they are based solely on thermal effects from acute exposures. The rapidly expanding development of new wireless technologies and the long latency for the development of such serious diseases as brain cancers means that failure to take immediate action to reduce risks may result in an epidemic of potentially fatal diseases in the future. Regardless of whether or not the associations are causal, the strengths of the associations are sufficiently strong that in the opinion of the authors, taking action to reduce exposures is imperative, especially for the fetus and children. Such action is fully compatible with the precautionary principle, as enunciated by the Rio Declaration, the European Constitution Principle on Health (Section 3.1) and the European Union Treaties Article 174.
Real-time video streaming in mobile cloud over heterogeneous wireless networks
NASA Astrophysics Data System (ADS)
Abdallah-Saleh, Saleh; Wang, Qi; Grecos, Christos
2012-06-01
Recently, the concept of Mobile Cloud Computing (MCC) has been proposed to offload the resource requirements in computational capabilities, storage and security from mobile devices into the cloud. Internet video applications such as real-time streaming are expected to be ubiquitously deployed and supported over the cloud for mobile users, who typically encounter a range of wireless networks of diverse radio access technologies during their roaming. However, real-time video streaming for mobile cloud users across heterogeneous wireless networks presents multiple challenges. The network-layer quality of service (QoS) provision to support high-quality mobile video delivery in this demanding scenario remains an open research question, and this in turn affects the application-level visual quality and impedes mobile users' perceived quality of experience (QoE). In this paper, we devise a framework to support real-time video streaming in this new mobile video networking paradigm and evaluate the performance of the proposed framework empirically through a lab-based yet realistic testing platform. One particular issue we focus on is the effect of users' mobility on the QoS of video streaming over the cloud. We design and implement a hybrid platform comprising of a test-bed and an emulator, on which our concept of mobile cloud computing, video streaming and heterogeneous wireless networks are implemented and integrated to allow the testing of our framework. As representative heterogeneous wireless networks, the popular WLAN (Wi-Fi) and MAN (WiMAX) networks are incorporated in order to evaluate effects of handovers between these different radio access technologies. The H.264/AVC (Advanced Video Coding) standard is employed for real-time video streaming from a server to mobile users (client nodes) in the networks. Mobility support is introduced to enable continuous streaming experience for a mobile user across the heterogeneous wireless network. Real-time video stream packets are captured for analytical purposes on the mobile user node. Experimental results are obtained and analysed. Future work is identified towards further improvement of the current design and implementation. With this new mobile video networking concept and paradigm implemented and evaluated, results and observations obtained from this study would form the basis of a more in-depth, comprehensive understanding of various challenges and opportunities in supporting high-quality real-time video streaming in mobile cloud over heterogeneous wireless networks.
Wireless Networks: New Meaning to Ubiquitous Computing.
ERIC Educational Resources Information Center
Drew, Wilfred, Jr.
2003-01-01
Discusses the use of wireless technology in academic libraries. Topics include wireless networks; standards (IEEE 802.11); wired versus wireless; why libraries implement wireless technology; wireless local area networks (WLANs); WLAN security; examples of wireless use at Indiana State University and Morrisville College (New York); and useful…
Wireless technologies for robotic endoscope in gastrointestinal tract.
Gao, P; Yan, G; Wang, Z; Liu, H
2012-07-01
This paper introduces wireless technologies for use with robotic endoscopes in the gastrointestinal tract. The technologies include wireless power transmission (WPT), wireless remote control (WRC), and wireless image transmission (WIT). WPT, based on the electromagnetic coupling principle, powers active locomotion actuators and other peripherals in large air gaps. WRC, based on real-time bidirectional communication, has a multikernel frame in vivo to realize real-time multitasking. WIT provides a continuous dynamic image with a revolution of 320 × 240 pixel at 30 fps for in vitro diagnosis. To test these wireless technologies, three robotic endoscope prototypes were fabricated and equipped with the customized modules. The experimental results show that the wireless technologies have value for clinical applications.
The wireless Web and patient care.
Bergeron, B P
2001-01-01
Wireless computing, when integrated with the Web, is poised to revolutionize the practice and teaching of medicine. As vendors introduce wireless Web technologies in the medical community that have been used successfully in the business and consumer markets, clinicians can expect profound increases in the amount of patient data, as well as the ease with which those data are acquired, analyzed, and disseminated. The enabling technologies involved in this transformation to the wireless Web range from the new generation of wireless PDAs, eBooks, and wireless data acquisition peripherals to new wireless network protocols. The rate-limiting step in the application of this technology in medicine is not technology per se but rather how quickly clinicians and their patients come to accept and appreciate the benefits and limitations of the application of wireless Web technology.
Flexible quality of service model for wireless body area sensor networks.
Liao, Yangzhe; Leeson, Mark S; Higgins, Matthew D
2016-03-01
Wireless body area sensor networks (WBASNs) are becoming an increasingly significant breakthrough technology for smart healthcare systems, enabling improved clinical decision-making in daily medical care. Recently, radio frequency ultra-wideband technology has developed substantially for physiological signal monitoring due to its advantages such as low-power consumption, high transmission data rate, and miniature antenna size. Applications of future ubiquitous healthcare systems offer the prospect of collecting human vital signs, early detection of abnormal medical conditions, real-time healthcare data transmission and remote telemedicine support. However, due to the technical constraints of sensor batteries, the supply of power is a major bottleneck for healthcare system design. Moreover, medium access control (MAC) needs to support reliable transmission links that allow sensors to transmit data safely and stably. In this Letter, the authors provide a flexible quality of service model for ad hoc networks that can support fast data transmission, adaptive schedule MAC control, and energy efficient ubiquitous WBASN networks. Results show that the proposed multi-hop communication ad hoc network model can balance information packet collisions and power consumption. Additionally, wireless communications link in WBASNs can effectively overcome multi-user interference and offer high transmission data rates for healthcare systems.
ERIC Educational Resources Information Center
Shapley, Kelly S.; Sheehan, Daniel; Maloney, Catherine; Caranikas-Walker, Fanny
2010-01-01
In a pilot study of the Technology Immersion model, high-need middle schools were "immersed" in technology by providing a laptop for each student and teacher, wireless Internet access, curricular and assessment resources, professional development, and technical and pedagogical support. This article examines the fidelity of model…
Enabling Logistics With Portable and Wireless Technology Study. Volume 1
2004-08-06
Project”, Ubiquitous Computing Group Microsoft Research, 2001. 102 Enabling Logistics with Portable and Wireless Technology Study ...Enabling Logistics with Portable and Wireless Technology Study Final Report FINAL REPORT...Volume I) Enabling Logistics with Portable and Wireless Technology Study AUTHORS School of Industrial Engineering Dr. Soundar Kumara
Interoperability and security in wireless body area network infrastructures.
Warren, Steve; Lebak, Jeffrey; Yao, Jianchu; Creekmore, Jonathan; Milenkovic, Aleksandar; Jovanov, Emil
2005-01-01
Wireless body area networks (WBANs) and their supporting information infrastructures offer unprecedented opportunities to monitor state of health without constraining the activities of a wearer. These mobile point-of-care systems are now realizable due to the convergence of technologies such as low-power wireless communication standards, plug-and-play device buses, off-the-shelf development kits for low-power microcontrollers, handheld computers, electronic medical records, and the Internet. To increase acceptance of personal monitoring technology while lowering equipment cost, advances must be made in interoperability (at both the system and device levels) and security. This paper presents an overview of WBAN infrastructure work in these areas currently underway in the Medical Component Design Laboratory at Kansas State University (KSU) and at the University of Alabama in Huntsville (UAH). KSU efforts include the development of wearable health status monitoring systems that utilize ISO/IEEE 11073, Bluetooth, Health Level 7, and OpenEMed. WBAN efforts at UAH include the development of wearable activity and health monitors that incorporate ZigBee-compliant wireless sensor platforms with hardware-level encryption and the TinyOS development environment. WBAN infrastructures are complex, requiring many functional support elements. To realize these infrastructures through collaborative efforts, organizations such as KSU and UAH must define and utilize standard interfaces, nomenclature, and security approaches.
High Temperature Wireless Communication And Electronics For Harsh Environment Applications
NASA Technical Reports Server (NTRS)
Hunter, G. W.; Neudeck, P. G.; Beheim, G. M.; Ponchak, G. E.; Chen, L.-Y
2007-01-01
In order for future aerospace propulsion systems to meet the increasing requirements for decreased maintenance, improved capability, and increased safety, the inclusion of intelligence into the propulsion system design and operation becomes necessary. These propulsion systems will have to incorporate technology that will monitor propulsion component conditions, analyze the incoming data, and modify operating parameters to optimize propulsion system operations. This implies the development of sensors, actuators, and electronics, with associated packaging, that will be able to operate under the harsh environments present in an engine. However, given the harsh environments inherent in propulsion systems, the development of engine-compatible electronics and sensors is not straightforward. The ability of a sensor system to operate in a given environment often depends as much on the technologies supporting the sensor element as the element itself. If the supporting technology cannot handle the application, then no matter how good the sensor is itself, the sensor system will fail. An example is high temperature environments where supporting technologies are often not capable of operation in engine conditions. Further, for every sensor going into an engine environment, i.e., for every new piece of hardware that improves the in-situ intelligence of the components, communication wires almost always must follow. The communication wires may be within or between parts, or from the engine to the controller. As more hardware is added, more wires, weight, complexity, and potential for unreliability is also introduced. Thus, wireless communication combined with in-situ processing of data would significantly improve the ability to include sensors into high temperature systems and thus lead toward more intelligent engine systems. NASA Glenn Research Center (GRC) is presently leading the development of electronics, communication systems, and sensors capable of prolonged stable operation in harsh 500C environments. This has included world record operation of SiC-based transistor technology (including packaging) that has demonstrated continuous electrical operation at 500C for over 2000 hours. Based on SiC electronics, development of high temperature wireless communication has been on-going. This work has concentrated on maturing the SiC electronic devices for communication purposes as well as the passive components such as resistors and capacitors needed to enable a high temperature wireless system. The objective is to eliminate wires associated with high temperature sensors which add weight to a vehicle and can be a cause of sensor unreliability. This paper discusses the development of SiC based electronics and wireless communications technology for harsh environment applications such as propulsion health management systems and in Venus missions. A brief overview of the future directions in sensor technology is given including maturing of near-room temperature "Lick and Stick" leak sensor technology for possible implementation in the Crew Launch Vehicle program. Then an overview of high temperature electronics and the development of high temperature communication systems is presented. The maturity of related technologies such as sensor and packaging will also be discussed. It is concluded that a significant component of efforts to improve the intelligence of harsh environment operating systems is the development and implementation of high temperature wireless technology
ERIC Educational Resources Information Center
Petley, Rebecca; Attewell, Jill; Savill-Smith, Carol
2011-01-01
MoLeNET is a unique collaborative initiative, currently in its third year, which encourages and enables the introduction of mobile learning in English post 14 education via supported shared-cost projects. Mobile learning in MoLeNET is defined by MoLeNET as "The exploitation of ubiquitous handheld technologies, together with wireless and…
NASA Astrophysics Data System (ADS)
Pleros, N.; Kalfas, G.; Mitsolidou, C.; Vagionas, C.; Tsiokos, D.; Miliou, A.
2017-01-01
Future broadband access networks in the 5G framework will need to be bilateral, exploiting both optical and wireless technologies. This paper deals with new approaches and synergies on radio-over-fiber (RoF) technologies and how those can be leveraged to seamlessly converge wireless technology for agility and mobility with passive optical networks (PON)-based backhauling. The proposed convergence paradigm is based upon a holistic network architecture mixing mm-wave wireless access with photonic integration, dynamic capacity allocation and network coding schemes to enable high bandwidth and low-latency fixed and 60GHz wireless personal area communications for gigabit rate per user, proposing and deploying on top a Medium-Transparent MAC (MT-MAC) protocol as a low-latency bandwidth allocation mechanism. We have evaluated alternative network topologies between the central office (CO) and the access point module (APM) for data rates up to 2.5 Gb/s and SC frequencies up to 60 GHz. Optical network coding is demonstrated for SCM-based signaling to enhance bandwidth utilization and facilitate optical-wireless convergence in 5G applications, reporting medium-transparent network coding directly at the physical layer between end-users communicating over a RoF infrastructure. Towards equipping the physical layer with the appropriate agility to support MT-MAC protocols, a monolithic InP-based Remote Antenna Unit optoelectronic PIC interface is shown that ensures control over the optical resource allocation assisting at the same time broadband wireless service. Finally, the MT-MAC protocol is analysed and simulation and analytical theoretical results are presented that are found to be in good agreement confirming latency values lower than 1msec for small- to mid-load conditions.
Wireless body sensor networks for health-monitoring applications.
Hao, Yang; Foster, Robert
2008-11-01
Current wireless technologies, such as wireless body area networks and wireless personal area networks, provide promising applications in medical monitoring systems to measure specified physiological data and also provide location-based information, if required. With the increasing sophistication of wearable and implantable medical devices and their integration with wireless sensors, an ever-expanding range of therapeutic and diagnostic applications is being pursued by research and commercial organizations. This paper aims to provide a comprehensive review of recent developments in wireless sensor technology for monitoring behaviour related to human physiological responses. It presents background information on the use of wireless technology and sensors to develop a wireless physiological measurement system. A generic miniature platform and other available technologies for wireless sensors have been studied in terms of hardware and software structural requirements for a low-cost, low-power, non-invasive and unobtrusive system.
Wallin, Mats K E B; Marve, Therese; Hakansson, Peter K
2005-11-01
Hospitals rely on pagers and ordinary telephones to reach staff members in emergency situations. New telecommunication technologies such as General Packet Radio Service (GPRS), the third generation mobile phone system Universal Mobile Telecommunications System (UMTS), and Wireless Local Area Network (WLAN) might be able to replace hospital pagers if they are electromagnetically compatible with medical devices. In this study, we sought to determine if GPRS, UMTS (Wideband Code Division Multiple Access-Frequency Division Duplex [WCDMA FDD]), and WLAN (IEEE 802.11b) transmitted signals interfere with life-supporting equipment in the intensive care and operating room environment. According to United States standard, ANSI C63.18-1997, laboratory tests were performed on 76 medical devices. In addition, clinical tests during 11 operations and 100 h of intensive care were performed. UMTS and WLAN signals caused little interference. Devices using these technologies can be used safely in critical care areas and during operations, but direct contact between medical devices and wireless communication devices ought to be avoided. In the case of GPRS, at a distance of 50 cm, it caused an older infusion pump to alarm and stop infusing; the pump had to be reset. Also, 10 cases of interference with device displays occurred. GPRS can be used safely at a distance of 1 m. Terminals/cellular phones using these technologies should be allowed without restriction in public areas because the risk of interference is minimal.
A Low Power 2.4 GHz CMOS Mixer Using Forward Body Bias Technique for Wireless Sensor Network
NASA Astrophysics Data System (ADS)
Yin, C. J.; Murad, S. A. Z.; Harun, A.; Ramli, M. M.; Zulkifli, T. Z. A.; Karim, J.
2018-03-01
Wireless sensor network (WSN) is a highly-demanded application since the evolution of wireless generation which is often used in recent communication technology. A radio frequency (RF) transceiver in WSN should have a low power consumption to support long operating times of mobile devices. A down-conversion mixer is responsible for frequency translation in a receiver. By operating a down-conversion mixer at a low supply voltage, the power consumed by WSN receiver can be greatly reduced. This paper presents a development of low power CMOS mixer using forward body bias technique for wireless sensor network. The proposed mixer is implemented using CMOS 0.13 μm Silterra technology. The forward body bias technique is adopted to obtain low power consumption. The simulation results indicate that a low power consumption of 0.91 mW is achieved at 1.6 V supply voltage. Moreover, the conversion gain (CG) of 21.83 dB, the noise figure (NF) of 16.51 dB and the input-referred third-order intercept point (IIP3) of 8.0 dB at 2.4 GHz are obtained. The proposed mixer is suitable for wireless sensor network.
Wang, Xinheng
2008-01-01
Wireless telemedicine using GSM and GPRS technologies can only provide low bandwidth connections, which makes it difficult to transmit images and video. Satellite or 3G wireless transmission provides greater bandwidth, but the running costs are high. Wireless networks (WLANs) appear promising, since they can supply high bandwidth at low cost. However, the WLAN technology has limitations, such as coverage. A new wireless networking technology named the wireless mesh network (WMN) overcomes some of the limitations of the WLAN. A WMN combines the characteristics of both a WLAN and ad hoc networks, thus forming an intelligent, large scale and broadband wireless network. These features are attractive for telemedicine and telecare because of the ability to provide data, voice and video communications over a large area. One successful wireless telemedicine project which uses wireless mesh technology is the Emergency Room Link (ER-LINK) in Tucson, Arizona, USA. There are three key characteristics of a WMN: self-organization, including self-management and self-healing; dynamic changes in network topology; and scalability. What we may now see is a shift from mobile communication and satellite systems for wireless telemedicine to the use of wireless networks based on mesh technology, since the latter are very attractive in terms of cost, reliability and speed.
Capacity Building for Research and Education in GIS/GPS Technology and Systems
2015-05-20
In multi- sensor area Wireless Sensor Networking (WSN) fields will be explored. As a step forward the research to be conducted in WSN field is to...Agriculture Using Technology for Crops Scouting in Agriculture Application of Technology in Precision Agriculture Wireless Sensor Network (WSN) in...Cooperative Engagement Capability Range based algorithms for Wireless Sensor Network Self-configurable Wireless Sensor Network Energy Efficient Wireless
Coexistence: Threat to the Performance of Heterogeneous Network
NASA Astrophysics Data System (ADS)
Sharma, Neetu; Kaur, Amanpreet
2010-11-01
Wireless technology is gaining broad acceptance as users opt for the freedom that only wireless network can provide. Well-accepted wireless communication technologies generally operate in frequency bands that are shared among several users, often using different RF schemes. This is true in particular for WiFi, Bluetooth, and more recently ZigBee. These all three operate in the unlicensed 2.4 GHz band, also known as ISM band, which has been key to the development of a competitive and innovative market for wireless embedded devices. But, as with any resource held in common, it is crucial that those technologies coexist peacefully to allow each user of the band to fulfill its communication goals. This has led to an increase in wireless devices intended for use in IEEE 802.11 wireless local area networks (WLANs) and wireless personal area networks (WPANs), both of which support operation in the crowded 2.4-GHz industrial, scientific and medical (ISM) band. Despite efforts made by standardization bodies to ensure smooth coexistence it may occur that communication technologies transmitting for instance at very different power levels interfere with each other. In particular, it has been pointed out that ZigBee could potentially experience interference from WiFi traffic given that while both protocols can transmit on the same channel, WiFi transmissions usually occur at much higher power level. In this work, we considered a heterogeneous network and analyzed the impact of coexistence between IEEE 802.15.4 and IEEE 802.11b. To evaluate the performance of this network, measurement and simulation study are conducted and developed in the QualNet Network simulator, version 5.0.Model is analyzed for different placement models or topologies such as Random. Grid & Uniform. Performance is analyzed on the basis of characteristics such as throughput, average jitter and average end to end delay. Here, the impact of varying different antenna gain & shadowing model for this heterogeneous network is considered for the purpose of analysis.
Effects of Short-Term Memory and Content Representation Type on Mobile Language Learning
ERIC Educational Resources Information Center
Chen, Nian-Shing; Hsieh, Sheng-Wen; Kinshuk
2008-01-01
Due to the rapid advancements in mobile communication and wireless technologies, many researchers and educators have started to believe that these emerging technologies can be leveraged to support formal and informal learning opportunities. Mobile language learning can be effectively implemented by delivering learning content through mobile…
Innovative Socio-Technical Environments in Support of Distributed Intelligence and Lifelong Learning
ERIC Educational Resources Information Center
Fischer, G; Konomi, S.
2007-01-01
Individual, unaided human abilities are constrained. Media have helped us to transcend boundaries in thinking, working, learning and collaborating by supporting "distributed intelligence". Wireless and mobile technologies provide new opportunities for creating novel socio-technical environments and thereby empowering humans, but not without…
Advanced Networks in Motion Mobile Sensorweb
NASA Technical Reports Server (NTRS)
Ivancic, William D.; Stewart, David H.
2011-01-01
Advanced mobile networking technology applicable to mobile sensor platforms was developed, deployed and demonstrated. A two-tier sensorweb design was developed. The first tier utilized mobile network technology to provide mobility. The second tier, which sits above the first tier, utilizes 6LowPAN (Internet Protocol version 6 Low Power Wireless Personal Area Networks) sensors. The entire network was IPv6 enabled. Successful mobile sensorweb system field tests took place in late August and early September of 2009. The entire network utilized IPv6 and was monitored and controlled using a remote Web browser via IPv6 technology. This paper describes the mobile networking and 6LowPAN sensorweb design, implementation, deployment and testing as well as wireless systems and network monitoring software developed to support testing and validation.
A Tree Based Self-routing Scheme for Mobility Support in Wireless Sensor Networks
NASA Astrophysics Data System (ADS)
Kim, Young-Duk; Yang, Yeon-Mo; Kang, Won-Seok; Kim, Jin-Wook; An, Jinung
Recently, WSNs (Wireless Sensor Networks) with mobile robot is a growing technology that offer efficient communication services for anytime and anywhere applications. However, the tiny sensor node has very limited network resources due to its low battery power, low data rate, node mobility, and channel interference constraint between neighbors. Thus, in this paper, we proposed a tree based self-routing protocol for autonomous mobile robots based on beacon mode and implemented in real test-bed environments. The proposed scheme offers beacon based real-time scheduling for reliable association process between parent and child nodes. In addition, it supports smooth handover procedure by reducing flooding overhead of control packets. Throughout the performance evaluation by using a real test-bed system and simulation, we illustrate that our proposed scheme demonstrates promising performance for wireless sensor networks with mobile robots.
A Survey on Wireless Body Area Networks for eHealthcare Systems in Residential Environments
Ghamari, Mohammad; Janko, Balazs; Sherratt, R. Simon; Harwin, William; Piechockic, Robert; Soltanpur, Cinna
2016-01-01
Current progress in wearable and implanted health monitoring technologies has strong potential to alter the future of healthcare services by enabling ubiquitous monitoring of patients. A typical health monitoring system consists of a network of wearable or implanted sensors that constantly monitor physiological parameters. Collected data are relayed using existing wireless communication protocols to a base station for additional processing. This article provides researchers with information to compare the existing low-power communication technologies that can potentially support the rapid development and deployment of WBAN systems, and mainly focuses on remote monitoring of elderly or chronically ill patients in residential environments. PMID:27338377
A Survey on Wireless Body Area Networks for eHealthcare Systems in Residential Environments.
Ghamari, Mohammad; Janko, Balazs; Sherratt, R Simon; Harwin, William; Piechockic, Robert; Soltanpur, Cinna
2016-06-07
Current progress in wearable and implanted health monitoring technologies has strong potential to alter the future of healthcare services by enabling ubiquitous monitoring of patients. A typical health monitoring system consists of a network of wearable or implanted sensors that constantly monitor physiological parameters. Collected data are relayed using existing wireless communication protocols to a base station for additional processing. This article provides researchers with information to compare the existing low-power communication technologies that can potentially support the rapid development and deployment of WBAN systems, and mainly focuses on remote monitoring of elderly or chronically ill patients in residential environments.
The Use of Mobile-Wireless Technology for Education.
ERIC Educational Resources Information Center
Altalib, Hasan
This paper focuses on the use of mobile-wireless technology for education. The first section is an introduction which provides a definition of the terms. The second section discusses implementation of mobile-wireless technology in schools, providing examples from Latrobe Junior High School, where wireless laptops were issued to students and River…
Curiac, Daniel-Ioan
2016-04-07
Being often deployed in remote or hostile environments, wireless sensor networks are vulnerable to various types of security attacks. A possible solution to reduce the security risks is to use directional antennas instead of omnidirectional ones or in conjunction with them. Due to their increased complexity, higher costs and larger sizes, directional antennas are not traditionally used in wireless sensor networks, but recent technology trends may support this method. This paper surveys existing state of the art approaches in the field, offering a broad perspective of the future use of directional antennas in mitigating security risks, together with new challenges and open research issues.
Wireless Sensor Needs in the Space Shuttle and CEV Structures Communities
NASA Technical Reports Server (NTRS)
James, George H., III
2007-01-01
This presentation will clarify some of the structural measurement needs of NASA's Space Shuttle and Crew Exploration Vehicles. Emerging technologies in wireless sensor systems can be of some advantage in both Programs. The presentation will address how wireless instrumentation has helped in the past and what has gone unmeasured on Shuttle due to various limitations. Finally, it will address the needs of the CEV program that can be met with reliable wireless systems, if modular avionics interfaces are provided to accommodate the usual evolving needs of an ambitious space vehicle development program. Examples of the advantages of flight data to support flight certification engineering analyses and of areas where add-on wireless instrumentation can be used will be shown. Without flight instrumentation, it is necessary to retain the conservative assumptions used in the design process. It will be shown how the lessons learned on Space Shuttle for wired and wireless structural measurements apply to the Orion Crew Exploration Vehicle (CEV), which is currently being designed.
Supporting Classroom Activities with the BSUL System
ERIC Educational Resources Information Center
Ogata, Hiroaki; Saito, Nobuji A.; Paredes J., Rosa G.; San Martin, Gerardo Ayala; Yano, Yoneo
2008-01-01
This paper presents the integration of ubiquitous computing systems into classroom settings, in order to provide basic support for classrooms and field activities. We have developed web application components using Java technology and configured a classroom with wireless network access and a web camera for our purposes. In this classroom, the…
2012-08-21
FINAL DEMONSTRATION OF A WIRELESS DATA TASK SUPPORTED BY SLS ADVANCED DEVELOPMENT USED TO DEMONSTRATE REAL-TIME VIDEO OVER WIRELESS CONNECTIONS ALONG WITH DATA AND COMMANDS AS DEMONSTRATED VIA THE ROBOTIC ARMS. THE ARMS AND VIDEO CAMERAS WERE MOUNTED ON FREE FLOATING AIR-BEARING VEHICLES TO SIMULATE CONDITIONS IN SPACE. THEY WERE USED TO SHOW HOW A CHASE VEHICLE COULD MOVE UP TO AND CAPTURE A SATELLITE, SUCH AS THE FASTSAT MOCKUP DEMONSTRITING HOW ROBOTIC TECHNOLOGY AND SMALL SPACECRAFT COULD ASSIST WITH ORBITAL DEBRIS MITIGATION
2012-08-21
FINAL DEMONSTRATION OF A WIRELESS DATA TASK SUPPORTED BY SLS ADVANCED DEVELOPMENT USED TO DEMONSTRATE REAL-TIME VIDEO OVER WIRELESS CONNECTIONS ALONG WITH DATA AND COMMANDS AS DEMONSTRATED VIA THE ROBOTIC ARMS. THE ARMS AND VIDEO CAMERAS WERE MOUNTED ON FREE FLOATING AIR-BEARING VEHICLES TO SIMULATE CONDITIONS IN SPACE. THEY WERE USED TO SHOW HOW A CHASE VEHICLE COULD MOVE UP TO AND CAPTURE A SATELLITE, SUCH AS THE FASTSAT MOCKUP DEMONSTRITING HOW ROBOTIC TECHNOLOGY AND SMALL SPACECRAFT COULD ASSIST WITH ORBITAL DEBRIS MITIGATION
2012-08-21
FINAL DEMONSTRATION OF A WIRELESS DATA TASK SUPPORTED BY SLS ADVANCED DEVELOPMENT USED TO DEMONSTRATE REAL-TIME VIDEO OVER WIRELESS CONNECTIONS ALONG WITH DATA AND COMMANDS AS DEMONSTRATED VIA THE ROBOTIC ARMS. THE ARMS AND VIDEO CAMERAS WERE MOUNTED ON FREE FLOATING AIR-BEARING VEHICLES TO SIMULATE CONDITIONS IN SPACE. THEY WERE USED TO SHOW HOW A CHASE VEHICLE COULD MOVE UP TO AND CAPTURE A SATELLITE, SUCH AS THE FASTSAT MOCKUP DEMONSTRITING HOW ROBOTIC TECHNOLOGY AND SMALL SPACECRAFT COULD ASSIST WITH ORBITAL DEBRIS MITIGATION
Common MD-IS infrastructure for wireless data technologies
NASA Astrophysics Data System (ADS)
White, Malcolm E.
1995-12-01
The expansion of global networks, caused by growth and acquisition within the commercial sector, is forcing users to move away from proprietary systems in favor of standards-based, open systems architectures. The same is true in the wireless data communications arena, where operators of proprietary wireless data networks have endeavored to convince users that their particular implementation provides the best service. However, most of the vendors touting these solutions have failed to gain the critical mass that might have lead to their technologies' adoption as a defacto standard, and have been held back by a lack of applications and the high cost of mobile devices. The advent of the cellular digital packet data (CDPD) specification and its support by much of the public cellular service industry has set the stage for the ubiquitous coverage of wireless packet data services across the Unites States. Although CDPD was developed for operation over the advanced mobile phone system (AMPS) cellular network, many of the defined protocols are industry standards that can be applied to the construction of a common infrastructure supporting multiple airlink standards. This approach offers overall cost savings and operation efficiency for service providers, hardware, and software developers and end-users alike, and could be equally advantageous for those service operators using proprietary end system protocols, should they wish to migrate towards an open standard.
Body area network--a key infrastructure element for patient-centered telemedicine.
Norgall, Thomas; Schmidt, Robert; von der Grün, Thomas
2004-01-01
The Body Area Network (BAN) extends the range of existing wireless network technologies by an ultra-low range, ultra-low power network solution optimised for long-term or continuous healthcare applications. It enables wireless radio communication between several miniaturised, intelligent Body Sensor (or actor) Units (BSU) and a single Body Central Unit (BCU) worn at the human body. A separate wireless transmission link from the BCU to a network access point--using different technology--provides for online access to BAN components via usual network infrastructure. The BAN network protocol maintains dynamic ad-hoc network configuration scenarios and co-existence of multiple networks.BAN is expected to become a basic infrastructure element for electronic health services: By integrating patient-attached sensors and mobile actor units, distributed information and data processing systems, the range of medical workflow can be extended to include applications like wireless multi-parameter patient monitoring and therapy support. Beyond clinical use and professional disease management environments, private personal health assistance scenarios (without financial reimbursement by health agencies / insurance companies) enable a wide range of applications and services in future pervasive computing and networking environments.
ERIC Educational Resources Information Center
Moriarty, Laura Joyce
2001-01-01
Discusses the use of wireless technology on college campuses. Explores why colleges may want to use the technology, when they should begin to take it seriously, the culture pushing the change, and how schools should approach wireless technology. (EV)
Environmental implications of wireless technologies: news delivery and business meetings.
Toffel, Michael W; Horvath, Arpad
2004-06-01
Wireless information technologies are providing new ways to communicate, and are one of several information and communication technologies touted as an opportunity to reduce society's overall environmental impacts. However, rigorous system-wide environmental impact comparisons of these technologies to the traditional applications they may replace have only recently been initiated, and the results have been mixed. In this paper, the environmental effects of two applications of wireless technologies are compared to those of conventional technologies for which they can substitute. First, reading newspaper content on a personal digital assistant (PDA) is compared to the traditional way of reading a newspaper. Second, wireless teleconferencing is compared to business travel. The results show that for both comparisons wireless technologies create lower environmental impacts. Compared to reading a newspaper, receiving the news on a PDA wirelessly results in the release of 32-140 times less CO2, several orders of magnitude less NOx and SOx, and the use of 26-67 times less water. Wireless teleconferencing results in 1-3 orders of magnitude lower CO2, NOx, and SO2 emissions than business travel.
Learning with Portable Digital Devices in Australian Schools: 20 Years On!
ERIC Educational Resources Information Center
Newhouse, C. Paul
2014-01-01
Portable computing technologies such as laptops, tablets, smartphones, wireless networking, voice/stylus input, and plug and play peripheral devices, appear to offer the means of finally realising much of the long heralded vision for computers to support learning in schools. There is the possibility for the technology to finally become a…
A Mobile Tool for Learning English Words
ERIC Educational Resources Information Center
Cavus, Nadire; Ibrahim, Dogan
2008-01-01
Technology is changing very rapidly and nearly all branches of education are affected by these changes. As a result of these rapid changes there has been significant interest and growth in the number of educational institutions using mobile devices to support learning and teaching. There is also an increase use of wireless technologies in…
The Challenge of Wireless Reliability and Coexistence.
Berger, H Stephen
2016-09-01
Wireless communication plays an increasingly important role in healthcare delivery. This further heightens the importance of wireless reliability, but quantifying wireless reliability is a complex and difficult challenge. Understanding the risks that accompany the many benefits of wireless communication should be a component of overall risk management. The emerging trend of using sensors and other device-to-device communications, as part of the emerging Internet of Things concept, is evident in healthcare delivery. The trend increases both the importance and complexity of this challenge. As with most system problems, finding a solution requires breaking down the problem into manageable steps. Understanding the operational reliability of a new wireless device and its supporting system requires developing solid, quantified answers to three questions: 1) How well can this new device and its system operate in a spectral environment where many other wireless devices are also operating? 2) What is the spectral environment in which this device and its system are expected to operate? Are the risks and reliability in its operating environment acceptable? 3) How might the new device and its system affect other devices and systems already in use? When operated under an insightful risk management process, wireless technology can be safely implemented, resulting in improved delivery of care.
Unified Communications for Space Inventory Management
NASA Technical Reports Server (NTRS)
Gifford, Kevin K.; Fink, Patrick W.; Barton, Richard; Ngo, Phong H.
2009-01-01
To help assure mission success for long-duration exploration activities, NASA is actively pursuing wireless technologies that promote situational awareness and autonomy. Wireless technologies are typically extensible, offer freedom from wire tethers, readily support redundancy, offer potential for decreased wire weight, and can represent dissimilar implementation for increased reliability. In addition, wireless technologies can enable additional situational awareness that otherwise would be infeasible. For example, addition of wired sensors, the need for which might not have been apparent at the outset of a program, night be extremely costly due in part to the necessary routing of cables through the vehicle. RFID, or radio frequency identification, is a wireless technology with the potential for significant savings and increased reliability and safety in space operations. Perhaps the most obvious savings relate to the application of inventory management. A fully automated inventory management system is highly desirable for long-term sustaining operations in space environments. This assertion is evidenced by inventory activities on the International Space Station, which represents the most extensive inventory tracking experience base in the history of space operations. In the short tern, handheld RFID readers offer substantial savings owing to reduced crew time for inventory audits. Over the long term, a combination of improved RFID technology and operational concepts modified to fully utilize the technology should result in space based inventory management that is highly reliable and requires very little crew time. In addition to inventory management, RFID is likely to find space applications in real-time location and tracking systems. These could vary from coarse-resolution RFID portals to the high resolution afforded by ultra-wideband (UWB) RFID. Longer range RFID technologies that leverage passive surface acoustic wave (SAW) devices are being investigated to track assets on a lunar or planetary surface.
Wireless Technology in K-12 Education
ERIC Educational Resources Information Center
Walery, Darrell
2004-01-01
Many schools begin implementing wireless technology slowly by creating wireless "hotspots" on the fly. This is accomplished by putting a wireless access point on a cart along with a set of wireless laptop computers. A teacher can then wheel the cart anywhere in the school that has a network drop, plug the access point in and have an…
A Wireless Physiological Signal Monitoring System with Integrated Bluetooth and WiFi Technologies.
Yu, Sung-Nien; Cheng, Jen-Chieh
2005-01-01
This paper proposes a wireless patient monitoring system which integrates Bluetooth and WiFi wireless technologies. A wireless portable multi-parameter device was designated to acquire physiological signals and transmit them to a local server via Bluetooth wireless technology. Four kinds of monitor units were designed to communicate via the WiFi wireless technology, including a local monitor unit, a control center, mobile devices (personal digital assistant; PDA), and a web page. The use of various monitor units is intending to meet different medical requirements for different medical personnel. This system was demonstrated to promote the mobility and flexibility for both the patients and the medical personnel, which further improves the quality of health care.
Developing a New Wireless Sensor Network Platform and Its Application in Precision Agriculture
Aquino-Santos, Raúl; González-Potes, Apolinar; Edwards-Block, Arthur; Virgen-Ortiz, Raúl Alejandro
2011-01-01
Wireless sensor networks are gaining greater attention from the research community and industrial professionals because these small pieces of “smart dust” offer great advantages due to their small size, low power consumption, easy integration and support for “green” applications. Green applications are considered a hot topic in intelligent environments, ubiquitous and pervasive computing. This work evaluates a new wireless sensor network platform and its application in precision agriculture, including its embedded operating system and its routing algorithm. To validate the technological platform and the embedded operating system, two different routing strategies were compared: hierarchical and flat. Both of these routing algorithms were tested in a small-scale network applied to a watermelon field. However, we strongly believe that this technological platform can be also applied to precision agriculture because it incorporates a modified version of LORA-CBF, a wireless location-based routing algorithm that uses cluster-based flooding. Cluster-based flooding addresses the scalability concerns of wireless sensor networks, while the modified LORA-CBF routing algorithm includes a metric to monitor residual battery energy. Furthermore, results show that the modified version of LORA-CBF functions well with both the flat and hierarchical algorithms, although it functions better with the flat algorithm in a small-scale agricultural network. PMID:22346622
Developing a new wireless sensor network platform and its application in precision agriculture.
Aquino-Santos, Raúl; González-Potes, Apolinar; Edwards-Block, Arthur; Virgen-Ortiz, Raúl Alejandro
2011-01-01
Wireless sensor networks are gaining greater attention from the research community and industrial professionals because these small pieces of "smart dust" offer great advantages due to their small size, low power consumption, easy integration and support for "green" applications. Green applications are considered a hot topic in intelligent environments, ubiquitous and pervasive computing. This work evaluates a new wireless sensor network platform and its application in precision agriculture, including its embedded operating system and its routing algorithm. To validate the technological platform and the embedded operating system, two different routing strategies were compared: hierarchical and flat. Both of these routing algorithms were tested in a small-scale network applied to a watermelon field. However, we strongly believe that this technological platform can be also applied to precision agriculture because it incorporates a modified version of LORA-CBF, a wireless location-based routing algorithm that uses cluster-based flooding. Cluster-based flooding addresses the scalability concerns of wireless sensor networks, while the modified LORA-CBF routing algorithm includes a metric to monitor residual battery energy. Furthermore, results show that the modified version of LORA-CBF functions well with both the flat and hierarchical algorithms, although it functions better with the flat algorithm in a small-scale agricultural network.
47 CFR 51.5 - Terms and definitions.
Code of Federal Regulations, 2010 CFR
2010-10-01
... technologies include, but are not limited to, traditional or new cable plant, wireless technologies, and power..., that maintains a collocation arrangement in an incumbent LEC wire center, with active electrical power... wireless service. A mobile wireless service is any mobile wireless telecommunications service, including...
[Advances in sensor node and wireless communication technology of body sensor network].
Lin, Weibing; Lei, Sheng; Wei, Caihong; Li, Chunxiang; Wang, Cang
2012-06-01
With the development of the wireless communication technology, implantable biosensor technology, and embedded system technology, Body Sensor Network (BSN) as one branch of wireless sensor networks and important part of the Internet of things has caught more attention of researchers and enterprises. This paper offers the basic concept of the BSN and analyses the related research. We focus on sensor node and wireless communication technology from perspectives of technology challenges, research advance and development trend in the paper. Besides, we also present a relative overview of domestic and overseas projects for the BSN.
Communications and radar-supported transportation operations and planning : final report.
DOT National Transportation Integrated Search
2017-03-01
This project designs a conceptual framework to harness and mature wireless technology to improve : transportation safety, with a focus on frontal collision warning/collision avoidance (CW/CA) systems. The : framework identifies components of the tech...
MB-OFDM-UWB Based Wireless Multimedia Sensor Networks for Underground Coalmine: A Survey.
Han, Ruisong; Yang, Wei; You, Kaiming
2016-12-16
Safety production of coalmines is a task of top priority which plays an important role in guaranteeing, supporting and promoting the continuous development of the coal industry. Since traditional wireless sensor networks (WSNs) cannot fully meet the requirements of comprehensive environment monitoring of underground coalmines, wireless multimedia sensor networks (WMSNs), enabling the retrieval of multimedia information, are introduced to realize fine-grained and precise environment surveillance. In this paper, a framework for designing underground coalmine WMSNs based on Multi-Band Orthogonal Frequency-Division Multiplexing Ultra-wide Band (MB-OFDM-UWB) is presented. The selection of MB-OFDM-UWB wireless transmission solution is based on the characteristics of underground coalmines. Network structure and design challenges are analyzed first, which is the foundation for further discussion. Then, key supporting technologies and open research areas in different layers are surveyed, and we provide a detailed literature review of the state of the art strategies, algorithms and general solutions in these issues. Finally, other research issues like localization, information processing, and network management are discussed.
MB-OFDM-UWB Based Wireless Multimedia Sensor Networks for Underground Coalmine: A Survey
Han, Ruisong; Yang, Wei; You, Kaiming
2016-01-01
Safety production of coalmines is a task of top priority which plays an important role in guaranteeing, supporting and promoting the continuous development of the coal industry. Since traditional wireless sensor networks (WSNs) cannot fully meet the requirements of comprehensive environment monitoring of underground coalmines, wireless multimedia sensor networks (WMSNs), enabling the retrieval of multimedia information, are introduced to realize fine-grained and precise environment surveillance. In this paper, a framework for designing underground coalmine WMSNs based on Multi-Band Orthogonal Frequency-Division Multiplexing Ultra-wide Band (MB-OFDM-UWB) is presented. The selection of MB-OFDM-UWB wireless transmission solution is based on the characteristics of underground coalmines. Network structure and design challenges are analyzed first, which is the foundation for further discussion. Then, key supporting technologies and open research areas in different layers are surveyed, and we provide a detailed literature review of the state of the art strategies, algorithms and general solutions in these issues. Finally, other research issues like localization, information processing, and network management are discussed. PMID:27999258
Evaluation of wireless Local Area Networks
NASA Astrophysics Data System (ADS)
McBee, Charles L.
1993-09-01
This thesis is an in-depth evaluation of the current wireless Local Area Network (LAN) technologies. Wireless LAN's consist of three technologies: they are infrared light, microwave, and spread spectrum. When the first wireless LAN's were introduced, they were unfavorably labeled slow, expensive, and unreliable. The wireless LAN's of today are competitively priced, more secure, easier to install, and provide equal to or greater than the data throughput of unshielded twisted pair cable. Wireless LAN's are best suited for organizations that move office staff frequently, buildings that have historical significance, or buildings that have asbestos. Additionally, an organization may realize a cost savings of between $300 to $1,200 each time a node is moved. Current wireless LAN technologies have a positive effect on LAN standards being developed by the Defense Information System Agency (DISA). DoD as a whole is beginning to focus on wireless LAN's and mobile communications. If system managers want to remain successful, they need to stay abreast of this technology.
Curiac, Daniel-Ioan
2016-01-01
Being often deployed in remote or hostile environments, wireless sensor networks are vulnerable to various types of security attacks. A possible solution to reduce the security risks is to use directional antennas instead of omnidirectional ones or in conjunction with them. Due to their increased complexity, higher costs and larger sizes, directional antennas are not traditionally used in wireless sensor networks, but recent technology trends may support this method. This paper surveys existing state of the art approaches in the field, offering a broad perspective of the future use of directional antennas in mitigating security risks, together with new challenges and open research issues. PMID:27070601
Technology Acceptance Model for Wireless Internet.
ERIC Educational Resources Information Center
Lu, June; Yu, Chun-Sheng; Liu, Chang; Yao, James E.
2003-01-01
Develops a technology acceptance model (TAM) for wireless Internet via mobile devices (WIMD) and proposes that constructs, such as individual differences, technology complexity, facilitating conditions, social influences, and wireless trust environment determine user-perceived short and long-term usefulness, and ease of using WIMD. Twelve…
M-Health, New Prospect for School Health Education through Mobile Technologies at Lebanese School
ERIC Educational Resources Information Center
Jabbour, Khayrazad Kari
2013-01-01
Supporting school health programs to improve the emotionally and physically health status of Lebanese students has never been more important. The use of mobile and wireless technologies to promote school health programs has the potential to transform the school health education and service delivery in Lebanon. This article explores the possibility…
A Review on Radio-Over-Fiber Technology-Based Integrated (Optical/Wireless) Networks
NASA Astrophysics Data System (ADS)
Rajpal, Shivika; Goyal, Rakesh
2017-06-01
In the present paper, radio-over-fiber (RoF) technology has been proposed, which is the integration of the optical and radio networks. With a high transmission capacity, comparatively low cost and low attenuation, optical fiber provides an ideal solution for accomplishing the interconnections. In addition, a radio system enables the significant mobility, flexibility and easy access. Therefore, the system integration can meet the increasing demands of subscribers for voice, data and multimedia services that require the access network to support high data rates at any time and any place inexpensively. RoF has the potentiality to the backbone of the wireless access network and it has gained significant momentum in the last decade as a potential last-mile access scheme. This paper gives the comprehensive review of RoF technology used in the communication system. Concept, applications, advantages and limitations of RoF technology are also discussed in this paper.
... scientific issues related to RF exposure from wireless communications technology from an international perspective. Specific topics addressed have included: health effects of emerging wireless technologies recent biological ... - Wireless FAQs Federal Communications Commission - Radiofrequency Safety ...
Bluetooth low energy: wireless connectivity for medical monitoring.
Omre, Alf Helge
2010-03-01
Electronic wireless sensors could cut medical costs by enabling physicians to remotely monitor vital signs such as blood pressure, blood glucose, and blood oxygenation while patients remain at home. According to the IDC report "Worldwide Bluetooth Semiconductor 2008-2012 Forecast," published November 2008, a forthcoming radio frequency communication ("wireless connectivity") standard, Bluetooth low energy, will link wireless sensors via radio signals to the 70% of cell phones and computers likely to be fitted with the next generation of Bluetooth wireless technology, leveraging a ready-built infrastructure for data transmission. Analysis of trends indicated by this data can help physicians better manage diseases such as diabetes. The technology also addresses the concerns of cost, compatibility, and interoperability that have previously stalled widespread adoption of wireless technology in medical applications. (c) 2010 Diabetes Technology Society.
Partnership Opportunities with AFRC for Wireless Systems Flight Testing
NASA Technical Reports Server (NTRS)
Hang, Richard
2015-01-01
The presentation will overview the flight test capabilities at NASA Armstrong Flight Research Center (AFRC), to open up partnership collaboration opportunities for Wireless Community to conduct flight testing of aerospace wireless technologies. Also, it will brief the current activities on wireless sensor system at AFRC through SBIR (Small Business Innovation Research) proposals, and it will show the current areas of interest on wireless technologies that AFRC would like collaborate with Wireless Community to further and testing.
A mobile field-work data collection system for the wireless era of health surveillance.
Forsell, Marianne; Sjögren, Petteri; Renard, Matthew; Johansson, Olle
2011-03-01
In many countries or regions the capacity of health care resources is below the needs of the population and new approaches for health surveillance are needed. Innovative projects, utilizing wireless communication technology, contribute to reliable methods for field-work data collection and reporting to databases. The objective was to describe a new version of a wireless IT-support system for field-work data collection and administration. The system requirements were drawn from the design objective and translated to system functions. The system architecture was based on fieldwork experiences and administrative requirements. The Smartphone devices were HTC Touch Diamond2s, while the system was based on a platform with Microsoft .NET components, and a SQL Server 2005 with Microsoft Windows Server 2003 operating system. The user interfaces were based on .NET programming, and Microsoft Windows Mobile operating system. A synchronization module enabled download of field data to the database, via a General Packet Radio Services (GPRS) to a Local Area Network (LAN) interface. The field-workers considered the here-described applications user-friendly and almost self-instructing. The office administrators considered that the back-office interface facilitated retrieval of health reports and invoice distribution. The current IT-support system facilitates short lead times from fieldwork data registration to analysis, and is suitable for various applications. The advantages of wireless technology, and paper-free data administration need to be increasingly emphasized in development programs, in order to facilitate reliable and transparent use of limited resources.
Evaluation of Communication Alternatives for Intelligent Transportation Systems
DOT National Transportation Integrated Search
2010-08-31
The primary focus of this study involved developing a process for the evaluation of wireless technologies : for intelligent transportation systems, and for conducting experiments of potential wireless technologies : and topologies. Two wireless techn...
Practice brief. Securing wireless technology for healthcare.
Retterer, John; Casto, Brian W
2004-05-01
Wireless networking can be a very complex science, requiring an understanding of physics and the electromagnetic spectrum. While the radio theory behind the technology can be challenging, a basic understanding of wireless networking can be sufficient for small-scale deployment. Numerous security mechanisms are available to wireless technologies, making it practical, scalable, and affordable for healthcare organizations. The decision on the selected security model should take into account the needs for additional server hardware and administrative costs. Where wide area network connections exist between cooperative organizations, deployment of a distributed security model can be considered to reduce administrative overhead. The wireless approach chosen should be dynamic and concentrate on the organization's specific environmental needs. Aspects of organizational mission, operations, service level, and budget allotment as well as an organization's risk tolerance are all part of the balance in the decision to deploy wireless technology.
Mupparapu, Muralidhar
2006-02-15
Wireless networking is not new to contemporary dental offices around the country. Wireless routers and network cards have made access to patient records within the office handy and, thereby, saving valuable chair side time and increasing productivity. As is the case with any rapidly developing technology, wireless technology also changes with the same rate. Unless, the users of the wireless networking understand the implications of these changes and keep themselves updated periodically, the office network will become obsolete very quickly. This update of the emerging security protocols and pertaining to ratified wireless 802.11 standards will be timely for the contemporary dentist whose office is wirelessly networked. This article brings the practicing dentist up-to-date on the newer versions and standards in wireless networking that are changing at a fast pace. The introduction of newer 802.11 standards like super G, Super AG, Multiple Input Multiple Output (MIMO), and pre-n are changing the pace of adaptation of this technology. Like any other rapidly transforming technology, information pertaining to wireless networking should be a priority for the contemporary dentist, an eventual end-user in order to be a well-informed and techno-savvy consumer.
The Role of Wireless Computing Technology in the Design of Schools.
ERIC Educational Resources Information Center
Nair, Prakash
This document discusses integrating computers logically and affordably into a school building's infrastructure through the use of wireless technology. It begins by discussing why wireless networks using mobile computers are preferable to desktop machines in each classoom. It then explains the features of a wireless local area network (WLAN) and…
The study and implementation of the wireless network data security model
NASA Astrophysics Data System (ADS)
Lin, Haifeng
2013-03-01
In recent years, the rapid development of Internet technology and the advent of information age, people are increasing the strong demand for the information products and the market for information technology. Particularly, the network security requirements have become more sophisticated. This paper analyzes the wireless network in the data security vulnerabilities. And a list of wireless networks in the framework is the serious defects with the related problems. It has proposed the virtual private network technology and wireless network security defense structure; and it also given the wireless networks and related network intrusion detection model for the detection strategies.
Wireless Network Communications Overview for Space Mission Operations
NASA Technical Reports Server (NTRS)
Fink, Patrick W.
2009-01-01
The mission of the On-Board Wireless Working Group (WWG) is to serve as a general CCSDS focus group for intra-vehicle wireless technologies. The WWG investigates and makes recommendations pursuant to standardization of applicable wireless network protocols, ensuring the interoperability of independently developed wireless communication assets. This document presents technical background information concerning uses and applicability of wireless networking technologies for space missions. Agency-relevant driving scenarios, for which wireless network communications will provide a significant return-on-investment benefiting the participating international agencies, are used to focus the scope of the enclosed technical information.
High-speed digital wireless battlefield network
NASA Astrophysics Data System (ADS)
Dao, Son K.; Zhang, Yongguang; Shek, Eddie C.; van Buer, Darrel
1999-07-01
In the past two years, the Digital Wireless Battlefield Network consortium that consists of HRL Laboratories, Hughes Network Systems, Raytheon, and Stanford University has participated in the DARPA TRP program to leverage the efforts in the development of commercial digital wireless products for use in the 21st century battlefield. The consortium has developed an infrastructure and application testbed to support the digitized battlefield. The consortium has implemented and demonstrated this network system. Each member is currently utilizing many of the technology developed in this program in commercial products and offerings. These new communication hardware/software and the demonstrated networking features will benefit military systems and will be applicable to the commercial communication marketplace for high speed voice/data multimedia distribution services.
ERIC Educational Resources Information Center
Gan, Chin Lay; Balakrishnan, Vimala
2014-01-01
The aim of this paper is to identify adoption factors of mobile wireless technology to increase interactivity between lecturers and students during lectures. A theoretical framework to ascertain lecturers' intentions to use mobile wireless technology during lectures (dependent variable) is proposed with seven independent variables. The…
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-17
... Production Act of 1993--Wireless Industrial Technology Konsortium, Inc. Notice is hereby given that, on..., 15 U.S.C. 4301 et seq. (``the Act''), Wireless Industrial Technology Konsortium, Inc. (``WITECK... circumstances. Specifically, Software Technologies Group, Westchester, IL, has withdrawn as a party to this...
ERIC Educational Resources Information Center
Oriaku, Ngozi
2008-01-01
Wireless technologies have revolutionized the ways teaching and learning have become in many colleges and universities. It is therefore interesting to observe the way wireless technologies are used to organize small group meetings. It provides online access to internet resources such as instructor lecture series. It finally helps in…
Liu, Chen-Chung; Chou, Chien-Chia; Liu, Baw-Jhiune; Yang, Jui-Wen
2006-01-01
Hard of hearing students usually face more difficulties at school than other students. A classroom environment with wireless technology was implemented to explore whether wireless technology could enhance mathematics learning and teaching activities for a hearing teacher and her 7 hard of hearing students in a Taiwan junior high school. Experiments showed that the highly interactive communication through the wireless network increased student participation in learning activities. Students demonstrated more responses to the teacher and fewer distraction behaviors. Fewer mistakes were made in in-class course work because Tablet PCs provided students scaffolds. Students stated that the environment with wireless technology was desirable and said that they hoped to continue using the environment to learn mathematics.
Ubiquitous Wireless Smart Sensing and Control
NASA Technical Reports Server (NTRS)
Wagner, Raymond
2013-01-01
Need new technologies to reliably and safely have humans interact within sensored environments (integrated user interfaces, physical and cognitive augmentation, training, and human-systems integration tools). Areas of focus include: radio frequency identification (RFID), motion tracking, wireless communication, wearable computing, adaptive training and decision support systems, and tele-operations. The challenge is developing effective, low cost/mass/volume/power integrated monitoring systems to assess and control system, environmental, and operator health; and accurately determining and controlling the physical, chemical, and biological environments of the areas and associated environmental control systems.
Ubiquitous Wireless Smart Sensing and Control. Pumps and Pipes JSC: Uniquely Houston
NASA Technical Reports Server (NTRS)
Wagner, Raymond
2013-01-01
Need new technologies to reliably and safely have humans interact within sensored environments (integrated user interfaces, physical and cognitive augmentation, training, and human-systems integration tools).Areas of focus include: radio frequency identification (RFID), motion tracking, wireless communication, wearable computing, adaptive training and decision support systems, and tele-operations. The challenge is developing effective, low cost/mass/volume/power integrated monitoring systems to assess and control system, environmental, and operator health; and accurately determining and controlling the physical, chemical, and biological environments of the areas and associated environmental control systems.
Wireless Technology Use Case Requirement Analysis for Future Space Applications
NASA Technical Reports Server (NTRS)
Abedi, Ali; Wilkerson, DeLisa
2016-01-01
This report presents various use case scenarios for wireless technology -including radio frequency (RF), optical, and acoustic- and studies requirements and boundary conditions in each scenario. The results of this study can be used to prioritize technology evaluation and development and in the long run help in development of a roadmap for future use of wireless technology. The presented scenarios cover the following application areas: (i) Space Vehicles (manned/unmanned), (ii) Satellites and Payloads, (iii) Surface Explorations, (iv) Ground Systems, and (v) Habitats. The requirement analysis covers two parallel set of conditions. The first set includes the environmental conditions such as temperature, radiation, noise/interference, wireless channel characteristics and accessibility. The second set of requirements are dictated by the application and may include parameters such as latency, throughput (effective data rate), error tolerance, and reliability. This report provides a comprehensive overview of all requirements from both perspectives and details their effects on wireless system reliability and network design. Application area examples are based on 2015 NASA Technology roadmap with specific focus on technology areas: TA 2.4, 3.3, 5.2, 5.5, 6.4, 7.4, and 10.4 sections that might benefit from wireless technology.
Applied research of embedded WiFi technology in the motion capture system
NASA Astrophysics Data System (ADS)
Gui, Haixia
2012-04-01
Embedded wireless WiFi technology is one of the current wireless hot spots in network applications. This paper firstly introduces the definition and characteristics of WiFi. With the advantages of WiFi such as using no wiring, simple operation and stable transmission, this paper then gives a system design for the application of embedded wireless WiFi technology in the motion capture system. Also, it verifies the effectiveness of design in the WiFi-based wireless sensor hardware and software program.
47 CFR 10.210 - WEA participation election procedures.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Section 10.210 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL WIRELESS EMERGENCY ALERTS... requirements implemented by the Commission; and (2) Commits to support the development and deployment of technology for the “C” interface, the CMS provider Gateway, the CMS provider infrastructure, and mobile...
47 CFR 10.210 - WEA participation election procedures.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Section 10.210 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL WIRELESS EMERGENCY ALERTS... requirements implemented by the Commission; and (2) Commits to support the development and deployment of technology for the “C” interface, the CMS provider Gateway, the CMS provider infrastructure, and mobile...
Wireless Sensor Networks for Developmental and Flight Instrumentation
NASA Technical Reports Server (NTRS)
Alena, Richard; Figueroa, Fernando; Becker, Jeffrey; Foster, Mark; Wang, Ray; Gamudevelli, Suman; Studor, George
2011-01-01
Wireless sensor networks (WSN) based on the IEEE 802.15.4 Personal Area Network and ZigBee Pro 2007 standards are finding increasing use in home automation and smart energy markets providing a framework for interoperable software. The Wireless Connections in Space Project, funded by the NASA Engineering and Safety Center, is developing technology, metrics and requirements for next-generation spacecraft avionics incorporating wireless data transport. The team from Stennis Space Center and Mobitrum Corporation, working under a NASA SBIR grant, has developed techniques for embedding plug-and-play software into ZigBee WSN prototypes implementing the IEEE 1451 Transducer Electronic Datasheet (TEDS) standard. The TEDS provides meta-information regarding sensors such as serial number, calibration curve and operational status. Incorporation of TEDS into wireless sensors leads directly to building application level software that can recognize sensors at run-time, dynamically instantiating sensors as they are added or removed. The Ames Research Center team has been experimenting with this technology building demonstration prototypes for on-board health monitoring. Innovations in technology, software and process can lead to dramatic improvements for managing sensor systems applied to Developmental and Flight Instrumentation (DFI) aboard aerospace vehicles. A brief overview of the plug-and-play ZigBee WSN technology is presented along with specific targets for application within the aerospace DFI market. The software architecture for the sensor nodes incorporating the TEDS information is described along with the functions of the Network Capable Gateway processor which bridges 802.15.4 PAN to the TCP/IP network. Client application software connects to the Gateway and is used to display TEDS information and real-time sensor data values updated every few seconds, incorporating error detection and logging to help measure performance and reliability in relevant target environments. Test results from our prototype WSN running the Mobitrum software system are summarized and the implications to the scalability and reliability for DFI applications are discussed. Our demonstration system, incorporating sensors for life support system and structural health monitoring is described along with test results obtained by running the demonstration prototype in relevant environments such as the Wireless Habitat Testbed at Johnson Space Center in Houston. An operations concept for improved sensor process flow from design to flight test is outlined specific to the areas of Environmental Control and Life Support System performance characterization and structural health monitoring of human-rated spacecraft. This operations concept will be used to highlight the areas where WSN technology, particularly plug-and-play software based on IEEE 1451, can improve the current process, resulting in significant reductions in the technical effort, overall cost and schedule for providing DFI capability for future spacecraft. RELEASED -
Secure Data Aggregation with Fully Homomorphic Encryption in Large-Scale Wireless Sensor Networks.
Li, Xing; Chen, Dexin; Li, Chunyan; Wang, Liangmin
2015-07-03
With the rapid development of wireless communication technology, sensor technology, information acquisition and processing technology, sensor networks will finally have a deep influence on all aspects of people's lives. The battery resources of sensor nodes should be managed efficiently in order to prolong network lifetime in large-scale wireless sensor networks (LWSNs). Data aggregation represents an important method to remove redundancy as well as unnecessary data transmission and hence cut down the energy used in communication. As sensor nodes are deployed in hostile environments, the security of the sensitive information such as confidentiality and integrity should be considered. This paper proposes Fully homomorphic Encryption based Secure data Aggregation (FESA) in LWSNs which can protect end-to-end data confidentiality and support arbitrary aggregation operations over encrypted data. In addition, by utilizing message authentication codes (MACs), this scheme can also verify data integrity during data aggregation and forwarding processes so that false data can be detected as early as possible. Although the FHE increase the computation overhead due to its large public key size, simulation results show that it is implementable in LWSNs and performs well. Compared with other protocols, the transmitted data and network overhead are reduced in our scheme.
ERIC Educational Resources Information Center
Liu, Chen-Chung; Chou, Chien-Chia; Liu, Baw-Jhiune; Yang, Jui-Wen
2006-01-01
Hard of hearing students usually face more difficulties at school than other students. A classroom environment with wireless technology was implemented to explore whether wireless technology could enhance mathematics learning and teaching activities for a hearing teacher and her 7 hard of hearing students in a Taiwan junior high school.…
Transparent data service with multiple wireless access
NASA Technical Reports Server (NTRS)
Dean, Richard A.; Levesque, Allen H.
1993-01-01
The rapid introduction of digital wireless networks is an important part of the emerging digital communications scene. The introduction of Digital Cellular, LEO and GEO Satellites, and Personal Communications Services poses both a challenge and an opportunity for the data user. On the one hand wireless access will introduce significant new portable data services such as personal notebooks, paging, E-mail, and fax that will put the information age in the user's pocket. On the other hand the challenge of creating a seamless and transparent environment for the user in multiple access environments and across multiple network connections is formidable. A summary of the issues associated with developing techniques and standards that can support transparent and seamless data services is presented. The introduction of data services into the radio world represents a unique mix of RF channel problems, data protocol issues, and network issues. These problems require that experts from each of these disciplines fuse the individual technologies to support these services.
Antennas and Electromagnetics Instrumentation for Research and Education
2016-06-01
Antennas and Electromagnetics Instrumentation for Research and Education The objective of this proposal is to enhance the instrumentation of FIU’s... ElectroMagnetics Lab (EMLab) directed by Dr. Georgakopoulos and create a state-of-the art lab that will support the following: (a) Dr. Georgakopoulos...funded research on reconfigurable antennas and wireless power transfer, (b) other research on advanced electromagnetic technologies that support
ERIC Educational Resources Information Center
Wong, Wylie
2014-01-01
In October 2013, nearly half of U.S. community colleges--46.2 percent-- said upgrading their campus networks is a "very important priority" within the next three years, according to The Campus Computing Project, a survey of 94 community colleges. More robust networks are needed to support a host of new wireless access points and the…
Design and validation of wireless system for oil monitoring base on optical sensing unit
NASA Astrophysics Data System (ADS)
Niu, Liqun; Wang, Weiming; Zhang, Shuaishuai; Li, Zhirui; Yu, Yan; Huang, Hui
2017-04-01
According to the situation of oil leakage and the development of oil detection technology, a wireless monitoring system, combining with the sensor technology, optical measurement technology, and wireless technology, is designed. In this paper, the architecture of a wireless system is designed. In the hardware, the collected data, acquired by photoelectric conversion and analog to digital conversion equipment, will be sent to the upper machine where they are saved and analyzed. The experimental results reveals that the wireless system has the characteristics of higher precision, more real-time and more convenient installation, it can reflect the condition of the measuring object truly and implement the dynamic monitoring for a long time on-site, stability—thus it has a good application prospect in the oil monitoring filed.
Wireless technology in disease management and medicine.
Clifford, Gari D; Clifton, David
2012-01-01
Healthcare information, and to some extent patient management, is progressing toward a wireless digital future. This change is driven partly by a desire to improve the current state of medicine using new technologies, partly by supply-and-demand economics, and partly by the utility of wireless devices. Wired technology can be cumbersome for patient monitoring and can restrict the behavior of the monitored patients, introducing bias or artifacts. However, wireless technologies, while mitigating some of these issues, have introduced new problems such as data dropout and "information overload" for the clinical team. This review provides an overview of current wireless technology used for patient monitoring and disease management. We identify some of the major related issues and describe some existing and possible solutions. In particular, we discuss the rapidly evolving fields of telemedicine and mHealth in the context of increasingly resource-constrained healthcare systems.
Bluetooth Low Energy: Wireless Connectivity for Medical Monitoring
Omre, Alf Helge
2010-01-01
Electronic wireless sensors could cut medical costs by enabling physicians to remotely monitor vital signs such as blood pressure, blood glucose, and blood oxygenation while patients remain at home. According to the IDC report “Worldwide Bluetooth Semiconductor 2008-2012 Forecast,” published November 2008, a forthcoming radio frequency communication (“wireless connectivity”) standard, Bluetooth low energy, will link wireless sensors via radio signals to the 70% of cell phones and computers likely to be fitted with the next generation of Bluetooth wireless technology, leveraging a ready-built infrastructure for data transmission. Analysis of trends indicated by this data can help physicians better manage diseases such as diabetes. The technology also addresses the concerns of cost, compatibility, and interoperability that have previously stalled widespread adoption of wireless technology in medical applications. PMID:20307407
Review: Security in Wireless Technologies in Business
NASA Astrophysics Data System (ADS)
Sattarova, F. Y.; Kim, Tai-Hoon
Wireless technology seems to be everywhere now - but it is still relatively in its infancy. New standards and protocols continue to emerge and problems and bugs are discovered. Nevertheless, wireless networks make many things much more convenient and it appears that wireless networks are here to stay. The differences and similarities of wireless and wired security, the new threats brought by mobility, the security of networks and devices and effects of security, or lack of it are shortly discussed in this review paper.
Wireless Sensors and Networks for Advanced Energy Management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hardy, J.E.
Numerous national studies and working groups have identified low-cost, very low-power wireless sensors and networks as a critical enabling technology for increasing energy efficiency, reducing waste, and optimizing processes. Research areas for developing such sensor and network platforms include microsensor arrays, ultra-low power electronics and signal conditioning, data/control transceivers, and robust wireless networks. A review of some of the research in the following areas will be discussed: (1) Low-cost, flexible multi-sensor array platforms (CO{sub 2}, NO{sub x}, CO, humidity, NH{sub 3}, O{sub 2}, occupancy, etc.) that enable energy and emission reductions in applications such as buildings and manufacturing; (2) Modelingmore » investments (energy usage and savings to drive capital investment decisions) and estimated uptime improvements through pervasive gathering of equipment and process health data and its effects on energy; (3) Robust, self-configuring wireless sensor networks for energy management; and (4) Quality-of-service for secure and reliable data transmission from widely distributed sensors. Wireless communications is poised to support technical innovations in the industrial community, with widespread use of wireless sensors forecasted to improve manufacturing production and energy efficiency and reduce emissions. Progress being made in wireless system components, as described in this paper, is helping bring these projected improvements to reality.« less
ERIC Educational Resources Information Center
Joan, D. R. Robert
2015-01-01
The objective of the study was to find out the effect of learning through Wireless technologies and the traditional method in teaching and learning Mathematics. The investigator adopted experimental research to find the effectiveness of implementing Wireless technologies in the population of B.Ed. trainees. The investigator selected 32 B.Ed.…
Wireless as Enabler of Innovation in 21.
Ball, Eddie; Vasileiadis, Athanasios
2017-01-01
This paper overviews new and emerging wireless technologies that could positively impact on the lives of the elderly or disabled, as Social Care users of Assistive Technology (AT) for 'independent living'. Novel Internet of Things (IoT) radio systems and wireless locating systems being researched at The University of Sheffield are discussed in the context of Social Care technology use-cases.
Ruiz-Garcia, Luis; Lunadei, Loredana; Barreiro, Pilar; Robla, Jose Ignacio
2009-01-01
The aim of the present paper is to review the technical and scientific state of the art of wireless sensor technologies and standards for wireless communications in the Agri-Food sector. These technologies are very promising in several fields such as environmental monitoring, precision agriculture, cold chain control or traceability. The paper focuses on WSN (Wireless Sensor Networks) and RFID (Radio Frequency Identification), presenting the different systems available, recent developments and examples of applications, including ZigBee based WSN and passive, semi-passive and active RFID. Future trends of wireless communications in agriculture and food industry are also discussed. PMID:22408551
Terahertz wireless communications based on photonics technologies.
Nagatsuma, Tadao; Horiguchi, Shogo; Minamikata, Yusuke; Yoshimizu, Yasuyuki; Hisatake, Shintaro; Kuwano, Shigeru; Yoshimoto, Naoto; Terada, Jun; Takahashi, Hiroyuki
2013-10-07
There has been an increasing interest in the application of terahertz (THz) waves to broadband wireless communications. In particular, use of frequencies above 275 GHz is one of the strong concerns among radio scientists and engineers, because these frequency bands have not yet been allocated at specific active services, and there is a possibility to employ extremely large bandwidths for ultra-broadband wireless communications. Introduction of photonics technologies for signal generation, modulation and detection is effective not only to enhance the bandwidth and/or the data rate, but also to combine fiber-optic (wired) and wireless networks. This paper reviews recent progress in THz wireless communications using telecom-based photonics technologies towards 100 Gbit/s.
Wireless local area network for the dental office.
Mupparapu, Muralidhar
2004-01-01
Dental offices are no exception to the implementation of new and advanced technology, especially if it enhances productivity. In a rapidly transforming digital world, wireless technology has a special place, as it has truly "retired the wire" and contributed to the ease and efficient access to patient data and other software-based applications for diagnosis and treatment. If the office or the clinic is networked, access to patient management software, imaging software and treatment planning tools is enhanced. Access will be further enhanced and unrestricted if the entire network is wireless. As with any new, emerging technology, there will be issues that should be kept in mind before adapting to the wireless environment. Foremost is the network security involved in the installation and use of these wireless networks. This short, technical manuscript deals with standards and choices in wireless technology currently available for implementation within a dental office. The benefits of each network security protocol available to protect patient data and boost the efficiency of a modern dental office are discussed.
Wireless Sensor Networks: Monitoring and Control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hastbacka, Mildred; Ponoum, Ratcharit; Bouza, Antonio
2013-05-31
The article discusses wireless sensor technologies for building energy monitoring and control. This article, also, addresses wireless sensor networks as well as benefits and challenges of using wireless sensors. The energy savings and market potential of wireless sensors are reviewed.
Application of wireless sensor network technology in logistics information system
NASA Astrophysics Data System (ADS)
Xu, Tao; Gong, Lina; Zhang, Wei; Li, Xuhong; Wang, Xia; Pan, Wenwen
2017-04-01
This paper introduces the basic concepts of active RFID (WSN-ARFID) based on wireless sensor networks and analyzes the shortcomings of the existing RFID-based logistics monitoring system. Integrated wireless sensor network technology and the scrambling point of RFID technology. A new real-time logistics detection system based on WSN and RFID, a model of logistics system based on WSN-ARFID is proposed, and the feasibility of this technology applied to logistics field is analyzed.
Wireless infrared communications for space and terrestrial applications
NASA Technical Reports Server (NTRS)
Crimmins, James W.
1993-01-01
Voice and data communications via wireless (and fiberless) optical means has been commonplace for many years. However, continuous advances in optoelectronics and microelectronics have resulted in significant advances in wireless optical communications over the last decade. Wilton has specialized in diffuse infrared voice and data communications since 1979. In 1986, NASA Johnson Space Center invited Wilton to apply its wireless telecommunications and factory floor technology to astronaut voice communications aboard the shuttle. In September, 1988 a special infrared voice communications system flew aboard a 'Discovery' Shuttle mission as a flight experiment. Since then the technology has been further developed, resulting in a general purpose of 2Mbs wireless voice/data LAN which has been tested for a variety of applications including use aboard Spacelab. Funds for Wilton's wireless IR development were provided in part by NASA's Technology Utilization Office and by the NASA Small Business Innovative Research Program. As a consequence, Wilton's commercial product capability has been significantly enhanced to include diffuse infrared wireless LAN's as well as wireless infrared telecommunication systems for voice and data.
Mobile Computing for Aerospace Applications
NASA Technical Reports Server (NTRS)
Alena, Richard; Swietek, Gregory E. (Technical Monitor)
1994-01-01
The use of commercial computer technology in specific aerospace mission applications can reduce the cost and project cycle time required for the development of special-purpose computer systems. Additionally, the pace of technological innovation in the commercial market has made new computer capabilities available for demonstrations and flight tests. Three areas of research and development being explored by the Portable Computer Technology Project at NASA Ames Research Center are the application of commercial client/server network computing solutions to crew support and payload operations, the analysis of requirements for portable computing devices, and testing of wireless data communication links as extensions to the wired network. This paper will present computer architectural solutions to portable workstation design including the use of standard interfaces, advanced flat-panel displays and network configurations incorporating both wired and wireless transmission media. It will describe the design tradeoffs used in selecting high-performance processors and memories, interfaces for communication and peripheral control, and high resolution displays. The packaging issues for safe and reliable operation aboard spacecraft and aircraft are presented. The current status of wireless data links for portable computers is discussed from a system design perspective. An end-to-end data flow model for payload science operations from the experiment flight rack to the principal investigator is analyzed using capabilities provided by the new generation of computer products. A future flight experiment on-board the Russian MIR space station will be described in detail including system configuration and function, the characteristics of the spacecraft operating environment, the flight qualification measures needed for safety review, and the specifications of the computing devices to be used in the experiment. The software architecture chosen shall be presented. An analysis of the performance characteristics of wireless data links in the spacecraft environment will be discussed. Network performance and operation will be modeled and preliminary test results presented. A crew support application will be demonstrated in conjunction with the network metrics experiment.
Mupparapu, Muralidhar
2007-06-01
Although it sounds like a nonvital tooth, Bluetooth is actually one of technology's hottest trends. It is an industrial specification for wireless personal area networks, but for a busy orthodontic practice, it translates to freedom from cables and cords. Despite its enigmatic name, Bluetooth-based devices and the wireless technology that these gadgets work with are here to stay. They promise to make life easier for the electronic-device users of all stripes, and orthodontists are no exception. The purpose of this article is to orient orthodontists, office staff, and auxiliary personnel to this universal wireless technology that is slowly becoming an integral part of every office.
A Sensible Approach to Wireless Networking.
ERIC Educational Resources Information Center
Ahmed, S. Faruq
2002-01-01
Discusses radio frequency (R.F.) wireless technology, including industry standards, range (coverage) and throughput (data rate), wireless compared to wired networks, and considerations before embarking on a large-scale wireless project. (EV)
NASA Astrophysics Data System (ADS)
Moghaddam, M.; Silva, A. R. D.; Akbar, R.; Clewley, D.
2015-12-01
The Soil moisture Sensing Controller And oPtimal Estimator (SoilSCAPE) wireless sensor network has been developed to support Calibration and Validation activities (Cal/Val) for large scale soil moisture remote sensing missions (SMAP and AirMOSS). The technology developed here also readily supports small scale hydrological studies by providing sub-kilometer widespread soil moisture observations. An extensive collection of semi-sparse sensor clusters deployed throughout north-central California and southern Arizona provide near real time soil moisture measurements. Such a wireless network architecture, compared to conventional single points measurement profiles, allows for significant and expanded soil moisture sampling. The work presented here aims at discussing and highlighting novel and new technology developments which increase in situ soil moisture measurements' accuracy, reliability, and robustness with reduced data delivery latency. High efficiency and low maintenance custom hardware have been developed and in-field performance has been demonstrated for a period of three years. The SoilSCAPE technology incorporates (a) intelligent sensing to prevent erroneous measurement reporting, (b) on-board short term memory for data redundancy, (c) adaptive scheduling and sampling capabilities to enhance energy efficiency. A rapid streamlined data delivery architecture openly provides distribution of in situ measurements to SMAP and AirMOSS cal/val activities and other interested parties.
75 FR 19340 - Wireless Technologies, Devices, and Services
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-14
... Technologies, Devices, and Services AGENCY: Federal Communications Commission. ACTION: Proposed rule. SUMMARY... technologies, devices, and services. Specifically, the Commission seeks comment regarding particular changes to... concise rules that facilitate new wireless technologies, devices and services, and are easy for the public...
Are Wireless Networks the Wave of the Future?
ERIC Educational Resources Information Center
Young, Jeffrey R.
1999-01-01
Some college administrators feel the next major trend in educational technology will be wireless networks that let students and professors connect to the Internet with radio waves rather than cumbersome cables. Several universities are already using the less expensive technology. However, some find the slower speed of available wireless services…
ERIC Educational Resources Information Center
Milner, Jacob
2005-01-01
In districts big and small across the U.S., students, teachers, and administrators alike have come to appreciate the benefits of wireless technology. Because the technology delivers Internet signals on airborne radio frequencies, wireless networking allows users of all portable devices to move freely on a school's campus and stay connected to the…
Wireless local area network security.
Bergeron, Bryan P
2004-01-01
Wireless local area networks (WLANs) are increasingly popular in clinical settings because they facilitate the use of wireless PDAs, laptops, and other pervasive computing devices at the point of care. However, because of the relative immaturity of wireless network technology and evolving standards, WLANs, if improperly configured, can present significant security risks. Understanding the security limitations of the technology and available fixes can help minimize the risks of clinical data loss and maintain compliance with HIPAA guidelines.
Are You Ready for Mobile Learning?
ERIC Educational Resources Information Center
Corbeil, Joseph Rene; Valdes-Corbeil, Maria Elena
2007-01-01
Mobile learning is defined as the intersection of mobile computing (the application of small, portable, and wireless computing and communication devices) and e-learning (learning facilitated and supported through the use of information and communications technology). Consequently, it comes as no surprise that sooner or later people would begin to…
Criteria, Strategies and Research Issues of Context-Aware Ubiquitous Learning
ERIC Educational Resources Information Center
Hwang, Gwo-Jen; Tsai, Chin-Chung; Yang, Stephen J. H.
2008-01-01
Recent progress in wireless and sensor technologies has lead to a new development of learning environments, called context-aware ubiquitous learning environment, which is able to sense the situation of learners and provide adaptive supports. Many researchers have been investigating the development of such new learning environments; nevertheless,…
A Framework for a WAP-Based Course Registration System
ERIC Educational Resources Information Center
AL-Bastaki, Yousif; Al-Ajeeli, Abid
2005-01-01
This paper describes a WAP-based course registration system designed and implemented to facilitating the process of students' registration at Bahrain University. The framework will support many opportunities for applying WAP based technology to many services such as wireless commerce, cashless payment... and location-based services. The paper…
Secure Data Aggregation with Fully Homomorphic Encryption in Large-Scale Wireless Sensor Networks
Li, Xing; Chen, Dexin; Li, Chunyan; Wang, Liangmin
2015-01-01
With the rapid development of wireless communication technology, sensor technology, information acquisition and processing technology, sensor networks will finally have a deep influence on all aspects of people’s lives. The battery resources of sensor nodes should be managed efficiently in order to prolong network lifetime in large-scale wireless sensor networks (LWSNs). Data aggregation represents an important method to remove redundancy as well as unnecessary data transmission and hence cut down the energy used in communication. As sensor nodes are deployed in hostile environments, the security of the sensitive information such as confidentiality and integrity should be considered. This paper proposes Fully homomorphic Encryption based Secure data Aggregation (FESA) in LWSNs which can protect end-to-end data confidentiality and support arbitrary aggregation operations over encrypted data. In addition, by utilizing message authentication codes (MACs), this scheme can also verify data integrity during data aggregation and forwarding processes so that false data can be detected as early as possible. Although the FHE increase the computation overhead due to its large public key size, simulation results show that it is implementable in LWSNs and performs well. Compared with other protocols, the transmitted data and network overhead are reduced in our scheme. PMID:26151208
Hernández Díaz, Vicente; Martínez, José-Fernán; Lucas Martínez, Néstor; del Toro, Raúl M
2015-09-18
The solutions to cope with new challenges that societies have to face nowadays involve providing smarter daily systems. To achieve this, technology has to evolve and leverage physical systems automatic interactions, with less human intervention. Technological paradigms like Internet of Things (IoT) and Cyber-Physical Systems (CPS) are providing reference models, architectures, approaches and tools that are to support cross-domain solutions. Thus, CPS based solutions will be applied in different application domains like e-Health, Smart Grid, Smart Transportation and so on, to assure the expected response from a complex system that relies on the smooth interaction and cooperation of diverse networked physical systems. The Wireless Sensors Networks (WSN) are a well-known wireless technology that are part of large CPS. The WSN aims at monitoring a physical system, object, (e.g., the environmental condition of a cargo container), and relaying data to the targeted processing element. The WSN communication reliability, as well as a restrained energy consumption, are expected features in a WSN. This paper shows the results obtained in a real WSN deployment, based on SunSPOT nodes, which carries out a fuzzy based control strategy to improve energy consumption while keeping communication reliability and computational resources usage among boundaries.
Hernández Díaz, Vicente; Martínez, José-Fernán; Lucas Martínez, Néstor; del Toro, Raúl M.
2015-01-01
The solutions to cope with new challenges that societies have to face nowadays involve providing smarter daily systems. To achieve this, technology has to evolve and leverage physical systems automatic interactions, with less human intervention. Technological paradigms like Internet of Things (IoT) and Cyber-Physical Systems (CPS) are providing reference models, architectures, approaches and tools that are to support cross-domain solutions. Thus, CPS based solutions will be applied in different application domains like e-Health, Smart Grid, Smart Transportation and so on, to assure the expected response from a complex system that relies on the smooth interaction and cooperation of diverse networked physical systems. The Wireless Sensors Networks (WSN) are a well-known wireless technology that are part of large CPS. The WSN aims at monitoring a physical system, object, (e.g., the environmental condition of a cargo container), and relaying data to the targeted processing element. The WSN communication reliability, as well as a restrained energy consumption, are expected features in a WSN. This paper shows the results obtained in a real WSN deployment, based on SunSPOT nodes, which carries out a fuzzy based control strategy to improve energy consumption while keeping communication reliability and computational resources usage among boundaries. PMID:26393612
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-18
... DEPARTMENT OF JUSTICE Antitrust Division Notice Pursuant to the National Cooperative Research and Production Act of 1993--Wireless Industrial Technology Konsortium Inc. Notice is hereby given that, on..., 15 U.S.C. 4301 et seq. (``the Act''), Wireless Industrial Technology Konsortium Inc. (``WITEK'') has...
Wireless Sensor Needs Defined by SBIR Topics
NASA Technical Reports Server (NTRS)
Studor, George F.
2010-01-01
This slide presentation reviews the needs for wireless sensor technology from various U.S. government agencies as exhibited by an analysis of Small Business Innovation Research (SBIR) solicitations. It would appear that a multi-agency group looking at overlapping wireless sensor needs and technology projects is desired. Included in this presentation is a review of the NASA SBIR process, and an examination of some of the SBIR projects from NASA, and other agencies that involve wireless sensor development
Body Area Network BAN--a key infrastructure element for patient-centered medical applications.
Schmidt, Robert; Norgall, Thomas; Mörsdorf, Joachim; Bernhard, Josef; von der Grün, Thomas
2002-01-01
The Body Area Network (BAN) concept enables wireless communication between several miniaturized, intelligent Body Sensor (or actor) Units (BSU) and a single Body Central Unit (BCU) worn at the human body. A separate wireless transmission link from the BCU to a network access point--using different technology--provides for online access to BAN data via usual network infrastructure. BAN is expected to become a basic infrastructure element for service-based electronic health assistance: By integrating patient-attached sensors and control of mobile dedicated actor units, the range of medical workflow can be extended by wireless patient monitoring and therapy support. Beyond clinical use, professional disease management environments, and private personal health assistance scenarios (without financial reimbursement by health agencies/insurance companies), BAN enables a wide range of health care applications and related services.
Power generation technology options for a Mars mission
NASA Technical Reports Server (NTRS)
Bozek, John M.; Cataldo, Robert L.
1994-01-01
The power requirements and resultant power system performances of an aggressive Mars mission are characterized. The power system technologies discussed will support both cargo and piloted space transport vehicles as well as a six-person crew on the Martian surface for 600 days. The mission uses materials transported by cargo vehicles and materials produced using in-situ planetary feed stock to establish a life-support cache and infrastructure for the follow-on piloted lander. Numerous power system technical options are sized to meet the mission power requirements using conventional and solar, nuclear, and wireless power transmission technologies for stationary, mobile surface, and space applications. Technology selections will depend on key criteria such as mass, volume, area, maturity, and application flexibility.
Capacity Limit, Link Scheduling and Power Control in Wireless Networks
ERIC Educational Resources Information Center
Zhou, Shan
2013-01-01
The rapid advancement of wireless technology has instigated the broad deployment of wireless networks. Different types of networks have been developed, including wireless sensor networks, mobile ad hoc networks, wireless local area networks, and cellular networks. These networks have different structures and applications, and require different…
Applying Wireless Information Technology in Field Trips--A Hong Kong Experience
ERIC Educational Resources Information Center
So, Koon Keung Teddy
2004-01-01
In 2002, the Honk Kong government launched a pilot scheme "e-school bag" promoting the use of wireless technology in ten primary and ten secondary schools for classroom teaching and learning. In 2003, a secondary school successfully received a grant from the Quality Education Fund (QEF) to implement a wireless network for outdoor field…
Initial animal studies of a wireless, batteryless, MEMS implant for cardiovascular applications.
Najafi, Nader; Ludomirsky, Achiau
2004-03-01
This paper reports the results of the initial animal studies of a wireless, batteryless, implantable pressure sensor using microelectromechanical systems (MEMS) technology. The animal studies were acute and proved the functional feasibility of using MEMS technology for wireless bio sensing. The results are very encouraging and surpassed the majority of the application's requirements, including high sampling speed and high resolution. Based on the lessons learned, second generation wireless sensors are being developed that will provide total system solution.
Design and Analysis of Secure Routing Protocol for Wireless Sensor Networks
NASA Astrophysics Data System (ADS)
Wang, Jiong; Zhang, Hua
2017-09-01
In recent years, with the development of science and technology and the progress of the times, China's wireless network technology has become increasingly prosperous and it plays an important role in social production and life. In this context, in order to further to enhance the stability of wireless network data transmission and security enhancements, the staff need to focus on routing security and carry out related work. Based on this, this paper analyzes the design of wireless sensor based on secure routing protocol.
Aghdasi, Hadi S; Abbaspour, Maghsoud; Moghadam, Mohsen Ebrahimi; Samei, Yasaman
2008-08-04
Technological progress in the fields of Micro Electro-Mechanical Systems (MEMS) and wireless communications and also the availability of CMOS cameras, microphones and small-scale array sensors, which may ubiquitously capture multimedia content from the field, have fostered the development of low-cost limited resources Wireless Video-based Sensor Networks (WVSN). With regards to the constraints of videobased sensor nodes and wireless sensor networks, a supporting video stream is not easy to implement with the present sensor network protocols. In this paper, a thorough architecture is presented for video transmission over WVSN called Energy-efficient and high-Quality Video transmission Architecture (EQV-Architecture). This architecture influences three layers of communication protocol stack and considers wireless video sensor nodes constraints like limited process and energy resources while video quality is preserved in the receiver side. Application, transport, and network layers are the layers in which the compression protocol, transport protocol, and routing protocol are proposed respectively, also a dropping scheme is presented in network layer. Simulation results over various environments with dissimilar conditions revealed the effectiveness of the architecture in improving the lifetime of the network as well as preserving the video quality.
New technology continues to invade healthcare. What are the strategic implications/outcomes?
Smith, Coy
2004-01-01
Healthcare technology continues to advance and be implemented in healthcare organizations. Nurse executives must strategically evaluate the effectiveness of each proposed system or device using a strategic planning process. Clinical information systems, computer-chip-based clinical monitoring devices, advanced Web-based applications with remote, wireless communication devices, clinical decision support software--all compete for capital and registered nurse salary dollars. The concept of clinical transformation is developed with new models of care delivery being supported by technology rather than driving care delivery. Senior nursing leadership's role in clinical transformation and healthcare technology implementation is developed. Proposed standards, expert group action, business and consumer groups, and legislation are reviewed as strategic drivers in the development of an electronic health record and healthcare technology. A matrix of advancing technology and strategic decision-making parameters are outlined.
Use of consumer wireless devices by South Africans with severe communication disability
Bryen, Diane Nelson; Moolman, Enid; Morris, John
2016-01-01
Background Advancements in wireless technology (e.g. cell phones and tablets) have opened new communication opportunities and environments for individuals with severe communication disabilities. The advancement of these technologies poses challenges to ensuring that these individuals enjoy equal access to this increasingly essential technology. However, a paucity of research exists. Objectives To describe the nature and frequency with which South African adults with severe communication disabilities have access to and use wireless devices, as well as the types of activities for which wireless devices are used. Method Survey research was conducted with 30 individuals who use augmentative and alternative communication (AAC) technology using the Survey of User Needs Questionnaire developed in the United States, and localized to the South African context. Results All participants, despite their limited education, unemployment and low economic status, owned and/or used mainstream wireless devices. Slightly more than half of the participants (53.3%) needed adaptations to their wireless devices. Advantages of using wireless devices were highlighted, including connecting with others (through using text messaging, social networking, making plans with others, sharing photos and videos with friends), for leisure activities (e.g. listening to music, watching videos, playing games), and for safety purposes (e.g. to navigate when lost, using the device when in trouble and needing immediate assistance). Conclusion These wireless devices offer substantial benefits and opportunities to individuals with disabilities who rely on AAC in terms of independence, social participation, education and safety/security. However, they still do not enjoy equal opportunity to access and use wireless devices relative to the non-disabled population. PMID:28730045
Use of consumer wireless devices by South Africans with severe communication disability.
Bornman, Juan; Bryen, Diane Nelson; Moolman, Enid; Morris, John
2016-01-01
Advancements in wireless technology (e.g. cell phones and tablets) have opened new communication opportunities and environments for individuals with severe communication disabilities. The advancement of these technologies poses challenges to ensuring that these individuals enjoy equal access to this increasingly essential technology. However, a paucity of research exists. To describe the nature and frequency with which South African adults with severe communication disabilities have access to and use wireless devices, as well as the types of activities for which wireless devices are used. Survey research was conducted with 30 individuals who use augmentative and alternative communication (AAC) technology using the Survey of User Needs Questionnaire developed in the United States, and localized to the South African context. All participants, despite their limited education, unemployment and low economic status, owned and/or used mainstream wireless devices. Slightly more than half of the participants (53.3%) needed adaptations to their wireless devices. Advantages of using wireless devices were highlighted, including connecting with others (through using text messaging, social networking, making plans with others, sharing photos and videos with friends), for leisure activities (e.g. listening to music, watching videos, playing games), and for safety purposes (e.g. to navigate when lost, using the device when in trouble and needing immediate assistance). These wireless devices offer substantial benefits and opportunities to individuals with disabilities who rely on AAC in terms of independence, social participation, education and safety/security. However, they still do not enjoy equal opportunity to access and use wireless devices relative to the non-disabled population.
Internet of "printed" Things: low-cost fabrication of autonomous sensing nodes by inkjet printing
NASA Astrophysics Data System (ADS)
Kawahara, Yoshihiro
2014-11-01
"What if electronics devices are printed using an inkjet printer even at home?" "What if those devices no longer need a battery?" I will introduce two enabling technologies for the Internet of Things concept. 1. Instant Inkjet Circuits: A low cost, fast and accessible technology to support the rapid prototyping of electronic devices. We demonstrated that "sintering-free" silver nano particle ink with a commodity inkjet printer can be used to fabricate printed circuit board and high-frequency applications such as antennas and sensors. The technology is now commercialized by AgIC, Inc. 2. Wireless Power: Although large amounts of data can be exchanged over a wireless communication link, mobile devices are still tethered by power cables. We are trying to solve this problem by two different approaches: energy harvesting. A simple circuitry comprised of diodes and capacitor can convert ambient radio signals into DC current. Our research revealed the signals from TV tower located 6.5km apart could be used to feed 100 microwatts to power microcontrollers.
Personalized Intelligent Mobile Learning System for Supporting Effective English Learning
ERIC Educational Resources Information Center
Chen, Chih-Ming; Hsu, Shih-Hsun
2008-01-01
Since English has been an international language, how to enhance English levels of people by useful computer assisted learning forms or tools is a critical issue in non-English speaking countries because it definitely affects the overall competition ability of a country. With the rapid growth of wireless and mobile technologies, the mobile…
ERIC Educational Resources Information Center
Hwang, Gwo-Jen; Wu, Po-Han; Ke, Hui-Ru
2011-01-01
Mobile and wireless communication technologies not only enable anytime and anywhere learning, but also provide the opportunity to develop learning environments that combine real-world and digital-world resources. Nevertheless, researchers have indicated that, without effective tools for helping students organize their observations in the field,…
Support to a Wireless Power System Design
2011-12-01
refractive index which is the cause of turbulence. Turbulence effects can also have a serious impact on laser power beaming tests. The blooming effects...is mounted beside it. This aiming laser is a Hercules 375 CW laser made by Laserglow Technologies, 5 Adrian Avenue, Toronto, ON, M6N 5G4, Canada. Its
Challenges for Wireless Mesh Networks to provide reliable carrier-grade services
NASA Astrophysics Data System (ADS)
von Hugo, D.; Bayer, N.
2011-08-01
Provision of mobile and wireless services today within a competitive environment and driven by a huge amount of steadily emerging new services and applications is both challenge and chance for radio network operators. Deployment and operation of an infrastructure for mobile and wireless broadband connectivity generally requires planning effort and large investments. A promising approach to reduce expenses for radio access networking is offered by Wireless Mesh Networks (WMNs). Here traditional dedicated backhaul connections to each access point are replaced by wireless multi-hop links between neighbouring access nodes and few gateways to the backbone employing standard radio technology. Such a solution provides at the same time high flexibility in both deployment and the amount of offered capacity and shall reduce overall expenses. On the other hand currently available mesh solutions do not provide carrier grade service quality and reliability and often fail to cope with high traffic load. EU project CARMEN (CARrier grade MEsh Networks) was initiated to incorporate different heterogeneous technologies and new protocols to allow for reliable transmission over "best effort" radio channels, to support a reliable mobility and network management, self-configuration and dynamic resource usage, and thus to offer a permanent or temporary broadband access at high cost efficiency. The contribution provides an overview on preliminary project results with focus on main technical challenges from a research and implementation point of view. Especially impact of mesh topology on the overall system performance in terms of throughput and connection reliability and aspects of a dedicated hybrid mobility management solution will be discussed.
The impact of using electronic patient records on practices of reading and writing.
Laitinen, Heleena; Kaunonen, Marja; Åstedt-Kurki, Paivi
2014-12-01
The aim of this study was to investigate the use of electronic patient records in daily practice. In four wards of a large hospital district in Finland, N = 43 patients' care and activities were observed and analysed in terms of the Grounded Theory method. The findings revealed that using electronic patient records created a particular process of writing and reading. Wireless technology enabled simultaneous patient involvement and point-of-care documentation, additionally supporting real-time reading. Remote and retrospective documentation was distant in terms of both space and time. The remoteness caused double documentation, reduced accuracy and less-efficient use of time. 'Non-reading' practices were witnessed in retrospective reading, causing delays in patient care and increase in workload. Similarly, if documentation was insufficient or non-existent, the consequences were found to be detrimental to the patients. The use of an electronic patient record system has a significant impact on patient care. Therefore, it is crucial to develop wireless technology and interdisciplinary collaboration in order to improve and support high-quality patient care. © The Author(s) 2013.
UAV telemetry communications using ZigBee protocol
NASA Astrophysics Data System (ADS)
Nasution, T. H.; Siregar, I.; Yasir, M.
2017-10-01
Wireless communication has been widely used in various fields or disciplines such as agriculture, health, engineering, military, and aerospace so as to support the work in that field. The communication technology is typically used for controlling devices and data monitoring. One development of wireless communication is the widely used telemetry system used to reach areas that cannot be reached by humans using UAV (Unmanned Aerial Vehicle) or unmanned aircraft. In this paper we discuss the design of telemetry system in UAV using ZigBee protocol. From the test obtained the system can work well with visualization displays without pause is 20 data per second with a maximum data length of 120 characters.
ERIC Educational Resources Information Center
Dominick, Jay
2000-01-01
Discussion of wireless technology focuses on whether there is enough value in a wireless infrastructure for schools to justify the cost. Considers issues campuses must face, including access to the Internet, telecommunications, and networking; explains technical details; and describes wireless initiatives at Wake Forest University. (LRW)
Next-generation optical wireless communications for data centers
NASA Astrophysics Data System (ADS)
Arnon, Shlomi
2015-01-01
Data centers collect and process information with a capacity that has been increasing from year to year at an almost exponential pace. Traditional fiber/cable data center network interconnections suffer from bandwidth overload, as well as flexibility and scalability issues. Therefore, a technology-shift from the fiber and cable to wireless has already been initiated in order to meet the required data-rate, flexibility and scalability demands for next-generation data center network interconnects. In addition, the shift to wireless reduces the volume allocated to the cabling/fiber and increases the cooling efficiency. Optical wireless communication (OWC), or free space optics (FSO), is one of the most effective wireless technologies that could be used in future data centers and could provide ultra-high capacity, very high cyber security and minimum latency, due to the low index of refraction of air in comparison to fiber technologies. In this paper we review the main concepts and configurations for next generation OWC for data centers. Two families of technologies are reviewed: the first technology regards interconnects between rack units in the same rack and the second technology regards the data center network that connects the server top of rack (TOR) to the switch. A comparison between different network technologies is presented.
Design of on-board Bluetooth wireless network system based on fault-tolerant technology
NASA Astrophysics Data System (ADS)
You, Zheng; Zhang, Xiangqi; Yu, Shijie; Tian, Hexiang
2007-11-01
In this paper, the Bluetooth wireless data transmission technology is applied in on-board computer system, to realize wireless data transmission between peripherals of the micro-satellite integrating electronic system, and in view of the high demand of reliability of a micro-satellite, a design of Bluetooth wireless network based on fault-tolerant technology is introduced. The reliability of two fault-tolerant systems is estimated firstly using Markov model, then the structural design of this fault-tolerant system is introduced; several protocols are established to make the system operate correctly, some related problems are listed and analyzed, with emphasis on Fault Auto-diagnosis System, Active-standby switch design and Data-Integrity process.
NASA Astrophysics Data System (ADS)
Mao, F.; Hannah, D. M.; Krause, S.; Clark, J.; Buytaert, W.; Ochoa-Tocachi, B. F.
2017-12-01
There have been a growing number of studies using low-cost wireless sensor networks (LCWSNs) in hydrology and water resources fields. By reviewing the development of sensing and wireless communication technologies, as well as the recent relevant projects and applications, we observe that the challenges in applying LCWSNs have been moving beyond technical aspects. The large pool of available low-cost network modules, such as Arduino, Raspberry Pi, Xbee and inexpensive sensors, enable us to assemble networks rather than building them from scratch. With a wide variety of costs, functions and features, these modules support customisation of hydrological monitoring network for different user groups and purposes. Therefore, more attentions are needed to be placed on how to better design tailored LCWSNs with current technologies that create more added value for users. To address this challenge, this research proposes a tool-box for what we term `purpose-oriented' LCWSN. We identify the main LCWSN application scenarios from literature, and compare them from three perspectives including (1) the major stakeholders in each scenario, (2) the purposes for stakeholders, and (3) the network technologies and settings that meet the purposes. Notably, this innovative approach designs LCWSNs for different scenarios with considerations of not only technologies, but also stakeholders and purposes that are related to the usability, maintenance and social sustainability of networks. We conclude that this new, purpose-orientated approach can further release the potential of hydrological and water resources LCWSNs to maximise benefits for users and wider society.
NASA Astrophysics Data System (ADS)
Krejcar, Ondrej
New kind of mobile lightweight devices can run full scale applications with same comfort as on desktop devices only with several limitations. One of them is insufficient transfer speed on wireless connectivity. Main area of interest is in a model of a radio-frequency based system enhancement for locating and tracking users of a mobile information system. The experimental framework prototype uses a wireless network infrastructure to let a mobile lightweight device determine its indoor or outdoor position. User location is used for data prebuffering and pushing information from server to user’s PDA. All server data is saved as artifacts along with its position information in building or larger area environment. The accessing of prebuffered data on mobile lightweight device can highly improve response time needed to view large multimedia data. This fact can help with design of new full scale applications for mobile lightweight devices.
Ibrahim, Iman; Parsa, Vijay; Macpherson, Ewan; Cheesman, Margaret
2013-01-02
Wireless synchronization of the digital signal processing (DSP) features between two hearing aids in a bilateral hearing aid fitting is a fairly new technology. This technology is expected to preserve the differences in time and intensity between the two ears by co-ordinating the bilateral DSP features such as multichannel compression, noise reduction, and adaptive directionality. The purpose of this study was to evaluate the benefits of wireless communication as implemented in two commercially available hearing aids. More specifically, this study measured speech intelligibility and sound localization abilities of normal hearing and hearing impaired listeners using bilateral hearing aids with wireless synchronization of multichannel Wide Dynamic Range Compression (WDRC). Twenty subjects participated; 8 had normal hearing and 12 had bilaterally symmetrical sensorineural hearing loss. Each individual completed the Hearing in Noise Test (HINT) and a sound localization test with two types of stimuli. No specific benefit from wireless WDRC synchronization was observed for the HINT; however, hearing impaired listeners had better localization with the wireless synchronization. Binaural wireless technology in hearing aids may improve localization abilities although the possible effect appears to be small at the initial fitting. With adaptation, the hearing aids with synchronized signal processing may lead to an improvement in localization and speech intelligibility. Further research is required to demonstrate the effect of adaptation to the hearing aids with synchronized signal processing on different aspects of auditory performance.
ERIC Educational Resources Information Center
Feld, Harold
2005-01-01
With increasing frequency, communities are seeing the arrival of a new class of noncommercial broadband providers: community wireless networks (CWNs). Utilizing the same wireless technologies that many colleges and universities have used to create wireless networks on campus, CWNs are creating broadband access for free or at costs well below…
Patient safety with blood products administration using wireless and bar-code technology.
Porcella, Aleta; Walker, Kristy
2005-01-01
Supported by a grant from the Agency for Healthcare Research and Quality, a University of Iowa Hospitals and Clinics interdisciplinary research team created an online data-capture-response tool utilizing wireless mobile devices and bar code technology to track and improve blood products administration process. The tool captures 1) sample collection, 2) sample arrival in the blood bank, 3) blood product dispense from blood bank, and 4) administration. At each step, the scanned patient wristband ID bar code is automatically compared to scanned identification barcode on requisition, sample, and/or product, and the system presents either a confirmation or an error message to the user. Following an eight-month, 5 unit, staged pilot, a 'big bang,' hospital-wide implementation occurred on February 7, 2005. Preliminary results from pilot data indicate that the new barcode process captures errors 3 to 10 times better than the old manual process.
Emerging Communication Technologies (ECT) Phase 3 Final Report
NASA Technical Reports Server (NTRS)
Bastin, Gary L.; Harris, William G.; Bates, Lakesha D.; Nelson, Richard A.
2004-01-01
The Emerging Communication Technology (ECT) project investigated three First Mile communication technologies in support of NASA s Second Generation Reusable Launch Vehicle (2nd Gen RLV), Orbital Space Plane, Advanced Range Technology Working Group (ARTWG) and the Advanced Spaceport Technology Working Group (ASTWG). These First Mile technologies have the purpose of interconnecting mobile users with existing Range Communication infrastructures. ECT was a continuation of the Range Information System Management (RISM) task started in 2002. RISM identified the three advance communication technologies investigated under ECT. These were Wireless Ethernet (Wi-Fi), Free Space Optics (FSO), and Ultra Wideband (UWB). Due to the report s size, it has been broken into three volumes: 1) Main Report 2) Appendices 3) UWB.
Emerging CAE technologies and their role in Future Ambient Intelligence Environments
NASA Astrophysics Data System (ADS)
Noor, Ahmed K.
2011-03-01
Dramatic improvements are on the horizon in Computer Aided Engineering (CAE) and various simulation technologies. The improvements are due, in part, to the developments in a number of leading-edge technologies and their synergistic combinations/convergence. The technologies include ubiquitous, cloud, and petascale computing; ultra high-bandwidth networks, pervasive wireless communication; knowledge based engineering; networked immersive virtual environments and virtual worlds; novel human-computer interfaces; and powerful game engines and facilities. This paper describes the frontiers and emerging simulation technologies, and their role in the future virtual product creation and learning/training environments. The environments will be ambient intelligence environments, incorporating a synergistic combination of novel agent-supported visual simulations (with cognitive learning and understanding abilities); immersive 3D virtual world facilities; development chain management systems and facilities (incorporating a synergistic combination of intelligent engineering and management tools); nontraditional methods; intelligent, multimodal and human-like interfaces; and mobile wireless devices. The Virtual product creation environment will significantly enhance the productivity and will stimulate creativity and innovation in future global virtual collaborative enterprises. The facilities in the learning/training environment will provide timely, engaging, personalized/collaborative and tailored visual learning.
ERIC Educational Resources Information Center
Lee, Lisa
2007-01-01
Many universities in the UK have recently started offering their staff and students free wireless Internet access through Wireless Local Area Network (WLAN) technologies, such as Wi-Fi. Based on a small empirical study of WLAN deployment in a university setting, the article explores adoption processes of the new technology by both the organisation…
Consistent Steering System using SCTP for Bluetooth Scatternet Sensor Network
NASA Astrophysics Data System (ADS)
Dhaya, R.; Sadasivam, V.; Kanthavel, R.
2012-12-01
Wireless communication is the best way to convey information from source to destination with flexibility and mobility and Bluetooth is the wireless technology suitable for short distance. On the other hand a wireless sensor network (WSN) consists of spatially distributed autonomous sensors to cooperatively monitor physical or environmental conditions, such as temperature, sound, vibration, pressure, motion or pollutants. Using Bluetooth piconet wireless technique in sensor nodes creates limitation in network depth and placement. The introduction of Scatternet solves the network restrictions with lack of reliability in data transmission. When the depth of the network increases, it results in more difficulties in routing. No authors so far focused on the reliability factors of Scatternet sensor network's routing. This paper illustrates the proposed system architecture and routing mechanism to increase the reliability. The another objective is to use reliable transport protocol that uses the multi-homing concept and supports multiple streams to prevent head-of-line blocking. The results show that the Scatternet sensor network has lower packet loss even in the congestive environment than the existing system suitable for all surveillance applications.
Theoretical Bound of CRLB for Energy Efficient Technique of RSS-Based Factor Graph Geolocation
NASA Astrophysics Data System (ADS)
Kahar Aziz, Muhammad Reza; Heriansyah; Saputra, EfaMaydhona; Musa, Ardiansyah
2018-03-01
To support the increase of wireless geolocation development as the key of the technology in the future, this paper proposes theoretical bound derivation, i.e., Cramer Rao lower bound (CRLB) for energy efficient of received signal strength (RSS)-based factor graph wireless geolocation technique. The theoretical bound derivation is crucially important to evaluate whether the energy efficient technique of RSS-based factor graph wireless geolocation is effective as well as to open the opportunity to further innovation of the technique. The CRLB is derived in this paper by using the Fisher information matrix (FIM) of the main formula of the RSS-based factor graph geolocation technique, which is lied on the Jacobian matrix. The simulation result shows that the derived CRLB has the highest accuracy as a bound shown by its lowest root mean squared error (RMSE) curve compared to the RMSE curve of the RSS-based factor graph geolocation technique. Hence, the derived CRLB becomes the lower bound for the efficient technique of RSS-based factor graph wireless geolocation.
Integrated wireless systems: The future has arrived (Keynote Address)
NASA Astrophysics Data System (ADS)
Rivoir, Roberto
2005-06-01
It is believed that we are just at the beginning with wireless, and that a new age is dawning for this breakthrough technology. Thanks to several years of industrial manufacturing in mass-market applications such as cellular phones, wireless technology has nowadays reached a level of maturity that, combined with other achievements arising from different fields, such as information technology, artificial intelligence, pervasive computing, science of new materials, and micro-electro-mechanical systems (MEMS), will enable the realization of a networked stream-flow of real-time information, that will accompany us in our daily life, in a total seamless, transparent fashion. As almost any application scenario will require the deployment of complex, miniaturized, almost "invisible" systems, operating with different wireless standards, hard technological challenges will have to be faced for designing and fabricating ultra-low-cost, reconfigurable, and multi-mode heterogeneous smart micro-devices. But ongoing, unending progresses on wireless technology keeps the promise of helping to solve important societal problems in the health-care, safety, security, industry, environment sectors, and in general opening the possibility for an improved quality of life at work, on travel, at home, practically "everywhere, anytime".
A Reliable Wireless Control System for Tomato Hydroponics
Ibayashi, Hirofumi; Kaneda, Yukimasa; Imahara, Jungo; Oishi, Naoki; Kuroda, Masahiro; Mineno, Hiroshi
2016-01-01
Agricultural systems using advanced information and communication (ICT) technology can produce high-quality crops in a stable environment while decreasing the need for manual labor. The system collects a wide variety of environmental data and provides the precise cultivation control needed to produce high value-added crops; however, there are the problems of packet transmission errors in wireless sensor networks or system failure due to having the equipment in a hot and humid environment. In this paper, we propose a reliable wireless control system for hydroponic tomato cultivation using the 400 MHz wireless band and the IEEE 802.15.6 standard. The 400 MHz band, which is lower than the 2.4 GHz band, has good obstacle diffraction, and zero-data-loss communication is realized using the guaranteed time-slot method supported by the IEEE 802.15.6 standard. In addition, this system has fault tolerance and a self-healing function to recover from faults such as packet transmission failures due to deterioration of the wireless communication quality. In our basic experiments, the 400 MHz band wireless communication was not affected by the plants’ growth, and the packet error rate was less than that of the 2.4 GHz band. In summary, we achieved a real-time hydroponic liquid supply control with no data loss by applying a 400 MHz band WSN to hydroponic tomato cultivation. PMID:27164105
A Reliable Wireless Control System for Tomato Hydroponics.
Ibayashi, Hirofumi; Kaneda, Yukimasa; Imahara, Jungo; Oishi, Naoki; Kuroda, Masahiro; Mineno, Hiroshi
2016-05-05
Agricultural systems using advanced information and communication (ICT) technology can produce high-quality crops in a stable environment while decreasing the need for manual labor. The system collects a wide variety of environmental data and provides the precise cultivation control needed to produce high value-added crops; however, there are the problems of packet transmission errors in wireless sensor networks or system failure due to having the equipment in a hot and humid environment. In this paper, we propose a reliable wireless control system for hydroponic tomato cultivation using the 400 MHz wireless band and the IEEE 802.15.6 standard. The 400 MHz band, which is lower than the 2.4 GHz band, has good obstacle diffraction, and zero-data-loss communication is realized using the guaranteed time-slot method supported by the IEEE 802.15.6 standard. In addition, this system has fault tolerance and a self-healing function to recover from faults such as packet transmission failures due to deterioration of the wireless communication quality. In our basic experiments, the 400 MHz band wireless communication was not affected by the plants' growth, and the packet error rate was less than that of the 2.4 GHz band. In summary, we achieved a real-time hydroponic liquid supply control with no data loss by applying a 400 MHz band WSN to hydroponic tomato cultivation.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-14
..., including selection of wireless technology, quality of service, coexistence, security, and electromagnetic... is an increasing concern because the electromagnetic environments where medical devices are used...
Development of a Ubiquitous Learning Platform Based on a Real-Time Help-Seeking Mechanism
ERIC Educational Resources Information Center
Hwang, Gwo-Jen; Wu, Chih-Hsiang; Tseng, Judy C. R.; Huang, Iwen
2011-01-01
The popularity of mobile devices has encouraged the advance of ubiquitous learning, in which students are situated in a real-world learning environment with support from the digital world via the use of mobile, wireless communications, or even sensing technologies. Most of the ubiquitous learning systems are implemented with high-cost sensing…
A Context-Aware Knowledge Map to Support Ubiquitous Learning Activities for a u-Botanical Museum
ERIC Educational Resources Information Center
Wang, Shu-Lin; Chen, Chia-Chen; Zhang, Zhe George
2015-01-01
Recent developments in mobile and wireless communication technologies have played a vital role in building the u-learning environment that now combines both real-world and digital learning resources. However, learners still require assistance to control real objects and manage the abundance of available materials; otherwise, their mental workload…
ERIC Educational Resources Information Center
Khemaja, Maha; Taamallah, Aroua
2016-01-01
Current advances in portable devices and wireless technologies had drastically impacted mobile and pervasive computing development and use. Nowadays, mobile and or pervasive applications, are increasingly being used to support users' everyday activities. These apps either distributed or standalone are characterized by the variability of the…
Wireless Technology in the Library: The RIT Experience: Overview of the Project.
ERIC Educational Resources Information Center
Pitkin, Pat
2001-01-01
Provides an overview of a project at RIT (Rochester Institute of Technology) that experimented with wireless technology, including laptop computers that circulate within the library building. Discusses project requirements, including ease of use, low maintenance, and low cost; motivation, including mobility; implementation; and benefits to the…
NASA Fuel Tank Wireless Power and Signal Study
NASA Technical Reports Server (NTRS)
Merrill, Garrick
2015-01-01
Hydro Technologies has developed a custom electronics and mechanical framework for interfacing with off-the-shelf sensors to achieve through barrier sensing solutions. The core project technology relies on Hydro Technologies Wireless Power and Signal Interface (Wi psi) System for transmitting data and power wirelessly using magnetic fields. To accomplish this, Wi psi uses a multi-frequency local magnetic field to produce magnetic fields capable of carrying data and power through almost any material such as metals, seawater, concrete, and air. It will also work through layers of multiple materials.
Using technology to improve and support communication and workflow processes.
Bahlman, Deborah Tuke; Johnson, Fay C
2005-07-01
In conjunction with a large expansion project, a team of perioperative staff members reviewed their workflow processes and designed their ideal patient tracking and communication system. Technologies selected and deployed included a passive infrared tracking system, an enhanced nurse call system, wireless telephones, and a web-based electronic grease board. The new system provides staff members with an easy way to obtain critical pieces of patient information, as well as track the progress of patients and locate equipment.
The pedagogy of Momus technologies: Facebook, privacy, and online intimacy.
van Manen, Max
2010-08-01
Through cable and wireless connections at home and at work, through Wi-Fi networks and wireless spots in hotels, coffee shops, and town squares, we are indeed connected to each other. But what is the phenomenology of this connection? Technologies of expression such as Facebook, MySpace, Twitter, and other social networking technologies increasingly become like Momus windows of Greek mythology, revealing one's innermost thoughts for all to see. They give access to what used to be personal, secret, and hidden in the lives of its users, especially the young. In this article I explore the pedagogy of Momus effects of social networking technologies in the way they may alter young people's experience of privacy, secrecy, solitude, and intimacy. In addition, I examine the forms of contact afforded by instant messaging and texting on wireless mobile technologies such as the cell phone (and its wireless hybrids) for the way young people are and stay in touch with each other, and how intimacies and inner lives are attended to.
User Needs and Advances in Space Wireless Sensing and Communications
NASA Technical Reports Server (NTRS)
Kegege, Obadiah
2017-01-01
Decades of space exploration and technology trends for future missions show the need for new approaches in space/planetary sensor networks, observatories, internetworking, and communications/data delivery to Earth. The User Needs to be discussed in this talk includes interviews with several scientists and reviews of mission concepts for the next generation of sensors, observatories, and planetary surface missions. These observatories, sensors are envisioned to operate in extreme environments, with advanced autonomy, whereby sometimes communication to Earth is intermittent and delayed. These sensor nodes require software defined networking capabilities in order to learn and adapt to the environment, collect science data, internetwork, and communicate. Also, some user cases require the level of intelligence to manage network functions (either as a host), mobility, security, and interface data to the physical radio/optical layer. For instance, on a planetary surface, autonomous sensor nodes would create their own ad-hoc network, with some nodes handling communication capabilities between the wireless sensor networks and orbiting relay satellites. A section of this talk will cover the advances in space communication and internetworking to support future space missions. NASA's Space Communications and Navigation (SCaN) program continues to evolve with the development of optical communication, a new vision of the integrated network architecture with more capabilities, and the adoption of CCSDS space internetworking protocols. Advances in wireless communications hardware and electronics have enabled software defined networking (DVB-S2, VCM, ACM, DTN, Ad hoc, etc.) protocols for improved wireless communication and network management. Developing technologies to fulfil these user needs for wireless communications and adoption of standardized communication/internetworking protocols will be a huge benefit to future planetary missions, space observatories, and manned missions to other planets.
Developing novel 3D antennas using advanced additive manufacturing technology
NASA Astrophysics Data System (ADS)
Mirzaee, Milad
In today's world of wireless communication systems, antenna engineering is rapidly advancing as the wireless services continue to expand in support of emerging commercial applications. Antennas play a key role in the performance of advanced transceiver systems where they serve to convert electric power to electromagnetic waves and vice versa. Researchers have held significant interest in developing this crucial component for wireless communication systems by employing a variety of design techniques. In the past few years, demands for electrically small antennas continues to increase, particularly among portable and mobile wireless devices, medical electronics and aerospace systems. This trend toward smaller electronic devices makes the three dimensional (3D) antennas very appealing, since they can be designed in a way to use every available space inside the devise. Additive Manufacturing (AM) method could help to find great solutions for the antennas design for next generation of wireless communication systems. In this thesis, the design and fabrication of 3D printed antennas using AM technology is studied. To demonstrate this application of AM, different types of antennas structures have been designed and fabricated using various manufacturing processes. This thesis studies, for the first time, embedded conductive 3D printed antennas using PolyLactic Acid (PLA) and Acrylonitrile Butadiene Styrene (ABS) for substrate parts and high temperature carbon paste for conductive parts which can be a good candidate to overcome the limitations of direct printing on 3D surfaces that is the most popular method to fabricate conductive parts of the antennas. This thesis also studies, for the first time, the fabrication of antennas with 3D printed conductive parts which can contribute to the new generation of 3D printed antennas.
Wireless Sensor Network With Geolocation
2006-11-01
WIRELESS SENSOR NETWORK WITH GEOLOCATION James Silverstrim and Roderick Passmore Innovative Wireless Technologies Forest, VA 24551 Dr...TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE Wireless Sensor Network With Geolocation 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM...Locationing in distributed ad-hoc wireless sensor networks ”, IEEE ICASSP, May 2001. D. W. Hanson, Fundamentals of Two-Way Time Transfer by Satellite
Li, Limin; Xu, Yubin; Soong, Boon-Hee; Ma, Lin
2013-01-01
Vehicular communication platforms that provide real-time access to wireless networks have drawn more and more attention in recent years. IEEE 802.11p is the main radio access technology that supports communication for high mobility terminals, however, due to its limited coverage, IEEE 802.11p is usually deployed by coupling with cellular networks to achieve seamless mobility. In a heterogeneous cellular/802.11p network, vehicular communication is characterized by its short time span in association with a wireless local area network (WLAN). Moreover, for the media access control (MAC) scheme used for WLAN, the network throughput dramatically decreases with increasing user quantity. In response to these compelling problems, we propose a reinforcement sensor (RFS) embedded vertical handoff control strategy to support mobility management. The RFS has online learning capability and can provide optimal handoff decisions in an adaptive fashion without prior knowledge. The algorithm integrates considerations including vehicular mobility, traffic load, handoff latency, and network status. Simulation results verify that the proposed algorithm can adaptively adjust the handoff strategy, allowing users to stay connected to the best network. Furthermore, the algorithm can ensure that RSUs are adequate, thereby guaranteeing a high quality user experience. PMID:24193101
Emerging Communication Technologies (ECT) Phase 2 Report. Volume 3; Ultra Wideband (UWB) Technology
NASA Technical Reports Server (NTRS)
Bastin, Gary L.; Harris, William G.; Chiodini, Robert; Nelson, Richard A.; Huang, PoTien; Kruhm, David A.
2003-01-01
The Emerging Communication Technology (ECT) project investigated three First Mile communication technologies in support of NASA s Second Generation Reusable Launch Vehicle (2nd Gen RLV), Orbital Space Plane, Advanced Range Technology Working Group (ARTWG) and the Advanced Spaceport Technology Working Group (ASTWG). These First Mile technologies have the purpose of interconnecting mobile users with existing Range Communication infrastructures. ECT was a continuation of the Range Information System Management (RISM) task started in 2002. RISM identified the three advance communication technologies investigated under ECT. These were Wireless Ethernet (Wi-Fi), Free Space Optics (FSO), and Ultra Wideband (UWB). Due to the report s size, it has been broken into three volumes: 1) Main Report 2) Appendices 3) UWB
Ibrahim, Iman; Parsa, Vijay; Macpherson, Ewan; Cheesman, Margaret
2012-01-01
Wireless synchronization of the digital signal processing (DSP) features between two hearing aids in a bilateral hearing aid fitting is a fairly new technology. This technology is expected to preserve the differences in time and intensity between the two ears by co-ordinating the bilateral DSP features such as multichannel compression, noise reduction, and adaptive directionality. The purpose of this study was to evaluate the benefits of wireless communication as implemented in two commercially available hearing aids. More specifically, this study measured speech intelligibility and sound localization abilities of normal hearing and hearing impaired listeners using bilateral hearing aids with wireless synchronization of multichannel Wide Dynamic Range Compression (WDRC). Twenty subjects participated; 8 had normal hearing and 12 had bilaterally symmetrical sensorineural hearing loss. Each individual completed the Hearing in Noise Test (HINT) and a sound localization test with two types of stimuli. No specific benefit from wireless WDRC synchronization was observed for the HINT; however, hearing impaired listeners had better localization with the wireless synchronization. Binaural wireless technology in hearing aids may improve localization abilities although the possible effect appears to be small at the initial fitting. With adaptation, the hearing aids with synchronized signal processing may lead to an improvement in localization and speech intelligibility. Further research is required to demonstrate the effect of adaptation to the hearing aids with synchronized signal processing on different aspects of auditory performance. PMID:26557339
Wireless networking for the dental office: current wireless standards and security protocols.
Mupparapu, Muralidhar; Arora, Sarika
2004-11-15
Digital radiography has gained immense popularity in dentistry today in spite of the early difficulty for the profession to embrace the technology. The transition from film to digital has been happening at a faster pace in the fields of Orthodontics, Oral Surgery, Endodontics, Periodontics, and other specialties where the radiographic images (periapical, bitewing, panoramic, cephalometric, and skull radiographs) are being acquired digitally, stored within a server locally, and eventually accessed for diagnostic purposes, along with the rest of the patient data via the patient management software (PMS). A review of the literature shows the diagnostic performance of digital radiography is at least comparable to or even better than that of conventional radiography. Similarly, other digital diagnostic tools like caries detectors, cephalometric analysis software, and digital scanners were used for many years for the diagnosis and treatment planning purposes. The introduction of wireless charged-coupled device (CCD) sensors in early 2004 (Schick Technologies, Long Island City, NY) has moved digital radiography a step further into the wireless era. As with any emerging technology, there are concerns that should be looked into before adapting to the wireless environment. Foremost is the network security involved in the installation and usage of these wireless networks. This article deals with the existing standards and choices in wireless technologies that are available for implementation within a contemporary dental office. The network security protocols that protect the patient data and boost the efficiency of modern day dental clinics are enumerated.
Rémen, T; Lacour, B
2018-05-30
In less than two decades, the wireless telecommunications sector has grown dramatically. While a large part of the world's population is now equipped with technologies from this sector (mobile phone, wireless residential telephone, Wi-Fi…), little data is available to quantify the use of these technologies. The purpose of this article is to present a description of these uses among young people, a population particularly receptive to these new telecommunication facilities. As part of the MOBI-KIDS study, a prospective epidemiological case-control study, 288 participants aged 10 to 25 years and living in France were interviewed between March 2011 and March 2015 about their history of use of wireless telecommunication devices. At the interview date, 84% of participants regularly used a mobile phone to make voice calls with an estimated cumulative duration of 45minutes per week. Of these users, 97% used the Short Message Service (SMS) sending function and 70% the data exchange functions. Regarding the use of other technologies, 88% of participants used Wi-Fi, for ten hours a week and 56% the wireless residential telephone. These uses, however, varied according to the sex and/or age of the subjects. The data draw a portrait of use, particularly quantitative, of the main wireless communication technologies in this young population. There is a gradual increase with age in the use of these technologies, while the age of initiation is at an increasingly early age. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Commercial wireless technologies for public safety users
DOT National Transportation Integrated Search
2000-07-01
This report on commercial wireless for public safety addresses the issues associated with the use of commercial services for public safety. It then reviews available wireless services for wide area data services: cellular, personal communication and ...
Wireless Sensing Opportunities for Aerospace Applications
NASA Technical Reports Server (NTRS)
Wilson, William; Atkinson, Gary
2007-01-01
Wireless sensors and sensor networks is an emerging technology area with many applications within the aerospace industry. Integrated vehicle health monitoring (IVHM) of aerospace vehicles is needed to ensure the safety of the crew and the vehicle, yet often high costs, weight, size and other constraints prevent the incorporation of instrumentation onto spacecraft. This paper presents a few of the areas such as IVHM, where new wireless sensing technology is needed on both existing vehicles as well as future spacecraft. From ground tests to inflatable structures to the International Space Station, many applications could receive benefits from small, low power, wireless sensors. This paper also highlights some of the challenges that need to overcome when implementing wireless sensor networks for aerospace vehicles.
Software-defined Radio Based Measurement Platform for Wireless Networks
Chao, I-Chun; Lee, Kang B.; Candell, Richard; Proctor, Frederick; Shen, Chien-Chung; Lin, Shinn-Yan
2015-01-01
End-to-end latency is critical to many distributed applications and services that are based on computer networks. There has been a dramatic push to adopt wireless networking technologies and protocols (such as WiFi, ZigBee, WirelessHART, Bluetooth, ISA100.11a, etc.) into time-critical applications. Examples of such applications include industrial automation, telecommunications, power utility, and financial services. While performance measurement of wired networks has been extensively studied, measuring and quantifying the performance of wireless networks face new challenges and demand different approaches and techniques. In this paper, we describe the design of a measurement platform based on the technologies of software-defined radio (SDR) and IEEE 1588 Precision Time Protocol (PTP) for evaluating the performance of wireless networks. PMID:27891210
Software-defined Radio Based Measurement Platform for Wireless Networks.
Chao, I-Chun; Lee, Kang B; Candell, Richard; Proctor, Frederick; Shen, Chien-Chung; Lin, Shinn-Yan
2015-10-01
End-to-end latency is critical to many distributed applications and services that are based on computer networks. There has been a dramatic push to adopt wireless networking technologies and protocols (such as WiFi, ZigBee, WirelessHART, Bluetooth, ISA100.11a, etc. ) into time-critical applications. Examples of such applications include industrial automation, telecommunications, power utility, and financial services. While performance measurement of wired networks has been extensively studied, measuring and quantifying the performance of wireless networks face new challenges and demand different approaches and techniques. In this paper, we describe the design of a measurement platform based on the technologies of software-defined radio (SDR) and IEEE 1588 Precision Time Protocol (PTP) for evaluating the performance of wireless networks.
Paudel, Deepak; Ahmed, Marie; Pradhan, Anjushree; Lal Dangol, Rajendra
2013-08-01
Computer-Assisted Personal Interviewing (CAPI), coupled with the use of mobile and wireless technology, is growing as a data collection methodology. Nepal, a geographically diverse and resource-scarce country, implemented the 2011 Nepal Demographic and Health Survey, a nationwide survey of major health indicators, using tablet personal computers (tablet PCs) and wireless technology for the first time in the country. This paper synthesizes responses on the benefits and challenges of using new technology in such a challenging environment from the 89 interviewers who administered the survey. Overall, feedback from the interviewers indicate that the use of tablet PCs and wireless technology to administer the survey demonstrated potential to improve data quality and reduce data collection time-benefits that outweigh manageable challenges, such as storage and transport of the tablet PCs during fieldwork, limited options for confidential interview space due to screen readability issues under direct sunlight, and inconsistent electricity supply at times. The introduction of this technology holds great promise for improving data availability and quality, even in a context with limited infrastructure and extremely difficult terrain.
Review and Evaluation of Wireless Power Transfer (WPT) for Electric Transit Applications
DOT National Transportation Integrated Search
2014-08-01
This research report provides a status review of emerging and existing Wireless Power Transfer (WPT) technologies applicable to electric bus (EB) and rail transit. The WPT technology options discussed, especially Inductive Power Transfer (IPT), enabl...
Wireless Success Story - Industrial Technologies Program (ITP)
DOE Office of Scientific and Technical Information (OSTI.GOV)
none,
This success story presents the results of wireless research by Sensors & Automation, a sub-program of the U.S. Department of Energy (DOE) Industrial Technologies Program (ITP). The prioritized research resulted in success with realized energy and cost savings.
A Wireless Platform for Energy Efficient Building Control Retrofits
2012-08-01
University of Illinois at Urbana Champaign UTRC United Technologies Research Center VFD variable frequency drive WSN wireless sensor network ...demonstration area. .............................................................. 16 Table 4. Cost model for wireless sensor network ...buildings with MPC-based whole-building optimal control and (2) reduction in first costs achievable with a wireless sensor network (WSN)-based
Emerging Needs for Pervasive Passive Wireless Sensor Networks on Aerospace Vehicles
NASA Technical Reports Server (NTRS)
Wilson, William C.; Juarez, Peter D.
2014-01-01
NASA is investigating passive wireless sensor technology to reduce instrumentation mass and volume in ground testing, air flight, and space exploration applications. Vehicle health monitoring systems (VHMS) are desired on all aerospace programs to ensure the safety of the crew and the vehicles. Pervasive passive wireless sensor networks facilitate VHMS on aerospace vehicles. Future wireless sensor networks on board aerospace vehicles will be heterogeneous and will require active and passive network systems. Since much has been published on active wireless sensor networks, this work will focus on the need for passive wireless sensor networks on aerospace vehicles. Several passive wireless technologies such as microelectromechanical systems MEMS, SAW, backscatter, and chipless RFID techniques, have all shown potential to meet the pervasive sensing needs for aerospace VHMS applications. A SAW VHMS application will be presented. In addition, application areas including ground testing, hypersonic aircraft and spacecraft will be explored along with some of the harsh environments found in aerospace applications.
Adusumilli, Sri Raj; Tobin, Jonathan N; Younge, Richard G; Kendall, Mat; Kukafka, Rita; Khan, Sharib; Chang, Otto; Mahabir, Kasandra
2006-01-01
The New York City Department of Health and Mental Hygiene, The Community Health Care Association of New York State and Clinical Directors Network are collaborating on the "eClinician Project," which has distributed seven hundred public health-friendly, wireless (WiFi) enabled Personal Digital Assistants (PDAs) to primary care clinicians working in New York City, federally funded, Community Health Centers (CHC) which serve minority underserved communities that suffer a disproportionate burden of chronic disease and lack access to health promotion disease prevention services. Each participating health center also received a wireless router to create an onsite internet hot spot to enable clinicians to have internet access. The goals of the eClinician Project are to: 1) To encourage adoption of information technology among providers in Community Health Centers in New York City by providing PDAs as a first line strategy towards achieving this goal, 2) enhance access to information on emergency preparedness, 3) improve patient outcomes by providing PDA-based clinical decision-support tools that support evidence-based care, 4) encourage chronic care management and health promotion/disease prevention activities, and 5) increase productivity and efficiency. CHC clinicians have received a hands-on, on-site orientation to PDAs. Ongoing training has continued via online CME-accredited webcasts (see www.CDNetwork.org). Clinical decision-support tools are available for download via the eClinician project web portal (see www.eClinician.org ). Public health alerts can be delivered to the PDAs or to the clinicians' desktop computers. Pre and post training surveys, in addition to a case study, have been used to evaluate the population demographics, PDA adoption by the clinicians, clinician attitudes towards using PDAs, PDA influence on clinical-decision making and barriers to adoption of PDAs and information technology in general.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taft, Cyrus W.; Manges, Wayne W; Sorge, John N
2012-01-01
The role of wireless sensing technologies in industrial instrumentation will undoubtedly become more important in the years ahead. . Deployment of such instrumentation in an industrial setting with its heightened security and robustness criteria hinges on user acceptance of verified performance as well as meeting cost requirements. Today, industrial users face many choices when specifying a wireless sensor network, including radio performance, battery life, interoperability, security, and standards compliance. The potential market for industrial wireless sensors is literally millions of wireless instruments and it is imperative that accurate information for applying the technology to real-world applications be available to themore » end-user so that they can make informed deployment decisions. The majority of industrial wireless automation designs now being deployed or being considered for deployment are based on three different standards . The HART Communications Foundation s WirelessHART (IEC 62591), the International Society of Automation s ISA100.11a, and the offering from the Industrial Wireless Alliance of China known as WIA-PA (IEC 62601). Aside from these industrial automation standards, users must also be cognizant of the underlying wireless network standards IEEE 802.11, IEEE 802.15.4, and IEEE 802.15.3a and their interactions with the three principal industrial automation protocols mentioned previously. The crucial questions being asked by end users revolve around sensor network performance, interoperability, reliability, and security. This paper will discuss potential wireless sensor applications in power plants, barriers to the acceptance of wireless technology, concerns related to standards, and provide an end user prospective on the issues affecting wide-spread deployment of wireless sensors. Finally, the authors conclude with a discussion of a recommended path forward including how standards organizations can better facilitate end user decision making and how end users can locate and use objective information for decision making.« less
Emerging Trends in Healthcare Adoption of Wireless Body Area Networks.
Rangarajan, Anuradha
2016-01-01
Real-time personal health monitoring is gaining new ground with advances in wireless communications. Wireless body area networks (WBANs) provide a means for low-powered sensors, affixed either on the human body or in vivo, to communicate with each other and with external telecommunication networks. The healthcare benefits of WBANs include continuous monitoring of patient vitals, measuring postacute rehabilitation time, and improving quality of medical care provided in medical emergencies. This study sought to examine emerging trends in WBAN adoption in healthcare. To that end, a systematic literature survey was undertaken against the PubMed database. The search criteria focused on peer-reviewed articles that contained the keywords "wireless body area network" and "healthcare" or "wireless body area network" and "health care." A comprehensive review of these articles was performed to identify adoption dimensions, including underlying technology framework, healthcare subdomain, and applicable lessons-learned. This article benefits healthcare technology professionals by identifying gaps in implementation of current technology and highlighting opportunities for improving products and services.
Wireless Power Control for Tactical MANET: Power Rate Bounds
2016-09-01
signals and by their inherent interference.” Figure 1. Transmission and interference in a two-link wireless network. Wireless power control seeks to...e.g., shutting off transmissions to measure the interference is impractical.) In a wireless power control system, the receiver sets its transmitter’s...Travassos Ro- mano [2013] Transmission Power Control for Opportunistic QoS Provision in Wireless Networks, IEEE Transactions on Control Systems Technology
DOT National Transportation Integrated Search
2000-08-01
This guidebook is divided into four parts: Part 1. Planning and Managing a Communications Project: Discusses the overall scope of a project, including planning, funding, procurement, and management. Part 2. Wireless Communications Technology: Discuss...
[A wireless mobile monitoring system based on bluetooth technology].
Sun, Shou-jun; Wu, Kai; Wu, Xiao-Ming
2006-09-01
This paper presents a wireless mobile monitoring system based on Bluetooth technology. This system realizes the remote mobile monitoring of multiple physiological parameters, and has the characters of easy use, low cost, good reliability and strong capability of anti-jamming.
21 CFR 874.3305 - Wireless air-conduction hearing aid.
Code of Federal Regulations, 2013 CFR
2013-04-01
...-amplifying device, intended to compensate for impaired hearing that incorporates wireless technology in its...: (1) Appropriate analysis/testing should validate electro magnetic compatibility (EMC) and safety of... technology functions; and (3) Labeling should specify appropriate instructions, warnings, and information...
Emerging Communication Technologies (ECT) Phase 2 Report. Volume 2; Appendices
NASA Technical Reports Server (NTRS)
Bastin, Gary L.; Harris, William G.; Chiodini, Robert; Nelson, Richard A.; Huang, PoTien; Kruhm, David A.
2003-01-01
The Emerging Communication Technology (ECT) project investigated three First Mile communication technologies in support of NASA s Second Generation Reusable Launch Vehicle (2nd Gen RLV), Orbital Space Plane, Advanced Range Technology Working Group (ARTWG) and the Advanced Spaceport Technology Working Group (ASTWG). These First Mile technologies have the purpose of interconnecting mobile users with existing Range Communication infrastructures. ECT was a continuation of the Range Information System Management (RISM) task started in 2002. RISM identified the three advance communication technologies investigated under ECT. These were Wireless Ethernet (Wi-Fi), Free Space Optics (FSO), and Ultra Wideband (UWB). Due to the report s size, it has been broken into three volumes: 1) Main Report 2) Appendices 3) UWB
Emerging Communication Technologies (ECT) Phase 2 Report. Volume 1; Main Report
NASA Technical Reports Server (NTRS)
Bastin, Gary L.; Harris, William G.; Chiodini, Robert; Nelson, Richard A.; Huang, PoTien; Kruhm, David A.
2003-01-01
The Emerging Communication Technology (ECT) project investigated three First Mile communication technologies in support of NASA s Second Generation Reusable Launch Vehicle (2nd Gen RLV), Orbital Space Plane, Advanced Range Technology Working Group (ARTWG) and the Advanced Spaceport Technology Working Group (ASTWG). These First Mile technologies have the purpose of interconnecting mobile users with existing Range Communication infrastructures. ECT was a continuation of the Range Information System Management (RISM) task started in 2002. RISM identified the three advance communication technologies investigated under ECT. These were Wireless Ethernet (Wi-Fi), Free Space Optics (FSO), and Ultra Wideband (UWB). Due to the report s size, it has been broken into three volumes: 1) Main Report 2) Appendices 3) UWB.
Ultra-broadband and polarization-independent planar absorber based on multilayered graphene
NASA Astrophysics Data System (ADS)
Wang, Jiao; Gao, Chao-Ning; Jiang, Yan-Nan; Nwakanma Akwuruoha, Charles
2017-10-01
Not Available Project supported by the National Natural Science Foundation of China (Grant Nos. 61661012, 61461016, 61361005, and 61561013), the Natural Science Foundation of Guangxi, China (Grant No. 2017JJB160028), the Program for Innovation Research Team of Guilin University of Electronic Technology, China, and the Dean Project of Guangxi Key Laboratory of Wireless Wideband Communication and Signal Processing, China.
[Wireless human body communication technology].
Sun, Lei; Zhang, Xiaojuan
2014-12-01
The Wireless Body Area Network (WBAN) is a key part of the wearable monitoring technologies, which has many communication technologies to choose from, like Bluetooth, ZigBee, Ultra Wideband, and Wireless Human Body Communication (WHBC). As for the WHBC developed in recent years, it is worthy to be further studied. The WHBC has a strong momentum of growth and a natural advantage in the formation of WBAN. In this paper, we first briefly describe the technical background of WHBC, then introduce theoretical model of human-channel communication and digital transmission machine based on human channel. And finally we analyze various of the interference of the WHBC and show the AFH (Adaptive Frequency Hopping) technology which can effectively deal with the interference.
The 21st century Museum Climatic Monitoring System
NASA Astrophysics Data System (ADS)
Liu, W.-S.
2015-08-01
Technology has provided us work convenience and shaped our quality of life; it has enabled an unprecedented level of access to knowledge by flipping screen of a hand-held electronic device without going elsewhere but stay connected wireless communication. This kind of technology has been broadly acquired at museums in Hong Kong for preserving their valuable collections. Similar gadget was applied on the monitoring system to record climatic conditions of museum's stores and galleries. Sensors have been equipped with chips for the wireless transmission of RH/Temp, without installation of any conduit or LAN lines. Useful and important data will then be grouped into a packet format for efficient delivery. As long as the static IP address of the target workstation has been set, data can be accurately retrieved from one place to another via commercially available browsers, such as: Firefox or Internet Explorer, even on hand-held electronic devices. This paper will discuss the detail of this system, its pros and cons in comparison with the old model. After all, the new technology is highly significant in supporting the current needs and the future developments of the museum service.
ERIC Educational Resources Information Center
Fry, Joan Marian; Hin, Michael Koh Teik
2006-01-01
In technology-savvy Singapore, wireless communication devices were used over four weekly lessons to facilitate communication between pairs of student teachers (STs). In the naturalistic setting of a neighbourhood primary school, one ST used the technology to coach the other who was engaged in teaching. (Both were familiar with the lesson plan and…
Increasing Reliability with Wireless Instrumentation Systems from Space Shuttle to 'Fly-By-Wireless'
NASA Technical Reports Server (NTRS)
Studor, George
2004-01-01
This slide presentation discusses some of the requirements to allow for "Fly by Wireless". Included in the discussion are: a review of new technologies by decades starting with the 1930's and going through the current decade, structural health monitoring, the requisite system designs, and the vision of flying by wireless.
Clinical potential of implantable wireless sensors for orthopedic treatments.
Karipott, Salil Sidharthan; Nelson, Bradley D; Guldberg, Robert E; Ong, Keat Ghee
2018-04-01
Implantable wireless sensors have been used for real-time monitoring of chemicals and physical conditions of bones, tendons and muscles to diagnose and study orthopedic diseases and injuries. Due to the importance of these sensors in orthopedic care, a critical review, which not only analyzes the underlying technologies but also their clinical implementations and challenges, will provide a landscape view on their current state and their future clinical role. Areas covered: By conducting an extensive literature search and following the leaders of orthopedic implantable wireless sensors, this review covers the battery-powered and battery-free wireless implantable sensor technologies, and describes their implementation for hips, knees, spine, and shoulder stress/strain monitoring. Their advantages, limitations, and clinical challenges are also described. Expert commentary: Currently, implantable wireless sensors are mostly limited for scientific investigations and demonstrative experiments. Although rapid advancement in sensors and wireless technologies will push the reliability and practicality of these sensors for clinical realization, regulatory constraints and financial viability in medical device industry may curtail their continuous adoption for clinical orthopedic applications. In the next five years, these sensors are expected to gain increased interest from researchers, but wide clinical adoption is still unlikely.
DS-MAC: differential service medium access control design for wireless medical information systems.
Yuan, Xiaojing; Bagga, Sumegha; Shen, Jian; Balakrishnan, M; Benhaddou, D
2008-01-01
The integration of wireless networking technologies with medical information systems (telemedicine) have a significant impact on healthcare services provided to our society. Applications of telemedicine range from personalized medicine to affordable healthcare for underserved population. Though wireless technologies and medical informatics are individually progressing rapidly, wireless networking for healthcare systems is still at a very premature stage. In this paper we first present our open architecture for medical information systems that integrates both wired and wireless networked data acquisition systems. We then present the implementation at the physical layer and differential service MAC design that adapts channel provisioning based on the information criticality. Performance evaluation using analytical modeling and simulation shows that our DS-MAC provides differentiated services for emergency, warning, and normal traffic.
77 FR 71089 - Pilot Loading of Aeronautical Database Updates
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-29
... the use of newer systems and data-transfer mechanisms such as those employing wireless technology. In... which enables wireless updating of systems and databases. The current regulation does not accommodate... maintenance); Recordkeeping requirements; Training for pilots; Technological advancements in data-transfer...
ERIC Educational Resources Information Center
Tech Directions, 2011
2011-01-01
One of the hottest areas in technology is invisible. Wireless communications allow people to transmit voice messages, data, and other signals through the air without physically connecting senders to receivers with cables or wires. And the technology is spreading at lightning speed. Cellular phones, personal digital assistants, and wireless…
Our Plan for a Wireless Loan Service.
ERIC Educational Resources Information Center
Allmang, Nancy
2003-01-01
Discusses the planning for wireless technology at the research library of the National Institute of Standards and Technology (NIST). Highlights include computer equipment, including laptops and PDAs; local area networks; equipment loan service; writing a business plan; infrastructure; training programs; and future considerations, including…
Probe sampling strategies for traffic monitoring systems based on wireless location technology.
DOT National Transportation Integrated Search
2007-01-01
Transportation agencies have become very interested in traffic monitoring systems based on wireless location technology (WLT) since they offer the potential of collecting travel time data across a wide portion of the road system. Prior tests of WLT-b...
Wireless data collection system for travel time estimation and traffic performance evaluation.
DOT National Transportation Integrated Search
2012-05-01
This report presents the results of the third and final research and development project of an implementable wireless : travel time data collection system. Utilizing Bluetooth wireless technology as a platform, the prior projects focused on : data co...
Resonant tunnelling diode terahertz sources for broadband wireless communications
NASA Astrophysics Data System (ADS)
Wasige, Edward; Alharbi, Khalid H.; Al-Khalidi, Abdullah; Wang, Jue; Khalid, Ata; Rodrigues, Gil C.; Figueiredo, José
2017-02-01
This paper will discuss resonant tunnelling diode (RTD) sources being developed on a European project iBROW (ibrow.project.eu) to enable short-range multi-gigabit wireless links and microwave-photonic interfaces for seamless links to the optical fibre backbone network. The practically relevant output powers are at least 10 mW at 90 GHz, 5 mW at 160 GHz and 1 mW at 300 GHz and simulation and some experimental results show that these are feasible in RTD technology. To date, 75 - 315 GHz indium phosphide (InP) based RTD oscillators with relatively high output powers in the 0.5 - 1.1 mW range have been demonstrated on the project. They are realised in various circuit topologies including those that use a single RTD device, 2 RTD devices and up to 4 RTD devices for increasingly higher output power. The oscillators are realised using only photolithography by taking advantage of the large micron-sized but broadband RTD devices. The paper will also describe properties of RTD devices as photo-detectors which makes this a unified technology that can be integrated into both ends of a wireless link, namely consumer portable devices and fibre-optic supported base-stations (since integration with laser diodes is also possible).
structures that will be used to support fixed wireless antennas within the existing railroad right of way alongside existing tracks. The antennas are used to support the wireless flow of information needed for the : Steve DelSordo, Federal Preservation Officer of the FCC Wireless Telecommunications Bureau at (202) 418
78 FR 20628 - Wireless Metering Challenge
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-05
... metering devices for use at the electrical panel level within commercial buildings. The specifications are intended to spur the development of new technologies in the wireless electric metering space. DATES... Technologies Office, Mailstop EE-2J, Office of Energy Efficiency and Renewable Energy, U.S. Department of...
Wireless Infrared Networking in the Duke Paperless Classroom.
ERIC Educational Resources Information Center
Stetten, George D.; Guthrie, Scott D.
1995-01-01
Discusses wireless (diffuse infrared) networking technology to link laptop computers in a computer programming and numerical methods course at Duke University (North Carolina). Describes products and technologies, and effects on classroom dynamics. Reports on effective instructional strategies for lecture, solving student problems, building shared…
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-10
... this important step forward. Submitted by the National Science Foundation for the National Coordination... NATIONAL SCIENCE FOUNDATION Toward Innovative Spectrum-Sharing Technologies: Wireless Spectrum.... Suzanne H. Plimpton, Reports Clearance Officer, National Science Foundation. [FR Doc. 2012-16804 Filed 7-9...
Multi-carrier transmission for hybrid radio frequency with optical wireless communications
NASA Astrophysics Data System (ADS)
Wang, Gang; Chen, Genshe; Shen, Dan; Pham, Khanh; Blasch, Erik; Nguyen, Tien M.
2015-05-01
Radio frequency (RF) wireless communication is reaching its capacity to support large data rate transmissions due to hardware constraints (e.g., silicon processes), software strategies (e.g., information theory), and consumer desire for timely large file exchanges (e.g., big data and mobile cloud computing). A high transmission rate performance must keep pace with the generated huge volumes of data for real-time processing. Integrated RF and optical wireless communications (RF/OWC) could be the next generation transmission technology to satisfy both the increased data rate exchange and the communications constraints. However, with the promising benefits of RF/OWC, challenges remain to fully develop hybrid RF with wireless optical communications such as uniform waveform design for information transmission and detection. In this paper, an orthogonal frequency division multiplexing (OFDM) transmission scheme, which widely employed in RF communications, is developed for optical communications. The traditional high peak-to-average power ratio (PAPR) in OFDM is reduced to improve system performance. The proposed multi-carrier waveform is evaluated with a frequency-selective fading channel. The results demonstrate that bit error rate (BER) performance of our proposed optical OFDM transmission technique outperforms the traditional OWC on-off keying (OOK) transmission scheme.
A Seamless Ubiquitous Telehealthcare Tunnel
Cheng, Po-Hsun; Lin, Bor-Shing; Yu, Chu; Hu, Shun-Hsiang; Chen, Sao-Jie
2013-01-01
Mobile handheld devices are rapidly using to implement healthcare services around the World. Fundamentally, these services utilize telemedicine technologies. A disconnection of a mobile telemedicine system usually results in an interruption, which is embarrassing, and reconnection is necessary during the communication session. In this study, the Stream Control Transmission Protocol (SCTP) is adopted to build a stable session tunnel to guarantee seamless switching among heterogeneous wireless communication standards, such as Wi-Fi and 3G. This arrangement means that the telemedicine devices will not be limited by a fixed wireless connection and can switch to a better wireless channel if necessary. The tunnel can transmit plain text, binary data, and video streams. According to the evaluation of the proposed software-based SCTP-Tunnel middleware shown, the performance is lower than anticipated and is slightly slower than a fixed connection. However, the transmission throughput is still acceptable for healthcare professionals in a healthcare enterprise or home care site. It is necessary to build more heterogeneous wireless protocols into the proposed tunnel-switching scheme to support all possible communication protocols. In addition, SCTP is another good choice for promoting communication in telemedicine and healthcare fields. PMID:23917812
Integrated monitoring of wind plant systems
NASA Astrophysics Data System (ADS)
Whelan, Matthew J.; Janoyan, Kerop D.; Qiu, Tong
2008-03-01
Wind power is a renewable source of energy that is quickly gaining acceptance by many. Advanced sensor technologies have currently focused solely on improving wind turbine rotor aerodynamics and increasing of the efficiency of the blade design and concentration. Alternatively, potential improvements in wind plant efficiency may be realized through reduction of reactionary losses of kinetic energy to the structural and substructural systems supporting the turbine mechanics. Investigation of the complete dynamic structural response of the wind plant is proposed using a large-scale, high-rate wireless sensor network. The wireless network enables sensors to be placed across the sizable structure, including the rotating blades, without consideration of cabling issues and the economic burden associated with large spools of measurement cables. A large array of multi-axis accelerometers is utilized to evaluate the modal properties of the system as well as individual members and would enable long-term structural condition monitoring of the wind turbine as well. Additionally, environmental parameters, including wind speed, temperature, and humidity, are wirelessly collected for correlation. Such a wireless system could be integrated with electrical monitoring sensors and actuators and incorporated into a remote multi-turbine centralized plant monitoring and control system.
Using Zigbee to integrate medical devices.
Frehill, Paul; Chambers, Desmond; Rotariu, Cosmin
2007-01-01
Wirelessly enabling Medical Devices such as Vital Signs Monitors, Ventilators and Infusion Pumps allows central data collection. This paper discusses how data from these types of devices can be integrated into hospital systems using wireless sensor networking technology. By integrating devices you are protecting investment and opening up the possibility of networking with similar devices. In this context we present how Zigbee meets our requirements for bandwidth, power, security and mobility. We have examined the data throughputs for various medical devices, the requirement of data frequency, security of patient data and the logistics of moving patients while connected to devices. The paper describes a new tested architecture that allows this data to be seamlessly integrated into a User Interface or Healthcare Information System (HIS). The design supports the dynamic addition of new medical devices to the system that were previously unsupported by the system. To achieve this, the hardware design is kept generic and the software interface for different types of medical devices is well defined. These devices can also share the wireless resources with other types of sensors being developed in conjunction on this project such as wireless ECG (Electrocardiogram) and Pulse-Oximetry sensors.
NASA Astrophysics Data System (ADS)
Yamamoto, Toshiaki; Ueda, Tetsuro; Obana, Sadao
As one of the dynamic spectrum access technologies, “cognitive radio technology,” which aims to improve the spectrum efficiency, has been studied. In cognitive radio networks, each node recognizes radio conditions, and according to them, optimizes its wireless communication routes. Cognitive radio systems integrate the heterogeneous wireless systems not only by switching over them but also aggregating and utilizing them simultaneously. The adaptive control of switchover use and concurrent use of various wireless systems will offer a stable and flexible wireless communication. In this paper, we propose the adaptive traffic route control scheme that provides high quality of service (QoS) for cognitive radio technology, and examine the performance of the proposed scheme through the field trials and computer simulations. The results of field trials show that the adaptive route control according to the radio conditions improves the user IP throughput by more than 20% and reduce the one-way delay to less than 1/6 with the concurrent use of IEEE802.16 and IEEE802.11 wireless media. Moreover, the simulation results assuming hundreds of mobile terminals reveal that the number of users receiving the required QoS of voice over IP (VoIP) service and the total network throughput of FTP users increase by more than twice at the same time with the proposed algorithm. The proposed adaptive traffic route control scheme can enhance the performances of the cognitive radio technologies by providing the appropriate communication routes for various applications to satisfy their required QoS.
Lee, JongHyup; Pak, Dohyun
2016-01-01
For practical deployment of wireless sensor networks (WSN), WSNs construct clusters, where a sensor node communicates with other nodes in its cluster, and a cluster head support connectivity between the sensor nodes and a sink node. In hybrid WSNs, cluster heads have cellular network interfaces for global connectivity. However, when WSNs are active and the load of cellular networks is high, the optimal assignment of cluster heads to base stations becomes critical. Therefore, in this paper, we propose a game theoretic model to find the optimal assignment of base stations for hybrid WSNs. Since the communication and energy cost is different according to cellular systems, we devise two game models for TDMA/FDMA and CDMA systems employing power prices to adapt to the varying efficiency of recent wireless technologies. The proposed model is defined on the assumptions of the ideal sensing field, but our evaluation shows that the proposed model is more adaptive and energy efficient than local selections. PMID:27589743
Primary-Side Power Flow Control of Wireless Power Transfer for Electric Vehicle Charging
Miller, John M.; Onar, Omer C.; Chinthavali, Madhu
2014-12-22
Various noncontacting methods of plug-in electric vehicle charging are either under development or now deployed as aftermarket options in the light-duty automotive market. Wireless power transfer (WPT) is now the accepted term for wireless charging and is used synonymously for inductive power transfer and magnetic resonance coupling. WPT technology is in its infancy; standardization is lacking, especially on interoperability, center frequency selection, magnetic fringe field suppression, and the methods employed for power flow regulation. This paper proposes a new analysis concept for power flow in WPT in which the primary provides frequency selection and the tuned secondary, with its resemblancemore » to a power transmission network having a reactive power voltage control, is analyzed as a transmission network. Analysis is supported with experimental data taken from Oak Ridge National Laboratory s WPT apparatus. Lastly, this paper also provides an experimental evidence for frequency selection, fringe field assessment, and the need for low-latency communications in the feedback path.« less
New virtual sonar and wireless sensor system concepts
NASA Astrophysics Data System (ADS)
Houston, B. H.; Bucaro, J. A.; Romano, A. J.
2004-05-01
Recently, exciting new sensor array concepts have been proposed which, if realized, could revolutionize how we approach surface mounted acoustic sensor systems for underwater vehicles. Two such schemes are so-called ``virtual sonar'' which is formulated around Helmholtz integral processing and ``wireless'' systems which transfer sensor information through radiated RF signals. The ``virtual sonar'' concept provides an interesting framework through which to combat the dilatory effects of the structure on surface mounted sensor systems including structure-borne vibration and variations in structure-backing impedance. The ``wireless'' concept would eliminate the necessity of a complex wiring or fiber-optic external network while minimizing vehicle penetrations. Such systems, however, would require a number of advances in sensor and RF waveguide technologies. In this presentation, we will discuss those sensor and sensor-related developments which are desired or required in order to make practical such new sensor system concepts, and we will present several underwater applications from the perspective of exploiting these new sonar concepts. [Work supported by ONR.
NASA Astrophysics Data System (ADS)
1991-01-01
A technology utilization project led to the commercial adaptation of a Space Shuttle Orbiter wireless infrared voice communications system. The technology was adapted to a LAN system by Wilton Industries, one of the participants. Because the system is cable-free, installation charges are saved, and it can be used where cable is impractical. Resultant products include the IRplex 6000. Transceivers can be located anywhere and can include mobile receivers. The system provides wireless LAN coverage up to 44,000 square feet. applications include stock exchange communications, trade shows, emergency communications, etc.
Wireless Sensor Network Radio Power Management and Simulation Models
2010-01-01
The Open Electrical & Electronic Engineering Journal, 2010, 4, 21-31 21 1874-1290/10 2010 Bentham Open Open Access Wireless Sensor Network Radio...Air Force Institute of Technology, Wright-Patterson AFB, OH, USA Abstract: Wireless sensor networks (WSNs) create a new frontier in collecting and...consumption. Keywords: Wireless sensor network , power management, energy-efficiency, medium access control (MAC), simulation pa- rameters. 1
Sinkhole Avoidance Routing in Wireless Sensor Networks
2011-05-09
sensor network consists of individual sensor nodes that work cooperatively to collect and communicate environmental data. In a surveillance role, a WSN...Wireless sensor networks, or WSNs, are an emerging commercial technology that may have practical applications on the modern battlefield. A wireless
Energy Options for Wireless Sensor Nodes.
Knight, Chris; Davidson, Joshua; Behrens, Sam
2008-12-08
Reduction in size and power consumption of consumer electronics has opened up many opportunities for low power wireless sensor networks. One of the major challenges is in supporting battery operated devices as the number of nodes in a network grows. The two main alternatives are to utilize higher energy density sources of stored energy, or to generate power at the node from local forms of energy. This paper reviews the state-of-the art technology in the field of both energy storage and energy harvesting for sensor nodes. The options discussed for energy storage include batteries, capacitors, fuel cells, heat engines and betavoltaic systems. The field of energy harvesting is discussed with reference to photovoltaics, temperature gradients, fluid flow, pressure variations and vibration harvesting.
Energy Options for Wireless Sensor Nodes
Knight, Chris; Davidson, Joshua; Behrens, Sam
2008-01-01
Reduction in size and power consumption of consumer electronics has opened up many opportunities for low power wireless sensor networks. One of the major challenges is in supporting battery operated devices as the number of nodes in a network grows. The two main alternatives are to utilize higher energy density sources of stored energy, or to generate power at the node from local forms of energy. This paper reviews the state-of-the art technology in the field of both energy storage and energy harvesting for sensor nodes. The options discussed for energy storage include batteries, capacitors, fuel cells, heat engines and betavoltaic systems. The field of energy harvesting is discussed with reference to photovoltaics, temperature gradients, fluid flow, pressure variations and vibration harvesting. PMID:27873975
78 FR 8353 - Rural Broadband Access Loans and Loan Guarantees
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-06
.... Other associated rural issues, such as environmental challenges or providing wireless service through... proposed regulations, the Food, Conservation, and Energy Act of 2008, more commonly known as the 2008 Farm... wireline and wireless technologies is in violation of the agency's ``technology neutral'' mandate and...
COSPO/CENDI Industry Day Conference
NASA Technical Reports Server (NTRS)
1995-01-01
The conference's objective was to provide a forum where government information managers and industry information technology experts could have an open exchange and discuss their respective needs and compare them to the available, or soon to be available, solutions. Technical summaries and points of contact are provided for the following sessions: secure products, protocols, and encryption; information providers; electronic document management and publishing; information indexing, discovery, and retrieval (IIDR); automated language translators; IIDR - natural language capabilities; IIDR - advanced technologies; IIDR - distributed heterogeneous and large database support; and communications - speed, bandwidth, and wireless.
Coexistence issues for a 2.4 GHz wireless audio streaming in presence of bluetooth paging and WLAN
NASA Astrophysics Data System (ADS)
Pfeiffer, F.; Rashwan, M.; Biebl, E.; Napholz, B.
2015-11-01
Nowadays, customers expect to integrate their mobile electronic devices (smartphones and laptops) in a vehicle to form a wireless network. Typically, IEEE 802.11 is used to provide a high-speed wireless local area network (WLAN) and Bluetooth is used for cable replacement applications in a wireless personal area network (PAN). In addition, Daimler uses KLEER as third wireless technology in the unlicensed (UL) 2.4 GHz-ISM-band to transmit full CD-quality digital audio. As Bluetooth, IEEE 802.11 and KLEER are operating in the same frequency band, it has to be ensured that all three technologies can be used simultaneously without interference. In this paper, we focus on the impact of Bluetooth and IEEE 802.11 as interferer in presence of a KLEER audio transmission.
Critical success factors for achieving superior m-health success.
Dwivedi, A; Wickramasinghe, N; Bali, R K; Naguib, R N G
2007-01-01
Recent healthcare trends clearly show significant investment by healthcare institutions into various types of wired and wireless technologies to facilitate and support superior healthcare delivery. This trend has been spurred by the shift in the concept and growing importance of the role of health information and the influence of fields such as bio-informatics, biomedical and genetic engineering. The demand is currently for integrated healthcare information systems; however for such initiatives to be successful it is necessary to adopt a macro model and appropriate methodology with respect to wireless initiatives. The key contribution of this paper is the presentation of one such integrative model for mobile health (m-health) known as the Wi-INET Business Model, along with a detailed Adaptive Mapping to Realisation (AMR) methodology. The AMR methodology details how the Wi-INET Business Model can be implemented. Further validation on the concepts detailed in the Wi-INET Business Model and the AMR methodology is offered via a short vignette on a toolkit based on a leading UK-based healthcare information technology solution.
Potential and challenges of body area networks for personal health.
Penders, Julien; van de Molengraft, Jef; Brown, Lindsay; Grundlehner, Bernard; Gyselinckx, Bert; Van Hoof, Chris
2009-01-01
This paper illustrates how body area network technology may enable new personal health concepts. A BAN technology platform is presented, which integrates technology building blocks from the Human++ research program on autonomous wireless sensors. Technology evaluation for the case of wireless sleep staging and real-time arousal monitoring is reported. Key technology challenges are discussed. The ultimate target is the development of miniaturized body sensor nodes powered by body-energy, anticipating the needs of emerging personal health applications.
Capsule endoscopy—A mechatronics perspective
NASA Astrophysics Data System (ADS)
Lin, Lin; Rasouli, Mahdi; Kencana, Andy Prima; Tan, Su Lim; Wong, Kai Juan; Ho, Khek Yu; Phee, Soo Jay
2011-03-01
The recent advances in integrated circuit technology, wireless communication, and sensor technology have opened the door for development of miniature medical devices that can be used for enhanced monitoring and treatment of medical conditions. Wireless capsule endoscopy is one of such medical devices that has gained significant attention during the past few years. It is envisaged that future wireless capsule endoscopies replace traditional endoscopy procedures by providing advanced functionalities such as active locomotion, body fluid/tissue sampling, and drug delivery. Development of energy-efficient miniaturized actuation mechanisms is a key step toward achieving this goal. Here, we review some of the actuators that could be integrated into future wireless capsules and discuss the existing challenges.
von Luhmann, Alexander; Wabnitz, Heidrun; Sander, Tilmann; Muller, Klaus-Robert
2017-06-01
For the further development of the fields of telemedicine, neurotechnology, and brain-computer interfaces, advances in hybrid multimodal signal acquisition and processing technology are invaluable. Currently, there are no commonly available hybrid devices combining bioelectrical and biooptical neurophysiological measurements [here electroencephalography (EEG) and functional near-infrared spectroscopy (NIRS)]. Our objective was to design such an instrument in a miniaturized, customizable, and wireless form. We present here the design and evaluation of a mobile, modular, multimodal biosignal acquisition architecture (M3BA) based on a high-performance analog front-end optimized for biopotential acquisition, a microcontroller, and our openNIRS technology. The designed M3BA modules are very small configurable high-precision and low-noise modules (EEG input referred noise @ 500 SPS 1.39 μV pp , NIRS noise equivalent power NEP 750 nm = 5.92 pW pp , and NEP 850 nm = 4.77 pW pp ) with full input linearity, Bluetooth, 3-D accelerometer, and low power consumption. They support flexible user-specified biopotential reference setups and wireless body area/sensor network scenarios. Performance characterization and in-vivo experiments confirmed functionality and quality of the designed architecture. Telemedicine and assistive neurotechnology scenarios will increasingly include wearable multimodal sensors in the future. The M3BA architecture can significantly facilitate future designs for research in these and other fields that rely on customized mobile hybrid biosignal modal biosignal acquisition architecture (M3BA), multimodal, near-infrared spectroscopy (NIRS), wireless body area network (WBAN), wireless body sensor network (WBSN).
Connecting AAC devices to the world of information technology.
Caves, Kevin; Shane, Howard C; DeRuyter, Frank
2002-01-01
Modern day information technology (IT) is converging around wireless networks. It is now possible to check E-mail and view information from the World Wide Web from commercially available mobile phones. For individuals with disabilities, the ability to access multiple and different types of information not only promises convenience, but also can help to promote independence and facilitate access to public and private information systems. There are many barriers to access for people with disabilities, including technological hurdles, security, privacy, and access to these emerging wireless technologies. However, legislation, advocacy, standards, and research and development can ensure that users of augmentative and alternative communication (AAC) and assistive technology have access to these technologies. This article provides a historical context for the field of AAC and IT development, a review of the current state of these technologies, a glimpse of the potential of wireless information access for the lives of AAC users, and a description of some of the barriers and enablers to making access available to users of AAC and assistive technologies.
Terahertz (THz) Wireless Systems for Space Applications
NASA Technical Reports Server (NTRS)
Hwu, Shian U.; deSilva, Kanishka B.; Jih, Cindy T.
2013-01-01
NASA has been leading the Terahertz (THz) technology development for the sensors and instruments in astronomy in the past 20 years. THz technologies are expanding into much broader applications in recent years. Due to the vast available multiple gigahertz (GHz) broad bandwidths, THz radios offer the possibility for wireless transmission of high data rates. Multi-Gigabits per second (MGbps) broadband wireless access based on THz waves are closer to reality. The THz signal high atmosphere attenuation could significantly decrease the communication ranges and transmittable data rates for the ground systems. Contrary to the THz applications on the ground, the space applications in the atmosphere free environment do not suffer the atmosphere attenuation. The manufacturing technologies for the THz electronic components are advancing and maturing. There is great potential for the NASA future high data wireless applications in environments with difficult cabling and size/weight constraints. In this study, the THz wireless systems for potential space applications were investigated. The applicability of THz systems for space applications was analyzed. The link analysis indicates that MGbps data rates are achievable with compact sized high gain antennas.
Wireless power transfer inspired by the modern trends in electromagnetics
NASA Astrophysics Data System (ADS)
Song, Mingzhao; Belov, Pavel; Kapitanova, Polina
2017-06-01
Since the beginning of the 20th century, researchers have been looking for an effective way to transfer power without wired connections, but the wireless power transfer technology started to attract extensive interest from the industry side only in 2007 when the first smartphone was released and a consumer electronics revolution was triggered. Currently, the modern technology of wireless power transfer already has a rich research and development history as well as outstanding advances in commercialization. This review is focused on the description of distinctive implementations of this technology inspired by the modern trends in electrodynamics. We compare the performances of the power transfer systems based on three kinds of resonators, i.e., metallic coil resonators, dielectric resonators, and cavity mode resonators. We argue that metamaterials and meta-atoms are powerful tools to improve the functionalities and to obtain novel properties of the systems. We review different approaches to enhance the functionality of the wireless power transfer systems including control of the power transfer path and increase of the operation range and efficiency. Various applications of wireless power transfer are discussed and currently available standards are reviewed.
CxP Wireless DFI Summary Presentation for OTI Flight Test Working Group
NASA Technical Reports Server (NTRS)
Arteaga, Ricardo A.
2009-01-01
This slide presentation reviews the wireless instrumentation architecture needed for the Alatir Lunar Lander, Ares I, Ares V, and the Block II Orion Crew Exploration Vehicle (CEV). It includes information about the Wireless DFI system, mission planning, and the technology roadmap.
77 FR 41919 - Hearing Aid Compatibility Technical Standard
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-17
.... SUMMARY: The Wireless Telecommunications Bureau and the Office of Engineering and Technology (Bureaus) adopt the 2011 ANSI Standard for evaluating the hearing aid compatibility of wireless phones. The Bureaus take this action to ensure that a selection of digital wireless handset models is available to...
Bluetooth-enabled teleradiology: applications and complications.
Hura, Angela M
2002-01-01
Wireless personal area networks and local area networks are becoming increasingly more prevalent in the teleradiology and telemedicine industry. Although there has been much debate about the role that Bluetooth will play in the future of wireless technology, both promoters and doubters acknowledge that Bluetooth will have an impact on networking, even if only as a "niche" product. This article provides an overview of the Bluetooth standard and highlights current and future areas of inclusion for use in a teleradiology environment. The possibilities for Bluetooth in a teleradiology environment without wires are nearly boundless and an overview of current and proposed Bluetooth-enabled radiology equipment and vendors is provided. A comparison of Bluetooth and other wireless technologies is provided, including areas of similarity and potential conflict. Bluetooth and other wireless technologies can not only peacefully coexist but also complement each other and provide enhanced teleradiology services.
Cohen, Christine; Kampel, Thomas; Verloo, Henk
2017-01-01
The effective care and support of community healthcare nurses (CHNs) contribute greatly to the healthy aging of older adults living at home. Integrating innovative technologies into CHNs' daily practice offers new opportunities and perspectives for early detection of health issues and interventions among home-dwelling older adults. To explore the perception of acceptability among CHNs of an intelligent wireless sensor system (IWSS) for use in daily practice for the detection of health issues in home-dwelling older adults receiving home healthcare. Descriptive and qualitative data were sourced from a pilot randomized controlled trial involving 17 CHNs using an IWSS in their daily practice to rapidly detect falls and other health issues in patients' homes. IWSS alerts indicating behavior changes were sent to CHNs. Their perceived usefulness (PU) and perceived ease of use (PEOU) were assessed. The acceptability of IWSS technology was explored using a questionnaire and focus group discussions. The PU and PEOU of the IWSS technology were low to moderate. A majority of the CHNs were dissatisfied with its performance and intrusiveness; they reported multiple obstacles in the usefulness and ease of use of the IWSS technology in daily practice. To improve the IWSS technology's low to moderate acceptability among CHNs, we recommend a more user-centered implementation strategy and an embedded model of nursing care.
Teaching in a Wireless Learning Environment: A Case Study
ERIC Educational Resources Information Center
Liu, Tzu Chien
2007-01-01
Although wireless and mobile technology is regarded as a useful tool for enhancing student-centered learning, few studies have explored the factors that may affect the application of this emerging technology in classroom situations. Accordingly, this study selects three factors (instructional belief, instructional routine, and features of wireless…
Enhancing Student Performance Using Tablet Computers
ERIC Educational Resources Information Center
Enriquez, Amelito G.
2010-01-01
Tablet PCs have the potential to change the dynamics of classroom interaction through wireless communication coupled with pen-based computing technology that is suited for analyzing and solving engineering problems. This study focuses on how tablet PCs and wireless technology can be used during classroom instruction to create an Interactive…
DOT National Transportation Integrated Search
2016-08-01
Micro-electromechanical sensors and systems- (MEMS)-based and : wireless-based smart-sensing technologies have, until now, rarely : been used for monitoring pavement response in the field, and the : requirements for using such smart sensing technolog...
Opportunistic Mobility Support for Resource Constrained Sensor Devices in Smart Cities
Granlund, Daniel; Holmlund, Patrik; Åhlund, Christer
2015-01-01
A multitude of wireless sensor devices and technologies are being developed and deployed in cities all over the world. Sensor applications in city environments may include highly mobile installations that span large areas which necessitates sensor mobility support. This paper presents and validates two mechanisms for supporting sensor mobility between different administrative domains. Firstly, EAP-Swift, an Extensible Authentication Protocol (EAP)-based sensor authentication protocol is proposed that enables light-weight sensor authentication and key generation. Secondly, a mechanism for handoffs between wireless sensor gateways is proposed. We validate both mechanisms in a real-life study that was conducted in a smart city environment with several fixed sensors and moving gateways. We conduct similar experiments in an industry-based anechoic Long Term Evolution (LTE) chamber with an ideal radio environment. Further, we validate our results collected from the smart city environment against the results produced under ideal conditions to establish best and real-life case scenarios. Our results clearly validate that our proposed mechanisms can facilitate efficient sensor authentication and handoffs while sensors are roaming in a smart city environment. PMID:25738767
Opportunistic mobility support for resource constrained sensor devices in smart cities.
Granlund, Daniel; Holmlund, Patrik; Åhlund, Christer
2015-03-02
A multitude of wireless sensor devices and technologies are being developed and deployed in cities all over the world. Sensor applications in city environments may include highly mobile installations that span large areas which necessitates sensor mobility support. This paper presents and validates two mechanisms for supporting sensor mobility between different administrative domains. Firstly, EAP-Swift, an Extensible Authentication Protocol (EAP)-based sensor authentication protocol is proposed that enables light-weight sensor authentication and key generation. Secondly, a mechanism for handoffs between wireless sensor gateways is proposed. We validate both mechanisms in a real-life study that was conducted in a smart city environment with several fixed sensors and moving gateways. We conduct similar experiments in an industry-based anechoic Long Term Evolution (LTE) chamber with an ideal radio environment. Further, we validate our results collected from the smart city environment against the results produced under ideal conditions to establish best and real-life case scenarios. Our results clearly validate that our proposed mechanisms can facilitate efficient sensor authentication and handoffs while sensors are roaming in a smart city environment.
Enhancement of observability and protection of smart power system
NASA Astrophysics Data System (ADS)
Siddique, Abdul Hasib
It is important for a modern power grid to be smarter in order to provide reliable and sustainable supply of electricity. Traditional way of receiving data from the wired system is a very old and outdated technology. For a quicker and better response from the electric system, it is important to look at wireless systems as a feasible option. In order to enhance the observability and protection it is important to integrate wireless technology with the modern power system. In this thesis, wireless network based architecture for wide area monitoring and an alternate method for performing current measurement for protection of generators and motors, has been adopted. There are basically two part of this project. First part deals with the wide area monitoring of the power system and the second part focuses more on application of wireless technology from the protection point of view. A number of wireless method have been adopted in both the part, these includes Zigbee, analog transmission (Both AM and FM) and digital transmission. The main aim of our project was to propose a cost effective wide area monitoring and protection method which will enhance the observability and stability of power grid. A new concept of wireless integration in the power protection system has been implemented in this thesis work.
Development of fast wireless detection system for fixed offshore platform
NASA Astrophysics Data System (ADS)
Li, Zhigang; Yu, Yan; Jiao, Dong; Wang, Jie; Li, Zhirui; Ou, Jinping
2011-04-01
Offshore platforms' security is concerned since in 1950s and 1960s, and in the early 1980s some important specifications and standards are built, and all these provide technical basis of fixed platform design, construction, installation and evaluation. With the condition that more and more platforms are in serving over age, the research about the evaluation and detection technology of offshore platform has been a hotspot, especially underwater detection, and assessment method based on the finite element calculation. For fixed platform structure detection, conventional NDT methods, such as eddy current, magnetic powder, permeate, X-ray and ultrasonic, etc, are generally used. These techniques are more mature, intuitive, but underwater detection needs underwater robot, the necessary supporting tools of auxiliary equipment, and trained professional team, thus resources and cost used are considerable, installation time of test equipment is long. This project presents a new kind of fast wireless detection and damage diagnosis system for fixed offshore platform using wireless sensor networks, that is, wireless sensor nodes can be put quickly on the offshore platform, detect offshore platform structure global status by wireless communication, and then make diagnosis. This system is operated simply, suitable for offshore platform integrity states rapid assessment. The designed system consists in intelligence acquisition equipment and 8 wireless collection nodes, the whole system has 64 collection channels, namely every wireless collection node has eight 16-bit accuracy of A/D channels. Wireless collection node, integrated with vibration sensing unit, embedded low-power micro-processing unit, wireless transceiver unit, large-capacity power unit, and GPS time synchronization unit, can finish the functions such as vibration data collection, initial analysis, data storage, data wireless transmission. Intelligence acquisition equipment, integrated with high-performance computation unit, wireless transceiver unit, mobile power unit and embedded data analysis software, can totally control multi-wireless collection nodes, receive and analyze data, parameter identification. Data is transmitted at the 2.4GHz wireless communication channel, every sensing data channel in charge of data transmission is in a stable frequency band, control channel responsible for the control of power parameters is in a public frequency band. The test is initially conducted for the designed system, experimental results show that the system has good application prospects and practical value with fast arrangement, high sampling rate, high resolution, capacity of low frequency detection.
Progress on the Development of Future Airport Surface Wireless Communications Network
NASA Technical Reports Server (NTRS)
Kerczewski, Robert J.; Budinger, James M.; Brooks, David E.; Franklin, Morgan; DeHart, Steve; Dimond, Robert P.; Borden, Michael
2009-01-01
Continuing advances in airport surface management and improvements in airport surface safety are required to enable future growth in air traffic throughout the airspace, as airport arrival and departure delays create a major system bottleneck. These airport management and safety advances will be built upon improved communications, navigation, surveillance, and weather sensing, creating an information environment supporting system automation. The efficient movement of the digital data generated from these systems requires an underlying communications network infrastructure to connect data sources with the intended users with the required quality of service. Current airport surface communications consists primarily of buried copper or fiber cable. Safety related communications with mobile airport surface assets occurs over 25 kHz VHF voice and data channels. The available VHF spectrum, already congested in many areas, will be insufficient to support future data traffic requirements. Therefore, a broadband wireless airport surface communications network is considered a requirement for the future airport component of the air transportation system. Progress has been made on defining the technology and frequency spectrum for the airport surface wireless communications network. The development of a test and demonstration facility and the definition of required testing and standards development are now underway. This paper will review the progress and planned future work.
The Brave New World of Wireless Technologies: A Primer for Educators.
ERIC Educational Resources Information Center
Boerner, Gerald L.
2002-01-01
Discusses the use of wireless local area networks (WLANs) on college campuses. Highlights include traditional wired networks; cost, speed, and reliability; wireless networking standards; mobility; installation speed, simplicity, and flexibility; reduced cost of ownership; scalability; security issues; and a glossary of WLAN terms. (LRW)
Shipboard Wireless Sensor Networks Utilizing Zigbee Technology
2006-09-01
This thesis studies the feasibility of utilizing Zigbee standard devices to create a shipboard wireless sensor network . Two primary methods were used...the research effort would be a completely wireless sensor network which would result in a net savings in man hours required to maintain and monitor
Modern information technologies in environmental health surveillance. An overview and analysis.
Bédard, Yvan; Henriques, William D
2002-01-01
In recent years we have witnessed the massive introduction of new information technologies that are drastically changing the face of our society. These technologies are being implemented en masse in developed countries, but also in some pockets of developing nations as well. They rely on the convergence of several technologies such as powerful and affordable computers, real-time electronic measurement and monitoring devices, massive production of digital information in different formats, and faster, wireless communication media. Such technologies are having significant impacts on every domain of application, including environmental health surveillance. The current paper provides an overview of those technologies that are having or will likely have the most significant impacts on environmental health. They include World Wide Web-based systems and applications, Database Management Systems and Universal Servers, and GIS and related technologies. The usefulness of these technologies as well as the desire to use them further in the future in the context of environmental health are discussed. Expanding the development and use of these technologies to obtain support for global environmental health will require major efforts in the areas of data access, training and support.
Reduced cost alternatives to premise wiring using ATM and microcellular technologies
NASA Technical Reports Server (NTRS)
Gejji, Raghvendra R.
1993-01-01
The cost of premises wiring keeps increasing due to personnel moves, new equipment, capacity upgrades etc. It would be desirable to have a wireless interface from the workstations to the fixed network, so as to minimize the wiring changes needed. New technologies such as microcellular personal communication systems are promising to bring down the cost of wireless communication. Another promising technology is Code Division Multiple Access (CDMA), which could dramatically increase the bandwidth available for wireless connections. In addition, Asynchronous Transfer Mode (ATM) technology is emerging as a technique for integrated management of voice, data, and video traffic on a single network. The focus of this investigation will be to assess the future utility of these new technologies for reducing the premise wiring cost at KSC. One of the issues to be studied is the cost comparison of 'old' versus 'new,' especially as time and technology progress. An additional issue for closer study is a feasible time-line for progress in technological capability.
Campbell, Robert J; Durigon, Louis
2003-01-01
Increasingly, health care professionals will need to retrieve, store, share, and send data using several types of wireless devices. These devices include personal digital assistants, laptops, Web tablets, cell phones, and clothing that monitor heart rate and blood pressure. Regardless of the device, several standards will vie for the right to provide the wireless communications link between the health care professional and the wired data resources located within a health care organization. This article identifies the top three technologies in the wireless communications field: Wireless Fidelity (WiFi), Mobile Communications, and Bluetooth; breaks down each according to its strengths and weaknesses; and makes recommendations for their use by health care professionals located inside and outside a health care facility. Where appropriate the discussion includes an explication of how a specific technology can be made secure from hackers and other security breeches.
An Overview of the Development of High Temperature Wireless Smart Sensor Technology
NASA Technical Reports Server (NTRS)
Hunter, Gary W.
2014-01-01
The harsh environment inherent in propulsion systems is especially challenging for Smart Sensor Systems; this paper addresses technology development for such applications. A basic sensing system for high temperature wireless pressure monitoring composed of a sensor, electronics, and wireless communication with scavenged power developed for health monitoring of aircraft engines and other high temperature applications has been demonstrated at 475 C. Other efforts will be discussed including a brief overview of the status of high temperature electronics and sensors, as well as their use and applications.
Guarascio-Howard, Linda
2011-01-01
A medical-surgical unit in a southwestern United States hospital examined the results of adding wireless communication technology to assist nurses in identifying patient bed status changes and enhancing team communication. Following the addition of wireless communication, response time to patient calls and the number of nurse-initiated communications were compared to pre-wireless calls and response time sampling period. In the baseline study, nurse-initiated communications and response time to patient calls were investigated for a team nursing model (Guarascio-Howard & Malloch, 2007). At this time, technology consisted of a nurse call system and telephones located at each decentralized nurse station and health unit coordinator (HUC) station. For this follow-up study, a wireless device was given to nurses and their team members following training on device use and privacy issues. Four registered nurses (RNs) were shadowed for 8 hours (32 hours total) before and after the introduction of the wireless devices. Data were collected regarding patient room visits, number of patient calls, bed status calls, response time to calls, and the initiator of the communication episodes. Follow-up study response time to calls significantly decreased (t-test p = .03). RNs and licensed practical nurses responded to bed status calls in less than 1 minute-62% of the 37 calls. Communication results indicated a significant shift (One Proportion Z Test) in RN-initiated communications, suggesting an enhanced ability to communicate with team members and to assist in monitoring patient status. Patient falls trended downward, although not significantly (p > .05), for a 6-month period of wireless technology use compared to the same period the previous year. The addition of a wireless device has advantages in team nursing, namely increasing communication with staff members and decreasing response time to patient and bed status calls. Limitations of the study included a change in caregiver team members and issues regarding wireless device and locator badge compliance. Administrative issues that arose during this field study included bed and cable maintenance, device battery charging, and the training of new and floating team members.
Home and School Technology: Wired versus Wireless.
ERIC Educational Resources Information Center
Van Horn, Royal
2001-01-01
Presents results of informal research on smart homes and appliances, structured home wiring, whole-house audio/video distribution, hybrid cable, and wireless networks. Computer network wiring is tricky to install unless all-in-one jacketed cable is used. Wireless phones help installers avoid pre-wiring problems in homes and schools. (MLH)
The Role of Wireless Computing Technology in the Design of Schools.
ERIC Educational Resources Information Center
Nair, Prakash
2003-01-01
After briefly describing the educational advantages of wireless networks using mobile computers, discusses the technical, operational, financial aspects of wireless local area networks (WLAN). Provides examples of school facilities designed for the use of WLAN. Includes a glossary of WLAN-related terms. (Contains 12 references.)
Mansano, Raul K; Godoy, Eduardo P; Porto, Arthur J V
2014-12-18
Recent advances in wireless networking technology and the proliferation of industrial wireless sensors have led to an increasing interest in using wireless networks for closed loop control. The main advantages of Wireless Networked Control Systems (WNCSs) are the reconfigurability, easy commissioning and the possibility of installation in places where cabling is impossible. Despite these advantages, there are two main problems which must be considered for practical implementations of WNCSs. One problem is the sampling period constraint of industrial wireless sensors. This problem is related to the energy cost of the wireless transmission, since the power supply is limited, which precludes the use of these sensors in several closed-loop controls. The other technological concern in WNCS is the energy efficiency of the devices. As the sensors are powered by batteries, the lowest possible consumption is required to extend battery lifetime. As a result, there is a compromise between the sensor sampling period, the sensor battery lifetime and the required control performance for the WNCS. This paper develops a model-based soft sensor to overcome these problems and enable practical implementations of WNCSs. The goal of the soft sensor is generating virtual data allowing an actuation on the process faster than the maximum sampling period available for the wireless sensor. Experimental results have shown the soft sensor is a solution to the sampling period constraint problem of wireless sensors in control applications, enabling the application of industrial wireless sensors in WNCSs. Additionally, our results demonstrated the soft sensor potential for implementing energy efficient WNCS through the battery saving of industrial wireless sensors.
High Fidelity Simulations of Large-Scale Wireless Networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Onunkwo, Uzoma; Benz, Zachary
The worldwide proliferation of wireless connected devices continues to accelerate. There are 10s of billions of wireless links across the planet with an additional explosion of new wireless usage anticipated as the Internet of Things develops. Wireless technologies do not only provide convenience for mobile applications, but are also extremely cost-effective to deploy. Thus, this trend towards wireless connectivity will only continue and Sandia must develop the necessary simulation technology to proactively analyze the associated emerging vulnerabilities. Wireless networks are marked by mobility and proximity-based connectivity. The de facto standard for exploratory studies of wireless networks is discrete event simulationsmore » (DES). However, the simulation of large-scale wireless networks is extremely difficult due to prohibitively large turnaround time. A path forward is to expedite simulations with parallel discrete event simulation (PDES) techniques. The mobility and distance-based connectivity associated with wireless simulations, however, typically doom PDES and fail to scale (e.g., OPNET and ns-3 simulators). We propose a PDES-based tool aimed at reducing the communication overhead between processors. The proposed solution will use light-weight processes to dynamically distribute computation workload while mitigating communication overhead associated with synchronizations. This work is vital to the analytics and validation capabilities of simulation and emulation at Sandia. We have years of experience in Sandia’s simulation and emulation projects (e.g., MINIMEGA and FIREWHEEL). Sandia’s current highly-regarded capabilities in large-scale emulations have focused on wired networks, where two assumptions prevent scalable wireless studies: (a) the connections between objects are mostly static and (b) the nodes have fixed locations.« less
NASA Astrophysics Data System (ADS)
Jian, Wei; Estevez, Claudio; Chowdhury, Arshad; Jia, Zhensheng; Wang, Jianxin; Yu, Jianguo; Chang, Gee-Kung
2010-12-01
This paper presents an energy-efficient Medium Access Control (MAC) protocol for very-high-throughput millimeter-wave (mm-wave) wireless sensor communication networks (VHT-MSCNs) based on hybrid multiple access techniques of frequency division multiplexing access (FDMA) and time division multiplexing access (TDMA). An energy-efficient Superframe for wireless sensor communication network employing directional mm-wave wireless access technologies is proposed for systems that require very high throughput, such as high definition video signals, for sensing, processing, transmitting, and actuating functions. Energy consumption modeling for each network element and comparisons among various multi-access technologies in term of power and MAC layer operations are investigated for evaluating the energy-efficient improvement of proposed MAC protocol.
ERIC Educational Resources Information Center
Briggs, Linda L.
2006-01-01
Wireless and mobile technologies are now everywhere, and 24/7 computing is as pervasive a term as the actual capability promises to be. Sometimes, in fact, the push toward mobile technologies can seem overwhelming. But every wireless project doesn't have to involve redesigning the network and investing in mega-dollars worth of hardware and…
An Introduction to Current Trends and Benefits of Mobile Wireless Technology Use in Higher Education
ERIC Educational Resources Information Center
Kim, Sang Hyun; Mims, Clif; Holmes, Kerry P.
2006-01-01
The development of mobile wireless technologies has generated a considerable amount of excitement among practitioners and academics because it results in shifting the academic environment from traditional settings to mobile learning (m-learning) settings. Increasing numbers of institutions of higher education offer courses using mobile wireless…
ERIC Educational Resources Information Center
Juliano, Benjoe A.; Sheel, Stephen J.
In this paper, potential applications of wireless data communications and mobile satellite technology are described which aim at improving education. The motivation behind this work is that the technology now exists for providing today's teachers and students with not only better access to educational facilities, but also instantaneous…
Ubiquitous wireless ECG recording: a powerful tool physicians should embrace.
Saxon, Leslie A
2013-04-01
The use of smart phones has increased dramatically and there are nearly a billion users on 3G and 4G networks worldwide. Nearly 60% of the U.S. population uses smart phones to access the internet, and smart phone sales now surpass those of desktop and laptop computers. The speed of wireless communication technology on 3G and 4G networks and the widespread adoption and use of iOS equipped smart phones (Apple Inc., Cupertino, CA, USA) provide infrastructure for the transmission of wireless biomedical data, including ECG data. These technologies provide an unprecedented opportunity for physicians to continually access data that can be used to detect issues before symptoms occur or to have definitive data when symptoms are present. The technology also greatly empowers and enables the possibility for unprecedented patient participation in their own medical education and health status as well as that of their social network. As patient advocates, physicians and particularly cardiac electrophysiologists should embrace the future and promise of wireless ECG recording, a technology solution that can truly scale across the global population. © 2013 Wiley Periodicals, Inc.
Using RFID Positioning Technology to Construct an Automatic Rehabilitation Scheduling Mechanism.
Wang, Ching-Sheng; Hung, Lun-Ping; Yen, Neil Y
2016-01-01
Accurately and efficiently identifying the location of patients during the course of rehabilitation is an important issue. Wireless transmission technology can reach this goal. Tracking technologies such as RFID (Radio frequency identification) can support process improvement and improve efficiencies of rehabilitation. There are few published models or methods to solve the problem of positioning and apply this technology in the rehabilitation center. We propose a mechanism to enhance the accuracy of positioning technology and provide information about turns and obstacles on the path; and user-centered services based on location-aware to enhanced quality care in rehabilitation environment. This paper outlines the requirements and the role of RFID in assisting rehabilitation environment. A prototype RFID hospital support tool is established. It is designed to provide assistance for monitoring rehabilitation patients. It can simultaneously calculate the rehabilitant's location and the duration of treatment, and automatically record the rehabilitation course of the rehabilitant, so as to improve the management efficiency of the rehabilitation program.
A Low-Cost Wireless Multi-Presentation on Single Screen in Classroom Using Raspberry Pi
ERIC Educational Resources Information Center
Yulianto, Budi; Layona, Rita; Dewi, Lusiana Citra
2017-01-01
Smartphone has become a daily necessity in supporting the mobility of users, including teachers and students. The need of users to make multi-presentation via a smartphone wirelessly does not fit with the cost and multiplatform support. This study aims to produce a solution by using Raspberry Pi as a wireless digital media player that will be…
Performance analysis of LDPC codes on OOK terahertz wireless channels
NASA Astrophysics Data System (ADS)
Chun, Liu; Chang, Wang; Jun-Cheng, Cao
2016-02-01
Atmospheric absorption, scattering, and scintillation are the major causes to deteriorate the transmission quality of terahertz (THz) wireless communications. An error control coding scheme based on low density parity check (LDPC) codes with soft decision decoding algorithm is proposed to improve the bit-error-rate (BER) performance of an on-off keying (OOK) modulated THz signal through atmospheric channel. The THz wave propagation characteristics and channel model in atmosphere is set up. Numerical simulations validate the great performance of LDPC codes against the atmospheric fading and demonstrate the huge potential in future ultra-high speed beyond Gbps THz communications. Project supported by the National Key Basic Research Program of China (Grant No. 2014CB339803), the National High Technology Research and Development Program of China (Grant No. 2011AA010205), the National Natural Science Foundation of China (Grant Nos. 61131006, 61321492, and 61204135), the Major National Development Project of Scientific Instrument and Equipment (Grant No. 2011YQ150021), the National Science and Technology Major Project (Grant No. 2011ZX02707), the International Collaboration and Innovation Program on High Mobility Materials Engineering of the Chinese Academy of Sciences, and the Shanghai Municipal Commission of Science and Technology (Grant No. 14530711300).
Wireless Roadside Inspection Proof of Concept Test Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Capps, Gary J; Franzese, Oscar; Knee, Helmut E
2009-03-01
The U.S. Department of Transportation (DOT) FMCSA commissioned the Wireless Roadside Inspection (WRI) Program to validate technologies and methodologies that can improve safety through inspections using wireless technologies that convey real-time identification of commercial vehicles, drivers, and carriers, as well as information about the condition of the vehicles and their drivers. It is hypothesized that these inspections will: -- Increase safety -- Decrease the number of unsafe commercial vehicles on the road; -- Increase efficiency -- Speed up the inspection process, enabling more inspections to occur, at least on par with the number of weight inspections; -- Improve effectiveness --more » Reduce the probability of drivers bypassing CMV inspection stations and increase the likelihood that fleets will attempt to meet the safety regulations; and -- Benefit industry -- Reduce fleet costs, provide good return-on-investment, minimize wait times, and level the playing field. The WRI Program is defined in three phases which are: Phase 1: Proof of Concept Test (POC) Testing of commercially available off-the-shelf (COTS) or near-COTS technology to validate the wireless inspection concept. Phase 2: Pilot Test Safety technology maturation and back office system integration Phase 3: Field Operational Test Multi-vehicle testing over a multi-state instrumented corridor This report focuses on Phase 1 efforts that were initiated in March, 2006. Technical efforts dealt with the ability of a Universal Wireless Inspection System (UWIS) to collect driver, vehicle, and carrier information; format a Safety Data Message Set from this information; and wirelessly transmit a Safety Data Message Set to a roadside receiver unit or mobile enforcement vehicle.« less
A Fast and Scalable Algorithm for Calculating the Achievable Capacity of a Wireless Mesh Network
2016-04-10
to interference from a given transmission . We then use our algorithm to perform a network capacity analysis comparing different wireless technologies...A Fast and Scalable Algorithm for Calculating the Achievable Capacity of a Wireless Mesh Network Greg Kuperman, Jun Sun, and Aradhana Narula-Tam MIT...the maximum achievable capacity of a multi-hop wireless mesh network subject to interference constraints. Being able to quickly determine the maximum
Highly Directive Reflect Array Antenna Design for Wireless Power Transfer
2017-04-14
AFRL-AFOSR-JP-TR-2017-0033 Highly Directive Reflect Array Antenna Design for Wireless Power Transfer Siddhartha Prakash Duttagupta INDIAN INSTITUTE...Directive Reflect Array Antenna Design for Wireless Power Transfer 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA2386-14-1-4076 5c. PROGRAM ELEMENT NUMBER...Antenna Design for Wireless Power Principal Investigator: SP Duttagupta Email: sdgupta@ee.iitb.ac.in Institution: Indian Institute of Technology
Use of a wireless local area network in an orthodontic clinic.
Mupparapu, Muralidhar; Binder, Robert E; Cummins, John M
2005-06-01
Radiographic images and other patient records, including medical histories, demographics, and health insurance information, can now be stored digitally and accessed via patient management programs. However, digital image acquisition and diagnosis and treatment planning are independent tasks, and each is time consuming, especially when performed at different computer workstations. Networking or linking the computers in an office enhances access to imaging and treatment planning tools. Access can be further enhanced if the entire network is wireless. Thanks to wireless technology, stand-alone, desk-bound personal computers have been replaced with mobile, hand-held devices that can communicate with each other and the rest of the world via the Internet. As with any emerging technology, some issues should be kept in mind when adapting to the wireless environment. Foremost is network security. Second is the choice of mobile hardware devices that are used by the orthodontist, office staff, and patients. This article details the standards and choices in wireless technology that can be implemented in an orthodontic clinic and suggests how to select suitable mobile hardware for accessing or adding data to a preexisting network. The network security protocols discussed comply with HIPAA regulations and boost the efficiency of a modern orthodontic clinic.
NASA Technical Reports Server (NTRS)
DeCristofaro, Michael A.; Lansdowne, Chatwin A.; Schlesinger, Adam M.
2014-01-01
NASA has identified standardized wireless mesh networking as a key technology for future human and robotic space exploration. Wireless mesh networks enable rapid deployment, provide coverage in undeveloped regions. Mesh networks are also self-healing, resilient, and extensible, qualities not found in traditional infrastructure-based networks. Mesh networks can offer lower size, weight, and power (SWaP) than overlapped infrastructure-perapplication. To better understand the maturity, characteristics and capability of the technology, we developed an 802.11 mesh network consisting of a combination of heterogeneous commercial off-the-shelf devices and opensource firmware and software packages. Various streaming applications were operated over the mesh network, including voice and video, and performance measurements were made under different operating scenarios. During the testing several issues with the currently implemented mesh network technology were identified and outlined for future work.
Launching a Wireless Laptop Program
ERIC Educational Resources Information Center
Grignano, Domenic
2007-01-01
In this article, the author, as a technology director for East Rock Magnet School in New Haven, Connecticut, a federal government test site for laptop learning, shares his secrets to a successful implementation of a wireless laptop program: (1) Build a wireless foundation; (2) Do not choose the cheapest model just because of budget; (3) A sturdy…
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
This guide provides federal facility managers with an overview of the energy savings potential of wireless lighting occupancy sensors for various room types, cost considerations, key steps to successful installation of wireless sensors, pros and cons of various technology options, light source considerations, and codes and standards.
Wireless system for monitoring Intra-abdominal pressure in patient with severe abdominal pathology
NASA Astrophysics Data System (ADS)
Sokolovskiy, S. S.; Shtotskiy, Y. V.; Leljanov, A. D.
2017-01-01
The paper discusses an experimental design of the wireless system for monitoring intra-abdominal pressure (IAP) using Bluetooth Low Energy technology. The possibility of measuring IAP via the bladder using a wireless pressure sensor with a hydrophobic bacteria filter between the liquid transmitting medium and the sensor element is grounded.
Towards Mitigating Heterogeneous Wireless Interference in Spectrum Bands with Unlicensed Access
ERIC Educational Resources Information Center
Nychis, George P.
2013-01-01
In the past two decades, we have seen an unprecedented rise in unlicensed wireless devices and applications of wireless technology. To meet various application constraints, we continually customize the radios and their protocols to the application domain which has led to significant diversity in spectrum use. Unfortunately, this diversity (coupled…
``Low Power Wireless Technologies: An Approach to Medical Applications''
NASA Astrophysics Data System (ADS)
Bellido O., Francisco J.; González R., Miguel; Moreno M., Antonio; de La Cruz F, José Luis
Wireless communication supposed a great both -quantitative and qualitative, jump in the management of the information, allowing the access and interchange of it without the need of a physical cable connection. The wireless transmission of voice and information has remained in constant evolution, arising new standards like BluetoothTM, WibreeTM or ZigbeeTM developed under the IEEE 802.15 norm. These newest wireless technologies are oriented to systems of communication of short-medium distance and optimized for a low cost and minor consume, becoming recognized as a flexible and reliable medium for data communications across a broad range of applications due to the potential that the wireless networks presents to operate in demanding environments providing clear advantages in cost, size, power, flexibility, and distributed intelligence. About the medical applications, the remote health or telecare (also called eHealth) is getting a bigger place into the manufacturers and medical companies, in order to incorporate products for assisted living and remote monitoring of health parameteres. At this point, the IEEE 1073, Personal Health Devices Working Group, stablish the framework for these kind of applications. Particularly, the 1073.3.X describes the physical and transport layers, where the new ultra low power short range wireless technologies can play a big role, providing solutions that allow the design of products which are particularly appropriate for monitor people’s health with interoperability requirements.
A Wireless Passive Sensing System for Displacement/Strain Measurement in Reinforced Concrete Members
Ozbey, Burak; Erturk, Vakur B.; Demir, Hilmi Volkan; Altintas, Ayhan; Kurc, Ozgur
2016-01-01
In this study, we show a wireless passive sensing system embedded in a reinforced concrete member successfully being employed for the measurement of relative displacement and strain in a simply supported beam experiment. The system utilizes electromagnetic coupling between the transceiver antenna located outside the beam, and the sensing probes placed on the reinforcing bar (rebar) surface inside the beam. The probes were designed in the form of a nested split-ring resonator, a metamaterial-based structure chosen for its compact size and high sensitivity/resolution, which is at µm/microstrains level. Experiments were performed in both the elastic and plastic deformation cases of steel rebars, and the sensing system was demonstrated to acquire telemetric data in both cases. The wireless measurement results from multiple probes are compared with the data obtained from the strain gages, and an excellent agreement is observed. A discrete time measurement where the system records data at different force levels is also shown. Practical issues regarding the placement of the sensors and accurate recording of data are discussed. The proposed sensing technology is demonstrated to be a good candidate for wireless structural health monitoring (SHM) of reinforced concrete members by its high sensitivity and wide dynamic range. PMID:27070615
Garrett, Bernard Mark; Jackson, Cathryn
2006-12-01
This paper outlines the development and evaluation of a wireless personal digital assistant (PDA) based clinical learning tool designed to promote professional reflection for health professionals. The "Clinical e-portfolio" was developed at the University of British Columbia School of Nursing to enable students immediately to access clinical expertise and resources remotely, and record their clinical experiences in a variety of media (text, audio and images). The PDA e-portfolio tool was developed to demonstrate the potential use of mobile networked technologies to support and improve clinical learning; promote reflective learning in practice; engage students in the process of knowledge translation; help contextualize and embed clinical knowledge whilst in the workplace; and to help prevent the isolation of students whilst engaged in supervised clinical practice. The mobile e-portfolio was developed to synchronise wirelessly with a user's personal Web based portfolio from any remote location where a cellular telephone signal or wireless (Wi-Fi) connection could be obtained. An evaluation of the tool was undertaken with nurse practitioner and medical students, revealing positive attitudes to the use of PDA based tools and portfolios, but limits to the use of the PDA portfolio due to the inherent interface restrictions of the PDA.
Convergence of broadband optical and wireless access networks
NASA Astrophysics Data System (ADS)
Chang, Gee-Kung; Jia, Zhensheng; Chien, Hung-Chang; Chowdhury, Arshad; Hsueh, Yu-Ting; Yu, Jianjun
2009-01-01
This paper describes convergence of optical and wireless access networks for delivering high-bandwidth integrated services over optical fiber and air links. Several key system technologies are proposed and experimentally demonstrated. We report here, for the first ever, a campus-wide field trial demonstration of radio-over-fiber (RoF) system transmitting uncompressed standard-definition (SD) high-definition (HD) real-time video contents, carried by 2.4-GHz radio and 60- GHz millimeter-wave signals, respectively, over 2.5-km standard single mode fiber (SMF-28) through the campus fiber network at Georgia Institute of Technology (GT). In addition, subsystem technologies of Base Station and wireless tranceivers operated at 60 GHz for real-time video distribution have been developed and tested.
Planning and Management of Real-Time Geospatialuas Missions Within a Virtual Globe Environment
NASA Astrophysics Data System (ADS)
Nebiker, S.; Eugster, H.; Flückiger, K.; Christen, M.
2011-09-01
This paper presents the design and development of a hardware and software framework supporting all phases of typical monitoring and mapping missions with mini and micro UAVs (unmanned aerial vehicles). The developed solution combines state-of-the art collaborative virtual globe technologies with advanced geospatial imaging techniques and wireless data link technologies supporting the combined and highly reliable transmission of digital video, high-resolution still imagery and mission control data over extended operational ranges. The framework enables the planning, simulation, control and real-time monitoring of UAS missions in application areas such as monitoring of forest fires, agronomical research, border patrol or pipeline inspection. The geospatial components of the project are based on the Virtual Globe Technology i3D OpenWebGlobe of the Institute of Geomatics Engineering at the University of Applied Sciences Northwestern Switzerland (FHNW). i3D OpenWebGlobe is a high-performance 3D geovisualisation engine supporting the web-based streaming of very large amounts of terrain and POI data.
Performance Analysis of IIUM Wireless Campus Network
NASA Astrophysics Data System (ADS)
Abd Latif, Suhaimi; Masud, Mosharrof H.; Anwar, Farhat
2013-12-01
International Islamic University Malaysia (IIUM) is one of the leading universities in the world in terms of quality of education that has been achieved due to providing numerous facilities including wireless services to every enrolled student. The quality of this wireless service is controlled and monitored by Information Technology Division (ITD), an ISO standardized organization under the university. This paper aims to investigate the constraints of wireless campus network of IIUM. It evaluates the performance of the IIUM wireless campus network in terms of delay, throughput and jitter. QualNet 5.2 simulator tool has employed to measure these performances of IIUM wireless campus network. The observation from the simulation result could be one of the influencing factors in improving wireless services for ITD and further improvement.
A survey of system architecture requirements for health care-based wireless sensor networks.
Egbogah, Emeka E; Fapojuwo, Abraham O
2011-01-01
Wireless Sensor Networks (WSNs) have emerged as a viable technology for a vast number of applications, including health care applications. To best support these health care applications, WSN technology can be adopted for the design of practical Health Care WSNs (HCWSNs) that support the key system architecture requirements of reliable communication, node mobility support, multicast technology, energy efficiency, and the timely delivery of data. Work in the literature mostly focuses on the physical design of the HCWSNs (e.g., wearable sensors, in vivo embedded sensors, et cetera). However, work towards enhancing the communication layers (i.e., routing, medium access control, et cetera) to improve HCWSN performance is largely lacking. In this paper, the information gleaned from an extensive literature survey is shared in an effort to fortify the knowledge base for the communication aspect of HCWSNs. We highlight the major currently existing prototype HCWSNs and also provide the details of their routing protocol characteristics. We also explore the current state of the art in medium access control (MAC) protocols for WSNs, for the purpose of seeking an energy efficient solution that is robust to mobility and delivers data in a timely fashion. Furthermore, we review a number of reliable transport layer protocols, including a network coding based protocol from the literature, that are potentially suitable for delivering end-to-end reliability of data transmitted in HCWSNs. We identify the advantages and disadvantages of the reviewed MAC, routing, and transport layer protocols as they pertain to the design and implementation of a HCWSN. The findings from this literature survey will serve as a useful foundation for designing a reliable HCWSN and also contribute to the development and evaluation of protocols for improving the performance of future HCWSNs. Open issues that required further investigations are highlighted.
Mansano, Raul K.; Godoy, Eduardo P.; Porto, Arthur J. V.
2014-01-01
Recent advances in wireless networking technology and the proliferation of industrial wireless sensors have led to an increasing interest in using wireless networks for closed loop control. The main advantages of Wireless Networked Control Systems (WNCSs) are the reconfigurability, easy commissioning and the possibility of installation in places where cabling is impossible. Despite these advantages, there are two main problems which must be considered for practical implementations of WNCSs. One problem is the sampling period constraint of industrial wireless sensors. This problem is related to the energy cost of the wireless transmission, since the power supply is limited, which precludes the use of these sensors in several closed-loop controls. The other technological concern in WNCS is the energy efficiency of the devices. As the sensors are powered by batteries, the lowest possible consumption is required to extend battery lifetime. As a result, there is a compromise between the sensor sampling period, the sensor battery lifetime and the required control performance for the WNCS. This paper develops a model-based soft sensor to overcome these problems and enable practical implementations of WNCSs. The goal of the soft sensor is generating virtual data allowing an actuation on the process faster than the maximum sampling period available for the wireless sensor. Experimental results have shown the soft sensor is a solution to the sampling period constraint problem of wireless sensors in control applications, enabling the application of industrial wireless sensors in WNCSs. Additionally, our results demonstrated the soft sensor potential for implementing energy efficient WNCS through the battery saving of industrial wireless sensors. PMID:25529208
NASA Astrophysics Data System (ADS)
Hayami, Hajime; Takehara, Hiroaki; Nagata, Kengo; Haruta, Makito; Noda, Toshihiko; Sasagawa, Kiyotaka; Tokuda, Takashi; Ohta, Jun
2016-04-01
Intra body communication technology allows the fabrication of compact implantable biomedical sensors compared with RF wireless technology. In this paper, we report the fabrication of an implantable image sensor of 625 µm width and 830 µm length and the demonstration of wireless image-data transmission through a brain tissue of a living mouse. The sensor was designed to transmit output signals of pixel values by pulse width modulation (PWM). The PWM signals from the sensor transmitted through a brain tissue were detected by a receiver electrode. Wireless data transmission of a two-dimensional image was successfully demonstrated in a living mouse brain. The technique reported here is expected to provide useful methods of data transmission using micro sized implantable biomedical sensors.
Resource Optimization Scheme for Multimedia-Enabled Wireless Mesh Networks
Ali, Amjad; Ahmed, Muhammad Ejaz; Piran, Md. Jalil; Suh, Doug Young
2014-01-01
Wireless mesh networking is a promising technology that can support numerous multimedia applications. Multimedia applications have stringent quality of service (QoS) requirements, i.e., bandwidth, delay, jitter, and packet loss ratio. Enabling such QoS-demanding applications over wireless mesh networks (WMNs) require QoS provisioning routing protocols that lead to the network resource underutilization problem. Moreover, random topology deployment leads to have some unused network resources. Therefore, resource optimization is one of the most critical design issues in multi-hop, multi-radio WMNs enabled with multimedia applications. Resource optimization has been studied extensively in the literature for wireless Ad Hoc and sensor networks, but existing studies have not considered resource underutilization issues caused by QoS provisioning routing and random topology deployment. Finding a QoS-provisioned path in wireless mesh networks is an NP complete problem. In this paper, we propose a novel Integer Linear Programming (ILP) optimization model to reconstruct the optimal connected mesh backbone topology with a minimum number of links and relay nodes which satisfies the given end-to-end QoS demands for multimedia traffic and identification of extra resources, while maintaining redundancy. We further propose a polynomial time heuristic algorithm called Link and Node Removal Considering Residual Capacity and Traffic Demands (LNR-RCTD). Simulation studies prove that our heuristic algorithm provides near-optimal results and saves about 20% of resources from being wasted by QoS provisioning routing and random topology deployment. PMID:25111241
Resource optimization scheme for multimedia-enabled wireless mesh networks.
Ali, Amjad; Ahmed, Muhammad Ejaz; Piran, Md Jalil; Suh, Doug Young
2014-08-08
Wireless mesh networking is a promising technology that can support numerous multimedia applications. Multimedia applications have stringent quality of service (QoS) requirements, i.e., bandwidth, delay, jitter, and packet loss ratio. Enabling such QoS-demanding applications over wireless mesh networks (WMNs) require QoS provisioning routing protocols that lead to the network resource underutilization problem. Moreover, random topology deployment leads to have some unused network resources. Therefore, resource optimization is one of the most critical design issues in multi-hop, multi-radio WMNs enabled with multimedia applications. Resource optimization has been studied extensively in the literature for wireless Ad Hoc and sensor networks, but existing studies have not considered resource underutilization issues caused by QoS provisioning routing and random topology deployment. Finding a QoS-provisioned path in wireless mesh networks is an NP complete problem. In this paper, we propose a novel Integer Linear Programming (ILP) optimization model to reconstruct the optimal connected mesh backbone topology with a minimum number of links and relay nodes which satisfies the given end-to-end QoS demands for multimedia traffic and identification of extra resources, while maintaining redundancy. We further propose a polynomial time heuristic algorithm called Link and Node Removal Considering Residual Capacity and Traffic Demands (LNR-RCTD). Simulation studies prove that our heuristic algorithm provides near-optimal results and saves about 20% of resources from being wasted by QoS provisioning routing and random topology deployment.
Final Scientific Report - Wireless and Sensing Solutions Advancing Industrial Efficiency
DOE Office of Scientific and Technical Information (OSTI.GOV)
Budampati, Rama; McBrady, Adam; Nusseibeh, Fouad
2009-09-28
The project team's goal for the Wireless and Sensing Solution Advancing Industrial Efficiency award (DE-FC36-04GO14002) was to develop, demonstrate, and test a number of leading edge technologies that could enable the emergence of wireless sensor and sampling systems for the industrial market space. This effort combined initiatives in advanced sensor development, configurable sampling and deployment platforms, and robust wireless communications to address critical obstacles in enabling enhanced industrial efficiency.
Development and application of a modified wireless tracer for disaster prevention
NASA Astrophysics Data System (ADS)
Chung Yang, Han; Su, Chih Chiang
2016-04-01
Typhoon-induced flooding causes water overflow in a river channel, which results in general and bridge scour and soil erosion, thus leading to bridge failure, debris flow and landslide collapse. Therefore, dynamic measurement technology should be developed to assess scour in channels and landslide as a disaster-prevention measure against bridge failure and debris flow. This paper presents a wireless tracer that enables monitoring general scour in river channels and soil erosion in hillsides. The wireless tracer comprises a wireless high-power radio modem, various electronic components, and a self-designed printed circuit board that are all combined with a 9-V battery pack and an auto switch. The entire device is sealed in a jar by silicon. After it was modified, the wireless tracer underwent the following tests for practical applications: power continuation and durability, water penetration, and signal transmission during floating. A regression correlation between the wireless tracer's transmission signal and distance was also established. This device can be embedded at any location where scouring is monitored, and, in contrast to its counterparts that detect scour depth by identifying and analyzing received signals, it enables real-time observation of the scouring process. In summary, the wireless tracer developed in this study provides a dynamic technology for real-time monitoring of scouring (or erosion) and forecasting of landslide hazards. Keywords: wireless tracer; scour; real-time monitoring; landslide hazard.
Locatelli, Paolo; Montefusco, Vittorio; Sini, Elena; Restifo, Nicola; Facchini, Roberta; Torresani, Michele
2013-01-01
The volume and the complexity of clinical and administrative information make Information and Communication Technologies (ICTs) essential for running and innovating healthcare. This paper tells about a project aimed to design, develop and implement a set of organizational models, acknowledged procedures and ICT tools (Mobile & Wireless solutions and Automatic Identification and Data Capture technologies) to improve actual support, safety, reliability and traceability of a specific therapy management (stem cells). The value of the project is to design a solution based on mobile and identification technology in tight collaboration with physicians and actors involved in the process to ensure usability and effectivenes in process management.
Technologies for Achieving Field Ubiquitous Computing
NASA Astrophysics Data System (ADS)
Nagashima, Akira
Although the term “ubiquitous” may sound like jargon used in information appliances, ubiquitous computing is an emerging concept in industrial automation. This paper presents the author's visions of field ubiquitous computing, which is based on the novel Internet Protocol IPv6. IPv6-based instrumentation will realize the next generation manufacturing excellence. This paper focuses on the following five key issues: 1. IPv6 standardization; 2. IPv6 interfaces embedded in field devices; 3. Compatibility with FOUNDATION fieldbus; 4. Network securities for field applications; and 5. Wireless technologies to complement IP instrumentation. Furthermore, the principles of digital plant operations and ubiquitous production to support the above key technologies to achieve field ubiquitous systems are discussed.
NASA Astrophysics Data System (ADS)
Geng, Xinli; Xu, Hao; Qin, Xiaowei
2016-10-01
During the last several years, the amount of wireless network traffic data increased fast and relative technologies evolved rapidly. In order to improve the performance and Quality of Experience (QoE) of wireless network services, the analysis of field network data and existing delivery mechanisms comes to be a promising research topic. In order to achieve this goal, a smartphone based platform named Monitor and Diagnosis of Mobile Applications (MDMA) was developed to collect field data. Based on this tool, the web browsing service of High Speed Downlink Packet Access (HSDPA) network was tested. The top 200 popular websites in China were selected and loaded on smartphone for thousands times automatically. Communication packets between the smartphone and the cell station were captured for various scenarios (e.g. residential area, urban roads, bus station etc.) in the selected city. A cross-layer database was constructed to support the off-line analysis. Based on the results of client-side experiments and analysis, the usability of proposed portable tool was verified. The preliminary findings and results for existing web browsing service were also presented.
Mobile and static sensors in a citizen-based observatory of water
NASA Astrophysics Data System (ADS)
Brauchli, Tristan; Weijs, Steven V.; Lehning, Michael; Huwald, Hendrik
2014-05-01
Understanding and forecasting water resources and components of the water cycle require spatially and temporally resolved observations of numerous water-related variables. Such observations are often obtained from wireless networks of automated weather stations. The "WeSenseIt" project develops a citizen- and community-based observatory of water to improve the water and risk management at the catchment scale and to support decision-making of stakeholders. It is implemented in three case studies addressing various questions related to flood, drought, water resource management, water quality and pollution. Citizens become potential observers and may transmit water-related measurements and information. Combining the use of recent technologies (wireless communication, internet, smartphone) with the development of innovative low cost sensors enables the implementation of heterogeneous observatories, which (a) empower citizens and (b) expand and complement traditional operational sensing networks. With the goal of increasing spatial coverage of observations and decreasing cost for sensors, this study presents the examples of measuring (a) flow velocity in streams using smartphones and (b) sensible heat flux using simple sensors at the nodes of wireless sensor networks.
Cai, Jun; Deng, Yun; Yang, Junfeng; Zhou, Xinmin; Tan, Lina
2018-01-01
Reducing costs is a pragmatic method for promoting the widespread usage of indoor localization technology. Conventional indoor localization systems (ILSs) exploit relatively expensive wireless chips to measure received signal strength for positioning. Our work is based on a cheap and widely-used commercial off-the-shelf (COTS) wireless chip, i.e., the Nordic Semiconductor nRF24LE1, which has only several output power levels, and proposes a new power level based-ILS, called Plils. The localization procedure incorporates two phases: an offline training phase and an online localization phase. In the offline training phase, a self-organizing map (SOM) is utilized for dividing a target area into k subregions, wherein their grids in the same subregion have similar fingerprints. In the online localization phase, the support vector machine (SVM) and back propagation (BP) neural network methods are adopted to identify which subregion a tagged object is located in, and calculate its exact location, respectively. The reasonable value for k has been discussed as well. Our experiments show that Plils achieves 75 cm accuracy on average, and is robust to indoor obstacles. PMID:29329226
Li, Xiaolong; Yang, Yifu; Cai, Jun; Deng, Yun; Yang, Junfeng; Zhou, Xinmin; Tan, Lina
2018-01-12
Reducing costs is a pragmatic method for promoting the widespread usage of indoor localization technology. Conventional indoor localization systems (ILSs) exploit relatively expensive wireless chips to measure received signal strength for positioning. Our work is based on a cheap and widely-used commercial off-the-shelf (COTS) wireless chip, i.e., the Nordic Semiconductor nRF24LE1, which has only several output power levels, and proposes a new power level based-ILS, called Plils. The localization procedure incorporates two phases: an offline training phase and an online localization phase. In the offline training phase, a self-organizing map (SOM) is utilized for dividing a target area into k subregions, wherein their grids in the same subregion have similar fingerprints. In the online localization phase, the support vector machine (SVM) and back propagation (BP) neural network methods are adopted to identify which subregion a tagged object is located in, and calculate its exact location, respectively. The reasonable value for k has been discussed as well. Our experiments show that Plils achieves 75 cm accuracy on average, and is robust to indoor obstacles.
Wireless Instrumentation Systems for Flight Testing at NASA AFRC
NASA Technical Reports Server (NTRS)
Hang, Richard
2017-01-01
NASA Armstrong Flight Research Center is revolutionizing its traditional wired instrumentation systems with wireless technologies. This effort faces many technical challenges, such as spectrum compliance, time synchronization, power distribution and airworthiness. This presentation summarizes NASA AFRC's flight test capabilities with current conventional instrumentation methodology and highlights the technical challenges of wireless systems used for flight test research applications.
NREL, EasyMile Collaboration to Usher in New Wave of Autonomous Vehicle R&D
technology such as wireless charging, connected and managed charging, and advanced energy storage. EasyMile International Airport. The NREL collaboration will explore opportunities for how wireless charging could enable wireless charging are a natural fit with autonomous and connected vehicles. We're excited this opportunity
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-07
..., including the use of automated collection techniques or other forms of information technology, and (e) ways... Stations (Including Wireless Microphones). Form No.: N/A. Type of Review: Revision of a currently approved... wireless microphones and provide them a home in the core TV spectrum, where many wireless microphones are...
Invisible Bridges: Wireless Technology Links Minds over Space and Time
ERIC Educational Resources Information Center
Lambert, Lori
2004-01-01
Eight years after Chief Sitting Bull, prophetic chief of the Great Sioux Nation, was assassinated in 1890, Guglielmo Marconi transmitted the first wireless telegraph signals across the Atlantic to England. Although these two events seem unrelated, the names of these two men of vision are linked together today by Marconi's wireless invention. Data,…
Intelligent Control in Automation Based on Wireless Traffic Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurt Derr; Milos Manic
2007-09-01
Wireless technology is a central component of many factory automation infrastructures in both the commercial and government sectors, providing connectivity among various components in industrial realms (distributed sensors, machines, mobile process controllers). However wireless technologies provide more threats to computer security than wired environments. The advantageous features of Bluetooth technology resulted in Bluetooth units shipments climbing to five million per week at the end of 2005 [1, 2]. This is why the real-time interpretation and understanding of Bluetooth traffic behavior is critical in both maintaining the integrity of computer systems and increasing the efficient use of this technology in controlmore » type applications. Although neuro-fuzzy approaches have been applied to wireless 802.11 behavior analysis in the past, a significantly different Bluetooth protocol framework has not been extensively explored using this technology. This paper presents a new neurofuzzy traffic analysis algorithm of this still new territory of Bluetooth traffic. Further enhancements of this algorithm are presented along with the comparison against the traditional, numerical approach. Through test examples, interesting Bluetooth traffic behavior characteristics were captured, and the comparative elegance of this computationally inexpensive approach was demonstrated. This analysis can be used to provide directions for future development and use of this prevailing technology in various control type applications, as well as making the use of it more secure.« less
Intelligent Control in Automation Based on Wireless Traffic Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurt Derr; Milos Manic
Wireless technology is a central component of many factory automation infrastructures in both the commercial and government sectors, providing connectivity among various components in industrial realms (distributed sensors, machines, mobile process controllers). However wireless technologies provide more threats to computer security than wired environments. The advantageous features of Bluetooth technology resulted in Bluetooth units shipments climbing to five million per week at the end of 2005 [1, 2]. This is why the real-time interpretation and understanding of Bluetooth traffic behavior is critical in both maintaining the integrity of computer systems and increasing the efficient use of this technology in controlmore » type applications. Although neuro-fuzzy approaches have been applied to wireless 802.11 behavior analysis in the past, a significantly different Bluetooth protocol framework has not been extensively explored using this technology. This paper presents a new neurofuzzy traffic analysis algorithm of this still new territory of Bluetooth traffic. Further enhancements of this algorithm are presented along with the comparison against the traditional, numerical approach. Through test examples, interesting Bluetooth traffic behavior characteristics were captured, and the comparative elegance of this computationally inexpensive approach was demonstrated. This analysis can be used to provide directions for future development and use of this prevailing technology in various control type applications, as well as making the use of it more secure.« less
Scientific progress - wireless phones and brain cancer: current state of the science.
Carlo, G L; Jenrow, R S
2000-07-11
The current science is not definitive about health risks from wireless phones; however, the legitimate questions about safety that have arisen from recent studies make claims of absolute safety no longer supportable. The objective of this paper is to outline for primary care providers the results of the most current research on the possible impact of wireless phone use on human health. Presented are study results from Wireless Technology Research (WTR) program, the 7-year, $27 million effort funded by the wireless industry in the United States, that represents the world's most comprehensive research effort addressing this issue to date. Science-based recommendations for consumer interventions and future research are presented. Original studies performed under the WTR program as well as other relevant research from around the world. This article presents a synopsis of the peer-reviewed in vitro and in vivo laboratory research, and the peer-reviewed epidemiology studies supported by the WTR, as well as a summary of other relevant work. Only peer-reviewed scientific studies are presented, primarily WTR-sponsored research. In addition, results of the WTR literature surveillance program, which identified other relevant toxicology and epidemiology studies on an ongoing basis, are presented. These studies are presented in the context of their usefulness in providing intervention recommendations for consumers. Following a qualitative synthesis of specific relevant non-WTR research and a critical assessment of the WTR results, the following represents the current state of scientific understanding relevant to the public health impact of wireless phones: laboratory studies appear to have confirmed that radio frequency radiation from wireless phone antennas is insufficient to cause DNA breakage; however, this same radiation appears to cause genetic damage in human blood as measured through the formation of micronuclei. An increase in the rate of brain cancer mortality among hand-held cellular phone users as compared to car phone users, though not statistically significant, was observed in the WTR cohort study. A statistically significant increase in the risk of neuro-epithelial brain tumors was observed among cellular phone users in another case-control study. As new data emerge, our understanding of this complex problem will improve; however, at present there is a critical need for ongoing and open evaluation of the public health impact of new science, and communication of this science and derivative intervention options to those who are potentially affected.
Wireless Emergency Alerts: New York City Demonstration
2013-06-01
CMU/SEI-2012-SR-016 | 16 Consider factors affecting continuity of operations, such as support of remote employ- ees, mobile alerting...visitors and tourists , we’ll be even safer when authorities can broadcast warnings to everyone in a geographic area regardless of where they came from or...using technology to help keep people safe. [Office of the Mayor 2011b] Mayor Bloomberg declared his intention to make this new service available to New
Wireless microwave acoustic sensor system for condition monitoring in power plant environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pereira da Cunha, Mauricio
This project successfully demonstrated novel wireless microwave acoustic temperature and pressure sensors that can be embedded into equipment and structures located in fossil fuel power plant environments to monitor the condition of components such as steam headers, re-heat lines, water walls, burner tubes, and power turbines. The wireless microwave acoustic sensor technology researched and developed through a collaborative partnership between the University of Maine and Environetix Technologies Corporation can provide a revolutionary impact in the power industry since it is anticipated that the wireless sensors will deliver reliable real-time sensing information in harsh power plant conditions that involve temperatures upmore » to 1100oC and pressures up to 750 psi. The work involved the research and development of novel high temperature harsh environment thin film electrodes, piezoelectric smart microwave acoustic sensing elements, sensor encapsulation materials that were engineered to function over long times up to 1100oC, and a radio-frequency (RF) wireless interrogation electronics unit that are located both inside and outside the high temperature harsh environment. The UMaine / Environetix team have interacted with diverse power plant facilities, and identified as a testbed a local power generation facility, which burns municipal solid waste (MSW), the Penobscot Energy Recovery Company (PERC), Orrington, Maine. In this facility Environetix / UMaine successfully implemented and tested multiple wireless temperature sensor systems within the harsh-environment of the economizer chamber and at the boiler tubes, transferring the developed technology to the power plant environment to perform real-time sensor monitoring experiments under typical operating conditions, as initially targeted in the project. The wireless microwave acoustic sensor technology developed under this project for power plant applications offers several significant advantages including wireless, battery-free, maintenance-free operation, and operation in the harsh-environment of power plant equipment up to about 1100 oC. Their small size and configuration allows flexible sensor placement and embedding of multiple sensor arrays into a variety of components within power systems that can be interrogated by a single RF unit. The outcomes of this project and technological transfer respond to a DOE analysis need, which indicated that if one percent efficiency in coal burning is achieved, an additional 2 gigawatt-hours of energy per year is generated and the resulting coal cost savings is $300 million per year, also accompanied by a reduction of more than 10 million metric tons of CO2 per year emitted into the atmosphere. Therefore, the developed harsh environment wireless microwave acoustic sensor technology and the technological transfer achievements that resulted from the execution of this project have significant impact for power plant equipment and systems and are well-positioned to contribute to the cost reduction in power generation, the increase in power plant efficiency, the improvement in maintenance, the reduction in down-time, and the decrease in environmental pollution. The technology is also in a position to be extended to address other types of high-temperature harsh-environment power plant and energy sector sensing needs.« less
Optical wireless connected objects for healthcare.
Toumieux, Pascal; Chevalier, Ludovic; Sahuguède, Stéphanie; Julien-Vergonjanne, Anne
2015-10-01
In this Letter the authors explore the communication capabilities of optical wireless technology for a wearable device dedicated to healthcare application. In an indoor environment sensible to electromagnetic perturbations such as a hospital, the use of optical wireless links can permit reducing the amount of radio frequencies in the patient environment. Moreover, this technology presents the advantage to be secure, low-cost and easy to deploy. On the basis of commercially available components, a custom-made wearable device is presented, which allows optical wireless transmission of accelerometer data in the context of physical activity supervision of post-stroke patients in hospital. Considering patient mobility, the experimental performance is established in terms of packet loss as a function of the number of receivers fixed to the ceiling. The results permit to conclude that optical wireless links can be used to perform such mobile remote monitoring applications. Moreover, based on the measurements obtained with one receiver, it is possible to theoretically determine the performance according to the number of receivers to be deployed.
Cross-Layer Adaptive Feedback Scheduling of Wireless Control Systems
Xia, Feng; Ma, Longhua; Peng, Chen; Sun, Youxian; Dong, Jinxiang
2008-01-01
There is a trend towards using wireless technologies in networked control systems. However, the adverse properties of the radio channels make it difficult to design and implement control systems in wireless environments. To attack the uncertainty in available communication resources in wireless control systems closed over WLAN, a cross-layer adaptive feedback scheduling (CLAFS) scheme is developed, which takes advantage of the co-design of control and wireless communications. By exploiting cross-layer design, CLAFS adjusts the sampling periods of control systems at the application layer based on information about deadline miss ratio and transmission rate from the physical layer. Within the framework of feedback scheduling, the control performance is maximized through controlling the deadline miss ratio. Key design parameters of the feedback scheduler are adapted to dynamic changes in the channel condition. An event-driven invocation mechanism for the feedback scheduler is also developed. Simulation results show that the proposed approach is efficient in dealing with channel capacity variations and noise interference, thus providing an enabling technology for control over WLAN. PMID:27879934
NASA Technical Reports Server (NTRS)
Hang, Richard
2015-01-01
The presentation will overview NASA Armstrong Flight Research Centers flight test capabilities, which can provide various means for flight testing of passive and active wireless sensor systems, also, it will address the needs of the wireless data acquisition solutions for the centers flight instrumentation issues such as additional weight caused by added instrumentation wire bundles, connectors, wire cables routing, moving components, etc., that the Passive Wireless Sensor Technology Workshop may help. The presentation shows the constraints and requirements that the wireless sensor systems will face in the flight test applications.
Analysis and Testing of Mobile Wireless Networks
NASA Technical Reports Server (NTRS)
Alena, Richard; Evenson, Darin; Rundquist, Victor; Clancy, Daniel (Technical Monitor)
2002-01-01
Wireless networks are being used to connect mobile computing elements in more applications as the technology matures. There are now many products (such as 802.11 and 802.11b) which ran in the ISM frequency band and comply with wireless network standards. They are being used increasingly to link mobile Intranet into Wired networks. Standard methods of analyzing and testing their performance and compatibility are needed to determine the limits of the technology. This paper presents analytical and experimental methods of determining network throughput, range and coverage, and interference sources. Both radio frequency (BE) domain and network domain analysis have been applied to determine wireless network throughput and range in the outdoor environment- Comparison of field test data taken under optimal conditions, with performance predicted from RF analysis, yielded quantitative results applicable to future designs. Layering multiple wireless network- sooners can increase performance. Wireless network components can be set to different radio frequency-hopping sequences or spreading functions, allowing more than one sooner to coexist. Therefore, we ran multiple 802.11-compliant systems concurrently in the same geographical area to determine interference effects and scalability, The results can be used to design of more robust networks which have multiple layers of wireless data communication paths and provide increased throughput overall.
Paksuniemi, M; Sorvoja, H; Alasaarela, E; Myllyla, R
2005-01-01
In the intensive care unit, or during anesthesia, patients are attached to monitors by cables. These cables obstruct nursing staff and hinder the patients from moving freely in the hospital. However, rapidly developing wireless technologies are expected to solve these problems. To this end, this study revealed problem areas in current patient monitoring and established the most important medical parameters to monitor. In addition, usable wireless techniques for short-range data transmission were explored and currently employed wireless applications in the hospital environment were studied. The most important parameters measured of the patient include blood pressures, electrocardiography, respiration rate, heart rate and temperature. Currently used wireless techniques in hospitals are based on the WMTS and WLAN standards. There are no viable solutions for short-range data transmission from patient sensors to patient monitors, but potentially usable techniques in the future are based on the WPAN standards. These techniques include Bluetooth, ZigBee and UWB. Other suitable techniques might be based on capacitive or inductive coupling. The establishing of wireless techniques depends on ensuring the reliability of data transmission, eliminating disturbance by other wireless devices, ensuring patient data security and patient safety, and lowering the power consumption and price.
ERIC Educational Resources Information Center
Shih, Ching-Hsiang
2013-01-01
The latest researches use software technology (OLDP, object location detection programs) to turn a commercial high-technology product, i.e. a battery-free wireless mouse, into a high performance/precise object location detector to detect whether or not an object has been placed in the designated location. The preferred environmental stimulation is…
PowerSat: A technology demonstration of a solar power satellite
NASA Technical Reports Server (NTRS)
Sigler, Douglas L. (Editor); Riedman, John; Duracinski, Jon; Edwards, Joe; Brown, Garry; Webb, Ron; Platzke, Mike; Yuan, Xiaolin; Rogers, Pete; Khan, Afsar
1994-01-01
PowerSat is a preliminary design strategy for microwave wireless power transfer of solar energy. Solar power satellites convert solar power into microwave energy and use wireless power transmission to transfer the power to the Earth's surface. The PowerSat project will show how new developments in inflatable technology can be used to deploy solar panels and phased array antennas.
A Survey on M2M Systems for mHealth: A Wireless Communications Perspective
Kartsakli, Elli; Lalos, Aris S.; Antonopoulos, Angelos; Tennina, Stefano; Di Renzo, Marco; Alonso, Luis; Verikoukis, Christos
2014-01-01
In the new era of connectivity, marked by the explosive number of wireless electronic devices and the need for smart and pervasive applications, Machine-to-Machine (M2M) communications are an emerging technology that enables the seamless device interconnection without the need of human interaction. The use of M2M technology can bring to life a wide range of mHealth applications, with considerable benefits for both patients and healthcare providers. Many technological challenges have to be met, however, to ensure the widespread adoption of mHealth solutions in the future. In this context, we aim to provide a comprehensive survey on M2M systems for mHealth applications from a wireless communication perspective. An end-to-end holistic approach is adopted, focusing on different communication aspects of the M2M architecture. Hence, we first provide a systematic review of Wireless Body Area Networks (WBANs), which constitute the enabling technology at the patient's side, and then discuss end-to-end solutions that involve the design and implementation of practical mHealth applications. We close the survey by identifying challenges and open research issues, thus paving the way for future research opportunities. PMID:25264958
Mobile collaborative medical display system.
Park, Sanghun; Kim, Wontae; Ihm, Insung
2008-03-01
Because of recent advances in wireless communication technologies, the world of mobile computing is flourishing with a variety of applications. In this study, we present an integrated architecture for a personal digital assistant (PDA)-based mobile medical display system that supports collaborative work between remote users. We aim to develop a system that enables users in different regions to share a working environment for collaborative visualization with the potential for exploring huge medical datasets. Our system consists of three major components: mobile client, gateway, and parallel rendering server. The mobile client serves as a front end and enables users to choose the visualization and control parameters interactively and cooperatively. The gateway handles requests and responses between mobile clients and the rendering server for efficient communication. Through the gateway, it is possible to share working environments between users, allowing them to work together in computer supported cooperative work (CSCW) mode. Finally, the parallel rendering server is responsible for performing heavy visualization tasks. Our experience indicates that some features currently available to our mobile clients for collaborative scientific visualization are limited due to the poor performance of mobile devices and the low bandwidth of wireless connections. However, as mobile devices and wireless network systems are experiencing considerable elevation in their capabilities, we believe that our methodology will be utilized effectively in building quite responsive, useful mobile collaborative medical systems in the very near future.
In vivo wireless biodiagnosis system for long-term bioactivity monitoring network
NASA Astrophysics Data System (ADS)
Chen, Chun-Kuang; Wu, Wen-Jong; Yu, Shih-An; Huang, Jhen-Gang; Lin, Yun-Han; Chen, Yih-Fan; Jin, Ming-Hui; Wen, Chih-Min; Kao, Cheng-Yan; Lin, Shi-Ming; Lu, Shey-Shi; Lin, Chii-Wann; Yen, Jia-Yush; Jaw, Fu-Shan; Chen, Chi-An; Liao, Fang-Jen; Chiu, Nan-Fu; Chien, Chia-Nan; Lee, Chih-Kung
2004-07-01
Attempts to develop a
A CMOS wireless biomolecular sensing system-on-chip based on polysilicon nanowire technology.
Huang, C-W; Huang, Y-J; Yen, P-W; Tsai, H-H; Liao, H-H; Juang, Y-Z; Lu, S-S; Lin, C-T
2013-11-21
As developments of modern societies, an on-field and personalized diagnosis has become important for disease prevention and proper treatment. To address this need, in this work, a polysilicon nanowire (poly-Si NW) based biosensor system-on-chip (bio-SSoC) is designed and fabricated by a 0.35 μm 2-Poly-4-Metal (2P4M) complementary metal-oxide-semiconductor (CMOS) process provided by a commercialized semiconductor foundry. Because of the advantages of CMOS system-on-chip (SoC) technologies, the poly-Si NW biosensor is integrated with a chopper differential-difference amplifier (DDA) based analog-front-end (AFE), a successive approximation analog-to-digital converter (SAR ADC), and a microcontroller to have better sensing capabilities than a traditional Si NW discrete measuring system. In addition, an on-off key (OOK) wireless transceiver is also integrated to form a wireless bio-SSoC technology. This is pioneering work to harness the momentum of CMOS integrated technology into emerging bio-diagnosis technologies. This integrated technology is experimentally examined to have a label-free and low-concentration biomolecular detection for both Hepatitis B Virus DNA (10 fM) and cardiac troponin I protein (3.2 pM). Based on this work, the implemented wireless bio-SSoC has demonstrated a good biomolecular sensing characteristic and a potential for low-cost and mobile applications. As a consequence, this developed technology can be a promising candidate for on-field and personalized applications in biomedical diagnosis.
Current Impact, Future Prospects and Implications of Mobile Healthcare in India
Kappal, Rishi; Mehndiratta, Amit; Anandaraj, Prabu; Tsanas, Athanasios
2014-01-01
India has a diverse geographical landscape and predominately rural population. Telemedicine is identified as one of the technological pillars to support healthcare services in this region, but is associated with high cost and complex infrastructure, thus restricting its wider use. Mobile-based healthcare (m-Health) services may provide a practical, promising alternative approach to support healthcare facilities. India has a high mobile user base, both in cities and in rural regions. The appropriate identification of mobile data transmission technology for healthcare services is vital to optimally use the available technology. In this article, we review current telecommunication systemsin India, specifically the evolving consensus on the need for CDMA (Code Division Multiple Access - a wireless technology used by leading international and national operators. This technology is deployed in 800MHz band making it economically viable and far reaching with high quality of services) to continue its operations in India along with mobile healthcare services. We also discuss how healthcare services may be extended using m-Health technologies, given the availability of telecommunications and related services. PMID:29755887
Coding and Modulation for LMDS and Analysis of the LMDS Channel
Håkegård, Jan Erik
2000-01-01
Local Multipoint Distribution Service (LMDS) has the potential to become a viable alternative to coaxial cable, fiber and other wired and wireless technologies providing “last mile” communication services. A major obstacle, however, is the high equipment cost. While for example cable modems supporting two-way services are available for $200 to $300, LMDS modem providing similar services will cost over $1000. The major cost driver of LMDS equipment is the radio frequency (RF) unit, as Ka-band technology still is quite expensive. The modem design must minimize the overall architecture cost, and low-cost modems requiring an expensive architecture should not be used. The channel characteristics of LMDS systems are very different from those of fiber, coaxial cable, and lower frequency wireless links, major channel impairments being non-linear high power amplifier (HPA), high phase noise and high co-channel interference. Modems should therefore be developed specifically for LMDS systems. This report deals with the choice of coding and modulation schemes, the LMDS channel, and how the channel impairments should be overcome by digital signal processing algorithms. PMID:27551634
Development of Wireless RFID Glove for Various Applications
NASA Astrophysics Data System (ADS)
Lee, Changwon; Kim, Minchul; Park, Jinwoo; Oh, Jeonghoon; Eom, Kihwan
Radio Frequency Identification is increasingly popular technology with many applications. The majority of applications of RFID are supply-chain management. In this paper, we proposed the development of wireless RFID Glove for various applications in real life. Proposed wireless RFID glove is composed of RFID reader of 13.56 MHz and RF wireless module. Proposed Gloves were applied to two applications. First is the interactive leaning and second is Meal aid system for blind people. The experimental results confirmed good performances.
Psiha, Maria M; Vlamos, Panayiotis
2017-01-01
5G is the next generation of mobile communication technology. Current generation of wireless technologies is being evolved toward 5G for better serving end users and transforming our society. Supported by 5G cloud technology, personal devices will extend their capabilities to various applications, supporting smart life. They will have significant role in health, medical tourism, security, safety, and social life applications. The next wave of mobile communication is to mobilize and automate industries and industry processes via Machine-Type Communication (MTC) and Internet of Things (IoT). The current key performance indicators for the 5G infrastructure for the fully connected society are sufficient to satisfy most of the technical requirements in the healthcare sector. Thus, 5G can be considered as a door opener for new possibilities and use cases, many of which are as yet unknown. In this paper we present heterogeneous use cases in medical tourism sector, based on 5G infrastructure technologies and third-party cloud services.
Wireless roadside inspection phase II : final report : [technology brief].
DOT National Transportation Integrated Search
2014-04-01
The Federal Motor Carrier Safety Administration (FMCSA) Wireless Roadside Inspection (WRI) Program is demonstrating the feasibility and value of electronically assessing truck and motorcoach driver and vehicle safety. Electronic assessments (or WRIs)...
Performance Evaluation of High Speed Multicarrier System for Optical Wireless Communication
NASA Astrophysics Data System (ADS)
Mathur, Harshita; Deepa, T.; Bartalwar, Sophiya
2018-04-01
Optical wireless communication (OWC) in the infrared and visible range is quite impressive solution, especially where radio communication face challenges. Visible light communication (VLC) uses visible light over a range of 400 and 800 THz and is a subdivision of OWC technologies. With an increasing demand for use of wireless communications, wireless access via Wi-Fi is facing many challenges especially in terms of capacity, availability, security and efficiency. VLC uses intensity modulation and direct detection (IM/DD) techniques and hence they require the signals to certainly be real valued positive sequences. These constraints pose limitation on digital modulation techniques. These limitations result in spectrum-efficiency or power-efficiency losses. In this paper, we investigate an amplitude shift keying (ASK) based orthogonal frequency division multiplexing (OFDM) signal transmission scheme using LabVIEW for VLC technology.
Griessenauer, Christoph J.; Chang, Su-Youne; Tye, Susannah J.; Kimble, Christopher J.; Bennet, Kevin E.; Garris, Paul A.; Lee, Kendall H.
2010-01-01
Object We previously reported the development of a Wireless Instantaneous Neurotransmitter Concentration System (WINCS) for measuring dopamine and suggested that this technology may be useful for evaluating deep brain stimulation (DBS)-related neuromodulatory effects on neurotransmitter systems. WINCS supports fast-scan cyclic voltammetry (FSCV) at a carbon-fiber microelectrode (CFM) for real-time, spatially resolved neurotransmitter measurements. The FSCV parameters used to establish WINCS dopamine measurements are not suitable for serotonin, a neurotransmitter implicated in depression, because they lead to CFM fouling and a loss of sensitivity. Here, we incorporate into WINCS a previously described N-shaped waveform applied at a high scan rate to establish wireless serotonin monitoring. Methods FSCV optimized for the detection of serotonin consisted of an N-shaped waveform scanned linearly from a resting potential of, in V, +0.2 to +1.0, then to −0.1 and back to +0.2 at a rate of 1000 V/s. Proof of principle tests included flow injection analysis and electrically evoked serotonin release in the dorsal raphe nucleus of rat brain slices. Results Flow cell injection analysis demonstrated that the N waveform applied at a scan rate of 1000 V/s significantly reduced serotonin fouling of the CFM, relative to that observed with FSCV parameters for dopamine. In brain slices, WINCS reliably detected sub-second serotonin release in the dorsal raphe nucleus evoked by local high-frequency stimulation. Conclusion WINCS supported high-fidelity wireless serotonin monitoring by FSCV at a CFM. In the future such measurements of serotonin in large animal models and in humans may help to establish the mechanism of DBS for psychiatric disease. PMID:20415521
Simulation Analysis of Wireless Power Transmission System for Biomedical Applications
NASA Astrophysics Data System (ADS)
Yang, Zhao; Wei, Zhiqiang; Chi, Haokun; Yin, Bo; Cong, Yanping
2018-03-01
In recent years, more and more implantable medical devices have been used in the medical field. Some of these devices, such as brain pacemakers, require long-term power support. The WPT(wireless power transmission) technology which is more convenient and economical than replacing the battery by surgery, has become the first choice of many patients. In this paper, we design a WPT system that can be used in implantable medical devices, simulate the transmission efficiency of the system in the air and in the head model, and simulate the SAR value when the system working in the head model. The results show that when implantation depth of the secondary coil is 3 mm, the efficiency of the system can reach 45%, and the maximum average SAR value is 2.19 W / kg, slightly higher than the standard of IEEE.
Li, Baopu; Meng, Max Q-H
2012-05-01
Tumor in digestive tract is a common disease and wireless capsule endoscopy (WCE) is a relatively new technology to examine diseases for digestive tract especially for small intestine. This paper addresses the problem of automatic recognition of tumor for WCE images. Candidate color texture feature that integrates uniform local binary pattern and wavelet is proposed to characterize WCE images. The proposed features are invariant to illumination change and describe multiresolution characteristics of WCE images. Two feature selection approaches based on support vector machine, sequential forward floating selection and recursive feature elimination, are further employed to refine the proposed features for improving the detection accuracy. Extensive experiments validate that the proposed computer-aided diagnosis system achieves a promising tumor recognition accuracy of 92.4% in WCE images on our collected data.
Jun, Jaemoon; Oh, Jungkyun; Shin, Dong Hoon; Kim, Sung Gun; Lee, Jun Seop; Kim, Wooyoung; Jang, Jyongsik
2016-12-07
Due to rapid advances in technology which have contributed to the development of portable equipment, highly sensitive and selective sensor technology is in demand. In particular, many approaches to the modification of wireless sensor systems have been studied. Wireless systems have many advantages, including unobtrusive installation, high nodal densities, low cost, and potential commercial applications. In this study, we fabricated radio frequency identification (RFID)-based wireless sensor systems using carboxyl group functionalized polypyrrole (C-PPy) nanoparticles (NPs). The C-PPy NPs were synthesized via chemical oxidation copolymerization, and then their electrical and chemical properties were characterized by a variety of methods. The sensor system was composed of an RFID reader antenna and a sensor tag made from a commercially available ultrahigh frequency RFID tag coated with C-PPy NPs. The C-PPy NPs were covalently bonded to the tag to form a passive sensor. This type of sensor can be produced at a very low cost and exhibits ultrahigh sensitivity to ammonia, detecting concentrations as low as 0.1 ppm. These sensors operated wirelessly and maintained their sensing performance as they were deformed by bending and twisting. Due to their flexibility, these sensors may be used in wearable technologies for sensing gases.
Wireless technologies for closed-loop retinal prostheses.
Ng, David C; Bai, Shun; Yang, Jiawei; Tran, Nhan; Skafidas, Efstratios
2009-12-01
In this paper, we discuss various technologies needed to develop retinal prostheses with wireless power and data telemetry operation. In addition to the need to communicate with the implanted device, supply of power to the retinal prosthesis is especially difficult. This is because, in the implanted state, the device is not fixed in position due to constant motion of the eye. Furthermore, a retinal prosthesis incorporating a high density electrode array of more than 1000 electrodes is expected to consume approximately 45 mW of power and require 300 kbps of image and stimulation data. The front end of the wireless power and data transmission, the antenna, needs to be small compared to the size of the eye. Also, the wireless module is expected to operate in the reactive near-field region due to small separation between the transmit and receive antennas compared to their size and corresponding operating wavelength. An inductive link is studied as a means to transfer power and for data telemetry between the implant and external unit. In this work, the use of integrated circuit and microfabrication technologies for implementing inductive links is discussed. A closed-loop approach is taken to improve performance and reach optimum operation condition. Design and simulation data are presented as the basis for development of viable wireless module prototypes.
Wireless technologies for closed-loop retinal prostheses
NASA Astrophysics Data System (ADS)
Ng, David C.; Bai, Shun; Yang, Jiawei; Tran, Nhan; Skafidas, Efstratios
2009-12-01
In this paper, we discuss various technologies needed to develop retinal prostheses with wireless power and data telemetry operation. In addition to the need to communicate with the implanted device, supply of power to the retinal prosthesis is especially difficult. This is because, in the implanted state, the device is not fixed in position due to constant motion of the eye. Furthermore, a retinal prosthesis incorporating a high density electrode array of more than 1000 electrodes is expected to consume approximately 45 mW of power and require 300 kbps of image and stimulation data. The front end of the wireless power and data transmission, the antenna, needs to be small compared to the size of the eye. Also, the wireless module is expected to operate in the reactive near-field region due to small separation between the transmit and receive antennas compared to their size and corresponding operating wavelength. An inductive link is studied as a means to transfer power and for data telemetry between the implant and external unit. In this work, the use of integrated circuit and microfabrication technologies for implementing inductive links is discussed. A closed-loop approach is taken to improve performance and reach optimum operation condition. Design and simulation data are presented as the basis for development of viable wireless module prototypes.
3.5G based mobile remote monitoring system.
Bajracharya, Aman; Gale, Timothy J; Stack, Clive R; Turner, Paul
2008-01-01
Low bandwidth has long been a reason for the unsuitability of wireless internet in telemedicine. However with the advent of extended third generation wireless as an economically accessible high speed network, more opportunities are being created in this area of telemedicine. This paper explores the opportunity created by the latest wireless broadband technology for remote monitoring of patients in the home.
Cross Layered Multi-Meshed Tree Scheme for Cognitive Networks
2011-06-01
Meshed Tree Routing protocol wireless ad hoc networks ,” Second IEEE International Workshop on Enabling Technologies and Standards for Wireless Mesh ...and Sensor Networks , 2004 43. Chen G.; Stojmenovic I., “Clustering and routing in mobile wireless networks ,” Technical Report TR-99-05, SITE, June...Cross-layer optimization, intra-cluster routing , packet forwarding, inter-cluster routing , mesh network communications,
Next Generation RFID-Based Medical Service Management System Architecture in Wireless Sensor Network
NASA Astrophysics Data System (ADS)
Tolentino, Randy S.; Lee, Kijeong; Kim, Yong-Tae; Park, Gil-Cheol
Radio Frequency Identification (RFID) and Wireless Sensor Network (WSN) are two important wireless technologies that have wide variety of applications and provide unlimited future potentials most especially in healthcare systems. RFID is used to detect presence and location of objects while WSN is used to sense and monitor the environment. Integrating RFID with WSN not only provides identity and location of an object but also provides information regarding the condition of the object carrying the sensors enabled RFID tag. However, there isn't any flexible and robust communication infrastructure to integrate these devices into an emergency care setting. An efficient wireless communication substrate for medical devices that addresses ad hoc or fixed network formation, naming and discovery, transmission efficiency of data, data security and authentication, as well as filtration and aggregation of vital sign data need to be study and analyze. This paper proposed an efficient next generation architecture for RFID-based medical service management system in WSN that possesses the essential elements of each future medical application that are integrated with existing medical practices and technologies in real-time, remote monitoring, in giving medication, and patient status tracking assisted by embedded wearable wireless sensors which are integrated in wireless sensor network.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patrick O'Neill
This project focused on developing a low-cost wireless infrastructure for monitoring, diagnosing, and controlling building systems and equipment. End users receive information via the Internet and need only a web browser and Internet connection. The system used wireless communications for: (1) collecting data centrally on site from many wireless sensors installed on building equipment, (2) transmitting control signals to actuators and (3) transmitting data to an offsite network operations center where it is processed and made available to clients on the Web (see Figure 1). Although this wireless infrastructure can be applied to any building system, it was tested onmore » two representative applications: (1) monitoring and diagnostics for packaged rooftop HVAC units used widely on small commercial buildings and (2) continuous diagnosis and control of scheduling errors such as lights and equipment left on during unoccupied hours. This project developed a generic infrastructure for performance monitoring, diagnostics, and control, applicable to a broad range of building systems and equipment, but targeted specifically to small to medium commercial buildings (an underserved market segment). The proposed solution is based on two wireless technologies. The first, wireless telemetry, is used for cell phones and paging and is reliable and widely available. This risk proved to be easily managed during the project. The second technology is on-site wireless communication for acquiring data from sensors and transmitting control signals. The technology must enable communication with many nodes, overcome physical obstructions, operate in environments with other electrical equipment, support operation with on-board power (instead of line power) for some applications, operate at low transmission power in license-free radio bands, and be low cost. We proposed wireless mesh networking to meet these needs. This technology is relatively new and has been applied only in research and tests. This proved to be a major challenge for the project and was ultimately abandoned in favor of a directly wired solution for collecting sensor data at the building. The primary reason for this was the relatively short ranges at which we were able to effectively place the sensor nodes from the central receiving unit. Several different mesh technologies were attempted with similar results. Two hardware devices were created during the original performance period of the project. The first device, the WEB-MC, is a master control unit that has two radios, a CPU, memory, and serves as the central communications device for the WEB-MC System (Currently called the 'BEST Wireless HVAC Maintenance System' as a tentative commercial product name). The WEB-MC communicates with the local mesh network system via one of its antennas. Communication with the mesh network enables the WEB-MC to configure the network, send/receive data from individual motes, and serves as the primary mechanism for collecting sensor data at remote locations. The second antenna enables the WEB-MC to connect to a cellular network ('Long-Haul Communications') to transfer data to and from the NorthWrite Network Operations Center (NOC). A third 'all-in-one' hardware solution was created after the project was extended (Phase 2) and additional resources were provided. The project team leveraged a project funded by the State of Washington to develop a hardware solution that integrated the functionality of the original two devices. The primary reason for this approach was to eliminate the mesh network technical difficulties that severely limited the functionality of the original hardware approach. There were five separate software developments required to deliver the functionality needed for this project. These include the Data Server (or Network Operations Center), Web Application, Diagnostic Software, WEB-MC Embedded Software, Mote Embedded Software. Each of these developments was necessarily dependent on the others. This resulted in a challenging management task - requiring high bandwidth communications among all the team members. Fortunately, the project team performed exceptionally well together and was able to work through the various challenges that this presented - for example, when one software tool required a detailed description of the output of a second tool, before that tool had been fully designed.« less
NASA Astrophysics Data System (ADS)
Black, Randy; Bai, Haowei; Michalicek, Andrew; Shelton, Blaine; Villela, Mark
2008-01-01
Currently, autonomy in space applications is limited by a variety of technology gaps. Innovative application of wireless technology and avionics architectural principles drawn from the Orion crew exploration vehicle provide solutions for several of these gaps. The Vision for Space Exploration envisions extensive use of autonomous systems. Economic realities preclude continuing the level of operator support currently required of autonomous systems in space. In order to decrease the number of operators, more autonomy must be afforded to automated systems. However, certification authorities have been notoriously reluctant to certify autonomous software in the presence of humans or when costly missions may be jeopardized. The Orion avionics architecture, drawn from advanced commercial aircraft avionics, is based upon several architectural principles including partitioning in software. Robust software partitioning provides "brick wall" separation between software applications executing on a single processor, along with controlled data movement between applications. Taking advantage of these attributes, non-deterministic applications can be placed in one partition and a "Safety" application created in a separate partition. This "Safety" partition can track the position of astronauts or critical equipment and prevent any unsafe command from executing. Only the Safety partition need be certified to a human rated level. As a proof-of-concept demonstration, Honeywell has teamed with the Ultra WideBand (UWB) Working Group at NASA Johnson Space Center to provide tracking of humans, autonomous systems, and critical equipment. Using UWB the NASA team can determine positioning to within less than one inch resolution, allowing a Safety partition to halt operation of autonomous systems in the event that an unplanned collision is imminent. Another challenge facing autonomous systems is the coordination of multiple autonomous agents. Current approaches address the issue as one of networking and coordination of multiple independent units, each with its own mission. As a proof-of-concept Honeywell is developing and testing various algorithms that lead to a deterministic, fault tolerant, reliable wireless backplane. Just as advanced avionics systems control several subsystems, actuators, sensors, displays, etc.; a single "master" autonomous agent (or base station computer) could control multiple autonomous systems. The problem is simplified to controlling a flexible body consisting of several sensors and actuators, rather than one of coordinating multiple independent units. By filling technology gaps associated with space based autonomous system, wireless technology and Orion architectural principles provide the means for decreasing operational costs and simplifying problems associated with collaboration of multiple autonomous systems.
Passive Wireless SAW Sensors for IVHM
NASA Technical Reports Server (NTRS)
Wilson, William C.; Perey, Daniel F.; Atkinson, Gary M.; Barclay, Rebecca O.
2008-01-01
NASA aeronautical programs require integrated vehicle health monitoring (IVHM) to ensure the safety of the crew and the vehicles. Future IVHM sensors need to be small, light weight, inexpensive, and wireless. Surface acoustic wave (SAW) technology meets all of these constraints. In addition it operates in harsh environments and over wide temperature ranges, and it is inherently radiation hardened. This paper presents a survey of research opportunities for universities and industry to develop new sensors that address anticipated IVHM needs for aerospace vehicles. Potential applications of passive wireless SAW sensors from ground testing to high altitude aircraft operations are presented, along with some of the challenges and issues of the technology.
HERA: A New Platform for Embedding Agents in Heterogeneous Wireless Sensor Networks
NASA Astrophysics Data System (ADS)
Alonso, Ricardo S.; de Paz, Juan F.; García, Óscar; Gil, Óscar; González, Angélica
Ambient Intelligence (AmI) based systems require the development of innovative solutions that integrate distributed intelligent systems with context-aware technologies. In this sense, Multi-Agent Systems (MAS) and Wireless Sensor Networks (WSN) are two key technologies for developing distributed systems based on AmI scenarios. This paper presents the new HERA (Hardware-Embedded Reactive Agents) platform, that allows using dynamic and self-adaptable heterogeneous WSNs on which agents are directly embedded on the wireless nodes This approach facilitates the inclusion of context-aware capabilities in AmI systems to gather data from their surrounding environments, achieving a higher level of ubiquitous and pervasive computing.
"Fly-by-Wireless" : A Revolution in Aerospace Architectures for Instrumentation and Control
NASA Technical Reports Server (NTRS)
Studor, George F.
2007-01-01
The conference presentation provides background information on Fly-by-Wireless technologies as well as reasons for implementation, CANEUS project goals, cost of change for instrumentation, reliability, focus areas, conceptual Hybrid SHMS architecture for future space habitats, real world problems that the technology can solve, evolution of Micro-WIS systems, and a WLEIDS system overview and end-to-end system design.
WISPER: Wirless Space Power Experiment
NASA Technical Reports Server (NTRS)
Hawkins, Joseph
1993-01-01
The 1993 Advanced Design Project at the University of Alaska Fairbanks was to design a spacecraft as a technology demonstration of wireless power transmission (WPT). With cost effectiveness as a design constraint, a micro-satellite in low earth orbit (LEO) was chosen for the mission. Existing and near term technologies were analyzed and selected for the project. In addition to the conceptual design of the payload, support systems, and structure, the analysis included attention to safety, environmental impact, cost, and schedule for construction and operation. Wireless power beaming is not a new concept. Experimental demonstrations and study efforts have continued since the early 1960's. With the latest progress in transmitter and receiver technology, the next natural step is to beam power from earth to space. This proposed flight demonstration will advance the science of power beaming and prove the viability of various applications of WPT in space. Two methods of power beaming will be examined during the two separate phases of the spacecraft life. The first phase will demonstrate the technology and examine the theory of microwave power transmission at a high frequency. Special aspects of the first phase will include a highly accurate attitude control system and a 14 m inflatable parabolic antenna. The second phase will investigate the utilization of high intensity laser power using modified photovoltaic arrays. Special instrumentation on the spacecraft will measure the conversion efficiency from the received microwave or laser power to direct current power.
The Challenges of Integrating Instrumentation with Inflatable Aerodynamic Decelerators
NASA Technical Reports Server (NTRS)
Swanson, Gregory T.; Cassell, Alan M.
2013-01-01
To realize the National Aeronautics and Space Administration s (NASA) goal of landing humans on Mars, development of technologies to facilitate the landing of heavy payloads are being explored. Current entry, decent, and landing technologies are not practical when utilizing these heavy payloads due to mass and volume constraints dictated by limitations imposed by current launch vehicle fairings. Therefore, past and present technologies are now being considered to provide a mass and volume efficient solution, including Inflatable Aerodynamic Decelerators (IADs) [1]. IAD ground and flight tests are currently being conducted to develop and characterize their performance under flight-like conditions. The integrated instrumentation systems, which are key to the performance characterization in each of these tests, have proven to be a challenge compared to the instrumentation of traditional rigid aeroshells. To overcome these challenges, flexible and embedded sensing systems have been developed, along with improved instrumenting techniques. This development opportunity faces many difficult aspects specific to inflatable structures in extreme environments. These include but are not limited to: physical flexibility, packaging, temperature, structural integration and data acquisition [2]. To better define the instrumentation challenges posed by IAD technology development, a survey was conducted to identify valuable measurements for ground and flight testing. From this survey many sensing technologies were explored, resulting in a down-selection to the most viable prospects. These systems were then iterated upon in design to determine the best integration techniques specific to a 3m and 6m stacked torus IAD. Each sensing system was then integrated and employed to support the IAD testing in the National Full-Scale Aerodynamics Complex 40 x 80 wind tunnel at NASA Ames Research Center in the summer of 2012. Another challenge that has been explored is the data acquisition of IAD sensing technologies. Traditionally all space based sensing systems transmit their data through a wired interface. This limits the amount of sensors able to be integrated within the IAD due to volume and routing restrictions of the supporting signal and excitation wires. To alleviate this situation, multiple wireless data acquisition technologies have been researched and developed through rapid prototyping efforts. The final custom multi-nodal wireless system utilized during the summer 2012 IAD test series consisted of four remote nodes and one receiving base station. The system reliably conditioned and acquired 20+ sensors over the course of the wind tunnel test series. These developments in wireless data acquisition techniques can eliminate the need for structural feedthroughs and reduce system mass associated with wiring and wire harnesses. This makes the utilization of flight instrumentation more attractive to future missions, which would result in further improved characterization of IAD technology, and overall, increased scientific knowledge regarding the response of inflatable structures to extreme entry environments. [
Bluetooth data collection system for planning and arterial management.
DOT National Transportation Integrated Search
2014-08-01
This report presents the results of a research and development project of an implementable portable wireless traffic data collection system. Utilizing Bluetooth wireless technology as a platform, portable battery powered data collection units housed ...
Adapting Wireless Technology to Lighting Control and Environmental Sensing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dana Teasdale; Francis Rubinstein; Dave Watson
The high cost of retrofitting buildings with advanced lighting control systems is a barrier to adoption of this energy-saving technology. Wireless technology, however, offers a solution to mounting installation costs since it requires no additional wiring to implement. To demonstrate the feasibility of such a system, a prototype wirelessly-controlled advanced lighting system was designed and built. The system includes the following components: a wirelessly-controllable analog circuit module (ACM), a wirelessly-controllable electronic dimmable ballast, a T8 3-lamp fixture, an environmental multi-sensor, a current transducer, and control software. The ACM, dimmable ballast, multi-sensor, and current transducer were all integrated with SmartMesh{trademark} wirelessmore » mesh networking nodes, called motes, enabling wireless communication, sensor monitoring, and actuator control. Each mote-enabled device has a reliable communication path to the SmartMesh Manager, a single board computer that controls network functions and connects the wireless network to a PC running lighting control software. The ACM is capable of locally driving one or more standard 0-10 Volt electronic dimmable ballasts through relay control and a 0-10 Volt controllable output. The mote-integrated electronic dimmable ballast is designed to drive a standard 3-lamp T8 light fixture. The environmental multi-sensor measures occupancy, light level and temperature. The current transducer is used to measure the power consumed by the fixture. Control software was developed to implement advanced lighting algorithms, including daylight ramping, occupancy control, and demand response. Engineering prototypes of each component were fabricated and tested in a bench-scale system. Based on standard industry practices, a cost analysis was conducted. It is estimated that the installation cost of a wireless advanced lighting control system for a retrofit application is at least 30% lower than a comparable wired system for a typical 16,000 square-foot office building, with a payback period of less than 3 years.« less
Deep Space Habitat Wireless Smart Plug
NASA Technical Reports Server (NTRS)
Morgan, Joseph A.; Porter, Jay; Rojdev, Kristina; Carrejo, Daniel B.; Colozza, Anthony J.
2014-01-01
NASA has been interested in technology development for deep space exploration, and one avenue of developing these technologies is via the eXploration Habitat (X-Hab) Academic Innovation Challenge. In 2013, NASA's Deep Space Habitat (DSH) project was in need of sensors that could monitor the power consumption of various devices in the habitat with added capability to control the power to these devices for load shedding in emergency situations. Texas A&M University's Electronic Systems Engineering Technology Program (ESET) in conjunction with their Mobile Integrated Solutions Laboratory (MISL) accepted this challenge, and over the course of 2013, several undergraduate students in a Capstone design course developed five wireless DC Smart Plugs for NASA. The wireless DC Smart Plugs developed by Texas A&M in conjunction with NASA's Deep Space Habitat team is a first step in developing wireless instrumentation for future flight hardware. This paper will further discuss the X-Hab challenge and requirements set out by NASA, the detailed design and testing performed by Texas A&M, challenges faced by the team and lessons learned, and potential future work on this design.
Portable classroom leads to partnership.
Le Ber, Jeanne Marie; Lombardo, Nancy T; Weber, Alice; Bramble, John
2004-01-01
Library faculty participation on the School of Medicine Curriculum Steering Committee led to a unique opportunity to partner technology and teaching utilizing the library's portable wireless classroom. The pathology lab course master expressed a desire to revise the curriculum using patient cases and direct access to the Web and library resources. Since the pathology lab lacked computers, the library's portable wireless classroom provided a solution. Originally developed to provide maximum portability and flexibility, the wireless classroom consists of ten laptop computers configured with wireless cards and an access point. While the portable wireless classroom led to a partnership with the School of Medicine, there were additional benefits and positive consequences for the library.
Wireless Monitoring of Automobile Tires for Intelligent Tires
Matsuzaki, Ryosuke; Todoroki, Akira
2008-01-01
This review discusses key technologies of intelligent tires focusing on sensors and wireless data transmission. Intelligent automobile tires, which monitor their pressure, deformation, wheel loading, friction, or tread wear, are expected to improve the reliability of tires and tire control systems. However, in installing sensors in a tire, many problems have to be considered, such as compatibility of the sensors with tire rubber, wireless transmission, and battery installments. As regards sensing, this review discusses indirect methods using existing sensors, such as that for wheel speed, and direct methods, such as surface acoustic wave sensors and piezoelectric sensors. For wireless transmission, passive wireless methods and energy harvesting are also discussed. PMID:27873979
Secure Military Communications on 3G, 4G and WiMAX
2013-09-01
per bit, low latency, good quality of service, good coverage and support for mobility at high speeds. Thus, 4G wireless technologies are based on 3G ...security for military communications. 87 LIST OF REFERENCES [1] C. Blanchard, “Security for the third generation ( 3G ) mobile system,” Elsevier Science...COMMUNICATIONS ON 3G , 4G AND WIMAX by Panagiotis Schoinas September 2013 Thesis Advisor: Gurminder Singh Co-Advisor: John H. Gibson
Cohen, Christine; Kampel, Thomas; Verloo, Henk
2017-01-01
Background: The effective care and support of community healthcare nurses (CHNs) contribute greatly to the healthy aging of older adults living at home. Integrating innovative technologies into CHNs’ daily practice offers new opportunities and perspectives for early detection of health issues and interventions among home-dwelling older adults. Aim: To explore the perception of acceptability among CHNs of an intelligent wireless sensor system (IWSS) for use in daily practice for the detection of health issues in home-dwelling older adults receiving home healthcare. Method: Descriptive and qualitative data were sourced from a pilot randomized controlled trial involving 17 CHNs using an IWSS in their daily practice to rapidly detect falls and other health issues in patients’ homes. IWSS alerts indicating behavior changes were sent to CHNs. Their perceived usefulness (PU) and perceived ease of use (PEOU) were assessed. The acceptability of IWSS technology was explored using a questionnaire and focus group discussions. Results: The PU and PEOU of the IWSS technology were low to moderate. A majority of the CHNs were dissatisfied with its performance and intrusiveness; they reported multiple obstacles in the usefulness and ease of use of the IWSS technology in daily practice. Conclusion: To improve the IWSS technology’s low to moderate acceptability among CHNs, we recommend a more user-centered implementation strategy and an embedded model of nursing care. PMID:28567170
Ocean Wireless Networking and Real Time Data Management
NASA Astrophysics Data System (ADS)
Berger, J.; Orcutt, J. A.; Vernon, F. L.; Braun, H. W.; Rajasekar, A.
2001-12-01
Recent advances in technology have enabled the exploitation of satellite communications for high-speed (> 64 kbps) duplex communications with oceanographic ships at sea. Furthermore, decreasing costs for high-speed communications have made possible continuous connectivity to the global Internet for delivery of data ashore and communications with scientists and engineers on the ship. Through support from the Office of Naval Research, we have planned a series of tests using the R/V Revelle for real time data delivery of large quantities of underway data (e.g. continuous multibeam profiling) to shore for quality control, archiving, and real-time data availability. The Cecil H. and Ida M. Green Institute of Geophysics and Planetary Physics (IGPP) and the San Diego Supercomputer Center (SDSC) were funded by the NSF Information Technology Research (ITR) Program, the California Institute for Telecommunications and Information Technology [Cal-(IT)2] and the Scripps Institution of Oceanography for research entitled: "Exploring the Environment in Time: Wireless Networks & Real-Time Management." We will describe the technology to be used for the real-time seagoing experiment and the planned expansion of the project through support from the ITR grant. The short-term goal is to exercise the communications system aboard ship in various weather conditions and sea states while testing and developing the real-time data quality control and archiving methodology. The long-term goal is to enable continuous observations in the ocean, specifically supporting the goals of the DEOS (Dynamics of Earth and Ocean Systems) observatory program supported through a NSF Major Research Equipment (MRE) program - a permanent presence in the oceans. The impact on scientific work aboard ships, however, is likely to be fundamental. It will be possible to go to sea in the future with limited engineering capability for scientific operations by allowing shore-based quality control of data collected and videoconferencing for problem resolution. Costs for shipboard measurements will be reduced significantly while, at the same time, the quality of data collected will increase and ex-post-facto data archiving will no longer be necessary.
Abayomi, A; Goodridge, W; Asika, O
2006-12-01
Biomedical and demographic data capture and the subsequent management of such information are critical factors in the implementation of any level of healthcare prevention and treatment program. The developing world is seriously handicapped by lack of infrastructure to acquire such data let alone manipulate the information banks for projections, forecasting and priority project planning. With this in mind we set about to use the recent proliferation of wireless cellular networks and easily accessible Personal Digital Assistants (PDA), to devise a means of collecting such data even from the most remote primary healthcare facility. Our priority is aimed at initially at providing a support technology for the HIV expanded program. This technology can be implemented in the absence of computerization and regular power supply. Utilizing a PDA to capture patient data (demographic, clinical and laboratory parameters), the healthcare giver can use a wireless link between the PDA and a cellular phone to transfer the data to a central medical data base. These can then become permanent and secure data banks for future use by health providers, either at the same location or at other health facility that have authorized access to the data bank. It also affords a platform for integrating reference labs into the network as well as the opportunity to disseminate continuing medical educational material. The network can also be adapted to electronic remote consultations and eventually its data banks can be assimilated into protocols of artificial intelligence and data mining.
Chip-scale sensor system integration for portable health monitoring.
Jokerst, Nan M; Brooke, Martin A; Cho, Sang-Yeon; Shang, Allan B
2007-12-01
The revolution in integrated circuits over the past 50 yr has produced inexpensive computing and communications systems that are powerful and portable. The technologies for these integrated chip-scale sensing systems, which will be miniature, lightweight, and portable, are emerging with the integration of sensors with electronics, optical systems, micromachines, microfluidics, and the integration of chemical and biological materials (soft/wet material integration with traditional dry/hard semiconductor materials). Hence, we stand at a threshold for health monitoring technology that promises to provide wearable biochemical sensing systems that are comfortable, inauspicious, wireless, and battery-operated, yet that continuously monitor health status, and can transmit compressed data signals at regular intervals, or alarm conditions immediately. In this paper, we explore recent results in chip-scale sensor integration technology for health monitoring. The development of inexpensive chip-scale biochemical optical sensors, such as microresonators, that are customizable for high sensitivity coupled with rapid prototyping will be discussed. Ground-breaking work in the integration of chip-scale optical systems to support these optical sensors will be highlighted, and the development of inexpensive Si complementary metal-oxide semiconductor circuitry (which makes up the vast majority of computational systems today) for signal processing and wireless communication with local receivers that lie directly on the chip-scale sensor head itself will be examined.
Source Localization Using Wireless Sensor Networks
2006-06-01
performance of the hybrid SI/ML estimation method. A wireless sensor network is simulated in NS-2 to study the network throughput, delay and jitter...indicate that the wireless sensor network has low delay and can support fast information exchange needed in counter-sniper applications.
Dynamic Self-adaptive Remote Health Monitoring System for Diabetics
Suh, Myung-kyung; Moin, Tannaz; Woodbridge, Jonathan; Lan, Mars; Ghasemzadeh, Hassan; Bui, Alex; Ahmadi, Sheila; Sarrafzadeh, Majid
2016-01-01
Diabetes is the seventh leading cause of death in the United States. In 2010, about 1.9 million new cases of diabetes were diagnosed in people aged 20 years or older. Remote health monitoring systems can help diabetics and their healthcare professionals monitor health-related measurements by providing real-time feedback. However, data-driven methods to dynamically prioritize and generate tasks are not well investigated in the remote health monitoring. This paper presents a task optimization technique used in WANDA (Weight and Activity with Blood Pressure and Other Vital Signs); a wireless health project that leverages sensor technology and wireless communication to monitor the health status of patients with diabetes. WANDA applies data analytics in real-time to improving the quality of care. The developed algorithm minimizes the number of daily tasks required by diabetic patients using association rules that satisfies a minimum support threshold. Each of these tasks maximizes information gain, thereby improving the overall level of care. Experimental results show that the developed algorithm can reduce the number of tasks up to 28.6% with minimum support 0.95, minimum confidence 0.97 and high efficiency. PMID:23366365
Rethinking Mobile Telephony with the IMP
2011-01-01
in the telephony industry, and portions of it such as SS7 or SCTP signaling are packet-switched, deployed mobile telephony access infrastructure is...deployment of wireless LAN technology raises the question of how a mobile telephony system might instead be architected to use wireless LAN access ...and wireless access points has made universal Internet access increasingly convenient. There are clearly barriers to this vision of accessing a
Continuous, Wireless Monitoring of Sediment Flux within Streams on Military Installations
2013-10-17
2.2.1.3.2 Voltage Regulation ...................................................................................... 14 2.2.1.3.3 Mote and Data...components are: A. PCB board; B. Suspended sediment sensor; C. MDA300; D. Crossbow mote (not in the picture); E. Rain gauge; F. Two solenoid valves...wireless mote (MICA2, Crossbow Technology), a rechargeable battery, and a mounting structure. The exact configuration of the wireless sensor node
ERIC Educational Resources Information Center
Huber, Joe; Gillan, Bud
2004-01-01
Just when thinking about the Internet and other tidal waves of technology have found their places in schools, along comes a brash new upstart called wirelessness. This discussion takes on more simple task of providing more useful information to schools in their quest for being wireless, including the use of COWS (computer on wheels) is related to…
Efficient security mechanisms for mHealth applications using wireless body sensor networks.
Sahoo, Prasan Kumar
2012-01-01
Recent technological advances in wireless communications and physiological sensing allow miniature, lightweight, ultra-low power, intelligent monitoring devices, which can be integrated into a Wireless Body Sensor Network (WBSN) for health monitoring. Physiological signals of humans such as heartbeats, temperature and pulse can be monitored from a distant location using tiny biomedical wireless sensors. Hence, it is highly essential to combine the ubiquitous computing with mobile health technology using wireless sensors and smart phones to monitor the well-being of chronic patients such as cardiac, Parkinson and epilepsy patients. Since physiological data of a patient are highly sensitive, maintaining its confidentiality is highly essential. Hence, security is a vital research issue in mobile health (mHealth) applications, especially if a patient has an embarrassing disease. In this paper a three tier security architecture for the mHealth application is proposed, in which light weight data confidentiality and authentication protocols are proposed to maintain the privacy of a patient. Moreover, considering the energy and hardware constraints of the wireless body sensors, low complexity data confidential and authentication schemes are designed. Performance evaluation of the proposed architecture shows that they can satisfy the energy and hardware limitations of the sensors and still can maintain the secure fabrics of the wireless body sensor networks. Besides, the proposed schemes can outperform in terms of energy consumption, memory usage and computation time over standard key establishment security scheme.
Competition in the domain of wireless networks security
NASA Astrophysics Data System (ADS)
Bednarczyk, Mariusz
2017-04-01
Wireless networks are very popular and have found wide spread usage amongst various segments, also in military environment. The deployment of wireless infrastructures allow to reduce the time it takes to install and dismantle communications networks. With wireless, users are more mobile and can easily get access to the network resources all the time. However, wireless technologies like WiFi or Bluetooth have security issues that hackers have extensively exploited over the years. In the paper several serious security flaws in wireless technologies are presented. Most of them enable to get access to the internal networks and easily carry out man-in-the-middle attacks. Very often, they are used to launch massive denial of service attacks that target the physical infrastructure as well as the RF spectrum. For instance, there are well known instances of Bluetooth connection spoofing in order to steal WiFi password stored in the mobile device. To raise the security awareness and protect wireless networks against an adversary attack, an analysis of attack methods and tools over time is presented in the article. The particular attention is paid to the severity, possible targets as well as the ability to persist in the context of protective measures. Results show that an adversary can take complete control of the victims' mobile device features if the users forget to use simple safety principles.
Efficient Security Mechanisms for mHealth Applications Using Wireless Body Sensor Networks
Sahoo, Prasan Kumar
2012-01-01
Recent technological advances in wireless communications and physiological sensing allow miniature, lightweight, ultra-low power, intelligent monitoring devices, which can be integrated into a Wireless Body Sensor Network (WBSN) for health monitoring. Physiological signals of humans such as heartbeats, temperature and pulse can be monitored from a distant location using tiny biomedical wireless sensors. Hence, it is highly essential to combine the ubiquitous computing with mobile health technology using wireless sensors and smart phones to monitor the well-being of chronic patients such as cardiac, Parkinson and epilepsy patients. Since physiological data of a patient are highly sensitive, maintaining its confidentiality is highly essential. Hence, security is a vital research issue in mobile health (mHealth) applications, especially if a patient has an embarrassing disease. In this paper a three tier security architecture for the mHealth application is proposed, in which light weight data confidentiality and authentication protocols are proposed to maintain the privacy of a patient. Moreover, considering the energy and hardware constraints of the wireless body sensors, low complexity data confidential and authentication schemes are designed. Performance evaluation of the proposed architecture shows that they can satisfy the energy and hardware limitations of the sensors and still can maintain the secure fabrics of the wireless body sensor networks. Besides, the proposed schemes can outperform in terms of energy consumption, memory usage and computation time over standard key establishment security scheme. PMID:23112734
Adapting Wireless Technology to Lighting Control and Environmental Sensing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dana Teasdale; Francis Rubinstein; David S. Watson
Although advanced lighting control systems offer significant energy savings, the high cost of retrofitting buildings with advanced lighting control systems is a barrier to adoption of this energy-saving technology. Wireless technology, however, offers a solution to mounting installation costs since it requires no additional wiring to implement. To demonstrate the feasibility of such a system, a prototype wirelessly-controlled advanced lighting system was designed and built. The system includes the following components: a wirelessly-controllable analog circuit module (ACM), a wirelessly-controllable electronic dimmable ballast, a T8 3-lamp fixture, an environmental multi-sensor, a current transducer, and control software. The ACM, dimmable ballast, multi-sensor,more » and current transducer were all integrated with SmartMesh{trademark} wireless mesh networking nodes, called motes, enabling wireless communication, sensor monitoring, and actuator control. Each mote-enabled device has a reliable communication path to the SmartMesh Manager, a single board computer that controls network functions and connects the wireless network to a PC running lighting control software. The ACM is capable of locally driving one or more standard 0-10 Volt electronic dimmable ballasts through relay control and a 0-10 Volt controllable output, in addition to 0-24 Volt and 0-10 Volt inputs. The mote-integrated electronic dimmable ballast is designed to drive a standard 3-lamp T8 light fixture. The environmental multisensor measures occupancy, light level and temperature. The current transducer is used to measure the power consumed by the fixture. Control software was developed to implement advanced lighting algorithms, including open and closed-loop daylight ramping, occupancy control, and demand response. Engineering prototypes of each component were fabricated and tested in a bench-scale system. Based on standard industry practices, a cost analysis was conducted. It is estimated that the installation cost of a wireless advanced lighting control system for a retrofit application is at least 20% lower than a comparable wired system for a typical 16,000 square-foot office building, with a payback period of less than 3 years. At 30% market penetration saturation, a cumulative 695 Billion kWh of energy could be saved through 2025, a cost savings of $52 Billion.« less
Kleiber, Catherine E
2017-01-01
A type 1 diabetic male reports multiple instances when his blood glucose was dramatically elevated by the presence of microwave radiation from wireless technology and plummeted when the radiation exposure ended. In one instance, his body temperature elevated in addition to his blood glucose. Both remained elevated for nearly 48 h after exposure with the effect gradually decreasing. Possible mechanisms for microwave radiation elevating blood glucose include effects on glucose transport proteins and ion channels, insulin conformational changes and oxidative stress. Temperature elevation may be caused by microwave radiation-triggered Ca 2+ efflux, a mechanism similar to malignant hyperthermia. The potential for radiation from wireless technology to cause serious biological effects has important implications and necessitates a reevaluation of its near-ubiquitous presence, especially in hospitals and medical facilities.
Sage, Cindy; Burgio, Ernesto
2018-01-01
Mobile phones and other wireless devices that produce electromagnetic fields (EMF) and pulsed radiofrequency radiation (RFR) are widely documented to cause potentially harmful health impacts that can be detrimental to young people. New epigenetic studies are profiled in this review to account for some neurodevelopmental and neurobehavioral changes due to exposure to wireless technologies. Symptoms of retarded memory, learning, cognition, attention, and behavioral problems have been reported in numerous studies and are similarly manifested in autism and attention deficit hyperactivity disorders, as a result of EMF and RFR exposures where both epigenetic drivers and genetic (DNA) damage are likely contributors. Technology benefits can be realized by adopting wired devices for education to avoid health risk and promote academic achievement. © 2017 The Authors. Child Development © 2017 Society for Research in Child Development, Inc.
A Wireless Biomedical Signal Interface System-on-Chip for Body Sensor Networks.
Lei Wang; Guang-Zhong Yang; Jin Huang; Jinyong Zhang; Li Yu; Zedong Nie; Cumming, D R S
2010-04-01
Recent years have seen the rapid development of biosensor technology, system-on-chip design, wireless technology. and ubiquitous computing. When assembled into an autonomous body sensor network (BSN), the technologies become powerful tools in well-being monitoring, medical diagnostics, and personal connectivity. In this paper, we describe the first demonstration of a fully customized mixed-signal silicon chip that has most of the attributes required for use in a wearable or implantable BSN. Our intellectual-property blocks include low-power analog sensor interface for temperature and pH, a data multiplexing and conversion module, a digital platform based around an 8-b microcontroller, data encoding for spread-spectrum wireless transmission, and a RF section requiring very few off-chip components. The chip has been fully evaluated and tested by connection to external sensors, and it satisfied typical system requirements.
Saving energy for the data collection point in WBAN network
NASA Astrophysics Data System (ADS)
Nguyen-Duc, Toan; Kamioka, Eiji
2017-11-01
Wireless sensor networking (WSN) has been rapidly developed and become essential in various domains including health care systems. Such systems use WSN to collect real-time medical sensed data, aiming at improving the patient safety. For instance, patients suffered from adverse events, i.e., cardiac or respiratory arrests, are monitored so as to prevent them from getting harm. Sensors are placed on, in or near the patients' body to continuously collect sensing data such as the electrocardiograms, blood oxygenation, breathing, and heart rate. In this case, the sensors form a subcategory of WSN called wireless body area network (WBAN). In WBAN, sensing data are sent to one or more data collection points called personal server (PS). The role of PS is important since it forwards sensed data, to a medical server via a Bluetooth/WLAN connection in real time to support storage of information and real-time diagnosis, the device can also issue a notification of an emergency status. Since PS is a battery-based device, when its battery is empty, it will disconnect the sensed medical data with the rest network. To best of our knowledge, very few studies that focus on saving energy for the PS. To this end, this work investigates the trade-off between energy consumption for wireless communication and the amount of sensing data. An energy consumption model for wireless communication has been proposed based on direct measurement using real testbed. According to our findings, it is possible to save energy for the PS by selecting suitable wireless technology to be used based on the amount of data to be transmitted.
Non-Ionizing Radiation From Wireless Technology| RadTown ...
2017-10-31
Cell phones emit radio frequency (RF) energy. The Federal Communications Commission (FCC) sets safety guidelines to limit RF exposure from wireless devices. Scientists continue to study the effects of long-term exposure to low levels of RF.
Low cost structural health monitoring of bridges using wireless SenSpot sensors.
DOT National Transportation Integrated Search
2012-05-01
Deterioration of highway bridges is a common, yet complex problem. To protect highway bridges, this : project combines a number of recent and emerging technologies microstructured sensing, ultra-lowpower : wireless communication, and advanced mic...
The Audacity of Fiber-Wireless (FiWi) Networks
NASA Astrophysics Data System (ADS)
Maier, Martin; Ghazisaidi, Navid; Reisslein, Martin
A plethora of enabling optical and wireless technologies have been emerging that can be used to build future-proof bimodal fiber-wireless (FiWi) broadband access networks. After overviewing key enabling radio-over-fiber (RoF) and radio-and-fiber (R&F) technologies and briefly surveying the state of the art of FiWi networks, we introduce an Ethernet-based access-metro FiWi network, called SuperMAN, that integrates next-generation WiFi and WiMAX networks with WDM-enhanced EPON and RPR networks. Throughout the paper we pay close attention to the technical challenges and opportunities of FiWi networks, but also elaborate on their societal benefits and potential to shift the current research focus from optical-wireless networking to the exploitation of personal and in-home computing facilities to create new unforeseen services and applications as we are about to enter the Petabyte age.
Integration of hybrid wireless networks in cloud services oriented enterprise information systems
NASA Astrophysics Data System (ADS)
Li, Shancang; Xu, Lida; Wang, Xinheng; Wang, Jue
2012-05-01
This article presents a hybrid wireless network integration scheme in cloud services-based enterprise information systems (EISs). With the emerging hybrid wireless networks and cloud computing technologies, it is necessary to develop a scheme that can seamlessly integrate these new technologies into existing EISs. By combining the hybrid wireless networks and computing in EIS, a new framework is proposed, which includes frontend layer, middle layer and backend layers connected to IP EISs. Based on a collaborative architecture, cloud services management framework and process diagram are presented. As a key feature, the proposed approach integrates access control functionalities within the hybrid framework that provide users with filtered views on available cloud services based on cloud service access requirements and user security credentials. In future work, we will implement the proposed framework over SwanMesh platform by integrating the UPnP standard into an enterprise information system.
Morak, Jürgen; Kumpusch, Hannes; Hayn, Dieter; Modre-Osprian, Robert; Schreier, Günter
2012-01-01
Utilization of information and communication technologies such as mobile phones and wireless sensor networks becomes more and more common in the field of telemonitoring for chronic diseases. Providing elderly people with a mobile-phone-based patient terminal requires a barrier-free design of the overall user interface including the setup of wireless communication links to sensor devices. To easily manage the connection between a mobile phone and wireless sensor devices, a concept based on the combination of Bluetooth and near-field communication technology has been developed. It allows us initiating communication between two devices just by bringing them close together for a few seconds without manually configuring the communication link. This concept has been piloted with a sensor device and evaluated in terms of usability and feasibility. Results indicate that this solution has the potential to simplify the handling of wireless sensor networks for people with limited technical skills.
Mobile social network services for families with children with developmental disabilities.
Chou, Li-Der; Lai, Nien-Hwa; Chen, Yen-Wen; Chang, Yao-Jen; Yang, Jyun-Yan; Huang, Lien-Fu; Chiang, Wen-Ling; Chiu, Hung-Yi; Shin, Haw-Yun
2011-07-01
As Internet technologies evolve, their applications have changed various aspects of human life. Here, we attempt to examine their potential impact on services for families with developmentally delayed children. Our research is thus designed to utilize wireless mobile communication technologies, location services, and search technology in an effort to match families of specific needs with potential care providers. Based on the investigation conducted by our counselors, this paper describes a platform for smooth communication between professional communities and families with children with developmental disabilities (CDD). This research also looks into the impact of management of mobile social network services and training on the operation of these services. Interaction opportunities, care, and support to families with CDD are introduced.
Ubiquitous Computing for Remote Cardiac Patient Monitoring: A Survey
Kumar, Sunil; Kambhatla, Kashyap; Hu, Fei; Lifson, Mark; Xiao, Yang
2008-01-01
New wireless technologies, such as wireless LAN and sensor networks, for telecardiology purposes give new possibilities for monitoring vital parameters with wearable biomedical sensors, and give patients the freedom to be mobile and still be under continuous monitoring and thereby better quality of patient care. This paper will detail the architecture and quality-of-service (QoS) characteristics in integrated wireless telecardiology platforms. It will also discuss the current promising hardware/software platforms for wireless cardiac monitoring. The design methodology and challenges are provided for realistic implementation. PMID:18604301
Radio Relays Improve Wireless Products
NASA Technical Reports Server (NTRS)
2009-01-01
Signal Hill, California-based XCOM Wireless Inc. developed radio frequency micromachine (RF MEMS) relays with a Phase II Small Business Innovation Research (SBIR) contract through NASA?s Jet Propulsion Laboratory. In order to improve satellite communication systems, XCOM produced wireless RF MEMS relays and tunable capacitors that use metal-to-metal contact and have the potential to outperform most semiconductor technologies while using less power. These relays are used in high-frequency test equipment and instrumentation, where increased speed can mean significant cost savings. Applications now also include mainstream wireless applications and greatly improved tactical radios.
Ubiquitous computing for remote cardiac patient monitoring: a survey.
Kumar, Sunil; Kambhatla, Kashyap; Hu, Fei; Lifson, Mark; Xiao, Yang
2008-01-01
New wireless technologies, such as wireless LAN and sensor networks, for telecardiology purposes give new possibilities for monitoring vital parameters with wearable biomedical sensors, and give patients the freedom to be mobile and still be under continuous monitoring and thereby better quality of patient care. This paper will detail the architecture and quality-of-service (QoS) characteristics in integrated wireless telecardiology platforms. It will also discuss the current promising hardware/software platforms for wireless cardiac monitoring. The design methodology and challenges are provided for realistic implementation.
Thibodeau, Linda
2014-06-01
The purpose of this study was to compare the benefits of 3 types of remote microphone hearing assistance technology (HAT), adaptive digital broadband, adaptive frequency modulation (FM), and fixed FM, through objective and subjective measures of speech recognition in clinical and real-world settings. Participants included 11 adults, ages 16 to 78 years, with primarily moderate-to-severe bilateral hearing impairment (HI), who wore binaural behind-the-ear hearing aids; and 15 adults, ages 18 to 30 years, with normal hearing. Sentence recognition in quiet and in noise and subjective ratings were obtained in 3 conditions of wireless signal processing. Performance by the listeners with HI when using the adaptive digital technology was significantly better than that obtained with the FM technology, with the greatest benefits at the highest noise levels. The majority of listeners also preferred the digital technology when listening in a real-world noisy environment. The wireless technology allowed persons with HI to surpass persons with normal hearing in speech recognition in noise, with the greatest benefit occurring with adaptive digital technology. The use of adaptive digital technology combined with speechreading cues would allow persons with HI to engage in communication in environments that would have otherwise not been possible with traditional wireless technology.
Green survivability in Fiber-Wireless (FiWi) broadband access network
NASA Astrophysics Data System (ADS)
Liu, Yejun; Guo, Lei; Gong, Bo; Ma, Rui; Gong, Xiaoxue; Zhang, Lincong; Yang, Jiangzi
2012-03-01
Fiber-Wireless (FiWi) broadband access network is a promising "last mile" access technology, because it integrates wireless and optical access technologies in terms of their respective merits, such as high capacity and stable transmission from optical access technology, and easy deployment and flexibility from wireless access technology. Since FiWi is expected to carry a large amount of traffic, numerous traffic flows may be interrupted by the failure of network components. Thus, survivability in FiWi is a key issue aiming at reliable and robust service. However, the redundant deployment of backup resource required for survivability usually causes huge energy consumption, which aggravates the global warming and accelerates the incoming of energy crisis. Thus, the energy-saving issue should be considered when it comes to survivability design. In this paper, we focus on the green survivability in FiWi, which is an innovative concept and remains untouched in the previous works to our best knowledge. We first review and discuss some challenging issues about survivability and energy-saving in FiWi, and then we propose some instructive solutions for its green survivability design. Therefore, our work in this paper will provide the technical references and research motivations for the energy-efficient and survivable FiWi development in the future.
A wireless PDA-based physiological monitoring system for patient transport.
Lin, Yuan-Hsiang; Jan, I-Chien; Ko, Patrick Chow-In; Chen, Yen-Yu; Wong, Jau-Min; Jan, Gwo-Jen
2004-12-01
This paper proposes a mobile patient monitoring system, which integrates current personal digital assistant (PDA) technology and wireless local area network (WLAN) technology. At the patient's location, a wireless PDA-based monitor is used to acquire continuously the patient's vital signs, including heart rate, three-lead electrocardiography, and SpO2. Through the WLAN, the patient's biosignals can be transmitted in real-time to a remote central management unit, and authorized medical staffs can access the data and the case history of the patient, either by the central management unit or the wireless devices. A prototype of this system has been developed and implemented. The system has been evaluated by technical verification, clinical test, and user survey. The evaluation of performance yields a high degree of satisfaction (mean = 4.64, standard deviation--SD = 0.53 in a five-point Likert scale) of users who used the PDA-based system for intrahospital transport. The results also show that the wireless PDA model is superior to the currently used monitors both in mobility and in usability, and is, therefore, better suited to patient transport.
Tran, Chung Duc; Ibrahim, Rosdiazli; Asirvadam, Vijanth Sagayan; Saad, Nordin; Sabo Miya, Hassan
2018-04-01
The emergence of wireless technologies such as WirelessHART and ISA100 Wireless for deployment at industrial process plants has urged the need for research and development in wireless control. This is in view of the fact that the recent application is mainly in monitoring domain due to lack of confidence in control aspect. WirelessHART has an edge over its counterpart as it is based on the successful Wired HART protocol with over 30 million devices as of 2009. Recent works on control have primarily focused on maintaining the traditional PID control structure which is proven not adequate for the wireless environment. In contrast, Internal Model Control (IMC), a promising technique for delay compensation, disturbance rejection and setpoint tracking has not been investigated in the context of WirelessHART. Therefore, this paper discusses the control design using IMC approach with a focus on wireless processes. The simulation and experimental results using real-time WirelessHART hardware-in-the-loop simulator (WH-HILS) indicate that the proposed approach is more robust to delay variation of the network than the PID. Copyright © 2017. Published by Elsevier Ltd.
An overview of wireless structural health monitoring for civil structures.
Lynch, Jerome Peter
2007-02-15
Wireless monitoring has emerged in recent years as a promising technology that could greatly impact the field of structural monitoring and infrastructure asset management. This paper is a summary of research efforts that have resulted in the design of numerous wireless sensing unit prototypes explicitly intended for implementation in civil structures. Wireless sensing units integrate wireless communications and mobile computing with sensors to deliver a relatively inexpensive sensor platform. A key design feature of wireless sensing units is the collocation of computational power and sensors; the tight integration of computing with a wireless sensing unit provides sensors with the opportunity to self-interrogate measurement data. In particular, there is strong interest in using wireless sensing units to build structural health monitoring systems that interrogate structural data for signs of damage. After the hardware and the software designs of wireless sensing units are completed, the Alamosa Canyon Bridge in New Mexico is utilized to validate their accuracy and reliability. To improve the ability of low-cost wireless sensing units to detect the onset of structural damage, the wireless sensing unit paradigm is extended to include the capability to command actuators and active sensors.
Pohjonen, Hanna; Ross, Peeter; Blickman, Johan G; Kamman, Richard
2007-01-01
Emerging technologies are transforming the workflows in healthcare enterprises. Computing grids and handheld mobile/wireless devices are providing clinicians with enterprise-wide access to all patient data and analysis tools on a pervasive basis. In this paper, emerging technologies are presented that provide computing grids and streaming-based access to image and data management functions, and system architectures that enable pervasive computing on a cost-effective basis. Finally, the implications of such technologies are investigated regarding the positive impacts on clinical workflows.
Larios, Diego F; Barbancho, Julio; Sevillano, José L; Rodríguez, Gustavo; Molina, Francisco J; Gasull, Virginia G; Mora-Merchan, Javier M; León, Carlos
2013-09-10
Wireless Sensor Networks (WSNs) are a technology that is becoming very popular for many applications, and environmental monitoring is one of its most important application areas. This technology solves the lack of flexibility of wired sensor installations and, at the same time, reduces the deployment costs. To demonstrate the advantages of WSN technology, for the last five years we have been deploying some prototypes in the Doñana Biological Reserve, which is an important protected area in Southern Spain. These prototypes not only evaluate the technology, but also solve some of the monitoring problems that have been raised by biologists working in Doñana. This paper presents a review of the work that has been developed during these five years. Here, we demonstrate the enormous potential of using machine learning in wireless sensor networks for environmental and animal monitoring because this approach increases the amount of useful information and reduces the effort that is required by biologists in an environmental monitoring task.
Degradations to microprocessor-based systems due to environmental stressors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Messman, P. A.; Peilai, Z.; Goodenow, D. A.
Recent studies indicate that EMI/RFI is the most significant environmental Stressor with potential for leading to digital systems degradation and failure. With digital I and C and wireless technology becoming standard in many industrial environments, nuclear power plant operators of current and future plants will or already have implemented these technologies seeking to leverage the economic benefits of such technology. With digital I and C systems' higher susceptibility to EMI/RFI and the increased environmental noise introduced by wireless-based systems, this produces a dangerous combination that could lead to logic errors, equipment damage, and faults in digital I and C. Failuresmore » to these systems, especially to safety-critical systems, could lead to loss of system, which would pose a safety risk and decrease in operational efficiency. In order to better understand system degradations by these means and aid in regulation and guidance, we propose to experimentally study the susceptibility of digital I and C to wireless technology. (authors)« less
Wi-Fi and health: review of current status of research.
Foster, Kenneth R; Moulder, John E
2013-12-01
This review summarizes the current state of research on possible health effects of Wi-Fi (a commercial name for IEEE 802.11-compliant wireless networking). In response to public concerns about health effects of Wi-Fi and wireless networks and calls by government agencies for research on possible health and safety issues with the technology, a considerable amount of technology-specific research has been completed. A series of high quality engineering studies have provided a good, but not complete, understanding of the levels of radiofrequency (RF) exposure to individuals from Wi-Fi. The limited number of technology-specific bioeffects studies done to date are very mixed in terms of quality and outcome. Unequivocally, the RF exposures from Wi-Fi and wireless networks are far below U.S. and international exposure limits for RF energy. While several studies report biological effects due to Wi-Fi-type exposures, technical limitations prevent drawing conclusions from them about possible health risks of the technology. The review concludes with suggestions for future research on the topic.
Traffic data collection and anonymous vehicle detection using wireless sensor networks.
DOT National Transportation Integrated Search
2012-05-01
New traffic sensing devices based on wireless sensing technologies were designed and tested. Such devices encompass a cost-effective, battery-free, and energy self-sustained architecture for real-time traffic measurement over distributed points in a ...
A Review of Assistive Listening Device and Digital Wireless Technology for Hearing Instruments
Kim, Chun Hyeok
2014-01-01
Assistive listening devices (ALDs) refer to various types of amplification equipment designed to improve the communication of individuals with hard of hearing to enhance the accessibility to speech signal when individual hearing instruments are not sufficient. There are many types of ALDs to overcome a triangle of speech to noise ratio (SNR) problems, noise, distance, and reverberation. ALDs vary in their internal electronic mechanisms ranging from simple hard-wire microphone-amplifier units to more sophisticated broadcasting systems. They usually use microphones to capture an audio source and broadcast it wirelessly over a frequency modulation (FM), infra-red, induction loop, or other transmission techniques. The seven types of ALDs are introduced including hardwire devices, FM sound system, infra-red sound system, induction loop system, telephone listening devices, television, and alert/alarm system. Further development of digital wireless technology in hearing instruments will make possible direct communication with ALDs without any accessories in the near future. There are two technology solutions for digital wireless hearing instruments improving SNR and convenience. One is near-field magnetic induction combined with Bluetooth radio frequency (RF) transmission or proprietary RF transmission and the other is proprietary RF transmission alone. Recently launched digital wireless hearing aid applying this new technology can communicate from the hearing instrument to personal computer, phones, Wi-Fi, alert systems, and ALDs via iPhone, iPad, and iPod. However, it comes with its own iOS application offering a range of features but there is no option for Android users as of this moment. PMID:25566400
A review of assistive listening device and digital wireless technology for hearing instruments.
Kim, Jin Sook; Kim, Chun Hyeok
2014-12-01
Assistive listening devices (ALDs) refer to various types of amplification equipment designed to improve the communication of individuals with hard of hearing to enhance the accessibility to speech signal when individual hearing instruments are not sufficient. There are many types of ALDs to overcome a triangle of speech to noise ratio (SNR) problems, noise, distance, and reverberation. ALDs vary in their internal electronic mechanisms ranging from simple hard-wire microphone-amplifier units to more sophisticated broadcasting systems. They usually use microphones to capture an audio source and broadcast it wirelessly over a frequency modulation (FM), infra-red, induction loop, or other transmission techniques. The seven types of ALDs are introduced including hardwire devices, FM sound system, infra-red sound system, induction loop system, telephone listening devices, television, and alert/alarm system. Further development of digital wireless technology in hearing instruments will make possible direct communication with ALDs without any accessories in the near future. There are two technology solutions for digital wireless hearing instruments improving SNR and convenience. One is near-field magnetic induction combined with Bluetooth radio frequency (RF) transmission or proprietary RF transmission and the other is proprietary RF transmission alone. Recently launched digital wireless hearing aid applying this new technology can communicate from the hearing instrument to personal computer, phones, Wi-Fi, alert systems, and ALDs via iPhone, iPad, and iPod. However, it comes with its own iOS application offering a range of features but there is no option for Android users as of this moment.
Authomatization of Digital Collection Access Using Mobile and Wireless Data Terminals
NASA Astrophysics Data System (ADS)
Leontiev, I. V.
Information technologies become vital due to information processing needs, database access, data analysis and decision support. Currently, a lot of scientific projects are oriented on database integration of heterogeneous systems. The problem of on-line and rapid access to large integrated systems of digital collections is also very important. Usually users move between different locations, either at work or at home. In most cases users need an efficient and remote access to information, stored in integrated data collections. Desktop computers are unable to fulfill the needs, so mobile and wireless devices become helpful. Handhelds and data terminals are nessessary in medical assistance (they store detailed information about each patient, and helpful for nurses), immediate access to data collections is used in a Highway patrol services (databanks of cars, owners, driver licences). Using mobile access, warehouse operations can be validated. Library and museum items cyclecounting will speed up using online barcode-scanning and central database access. That's why mobile devices - cell phones, PDA, handheld computers with wireless access, WindowsCE and PalmOS terminals become popular. Generally, mobile devices have a relatively slow processor, and limited display capabilities, but they are effective for storing and displaying textual data, recognize user hand-writing with stylus, support GUI. Users can perform operations on handheld terminal, and exchange data with the main system (using immediate radio access, or offline access during syncronization process) for update. In our report, we give an approach for mobile access to data collections, which raises an efficiency of data processing in a book library, helps to control available books, books in stock, validate service charges, eliminate staff mistakes, generate requests for book delivery. Our system uses mobile devices Symbol RF (with radio-channel access), and data terminals Symbol Palm Terminal for batch-processing and synchronization with remote library databases. We discuss the use of PalmOS-compatible devices, and WindowsCE terminals. Our software system is based on modular, scalable three-tier architecture. Additional functionality can be easily customized. Scalability is also supplied by Internet / Intranet technologies, and radio-access points. The base module of the system supports generic warehouse operations: cyclecounting with handheld barcode-scanners, efficient items delivery and issue, item movement, reserving, report generating on finished and in-process operations. Movements are optimized using worker's current location, operations are sorted in a priority order and transmitted to mobile and wireless worker's terminals. Mobile terminals improve of tasks processing control, eliminate staff mistakes, display actual information about main processes, provide data for online-reports, and significantly raise the efficiency of data exchange.
Camouflage Traffic: Minimizing Message Delay for Smart Grid Applications under Jamming
2014-04-01
technologies. To facilitate efficient information exchange, wireless networks have been proposed to be widely used in the smart grid. However, the jamming...attack that constantly broadcasts radio interference is a primary security threat to prevent the deployment of wireless networks in the smart grid. Hence... wireless communications, while at the same time providing latency guarantee for control messages. An open question is how to minimize message delay for
2015-11-01
more detail. Table 1: Overview of DARPA Programs Selected for GAO Case Study Analyses Program name Program description Advanced Wireless Networks ...Selected DARPA Programs Program name According to DARPA portfolio-level database According to GAO analysis Advanced Wireless Networks for the Soldier...with potential transition partners Achievement of clearly defined technical goals Successful transition Advanced Wireless Networks for Soldier
Wireless Multiplexed Surface Acoustic Wave Sensors Project
NASA Technical Reports Server (NTRS)
Youngquist, Robert C.
2014-01-01
Wireless Surface Acoustic Wave (SAW) Sensor is a new technology for obtaining multiple, real-time measurements under extreme environmental conditions. This project plans to develop a wireless multiplexed sensor system that uses SAW sensors, with no batteries or semiconductors, that are passive and rugged, can operate down to cryogenic temperatures and up to hundreds of degrees C, and can be used to sense a wide variety of parameters over reasonable distances (meters).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, John M.; Onar, Omer C.; Chinthavali, Madhu
Various noncontacting methods of plug-in electric vehicle charging are either under development or now deployed as aftermarket options in the light-duty automotive market. Wireless power transfer (WPT) is now the accepted term for wireless charging and is used synonymously for inductive power transfer and magnetic resonance coupling. WPT technology is in its infancy; standardization is lacking, especially on interoperability, center frequency selection, magnetic fringe field suppression, and the methods employed for power flow regulation. This paper proposes a new analysis concept for power flow in WPT in which the primary provides frequency selection and the tuned secondary, with its resemblancemore » to a power transmission network having a reactive power voltage control, is analyzed as a transmission network. Analysis is supported with experimental data taken from Oak Ridge National Laboratory s WPT apparatus. Lastly, this paper also provides an experimental evidence for frequency selection, fringe field assessment, and the need for low-latency communications in the feedback path.« less
Fuzzy Logic Control Based QoS Management in Wireless Sensor/Actuator Networks
Xia, Feng; Zhao, Wenhong; Sun, Youxian; Tian, Yu-Chu
2007-01-01
Wireless sensor/actuator networks (WSANs) are emerging rapidly as a new generation of sensor networks. Despite intensive research in wireless sensor networks (WSNs), limited work has been found in the open literature in the field of WSANs. In particular, quality-of-service (QoS) management in WSANs remains an important issue yet to be investigated. As an attempt in this direction, this paper develops a fuzzy logic control based QoS management (FLC-QM) scheme for WSANs with constrained resources and in dynamic and unpredictable environments. Taking advantage of the feedback control technology, this scheme deals with the impact of unpredictable changes in traffic load on the QoS of WSANs. It utilizes a fuzzy logic controller inside each source sensor node to adapt sampling period to the deadline miss ratio associated with data transmission from the sensor to the actuator. The deadline miss ratio is maintained at a pre-determined desired level so that the required QoS can be achieved. The FLC-QM has the advantages of generality, scalability, and simplicity. Simulation results show that the FLC-QM can provide WSANs with QoS support. PMID:28903288
NASA Astrophysics Data System (ADS)
Trapani, Davide; Zonta, Daniele; Molinari, Marco; Amditis, Angelos; Bimpas, Matthaios; Bertsch, Nicolas; Spiering, Vincent; Santana, Juan; Sterken, Tom; Torfs, Tom; Bairaktaris, Dimitris; Bairaktaris, Manos; Camarinopulos, Stefanos; Frondistou-Yannas, Mata; Ulieru, Dumitru
2012-04-01
This paper illustrates an experimental campaign conducted under laboratory conditions on a full-scale reinforced concrete three-dimensional frame instrumented with wireless sensors developed within the Memscon project. In particular it describes the assumptions which the experimental campaign was based on, the design of the structure, the laboratory setup and the results of the tests. The aim of the campaign was to validate the performance of Memscon sensing systems, consisting of wireless accelerometers and strain sensors, on a real concrete structure during construction and under an actual earthquake. Another aspect of interest was to assess the effectiveness of the full damage recognition procedure based on the data recorded by the sensors and the reliability of the Decision Support System (DSS) developed in order to provide the stakeholders recommendations for building rehabilitation and the costs of this. With these ends, a Eurocode 8 spectrum-compatible accelerogram with increasing amplitude was applied at the top of an instrumented concrete frame built in the laboratory. MEMSCON sensors were directly compared with wired instruments, based on devices available on the market and taken as references, during both construction and seismic simulation.
Research on sensor design for internet of things and laser manufacturing
NASA Astrophysics Data System (ADS)
Wang, Tao; Yao, Jianquan; Guo, Ling; Zhang, Yanchun
2010-12-01
In this paper, we will introduce the research on sensor design for IOT (Internet of Things) and laser manufacturing, and supporting the establishment of local area IOT. The main contents include studying on the structure designing of silicon micro tilt sensor, data acquisition and processing, addressing implanted and building Local Area IOT with wireless sensor network technology. At last, it is discussed the status and trends of the Internet of Things from the promoters, watchers, pessimists and doers.
Wireless Handhelds to Support Clinical Nursing Practicum
ERIC Educational Resources Information Center
Wu, Cheng-Chih; Lai, Chin-Yuan
2009-01-01
This paper reports our implementation and evaluation of a wireless handheld learning environment used to support a clinical nursing practicum course. The learning environment was designed so that nursing students could use handhelds for recording information, organizing ideas, assessing patients, and also for interaction and collaboration with…
Metal oxide coating of carbon supports for supercapacitor applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boyle, Timothy J.; Tribby, Louis, J; Lakeman, Charles D. E.
2008-07-01
The global market for wireless sensor networks in 2010 will be valued close to $10 B, or 200 M units. TPL, Inc. is a small Albuquerque based business that has positioned itself to be a leader in providing uninterruptible power supplies in this growing market with projected revenues expected to exceed $26 M in 5 years. This project focused on improving TPL, Inc.'s patent-pending EnerPak{trademark} device which converts small amounts of energy from the environment (e.g., vibrations, light or temperature differences) into electrical energy that can be used to charge small energy storage devices. A critical component of the EnerPak{trademark}more » is the supercapacitor that handles high power delivery for wireless communications; however, optimization and miniaturization of this critical component is required. This proposal aimed to produce prototype microsupercapacitors through the integration of novel materials and fabrication processes developed at New Mexico Technology Research Collaborative (NMTRC) member institutions. In particular, we focused on developing novel ruthenium oxide nanomaterials and placed them into carbon supports to significantly increase the energy density of the supercapacitor. These improvements were expected to reduce maintenance costs and expand the utility of the TPL, Inc.'s device, enabling New Mexico to become the leader in the growing global wireless power supply market. By dominating this niche, new customers were expected to be attracted to TPL, Inc. yielding new technical opportunities and increased job opportunities for New Mexico.« less
Network Centric Communications for Expeditionary or Carrier Strike Groups
2011-12-01
known as Modulating Retroreflector (MRR) mode. In this configuration, a source laser transmits a beam to an optical receiver which receives the...be adapted for use at sea and found that interference was a key issue. SPAWAR Systems Center Pacific has spent over a decade trying to address this...ad-hoc wireless technology non-proprietary and radio agnostic. One of the issues with wireless technologies used at sea is the issue of ― beam
Construct mine environment monitoring system based on wireless mesh network
NASA Astrophysics Data System (ADS)
Chen, Xin; Ge, Gengyu; Liu, Yinmei; Cheng, Aimin; Wu, Jun; Fu, Jun
2018-04-01
The system uses wireless Mesh network as a network transmission medium, and strive to establish an effective and reliable underground environment monitoring system. The system combines wireless network technology and embedded technology to monitor the internal data collected in the mine and send it to the processing center for analysis and environmental assessment. The system can be divided into two parts: the main control network module and the data acquisition terminal, and the SPI bus technology is used for mutual communication between them. Multi-channel acquisition and control interface design Data acquisition and control terminal in the analog signal acquisition module, digital signal acquisition module, and digital signal output module. The main control network module running Linux operating system, in which the transplant SPI driver, USB card driver and AODV routing protocol. As a result, the internal data collection and reporting of the mine are realized.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Philip
The research objective of this project is to design and demonstrate a low-cost, compact, easy-to-deploy, maintenance-free sensor node technology, and a network of such sensors, which enable the monitoring of multiphysical parameters and can transform today’s ordinary buildings into smart buildings with environmental awareness. We develop the sensor node and network via engineering and integration of existing technologies, including high-efficiency mechanical energy harvesting, and ultralow-power integrated circuits (ICs) for sensing and wireless communication. Through integration and innovative power management via specifically designed low-power control circuits for wireless sensing applications, and tailoring energy-harvesting components to indoor applications, the target products willmore » have smaller volume, higher efficiency, and much lower cost (in both manufacturing and maintenance) than the baseline technology. Our development and commercialization objective is to create prototypes for our target products under the CWRU-Intwine collaboration.« less
Wide modulation bandwidth terahertz detection in 130 nm CMOS technology
NASA Astrophysics Data System (ADS)
Nahar, Shamsun; Shafee, Marwah; Blin, Stéphane; Pénarier, Annick; Nouvel, Philippe; Coquillat, Dominique; Safwa, Amr M. E.; Knap, Wojciech; Hella, Mona M.
2016-11-01
Design, manufacturing and measurements results for silicon plasma wave transistors based wireless communication wideband receivers operating at 300 GHz carrier frequency are presented. We show the possibility of Si-CMOS based integrated circuits, in which by: (i) specific physics based plasma wave transistor design allowing impedance matching to the antenna and the amplifier, (ii) engineering the shape of the patch antenna through a stacked resonator approach and (iii) applying bandwidth enhancement strategies to the design of integrated broadband amplifier, we achieve an integrated circuit of the 300 GHz carrier frequency receiver for wireless wideband operation up to/over 10 GHz. This is, to the best of our knowledge, the first demonstration of low cost 130 nm Si-CMOS technology, plasma wave transistors based fast/wideband integrated receiver operating at 300 GHz atmospheric window. These results pave the way towards future large scale (cost effective) silicon technology based terahertz wireless communication receivers.
Real-time long term measurement using integrated framework for ubiquitous smart monitoring
NASA Astrophysics Data System (ADS)
Heo, Gwanghee; Lee, Giu; Lee, Woosang; Jeon, Joonryong; Kim, Pil-Joong
2007-04-01
Ubiquitous monitoring combining internet technologies and wireless communication is one of the most promising technologies of infrastructure health monitoring against the natural of man-made hazards. In this paper, an integrated framework of the ubiquitous monitoring is developed for real-time long term measurement in internet environment. This framework develops a wireless sensor system based on Bluetooth technology and sends measured acceleration data to the host computer through TCP/IP protocol. And it is also designed to respond to the request of web user on real time basis. In order to verify this system, real time monitoring tests are carried out on a prototype self-anchored suspension bridge. Also, wireless measurement system is analyzed to estimate its sensing capacity and evaluate its performance for monitoring purpose. Based on the evaluation, this paper proposes the effective strategies for integrated framework in order to detect structural deficiencies and to design an early warning system.
Measurement of agricultural parameters using wireless sensor network (WSN)
NASA Astrophysics Data System (ADS)
Guaña-Moya, Javier; Sánchez-Almeida, Tarquino; Salgado-Reyes, Nelson
2018-04-01
The technological advances have allowed to create new applications in telecommunications, applying low power and reduced costs in their equipment, thus achieving the evolution of new wireless networks or also denominated Wireless Sensor Network. These technologies allow the generation of measurements and analysis of environmental parameter data and soil. Precision agriculture requires parameters for the improvement of production, obtained through WSN technologies. This research analyzes the climatic requirements and soil parameters in a rose plantation in a greenhouse at an altitude of 3,100 meters above sea level. In the present investigation, maximum parameters were obtained in the production of roses, which are in the optimum range of production, whereas the minimum parameters of temperature, humidity and luminosity, evidenced that these parameters can damage the plants, since temperatures less than 10 °C slow down the growth of the plant and allow the proliferation of diseases and fungi.
Handheld Devices: Toward a More Mobile Campus.
ERIC Educational Resources Information Center
Fallon, Mary A. C.
2002-01-01
Offers an overview of the acceptance and use of handheld personal computing devices on campus that connect wirelessly to the campus network. Considers access; present and future software applications; uses in medial education; faculty training needs; and wireless technology issues. (Author/LRW)
Thin film resonator technology.
Lakin, Kenneth M
2005-05-01
Advances in wireless systems have placed increased demands on high performance frequency control devices for operation into the microwave range. With spectrum crowding, high bandwidth requirements, miniaturization, and low cost requirements as a background, the thin film resonator technology has evolved into the mainstream of applications. This technology has been under development for over 40 years in one form or another, but it required significant advances in integrated circuit processing to reach microwave frequencies and practical manufacturing for high-volume applications. This paper will survey the development of the thin film resonator technology and describe the core elements that give rise to resonators and filters for today's high performance wireless applications.
Elliptic Curve Cryptography with Security System in Wireless Sensor Networks
NASA Astrophysics Data System (ADS)
Huang, Xu; Sharma, Dharmendra
2010-10-01
The rapid progress of wireless communications and embedded micro-electro-system technologies has made wireless sensor networks (WSN) very popular and even become part of our daily life. WSNs design are generally application driven, namely a particular application's requirements will determine how the network behaves. However, the natures of WSN have attracted increasing attention in recent years due to its linear scalability, a small software footprint, low hardware implementation cost, low bandwidth requirement, and high device performance. It is noted that today's software applications are mainly characterized by their component-based structures which are usually heterogeneous and distributed, including the WSNs. But WSNs typically need to configure themselves automatically and support as hoc routing. Agent technology provides a method for handling increasing software complexity and supporting rapid and accurate decision making. This paper based on our previous works [1, 2], three contributions have made, namely (a) fuzzy controller for dynamic slide window size to improve the performance of running ECC (b) first presented a hidden generation point for protection from man-in-the middle attack and (c) we first investigates multi-agent applying for key exchange together. Security systems have been drawing great attentions as cryptographic algorithms have gained popularity due to the natures that make them suitable for use in constrained environment such as mobile sensor information applications, where computing resources and power availability are limited. Elliptic curve cryptography (ECC) is one of high potential candidates for WSNs, which requires less computational power, communication bandwidth, and memory in comparison with other cryptosystem. For saving pre-computing storages recently there is a trend for the sensor networks that the sensor group leaders rather than sensors communicate to the end database, which highlighted the needs to prevent from the man-in-the middle attack. A designed a hidden generator point that offer a good protection from the man-in-the middle (MinM) attack which becomes one of major worries for the sensor's networks with multiagent system is also discussed.
ERIC Educational Resources Information Center
Zhao, Weiyi
2011-01-01
Wireless mesh networks (WMNs) have recently emerged to be a cost-effective solution to support large-scale wireless Internet access. They have numerous applications, such as broadband Internet access, building automation, and intelligent transportation systems. One research challenge for Internet-based WMNs is to design efficient mobility…
Moloney, Clint; Becarria, Lisa
It is clear from the literature that more investigation into the infusion of this technology within nursing is required with a particular emphasis on the advantages of documenting best practices in nursing education. Current literature highlights the importance of incorporating wireless devices in nursing organisations without discussing how effectively nurses can collect data. Good information is found on the factors of adoption and barriers associated with such devices in nursing however the evidence supplied in such findings is yet to be well substantiated. Therefore, this study conducted an investigation into the factors of adoption of wireless applications for data collection. By doing so, this review has attempted to fill-in the gap in the literature and provides insights into those factors that need to be given priority when implementing handheld technologies in nursing. The overarching aim of this systematic review was therefore to explore and confirm the facilitators and inhibitors to the adoption of handheld technology in nursing. The objective of this review was to summarise the available evidence on the facilitators and inhibitors of adopting and utilising handheld wireless technology into the nursing profession. In particular this review set out to understand the supportive interventions that assist nurses to adjust to the use of such technology. Types of participants - This review was only interested in the nursing profession and was not limited to any one culture or setting. Therefore the review included nurses both Australian and overseas who were working in acute settings, community settings, and student nurses still in an academic setting.Types of intervention(s)/phenomena of interest - The review only considered studies that were endeavouring to understand the behavioural intention and user acceptance of handheld wireless technology (PDA's) in a nursing setting.Types of studies - This review considered studies that focus on qualitative data including, but not limited to, designs such as phenomenology, ground theory, ethnography, action research and feminist research.Types of outcomes - Outcomes of interest were a strong reflection on the perception of nurses towards the technology and an identification of the major inhibitors and facilitators in adoption and utilisation of the technology. A three-step search strategy was utilised in each component of this review. An initial limited search of MEDLINE and CINAHL was undertaken followed by analysis of the text words contained in the title and abstract, and of the index terms used to describe article. A second search using all identified keywords and index terms was then undertaken across all included databases. Thirdly, the reference list of all identified reports and articles was searched for additional studies. Each paper was assessed by two reviewers for methodological quality prior to inclusion in the review using a critical appraisal instrument from Joanna Briggs Institute-Qualitative Assessment and Review Instrument (JBI-QARI) software developed by the Joanna Briggs Institute (JBI), (). Qualitative data was extracted from papers included in the review using the standardised data extraction tool from the JBI-QARI (). The JBI Qualitative Assessment and Review Instrument (JBI-QARI) was utilised to merge similar findings into categories and then similar categories were again narrowed down to a common generic concept. A total of 18 papers were retrieved. Of these, 11 were included in the review with all 11 being qualitative research papers. Reasons for the 7 papers being excluded from the review, were because experiences of nurses were not addressed (7 papers); the definition of nurse did not fit the inclusion criteria (2 papers); the concept "Nurses utilising PDAs" was not completely clear (1 paper). In addition all 7 of these papers were also excluded because of poor or incomplete descriptions of the methodology following critical appraisal using the JBI-QARI critical appraisal tool. The findings of the remaining 11 papers were extracted and combined in the meta-synthesis. Key findings in this review included: The saving of nursing time; both advantages and disadvantage in assisting with information flow; the assistance of the technology with nurse decision making; varied opinions on the usability of the technology; positive links to nursing support; innovation diffusion considerations; and positive results on the use of the technology as an effective learning tool. Findings of this systematic review provide sound evidence that information flow and real-time nurse decision making are enhanced with the use of PDAs in a clinical setting. What is clear is the technology can play a particularly important role in the pre-registered population of nurses still undergoing their training. Nursing support for this cohort would appear fundamental and hence the additional support given by using such technology would appear to enhance critical thinking skills and an ability to analyse evidence based practice information.Wireless connectively to the World Wide Web can expand the breadth of information made available to nursing staff and promote a safer and more therapeutic environment. The role PDAs may have in providing a safer medication administration environment for nurses needs to be investigated in greater depth. Issues of innovation diffusion require significant attention and manufacturers of these devices need to work with the nursing profession to find the most suitable design for a busy clinical setting. E-learning through the use of such technology would appear to have great potential and increase a nurse's exposure to education resources. This would seem of great benefit to student nurses in the academic sector.
NASA Astrophysics Data System (ADS)
Chen, R.; Xi, X.; Zhao, X.; He, L.; Yao, H.; Shen, R.
2016-12-01
Dense 3D magnetotelluric (MT) data acquisition owns the benefit of suppressing the static shift and topography effect, can achieve high precision and high resolution inversion for underground structure. This method may play an important role in mineral exploration, geothermal resources exploration, and hydrocarbon exploration. It's necessary to reduce the power consumption greatly of a MT signal receiver for large-scale 3D MT data acquisition while using sensor network to monitor data quality of deployed MT receivers. We adopted a series of technologies to realized above goal. At first, we designed an low-power embedded computer which can couple with other parts of MT receiver tightly and support wireless sensor network. The power consumption of our embedded computer is less than 1 watt. Then we designed 4-channel data acquisition subsystem which supports 24-bit analog-digital conversion, GPS synchronization, and real-time digital signal processing. Furthermore, we developed the power supply and power management subsystem for MT receiver. At last, a series of software, which support data acquisition, calibration, wireless sensor network, and testing, were developed. The software which runs on personal computer can monitor and control over 100 MT receivers on the field for data acquisition and quality control. The total power consumption of the receiver is about 2 watts at full operation. The standby power consumption is less than 0.1 watt. Our testing showed that the MT receiver can acquire good quality data at ground with electrical dipole length as 3 m. Over 100 MT receivers were made and used for large-scale geothermal exploration in China with great success.
NASA Astrophysics Data System (ADS)
Manodham, Thavisak; Loyola, Luis; Miki, Tetsuya
IEEE 802.11 wirelesses LANs (WLANs) have been rapidly deployed in enterprises, public areas, and households. Voice-over-IP (VoIP) and similar applications are now commonly used in mobile devices over wireless networks. Recent works have improved the quality of service (QoS) offering higher data rates to support various kinds of real-time applications. However, besides the need for higher data rates, seamless handoff and load balancing among APs are key issues that must be addressed in order to continue supporting real-time services across wireless LANs and providing fair services to all users. In this paper, we introduce a novel access point (AP) with two transceivers that improves network efficiency by supporting seamless handoff and traffic load balancing in a wireless network. In our proposed scheme, the novel AP uses the second transceiver to scan and find neighboring STAs in the transmission range and then sends the results to neighboring APs, which compare and analyze whether or not the STA should perform a handoff. The initial results from our simulations show that the novel AP module is more effective than the conventional scheme and a related work in terms of providing a handoff process with low latency and sharing traffic load with neighbor APs.
Wireless Communications in Smart Grid
NASA Astrophysics Data System (ADS)
Bojkovic, Zoran; Bakmaz, Bojan
Communication networks play a crucial role in smart grid, as the intelligence of this complex system is built based on information exchange across the power grid. Wireless communications and networking are among the most economical ways to build the essential part of the scalable communication infrastructure for smart grid. In particular, wireless networks will be deployed widely in the smart grid for automatic meter reading, remote system and customer site monitoring, as well as equipment fault diagnosing. With an increasing interest from both the academic and industrial communities, this chapter systematically investigates recent advances in wireless communication technology for the smart grid.
Duncan, R G; Shabot, M M
2000-01-01
TCP/IP and World-Wide-Web (WWW) technology have become the universal standards for networking and delivery of information. Personal digital assistants (PDAs), cellular telephones, and alphanumeric pagers are rapidly converging on a single pocket device that will leverage wireless TCP/IP networks and WWW protocols and can be used to deliver clinical information and alerts anytime, anywhere. We describe a wireless interface to clinical information for physicians based on Palm Corp.'s Palm VII pocket computer, a wireless digital network, encrypted data transmission, secure web servers, and a clinical data repository (CDR).
Duncan, R. G.; Shabot, M. M.
2000-01-01
TCP/IP and World-Wide-Web (WWW) technology have become the universal standards for networking and delivery of information. Personal digital assistants (PDAs), cellular telephones, and alphanumeric pagers are rapidly converging on a single pocket device that will leverage wireless TCP/IP networks and WWW protocols and can be used to deliver clinical information and alerts anytime, anywhere. We describe a wireless interface to clinical information for physicians based on Palm Corp.'s Palm VII pocket computer, a wireless digital network, encrypted data transmission, secure web servers, and a clinical data repository (CDR). PMID:11079875
Wireless connectivity for health and sports monitoring: a review.
Armstrong, S
2007-05-01
This is a review of health and sports monitoring research that uses or could benefit from wireless connectivity. New, enabling wireless connectivity standards are evaluated for their suitability, and an assessment of current exploitation of these technologies is summarised. An example of the application is given, highlighting the capabilities of a network of wireless sensors. Issues of timing and power consumption in a battery-powered system are addressed to highlight the benefits networking can provide, and a suggestion of how monitoring different biometric signals might allow one to gain additional information about an athlete or patient is made.
Wireless connectivity for health and sports monitoring: a review
Armstrong, S
2007-01-01
This is a review of health and sports monitoring research that uses or could benefit from wireless connectivity. New, enabling wireless connectivity standards are evaluated for their suitability, and an assessment of current exploitation of these technologies is summarised. An example of the application is given, highlighting the capabilities of a network of wireless sensors. Issues of timing and power consumption in a battery‐powered system are addressed to highlight the benefits networking can provide, and a suggestion of how monitoring different biometric signals might allow one to gain additional information about an athlete or patient is made. PMID:17224446
2009-09-01
boarding team, COTS, WLAN, smart antenna, OpenVPN application, wireless base station, OFDM, latency, point-to-point wireless link. 16. PRICE CODE 17...16 c. SSL/TLS .................................17 2. OpenVPN ......................................17 III. EXPERIMENT METHODOLOGY...network frame at Layer 2 has already been secured by encryption at a higher level. 2. OpenVPN OpenVPN is open source software that provides a VPN
DOT National Transportation Integrated Search
2003-01-01
This guidebook was created to help unravel the confusing issues, terms, and options surrounding wireless communications, particularly as it involves commercially available communications services. The target audience consists of those middle and uppe...
78 FR 64497 - Information Collection Being Reviewed by the Federal Communications Commission
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-29
... information technology; and ways to further reduce the information collection burden on small business....: 3060-0865. Title: Wireless Telecommunications Bureau Universal Licensing System Recordkeeping and Third...-1, ``Wireless Services Licensing Records,'' to cover the collection, maintenance, use(s), and...
47 CFR 0.332 - Actions taken under delegated authority.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Delegations of Authority Wireless Telecommunications Bureau § 0.332 Actions taken under delegated authority. In discharging the authority conferred by § 0.331, the Chief, Wireless Telecommunications Bureau... frequencies shared with broadcast, common carrier, or government services—Office of Engineering and Technology...
ERIC Educational Resources Information Center
Scott, Lee-Allison
2003-01-01
The first wireless technology program for preschoolers was implemented in January at the Primrose School at Bentwater in Atlanta, Georgia, a new corporate school operated by Primrose School Franchising Co. The new school serves as a testing and training facility for groundbreaking educational approaches, including emerging innovations in…
Design of smart home gateway based on Wi-Fi and ZigBee
NASA Astrophysics Data System (ADS)
Li, Yang
2018-04-01
With the increasing demand for home lifestyle, the traditional smart home products have been unable to meet the needs of users. Aim at the complex wiring, high cost and difficult operation problems of traditional smart home system, this paper designs a home gateway for smart home system based on Wi-Fi and ZigBee. This paper first gives a smart home system architecture base on cloud server, Wi-Fi and ZigBee. This architecture enables users to access the smart home system remotely from Internet through the cloud server or through Wi-Fi at home. It also offers the flexibility and low cost of ZigBee wireless networking for home equipment. This paper analyzes the functional requirements of the home gateway, and designs a modular hardware architecture based on the RT5350 wireless gateway module and the CC2530 ZigBee coordinator module. Also designs the software of the home gateway, including the gateway master program and the ZigBee coordinator program. Finally, the smart home system and home gateway are tested in two kinds of network environments, internal network and external network. The test results show that the designed home gateway can meet the requirements, support remote and local access, support multi-user, support information security technology, and can timely report equipment status information.
Non-Orthogonal Multiple Access for Ubiquitous Wireless Sensor Networks.
Anwar, Asim; Seet, Boon-Chong; Ding, Zhiguo
2018-02-08
Ubiquitous wireless sensor networks (UWSNs) have become a critical technology for enabling smart cities and other ubiquitous monitoring applications. Their deployment, however, can be seriously hampered by the spectrum available to the sheer number of sensors for communication. To support the communication needs of UWSNs without requiring more spectrum resources, the power-domain non-orthogonal multiple access (NOMA) technique originally proposed for 5th Generation (5G) cellular networks is investigated for UWSNs for the first time in this paper. However, unlike 5G networks that operate in the licensed spectrum, UWSNs mostly operate in unlicensed spectrum where sensors also experience cross-technology interferences from other devices sharing the same spectrum. In this paper, we model the interferences from various sources at the sensors using stochastic geometry framework. To evaluate the performance, we derive a theorem and present new closed form expression for the outage probability of the sensors in a downlink scenario under interference limited environment. In addition, diversity analysis for the ordered NOMA users is performed. Based on the derived outage probability, we evaluate the average link throughput and energy consumption efficiency of NOMA against conventional orthogonal multiple access (OMA) technique in UWSNs. Further, the required computational complexity for the NOMA users is presented.
NASA Astrophysics Data System (ADS)
Sridevi, B.; Supriya, T. S.; Rajaram, S.
2013-01-01
The current generation of wireless networks has been designed predominantly to support voice and more recently data traffic. WiMAX is currently one of the hottest technologies in wireless. The main motive of the mobile technologies is to provide seamless cost effective mobility. But this is affected by Authentication cost and handover delay since on each handoff the Mobile Station (MS) has to undergo all steps of authentication. Pre-Authentication is used to reduce the handover delay and increase the speed of the Intra-ASN Handover. Proposed Pre-Authentication method is intended to reduce the authentication delay by getting pre authenticated by central authority called Pre Authentication Authority (PAA). MS requests PAA for Pre Authentication Certificate (PAC) before performing handoff. PAA verifies the identity of MS and provides PAC to MS and also to the neighboring target Base Stations (tBSs). MS having time bound PAC can skip the authentication process when recognized by target BS during handoff. It also prevents the DOS (Denial Of Service) attack and Replay attack. It has no wastage of unnecessary key exchange of the resources. The proposed work is simulated by NS2 model and by MATLAB.
A wireless passive pressure microsensor fabricated in HTCC MEMS technology for harsh environments.
Tan, Qiulin; Kang, Hao; Xiong, Jijun; Qin, Li; Zhang, Wendong; Li, Chen; Ding, Liqiong; Zhang, Xiansheng; Yang, Mingliang
2013-08-02
A wireless passive high-temperature pressure sensor without evacuation channel fabricated in high-temperature co-fired ceramics (HTCC) technology is proposed. The properties of the HTCC material ensure the sensor can be applied in harsh environments. The sensor without evacuation channel can be completely gastight. The wireless data is obtained with a reader antenna by mutual inductance coupling. Experimental systems are designed to obtain the frequency-pressure characteristic, frequency-temperature characteristic and coupling distance. Experimental results show that the sensor can be coupled with an antenna at 600 °C and max distance of 2.8 cm at room temperature. The senor sensitivity is about 860 Hz/bar and hysteresis error and repeatability error are quite low.
IR wireless cluster synapses of HYDRA very large neural networks
NASA Astrophysics Data System (ADS)
Jannson, Tomasz; Forrester, Thomas
2008-04-01
RF/IR wireless (virtual) synapses are critical components of HYDRA (Hyper-Distributed Robotic Autonomy) neural networks, already discussed in two earlier papers. The HYDRA network has the potential to be very large, up to 10 11-neurons and 10 18-synapses, based on already established technologies (cellular RF telephony and IR-wireless LANs). It is organized into almost fully connected IR-wireless clusters. The HYDRA neurons and synapses are very flexible, simple, and low-cost. They can be modified into a broad variety of biologically-inspired brain-like computing capabilities. In this third paper, we focus on neural hardware in general, and on IR-wireless synapses in particular. Such synapses, based on LED/LD-connections, dominate the HYDRA neural cluster.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Long, John P.; Hamill, Michael J.; Mitchell, M. G.
A major portion of the Wireless Networking Project at Sandia National Laboratories over the last few years has been to examine IEEE 802.11 wireless networking for possible use at Sandia and if practical, introduce this technology. This project team deployed 802.11a, b, and g Wireless Local Area Networking at Sandia. This report examines the basics of wireless networking and captures key results from project tests and experiments. It also records project members thoughts and designs on wireless LAN architecture and security issues. It documents some of the actions and milestones of this project, including pilot and production deployment of wirelessmore » networking equipment, and captures the team's rationale behind some of the decisions made. Finally, the report examines lessons learned, future directions, and conclusions.« less
Physical parameters collection based on wireless senor network
NASA Astrophysics Data System (ADS)
Chen, Xin; Wu, Hong; Ji, Lei
2013-12-01
With the development of sensor technology, wireless senor network has been applied in the medical, military, entertainment field and our daily life. But the existing available wireless senor networks applied in human monitoring system still have some problems, such as big power consumption, low security and so on. To improve senor network applied in health monitoring system, the paper introduces a star wireless senor networks based on msp430 and DSP. We design a low-cost heart-rate monitor senor node. The communication between senor node and sink node is realized according to the newest protocol proposed by the IEEE 802.15.6 Task Group. This wireless senor network will be more energy-efficient and faster compared to traditional senor networks.
High-performance wireless powering for peripheral nerve neuromodulation systems.
Tanabe, Yuji; Ho, John S; Liu, Jiayin; Liao, Song-Yan; Zhen, Zhe; Hsu, Stephanie; Shuto, Chika; Zhu, Zi-Yi; Ma, Andrew; Vassos, Christopher; Chen, Peter; Tse, Hung Fat; Poon, Ada S Y
2017-01-01
Neuromodulation of peripheral nerves with bioelectronic devices is a promising approach for treating a wide range of disorders. Wireless powering could enable long-term operation of these devices, but achieving high performance for miniaturized and deeply placed devices remains a technological challenge. We report the miniaturized integration of a wireless powering system in soft neuromodulation device (15 mm length, 2.7 mm diameter) and demonstrate high performance (about 10%) during in vivo wireless stimulation of the vagus nerve in a porcine animal model. The increased performance is enabled by the generation of a focused and circularly polarized field that enhances efficiency and provides immunity to polarization misalignment. These performance characteristics establish the clinical potential of wireless powering for emerging therapies based on neuromodulation.
High-performance wireless powering for peripheral nerve neuromodulation systems
Liu, Jiayin; Liao, Song-Yan; Zhen, Zhe; Hsu, Stephanie; Shuto, Chika; Zhu, Zi-Yi; Ma, Andrew; Vassos, Christopher; Chen, Peter; Tse, Hung Fat; Poon, Ada S. Y.
2017-01-01
Neuromodulation of peripheral nerves with bioelectronic devices is a promising approach for treating a wide range of disorders. Wireless powering could enable long-term operation of these devices, but achieving high performance for miniaturized and deeply placed devices remains a technological challenge. We report the miniaturized integration of a wireless powering system in soft neuromodulation device (15 mm length, 2.7 mm diameter) and demonstrate high performance (about 10%) during in vivo wireless stimulation of the vagus nerve in a porcine animal model. The increased performance is enabled by the generation of a focused and circularly polarized field that enhances efficiency and provides immunity to polarization misalignment. These performance characteristics establish the clinical potential of wireless powering for emerging therapies based on neuromodulation. PMID:29065141
A Fast lattice-based polynomial digital signature system for m-commerce
NASA Astrophysics Data System (ADS)
Wei, Xinzhou; Leung, Lin; Anshel, Michael
2003-01-01
The privacy and data integrity are not guaranteed in current wireless communications due to the security hole inside the Wireless Application Protocol (WAP) version 1.2 gateway. One of the remedies is to provide an end-to-end security in m-commerce by applying application level security on top of current WAP1.2. The traditional security technologies like RSA and ECC applied on enterprise's server are not practical for wireless devices because wireless devices have relatively weak computation power and limited memory compared with server. In this paper, we developed a lattice based polynomial digital signature system based on NTRU's Polynomial Authentication and Signature Scheme (PASS), which enabled the feasibility of applying high-level security on both server and wireless device sides.
Photonic-Enabled RF Canceller with Tunable Time-Delay Taps
2016-12-05
ports indicated in Fig. 1. The analyzer was configured to sweep 10 MHz to 6 GHz with +10 dBm of output power , and compute the time-domain transmission ...Laboratory Lexington, Massachusetts, USA Abstract—Future 5G wireless networks can benefit from the use of in-band full-duplex technologies that allow access...microwave photonics, RF cancellation. I. INTRODUCTION In-Band Full-Duplex (IBFD) technologies are being consid- ered for 5th generation (5G) wireless
2014-09-01
and 20 “live” tweets were injected into the scenario itself 1 alternative power demonstration ( wind and solar) accomplished 7 remote wireless ...solved this issue. 2. Hastily Formed Networks (HFN) Alternative power sources were set up:RENEWS–a wind turbine , flexible solar panels, rigid...297 WORKS CONSULTED Akyildiz, I. (2011). Sensor networks in challenged environments. Wireless Technologies for Humanitarian Relief, 3(3).doi
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yanliang; Butt, Darryl; Agarwal, Vivek
2015-07-01
The objective of this Nuclear Energy Enabling Technology research project is to develop high-efficiency and reliable thermoelectric generators for self-powered wireless sensors nodes utilizing thermal energy from nuclear plant or fuel cycle. The power harvesting technology has crosscutting significance to address critical technology gaps in monitoring nuclear plants and fuel cycle. The outcomes of the project will lead to significant advancement in sensors and instrumentation technology, reducing cost, improving monitoring reliability and therefore enhancing safety. The self-powered wireless sensor networks could support the long-term safe and economical operation of all the reactor designs and fuel cycle concepts, as well asmore » spent fuel storage and many other nuclear science and engineering applications. The research is based on recent breakthroughs in high-performance nanostructured bulk (nanobulk) thermoelectric materials that enable high-efficiency direct heat-to-electricity conversion over a wide temperature range. The nanobulk thermoelectric materials that the research team at Boise State University and University of Houston has developed yield up to a 50% increase in the thermoelectric figure of merit, ZT, compared with state-of-the-art bulk counterparts. This report focuses on the selection of optimal thermoelectric materials for this project. The team has performed extensive study on two thermoelectric materials systems, i.e. the half-Heusler materials, and the Bismuth-Telluride materials. The report contains our recent research results on the fabrication, characterization and thermoelectric property measurements of these two materials.« less
Huang, Shuo; Liu, Jing
2010-05-01
Application of clinical digital medical imaging has raised many tough issues to tackle, such as data storage, management, and information sharing. Here we investigated a mobile phone based medical image management system which is capable of achieving personal medical imaging information storage, management and comprehensive health information analysis. The technologies related to the management system spanning the wireless transmission technology, the technical capabilities of phone in mobile health care and management of mobile medical database were discussed. Taking medical infrared images transmission between phone and computer as an example, the working principle of the present system was demonstrated.
Wireless Sensor Network Handles Image Data
NASA Technical Reports Server (NTRS)
2008-01-01
To relay data from remote locations for NASA s Earth sciences research, Goddard Space Flight Center contributed to the development of "microservers" (wireless sensor network nodes), which are now used commercially as a quick and affordable means to capture and distribute geographical information, including rich sets of aerial and street-level imagery. NASA began this work out of a necessity for real-time recovery of remote sensor data. These microservers work much like a wireless office network, relaying information between devices. The key difference, however, is that instead of linking workstations within one office, the interconnected microservers operate miles away from one another. This attribute traces back to the technology s original use: The microservers were originally designed for seismology on remote glaciers and ice streams in Alaska, Greenland, and Antarctica-acquiring, storing, and relaying data wirelessly between ground sensors. The microservers boast three key attributes. First, a researcher in the field can establish a "managed network" of microservers and rapidly see the data streams (recovered wirelessly) on a field computer. This rapid feedback permits the researcher to reconfigure the network for different purposes over the course of a field campaign. Second, through careful power management, the microservers can dwell unsupervised in the field for up to 2 years, collecting tremendous amounts of data at a research location. The third attribute is the exciting potential to deploy a microserver network that works in synchrony with robotic explorers (e.g., providing ground truth validation for satellites, supporting rovers as they traverse the local environment). Managed networks of remote microservers that relay data unsupervised for up to 2 years can drastically reduce the costs of field instrumentation and data rec
Wireless Command-and-Control of UAV-Based Imaging LANs
NASA Technical Reports Server (NTRS)
Herwitz, Stanley; Dunagan, S. E.; Sullivan, D. V.; Slye, R. E.; Leung, J. G.; Johnson, L. F.
2006-01-01
Dual airborne imaging system networks were operated using a wireless line-of-sight telemetry system developed as part of a 2002 unmanned aerial vehicle (UAV) imaging mission over the USA s largest coffee plantation on the Hawaiian island of Kauai. A primary mission objective was the evaluation of commercial-off-the-shelf (COTS) 802.11b wireless technology for reduction of payload telemetry costs associated with UAV remote sensing missions. Predeployment tests with a conventional aircraft demonstrated successful wireless broadband connectivity between a rapidly moving airborne imaging local area network (LAN) and a fixed ground station LAN. Subsequently, two separate LANs with imaging payloads, packaged in exterior-mounted pressure pods attached to the underwing of NASA's Pathfinder-Plus UAV, were operated wirelessly by ground-based LANs over independent Ethernet bridges. Digital images were downlinked from the solar-powered aircraft at data rates of 2-6 megabits per second (Mbps) over a range of 6.5 9.5 km. An integrated wide area network enabled payload monitoring and control through the Internet from a range of ca. 4000 km during parts of the mission. The recent advent of 802.11g technology is expected to boost the system data rate by about a factor of five.
Invited Article: Channel performance for indoor and outdoor terahertz wireless links
NASA Astrophysics Data System (ADS)
Ma, Jianjun; Shrestha, Rabi; Moeller, Lothar; Mittleman, Daniel M.
2018-05-01
One of the most exciting future applications of terahertz technology is in the area of wireless communications. As 5G systems incorporating a standard for millimeter-wave wireless links approach commercial roll-out, it is becoming clear that even this new infrastructure will not be sufficient to keep pace with the rapidly increasing global demand for bandwidth. One favorable solution that is attracting increasing attention for subsequent generations of wireless technology is to use higher frequencies, above 100 GHz. The implementation of such links will require significant advances in hardware, algorithms, and architecture. Although numerous research groups are exploring aspects of this challenging problem, many basic questions remain unaddressed. Here, we present an experimental effort to characterize THz wireless links in both indoor and outdoor environments. We report measurements at 100, 200, 300, and 400 GHz, using a link with a data rate of 1 Gbit/s. We demonstrate both line-of-sight and non-line-of-sight (specular reflection) links off of interior building walls. This work represents a first step to establish the feasibility of using THz carrier waves for data transmission in diverse situations and environments.
Applications of wireless sensor networks in marine environment monitoring: a survey.
Xu, Guobao; Shen, Weiming; Wang, Xianbin
2014-09-11
With the rapid development of society and the economy, an increasing number of human activities have gradually destroyed the marine environment. Marine environment monitoring is a vital problem and has increasingly attracted a great deal of research and development attention. During the past decade, various marine environment monitoring systems have been developed. The traditional marine environment monitoring system using an oceanographic research vessel is expensive and time-consuming and has a low resolution both in time and space. Wireless Sensor Networks (WSNs) have recently been considered as potentially promising alternatives for monitoring marine environments since they have a number of advantages such as unmanned operation, easy deployment, real-time monitoring, and relatively low cost. This paper provides a comprehensive review of the state-of-the-art technologies in the field of marine environment monitoring using wireless sensor networks. It first describes application areas, a common architecture of WSN-based oceanographic monitoring systems, a general architecture of an oceanographic sensor node, sensing parameters and sensors, and wireless communication technologies. Then, it presents a detailed review of some related projects, systems, techniques, approaches and algorithms. It also discusses challenges and opportunities in the research, development, and deployment of wireless sensor networks for marine environment monitoring.
From computers to ubiquitous computing by 2010: health care.
Aziz, Omer; Lo, Benny; Pansiot, Julien; Atallah, Louis; Yang, Guang-Zhong; Darzi, Ara
2008-10-28
Over the past decade, miniaturization and cost reduction in semiconductors have led to computers smaller in size than a pinhead with powerful processing abilities that are affordable enough to be disposable. Similar advances in wireless communication, sensor design and energy storage have meant that the concept of a truly pervasive 'wireless sensor network', used to monitor environments and objects within them, has become a reality. The need for a wireless sensor network designed specifically for human body monitoring has led to the development of wireless 'body sensor network' (BSN) platforms composed of tiny integrated microsensors with on-board processing and wireless data transfer capability. The ubiquitous computing abilities of BSNs offer the prospect of continuous monitoring of human health in any environment, be it home, hospital, outdoors or the workplace. This pervasive technology comes at a time when Western world health care costs have sharply risen, reflected by increasing expenditure on health care as a proportion of gross domestic product over the last 20 years. Drivers of this rise include an ageing post 'baby boom' population, higher incidence of chronic disease and the need for earlier diagnosis. This paper outlines the role of pervasive health care technologies in providing more efficient health care.
Robust Rate Maximization for Heterogeneous Wireless Networks under Channel Uncertainties
Xu, Yongjun; Hu, Yuan; Li, Guoquan
2018-01-01
Heterogeneous wireless networks are a promising technology in next generation wireless communication networks, which has been shown to efficiently reduce the blind area of mobile communication and improve network coverage compared with the traditional wireless communication networks. In this paper, a robust power allocation problem for a two-tier heterogeneous wireless networks is formulated based on orthogonal frequency-division multiplexing technology. Under the consideration of imperfect channel state information (CSI), the robust sum-rate maximization problem is built while avoiding sever cross-tier interference to macrocell user and maintaining the minimum rate requirement of each femtocell user. To be practical, both of channel estimation errors from the femtocells to the macrocell and link uncertainties of each femtocell user are simultaneously considered in terms of outage probabilities of users. The optimization problem is analyzed under no CSI feedback with some cumulative distribution function and partial CSI with Gaussian distribution of channel estimation error. The robust optimization problem is converted into the convex optimization problem which is solved by using Lagrange dual theory and subgradient algorithm. Simulation results demonstrate the effectiveness of the proposed algorithm by the impact of channel uncertainties on the system performance. PMID:29466315
Real-time monitoring of ubiquitous wireless ECG sensor node for medical care using ZigBee
NASA Astrophysics Data System (ADS)
Vijayalakshmi, S. R.; Muruganand, S.
2012-01-01
Sensor networks have the potential to impact many aspects of medical care greatly. By outfitting patients with wireless, wearable vital sign sensors, collecting detailed real-time data on physiological status can be greatly simplified. In this article, we propose the system architecture for smart sensor platform based on advanced wireless sensor networks. An emerging application for wireless sensor networks involves their use in medical care. In hospitals or clinics, outfitting every patient with tiny, wearable wireless vital sign sensors would allow doctors, nurses and other caregivers to continuously monitor the status of their patients. In an emergency or disaster scenario, the same technology would enable medics to more effectively care for a large number of casualties. First responders could receive immediate notifications on any changes in patient status, such as respiratory failure or cardiac arrest. Wireless sensor network is a set of small, autonomous devices, working together to solve different problems. It is a relatively new technology, experiencing true expansion in the past decade. People have realised that integration of small and cheap microcontrollers with sensors can result in the production of extremely useful devices, which can be used as an integral part of the sensor nets. These devices are called sensor nodes. Today, sensor nets are used in agriculture, ecology and tourism, but medicine is the area where they certainly meet the greatest potential. This article presents a medical smart sensor node platform. This article proposes a wireless two-lead EKG. These devices collect heart rate and EKG data and relay it over a short-range (300 m) wireless network to any number of receiving devices, including PDAs, laptops or ambulance-based terminals.
ERIC Educational Resources Information Center
Fielding, Randall
2000-01-01
Presents a debate on which technology will be in tomorrow's classrooms and the pros and cons of wiring classrooms and using a wireless network. Concluding comments address the likelihood, and desirability, of placing computers throughout the entire educational process and what types of computers and capabilities are needed. (GR)
The Wireless Student & the Library.
ERIC Educational Resources Information Center
Drew, Bill
2002-01-01
Describes a program at the State University of New York College of Agriculture and Technology at Morrisville (SUNY-Morrisville) developed with IBM called ThinkPad University that integrates computers into the teaching and learning environment. Explains a partnership with Raytheon that provides wireless connectivity; and discusses changes in…
NASA Astrophysics Data System (ADS)
Papaioannou, S.; Kalfas, G.; Vagionas, C.; Mitsolidou, C.; Maniotis, P.; Miliou, A.; Pleros, N.
2018-01-01
Analog optical fronthaul for 5G network architectures is currently being promoted as a bandwidth- and energy-efficient technology that can sustain the data-rate, latency and energy requirements of the emerging 5G era. This paper deals with a new optical fronthaul architecture that can effectively synergize optical transceiver, optical add/drop multiplexer and optical beamforming integrated photonics towards a DSP-assisted analog fronthaul for seamless and medium-transparent 5G small-cell networks. Its main application targets include dense and Hot-Spot Area networks, promoting the deployment of mmWave massive MIMO Remote Radio Heads (RRHs) that can offer wireless data-rates ranging from 25Gbps up to 400Gbps depending on the fronthaul technology employed. Small-cell access and resource allocation is ensured via a Medium-Transparent (MT-) MAC protocol that enables the transparent communication between the Central Office and the wireless end-users or the lamp-posts via roof-top-located V-band massive MIMO RRHs. The MTMAC is analysed in detail with simulation and analytical theoretical results being in good agreement and confirming its credentials to satisfy 5G network latency requirements by guaranteeing latency values lower than 1 ms for small- to midload conditions. Its extension towards supporting optical beamforming capabilities and mmWave massive MIMO antennas is discussed, while its performance is analysed for different fiber fronthaul link lengths and different optical channel capacities. Finally, different physical layer network architectures supporting the MT-MAC scheme are presented and adapted to different 5G use case scenarios, starting from PON-overlaid fronthaul solutions and gradually moving through Spatial Division Multiplexing up to Wavelength Division Multiplexing transport as the user density increases.
NASA Technical Reports Server (NTRS)
Henley, M. W.; Fikes, J. C.; Howell, J.; Mankins, J. C.; Howell, Joe T. (Technical Monitor)
2002-01-01
Space Solar Power technology offers unique benefits for near-term NASA space science missions, which can mature this technology for other future applications. "Laser-Photo-Voltaic Wireless Power Transmission" (Laser-PV WPT) is a technology that uses a laser to beam power to a photovoltaic receiver, which converts the laser's light into electricity. Future Laser-PV WPT systems may beam power from Earth to satellites or large Space Solar Power satellites may beam power to Earth, perhaps supplementing terrestrial solar photo-voltaic receivers. In a near-term scientific mission to the moon, Laser-PV WPT can enable robotic operations in permanently shadowed lunar polar craters, which may contain ice. Ground-based technology demonstrations are proceeding, to mature the technology for this initial application, in the moon's polar regions.
WISH: a Wireless Mobile Multimedia Information System in Healthcare using RFID.
Yu, Weider D; Ray, Pradeep; Motoc, Tiberiu
2008-05-01
It is important to improve the efficiency of healthcare-related operations and the associated costs. Healthcare organizations are constantly under increased pressure to streamline operations and provide enhanced services to their patients. Wireless mobile computing technology has the potential to provide the desired benefits and would be a critical part of today's healthcare information system. In this paper, a system is presented to better facilitate the functions of physicians and medical staff in healthcare by using modern wireless mobile technology, Radio Frequency Identification (RFID) tools, and multimedia streaming. The paper includes a case study of the development of such a system in the context of healthcare in the United States. The results of the study show how wireless mobile multimedia systems can be developed for the improvement of the quality and efficiency in healthcare for other nations as well. Our testing data show a time reduction of more than 50% in the daily activities of hospital staff.
Development of Implantable Wireless Sensor Nodes for Animal Husbandry and MedTech Innovation.
Lu, Jian; Zhang, Lan; Zhang, Dapeng; Matsumoto, Sohei; Hiroshima, Hiroshi; Maeda, Ryutaro; Sato, Mizuho; Toyoda, Atsushi; Gotoh, Takafumi; Ohkohchi, Nobuhiro
2018-03-26
In this paper, we report the development, evaluation, and application of ultra-small low-power wireless sensor nodes for advancing animal husbandry, as well as for innovation of medical technologies. A radio frequency identification (RFID) chip with hybrid interface and neglectable power consumption was introduced to enable switching of ON/OFF and measurement mode after implantation. A wireless power transmission system with a maximum efficiency of 70% and an access distance of up to 5 cm was developed to allow the sensor node to survive for a duration of several weeks from a few minutes' remote charge. The results of field tests using laboratory mice and a cow indicated the high accuracy of the collected biological data and bio-compatibility of the package. As a result of extensive application of the above technologies, a fully solid wireless pH sensor and a surgical navigation system using artificial magnetic field and a 3D MEMS magnetic sensor are introduced in this paper, and the preliminary experimental results are presented and discussed.
Blakey, John D; Guy, Debbie; Simpson, Carl; Fearn, Andrew; Cannaby, Sharon; Wilson, Petra
2012-01-01
Objectives The authors investigated if a wireless system of call handling and task management for out of hours care could replace a standard pager-based system and improve markers of efficiency, patient safety and staff satisfaction. Design Prospective assessment using both quantitative and qualitative methods, including interviews with staff, a standard satisfaction questionnaire, independent observation, data extraction from work logs and incident reporting systems and analysis of hospital committee reports. Setting A large teaching hospital in the UK. Participants Hospital at night co-ordinators, clinical support workers and junior doctors handling approximately 10 000 tasks requested out of hours per month. Outcome measures Length of hospital stay, incidents reported, co-ordinator call logging activity, user satisfaction questionnaire, staff interviews. Results Users were more satisfied with the new system (satisfaction score 62/90 vs 82/90, p=0.0080). With the new system over 70 h/week of co-ordinator time was released, and there were fewer untoward incidents related to handover and medical response (OR=0.30, p=0.02). Broad clinical measures (cardiac arrest calls for peri-arrest situations and length of hospital stay) improved significantly in the areas covered by the new system. Conclusions The introduction of call handling software and mobile technology over a medical-grade wireless network improved staff satisfaction with the Hospital at Night system. Improvements in efficiency and information flow have been accompanied by a reduction in untoward incidents, length of stay and peri-arrest calls. PMID:22466035
Analysis of energy efficient routing protocols for implementation of a ubiquitous health system
NASA Astrophysics Data System (ADS)
Kwon, Jongwon; Park, Yongman; Koo, Sangjun; Ayurzana, Odgeral; Kim, Hiesik
2007-12-01
The innovative Ubiquitous-Health was born through convergence of medical service, with development of up to date information technologies and ubiquitous IT. The U-Health can be applied to a variety of special situations for managing functions of each medical center efficiently. This paper focuses on estimation of various routing protocols for implementation of U-health monitoring system. In order to facilitate wireless communication over the network, a routing protocol on the network layer is used to establish precise and efficient route between sensor nodes so that information acquired from sensors may be delivered in a timely manner. A route establishment should be considered to minimize overhead, data loss and power consumption because wireless networks for U-health are organized by a large number of sensor nodes which are small in size and have limited processing power, memory and battery life. In this paper a overview of wireless sensor network technologies commonly known is described as well as evaluation of three multi hop routing protocols which are flooding, gossiping and modified low energy adaptive clustering hierarchy(LEACH) for use with these networks using TOSSIM simulator. As a result of evaluation the integrated wireless sensor board was developed in particular. The board is embedded device based on AVR128 porting TinyOS. Also it employs bio sensor measures blood pressure, pulse frequency and ZigBee module for wireless communication. This paper accelerates the digital convergence age through continual research and development of technologies related the U-Health.
An underwater optical wireless communication network
NASA Astrophysics Data System (ADS)
Arnon, Shlomi
2009-08-01
The growing need for underwater observation and sub-sea monitoring systems has stimulated considerable interest in advancing the enabling technologies of underwater wireless communication and underwater sensor networks. This communication technology is expected to play an important role in investigating climate change, in monitoring biological, bio-geochemical, evolutionary and ecological changes in the sea, ocean and lake environments and in helping to control and maintain oil production facilities and harbors using unmanned underwater vehicles (UUVs), submarines, ships, buoys, and divers. However, the present technology of underwater acoustic communication cannot provide the high data rate required to investigate and monitor these environments and facilities. Optical wireless communication has been proposed as the best alternative to meet this challenge. We present models of three kinds of optical wireless communication links a) a line-of-sight link, b) a modulating retro-reflector link and c) a reflective link, all of which can provide the required data rate. We analyze the link performance based on these models. From the analysis, it is clear that as the water absorption increases, the communication performance decreases dramatically for the three link types. However, by using the scattered lighted it was possible to mitigate this decrease in some cases. We conclude from the analysis that a high data rate underwater optical wireless network is a feasible solution for emerging applications such as UUV to UUV links and networks of sensors, and extended ranges in these applications could be achieved by applying a multi-hop concept.
Underwater optical wireless communication network
NASA Astrophysics Data System (ADS)
Arnon, Shlomi
2010-01-01
The growing need for underwater observation and subsea monitoring systems has stimulated considerable interest in advancing the enabling technologies of underwater wireless communication and underwater sensor networks. This communication technology is expected to play an important role in investigating climate change, in monitoring biological, biogeochemical, evolutionary, and ecological changes in the sea, ocean, and lake environments, and in helping to control and maintain oil production facilities and harbors using unmanned underwater vehicles (UUVs), submarines, ships, buoys, and divers. However, the present technology of underwater acoustic communication cannot provide the high data rate required to investigate and monitor these environments and facilities. Optical wireless communication has been proposed as the best alternative to meet this challenge. Models are presented for three kinds of optical wireless communication links: (a) a line-of-sight link, (b) a modulating retroreflector link, and (c) a reflective link, all of which can provide the required data rate. We analyze the link performance based on these models. From the analysis, it is clear that as the water absorption increases, the communication performance decreases dramatically for the three link types. However, by using the scattered light it was possible to mitigate this decrease in some cases. It is concluded from the analysis that a high-data-rate underwater optical wireless network is a feasible solution for emerging applications such as UUV-to-UUV links and networks of sensors, and extended ranges in these applications could be achieved by applying a multi-hop concept.
Schacht Hansen, M; Dørup, J
2001-01-01
The Wireless Application Protocol technology implemented in newer mobile phones has built-in facilities for handling much of the information processing needed in clinical work. To test a practical approach we ported a relational database of the Danish pharmaceutical catalogue to Wireless Application Protocol using open source freeware at all steps. We used Apache 1.3 web software on a Linux server. Data containing the Danish pharmaceutical catalogue were imported from an ASCII file into a MySQL 3.22.32 database using a Practical Extraction and Report Language script for easy update of the database. Data were distributed in 35 interrelated tables. Each pharmaceutical brand name was given its own card with links to general information about the drug, active substances, contraindications etc. Access was available through 1) browsing therapeutic groups and 2) searching for a brand name. The database interface was programmed in the server-side scripting language PHP3. A free, open source Wireless Application Protocol gateway to a pharmaceutical catalogue was established to allow dial-in access independent of commercial Wireless Application Protocol service providers. The application was tested on the Nokia 7110 and Ericsson R320s cellular phones. We have demonstrated that Wireless Application Protocol-based access to a dynamic clinical database can be established using open source freeware. The project opens perspectives for a further integration of Wireless Application Protocol phone functions in clinical information processing: Global System for Mobile communication telephony for bilateral communication, asynchronous unilateral communication via e-mail and Short Message Service, built-in calculator, calendar, personal organizer, phone number catalogue and Dictaphone function via answering machine technology. An independent Wireless Application Protocol gateway may be placed within hospital firewalls, which may be an advantage with respect to security. However, if Wireless Application Protocol phones are to become effective tools for physicians, special attention must be paid to the limitations of the devices. Input tools of Wireless Application Protocol phones should be improved, for instance by increased use of speech control.
Hansen, Michael Schacht
2001-01-01
Background The Wireless Application Protocol technology implemented in newer mobile phones has built-in facilities for handling much of the information processing needed in clinical work. Objectives To test a practical approach we ported a relational database of the Danish pharmaceutical catalogue to Wireless Application Protocol using open source freeware at all steps. Methods We used Apache 1.3 web software on a Linux server. Data containing the Danish pharmaceutical catalogue were imported from an ASCII file into a MySQL 3.22.32 database using a Practical Extraction and Report Language script for easy update of the database. Data were distributed in 35 interrelated tables. Each pharmaceutical brand name was given its own card with links to general information about the drug, active substances, contraindications etc. Access was available through 1) browsing therapeutic groups and 2) searching for a brand name. The database interface was programmed in the server-side scripting language PHP3. Results A free, open source Wireless Application Protocol gateway to a pharmaceutical catalogue was established to allow dial-in access independent of commercial Wireless Application Protocol service providers. The application was tested on the Nokia 7110 and Ericsson R320s cellular phones. Conclusions We have demonstrated that Wireless Application Protocol-based access to a dynamic clinical database can be established using open source freeware. The project opens perspectives for a further integration of Wireless Application Protocol phone functions in clinical information processing: Global System for Mobile communication telephony for bilateral communication, asynchronous unilateral communication via e-mail and Short Message Service, built-in calculator, calendar, personal organizer, phone number catalogue and Dictaphone function via answering machine technology. An independent Wireless Application Protocol gateway may be placed within hospital firewalls, which may be an advantage with respect to security. However, if Wireless Application Protocol phones are to become effective tools for physicians, special attention must be paid to the limitations of the devices. Input tools of Wireless Application Protocol phones should be improved, for instance by increased use of speech control. PMID:11720946
NASA Astrophysics Data System (ADS)
Fatland, D. R.; Anandakrishnan, S.; Heavner, M.
2004-12-01
We describe tough, cheap, reliable field computers configured as wireless networks for distributed high-volume data acquisition and low-cost data recovery. Running under the GNU/Linux open source model these network nodes ('Bricks') are intended for either autonomous or managed deployment for many months in harsh Arctic conditions. We present here results from Generation-1 Bricks used in 2004 for glacier seismology research in Alaska and Antarctica and describe future generation Bricks in terms of core capabilities and a growing list of field applications. Subsequent generations of Bricks will feature low-power embedded architecture, large data storage capacity (GB), long range telemetry (15 km+ up from 3 km currently), and robust operational software. The list of Brick applications is growing to include Geodetic GPS, Bioacoustics (bats to whales), volcano seismicity, tracking marine fauna, ice sounding via distributed microwave receivers and more. This NASA-supported STTR project capitalizes on advancing computer/wireless technology to get scientists more data per research budget dollar, solving system integration problems and thereby getting researchers out of the hardware lab and into the field. One exemplary scenario: An investigator can install a Brick network in a remote polar environment to collect data for several months and then fly over the site to recover the data via wireless telemetry. In the past year Brick networks have moved beyond proof-of-concept to the full-bore development and testing stage; they will be a mature and powerful tool available for IPY 2007-8.
On the feasibility of measuring urban air pollution by wireless distributed sensor networks.
Moltchanov, Sharon; Levy, Ilan; Etzion, Yael; Lerner, Uri; Broday, David M; Fishbain, Barak
2015-01-01
Accurate evaluation of air pollution on human-wellbeing requires high-resolution measurements. Standard air quality monitoring stations provide accurate pollution levels but due to their sparse distribution they cannot capture the highly resolved spatial variations within cities. Similarly, dedicated field campaigns can use tens of measurement devices and obtain highly dense spatial coverage but normally deployment has been limited to short periods of no more than few weeks. Nowadays, advances in communication and sensory technologies enable the deployment of dense grids of wireless distributed air monitoring nodes, yet their sensor ability to capture the spatiotemporal pollutant variability at the sub-neighborhood scale has never been thoroughly tested. This study reports ambient measurements of gaseous air pollutants by a network of six wireless multi-sensor miniature nodes that have been deployed in three urban sites, about 150 m apart. We demonstrate the network's capability to capture spatiotemporal concentration variations at an exceptional fine resolution but highlight the need for a frequent in-situ calibration to maintain the consistency of some sensors. Accordingly, a procedure for a field calibration is proposed and shown to improve the system's performance. Overall, our results support the compatibility of wireless distributed sensor networks for measuring urban air pollution at a sub-neighborhood spatial resolution, which suits the requirement for highly spatiotemporal resolved measurements at the breathing-height when assessing exposure to urban air pollution. Copyright © 2014 Elsevier B.V. All rights reserved.
Semantic encoding of relational databases in wireless networks
NASA Astrophysics Data System (ADS)
Benjamin, David P.; Walker, Adrian
2005-03-01
Semantic Encoding is a new, patented technology that greatly increases the speed of transmission of distributed databases over networks, especially over ad hoc wireless networks, while providing a novel method of data security. It reduces bandwidth consumption and storage requirements, while speeding up query processing, encryption and computation of digital signatures. We describe the application of Semantic Encoding in a wireless setting and provide an example of its operation in which a compression of 290:1 would be achieved.
Design of a Wireless EEG System for Point-of-Care Applications.
Jia, Wenyan; Bai, Yicheng; Sun, Mingui; Sclabassi, Robert J
2013-04-01
This study aims to develop a wireless EEG system to provide critical point-of-care information about brain electrical activity. A novel dry electrode, which can be installed rapidly, is used to acquire EEG from the scalp. A wireless data link between the electrode and a data port (i.e., a smartphone) is established based on the Bluetooth technology. A prototype of this system has been implemented and its performance in acquiring EEG has been evaluated.
Advanced Wireless Sensor Nodes - MSFC
NASA Technical Reports Server (NTRS)
Varnavas, Kosta; Richeson, Jeff
2017-01-01
NASA field center Marshall Space Flight Center (Huntsville, AL), has invested in advanced wireless sensor technology development. Developments for a wireless microcontroller back-end were primarily focused on the commercial Synapse Wireless family of devices. These devices have many useful features for NASA applications, good characteristics and the ability to be programmed Over-The-Air (OTA). The effort has focused on two widely used sensor types, mechanical strain gauges and thermal sensors. Mechanical strain gauges are used extensively in NASA structural testing and even on vehicle instrumentation systems. Additionally, thermal monitoring with many types of sensors is extensively used. These thermal sensors include thermocouples of all types, resistive temperature devices (RTDs), diodes and other thermal sensor types. The wireless thermal board will accommodate all of these types of sensor inputs to an analog front end. The analog front end on each of the sensors interfaces to the Synapse wireless microcontroller, based on the Atmel Atmega128 device. Once the analog sensor output data is digitized by the onboard analog to digital converter (A/D), the data is available for analysis, computation or transmission. Various hardware features allow custom embedded software to manage battery power to enhance battery life. This technology development fits nicely into using numerous additional sensor front ends, including some of the low-cost printed circuit board capacitive moisture content sensors currently being developed at Auburn University.
Wireless data transmission for high energy physics applications
NASA Astrophysics Data System (ADS)
Dittmeier, Sebastian; Brenner, Richard; Dancila, Dragos; Dehos, Cedric; De Lurgio, Patrick; Djurcic, Zelimir; Drake, Gary; Gonzalez Gimenez, Jose Luis; Gustafsson, Leif; Kim, Do-Won; Locci, Elizabeth; Pfeiffer, Ullrich; Röhrich, Dieter; Rydberg, Anders; Schöning, André; Siligaris, Alexandre; Soltveit, Hans Kristian; Ullaland, Kjetil; Vincent, Pierre; Rodriguez Vazquez, Pedro; Wiedner, Dirk; Yang, Shiming
2017-08-01
Silicon tracking detectors operated at high luminosity collider experiments pose a challenge for current and future readout systems regarding bandwidth, radiation, space and power constraints. With the latest developments in wireless communications, wireless readout systems might be an attractive alternative to commonly used wired optical and copper based readout architectures. The WADAPT group (Wireless Allowing Data and Power Transmission) has been formed to study the feasibility of wireless data transmission for future tracking detectors. These proceedings cover current developments focused on communication in the 60 GHz band. This frequency band offers a high bandwidth, a small form factor and an already mature technology. Motivation for wireless data transmission for high energy physics application and the developments towards a demonstrator prototype are summarized. Feasibility studies concerning the construction and operation of a wireless transceiver system have been performed. Data transmission tests with a transceiver prototype operating at even higher frequencies in the 240 GHz band are described. Data transmission at rates up to 10 Gb/s have been obtained successfully using binary phase shift keying.
Kiourti, Asimina; Psathas, Konstantinos A; Nikita, Konstantina S
2014-01-01
Wireless medical telemetry permits the measurement of physiological signals at a distance through wireless technologies. One of the latest applications is in the field of implantable and ingestible medical devices (IIMDs) with integrated antennas for wireless radiofrequency (RF) communication (telemetry) with exterior monitoring/control equipment. Implantable medical devices (MDs) perform an expanding variety of diagnostic and therapeutic functions, while ingestible MDs receive significant attention in gastrointestinal endoscopy. Design of such wireless IIMD telemetry systems is highly intriguing and deals with issues related to: operation frequency selection, electronics and powering, antenna design and performance, and modeling of the wireless channel. In this paper, we attempt to comparatively review the current status and challenges of IIMDs with wireless telemetry functionalities. Full solutions of commercial IIMDs are also recorded. The objective is to provide a comprehensive reference for scientists and developers in the field, while indicating directions for future research. © 2013 Wiley Periodicals, Inc.
Larios, Diego F.; Barbancho, Julio; Sevillano, José L.; Rodríguez, Gustavo; Molina, Francisco J.; Gasull, Virginia G.; Mora-Merchan, Javier M.; León, Carlos
2013-01-01
Wireless Sensor Networks (WSNs) are a technology that is becoming very popular for many applications, and environmental monitoring is one of its most important application areas. This technology solves the lack of flexibility of wired sensor installations and, at the same time, reduces the deployment costs. To demonstrate the advantages of WSN technology, for the last five years we have been deploying some prototypes in the Doñana Biological Reserve, which is an important protected area in Southern Spain. These prototypes not only evaluate the technology, but also solve some of the monitoring problems that have been raised by biologists working in Doñana. This paper presents a review of the work that has been developed during these five years. Here, we demonstrate the enormous potential of using machine learning in wireless sensor networks for environmental and animal monitoring because this approach increases the amount of useful information and reduces the effort that is required by biologists in an environmental monitoring task. PMID:24025554
Validation of a wireless modular monitoring system for structures
NASA Astrophysics Data System (ADS)
Lynch, Jerome P.; Law, Kincho H.; Kiremidjian, Anne S.; Carryer, John E.; Kenny, Thomas W.; Partridge, Aaron; Sundararajan, Arvind
2002-06-01
A wireless sensing unit for use in a Wireless Modular Monitoring System (WiMMS) has been designed and constructed. Drawing upon advanced technological developments in the areas of wireless communications, low-power microprocessors and micro-electro mechanical system (MEMS) sensing transducers, the wireless sensing unit represents a high-performance yet low-cost solution to monitoring the short-term and long-term performance of structures. A sophisticated reduced instruction set computer (RISC) microcontroller is placed at the core of the unit to accommodate on-board computations, measurement filtering and data interrogation algorithms. The functionality of the wireless sensing unit is validated through various experiments involving multiple sensing transducers interfaced to the sensing unit. In particular, MEMS-based accelerometers are used as the primary sensing transducer in this study's validation experiments. A five degree of freedom scaled test structure mounted upon a shaking table is employed for system validation.
NASA Astrophysics Data System (ADS)
Gonçalves, Ricardo; Carvalho, Nuno B.; Pinho, Pedro
2017-02-01
In the current contest of wireless systems, the last frontier remains the cut of the power cord. In that sense, the interest over wireless energy transfer technologies in the past years has grown exponentially. However, there are still many challenges to be overcome in order to enable wireless energy transfer full potential. One of the focus in the development of such systems is the design of very-high-gain, highly efficient, antennas that can compensate for the propagation loss of radio signals over the air. In this paper, we explore the design and manufacturing process of dielectric lenses, fabricated using a professional-grade desktop 3D printer. Lens antennas are used in order to increase beam efficiency and therefore maximize the efficiency of a wireless power-transfer system operating at microwave frequencies in the Ku band. Measurements of two fabricated prototypes showcase a large directivity, as predicted with simulations. xml:lang="fr"
Using digital watermarking to enhance security in wireless medical image transmission.
Giakoumaki, Aggeliki; Perakis, Konstantinos; Banitsas, Konstantinos; Giokas, Konstantinos; Tachakra, Sapal; Koutsouris, Dimitris
2010-04-01
During the last few years, wireless networks have been increasingly used both inside hospitals and in patients' homes to transmit medical information. In general, wireless networks suffer from decreased security. However, digital watermarking can be used to secure medical information. In this study, we focused on combining wireless transmission and digital watermarking technologies to better secure the transmission of medical images within and outside the hospital. We utilized an integrated system comprising the wireless network and the digital watermarking module to conduct a series of tests. The test results were evaluated by medical consultants. They concluded that the images suffered no visible quality degradation and maintained their diagnostic integrity. The proposed integrated system presented reasonable stability, and its performance was comparable to that of a fixed network. This system can enhance security during the transmission of medical images through a wireless channel.
3 CFR - Unleashing the Wireless Broadband Revolution
Code of Federal Regulations, 2011 CFR
2011-01-01
... Internet, as vital infrastructure, has become central to the daily economic life of almost every American..., and improve the quality of our lives as wireless high-speed access to the Internet. Innovative new... applications that will transform Americans' lives. Spectrum and the new technologies it enables also are...
Wireless Wide Area Networks for School Districts.
ERIC Educational Resources Information Center
Nair, Prakash
This paper considers a basic question that many schools districts face in attempting to develop affordable, expandable district-wide computer networks that are resistant to obsolescence: Should these wide area networks (WANs) employ wireless technology, stick to venerable hard-wired solutions, or combine both. This publication explores the…
Wireless Inductive Power Device Suppresses Blade Vibrations
NASA Technical Reports Server (NTRS)
Morrison, Carlos R.; Provenza, Andrew J.; Choi, Benjamin B.; Bakhle, Milind A.; Min, James B.; Stefko, George L.; Duffy, Kirsten P.; Fougers, Alan J.
2011-01-01
Vibration in turbomachinery can cause blade failures and leads to the use of heavier, thicker blades that result in lower aerodynamic efficiency and increased noise. Metal and/or composite fatigue in the blades of jet engines has resulted in blade destruction and loss of lives. Techniques for suppressing low-frequency blade vibration, such as gtuned circuit resistive dissipation of vibratory energy, h or simply "passive damping," can require electronics incorporating coils of unwieldy dimensions and adding unwanted weight to the rotor. Other approaches, using vibration-dampening devices or damping material, could add undesirable weight to the blades or hub, making them less efficient. A wireless inductive power device (WIPD) was designed, fabricated, and developed for use in the NASA Glenn's "Dynamic Spin Rig" (DSR) facility. The DSR is used to simulate the functionality of turbomachinery. The relatively small and lightweight device [10 lb (approx.=4.5 kg)] replaces the existing venerable and bulky slip-ring. The goal is the eventual integration of this technology into actual turbomachinery such as jet engines or electric power generators, wherein the device will facilitate the suppression of potentially destructive vibrations in fan blades. This technology obviates slip rings, which require cooling and can prove unreliable or be problematic over time. The WIPD consists of two parts: a remote element, which is positioned on the rotor and provides up to 100 W of electrical power to thin, lightweight piezoelectric patches strategically placed on/in fan blades; and a stationary base unit that wirelessly communicates with the remote unit. The base unit supplies inductive power, and also acts as an input and output corridor for wireless measurement, and active control command to the remote unit. Efficient engine operation necessitates minimal disturbance to the gas flow across the turbine blades in any effort to moderate blade vibration. This innovation makes it possible to moderate vibration on or in turbomachinery blades by providing 100 W of wireless electrical power and actuation control to thin, lightweight vibration-suppressing piezoelectric patches (eight actuation and eight sensor patches in this prototype, for a total of 16 channels) positioned strategically on the surface of, or within, titanium fan blades, or embedded in composite fan blades. This approach moves significantly closer to the ultimate integration of "active" vibration suppression technology into jet engines and other turbomachinery devices such as turbine electrical generators used in the power industry. The novel feature of this device is in its utilization of wireless technology to simultaneously sense and actively control vibration in rotating or stationary turbomachinery blades using piezoelectric patches. In the past, wireless technology was used solely for sensing and diagnostics. This technology, however, will accomplish much more, in terms of simultaneously sensing, suppressing blade vibration, and making it possible for detailed study of vibration impact in turbomachinery blades.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, Kenneth; Oxstrand, Johanna
The Digital Architecture effort is a part of the Department of Energy (DOE) sponsored Light-Water Reactor Sustainability (LWRS) Program conducted at Idaho National Laboratory (INL). The LWRS program is performed in close collaboration with industry research and development (R&D) programs that provides the technical foundations for licensing and managing the long-term, safe, and economical operation of current nuclear power plants (NPPs). One of the primary missions of the LWRS program is to help the U.S. nuclear industry adopt new technologies and engineering solutions that facilitate the continued safe operation of the plants and extension of the current operating licenses. Therefore,more » a major objective of the LWRS program is the development of a seamless digital environment for plant operations and support by integrating information from plant systems with plant processes for nuclear workers through an array of interconnected technologies. In order to get the most benefits of the advanced technology suggested by the different research activities in the LWRS program, the nuclear utilities need a digital architecture in place to support the technology. A digital architecture can be defined as a collection of information technology (IT) capabilities needed to support and integrate a wide-spectrum of real-time digital capabilities for nuclear power plant performance improvements. It is not hard to imagine that many processes within the plant can be largely improved from both a system and human performance perspective by utilizing a plant wide (or near plant wide) wireless network. For example, a plant wide wireless network allows for real time plant status information to easily be accessed in the control room, field workers’ computer-based procedures can be updated based on the real time plant status, and status on ongoing procedures can be incorporated into smart schedules in the outage command center to allow for more accurate planning of critical tasks. The goal of the digital architecture project is to provide a long-term strategy to integrate plant systems, plant processes, and plant workers. This include technologies to improve nuclear worker efficiency and human performance; to offset a range of plant surveillance and testing activities with new on-line monitoring technologies; improve command, control, and collaboration in settings such as outage control centers and work execution centers; and finally to improve operator performance with new operator aid technologies for the control room. The requirements identified through the activities in the Digital Architecture project will be used to estimate the amount of traffic on the network and hence estimating the minimal bandwidth needed.« less
Providing end-to-end QoS for multimedia applications in 3G wireless networks
NASA Astrophysics Data System (ADS)
Guo, Katherine; Rangarajan, Samapth; Siddiqui, M. A.; Paul, Sanjoy
2003-11-01
As the usage of wireless packet data services increases, wireless carriers today are faced with the challenge of offering multimedia applications with QoS requirements within current 3G data networks. End-to-end QoS requires support at the application, network, link and medium access control (MAC) layers. We discuss existing CDMA2000 network architecture and show its shortcomings that prevent supporting multiple classes of traffic at the Radio Access Network (RAN). We then propose changes in RAN within the standards framework that enable support for multiple traffic classes. In addition, we discuss how Session Initiation Protocol (SIP) can be augmented with QoS signaling for supporting end-to-end QoS. We also review state of the art scheduling algorithms at the base station and provide possible extensions to these algorithms to support different classes of traffic as well as different classes of users.
Bluetooth based function control in a car
NASA Astrophysics Data System (ADS)
Karthikeyan, P.; Sumanth, N.; Jude, S.
2017-11-01
This paper aims to show the various functions that can be controlled in a Car using the Wireless Bluetooth Technology. Due to the portable and wireless nature of this technology, it is easier for the end user to operate the functions in a car. The functions that are built into the system can be used from a distance of 10 meters. The Passive Keyless System and the Remote Keyless System methodologies are adopted. These are operated by the ATMEGA328P microcontroller.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-02
... marketplace in which more than half of the support is provided to wireless providers that do not charge a SLC... per household, consisting of either wireline or wireless service; and consumers who willfully make... effect on small entities within this category. 2. Wireless Carriers and Service Providers 51. Below, for...
Effective Utilization of Commercial Wireless Networking Technology in Planetary Environments
NASA Technical Reports Server (NTRS)
Caulev, Michael (Technical Monitor); Phillip, DeLeon; Horan, Stephen; Borah, Deva; Lyman, Ray
2005-01-01
The purpose of this research is to investigate the use of commercial, off-the-shelf wireless networking technology in planetary exploration applications involving rovers and sensor webs. The three objectives of this research project are to: 1) simulate the radio frequency environment of proposed landing sites on Mars using actual topographic data, 2) analyze the performance of current wireless networking standards in the simulated radio frequency environment, and 3) propose modifications to the standards for more efficient utilization. In this annual report, we present our results for the second year of research. During this year, the effort has focussed on the second objective of analyzing the performance of the IEEE 802.11a and IEEE 802.1lb wireless networking standards in the simulated radio frequency environment of Mars. The approach builds upon our previous results which deterministically modelled the RF environment at selected sites on Mars using high-resolution topographical data. These results provide critical information regarding antenna coverage patterns, maximum link distances, effects of surface clutter, and multipath effects. Using these previous results, the physical layer of these wireless networking standards has now been simulated and analyzed in the Martian environment. We are looking to extending these results to the and medium access layer next. Our results give us critical information regarding the performance (data rates, packet error rates, link distances, etc.) of IEEE 802.1 la/b wireless networks. This information enables a critical examination of how these wireless networks may be utilized in future Mars missions and how they may be possibly modified for more optimal usage.
Meir, Arie; Rubinsky, Boris
2009-01-01
Medical technologies are indispensable to modern medicine. However, they have become exceedingly expensive and complex and are not available to the economically disadvantaged majority of the world population in underdeveloped as well as developed parts of the world. For example, according to the World Health Organization about two thirds of the world population does not have access to medical imaging. In this paper we introduce a new medical technology paradigm centered on wireless technology and cloud computing that was designed to overcome the problems of increasing health technology costs. We demonstrate the value of the concept with an example; the design of a wireless, distributed network and central (cloud) computing enabled three-dimensional (3-D) ultrasound system. Specifically, we demonstrate the feasibility of producing a 3-D high end ultrasound scan at a central computing facility using the raw data acquired at the remote patient site with an inexpensive low end ultrasound transducer designed for 2-D, through a mobile device and wireless connection link between them. Producing high-end 3D ultrasound images with simple low-end transducers reduces the cost of imaging by orders of magnitude. It also removes the requirement of having a highly trained imaging expert at the patient site, since the need for hand-eye coordination and the ability to reconstruct a 3-D mental image from 2-D scans, which is a necessity for high quality ultrasound imaging, is eliminated. This could enable relatively untrained medical workers in developing nations to administer imaging and a more accurate diagnosis, effectively saving the lives of people. PMID:19936236
Meir, Arie; Rubinsky, Boris
2009-11-19
Medical technologies are indispensable to modern medicine. However, they have become exceedingly expensive and complex and are not available to the economically disadvantaged majority of the world population in underdeveloped as well as developed parts of the world. For example, according to the World Health Organization about two thirds of the world population does not have access to medical imaging. In this paper we introduce a new medical technology paradigm centered on wireless technology and cloud computing that was designed to overcome the problems of increasing health technology costs. We demonstrate the value of the concept with an example; the design of a wireless, distributed network and central (cloud) computing enabled three-dimensional (3-D) ultrasound system. Specifically, we demonstrate the feasibility of producing a 3-D high end ultrasound scan at a central computing facility using the raw data acquired at the remote patient site with an inexpensive low end ultrasound transducer designed for 2-D, through a mobile device and wireless connection link between them. Producing high-end 3D ultrasound images with simple low-end transducers reduces the cost of imaging by orders of magnitude. It also removes the requirement of having a highly trained imaging expert at the patient site, since the need for hand-eye coordination and the ability to reconstruct a 3-D mental image from 2-D scans, which is a necessity for high quality ultrasound imaging, is eliminated. This could enable relatively untrained medical workers in developing nations to administer imaging and a more accurate diagnosis, effectively saving the lives of people.
Energy-efficient privacy protection for smart home environments using behavioral semantics.
Park, Homin; Basaran, Can; Park, Taejoon; Son, Sang Hyuk
2014-09-02
Research on smart environments saturated with ubiquitous computing devices is rapidly advancing while raising serious privacy issues. According to recent studies, privacy concerns significantly hinder widespread adoption of smart home technologies. Previous work has shown that it is possible to infer the activities of daily living within environments equipped with wireless sensors by monitoring radio fingerprints and traffic patterns. Since data encryption cannot prevent privacy invasions exploiting transmission pattern analysis and statistical inference, various methods based on fake data generation for concealing traffic patterns have been studied. In this paper, we describe an energy-efficient, light-weight, low-latency algorithm for creating dummy activities that are semantically similar to the observed phenomena. By using these cloaking activities, the amount of fake data transmissions can be flexibly controlled to support a trade-off between energy efficiency and privacy protection. According to the experiments using real data collected from a smart home environment, our proposed method can extend the lifetime of the network by more than 2× compared to the previous methods in the literature. Furthermore, the activity cloaking method supports low latency transmission of real data while also significantly reducing the accuracy of the wireless snooping attacks.