Computed rate coefficients and product yields for c-C5H5 + CH3 --> products.
Sharma, Sandeep; Green, William H
2009-08-06
Using quantum chemical methods, we have explored the region of the C6H8 potential energy surface that is relevant in predicting the rate coefficients of various wells and major product channels following the reaction between cyclopentadienyl radical and methyl radical, c-C5H5 + CH3. Variational transition state theory is used to calculate the high-pressure-limit rate coefficient for all of the barrierless reactions. RRKM theory and the master equation are used to calculate the pressure dependent rate coefficients for 12 reactions. The calculated results are compared with the limited experimental data available in the literature and the agreement between the two is quite good. All of the rate coefficients calculated in this work are tabulated and can be used in building detailed chemical kinetic models.
Hyperfine excitation of C2H in collisions with ortho- and para-H2
NASA Astrophysics Data System (ADS)
Dagdigian, Paul J.
2018-06-01
Accurate estimation of the abundance of the ethynyl (C2H) radical requires accurate radiative and collisional rate coefficients. Hyperfine-resolved rate coefficients for (de-)excitation of C2H in collisions with ortho- and para-H2 are presented in this work. These rate coefficients were computed in time-independent close-coupling quantum scattering calculations that employed a potential energy surface recently computed at the coupled-clusters level of theory that describes the interaction of C2H with H2. Rate coefficients for temperatures from 10 to 300 K were computed for all transitions among the first 40 hyperfine energy levels of C2H in collisions with ortho- and para-H2. These rate coefficients were employed in simple radiative transfer calculations to simulate the excitation of C2H in typical molecular clouds.
Full-dimensional Quantum Calculations of Rovibrational Transitions in CS induced by H2
NASA Astrophysics Data System (ADS)
Yang, Benhui; Zhang, Peng; Stancil, Phillip; Bowman, J.; Balakrishnan, N.; Forrey, R.
2017-04-01
Carbon monosulfide (CS), the sulfur analogue of carbon monoxide, has been widely observed in a variety interstellar regions. An accurate prediction of its abundance requires collisional rate coefficients with ambient gases. However, the collisional rate coefficients are largely unknown and primarily rely on theoretical scattering calculations. In interstellar clouds, the dominant collision partner is H2. Rate coefficient data on CS-H2 collisions are limited to pure rotational transitions and no data exist for rovibrational transitions. In this work we evaluate the first full-dimensional potential energy surface for the CS-H2 system using high-level electronic structure theory and perform explicit quantum close-coupling calculations of rovibrational transitions in CS induced by H2 collisions. Cross sections and rate coefficients for rotational transitions are compared with previous theoretical results obtained within a rigid-rotor model. For rovibrational transitions, state-to-state rate coefficients are evaluated for several low-lying rotational levels in the first excited vibrational level of CS. Results are presented for both para-H2 and ortho-H2 collision partners. Work at UGA and Emory are supported by NASA Grant No. NNX16AF09G, at UNLV by NSF Grant No. PHY-1505557, and at Penn State by NSF Grant No. PHY-1503615.
A study of the liquid-vapor phase change of mercury based on irreversible thermodynamics.
NASA Technical Reports Server (NTRS)
Adt, R. R., Jr.; Hatsopoulos, G. N.; Bornhorst, W. J.
1972-01-01
The object of this work is to determine the transport coefficients which appear in linear irreversible-thermodynamic rate equations of a phase change. An experiment which involves the steady-state evaporation of mercury was performed to measure the principal transport coefficient appearing in the mass-rate equation and the coupling transport coefficient appearing in both the mass-rate equation and the energy-rate equation. The principal transport coefficient sigma, usually termed the 'condensation' or 'evaporation' coefficient, is found to be approximately 0.9, which is higher than that measured previously in condensation-of-mercury experiments. The experimental value of the coupling coefficient K does not agree with the value predicted from Schrage's kinetic analysis of the phase change. A modified kinetic analysis in which the Onsager reciprocal law and the conservation laws are invoked is presented which removes this discrepancy but which shows that the use of Schrage's equation for predicting mass rates of phase change is a good approximation.
Effective dose rate coefficients for exposure to contaminated soil
Veinot, Kenneth G.; Eckerman, Keith F.; Bellamy, Michael B.; ...
2017-05-10
The Oak Ridge National Laboratory Center for Radiation Protection Knowledge has undertaken calculations related to various environmental exposure scenarios. A previous paper reported the results for submersion in radioactive air and immersion in water using age-specific mathematical phantoms. This paper presents age-specific effective dose rate coefficients derived using stylized mathematical phantoms for exposure to contaminated soils. Dose rate coefficients for photon, electron, and positrons of discrete energies were calculated and folded with emissions of 1252 radionuclides addressed in ICRP Publication 107 to determine equivalent and effective dose rate coefficients. The MCNP6 radiation transport code was used for organ dose ratemore » calculations for photons and the contribution of electrons to skin dose rate was derived using point-kernels. Bremsstrahlung and annihilation photons of positron emission were evaluated as discrete photons. As a result, the coefficients calculated in this work compare favorably to those reported in the US Federal Guidance Report 12 as well as by other authors who employed voxel phantoms for similar exposure scenarios.« less
Effective dose rate coefficients for exposure to contaminated soil
DOE Office of Scientific and Technical Information (OSTI.GOV)
Veinot, Kenneth G.; Eckerman, Keith F.; Bellamy, Michael B.
The Oak Ridge National Laboratory Center for Radiation Protection Knowledge has undertaken calculations related to various environmental exposure scenarios. A previous paper reported the results for submersion in radioactive air and immersion in water using age-specific mathematical phantoms. This paper presents age-specific effective dose rate coefficients derived using stylized mathematical phantoms for exposure to contaminated soils. Dose rate coefficients for photon, electron, and positrons of discrete energies were calculated and folded with emissions of 1252 radionuclides addressed in ICRP Publication 107 to determine equivalent and effective dose rate coefficients. The MCNP6 radiation transport code was used for organ dose ratemore » calculations for photons and the contribution of electrons to skin dose rate was derived using point-kernels. Bremsstrahlung and annihilation photons of positron emission were evaluated as discrete photons. As a result, the coefficients calculated in this work compare favorably to those reported in the US Federal Guidance Report 12 as well as by other authors who employed voxel phantoms for similar exposure scenarios.« less
Social impacts of the work loss in cancer survivors.
Yamauchi, Hideko; Nakagawa, Chizuko; Fukuda, Takashi
2017-09-01
As cancer frequently occurs during the most productive years of life, our purpose was to estimate the cost of work loss of cancer survivors and develop interventions to minimize the loss. We estimated the cost of the work loss from all cancers resulting from patients' inpatient, outpatient, and non-treatment days. This was calculated with a new method, the product of the "employment rate coefficient × productivity coefficient," making use of data published by the Japanese Ministries. The estimate of work loss on treatment days for all cancers was $1820.21 million in men and $939.38 million in women. In terms of disease classification, lung cancer was the largest cause in men, whereas breast cancer was the largest in women. On non-treatment days, the work losses because of gastric, colon, and lung cancers were large in men, while breast cancer was the largest in women and in total. The estimated loss for all cancers was $3685.506 million in men and $2502.565 million in women, when the product was assumed 0.5. In Japan, breast cancer was considered the leading cause for cost of work loss, and the most influential cause when the product of the "employment rate coefficient × productivity coefficient" for breast cancer was assumed the same as the product for all other types of cancers. It is necessary to establish support systems for working cancer survivors.
Hiller, Mauritius; Dewji, Shaheen Azim
2017-02-16
Dose rate coefficients computed using the International Commission on Radiological Protection (ICRP) reference adult female voxel phantom were compared with values computed using the Oak Ridge National Laboratory (ORNL) adult female stylized phantom in an air submersion exposure geometry. This is a continuation of previous work comparing monoenergetic organ dose rate coefficients for the male adult phantoms. With both the male and female data computed, effective dose rate as defined by ICRP Publication 103 was compared for both phantoms. Organ dose rate coefficients for the female phantom and ratios of organ dose rates for the voxel and stylized phantoms aremore » provided in the energy range from 30 to 5 MeV. Analysis of the contribution of the organs to effective dose is also provided. Lastly, comparison of effective dose rates between the voxel and stylized phantoms was within 8% at 100 keV and is <5% between 200 and 5000 keV.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hiller, Mauritius; Dewji, Shaheen Azim
Dose rate coefficients computed using the International Commission on Radiological Protection (ICRP) reference adult female voxel phantom were compared with values computed using the Oak Ridge National Laboratory (ORNL) adult female stylized phantom in an air submersion exposure geometry. This is a continuation of previous work comparing monoenergetic organ dose rate coefficients for the male adult phantoms. With both the male and female data computed, effective dose rate as defined by ICRP Publication 103 was compared for both phantoms. Organ dose rate coefficients for the female phantom and ratios of organ dose rates for the voxel and stylized phantoms aremore » provided in the energy range from 30 to 5 MeV. Analysis of the contribution of the organs to effective dose is also provided. Lastly, comparison of effective dose rates between the voxel and stylized phantoms was within 8% at 100 keV and is <5% between 200 and 5000 keV.« less
Rate Coefficients for the OH + (CHO)2 (Glyoxal) Reaction Between 240 and 400 K
NASA Astrophysics Data System (ADS)
Feierabend, K. J.; Talukdar, R. K.; Zhu, L.; Ravishankara, A. R.; Burkholder, J. B.
2006-12-01
Glyoxal (CHO)2, the simplest dialdehyde, is an end product formed in the atmospheric oxidation of biogenic hydrocarbons, for example, isoprene. As such, glyoxal plays a role in regional air quality and ozone production in certain locations. Glyoxal is lost in the atmosphere via UV photolysis and reaction with OH. However, the currently available rate coefficient data for the OH + glyoxal reaction is limited to a single room- temperature measurement made using the relative rate method. A determination of the rate coefficient temperature dependence is therefore needed for a more complete interpretation of the atmospheric processing of glyoxal. This study reports the rate coefficient for the OH + (CHO)2 reaction measured under pseudo- first-order conditions in OH ([(CHO)2] > 1000 [OH]0). OH radicals were produced using 248 nm pulsed laser photolysis of H2O2 or HNO3 and detected by pulsed laser induced fluorescence. The concentration of glyoxal in the reactor was determined using three independent techniques; gas flow rates as well as in situ UV and IR absorption. The total pressure in the reactor was varied from 40 to 300 Torr (He), and the rate coefficient was found to be independent of pressure over the temperature range studied. The rate coefficient exhibits a negative temperature dependence between 240 and 400 K consistent with the dependence previously observed for many other aldehydes. Our room-temperature rate coefficient is smaller than the relative rate value that is currently recommended for use in atmospheric model calculations. Our measured rate coefficients are discussed with respect to those for other aldehydes. The atmospheric implications of our work will also be discussed.
Chansirinukor, Wunpen; Maher, Christopher G; Latimer, Jane; Hush, Julia
2005-01-01
Retrospective design. To compare the responsiveness and test-retest reliability of the Functional Rating Index and the 18-item version of the Roland-Morris Disability Questionnaire in detecting change in disability in patients with work-related low back pain. Many low back pain-specific disability questionnaires are available, including the Functional Rating Index and the 18-item version of the Roland-Morris Disability Questionnaire. No previous study has compared the responsiveness and reliability of these questionnaires. Files of patients who had been treated for work-related low back pain at a physical therapy clinic were reviewed, and those containing initial and follow-up Functional Rating Index and 18-item Roland-Morris Disability Questionnaires were selected. The responsiveness of both questionnaires was compared using two different methods. First, using the assumption that patients receiving treatment improve over time, various responsiveness coefficients were calculated. Second, using change in work status as an external criterion to identify improved and nonimproved patients, Spearman's rho and receiver operating characteristic curves were calculated. Reliability was estimated from the subset of patients who reported no change in their condition over this period and expressed with the intraclass correlation coefficient and the minimal detectable change. One hundred and forty-three patient files were retrieved. The responsiveness coefficients for the Functional Rating Index were greater than for the 18-item Roland-Morris Disability Questionnaire. The intraclass correlation coefficient values for both questionnaires calculated from 96 patient files were similar, but the minimal detectable change for the Functional Rating Index was less than for the 18-item Roland-Morris Disability Questionnaire. The Functional Rating Index seems preferable to the 18-item Roland-Morris Disability Questionnaire for use in clinical trials and clinical practice.
Ogata, Yasuko; Nagano, Midori; Fukuda, Takashi; Hashimoto, Michio
2011-06-01
The purpose of this study was to examine how the nursing practice environment affects job retention and the turnover rate among hospital nurses. The Practice Environment Scale of the Nursing Work Index (PES-NWI) was applied to investigate the nurse working environment from the viewpoint of hospital nurses in Japan. Methods A postal mail survey was conducted using the PES-NWI questionnaire targeting 2,211 nurses who were working at 91 wards in 5 hospitals situated in the Tokyo metropolitan area from February to March in 2008. In the questionnaire, hospital nurses were asked about characteristics such as sex, age and work experience as a nurse, whether they would work at the same hospital in the next year, the 31 items of the PES-NWI and job satisfaction. Nurse managers were asked to provide staff numbers to calculate the turnover rate of each ward. Logistic regression analyses were carried out, with "intention to retain or leave the workplace next year" as the dependent variable, with composite and 5 sub-scale scores of the PES-NWI and nurse characteristics as independent variables. Correlation coefficients were calculated to investigate the relationship between nurse turnover rates and nursing practice environments. A total of 1,067 full-time nurses (48.3%) from 5 hospitals responded. Almost all of them were men (95.9%), with an average age of 29.2 years old. They had an average of 7.0 years total work experience in hospitals and 5.8 years of experience at their current hospital. Cronbach's alpha coefficients were 0.75 for composite of the PES-NWI, and 0.77-0.85 for the sub-scales. All correlation coefficients between PES-NWI and job satisfaction were significant (P < 0.01). In the logistic regression analysis, a composite of PES-NWI, "Nurse Manager's Ability, Leadership, and Support of Nurses" and "Staffing and Resource Adequacy" among the 5 sub-scales correlated with the intention of nurses to stay on (P < 0.05). The means for turnover rate were 10.4% for nurses and 17.6% for newly hired nurses. These rates were significantly correlated to the composite and some sub-scales of the PES-NWI. The working environment for nurses is important in retaining nurses working at hospitals. We confirmed the reliability and the validity of the PES-NWI scale based on the magnitude of the Cronbach's alpha coefficient and correlation coefficient between the PES-NWI scale and job satisfaction in this study.
NASA Astrophysics Data System (ADS)
Vieira, Daniel; Krems, Roman
2017-04-01
Fine-structure transitions in collisions of O(3Pj) with atomic hydrogen are an important cooling mechanism in the interstellar medium; knowledge of the rate coefficients for these transitions has a wide range of astrophysical applications. The accuracy of the theoretical calculation is limited by inaccuracy in the ab initio interaction potentials used in the coupled-channel quantum scattering calculations from which the rate coefficients can be obtained. In this work we use the latest ab initio results for the O(3Pj) + H interaction potentials to improve on previous calculations of the rate coefficients. We further present a machine-learning technique based on Gaussian Process regression to determine the sensitivity of the rate coefficients to variations of the underlying adiabatic interaction potentials. To account for the inaccuracy inherent in the ab initio calculations we compute error bars for the rate coefficients corresponding to 20% variation in each of the interaction potentials. We obtain these error bars by fitting a Gaussian Process model to a data set of potential curves and rate constants. We use the fitted model to do sensitivity analysis, determining the relative importance of individual adiabatic potential curves to a given fine-structure transition. NSERC.
Stationary-Afterglow measurements of dissociative recombination of H2D+ and HD2+ ions
NASA Astrophysics Data System (ADS)
Dohnal, Petr; Kalosi, Abel; Plasil, Radek; Johnsen, Rainer; Glosik, Juraj
2016-09-01
Binary recombination rate coefficients of H2D+ and HD2+ ions have been measured at a temperature of 80 K in an afterglow plasma experiment in which the fractional abundances of H3+, H2D+, HD2+, and D3+ ions were varied by adjusting the [D2]/([D2] + [H2]) ratio of the neutral gas. The fractional abundances of the four ion species during the afterglow and their rotational states were determined in situ by continuous-wave cavity ring-down absorption spectroscopy (CRDS), using overtone transitions from the ground vibrational states of the ions. The experimentally determined recombination rate coefficients will be compared to results of advanced theoretical calculations and to the known H3+ and D3+ recombination rate coefficients. We conclude that the recombination coefficients depend only weakly on the isotopic composition. Astrophysical implications of the measured recombination rate coefficients will be also discussed. Work supported by: Czech Science Foundation projects GACR 14-14649P, GACR 15-15077S, GACR P209/12/0233, and by Charles University in Prague Project Nr. GAUK 692214.
Laboratory Studies of Chemical and Photochemical Processes Relevant to Stratospheric Ozone
NASA Technical Reports Server (NTRS)
Villalta, P. W.; Zahniser, M. S.; Nelson, D. D.; Kolb, C. E.
1998-01-01
This is the final report for this project. Its purpose is to reduce the uncertainty in rate coefficients for key gas-phase kinetic processes which impact our understanding of stratospheric ozone. The main emphasis of this work is on measuring the rate coefficients for the reactions of HO2 + O3, and HO2 + NO2 in the temperature range (200-240 K) relevant to the lower stratosphere. In order to accomplish this, a high pressure turbulent flow tube reactor was built and its flow characteristics were quantified. The instrument was coupled with tunable diode laser spectroscopy for HO2 detection. Room temperature measurements of the HO2 + NO2 rate coefficients over the pressure range of 50-300 torr agree well with previous measurements. Preliminary measurements of the HO2 + O, rate coefficients at 50 - 300 Torr over the temperature range of 208-294 K agree with the NASA evaluation from 294-225 K but deviate significantly (50 % higher) at approximately 210 K.
Seasonal variations of Manning's coefficient depending on vegetation conditions in Tärnsjö, Sweden
NASA Astrophysics Data System (ADS)
Plakane, Rūta; Di Baldassarre, Giuliano; Okoli, Kenechukwu
2017-04-01
Hydrological modelling and water resources management require observations of high and low river flows. To estimate them, rating curves based on the characteristics of the river channel and floodplain are often used. Yet, multiple factors can cause uncertainties in rating curves, one of them being the variability of the Manning's roughness coefficient due to seasonal changes of vegetation. Determining this uncertainty has been a challenge, and depending on vegetation conditions on a stream, values can temporarily show an important deviation from the calibrated rating curve, enhancing the importance to understand changes in Manning's roughness coefficient. Examining the aquatic vegetation on the site throughout different seasonal conditions allows one to observe changes within the channel. By depending on cyclical changes in Manning's roughness coefficient values, different discharges may correspond to the same stage conditions. In this context, we present a combination of field work and modelling exercise to the variation of the rating curve due to vegetation changes in a Swedish stream.
1977-12-01
related progress p reports concerning the DNA-sponsored effo rt s described herein. - ~~~ Submission of other pertinent informat ion of a related nature...Work Unit 06). 5 5. Atmospheric Chemical Sensitivity and Modeling Invesriga nons—M. Scheibe, MRC (Work Unit 09). 5 6. Low Energy Cross Sections for...Debris Metal Ions—R. Neynaber, D. Vroom . and l.A. Rutherford, IRT, Inc. (Work Unit 12). 5 7. E and F Region Rate Coefficients for Excited Positive
NASA Astrophysics Data System (ADS)
Burkholder, J. B.; Feierabend, K.
2010-12-01
Halogen chemistry plays an important role in polar stratospheric ozone loss. The ClO dimer (Cl2O2) catalytic ozone destruction cycle accounts for the vast majority of winter/spring polar stratospheric ozone loss. A key step in the dimer catalytic cycle is the pressure and temperature dependent self-reaction of the ClO radical. The rate coefficient for the ClO self-reaction has been measured in previous laboratory studies but uncertainties persist, particularly at atmospherically relevant temperatures and pressures. In this laboratory study, rate coefficients for the ClO self-reaction were measured over a range of temperature (200 - 296 K) and pressure (50 - 600 Torr, He and N2 bath gases). ClO radicals were produced by pulsed laser photolysis of Cl2O at 248 nm. The ClO radical temporal profile was measured using dual wavelength cavity ring-down spectroscopy (CRDS) near 280 nm. The absolute ClO radical concentration was determined using the ClO UV absorption cross sections and their temperature dependence measured as part of this work. The results from this work will be compared with previous studies and the discrepancies discussed. Possible explanations for deviations of the reaction rate coefficient from the simple Falloff kinetic behavior currently recommended for use in atmospheric model calculations will be discussed.
NASA Astrophysics Data System (ADS)
Bop, Cheikh T.; Faye, N. AB; Hammami, K.
2018-05-01
Nitriles have been identified in space. Accurately modeling their abundance requires calculations of collisional rate coefficients. These data are obtained by first computing potential energy surfaces (PES) and cross-sections using high accurate quantum methods. In this paper, we report the first interaction potential of the HNCCN+-He collisional system along with downward rate coefficients among the 11 lowest rotational levels of HNCCN+. The PES was calculated using the explicitly correlated coupled cluster approach with simple, second and non-iterative triple excitation (CCSD(T)-F12) in conjunction with the augmented-correlation consistent-polarized valence triple zeta (aug-cc-pVTZ) Gaussian basis set. It presents two local minima of ˜283 and ˜136 cm-1, the deeper one is located at R = 9 a0 towards the H end (HeṡṡṡHNCCN+). Using the so-computed PES, we calculated rotational cross-sections of HNCCN+ induced by collision with He for energies ranging up to 500 cm-1 with the exact quantum mechanical close coupling (CC) method. Downward rate coefficients were then worked out by thermally averaging the cross-sections at low temperature (T ≤ 100 K). The discussion on propensity rules showed that the odd Δj transitions were favored. The results obtained in this work may be crucially needed to accurately model the abundance of cyanogen and its protonated form in space.
NASA Astrophysics Data System (ADS)
Kondracki, Łukasz; Kulka, Andrzej; Świerczek, Konrad; Ziąbka, Magdalena; Molenda, Janina
2017-11-01
In this work a detailed operando XRD investigations of structural properties of LixMn2O4 manganese spinel are shown to be a complementary, successful method of determination of diffusion coefficient D and surface exchange coefficient k in the working electrode. Kinetics of lithium ions transport are estimated on the basis of rate of structural changes of the cathode material during a relaxation stage after a high current charge, i.e. during structural relaxation of the material. The presented approach seems to be applicable as a complementary method of determination of transport coefficients for all intercalation-type electrode materials.
NASA Technical Reports Server (NTRS)
Zhang, Hong Lin; Graziani, Mark; Pradhan, Anil K.
1994-01-01
Collison strengths and maxwellian averaged rate coefficients have been calculated for the 105 transitions among all 15 fine structure levels of the 8 LS terms 2s(sup 2) 2 P(P-2(sup 0 sub 1/, 3/2)), 2s2p(sup 2)(P-4(sub 1/2,3/2,5/2), D-2(sub 3/2, 5/2), S-2(sub 1/2), P-2(sub 1/2, 3/2)), 2p(sup 3)(S-4(sup 0)(sub 3/2), D-2(sup 0 sub 3/2, 5/2), P-2(sup 0 sub 1/2, 3/2)) in highly- charged B-like Ne, Mg, Al, Si, S, Ar, Ca and Fe. Rate coefficients have been tabulated at a wide range of temperatures, depending on the ion charge and abundance in plasma sources. Earlier work for O IV has also been extended to include the high temperature range. A brief discussion of the calculations, sample results, and comparison with earlier works is also given. While much of the new data should be applicable to UV spectral diagnostics, the new rates for the important ground state fine structure transition P-2(sup 0 sub 1/2)-P-2(sup 0 sub 3/2) should result in significant revision of the IR cooling rates in plasmas where B-like ions are prominent constituents, since the new rate coefficients are generally higher by several factors compared with the older data.
NASA Technical Reports Server (NTRS)
Leone, Stephen R.
1995-01-01
The objectives of the research are to measure low temperature laboratory rate coefficients for key reactions relevant to the atmospheres of Titan and Saturn. These reactions are, for example, C2H + H2, CH4, C2H2, and other hydrocarbons which need to be measured at low temperatures, down to approximately 150 K. The results of this work are provided to NASA specialists who study modeling of the hydrocarbon chemistry of the outer planets. The apparatus for this work consists of a pulsed laser photolysis system and a tunable F-center probe laser to monitor the disappearance of C2H. A low temperature cell with a cryogenic circulating fluid in the outer jacket provides the gas handling system for this work. These elements have been described in detail in previous reports. Several new results are completed and the publications are just being prepared. The reaction of C2H with C2H2 has been measured with an improved apparatus down to 154 K. An Arrhenius plot indicates a clear increase in the rate coefficient at the lowest temperatures, most likely because of the long-lived (C4H3) intermediate. The capability to achieve the lowest temperatures in this work was made possible by construction of a new cell and addition of a multipass arrangement for the probe laser, as well as improvements to the laser system.
NASA Astrophysics Data System (ADS)
Ameen, Sheeraz; Taher, Taha; Ahmed, Thamir M.
2018-06-01
Hydrostatics and hydrodynamics forces are generated and applied on the vertical lift tunnel gates due to the influence of a wide range of dam operating conditions. One of the most important forces is the uplift force resulting from the jet flow issuing below the gate. This force is based mainly upon many hydraulic and geometrical parameters. In this work, the uplift force is studied in terms of bottom pressure coefficient. The investigation is made paying particular attention on the effects of various three discharges and three gate lip angles on values of bottom pressure coefficients in addition to four different tunnel longitudinal slopes whose impact has not been studied in many previous works. Hydraulic model is constructed in this work for the sake of measuring all parameters required for estimating the bottom pressure coefficients, which are all examined against gate openings. The results show that the bottom pressure coefficient is related to the said variables, however, its behaviour and values are not necessary regular with variance of studied variables. The values are seen more significantly related to the flow rates and for some extent to the slopes of tunnel. An attempt by using the nonlinear regression of Statistical package of social sciences (SPSS) is made to set equations relating bottom pressure coefficient with gate openings for several angles of gate lips. The obtained equations are shown in good agreement with the selected cases of experimental results. The results are applicable for design purposes for similar geometrical and flow parameters considered in this study.
NASA Astrophysics Data System (ADS)
Chakraborty, Prodyut R.; Hiremath, Kirankumar R.; Sharma, Manvendra
2017-02-01
Evaporation rate of water is strongly influenced by energy barrier due to molecular collision and heat transfer limitations. The evaporation coefficient, defined as the ratio of experimentally measured evaporation rate to that maximum possible theoretical limit, varies over a conflicting three orders of magnitude. In the present work, a semi-analytical transient heat diffusion model of droplet evaporation is developed considering the effect of change in droplet size due to evaporation from its surface, when the droplet is injected into vacuum. Negligible effect of droplet size reduction due to evaporation on cooling rate is found to be true. However, the evaporation coefficient is found to approach theoretical limit of unity, when the droplet radius is less than that of mean free path of vapor molecules on droplet surface contrary to the reported theoretical predictions. Evaporation coefficient was found to reduce rapidly when the droplet under consideration has a radius larger than the mean free path of evaporating molecules, confirming the molecular collision barrier to evaporation rate. The trend of change in evaporation coefficient with increasing droplet size predicted by the proposed model will facilitate obtaining functional relation of evaporation coefficient with droplet size, and can be used for benchmarking the interaction between multiple droplets during evaporation in vacuum.
Evolution properties of online user preference diversity
NASA Astrophysics Data System (ADS)
Guo, Qiang; Ji, Lei; Liu, Jian-Guo; Han, Jingti
2017-02-01
Detecting the evolution properties of online user preference diversity is of significance for deeply understanding online collective behaviors. In this paper, we empirically explore the evolution patterns of online user rating preference, where the preference diversity is measured by the variation coefficient of the user rating sequence. The statistical results for four real systems show that, for movies and reviews, the user rating preference would become diverse and then get centralized finally. By introducing the empirical variation coefficient, we present a Markov model, which could regenerate the evolution properties of two online systems regarding to the stable variation coefficients. In addition, we investigate the evolution of the correlation between the user ratings and the object qualities, and find that the correlation would keep increasing as the user degree increases. This work could be helpful for understanding the anchoring bias and memory effects of the online user collective behaviors.
Review of chemical-kinetic problems of future NASA missions, II: Mars entries
NASA Technical Reports Server (NTRS)
Park, Chul; Howe, John T.; Jaffe, Richard L.; Candler, Graham V.
1994-01-01
The present work aims to derive a set of thermomechanical relaxation rate parameters and chemical reaction rate coefficients relevant to future interplanetary missions. It also attempts to assess the impact of thermochemical nonequilibrium phenomena on radiative heating rates for the stagnation point of the Martian entry vehicle.
Wang, Quan-De; Liu, Zi-Wu
2018-06-14
Alkenes are important ingredients of realistic fuels and are also critical intermediates during the combustion of a series of other fuels including alkanes, cycloalkanes, and biofuels. To provide insights into the combustion behavior of alkenes, detailed quantum chemical studies for crucial reactions are desired. Hydrogen abstractions of alkenes play a very important role in determining the reactivity of fuel molecules. This work is motivated by previous experimental and modeling evidence that current literature rate coefficients for the abstraction reactions of alkenes are still in need of refinement and/or redetermination. In light of this, this work reports a theoretical and kinetic study of hydrogen atom abstraction reactions from C4-C6 alkenes by the hydrogen (H) atom and methyl (CH 3 ) radical. A series of C4-C6 alkene molecules with enough structural diversity are taken into consideration. Geometry and vibrational properties are determined at the B3LYP/6-31G(2df,p) level implemented in the Gaussian-4 (G4) composite method. The G4 level of theory is used to calculate the electronic single point energies for all species to determine the energy barriers. Conventional transition state theory with Eckart tunneling corrections is used to determine the high-pressure-limit rate constants for 47 elementary reaction rate coefficients. To faciliate their applications in kinetic modeling, the obtained rate constants are given in the Arrhenius expression and rate coefficients for typical reaction classes are recommended. The overall rate coefficients for the reaction of H atom and CH 3 radical with all the studied alkenes are also compared. Branching ratios of these reaction channels for certain alkenes have also been analyzed.
NASA Astrophysics Data System (ADS)
Ahmed, Syed Muzamil; Kazi, S. N.; Khan, Ghulamullah; Sadri, Rad; Dahari, Mahidzal; Zubir, M. N. M.; Sayuti, M.; Ahmad, Pervaiz; Ibrahim, Rushdan
2018-03-01
Heat transfer coefficients were obtained for a range of non-wood kenaf bast pulp fiber suspensions flowing through a circular pipe heat exchanger test loop. The data were produced over a selected temperature and range of flow rates from the flow loop. It was found that the magnitude of the heat transfer coefficient of a fiber suspension is dependent on characteristics, concentration and pulping method of fiber. It was observed that at low concentration and high flow rates, the heat transfer coefficient values of suspensions were observed higher than that of the heat transfer coefficient values of water, on the other hand the heat transfer coefficient values of suspensions decreases at low flow rates and with the increase of their concentration. The heat transfer were affected by varying fiber characteristics, such as fiber length, fiber flexibility, fiber chemical and mechanical treatment as well as different pulping methods used to liberate the fibers. Heat transfer coefficient was decreased with the increase of fiber flexibility which was also observed by previous researchers. In the present work, the characteristics of fibers are correlated with the heat transfer coefficient of suspensions of the fibers. Deviations in fiber properties can be monitored from the flowing fiber suspensions by measuring heat transfer coefficient to adjust the degree of fiber refining treatment so that papers made from those fibers will be more uniform, consistent, within the product specification and retard the paper production loss.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yaqin; Sun, Zhigang, E-mail: zsun@dicp.ac.cn, E-mail: dawesr@mst.edu, E-mail: hguo@unm.edu; Center for Advanced Chemical Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026
2014-08-28
The kinetics and dynamics of several O + O{sub 2} isotope exchange reactions have been investigated on a recently determined accurate global O{sub 3} potential energy surface using a time-dependent wave packet method. The agreement between calculated and measured rate coefficients is significantly improved over previous work. More importantly, the experimentally observed negative temperature dependence of the rate coefficients is for the first time rigorously reproduced theoretically. This negative temperature dependence can be attributed to the absence in the new potential energy surface of a submerged “reef” structure, which was present in all previous potential energy surfaces. In addition, contributionsmore » of rotational excited states of the diatomic reactant further accentuate the negative temperature dependence.« less
Rate-coefficients and polarization results for the electron-impact excitation of Ar+ ion
NASA Astrophysics Data System (ADS)
Srivastava, Rajesh; Dipti, Dipti
2016-05-01
A fully relativistic distorted wave theory has been employed to study the electron impact excitation in Ar+ ion. Results have been obtained for the excitation cross-sections and rate-coefficients for the transitions from the ground state 3p5 (J = 3/2) to fine-structure levels of excited states 3p4 4 s, 3p4 4 p , 3p4 5 s, 3p4 5 p, 3p4 3 d and 3p4 4 d. Polarization of the radiation following the excitation has been calculated using the obtained magnetic sub-level cross-sections. Comparison of the present rate-coefficients is also done with the previously reported theoretical results for some unresolved fine structure transitions. Work is supported by DAE-BRNS Mumbai and CSIR, New Delhi.
NASA Astrophysics Data System (ADS)
Shaw, Jacob T.; Lidster, Richard T.; Cryer, Danny R.; Ramirez, Noelia; Whiting, Fiona C.; Boustead, Graham A.; Whalley, Lisa K.; Ingham, Trevor; Rickard, Andrew R.; Dunmore, Rachel E.; Heard, Dwayne E.; Lewis, Ally C.; Carpenter, Lucy J.; Hamilton, Jacqui F.; Dillon, Terry J.
2018-03-01
Gas-phase rate coefficients are fundamental to understanding atmospheric chemistry, yet experimental data are not available for the oxidation reactions of many of the thousands of volatile organic compounds (VOCs) observed in the troposphere. Here, a new experimental method is reported for the simultaneous study of reactions between multiple different VOCs and OH, the most important daytime atmospheric radical oxidant. This technique is based upon established relative rate concepts but has the advantage of a much higher throughput of target VOCs. By evaluating multiple VOCs in each experiment, and through measurement of the depletion in each VOC after reaction with OH, the OH + VOC reaction rate coefficients can be derived. Results from experiments conducted under controlled laboratory conditions were in good agreement with the available literature for the reaction of 19 VOCs, prepared in synthetic gas mixtures, with OH. This approach was used to determine a rate coefficient for the reaction of OH with 2,3-dimethylpent-1-ene for the first time; k = 5.7 (±0.3) × 10-11 cm3 molecule-1 s-1. In addition, a further seven VOCs had only two, or fewer, individual OH rate coefficient measurements available in the literature. The results from this work were in good agreement with those measurements. A similar dataset, at an elevated temperature of 323 (±10) K, was used to determine new OH rate coefficients for 12 aromatic, 5 alkane, 5 alkene and 3 monoterpene VOC + OH reactions. In OH relative reactivity experiments that used ambient air at the University of York, a large number of different VOCs were observed, of which 23 were positively identified. Due to difficulties with detection limits and fully resolving peaks, only 19 OH rate coefficients were derived from these ambient air samples, including 10 reactions for which data were previously unavailable at the elevated reaction temperature of T = 323 (±10) K.
McGillen, Max R; Baasandorj, Munkhbayar; Burkholder, James B
2013-06-06
Butanol (C4H9OH) is a potential biofuel alternative in fossil fuel gasoline and diesel formulations. The usage of butanol would necessarily lead to direct emissions into the atmosphere; thus, an understanding of its atmospheric processing and environmental impact is desired. Reaction with the OH radical is expected to be the predominant atmospheric removal process for the four aliphatic isomers of butanol. In this work, rate coefficients, k, for the gas-phase reaction of the n-, i-, s-, and t-butanol isomers with the OH radical were measured under pseudo-first-order conditions in OH using pulsed laser photolysis to produce OH radicals and laser induced fluorescence to monitor its temporal profile. Rate coefficients were measured over the temperature range 221-381 K at total pressures between 50 and 200 Torr (He). The reactions exhibited non-Arrhenius behavior over this temperature range and no dependence on total pressure with k(296 K) values of (9.68 ± 0.75), (9.72 ± 0.72), (8.88 ± 0.69), and (1.04 ± 0.08) (in units of 10(-12) cm(3) molecule(-1) s(-1)) for n-, i-, s-, and t-butanol, respectively. The quoted uncertainties are at the 2σ level and include estimated systematic errors. The observed non-Arrhenius behavior is interpreted here to result from a competition between the available H-atom abstraction reactive sites, which have different activation energies and pre-exponential factors. The present results are compared with results from previous kinetic studies, structure-activity relationships (SARs), and theoretical calculations and the discrepancies are discussed. Results from this work were combined with available high temperature (1200-1800 K) rate coefficient data and room temperature reaction end-product yields, where available, to derive a self-consistent site-specific set of reaction rate coefficients of the form AT(n) exp(-E/RT) for use in atmospheric and combustion chemistry modeling.
Hall effect of copper nitride thin films
NASA Astrophysics Data System (ADS)
Yue, G. H.; Liu, J. Z.; Li, M.; Yuan, X. M.; Yan, P. X.; Liu, J. L.
2005-08-01
The Hall effect of copper nitride (Cu3N) thin films was investigated in our work. Cu3N films were deposited on glass substrates by radio-frequency (RF) magnetron sputtering at different temperatures using pure copper as the sputtering target. The Hall coefficients of the films are demonstrated to be dependent on the deposition gas flow rate and the measuring temperature. Both the Hall coefficient and resistance of the Cu3N films increase with the nitrogen gas flow rate at room temperature, while the Hall mobility and the carrier density of the films decrease. As the temperature changed from 100 K to 300 K, the Hall coefficient and the resistivity of the films decreased, while the carrier density increased and Hall mobility shows no great change. The energy band gap of the Cu3N films deduced from the curve of the common logarithm of the Hall coefficient against 1/T is 1.17-1.31 eV.
NASA Astrophysics Data System (ADS)
Salahuddin, T.; Khan, Imad; Malik, M. Y.; Khan, Mair; Hussain, Arif; Awais, Muhammad
2017-05-01
The present work examines the internal resistance between fluid particles of tangent hyperbolic fluid flow due to a non-linear stretching sheet with heat generation. Using similarity transformations, the governing system of partial differential equations is transformed into a coupled non-linear ordinary differential system with variable coefficients. Unlike the current analytical works on the flow problems in the literature, the main concern here is to numerically work out and find the solution by using Runge-Kutta-Fehlberg coefficients improved by Cash and Karp (Naseer et al., Alexandria Eng. J. 53, 747 (2014)). To determine the relevant physical features of numerous mechanisms acting on the deliberated problem, it is sufficient to have the velocity profile and temperature field and also the drag force and heat transfer rate all as given in the current paper.
NASA Technical Reports Server (NTRS)
Jaffe, Richard; Schwenke, David; Chaban, Galina; Panesi, Marco
2014-01-01
Development of High-Fidelity Physics-Based Models to describe hypersonic flight through the atmospheres of Earth and Mars is underway at NASA Ames Research Center. The goal is to construct chemistry models of the collisional and radiative processes that occur in the bow shock and boundary layers of spacecraft during atmospheric entry that are free of empiricism. In this talk I will discuss our philosophy and describe some of our progress. Topics to be covered include thermochemistry, internal energy relaxation, collisional dissociation and radiative emission and absorption. For this work we start by solving the Schrodinger equation to obtain accurate interaction potentials and radiative properties. Then we invoke classical mechanics to compute state-specific heavy particle collision cross sections and reaction rate coefficients. Finally, phenomenological rate coefficients and relaxation times are determined from master equation solutions.
Rotational relaxation of CF+(X1Σ) in collision with He(1S)
NASA Astrophysics Data System (ADS)
Denis-Alpizar, O.; Inostroza, N.; Castro Palacio, J. C.
2018-01-01
The carbon monofluoride cation (CF+) has been detected recently in Galactic and extragalactic regions. Therefore, excitation rate coefficients of this molecule in collision with He and H2 are necessary for a correct interpretation of the astronomical observations. The main goal of this work is to study the collision of CF+ with He in full dimensionality at the close-coupling level and to report a large set of rotational rate coefficients. New ab initio interaction energies at the CCSD(T)/aug-cc-pv5z level of theory were computed, and a three-dimensional potential energy surface was represented using a reproducing kernel Hilbert space. Close-coupling scattering calculations were performed at collisional energies up to 1600 cm-1 in the ground vibrational state. The vibrational quenching cross-sections were found to be at least three orders of magnitude lower than the pure rotational cross-sections. Also, the collisional rate coefficients were reported for the lowest 20 rotational states of CF+ and an even propensity rule was found to be in action only for j > 4. Finally, the hyperfine rate coefficients were explored. These data can be useful for the determination of the interstellar conditions where this molecule has been detected.
Xu, Jingjie; Xie, Yan; Lu, Benzhuo; Zhang, Linbo
2016-08-25
The Debye-Hückel limiting law is used to study the binding kinetics of substrate-enzyme system as well as to estimate the reaction rate of a electrostatically steered diffusion-controlled reaction process. It is based on a linearized Poisson-Boltzmann model and known for its accurate predictions in dilute solutions. However, the substrate and product particles are in nonequilibrium states and are possibly charged, and their contributions to the total electrostatic field cannot be explicitly studied in the Poisson-Boltzmann model. Hence the influences of substrate and product on reaction rate coefficient were not known. In this work, we consider all the charged species, including the charged substrate, product, and mobile salt ions in a Poisson-Nernst-Planck model, and then compare the results with previous work. The results indicate that both the charged substrate and product can significantly influence the reaction rate coefficient with different behaviors under different setups of computational conditions. It is interesting to find that when substrate and product are both considered, under an overall neutral boundary condition for all the bulk charged species, the computed reaction rate kinetics recovers a similar Debye-Hückel limiting law again. This phenomenon implies that the charged product counteracts the influence of charged substrate on reaction rate coefficient. Our analysis discloses the fact that the total charge concentration of substrate and product, though in a nonequilibrium state individually, obeys an equilibrium Boltzmann distribution, and therefore contributes as a normal charged ion species to ionic strength. This explains why the Debye-Hückel limiting law still works in a considerable range of conditions even though the effects of charged substrate and product particles are not specifically and explicitly considered in the theory.
NASA Astrophysics Data System (ADS)
Drenda, Jan; Kułagowska, Ewa; Różański, Zenon; Pach, Grzegorz; Wrona, Paweł; Karolak, Izabela
2017-06-01
Considering different duties and activities among miners working in underground coal mines, their work is connected with variable metabolic rate. Determination of this rate for different workplace was the aim of the research and was the base for set up the work arduousness classes for the workplace (according to the standard PN-EN 27243). The research covered 6 coal mines, 268 workers and 1164 series of measurements. Metabolic rate was established on the base of heart rate obtained from individual pulsometers (according to the standard PN-EN ISO 8996). Measurements were supplemented by poll surveys about worker and thermal environment parameters. The results showed significant variability of average heart rate (from 87 bmp to 100 bpm) with variance coefficient 14%. Mean values of metabolic rate were from 150 W/m2 to 207 W/m2. According to the results, the most common class of work arduousness was at moderate metabolic rate (class 2 - moderate work), however, more intense work was found in headings, especially at " blind end" workplace.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pop, N., E-mail: nicolina.pop@upt.ro; Ilie, S.; Motapon, O.
2014-11-24
The present work is aimed at performing the computation of cross sections and Maxwell rate coefficients in the framework of the stepwise version of the Multichannel Quantum Defect Theory (MQDT). Cross sections and rate coefficients suitable for the modelling of the kinetics of HD{sup +} and BeH{sup +} in fusion plasmas and in the stellar atmospheres are presented and discussed. A very good agreement is found between our results for rotational transitions for HD{sup +} and other computations, as well as with experiment.
Jubb, Aaron M; Gierczak, Tomasz; Baasandorj, Munkhbayar; Waterland, Robert L; Burkholder, James B
2014-05-06
Mixtures of methyl-perfluoroheptene-ethers (CH3OC7F13, MPHEs) are currently in use as replacements for perfluorinated alkanes (PFCs) and poly-ether heat transfer fluids, which are persistent greenhouse gases with lifetimes >1000 years. At present, the atmospheric processing and environmental impact from the use of MPHEs is unknown. In this work, rate coefficients at 296 K for the gas-phase reaction of the OH radical with six key isomers (including stereoisomers and enantiomers) of MPHEs used commercially were measured using a relative rate method. Rate coefficients for the six MPHE isomers ranged from ∼ 0.1 to 2.9 × 10(-12) cm(3) molecule(-1) s(-1) with a strong stereoisomer and -OCH3 group position dependence; the (E)-stereoisomers with the -OCH3 group in an α- position relative to the double bond had the greatest reactivity. Rate coefficients measured for the d3-MPHE isomer analogues showed decreased reactivity consistent with a minor contribution of H atom abstraction from the -OCH3 group to the overall reactivity. Estimated atmospheric lifetimes for the MPHE isomers range from days to months. Atmospheric lifetimes, radiative efficiencies, and global warming potentials for these short-lived MPHE isomers were estimated based on the measured OH rate coefficients along with measured and theoretically calculated MPHE infrared absorption spectra. Our results highlight the importance of quantifying the atmospheric impact of individual components in an isomeric mixture.
Richards, Todd L; Abbott, Robert D; Yagle, Kevin; Peterson, Dan; Raskind, Wendy; Berninger, Virginia W
2017-01-01
To understand mental self-government of the developing reading and writing brain, correlations of clustering coefficients on fMRI reading or writing tasks with BASC 2 Adaptivity ratings (time 1 only) or working memory components (time 1 before and time 2 after instruction previously shown to improve achievement and change magnitude of fMRI connectivity) were investigated in 39 students in grades 4 to 9 who varied along a continuum of reading and writing skills. A Philips 3T scanner measured connectivity during six leveled fMRI reading tasks (subword-letters and sounds, word-word-specific spellings or affixed words, syntax comprehension-with and without homonym foils or with and without affix foils, and text comprehension) and three fMRI writing tasks-writing next letter in alphabet, adding missing letter in word spelling, and planning for composing. The Brain Connectivity Toolbox generated clustering coefficients based on the cingulo-opercular (CO) network; after controlling for multiple comparisons and movement, significant fMRI connectivity clustering coefficients for CO were identified in 8 brain regions bilaterally (cingulate gyrus, superior frontal gyrus, middle frontal gyrus, inferior frontal gyrus, superior temporal gyrus, insula, cingulum-cingulate gyrus, and cingulum-hippocampus). BASC2 Parent Ratings for Adaptivity were correlated with CO clustering coefficients on three reading tasks (letter-sound, word affix judgments and sentence comprehension) and one writing task (writing next letter in alphabet). Before instruction, each behavioral working memory measure (phonology, orthography, morphology, and syntax coding, phonological and orthographic loops for integrating internal language and output codes, and supervisory focused and switching attention) correlated significantly with at least one CO clustering coefficient. After instruction, the patterning of correlations changed with new correlations emerging. Results show that the reading and writing brain's mental government, supported by both CO Adaptive Control and multiple working memory components, had changed in response to instruction during middle childhood/early adolescence.
Molecules as diagnostic tools in the interstellar medium
NASA Astrophysics Data System (ADS)
Spielfiedel, A.; Feautrier, N.; Balança, C.; Dayou, F.; Lique, F.; Senent, M.-L.
Analysis of light emission from different regions of the interstellar medium and circumstellar environments provides crucial information about the chemical composition and the physical conditions in these regions. Interpretation of the observed spectra requires the knowledge of collisional excitation rates as well as radiative rates participating to the line formation. In the first part, the paper focuses on collisional excitation rates of molecules relevant to the interstellar medium. It discusses currently available data and outlines new work carried out by the authors. Due to the use of accurate ab initio potential energy surfaces, the new rate coefficients differ significantly from previously published ones. In the second part, it is analysed from two examples how the use of the new rate coefficients could lead to important changes in the interpretation of molecular emission emerging from molecular clouds.
Attenuation Coefficient Estimation of the Healthy Human Thyroid In Vivo
NASA Astrophysics Data System (ADS)
Rouyer, J.; Cueva, T.; Portal, A.; Yamamoto, T.; Lavarello, R.
Previous studies have demonstrated that attenuation coefficients can be useful towards characterizing thyroid tissues. In this work, ultrasonic attenuation coefficients were estimated from healthy human thyroids in vivo using a clinical scanner. The selected subjects were five young, healthy volunteers (age: 26 ± 6 years old, gender: three females, two males) with no reported history of thyroid diseases, no palpable thyroid nodules, no smoking habits, and body mass index less than 30 kg/m2. Echographic examinations were conducted by a trained sonographer using a SonixTouch system (Ultrasonix Medical Corporation, Richmond, BC) equipped with an L14-5 linear transducer array (nominal center frequency of 10 MHz, transducer footprint of 3.8 cm). Radiofrequency data corresponding to the collected echographic images in both transverse and longitudinal views were digitized at a sampling rate of 40 MHz and processed with Matlab codes (MathWorks, Natick, MA) to estimate attenuation coefficients using the spectral log difference method. The estimation was performed using an analysis bandwidth spanning from 4.0 to 9.0 MHz. The average value of the estimated ultrasonic attenuation coefficients was equal to 1.34 ± 0.15 dB/(cm.MHz). The standard deviation of the estimated average attenuation coefficient across different volunteers suggests a non-negligible inter-subject variability in the ultrasonic attenuation coefficient of the human thyroid.
NASA Astrophysics Data System (ADS)
Shalashilin, Dmitrii V.; Beddard, Godfrey S.; Paci, Emanuele; Glowacki, David R.
2012-10-01
Molecular dynamics (MD) methods are increasingly widespread, but simulation of rare events in complex molecular systems remains a challenge. We recently introduced the boxed molecular dynamics (BXD) method, which accelerates rare events, and simultaneously provides both kinetic and thermodynamic information. We illustrate how the BXD method may be used to obtain high-resolution kinetic data from explicit MD simulations, spanning picoseconds to microseconds. The method is applied to investigate the loop formation dynamics and kinetics of cyclisation for a range of polypeptides, and recovers a power law dependence of the instantaneous rate coefficient over six orders of magnitude in time, in good agreement with experimental observations. Analysis of our BXD results shows that this power law behaviour arises when there is a broad and nearly uniform spectrum of reaction rate coefficients. For the systems investigated in this work, where the free energy surfaces have relatively small barriers, the kinetics is very sensitive to the initial conditions: strongly non-equilibrium conditions give rise to power law kinetics, while equilibrium initial conditions result in a rate coefficient with only a weak dependence on time. These results suggest that BXD may offer us a powerful and general algorithm for describing kinetics and thermodynamics in chemical and biochemical systems.
New rate coefficients of CS in collision with para- and ortho-H2 and astrophysical implications
NASA Astrophysics Data System (ADS)
Denis-Alpizar, Otoniel; Stoecklin, Thierry; Guilloteau, Stéphane; Dutrey, Anne
2018-05-01
Astronomers use the CS molecule as a gas mass tracer in dense regions of the interstellar medium, either to measure the gas density through multi-line observations or the level of turbulence. This necessarily requires the knowledge of the rates coefficients with the most common colliders in the interstellar medium, He and H2. In the present work, the close coupling collisional rates are computed for the first thirty rotational states of CS in collision with para- and ortho-H2 using a recent rigid rotor potential energy surface. Some radiative transfer calculations, using typical astrophysical conditions, are also performed to test this new set of data and to compare with the existing ones.
Regional income inequality model based on theil index decomposition and weighted variance coeficient
NASA Astrophysics Data System (ADS)
Sitepu, H. R.; Darnius, O.; Tambunan, W. N.
2018-03-01
Regional income inequality is an important issue in the study on economic development of a certain region. Rapid economic development may not in accordance with people’s per capita income. The method of measuring the regional income inequality has been suggested by many experts. This research used Theil index and weighted variance coefficient in order to measure the regional income inequality. Regional income decomposition which becomes the productivity of work force and their participation in regional income inequality, based on Theil index, can be presented in linear relation. When the economic assumption in j sector, sectoral income value, and the rate of work force are used, the work force productivity imbalance can be decomposed to become the component in sectors and in intra-sectors. Next, weighted variation coefficient is defined in the revenue and productivity of the work force. From the quadrate of the weighted variation coefficient result, it was found that decomposition of regional revenue imbalance could be analyzed by finding out how far each component contribute to regional imbalance which, in this research, was analyzed in nine sectors of economic business.
Vacuum Cherenkov radiation for Lorentz-violating fermions
NASA Astrophysics Data System (ADS)
Schreck, M.
2017-11-01
The current work focuses on the process of vacuum Cherenkov radiation for Lorentz-violating fermions that are described by the minimal standard-model extension (SME). To date, most considerations of this important hypothetical process have been restricted to Lorentz-violating photons, as the necessary theoretical tools for the SME fermion sector have not been available. With their development in a very recent paper, we are now in a position to compute the decay rates based on a modified Dirac theory. Two realizations of the Cherenkov process are studied. In the first scenario, the spin projection of the incoming fermion is assumed to be conserved, and in the second, the spin projection is allowed to flip. The first type of process is shown to be still forbidden for the dimensionful a and b coefficients where there are strong indications that it is energetically disallowed for the H coefficients, as well. However, it is rendered possible for the dimensionless c , d , e , f , and g coefficients. For large initial fermion energies, the decay rates for the c and d coefficients were found to grow linearly with momentum and to be linearly suppressed by the smallness of the Lorentz-violating coefficient where for the e , f , and g coefficients this suppression is even quadratic. The decay rates vanish in the vicinity of the threshold, as expected. The decay including a fermion spin-flip plays a role for the spin-nondegenerate operators and it was found to occur for the dimensionful b and H coefficients as well as for the dimensionless d and g . The characteristics of this process differ much from the properties of the spin-conserving one, e.g., there is no threshold. Based on experimental data of ultra-high-energy cosmic rays, new constraints on Lorentz violation in the quark sector are obtained from the thresholds. However, it does not seem to be possible to derive bounds from the spin-flip decays. This work reveals the usefulness of the quantum field theoretic methods recently developed to study the phenomenology of high-energy fermions within the framework of the SME.
NASA Astrophysics Data System (ADS)
Zhang, Liang; Tinsley, Brian A.
2018-03-01
Simulations and parameterization of collision rate coefficients for aerosol particles with 3 μm radius droplets have been extended to a range of particle densities up to 2,000 kg m-3 for midtropospheric ( 5 km) conditions (540 hPa, -17°C). The increasing weight has no effect on collisions for particle radii less than 0.2 μm, but for greater radii the weight effect becomes significant and usually decreases the collision rate coefficient. When increasing size and density of particles make the fall speed of the particle relative to undisturbed air approach to that of the droplet, the effect of the particle falling away in the stagnation region ahead of the droplet becomes important, and the probability of frontside collisions can decrease to zero. Collisions on the rear side of the droplet can be enhanced as particle weight increases, and for this the weight effect tends to increase the rate coefficients. For charges on the droplet and for large particles with density ρ < 1,000 kg m-3 the predominant effect increases in rate coefficient due to the short-range attractive image electric force. With density ρ above about 1,000 kg m-3, the stagnation region prevents particles moving close to the droplet and reduces the effect of these short-range forces. Together with previous work, it is now possible to obtain collision rate coefficients for realistic combinations of droplet charge, particle charge, droplet radius, particle radius, particle density, and relative humidity in clouds. The parameterization allows rapid access to these values for use in cloud models.
Determination of Flow Resistance Coefficient for Vegetation in Open Channel: Laboratory study
NASA Astrophysics Data System (ADS)
Aliza Ahmad, Noor; Ali, ZarinaMd; Arish, Nur Aini Mohd; Munirah Mat Daud, Azra; Fatin Amirah Alias, Nur
2018-04-01
This study focused on determination of flow resistances coefficient for grass in an open channel. Laboratory works were conducted to examine the effects of varying of roughness elements on the flume to determine flow resistance coefficient and also to determine the optimum flow resistance with five different flow rate, Q. Laboratory study with two type of vegetation which are Cow Grass and Pearl Grass were implementing to the bed of a flume. The roughness coefficient, n value is determine using Manning’s equation while Soil Conservation Services (SCS) method was used to determine the surface resistance. From the experiment, the flow resistance coefficient for Cow Grass in range 0.0008 - 0.0039 while Pearl Grass value for the flow resistance coefficient are in between 0.0013 - 0.0054. As a conclusion the vegetation roughness value in open channel are depends on density, distribution type of vegetation used and physical characteristic of the vegetation itself
Multilingual vocal emotion recognition and classification using back propagation neural network
NASA Astrophysics Data System (ADS)
Kayal, Apoorva J.; Nirmal, Jagannath
2016-03-01
This work implements classification of different emotions in different languages using Artificial Neural Networks (ANN). Mel Frequency Cepstral Coefficients (MFCC) and Short Term Energy (STE) have been considered for creation of feature set. An emotional speech corpus consisting of 30 acted utterances per emotion has been developed. The emotions portrayed in this work are Anger, Joy and Neutral in each of English, Marathi and Hindi languages. Different configurations of Artificial Neural Networks have been employed for classification purposes. The performance of the classifiers has been evaluated by False Negative Rate (FNR), False Positive Rate (FPR), True Positive Rate (TPR) and True Negative Rate (TNR).
Enhancements in Deriving Smoke Emission Coefficients from Fire Radiative Power Measurements
NASA Technical Reports Server (NTRS)
Ellison, Luke; Ichoku, Charles
2011-01-01
Smoke emissions have long been quantified after-the-fact by simple multiplication of burned area, biomass density, fraction of above-ground biomass, and burn efficiency. A new algorithm has been suggested, as described in Ichoku & Kaufman (2005), for use in calculating smoke emissions directly from fire radiative power (FRP) measurements such that the latency and uncertainty associated with the previously listed variables are avoided. Application of this new, simpler and more direct algorithm is automatic, based only on a fire's FRP measurement and a predetermined coefficient of smoke emission for a given location. Attaining accurate coefficients of smoke emission is therefore critical to the success of this algorithm. In the aforementioned paper, an initial effort was made to derive coefficients of smoke emission for different large regions of interest using calculations of smoke emission rates from MODIS FRP and aerosol optical depth (AOD) measurements. Further work had resulted in a first draft of a 1 1 resolution map of these coefficients. This poster will present the work done to refine this algorithm toward the first production of global smoke emission coefficients. Main updates in the algorithm include: 1) inclusion of wind vectors to help refine several parameters, 2) defining new methods for calculating the fire-emitted AOD fractions, and 3) calculating smoke emission rates on a per-pixel basis and aggregating to grid cells instead of doing so later on in the process. In addition to a presentation of the methodology used to derive this product, maps displaying preliminary results as well as an outline of the future application of such a product into specific research opportunities will be shown.
Perfetti, Christopher M.; Rearden, Bradley T.
2016-03-01
The sensitivity and uncertainty analysis tools of the ORNL SCALE nuclear modeling and simulation code system that have been developed over the last decade have proven indispensable for numerous application and design studies for nuclear criticality safety and reactor physics. SCALE contains tools for analyzing the uncertainty in the eigenvalue of critical systems, but cannot quantify uncertainty in important neutronic parameters such as multigroup cross sections, fuel fission rates, activation rates, and neutron fluence rates with realistic three-dimensional Monte Carlo simulations. A more complete understanding of the sources of uncertainty in these design-limiting parameters could lead to improvements in processmore » optimization, reactor safety, and help inform regulators when setting operational safety margins. A novel approach for calculating eigenvalue sensitivity coefficients, known as the CLUTCH method, was recently explored as academic research and has been found to accurately and rapidly calculate sensitivity coefficients in criticality safety applications. The work presented here describes a new method, known as the GEAR-MC method, which extends the CLUTCH theory for calculating eigenvalue sensitivity coefficients to enable sensitivity coefficient calculations and uncertainty analysis for a generalized set of neutronic responses using high-fidelity continuous-energy Monte Carlo calculations. Here, several criticality safety systems were examined to demonstrate proof of principle for the GEAR-MC method, and GEAR-MC was seen to produce response sensitivity coefficients that agreed well with reference direct perturbation sensitivity coefficients.« less
Baasandorj, Munkhbayar; Ravishankara, A R; Burkholder, James B
2011-09-29
Rate coefficients, k, for the gas-phase reaction of the OH radical with (Z)-CF(3)CH═CHCF(3) (cis-1,1,1,4,4,4-hexafluoro-2-butene) were measured under pseudo-first-order conditions in OH using pulsed laser photolysis (PLP) to produce OH and laser-induced fluorescence (LIF) to detect it. Rate coefficients were measured over a range of temperatures (212-374 K) and bath gas pressures (20-200 Torr; He, N(2)) and found to be independent of pressure over this range of conditions. The rate coefficient has a non-Arrhenius behavior that is well-described by the expression k(1)(T) = (5.73 ± 0.60) × 10(-19) × T(2) × exp[(678 ± 10)/T] cm(3) molecule(-1) s(-1) where k(1)(296 K) was measured to be (4.91 ± 0.50) × 10(-13) cm(3) molecule(-1) s(-1) and the uncertainties are at the 2σ level and include estimated systematic errors. Rate coefficients for the analogous OD radical reaction were determined over a range of temperatures (262-374 K) at 100 Torr (He) to be k(2)(T) = (4.81 ± 0.20) × 10(-19) × T(2) × exp[(776 ± 15)/T], with k(2)(296 K) = (5.73 ± 0.50) × 10(-13) cm(3) molecule(-1) s(-1). OH radical rate coefficients were also measured at 296, 345, and 375 K using a relative rate technique and found to be in good agreement with the PLP-LIF results. A room-temperature rate coefficient for the O(3) + (Z)-CF(3)CH═CHCF(3) reaction was measured using an absolute method with O(3) in excess to be <6 × 10(-21) cm(3) molecule(-1) s(-1). The atmospheric lifetime of (Z)-CF(3)CH═CHCF(3) due to loss by OH reaction was estimated to be ~20 days. Infrared absorption spectra of (Z)-CF(3)CH═CHCF(3) measured in this work were used to determine a (Z)-CF(3)CH═CHCF(3) global warming potential (GWP) of ~9 for the 100 year time horizon. A comparison of the OH reactivity of (Z)-CF(3)CH═CHCF(3) with other unsaturated fluorinated compounds is presented.
NASA Astrophysics Data System (ADS)
Pfrang, Christian; Baeza Romero, Maria T.; Cabanas, Beatriz; Canosa-Mas, Carlos E.; Villanueva, Florentina; Wayne, Richard P.
The night-time tropospheric chemistry of two stress-induced volatile organic compounds (VOCs), ( Z)-pent-2-en-1-ol and pent-1-en-3-ol, has been studied at room temperature. Rate coefficients for reactions of the nitrate radical (NO 3) with these pentenols were measured using the discharge-flow technique. Because of the relatively low volatility of these compounds, we employed off-axis continuous-wave cavity-enhanced absorption spectroscopy for detection of NO 3 in order to be able to work in pseudo first-order conditions with the pentenols in large excess over NO 3. The rate coefficients were determined to be (1.53±0.23)×10 -13 and (1.39±0.19)×10 -14 cm 3 molecule -1 s -1 for reactions of NO 3 with ( Z)-pent-2-en-1-ol and pent-1-en-3-ol. An attempt to study the kinetics of these reactions with a relative-rate technique, using N 2O 5 as source of NO 3 resulted in significantly higher apparent rate coefficients. Performing relative-rate experiments in known excesses of NO 2 allowed us to determine the rate coefficients for the N 2O 5 reactions to be (5.0±2.8)×10 -19 cm 3 molecule -1 s -1 for ( Z)-pent-2-en-1-ol, and (9.1±5.8)×10 -19 cm 3 molecule -1 s -1 for pent-1-en-3-ol. We show that these relatively slow reactions can indeed interfere with rate determinations in conventional relative-rate experiments.
Salt effects on an ion-molecule reaction--hydroxide-catalyzed hydrolysis of benzocaine.
Al-Maaieh, Ahmad; Flanagan, Douglas R
2006-03-01
This work investigates the effect of various salts on the rate of a reaction involving a neutral species (benzocaine alkaline hydrolysis). Benzocaine hydrolysis kinetics in NaOH solutions in the presence of different salts were studied at 25 degrees C. Benzocaine solubility in salt solutions was also determined. Solubility data were used to estimate salt effects on benzocaine activity coefficients, and pH was used to estimate salt effects on hydroxide activity coefficients. Salts either increased or decreased benzocaine solubility. For example, solubility increased with 1.0 M tetraethylammonium chloride (TEAC) approximately 3-fold, whereas solubility decreased approximately 35% with 0.33 M Na2SO4. Salt effects on hydrolysis rates were more complex and depended on the relative magnitudes of the salt effects on the activity coefficients of benzocaine, hydroxide ion, and the transition state. As a result, some salts increased the hydrolysis rate constant, whereas others decreased it. For example, the pseudo-first-order rate constant decreased approximately 45% (to 0.0584 h(-1)) with 1 M TEAC, whereas it increased approximately 8% (to 0.116 h(-1)) with 0.33 M Na2SO4. Different salt effects on degradation kinetics can be demonstrated for a neutral compound reacting with an ion. These salt effects depend on varying effects on activity coefficients of reacting and intermediate species.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lanza, Mathieu; Lique, François, E-mail: francois.lique@univ-lehavre.fr
The determination of hyperfine structure resolved excitation cross sections and rate coefficients due to H{sub 2} collisions is required to interpret astronomical spectra. In this paper, we present several theoretical approaches to compute these data. An almost exact recoupling approach and approximate sudden methods are presented. We apply these different approaches to the HCl–H{sub 2} collisional system in order to evaluate their respective accuracy. HCl–H{sub 2} hyperfine structure resolved cross sections and rate coefficients are then computed using recoupling and approximate sudden methods. As expected, the approximate sudden approaches are more accurate when the collision energy increases and the resultsmore » suggest that these approaches work better for para-H{sub 2} than for ortho-H{sub 2} colliding partner. For the first time, we present HCl–H{sub 2} hyperfine structure resolved rate coefficients, computed here for temperatures ranging from 5 to 300 K. The usual Δj{sub 1} = ΔF{sub 1} propensity rules are observed for the hyperfine transitions. The new rate coefficients will significantly help the interpretation of interstellar HCl emission lines observed with current and future telescopes. We expect that these new data will allow a better determination of the HCl abundance in the interstellar medium, that is crucial to understand the interstellar chlorine chemistry.« less
NASA Astrophysics Data System (ADS)
Ahmad, Shahrokh; Oishe, Sadia Noon; Rahman, Md. Lutfor
2017-12-01
The purpose of this research work is to increase the heat transfer coefficient by operating the heat exchangers at smaller revolution per minute. This signifies an achievement of reduction of pressure drop corresponding to less operating cost. This study has used two types of SPT tape insert to observe the various heat transfer coefficient, heat transfer rate and heat transfer augmentation efficiency. One tape was fully twisted and another tape was partially twisted. The shape of the SPT tape creates turbulence effect. The turbulence flow (swirl flow) generated by SPT tape promotes greater mixing and high heat transfer coefficients. An arrangement scheme has been developed for the experimental investigation. For remarking the rate of change of heat transfer, temperature has been measured numerically through the temperature sensors with various flow rates and RPM. The volume flow rate was varied from 10.3448276 LPM to 21.045574 LPM and the rotation of the perforated twisted tape was varied from 50 RPM to 400 RPM. Finally the research study demonstrates the effectiveness of the results of the proposed approaches. It is observed that the suggested method of heat transfer augmentations is much more effective than existing methods, since it results in an increase in heat transfer area and also an increase in the heat transfer coefficient and reduction of cost in the industrial sectors.
1999-08-01
Funding for the work was provided in part by Dr. Harry Salem , SBCCOM/ECBC, Aberdeen Proving Grounds, Maryland. The research described in this report... PFA ) " CA Figure I - Physiologicallly Based Pharmacokinetic Model of the Pig (Sus scrofa). Abbreviations: CA, arterial concentration; CX, exhaled...order metabol. rate constant (/hr-1 kg)’ CONSTANT PLA=3.29 $ ’Liver/air partition coefficient’ CONSTANT PFA =70.27 $ ’Fat/air partition coefficient
Detailed mechanism for oxidation of benzene
NASA Technical Reports Server (NTRS)
Bittker, David A.
1990-01-01
A detailed mechanism for the oxidation of benzene is presented and used to compute experimentally obtained concentration profiles and ignition delay times over a wide range of equivalence ratio and temperature. The computed results agree qualitatively with all the experimental trends. Quantitative agreement is obtained with several of the composition profiles and for the temperature dependence of the ignition delay times. There are indications, however, that some important reactions are as yet undiscovered in this mechanism. Recent literature expressions have been used for the rate coefficients of most important reactions, except for some involving phenol. The discrepancy between the phenol pyrolysis rate coefficient used in this work and a recent literature expression remains to be explained.
NASA Astrophysics Data System (ADS)
Manjanaik, N.; Parameshachari, B. D.; Hanumanthappa, S. N.; Banu, Reshma
2017-08-01
Intra prediction process of H.264 video coding standard used to code first frame i.e. Intra frame of video to obtain good coding efficiency compare to previous video coding standard series. More benefit of intra frame coding is to reduce spatial pixel redundancy with in current frame, reduces computational complexity and provides better rate distortion performance. To code Intra frame it use existing process Rate Distortion Optimization (RDO) method. This method increases computational complexity, increases in bit rate and reduces picture quality so it is difficult to implement in real time applications, so the many researcher has been developed fast mode decision algorithm for coding of intra frame. The previous work carried on Intra frame coding in H.264 standard using fast decision mode intra prediction algorithm based on different techniques was achieved increased in bit rate, degradation of picture quality(PSNR) for different quantization parameters. Many previous approaches of fast mode decision algorithms on intra frame coding achieved only reduction of computational complexity or it save encoding time and limitation was increase in bit rate with loss of quality of picture. In order to avoid increase in bit rate and loss of picture quality a better approach was developed. In this paper developed a better approach i.e. Gaussian pulse for Intra frame coding using diagonal down left intra prediction mode to achieve higher coding efficiency in terms of PSNR and bitrate. In proposed method Gaussian pulse is multiplied with each 4x4 frequency domain coefficients of 4x4 sub macro block of macro block of current frame before quantization process. Multiplication of Gaussian pulse for each 4x4 integer transformed coefficients at macro block levels scales the information of the coefficients in a reversible manner. The resulting signal would turn abstract. Frequency samples are abstract in a known and controllable manner without intermixing of coefficients, it avoids picture getting bad hit for higher values of quantization parameters. The proposed work was implemented using MATLAB and JM 18.6 reference software. The proposed work measure the performance parameters PSNR, bit rate and compression of intra frame of yuv video sequences in QCIF resolution under different values of quantization parameter with Gaussian value for diagonal down left intra prediction mode. The simulation results of proposed algorithm are tabulated and compared with previous algorithm i.e. Tian et al method. The proposed algorithm achieved reduced in bit rate averagely 30.98% and maintain consistent picture quality for QCIF sequences compared to previous algorithm i.e. Tian et al method.
Job strain and resting heart rate: a cross-sectional study in a Swedish random working sample.
Eriksson, Peter; Schiöler, Linus; Söderberg, Mia; Rosengren, Annika; Torén, Kjell
2016-03-05
Numerous studies have reported an association between stressing work conditions and cardiovascular disease. However, more evidence is needed, and the etiological mechanisms are unknown. Elevated resting heart rate has emerged as a possible risk factor for cardiovascular disease, but little is known about the relation to work-related stress. This study therefore investigated the association between job strain, job control, and job demands and resting heart rate. We conducted a cross-sectional survey of randomly selected men and women in Västra Götalandsregionen, Sweden (West county of Sweden) (n = 1552). Information about job strain, job demands, job control, heart rate and covariates was collected during the period 2001-2004 as part of the INTERGENE/ADONIX research project. Six different linear regression models were used with adjustments for gender, age, BMI, smoking, education, and physical activity in the fully adjusted model. Job strain was operationalized as the log-transformed ratio of job demands over job control in the statistical analyses. No associations were seen between resting heart rate and job demands. Job strain was associated with elevated resting heart rate in the unadjusted model (linear regression coefficient 1.26, 95 % CI 0.14 to 2.38), but not in any of the extended models. Low job control was associated with elevated resting heart rate after adjustments for gender, age, BMI, and smoking (linear regression coefficient -0.18, 95 % CI -0.30 to -0.02). However, there were no significant associations in the fully adjusted model. Low job control and job strain, but not job demands, were associated with elevated resting heart rate. However, the observed associations were modest and may be explained by confounding effects.
A theoretical reassessment of microbial maintenance and implications for microbial ecology modeling.
Wang, Gangsheng; Post, Wilfred M
2012-09-01
We attempted to reconcile three microbial maintenance models (Herbert, Pirt, and Compromise) through a theoretical reassessment. We provided a rigorous proof that the true growth yield coefficient (Y(G)) is the ratio of the specific maintenance rate (a in Herbert) to the maintenance coefficient (m in Pirt). Other findings from this study include: (1) the Compromise model is identical to the Herbert for computing microbial growth and substrate consumption, but it expresses the dependence of maintenance on both microbial biomass and substrate; (2) the maximum specific growth rate in the Herbert (μ(max,H)) is higher than those in the other two models (μ(max,P) and μ(max,C)), and the difference is the physiological maintenance factor (m(q) = a); and (3) the overall maintenance coefficient (m(T)) is more sensitive to m(q) than to the specific growth rate (μ(G)) and Y(G). Our critical reassessment of microbial maintenance provides a new approach for quantifying some important components in soil microbial ecology models. © This article is a US government work and is in the public domain in the USA.
Modeling online social signed networks
NASA Astrophysics Data System (ADS)
Li, Le; Gu, Ke; Zeng, An; Fan, Ying; Di, Zengru
2018-04-01
People's online rating behavior can be modeled by user-object bipartite networks directly. However, few works have been devoted to reveal the hidden relations between users, especially from the perspective of signed networks. We analyze the signed monopartite networks projected by the signed user-object bipartite networks, finding that the networks are highly clustered with obvious community structure. Interestingly, the positive clustering coefficient is remarkably higher than the negative clustering coefficient. Then, a Signed Growing Network model (SGN) based on local preferential attachment is proposed to generate a user's signed network that has community structure and high positive clustering coefficient. Other structural properties of the modeled networks are also found to be similar to the empirical networks.
NASA Technical Reports Server (NTRS)
Banks, M.; Bridges, N. T.; Benzit, M.
2005-01-01
Knowledge of the rates at which rocks abrade from the impact of saltating sand provides important input into estimating the age and degree of modification of arid surfaces on Earth and Mars. Previous work has relied on measuring mass loss rates in the field and the laboratory. The susceptibility of rocks and other natural materials has been quantified on a relative scale from laboratory studies.
Heat and mass transfer rates during flow of dissociated hydrogen gas over graphite surface
NASA Technical Reports Server (NTRS)
Nema, V. K.; Sharma, O. P.
1986-01-01
To improve upon the performance of chemical rockets, the nuclear reactor has been applied to a rocket propulsion system using hydrogen gas as working fluid and a graphite-composite forming a part of the structure. Under the boundary layer approximation, theoretical predictions of skin friction coefficient, surface heat transfer rate and surface regression rate have been made for laminar/turbulent dissociated hydrogen gas flowing over a flat graphite surface. The external stream is assumed to be frozen. The analysis is restricted to Mach numbers low enough to deal with the situation of only surface-reaction between hydrogen and graphite. Empirical correlations of displacement thickness, local skin friction coefficient, local Nusselt number and local non-dimensional heat transfer rate have been obtained. The magnitude of the surface regression rate is found low enough to ensure the use of graphite as a linear or a component of the system over an extended period without loss of performance.
MTS-6 detectors calibration by using 239Pu-Be neutron source.
Wrzesień, Małgorzata; Albiniak, Łukasz; Al-Hameed, Hiba
2017-10-17
Thermoluminescent detectors, type MTS-6, containing isotope 6Li (lithium) are sensitive in the range of thermal neutron energy; the 239Pu-Be (plutonium-and-beryllium) source emits neutrons in the energy range from 1 to 11 MeV. These seemingly contradictory elements may be combined by using the paraffin moderator, a determined density of thermal neutrons in the paraffin block and a conversion coefficient neutron flux to kerma, not forgetting the simultaneous registration of the photon radiation inseparable from the companion neutron radiation. The main aim of this work is to present the idea of calibration of thermoluminescent detectors that consist of a 6Li isotope, by using 239Pu-Be neutron radiation source. In this work, MTS-6 and MTS-7 thermoluminescent detectors and a plutonium-and-beryllium (239Pu-Be) neutron source were used. Paraffin wax fills the block, acting as a moderator. The calibration idea was based on the determination of dose equivalent rate based on the average kerma rate calculated taking into account the empirically determined function describing the density of thermal neutron flux in the paraffin block and a conversion coefficient neutron flux to kerma. The calculated value of the thermal neutron flux density was 1817.5 neutrons/cm2/s and the average value of kerma rate determined on this basis amounted to 244 μGy/h, and the dose equivalent rate 610 μSv/h. The calculated value allowed for the assessment of the length of time of exposure of the detectors directly in the paraffin block. The calibration coefficient for the used batch of detectors is (6.80±0.42)×10-7 Sv/impulse. Med Pr 2017;68(6):705-710. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.
NASA Astrophysics Data System (ADS)
Evje, Steinar; Wang, Wenjun; Wen, Huanyao
2016-09-01
In this paper, we consider a compressible two-fluid model with constant viscosity coefficients and unequal pressure functions {P^+neq P^-}. As mentioned in the seminal work by Bresch, Desjardins, et al. (Arch Rational Mech Anal 196:599-629, 2010) for the compressible two-fluid model, where {P^+=P^-} (common pressure) is used and capillarity effects are accounted for in terms of a third-order derivative of density, the case of constant viscosity coefficients cannot be handled in their settings. Besides, their analysis relies on a special choice for the density-dependent viscosity [refer also to another reference (Commun Math Phys 309:737-755, 2012) by Bresch, Huang and Li for a study of the same model in one dimension but without capillarity effects]. In this work, we obtain the global solution and its optimal decay rate (in time) with constant viscosity coefficients and some smallness assumptions. In particular, capillary pressure is taken into account in the sense that {Δ P=P^+ - P^-=fneq 0} where the difference function {f} is assumed to be a strictly decreasing function near the equilibrium relative to the fluid corresponding to {P^-}. This assumption plays an key role in the analysis and appears to have an essential stabilization effect on the model in question.
NASA Astrophysics Data System (ADS)
Dulitz, Katrin; Amedro, Damien; Dillon, Terry J.; Pozzer, Andrea; Crowley, John N.
2018-02-01
Rate coefficients (k5) for the title reaction were obtained using pulsed laser photolytic generation of OH coupled to its detection by laser-induced fluorescence (PLP-LIF). More than 80 determinations of k5 were carried out in nitrogen or air bath gas at various temperatures and pressures. The accuracy of the rate coefficients obtained was enhanced by in situ measurement of the concentrations of both HNO3 reactant and NO2 impurity. The rate coefficients show both temperature and pressure dependence with a rapid increase in k5 at low temperatures. The pressure dependence was weak at room temperature but increased significantly at low temperatures. The entire data set was combined with selected literature values of k5 and parameterised using a combination of pressure-dependent and -independent terms to give an expression that covers the relevant pressure and temperature range for the atmosphere. A global model, using the new parameterisation for k5 rather than those presently accepted, indicated small but significant latitude- and altitude-dependent changes in the HNO3 / NOx ratio of between -6 and +6 %. Effective HNO3 absorption cross sections (184.95 and 213.86 nm, units of cm2 molecule-1) were obtained as part of this work: σ213.86 = 4.52-0.12+0.23 × 10-19 and σ184.95 = 1.61-0.04+0.08 × 10-17.
NASA Astrophysics Data System (ADS)
Jubb, A. M.; Gierczak, T.; Baasandorj, M.; Waterland, R. L.; Burkholder, J. B.
2013-12-01
Mixtures of methyl-perfluoroheptene-ethers (C7F13OCH3, MPHEs) are currently in use as a replacement for perfluorinated alkane (PFC) and polyether mixtures (both persistent greenhouse gases with atmospheric lifetimes >1000 years) used as heat transfer fluids. Currently, the atmospheric fate of the MPHE isomers are not well characterized, however, reaction with the OH radical is expected to be a dominant tropospheric loss process for these compounds. In order to assess the atmospheric lifetimes and environmental implications of MPHE use, rate coefficients for MPHE isomers' reaction with OH radicals are desired. In the work presented here, rate coefficients, k, for the gas-phase reaction of the OH radical with six MPHEs commonly used in commercial mixtures (isomers and stereoisomers) and their deuterated analogs (d3-MPHE) were determined at 296 K using a relative rate method with combined gas-chromatography/IR spectroscopy detection. A range of OH rate coefficient values was observed, up to a factor of 20× different, between the MPHE isomers with the (E)-stereoisomers exhibiting the greatest reactivity. The measured OH reaction rate coefficients for the d3-MPHE isomers were lower than the observed MPHE values although a large range of k values between isomers was still observed. The reduction in reactivity with deuteration signifies that the MPHE + OH reaction proceeds via both addition to the olefinic C=C bond and H-abstraction from the methyl ester group. OH addition to the C=C bond was determined to be the primary reaction channel. Atmospheric lifetimes with respect to the OH reaction for the six MPHE isomers were found to be in the range of days to months. The short lifetimes indicate that MPHE use will primarily impact tropospheric local and regional air quality. A MPHE atmospheric degradation mechanism will be presented. As part of this work, radiative efficiencies and global warming potentials (GWPs) for the MPHE isomers were estimated based on measured infrared absorption spectra of MPHE mixture samples and infrared spectra calculated theoretically. Here the calculated GWPs for the MPHE isomers are considered to be estimates, as the actual GWPs for short-lived gases will depend greatly on the season and location of their emission. The results presented highlight the importance of quantifying the individual component atmospheric fate for all mixture components when assessing the atmospheric behavior of mixtures.
Comparison of kinetic models for atom recombination on high-temperature reusable surface insulation
NASA Technical Reports Server (NTRS)
Willey, Ronald J.
1993-01-01
Five kinetic models are compared for their ability to predict recombination coefficients for oxygen and nitrogen atoms over high-temperature reusable surface insulation (HRSI). Four of the models are derived using Rideal-Eley or Langmuir-Hinshelwood catalytic mechanisms to describe the reaction sequence. The fifth model is an empirical expression that offers certain features unattainable through mechanistic description. The results showed that a four-parameter model, with temperature as the only variable, works best with data currently available. The model describes recombination coefficients for oxygen and nitrogen atoms for temperatures from 300 to 1800 K. Kinetic models, with atom concentrations, demonstrate the influence of atom concentration on recombination coefficients. These models can be used for the prediction of heating rates due to catalytic recombination during re-entry or aerobraking maneuvers. The work further demonstrates a requirement for more recombination experiments in the temperature ranges of 300-1000 K, and 1500-1850 K, with deliberate concentration variation to verify model requirements.
Paraskevas, Paschalis D; Sabbe, Maarten K; Reyniers, Marie-Françoise; Papayannakos, Nikos G; Marin, Guy B
2014-10-09
Hydrogen-abstraction reactions play a significant role in thermal biomass conversion processes, as well as regular gasification, pyrolysis, or combustion. In this work, a group additivity model is constructed that allows prediction of reaction rates and Arrhenius parameters of hydrogen abstractions by hydrogen atoms from alcohols, ethers, esters, peroxides, ketones, aldehydes, acids, and diketones in a broad temperature range (300-2000 K). A training set of 60 reactions was developed with rate coefficients and Arrhenius parameters calculated by the CBS-QB3 method in the high-pressure limit with tunneling corrections using Eckart tunneling coefficients. From this set of reactions, 15 group additive values were derived for the forward and the reverse reaction, 4 referring to primary and 11 to secondary contributions. The accuracy of the model is validated upon an ab initio and an experimental validation set of 19 and 21 reaction rates, respectively, showing that reaction rates can be predicted with a mean factor of deviation of 2 for the ab initio and 3 for the experimental values. Hence, this work illustrates that the developed group additive model can be reliably applied for the accurate prediction of kinetics of α-hydrogen abstractions by hydrogen atoms from a broad range of oxygenates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Böcklin, Christoph, E-mail: boecklic@ethz.ch; Baumann, Dirk; Fröhlich, Jürg
A novel way to attain three dimensional fluence rate maps from Monte-Carlo simulations of photon propagation is presented in this work. The propagation of light in a turbid medium is described by the radiative transfer equation and formulated in terms of radiance. For many applications, particularly in biomedical optics, the fluence rate is a more useful quantity and directly derived from the radiance by integrating over all directions. Contrary to the usual way which calculates the fluence rate from absorbed photon power, the fluence rate in this work is directly calculated from the photon packet trajectory. The voxel based algorithmmore » works in arbitrary geometries and material distributions. It is shown that the new algorithm is more efficient and also works in materials with a low or even zero absorption coefficient. The capabilities of the new algorithm are demonstrated on a curved layered structure, where a non-scattering, non-absorbing layer is sandwiched between two highly scattering layers.« less
Derivation of Z-R equation using Mie approach for a 77 GHz radar
NASA Astrophysics Data System (ADS)
Bertoldo, Silvano; Lucianaz, Claudio; Allegretti, Marco; Perona, Giovanni
2017-04-01
The ETSI (European Telecommunications Standards Institute) defines the frequency band around 77 GHz as dedicated to automatic cruise control long-range radars. This work aims to demonstrate that, with specific assumption and the right theoretical background it is also possible to use a 77 GHz as a mini weather radar and/or a microwave rain gauge. To study the behavior of a 77 GHz meteorological radar, since the raindrop size are comparable to the wavelength, it is necessary to use the general Mie scattering theory. According to the Mie formulation, the radar reflectivity factor Z is defined as a function of the wavelength on the opposite of Rayleigh approximation in which is frequency independent. Different operative frequencies commonly used in radar meteorology are considered with both the Rayleigh and Mie scattering theory formulation. Comparing them it is shown that with the increasing of the radar working frequency the use of Rayleigh approximation lead to an always larger underestimation of rain. At 77 GHz such underestimation is up to 20 dB which can be avoided with the full Mie theory. The crucial derivation of the most suited relation between the radar reflectivity factor Z and rainfall rate R (Z-R equation) is necessary to achieve the best Quantitative Precipitation Estimation (QPE) possible. Making the use of Mie scattering formulation from the classical electromagnetic theory and considering different radar working frequencies, the backscattering efficiency and the radar reflectivity factor have been derived from a wide range of rain rate using specific numerical routines. Knowing the rain rate and the corresponding reflectivity factor it was possible to derive the coefficients of the Z-R equation for each frequency with the least square method and to obtain the best coefficients for each frequency. The coefficients are then compared with the ones coming from the scientific literature. The coefficients of a 77 GHz weather radar are then obtained. A sensitivity analysis of a 77 GHz weather radar using such Z-R relation is also studied. The work shows that the right knowledge of Z-R equation is essential to use such a specific radar for the estimation of rainfall. The use Mie scattering theory is necessary for a 77 GHz radar in order to avoid the heavy underestimation of rainfall.
NASA Astrophysics Data System (ADS)
Burkholder, J. B.; Bernard, F.; Papadimitriou, V. C.
2016-12-01
The atmospheric chemistry of organosiloxanes has recently been implicated in the formation of new particles as well as regional and indoor air quality. Methylsiloxanes with Si<6 are relatively volatile compounds with either linear or cyclic molecular structures. Methylsiloxanes are found in consumer goods such as cosmetics, textiles, health care and household products and in industrial applications as solvents and lubricants. They are released into the atmosphere during manufacturing, use, and disposal and have been observed in the atmosphere in ppb levels in certain locations. However, the fundamental chemical properties of this class of compounds, particularly their reactivity with the OH radical, are presently not fully characterized. In this work, the temperature dependence of the rate coefficients for the OH radical reaction with the simplest linear (L2 and L3) and cyclic (D3 and D4) siloxanes were measured: OH + (CH3)3SiOSi(CH3)3 = Products L2OH + [(CH3)3SiO]2Si(CH3)2 = Products L3OH + [-Si(CH3)2O-]3 = Products D3OH + [-Si(CH3)2O-]4 = Products D4OH rate coefficients were measured under pseudo-first conditions in OH over the temperature range 240-370 K using a pulsed laser photolysis-laser induced fluorescence (PLP-LIF) technique and at 296 K using a relative rate method. The present results are compared with available literature data where possible and discrepancies are discussed. The results from this work will be discussed in terms of the atmospheric lifetimes of these methylsiloxanes and the reactivity trends for this class of compound.
Diffusive shock acceleration at non-relativistic highly oblique shocks
NASA Astrophysics Data System (ADS)
Meli, Athina; Biermann, P. L.
2004-10-01
Our aim here is to evaluate the rate of the maximum energy and the acceleration rate that Cosmic Rays (CRs) acquire in the non-relativistic diffusive shock acceleration as it could apply during their lifetime in various astrophysical sites. We examine numerically (using Monte Carlo simulations) the effect of the diffusion coefficients on the energy gain and the acceleration rate, by testing the role between the obliquity of the magnetic field at the shock normal, and the significance of both perpendicular cross-field diffusion and parallel diffusion coefficients to the aceleration rate. We find (and justify previous analytical work -Jokipii 1987) that in highly oblique shocks the smaller the perpendicular diffusion gets compared to the parallel diffusion coefficient values, the greater the energy gain of the CRs to be obtained. An explanation of the Cosmic Ray Spectrum in High Energies, between 1015 and 1018eV is claimed, as we estimate the upper limit of energy that CRs could gain in plausible astrophysical regimes; interpreted by the scenario of CRs which are injected by three different kind of sources, (i) supernovae (SN) which explode into the interstellar medium (ISM), (ii) Red Supergiants (RSG), and (iii) Wolf-Rayet stars (WR), where the two latter explode into their pre-SN winds Biermann (2001); Sina (2001).
Gamma dosimetric parameters in some skeletal muscle relaxants
NASA Astrophysics Data System (ADS)
Manjunatha, H. C.
2017-09-01
We have studied the attenuation of gamma radiation of energy ranging from 84 keV to 1330 keV (^{170}Tm, ^{22}Na,^{137}Cs, and ^{60}Co) in some commonly used skeletal muscle relaxants such as tubocurarine chloride, gallamine triethiodide, pancuronium bromide, suxamethonium bromide and mephenesin. The mass attenuation coefficient is measured from the attenuation experiment. In the present work, we have also proposed the direct relation between mass attenuation coefficient (μ /ρ ) and mass energy absorption coefficient (μ _{en}/ρ ) based on the nonlinear fitting procedure. The gamma dosimetric parameters such as mass energy absorption coefficient (μ _{en}/ρ ), effective atomic number (Z_{eff}), effective electron density (N_{el}), specific γ-ray constant, air kerma strength and dose rate are evaluated from the measured mass attentuation coefficient. These measured gamma dosimetric parameters are compared with the theoretical values. The measured values agree with the theoretical values. The studied gamma dosimetric values for the relaxants are useful in medical physics and radiation medicine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amann, J.M.G.; Bouallou, C.
2009-04-15
This work focuses on the development of a new solvent for CO{sub 2} capture. This new solvent is an aqueous solution with a blend of N-methyldiethanolamine (MDEA) and triethylene tetramine (TETA), an amine with four amino groups. CO{sub 2} absorption was investigated between 298 and 333 K using a Lewis cell with a constant interfacial area. Several concentrations of MDEA (17.5 and 40 wt %) and TETA (3 and 6 wt %) were assessed. The influence of the CO{sub 2} partial pressure on the absorption rate was pointed out. The addition of small amount of TETA leads to a highmore » increase in the CO{sub 2} absorption rates. A numerical model based on the film theory was used to determine the rate coefficients between CO{sub 2} and TETA for the different solvents. The physicochemical parameters have a huge influence on the determination of the rate coefficients.« less
NASA Astrophysics Data System (ADS)
Kessler, P.; Behnke, B.; Dombrowski, H.; Neumaier, S.
2017-11-01
For the upgrade of existing dosimetric early warning networks in Europe spectrometric detectors based on CeBr3, LaBr3, SrI2, and CdZnTe are investigated as possible substitutes for the current detector generation which is mainly based on gas filled detectors. The additional information on the nuclide vector which can be derived from the spectra of γ-radiation is highly useful for an appropriate response in case of a nuclear or radiological accident. The measured γ-spectra will be converted into ambient dose equivalent H* (10) using a method where the spectrum is subdivided into multiple energy bands. For each band the conversion coefficients from count rate to dose rate is determined. The derivation of these conversion coefficients is explained in this work. Both experimental and simulative approaches are investigated using quasi-mono-energetic γ-sources and synthetic spectra from Monte-Carlo simulations to determine the conversion coefficients for each detector type. Finally, precision of the obtained characterization is checked by irradiation of the detectors in different well-known photon fields with traceable dose rates.
NASA Technical Reports Server (NTRS)
Zipf, E. C.
1979-01-01
The rate coefficient for the quenching of metastable O(1S) atoms by O2 was measured as a function of temperature from 250 to 550 K. The resulting Arrhenius expression correlates well with previous laboratory work. It is suggested that the much larger value of the rate coefficient inferred from an analysis of artificial auroral experiment, Precede, may be explained by overestimation of the contribution of O(1S) production from O2(+) dissociative recombination. The possibility that O(1S) atoms are produced only by the dissociative recombination of vibrationally excited O2(+) ions is examined; such excited ions would not exist in the Precede experiment because of the rapid cooling of the ions by resonant charge transfer processes.
Influence of Nano-Fluid and Receiver Modification in Solar Parabolic Trough Collector Performance
NASA Astrophysics Data System (ADS)
Dharani Kumar, M.; Yuvaraj, G.; Balaji, D.; Pravinraj, R.; shanmugasundaram, Prabhu
2018-02-01
Utilization of natural renewal sources in India is very high over the past decades. Solar power is a prime source of energy available plenty in the world. In this work solar energy is modified into thermal energy by using copper absorber tube with fins. Due to low heat transfer coefficient results leading to higher thermal losses and lower thermal efficiency. In order to increase the heat transfer coefficient copper receiver tube with fins is used and as well as solid has higher thermal conductivity compare to fluid (Tio2) nano fluid is used to improve the heat transfer rate. The analyses have been carried out and take the account of parameters such as solar radiation with time variation, mass flow rate of water, temperatures.
Numerical methods for comparing fresh and weathered oils by their FTIR spectra.
Li, Jianfeng; Hibbert, D Brynn; Fuller, Stephen
2007-08-01
Four comparison statistics ('similarity indices') for the identification of the source of a petroleum oil spill based on the ASTM standard test method D3414 were investigated. Namely, (1) first difference correlation coefficient squared and (2) correlation coefficient squared, (3) first difference Euclidean cosine squared and (4) Euclidean cosine squared. For numerical comparison, an FTIR spectrum is divided into three regions, described as: fingerprint (900-700 cm(-1)), generic (1350-900 cm(-1)) and supplementary (1770-1685 cm(-1)), which are the same as the three major regions recommended by the ASTM standard. For fresh oil samples, each similarity index was able to distinguish between replicate independent spectra of the same sample and between different samples. In general, the two first difference-based indices worked better than their parent indices. To provide samples to reveal relationships between weathered and fresh oils, a simple artificial weathering procedure was carried out. Euclidean cosine and correlation coefficients both worked well to maintain identification of a match in the fingerprint region and the two first difference indices were better in the generic region. Receiver operating characteristic curves (true positive rate versus false positive rate) for decisions on matching using the fingerprint region showed two samples could be matched when the difference in weathering time was up to 7 days. Beyond this time the true positive rate falls and samples cannot be reliably matched. However, artificial weathering of a fresh source sample can aid the matching of a weathered sample to its real source from a pool of very similar candidates.
Theoretical coefficient of restitution for planer impact of rough elasto-plastic bodies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stronge, W.J.
1995-12-31
During an inelastic collision the normal component of force between colliding bodies is a nonlinear function of indentation. In the cycle of loading and unloading which occurs in a collision this force exhibits hysteresis due to internal inelastic deformations near the contact point. Energy dissipation during impact can be calculated for any incident velocity and impact configuration by integration of rate-of-work throughout the contact period. In {open_quote}rigid body{close_quote} impact there is negligible displacement during the contact period - in this case work done by the normal component of contact force can be calculated to obtain the part of the initialmore » kinetic energy of relative motion that is lost to irreversible internal dissipation. This energy loss is directly related to the energetic coefficient of restitution. For a non-collinear collision between rough bodies, this paper obtains an analytical expression for the energetic coefficient of restitution; this expression is appropriate for moderate speed impacts between compact bodies where maximum indentation remains small. The coefficient of restitution depends on the incident relative velocity, material properties and an effective mass as well as a secondary effect of friction. For impacts that result in fully plastic indentation, this theory obtains a coefficient of restitution proportional to normal impact speed to the 1/4 power a result that agrees with Goldsmith`s compilation of experimental evidence.« less
Bouwer, S T; Hoofd, L; Kreuzer, F
2001-02-16
The purpose of this study was to verify the concept of non-equilibrium facilitated oxygen diffusion. This work succeeds our previous study, where facilitated oxygen diffusion by hemoglobin was measured at conditions of chemical equilibrium, and which yielded diffusion coefficients of hemoglobin and of oxygen. In the present work chemical non-equilibrium was induced using very thin diffusion layers. As a result, facilitation was decreased as predicted by theory. Thus, this work presents the first experimental demonstration of non-equilibrium facilitated oxygen diffusion. In addition, association and dissociation rate parameters of the reaction between oxygen and bovine and human hemoglobin were calculated and the effect of the homotropic and heterotropic interactions on each rate parameter was demonstrated. The results indicate that the homotropic interaction--which leads to increasing oxygen affinity with increasing oxygenation--is predominantly due to an increase in the association rate. The heterotropic interaction--which leads to decreasing oxygen affinity by anionic ligands--appears to be effected in two ways. Cl- increases the dissociation rate. In contrast, 2,3-diphosphoglycerate decreases the association rate.
NASA Technical Reports Server (NTRS)
LaMothe, J.; Ferland, Gary J.
2002-01-01
Recombination cooling, in which a free electron emits light while being captured to an ion, is an important cooling process in photoionized clouds that are optically thick or have low metallicity. State specific rather than total recombination cooling rates are needed since the hydrogen atom tends to become optically thick in high-density regimes such as Active Galactic Nuclei. This paper builds upon previous work to derive the cooling rate over the full temperature range where the process can be a significant contributor in a photoionized plasma. We exploit the fact that the recombination and cooling rates are given by intrinsically similar formulae to express the cooling rate in terms of the closely related radiative recombination rate. We give an especially simple but accurate approximation that works for any high hydrogenic level and can be conveniently employed in large-scale numerical simulations.
NASA Astrophysics Data System (ADS)
Miyazaki, Eiji; Shimazaki, Kazunori; Numata, Osamu; Waki, Miyuki; Yamanaka, Riyo; Kimoto, Yugo
2016-09-01
Outgassing rate measurement, or dynamic outgassing test, is used to obtain outgassing properties of materials, i.e., Total Mass Loss, "TML," and Collected Volatile Condensed Mass, "CVCM." The properties are used as input parameters for executing contamination analysis, e.g., calculating a prediction of deposition mass on a surface in a spacecraft caused by outgassed substances from contaminant sources onboard. It is likely that results obtained by such calculations are affected by the input parameters. Thus, it is important to get a sufficient experimental data set of outgassing rate measurements for extract good outgassing parameters of materials for calculation. As specified in the standard, ASTM E 1559, TML is measured by a QCM sensor kept at cryogenic temperature; CVCMs are measured at certain temperatures. In the present work, the authors propose a new experimental procedure to obtain more precise VCMs from one run of the current test time with the present equipment. That is, two of four CQCMs in the equipment control the temperature to cool step-by-step during the test run. It is expected that the deposition rate, that is sticking coefficient, with respect to temperature could be discovered. As a result, the sticking coefficient can be obtained directly between -50 and 50 degrees C with 5 degrees C step. It looks like the method could be used as an improved procedure for outgassing rate measurement. The present experiment also specified some issues of the new procedure. It will be considered in future work.
Martinez, Oscar; Ard, Shaun G; Li, Anyang; Shuman, Nicholas S; Guo, Hua; Viggiano, Albert A
2015-09-21
We have measured the temperature-dependent kinetics for the reactions of OH(+) with H2 and D2 using a selected ion flow tube apparatus. Reaction occurs via atom abstraction to result in H2O(+)/HDO(+) + H/D. Room temperature rate coefficients are in agreement with prior measurements and resulting temperature dependences are T(0.11) for the hydrogen and T(0.25) for the deuterated reactions. This work is prompted in part by recent theoretical work that mapped a full-dimensional global potential energy surface of H3O(+) for the OH(+) + H2 → H + H2O(+) reaction [A. Li and H. Guo, J. Phys. Chem. A 118, 11168 (2014)], and reported results of quasi-classical trajectory calculations, which are extended to a wider temperature range and initial rotational state specification here. Our experimental results are in excellent agreement with these calculations which accurately predict the isotope effect in addition to an enhancement of the reaction rate constant due to the molecular rotation of OH(+). The title reaction is of high importance to astrophysical models, and the temperature dependence of the rate coefficients determined here should now allow for better understanding of this reaction at temperatures more relevant to the interstellar medium.
Laboratory Studies of Chemical and Photochemical Processes Relevant to Stratospheric Ozone
NASA Technical Reports Server (NTRS)
Villalta, Peter W.; Zahniser, Mark S.; Nelson, David D.; Kolb, Charles E.
1997-01-01
The purpose of this project is to reduce the uncertainty in several key gas-phase kinetic processes which impact our understanding of stratospheric ozone. The main emphasis of this work is on measuring rate coefficients and product channels for reactions of HO(x) and NO(x) species in the temperature range 200 K to 240 K relevant to the lower stratosphere. The results of these studies will improve models of stratospheric ozone chemistry and predictions of perturbations due to human influences. The second year's effort has focussed the design and construction of the proposed high pressure flow reactor on three separate areas: (1) the construction of the high pressure flow reactor; (2) characterization of the turbulent flow profile; and (3) demonstration of the instrument by measuring HO2 + NO2 and HO2 + NO reaction rate coefficients.
NASA Astrophysics Data System (ADS)
Mora, M.; Vera, E.; Aperador, W.
2016-02-01
In this work is presented the synergistic behaviour among corrosion/wear (tribocorrosion) of the multilayer coatings hafnium nitride/vanadium nitride [HfN/VN]n. The multilayers were deposited on AISI 4140 steel using the technique of physical vapor deposition PVD magnetron sputtering, the tests were performed using a pin-on-disk tribometer, which has an adapted potentiostat galvanostat with three-electrode electrochemical cell. Tribocorrosive parameters such as: Friction coefficient between the coating and the counter body (100 Cr6 steel ball); Polarization resistance by means of electrochemical impedance spectroscopy technique and corrosion rate by polarization curves were determined. It was observed an increase in the polarization resistance, a decrease in the corrosion rate and a low coefficient of friction in comparison with the substrate, due to an increase on the number of bilayers.
Estimating rock and slag wool fiber dissolution rate from composition.
Eastes, W; Potter, R M; Hadley, J G
2000-12-01
A method was tested for calculating the dissolution rate constant in the lung for a wide variety of synthetic vitreous silicate fibers from the oxide composition in weight percent. It is based upon expressing the logarithm of the dissolution rate as a linear function of the composition and using a different set of coefficients for different types of fibers. The method was applied to 29 fiber compositions including rock and slag fibers as well as refractory ceramic and special-purpose, thin E-glass fibers and borosilicate glass fibers for which in vivo measurements have been carried out. These fibers had dissolution rates that ranged over a factor of about 400, and the calculated dissolution rates agreed with the in vivo values typically within a factor of 4. The method presented here is similar to one developed previously for borosilicate glass fibers that was accurate to a factor of 1.25. The present coefficients work over a much broader range of composition than the borosilicate ones but with less accuracy. The dissolution rate constant of a fiber may be used to estimate whether disease would occur in animal inhalation or intraperitoneal injection studies of that fiber.
Onel, L; Blitz, M A; Seakins, P W
2012-04-05
Monoethanol amine (H2NCH2CH2OH, MEA) has been proposed for large-scale use in carbon capture and storage. We present the first absolute, temperature-dependent determination of the rate coefficient for the reaction of OH with MEA using laser flash photolysis for OH generation, monitoring OH removal by laser-induced fluorescence. The room-temperature rate coefficient is determined to be (7.61 ± 0.76) × 10(-11) cm(3) molecule(-1) s(-1), and the rate coefficient decreases by about 40% by 510 K. The temperature dependence of the rate coefficient is given by k1= (7.73 ± 0.24) × 10(-11)(T/295)(-(0.79±0.11)) cm(3) molecule(-1) s(-1). The high rate coefficient shows that gas-phase processing in the atmosphere will be competitive with uptake onto aerosols.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Fei; Kolesov, Grigory; Parkinson, Bruce A.
2014-09-26
A simple and straightforward method for measuring diffusion coefficients using interdigitated array (IDA) electrodes is reported. The method does not require that the exact electrode area be known but depends only the size of the gap between the IDA electrode pairs. Electroactive molecules produced at the generator electrode of the IDA by a voltage step or scan can diffuse to the collector electrode and the time delay before the current for the reverse electrochemical reaction is detected at the collector is used to calculate the diffusion coefficient. The measurement of the diffusion rate of Ru(NH3)6+2 in aqueous solution has beenmore » used as an example measuring diffusion coefficients using this method. Additionally, a digital simulation of the electrochemical response of the IDA electrodes was used to simulate the entire current/voltage/time behavior of the system and verify the experimentally measured diffusion coefficients. This work was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the Department of Energy, Office of Science, Office of Basic Energy Sciences.« less
NASA Astrophysics Data System (ADS)
Hall, Michael L.; Doster, J. Michael
1990-03-01
The dynamic behavior of liquid metal heat pipe models is strongly influenced by the choice of evaporation and condensation modeling techniques. Classic kinetic theory descriptions of the evaporation and condensation processes are often inadequate for real situations; empirical accommodation coefficients are commonly utilized to reflect nonideal mass transfer rates. The complex geometries and flow fields found in proposed heat pipe systems cause considerable deviation from the classical models. the THROHPUT code, which has been described in previous works, was developed to model transient liquid metal heat pipe behavior from frozen startup conditions to steady state full power operation. It is used here to evaluate the sensitivity of transient liquid metal heat pipe models to the choice of evaporation and condensation accommodation coefficients. Comparisons are made with experimental liquid metal heat pipe data. It is found that heat pipe behavior can be predicted with the proper choice of the accommodation coefficients. However, the common assumption of spatially constant accommodation coefficients is found to be a limiting factor in the model.
Nasiri, Rasoul; Luo, Kai H
2017-07-10
For well over one century, the Hertz-Knudsen equation has established the relationship between thermal - mass transfer coefficients through a liquid - vapour interface and evaporation rate. These coefficients, however, have been often separately estimated for one-component equilibrium systems and their simultaneous influences on evaporation rate of fuel droplets in multicomponent systems have yet to be investigated at the atomic level. Here we first apply atomistic simulation techniques and quantum/statistical mechanics methods to understand how thermal and mass evaporation effects are controlled kinetically/thermodynamically. We then present a new development of a hybrid method of quantum transition state theory/improved kinetic gas theory, for multicomponent hydrocarbon systems to investigate how concerted-distinct conformational changes of hydrocarbons at the interface affect the evaporation rate. The results of this work provide an important physical concept in fundamental understanding of atomistic pathways in topological interface transitions of chain molecules, resolving an open problem in kinetics of fuel droplets evaporation.
Heat transfer and pressure drop characteristics of nanofluids in a plate heat exchanger.
Kwon, Y H; Kim, D; Li, C G; Lee, J K; Hong, D S; Lee, J G; Lee, S H; Cho, Y H; Kim, S H
2011-07-01
In this paper, the heat transfer characteristics and pressure drop of the ZnO and Al2O3 nanofluids in a plate heat exchanger were studied. The experimental conditions were 100-500 Reynolds number and the respective volumetric flow rates. The working temperature of the heat exchanger was within 20-40 degrees C. The measured thermophysical properties, such as thermal conductivity and kinematic viscosity, were applied to the calculation of the convective heat transfer coefficient of the plate heat exchanger employing the ZnO and Al2O3 nanofluids made through a two-step method. According to the Reynolds number, the overall heat transfer coefficient for 6 vol% Al2O3 increased to 30% because at the given viscosity and density of the nanofluids, they did not have the same flow rates. At a given volumetric flow rate, however, the performance did not improve. After the nanofluids were placed in the plate heat exchanger, the experimental results pertaining to nanofluid efficiency seemed inauspicious.
Ternary recombination of H3+, H2D+, HD2+, and D3+ with electrons in He/Ar/H2/D2 gas mixtures
NASA Astrophysics Data System (ADS)
Kalosi, Abel; Dohnal, Petr; Plasil, Radek; Johnsen, Rainer; Glosik, Juraj
2016-09-01
The temperature dependence of the ternary recombination rate coefficients of H2D+ and HD2+ ions has been studied in the temperature range of 80-150 K at pressures from 500 to 1700 Pa in a stationary afterglow apparatus equipped with a cavity ring-down spectrometer. Neutral gas mixtures consisting of He/Ar/H2/D2 (with typical number densities 1017 /1014 /1014 /1014 cm-3) were employed to produce the desired ionic species and their fractional abundances were monitored as a function of helium pressure and the [D2]/[H2] ratio of the neutral gas. In addition, the translational and the rotational temperature and the ortho to para ratio were monitored for both H2D+ and HD2+ ions. A fairly strong pressure dependence of the effective recombination rate coefficient was observed for both ion species, leading to ternary recombination rate coefficients close to those previously found for (helium assisted) ternary recombination of H3+ and D3+. Work supported by: Czech Science Foundation projects GACR 14-14649P, GACR 15-15077S, GACR P209/12/0233, and by Charles University in Prague Project Nr. GAUK 692214.
Thermal effects in two-phase flow through face seals. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Basu, Prithwish
1988-01-01
When liquid is sealed at high temperature, it flashes inside the seal due to pressure drop and/or viscous heat dissipation. Two-phase seals generally exhibit more erratic behavior than their single phase counterparts. Thermal effects, which are often neglected in single phase seal analyses, play an important role in determining seal behavior under two-phase operation. It is necessary to consider the heat generation due to viscous shear, conduction into the seal rings and convection with the leakage flow. Analytical models developed work reasonably well at the two extremes - for low leakage rates when convection is neglected and for higher leakage rates when conduction is neglected. A preliminary model, known as the Film Coefficient Model, is presented which considers conduction and convection both, and allows continuous boiling over an extended region unlike the previous low-leakage rate model which neglects convection and always forces a discrete boiling interface. Another simplified, semi-analytical model, based on the assumption of isothermal conditions along the seal interafce, has been developed for low leakage rates. The Film Coefficient Model may be used for more accurate and realistic description.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Castro-Palacio, Juan Carlos; Nagy, Tibor; Meuwly, Markus, E-mail: m.meuwly@unibas.ch
2014-10-28
Reactions involving N and O atoms dominate the energetics of the reactive air flow around spacecraft when reentering the atmosphere in the hypersonic flight regime. For this reason, the thermal rate coefficients for reactive processes involving O({sup 3}P) and NO({sup 2}Π) are relevant over a wide range of temperatures. For this purpose, a potential energy surface (PES) for the ground state of the NO{sub 2} molecule is constructed based on high-level ab initio calculations. These ab initio energies are represented using the reproducible kernel Hilbert space method and Legendre polynomials. The global PES of NO{sub 2} in the ground statemore » is constructed by smoothly connecting the surfaces of the grids of various channels around the equilibrium NO{sub 2} geometry by a distance-dependent weighting function. The rate coefficients were calculated using Monte Carlo integration. The results indicate that at high temperatures only the lowest A-symmetry PES is relevant. At the highest temperatures investigated (20 000 K), the rate coefficient for the “O1O2+N” channel becomes comparable (to within a factor of around three) to the rate coefficient of the oxygen exchange reaction. A state resolved analysis shows that the smaller the vibrational quantum number of NO in the reactants, the higher the relative translational energy required to open it and conversely with higher vibrational quantum number, less translational energy is required. This is in accordance with Polanyi's rules. However, the oxygen exchange channel (NO2+O1) is accessible at any collision energy. Finally, this work introduces an efficient computational protocol for the investigation of three-atom collisions in general.« less
Castro-Palacio, Juan Carlos; Nagy, Tibor; Bemish, Raymond J; Meuwly, Markus
2014-10-28
Reactions involving N and O atoms dominate the energetics of the reactive air flow around spacecraft when reentering the atmosphere in the hypersonic flight regime. For this reason, the thermal rate coefficients for reactive processes involving O((3)P) and NO((2)Π) are relevant over a wide range of temperatures. For this purpose, a potential energy surface (PES) for the ground state of the NO2 molecule is constructed based on high-level ab initio calculations. These ab initio energies are represented using the reproducible kernel Hilbert space method and Legendre polynomials. The global PES of NO2 in the ground state is constructed by smoothly connecting the surfaces of the grids of various channels around the equilibrium NO2 geometry by a distance-dependent weighting function. The rate coefficients were calculated using Monte Carlo integration. The results indicate that at high temperatures only the lowest A-symmetry PES is relevant. At the highest temperatures investigated (20,000 K), the rate coefficient for the "O1O2+N" channel becomes comparable (to within a factor of around three) to the rate coefficient of the oxygen exchange reaction. A state resolved analysis shows that the smaller the vibrational quantum number of NO in the reactants, the higher the relative translational energy required to open it and conversely with higher vibrational quantum number, less translational energy is required. This is in accordance with Polanyi's rules. However, the oxygen exchange channel (NO2+O1) is accessible at any collision energy. Finally, this work introduces an efficient computational protocol for the investigation of three-atom collisions in general.
Optimization of Trade-offs in Error-free Image Transmission
NASA Astrophysics Data System (ADS)
Cox, Jerome R.; Moore, Stephen M.; Blaine, G. James; Zimmerman, John B.; Wallace, Gregory K.
1989-05-01
The availability of ubiquitous wide-area channels of both modest cost and higher transmission rate than voice-grade lines promises to allow the expansion of electronic radiology services to a larger community. The band-widths of the new services becoming available from the Integrated Services Digital Network (ISDN) are typically limited to 128 Kb/s, almost two orders of magnitude lower than popular LANs can support. Using Discrete Cosine Transform (DCT) techniques, a compressed approximation to an image may be rapidly transmitted. However, intensity or resampling transformations of the reconstructed image may reveal otherwise invisible artifacts of the approximate encoding. A progressive transmission scheme reported in ISO Working Paper N800 offers an attractive solution to this problem by rapidly reconstructing an apparently undistorted image from the DCT coefficients and then subse-quently transmitting the error image corresponding to the difference between the original and the reconstructed images. This approach achieves an error-free transmission without sacrificing the perception of rapid image delivery. Furthermore, subsequent intensity and resampling manipulations can be carried out with confidence. DCT coefficient precision affects the amount of error information that must be transmitted and, hence the delivery speed of error-free images. This study calculates the overall information coding rate for six radiographic images as a function of DCT coefficient precision. The results demonstrate that a minimum occurs for each of the six images at an average coefficient precision of between 0.5 and 1.0 bits per pixel (b/p). Apparently undistorted versions of these six images can be transmitted with a coding rate of between 0.25 and 0.75 b/p while error-free versions can be transmitted with an overall coding rate between 4.5 and 6.5 b/p.
Antiñolo, M; Ocaña, A J; Aranguren, J P; Lane, S I; Albaladejo, J; Jiménez, E
2017-08-01
Unsaturated ethers are oxygenated volatile organic compounds (OVOCs) emitted by anthropogenic sources. Potential removal processes in the troposphere are initiated by hydroxyl (OH) radicals and photochemistry. In this work, we report for the first time the rate coefficients of the gas-phase reaction with OH radicals (k OH ) of 2-chloroethyl vinyl ether (2ClEVE), allyl ether (AE), and allyl ethyl ether (AEE) as a function of temperature in the 263-358 K range, measured by the pulsed laser photolysis-laser induced fluorescence technique. No pressure dependence of k OH was observed in the 50-500 Torr range in He as bath gas, while a slightly negative T-dependence was observed. The temperature dependent expressions for the rate coefficients determined in this work are: The estimated atmospheric lifetimes (τ OH ) assuming k OH at 288 K were 3, 2, and 4 h for 2ClEVE, AE and AEE, respectively. The kinetic results are discussed in terms of the chemical structure of the unsaturated ethers by comparison with similar compounds. We also report ultraviolet (UV) and infrared (IR) absorption cross sections (σ λ and σ(ν˜), respectively). We estimate the photolysis rate coefficients in the solar UV actinic region to be less than 10 -7 s -1 , implying that these compounds are not removed from the atmosphere by this process. In addition, from σ(ν˜) and τ OH , the global warming potential of each unsaturated ether was calculated to be almost zero. A discussion on the atmospheric implications of the titled compounds is presented. Copyright © 2017 Elsevier Ltd. All rights reserved.
The excitation of OH by H2 revisited - I: fine-structure resolved rate coefficients
NASA Astrophysics Data System (ADS)
Kłos, J.; Ma, Q.; Dagdigian, P. J.; Alexander, M. H.; Faure, A.; Lique, F.
2017-11-01
Observations of OH in molecular clouds provide crucial constraints on both the physical conditions and the oxygen and water chemistry in these clouds. Accurate modelling of the OH emission spectra requires the calculation of rate coefficients for excitation of OH by collisions with the most abundant collisional partner in the molecular clouds, namely the H2 molecule. We report here theoretical calculations for the fine-structure excitation of OH by H2 (both para- and ortho-H2) using a recently developed highly accurate potential energy surface. Full quantum close coupling rate coefficients are provided for temperatures ranging from 10 to 150 K. Propensity rules are discussed and the new OH-H2 rate coefficients are compared to the earlier values that are currently used in astrophysical modelling. Significant differences were found: the new rate coefficients are significantly larger. As a first application, we simulate the excitation of OH in typical cold molecular clouds and star-forming regions. The new rate coefficients predict substantially larger line intensities. As a consequence, OH abundances derived from observations will be reduced from the values predicted by the earlier rate coefficients.
Gierczak, Tomasz; Baasandorj, M; Burkholder, James B
2014-11-20
Rate coefficients for the gas-phase reaction of the OH radical with (E)- and (Z)-CF3CH═CHCl (1-chloro-3,3,3-trifluoropropene-1, HFO-1233zd) (k1(T) and k2(T), respectively) were measured under pseudo-first-order conditions in OH over the temperature range 213-376 K. OH was produced by pulsed laser photolysis, and its temporal profile was measured using laser-induced fluorescence. The obtained rate coefficients were independent of pressure between 25 and 100 Torr (He, N2) with k1(296 K) = (3.76 ± 0.35) × 10(-13) cm(3) molecule(-1) s(-1) and k2(296 K) = (9.46 ± 0.85) × 10(-13) cm(3) molecule(-1) s(-1) (quoted uncertainties are 2σ and include estimated systematic errors). k2(T) showed a weak non-Arrhenius behavior over this temperature range. The (E)- and (Z)- stereoisomer rate coefficients were found to have opposite temperature dependencies that are well represented by k1(T) = (1.14 ± 0.15) × 10(-12) exp[(-330 ± 10)/T] cm(3) molecule(-1) s(-1) and k2(T) = (7.22 ± 0.65) × 10(-19) × T(2) × exp[(800 ± 20)/T] cm(3) molecule(-1) s(-1). The present results are compared with a previous room temperature relative rate coefficient study of k1, and an explanation for the discrepancy is presented. CF3CHO, HC(O)Cl, and CF3CClO, were observed as stable end-products following the OH radical initiated degradation of (E)- and (Z)-CF3CH═CHCl in the presence of O2. In addition, chemically activated isomerization was also observed. Atmospheric local lifetimes of (E)- and (Z)-CF3CH═CHCl, due to OH reactive loss, were estimated to be ∼34 and ∼11 days, respectively. Infrared absorption spectra measured in this work were used to estimate radiative efficiencies and well-mixed global warming potentials of ∼10 and ∼3 for (E)- and (Z)-CF3CH═CHCl, respectively, on the 100-year time horizon.
Osinga, Rik; Babst, Doris; Bodmer, Elvira S; Link, Bjoern C; Fritsche, Elmar; Hug, Urs
2017-12-01
This work assessed both subjective and objective postoperative parameters after breast reduction surgery and compared between patients and plastic surgeons. After an average postoperative observation period of 6.7 ± 2.7 (2 - 13) years, 159 out of 259 patients (61 %) were examined. The mean age at the time of surgery was 37 ± 14 (15 - 74) years. The postoperative anatomy of the breast and other anthropometric parameters were measured in cm with the patient in an upright position. The visual analogue scale (VAS) values for symmetry, size, shape, type of scar and overall satisfaction both from the patient's and from four plastic surgeons' perspectives were assessed and compared. Patients rated the postoperative result significantly better than surgeons. Good subjective ratings by patients for shape, symmetry and sensitivity correlated with high scores for overall assessment. Shape had the strongest influence on overall satisfaction (regression coefficient 0.357; p < 0.001), followed by symmetry (regression coefficient 0.239; p < 0.001) and sensitivity (regression coefficient 0.109; p = 0.040) of the breast. The better the subjective rating for symmetry by the patient, the smaller the measured difference of the jugulum-mamillary distance between left and right (regression coefficient -0.773; p = 0.002) and the smaller the difference in height of the lowest part of the breast between left and right (regression coefficient -0.465; p = 0.035). There was no significant correlation between age, weight, height, BMI, resected weight of the breast, postoperative breast size or type of scar with overall satisfaction. After breast reduction surgery, long-term outcome is rated significantly better by patients than by plastic surgeons. Good subjective ratings by patients for shape, symmetry and sensitivity correlated with high scores for overall assessment. Shape had the strongest influence on overall satisfaction, followed by symmetry and sensitivity of the breast. Postoperative size of the breast, resection weight, type of scar, age or BMI was not of significant influence. Symmetry was the only assessed subjective parameter of this study that could be objectified by postoperative measurements. Georg Thieme Verlag KG Stuttgart · New York.
Heat-power working regimes of a high-frequency (0.44 MHz) 1000-kW induction plasmatron
NASA Astrophysics Data System (ADS)
Gorbanenko, V. M.; Farnasov, G. A.; Lisafin, A. B.
2015-12-01
The energy working regimes of a superpower high-frequency induction (HFI) plasmatron with a high-frequency (HF) generator are studied. The HFI plasmatron with a power of 1000 kVA and a working frequency of 440 kHz, in which air is used as a plasma-forming gas, can be used for treatment of various oxide powder materials. The energy regimes substantially influence finish products and their costs. Various working regimes of the HFI plasma unit and the following characteristics are studied: the dependence of the vibration power on the anode power, the dependence of the power losses on the anode power at various of plasma-forming gas flow rates, and the coefficients of efficiency of the plasmatron and the HFI-plasma unit at various powers. The effect of the plasma-forming gas flow rate on the bulk temperature is determined.
Davis, Alexander C; Francisco, Joseph S
2012-01-28
sec-Alkyl radicals are key reactive intermediates in the hydrocarbon combustion and atmospheric decomposition mechanisms that are formed by the abstraction of hydrogen from an alkane, or as a second generation product of n-alkyl H-migrations, C-C bond scissions in branched alkyl radicals, or the bimolecular reaction between olefins and n-alkyl radicals. Since alkanes and branched alkanes, which the sec-alkyl radicals are derived from, make up roughly 40-50% of traditional fuels an understanding of their chemistry is essential to improving combustion systems. The present work investigates all H-migration reactions initiated from an sec-alkyl radical that involve the movement of a secondary hydrogen, for the 2-butyl through 4-octyl radicals, using the CBS-Q, G2, and G4 composite methods. The resulting thermodynamic and kinetic parameters are compared to similar reactions in n-alkyl radicals in order to determine underlying trends. Particular attention is paid to the effect of cis/trans and 1,3-diaxial interactions on activation energies and rate coefficients. When combined with our previous work on n-alkyl radical H-migrations, a complete picture of H-migrations in unbranched alkyl radicals is obtained. This full data set suggests that the directionality of the remaining branched chains has a minimal effect on the rate coefficients for all but the largest viable transition states, which is in stark contrast to the differences predicted by the structurally similar dimethylcycloalkanes. In fact the initial location of the secondary radical site has a greater effect on the rate than does the directionality of the remaining alkyl chains. The activation energies for secondary to secondary reactions are much closer to those of the secondary to primary H-migrations. However, the rate coefficients are found to be closer to the corresponding primary to primary reaction values. A significant ramification of these results is that there will be multiple viable reaction pathways for these reactions instead of only one dominant pathway as previously believed.
NASA Astrophysics Data System (ADS)
Belyaev, Andrey K.; Yakovleva, Svetlana A.
2017-12-01
Aims: A simplified model is derived for estimating rate coefficients for inelastic processes in low-energy collisions of heavy particles with hydrogen, in particular, the rate coefficients with high and moderate values. Such processes are important for non-local thermodynamic equilibrium modeling of cool stellar atmospheres. Methods: The derived method is based on the asymptotic approach for electronic structure calculations and the Landau-Zener model for nonadiabatic transition probability determination. Results: It is found that the rate coefficients are expressed via statistical probabilities and reduced rate coefficients. It is shown that the reduced rate coefficients for neutralization and ion-pair formation processes depend on single electronic bound energies of an atomic particle, while the reduced rate coefficients for excitation and de-excitation processes depend on two electronic bound energies. The reduced rate coefficients are calculated and tabulated as functions of electronic bound energies. The derived model is applied to barium-hydrogen ionic collisions. For the first time, rate coefficients are evaluated for inelastic processes in Ba+ + H and Ba2+ + H- collisions for all transitions between the states from the ground and up to and including the ionic state. Tables with calculated data are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/608/A33
NASA Astrophysics Data System (ADS)
Belyaev, Andrey K.; Yakovleva, Svetlana A.
2017-10-01
Aims: We derive a simplified model for estimating atomic data on inelastic processes in low-energy collisions of heavy-particles with hydrogen, in particular for the inelastic processes with high and moderate rate coefficients. It is known that these processes are important for non-LTE modeling of cool stellar atmospheres. Methods: Rate coefficients are evaluated using a derived method, which is a simplified version of a recently proposed approach based on the asymptotic method for electronic structure calculations and the Landau-Zener model for nonadiabatic transition probability determination. Results: The rate coefficients are found to be expressed via statistical probabilities and reduced rate coefficients. It turns out that the reduced rate coefficients for mutual neutralization and ion-pair formation processes depend on single electronic bound energies of an atom, while the reduced rate coefficients for excitation and de-excitation processes depend on two electronic bound energies. The reduced rate coefficients are calculated and tabulated as functions of electronic bound energies. The derived model is applied to potassium-hydrogen collisions. For the first time, rate coefficients are evaluated for inelastic processes in K+H and K++H- collisions for all transitions from ground states up to and including ionic states. Tables with calculated data are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/606/A147
Low-frequency Carbon Radio Recombination Lines. I. Calculations of Departure Coefficients
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salgado, F.; Morabito, L. K.; Oonk, J. B. R.
In the first paper of this series, we study the level population problem of recombining carbon ions. We focus our study on high quantum numbers, anticipating observations of carbon radio recombination lines to be carried out by the Low Frequency Array. We solve the level population equation including angular momentum levels with updated collision rates up to high principal quantum numbers. We derive departure coefficients by solving the level population equation in the hydrogenic approximation and including low-temperature dielectronic capture effects. Our results in the hydrogenic approximation agree well with those of previous works. When comparing our results including dielectronicmore » capture, we find differences that we ascribe to updates in the atomic physics (e.g., collision rates) and to the approximate solution method of the statistical equilibrium equations adopted in previous studies. A comparison with observations is discussed in an accompanying article, as radiative transfer effects need to be considered.« less
Smith, Geoff; Jeeraruangrattana, Yowwares; Ermolina, Irina
2018-06-22
Through vial impedance spectroscopy (TVIS) is a product non-invasive process analytical technology which exploits the frequency dependence of the complex impedance spectrum of a composite object (i.e. the freeze-drying vial and its contents) in order to track the progression of the freeze-drying cycle. This work demonstrates the use of a dual electrode system, attached to the external surface of a type I glass tubing vial (nominal capacity 10 mL) in the prediction of (i) the ice interface temperatures at the sublimation front and at the base of the vial, and (ii) the primary drying rate. A value for the heat transfer coefficient (for a chamber pressure of 270 µbar) was then calculated from these parameters and shown to be comparable to that published by Tchessalov[1]. Copyright © 2018. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Ménesguen, Y.; Lépy, M.-C.
2010-08-01
This work presents new measurements of mass attenuation coefficients in the range 3.8⩽E⩽11 keV, K-absorption jump-ratios, Kα and Kβ fluorescence yields for Ti, V, Fe, Co, Ni, Cu and Zn. We use the experimental facility SOLEX, a tunable monochromatic X-ray source combined with an energy-dispersive high-purity germanium detector. The results are compared with theoretical values as well as with other experimental data and show a relatively good agreement. However, the derived K-jump-ratios appear larger than those widely used in the XCOM database. The Kα and Kβ fluorescence yields and the corresponding relative emission rates Kβ/Kα are also derived, which was made possible by the use of energy-dispersive detectors with good spectral resolution.
Guan, Zixuan; Chen, Di; Chueh, William C
2017-08-30
The oxygen incorporation reaction, which involves the transformation of an oxygen gas molecule to two lattice oxygen ions in a mixed ionic and electronic conducting solid, is a ubiquitous and fundamental reaction in solid-state electrochemistry. To understand the reaction pathway and to identify the rate-determining step, near-equilibrium measurements have been employed to quantify the exchange coefficients as a function of oxygen partial pressure and temperature. However, because the exchange coefficient contains contributions from both forward and reverse reaction rate constants and depends on both oxygen partial pressure and oxygen fugacity in the solid, unique and definitive mechanistic assessment has been challenging. In this work, we derive a current density equation as a function of both oxygen partial pressure and overpotential, and consider both near and far from equilibrium limits. Rather than considering specific reaction pathways, we generalize the multi-step oxygen incorporation reaction into the rate-determining step, preceding and following quasi-equilibrium steps, and consider the number of oxygen ions and electrons involved in each. By evaluating the dependence of current density on oxygen partial pressure and overpotential separately, one obtains the reaction orders for oxygen gas molecules and for solid-state species in the electrode. We simulated the oxygen incorporation current density-overpotential curves for praseodymium-doped ceria for various candidate rate-determining steps. This work highlights a promising method for studying the exchange kinetics far away from equilibrium.
Dehydration of isobutanol and the elimination of water from fuel alcohols.
Rosado-Reyes, Claudette M; Tsang, Wing; Alecu, Ionut M; Merchant, Shamel S; Green, William H
2013-08-08
Rate coefficients for the dehydration of isobutanol have been determined experimentally from comparative rate single pulse shock tube measurements and calculated via multistructural transition state theory (MS-TST). They are represented by the Arrhenius expression, k(isobutanol → isobutene + H2O)(experimental) = 7.2 × 10(13) exp(-35300 K/T) s(-1). The theoretical work leads to the high pressure rate expression, k(isobutanol → isobutene + H2O)(theory) = 3.5 × 10(13) exp(-35400 K/T) s(-1). Results are thus within a factor of 2 of each other. The experimental results cover the temperature range 1090-1240 K and pressure range 1.5-6 atm, with no discernible pressure effects. Analysis of these results, in combination with earlier single pulse shock tube work, made it possible to derive the governing factors that control the rate coefficients for alcohol dehydration in general. Alcohol dehydration rate constants depend on the location of the hydroxyl group (primary, secondary, and tertiary) and the number of available H-atoms adjacent to the OH group for water elimination. The position of the H-atoms in the hydrocarbon backbone appears to be unimportant except for highly substituted molecules. From these correlations, we have derived k(isopropanol → propene + H2O) = 7.2 × 10(13) exp(-33000 K/T) s(-1). Comparison of experimental determination with theoretical calculations for this dehydration, and those for ethanol show deviations of the same magnitude as for isobutanol. Systematic differences between experiments and theoretical calculations are common.
Finite element analysis of ion transport in solid state nuclear waste form materials
NASA Astrophysics Data System (ADS)
Rabbi, F.; Brinkman, K.; Amoroso, J.; Reifsnider, K.
2017-09-01
Release of nuclear species from spent fuel ceramic waste form storage depends on the individual constituent properties as well as their internal morphology, heterogeneity and boundary conditions. Predicting the release rate is essential for designing a ceramic waste form, which is capable of effectively storing the spent fuel without contaminating the surrounding environment for a longer period of time. To predict the release rate, in the present work a conformal finite element model is developed based on the Nernst Planck Equation. The equation describes charged species transport through different media by convection, diffusion, or migration. And the transport can be driven by chemical/electrical potentials or velocity fields. The model calculates species flux in the waste form with different diffusion coefficient for each species in each constituent phase. In the work reported, a 2D approach is taken to investigate the contributions of different basic parameters in a waste form design, i.e., volume fraction, phase dispersion, phase surface area variation, phase diffusion co-efficient, boundary concentration etc. The analytical approach with preliminary results is discussed. The method is postulated to be a foundation for conformal analysis based design of heterogeneous waste form materials.
NASA Astrophysics Data System (ADS)
Rongxiao, ZHAI; Mengtong, QIU; Weixi, LUO; Peitian, CONG; Tao, HUANG; Jiahui, YIN; Tianyang, ZHANG
2018-04-01
As one of the most important elements in linear transformer driver (LTD) based systems, the gas pressurized closing switches are required to operate with a very low prefire probability during the DC-charging process to ensure reliable operation and stable output of the whole pulsed power system. The most direct and effective way to control the prefire probability is to select a suitable working coefficient. The study of the development characteristics of the initially generated electrons is useful for optimizing the working coefficient and improving the prefire characteristic of the switches. In this paper an ultraviolet pulsed laser is used to generate initial electrons inside the gap volume. A current measuring system is used to measure the time-dependent current generated by the growth of the initial electrons so as to study the development characteristics of the electrons under different working coefficients. Experimental results show that the development characteristics of the initial electrons are influenced obviously by the working coefficient. With the increase of the working coefficient, the development degree of the electrons increases consequently. At the same times, there is a threshold of working coefficient which produces the effect of ionization on electrons. The range of the threshold has a slow growth but remains close to 65% with the gas pressure increase. When the working coefficient increases further, γ processes are starting to be generated inside the gap volume. In addition, an optimal working coefficient beneficial for improving the prefire characteristic is indicated and further tested.
Optimized biogas-fermentation by neural network control.
Holubar, P; Zani, L; Hager, M; Fröschl, W; Radak, Z; Braun, R
2003-01-01
In this work several feed-forward back-propagation neural networks (FFBP) were trained in order to model, and subsequently control, methane production in anaerobic digesters. To produce data for the training of the neural nets, four anaerobic continuous stirred tank reactors (CSTR) were operated in steady-state conditions at organic loading rates (Br) of about 2 kg x m(-3) x d(-1) chemical oxygen demand (COD), and disturbed by pulse-like increase of the organic loading rate. For the pulses additional carbon sources were added to the basic feed (surplus- and primary sludge) to simulate cofermentation and to increase the COD. Measured parameters were: gas composition, methane production rate, volatile fatty acid concentration, pH, redox potential, volatile suspended solids and COD of feed and effluent. A hierarchical system of neural nets was developed and embedded in a Decision Support System (DSS). A 3-3-1 FFBP simulated the pH with a regression coefficient of 0.82. A 9-3-3 FFBP simulated the volatile fatty acid concentration in the sludge with a regression coefficient of 0.86. And a 9-3-2 FFBP simulated the gas production and gas composition with a regression coefficient of 0.90 and 0.80 respectively. A lab-scale anaerobic CSTR controlled by this tool was able to maintain a methane concentration of about 60% at a rather high gas production rate of between 5 to 5.6 m3 x m(-3) x d(-1).
Ablation, Thermal Response, and Chemistry Program for Analysis of Thermal Protection Systems
NASA Technical Reports Server (NTRS)
Milos, Frank S.; Chen, Yih-Kanq
2010-01-01
In previous work, the authors documented the Multicomponent Ablation Thermochemistry (MAT) and Fully Implicit Ablation and Thermal response (FIAT) programs. In this work, key features from MAT and FIAT were combined to create the new Fully Implicit Ablation, Thermal response, and Chemistry (FIATC) program. FIATC is fully compatible with FIAT (version 2.5) but has expanded capabilities to compute the multispecies surface chemistry and ablation rate as part of the surface energy balance. This new methodology eliminates B' tables, provides blown species fractions as a function of time, and enables calculations that would otherwise be impractical (e.g. 4+ dimensional tables) such as pyrolysis and ablation with kinetic rates or unequal diffusion coefficients. Equations and solution procedures are presented, then representative calculations of equilibrium and finite-rate ablation in flight and ground-test environments are discussed.
NASA Astrophysics Data System (ADS)
Teng, H.; Xu, Z.
1996-09-01
The authors present a set of accurate formulae for the rapid calculation of dielectronic recombination rate coefficients of H-like ions from Ne (Z = 10) to Ni (Z = 29) with an electron temperature range from 0.6 to 10 keV. This set of formulae are obtained by fitting directly the dielectronic recombination rate coefficients calculated on the basis of the intermediate - coupling multi - configuration Hartree-Fock model made by Karim and Bhalla (1988). The dielectronic recombination rate coefficients from these formulae are in close agreement with the original results of Karim et al. The errors are generally less than 0.1%. The results are also compared with the ones obtained by a set of new rate formulae developed by Hahn. These formulae can be used for generating dielectronic recombination rate coefficients of some H-like ions where the explicit calculations are unavailable. The detailed results are tabulated and discussed.
Applications of tribology to determine attrition by wear of particulate solids in CFB systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bayham, Samuel C.; Breault, Ronald; Monazam, Esmail
In recent years, much attention has been focused on the development of novel technologies for carbon capture and chemicals production that utilize a circulating fluidized bed (CFB) configuration; examples include chemical looping combustion and circulation of temperature swing adsorbents in a CFB configuration for CO 2 capture. A major uncertainty in determining the economic feasibility of these technologies is the required solids makeup rate, which, among other factors, is due to impact and wear attrition at various locations, including standpipes, cyclones, and the gas jets in fluid beds. While correlations have been developed that estimate the attrition rates at thesemore » areas, these correlations are dependent on constants that are uncertain without extensive experiment in the corresponding unit operation. Thus, it is difficult to determine the attrition rate a priori without performing extensive experiments on the materials or scaling up entirely. In this work, the authors outline a methodology for predictive attrition based on fundamental material properties from fields of tribology—specifically, the study of wear—to the knowledge of forces and sliding distances determined from hydrodynamic models to develop basic attrition models for novel CFB systems. The equations are derived for the standpipe and cyclone, which are common components found in CFBs, and the cyclone equation is compared to experimental data of attrition in the literature. The cyclone equation derived in this work results in an abrasion rate based on (1) material properties such as particle density and hardness, (2) inlet velocity, and (3) cyclone geometry. According to this equation, increasing the diameter of the cyclone and the solids inlet velocity tends to increase the rate of abrasion of the catalyst, while decreasing the hardness increases the abrasion rate. The functionality of the increasing attrition rate with velocity increase implies that increasing the efficiency of the cyclone may also increase the attrition rate via abrasion. With modifications to the severity coefficient term to include the solids loading, the cyclone equation derived in this work fits data from Reppenhagen and Werther with a coefficient of determination (R2) of 92%.« less
Applications of tribology to determine attrition by wear of particulate solids in CFB systems
Bayham, Samuel C.; Breault, Ronald; Monazam, Esmail
2016-11-03
In recent years, much attention has been focused on the development of novel technologies for carbon capture and chemicals production that utilize a circulating fluidized bed (CFB) configuration; examples include chemical looping combustion and circulation of temperature swing adsorbents in a CFB configuration for CO 2 capture. A major uncertainty in determining the economic feasibility of these technologies is the required solids makeup rate, which, among other factors, is due to impact and wear attrition at various locations, including standpipes, cyclones, and the gas jets in fluid beds. While correlations have been developed that estimate the attrition rates at thesemore » areas, these correlations are dependent on constants that are uncertain without extensive experiment in the corresponding unit operation. Thus, it is difficult to determine the attrition rate a priori without performing extensive experiments on the materials or scaling up entirely. In this work, the authors outline a methodology for predictive attrition based on fundamental material properties from fields of tribology—specifically, the study of wear—to the knowledge of forces and sliding distances determined from hydrodynamic models to develop basic attrition models for novel CFB systems. The equations are derived for the standpipe and cyclone, which are common components found in CFBs, and the cyclone equation is compared to experimental data of attrition in the literature. The cyclone equation derived in this work results in an abrasion rate based on (1) material properties such as particle density and hardness, (2) inlet velocity, and (3) cyclone geometry. According to this equation, increasing the diameter of the cyclone and the solids inlet velocity tends to increase the rate of abrasion of the catalyst, while decreasing the hardness increases the abrasion rate. The functionality of the increasing attrition rate with velocity increase implies that increasing the efficiency of the cyclone may also increase the attrition rate via abrasion. With modifications to the severity coefficient term to include the solids loading, the cyclone equation derived in this work fits data from Reppenhagen and Werther with a coefficient of determination (R2) of 92%.« less
Fielitz, Peter; Borchardt, Günter
2016-08-10
In the dedicated literature the oxygen surface exchange coefficient KO and the equilibrium oxygen exchange rate [Fraktur R] are considered to be directly proportional to each other regardless of the experimental circumstances. Recent experimental observations, however, contradict the consequences of this assumption. Most surprising is the finding that the apparent activation energy of KO depends dramatically on the kinetic regime in which it has been determined, i.e. surface exchange controlled vs. mixed or diffusion controlled. This work demonstrates how the diffusion boundary condition at the gas/solid interface inevitably entails a correlation between the oxygen surface exchange coefficient KO and the oxygen self-diffusion coefficient DO in the bulk ("on top" of the correlation between KO and [Fraktur R] for the pure surface exchange regime). The model can thus quantitatively explain the range of apparent activation energies measured in the different regimes: in the surface exchange regime the apparent activation energy only contains the contribution of the equilibrium exchange rate, whereas in the mixed or in the diffusion controlled regime the contribution of the oxygen self-diffusivity has also to be taken into account, which may yield significantly higher apparent activation energies and simultaneously quantifies the correlation KO ∝ DO(1/2) observed for a large number of oxides in the mixed or diffusion controlled regime, respectively.
Kivlighan, Dennis M; Marmarosh, Cheri L
2018-07-01
To determine how counselors' attachment anxiety and avoidance related to congruence between counselors' and clients' Working alliance (WA) ratings. Congruence strength was defined as the regression coefficient for clients' WA ratings predicting counselors' WA ratings. Directional bias was defined as the difference in level between counselors' and clients' WA ratings. Twenty-seven graduate student counselors completed an attachment measure and they and their 64 clients completed a measure of WA early in therapy. The truth-and-bias analysis was adapted to analyze the data. As hypothesized counselors' WA ratings were significantly and positively related to clients' WA ratings. Also as hypothesized, counselors' WA ratings were significantly lower than their clients' WA ratings (directional bias). Increasing counselor attachment anxiety was related to increasing negative directional bias; as counselors' attachment anxiety increased the difference between counselors and clients WA ratings became more negative. There was a significant interaction between counselor attachment anxiety and congruence strength in predicting counselor WA ratings. There was a stronger relationship between client WA ratings and counselor WA ratings for counselors low versus high in attachment anxiety. Counselors' attachment anxiety is realted to their ability to accurately percieve their clients' WA.
Estimating JPEG2000 compression for image forensics using Benford's Law
NASA Astrophysics Data System (ADS)
Qadir, Ghulam; Zhao, Xi; Ho, Anthony T. S.
2010-05-01
With the tremendous growth and usage of digital images nowadays, the integrity and authenticity of digital content is becoming increasingly important, and a growing concern to many government and commercial sectors. Image Forensics, based on a passive statistical analysis of the image data only, is an alternative approach to the active embedding of data associated with Digital Watermarking. Benford's Law was first introduced to analyse the probability distribution of the 1st digit (1-9) numbers of natural data, and has since been applied to Accounting Forensics for detecting fraudulent income tax returns [9]. More recently, Benford's Law has been further applied to image processing and image forensics. For example, Fu et al. [5] proposed a Generalised Benford's Law technique for estimating the Quality Factor (QF) of JPEG compressed images. In our previous work, we proposed a framework incorporating the Generalised Benford's Law to accurately detect unknown JPEG compression rates of watermarked images in semi-fragile watermarking schemes. JPEG2000 (a relatively new image compression standard) offers higher compression rates and better image quality as compared to JPEG compression. In this paper, we propose the novel use of Benford's Law for estimating JPEG2000 compression for image forensics applications. By analysing the DWT coefficients and JPEG2000 compression on 1338 test images, the initial results indicate that the 1st digit probability of DWT coefficients follow the Benford's Law. The unknown JPEG2000 compression rates of the image can also be derived, and proved with the help of a divergence factor, which shows the deviation between the probabilities and Benford's Law. Based on 1338 test images, the mean divergence for DWT coefficients is approximately 0.0016, which is lower than DCT coefficients at 0.0034. However, the mean divergence for JPEG2000 images compression rate at 0.1 is 0.0108, which is much higher than uncompressed DWT coefficients. This result clearly indicates a presence of compression in the image. Moreover, we compare the results of 1st digit probability and divergence among JPEG2000 compression rates at 0.1, 0.3, 0.5 and 0.9. The initial results show that the expected difference among them could be used for further analysis to estimate the unknown JPEG2000 compression rates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai, Y.; Wan, L.; Guo, Z. H.
Isothermal compression experiment of AZ80 magnesium alloy was conducted by Gleeble thermo-mechanical simulator in order to quantitatively investigate the work hardening (WH), strain rate sensitivity (SRS) and temperature sensitivity (TS) during hot processing of magnesium alloys. The WH, SRS and TS were described by Zener-Hollomon parameter (Z) coupling of deformation parameters. The relationships between WH rate and true strain as well as true stress were derived from Kocks-Mecking dislocation model and validated by our measurement data. The slope defined through the linear relationship of WH rate and true stress was only related to the annihilation coefficient Ω. Obvious WH behaviormore » could be exhibited at a higher Z condition. Furthermore, we have identified the correlation between the microstructural evolution including β-Mg17Al12 precipitation and the SRS and TS variations. Intensive dynamic recrystallization and homogeneous distribution of β-Mg17Al12 precipitates resulted in greater SRS coefficient at higher temperature. The deformation heat effect and β-Mg17Al12 precipitate content can be regarded as the major factors determining the TS behavior. At low Z condition, the SRS becomes stronger, in contrast to the variation of TS. The optimum hot processing window was validated based on the established SRS and TS values distribution maps for AZ80 magnesium alloy.« less
Wang, Bing; Bredael, Gerard; Armenante, Piero M
2018-03-25
The hydrodynamic characteristics of a mini vessel and a USP 2 dissolution testing system were obtained and compared to predict the tablet-liquid mass transfer coefficient from velocity distributions near the tablet and establish the dynamic operating conditions under which dissolution in mini vessels could be conducted to generate concentration profiles similar to those in the USP 2. Velocity profiles were obtained experimentally using Particle Image Velocimetry (PIV). Computational Fluid Dynamics (CFD) was used to predict the velocity distribution and strain rate around a model tablet. A CFD-based mass transfer model was also developed. When plotted against strain rate, the predicted tablet-liquid mass transfer coefficient was found to be independent of the system where it was obtained, implying that a tablet would dissolve at the same rate in both systems provided that the concentration gradient between the tablet surface and the bulk is the same, the tablet surface area per unit liquid volume is identical, and the two systems are operated at the appropriate agitation speeds specified in this work. The results of this work will help dissolution scientists operate mini vessels so as to predict the dissolution profiles in the USP 2, especially during the early stages of drug development. Copyright © 2018 Elsevier B.V. All rights reserved.
Fu, Yulong; Ma, Jing; Tan, Liying; Yu, Siyuan; Lu, Gaoyuan
2018-04-10
In this paper, new expressions of the channel-correlation coefficient and its components (the large- and small-scale channel-correlation coefficients) for a plane wave are derived for a horizontal link in moderate-to-strong non-Kolmogorov turbulence using a generalized effective atmospheric spectrum which includes finite-turbulence inner and outer scales and high-wave-number "bump". The closed-form expression of the average bit error rate (BER) of the coherent free-space optical communication system is derived using the derived channel-correlation coefficients and an α-μ distribution to approximate the sum of the square root of arbitrarily correlated Gamma-Gamma random variables. Analytical results are provided to investigate the channel correlation and evaluate the average BER performance. The validity of the proposed approximation is illustrated by Monte Carlo simulations. This work will help with further investigation of the fading correlation in spatial diversity systems.
NASA Astrophysics Data System (ADS)
Tang, Jianbo; Erdener, Sefik Evren; Li, Baoqiang; Fu, Buyin; Sakadzic, Sava; Carp, Stefan A.; Lee, Jonghwan; Boas, David A.
2018-02-01
Dynamic Light Scattering-Optical Coherence Tomography (DLS-OCT) takes the advantages of using DLS to measure particle flow and diffusion within an OCT resolution-constrained 3D volume, enabling the simultaneous measurements of absolute RBC velocity and diffusion coefficient with high spatial resolution. In this work, we applied DLS-OCT to measure both RBC velocity and the shear-induced diffusion coefficient within penetrating venules of the somatosensory cortex of anesthetized mice. Blood flow laminar profile measurements indicate a blunted laminar flow profile, and the degree of blunting decreases with increasing vessel diameter. The measured shear-induced diffusion coefficient was proportional to the flow shear rate with a magnitude of 0.1 to 0.5 × 10-6 mm2 . These results provide important experimental support for the recent theoretical explanation for why DCS is dominantly sensitive to RBC diffusive motion.
Quantitative visualization of passive transport across bilayer lipid membranes
Grime, John M. A.; Edwards, Martin A.; Rudd, Nicola C.; Unwin, Patrick R.
2008-01-01
The ability to predict and interpret membrane permeation coefficients is of critical importance, particularly because passive transport is crucial for the effective delivery of many pharmaceutical agents to intracellular targets. We present a method for the quantitative measurement of the permeation coefficients of protonophores by using laser confocal scanning microscopy coupled to microelectrochemistry, which is amenable to precise modeling with the finite element method. The technique delivers well defined and high mass transport rates and allows rapid visualization of the entire pH distribution on both the cis and trans side of model bilayer lipid membranes (BLMs). A homologous series of carboxylic acids was investigated as probe molecules for BLMs composed of soybean phosphatidylcholine. Significantly, the permeation coefficient decreased with acyl tail length contrary to previous work and to Overton's rule. The reasons for this difference are considered, and we suggest that the applicability of Overton's rule requires re-evaluation. PMID:18787114
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Na; Makhmalbaf, Atefe; Srivastava, Viraj
This paper presents a new technique for and the results of normalizing building energy consumption to enable a fair comparison among various types of buildings located near different weather stations across the U.S. The method was developed for the U.S. Building Energy Asset Score, a whole-building energy efficiency rating system focusing on building envelope, mechanical systems, and lighting systems. The Asset Score is calculated based on simulated energy use under standard operating conditions. Existing weather normalization methods such as those based on heating and cooling degrees days are not robust enough to adjust all climatic factors such as humidity andmore » solar radiation. In this work, over 1000 sets of climate coefficients were developed to separately adjust building heating, cooling, and fan energy use at each weather station in the United States. This paper also presents a robust, standardized weather station mapping based on climate similarity rather than choosing the closest weather station. This proposed simulated-based climate adjustment was validated through testing on several hundreds of thousands of modeled buildings. Results indicated the developed climate coefficients can isolate and adjust for the impacts of local climate for asset rating.« less
The efficiency of photodissociation for molecules in interstellar ices
NASA Astrophysics Data System (ADS)
Kalvāns, J.
2018-05-01
Processing by interstellar photons affects the composition of the icy mantles on interstellar grains. The rate of photodissociation in solids differs from that of molecules in the gas phase. The aim of this work was to determine an average, general ratio between photodissociation coefficients for molecules in ice and gas. A 1D astrochemical model was utilized to simulate the chemical composition for a line of sight through a collapsing interstellar cloud core, whose interstellar extinction changes with time. At different extinctions, the calculated column densities of icy carbon oxides and ammonia (relative to water ice) were compared to observations. The latter were taken from literature data of background stars sampling ices in molecular clouds. The best-fit value for the solid/gas photodissociation coefficient ratio was found to be ≈0.3. In other words, gas-phase photodissociation rate coefficients have to be reduced by a factor of 0.3 before applying them to icy species. A crucial part of the model is a proper inclusion of cosmic-ray induced desorption. Observations sampling gas with total extinctions in excess of ≈22 mag were found to be uncorrelated to modelling results, possibly because of grains being covered with non-polar molecules.
Wang, Shibo; Niu, Chengchao
2016-01-01
In this work, the plane-on-plane torsional fretting tribological behavior of polytetrafluoroethylene (PTFE) was studied. A model of a rigid, flat-ended punch acting on an elastic half-space was built according to the experimental conditions. The results indicate that the shape of T–θ curves was influenced by both the torsional angle and the normal load. The torsion friction torque and wear rate of PTFE exponentially decreased when the torsion angle rose. The torsional torque increased from 0.025 N·m under a normal load of 43 N to 0.082 N·m under a normal load of 123 N. With sequentially increasing normal load, the value of torque was maintained. With rising normal load, the wear mass loss of PTFE disks was increased and the wear rate was decreased. Good agreement was found with the calculated torque according to the model and the experimental torque except for that under a normal load of 163 N. The difference under a normal load of 163 N was caused by the coefficient of friction. Usually the coefficient of friction of a polymer decreases with increasing normal load, whereas a constant coefficient of friction was applied in the model. PMID:26799324
VizieR Online Data Catalog: Rate coefficients for H2(v,j)+H2(v',j'
NASA Astrophysics Data System (ADS)
Mandy, M. E.
2016-11-01
State-specific rate coefficients for the dissociation of H2 result of collisions with H2 were calculated for all combinations of (v,j) with an internal energy below 1eV. Full-dimensional quasiclassical trajectories were calculated using the BMKP2 interaction potential with a minimum of 80000 trajectories at each translational energy. Additional large batches of trajectories were carried out to calculate the cross sections near the threshold to dissociation to attain the desired precision of the rate coefficients. A piecewise linear excitation function was used to calculate the rate coefficient between 100 and 100000K. The resulting state-specific rate coefficients, γ, were parametrized as a function of temperature over the range 600-10000K using: log10γ(t)=a+bz+cz2-d(1/t-1) where t=T/4500K and z=log10t. The values of the resulting rate coefficients were sensitive to the internal energy of both molecules, with initial vibrational energy having a slightly greater effect than rotational energy. This effect diminished as temperature increased. (15 data files).
Rate Coefficient Measurements of the Reaction CH3+O2+CH3O+O
NASA Technical Reports Server (NTRS)
Hwang, S. M.; Ryu, Si-Ok; DeWitt, K. J.; Rabinowitz, M. J.
1999-01-01
Rate coefficients for the reaction CH3 + O2 = CH3O + O were measured behind reflected shock waves in a series of lean CH4-O2-Ar mixtures using hydroxyl and methyl radical diagnostics. The rate coefficients are well represented by an Arrhenius expression given as k = (1.60(sup +0.67, -0.47)) X 10(exp 13) exp(- 15813 +/- 587 K/T)cc/mol s. This expression, which is valid in the temperature range 1575-1822 K, supports the downward trend in the rate coefficients that has been reported in recent determinations. All measurements to date, including the present study, have been to some extent affected by secondary reactions. The complications due to secondary reactions, choice of thermochemical data, and shock-boundary layer interactions that affect the determination of the rate coefficients are examined.
Performance assessment of an irreversible nano Brayton cycle operating with Maxwell-Boltzmann gas
NASA Astrophysics Data System (ADS)
Açıkkalp, Emin; Caner, Necmettin
2015-05-01
In the last decades, nano-technology has been developed very fast. According to this, nano-cycle thermodynamics should improve with a similar rate. In this paper, a nano-scale irreversible Brayton cycle working with helium is evaluated for different thermodynamic criteria. These are maximum work output, ecological function, ecological coefficient of performance, exergetic performance criteria and energy efficiency. Thermodynamic analysis was performed for these criteria and results were submitted numerically. In addition, these criteria are compared with each other and the most convenient methods for the optimum conditions are suggested.
NASA Astrophysics Data System (ADS)
Tan, Xi; Go, David B.
2018-02-01
When gas discharge and plasma devices shrink to the microscale, the electrode distance in the device approaches the mean free path of electrons and they experience few collisions. As microscale gas discharge and plasma devices become more prevalent, the behavior of discharges at these collisionless and near-collisionless conditions need to be understood. In conditions where the characteristic length d is much greater than the mean free path λ (i.e., macroscopic conditions), electron energy distributions (EEDs) and rate coefficients scale with the reduced electric field E/p. However, when d is comparable with or much lower than λ, this E/p scaling breaks. In this work, particle-in-cell/Monte Carlo collision simulations are used to explore the behavior of the EED and subsequent reaction rate coefficients in microscale field emission-driven Townsend discharges for both an atomic (argon) and a molecular (hydrogen) gas. To understand the behavior, a pseudo-analytical model is developed for the spatially integrated EED and rate coefficients in the collisional to collisionless transition regime based on the weighted sum of a fully collisional, two-temperature Maxwellian EED and the ballistic EED. The theory helps clarify the relative contribution of ballistic electrons in these extreme conditions and can be used to more accurately predict when macroscopic E/p scaling fails at the microscale.
Performance simulation of a plasma magnetohydrodynamic power generator
NASA Astrophysics Data System (ADS)
Huang, Hulin; Li, Linyong; Zhu, Guiping
2018-05-01
The performance of magnetohydrodynamic (MHD) power generator is affected by many issues, among which the load coefficient k is of great importance. This paper reveals the relationship between the k and the performance of MHD generator by numerical simulation on Faraday-type MHD power generator using He/Xe as working plasma. The results demonstrate that the power generation efficiency increases with an increment of the load factor. However, the enthalpy extraction firstly increases then decreases with the load factor increasing. The enthalpy extraction rate reaches the maximum when the load coefficient k equals to 0.625, which infers the best performance of the power generator channel with the maximum electricity production.
Organ and effective dose rate coefficients for submersion exposure in occupational settings
Veinot, K. G.; Y-12 National Security Complex, Oak Ridge, TN; Dewji, S. A.; ...
2017-08-24
External dose coefficients for environmental exposure scenarios are often computed using assumption on infinite or semi-infinite radiation sources. For example, in the case of a person standing on contaminated ground, the source is assumed to be distributed at a given depth (or between various depths) and extending outwards to an essentially infinite distance. In the case of exposure to contaminated air, the person is modeled as standing within a cloud of infinite, or semi-infinite, source distribution. However, these scenarios do not mimic common workplace environments where scatter off walls and ceilings may significantly alter the energy spectrum and dose coefficients.more » In this study, dose rate coefficients were calculated using the International Commission on Radiological Protection (ICRP) reference voxel phantoms positioned in rooms of three sizes representing an office, laboratory, and warehouse. For each room size calculations using the reference phantoms were performed for photons, electrons, and positrons as the source particles to derive mono-energetic dose rate coefficients. Since the voxel phantoms lack the resolution to perform dose calculations at the sensitive depth for the skin, a mathematical phantom was developed and calculations were performed in each room size with the three source particle types. Coefficients for the noble gas radionuclides of ICRP Publication 107 (e.g., Ne, Ar, Kr, Xe, and Rn) were generated by folding the corresponding photon, electron, and positron emissions over the mono-energetic dose rate coefficients. Finally, results indicate that the smaller room sizes have a significant impact on the dose rate per unit air concentration compared to the semi-infinite cloud case. For example, for Kr-85 the warehouse dose rate coefficient is 7% higher than the office dose rate coefficient while it is 71% higher for Xe-133.« less
Organ and effective dose rate coefficients for submersion exposure in occupational settings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Veinot, K. G.; Y-12 National Security Complex, Oak Ridge, TN; Dewji, S. A.
External dose coefficients for environmental exposure scenarios are often computed using assumption on infinite or semi-infinite radiation sources. For example, in the case of a person standing on contaminated ground, the source is assumed to be distributed at a given depth (or between various depths) and extending outwards to an essentially infinite distance. In the case of exposure to contaminated air, the person is modeled as standing within a cloud of infinite, or semi-infinite, source distribution. However, these scenarios do not mimic common workplace environments where scatter off walls and ceilings may significantly alter the energy spectrum and dose coefficients.more » In this study, dose rate coefficients were calculated using the International Commission on Radiological Protection (ICRP) reference voxel phantoms positioned in rooms of three sizes representing an office, laboratory, and warehouse. For each room size calculations using the reference phantoms were performed for photons, electrons, and positrons as the source particles to derive mono-energetic dose rate coefficients. Since the voxel phantoms lack the resolution to perform dose calculations at the sensitive depth for the skin, a mathematical phantom was developed and calculations were performed in each room size with the three source particle types. Coefficients for the noble gas radionuclides of ICRP Publication 107 (e.g., Ne, Ar, Kr, Xe, and Rn) were generated by folding the corresponding photon, electron, and positron emissions over the mono-energetic dose rate coefficients. Finally, results indicate that the smaller room sizes have a significant impact on the dose rate per unit air concentration compared to the semi-infinite cloud case. For example, for Kr-85 the warehouse dose rate coefficient is 7% higher than the office dose rate coefficient while it is 71% higher for Xe-133.« less
Resonant structure of low-energy H3+ dissociative recombination
NASA Astrophysics Data System (ADS)
Petrignani, Annemieke; Altevogt, Simon; Berg, Max H.; Bing, Dennis; Grieser, Manfred; Hoffmann, Jens; Jordon-Thaden, Brandon; Krantz, Claude; Mendes, Mario B.; Novotný, Oldřich; Novotny, Steffen; Orlov, Dmitry A.; Repnow, Roland; Sorg, Tobias; Stützel, Julia; Wolf, Andreas; Buhr, Henrik; Kreckel, Holger; Kokoouline, Viatcheslav; Greene, Chris H.
2011-03-01
High-resolution dissociative recombination rate coefficients of rotationally cool and hot H3+ in the vibrational ground state have been measured with a 22-pole trap setup and a Penning ion source, respectively, at the ion storage-ring TSR. The experimental results are compared with theoretical calculations to explore the dependence of the rate coefficient on ion temperature and to study the contributions of different symmetries to probe the rich predicted resonance spectrum. The kinetic energy release was investigated by fragment imaging to derive internal temperatures of the stored parent ions under differing experimental conditions. A systematic experimental assessment of heating effects is performed which, together with a survey of other recent storage-ring data, suggests that the present rotationally cool rate-coefficient measurement was performed at 380-130+50 K and that this is the lowest rotational temperature so far realized in storage-ring rate-coefficient measurements on H3+. This partially supports the theoretical suggestion that temperatures higher than assumed in earlier experiments are the main cause for the large gap between the experimental and the theoretical rate coefficients. For the rotationally hot rate-coefficient measurement a temperature of below 3250 K is derived. From these higher-temperature results it is found that increasing the rotational ion temperature in the calculations cannot fully close the gap between the theoretical and the experimental rate coefficients.
Yang, Huan; Goudeli, Eirini; Hogan, Christopher J.
2018-04-24
In gas phase synthesis systems, clusters form and grow via condensation, in which a monomer binds to an existing cluster. While a hard sphere equation is frequently used to predict the condensation rate coefficient, this equation neglects the influences of potential interactions and cluster internal energy on the condensation process. Here, we present a collision rate theory-Molecular Dynamics simulation approach to calculate condensation probabilities and condensation rate coefficients; we use this approach to examine atomic condensation onto 6-56 atom Au and Mg clusters. The probability of condensation depends upon the initial relative velocity ( v) between atom and cluster andmore » the initial impact parameter ( b). In all cases there is a well-defined region of b-v space where condensation is highly probable, and outside of which the condensation probability drops to zero. For Au clusters with more than 10 atoms, we find that at gas temperatures in the 300-1200 K range, the condensation rate coefficient exceeds the hard sphere rate coefficient by a factor of 1.5-2.0. Conversely, for Au clusters with 10 or fewer atoms, and for 14 atom and 28 atom Mg clusters, as cluster equilibration temperature increases the condensation rate coefficient drops to values below the hard sphere rate coefficient. Calculations also yield the self-dissociation rate coefficient, which is found to vary considerably with gas temperature. Finally, calculations results reveal that grazing (high b) atom-cluster collisions at elevated velocity (> 1000 m s -1) can result in the colliding atom rebounding (bounce) from the cluster surface or binding while another atom dissociates (replacement). In conclusion, the presented method can be applied in developing rate equations to predict material formation and growth rates in vapor phase systems.« less
Yang, Huan; Goudeli, Eirini; Hogan, Christopher J
2018-04-28
In gas phase synthesis systems, clusters form and grow via condensation, in which a monomer binds to an existing cluster. While a hard-sphere equation is frequently used to predict the condensation rate coefficient, this equation neglects the influences of potential interactions and cluster internal energy on the condensation process. Here, we present a collision rate theory-molecular dynamics simulation approach to calculate condensation probabilities and condensation rate coefficients. We use this approach to examine atomic condensation onto 6-56-atom Au and Mg clusters. The probability of condensation depends upon the initial relative velocity (v) between atom and cluster and the initial impact parameter (b). In all cases, there is a well-defined region of b-v space where condensation is highly probable, and outside of which the condensation probability drops to zero. For Au clusters with more than 10 atoms, we find that at gas temperatures in the 300-1200 K range, the condensation rate coefficient exceeds the hard-sphere rate coefficient by a factor of 1.5-2.0. Conversely, for Au clusters with 10 or fewer atoms and for 14- and 28-atom Mg clusters, as cluster equilibration temperature increases, the condensation rate coefficient drops to values below the hard-sphere rate coefficient. Calculations also yield the self-dissociation rate coefficient, which is found to vary considerably with gas temperature. Finally, calculations results reveal that grazing (high b) atom-cluster collisions at elevated velocity (>1000 m s -1 ) can result in the colliding atom rebounding (bounce) from the cluster surface or binding while another atom dissociates (replacement). The presented method can be applied in developing rate equations to predict material formation and growth rates in vapor phase systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Huan; Goudeli, Eirini; Hogan, Christopher J.
In gas phase synthesis systems, clusters form and grow via condensation, in which a monomer binds to an existing cluster. While a hard sphere equation is frequently used to predict the condensation rate coefficient, this equation neglects the influences of potential interactions and cluster internal energy on the condensation process. Here, we present a collision rate theory-Molecular Dynamics simulation approach to calculate condensation probabilities and condensation rate coefficients; we use this approach to examine atomic condensation onto 6-56 atom Au and Mg clusters. The probability of condensation depends upon the initial relative velocity ( v) between atom and cluster andmore » the initial impact parameter ( b). In all cases there is a well-defined region of b-v space where condensation is highly probable, and outside of which the condensation probability drops to zero. For Au clusters with more than 10 atoms, we find that at gas temperatures in the 300-1200 K range, the condensation rate coefficient exceeds the hard sphere rate coefficient by a factor of 1.5-2.0. Conversely, for Au clusters with 10 or fewer atoms, and for 14 atom and 28 atom Mg clusters, as cluster equilibration temperature increases the condensation rate coefficient drops to values below the hard sphere rate coefficient. Calculations also yield the self-dissociation rate coefficient, which is found to vary considerably with gas temperature. Finally, calculations results reveal that grazing (high b) atom-cluster collisions at elevated velocity (> 1000 m s -1) can result in the colliding atom rebounding (bounce) from the cluster surface or binding while another atom dissociates (replacement). In conclusion, the presented method can be applied in developing rate equations to predict material formation and growth rates in vapor phase systems.« less
NASA Astrophysics Data System (ADS)
Yang, Huan; Goudeli, Eirini; Hogan, Christopher J.
2018-04-01
In gas phase synthesis systems, clusters form and grow via condensation, in which a monomer binds to an existing cluster. While a hard-sphere equation is frequently used to predict the condensation rate coefficient, this equation neglects the influences of potential interactions and cluster internal energy on the condensation process. Here, we present a collision rate theory-molecular dynamics simulation approach to calculate condensation probabilities and condensation rate coefficients. We use this approach to examine atomic condensation onto 6-56-atom Au and Mg clusters. The probability of condensation depends upon the initial relative velocity (v) between atom and cluster and the initial impact parameter (b). In all cases, there is a well-defined region of b-v space where condensation is highly probable, and outside of which the condensation probability drops to zero. For Au clusters with more than 10 atoms, we find that at gas temperatures in the 300-1200 K range, the condensation rate coefficient exceeds the hard-sphere rate coefficient by a factor of 1.5-2.0. Conversely, for Au clusters with 10 or fewer atoms and for 14- and 28-atom Mg clusters, as cluster equilibration temperature increases, the condensation rate coefficient drops to values below the hard-sphere rate coefficient. Calculations also yield the self-dissociation rate coefficient, which is found to vary considerably with gas temperature. Finally, calculations results reveal that grazing (high b) atom-cluster collisions at elevated velocity (>1000 m s-1) can result in the colliding atom rebounding (bounce) from the cluster surface or binding while another atom dissociates (replacement). The presented method can be applied in developing rate equations to predict material formation and growth rates in vapor phase systems.
Influence of process fluids properties on component surface convective heat emission
NASA Astrophysics Data System (ADS)
Ivanova, T. N.; Korshunov, A. I.; Zavialov, P. M.
2018-03-01
When grinding with metal-working process fluid, a thin layer of inhibited liquid is formed between the component and the grinding wheel under the action of viscous forces. This can be defined as a hydrodynamic boundary layer or a thermal boundary layer. In this work, the thickness of the layers is studied depending on the viscosity of the fluid, inertia forces, velocity and pressure of the flow; also the causes of their occurrence are identified. It is established that under turbulent flow, the viscosity of the flow and the diffusion rate are much higher than in laminar flow, which also affects heat emission. Calculation of heat transfer in a single-phase chemically homogeneous medium of process liquids has shown that their properties, such as viscosity, thermal conductivity, density and heat capacity are of primary importance. The results of experimental studies of these characteristics are presented. When determining the heat transfer coefficient, functional correlations between the physical variables of the process fluid and the change in time and space have been established. As a result of the studies carried out to determine the heat transfer coefficient of a plate immersed in the process fluid, it is established that the intensification of the cooling process of the treated surface immersed in the coolant is more intense than with other methods of coolant supplying. An increase in the pulsation rate of the process liquid flow and the length of the flow displacement path leads to an increase in the heat transfer coefficient of the treated surface and a decrease in the temperature that arises during grinding.
NASA Technical Reports Server (NTRS)
Schwenke, David W.; Jaffe, Richard L.; Chaban, Galina M.
2016-01-01
We have generated accurate global potential energy surfaces for CO+Ar and CO+O that correlate with atom-diatom pairs in their ground electronic states based on extensive ab initio electronic structure calculations and used these potentials in quasi-classical trajectory nuclear dynamics calculations to predict the thermal dissociation rate coefficients over 5000- 35000 K. Our results are not compatible with the 20-45 year old experimental results. For CO + Ar we obtain fairly good agreement with the experimental rate coefficients of Appleton et al. (1970) and Mick and Roth (1993), but our computed rate coefficients exhibit a stronger temperature dependence. For CO + O our dissociation rate coefficient is in close agreement with the value from the Park model, which is an empirical adjustment of older experimental results. However, we find the rate coefficient for CO + O is only 1.5 to 3.3 times larger than CO + Ar over the temperature range of the shock tube experiments (8000-15,000 K). The previously accepted value for this rate coefficient ratio is 15, independent of temperature. We also computed the rate coefficient for the CO + O ex- change reaction which forms C + O2. We find this reaction is much faster than previously believed and is the dominant process in the removal of CO at temperatures up to 16,000 K. As a result, the dissociation of CO is accomplished in two steps (react to form C+O2 and then O2 dissociates) that are endothermic by 6.1 and 5.1 eV, instead of one step that requires 11.2 eV to break the CO bond.
Puntillo, Kathleen A; Neuhaus, John; Arai, Shoshana; Paul, Steven M; Gropper, Michael A; Cohen, Neal H; Miaskowski, Christine
2012-10-01
Determine levels of agreement among intensive care unit patients and their family members, nurses, and physicians (proxies) regarding patients' symptoms and compare levels of mean intensity (i.e., the magnitude of a symptom sensation) and distress (i.e., the degree of emotionality that a symptom engenders) of symptoms among patients and proxy reporters. Prospective study of proxy reporters of symptoms in seriously ill patients. Two intensive care units in a tertiary medical center in the Western United States. Two hundred and forty-five intensive care unit patients, 243 family members, 103 nurses, and 92 physicians. None. On the basis of the magnitude of intraclass correlation coefficients, where coefficients from .35 to .78 are considered to be appropriately robust, correlation coefficients between patients' and family members' ratings met this criterion (≥.35) for intensity in six of ten symptoms. No intensity ratings between patients and nurses had intraclass correlation coefficients >.32. Three symptoms had intensity correlation coefficients of ≥.36 between patients' and physicians' ratings. Correlation coefficients between patients and family members were >.40 for five symptom-distress ratings. No symptoms had distress correlation coefficients of ≥.28 between patients' and nurses' ratings. Two symptoms had symptom-distress correlation coefficients between patients' and physicians' ratings at >.39. Family members, nurses, and physicians reported higher symptom-intensity scores than patients did for 80%, 60%, and 60% of the symptoms, respectively. Family members, nurses, and physicians reported higher symptom-distress scores than patients did for 90%, 70%, and 80% of the symptoms, respectively. Patient-family intraclass correlation coefficients were sufficiently close for us to consider using family members to help assess intensive care unit patients' symptoms. Relatively low intraclass correlation coefficients between intensive care unit clinicians' and patients' symptom ratings indicate that some proxy raters overestimate whereas others underestimate patients' symptoms. Proxy overestimation of patients' symptom scores warrants further study because this may influence decisions about treating patients' symptoms.
Rate Coefficient Measurements of the Reaction CH3 + O2 = CH3O + O
NASA Technical Reports Server (NTRS)
Hwang, S. M.; Ryu, Si-Ok; DeWitt, K. J.; Rabinowitz, M. J.
1999-01-01
Rate coefficients for the reaction CH3 + O2 = CH3O + O were measured behind reflected shock waves in a series of lean CH4-O2-Ar mixtures using hydroxyl and methyl radical diagnostics. The rate coefficients are well represented by an Arrhenius expression given as k = (1.60(sup +0.67, sub -0.47 ) x 10(exp 13) e(-15813 +/- 587 K/T)/cubic cm.mol.s. This expression, which is valid in the temperature range 1575-1822 K, supports the downward trend in the rate coefficients that has been reported in recent determinations. All measurements to date, including the present study, have been to some extent affected by secondary reactions. The complications due to secondary reactions, choice of thermochemical data, and shock-boundary layer interactions that affect the determination of the rate coefficients are examined.
Staland-Nyman, Carin; Alexanderson, Kristina; Hensing, Gunnel
2008-01-01
The aim of this study was to analyse the association between strain in domestic work and self-rated health among employed women in Sweden, using two different methods of measuring strain in domestic work. Questionnaire data were collected on health and living conditions in paid and unpaid work for employed women (n=1,417), aged 17-64 years. "Domestic job strain'' was an application of the demand-control model developed by Karasek and Theorell, and "Domestic work equity and marital satisfaction'' was measured by questions on the division of and responsibility for domestic work and relationship with spouse/cohabiter. Self-rated health was measured using the SF-36 Health Survey. Associations were analysed by bivariate and multivariate linear regression analyses, and reported as standardized regression coefficients. Higher strain in domestic work was associated with lower self-rated health, also after controlling for potential confounders and according to both strain measures. "Domestic work equity and marital satisfaction'' showed for example negative associations with mental health beta -0.211 (p<0.001), vitality beta -0.195 (p<0.001), social function -0.132 (p<0.01) and physical role beta -0.115 (p<0.01). The highest associations between "Domestic job strain'' and SF-36 were found for vitality beta -0.156 (p<0.001), mental health beta -0.123 (p<0.001). Strain in domestic work, including perceived inequity in the relationship and lack of a satisfactory relationship with a spouse/cohabiter, was associated with lower self-rated health in this cross-sectional study. Future research needs to address the specific importance of strain in domestic work as a contributory factor to women's ill-health.
Semiempirical method of determining flow coefficients for pitot rake mass flow rate measurements
NASA Technical Reports Server (NTRS)
Trefny, C. J.
1985-01-01
Flow coefficients applicable to area-weighted pitot rake mass flow rate measurements are presented for fully developed, turbulent flow in an annulus. A turbulent velocity profile is generated semiempirically for a given annulus hub-to-tip radius ratio and integrated numerically to determine the ideal mass flow rate. The calculated velocities at each probe location are then summed, and the flow rate as indicated by the rake is obtained. The flow coefficient to be used with the particular rake geometry is subsequently obtained by dividing the ideal flow rate by the rake-indicated flow rate. Flow coefficients ranged from 0.903 for one probe placed at a radius dividing two equal areas to 0.984 for a 10-probe area-weighted rake. Flow coefficients were not a strong function of annulus hub-to-tip radius ratio for rakes with three or more probes. The semiempirical method used to generate the turbulent velocity profiles is described in detail.
Rampino, Sergio; Suleimanov, Yury V
2016-12-22
Thermal rate coefficients for the astrochemical reaction C + CH + → C 2 + + H were computed in the temperature range 20-300 K by using novel rate theory based on ring polymer molecular dynamics (RPMD) on a recently published bond-order based potential energy surface and compared with previous Langevin capture model (LCM) and quasi-classical trajectory (QCT) calculations. Results show that there is a significant discrepancy between the RPMD rate coefficients and the previous theoretical results that can lead to overestimation of the rate coefficients for the title reaction by several orders of magnitude at very low temperatures. We argue that this can be attributed to a very challenging energy profile along the reaction coordinate for the title reaction, not taken into account in extenso by either the LCM or QCT approximation. In the absence of any rigorous quantum mechanical or experimental results, the computed RPMD rate coefficients represent state-of-the-art estimates to be included in astrochemical databases and kinetic networks.
Calculations on the rate of the ion-molecule reaction between NH3(+) and H2
NASA Technical Reports Server (NTRS)
Herbst, Eric; Defrees, D. J.; Talbi, D.; Pauzat, F.; Koch, W.
1991-01-01
The rate coefficient for the ion-molecule reaction NH3(+) + H2 yields NH4(+) + H has been calculated as a function of temperature with the use of the statistical phase space approach. The potential surface and reaction complex and transition state parameters used in the calculation have been taken from ab initio quantum chemical calculations. The calculated rate coefficient has been found to mimic the unusual temperature dependence measured in the laboratory, in which the rate coefficient decreases with decreasing temperature until 50-100 K and then increases at still lower temperatures. Quantitative agreement between experimental and theoretical rate coefficients is satisfactory given the uncertainties in the ab initio results and in the dynamics calculations. The rate coefficient for the unusual three-body process NH3(+) + H2 + He yields NH4(+) + H + He has also been calculated as a function of temperature and the result found to agree well with a previous laboratory determination.
The effect of wet-dry weathering on the rate of bedrock river channel erosion by saltating gravel
Inoue, Takuya; Yamaguchi, Satomi; Nelson, Jonathan M.
2017-01-01
Previous work has shown that the bedrock erosion rate E because of collisions of saltating bedload can be expressed by E = βqb(1-Pc), where qb is the sediment transport rate, Pc is the extent of alluvial cover, and β is the abrasion coefficient. However, the dependence of the abrasion coefficient on the physical characteristics of the bedrock material is poorly known, and in particular, the effects of wet-dry weathering on the saltation-abrasion bedrock incision has not been specifically characterized. Observation suggests that the typical wet-dry cycling of exposed bedrock in river beds gives rise to cracks and voids that are likely to alter the incision rate of the material when subjected to impacts of moving sediment. In this study, flume experiments are performed to develop an understanding of how wet-dry cycling affects the rock tensile strength and the bedrock erosion rate. To represent the physical effects of weathering, boring cores taken from natural bedrock channel are exposed to artificial wet-dry cycles. The experimental results suggest the following: (1) the abrasion coefficient for fresh bedrock is estimated by β = 1.0 × 10− 4σT− 2(d/ksb)0.5, where σT is the tensile strength, d is the diameter of colliding gravel, and ksb is the hydraulic roughness height of bedrock; (2) the tensile strength of the bedrock decreases exponentially as a result of repeated wet-dry cycles, σT/σT0 = exp (-CTNWa0/σT0), where σT0 is the initial tensile strength, Wa0 is the initial normalized rate of water absorption., N is the number of wet-dry cycles, and CT is a constant; (3) the erosion rate of fresh bedrock depends on the inverse of the square of tensile strength, but the erosion rate of weathered bedrock depends on the − 1.5 power of tensile strength.
Atomic Data and Spectral Line Intensities for Ni XI
NASA Technical Reports Server (NTRS)
Bhatia, A. K.; Landi, E.
2010-01-01
Electron impact collision strengths, energy levels, oscillator strengths and spontaneous radiative decay rates are calculated for Ni XI. We include in the calculations the 10 lowest configurations, corresponding to 164 fine structure levels: 3s(sup 2)3p(sup 6), 3s(sup 2)3p(sup 5)3d, 3s(sup 2)3p(sup 4)3d(sup 2), 3s3p(sup 6)3d, 3s(sup 2)3p(sup 5)4l and 3s3p6 4l with l =.s, p, d. Collision strengths are calculated at five incident energies for all transitions: 7.1, 16.8, 30.2, 48.7 and 74.1 Ry above the threshold of each transition. An additional energy, very close to the transition threshold, has been added, whose value is between 0.06 Ry and 0.25 Ry depending on the lower level. Calculations have been carried out using the Flexible Atomic Code and the distorted wave approximation. Excitation rate coefficients are calculated as a function of electron temperature by assuming a Maxwellian electron velocity distribution. Using the excitation rate coefficients and the radiative transition rates of the present work, combined with Close Coupling collision excitation rate coefficient available in the literature for the lowest 17 levels, statistical equilibrium equations for level populations are solved at electron densities covering the 10(exp 8)-10(exp 14) cu cm range and at an electron temperature of logT(sub c)(K)=6.1, corresponding to the maximum abundance of Ni XI. Spectral line intensities are calculated, and their diagnostic relevance is discussed. This dataset will be made available in the next version of the CHIANTI database.
NASA Technical Reports Server (NTRS)
Anicich, Vincent G.; Wilson, Paul; McEwan, Murray J.
2003-01-01
The results of a study of ion-molecule reactions occurring in pure methane, acetylene, ethylene, ethane, propyne, propene, propane, and diacetylene at pressures up to 40 microns of pressure are reported. A variety of experimental methods are used: The standard double resonance in an ICR, for determination of the precursor ions and the modulated double resonance ejection in an ICR, for the determination of the daughter ions. The FA-SIFT technique was used for validation and examination of termolecular reactions with rate coefficients that are less than 10(-26) cm(6) s(-1). An extensive database of reaction kinetics already exists for many of these reactions. The main point of this study was the determination of the accuracy of this database and to search for any missing reactions and reaction channels that may have been omitted from earlier investigations. A specific objective of this work was to extend the study to the highest pressures possible to find out if there were any important termolecular reaction channels occurring. A new approach was used here. In the pure hydrocarbon gases the mass spectra were followed as a function of the pressure changes of the gas. An initial guess was first made using the current literature as a source of the reaction kinetics that were expected. A model of the ion abundances was produced from the solution of the partial differential equations in terms of reaction rate coefficients and initial abundances. The experimental data was fitted to the model for all of the pressures by a least squares minimization to the reaction rate coefficients and initial abundances. The reaction rate coefficients obtained from the model were then compared to the literature values. Several new channels and reactions were discovered when the modeled fits were compared to the actual data. This is all explained in the text and the implications of these results are discussed for the Titan atmosphere.
Direct solar-pumped iodine laser amplifier
NASA Technical Reports Server (NTRS)
Han, Kwang S.; Hwang, In Heon; Stock, Larry V.
1989-01-01
This semiannual progress report covers the period from September 1, 1988 to February 28, 1989 under NASA grant NAG-1-441 entitled, Direct Solar-Pumped Iodine Laser Amplifier. During this period, the research effort was concentrated on the solar pumped master oscillator power amplifier (MOPA) system using n-C3F7I. In the experimental work, the amplification measurement was conducted to identify the optimum conditions for amplification of the center's Vortek solar simulator pumped iodine laser amplifier. A modeling effort was also pursued to explain the experimental results in the theoretical work. The amplification measurement of the solar simulator pumped iodine laser amplifier is the first amplification experiment on the continuously pumped amplifier. The small signal amplification of 5 was achieved for the triple pass geometry of the 15 cm long solar simulator pumped amplifier at the n-C3F7I pressure of 20 torr, at the flow velocity of 6 m/sec and at the pumping intensity of 1500 solar constants. The XeCl laser pumped iodine laser oscillator, which was developed in the previous research, was employed as the master oscillator for the amplification measurement. In the theoretical work, the rate equations of the amplifier was established and the small signal amplification was calculated for the solar simulator pumped iodine laser amplifier. The amplification calculated from the kinetic equations with the previously measured rate coefficients reveals very large disagreement with experimental measurement. Moreover, the optimum condition predicted by the kinetic equation is quite discrepant with that measured by experiment. This fact indicates the necessity of study in the measurement of rate coefficients of the continuously pumped iodine laser system.
Inelastic rate coefficients for collisions of C6H- with H2 and He
NASA Astrophysics Data System (ADS)
Walker, Kyle M.; Lique, François; Dumouchel, Fabien; Dawes, Richard
2017-04-01
The recent detection of anions in the interstellar medium has shown that they exist in a variety of astrophysical environments - circumstellar envelopes, cold dense molecular clouds and star-forming regions. Both radiative and collisional processes contribute to molecular excitation and de-excitation in these regions so that the 'local thermodynamic equilibrium' approximation, where collisions cause the gas to behave thermally, is not generally valid. Therefore, along with radiative coefficients, collisional excitation rate coefficients are needed to accurately model the anionic emission from these environments. We focus on the calculation of state-to-state rate coefficients of the C6H- molecule in its ground vibrational state in collisions with para-H2, ortho-H2 and He using new potential energy surfaces. Dynamical calculations for the pure rotational excitation of C6H- were performed for the first 11 rotational levels (up to j1 = 10) using the close-coupling method, while the coupled-states approximation was used to extend the H2 rate coefficients to j1 = 30, where j1 is the angular momentum quantum number of C6H-. State-to-state rate coefficients were obtained for temperatures ranging from 2 to 100 K. The rate coefficients for H2 collisions for Δj1 = -1 transitions are of the order of 10-10 cm3 s-1, a factor of 2 to 3 greater than those of He. Propensity rules are discussed. The collisional excitation rate coefficients produced here impact astrophysical modelling since they are required for obtaining accurate C6H- level populations and line emission for regions that contain anions.
NASA Astrophysics Data System (ADS)
Yamaguchi, H.; Takamori, K.; Perrier, P.; Graur, I.; Matsuda, Y.; Niimi, T.
2016-09-01
The viscous slip coefficient for helium-argon binary gas mixture is extracted from the experimental values of the mass flow rate through a microtube. The mass flow rate is measured by the constant-volume method. The viscous slip coefficient was obtained by identifying the measured mass flow rate through a microtube with the corresponding analytical expression, which is a function of the Knudsen number. The measurements were carried out in the slip flow regime where the first-order slip boundary condition can be applied. The measured viscous slip coefficients of binary gas mixtures exhibit a concave function of the molar ratio of the mixture, showing a similar profile with numerical results. However, from the detailed comparison between the measured and numerical values with the complete and incomplete accommodation at a surface, it is inappropriate to estimate the viscous slip coefficient for the mixture numerically by employing separately measured tangential momentum accommodation coefficient for each component. The time variation of the molar ratio in the downstream chamber was measured by sampling the gas from the chamber using the quadrupole mass spectrometer. In our measurements, it is indicated that the volume flow rate of argon is larger than that of helium because of the difference in the tangential momentum accommodation coefficient.
Report of Workshop on Repetitive Opening Switches
1981-06-01
needed. This work must also pay close attention to the poorly understood plasma chemistry in these switches and develop models for discharges and dis...circuit model. Inclusion of plasma chemistry . 2. Compile and measure (when need- ed) fundamental data such as rate coefficients, cross-sec- tions, etc...Include plasma chemistry effects in the code. Conduct literature search. Carry out basic measurements for gas- es and gas mixtures under con
Development of chitosan/β-glycerophosphate/glycerol hydrogel as a thermosensitive coupling agent.
Huang, Chih-Ling; Chen, Yu-Bin; Lo, Yu-Lung; Lin, Yi-Hsiang
2016-08-20
This work develops a dual-function thermosensitive hydrogel to prevent overheating, a side effect of focused ultrasound therapy. The proposed hydrogel has the components of chitosan, β-glycerophosphate, and glycerol. Its thermosensitive sol-to-gel transition gives an instant signal of overheating without the need of any awkward sensing device. Impacts of varying component concentrations on the sol-to-gel temperature, rate, and degree of transparency are also investigated. Chemical structures and ultrasonic coefficients after heating are obtained with a Fourier transform infrared spectroscopy and ultrasonic measurement, respectively. Optimized formula of the proposed hydrogel is 0.5% chitosan, 5% β-glycerophosphate, and 25% glycerol. This hydrogel has a high acoustic impedance (Z=1.8 Mrayl) close to that of human skin, high ultrasonic transmission (T=99%, which is normalized to water) from 25 to 55°C, and low attenuation coefficient (α=4.0Np/m). These properties assure the success of dual functions of the hydrogel developed in this work. Copyright © 2016 Elsevier Ltd. All rights reserved.
A mechanistic understanding of the wear coefficient: From single to multiple asperities contact
NASA Astrophysics Data System (ADS)
Frérot, Lucas; Aghababaei, Ramin; Molinari, Jean-François
2018-05-01
Sliding contact between solids leads to material detaching from their surfaces in the form of debris particles, a process known as wear. According to the well-known Archard wear model, the wear volume (i.e. the volume of detached particles) is proportional to the load and the sliding distance, while being inversely proportional to the hardness. The influence of other parameters are empirically merged into a factor, referred to as wear coefficient, which does not stem from any theoretical development, thus limiting the predictive capacity of the model. Based on a recent understanding of a critical length-scale controlling wear particle formation, we present two novel derivations of the wear coefficient: one based on Archard's interpretation of the wear coefficient as the probability of wear particle detachment and one that follows naturally from the up-scaling of asperity-level physics into a generic multi-asperity wear model. As a result, the variation of wear rate and wear coefficient are discussed in terms of the properties of the interface, surface roughness parameters and applied load for various rough contact situations. Both new wear interpretations are evaluated analytically and numerically, and recover some key features of wear observed in experiments. This work shines new light on the understanding of wear, potentially opening a pathway for calculating the wear coefficient from first principles.
Distribution of fixed beneficial mutations and the rate of adaptation in asexual populations
Good, Benjamin H.; Rouzine, Igor M.; Balick, Daniel J.; Hallatschek, Oskar; Desai, Michael M.
2012-01-01
When large asexual populations adapt, competition between simultaneously segregating mutations slows the rate of adaptation and restricts the set of mutations that eventually fix. This phenomenon of interference arises from competition between mutations of different strengths as well as competition between mutations that arise on different fitness backgrounds. Previous work has explored each of these effects in isolation, but the way they combine to influence the dynamics of adaptation remains largely unknown. Here, we describe a theoretical model to treat both aspects of interference in large populations. We calculate the rate of adaptation and the distribution of fixed mutational effects accumulated by the population. We focus particular attention on the case when the effects of beneficial mutations are exponentially distributed, as well as on a more general class of exponential-like distributions. In both cases, we show that the rate of adaptation and the influence of genetic background on the fixation of new mutants is equivalent to an effective model with a single selection coefficient and rescaled mutation rate, and we explicitly calculate these effective parameters. We find that the effective selection coefficient exactly coincides with the most common fixed mutational effect. This equivalence leads to an intuitive picture of the relative importance of different types of interference effects, which can shift dramatically as a function of the population size, mutation rate, and the underlying distribution of fitness effects. PMID:22371564
Constrained Aerothermodynamic Design of Hypersonic Vehicles
NASA Technical Reports Server (NTRS)
Gally, Tom; Campbell, Dick
2002-01-01
An investigation was conducted into possible methods of incorporating a hypersonic design capability with aerothermodynamic constraints into the CDISC aerodynamic design tool. The work was divided into two distinct phases: develop relations between surface curvature and hypersonic pressure coefficient which are compatible with CDISC's direct-iterative design method; and explore and implement possible methods of constraining the heat transfer rate over all or portions of the design surface. The main problem in implementing this method has been the weak relationship between surface shape and pressure coefficient at the stagnation point and the need to design around the surface blunt leading edge where there is a slope singularity. The final results show that some success has been achieved, but further improvements are needed.
NASA Astrophysics Data System (ADS)
Gordillo-Delgado, F.; Marín, E.; Calderón, A.
2016-09-01
In this work, the photosynthetic process of maize plants ( Zea mays), which were grown using seeds inoculated with plant growth promoting bacteria Azospirillum brasilense and Burkholderia unamae, was monitored. Photothermal and photobaric signals obtained by a time-resolved photoacoustic measurement configuration were used for measuring the oxygen evolution rate in situ. A frequency-resolved configuration of the method was utilized to determine the oxygen diffusion coefficient and the thermal diffusivity of the maize leaves. The latter parameters, which can be used as indicators of the photosynthetic activity of maize, are found to vary according to the plant-microbe interaction. Treatment with plant growth promoting bacteria induced a decrease in the oxygen diffusion coefficient of about 20 %.
Cubiella, Joaquín; Castells, Antoni; Andreu, Montserrat; Bujanda, Luis; Carballo, Fernando; Jover, Rodrigo; Lanas, Ángel; Morillas, Juan Diego; Salas, Dolores; Quintero, Enrique
2017-03-01
The adenoma detection rate (ADR) is the main quality indicator of colonoscopy. The ADR recommended in fecal immunochemical testing (FIT)-based colorectal cancer screening programs is unknown. Using the COLONPREV (NCT00906997) study dataset, we performed a post-hoc analysis to determine if there was a correlation between the ADR in primary and work-up colonoscopy, and the equivalent figure to the minimal 20% ADR recommended. Colonoscopy was performed in 5722 individuals: 5059 as primary strategy and 663 after a positive FIT result (OC-Sensor™; cut-off level 15 µg/g of feces). We developed a predictive model based on a multivariable lineal regression analysis including confounding variables. The median ADR was 31% (range, 14%-51%) in the colonoscopy group and 55% (range, 21%-83%) in the FIT group. There was a positive correlation in the ADR between primary and work-up colonoscopy (Pearson's coefficient 0.716; p < 0.001). ADR in the FIT group was independently related to ADR in the colonoscopy group: regression coefficient for colonoscopy ADR, 0.71 ( p = 0.009); sex, 0.09 ( p = 0.09); age, 0.3 ( p = 0.5); and region 0.00 ( p = 0.9). The equivalent figure to the 20% ADR was 45% (95% confidence interval, 35%-56%). ADR in primary and work-up colonoscopy of a FIT-positive result are positively and significantly correlated.
Castells, Antoni; Andreu, Montserrat; Bujanda, Luis; Carballo, Fernando; Jover, Rodrigo; Lanas, Ángel; Morillas, Juan Diego; Salas, Dolores; Quintero, Enrique
2016-01-01
Background The adenoma detection rate (ADR) is the main quality indicator of colonoscopy. The ADR recommended in fecal immunochemical testing (FIT)-based colorectal cancer screening programs is unknown. Methods Using the COLONPREV (NCT00906997) study dataset, we performed a post-hoc analysis to determine if there was a correlation between the ADR in primary and work-up colonoscopy, and the equivalent figure to the minimal 20% ADR recommended. Colonoscopy was performed in 5722 individuals: 5059 as primary strategy and 663 after a positive FIT result (OC-Sensor™; cut-off level 15 µg/g of feces). We developed a predictive model based on a multivariable lineal regression analysis including confounding variables. Results The median ADR was 31% (range, 14%–51%) in the colonoscopy group and 55% (range, 21%–83%) in the FIT group. There was a positive correlation in the ADR between primary and work-up colonoscopy (Pearson’s coefficient 0.716; p < 0.001). ADR in the FIT group was independently related to ADR in the colonoscopy group: regression coefficient for colonoscopy ADR, 0.71 (p = 0.009); sex, 0.09 (p = 0.09); age, 0.3 (p = 0.5); and region 0.00 (p = 0.9). The equivalent figure to the 20% ADR was 45% (95% confidence interval, 35%–56%). Conclusions ADR in primary and work-up colonoscopy of a FIT-positive result are positively and significantly correlated. PMID:28344793
A visual detection model for DCT coefficient quantization
NASA Technical Reports Server (NTRS)
Ahumada, Albert J., Jr.; Watson, Andrew B.
1994-01-01
The discrete cosine transform (DCT) is widely used in image compression and is part of the JPEG and MPEG compression standards. The degree of compression and the amount of distortion in the decompressed image are controlled by the quantization of the transform coefficients. The standards do not specify how the DCT coefficients should be quantized. One approach is to set the quantization level for each coefficient so that the quantization error is near the threshold of visibility. Results from previous work are combined to form the current best detection model for DCT coefficient quantization noise. This model predicts sensitivity as a function of display parameters, enabling quantization matrices to be designed for display situations varying in luminance, veiling light, and spatial frequency related conditions (pixel size, viewing distance, and aspect ratio). It also allows arbitrary color space directions for the representation of color. A model-based method of optimizing the quantization matrix for an individual image was developed. The model described above provides visual thresholds for each DCT frequency. These thresholds are adjusted within each block for visual light adaptation and contrast masking. For given quantization matrix, the DCT quantization errors are scaled by the adjusted thresholds to yield perceptual errors. These errors are pooled nonlinearly over the image to yield total perceptual error. With this model one may estimate the quantization matrix for a particular image that yields minimum bit rate for a given total perceptual error, or minimum perceptual error for a given bit rate. Custom matrices for a number of images show clear improvement over image-independent matrices. Custom matrices are compatible with the JPEG standard, which requires transmission of the quantization matrix.
Quantum-tunneling isotope-exchange reaction H2+D-→HD +H-
NASA Astrophysics Data System (ADS)
Yuen, Chi Hong; Ayouz, Mehdi; Endres, Eric S.; Lakhamanskaya, Olga; Wester, Roland; Kokoouline, Viatcheslav
2018-02-01
The tunneling reaction H2+D-→HD +H- was studied in a recent experimental work at low temperatures (10, 19, and 23 K) by Endres et al. [Phys. Rev. A 95, 022706 (2017), 10.1103/PhysRevA.95.022706]. An upper limit of the rate coefficient was found to be about 10-18cm3 /s. In the present study, reaction probabilities are determined using the ABC program developed by Skouteris et al. [Comput. Phys. Commun. 133, 128 (2000), 10.1016/S0010-4655(00)00167-3]. The probabilities for ortho-H2 and para-H2 in their ground rovibrational states are obtained numerically at collision energies above 50 meV with the total angular momentum J =0 -15 and extrapolated below 50 meV using a WKB approach. Thermally averaged rate coefficients for ortho- and para-H2 are obtained; the largest one, for ortho-H2, is about 3.1 ×10-20cm3 /s, which agrees with the experimental results.
Radiological Impact of Tritium from Gaseous Effluent Releases at Cook Nuclear Power Plant
NASA Astrophysics Data System (ADS)
Young, Joshua Allan
The purpose of this study was to investigate the washout of tritiated water by snow and rain from gaseous effluent releases at Donald C. Cook Nuclear Power Plant. Primary concepts studied were determination of washout coefficients for rainfall and snowfall; correlations between rainfall and snow fall tritium concentrations with tritium concentrations in the spent fuel pool, reactor cooling systems, and tritium release rates; and calculations of received doses from the process of recapture. The dose calculations are under the assumption of a maximally exposed individual to get the most conservative estimate of the effect that washout of tritiated water has on individuals around the plant site. This study is in addition to previous work that has been conducted at Cook Nuclear Power Plant for several years. The calculated washout coefficients were typically within the range of 1x10-7s -1 to 1x10-5s-1. A strong correlation between tritium concentration within the spent fuel pool and the tritium release rates was determined.
Liquid Jet Cavitation via Molecular Dynamics
NASA Astrophysics Data System (ADS)
Ashurst, W. T.
1997-11-01
A two-dimensional molecular dynamics simulation of a liquid jet is used to investigate cavitation in a diesel-like fuel injector. A channel with a length four times its width has been examined at various system sizes (widths of 20 to 160 σ, where σ is the zero energy location in the Lennard-Jones potential). The wall boundary condition is Maxwell's diffuse reflection, similar to the work by Sun & Ebner (Phys. Rev A 46, 4813, 1992). Currently, the jet exhausts into a vacuum, but a second, low density gas will be incorporated to represent the compressed air in a diesel chamber. Four different flow rates are examined. With ρ U equal to √mɛ/σ^2 (the largest flow rate) the static pressure decreases by a factor of twenty between the channel entrance and exit. The largest flow rate has a parabolic velocity profile with almost constant density across the channel. The smallest flow rate has the same velocity profile but the density exhibits a large variation, with the minimum value in the channel center. Thus, the product ρ U is nearly constant across the channel at this flow rate. The discharge coefficient CD has a small variation with flow rate, but the velocity coefficient CV varies with the amount of two-phase fluid within the channel. The ratio of CV to CD varies from 1.3 (largest flow rate) to 2.0 (the smallest flow rate, which is one-eighth of the largest).
Absolute rate coefficients for photorecombination of beryllium-like and boron-like silicon ions
NASA Astrophysics Data System (ADS)
Bernhardt, D.; Becker, A.; Brandau, C.; Grieser, M.; Hahn, M.; Krantz, C.; Lestinsky, M.; Novotný, O.; Repnow, R.; Savin, D. W.; Spruck, K.; Wolf, A.; Müller, A.; Schippers, S.
2016-04-01
We report measured rate coefficients for electron-ion recombination of Si10+ forming Si9+ and of Si9+ forming Si8+, respectively. The measurements were performed using the electron-ion merged-beams technique at a heavy-ion storage ring. Electron-ion collision energies ranged from 0 to 50 eV for Si9+ and from 0 to 2000 eV for Si10+, thus, extending previous measurements for Si10+ (Orban et al 2010 Astrophys. J. 721 1603) to much higher energies. Experimentally derived rate coefficients for the recombination of Si9+ and Si10+ ions in a plasma are presented along with simple parameterizations. These rate coefficients are useful for the modeling of the charge balance of silicon in photoionized plasmas (Si9+ and Si10+) and in collisionally ionized plasmas (Si10+ only). In the corresponding temperature ranges, the experimentally derived rate coefficients agree with the latest corresponding theoretical results within the experimental uncertainties.
New potential energy surface for the HCS{sup +}–He system and inelastic rate coefficients
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dubernet, Marie-Lise; Quintas-Sánchez, Ernesto; Tuckey, Philip
2015-07-28
A new high quality potential energy surface is calculated at a coupled-cluster single double triple level with an aug-cc-pV5Z basis set for the HCS{sup +}–He system. This potential energy surface is used in low energy quantum scattering calculations to provide a set of (de)-excitation cross sections and rate coefficients among the first 20 rotational levels of HCS{sup +} by He in the range of temperature from 5 K to 100 K. The paper discusses the impact of the new ab initio potential energy surface on the cross sections at low energy and provides a comparison with the HCO{sup +}–He system.more » The HCS{sup +}–He rate coefficients for the strongest transitions differ by factors of up to 2.5 from previous rate coefficients; thus, analysis of astrophysical spectra should be reconsidered with the new rate coefficients.« less
1983-02-01
aspect ratio is relatively small. Brooks (ref. 1) worked with rectangular fins of 0.62 and 1.24 aspect ratio in a water medium and showed very large ...airflow rates. Lloyd (ref. 3) worked with an aspect ratio 2.0 rectangular wing using a very wide range of jet momentum coefficient; his results were in...D-A1i35 688 EFFECTS OF BLOWING SPANWISE FROM THE TIPS OF LOW ASPECT in, RATIO WINGS OF VA .(U) NIELSEN ENGINEERING AND RESEARCH INC MOUNTAIN VIEW CA
Estimating reaction rate coefficients within a travel-time modeling framework.
Gong, R; Lu, C; Wu, W-M; Cheng, H; Gu, B; Watson, D; Jardine, P M; Brooks, S C; Criddle, C S; Kitanidis, P K; Luo, J
2011-01-01
A generalized, efficient, and practical approach based on the travel-time modeling framework is developed to estimate in situ reaction rate coefficients for groundwater remediation in heterogeneous aquifers. The required information for this approach can be obtained by conducting tracer tests with injection of a mixture of conservative and reactive tracers and measurements of both breakthrough curves (BTCs). The conservative BTC is used to infer the travel-time distribution from the injection point to the observation point. For advection-dominant reactive transport with well-mixed reactive species and a constant travel-time distribution, the reactive BTC is obtained by integrating the solutions to advective-reactive transport over the entire travel-time distribution, and then is used in optimization to determine the in situ reaction rate coefficients. By directly working on the conservative and reactive BTCs, this approach avoids costly aquifer characterization and improves the estimation for transport in heterogeneous aquifers which may not be sufficiently described by traditional mechanistic transport models with constant transport parameters. Simplified schemes are proposed for reactive transport with zero-, first-, nth-order, and Michaelis-Menten reactions. The proposed approach is validated by a reactive transport case in a two-dimensional synthetic heterogeneous aquifer and a field-scale bioremediation experiment conducted at Oak Ridge, Tennessee. The field application indicates that ethanol degradation for U(VI)-bioremediation is better approximated by zero-order reaction kinetics than first-order reaction kinetics. Copyright © 2010 The Author(s). Journal compilation © 2010 National Ground Water Association.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiens, Justin P.; Shuman, Nicholas S.; Viggiano, Albert A., E-mail: afrl.rvborgmailbox@kirtland.af.mil
Dissociative recombination (DR) rate coefficients for the naphthalene cation, C{sub 10}H{sub 8}{sup +}, and WF{sub 5}{sup +}, and mutual neutralization (MN) rate coefficients for these species and five C{sub n}F{sub m}{sup +} ions, were determined at 300 K using variable electron and neutral density attachment mass spectrometry (VENDAMS). DR proceeds at 9 ± 3 × 10{sup −7} cm{sup 3} s{sup −1} for C{sub 10}H{sub 8}{sup +} and at 6.1 ± 1.4 × 10{sup −7} cm{sup 3} s{sup −1} for WF{sub 5}{sup +}. Consistent with previous results, MN for the polyatomic cations with the halide anions Cl{sup −}, Br{sup −}, andmore » I{sup −} exhibits an approximate μ{sup −1/2} reduced mass dependence of the reactant partners, demonstrating that ion collision velocities influence the rate coefficients. This work is an extension of VENDAMS to systems, where low reactant concentrations are necessary to avoid significant reaction of product ions with the neutral precursor, i.e., conditions not suitable for traditional flowing afterglow measurements, as well as to ions of masses > ∼ 100 Da, which are not amenable to the study of DR in magnetic storage rings. Our results expand the sparse literature on DR and MN of heavier ions.« less
Estimating Reaction Rate Coefficients Within a Travel-Time Modeling Framework
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gong, R; Lu, C; Luo, Jian
A generalized, efficient, and practical approach based on the travel-time modeling framework is developed to estimate in situ reaction rate coefficients for groundwater remediation in heterogeneous aquifers. The required information for this approach can be obtained by conducting tracer tests with injection of a mixture of conservative and reactive tracers and measurements of both breakthrough curves (BTCs). The conservative BTC is used to infer the travel-time distribution from the injection point to the observation point. For advection-dominant reactive transport with well-mixed reactive species and a constant travel-time distribution, the reactive BTC is obtained by integrating the solutions to advective-reactive transportmore » over the entire travel-time distribution, and then is used in optimization to determine the in situ reaction rate coefficients. By directly working on the conservative and reactive BTCs, this approach avoids costly aquifer characterization and improves the estimation for transport in heterogeneous aquifers which may not be sufficiently described by traditional mechanistic transport models with constant transport parameters. Simplified schemes are proposed for reactive transport with zero-, first-, nth-order, and Michaelis-Menten reactions. The proposed approach is validated by a reactive transport case in a two-dimensional synthetic heterogeneous aquifer and a field-scale bioremediation experiment conducted at Oak Ridge, Tennessee. The field application indicates that ethanol degradation for U(VI)-bioremediation is better approximated by zero-order reaction kinetics than first-order reaction kinetics.« less
NASA Astrophysics Data System (ADS)
Atuegwu, N. C.; Colvin, D. C.; Loveless, M. E.; Xu, L.; Gore, J. C.; Yankeelov, T. E.
2012-01-01
We build on previous work to show how serial diffusion-weighted MRI (DW-MRI) data can be used to estimate proliferation rates in a rat model of brain cancer. Thirteen rats were inoculated intracranially with 9L tumor cells; eight rats were treated with the chemotherapeutic drug 1,3-bis(2-chloroethyl)-1-nitrosourea and five rats were untreated controls. All animals underwent DW-MRI immediately before, one day and three days after treatment. Values of the apparent diffusion coefficient (ADC) were calculated from the DW-MRI data and then used to estimate the number of cells in each voxel and also for whole tumor regions of interest. The data from the first two imaging time points were then used to estimate the proliferation rate of each tumor. The proliferation rates were used to predict the number of tumor cells at day three, and this was correlated with the corresponding experimental data. The voxel-by-voxel analysis yielded Pearson's correlation coefficients ranging from -0.06 to 0.65, whereas the region of interest analysis provided Pearson's and concordance correlation coefficients of 0.88 and 0.80, respectively. Additionally, the ratio of positive to negative proliferation values was used to separate the treated and control animals (p <0.05) at an earlier point than the mean ADC values. These results further illustrate how quantitative measurements of tumor state obtained non-invasively by imaging can be incorporated into mathematical models that predict tumor growth.
NASA Technical Reports Server (NTRS)
Feofilov, A. G.; Kutepov, A. A.; She, C.-Y.; Smith, A. K.; Pesnell, W. D.; Goldberg, R. A.
2012-01-01
Among the processes governing the energy balance in the mesosphere and lower thermosphere (MLT), the quenching of CO2(nu2) vibrational levels by collisions with O atoms plays an important role. However, there is a factor of 3-4 discrepancy between the laboratory measurements of the CO2-O quenching rate coefficient, k(sub VT),and its value estimated from the atmospheric observations. In this study, we retrieve k(sub VT) in the altitude region85-105 km from the coincident SABER/TIMED and Fort Collins sodium lidar observations by minimizing the difference between measured and simulated broadband limb 15 micron radiation. The averaged k(sub VT) value obtained in this work is 6.5 +/- 1.5 X 10(exp -12) cubic cm/s that is close to other estimates of this coefficient from the atmospheric observations.However, the retrieved k(sub VT) also shows altitude dependence and varies from 5.5 1 +/-1 10(exp -12) cubic cm/s at 90 km to 7.9 +/- 1.2 10(exp -12) cubic cm/s at 105 km. Obtained results demonstrate the deficiency in current non-LTE modeling of the atmospheric 15 micron radiation, based on the application of the CO2-O quenching and excitation rates, which are linked by the detailed balance relation. We discuss the possible model improvements, among them accounting for the interaction of the non-thermal oxygen atoms with CO2 molecules.
A New GaAs Laser Radar for Atmospheric Measurements
NASA Technical Reports Server (NTRS)
Brown, R. T.; Stoliar, A. P.
1973-01-01
A special GaAs lidar using fiber coupled diode lasers was constructed for the purpose of measuring the extinction coefficient distribution within a large atmospheric volume at a rate compatible with atmospheric kinematics. The technique is based on taking backscatter signature ratios over spatial increments after the returns are normalized by pulse integration. Essential aspects of the lidar design are beam pulse power, repetition rate, detection system dynamic range and decay linearity. It was necessary to preclude the possibility of eye hazard under any operating conditions, including directly viewing the emitting aperture at close distance with a night-adapted eye. The electronic signal processing and control circuits were built to allow versatile operations. Extinction coefficient measurements were made in fog and clouds using a low-power laboratory version of the lidar, demonstrating feasibility. Data are presented showing range squared corrected backscatter profiles converted to extinction coefficient profiles, temporal signal fluctuations, and solar induced background noise. These results aided in the design of the lidar which is described. Functional tests of this lidar and the implications relevant to the design of a prototype model are discussed. This work was jointly sponsored by Sperry Rand Corporation under its Independent Research and Development program; the Air Force Avionics Laboratory, Wright Field, Dayton, Ohio; and the Naval Ammunition Depot, Crane, Indiana.
Information Filtering via Clustering Coefficients of User-Object Bipartite Networks
NASA Astrophysics Data System (ADS)
Guo, Qiang; Leng, Rui; Shi, Kerui; Liu, Jian-Guo
The clustering coefficient of user-object bipartite networks is presented to evaluate the overlap percentage of neighbors rating lists, which could be used to measure interest correlations among neighbor sets. The collaborative filtering (CF) information filtering algorithm evaluates a given user's interests in terms of his/her friends' opinions, which has become one of the most successful technologies for recommender systems. In this paper, different from the object clustering coefficient, users' clustering coefficients of user-object bipartite networks are introduced to improve the user similarity measurement. Numerical results for MovieLens and Netflix data sets show that users' clustering effects could enhance the algorithm performance. For MovieLens data set, the algorithmic accuracy, measured by the average ranking score, can be improved by 12.0% and the diversity could be improved by 18.2% and reach 0.649 when the recommendation list equals to 50. For Netflix data set, the accuracy could be improved by 14.5% at the optimal case and the popularity could be reduced by 13.4% comparing with the standard CF algorithm. Finally, we investigate the sparsity effect on the performance. This work indicates the user clustering coefficients is an effective factor to measure the user similarity, meanwhile statistical properties of user-object bipartite networks should be investigated to estimate users' tastes.
Dielectronic and Trielectronic Recombination Rate Coefficients of Be-like Ar14+
NASA Astrophysics Data System (ADS)
Huang, Z. K.; Wen, W. Q.; Xu, X.; Mahmood, S.; Wang, S. X.; Wang, H. B.; Dou, L. J.; Khan, N.; Badnell, N. R.; Preval, S. P.; Schippers, S.; Xu, T. H.; Yang, Y.; Yao, K.; Xu, W. Q.; Chuai, X. Y.; Zhu, X. L.; Zhao, D. M.; Mao, L. J.; Ma, X. M.; Li, J.; Mao, R. S.; Yuan, Y. J.; Wu, B.; Sheng, L. N.; Yang, J. C.; Xu, H. S.; Zhu, L. F.; Ma, X.
2018-03-01
Electron–ion recombination of Be-like 40Ar14+ has been measured by employing the electron–ion merged-beams method at the cooler storage ring CSRm. The measured absolute recombination rate coefficients for collision energies from 0 to 60 eV are presented, covering all dielectronic recombination (DR) resonances associated with 2s 2 → 2s2p core transitions. In addition, strong trielectronic recombination (TR) resonances associated with 2s 2 → 2p 2 core transitions were observed. Both DR and TR processes lead to series of peaks in the measured recombination spectrum, which have been identified by the Rydberg formula. Theoretical calculations of recombination rate coefficients were performed using the state-of-the-art multi-configuration Breit–Pauli atomic structure code AUTOSTRUCTURE to compare with the experimental results. The plasma rate coefficients for DR+TR of Ar14+ were deduced from the measured electron–ion recombination rate coefficients in the temperature range from 103 to 107 K, and compared with calculated data from the literature. The experimentally derived plasma rate coefficients are 60% larger and 30% lower than the previously recommended atomic data for the temperature ranges of photoionized plasmas and collisionally ionized plasmas, respectively. However, good agreement was found between experimental results and the calculations by Gu and Colgan et al. The plasma rate coefficients deduced from experiment and calculated by the current AUTOSTRUCTURE code show agreement that is better than 30% from 104 to 107 K. The present results constitute a set of benchmark data for use in astrophysical modeling.
NASA Astrophysics Data System (ADS)
Zawawi, N. N. M.; Azmi, W. H.; Redhwan, A. A. M.; Sharif, M. Z.
2017-10-01
Wear of sliding parts and operational machine consistency enhancement can be avoided with good lubrication. Lubrication reduce wear between two contacting and sliding surfaces and decrease the frictional power losses in compressor. The coefficient of friction and wear rate effects study were carried out to measure the friction and anti-wear abilities of Al2O3-SiO2 composite nanolubricants a new type of compressor lubricant to enhanced the compressor performances. The tribology test rig employing reciprocating test conditions to replicate a piston ring contact in the compressor was used to measure the coefficient of friction and wear rate. Coefficient of friction and wear rate effects of different Al2O3-SiO2/PAG composite nanolubricants of Aluminium 2024 plate for 10-kg load at different speed were investigated. Al2O3 and SiO2 nanoparticles were dispersed in the Polyalkylene Glycol (PAG 46) lubricant using two-steps method of preparation. The result shows that the coefficient friction and wear rate of composite nanolubricants decreased compared to pure lubricant. The maximum reduction achievement for friction of coefficient and wear rate by Al2O3-SiO2 composite nanolubricants by 4.78% and 12.96% with 0.06% volume concentration. Therefore, 0.06% volume concentration is selected as the most enhanced composite nanolubricants with effective coefficient of friction and wear rate reduction compared to other volume concentrations. Thus, it is recommended to be used as the compressor lubrication to enhanced compressor performances.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rowley, R.L.; Adams, M.E.; Marshall, T.L.
1997-03-01
Natural gas processors use amine treating processes to remove the acid gases H{sub 2}S and CO{sub 2} from gas streams. Absorption rates of gaseous CO{sub 2} into aqueous N-methyldiethanolamine (MDEA) solutions were measured in a quiescent, inverted-tube diffusiometer by monitoring the rate of pressure drop. The absorption rate was found to be insensitive to the diffusion coefficient of CO{sub 2} in solution but very sensitive to the diffusion rate of bicarbonate and protonated MDEA ions. Evidence also suggested that chemical reaction equilibrium is rapid relative to diffusion. A numerical model was developed on the basis of these observations. The modelmore » was used to regress diffusion coefficients of bicarbonate and protonated amine, which must be equivalent by electroneutrality arguments, from measured absorption rates. Complete modeling of the absorption process also required data for the diffusion coefficient of MDEA in water. These were measured using a Taylor dispersion apparatus. CO{sub 2} absorption rates and diffusion coefficients of bicarbonate and protonated MDEA were obtained at 298.2 K and 318.2 K in solutions containing 20, 35, and 50 mass % MDEA in water.« less
An interrater reliability study of the Braden scale in two nursing homes.
Kottner, Jan; Dassen, Theo
2008-10-01
Adequate risk assessment is essential in pressure ulcer prevention. Assessment scales were designed to support practitioners in identifying persons at pressure ulcer risk. The Braden scale is one of the most extensively studied risk assessment instruments, although the majority of studies focused on validity rather than reliability. The first aim was to measure the interrater reliability of the Braden scale and its individual items. The second aim was to study different statistical approaches regarding interrater reliability estimation. An interrater reliability study was conducted in two German nursing homes. Residents (n = 152) from 8 units were assessed twice. The raters were trained nurses with a work experience ranging from 0.5 to 30 years. Data were analysed using an overall percentage of agreement, weighted and unweighted kappa and the intraclass correlation coefficient. Differences between nurses rating the overall Braden score ranged from 0 up to 9 points. Interrater reliability expressed by the intraclass correlation coefficient ranged from 0.73 (95% CI 0.26 - 0.91) to 0.95 (95% CI 0.87 - 0.98). Calculated intraclass correlation coefficients for individual items ranged from 0.06 (95% CI -0.31 to 0.48) to 0.97 (95% CI 0.93-0.99) with the lowest values being measured for the items "sensory perception" and "nutrition". There was no association between work experience and the level of interrater reliability. With two exceptions, simple kappa-values were always lower than weighted kappa-values and intraclass correlation coefficients. Although the calculated interrater reliability coefficients for the total Braden score were high in some cases, several clinically relevant differences occurred between the nurses. Due to interrater reliability being very low for the items "sensory perception" and "nutrition", it is doubtful if their assessment contributes to any valid results. The calculation of weighted kappa or intraclass correlation coefficients is the most appropriate interrater reliability estimates.
Influence of resonant collisions on the self-broadening of acetylene
NASA Astrophysics Data System (ADS)
Lehmann, Kevin K.
2017-03-01
Iwakuni et al. [Phys. Rev. Lett. 117, 143902 (2016)] have reported an ortho-para alternation of ˜10% in the self pressure broadening coefficients for ro-vibrational lines of the C2H2 transitions in the ν1+ν3 C-H (local mode) overtone band near 197 THz (1.52 μm). These authors attributed this effect to the contribution of resonant collisions, where the rotational energy change of one molecule is exactly compensated by the rotational energy change of its collision partner. Resonant collisions are known to be important in the case of self pressure broadening of highly polar molecules, such as HCN, but have not previously been invoked in the case of nonpolar molecules, such as acetylene, where the long range potential is dominated by the quadrupole-quadrupole electrostatic interaction. In the present work, the simple semiclassical Anderson-theory approach is used to estimate the rates of C2H2-C2H2 rotationally inelastic collisions and these used to predict pressure broadening rates, ignoring other contributions to the broadening, which should not have resonant enhancements. It is found that exactly resonant collisions do not make a major contribution to the broadening and these calculations predict an ortho-para alternation of the pressure broadening coefficients far below what was inferred by Iwakuni et al. The present results are consistent with a large body of published work that reported self-broadening coefficients of C2H2 ro-vibrational transitions that found negligible dependence on the vibrational transition and no even-odd alternation, even for Q and S branch transitions where any such effect is predicted to be much larger than for the P and R branch transitions studied by Iwakuni et al.
The role of intra-NAPL diffusion on mass transfer from MGP residuals
NASA Astrophysics Data System (ADS)
Shafieiyoun, Saeid; Thomson, Neil R.
2018-06-01
An experimental and computational study was performed to investigate the role of multi-component intra-NAPL diffusion on NAPL-water mass transfer. Molecular weight and the NAPL component concentrations were determined to be the most important parameters affecting intra-NAPL diffusion coefficients. Four NAPLs with different viscosities but the same quantified mass were simulated. For a spherical NAPL body, a combination of NAPL properties and interphase mass transfer rate can result in internal diffusion limitations. When the main intra-NAPL diffusion coefficients are in the range of self-diffusion coefficients (10-5 to 10-6 cm2/s), dissolution is not limited by internal diffusion except for high mass transfer rate coefficients (>180 cm/day). For a complex and relatively high viscous NAPL (>50 g/(cm s)), smaller intra-NAPL diffusion coefficients (<10-8) are expected and even low mass transfer rate coefficients ( 6 cm/day) can result in diffusion-limited dissolution.
Zhang, Tan; Chen, Ang
2017-01-01
Based on the job demands-resources model, the study developed and validated an instrument that measures physical education teachers' job demands-resources perception. Expert review established content validity with the average item rating of 3.6/5.0. Construct validity and reliability were determined with a teacher sample ( n = 397). Exploratory factor analysis established a five-dimension construct structure matching the theoretical construct deliberated in the literature. The composite reliability scores for the five dimensions range from .68 to .83. Validity coefficients (intraclass correlational coefficients) are .69 for job resources items and .82 for job demands items. Inter-scale correlational coefficients range from -.32 to .47. Confirmatory factor analysis confirmed the construct validity with high dimensional factor loadings (ranging from .47 to .84 for job resources scale and from .50 to .85 for job demands scale) and adequate model fit indexes (root mean square error of approximation = .06). The instrument provides a tool to measure physical education teachers' perception of their working environment.
Gas transfer in a bubbly wake flow
NASA Astrophysics Data System (ADS)
Karn, A.; Gulliver, J. S.; Monson, G. M.; Ellis, C.; Arndt, R. E. A.; Hong, J.
2016-05-01
The present work reports simultaneous bubble size and gas transfer measurements in a bubbly wake flow of a hydrofoil, designed to be similar to a hydroturbine blade. Bubble size was measured by a shadow imaging technique and found to have a Sauter mean diameter of 0.9 mm for a reference case. A lower gas flow rate, greater liquid velocities, and a larger angle of attack all resulted in an increased number of small size bubbles and a reduced weighted mean bubble size. Bubble-water gas transfer is measured by the disturbed equilibrium technique. The gas transfer model of Azbel (1981) is utilized to characterize the liquid film coefficient for gas transfer, with one scaling coefficient to reflect the fact that characteristic turbulent velocity is replaced by cross-sectional mean velocity. The coefficient was found to stay constant at a particular hydrofoil configuration while it varied within a narrow range of 0.52-0.60 for different gas/water flow conditions.
Zhang, Tan; Chen, Ang
2017-01-01
Based on the job demands–resources model, the study developed and validated an instrument that measures physical education teachers’ job demands–resources perception. Expert review established content validity with the average item rating of 3.6/5.0. Construct validity and reliability were determined with a teacher sample (n = 397). Exploratory factor analysis established a five-dimension construct structure matching the theoretical construct deliberated in the literature. The composite reliability scores for the five dimensions range from .68 to .83. Validity coefficients (intraclass correlational coefficients) are .69 for job resources items and .82 for job demands items. Inter-scale correlational coefficients range from −.32 to .47. Confirmatory factor analysis confirmed the construct validity with high dimensional factor loadings (ranging from .47 to .84 for job resources scale and from .50 to .85 for job demands scale) and adequate model fit indexes (root mean square error of approximation = .06). The instrument provides a tool to measure physical education teachers’ perception of their working environment. PMID:29200808
A novel low-jitter plasma-jet triggered gas switch operated at a low working coefficient.
Tie, Weihao; Liu, Shanhong; Liu, Xuandong; Zhang, Qiaogen; Pang, Lei; Liu, Longchen
2014-02-01
In this paper, we described the fabrication and testing of a novel plasma-jet triggered gas switch (PJTGS) operated at extremely low working coefficients with excellent triggered jitters. While the structure of the PJTGS is similar to that of a traditional three-electrode field-distortion gas switch, to improve its triggered performance we used a conical micro-plasma-gun with a needle-to-plate spark gap embedded in the trigger electrode. Applying a nanosecond pulse to the trigger electrode caused a spark discharge in the micro-plasma-gun. The electric field drove the discharge plasma to spray into the spark gap of the gas switch, causing fast breakdown. We tested the PJTGS with charging voltages of ±25 kV and a trigger voltage of +80 kV (5 ns rise time and 80 ns full width at half maximum) in two working modes. The PJTGS operated in Mode II had a lower triggered jitter and could be operated over a wider range of working coefficients than in Mode I under the same conditions. At working coefficients higher than 70%, we obtained sub-ns triggered jitters (<0.89 ns) from the PJTGS, at working coefficients lower than 50%, we obtained triggered jitters of 1.6-3.5 ns without no-fires or pre-fires. Even at a working coefficient of 27.4%, the PJTGS could still be triggered reliably with a delay time of 96.1 ns and a triggered jitter of 3.5 ns, respectively.
Passive air sampling theory for semivolatile organic compounds.
Bartkow, Michael E; Booij, Kees; Kennedy, Karen E; Müller, Jochen F; Hawker, Darryl W
2005-07-01
The mathematical modelling underlying passive air sampling theory can be based on mass transfer coefficients or rate constants. Generally, these models have not been inter-related. Starting with basic models, the exchange of chemicals between the gaseous phase and the sampler is developed using mass transfer coefficients and rate constants. Importantly, the inter-relationships between the approaches are demonstrated by relating uptake rate constants and loss rate constants to mass transfer coefficients when either sampler-side or air-side resistance is dominating chemical exchange. The influence of sampler area and sampler volume on chemical exchange is discussed in general terms and as they relate to frequently used parameters such as sampling rates and time to equilibrium. Where air-side or sampler-side resistance dominates, an increase in the surface area of the sampler will increase sampling rates. Sampling rates are not related to the sampler/air partition coefficient (K(SV)) when air-side resistance dominates and increase with K(SV) when sampler-side resistance dominates.
Exploring the nonequilibrium reactivity of molecules with platinum(111)
NASA Astrophysics Data System (ADS)
Dewitt, Kristin Marie
Various aspects of the nonequilibrium reactivity of several, catalytically important, small molecules with Pt(111)were explored. The effect of alkali metal promotion on the thermal chemistry and photochemistry of CH4,N 2, and CO2 was studied. Dissociative sticking coefficients for methane and ethane were measured as a function of gas temperature ( Tg) and surface temperature (Ts) using effusive molecular beam and angle-integrated gas dosing methods. Coupled with physisorbed complex microcanonical unimolecular rate theory these measurements provide a predictive understanding for the kinetics of these C-H bond activation reactions, i.e. allowing us to predict the sticking coefficient of CH 4 and C2H6 for any combination of T s and Tg. Work function thermal programmed desorption was used to examine the correlation between surface structure and surface work function for CH3Br and CO2. Preliminary two-photon photoemission and broad-band infrared-visible sum frequency generation experiments introduce these nonlinear spectroscopy techniques to the arsenal of surface characterization techniques available in our group. All of the disparate components of this work are tied together by one overall theme, developing an improved molecular-level understanding of the reaction dynamics of catalysis.
Species-to-species rate coefficients for the H3+ + H2 reacting system
NASA Astrophysics Data System (ADS)
Sipilä, O.; Harju, J.; Caselli, P.
2017-10-01
Aims: We study whether or not rotational excitation can make a large difference to chemical models of the abundances of the H3+ isotopologs, including spin states, in physical conditions corresponding to starless cores and protostellar envelopes. Methods: We developed a new rate coefficient set for the chemistry of the H3+ isotopologs, allowing for rotational excitation, using previously published state-to-state rate coefficients. These new so-called species-to-species rate coefficients are compared with previously-used ground-state-to-species rate coefficients by calculating chemical evolution in variable physical conditions using a pseudo-time-dependent chemical code. Results: We find that the new species-to-species model produces different results to the ground state-to-species model at high density and toward increasing temperatures (T> 10 K). The most prominent difference is that the species-to-species model predicts a lower H3+ deuteration degree at high density owing to an increase of the rate coefficients of endothermic reactions that tend to decrease deuteration. For example at 20 K, the ground-state-to-species model overestimates the abundance of H2D+ by a factor of about two, while the abundance of D3+ can differ by up to an order of magnitude between the models. The spin-state abundance ratios of the various H3+ isotopologs are also affected, and the new model better reproduces recent observations of the abundances of ortho and para H2D+ and D2H+. The main caveat is that the applicability regime of the new rate coefficients depends on the critical densities of the various rotational transitions which vary with the abundances of the species and the temperature in dense clouds. Conclusions: The difference in the abundances of the H3+ isotopologs predicted by the species-to-species and ground state-to-species models is negligible at 10 K corresponding to physical conditions in starless cores, but inclusion of the excited states is very important in studies of deuteration at higher temperatures, for example in protostellar envelopes. The species-to-species rate coefficients provide a more realistic approach to the chemistry of the H3+ isotopologs than the ground-state-to-species rate coefficients do, and so the former should be adopted in chemical models describing the chemistry of the H3+ + H2 reacting system.
NASA Technical Reports Server (NTRS)
Jameson, A. R.
1994-01-01
In this work it is shown that for frequencies from 3 to 13 GHz, the ratio of the specific propagation differential phase shift phi(sub DP) to the rainfall rate can be specified essentially independently of the form of the drop size distribution by a function only of the mass-weighted mean drop size D(sub m). This significantly reduces one source of substantial bias errors common to most other techniques for measuring rain by radar. For frequencies 9 GHz and greater, the coefficient can be well estimated from the ratio of the specific differential attenuation to phi(sub DP), while at nonattenuating frequencies such as 3 GHz, the coefficient can be well estimated using the differential reflectivity. In practice it appears that this approach yields better estimates of the rainfall rate than any other current technique. The best results are most likely at 13.80 GHz, followed by those at 2.80 GHz. An optimum radar system for measuring rain should probably include components at a both frequencies so that when signals at 13.8 GHz are lost because of attenuation, good measurements are still possible at the lower frequency.
Tang, Gula; Zhu, Yunqiang; Wu, Guozheng; Li, Jing; Li, Zhao-Liang; Sun, Jiulin
2016-01-01
In this study, the Mudan River, which is the most typical river in the northern cold region of China was selected as the research object; Environmental Fluid Dynamics Code (EFDC) was adopted to construct a new two-dimensional water quality model for the urban sections of the Mudan River, and concentrations of CODCr and NH3N during ice-covered and open-water periods were simulated and analyzed. Results indicated that roughness coefficient and comprehensive pollutant decay rate were significantly different in those periods. To be specific, the roughness coefficient in the ice-covered period was larger than that of the open-water period, while the decay rate within the former period was smaller than that in the latter. In addition, according to the analysis of the simulated results, the main reasons for the decay rate reduction during the ice-covered period are temperature drop, upstream inflow decrease and ice layer cover; among them, ice sheet is the major contributor of roughness increase. These aspects were discussed in more detail in this work. The model could be generalized to hydrodynamic water quality process simulation researches on rivers in other cold regions as well. PMID:27070631
Study of the formation of interstellar CF+ from the HF + C + →CF+ + H reaction
NASA Astrophysics Data System (ADS)
Denis-Alpizar, Otoniel; Guzmán, Viviana V.; Inostroza, Natalia
2018-06-01
The detection of the carbon monofluoride cation CF+ was considered as a support of the theories of the fluorine chemistry in the interstellar medium (ISM). This molecule is formed by the reaction of HF with C+. The rates of this reaction have been estimated previously by two different groups. However, these two estimations led to different results. The main goal of the present work is to study the HF + C+ reaction and determine new reactive rate coefficients. A large set of ab initio energies at the MRCI-F12/cc-pVQZ-F12 level was computed. The first reactive potential energy surface (PES) for the HF + C+ → CF+ + H reaction was developed using a reproducing kernel Hilbert space (RKHS) based method. The dynamics of the reaction was followed from quasiclassical trajectories (QCT). The results of such calculations showed that CF+ is produced in excited vibrational states. The rate coefficients for the HF + C+ → CF+ + H reaction from 50 K up to 2000 K are reported. The impact of these new data in the astrophysical models for the determination of the interstellar conditions is also explored.
Fine and hyperfine collisional excitation of C6H by He
NASA Astrophysics Data System (ADS)
Walker, Kyle M.; Lique, François; Dawes, Richard
2018-01-01
Hydrogenated carbon chains have been detected in interstellar and circumstellar media and accurate modelling of their abundances requires collisional excitation rate coefficients with the most abundant species. Among them, the C6H molecule is one of the most abundant towards many lines of sight. Hence, we determined fine and hyperfine-resolved rate coefficients for the excitation of C6H(X2Π) due to collisions with He. We present the first interaction potential energy surface for the C6H-He system, obtained from highly correlated ab initio calculations and characterized by a large anisotropy due to the length of the molecule. We performed dynamical calculations for transitions among the first fine structure levels (up to J = 30.5) of both spin-orbit manifolds of C6H using the close-coupling method, and rate coefficients are determined for temperatures ranging from 5 to 100 K. The largest rate coefficients for even ΔJ transitions conserve parity, while parity-breaking rate coefficients are favoured for odd ΔJ. Spin-orbit changing rate coefficients are several orders of magnitude lower than transitions within a single manifold. State-to-state hyperfine-resolved cross-sections for the first levels (up to J = 13.5) in the Ω = 3/2 spin-orbit manifold are deduced using recoupling techniques. Rate coefficients are obtained and the propensity rule ΔJ = ΔF is seen. These new data will help determine the abundance of C6H in astrophysical environments such as cold dense molecular clouds, star-forming regions and circumstellar envelopes, and will help in the interpretation of the puzzling C6H-/C6H abundance ratios deduced from observations.
Modeling NAPL dissolution from pendular rings in idealized porous media
NASA Astrophysics Data System (ADS)
Huang, Junqi; Christ, John A.; Goltz, Mark N.; Demond, Avery H.
2015-10-01
The dissolution rate of nonaqueous phase liquid (NAPL) often governs the remediation time frame at subsurface hazardous waste sites. Most formulations for estimating this rate are empirical and assume that the NAPL is the nonwetting fluid. However, field evidence suggests that some waste sites might be organic wet. Thus, formulations that assume the NAPL is nonwetting may be inappropriate for estimating the rates of NAPL dissolution. An exact solution to the Young-Laplace equation, assuming NAPL resides as pendular rings around the contact points of porous media idealized as spherical particles in a hexagonal close packing arrangement, is presented in this work to provide a theoretical prediction for NAPL-water interfacial area. This analytic expression for interfacial area is then coupled with an exact solution to the advection-diffusion equation in a capillary tube assuming Hagen-Poiseuille flow to provide a theoretical means of calculating the mass transfer rate coefficient for dissolution at the NAPL-water interface in an organic-wet system. A comparison of the predictions from this theoretical model with predictions from empirically derived formulations from the literature for water-wet systems showed a consistent range of values for the mass transfer rate coefficient, despite the significant differences in model foundations (water wetting versus NAPL wetting, theoretical versus empirical). This finding implies that, under these system conditions, the important parameter is interfacial area, with a lesser role played by NAPL configuration.
Absolute empirical rate coefficient for the excitation of the 117.6 nm line in C III
NASA Astrophysics Data System (ADS)
Gardner, L. D.; Daw, A. N.; Janzen, P. H.; Atkins, N.; Kohl, J. L.
2005-05-01
We have measured the absolute cross sections for electron impact excitation (EIE) of C2+ (2s2p 3P° - 2p2 3P) for energies from below threshold to 17 eV above and derived EIE rate coefficients required for astrophysical applications. The uncertainty in the rate coefficient at a typical solar temperature of formation of C2+ is less than ± 6 %. Ions are produced in a 5 GHz Electron Cyclotron Resonance (ECR) ion source, extracted, formed into a beam, and transported to a collision chamber where they collide with electrons from an electron beam inclined at 45 degrees. The beams are modulated and the radiation from the decay of the excited ions at λ 117.6 nm is detected synchronously using an absolutely calibrated optical system that subtends slightly over π steradians. The fractional population of the C2+ metastable state in the incident ion beam has been determined experimentally to be 0.42 ± 0.03 (1.65 σ). At the reported ± 15 % total experimental uncertainty level (1.65 σ), the measured structure and absolute scale of the cross section are in fairly good agreement with 6-term close-coupling R-matrix calculations and 90-term R-matrix with pseudo-states calculations, although some minor differences are seen just above threshold. As density-sensitive line intensity ratios vary by only about a factor of 5 as the density changes by nearly a factor of 100, even a 30 % uncertainty in the excitation rate can lead to a factor of 3 error in density. This work is supported by NASA Supporting Research and Technology grants NAG5- 9516 and NAG5-12863 in Solar and Heliospheric Physics and by the Smithsonian Astrophysical Observatory.
Determination of the N2 recombination rate coefficient in the ionosphere
NASA Technical Reports Server (NTRS)
Orsini, N.; Torr, D. G.; Brinton, H. C.; Brace, L. H.; Hanson, W. B.; Hoffman, J. H.; Nier, A. O.
1977-01-01
Measurements of aeronomic parameters made by the Atmosphere Explorer-C satellite are used to determine the recombination rate coefficient of N2(+) in the ionosphere. The rate is found to increase significantly with decreasing electron density. Values obtained range from approximately 1.4 x 10 to the -7th to 3.8 x 10 to the -7th cu cm/sec. This variation is explained in a preliminary way in terms of an increase in the rate coefficient with vibrational excitation. Thus, high electron densities depopulate high vibrational levels reducing the effective recombination rate, whereas, low electron densities result in an enhancement in the population of high vibrational levels, thus, increasing the effective recombination rate.
NASA Technical Reports Server (NTRS)
Savin, D. W.; Gwinner, G.; Schwalm, D.; Wolf, A.; Mueller, A.; Schippers, S.
2002-01-01
Low temperature dielectronic recombination (DR) is the dominant recombination mechanism for most ions in X-ray photoionized cosmic plasmas. Reliably modeling and interpreting spectra from these plasmas requires accurate low temperature DR rate Coefficients. Of particular importance are the DR rate coefficients for the iron L-shell ions (Fe XVII-Fe XXIV). These ions are predicted to play an important role in determining the thermal structure and line emission of X-ray photoionized plasmas, which form in the media surrounding accretion powered sources such as X-ray binaries (XRBs), active galactic nuclei (AGN), and cataclysmic variables (Savin et al., 2000). The need for reliable DR data of iron L-shell ions has become particularly urgent after the launches of Chandra and XMM-Newton. These satellites are now providing high-resolution X-ray spectra from a wide range of X-ray photoionized sources. Interpreting the spectra from these sources requires reliable DR rate coefficients. However, at the temperatures relevant, for X-ray photoionized plasmas, existing theoretical DR rate coefficients can differ from one another by factors of two to orders of magnitudes.
Hyperfine excitation of OH+ by H
NASA Astrophysics Data System (ADS)
Lique, François; Bulut, Niyazi; Roncero, Octavio
2016-10-01
The OH+ ions are widespread in the interstellar medium and play an important role in the interstellar chemistry as they act as precursors to the H2O molecule. Accurate determination of their abundance rely on their collisional rate coefficients with atomic hydrogen and electrons. In this paper, we derive OH+-H fine and hyperfine-resolved rate coefficients by extrapolating recent quantum wave packet calculations for the OH+ + H collisions, including inelastic and exchange processes. The extrapolation method used is based on the infinite order sudden approach. State-to-state rate coefficients between the first 22 fine levels and 43 hyperfine levels of OH+ were obtained for temperatures ranging from 10 to 1000 K. Fine structure-resolved rate coefficients present a strong propensity rule in favour of Δj = ΔN transitions. The Δj = ΔF propensity rule is observed for the hyperfine transitions. The new rate coefficients will help significantly in the interpretation of OH+ spectra from photon-dominated region (PDR), and enable the OH+ molecule to become a powerful astrophysical tool for studying the oxygen chemistry.
Kirkham, Amy A; Pauhl, Katherine E; Elliott, Robyn M; Scott, Jen A; Doria, Silvana C; Davidson, Hanan K; Neil-Sztramko, Sarah E; Campbell, Kristin L; Camp, Pat G
2015-01-01
To determine the utility of equations that use the 6-minute walk test (6MWT) results to estimate peak oxygen uptake ((Equation is included in full-text article.)o2) and peak work rate with chronic obstructive pulmonary disease (COPD) patients in a clinical setting. This study included a systematic review to identify published equations estimating peak (Equation is included in full-text article.)o2 and peak work rate in watts in COPD patients and a retrospective chart review of data from a hospital-based pulmonary rehabilitation program. The following variables were abstracted from the records of 42 consecutively enrolled COPD patients: measured peak (Equation is included in full-text article.)o2 and peak work rate achieved during a cycle ergometer cardiopulmonary exercise test, 6MWT distance, age, sex, weight, height, forced expiratory volume in 1 second, forced vital capacity, and lung diffusion capacity. Estimated peak (Equation is included in full-text article.)o2 and peak work rate were estimated from 6MWT distance using published equations. The error associated with using estimated peak (Equation is included in full-text article.)o2 or peak work to prescribe aerobic exercise intensities of 60% and 80% was calculated. Eleven equations from 6 studies were identified. Agreement between estimated and measured values was poor to moderate (intraclass correlation coefficients = 0.11-0.63). The error associated with using estimated peak (Equation is included in full-text article.)o2 or peak work rate to prescribe exercise intensities of 60% and 80% of measured values ranged from mean differences of 12 to 35 and 16 to 47 percentage points, respectively. There is poor to moderate agreement between measured peak (Equation is included in full-text article.)o2 and peak work rate and estimations from equations that use 6MWT distance, and the use of the estimated values for prescription of aerobic exercise intensity would result in large error. Equations estimating peak (Equation is included in full-text article.)o2 and peak work rate are of low utility for prescribing exercise intensity in pulmonary rehabilitation programs.
2005-12-01
hardening exponent and Cimp is the impression strain-rate hardening coefficient. The strain-rate hardening exponent m is a parameter that is...exponent and Cimp is the impression strain-rate hardening coefficient. The strain-rate hardening exponent m is a parameter that is related to the creep
Determination of Time Dependent Virus Inactivation Rates
NASA Astrophysics Data System (ADS)
Chrysikopoulos, C. V.; Vogler, E. T.
2003-12-01
A methodology is developed for estimating temporally variable virus inactivation rate coefficients from experimental virus inactivation data. The methodology consists of a technique for slope estimation of normalized virus inactivation data in conjunction with a resampling parameter estimation procedure. The slope estimation technique is based on a relatively flexible geostatistical method known as universal kriging. Drift coefficients are obtained by nonlinear fitting of bootstrap samples and the corresponding confidence intervals are obtained by bootstrap percentiles. The proposed methodology yields more accurate time dependent virus inactivation rate coefficients than those estimated by fitting virus inactivation data to a first-order inactivation model. The methodology is successfully applied to a set of poliovirus batch inactivation data. Furthermore, the importance of accurate inactivation rate coefficient determination on virus transport in water saturated porous media is demonstrated with model simulations.
Emamgholipour Sefiddashti, Sara; Homaie Rad, Enayatollah; Arab, Mohamad; Bordbar, Shima
2016-02-01
Female labor supply has been changed dramatically in the recent yr. In this study, we examined the effects of development on the relationship between fertility and female labor supply. We used data of population and housing census of Iran and estimated three separate models. To do this we employed Logistic Regressions (BLR). The estimation results of our study showed that there was a negative relationship between fertility rate and female labor supply and there are some differences for this relationship in three models. When fertility rate increases, FLS would decreases. In addition, for higher fertility rates, the woman might be forced to work more because of the economic conditions of her family; and negative coefficients of the fertility rate effects on FLS would increase with a diminishing rate.
The kinetics for ammonium and nitrite oxidation under the effect of hydroxylamine.
Wan, Xinyu; Xiao, Pengying; Zhang, Daijun; Lu, Peili; Yao, Zongbao; He, Qiang
2016-01-01
The kinetics for ammonium (NH4(+)) oxidation and nitrite (NO2(-)) oxidation under the effect of hydroxylamine (NH2OH) were studied by respirometry using the nitrifying sludge from a laboratory-scale sequencing batch reactor. Modified models were used to estimate kinetics parameters of ammonia and nitrite oxidation under the effect of hydroxylamine. An inhibition effect of hydroxylamine on the ammonia oxidation was observed under different hydroxylamine concentration levels. The self-inhibition coefficient of hydroxylamine oxidation and noncompetitive inhibition coefficient of hydroxylamine for nitrite oxidation was estimated by simulating exogenous oxygen-uptake rate profiles, respectively. The inhibitive effect of NH2OH on nitrite-oxidizing bacteria was stronger than on ammonia-oxidizing bacteria. This work could provide fundamental data for the kinetic investigation of the nitrification process.
Characterization of the interfacial heat transfer coefficient for hot stamping processes
NASA Astrophysics Data System (ADS)
Luan, Xi; Liu, Xiaochuan; Fang, Haomiao; Ji, Kang; El Fakir, Omer; Wang, LiLiang
2016-08-01
In hot stamping processes, the interfacial heat transfer coefficient (IHTC) between the forming tools and hot blank is an essential parameter which determines the quenching rate of the process and hence the resulting material microstructure. The present work focuses on the characterization of the IHTC between an aluminium alloy 7075-T6 blank and two different die materials, cast iron (G3500) and H13 die steel, at various contact pressures. It was found that the IHTC between AA7075 and cast iron had values 78.6% higher than that obtained between AA7075 and H13 die steel. Die materials and contact pressures had pronounced effects on the IHTC, suggesting that the IHTC can be used to guide the selection of stamping tool materials and the precise control of processing parameters.
Fukuda, Makoto; Yoshimura, Kengo; Namekawa, Koki; Sakai, Kiyotaka
2017-06-01
The objective of the present study is to evaluate the effect of filtration coefficient and internal filtration on dialysis fluid flow and mass transfer coefficient in dialyzers using dimensionless mass transfer correlation equations. Aqueous solution of vitamin B 12 clearances were obtained for REXEED-15L as a low flux dialyzer, and APS-15EA and APS-15UA as high flux dialyzers. All the other design specifications were identical for these dialyzers except for filtration coefficient. The overall mass transfer coefficient was calculated, moreover, the exponents of Reynolds number (Re) and film mass transfer coefficient of the dialysis-side fluid (k D ) for each flow rate were derived from the Wilson plot and dimensionless correlation equation. The exponents of Re were 0.4 for the low flux dialyzer whereas 0.5 for the high flux dialyzers. Dialysis fluid of the low flux dialyzer was close to laminar flow because of its low filtration coefficient. On the other hand, dialysis fluid of the high flux dialyzers was assumed to be orthogonal flow. Higher filtration coefficient was associated with higher k D influenced by mass transfer rate through diffusion and internal filtration. Higher filtration coefficient of dialyzers and internal filtration affect orthogonal flow of dialysis fluid.
Calculation of equivalent friction coefficient for castor seed by single screw press
NASA Astrophysics Data System (ADS)
Liu, R.; Xiao, Z.; Li, C.; Zhang, L.; Li, P.; Li, H.; Zhang, A.; Tang, S.; Sun, F.
2017-08-01
Based on the traction angle and transportation rate equation, castor beans were pressed by application of single screw under different cake diameter and different screw speed. The results showed that the greater the cake diameter and screw rotation speed, the greater the actual transmission rate was. The equivalent friction coefficient was defined and calculated as 0.4136, and the friction coefficients between press material and screw, bar cage were less than the equivalent friction coefficient value.
Dissociative recombination of molecular ions with electrons
NASA Technical Reports Server (NTRS)
Johnsen, Rainer
1990-01-01
An overview is presented for the present state of the art of laboratory measurements of the dissociative recombination of molecular ions with electrons. Most work has focussed on obtaining rates and their temperature dependence, as these are of primary interest for model calculations of ionospheres. A comparison of data obtained using the microwave afterglow method, the flowing afterglow technique, and the merged beam technique shows that generally the agreement is quite good, but there are some serious discrepancies, especially in the case of H(3+) recombination, that need to be resolved. Results of some earlier experimental work need to be reexamined in the light of more recent developments. Such cases are pointed out and a compilation of rate coefficients that have withstood scrutiny is presented. Recent advances in experimental methods, such as the use of laser-in-duced fluorescence, make it possible to identify some neutral products of dissociative recombination. What has been done so far and what results one might expect from future work are briefly reviewed.
Calculated organ doses for Mayak production association central hall using ICRP and MCNP.
Choe, Dong-Ok; Shelkey, Brenda N; Wilde, Justin L; Walk, Heidi A; Slaughter, David M
2003-03-01
As part of an ongoing dose reconstruction project, equivalent organ dose rates from photons and neutrons were estimated using the energy spectra measured in the central hall above the graphite reactor core located in the Russian Mayak Production Association facility. Reconstruction of the work environment was necessary due to the lack of personal dosimeter data for neutrons in the time period prior to 1987. A typical worker scenario for the central hall was developed for the Monte Carlo Neutron Photon-4B (MCNP) code. The resultant equivalent dose rates for neutrons and photons were compared with the equivalent dose rates derived from calculations using the conversion coefficients in the International Commission on Radiological Protection Publications 51 and 74 in order to validate the model scenario for this Russian facility. The MCNP results were in good agreement with the results of the ICRP publications indicating the modeling scenario was consistent with actual work conditions given the spectra provided. The MCNP code will allow for additional orientations to accurately reflect source locations.
Constraining friction, dilatancy and effective stress with earthquake rates in the deep crust
NASA Astrophysics Data System (ADS)
Beeler, N. M.; Thomas, A.; Burgmann, R.; Shelly, D. R.
2015-12-01
Similar to their behavior on the deep extent of some subduction zones, families of recurring low-frequency earthquakes (LFE) within zones of non-volcanic tremor on the San Andreas fault in central California show strong sensitivity to stresses induced by the tides. Taking all of the LFE families collectively, LFEs occur at all levels of the daily tidal stress, and are in phase with the very small, ~200 Pa, shear stress amplitudes while being uncorrelated with the ~2 kPa tidal normal stresses. Following previous work we assume LFE sources are small, persistent regions that repeatedly fail during shear within a much larger scale, otherwise aseismically creeping fault zone and that the correlation of LFE occurrence reflects modulation of the fault creep rate by the tidal stresses. We examine the predictions of laboratory-observed rate-dependent dilatancy associated with frictional slip. The effect of dilatancy hardening is to damp the slip rate, so high dilatancy under undrained pore pressure reduces modulation of slip rate by the tides. The undrained end-member model produces: 1) no sensitivity to the tidal normal stress, as first suggested in this context by Hawthorne and Rubin [2010], and 2) fault creep rate in phase with the tidal shear stress. Room temperature laboratory-observed values of the dilatancy and friction coefficients for talc, an extremely weak and weakly dilatant material, under-predict the observed San Andreas modulation at least by an order of magnitude owing to too much dilatancy. This may reflect a temperature dependence of the dilatancy and friction coefficients, both of which are expected to be zero at the brittle-ductile transition. The observed tidal modulation constrains the product of the friction and dilatancy coefficients to be at most 5 x 10-7 in the LFE source region, an order of magnitude smaller than observed at room temperature for talc. Alternatively, considering the predictions of a purely rate-dependent talc friction would constrain the ambient effective normal stress to be no more than 40 kPa. In summary, for friction models that have both rate-dependent strength and dilatancy, the observations require intrinsic weakness, low dilatancy, and lithostatic pore fluid pressures.
2D and 3D impellers of centrifugal compressors - advantages, shortcomings and fields of application
NASA Astrophysics Data System (ADS)
Galerkin, Y.; Reksrin, A.; Drozdov, A.
2017-08-01
The simplified equations are presented for calculation of inlet dimensions and velocity values for impellers with three-dimensional blades located in axial and radial part of an impeller (3D impeller) and with two-dimensional blades in radial part (2D). Considerations concerning loss coefficients of 3D and 2D impellers at different design flow rate coefficients are given. The tendency of reduction of potential advantages of 3D impellers at medium and small design flow rate coefficients is shown. The data on high-efficiency compressors and stages with 2D impellers coefficients designed by the authors are presented. The reached efficiency level of 88 - 90% makes further increase of efficiency by the application of 3D impellers doubtful. CFD-analysis of stage candidates with medium flow rate coefficient with 3D and 2D impellers revealed specific problems. In some cases the constructive advantage of a 2D impeller is smaller hub ratio. It makes possible the reaching of higher efficiency. From other side, there is a positive tendency of gas turbine drive RPM increase. 3D impellers have no alternative for stages with high flow rate coefficients matching high-speed drive.
NASA Astrophysics Data System (ADS)
Regev, Shaked; Farago, Oded
2018-10-01
We use a one-dimensional two layer model with a semi-permeable membrane to study the diffusion of a therapeutic drug delivered from a drug-eluting stent (DES). The rate of drug transfer from the stent coating to the arterial wall is calculated by using underdamped Langevin dynamics simulations. Our results reveal that the membrane has virtually no delay effect on the rate of delivery from the DES. The work demonstrates the great potential of underdamped Langevin dynamics simulations as an easy to implement, efficient, method for solving complicated diffusion problems in systems with a spatially-dependent diffusion coefficient.
NASA Astrophysics Data System (ADS)
Chen, Li; Yang, Lanjun; Qiu, Aici; Huang, Dong; Liu, Shuai
2018-01-01
Based on the surface flashover discharge, the injected plasma was generated, and the effects on the breakdown process of the trigatron gas switch were studied in this paper. The breakdown model caused by the injected plasma under the low working coefficient (<0.7) was established. The captured framing images showed that the injected plasma distorted the electrical field of the gap between the frontier of the injected plasma and the opposite electrode, making it easier to achieve the breakdown critical criterion. The calculation results indicated that the breakdown delay time was mainly decided by the development of the injected plasma, as without considering the effects of the photo-ionization and the invisible expansion process, the breakdown delay time of the calculation results was 20% higher than the experimental results. The morphology of the injected plasma generated by polyethylene surface flashover was more stable and regular than ceramic, leading to a 30% lower breakdown delay time when the working coefficient is larger than 0.2, and the difference increased sharply when the working coefficient is lower than 0.2. This was significant for improving the trigger performance of the trigatron gas switch under low working coefficient.
Fried, Itzhak; Koch, Christof
2014-01-01
Peristimulus time histograms are a widespread form of visualizing neuronal responses. Kernel convolution methods transform these histograms into a smooth, continuous probability density function. This provides an improved estimate of a neuron's actual response envelope. We here develop a classifier, called the h-coefficient, to determine whether time-locked fluctuations in the firing rate of a neuron should be classified as a response or as random noise. Unlike previous approaches, the h-coefficient takes advantage of the more precise response envelope estimation provided by the kernel convolution method. The h-coefficient quantizes the smoothed response envelope and calculates the probability of a response of a given shape to occur by chance. We tested the efficacy of the h-coefficient in a large data set of Monte Carlo simulated smoothed peristimulus time histograms with varying response amplitudes, response durations, trial numbers, and baseline firing rates. Across all these conditions, the h-coefficient significantly outperformed more classical classifiers, with a mean false alarm rate of 0.004 and a mean hit rate of 0.494. We also tested the h-coefficient's performance in a set of neuronal responses recorded in humans. The algorithm behind the h-coefficient provides various opportunities for further adaptation and the flexibility to target specific parameters in a given data set. Our findings confirm that the h-coefficient can provide a conservative and powerful tool for the analysis of peristimulus time histograms with great potential for future development. PMID:25475352
Jalan, Amrit; Alecu, Ionut M; Meana-Pañeda, Rubén; Aguilera-Iparraguirre, Jorge; Yang, Ke R; Merchant, Shamel S; Truhlar, Donald G; Green, William H
2013-07-31
We present new reaction pathways relevant to low-temperature oxidation in gaseous and condensed phases. The new pathways originate from γ-ketohydroperoxides (KHP), which are well-known products in low-temperature oxidation and are assumed to react only via homolytic O-O dissociation in existing kinetic models. Our ab initio calculations identify new exothermic reactions of KHP forming a cyclic peroxide isomer, which decomposes via novel concerted reactions into carbonyl and carboxylic acid products. Geometries and frequencies of all stationary points are obtained using the M06-2X/MG3S DFT model chemistry, and energies are refined using RCCSD(T)-F12a/cc-pVTZ-F12 single-point calculations. Thermal rate coefficients are computed using variational transition-state theory (VTST) calculations with multidimensional tunneling contributions based on small-curvature tunneling (SCT). These are combined with multistructural partition functions (Q(MS-T)) to obtain direct dynamics multipath (MP-VTST/SCT) gas-phase rate coefficients. For comparison with liquid-phase measurements, solvent effects are included using continuum dielectric solvation models. The predicted rate coefficients are found to be in excellent agreement with experiment when due consideration is made for acid-catalyzed isomerization. This work provides theoretical confirmation of the 30-year-old hypothesis of Korcek and co-workers that KHPs are precursors to carboxylic acid formation, resolving an open problem in the kinetics of liquid-phase autoxidation. The significance of the new pathways in atmospheric chemistry, low-temperature combustion, and oxidation of biological lipids are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jalan, Amrit; Alecu, Ionut M.; Meana-Pañeda, Rubén
2013-07-31
We present new reaction pathways relevant to low-temperature oxidation in gaseous and condensed phases. The new pathways originate from γ-ketohydroperoxides (KHP), which are well-known products in low-temperature oxidation and are assumed to react only via homolytic O-O dissociation in existing kinetic models. Our ab initio calculations identify new exothermic reactions of KHP forming a cyclic peroxide isomer, which decomposes via novel concerted reactions into carbonyl and carboxylic acid products. Geometries and frequencies of all stationary points are obtained using the M06-2X/MG3S DFT model chemistry, and energies are refined using RCCSD(T)-F12a/cc-pVTZ-F12 single-point calculations. Thermal rate coefficients are computed using variational transition-statemore » theory (VTST) calculations with multidimensional tunneling contributions based on small-curvature tunneling (SCT). These are combined with multistructural partition functions (QMS-T) to obtain direct dynamics multipath (MP-VTST/ SCT) gas-phase rate coefficients. For comparison with liquid-phase measurements, solvent effects are included using continuum dielectric solvation models. The predicted rate coefficients are found to be in excellent agreement with experiment when due consideration is made for acid-catalyzed isomerization. This work provides theoretical confirmation of the 30-year-old hypothesis of Korcek and co-workers that KHPs are precursors to carboxylic acid formation, resolving an open problem in the kinetics of liquid-phase autoxidation. The significance of the new pathways in atmospheric chemistry, low-temperature combustion, and oxidation of biological lipids are discussed.« less
Copeland, G; Lee, E P F; Williams, R G; Archibald, A T; Shallcross, D E; Dyke, J M
2014-01-01
In this work, the photolysis rate coefficient of CH3SCH2Cl (MClDMS) in the lower atmosphere has been determined and has been used in a marine boundary layer (MBL) box model to determine the enhancement of SO2 production arising from the reaction DMS + Cl2. Absorption cross sections measured in the 28000-34000 cm(-1) region have been used to determine photolysis rate coefficients of MClDMS in the troposphere at 10 solar zenith angles (SZAs). These have been used to determine the lifetimes of MClDMS in the troposphere. At 0° SZA, a photolysis lifetime of 3-4 h has been obtained. The results show that the photolysis lifetime of MClDMS is significantly smaller than the lifetimes with respect to reaction with OH (≈ 4.6 days) and with Cl atoms (≈ 1.2 days). It has also been shown, using experimentally derived dissociation energies with supporting quantum-chemical calculations, that the dominant photodissocation route of MClDMS is dissociation of the C-S bond to give CH3S and CH2Cl. MBL box modeling calculations show that buildup of MClDMS at night from the Cl2 + DMS reaction leads to enhanced SO2 production during the day. The extra SO2 arises from photolysis of MClDMS to give CH3S and CH2Cl, followed by subsequent oxidation of CH3S.
Determination of drying kinetics and convective heat transfer coefficients of ginger slices
NASA Astrophysics Data System (ADS)
Akpinar, Ebru Kavak; Toraman, Seda
2016-10-01
In the present work, the effects of some parametric values on convective heat transfer coefficients and the thin layer drying process of ginger slices were investigated. Drying was done in the laboratory by using cyclone type convective dryer. The drying air temperature was varied as 40, 50, 60 and 70 °C and the air velocity is 0.8, 1.5 and 3 m/s. All drying experiments had only falling rate period. The drying data were fitted to the twelve mathematical models and performance of these models was investigated by comparing the determination of coefficient ( R 2), reduced Chi-square ( χ 2) and root mean square error between the observed and predicted moisture ratios. The effective moisture diffusivity and activation energy were calculated using an infinite series solution of Fick's diffusion equation. The average effective moisture diffusivity values and activation energy values varied from 2.807 × 10-10 to 6.977 × 10-10 m2/s and 19.313-22.722 kJ/mol over the drying air temperature and velocity range, respectively. Experimental data was used to evaluate the values of constants in Nusselt number expression by using linear regression analysis and consequently, convective heat transfer coefficients were determined in forced convection mode. Convective heat transfer coefficient of ginger slices showed changes in ranges 0.33-2.11 W/m2 °C.
Accurate Determination of Tunneling-Affected Rate Coefficients: Theory Assessing Experiment.
Zuo, Junxiang; Xie, Changjian; Guo, Hua; Xie, Daiqian
2017-07-20
The thermal rate coefficients of a prototypical bimolecular reaction are determined on an accurate ab initio potential energy surface (PES) using ring polymer molecular dynamics (RPMD). It is shown that quantum effects such as tunneling and zero-point energy (ZPE) are of critical importance for the HCl + OH reaction at low temperatures, while the heavier deuterium substitution renders tunneling less facile in the DCl + OH reaction. The calculated RPMD rate coefficients are in excellent agreement with experimental data for the HCl + OH reaction in the entire temperature range of 200-1000 K, confirming the accuracy of the PES. On the other hand, the RPMD rate coefficients for the DCl + OH reaction agree with some, but not all, experimental values. The self-consistency of the theoretical results thus allows a quality assessment of the experimental data.
A fractal analysis of pathogen detection by biosensors
NASA Astrophysics Data System (ADS)
Doke, Atul M.; Sadana, Ajit
2006-05-01
A fractal analysis is presented for the detection of pathogens such as Franscisela tularensis, and Yersinia pestis (the bacterium that causes plague) using a CANARY (cellular analysis and notification of antigens risks and yields) biosensor (Rider et al., 2003). In general, the binding and dissociation rate coefficients may be adequately described by either a single- or a dual-fractal analysis. An attempt is made to relate the binding rate coefficient to the degree of heterogeneity (fractal dimension value) present on the biosensor surface. Binding and dissociation rate coefficient values obtained are presented. The kinetics aspects along with the affinity values presented are of interest, and should along with the rate coefficients presented for the binding and the dissociation phase be of significant interest in help designing better biosensors for an application area that is bound to gain increasing importance in the future.
Data on inelastic processes in low-energy potassium-hydrogen and rubidium-hydrogen collisions
NASA Astrophysics Data System (ADS)
Yakovleva, S. A.; Barklem, P. S.; Belyaev, A. K.
2018-01-01
Two sets of rate coefficients for low-energy inelastic potassium-hydrogen and rubidium-hydrogen collisions were computed for each collisional system based on two model electronic structure calculations, performed by the quantum asymptotic semi-empirical and the quantum asymptotic linear combinations of atomic orbitals (LCAO) approaches, followed by quantum multichannel calculations for the non-adiabatic nuclear dynamics. The rate coefficients for the charge transfer (mutual neutralization, ion-pair formation), excitation and de-excitation processes are calculated for all transitions between the five lowest lying covalent states and the ionic states for each collisional system for the temperature range 1000-10 000 K. The processes involving higher lying states have extremely low rate coefficients and, hence, are neglected. The two model calculations both single out the same partial processes as having large and moderate rate coefficients. The largest rate coefficients correspond to the mutual neutralization processes into the K(5s 2S) and Rb(4d 2D) final states and at temperature 6000 K have values exceeding 3 × 10-8 cm3 s-1 and 4 × 10-8 cm3 s-1, respectively. It is shown that both the semi-empirical and the LCAO approaches perform equally well on average and that both sets of atomic data have roughly the same accuracy. The processes with large and moderate rate coefficients are likely to be important for non-LTE modelling in atmospheres of F, G and K-stars, especially metal-poor stars.
Rotational excitation of HCN by para- and ortho-H₂.
Vera, Mario Hernández; Kalugina, Yulia; Denis-Alpizar, Otoniel; Stoecklin, Thierry; Lique, François
2014-06-14
Rotational excitation of the hydrogen cyanide (HCN) molecule by collisions with para-H2(j = 0, 2) and ortho-H2(j = 1) is investigated at low temperatures using a quantum time independent approach. Both molecules are treated as rigid rotors. The scattering calculations are based on a highly correlated ab initio 4-dimensional (4D) potential energy surface recently published. Rotationally inelastic cross sections among the 13 first rotational levels of HCN were obtained using a pure quantum close coupling approach for total energies up to 1200 cm(-1). The corresponding thermal rate coefficients were computed for temperatures ranging from 5 to 100 K. The HCN rate coefficients are strongly dependent on the rotational level of the H2 molecule. In particular, the rate coefficients for collisions with para-H2(j = 0) are significantly lower than those for collisions with ortho-H2(j = 1) and para-H2(j = 2). Propensity rules in favor of even Δj transitions were found for HCN in collisions with para-H2(j = 0) whereas propensity rules in favor of odd Δj transitions were found for HCN in collisions with H2(j ⩾ 1). The new rate coefficients were compared with previously published HCN-para-H2(j = 0) rate coefficients. Significant differences were found due the inclusion of the H2 rotational structure in the scattering calculations. These new rate coefficients will be crucial to improve the estimation of the HCN abundance in the interstellar medium.
Rapid Acute Dose Assessment Using MCNP6
NASA Astrophysics Data System (ADS)
Owens, Andrew Steven
Acute radiation doses due to physical contact with a high-activity radioactive source have proven to be an occupational hazard. Multiple radiation injuries have been reported due to manipulating a radioactive source with bare hands or by placing a radioactive source inside a shirt or pants pocket. An effort to reconstruct the radiation dose must be performed to properly assess and medically manage the potential biological effects from such doses. Using the reference computational phantoms defined by the International Commission on Radiological Protection (ICRP) and the Monte Carlo N-Particle transport code (MCNP6), dose rate coefficients are calculated to assess doses for common acute doses due to beta and photon radiation sources. The research investigates doses due to having a radioactive source in either a breast pocket or pants back pocket. The dose rate coefficients are calculated for discrete energies and can be used to interpolate for any given energy of photon or beta emission. The dose rate coefficients allow for quick calculation of whole-body dose, organ dose, and/or skin dose if the source, activity, and time of exposure are known. Doses are calculated with the dose rate coefficients and compared to results from the International Atomic Energy Agency (IAEA) reports from accidents that occurred in Gilan, Iran and Yanango, Peru. Skin and organ doses calculated with the dose rate coefficients appear to agree, but there is a large discrepancy when comparing whole-body doses assessed using biodosimetry and whole-body doses assessed using the dose rate coefficients.
Parro Moreno, Ana; Serrano Gallardo, Pilar; Ferrer Arnedo, Carmen; Serrano Molina, Lucía; de la Puerta Calatayud, M Luisa; Barberá Martín, Aurora; Morales Asencio, José Miguel; de Pedro Gómez, Joan
2013-11-01
To analyze the perception of nursing professionals of the Madrid Primary Health Care environment in which they practice, as well as its relationship with socio-demographic, work-related and professional factors. Cross-sectional, analytical, observational study. Questionnaire sent to a total of 475 nurses in Primary Health Care in Madrid (former Health Care Areas 6 and 9), in 2010. Perception of the practice environment using the Practice Environment Scale of the Nursing Work Index (PES-NWI) questionnaire, as well as; age; sex; years of professional experience; professional category; Health Care Area; employment status and education level. There was a response rate of 69.7% (331). The raw score for the PES-NWI was: 81.04 [95%CI: 79.18-82.91]. The factor with the highest score was "Support from Managers" (2.9 [95%CI: 2.8-3]) and the lowest "Workforce adequacy" (2.3 [95%CI: 2.2-2.4]). In the regression model (dependent variable: raw score in PES-NWI), adjusted by age, sex, employment status, professional category (coefficient B=6.586), and years worked at the centre (coefficient B=2.139, for a time of 0-2 years; coefficient B=7.482, for 3-10 years; coefficient B=7.867, for over 20 years) remained at p≤0.05. The support provided by nurse managers is the most highly valued factor in this practice environment, while workforce adequacy is perceived as the lowest. Nurses in posts of responsibility and those possessing a higher degree of training perceive their practice environment more favourably. Knowledge of the factors in the practice environment is a key element for health care organizations to optimize provision of care and to improve health care results. Copyright © 2012 Elsevier España, S.L. All rights reserved.
Azeez, Ali Basheer; Mohammed, Kahtan S; Abdullah, Mohd Mustafa Al Bakri; Hussin, Kamarudin; Sandu, Andrei Victor; Razak, Rafiza Abdul
2013-10-23
Samples of concrete contain various waste materials, such as iron particulates, steel balls of used ball bearings and slags from steel industry were assessed for their anti-radiation attenuation coefficient properties. The attenuation measurements were performed using gamma spectrometer of NaI (Tl) detector. The utilized radiation sources comprised 137 Cs and ⁶⁰Co radioactive elements with photon energies of 0.662 MeV for 137 Cs and two energy levels of 1.17 and 1.33 MeV for the ⁶⁰Co. Likewise the mean free paths for the tested samples were obtained. The aim of this work is to investigate the effect of the waste loading rates and the particulate dispersive manner within the concrete matrix on the attenuation coefficients. The maximum linear attenuation coefficient (μ) was attained for concrete incorporates iron filling wastes of 30 wt %. They were of 1.12 ± 1.31×10 -3 for 137 Cs and 0.92 ± 1.57 × 10 -3 for ⁶⁰Co. Substantial improvement in attenuation performance by 20%-25% was achieved for concrete samples incorporate iron fillings as opposed to that of steel ball samples at different (5%-30%) loading rates. The steel balls and the steel slags gave much inferior values. The microstructure, concrete-metal composite density, the homogeneity and particulate dispersion were examined and evaluated using different metallographic, microscopic and measurement facilities.
Ketola, Ritva; Toivonen, Risto; Luukkonen, Ritva; Takala, Esa-Pekka; Viikari-Juntura, Eira
2004-08-01
Inter-observer repeatability, validity and responsiveness to change were determined for an expert assessment method for video-display unit (VDU) workstation ergonomics. The aim was to determine to what extent the expert assessment of ergonomics is related to the technical measurements, tidiness and space, work chair ergonomics and responds to changes in these characteristics. Technical measurements and video-recordings before and 2 months after an ergonomic intervention were made for 109 VDU office workstations. Two experts in ergonomics analysed and rated the ergonomics of the workstations. A researcher analysed tidiness and available space. A physiotherapist classified the work chairs used according to their ergonomic properties. The intra-class correlation coefficient between the workstation ergonomic ratings of the two experts was 0.74 at the baseline and 0.81 at the follow-up. Workstation tidiness and space, and work chair ergonomics, had a strong effect on the assessments of both experts. For both experts a change in the locations of the mouse, the screen and the keyboard and values of tidiness and space and work chair ergonomics during the intervention showed a significant association with the ratings. The assessment method studied can be utilized by an expert in a repeatable manner both in cross-sectional and in longitudinal settings.
NASA Technical Reports Server (NTRS)
Herbst, E.; Leung, C. M.
1986-01-01
In order to incorporate large ion-polar neutral rate coefficients into existing gas phase reaction networks, it is necessary to utilize simplified theoretical treatments because of the significant number of rate coefficients needed. The authors have used two simple theoretical treatments: the locked dipole approach of Moran and Hamill for linear polar neutrals and the trajectory scaling approach of Su and Chesnavich for nonlinear polar neutrals. The former approach is suitable for linear species because in the interstellar medium these are rotationally relaxed to a large extent and the incoming charged reactants can lock their dipoles into the lowest energy configuration. The latter approach is a better approximation for nonlinear neutral species, in which rotational relaxation is normally less severe and the incoming charged reactants are not as effective at locking the dipoles. The treatments are in reasonable agreement with more detailed long range theories and predict an inverse square root dependence on kinetic temperature for the rate coefficient. Compared with the locked dipole method, the trajectory scaling approach results in rate coefficients smaller by a factor of approximately 2.5.
Hyperfine excitation of C2H and C2D by para-H2
NASA Astrophysics Data System (ADS)
Dumouchel, Fabien; Lique, François; Spielfiedel, Annie; Feautrier, Nicole
2017-10-01
The [C2H]/[C2D] abundance ratio is a useful tool to explore the physical and chemical conditions of cold molecular clouds. Hence, an accurate determination of both the C2H and C2D abundances is of fundamental interest. Due to the low density of the interstellar medium, the population of the energy levels of the molecules is not at local thermodynamical equilibrium. Thus, the accurate modelling of the emission spectra requires the calculation of collisional rate coefficients with the most abundant interstellar species. Hence, we provide rate coefficients for the hyperfine excitation of C2H and C2D by para-H2(j=0), the most abundant collisional partner in cold molecular clouds. State-to-state rate coefficients between the lowest levels were computed for temperatures ranging from 5 to 80 K. For both isotopologues, the Δj = ΔF propensity rule is observed. The comparison between C2H and C2D rate coefficients shows that differences by up to a factor of two exist, mainly for Δj = ΔN = 1 transitions. The new rate coefficients will significantly help in the interpretation of recent observed spectra.
Structure dependence of the rate coefficients of hydroxyl radical+aromatic molecule reaction
NASA Astrophysics Data System (ADS)
Wojnárovits, László; Takács, Erzsébet
2013-06-01
The rate coefficients of hydroxyl radical addition to the rings of simple aromatic molecules (kOH) were evaluated based on the literature data. By analyzing the methods of kOH determination and the data obtained the most probable values were selected for the kOH's of individual compounds and thereby the most reliable dataset was created for monosubstituted aromatics and p-substituted phenols. For these compounds the rate coefficients fall in a narrow range between 2×109 mol-1 dm3 s-1 and 1×1010 mol-1 dm3 s-1. Although the values show some regular trend with the electron donating/withdrawing nature of the substituent, the log kOH-σp Hammett substituent constant plots do not give straight lines because these high kOH's are controlled by both, the chemical reactivity and the diffusion. However, the logarithms of the rate coefficients of the chemical reactivity controlled reactions (kchem), are calculated by the equation 1/kOH=1/kchem+1/kdiff, and accepting for the diffusion controlled rate coefficient kdiff=1.1×1010 mol-1 dm3 s-1, show good linear correlation with σp.
Numerical Analysis of Heat Transfer During Quenching Process
NASA Astrophysics Data System (ADS)
Madireddi, Sowjanya; Krishnan, Krishnan Nambudiripad; Reddy, Ammana Satyanarayana
2018-04-01
A numerical model is developed to simulate the immersion quenching process of metals. The time of quench plays an important role if the process involves a defined step quenching schedule to obtain the desired characteristics. Lumped heat capacity analysis used for this purpose requires the value of heat transfer coefficient, whose evaluation requires large experimental data. Experimentation on a sample work piece may not represent the actual component which may vary in dimension. A Fluid-Structure interaction technique with a coupled interface between the solid (metal) and liquid (quenchant) is used for the simulations. Initial times of quenching shows boiling heat transfer phenomenon with high values of heat transfer coefficients (5000-2.5 × 105 W/m2K). Shape of the work piece with equal dimension shows less influence on the cooling rate Non-uniformity in hardness at the sharp corners can be reduced by rounding off the edges. For a square piece of 20 mm thickness, with 3 mm fillet radius, this difference is reduced by 73 %. The model can be used for any metal-quenchant combination to obtain time-temperature data without the necessity of experimentation.
A rapid method to extract Seebeck coefficient under a large temperature difference
NASA Astrophysics Data System (ADS)
Zhu, Qing; Kim, Hee Seok; Ren, Zhifeng
2017-09-01
The Seebeck coefficient is one of the three important properties in thermoelectric materials. Since thermoelectric materials usually work under large temperature difference in real applications, we propose a quasi-steady state method to accurately measure the Seebeck coefficient under large temperature gradient. Compared to other methods, this method is not only highly accurate but also less time consuming. It can measure the Seebeck coefficient in both the temperature heating up and cooling down processes. In this work, a Zintl material (Mg3.15Nb0.05Sb1.5Bi0.49Te0.01) was tested to extract the Seebeck coefficient from room temperature to 573 K. Compared with a commercialized Seebeck coefficient measurement device (ZEM-3), there is ±5% difference between those from ZEM-3 and this method.
Electron-impact Ionization of P-like Ions Forming Si-like Ions
NASA Astrophysics Data System (ADS)
Kwon, D.-H.; Savin, D. W.
2014-03-01
We have calculated electron-impact ionization (EII) for P-like systems from P to Zn15 + forming Si-like ions. The work was performed using the flexible atomic code (FAC) which is based on a distorted-wave approximation. All 3l → nl' (n = 3-35) excitation-autoionization (EA) channels near the 3p direct ionization threshold and 2l → nl' (n = 3-10) EA channels at the higher energies are included. Close attention has been paid to the detailed branching ratios. Our calculated total EII cross sections are compared both with previous FAC calculations, which omitted many of these EA channels, and with the available experimental results. Moreover, for Fe11 +, we find that part of the remaining discrepancies between our calculations and recent measurements can be accounted for by the inclusion of the resonant excitation double autoionization process. Lastly, at the temperatures where each ion is predicted to peak in abundances in collisional ionization equilibrium, the Maxwellian rate coefficients derived from our calculations differ by 50%-7% from the previous FAC rate coefficients, with the difference decreasing with increasing charge.
Estimation of the prevalence of adverse drug reactions from social media.
Nguyen, Thin; Larsen, Mark E; O'Dea, Bridianne; Phung, Dinh; Venkatesh, Svetha; Christensen, Helen
2017-06-01
This work aims to estimate the degree of adverse drug reactions (ADR) for psychiatric medications from social media, including Twitter, Reddit, and LiveJournal. Advances in lightning-fast cluster computing was employed to process large scale data, consisting of 6.4 terabytes of data containing 3.8 billion records from all the media. Rates of ADR were quantified using the SIDER database of drugs and side-effects, and an estimated ADR rate was based on the prevalence of discussion in the social media corpora. Agreement between these measures for a sample of ten popular psychiatric drugs was evaluated using the Pearson correlation coefficient, r, with values between 0.08 and 0.50. Word2vec, a novel neural learning framework, was utilized to improve the coverage of variants of ADR terms in the unstructured text by identifying syntactically or semantically similar terms. Improved correlation coefficients, between 0.29 and 0.59, demonstrates the capability of advanced techniques in machine learning to aid in the discovery of meaningful patterns from medical data, and social media data, at scale. Copyright © 2017 Elsevier B.V. All rights reserved.
1943-06-01
derivative Cnr, the rate of change of yawing-momer.t coefficient with yawing angular velocity, contributed ’by the wing, the fuselage, and the...derivative Cn , the rate of change of yawing--moraent coefficient with yawing angular velocity. Al- though theoretical methods for obtaining the...yaw. T CD -3 SYMBOLS ’n rate of change of yawing-moment coefficient with yawing angular velocity per unit of rh/2V ÖCn/d (^-’ \\ 27 J P
On the role of vibrational excitation in dissociative recombination
NASA Technical Reports Server (NTRS)
Cunningham, A. J.; Omalley, T. F.; Hobson, R. M.
1981-01-01
An improved physical model of dissociative recombination is presented and applied to experimental data on the temperature dependence of rate coefficients for the rare-gas and atmospheric-gas ions. It is shown that in the charge neutralisation of the rare-gas dimer ions, autoionisation plays an important role (at least in comparison with the atmospheric-gas ions) and contributes to the fast fall-off in the rate coefficient with vibrational excitation observed in shock tube studies. Numerical estimates of the observed fall-off in rate coefficient with increasing vibrational excitation are also presented.
Efficient calculation of atomic rate coefficients in dense plasmas
NASA Astrophysics Data System (ADS)
Aslanyan, Valentin; Tallents, Greg J.
2017-03-01
Modelling electron statistics in a cold, dense plasma by the Fermi-Dirac distribution leads to complications in the calculations of atomic rate coefficients. The Pauli exclusion principle slows down the rate of collisions as electrons must find unoccupied quantum states and adds a further computational cost. Methods to calculate these coefficients by direct numerical integration with a high degree of parallelism are presented. This degree of optimization allows the effects of degeneracy to be incorporated into a time-dependent collisional-radiative model. Example results from such a model are presented.
Vibrational Relaxation and Electronic Quenching-Rate Coefficients for BiF (A0+,v1) by SF6
1988-08-22
REPORT SD-TR-88-83 LO Vibrational Relaxation and Electronic Quenching-Rate N Coefficients for BiF (AO+ , v ) by SF 6 0) 0) H . HELVAJIAN , J. S...1. J. M. Herbelin and R. A. Klingberg, Int. J. Chem. Kinet. 16, 849 (19824). 2. R. F. Heidner III, H . Helvajian , J. S. Holloway, and J. B. Koffend, J...driven electronic-transfer laser based on the efficient H + NF2 NF(a) + HF reaction. More recently, the rate coefficients for spontaneous emission
NASA Astrophysics Data System (ADS)
Lenzen, Matthias; Merklein, Marion
2017-10-01
In the automotive sector, a major challenge is the deep-drawing of modern lightweight sheet metals with limited formability. Thus, conventional material models lack in accuracy due to the complex material behavior. A current field of research takes into account the evolution of the Lankford coefficient. Today, changes in anisotropy under increasing degree of deformation are not considered. Only a consolidated average value of the Lankford coefficient is included in conventional material models. This leads to an increasing error in prediction of the flow behavior and therefore to an inaccurate prognosis of the forming behavior. To increase the accuracy of the prediction quality, the strain dependent Lankford coefficient should be respected, because the R-value has a direct effect on the contour of the associated flow rule. Further, the investigated materials show a more or less extinct rate dependency of the yield stress. For this reason, the rate dependency of the Lankford coefficient during uniaxial tension is focused within this contribution. To quantify the influence of strain rate on the Lankford coefficient, tensile tests are performed for three commonly used materials, the aluminum alloy AA6016-T4, the advanced high strength steel DP800 and the deep drawing steel DC06 at three different strain rates. The strain measurement is carried out by an optical strain measurement system. An evolution of the Lankford coefficient was observed for all investigated materials. Also, an influence of the deformation velocity on the anisotropy could be detected.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Golubev, A.; Balashov, Y.; Mavrin, S.
Washout coefficient Λ is widely used as a parameter in washout models. These models describes overall HTO washout with rain by a first-order kinetic equation, while washout coefficient Λ depends on the type of rain event and rain intensity and empirical parameters a, b. The washout coefficient is a macroscopic parameter and we have considered in this paper its relationship with a microscopic rate K of HTO isotopic exchange in atmospheric humidity and drops of rainwater. We have shown that the empirical parameters a, b can be represented through the rain event characteristics using the relationships of molecular impact rate,more » rain intensity and specific rain water content while washout coefficient Λ can be represented through the exchange rate K, rain intensity, raindrop diameter and terminal raindrop velocity.« less
Mancia, G; Ferrari, A; Gregorini, L; Parati, G; Pomidossi, G; Bertinieri, G; Grassi, G; Zanchetti, A
1980-12-01
1. Intra-arterial blood pressure and heart rate were recorded for 24 h in ambulant hospitalized patients of variable age who had normal blood pressure or essential hypertension. Mean 24 h values, standard deviations and variation coefficient were obtained as the averages of values separately analysed for 48 consecutive half-hour periods. 2. In older subjects standard deviation and variation coefficient for mean arterial pressure were greater than in younger subjects with similar pressure values, whereas standard deviation and variation coefficient for mean arterial pressure were greater than in younger subjects with similar pressure values, whereas standard deviation aations and variation coefficient were obtained as the averages of values separately analysed for 48 consecurive half-hour periods. 2. In older subjects standard deviation and variation coefficient for mean arterial pressure were greater than in younger subjects with similar pressure values, whereas standard deviation and variation coefficient for heart rate were smaller. 3. In hypertensive subjects standard deviation for mean arterial pressure was greater than in normotensive subjects of similar ages, but this was not the case for variation coefficient, which was slightly smaller in the former than in the latter group. Normotensive and hypertensive subjects showed no difference in standard deviation and variation coefficient for heart rate. 4. In both normotensive and hypertensive subjects standard deviation and even more so variation coefficient were slightly or not related to arterial baroreflex sensitivity as measured by various methods (phenylephrine, neck suction etc.). 5. It is concluded that blood pressure variability increases and heart rate variability decreases with age, but that changes in variability are not so obvious in hypertension. Also, differences in variability among subjects are only marginally explained by differences in baroreflex function.
Atomic data on inelastic processes in low-energy manganese-hydrogen collisions
NASA Astrophysics Data System (ADS)
Belyaev, Andrey K.; Voronov, Yaroslav V.
2017-10-01
Aims: The aim of this paper is to calculate cross sections and rate coefficients for inelastic processes in low-energy Mn + H and Mn+ + H- collisions, especially, for processes with high and moderate rate coefficients. These processes are required for non-local thermodynamic equilibrium (non-LTE) modeling of manganese spectra in cool stellar atmospheres, and in particular, for metal-poor stars. Methods: The calculations of the cross sections and the rate coefficients were performed by means of the quantum model approach within the framework of the Born-Oppenheimer formalism, that is, the asymptotic semi-empirical method for the electronic MnH molecular structure calculation followed by the nonadiabatic nuclear dynamical calculation by means of the multichannel analytic formulas. Results: The cross sections and the rate coefficients for low-energy inelastic processes in manganese-hydrogen collisions are calculated for all transitions between 21 low-lying covalent states and one ionic state. We show that the highest values of the cross sections and the rate coefficients correspond to the mutual neutralization processes into the final atomic states Mn(3d54s(7S)5s e 6S), Mn(3d54s(7S)5p y 8P°), Mn(3d54s(7S)5s e 8S), Mn(3d54s(7S)4d e 8D) [the first group], the processes with the rate coefficients (at temperature T = 6000 K) of the values 4.38 × 10-8, 2.72 × 10-8, 1.98 × 10-8, and 1.59 × 10-8 cm3/ s, respectively, that is, with the rate coefficients exceeding 10-8 cm3/ s. The processes with moderate rate coefficients, that is, with values between 10-10 and 10-8 cm3/ s include many excitation, de-excitation, mutual neutralization and ion-pair formation processes. In addition to other processes involving the atomic states from the first group, the processes from the second group include those involving the following atomic states: Mn(3d5(6S)4s4p (1P°) y 6P°), Mn(3d54s(7S)4d e 6D), Mn(3d54s(7S)5p w 6P°), Mn(3d5(4P)4s4p (3P°) y 6D°), Mn(3d5(4G)4s4p (3P°) y 6F°). The processes with the highest and moderate rate coefficients are expected to be important for non-LTE modeling of manganese spectra in stellar atmospheres. Rate coefficients Kif(T) for the excitation, de-excitation, mutual neutralization, and ion-pair formation processes in manganese-hydrogen collisions are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/606/A106
Development and testing of aluminum micro channel heat sink
NASA Astrophysics Data System (ADS)
Kumaraguruparan, G.; Sornakumar, T.
2010-06-01
Microchannel heat sinks constitute an innovative cooling technology for the removal of a large amount of heat from a small area and are suitable for electronics cooling. In the present work, Tool Steel D2 grade milling slitting saw type plain milling cutter is fabricated The microchannels are machined in aluminum work pieces to form the microchannel heat sink using the fabricated milling cutter in an horizontal milling machine. A new experimental set-up is fabricated to conduct the tests on the microchannel heat sink. The heat carried by the water increases with mass flow rate and heat input. The heat transfer coefficient and Nusselt number increases with mass flow rate and increased heat input. The pressure drop increases with Reynolds number and decreases with input heat. The friction factor decreases with Reynolds number and decreases with input heat. The thermal resistance decreases with pumping power and decreases with input heat.
H2/O2 three-body rates at high temperatures
NASA Technical Reports Server (NTRS)
Marinelli, William J.; Kessler, William J.; Carleton, Karen L.
1991-01-01
Hydrogen atoms are produced in the presence of excess O2, and the first-order decay are studied as a function of temperature and pressure in order to obtain the rate coefficient for the three-body reaction between H-atoms and O2. Attention is focused on the kinetic scheme employed as well as the reaction cell and photolysis and probe laser system. A two-photon laser-induced fluorescence technique is employed to detect H-atoms without optical-thickness or O2-absorption problems. Results confirm measurements reported previously for the H + O2 + N2 reaction at 300 K and extend these measurements to higher temperatures. Preliminary data indicate non-Arrehenius-type behavior of this reaction rate coefficient as a function of temperature. Measurements of the rate coefficient for H + O2 + Ar reaction at 300 K give a rate coefficient of 2.1 +/- 0.1 x 10 to the -32nd cm exp 6/molecule sec.
Becerra, Rosa; Boganov, Sergey E; Egorov, Mikhail P; Faustov, Valery I; Krylova, Irina V; Nefedov, Oleg M; Promyslov, Vladimir M; Walsh, Robin
2007-08-21
Time-resolved studies of germylene, GeH(2), and dimethygermylene, GeMe(2), generated by the 193 nm laser flash photolysis of appropriate precursor molecules have been carried out to try to obtain rate coefficients for their bimolecular reactions with dimethylgermane, Me(2)GeH(2), in the gas-phase. GeH(2) + Me(2)GeH(2) was studied over the pressure range 1-100 Torr with SF(6) as bath gas and at five temperatures in the range 296-553 K. Only slight pressure dependences were found (at 386, 447 and 553 K). RRKM modelling was carried out to fit these pressure dependences. The high pressure rate coefficients gave the Arrhenius parameters: log(A/cm(3) molecule(-1) s(-1)) = -10.99 +/- 0.07 and E(a) =-(7.35 +/- 0.48) kJ mol(-1). No reaction could be found between GeMe(2) + Me(2)GeH(2) at any temperature up to 549 K, and upper limits of ca. 10(-14) cm(3) molecule(-1) s(-1) were set for the rate coefficients. A rate coefficient of (1.33 +/- 0.04) x 10(-10) cm(3) molecule(-1) s(-1) was also obtained for GeH(2) + MeGeH(3) at 296 K. No reaction was found between GeMe(2) and MeGeH(3). Rate coefficient comparisons showed, inter alia, that in the substrate germane Me-for-H substitution increased the magnitudes of rate coefficients significantly, while in the germylene Me-for-H substitution decreased the magnitudes of rate coefficients by at least four orders of magnitude. Quantum chemical calculations (G2(MP2,SVP)//B3LYP level) supported these findings and showed that the lack of reactivity of GeMe(2) is caused by a positive energy barrier for rearrangement of the initially formed complexes. Full details of the structures of intermediate complexes and the discussion of their stabilities are given in the paper.
Evaporation for Lithium Bromide Aqueous Solution in a Falling Film Heater under Reduced Pressures
NASA Astrophysics Data System (ADS)
Matsuda, Akira; Ide, Tetsuo; Yukino, Keiji
Experiments on evaporation for water and lithium bromide (LiBr) aqueous solution were made in a externally heated wetted-wall column under reduced pressures. For water, evaporation rate increased slightly as feed rate decreased. The heat transfer coefficients of falling film agreed with those for filmwise condensation. For LiBr solution, evaporation rate decreased and outlet temperature of LiBr solution increased as feed rate decreased. The equations of continuity, diffusion and energy which assume that only water moves to the surface and LiBr doesn't move through falling film of LiBr solution were solved numerically. Calculated values of evaporation rate and outlet temperature of solution agreed with experimental results. The results of this work were compared with pool boiling data reported previously, and it was shown that falling film heater is superior to pool boiling heater concerning heat transfer.
Scavenging and recombination kinetics in a radiation spur: The successive ordered scavenging events
NASA Astrophysics Data System (ADS)
Al-Samra, Eyad H.; Green, Nicholas J. B.
2018-03-01
This study describes stochastic models to investigate the successive ordered scavenging events in a spur of four radicals, a model system based on a radiation spur. Three simulation models have been developed to obtain the probabilities of the ordered scavenging events: (i) a Monte Carlo random flight (RF) model, (ii) hybrid simulations in which the reaction rate coefficient is used to generate scavenging times for the radicals and (iii) the independent reaction times (IRT) method. The results of these simulations are found to be in agreement with one another. In addition, a detailed master equation treatment is also presented, and used to extract simulated rate coefficients of the ordered scavenging reactions from the RF simulations. These rate coefficients are transient, the rate coefficients obtained for subsequent reactions are effectively equal, and in reasonable agreement with the simple correction for competition effects that has recently been proposed.
Factors influencing indoor PM2.5 concentration in rural houses of northern China
NASA Astrophysics Data System (ADS)
Zhang, Xueyan; Chen, Bin
2018-02-01
In traditional houses in rural areas of Northern China, most traditional heating systems, heated by mini-stove in the kitchen, usually take agricultural residues as fuels resources. Besides, burning cave under the ground-floor of a rural house is also widely used. The higher PM2.5 concentration is crisis for human health. In this study, PM2.5 concentration, temperature, relative humidity inside and outside the houses have been measured, moreover the factors impact on I/O rate coefficient has been discussed. The results show that the I/O rate coefficient in the evening is 2.5 times greater than the I/O rate coefficient in the daytime. I/O rate coefficient of PM2.5 concentration is positive related to air temperature difference between indoor and outdoor. In addition, the impact of outdoor wind speed and predominant wind direction on the PM2.5 emission has been studied.
Bellamy, Michael B.; Hiller, Mauritius M.; Dewji, Shaheen A.; ...
2016-02-01
As part of a broader effort to calculate effective dose rate coefficients for external exposure to photons and electrons emitted by radionuclides distributed in air, soil or water, age-specific stylized phantoms have been employed to determine dose coefficients relating dose rate to organs and tissues in the body. In this article, dose rate coefficients computed using the International Commission on Radiological Protection reference adult male voxel phantom are compared with values computed using the Oak Ridge National Laboratory adult male stylized phantom in an air submersion exposure geometry. Monte Carlo calculations for both phantoms were performed for monoenergetic source photonsmore » in the range of 30 keV to 5 MeV. Furthermore, these calculations largely result in differences under 10 % for photon energies above 50 keV, and it can be expected that both models show comparable results for the environmental sources of radionuclides.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bellamy, Michael B.; Hiller, Mauritius M.; Dewji, Shaheen A.
As part of a broader effort to calculate effective dose rate coefficients for external exposure to photons and electrons emitted by radionuclides distributed in air, soil or water, age-specific stylized phantoms have been employed to determine dose coefficients relating dose rate to organs and tissues in the body. In this article, dose rate coefficients computed using the International Commission on Radiological Protection reference adult male voxel phantom are compared with values computed using the Oak Ridge National Laboratory adult male stylized phantom in an air submersion exposure geometry. Monte Carlo calculations for both phantoms were performed for monoenergetic source photonsmore » in the range of 30 keV to 5 MeV. Furthermore, these calculations largely result in differences under 10 % for photon energies above 50 keV, and it can be expected that both models show comparable results for the environmental sources of radionuclides.« less
Atomic Data and Spectral Line Intensities for NI XVII
NASA Technical Reports Server (NTRS)
Bhatia, A. K.; Landi, E.
2011-01-01
Electron impact collision strengths, energy levels, oscillator strengths, and spontaneous radiative decay rates are calculated for Ni XVII. We include in the calculations the 23 lowest configurations, corresponding to 159 fine-structure levels: 3l3l', 3l4l0'' , and 3s5l0''' , with l,l' = s,p,d, l'' = s,p,d, f, and l''' = s,p,d. Collision strengths are calculated at five incident energies for all transitions at varying energies above the threshold of each transition. One additional energy, very close to the threshold of each transition, has also been included. Calculations have been carried out using the Flexible Atomic Code in the distorted wave approximation. Additional calculations have been performed with the University College London suite of codes for comparison. Excitation rate coefficients are calculated as a function of electron temperature by assuming a Maxwellian electron velocity distribution. Using the excitation rate coefficients and the radiative transition rates of the present work, statistical equilibrium equations for level populations are solved at electron densities covering the range of 10(exp 8) - 10(exp 14) / cubic cm and at an electron temperature of logT(sub e)e(K) = 6.5, corresponding to the maximum abundance of Ni XVII. Spectral line intensities are calculated, and their diagnostic relevance is discussed. This dataset will be made available in the next version of the CHIANTI database
Atomic Data and Spectral Line Intensities for Ca IX
NASA Technical Reports Server (NTRS)
Landi, E.; Bhatia, A. K.
2012-01-01
Electron impact collision strengths, energy levels, oscillator strengths and spontaneous radiative decay rates are calculated for Ca IX. We include in the calculations the 33 lowest configurations in the n = 3, 4, 5 complexes, corresponding to 283 fine structure levels in the 3l3l ', 3l4l'' and 3l4l''' configurations, where l,l' = s, p, d, l '' = s, p, d, f and l''' = s, p, d, f, g. Collision strengths are calculated at five incident energies for all transitions: 5.8, 13.6, 24.2, 38.6 and 57.9 Ry above the threshold of each transition. An additional energy, very close to the transition threshold, has been added, whose value is between 0.0055 Ry and 0.23 Ry depending on the levels involved. Calculations have been carried out using the Flexible Atomic Code and the distorted wave approximation. Excitation rate coefficients are calculated as a function of electron temperature by assuming a Maxwellian electron velocity distribution. Using the excitation rate coefficients and the radiative transition rates calculated in the present work, statistical equilibrium equations for level populations are solved at electron densities covering the 10(exp 8)-10(exp 14)/cubic cm range and at an electron temperature of log T(sub e)(K)=5.8, corresponding to the maximum abundance of Ca IX. Spectral line intensities are calculated, and their diagnostic relevance is discussed.
Reaction Event Counting Statistics of Biopolymer Reaction Systems with Dynamic Heterogeneity.
Lim, Yu Rim; Park, Seong Jun; Park, Bo Jung; Cao, Jianshu; Silbey, Robert J; Sung, Jaeyoung
2012-04-10
We investigate the reaction event counting statistics (RECS) of an elementary biopolymer reaction in which the rate coefficient is dependent on states of the biopolymer and the surrounding environment and discover a universal kinetic phase transition in the RECS of the reaction system with dynamic heterogeneity. From an exact analysis for a general model of elementary biopolymer reactions, we find that the variance in the number of reaction events is dependent on the square of the mean number of the reaction events when the size of measurement time is small on the relaxation time scale of rate coefficient fluctuations, which does not conform to renewal statistics. On the other hand, when the size of the measurement time interval is much greater than the relaxation time of rate coefficient fluctuations, the variance becomes linearly proportional to the mean reaction number in accordance with renewal statistics. Gillespie's stochastic simulation method is generalized for the reaction system with a rate coefficient fluctuation. The simulation results confirm the correctness of the analytic results for the time dependent mean and variance of the reaction event number distribution. On the basis of the obtained results, we propose a method of quantitative analysis for the reaction event counting statistics of reaction systems with rate coefficient fluctuations, which enables one to extract information about the magnitude and the relaxation times of the fluctuating reaction rate coefficient, without a bias that can be introduced by assuming a particular kinetic model of conformational dynamics and the conformation dependent reactivity. An exact relationship is established between a higher moment of the reaction event number distribution and the multitime correlation of the reaction rate for the reaction system with a nonequilibrium initial state distribution as well as for the system with the equilibrium initial state distribution.
Mixed ionic and electronic conducting membranes for hydrogen generation and separation
NASA Astrophysics Data System (ADS)
Cui, Hengdong
Dense mixed ionic and electronic conducting (MIEC) membranes are receiving increasing attention due to their potential for application as gas separation membranes to separate oxygen from air. The objective of this work is to study a novel, chemically-assisted separation process that utilizes oxygen-ion and electron-conducting MIECs for generating and separating hydrogen from steam. This research aims at exploring new routes and materials for high-purity hydrogen production for use in fuel cells and hydrogen-based internal combustion (IC) engines. In this approach, hydrocarbon fuel such as methane is fed to one side of the membrane, while steam is fed to the other side. The MIEC membrane separation process involves steam dissociation and oxidation of the fuel. The oxygen ions formed as a result of steam dissociation are transported across the membrane in a coupled transport process with electrons being transported in the opposite direction. Upon reaching the fuel side of the membrane, the oxygen ions oxidize the hydrocarbon. This process results in hydrogen production on the steam side of the membrane. The oxygen partial pressure gradient across the membrane is the driving force for this process. In this work, a novel, dual-phase composite MIEC membrane system comprising of rare-earth doped ceria with high oxygen ion conductivity and donor-doped strontium titanate with high electronic conductivity were investigated. The chemical diffusion coefficient and surface exchange coefficient have been measured using the electrical conductivity relaxation (ECR) technique. These two parameters control the rate of oxygen permeation across the membrane. The permeation data have been fit with a kinetic model that incorporates oxygen surface exchange on two sides of the membrane and bulk transport of oxygen through the membrane. This material has higher bulk diffusion coefficient and surface exchange reaction rate compared to other known MIEC conductors under the process conditions of interest. Over 10 mumol·cm-2·s-1 (micromoles per square cm per second) of area specific hydrogen flux has been achieved employing a membrane of this material with thickness of 0.2 mm. This flux is several orders of magnitude higher than the hydrogen generation rates reported using other MIEC materials under similar operating conditions.
[Role of "Health" National project in improvement of health parameters in working population].
Bykovskaia, T Iu
2011-01-01
The author analyzed results of "Health" National project accomplishment in Rostov region over 2006-2009. Findings are that quality of primary medical care has improved, material and technical basis of municipal health care institutions has progressed, salary of primary health care division specialists has increased. Over this period, infant mortality and mortality among able-bodied population in the region has decreased, birth rate has increased, coefficient of natural loss of population has reduced, life expectancy has increased.
An Approach for Reducing the Error Rate in Automated Lung Segmentation
Gill, Gurman; Beichel, Reinhard R.
2016-01-01
Robust lung segmentation is challenging, especially when tens of thousands of lung CT scans need to be processed, as required by large multi-center studies. The goal of this work was to develop and assess a method for the fusion of segmentation results from two different methods to generate lung segmentations that have a lower failure rate than individual input segmentations. As basis for the fusion approach, lung segmentations generated with a region growing and model-based approach were utilized. The fusion result was generated by comparing input segmentations and selectively combining them using a trained classification system. The method was evaluated on a diverse set of 204 CT scans of normal and diseased lungs. The fusion approach resulted in a Dice coefficient of 0.9855 ± 0.0106 and showed a statistically significant improvement compared to both input segmentation methods. In addition, the failure rate at different segmentation accuracy levels was assessed. For example, when requiring that lung segmentations must have a Dice coefficient of better than 0.97, the fusion approach had a failure rate of 6.13%. In contrast, the failure rate for region growing and model-based methods was 18.14% and 15.69%, respectively. Therefore, the proposed method improves the quality of the lung segmentations, which is important for subsequent quantitative analysis of lungs. Also, to enable a comparison with other methods, results on the LOLA11 challenge test set are reported. PMID:27447897
Experimental investigate of heat transfer for graphene/water nanofluid in micro heat exchanger
NASA Astrophysics Data System (ADS)
Abd Elhafez, S. E.; Abo-Zahhad, E. M.; El-Shazly, A. H.; El-Kady, M. F.
2017-02-01
In this investigation, the heat transfer characteristics of graphene nano platelets (GNPs)/water nanofluid were studied in a micro heat exchanger (MHE). The micro heat exchanger performance was also examined. The test setup was worked out in the laminar regime with Reynold numbers varying between 100 and 400GNPs/water nanofluid was prepared three different concentrations (0.025 wt. %, 0.05 wt. % and 0.1 wt. %) using ultrasonic wave. The influence of mass flow rate, inlet temperatures and weight fraction on the overall heat transfer coefficient (U) and logarithmic mean temperature (LMTD) were examined. The results showed considerable enhancement on the overall heat transfer coefficient of graphene/water nanofluid and the MHE effectiveness. A maximum enhancement on overall heat transfer coefficient was reached to 150% at Re=100 by 0.1wt% nanofluid. The effectiveness of micro heat exchanger was enhanced by increase weight fraction of graphene nanoparticle. Moreover, the experimental results showed that 0.1 wt. % GNPs/water nanofluid, flowing through MHE, has had high pressure drop, and pumping power, when it has been compared with 0.5 wt. % and 0.025 wt.%.
Camper, Anne K.; Hayes, Jason T.; Sturman, Paul J.; Jones, Warren L.; Cunningham, Alfred B.
1993-01-01
Three strains of Pseudomonas fluorescens with different motility rates and adsorption rate coefficients were injected into porous-medium reactors packed with l-mm-diameter glass spheres. Cell breakthrough, time to peak concentration, tailing, and cell recovery were measured at three interstitial pore velocities (higher than, lower than, and much lower than the maximal bacterial motility rate). All experiments were done with distilled water to reduce the effects of growth and chemotaxis. Contrary to expectations, motility did not result in either early breakthrough or early time to peak concentration at flow velocities below the motility rate. Bacterial size exclusion effects were shown to affect breakthrough curve shape at the very low flow velocity, but no such effect was seen at the higher flow velocity. The tendency of bacteria to adsorb to porous-medium surfaces, as measured by adsorption rate coefficients, profoundly influenced transport characteristics. Cell recoveries were shown to be correlated with the ratio of advective to adsorptive transport in the reactors. Adsorption rate coefficients were found to be better predictors of microbial transport phenomena than individual characteristics, such as size, motility, or porous-medium hydrodynamics. PMID:16349075
Ando, Yukako; Kataoka, Tsuyoshi; Okamura, Hitoshi; Tanaka, Katsutoshi; Kobayashi, Toshio
2013-12-01
The purpose of this research is to verify the reliability and validity of a job stressor scale for nurses caring for patients with intractable neurological diseases. A mail survey was conducted using a self-report questionnaire. The subjects were 263 nurses and assistant nurses working in wards specializing in intractable neurological diseases. The response rate was 71.9% (valid response rate, 66.2%). With regard to reliability, internal consistency and stability were assessed. Internal consistency was examined via Cronbach's alpha. For stability, the test-retest method was performed and stability was examined via intraclass correlation coefficients. With regard to validity, factor validity, criterion-related validity, and content validity were assessed. Exploratory factor analysis was used for factor validity. For criterion-related validity, an existing scale was used as an external criterion; concurrent validity was examined via Spearman's rank correlation coefficients. As a result of analysis, there were 26 items in the scale created with an eight factor structure. Cronbach's a for the 26 items was 0.90; with the exception of two factors, alpha for all of the individual sub-factors was high at 0.7 or higher. The intraclass correlation coefficient for the 26 items was 0.89 (p < 0.001). With regard to criterion-related validity, concurrent validity was confirmed and the correlation coefficient with an external criterion was 0.73 (p < 0.001). For content validity, subjects who responded that "The questionnaire represents a stressor well or to a degree" accounted for 81% of the total responses. Reliability and validity were confirmed, so the scale created in the current research is a usable scale.
Castiglioni, Paolo; Di Rienzo, Marco; Radaelli, Alberto
2013-11-01
Fractal analysis is a promising tool for assessing autonomic influences on heart rate (HR) and blood pressure (BP) variability. The temporal spectrum of scale coefficients, α(t), was recently proposed to describe the cardiovascular fractal dynamics. Aim of our work is to evaluate sympathetic influences on cardiovascular variability analyzing α(t) and spectral powers of HR and BP after ganglionic blockade. BP was recorded in 11 rats before and after autonomic blockade by hexamethonium infusion (HEX). Systolic and diastolic BP, pulse pressure and pulse interval were derived beat-by-beat. Segments longer than 5 min were selected at baseline and HEX to estimate power spectra and α(t). Comparisons were made by paired t-test. HEX reduced all spectral components of systolic and diastolic BP, the reduction being particularly significant around the frequency of Mayer waves; it induced a reduction on α(t) coefficients at t<2s and an increase on coefficients at t>8s. HEX reduced only slower components of pulse interval power spectrum, but decreased significantly faster scale coefficients (t<8s). HEX only marginally affected pulse pressure variability. Results indicate that the sympathetic outflow contributes to BP fractal dynamics with fractional Gaussian noise (α<1) at longer scales and fractional Brownian motion (α>1) at shorter scales. Ganglionic blockade also removes a fractional Brownian motion component at shorter scales from HR dynamics. Results may be explained by the characteristic time constants between sympathetic efferent activity and cardiovascular effectors. Therefore fractal analysis may complete spectral analysis with information on the correlation structure of the data. Copyright © 2013 Elsevier B.V. All rights reserved.
Improving gross count gamma-ray logging in uranium mining with the NGRS probe
NASA Astrophysics Data System (ADS)
Carasco, C.; Pérot, B.; Ma, J.-L.; Toubon, H.; Dubille-Auchère, A.
2018-01-01
AREVA Mines and the Nuclear Measurement Laboratory of CEA Cadarache are collaborating to improve the sensitivity and precision of uranium concentration measurement by means of gamma ray logging. The determination of uranium concentration in boreholes is performed with the Natural Gamma Ray Sonde (NGRS) based on a NaI(Tl) scintillation detector. The total gamma count rate is converted into uranium concentration using a calibration coefficient measured in concrete blocks with known uranium concentration in the AREVA Mines calibration facility located in Bessines, France. Until now, to take into account gamma attenuation in a variety of boreholes diameters, tubing materials, diameters and thicknesses, filling fluid densities and compositions, a semi-empirical formula was used to correct the calibration coefficient measured in Bessines facility. In this work, we propose to use Monte Carlo simulations to improve gamma attenuation corrections. To this purpose, the NGRS probe and the calibration measurements in the standard concrete blocks have been modeled with MCNP computer code. The calibration coefficient determined by simulation, 5.3 s-1.ppmU-1 ± 10%, is in good agreement with the one measured in Bessines, 5.2 s-1.ppmU-1. Based on the validated MCNP model, several parametric studies have been performed. For instance, the rock density and chemical composition proved to have a limited impact on the calibration coefficient. However, gamma self-absorption in uranium leads to a nonlinear relationship between count rate and uranium concentration beyond approximately 1% of uranium weight fraction, the underestimation of the uranium content reaching more than a factor 2.5 for a 50 % uranium weight fraction. Next steps will concern parametric studies with different tubing materials, diameters and thicknesses, as well as different borehole filling fluids representative of real measurement conditions.
NASA Astrophysics Data System (ADS)
Ali, Mubarak; Hamzah, Esah Binti; Hj. Mohd Toff, Mohd Radzi
A study has been made on TiN coatings deposited on D2 tool steel substrates by using commercially available cathodic arc evaporation, physical vapor deposition technique. The goal of this work is to determine the usefulness of TiN coatings in order to improve the micro-Vickers hardness, coefficient of friction and surface roughness of TiN coating deposited on tool steel, which is vastly use in tool industry for various applications. A pin-on-disc test was carried out to study the coefficient of friction versus sliding distance of TiN coating at various ion etching rates. The tribo-test showed that the minimum value recorded for friction coefficient was 0.386 and 0.472 with standard deviation of 0.056 and 0.036 for the coatings deposited at zero and 16 min ion etching. The differences in friction coefficient and surface roughness was mainly associated with the macrodroplets, which was produced during etching stage. The coating deposited for 16 min metal ion etching showed the maximum hardness, i.e., about five times higher than uncoated one and 1.24 times to the coating deposited at zero ion etching. After friction test, the wear track was observed by using field emission scanning electron microscope. The coating deposited for zero ion etching showed small amounts of macrodroplets as compared to the coating deposited for 16 min ion etching. The elemental composition on the wear scar were investigated by means of energy dispersive X-ray, indicate no further TiN coating on wear track. A considerable improvement in TiN coatings was recorded as a function of various ion etching rates.
Collisional-radiative model including recombination processes for W27+ ion★
NASA Astrophysics Data System (ADS)
Murakami, Izumi; Sasaki, Akira; Kato, Daiji; Koike, Fumihiro
2017-10-01
We have constructed a collisional-radiative (CR) model for W27+ ions including 226 configurations with n ≤ 9 and ł ≤ 5 for spectroscopic diagnostics. We newly include recombination processes in the model and this is the first result of extreme ultraviolet spectrum calculated for recombining plasma component. Calculated spectra in 40-70 Å range in ionizing and recombining plasma components show similar 3 strong lines and 1 line weak in recombining plasma component at 45-50 Å and many weak lines at 50-65 Å for both components. Recombination processes do not contribute much to the spectrum at around 60 Å for W27+ ion. Dielectronic satellite lines are also minor contribution to the spectrum of recombining plasma component. Dielectronic recombination (DR) rate coefficient from W28+ to W27+ ions is also calculated with the same atomic data in the CR model. We found that larger set of energy levels including many autoionizing states gave larger DR rate coefficients but our rate agree within factor 6 with other works at electron temperature around 1 keV in which W27+ and W28+ ions are usually observed in plasmas. Contribution to the Topical Issue "Atomic and Molecular Data and their Applications", edited by Gordon W.F. Drake, Jung-Sik Yoon, Daiji Kato, and Grzegorz Karwasz.
Costa, M L; Santos, M C R; Carrapiço, F; Pereira, A L
2009-08-01
The results of using the nitrogen fixing symbiotic system Azolla-Anabaena to improve the quality of treated urban wastewater, particularly on what concerns phosphorus removal efficiencies (40-65%), obtained in continuous assays performed during the past few years and presented earlier, were very promising. Nevertheless, the presence of combined nitrogen in some wastewaters can compromise the treatment efficiency. The main goal of this work was to compare plants behaviour in wastewater and in mineral media with and without added nitrogen. Azolla filiculoides's specific growth rates in wastewater and in mineral media without added nitrogen or with low nitrate concentration were very similar (0.122 d(-1)-0.126 d(-1)), but decreased in the presence of ammonium (0.100 d(-1)). The orthophosphate removal rate coefficients were similar in all the growth media (0.210 d(-1)-0.232 d(-1)), but ammonium removal rate coefficient in wastewater was higher (0.117 d(-1)) than in mineral medium using that source of nitrogen (0.077 d(-1)). The ammonium present in wastewater, despite its high concentration (34 mg NL(-1)), didn't seem to inhibit growth and nitrogen fixation, however, in mineral media, ammonium (40 mg NL(-1)) was found to induce, respectively, 18% and 46% of inhibition.
Theoretical Analysis of Drug Dissolution: I. Solubility and Intrinsic Dissolution Rate.
Shekunov, Boris; Montgomery, Eda Ross
2016-09-01
The first-principles approach presented in this work combines surface kinetics and convective diffusion modeling applied to compounds with pH-dependent solubility and in different dissolution media. This analysis is based on experimental data available for approximately 100 compounds of pharmaceutical interest. Overall, there is a linear relationship between the drug solubility and intrinsic dissolution rate expressed through the total kinetic coefficient of dissolution and dimensionless numbers defining the mass transfer regime. The contribution of surface kinetics appears to be significant constituting on average ∼20% resistance to the dissolution flux in the compendial rotating disk apparatus at 100 rpm. The surface kinetics contribution becomes more dominant under conditions of fast laminar or turbulent flows or in cases when the surface kinetic coefficient may decrease as a function of solution composition or pH. Limitations of the well-known convective diffusion equation for rotating disk by Levich are examined using direct computational modeling with simultaneous dissociation and acid-base reactions in which intrinsic dissolution rate is strongly dependent on pH profile and solution ionic strength. It is shown that concept of diffusion boundary layer does not strictly apply for reacting/interacting species and that thin-film diffusion models cannot be used quantitatively in general case. Copyright © 2016. Published by Elsevier Inc.
Acheampong, Mike A; Pereira, Joana P C; Meulepas, Roel J W; Lens, Piet N L
2012-01-01
Adsorption kinetic studies are of great significance in evaluating the performance of a given adsorbent and gaining insight into the underlying mechanism. This work investigated the sorption kinetics of Cu(II) on to coconut shell and Moringa oleifera seeds using batch techniques. To understand the mechanisms of the biosorption process and the potential rate-controlling steps, kinetic models were used to fit the experimental data. The results indicate that kinetic data were best described by the pseudo-second-order model with correlation coefficients (R2) of 0.9974 and 0.9958 for the coconut shell and Moringa oleifera seeds, respectively. The initial sorption rates obtained for coconut shell and Moringa oleifera seeds were 9.6395 x 10(-3) and 8.3292 x 10(-2) mg g(-1) min(-1), respectively. The values of the mass transfer coefficients obtained for coconut shell (1.2106 x 10(-3) cm s(-1)) and Moringa oleifera seeds (8.965 x 10(-4) cm s(-1)) indicate that the transport of Cu(II) from the bulk liquid to the solid phase was quite fast for both materials investigated. The results indicate that intraparticle diffusion controls the rate of sorption in this study; however, film diffusion cannot be neglected, especially at the initial stage of sorption.
Rotational relaxation of CS by collision with ortho- and para-H{sub 2} molecules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Denis-Alpizar, Otoniel; Departamento de Física, Universidad de Matanzas, Matanzas 40100; Stoecklin, Thierry, E-mail: t.stoecklin@ism.u-bordeaux1.fr
Quantum mechanical investigation of the rotationally inelastic collisions of CS with ortho- and para-H{sub 2} molecules is reported. The new global four-dimensional potential energy surface presented in our recent work is used. Close coupling scattering calculations are performed in the rigid rotor approximation for ortho- and para-H{sub 2} colliding with CS in the j = 0–15 rotational levels and for collision energies ranging from 10{sup −2} to 10{sup 3} cm{sup −1}. The cross sections and rate coefficients for selected rotational transitions of CS are compared with the ones previously reported for the collision of CS with He. The largest discrepanciesmore » are observed at low collision energy, below 1 cm{sup −1}. Above 10 cm{sup −1}, the approximation using the square root of the relative mass of the colliders to calculate the cross sections between a molecule and H{sub 2} from the data available with {sup 4}He is found to be a good qualitative approximation. The rate coefficients calculated with the electron gas model for the He-CS system show more discrepancy with our accurate results. However, scaling up these rates by a factor of 2 gives a qualitative agreement.« less
The solid-phase diffusion coefficient (Dm) and material-air partition coefficient (Kma) are key parameters for characterizing the sources and transport of semivolatile organic compounds (SVOCs) in the indoor environment. In this work, a new experimental method was developed to es...
NASA Astrophysics Data System (ADS)
Baasandorj, M.; Hall, B. D.; Burkholder, J. B.
2012-12-01
The contribution of atmospherically persistent (long-lived) greenhouse gases to the radiative forcing of Earth has increased over the past several decades. The impact of highly fluorinated, saturated compounds, in particular perfluorinated compounds, on climate change is a concern because of their long atmospheric lifetimes, which are primarily determined by stratospheric loss processes, as well as their strong absorption in the infrared "window" region. A potentially key stratospheric loss process for these compounds is their gas-phase reaction with electronically excited oxygen atoms, O(1D). Therefore, accurate reaction rate coefficient data is desired for input to climate change models. In this work, rate coefficients, k, were measured for the reaction of O(1D) with several key long-lived greenhouse gases, namely NF3, SF5CF3, CHF3 (HFC-23), C2F6, c-C4F8, n-C5F12, and n-C6F14. Room temperature rate coefficients for the total reaction, kTot, corresponding to loss of O(1D), and reactive channel, kR, corresponding to the loss of the reactant compound, were measured for NF3 and SF5CF3 using competitive reaction and relative rate methods, respectively. kR was measured for the CHF3 reaction and improved upper-limits were determined for the perfluorinated compounds included in this study. For NF3, kTot was determined to be (2.55 ± 0.38) × 10-11 cm3 molecule-1 s-1 and kR, which was measured using CF3Cl, N2O, CF2ClCF2Cl (CFC-114), and CF3CFCl2 (CFC-114a) as reference compounds, was determined to be (2.21 ± 0.33) × 10-11 cm3 molecule-1 s-1. For SF5CF3, kTot = (3.24 ± 0.50) × 10-13 cm3 molecule-1 s-1 and kR < 5.8 × 10×14 cm3 molecule-1 s-1 were measured, where kR is a factor of three lower than the current recommendation of kTot for use in atmospheric modeling. For CHF3 kR was determined to be (2.35 ± 0.35) × 10-12 cm3 molecule-1 s-1, which corresponds to a reactive channel yield of 0.26 ± 0.04, and resolves a large discrepancy among previously reported values. The quoted uncertainties are 2σ and include estimated systematic errors. Upper-limits for kR for the C2F6, c-C4F8, n-C5F12, and n-C6F14 reactions were determined to be 3.0, 3.5, 5.0, and 16 (in units of 10-14 cm3 molecule-1 s-1), respectively. The results from this work are compared with results from previous studies. As part of this work, infrared absorption band strengths for NF3 and SF5CF3 were measured and found to be in good agreement with recently reported values.
Wolfensberger, Adrian; Vuistiner, Philippe; Konzelmann, Michel; Plomb-Holmes, Chantal; Léger, Bertrand; Luthi, François
2016-09-01
Validated clinician outcome scores are considered less associated with psychosocial factors than patient-reported outcome measurements (PROMs). This belief may lead to misconceptions if both instruments are related to similar factors. We asked: In patients with chronic shoulder pain, what biopsychosocial factors are associated (1) with PROMs, and (2) with clinician-rated outcome measurements? All new patients between the ages of 18 and 65 with chronic shoulder pain from a unilateral shoulder injury admitted to a Swiss rehabilitation teaching hospital between May 2012 and January 2015 were screened for potential contributing biopsychosocial factors. During the study period, 314 patients were screened, and after applying prespecified criteria, 158 patients were evaluated. The median symptom duration was 9 months (interquartile range, 5.5-15 months), and 72% of the patients (114 patients) had rotator cuff tears, most of which were work injuries (59%, 93 patients) and were followed for a mean of 31.6 days (SD, 7.5 days). Exclusion criteria were concomitant injuries in another location, major or minor upper limb neuropathy, and inability to understand the validated available versions of PROMs. The PROMs were the DASH, the Brief Pain Inventory, and the Patient Global Impression of Change, before and after treatment (physiotherapy, cognitive therapy and vocational training). The Constant-Murley score was used as a clinician-rated outcome measurement. Statistical models were used to estimate associations between biopsychosocial factors and outcomes. Greater disability on the DASH was associated with psychological factors (Hospital Anxiety and Depression Scale, Pain Catastrophizing Scale combined coefficient, 0.64; 95% CI, 0.25-1.03; p = 0.002) and social factors (language, professional qualification combined coefficient, -6.15; 95% CI, -11.09 to -1.22; p = 0.015). Greater pain on the Brief Pain Inventory was associated with psychological factors (Hospital Anxiety and Depression Scale, Pain Catastrophizing Scale combined coefficient, 0.076; 95% CI, 0.021-0.13; p = 0.006). Poorer impression of change was associated with psychological factors (Hospital Anxiety and Depression Scale, Pain Catastrophizing Scale, Tampa Scale of Kinesiophobia coefficient, 0.93; 95% CI, 0.87-0.99; p = 0.026) and social factors (education, language, and professional qualification coefficient, 6.67; 95% CI, 2.77-16.10; p < 0.001). Worse clinician-rated outcome was associated only with psychological factors (Hospital Anxiety and Depression Scale (depression only), Pain Catastrophizing Scale, Tampa Scale of Kinesiophobia combined coefficient, -0.35; 95% CI, -0.58 to -0.12; p = 0.003). Depressive symptoms and catastrophizing appear to be key factors influencing PROMs and clinician-rated outcomes. This study suggests revisiting the Constant-Murley score. Level III, prognostic study.
Channel specific rate constants for reactions of O(1D) with HCl and HBr
NASA Technical Reports Server (NTRS)
Wine, P. H.; Wells, J. R.; Ravishankara, A. R.
1986-01-01
The absolute rate coefficients and product yields for reactions of O(1D) with HCl(1) and HBr(2) at 287 K are presently determined by means of the time-resolved resonance fluorescence detection of O(3P) and H(2S) in conjunction with pulsed laser photolysis of O3/HX/He mixtures. Total rate coefficients for O(1D) removal are found to be, in units of 10 to the -10th cu cm/molecule per sec, k(1) = 1.50 + or - 0.18 and k(2) 1.48 + or - 0.16; the absolute accuracy of these rate coefficients is estimated to be + or - 20 percent.
A review of reaction rates in high temperature air
NASA Technical Reports Server (NTRS)
Park, Chul
1989-01-01
The existing experimental data on the rate coefficients for the chemical reactions in nonequilibrium high temperature air are reviewed and collated, and a selected set of such values is recommended for use in hypersonic flow calculations. For the reactions of neutral species, the recommended values are chosen from the experimental data that existed mostly prior to 1970, and are slightly different from those used previously. For the reactions involving ions, the recommended rate coefficients are newly chosen from the experimental data obtained more recently. The reacting environment is assumed to lack thermal equilibrium, and the rate coefficients are expressed as a function of the controlling temperature, incorporating the recent multitemperature reaction concept.
Vokac, Z; Gundersen, N; Magnus, P; Jebens, E; Bakka, T
1980-09-01
The round the clock urinary excretion rates of mercury were assessed for two series of unconventional patterns of activity and sleep in subjects who were not exposed to occupational, medical, or other obvious sources of mercury. In the first series the urine was collected in 3-h periods from six subjects during the first and last 2 d of a four-week, continuous 6-h shift (car ferry, watches either 0800--1400 and 2000--0200 or 1400--2000 and 0200--0800). In the second series the urine was collected in 4-h periods from five subjects working an 8-h experimental rotation shift compressed into 5 d (work two mornings--8-h interval--work two nights--8-h interval--work two afternoons). The mean daily excretion rate of the 11 subjects (48 investigation days, 334 urine samples) was 14.5 pmol of mercury/min (range 5.5--24.4 pmol of mercury/min). The mercury excretion oscillated regularly during 24 h by +/- 20--25% of the individual's daily mean excretion rates. The peak excretion rates were found at 0652 in the first and 0642 in the second series (cosinor treatment). Due to the circadian rhythm the mean 24-h excretion rates were best represented (correlation coefficient 0.92) by analyses of urine produced around noon (spot samples, collection periods 1100--1400 and 1000-1400, respectively). The circadian oscillations of mercury excretion were not influenced by the widely different and varying activity-sleep patterns of the two series. The rhythmicity of potassium excretion (peaks at around 1400) was more irregular. The stable oscillations of mercury excretion contrasted most with the excretion of adrenaline and noradrenaline, which, without losing the basic 24-h rhythmicity, closely followed the unconventional patterns of activity and sleep.
Reliability of the AMA Guides to the Evaluation of Permanent Impairment.
Forst, Linda; Friedman, Lee; Chukwu, Abraham
2010-12-01
AMA's Guides to the Evaluation of Permanent Impairment is used to rate loss of function and determine compensation and ability to work after injury or illness; however, there are few studies that evaluate reliability or construct validity. To evaluate the reliability of the fifth and sixth editions for back injury; to determine best methods for further study. Intra-class correlation coefficients within and between raters were relatively high. There was wider variability for individual cases. Impairment ratings were lower and correlated less well for the sixth edition, though confidence intervals overlapped. The sixth edition may not be an improvement over the fifth. A research agenda should include investigations of reliability and construct validity for different body sites and organ systems along the entire rating scale and among different categories of raters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laporta, V.; Celiberto, R.; Tennyson, J.
Rate coefficients for dissociative electron attachment and electron-impact dissociation processes, involving vibrationally excited molecular oxygen, are presented. Analytical fits of the calculated numerical data, useful in the applications, are also provided.
Isotopic effects in the collision of CH+ with He
NASA Astrophysics Data System (ADS)
Werfelli, Ghofran; Balança, Christian; Stoecklin, Thierry; Kerkeni, Boutheïna; Feautrier, Nicole
2017-07-01
Deuterated species are proved to be helpful in understanding the physical and chemical properties in various astrophysical environments. The present study is dedicated to the rotational excitation of CD+ by collision with 4He and to the comparison between CD+-He and CH+-He rate coefficients. Close coupling CD+-He rotational cross-sections are calculated within the rigid-body approach for collision energies up to 3000 cm-1 and the corresponding rate coefficients are evaluated for the transitions of levels up to j = 10 and temperatures up to 300 K. Significant differences are found between the rate coefficients of the two isotopologues.
Theoretical characteristics of two-dimensional supersonic control surfaces
NASA Technical Reports Server (NTRS)
Morrissette, Robert R; Oborny, Lester F
1951-01-01
The "Busemann second-order-approximation theory" for the pressure distribution over a two-dimensional airfoil in supersonic flow was used to determine some of the aerodynamic characteristics of uncambered symmetrical parabolic and double-wedge airfoils with leading-edge and trailing-edge flaps. The characteristics presented and discussed in this paper are: flap effectiveness factor, rate of change of hinge-moment coefficient with flap deflection, rate of change of the pitching-moment coefficient with flap deflection, rate of change of the pitching-moment coefficient about the mid chord with flap deflection, and the location of the center of pressure of the airfoil-flap combination.
NASA Technical Reports Server (NTRS)
Torr, D. G.; Orsini, N.
1978-01-01
The Atmosphere Explorer (AE) data are reexamined in the light of new laboratory measurements of the N2(+) recombination rate coefficient alpha. The new measurements support earlier measurements which yielded values of alpha significantly lower than the AE values. It is found that the values for alpha determined from the satellite data can be reconciled with the laboratory measurements, if the charge exchange rate coefficient for O(+)(2D) with N2 is less than one-quarter of that derived in the laboratory by Rutherford and Vroom (1971).
NASA Astrophysics Data System (ADS)
Qiu, Jie; Cheng, Zhi-Wen; Zhu, Xi-Ming; Pu, Yi-Kang
2018-04-01
The rate coefficients for the electron-impact transfer from Kr(1s5) to Kr(1s4) and from Kr(1s3) to Kr(1s2) are measured in the electron temperature (T e) range between 0.07 eV and 1 eV. In the afterglow of a capacitive krypton discharge at a fixed pressure of 20 mTorr and a peak rf power ranging from 4 to 128 W, the densities of four krypton 1s states, the electron temperature and the electron density are measured by diode laser absorption, a Langmuir probe and a microwave interferometer, respectively. With these measured quantities, the rate coefficients are obtained from a population model for krypton metastable states. The measured rate coefficients are compared with those derived from the excitation cross sections of Kr metastable states calculated by different R-matrix models. It is found that our results agree best with that from Allan et al [1]. Moreover, we analyze the assumptions made in the population model and discuss their possible impact on the accuracy of the measured rate coefficients, especially for the low T e (0.1-0.2 eV) range and a higher T e (0.4-1 eV) range.
Capture and dissociation in the complex-forming CH + H2 → CH2 + H, CH + H2 reactions.
González, Miguel; Saracibar, Amaia; Garcia, Ernesto
2011-02-28
The rate coefficients for the capture process CH + H(2)→ CH(3) and the reactions CH + H(2)→ CH(2) + H (abstraction), CH + H(2) (exchange) have been calculated in the 200-800 K temperature range, using the quasiclassical trajectory (QCT) method and the most recent global potential energy surface. The reactions, which are of interest in combustion and in astrochemistry, proceed via the formation of long-lived CH(3) collision complexes, and the three H atoms become equivalent. QCT rate coefficients for capture are in quite good agreement with experiments. However, an important zero point energy (ZPE) leakage problem occurs in the QCT calculations for the abstraction, exchange and inelastic exit channels. To account for this issue, a pragmatic but accurate approach has been applied, leading to a good agreement with experimental abstraction rate coefficients. Exchange rate coefficients have also been calculated using this approach. Finally, calculations employing QCT capture/phase space theory (PST) models have been carried out, leading to similar values for the abstraction rate coefficients as the QCT and previous quantum mechanical capture/PST methods. This suggests that QCT capture/PST models are a good alternative to the QCT method for this and similar systems.
Fine-structure relaxation of O(3P) induced by collisions with He, H and H2
NASA Astrophysics Data System (ADS)
Lique, F.; Kłos, J.; Alexander, M. H.; Le Picard, S. D.; Dagdigian, P. J.
2018-02-01
The excitation of fine-structure levels of O(3P) by collisions is an important cooling process in the interstellar medium (ISM). We investigate here spin-orbit (de-)excitation of O(3Pj, j = 0, 1, 2) induced by collisions with He, H and H2 based on quantum scattering calculations of the relevant rate coefficients in the 10-1000 K temperature range. The underlying potential energy surfaces are derived from highly correlated abinitio calculations. Significant differences were found with the rate coefficients currently used in astrophysical applications. In particular, our new rate coefficients for collisions with H are up to a factor of 5 lower. Radiative transfer computations allow the assessment of the astrophysical impact of these new rate coefficients. In the case of molecular clouds, the new data are found to increase slightly the flux of the 3P1 → 3P2, while decreasing the flux of the 3P0 → 3P1 line. In the case of atomic clouds, the flux of both lines is predicted to decrease. The new rate coefficients are expected to impact significantly the modelling of cooling in astrophysical environments while also allowing new insights into oxygen chemistry in the ISM.
Liu, Zhijian; Liu, Kejun; Li, Hao; Zhang, Xinyu; Jin, Guangya; Cheng, Kewei
2015-01-01
Measurements of heat collection rate and heat loss coefficient are crucial for the evaluation of in service water-in-glass evacuated tube solar water heaters. However, conventional measurement requires expensive detection devices and undergoes a series of complicated procedures. To simplify the measurement and reduce the cost, software based on artificial neural networks for measuring heat collection rate and heat loss coefficient of water-in-glass evacuated tube solar water heaters was developed. Using multilayer feed-forward neural networks with back-propagation algorithm, we developed and tested our program on the basis of 915 measured samples of water-in-glass evacuated tube solar water heaters. This artificial neural networks-based software program automatically obtained accurate heat collection rate and heat loss coefficient using simply "portable test instruments" acquired parameters, including tube length, number of tubes, tube center distance, heat water mass in tank, collector area, angle between tubes and ground and final temperature. Our results show that this software (on both personal computer and Android platforms) is efficient and convenient to predict the heat collection rate and heat loss coefficient due to it slow root mean square errors in prediction. The software now can be downloaded from http://t.cn/RLPKF08.
Fundamental Studies of Droplet Interactions in Dense Sprays
1992-12-31
correlations for the drag coefficients, Nusselt numbers, and Sherwood numbers for hydrocarbon fuel droplets in dense sprays were obtained. 14. SUBJECYTEM...tions for the drag coefficients, Nusselt numbers, and Sherwood numbers for hydrocarbon fuel droplets in dense sprays were obtained. Nomenclature a...the drag coefficient, lift coefficient, moment coefficient, Nusselt number, Sherwood number, and vaporization rates are different from those of an
High-temperature unimolecular decomposition of ethyl propionate
NASA Astrophysics Data System (ADS)
Giri, Binod Raj; AlAbbad, Mohammed; Farooq, Aamir
2016-11-01
This work reports rate coefficients of the thermal unimolecular decomposition reaction of ethyl propionate (EP) behind reflected shock waves over the temperature range of 976-1300 K and pressures of 825-1875 Torr. The reaction progress was monitored by detecting C2H4 near 10.532 μm using CO2 gas laser absorption. In addition, G3//MP2/aug-cc-pVDZ and master equation calculations were performed to assess the pressure- and temperature-dependence of the reaction. Our calculations revealed that C2H4 elimination occurs via a six-centered retro-ene transition state. Our measured rate data are close to the high-pressure limit and showed no discernable temperature fall off.
Suleimanov, Yury V.; Aoiz, F. Javier; Guo, Hua
2016-09-14
This Feature Article presents an overview of the current status of ring polymer molecular dynamics (RPMD) rate theory. We first analyze the RPMD approach and its connection to quantum transition-state theory. We then focus on its practical applications to prototypical chemical reactions in the gas phase, which demonstrate how accurate and reliable RPMD is for calculating thermal chemical reaction rate coefficients in multifarious cases. This review serves as an important checkpoint in RPMD rate theory development, which shows that RPMD is shifting from being just one of recent novel ideas to a well-established and validated alternative to conventional techniques formore » calculating thermal chemical rate coefficients. We also hope it will motivate further applications of RPMD to various chemical reactions.« less
Cold collisions of SH- with He: Potential energy surface and rate coefficients
NASA Astrophysics Data System (ADS)
Bop, C. T.; Trabelsi, T.; Hammami, K.; Mogren Al Mogren, M.; Lique, F.; Hochlaf, M.
2017-09-01
Collisional energy transfer under cold conditions is of great importance from the fundamental and applicative point of view. Here, we investigate low temperature collisions of the SH- anion with He. We have generated a three-dimensional potential energy surface (PES) for the SH-(X1Σ+)-He(1S) van der Waals complex. The ab initio multi-dimensional interaction PES was computed using the explicitly correlated coupled cluster approach with simple, double, and perturbative triple excitation in conjunction with the augmented-correlation consistent-polarized valence triple zeta Gaussian basis set. The PES presents two minima located at linear geometries. Then, the PES was averaged over the ground vibrational wave function of the SH- molecule and the resulting two-dimensional PES was incorporated into exact quantum mechanical close coupling calculations to study the collisional excitation of SH- by He. We have computed inelastic cross sections among the 11 first rotational levels of SH- for energies up to 2500 cm-1. (De-)excitation rate coefficients were deduced for temperatures ranging from 1 to 300 K by thermally averaging the cross sections. We also performed calculations using the new PES for a fixed internuclear SH- distance. Both sets of results were found to be in reasonable agreement despite differences existing at low temperatures confirming that accurate predictions require the consideration of all internal degrees of freedom in the case of molecular hydrides. The rate coefficients presented here may be useful in interpreting future experimental work on the SH- negative ion colliding with He as those recently done for the OH--He collisional system as well as for possible astrophysical applications in case SH- would be detected in the interstellar medium.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kathrotia, T.; Riedel, U.; Fikri, M.
The temporal variation of OH{sup *} (A{sup 2}{sigma}{sup +}) chemiluminescence in hydrogen oxidation chemistry has been studied in a shock tube behind reflected shock waves at temperatures of 1400-3300 K and at a pressure of 1 bar. The aim of the present work is to obtain a validated reaction scheme to describe OH{sup *} formation in the H{sub 2}/O{sub 2} system. Temporal OH{sup *} emission profiles and ignition delay times for lean and stoichiometric H{sub 2}/O{sub 2} mixtures diluted in 97-98% argon were obtained from the shock-tube experiments. Based on a literature review for the hydrogen combustion system, the keymore » reaction considered was H + O + M = OH{sup *} + M. The temperature dependence of the measured peak OH{sup *} emission from the shock tube and the peak OH{sup *} concentration from a homogeneous closed reactor model are compared. Based on these results a reaction rate coefficient of k{sub 1} = (1.5 {+-} 0.4) x 10{sup 13} exp(-25 kJ mol{sup -1}/RT) cm{sup 6} mol{sup -2} s{sup -1} was found for the forward reaction which is slightly higher than the rate coefficient suggested by Hidaka et al. (1982). The comparison of measured and simulated absolute concentrations shows good agreement. Additionally, a one-dimensional laminar premixed low-pressure flame calculation was performed for where absolute OH{sup *} concentration measurements have been reported by Smith et al. (2005). The absolute peak OH{sup *} concentration is fairly well reproduced if the above mentioned rate coefficient is used in the simulation. (author)« less
Determination of 2p Excitation Transfer Rate Coefficient in Neon Gas Discharges
NASA Astrophysics Data System (ADS)
Smith, D. J.; Stewart, R. S.
2001-10-01
We will discuss our theoretical modelling and application of an array of four complementary optical diagnostic techniques for low-temperature plasmas. These are cw laser collisionally-induced fluorescence (LCIF), cw optogalvanic effect (OGE), optical emission spectroscopy (OES) and optical absorption spectroscopy (OAS). We will briefly present an overview of our investigation of neon positive column plasmas for reduced axial electric fields ranging from 3x10-17 Vcm2 to 2x10-16 Vcm2 (3-20 Td), detailing our determination of five sets of important collisional rate coefficients involving the fifteen lowest levels, the 1S0 ground state and the 1s and 2p excited states (in Paschen notation), hence information on several energy regions of the electron distribution function (EDF). The discussion will be extended to show the new results obtained from analysis of the argon positive column over similar reduced fields. Future work includes application of our multi-diagnostic technique to more complex systems, including the addition of molecules for EDF determination. array of four complementary optical diagnostic techniques OGE LCIF determination of five sets of important collisional rate coefficients
Comparison of the goals and MISTELS scores for the evaluation of surgeons on training benches.
Wolf, Rémi; Medici, Maud; Fiard, Gaëlle; Long, Jean-Alexandre; Moreau-Gaudry, Alexandre; Cinquin, Philippe; Voros, Sandrine
2018-01-01
Evaluation of surgical technical abilities is a major issue in minimally invasive surgery. Devices such as training benches offer specific scores to evaluate surgeons but cannot transfer in the operating room (OR). A contrario, several scores measure performance in the OR, but have not been evaluated on training benches. Our aim was to demonstrate that the GOALS score, which can effectively grade in the OR the abilities involved in laparoscopy, can be used for evaluation on a laparoscopic testbench (MISTELS). This could lead to training systems that can identify more precisely the skills that have been acquired or must still be worked on. 32 volunteers (surgeons, residents and medical students) performed the 5 tasks of the MISTELS training bench and were simultaneously video-recorded. Their performance was evaluated with the MISTELS score and with the GOALS score based on the review of the recording by two experienced, blinded laparoscopic surgeons. The concurrent validity of the GOALS score was assessed using Pearson and Spearman correlation coefficients with the MISTELS score. The construct validity of the GOALS score was assessed with k-means clustering and accuracy rates. Lastly, abilities explored by each MISTELS task were identified with multiple linear regression. GOALS and MISTELS scores are strongly correlated (Pearson correlation coefficient = 0.85 and Spearman correlation coefficient = 0.82 for the overall score). The GOALS score proves to be valid for construction for the tasks of the training bench, with a better accuracy rate between groups of level after k-means clustering, when compared to the original MISTELS score (accuracy rates, respectively, 0.75 and 0.56). GOALS score is well suited for the evaluation of the performance of surgeons of different levels during the completion of the tasks of the MISTELS training bench.
Impact of work environment and work-related stress on turnover intention in physical therapists.
Lee, Byoung-Kwon; Seo, Dong-Kwon; Lee, Jang-Tae; Lee, A-Ram; Jeon, Ha-Neul; Han, Dong-Uk
2016-08-01
[Purpose] This study was conducted to provide basic data for solutions to reduce the turnover rate of physical therapists. It should help create efficient personnel and organization management by exploring the impact of the work environment and work-related stress on turnover intention and analyzing the correlation between them. [Subjects and Methods] A survey was conducted with 236 physical therapists working at medical institutions in the Daejeon and Chungcheong areas. For the analysis on the collected data, correlational and linear regression analyses were conducted using the SPSS 18.0 program and Cronbach's alpha coefficient. [Results] The results showed a statistically significant positive correlation between turnover intention and work-related stress but a statistically significant negative correlation respectively between turnover intention and work environment. Work-related stress (β=0.415) had a significant positive impact on turnover intention and work environment (β=-0.387) had a significant negative impact on turnover intention. [Conclusion] To increase satisfaction level with the profession as well as the workplace for physical therapists, improvement of the work environment was the most necessary primary improvement.
Impact of work environment and work-related stress on turnover intention in physical therapists
Lee, Byoung-kwon; Seo, Dong-kwon; Lee, Jang-Tae; Lee, A-Ram; Jeon, Ha-Neul; Han, Dong-Uk
2016-01-01
[Purpose] This study was conducted to provide basic data for solutions to reduce the turnover rate of physical therapists. It should help create efficient personnel and organization management by exploring the impact of the work environment and work-related stress on turnover intention and analyzing the correlation between them. [Subjects and Methods] A survey was conducted with 236 physical therapists working at medical institutions in the Daejeon and Chungcheong areas. For the analysis on the collected data, correlational and linear regression analyses were conducted using the SPSS 18.0 program and Cronbach’s alpha coefficient. [Results] The results showed a statistically significant positive correlation between turnover intention and work-related stress but a statistically significant negative correlation respectively between turnover intention and work environment. Work-related stress (β=0.415) had a significant positive impact on turnover intention and work environment (β=−0.387) had a significant negative impact on turnover intention. [Conclusion] To increase satisfaction level with the profession as well as the workplace for physical therapists, improvement of the work environment was the most necessary primary improvement. PMID:27630432
Izmerov, N F; Tikhonova, G I; Gorchakova, T Iu
2014-01-01
The purpose of the study was to carry out comparative analysis of the status and trends in mortality of male and female population of working age (15-59 (54) years) in Russia and the EU-27. Based on official Russian (Rosstat) data, on the global database of the World Health Organization's cause of death (The WHO Mortality Database, WHOMD) and databases The Human Mortality Database (HMD) of the sex-age composition of the population and the number of deaths from certain causes of death by age and sex standardized (direct method) mortality rates of working age population from selected causes of death for 1990 and 2011 in Russia and the average for the EU-27 were calculated. Analysis of trends in mortality of male and female population of working age in Russia over the past two decades shows that, despite the positive changes in during last six years, in 2011, age-standardized mortality rates remained above the 1990 level for most causes of death. During the same period in the EU-27 mortality in men (15-59 years) and women (15-54 years) increased from almost all causes ofdeath, which led to an even greatergap between Russia and developed countries on this indicator: standardized mortality rate of the male population of Russia in 1990 was higher than in the EU-27 by 2.1 times, and by 2011 the gap had increased to 3.5 times. The women in the 1990 had 1.5 times higher standardized mortality rates, and by 2011 the gap had increased to 2.7 times. Despite a steady decline in the mortality rates of working age population after 2005, its level in 2012 was still higher than the one of 1990 for both men and women, which led to a further increase in the gap between the age-standardized coefficients of mortality rate of working age population in Russia and the countries of European Community-27 (15-59 (54)). Faster reduction of mortality rate in the working age population will preserve Russian population and its labor potential.
Rotational excitation of HCN by para- and ortho-H{sub 2}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vera, Mario Hernández, E-mail: marhvera@gmail.com; InSTEC, Quinta de Los Molinos, Plaza, La Habana 10600; Kalugina, Yulia
Rotational excitation of the hydrogen cyanide (HCN) molecule by collisions with para-H{sub 2}( j = 0, 2) and ortho-H{sub 2}( j = 1) is investigated at low temperatures using a quantum time independent approach. Both molecules are treated as rigid rotors. The scattering calculations are based on a highly correlated ab initio 4-dimensional (4D) potential energy surface recently published. Rotationally inelastic cross sections among the 13 first rotational levels of HCN were obtained using a pure quantum close coupling approach for total energies up to 1200 cm{sup −1}. The corresponding thermal rate coefficients were computed for temperatures ranging from 5 to 100 K.more » The HCN rate coefficients are strongly dependent on the rotational level of the H{sub 2} molecule. In particular, the rate coefficients for collisions with para-H{sub 2}( j = 0) are significantly lower than those for collisions with ortho-H{sub 2}( j = 1) and para-H{sub 2}( j = 2). Propensity rules in favor of even Δj transitions were found for HCN in collisions with para-H{sub 2}( j = 0) whereas propensity rules in favor of odd Δj transitions were found for HCN in collisions with H{sub 2}( j ⩾ 1). The new rate coefficients were compared with previously published HCN-para-H{sub 2}( j = 0) rate coefficients. Significant differences were found due the inclusion of the H{sub 2} rotational structure in the scattering calculations. These new rate coefficients will be crucial to improve the estimation of the HCN abundance in the interstellar medium.« less
Temperature-dependent rate coefficients and theoretical calculations for the OH+Cl2O reaction.
Riffault, Véronique; Clark, Jared M; Hansen, Jaron C; Ravishankara, A R; Burkholder, James B
2010-12-17
Rate coefficients k for the OH+Cl(2)O reaction are measured as a function of temperature (230-370 K) and pressure by using pulsed laser photolysis to produce OH radicals and laser-induced fluorescence to monitor their loss under pseudo-first-order conditions in OH. The reaction rate coefficient is found to be independent of pressure, within the precision of our measurements at 30-100 Torr (He) and 100 Torr (N(2)). The rate coefficients obtained at 100 Torr (He) showed a negative temperature dependence with a weak non-Arrhenius behavior. A room-temperature rate coefficient of k(1)(297 K)=(7.5±1.1)×10(-12) cm(3) molecule(-1) s(-1) is obtained, where the quoted uncertainties are 2σ and include estimated systematic errors. Theoretical methods are used to examine OH···OCl(2) and OH···ClOCl adduct formation and the potential-energy surfaces leading to the HOCl+ClO (1a) and Cl+HOOCl (1d) products in reaction (1) at the hybrid density functional UMPW1K/6-311++G(2df,p) level of theory. The OH···OCl(2) and OH···ClOCl adducts are found to have binding energies of about 0.2 kcal mol(-1). The reaction is calculated to proceed through weak pre-reactive complexes. Transition-state energies for channels (1a) and (1d) are calculated to be about 1.4 and about 3.3 kcal mol(-1) above the energy of the reactants. The results from the present study are compared with previously reported rate coefficients, and the interpretation of the possible non-Arrhenius behavior is discussed.
Theory and simulation of the time-dependent rate coefficients of diffusion-influenced reactions.
Zhou, H X; Szabo, A
1996-01-01
A general formalism is developed for calculating the time-dependent rate coefficient k(t) of an irreversible diffusion-influenced reaction. This formalism allows one to treat most factors that affect k(t), including rotational Brownian motion and conformational gating of reactant molecules and orientation constraint for product formation. At long times k(t) is shown to have the asymptotic expansion k(infinity)[1 + k(infinity) (pie Dt)-1/2 /4 pie D + ...], where D is the relative translational diffusion constant. An approximate analytical method for calculating k(t) is presented. This is based on the approximation that the probability density of the reactant pair in the reactive region keeps the equilibrium distribution but with a decreasing amplitude. The rate coefficient then is determined by the Green function in the absence of chemical reaction. Within the framework of this approximation, two general relations are obtained. The first relation allows the rate coefficient for an arbitrary amplitude of the reactivity to be found if the rate coefficient for one amplitude of the reactivity is known. The second relation allows the rate coefficient in the presence of conformational gating to be found from that in the absence of conformational gating. The ratio k(t)/k(0) is shown to be the survival probability of the reactant pair at time t starting from an initial distribution that is localized in the reactive region. This relation forms the basis of the calculation of k(t) through Brownian dynamics simulations. Two simulation procedures involving the propagation of nonreactive trajectories initiated only from the reactive region are described and illustrated on a model system. Both analytical and simulation results demonstrate the accuracy of the equilibrium-distribution approximation method. PMID:8913584
NASA Astrophysics Data System (ADS)
Perez, Pedro B.; Hamawi, John N.
2017-09-01
Nuclear power plant radiation protection design features are based on radionuclide source terms derived from conservative assumptions that envelope expected operating experience. Two parameters that significantly affect the radionuclide concentrations in the source term are failed fuel fraction and effective fission product appearance rate coefficients. Failed fuel fraction may be a regulatory based assumption such as in the U.S. Appearance rate coefficients are not specified in regulatory requirements, but have been referenced to experimental data that is over 50 years old. No doubt the source terms are conservative as demonstrated by operating experience that has included failed fuel, but it may be too conservative leading to over-designed shielding for normal operations as an example. Design basis source term methodologies for normal operations had not advanced until EPRI published in 2015 an updated ANSI/ANS 18.1 source term basis document. Our paper revisits the fission product appearance rate coefficients as applied in the derivation source terms following the original U.S. NRC NUREG-0017 methodology. New coefficients have been calculated based on recent EPRI results which demonstrate the conservatism in nuclear power plant shielding design.
Liu, Zhijian; Li, Hao; Tang, Xindong; Zhang, Xinyu; Lin, Fan; Cheng, Kewei
2016-01-01
Heat collection rate and heat loss coefficient are crucial indicators for the evaluation of in service water-in-glass evacuated tube solar water heaters. However, the direct determination requires complex detection devices and a series of standard experiments, wasting too much time and manpower. To address this problem, we previously used artificial neural networks and support vector machine to develop precise knowledge-based models for predicting the heat collection rates and heat loss coefficients of water-in-glass evacuated tube solar water heaters, setting the properties measured by "portable test instruments" as the independent variables. A robust software for determination was also developed. However, in previous results, the prediction accuracy of heat loss coefficients can still be improved compared to those of heat collection rates. Also, in practical applications, even a small reduction in root mean square errors (RMSEs) can sometimes significantly improve the evaluation and business processes. As a further study, in this short report, we show that using a novel and fast machine learning algorithm-extreme learning machine can generate better predicted results for heat loss coefficient, which reduces the average RMSEs to 0.67 in testing.
Bacteriophage PRD1 batch experiments to study attachment, detachment and inactivation processes
NASA Astrophysics Data System (ADS)
Sadeghi, Gholamreza; Schijven, Jack F.; Behrends, Thilo; Hassanizadeh, S. Majid; van Genuchten, Martinus Th.
2013-09-01
Knowledge of virus removal in subsurface environments is pivotal for assessing the risk of viral contamination of water resources and developing appropriate protection measures. Columns packed with sand are frequently used to quantify attachment, detachment and inactivation rates of viruses. Since column transport experiments are very laborious, a common alternative is to perform batch experiments where usually one or two measurements are done assuming equilibrium is reached. It is also possible to perform kinetic batch experiments. In that case, however, it is necessary to monitor changes in the concentration with time. This means that kinetic batch experiments will be almost as laborious as column experiments. Moreover, attachment and detachment rate coefficients derived from batch experiments may differ from those determined using column experiments. The aim of this study was to determine the utility of kinetic batch experiments and investigate the effects of different designs of the batch experiments on estimated attachment, detachment and inactivation rate coefficients. The experiments involved various combinations of container size, sand-water ratio, and mixing method (i.e., rolling or tumbling by pivoting the tubes around their horizontal or vertical axes, respectively). Batch experiments were conducted with clean quartz sand, water at pH 7 and ionic strength of 20 mM, and using the bacteriophage PRD1 as a model virus. Values of attachment, detachment and inactivation rate coefficients were found by fitting an analytical solution of the kinetic model equations to the data. Attachment rate coefficients were found to be systematically higher under tumbling than under rolling conditions because of better mixing and more efficient contact of phages with the surfaces of the sand grains. In both mixing methods, more sand in the container yielded higher attachment rate coefficients. A linear increase in the detachment rate coefficient was observed with increased solid-water ratio using tumbling method. Given the differences in the attachment rate coefficients, and assuming the same sticking efficiencies since chemical conditions of the batch and column experiments were the same, our results show that collision efficiencies of batch experiments are not the same as those of column experiments. Upscaling of the attachment rate from batch to column experiments hence requires proper understanding of the mixing conditions. Because batch experiments, in which the kinetics are monitored, are as laborious as column experiments, there seems to be no major advantage in performing batch instead of column experiments.
Why do boomers plan to work longer?
Mermin, Gordon B T; Johnson, Richard W; Murphy, Dan P
2007-09-01
. Recent changes in retirement trends and patterns have raised questions about the likely retirement behavior of baby boomers, the large cohort born between 1946 and 1964. This study examined recent changes in retirement expectations and the factors that drove them. Using data from the Health and Retirement Study, the analysis compared self-reported probabilities of working full time past ages 62 and 65 among workers aged 51 to 56 in 1992 and 2004. The study modeled retirement expectations for both generations and used the estimated regression coefficients to identify the forces that accounted for generational differences. . Between 1992 and 2004, the mean self-reported probability of working full time past age 65 among workers aged 51 to 56 increased from 27% to 33%. Lower rates of retiree health insurance offers from employers, higher levels of educational attainment, and lower rates of defined benefit pension coverage accounted for most of the growth. Given the continued erosion in employer-sponsored retiree health benefits and defined benefit pension plans, boomers will likely remain at work longer than members of the previous generation. Lengthier careers will likely promote economic growth, increase government revenue, and improve individual financial security at older ages.
NASA Astrophysics Data System (ADS)
Saengow, Chaimongkol; Giacomin, A. Jeffrey
2018-03-01
In this paper, we provide a new exact framework for analyzing the most commonly measured behaviors in large-amplitude oscillatory shear flow (LAOS), a popular flow for studying the nonlinear physics of complex fluids. Specifically, the strain rate sweep (also called the strain sweep) is used routinely to identify the onset of nonlinearity. By the strain rate sweep, we mean a sequence of LAOS experiments conducted at the same frequency, performed one after another, with increasing shear rate amplitude. In this paper, we give exact expressions for the nonlinear complex viscosity and the corresponding nonlinear complex normal stress coefficients, for the Oldroyd 8-constant framework for oscillatory shear sweeps. We choose the Oldroyd 8-constant framework for its rich diversity of popular special cases (we list 18 of these). We evaluate the Fourier integrals of our previous exact solution to get exact expressions for the real and imaginary parts of the complex viscosity, and for the complex normal stress coefficients, as functions of both test frequency and shear rate amplitude. We explore the role of infinite shear rate viscosity on strain rate sweep responses for the special case of the corotational Jeffreys fluid. We find that raising η∞ raises the real part of the complex viscosity and lowers the imaginary. In our worked examples, we thus first use the corotational Jeffreys fluid, and then, for greater accuracy, we use the Johnson-Segalman fluid, to describe the strain rate sweep response of molten atactic polystyrene. For our comparisons with data, we use the Spriggs relations to generalize the Oldroyd 8-constant framework to multimode. Our generalization yields unequivocally, a longest fluid relaxation time, used to assign Weissenberg and Deborah numbers to each oscillatory shear flow experiment. We then locate each experiment in the Pipkin space.
Plate-rate laboratory friction experiments reveal potential slip instability on weak faults
NASA Astrophysics Data System (ADS)
Ikari, M.; Kopf, A.
2016-12-01
In earthquake science, it is commonly assumed that earthquakes nucleate on strong patches or "asperities", and data from laboratory friction experiments indicate a tendency for unstable slip (exhibited as velocity-weakening frictional behavior) in strong geologic materials. However, an overwhelming amount of these experiments were conducted at driving velocities ranging from 0.1 µm/s to over 1 m/s. Less data exists for shearing experiments driven at slow velocities on the order of cm/yr (nm/s), approximating plate tectonic rates which represent the natural driving condition on plate boundary faults. Recent laboratory work using samples recovered from the Tohoku region at the Japan Trench, within the high coseismic slip region of the 2011 M9 Tohoku earthquake, showed that the fault is extremely weak with a friction coefficient < 0.2. At sliding velocities of at least 0.1 µm/s mostly velocity-strengthening friction is observed, which is favorable for stable creep, consistent with earlier work. However, shearing at an imposed rate of 8.5 cm/yr produced both velocity-weakening friction and discrete slow slip events, which are likely instances of frictional instabilities or quasi-instabilities. Here, we expand on the Tohoku experiment by conducting cm/yr friction experiments on natural gouges obtained from a variety of other major fault zones obtained by scientific drilling; these include the San Andreas Fault, Costa Rica subduction zone, Nankai Trough (Japan), Barbados subduction zone, Alpine Fault (New Zealand), southern Cascadia, and Woodlark Basin (Papua New Guinea). We focus here on weak fault materials having a friction coefficient of < 0.5. At conventional laboratory driving rates of 0.1-30 µm/s, velocity strengthening is common. However, at cm/yr driving rates we commonly observe velocity-weakening friction and slow slip events, with most samples exhibit both behaviors. These results demonstrate when fault samples are sheared at plate tectonic rates in the laboratory, which best replicates natural forcing conditions, a tendency for unstable slip is revealed. Thus, weak faults should not be considered frictionally stable, but have the ability to participate in earthquake rupture or generate events themselves.
NASA Astrophysics Data System (ADS)
Dashevskaya, E. I.; Litvin, I.; Nikitin, E. E.; Troe, J.
2016-12-01
Rate coefficients for capture of H2(j = 0,1) by H2+ are calculated in perturbed rotor approximation, i.e., at collision energies considerably lower than Bhc (where B denotes the rotational constant of H2). The results are compared with the results from an axially nonadiabatic channel (ANC) approach, the latter providing a very good approximation from the low-temperature Bethe-Wigner to the high temperature Langevin limit. The classical ANC approximation performs satisfactorily at temperatures above 0.1 K. At 0.1 K, the rate coefficient for j =1 is about 25% higher than that for j = 0 while the latter is close to the Langevin rate coefficient. The Bethe-Wigner limit of the rate coefficient for j = 1 is about twice that for j = 0. The analysis of the relocking of the intrinsic angular momentum of H2 during the course of the collision illustrates the significance of relocking in capture dynamics in general.
Homayoon, Zahra; Jambrina, Pablo G; Aoiz, F Javier; Bowman, Joel M
2012-07-14
In a previous paper [P. G. Jambrina et al., J. Chem. Phys. 135, 034310 (2011)] various calculations of the rate coefficient for the Mu + H(2) → MuH + H reaction were presented and compared to experiment. The widely used standard quasiclassical trajectory (QCT) method was shown to overestimate the rate coefficients by several orders of magnitude over the temperature range 200-1000 K. This was attributed to a major failure of that method to describe the correct threshold for the reaction owing to the large difference in zero-point energies (ZPE) of the reactant H(2) and product MuH (∼0.32 eV). In this Communication we show that by performing standard QCT calculations for the reverse reaction and then applying detailed balance, the resulting rate coefficient is in very good agreement with the other computational results that respect the ZPE, (as well as with the experiment) but which are more demanding computationally.
NASA Astrophysics Data System (ADS)
Homayoon, Zahra; Jambrina, Pablo G.; Aoiz, F. Javier; Bowman, Joel M.
2012-07-01
In a previous paper [P. G. Jambrina et al., J. Chem. Phys. 135, 034310 (2011), 10.1063/1.3611400] various calculations of the rate coefficient for the Mu + H2 → MuH + H reaction were presented and compared to experiment. The widely used standard quasiclassical trajectory (QCT) method was shown to overestimate the rate coefficients by several orders of magnitude over the temperature range 200-1000 K. This was attributed to a major failure of that method to describe the correct threshold for the reaction owing to the large difference in zero-point energies (ZPE) of the reactant H2 and product MuH (˜0.32 eV). In this Communication we show that by performing standard QCT calculations for the reverse reaction and then applying detailed balance, the resulting rate coefficient is in very good agreement with the other computational results that respect the ZPE, (as well as with the experiment) but which are more demanding computationally.
NASA Astrophysics Data System (ADS)
Weller, Christian; Herrmann, Hartmut
2015-01-01
Aqueous phase reactivity experiments with the amines dimethylamine (DMA), diethanolamine (DEA) and pyrrolidine (PYL) and their corresponding nitrosamines nitrosodimethylamine (NDMA), nitrosodiethanolamine (NDEA) and nitrosopyrrolidine (NPYL) have been performed. NO3 radical reaction rate coefficients for DMA, DEA and PYL were measured for the first time and are 3.7 × 105, 8.2 × 105 and 8.7 × 105 M-1 s-1, respectively. Rate coefficients for NO3 + NDMA, NDEA and NPYL are 1.2 × 108, 2.3 × 108 and 2.4 × 108 M-1 s-1. Compared to OH radical rate coefficients for reactions with amines, the NO3 radical will most likely not be an important oxidant but it is a potential nighttime oxidant for nitrosamines in cloud droplets or deliquescent particles. Ozone is unreactive towards amines and nitrosamines and upper limits of rate coefficients suggest that aqueous ozone reactions are not important in atmospheric waters.
Lefkimmiatis, Stamatios; Maragos, Petros; Papandreou, George
2009-08-01
We present an improved statistical model for analyzing Poisson processes, with applications to photon-limited imaging. We build on previous work, adopting a multiscale representation of the Poisson process in which the ratios of the underlying Poisson intensities (rates) in adjacent scales are modeled as mixtures of conjugate parametric distributions. Our main contributions include: 1) a rigorous and robust regularized expectation-maximization (EM) algorithm for maximum-likelihood estimation of the rate-ratio density parameters directly from the noisy observed Poisson data (counts); 2) extension of the method to work under a multiscale hidden Markov tree model (HMT) which couples the mixture label assignments in consecutive scales, thus modeling interscale coefficient dependencies in the vicinity of image edges; 3) exploration of a 2-D recursive quad-tree image representation, involving Dirichlet-mixture rate-ratio densities, instead of the conventional separable binary-tree image representation involving beta-mixture rate-ratio densities; and 4) a novel multiscale image representation, which we term Poisson-Haar decomposition, that better models the image edge structure, thus yielding improved performance. Experimental results on standard images with artificially simulated Poisson noise and on real photon-limited images demonstrate the effectiveness of the proposed techniques.
NASA Astrophysics Data System (ADS)
Stephanou, Pavlos S.; Kröger, Martin
2018-05-01
The steady-state extensional viscosity of dense polymeric liquids in elongational flows is known to be peculiar in the sense that for entangled polymer melts it monotonically decreases—whereas for concentrated polymer solutions it increases—with increasing strain rate beyond the inverse Rouse time. To shed light on this issue, we solve the kinetic theory model for concentrated polymer solutions and entangled melts proposed by Curtiss and Bird, also known as the tumbling-snake model, supplemented by a variable link tension coefficient that we relate to the uniaxial nematic order parameter of the polymer. As a result, the friction tensor is increasingly becoming isotropic at large strain rates as the polymer concentration decreases, and the model is seen to capture the experimentally observed behavior. Additional refinements may supplement the present model to capture very strong flows. We furthermore derive analytic expressions for small rates and the linear viscoelastic behavior. This work builds upon our earlier work on the use of the tumbling-snake model under shear and demonstrates its capacity to improve our microscopic understanding of the rheology of entangled polymer melts and concentrated polymer solutions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sivaramakrishnan, R.; Su, M.-C.; Michael, J. V.
2010-09-09
The thermal decomposition of ethanol and its reactions with OH and D have been studied with both shock tube experiments and ab initio transition state theory-based master equation calculations. Dissociation rate constants for ethanol have been measured at high T in reflected shock waves using OH optical absorption and high-sensitivity H-atom ARAS detection. The three dissociation processes that are dominant at high T are: C{sub 2}H{sub 5}OH {yields} C{sub 2}H{sub 4} + H{sub 2}O; C{sub 2}H{sub 5}OH {yields} CH{sub 3} + CH{sub 2}OH; C{sub 2}H{sub 5}OH {yields} C{sub 2}H{sub 5} + OH. The rate coefficient for reaction C was measuredmore » directly with high sensitivity at 308 nm using a multipass optical White cell. Meanwhile, H-atom ARAS measurements yield the overall rate coefficient and that for the sum of reactions B and C, since H-atoms are instantaneously formed from the decompositions of CH{sub 2}OH and C{sub 2}H{sub 5} into CH{sub 2}O + H and C{sub 2}H{sub 4} + H, respectively. By difference, rate constants for reaction 1 could be obtained. One potential complication is the scavenging of OH by unreacted ethanol in the OH experiments, and therefore, rate constants for OH + C{sub 2}H{sub 5}OH {yields} products were measured using tert-butyl hydroperoxide (tBH) as the thermal source for OH. The present experiments can be represented by the Arrhenius expression k = (2.5 {+-} 0.43) x 10{sup -11} exp(- 911 {+-} 191 K/T) cm{sup 3} molecule{sup -1} s{sup -1} over the T range 857-1297 K. For completeness, we have also measured the rate coefficient for the reaction of D atoms with ethanol D + C{sub 2}H{sub 5}OH {yields} products whose H analogue is another key reaction in the combustion of ethanol. Over the T range 1054-1359 K, the rate constants from the present experiments can be represented by the Arrhenius expression, k = (3.98 {+-} 0.76) x 10{sup -10} exp(- 4494 {+-} 235 K/T) cm{sup 3} molecule{sup -1} s{sup -1}. The high-pressure rate coefficients for reactions B and C were studied with variable reaction coordinate transition state theory employing directly determined CASPT2/cc-pvdz interaction energies. Reactions A, D, and E were studied with conventional transition state theory employing QCISD(T)/CBS energies. For the saddle point in reaction A, additional high-level corrections are evaluated. The predicted reaction exo- and endothermicities are in good agreement with the current Active Thermochemical Tables values. The transition state theory predictions for the microcanonical rate coefficients in ethanol decomposition are incorporated in master equation calculations to yield predictions for the temperature and pressure dependences of reactions A-C. With modest adjustments (<1 kcal/mol) to a few key barrier heights, the present experimental and adjusted theoretical results yield a consistent description of both the decomposition (1-3) and abstraction kinetics (4 and 5). The present results are compared with earlier experimental and theoretical work.« less
Azeez, Ali Basheer; Mohammed, Kahtan S.; Abdullah, Mohd Mustafa Al Bakri; Hussin, Kamarudin; Sandu, Andrei Victor; Razak, Rafiza Abdul
2013-01-01
Samples of concrete contain various waste materials, such as iron particulates, steel balls of used ball bearings and slags from steel industry were assessed for their anti-radiation attenuation coefficient properties. The attenuation measurements were performed using gamma spectrometer of NaI (Tl) detector. The utilized radiation sources comprised 137Cs and 60Co radioactive elements with photon energies of 0.662 MeV for 137Cs and two energy levels of 1.17 and 1.33 MeV for the 60Co. Likewise the mean free paths for the tested samples were obtained. The aim of this work is to investigate the effect of the waste loading rates and the particulate dispersive manner within the concrete matrix on the attenuation coefficients. The maximum linear attenuation coefficient (μ) was attained for concrete incorporates iron filling wastes of 30 wt %. They were of 1.12 ± 1.31×10−3 for 137Cs and 0.92 ± 1.57 × 10−3 for 60Co. Substantial improvement in attenuation performance by 20%–25% was achieved for concrete samples incorporate iron fillings as opposed to that of steel ball samples at different (5%–30%) loading rates. The steel balls and the steel slags gave much inferior values. The microstructure, concrete-metal composite density, the homogeneity and particulate dispersion were examined and evaluated using different metallographic, microscopic and measurement facilities. PMID:28788363
Mass transfer coefficient in ginger oil extraction by microwave hydrotropic solution
NASA Astrophysics Data System (ADS)
Handayani, Dwi; Ikhsan, Diyono; Yulianto, Mohamad Endy; Dwisukma, Mandy Ayulia
2015-12-01
This research aims to obtain mass transfer coefficient data on the extraction of ginger oil using microwave hydrotropic solvent as an alternative to increase zingiberene. The innovation of this study is extraction with microwave heater and hydrotropic solvent,which able to shift the phase equilibrium, and the increasing rate of the extraction process and to improve the content of ginger oil zingiberene. The experiment was conducted at the Laboratory of Separation Techniques at Chemical Engineering Department of Diponegoro University. The research activities carried out in two stages, namely experimental and modeling work. Preparation of the model postulated, then lowered to obtain equations that were tested and validated using data obtained from experimental. Measurement of experimental data was performed using microwave power (300 W), extraction temperature of 90 ° C and the independent variable, i.e.: type of hydrotropic, the volume of solvent and concentration in order, to obtain zingiberen levels as a function of time. Measured data was used as a tool to validate the postulation, in order to obtain validation of models and empirical equations. The results showed that the mass transfer coefficient (Kla) on zingiberene mass transfer models ginger oil extraction at various hydrotropic solution attained more 14 ± 2 Kla value than its reported on the extraction with electric heating. The larger value of Kla, the faster rate of mass transfer on the extraction process. To obtain the same yields, the microwave-assisted extraction required one twelfth time shorter.
Huber, J F; Hüsler, J; Zumstein, M D; Ruflin, G; Lüscher, M
2007-01-01
The visual analogue scale (VAS) and Likert scale (LS) are widely used but the patients might have difficulties to work with these scales and there might be errors in calculation. The visual circle scale (VCS) is a graphic construct with a simple grading to augment the understanding and ease for calculation. This study compares the different scales in orthopaedic patients for pain assessment postoperatively. In addition, the scales were rated by the patients for simplicity, understanding and global rating. Included were 65 patients (40 women) with an average age of 66 years with 330 pain assessments and 65 questionnaire ratings. The average pain was LS 42.7, VAS 39.3, VCS 44. The correlation coefficients r (Spearman) between all scales were > 0.89 and the same held also for sensitivity for change. The VCS was the scale preferred by > 50 % of the orthopaedic patients to assess the pain. The VCS is able to measure pain comparably to the known scales (VAS, Likert scale). From the patients point of view it is the preferred scale to work with.
Stoller, Oliver; de Bruin, Eling D; Schindelholz, Matthias; Schuster-Amft, Corina; de Bie, Rob A; Hunt, Kenneth J
2014-10-11
Exercise capacity is seriously reduced after stroke. While cardiopulmonary assessment and intervention strategies have been validated for the mildly and moderately impaired populations post-stroke, there is a lack of effective concepts for stroke survivors suffering from severe motor limitations. This study investigated the test-retest reliability and repeatability of cardiopulmonary exercise testing (CPET) using feedback-controlled robotics-assisted treadmill exercise (FC-RATE) in severely motor impaired individuals early after stroke. 20 subjects (age 44-84 years, <6 month post-stroke) with severe motor limitations (Functional Ambulatory Classification 0-2) were selected for consecutive constant load testing (CLT) and incremental exercise testing (IET) within a powered exoskeleton, synchronised with a treadmill and a body weight support system. A manual human-in-the-loop feedback system was used to guide individual work rate levels. Outcome variables focussed on standard cardiopulmonary performance parameters. Relative and absolute test-retest reliability were assessed by intraclass correlation coefficients (ICC), standard error of the measurement (SEM), and minimal detectable change (MDC). Mean difference, limits of agreement, and coefficient of variation (CoV) were estimated to assess repeatability. Peak performance parameters during IET yielded good to excellent relative reliability: absolute peak oxygen uptake (ICC =0.82), relative peak oxygen uptake (ICC =0.72), peak work rate (ICC =0.91), peak heart rate (ICC =0.80), absolute gas exchange threshold (ICC =0.91), relative gas exchange threshold (ICC =0.88), oxygen cost of work (ICC =0.87), oxygen pulse at peak oxygen uptake (ICC =0.92), ventilation rate versus carbon dioxide output slope (ICC =0.78). For these variables, SEM was 4-13%, MDC 12-36%, and CoV 0.10-0.36. CLT revealed high mean differences and insufficient test-retest reliability for all variables studied. This study presents first evidence on reliability and repeatability for CPET in severely motor impaired individuals early after stroke using a feedback-controlled robotics-assisted treadmill. The results demonstrate good to excellent test-retest reliability and appropriate repeatability for the most important peak cardiopulmonary performance parameters. These findings have important implications for the design and implementation of cardiovascular exercise interventions in severely impaired populations. Future research needs to develop advanced control strategies to enable the true limit of functional exercise capacity to be reached and to further assess test-retest reliability and repeatability in larger samples.
Note on coefficient matrices from stochastic Galerkin methods for random diffusion equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou Tao, E-mail: tzhou@lsec.cc.ac.c; Tang Tao, E-mail: ttang@hkbu.edu.h
2010-11-01
In a recent work by Xiu and Shen [D. Xiu, J. Shen, Efficient stochastic Galerkin methods for random diffusion equations, J. Comput. Phys. 228 (2009) 266-281], the Galerkin methods are used to solve stochastic diffusion equations in random media, where some properties for the coefficient matrix of the resulting system are provided. They also posed an open question on the properties of the coefficient matrix. In this work, we will provide some results related to the open question.
NASA Astrophysics Data System (ADS)
Hanasoge, Shravan; Agarwal, Umang; Tandon, Kunj; Koelman, J. M. Vianney A.
2017-09-01
Determining the pressure differential required to achieve a desired flow rate in a porous medium requires solving Darcy's law, a Laplace-like equation, with a spatially varying tensor permeability. In various scenarios, the permeability coefficient is sampled at high spatial resolution, which makes solving Darcy's equation numerically prohibitively expensive. As a consequence, much effort has gone into creating upscaled or low-resolution effective models of the coefficient while ensuring that the estimated flow rate is well reproduced, bringing to the fore the classic tradeoff between computational cost and numerical accuracy. Here we perform a statistical study to characterize the relative success of upscaling methods on a large sample of permeability coefficients that are above the percolation threshold. We introduce a technique based on mode-elimination renormalization group theory (MG) to build coarse-scale permeability coefficients. Comparing the results with coefficients upscaled using other methods, we find that MG is consistently more accurate, particularly due to its ability to address the tensorial nature of the coefficients. MG places a low computational demand, in the manner in which we have implemented it, and accurate flow-rate estimates are obtained when using MG-upscaled permeabilities that approach or are beyond the percolation threshold.
Assessment of rate of drug release from oil vehicle using a rotating dialysis cell.
Larsen, D H; Fredholt, K; Larsen, C
2000-09-01
The rate constants for transfer of model compounds (naproxen and lidocaine) from oily vehicle (Viscoleo) to aqueous buffer phases were determined by use of the rotating dialysis cell. Release studies were done for the partly ionized compounds at several pH values. A correlation between the overall first-order rate constant related to attainment of equilibrium, k(obs), and the pH-dependent distribution coefficient, D, determined between oil vehicle and aqueous buffer was established according to the equation: logk(obs)=-0.71 logD-0.22 (k(obs) in h(-1)). Based on this correlation it was suggested that the rate constant of a weak electrolyte at a specified D value could be considered equal to the k(obs) value for a non-electrolyte possessing a partition coefficient, P(app), the magnitude of which was equal to D. Specific rate constants k(ow) and k(wo) were calculated from the overall rate constant and the pH-dependent distribution coefficient. The rate constant representing the transport from oily vehicle to aqueous phase, k(ow), was found to be significantly influenced by the magnitude of the partition coefficient P(app) according to: logk(ow)=-0.71 logP(app)-log(P(app)+1)-0.22 (k(ow) in h(-1)).
NASA Astrophysics Data System (ADS)
Crabit, Armand; Colin, François
2016-04-01
Discharge estimation is one of the greatest challenge for every hydrologist as it is the most classical hydrological variable used in hydrological studies. The key lies in the rating curves and the way they were built: based on field measurements or using physical equations as the Manning-Strickler relation… However, as we all know, data and associated uncertainty deeply impact the veracity of such rating curves that could have serious consequences on data interpretation. And, of all things, this affects every catchment in the world, not only the gauged catchments but also and especially the poorly gauged ones that account for the larger part of the catchment of the world. This study investigates how to compare hydrological behaviour of 11 small (0.1 to 0.6 km2) poorly gauged catchments considering uncertainty associated to their rating curves. It shows how important the uncertainty can be using Manning equation and focus on its parameter: the roughness coefficient. Innovative work has been performed under controlled experimental conditions to estimate the Manning coefficient values for the different cover types observed in studied streams: non-aquatic vegetations. The results show that estimated flow rates using suitable roughness coefficients highly differ from those we should have obtained if we only considered the common values given in the literature. Moreover, it highlights how it could also affect all derived hydrological indicators commonly used to compare hydrological behaviour. Data of rainfall and water depth at a catchment's outlet were recorded using automatic logging equipment during 2008-2009. The hydrological regime is intermittent and the annual precipitation ranged between 569 and 727 mm. Discharge was then estimated using Manning's equation and channel cross-section measurements. Even if discharge uncertainty is high, the results show significant variability between catchment's responses that allows for catchment classification. It also provides significant insight into the hydrological processes operating in small ephemeral stream systems and highlights similarities/dissimilarities between catchments.
NASA Technical Reports Server (NTRS)
Radhakrishnan, Krishnan; Bittker, David A.
1993-01-01
A general chemical kinetics and sensitivity analysis code for complex, homogeneous, gas-phase reactions is described. The main features of the code, LSENS, are its flexibility, efficiency and convenience in treating many different chemical reaction models. The models include static system, steady, one-dimensional, inviscid flow, shock initiated reaction, and a perfectly stirred reactor. In addition, equilibrium computations can be performed for several assigned states. An implicit numerical integration method, which works efficiently for the extremes of very fast and very slow reaction, is used for solving the 'stiff' differential equation systems that arise in chemical kinetics. For static reactions, sensitivity coefficients of all dependent variables and their temporal derivatives with respect to the initial values of dependent variables and/or the rate coefficient parameters can be computed. This paper presents descriptions of the code and its usage, and includes several illustrative example problems.
Global sensitivity analysis of groundwater transport
NASA Astrophysics Data System (ADS)
Cvetkovic, V.; Soltani, S.; Vigouroux, G.
2015-12-01
In this work we address the model and parametric sensitivity of groundwater transport using the Lagrangian-Stochastic Advection-Reaction (LaSAR) methodology. The 'attenuation index' is used as a relevant and convenient measure of the coupled transport mechanisms. The coefficients of variation (CV) for seven uncertain parameters are assumed to be between 0.25 and 3.5, the highest value being for the lower bound of the mass transfer coefficient k0 . In almost all cases, the uncertainties in the macro-dispersion (CV = 0.35) and in the mass transfer rate k0 (CV = 3.5) are most significant. The global sensitivity analysis using Sobol and derivative-based indices yield consistent rankings on the significance of different models and/or parameter ranges. The results presented here are generic however the proposed methodology can be easily adapted to specific conditions where uncertainty ranges in models and/or parameters can be estimated from field and/or laboratory measurements.
Infrared radiative properties of tropical cirrus clouds inferred with aircraft measurements
NASA Technical Reports Server (NTRS)
Griffith, K. T.; Cox, S. K.; Knollenberg, R. G.
1980-01-01
Longwave emissivities and the vertical profile of cooling rates of tropical cirrus clouds are determined using broadband hemispheric irradiance data. Additionally, a broadband mass absorption coefficient is defined and used to relate emissivity to water content. The data used were collected by the National Center for Atmospheric Research (NCAR) Sabreliner during the GARP Atlantic Tropical Experiment (GATE) in the summer of 1974. Three case studies are analyzed showing that these tropical cirrus clouds approached an emissivity of 1.0 within a vertical distance of 1.0 km. Broadband mass absorption coefficients ranging from 0.076 to 0.096 sq m per g are derived. A comparison of these results with other work suggests that tropical cirrus cloud emissivities may be significantly larger than heretofore believed. Ice water content of the clouds were deduced from data collected by a one-dimensional particle spectrometer. Analyses of the ice water content and the observed particle size distributions are presented.
Theoretical investigation of exchange and recombination reactions in O(3P)+NO(2Π) collisions
NASA Astrophysics Data System (ADS)
Ivanov, M. V.; Zhu, H.; Schinke, R.
2007-02-01
We present a detailed dynamical study of the kinetics of O(P3)+NO(Π2) collisions including O atom exchange reactions and the recombination of NO2. The classical trajectory calculations are performed on the lowest A'2 and A″2 potential energy surfaces, which were calculated by ab initio methods. The calculated room temperature exchange reaction rate coefficient, kex, is in very good agreement with the measured one. The high-pressure recombination rate coefficient, which is given by the formation rate coefficient and to a good approximation equals 2kex, overestimates the experimental data by merely 20%. The pressure dependence of the recombination rate, kr, is described within the strong-collision model by assigning a stabilization probability to each individual trajectory. The measured falloff curve is well reproduced over five orders of magnitude by a single parameter, i.e., the strong-collision stabilization frequency. The calculations also yield the correct temperature dependence, kr∝T-1.5, of the low-pressure recombination rate coefficient. The dependence of the rate coefficients on the oxygen isotopes are investigated by incorporating the difference of the zero-point energies between the reactant and product NO radicals, ΔZPE, into the potential energy surface. Similar isotope effects as for ozone are predicted for both the exchange reaction and the recombination. Finally, we estimate that the chaperon mechanism is not important for the recombination of NO2, which is in accord with the overall T-1.4 dependence of the measured recombination rate even in the low temperature range.
On the application of under-decimated filter banks
NASA Technical Reports Server (NTRS)
Lin, Y.-P.; Vaidyanathan, P. P.
1994-01-01
Maximally decimated filter banks have been extensively studied in the past. A filter bank is said to be under-decimated if the number of channels is more than the decimation ratio in the subbands. A maximally decimated filter bank is well known for its application in subband coding. Another application of maximally decimated filter banks is in block filtering. Convolution through block filtering has the advantages that parallelism is increased and data are processed at a lower rate. However, the computational complexity is comparable to that of direct convolution. More recently, another type of filter bank convolver has been developed. In this scheme, the convolution is performed in the subbands. Quantization and bit allocation of subband signals are based on signal variance, as in subband coding. Consequently, for a fixed rate, the result of convolution is more accurate than is direct convolution. This type of filter bank convolver also enjoys the advantages of block filtering, parallelism, and a lower working rate. Nevertheless, like block filtering, there is no computational saving. In this article, under-decimated systems are introduced to solve the problem. The new system is decimated only by half the number of channels. Two types of filter banks can be used in the under-decimated system: the discrete Fourier transform (DFT) filter banks and the cosine modulated filter banks. They are well known for their low complexity. In both cases, the system is approximately alias free, and the overall response is equivalent to a tunable multilevel filter. Properties of the DFT filter banks and the cosine modulated filter banks can be exploited to simultaneously achieve parallelism, computational saving, and a lower working rate. Furthermore, for both systems, the implementation cost of the analysis or synthesis bank is comparable to that of one prototype filter plus some low-complexity modulation matrices. The individual analysis and synthesis filters have complex coefficients in the DFT filter banks but have real coefficients in the cosine modulated filter banks.
On the application of under-decimated filter banks
NASA Astrophysics Data System (ADS)
Lin, Y.-P.; Vaidyanathan, P. P.
1994-11-01
Maximally decimated filter banks have been extensively studied in the past. A filter bank is said to be under-decimated if the number of channels is more than the decimation ratio in the subbands. A maximally decimated filter bank is well known for its application in subband coding. Another application of maximally decimated filter banks is in block filtering. Convolution through block filtering has the advantages that parallelism is increased and data are processed at a lower rate. However, the computational complexity is comparable to that of direct convolution. More recently, another type of filter bank convolver has been developed. In this scheme, the convolution is performed in the subbands. Quantization and bit allocation of subband signals are based on signal variance, as in subband coding. Consequently, for a fixed rate, the result of convolution is more accurate than is direct convolution. This type of filter bank convolver also enjoys the advantages of block filtering, parallelism, and a lower working rate. Nevertheless, like block filtering, there is no computational saving. In this article, under-decimated systems are introduced to solve the problem. The new system is decimated only by half the number of channels. Two types of filter banks can be used in the under-decimated system: the discrete Fourier transform (DFT) filter banks and the cosine modulated filter banks. They are well known for their low complexity. In both cases, the system is approximately alias free, and the overall response is equivalent to a tunable multilevel filter. Properties of the DFT filter banks and the cosine modulated filter banks can be exploited to simultaneously achieve parallelism, computational saving, and a lower working rate.
Laser Doppler Radar System Calibration and Rainfall Attenuation Measurements
DOT National Transportation Integrated Search
1978-10-01
The atmospheric attenuation and backscatter coefficients have been measured at the 10.6-micrometers wavelength of the CO2 laser in rainstorms. Data are presented to show the increase in attenuation coefficient with rainfall rate. Backscatter coeffici...
Direct access to dithiobenzoate RAFT agent fragmentation rate coefficients by ESR spin-trapping.
Ranieri, Kayte; Delaittre, Guillaume; Barner-Kowollik, Christopher; Junkers, Thomas
2014-12-01
The β-scission rate coefficient of tert-butyl radicals fragmenting off the intermediate resulting from their addition to tert-butyl dithiobenzoate-a reversible addition-fragmentation chain transfer (RAFT) agent-is estimated via the recently introduced electron spin resonance (ESR)-trapping methodology as a function of temperature. The newly introduced ESR-trapping methodology is critically evaluated and found to be reliable. At 20 °C, a fragmentation rate coefficient of close to 0.042 s(-1) is observed, whereas the activation parameters for the fragmentation reaction-determined for the first time-read EA = 82 ± 13.3 kJ mol(-1) and A = (1.4 ± 0.25) × 10(13) s(-1) . The ESR spin-trapping methodology thus efficiently probes the stability of the RAFT adduct radical under conditions relevant for the pre-equilibrium of the RAFT process. It particularly indicates that stable RAFT adduct radicals are indeed formed in early stages of the RAFT poly-merization, at least when dithiobenzoates are employed as controlling agents as stipulated by the so-called slow fragmentation theory. By design of the methodology, the obtained fragmentation rate coefficients represent an upper limit. The ESR spin-trapping methodology is thus seen as a suitable tool for evaluating the fragmentation rate coefficients of a wide range of RAFT adduct radicals. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Crowding and hopping in a protein’s diffusive transport on DNA
NASA Astrophysics Data System (ADS)
Koslover, Elena F.; Díaz de la Rosa, Mario; Spakowitz, Andrew J.
2017-02-01
Diffusion is a ubiquitous phenomenon that impacts virtually all processes that involve random fluctuations, and as such, the foundational work of Smoluchowski has proven to be instrumental in addressing innumerable problems. Here, we focus on a critical biological problem that relies on diffusive transport and is analyzed using a probabilistic treatment originally developed by Smoluchowski. The search of a DNA binding protein for its specific target site is believed to rely on non-specific binding to DNA with transient hops along the chain. In this work, we address the impact of protein crowding along the DNA on the transport of a DNA-binding protein. The crowders dramatically alter the dynamics of the protein while bound to the DNA, resulting in single-file transport that is subdiffusive in nature. However, transient unbinding and hopping results in a long-time behavior (shown to be superdiffusive) that is qualitatively unaffected by the crowding on the DNA. Thus, hopping along the chain mitigates the role that protein crowding has in restricting the translocation dynamics along the chain. The superdiffusion coefficient is influenced by the quantitative values of the effective binding rate, which is influenced by protein crowding. We show that vacancy fraction and superdiffusion coefficient exhibits a non-monotonic relationship under many circumstances. We leverage analytical theory and dynamic Monte Carlo simulations to address this problem. With several additional contributions, the core of our modeling work adopts a reaction-diffusion framework that is based on Smoluchowski’s original work.
Job satisfaction and mental health of Palestinian nurses with shift work: a cross-sectional study.
Jaradat, Yousef; Birkeland Nielsen, Morten; Kristensen, Petter; Bast-Pettersen, Rita
2018-02-21
Shift work is associated with sleep disturbances, mental health problems, and job dissatisfaction. Disparities between male and female nurses in the effect of shift work on mental distress and job satisfaction have been scarcely studied. We aimed to examine differences between female and male nurses in the associations between shift work and job satisfaction and mental health. In this cross-sectional study, male and female nurses were recruited to rate their job satisfaction on the Generic Job Satisfaction Scale and to complete the General Health Questionnaire (GHQ-30). Associations between shift work, mental distress, and satisfaction were estimated from χ 2 tests and linear regression analyses using Stata/IC10. The study was approved by the ministry of health. Written informed consent was provided by all participants. In 2012, we recruited 372 registered nurses from the Hebron governorate in the occupied Palestinian territory. 28 (8%) nurses were excluded, and the final sample (n=344) included 213 (62%) women and 131 (38%) men. 338 nurses rated their job satisfaction, and 309 nurses completed the GHQ-30. After adjusting for covariates, men with shift work reported significantly lower job satisfaction (β-coefficient -3·3, 95% CI -6·2 to -0·5) than men with day schedules. Women with shift work reported significantly higher levels of mental distress (3·6, 95% CI 0·3 to 7·0) than women with day schedules. Distress was reported by more women than men, but this difference concerned only nurses working day shifts. No differences in job satisfaction associated with shift work was seen between men and women. We found no demonstrable interaction between sex and shift work for job satisfaction (β-coefficient -1·6, 95% CI -4·4 to 1·2) or distress (-0·03, 95% CI -5·3 to 5·3). Shift work was associated with low job satisfaction in male nurses and high distress in female nurses. Because the study had a cross-sectional design and both exposure and outcomes were measured using self-report, the results should be interpreted with caution. Further studies should investigate whether shift work affects the quality of patient care. The Norwegian Programme for Development, Research and Education (NUFU; NUFU pro x1 50/2002 and NUFUSM-2008/10232) and The National Norwegian State Education Loan Funds. Copyright © 2018 Elsevier Ltd. All rights reserved.
Ramonatxo, M; Préfaut, C; Guerrero, H; Moutou, H; Bansard, X; Chardon, G
1982-01-01
The aim of this study was to establish data which would best demonstrate the variations of different tests using Carbon Monoxide as a tracer gas (total and partial functional uptake coefficient and transfer capacity) to establish mean values and lower limits of normal of these tests. Multivariate statistical analysis was used; in the first stage a connection was sought between the fractional uptake coefficient (partial and total) to other parameters, comparing subjects and data. In the second stage the comparison was refined by eliminating the least useful data, trying, despite a small loss of material, to reveal the most important connections, linear or otherwise. The fractional uptake coefficients varied according to sex, also the variation of the partial alveolar-expired fractional uptake equivalent (DuACO) was largely a function of respiratory rate and tidal volume. The alveolar-arterial partial fractional uptake equivalent (DuaCO) depended more on respiratory frequency and age. Finally the total fractional uptake coefficient (DuCO) and the transfer capacity corrected per liter of ventilation (TLCO/V) were functions of these parameters. The last stage of this work, after taking account of the statistical observations consistent with the facts of these physiological hypotheses led to a search for a better way of approaching the laws linking the collected data to the fractional uptake coefficient. The lower limits of normal were arbitrarily defined, separating those 5% of subjects deviating most strongly from the mean. As a result, the relationship between the lower limit of normal and the theoretical mean value was 90% for the partial and total fractional uptake coefficient and 70% for the transfer capacity corrected per liter of ventilation.
Atomic Data and Spectral Line Intensities for Ni XV
NASA Technical Reports Server (NTRS)
Landi, E.; Bhatia, A. K.
2011-01-01
Electron impact collision strengths, energy levels, oscillator strengths, and spontaneous radiative decay rates are calculated for Ni XV.Weinclude in the calculations the 9 lowest configurations, corresponding to 126 fine structure levels: 3s23p2, 3s3p3, 3s23p3d, 3p4, 3s3p23d, and 3s2 3p4l with l =, s, p, d, f. Collision strengths are calculated at five incident energies for all transitions: 7.8, 18.5, 33.5, 53.5, and 80.2 Ry above the threshold of each transition. An additional energy, very close to the transition threshold, has been added, whose value is between 0.004 and 0.28 Ry depending on the levels involved. Calculations have been carried out using the Flexible Atomic Code and the distorted-wave approximation. Excitation rate coefficients are calculated as a function of electron temperature by assuming a Maxwellian electron velocity distribution. Using the excitation rate coefficients and the radiative transition rates calculated in the present work, statistical equilibrium equations for level populations are solved at electron densities covering the 10(exp 8)-10(exp 14)/cu cm range and at an electron temperature of log T(sub e)(K) = 6.4, corresponding to the maximum abundance of Ni XV. Spectral line intensities are calculated, and their diagnostic relevance is discussed. This dataset will be made available in the next version of the CHIANTI database.
Atomic Data and Spectral Line Intensities for CA XVII
NASA Technical Reports Server (NTRS)
Bhatia, A.K.; Landi, E.
2007-01-01
Electron impact collision strengths, energy levels, oscillator strengths and spontaneous radiative decay rates are calculated for Ca XVII. The configurations used are 2s(sup 2), 2s2p, 2p(sup 2), 2l3l', 214l' and 2s5l', with l = s,p and l' = s,p, d giving rise to 92 fine-structure levels in intermediate coupling. Collision strengths are calculated at seven incident energies (15, 30, 75, 112.5, 150, 187.5 and 225 Ry) for the transitions within the three lowest configurations corresponding to the 10 lowest energy levels, and five incident energies (75, 112.5, 150, 187.5 and 225 Ry) for transitions between the lowest five levels and the n = 3,4,5 configurations. Calculations have been carried out using the distorted wave approximation. Excitation rate coefficients are calculated as a function of electron temperature by assuming a Maxwellian electron velocity distribution. Using the excitation rate coefficients and the radiative transition rates of the present work, and R-Matrix results for the 2s2, 2s2p, 2p2 configurations available in the literature, statistical equilibrium equations for level populations are solved at electron densities covering the range of 10(exp 8)-10(exp 14)/cu cm at an electron temperature of log Te(K)=6.7, corresponding to the maximum abundance of Ca XVII. Spectral line intensities are calculated, and their diagnostic relevance L; discussed. This dataset will be made available in the next version of the CHIANTI database.
Parent influences on preschoolers' objectively assessed physical activity.
Oliver, Melody; Schofield, Grant M; Schluter, Philip J
2010-07-01
The purposes of this study were to examine the relationship between accelerometer-derived physical activity (PA) in preschoolers and their parents, and to investigate other potential child and parental associates of child PA. Families of children aged 2-5 yrs were recruited in Auckland, New Zealand, from October 2006 to July 2007. Consenting children and parents had their height, weight, and waist circumference measured and were asked to wear accelerometers over 7 consecutive days, measuring PA in 15s epochs. Accelerometer data were gathered from 78 children, 62 mothers and 20 fathers over a median of 6.5-7 days, and converted to estimated daily PA rates for each individual using negative binomial generalised estimating equation (GEE) modelling. Potential associates of children's daily PA rates were then assessed using normal GEE models with exchangeable correlation structures. After taking account of all factors in the final multivariable model, parental PA rates (coefficient 0.09, 95% CI 0.03, 0.16, P=0.01) and child age (coefficient 0.11, 95% CI 0.01, 0.21, P=0.03) were the only factors significantly associated with child PA rates. Younger children may stand to benefit from PA intervention, and encouraging parental involvement in preschool PA interventions may be useful for increasing PA levels in young children. More work in this field is needed to corroborate these findings, improve generalisability, and determine causality. Copyright 2009 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Modeling the drug transport in the anterior segment of the eye.
Avtar, Ram; Tandon, Deepti
2008-10-02
The aim of the present work is the development of a simple mathematical model for the time course concentration profile of topically administered drugs in the anterior chamber aqueous humor and investigation of the effects of various model parameters on the aqueous humor concentration of lipophilic and hydrophilic drugs. A simple pharmacokinetic model for the transient drug transport in the anterior segment has been developed by using the conservation of mass in the precorneal tear film, Fick's law of diffusion and Michaelis-Menten kinetics of drug metabolism in cornea, and the conservation of mass in the anterior chamber. An analytical solution describing the drug concentration in the anterior chamber has been obtained. The model predicts that an increase in the drug metabolic (consumption) rate in the corneal epithelium reduces the drug concentration in the anterior chamber for both lipophilic and hydrophilic molecules. A decrease in the clearance rate and distribution volume of the drug in the anterior chamber raises the aqueous humor concentration significantly. It is also observed that decay rate of drug concentration in the anterior chamber is higher for lipophilic molecules than that for hydrophilic molecules. The bioavailability of drugs applied topically to the eye may be improved by a rise in the precorneal tear volume, diffusion coefficient in corneal epithelium and distribution coefficient across the endothelium anterior chamber interface, and by reducing the drug metabolism, drug clearance rate and distribution volume in anterior chamber.
ERIC Educational Resources Information Center
González, Manuel Á.; González, Miguel Á.; Vegas, Jesús; Llamas, César
2017-01-01
A simple experiment on the determination of the coefficient of restitution of different materials is taken as the basis of an extendable work that can be done by students in an autonomous way. On the whole, the work described in this paper would involve concepts of kinematics, materials science, air drag and buoyancy, and would help students to…
Gale, T C E; Roberts, M J; Sice, P J; Langton, J A; Patterson, F C; Carr, A S; Anderson, I R; Lam, W H; Davies, P R F
2010-11-01
Assessment centres are an accepted method of recruitment in industry and are gaining popularity within medicine. We describe the development and validation of a selection centre for recruitment to speciality training in anaesthesia based on an assessment centre model incorporating the rating of candidate's non-technical skills. Expert consensus identified non-technical skills suitable for assessment at the point of selection. Four stations-structured interview, portfolio review, presentation, and simulation-were developed, the latter two being realistic scenarios of work-related tasks. Evaluation of the selection centre focused on applicant and assessor feedback ratings, inter-rater agreement, and internal consistency reliability coefficients. Predictive validity was sought via correlations of selection centre scores with subsequent workplace-based ratings of appointed trainees. Two hundred and twenty-four candidates were assessed over two consecutive annual recruitment rounds; 68 were appointed and followed up during training. Candidates and assessors demonstrated strong approval of the selection centre with more than 70% of ratings 'good' or 'excellent'. Mean inter-rater agreement coefficients ranged from 0.62 to 0.77 and internal consistency reliability of the selection centre score was high (Cronbach's α=0.88-0.91). The overall selection centre score was a good predictor of workplace performance during the first year of appointment. An assessment centre model based on the rating of non-technical skills can produce a reliable and valid selection tool for recruitment to speciality training in anaesthesia. Early results on predictive validity are encouraging and justify further development and evaluation.
Han, Xu; Ma, Hongbin; Jiao, Anjun; Critser, John K.
2010-01-01
Theoretically, direct vitrification of cell suspensions with relatively low concentrations (~1 M) of permeating cryoprotective agents (CPA) is suitable for cryopreservation of almost all cell types and can be accomplished by ultra-fast cooling rates that are on the order of 106–7 K/min. However, the methods and devices currently available for cell cryopreservation cannot achieve such high cooling rates. In this study, we constructed a novel cryogenic oscillating heat pipe (COHP) using liquid nitrogen as its working fluid and investigated its heat transport capability to assess its application for achieving ultra-fast cooling rates for cell cryopreservation. The experimental results showed that the apparent heat transfer coefficient of the COHP can reach 2 × 105 W/m2·K, which is two orders of the magnitude higher than traditional heat pipes. Theoretical analyzes showed that the average local heat transfer coefficient in the thin film evaporation region of the COHP can reach 1.2 × 106 W/m2·K, which is approximately 103 times higher than that achievable with standard pool-boiling approaches. Based on these results, a novel device design applying the COHP and microfabrication techniques is proposed and its efficiency for cell vitrification is demonstrated through numerical simulation. The estimated average cooling rates achieved through this approach is 106–7 K/min, which is much faster than the currently available methods and sufficient for achieving vitrification with relatively low concentrations of CPA. PMID:18430413
Han, Xu; Ma, Hongbin; Jiao, Anjun; Critser, John K
2008-06-01
Theoretically, direct vitrification of cell suspensions with relatively low concentrations ( approximately 1 M) of permeating cryoprotective agents (CPA) is suitable for cryopreservation of almost all cell types and can be accomplished by ultra-fast cooling rates that are on the order of 10(6-7) K/min. However, the methods and devices currently available for cell cryopreservation cannot achieve such high cooling rates. In this study, we constructed a novel cryogenic oscillating heat pipe (COHP) using liquid nitrogen as its working fluid and investigated its heat transport capability to assess its application for achieving ultra-fast cooling rates for cell cryopreservation. The experimental results showed that the apparent heat transfer coefficient of the COHP can reach 2 x 10(5) W/m(2).K, which is two orders of the magnitude higher than traditional heat pipes. Theoretical analyzes showed that the average local heat transfer coefficient in the thin film evaporation region of the COHP can reach 1.2 x 10(6) W/m(2).K, which is approximately 10(3) times higher than that achievable with standard pool-boiling approaches. Based on these results, a novel device design applying the COHP and microfabrication techniques is proposed and its efficiency for cell vitrification is demonstrated through numerical simulation. The estimated average cooling rates achieved through this approach is 10(6-7)K/min, which is much faster than the currently available methods and sufficient for achieving vitrification with relatively low concentrations of CPA.
ERIC Educational Resources Information Center
Fidler, James R.
1993-01-01
Criterion-related validities of 2 laboratory practitioner certification examinations for medical technologists (MTs) and medical laboratory technicians (MLTs) were assessed for 81 MT and 70 MLT examinees. Validity coefficients are presented for both measures. Overall, summative ratings yielded stronger validity coefficients than ratings based on…
Two second-order transformation rate coefficients--kb, based on total plate counts, and kA, based on periphyton-colonized surface areas--were used to compare xenobiotic chemical transformation by laboratory-developed (microcosm) and by field-collected microbiota. Similarity of tr...
Chung, Hoi Sung; Gopich, Irina V; McHale, Kevin; Cellmer, Troy; Louis, John M; Eaton, William A
2011-04-28
Recently developed statistical methods by Gopich and Szabo were used to extract folding and unfolding rate coefficients from single-molecule Förster resonance energy transfer (FRET) data for proteins with kinetics too fast to measure waiting time distributions. Two types of experiments and two different analyses were performed. In one experiment bursts of photons were collected from donor and acceptor fluorophores attached to a 73-residue protein, α(3)D, freely diffusing through the illuminated volume of a confocal microscope system. In the second, the protein was immobilized by linkage to a surface, and photons were collected until one of the fluorophores bleached. Folding and unfolding rate coefficients and mean FRET efficiencies for the folded and unfolded subpopulations were obtained from a photon by photon analysis of the trajectories using a maximum likelihood method. The ability of the method to describe the data in terms of a two-state model was checked by recoloring the photon trajectories with the extracted parameters and comparing the calculated FRET efficiency histograms with the measured histograms. The sum of the rate coefficients for the two-state model agreed to within 30% with the relaxation rate obtained from the decay of the donor-acceptor cross-correlation function, confirming the high accuracy of the method. Interestingly, apparently reliable rate coefficients could be extracted using the maximum likelihood method, even at low (<10%) population of the minor component where the cross-correlation function was too noisy to obtain any useful information. The rate coefficients and mean FRET efficiencies were also obtained in an approximate procedure by simply fitting the FRET efficiency histograms, calculated by binning the donor and acceptor photons, with a sum of three-Gaussian functions. The kinetics are exposed in these histograms by the growth of a FRET efficiency peak at values intermediate between the folded and unfolded peaks as the bin size increases, a phenomenon with similarities to NMR exchange broadening. When comparable populations of folded and unfolded molecules are present, this method yields rate coefficients in very good agreement with those obtained with the maximum likelihood method. As a first step toward characterizing transition paths, the Viterbi algorithm was used to locate the most probable transition points in the photon trajectories.
NASA Astrophysics Data System (ADS)
Agrawal, Neha; Pandey, Akanksha; Parihar, A. S.; Mishra, A. K.; Gandhi, M. N.; Bhattacharyya, A. R.; Mukhopadhyay, K.; Prasad, N. E.
2016-05-01
Friction and wear have considerable role in the life span of two interacting parts. Incorporation of nanofillers in polymers/elastomers matrix causes commendable changes in its tribologicalproperties. The main purpose of this work is to reduce the coefficient of friction and wear rate of Acrylo Nitrile Butadiene rubber (NBR). To achieve such objective traditionally well knownlubricants graphite(G), tungsten disulphide (WS2) and there hybrid combination was incorporated in NBR matrix. Effect of applied load (force) and concentration of fillers on tribological properties of NBR had been studied. The filler incorporation enhanced the hardnessby 8%, showed resistance to hydraulic oil and aging effect also got improved significantly. A particular optimized concentration of NBR with hybrid combination of 2% WS2 and 4% Graphite showed minimum coefficient of friction as well as wear rate. A hypothesis could be attributed that similar lamellar structure of WS2 and Graphite along with formation of a stable nanoscale disulfide tribofilmcould result in lowering of friction. These substantially improved properties of nanoreinforced rubber materials would definitely pave promising path for plethora of potential technological applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agrawal, Neha, E-mail: neha87bhu@gmail.com; Indian Institute of Technology Bombay, Powai, Mumbai 400076, Maharashtra; Pandey, Akanksha
Friction and wear have considerable role in the life span of two interacting parts. Incorporation of nanofillers in polymers/elastomers matrix causes commendable changes in its tribologicalproperties. The main purpose of this work is to reduce the coefficient of friction and wear rate of Acrylo Nitrile Butadiene rubber (NBR). To achieve such objective traditionally well knownlubricants graphite(G), tungsten disulphide (WS{sub 2}) and there hybrid combination was incorporated in NBR matrix. Effect of applied load (force) and concentration of fillers on tribological properties of NBR had been studied. The filler incorporation enhanced the hardnessby 8%, showed resistance to hydraulic oil and agingmore » effect also got improved significantly. A particular optimized concentration of NBR with hybrid combination of 2% WS{sub 2} and 4% Graphite showed minimum coefficient of friction as well as wear rate. A hypothesis could be attributed that similar lamellar structure of WS{sub 2} and Graphite along with formation of a stable nanoscale disulfide tribofilmcould result in lowering of friction. These substantially improved properties of nanoreinforced rubber materials would definitely pave promising path for plethora of potential technological applications.« less
Initiation reactions in acetylene pyrolysis
Zador, Judit; Fellows, Madison D.; Miller, James A.
2017-05-10
In gas-phase combustion systems the interest in acetylene stems largely from its role in molecular weight growth processes. The consensus is that above 1500 K acetylene pyrolysis starts mainly with the homolytic fission of the C–H bond creating an ethynyl radical and an H atom. However, below ~1500 K this reaction is too slow to initiate the chain reaction. It has been hypothesized that instead of dissociation, self-reaction initiates this process. Nevertheless, rigorous theoretical or direct experimental evidence is lacking, to an extent that even the molecular mechanism is debated in the literature. In this work we use rigorous abmore » initio transition-state theory master equation methods to calculate pressure- and temperature-dependent rate coefficients for the association of two acetylene molecules and related reactions. We establish the role of vinylidene, the high-energy isomer of acetylene in this process, compare our results with available experimental data, and assess the competition between the first-order and second-order initiation steps. As a result, we also show the effect of the rapid isomerization among the participating wells and highlight the need for time-scale analysis when phenomenological rate coefficients are compared to observed time scales in certain experiments.« less
Collisional excitation of ArH+ by hydrogen atoms
NASA Astrophysics Data System (ADS)
Dagdigian, Paul J.
2018-06-01
The rotational excitation of the 36ArH+ ion in collisions with hydrogen atoms is investigated in this work. The potential energy surface (PES) describing the 36ArH+-H interaction, with the ion bond length r fixed at the average of r over the radial v = 0 vibrational state distribution, was obtained with a coupled cluster method that included single, double, and (perturbatively) triple excitations [RCCSD(T)]. A deep minimum (De = 3135 cm-1) in the PES was found in linear H-ArH+ geometry at an ion-atom separation Re = 4.80a0. Energy-dependent cross-sections and rate coefficients as a function of temperature for this collision pair were computed in close-coupling (CC) calculations. Since the PES possesses a deep well, this is a good system to test the performance of the quantum statistical (QS) method developed by Manolopoulos and co-workers as a more efficient method to compute the cross-sections. Good agreement was found between rate coefficients obtained by the CC and QS methods at several temperatures. In a simple application, the excitation of ArH+ is simulated for conditions under which this ion is observed in absorption.
Modeling Europa's Ice-Ocean Interface
NASA Astrophysics Data System (ADS)
Elsenousy, A.; Vance, S.; Bills, B. G.
2014-12-01
This work focuses on modeling the ice-ocean interface on Jupiter's Moon (Europa); mainly from the standpoint of heat and salt transfer relationship with emphasis on the basal ice growth rate and its implications to Europa's tidal response. Modeling the heat and salt flux at Europa's ice/ocean interface is necessary to understand the dynamics of Europa's ocean and its interaction with the upper ice shell as well as the history of active turbulence at this area. To achieve this goal, we used McPhee et al., 2008 parameterizations on Earth's ice/ocean interface that was developed to meet Europa's ocean dynamics. We varied one parameter at a time to test its influence on both; "h" the basal ice growth rate and on "R" the double diffusion tendency strength. The double diffusion tendency "R" was calculated as the ratio between the interface heat exchange coefficient αh to the interface salt exchange coefficient αs. Our preliminary results showed a strong double diffusion tendency R ~200 at Europa's ice-ocean interface for plausible changes in the heat flux due to onset or elimination of a hydrothermal activity, suggesting supercooling and a strong tendency for forming frazil ice.
Experimental performance study of a proposed desiccant based air conditioning system.
Bassuoni, M M
2014-01-01
An experimental investigation on the performance of a proposed hybrid desiccant based air conditioning system referred as HDBAC is introduced in this paper. HDBAC is mainly consisted of a liquid desiccant dehumidification unit integrated with a vapor compression system (VCS). The VCS unit has a cooling capacity of 5.27 kW and uses 134a as refrigerant. Calcium chloride (CaCl2) solution is used as the working desiccant material. HDBAC system is used to serve low sensible heat factor applications. The effect of different parameters such as, process air flow rate, desiccant solution flow rate, evaporator box and condenser box solution temperatures, strong solution concentration and regeneration temperature on the performance of the system is studied. The performance of the system is evaluated using some parameters such as: the coefficient of performance (COPa), specific moisture removal and energy saving percentage. A remarkable increase of about 54% in the coefficient of performance of the proposed system over VCS with reheat is achieved. A maximum overall energy saving of about 46% is observed which emphasizes the use of the proposed system as an energy efficient air conditioning system.
NASA Astrophysics Data System (ADS)
Kaur, Jagjit; Gorczyca, T. W.; Badnell, N. R.
2018-02-01
Context. We aim to present a comprehensive theoretical investigation of dielectronic recombination (DR) of the silicon-like isoelectronic sequence and provide DR and radiative recombination (RR) data that can be used within a generalized collisional-radiative modelling framework. Aims: Total and final-state level-resolved DR and RR rate coefficients for the ground and metastable initial levels of 16 ions between P+ and Zn16+ are determined. Methods: We carried out multi-configurational Breit-Pauli DR calculations for silicon-like ions in the independent processes, isolated resonance, distorted wave approximation. Both Δnc = 0 and Δnc = 1 core excitations are included using LS and intermediate coupling schemes. Results: Results are presented for a selected number of ions and compared to all other existing theoretical and experimental data. The total dielectronic and radiative recombination rate coefficients for the ground state are presented in tabulated form for easy implementation into spectral modelling codes. These data can also be accessed from the Atomic Data and Analysis Structure (ADAS) OPEN-ADAS database. This work is a part of an assembly of a dielectronic recombination database for the modelling of dynamic finite-density plasmas.
Experimental performance study of a proposed desiccant based air conditioning system
Bassuoni, M.M.
2013-01-01
An experimental investigation on the performance of a proposed hybrid desiccant based air conditioning system referred as HDBAC is introduced in this paper. HDBAC is mainly consisted of a liquid desiccant dehumidification unit integrated with a vapor compression system (VCS). The VCS unit has a cooling capacity of 5.27 kW and uses 134a as refrigerant. Calcium chloride (CaCl2) solution is used as the working desiccant material. HDBAC system is used to serve low sensible heat factor applications. The effect of different parameters such as, process air flow rate, desiccant solution flow rate, evaporator box and condenser box solution temperatures, strong solution concentration and regeneration temperature on the performance of the system is studied. The performance of the system is evaluated using some parameters such as: the coefficient of performance (COPa), specific moisture removal and energy saving percentage. A remarkable increase of about 54% in the coefficient of performance of the proposed system over VCS with reheat is achieved. A maximum overall energy saving of about 46% is observed which emphasizes the use of the proposed system as an energy efficient air conditioning system. PMID:25685475
Electron-impact ionization of P-like ions forming Si-like ions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwon, D.-H.; Savin, D. W., E-mail: hkwon@kaeri.re.kr
2014-03-20
We have calculated electron-impact ionization (EII) for P-like systems from P to Zn{sup 15+} forming Si-like ions. The work was performed using the flexible atomic code (FAC) which is based on a distorted-wave approximation. All 3ℓ → nℓ' (n = 3-35) excitation-autoionization (EA) channels near the 3p direct ionization threshold and 2ℓ → nℓ' (n = 3-10) EA channels at the higher energies are included. Close attention has been paid to the detailed branching ratios. Our calculated total EII cross sections are compared both with previous FAC calculations, which omitted many of these EA channels, and with the available experimentalmore » results. Moreover, for Fe{sup 11+}, we find that part of the remaining discrepancies between our calculations and recent measurements can be accounted for by the inclusion of the resonant excitation double autoionization process. Lastly, at the temperatures where each ion is predicted to peak in abundances in collisional ionization equilibrium, the Maxwellian rate coefficients derived from our calculations differ by 50%-7% from the previous FAC rate coefficients, with the difference decreasing with increasing charge.« less
Steady and transient sliding under rate-and-state friction
NASA Astrophysics Data System (ADS)
Putelat, Thibaut; Dawes, Jonathan H. P.
2015-05-01
The physics of dry friction is often modelled by assuming that static and kinetic frictional forces can be represented by a pair of coefficients usually referred to as μs and μk, respectively. In this paper we re-examine this discontinuous dichotomy and relate it quantitatively to the more general, and smooth, framework of rate-and-state friction. This is important because it enables us to link the ideas behind the widely used static and dynamic coefficients to the more complex concepts that lie behind the rate-and-state framework. Further, we introduce a generic framework for rate-and-state friction that unifies different approaches found in the literature. We consider specific dynamical models for the motion of a rigid block sliding on an inclined surface. In the Coulomb model with constant dynamic friction coefficient, sliding at constant velocity is not possible. In the rate-and-state formalism steady sliding states exist, and analysing their existence and stability enables us to show that the static friction coefficient μs should be interpreted as the local maximum at very small slip rates of the steady state rate-and-state friction law. Next, we revisit the often-cited experiments of Rabinowicz (J. Appl. Phys., 22:1373-1379, 1951). Rabinowicz further developed the idea of static and kinetic friction by proposing that the friction coefficient maintains its higher and static value μs over a persistence length before dropping to the value μk. We show that there is a natural identification of the persistence length with the distance that the block slips as measured along the stable manifold of the saddle point equilibrium in the phase space of the rate-and-state dynamics. This enables us explicitly to define μs in terms of the rate-and-state variables and hence link Rabinowicz's ideas to rate-and-state friction laws. This stable manifold naturally separates two basins of attraction in the phase space: initial conditions in the first one lead to the block eventually stopping, while in the second basin of attraction the sliding motion continues indefinitely. We show that a second definition of μs is possible, compatible with the first one, as the weighted average of the rate-and-state friction coefficient over the time the block is in motion.
Atomic rate coefficients in a degenerate plasma
NASA Astrophysics Data System (ADS)
Aslanyan, Valentin; Tallents, Greg
2015-11-01
The electrons in a dense, degenerate plasma follow Fermi-Dirac statistics, which deviate significantly in this regime from the usual Maxwell-Boltzmann approach used by many models. We present methods to calculate the atomic rate coefficients for the Fermi-Dirac distribution and present a comparison of the ionization fraction of carbon calculated using both models. We have found that for densities close to solid, although the discrepancy is small for LTE conditions, there is a large divergence from the ionization fraction by using classical rate coefficients in the presence of strong photoionizing radiation. We have found that using these modified rates and the degenerate heat capacity may affect the time evolution of a plasma subject to extreme ultraviolet and x-ray radiation such as produced in free electron laser irradiation of solid targets.
Analysis of heat recovery of diesel engine using intermediate working fluid
NASA Astrophysics Data System (ADS)
Jin, Lei; Zhang, Jiang; Tan, Gangfeng; Liu, Huaming
2017-07-01
The organic Rankine cycle (ORC) is an effective way to recovery the engine exhaust heat. The thermal stability of the evaporation system is significant for the stable operation of the ORC system. In this paper, the performance of the designed evaporation system which combines with the intermediate fluid for recovering the exhaust waste heat from a diesel engine is evaluated. The thermal characteristics of the target diesel engine exhaust gas are evaluated based on the experimental data firstly. Then, the mathematical model of the evaporation system is built based on the geometrical parameters and the specific working conditions of ORC. Finally, the heat transfer characteristics of the evaporation system are estimated corresponding to three typical operating conditions of the diesel engine. The result shows that the exhaust temperature at the evaporator outlet increases slightly with the engine speed and load. In the evaporator, the heat transfer coefficient of the Rankine working fluid is slightly larger than the intermediate fluid. However, the heat transfer coefficient of the intermediate fluid in the heat exchanger is larger than the exhaust side. The heat transfer areas of the evaporator in both the two-phase zone and the preheated zone change slightly along with the engine working condition while the heat transfer areas of the overheated zone has changed obviously. The maximum heat transfer rate occurs in the preheating zone while the minimum value occurs in the overheating zone. In addition, the Rankine working fluid temperature at the evaporator outlet is not sensitively affected by the torque and speed of the engine and the organic fluid flow is relatively stable. It is concluded that the intermediate fluid could effectively reduce the physical changes of Rankine working fluid in the evaporator outlet due to changes in engine operating conditions.
Chhantyal-Pun, Rabi; Welz, Oliver; Savee, John D.; ...
2016-10-18
Here, the Criegee intermediate acetone oxide, (CH 3) 2COO, is formed by laser photolysis of 2,2-diiodopropane in the presence of O 2 and characterized by synchrotron photoionization mass spectrometry and by cavity ring-down ultraviolet absorption spectroscopy. The rate coefficient of the reaction of the Criegee intermediate with SO 2 was measured using photoionization mass spectrometry and pseudo-first-order methods to be (7.3 ± 0.5) × 10 –11 cm 3 s –1 at 298 K and 4 Torr and (1.5 ± 0.5) × 10 –10 cm 3 s –1 at 298 K and 10 Torr (He buffer). These values are similar tomore » directly measured rate coefficients of anti-CH 3CHOO with SO 2, and in good agreement with recent UV absorption measurements. The measurement of this reaction at 293 K and slightly higher pressures (between 10 and 100 Torr) in N 2 from cavity ring-down decay of the ultraviolet absorption of (CH 3) 2COO yielded even larger rate coefficients, in the range (1.84 ± 0.12) × 10 –10 to (2.29 ± 0.08) × 10 –10 cm 3 s –1. Photoionization mass spectrometry measurements with deuterated acetone oxide at 4 Torr show an inverse deuterium kinetic isotope effect, kH/kD = (0.53 ± 0.06), for reactions with SO 2, which may be consistent with recent suggestions that the formation of an association complex affects the rate coefficient. The reaction of (CD3)2COO with NO2 has a rate coefficient at 298 K and 4 Torr of (2.1 ± 0.5) × 10 –12 cm 3 s –1 (measured with photoionization mass spectrometry), again similar to rate for the reaction of anti-CH 3CHOO with NO 2. Cavity ring-down measurements of the acetone oxide removal without added reagents display a combination of first- and second-order decay kinetics, which can be deconvolved to derive values for both the self-reaction of (CH 3) 2COO and its unimolecular thermal decay. The inferred unimolecular decay rate coefficient at 293 K, (305 ± 70) s –1, is similar to determinations from ozonolysis. The present measurements confirm the large rate coefficient for reaction of (CH 3) 2COO with SO 2 and the small rate coefficient for its reaction with water. Product measurements of the reactions of (CH 3) 2COO with NO 2 and with SO 2 suggest that these reactions may facilitate isomerization to 2-hydroperoxypropene, possibly by subsequent reactions of association products.« less
NASA Astrophysics Data System (ADS)
Mansoor, Awais; Robinson, J. Paul; Rajwa, Bartek
2009-02-01
Modern automated microscopic imaging techniques such as high-content screening (HCS), high-throughput screening, 4D imaging, and multispectral imaging are capable of producing hundreds to thousands of images per experiment. For quick retrieval, fast transmission, and storage economy, these images should be saved in a compressed format. A considerable number of techniques based on interband and intraband redundancies of multispectral images have been proposed in the literature for the compression of multispectral and 3D temporal data. However, these works have been carried out mostly in the elds of remote sensing and video processing. Compression for multispectral optical microscopy imaging, with its own set of specialized requirements, has remained under-investigated. Digital photography{oriented 2D compression techniques like JPEG (ISO/IEC IS 10918-1) and JPEG2000 (ISO/IEC 15444-1) are generally adopted for multispectral images which optimize visual quality but do not necessarily preserve the integrity of scientic data, not to mention the suboptimal performance of 2D compression techniques in compressing 3D images. Herein we report our work on a new low bit-rate wavelet-based compression scheme for multispectral fluorescence biological imaging. The sparsity of signicant coefficients in high-frequency subbands of multispectral microscopic images is found to be much greater than in natural images; therefore a quad-tree concept such as Said et al.'s SPIHT1 along with correlation of insignicant wavelet coefficients has been proposed to further exploit redundancy at high-frequency subbands. Our work propose a 3D extension to SPIHT, incorporating a new hierarchal inter- and intra-spectral relationship amongst the coefficients of 3D wavelet-decomposed image. The new relationship, apart from adopting the parent-child relationship of classical SPIHT, also brought forth the conditional "sibling" relationship by relating only the insignicant wavelet coefficients of subbands at the same level of decomposition. The insignicant quadtrees in dierent subbands in the high-frequency subband class are coded by a combined function to reduce redundancy. A number of experiments conducted on microscopic multispectral images have shown promising results for the proposed method over current state-of-the-art image-compression techniques.
Friction and Wear Properties of As-Deposited and Carbon Ion-Implanted Diamond Films
NASA Technical Reports Server (NTRS)
Miyoshi, Kazuhisa
1996-01-01
Recent work on the friction and wear properties of as-deposited and carbon ion-implanted diamond films was reviewed. Diamond films were produced by the microwave plasma chemical vapor deposition (CVD) technique. Diamond films with various grain sizes and surface roughnesses were implanted with carbon ions at 60 keV ion energy, resulting in a dose of 1.2 x 10(exp 17) carbon ions per cm(exp 2). Various analytical techniques, including Raman spectroscopy, proton recoil analysis, Rutherford backscattering, transmission and scanning electron microscopy, X-ray photoelectron spectroscopy, and X-ray diffraction, were utilized to characterize the diamond films. Sliding friction experiments were conducted with a polished natural diamond pin in contact with diamond films in the three environments: humid air (40% relative humidity), dry nitrogen (less than 1 percent relative humidity), and ultrahigh vacuum (10(exp -7) Pa). The CVD diamond films indeed have friction and wear properties similar to those of natural diamond in the three environments. The as-deposited, fine-grain diamond films can be effectively used as self-lubricating, wear-resistant coatings that have low coefficients of friction (0.02 to 0.04) and low wear rates (10(exp -7) to lO(exp -8) mm(exp 3) N(exp -1) m(exp -1)) in both humid air and dry nitrogen. However, they have high coefficients of friction (1.5 to 1.7) and a high wear rate (10(exp -4) mm(exp 7) N(exp -1) m(exp -1)) in ultrahigh vacuum. The carbon ion implantation produced a thin surficial layer (less than 0.1 micron thick) of amorphous, non-diamond carbon on the diamond films. In humid air and dry nitrogen, the ion-implanted, fine and coarse-grain diamond films have a low coefficient of friction (around 0.1) and a low wear rate (10(exp -7) mm(exp 3) N(exp -1) m(exp-1)). Even in ultrahigh vacuum, the presence of the non-diamond carbon layer reduced the coefficient of friction of fine-grain diamond films to 0.1 or lower and the wear rate to 10(exp -6) mm(exp 3) N(exp -1) m(exp -1). Thus, the carbon ion-implanted, fine-grain diamond films can be effectively used as wear-resistant, self-lubricating coatings not only in air and dry nitrogen, but also in ultrahigh vacuum.
Thermal-energy reactions of O2(2+) ions with O2, N2, CO2, NO, and Ne
NASA Technical Reports Server (NTRS)
Chatterjee, B. K.; Johnson, R.
1989-01-01
The paper presents results of drift-tube mass-spectrometer studies of the reactivity of doubly charged molecular oxygen ions with several molecules and neon atoms. Thermal-energ rate coefficients for the reactions with the molecular reactants were found to be large, close to the limiting Langevin rates. Charge transfer with neon atoms was observed, but the measured rate coefficient was only a small fraction of the Langevin rate. It is concluded that the measured rate constants for the reactions considereed refer to vibrationally excited ions.
Moradkhani, Hamed; Izadkhah, Mir-Shahabeddin; Anarjan, Navideh
2017-02-01
In this work, gas dispersion in a two-phase partitioning bioreactor is analyzed by calculating volumetric oxygen mass transfer coefficient which is modeled using a commercial computational fluid dynamics (CFD), code FLUENT 6.2. Dispersed oxygen bubbles dynamics is based on standard "k-ε" Reynolds-averaged Navier-Stokes (RANS) model. This paper describes a three-dimensional CFD model coupled with population balance equations (PBE) in order to get more confirming results of experimental measurements. Values of k L a are obtained using dynamic gassing-out method. Using the CFD simulation, the volumetric mass transfer coefficient is calculated based on Higbie's penetration theory. Characteristics of mass transfer coefficient are investigated for five configurations of impeller and three different aeration flow rates. The pitched six blade type, due to the creation of downward flow direction, leads to higher dissolved oxygen (DO) concentrations, thereby, higher values of k L a compared with other impeller compositions. The magnitude of dissolved oxygen percentage in the aqueous phase has direct correlation with impeller speed and any increase of the aeration magnitude leads to faster saturation in shorter periods of time. Agitation speeds of 300 to 800 rpm are found to be the most effective rotational speeds for the mass transfer of oxygen in two-phase partitioning bioreactors (TPPB).
Gravity Field Recovery from the Cartwheel Formation by the Semi-analytical Approach
NASA Astrophysics Data System (ADS)
Li, Huishu; Reubelt, Tilo; Antoni, Markus; Sneeuw, Nico; Zhong, Min; Zhou, Zebing
2016-04-01
Past and current gravimetric satellite missions have contributed drastically to our knowledge of the Earth's gravity field. Nevertheless, several geoscience disciplines push for even higher requirements on accuracy, homogeneity and time- and space-resolution of the Earth's gravity field. Apart from better instruments or new observables, alternative satellite formations could improve the signal and error structure. With respect to other methods, one significant advantage of the semi-analytical approach is its effective pre-mission error assessment for gravity field missions. The semi-analytical approach builds a linear analytical relationship between the Fourier spectrum of the observables and the spherical harmonic spectrum of the gravity field. The spectral link between observables and gravity field parameters is given by the transfer coefficients, which constitutes the observation model. In connection with a stochastic model, it can be used for pre-mission error assessment of gravity field mission. The cartwheel formation is formed by two satellites on elliptic orbits in the same plane. The time dependent ranging will be considered in the transfer coefficients via convolution including the series expansion of the eccentricity functions. The transfer coefficients are applied to assess the error patterns, which are caused by different orientation of the cartwheel for range-rate and range acceleration. This work will present the isotropy and magnitude of the formal errors of the gravity field coefficients, for different orientations of the cartwheel.
Liu, Zhijian; Liu, Kejun; Li, Hao; Zhang, Xinyu; Jin, Guangya; Cheng, Kewei
2015-01-01
Measurements of heat collection rate and heat loss coefficient are crucial for the evaluation of in service water-in-glass evacuated tube solar water heaters. However, conventional measurement requires expensive detection devices and undergoes a series of complicated procedures. To simplify the measurement and reduce the cost, software based on artificial neural networks for measuring heat collection rate and heat loss coefficient of water-in-glass evacuated tube solar water heaters was developed. Using multilayer feed-forward neural networks with back-propagation algorithm, we developed and tested our program on the basis of 915measuredsamples of water-in-glass evacuated tube solar water heaters. This artificial neural networks-based software program automatically obtained accurate heat collection rateand heat loss coefficient using simply "portable test instruments" acquired parameters, including tube length, number of tubes, tube center distance, heat water mass in tank, collector area, angle between tubes and ground and final temperature. Our results show that this software (on both personal computer and Android platforms) is efficient and convenient to predict the heat collection rate and heat loss coefficient due to it slow root mean square errors in prediction. The software now can be downloaded from http://t.cn/RLPKF08. PMID:26624613
Heat transfer coefficient of cryotop during freezing.
Li, W J; Zhou, X L; Wang, H S; Liu, B L; Dai, J J
2013-01-01
Cryotop is an efficient vitrification method for cryopreservation of oocytes. It has been widely used owing to its simple operation and high freezing rate. Recently, the heat transfer performance of cryotop was studied by numerical simulation in several studies. However, the range of heat transfer coefficient in the simulation is uncertain. In this study, the heat transfer coefficient for cryotop during freezing process was analyzed. The cooling rates of 40 percent ethylene glycol (EG) droplet in cryotop during freezing were measured by ultra-fast measurement system and calculated by numerical simulation at different value of heat transfer coefficient. Compared with the results obtained by two methods, the range of the heat transfer coefficient necessary for the numerical simulation of cryotop was determined, which is between 9000 W/(m(2)·K) and 10000 W/(m (2)·K).
Temperature-Dependent Rate Coefficients for the Reaction of CH2OO with Hydrogen Sulfide.
Smith, Mica C; Chao, Wen; Kumar, Manoj; Francisco, Joseph S; Takahashi, Kaito; Lin, Jim Jr-Min
2017-02-09
The reaction of the simplest Criegee intermediate CH 2 OO with hydrogen sulfide was measured with transient UV absorption spectroscopy in a temperature-controlled flow reactor, and bimolecular rate coefficients were obtained from 278 to 318 K and from 100 to 500 Torr. The average rate coefficient at 298 K and 100 Torr was (1.7 ± 0.2) × 10 -13 cm 3 s -1 . The reaction was found to be independent of pressure and exhibited a weak negative temperature dependence. Ab initio quantum chemistry calculations of the temperature-dependent reaction rate coefficient at the QCISD(T)/CBS level are in reasonable agreement with the experiment. The reaction of CH 2 OO with H 2 S is 2-3 orders of magnitude faster than the reaction with H 2 O monomer. Though rates of CH 2 OO scavenging by water vapor under atmospheric conditions are primarily controlled by the reaction with water dimer, the H 2 S loss pathway will be dominated by the reaction with monomer. The agreement between experiment and theory for the CH 2 OO + H 2 S reaction lends credence to theoretical descriptions of other Criegee intermediate reactions that cannot easily be probed experimentally.
Performance Analysis of Occurrences January 1, 2011-December 31, 2011
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ludwig, M
2012-03-16
This report documents the analysis of the occurrences during the period January 1, 2011 through December 31, 2011. The report compares LLNL occurrences by reporting criteria and significance category to see if LLNL is reporting occurrences along similar percentages as other DOE sites. The three-year trends are analyzed. It does not include the analysis of the causes or the lessons learned from the occurrences, as they are analyzed separately. The number and types of occurrences that LLNL reports to DOE varies over time. This variation can be attributed to normally occurring changes in frequency; DOE's or LLNL's heightened interest inmore » a particular subject area; changes in LLNL processes; or emerging problems. Since all of the DOE sites use the same reporting criteria, it is helpful to understand if LLNL is consistent with or diverging from reporting at other sites. This section compares the normalized number of occurrences reported by LLNL and other DOE sites. In order to compare LLNL occurrence reports to occurrence reports from other DOE sites, we normalized (or standardized) the data from the sites. DOE sites vary widely in their budgets, populations, and scope of work and these variations may affect reporting frequency. In addition, reports are required for a wide range of occurrence types, some of which may not be applicable to all DOE sites. For example, one occurrence reporting group is Group 3, Nuclear Safety Basis, and not all sites have nuclear operations. Because limited information is available for all sites, the sites were normalized based on best available information. Site effort hours were extracted from the DOE Computerized Accident Incident Reporting System (CAIRS) and used to normalize (or standardize) the number of occurrences by site. Effort hours are those hours that employees normally work and do not include vacation, holiday hours etc. Sites are responsible for calculating their effort hours and ensuring entry into CAIRS. Out of the 30 DOE sites that reported occurrences into ORPS during January 2011 through December 2011, 28 had effort hours available in CAIRS. Two sites had not submitted effort hours data to CAIRS as of the time data was pulled for this report. In those two cases, third quarter data was used as an estimate of fourth quarter data. The use of estimated data may introduce minor errors in the average, median, and Pearson calculations. Using the effort hours and the frequency of occurrences by site, a rate of occurrence frequency per 100 FTE workers was calculated. This rate is similar to the injury/illness frequency rate: the number of injury/illness cases per 100 FTE workers. To validate that this rate was appropriate to use, we compared the effort hours and the frequency of occurrences by site to determine if a relationship exists between the two, e.g. the more effort hours a site has, the more occurrences they tend to have. This hypothesis was tested using the Pearson Correlation Coefficient Test. The correlation coefficient measures the strength of the linear relationship between effort hours and occurrence frequency. The Pearson Correlation Coefficient Test will determine if the true correlation coefficient is equal to zero (no relationship exists), or if the correlation coefficient is not equal to zero (a relationship exists). Values approaching 1.00 show a more positive correlation. Simple linear regression was also used to display a trend line and to test if a one-way relationship exists between effort hours predicting the number of occurrences a site will have. Using the Pearson Correlation test, for the NNSA sites, effort hours and the number of occurrences are significantly and positively correlated with a correlation coefficient of 0.90, as was also seen in the previous report (correlation coefficient of 0.67). All DOE sites are positively correlated with a coefficient of 0.85. As the effort hours increase, so does the number of occurrences and vice versa. Based on the results of the simple linear regression, effort hours were found to predict the number of occurrences.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adams, M.E.; Marshall, T.L.; Rowley, R.L.
1998-07-01
Absorption rates of gaseous CO{sub 2} into aqueous blends of N-methyldiethanolamine (MDEA) and diethanolamine (DEA) and of gaseous H{sub 2}S into aqueous MDEA were measured in a quiescent, inverted-tube diffusiometer by monitoring the rate of pressure drop. A numerical model for absorption, diffusion, and reaction of CO{sub 2} and H{sub 2}S in blends of MDEA, DEA, and water was developed. The model was used to regress diffusion coefficients of bicarbonate, carbamate, and MDEAH{sub 2}CO{sub 3} for the case of CO{sub 2} absorption and of bisulfide ion for the case of H{sub 2}S absorption from measured absorption rates. CO{sub 2} absorptionmore » rates and diffusion coefficients of bicarbonate, carbamate, and MDEAH{sub 2}CO{sub 3} were obtained at 298.2 K and 318.2 K in aqueous solutions containing 50 mass % total amine at DEA:MDEA mole ratios of 1:20, 1:4, 1L3, and 2:3. H{sub 2}S absorption rates and diffusion coefficients of bisulfide ion were obtained at 298.2 K and 318.2 K in aqueous solutions containing 20, 35, and 50 mass % MDEA.« less
Perception of slipperiness and prospective risk of slipping at work
Courtney, Theodore K; Verma, Santosh K; Chang, Wen-Ruey; Huang, Yueng-Hsiang; Lombardi, David A; Brennan, Melanye J; Perry, Melissa J
2013-01-01
Objectives Falls are a leading cause of injury at work, and slipping is the predominant cause of falling. Prior research has suggested a modest correlation between objective measures (such as coefficient of friction, COF) and subjective measures of slipperiness (such as worker perceptions) in the workplace. However, the degree of association between subjective measures and the actual risk of slipping at the workplace is unknown. This study examined the association between perception of slipperiness and the risk of slipping. Methods 475 workers from 36 limited-service restaurants participated in a 12-week prospective cohort study. At baseline, demographic information was collected, participants rated floor slipperiness in eight areas of the restaurant, and work environment factors, such as COF, were measured. Restaurant-level and area-level mean perceptions of slipperiness were calculated. Participants then reported their slip experience at work on a weekly basis for the next 12 weeks. The associations between perception of slipperiness and the rate of slipping were assessed. Results Adjusting for age, gender, body mass index, education, primary language, mean COF, use of slip-resistant shoes, and restaurant chain, each 1-point increase in mean restaurant-level perception of slipperiness (4-point scale) was associated with a 2.71 times increase in the rate of slipping (95% CI 1.25 to 5.87). Results were similar for area-level perception within the restaurant (rate ratios (RR) 2.92, 95% CI 2.41 to 3.54). Conclusions Perceptions of slipperiness and the subsequent rate of slipping were strongly associated. These findings suggest that safety professionals, risk managers and employers could use aggregated worker perceptions of slipperiness to identify slipping hazards and, potentially, to assess intervention effectiveness. PMID:22935953
Perception of slipperiness and prospective risk of slipping at work.
Courtney, Theodore K; Verma, Santosh K; Chang, Wen-Ruey; Huang, Yueng-Hsiang; Lombardi, David A; Brennan, Melanye J; Perry, Melissa J
2013-01-01
Falls are a leading cause of injury at work, and slipping is the predominant cause of falling. Prior research has suggested a modest correlation between objective measures (such as coefficient of friction, COF) and subjective measures of slipperiness (such as worker perceptions) in the workplace. However, the degree of association between subjective measures and the actual risk of slipping at the workplace is unknown. This study examined the association between perception of slipperiness and the risk of slipping. 475 workers from 36 limited-service restaurants participated in a 12-week prospective cohort study. At baseline, demographic information was collected, participants rated floor slipperiness in eight areas of the restaurant, and work environment factors, such as COF, were measured. Restaurant-level and area-level mean perceptions of slipperiness were calculated. Participants then reported their slip experience at work on a weekly basis for the next 12 weeks. The associations between perception of slipperiness and the rate of slipping were assessed. Adjusting for age, gender, body mass index, education, primary language, mean COF, use of slip-resistant shoes, and restaurant chain, each 1-point increase in mean restaurant-level perception of slipperiness (4-point scale) was associated with a 2.71 times increase in the rate of slipping (95% CI 1.25 to 5.87). Results were similar for area-level perception within the restaurant (rate ratios (RR) 2.92, 95% CI 2.41 to 3.54). Perceptions of slipperiness and the subsequent rate of slipping were strongly associated. These findings suggest that safety professionals, risk managers and employers could use aggregated worker perceptions of slipperiness to identify slipping hazards and, potentially, to assess intervention effectiveness.
Sudeikina, N A; Kurenkova, G V; Lemeshevskaya, E P
The rail transport is the one of the leading sectors of the national economy. More than 50% of the employees of the enterprises of the railway complex work under the unfavourable impact of hazardous and dangerous substances and occupational factors. In the literature issues of working conditions and health of employees of railway carrepairing plant are hardly highlighted. The aim of the study is the evaluation of the morbidity rate shaped under the influence of harmful occupational factors for the elaboration of preventive measures. In the work there were used generally accepted methods of hygienic studies, analysis of morbidity rate with temporary disability (TD), according to records of periodic medical examinations, occupational prevalence. The railway car-repairing plant was established to be characterized by the complex of harmful factors of the working environment and labor process: noise, local vibration, industrial aerosols of complex composition, chemicals, low light, hardness of the labor process. The levels of incidence with temporal disability in the studied groups, depending on the work seniority in the harmful labor conditions, significantly decrease with the experience from 5 to 9 years and increase with the experience more than 10 years. Executed in-depth analysis as of the both morbidity rate and TD, as well results of periodic medical examinations of workers of main shops shows that overall indices of the morbidity rate and TD are significantly higher than in the comparison group; levels of the morbidity rate and TD in the observed groups significantly decline depending on the length of service in hazardous working conditions with a length of the experience offrom 5 to 9 years and increase with the increase in the length of experience of 10 years or more. In the structure of morbidity and TD leading positions are occupied by diseases of the respiratory system, musculoskeletal system and connective tissue, circulatory system and digestive system, diseases of the eye and its appendages. The health damage risk coefficients in the studied groups of workers and the average losses of working time due to the morbidity with TD per 1 employee in all shops are higher than those in the comparison group. The level of the occupational morbidity rate is very low. Harmful working conditions contribute to the development of general and occupationally related diseases.
NASA Technical Reports Server (NTRS)
Finger, Barry W.; Strayer, Richard F.
1994-01-01
Three Intermediate-Scale Aerobic Bioreactors were designed, fabricated, and operated. They utilized mixed microbial communities to bio-degrade plant residues. The continuously stirred tank reactors operated at a working volume of 8 L, and the average oxygen mass transfer coefficient, k(sub L)a, was 0.01 s(exp -1). Mixing time was 35 s. An experiment using inedible wheat residues, a replenishment rate of 0.125/day, and a solids loading rate of 20 gdw/day yielded a 48% reduction in biomass. Bioreactor effluent was successfully used to regenerate a wheat hydroponic nutrient solution. Over 80% of available potassium, calcium, and other minerals were recovered and recycled in the 76-day wheat growth experiment.
Production of photons in relativistic heavy-ion collisions
Jean -Francois Paquet; Denicol, Gabriel S.; Shen, Chun; ...
2016-04-18
In this work it is shown that the use of a hydrodynamical model of heavy-ion collisions which incorporates recent developments, together with updated photon emission rates, greatly improves agreement with both ALICE and PHENIX measurements of direct photons, supporting the idea that thermal photons are the dominant source of direct photon momentum anisotropy. The event-by-event hydrodynamical model uses the impact parameter dependent Glasma model (IP-Glasma) initial states and includes, for the first time, both shear and bulk viscosities, along with second-order couplings between the two viscosities. Furthermore, the effect of both shear and bulk viscosities on the photon rates ismore » studied, and those transport coefficients are shown to have measurable consequences on the photon momentum anisotropy.« less
Reliability of the OSCE for Physical and Occupational Therapists
Sakurai, Hiroaki; Kanada, Yoshikiyo; Sugiura, Yoshito; Motoya, Ikuo; Wada, Yosuke; Yamada, Masayuki; Tomita, Masao; Tanabe, Shigeo; Teranishi, Toshio; Tsujimura, Toru; Sawa, Syunji; Okanishi, Tetsuo
2014-01-01
[Purpose] To examine agreement rates between faculty members and clinical supervisors as OSCE examiners. [Subjects] The study subjects were involved physical and occupational therapists working in clinical environments for 1 to 5 years after graduating from training schools as OSCE examinees, and a physical or occupational therapy faculty member and a clinical supervisor as examiners. Another clinical supervisor acted as a simulated patient. [Methods] The agreement rate between the examiners for each OSCE item was calculated based on Cohen’s kappa coefficient to confirm inter-rater reliability. [Results] The agreement rates for the behavioral aspects of the items were higher in the second than in the first examination. Similar increases were also observed in the agreement rates for the technical aspects until the initiation of each activity; however, the rates decreased during the middle to terminal stages of continuous movements. [Conclusion] The results may reflect the recent implementation of measures for the integration of therapist education in training schools and clinical training facilities. PMID:25202170
The Influence of Particle Charge on Heterogeneous Reaction Rate Coefficients
NASA Technical Reports Server (NTRS)
Aikin, A. C.; Pesnell, W. D.
2000-01-01
The effects of particle charge on heterogeneous reaction rates are presented. Many atmospheric particles, whether liquid or solid are charged. This surface charge causes a redistribution of charge within a liquid particle and as a consequence a perturbation in the gaseous uptake coefficient. The amount of perturbation is proportional to the external potential and the square of the ratio of debye length in the liquid to the particle radius. Previous modeling has shown how surface charge affects the uptake coefficient of charged aerosols. This effect is now included in the heterogeneous reaction rate of an aerosol ensemble. Extension of this analysis to ice particles will be discussed and examples presented.
Temperature and current coefficients of lasing wavelength in tunable diode laser spectroscopy.
Fukuda, M; Mishima, T; Nakayama, N; Masuda, T
2010-08-01
The factors determining temperature and current coefficients of lasing wavelength are investigated and discussed under monitoring CO(2)-gas absorption spectra. The diffusion rate of Joule heating at the active layer to the surrounding region is observed by monitoring the change in the junction voltage, which is a function of temperature and the wavelength (frequency) deviation under sinusoidal current modulation. Based on the experimental results, the time interval of monitoring the wavelength after changing the ambient temperature or injected current (scanning rate) has to be constant at least to eliminate the monitoring error induced by the deviation of lasing wavelength, though the temperature and current coefficients of lasing wavelength differ with the rate.
Decomposition of carbon dioxide by recombining hydrogen plasma with ultralow electron temperature
NASA Astrophysics Data System (ADS)
Yamazaki, Masahiro; Nishiyama, Shusuke; Sasaki, Koichi
2018-06-01
We examined the rate coefficient for the decomposition of CO2 in low-pressure recombining hydrogen plasmas with electron temperatures between 0.15 and 0.45 eV, where the electron-impact dissociation was negligible. By using this ultralow-temperature plasma, we clearly observed decomposition processes via vibrational excited states. The rate coefficient of the overall reaction, CO2 + e → products, was 1.5 × 10‑17 m3/s in the ultralow-temperature plasma, which was 10 times larger than the decomposition rate coefficient of 2 × 10‑18 m3/s in an ionizing plasma with an electron temperature of 4 eV.
NASA Technical Reports Server (NTRS)
Heck, M. L.; Findlay, J. T.; Compton, H. R.
1983-01-01
The Aerodynamic Coefficient Identification Package (ACIP) is an instrument consisting of body mounted linear accelerometers, rate gyros, and angular accelerometers for measuring the Space Shuttle vehicular dynamics. The high rate recorded data are utilized for postflight aerodynamic coefficient extraction studies. Although consistent with pre-mission accuracies specified by the manufacturer, the ACIP data were found to contain detectable levels of systematic error, primarily bias, as well as scale factor, static misalignment, and temperature dependent errors. This paper summarizes the technique whereby the systematic ACIP error sources were detected, identified, and calibrated with the use of recorded dynamic data from the low rate, highly accurate Inertial Measurement Units.
Performance back-deduction from a loading to flow coefficient map: Application to radial turbine
NASA Astrophysics Data System (ADS)
Carbonneau, Xavier; Binder, Nicolas
2012-12-01
Radial turbine stages are often used for applications requiring off-design operation, as turbocharging for instance. The off-design ability of such stages is commonly analyzed through the traditional turbine map, plotting the reduced mass-flow against the pressure-ratio, for reduced-speed lines. However, some alternatives are possible, such as the flow-coefficient ( Ψ) to loading-coefficient ( φ) diagram where the pressure-ratio lines are actually straight lines, very convenient property to perform prediction. A robust method re-creating this map from a predicted Ψ-φ diagram is needed. Recent work has shown that this back-deduction quality, without the use of any loss models, depends on the knowledge of an intermediate pressure-ratio. A modelization of this parameter is then proposed. The comparison with both experimental and CFD results is presented, with quite good agreement for mass flow rate and rotational speed, and for the intermediate pressure ratio. The last part of the paper is dedicated to the application of the intermediate pressure-ratio knowledge to the improvement of the deduction of the pressure ratio lines in the Ψ-φ diagram. Beside this improvement, the back-deduction method of the classical map is structured, applied and evaluated.
Heat transfer performance of Al2O3/water nanofluids in a mini channel heat sink.
Dominic, A; Sarangan, J; Suresh, S; Sai, Monica
2014-03-01
The high density heat removal in electronic packaging is a challenging task of modern days. Finding compact, energy efficient and cost effective methods of heat removal is being the interest of researchers. In the present work, mini channel with forced convective heat transfer in simultaneously developing regime is investigated as the heat transfer coefficient is inversely proportional to hydraulic diameter. Mini channel heat sink is made from the aluminium plate of 30 mm square with 8 mm thickness. It has 15 mini channel of 0.9 mm width, 1.3 mm height and 0.9 mm of pitch. DI water and water based 0.1% and 0.2% volume fractions of Al2O3/water nanofluids are used as coolant. The flow rates of the coolants are maintained in such a way that it is simultaneously developing. Reynolds number is varied from 400 to 1600 and heat input is varied from 40 W to 70 W. The results showed that heat transfer coefficient is more than the heat transfer coefficient of fully developed flow. Also the heat transfer is more for nanofluids compared to DI water.
Britto-Costa, Pedro H; Ruotolo, Luís Augusto M
2013-01-01
Porous electrodes have been successfully used for metal electrodeposition from diluted aqueous solution due to their high porosity and specific surface area, which lead to high mass transfer rates. This work studies the mass transfer of copper electrodeposition on reticulated vitreous carbon in a flow reactor without membrane. The flow configuration, otherwise the filter-press electrochemical reactors, was designed in order to minimize the pressure drop. The mass transfer coefficient was determined by voltammetric and galvanostatic electrodeposition. In the voltammetric experiments a Luggin capillary was used to measure the current-potential curves and to determine the limiting current (and, consequently, the mass transfer coefficient). In the galvanostatic experiments the concentration-time curves were obtained and considering a limiting current kinetics model, the mass transfer coefficient (k(m)) was determined for different flow velocities. The results showed that both methods give similar values of k(m), thus the voltammetric method can be recommended because it is faster and simpler. Finally, the reactor performance was compared with others from literature, and it was observed that the proposed reactor design has high Sherwood numbers similar to other reactor configurations using membranes and reticulated vitreous carbon electrodes.
NASA Astrophysics Data System (ADS)
Mehrishal, Seyedahmad; Sharifzadeh, Mostafa; Shahriar, Korosh; Song, Jae-Jon
2016-12-01
Among all parameters that affect the friction of rocks, variable normal stress and slip rate are the most important second-order parameters. The shear-rate- and normal-stress-dependent friction behavior of rock discontinuities may significantly influence the dynamic responses of rock mass. In this research, two limestone rock types, which were travertine and onyx marble with slickenside and grinded #80 surfaces, were prepared and CNL direct shear tests were performed on the joints under various shear conditions. The shearing rate varied from 0.1 to 50 mm/min under different normal stresses (from 2 to 30 % of UCS) in both dry and wet conditions. Experiments showed that the friction coefficient of slickensided and ground #80 surfaces of limestone increased with the increasing shear velocity and decreased with the increasing normal stress. Micro-asperity interlocking between ground #80 surfaces showed higher wear and an increase in friction coefficient ( µ) compared to slickensided surfaces. Slickensided samples with moist surfaces showed an increase in the coefficient of friction compared to dry surfaces; however, on ground #80 surfaces, the moisture decreased the coefficient of friction to a smaller value. Slickenside of limestone typically slides stably in a dry condition and by stick-slip on moist surfaces. The observed shear-rate- and normal-stress-dependent friction behavior can be explained by a similar framework to that of the adhesion theory of friction and a friction mechanism that involves the competition between microscopic dilatant slip and surface asperity deformation. The results have important implications for understanding the behavior of basic and residual friction coefficients of limestone rock surfaces.
Inequality in Maternal Mortality in Iran: An Ecologic Study
Tajik, Parvin; Nedjat, Saharnaz; Afshar, Nozhat Emami; Changizi, Nasrin; Yazdizadeh, Bahareh; Azemikhah, Arash; Aamrolalaei, Sima; Majdzadeh, Reza
2012-01-01
Background: Maternal mortality (MM) is an avoidable death and there is national, international and political commitment to reduce it. The objective of this study is to examine the relation of MM to socioeconomic factors and its inequality in Iran's provinces at an ecologic level. Methods: The overall MM from each province was considered for 3 years from 2004 to 2006. The five independent variables whose relations were studied included the literacy rate among men and women in each province, mean annual household income per capita, Gini coefficients in each province, and Human Development Index (HDI). The correlation of Maternal Mortality Ratio (MMR) to the above five variables was evaluated through Pearson's correlation coefficient (simple and weighted for each province's population) and linear regression – by considering MMR as the dependent variable and the Gini coefficient, HDI, and difference in literacy rate among men and women as the independent variables. Results: The mean MMR in the years 2004–2006 was 24.7 in 100,000 live births. The correlation coefficients between MMR and literacy rate among women, literacy rate among men, the mean annual household income per capita, Gini coefficient and HDI were 0.82, 0.90, –0.61, 0.52 and –0.77, respectively. Based on multivariate regression, MMR was significantly associated with HDI (standardized B=–0.93) and difference in literacy rate among men and women (standardized B=–0.47). However, MMR was not significantly associated with the Gini coefficient. Conclusion: This study shows the association between socioeconomic variables and their inequalities with MMR in Iran's provinces at an ecologic level. In addition to the other direct interventions performed to reduce MM, it seems essential to especially focus on more distal factors influencing MMR. PMID:22347608
Role of collisions in erosion of regolith during a lunar landing.
Berger, Kyle J; Anand, Anshu; Metzger, Philip T; Hrenya, Christine M
2013-02-01
The supersonic gas plume of a landing rocket entrains lunar regolith, which is the layer of loose solids covering the lunar surface. This ejection is problematic due to scouring and dust impregnation of surrounding hardware, reduction in visibility for the crew, and spoofing of the landing sensors. To date, model predictions of erosion and ejection dynamics have been based largely on single-trajectory models in which the role of interparticle collisions is ignored. In the present work, the parameters affecting the erosion rate of monodisperse solids are investigated using the discrete element method (DEM). The drag and lift forces exerted by the rocket exhaust are incorporated via one-way coupling. The results demonstrate that interparticle collisions are frequent in the region immediately above the regolith surface; as many as 20% of particles are engaged in a collision at a given time. These collisions play an important role both in the erosion dynamics and in the final trajectories of particles. In addition, a direct assessment of the influence of collisions on the erosion rate is accomplished via a comparison between a "collisionless" DEM model and the original DEM model. This comparison shows that the erosion dynamics change drastically when collisions are considered and that the erosion rate is dependent on the collision parameters (coefficient of restitution and coefficient of friction). Physical explanations for these trends are provided.
NASA Astrophysics Data System (ADS)
Purswell, Jerry L.; Schlegel, Robert E.
1988-06-01
When there is no simple or accurate procedure for measuring the coefficient of friction (COF) at a job site, workers and/or supervisors involved must make subjective judgments about the slipperiness of the walking and climbing surfaces and in turn decide whether the surface presents a safe or an unsafe condition for work. This project was designed to determine whether these subjective judgment calls did in fact agree with the COF measurements obtained using a mechanical device. It was noted that the coatings chosen for study were subject to a polishing factor by the boot soles during the trials, causing the COF values to become lower as the trials continued. Poor correlation was obtained between subjective ratings of slipperiness and the COF values measured before the trials began. A relatively high correlation was obtained between subjective ratings and the COF values measured after the trials had been completed. A difference was noted in the subjective ratings for the effects of water on a coating for column climbing, but not for walking a beam, suggesting the effects of water on a coating are related to the type of task being performed in steel erection. An increase in the measured COF was noted for all of the coatings when they were wet as compared to the dry condition. The importance of clean shoe soles was clearly demonstrated.
Pressure and Temperature Dependence of the Reaction of Vinyl Radical with Ethylene
NASA Technical Reports Server (NTRS)
Ismail, Huzeifa; Goldsmith, C. Franklin; Abel, Paul R.; Howe, Pui-Teng; Fahr, Askar; Halpern, Joshua B.; Jusinski, Leonard E.; Georgievskii, Yuri; Taatjes, Craig A.; Green, William H.
2007-01-01
This work reports measurements of absolute rate coefficients and Rice-Ramsperger-Kassel-Marcus (RRKM) master equation simulations of the C2H3 + C2H4 reaction. Direct kinetic studies were performed over a temperature range of 300-700 K and pressures of 20 and 133 mbar. Vinyl radicals (H2C=CH) were generated by laser photolysis of vinyl iodide (C2H31) at 266 nm, and time-resolved absorption spectroscopy was used to probe vinyl radicals through absorption at 423.2 nm. Measurements at 20 mbar are in good agreement with previous determinations at higher temperature. A weighted three-parameter Arrhenius fit to the experimental rate constant at 133 mbar, with the temperature exponent fixed, gives k = (7 +/- 1) x 10(exp -l4) cu cm/molecule/s (T/298 K)(exp 2) exp[-(1430 +/- 70) K/T]. RRKM master equation simulations, based on G3 calculations of stationary points on the C4H7 potential energy surface, were carried out to predict rate coefficients and product branching fractions. The predicted branching to 1-methylallyl product is relatively small under the conditions of the present experiments but increases as the pressure is lowered. Analysis of end products of 248 nm photolysis of vinyl iodide/ethylene mixtures at total pressures between 27 and 933 mbar provides no direct evidence for participation of I -methylallyl.
Muazzam, Sana; Nasrullah, Muazzam
2011-08-01
Gross Domestic Product (GDP) and unemployment has a strong documented impact on injury mortality. The aim of our study is to investigate the relationship of GDP per capita and unemployment with gender- and cause-specific injury mortalities in the member nations of Organization for Economic Cooperation and Development (OECD). Country-based data on injury mortality per 100,000 population, including males and females aged 1-74, for the 4 year period 1996-1999, were gathered from the World Health Organization's Statistical Information System. We selected fourteen cause-specific injury mortalities. Data on GDP, unemployment rate and population growth were taken from World Development Indicators. GDP and unemployment rate per 100 separately were regressed on total and cause-specific injury mortality rate per 100,000 for males and females. Overall in the OECD countries, GDP per capita increased 12.5% during 1996-1999 (P = 0.03) where as unemployment rate decreased by 12.3% (P = 0.05). Among males, most cause-specific injury mortality rates decreased with increasing GDP except motor vehicle traffic crashes (MTC) that increased with increasing GDP (coefficient = 0.75; P < 0.001). Similar trend was found in females, except suicidal injury mortalities that also increased with increasing GDP (coefficient = 0.31; P = 0.04). When we modeled cause-specific injury mortality rates with unemployment, injuries due to firearm missiles (coefficient = 0.53; P < 0.001), homicide (coefficient = 0.36; P < 0.001), and other violence (coefficient = 0.41; P < 0.001) increased with increase in unemployment rate among males. However, among females only accidental falls (coefficient = 0.36; P = 0.01) were found significantly associated with increasing unemployment rate. GDP is more related to cause-specific injury mortality than unemployment. Injury mortality does not relate similarly to each diagnosis-specific cause among males and females. Further research on causation with more predictors is needed.
NASA Astrophysics Data System (ADS)
Baasandorj, M.; Hall, B. D.; Burkholder, J. B.
2012-09-01
The contribution of atmospherically persistent (long-lived) greenhouse gases to the radiative forcing of Earth has increased over the past several decades. The impact of highly fluorinated saturated compounds, in particular perfluorinated compounds, on climate change is a concern because of their long atmospheric lifetimes, which are primarily determined by stratospheric loss processes, as well as their strong absorption in the infrared "window" region. A potentially key stratospheric loss process for these compounds is their gas-phase reaction with electronically excited oxygen atoms, O(1D). Therefore, accurate reaction rate coefficient data is desired for input to climate change models. In this work, rate coefficients, k, were measured for the reaction of O(1D) with several key long-lived greenhouse gases, namely NF3, SF5CF3, CHF3 (HFC-23), C2F6, c-C4F8, n-C5F12, and n-C6F14. Room temperature rate coefficients for the total reaction, kTot, corresponding to loss of O(1D), and reactive channel, kR, corresponding to the loss of the reactant compound, were measured for NF3 and SF5CF3 using competitive reaction and relative rate methods, respectively. kR was measured for the CHF3 reaction and improved upper-limits were determined for the perfluorinated compounds included in this study. For NF3, kTot was determined to be (2.55 ± 0.38) × 10-11 cm3 molecule-1 s-1 and kR, which was measured using CF3Cl, N2O, CF2ClCF2Cl (CFC-114), and CF3CFCl2 (CFC-114a) as reference compounds, was determined to be (2.21 ± 0.33) × 10-11 cm3 molecule-1 s-1 corresponding to a reactive branching ratio of 0.87 ± 0.13. For SF5CF3, kTot = (3.24 ± 0.50) × 10-13 cm3 molecule-1 s-1 and kR < 5.8 × 10-14 cm3 molecule-1 s-1 were measured, where kR is a factor of three lower than the current recommendation of kTot for use in atmospheric modeling. For CHF3, kR was determined to be (2.35 ± 0.35) × 10-12 cm3 molecule-1 s-1, which corresponds to a reactive channel yield of 0.26 ± 0.04, and resolves a large discrepancy among previously reported values. The quoted uncertainties are 2σ and include estimated systematic errors. Upper-limits for kR for the C2F6, c-C4F8, n-C5F12, and n-C6F14 reactions were determined to be 3.0, 3.5, 5.0, and 16 (in units of 10-14 cm3 molecule-1 s-1), respectively. The results from this work are compared with results from previous studies.
Bacteriophage PRD1 batch experiments to study attachment, detachment and inactivation processes.
Sadeghi, Gholamreza; Schijven, Jack F; Behrends, Thilo; Hassanizadeh, S Majid; van Genuchten, Martinus Th
2013-09-01
Knowledge of virus removal in subsurface environments is pivotal for assessing the risk of viral contamination of water resources and developing appropriate protection measures. Columns packed with sand are frequently used to quantify attachment, detachment and inactivation rates of viruses. Since column transport experiments are very laborious, a common alternative is to perform batch experiments where usually one or two measurements are done assuming equilibrium is reached. It is also possible to perform kinetic batch experiments. In that case, however, it is necessary to monitor changes in the concentration with time. This means that kinetic batch experiments will be almost as laborious as column experiments. Moreover, attachment and detachment rate coefficients derived from batch experiments may differ from those determined using column experiments. The aim of this study was to determine the utility of kinetic batch experiments and investigate the effects of different designs of the batch experiments on estimated attachment, detachment and inactivation rate coefficients. The experiments involved various combinations of container size, sand-water ratio, and mixing method (i.e., rolling or tumbling by pivoting the tubes around their horizontal or vertical axes, respectively). Batch experiments were conducted with clean quartz sand, water at pH 7 and ionic strength of 20 mM, and using the bacteriophage PRD1 as a model virus. Values of attachment, detachment and inactivation rate coefficients were found by fitting an analytical solution of the kinetic model equations to the data. Attachment rate coefficients were found to be systematically higher under tumbling than under rolling conditions because of better mixing and more efficient contact of phages with the surfaces of the sand grains. In both mixing methods, more sand in the container yielded higher attachment rate coefficients. A linear increase in the detachment rate coefficient was observed with increased solid-water ratio using tumbling method. Given the differences in the attachment rate coefficients, and assuming the same sticking efficiencies since chemical conditions of the batch and column experiments were the same, our results show that collision efficiencies of batch experiments are not the same as those of column experiments. Upscaling of the attachment rate from batch to column experiments hence requires proper understanding of the mixing conditions. Because batch experiments, in which the kinetics are monitored, are as laborious as column experiments, there seems to be no major advantage in performing batch instead of column experiments. Copyright © 2013 Elsevier B.V. All rights reserved.
Friction and Wear Properties of As-deposited and Carbon Ion-implanted Diamond Films
NASA Technical Reports Server (NTRS)
Miyoshi, Kazuhisa
1994-01-01
Recent work on the friction and wear properties of as-deposited and carbon ion-implanted diamond films was reviewed. Diamond films were produced by the microwave plasma chemical vapor deposition (CVD) technique. Diamond films with various grain sizes and surface roughnesses were implanted with carbon ions at 60 ke V ion energy, resulting in a dose of 1.2310(exp 17) carbon ions/cm(exp 2). Various analytical techniques, including Raman spectroscopy, proton recoil analysis, Rutherford backscattering, transmission and scanning electron microscopy, x-ray photoelectron spectroscopy, and x-ray diffraction, were utilized to characterize the diamond films. Sliding friction experiments were conducted with a polished natural diamond pin in contact with diamond films in the three environments: humid air (40 percent relative humidity), dry nitrogen (less than 1 percent relative humidity), and ultrahigh vacuum (10(exp -7) Pa). The CVD diamond films indeed have friction and were properties similar to those of natural diamond in the three environments. The as-deposited, fine-grain diamond films can be effectively used as self-lubricating, wear-resistant coatings that have low coefficients of friction (0.02 to 0.04) and low wear rates (10(exp -7) to 10(exp -8)mm(exp 3)/N-m) in both humid air and dry nitrogen. However, they have high coefficients of friction (1.5 to 1.7) and a high wear rate (10(exp -4)mm(exp 3/N-m) in ultrahigh vacuum. The carbon ion implanation produced a thin surficial layer (less than 0.1 micron thick) of amorphous, nondiamond carbon on the diamond films. In humid air and dry nitrogen, the ion-implanted, fine- and coarse-grain diamond films have a low coefficient of friction (around 0.1) and a low wear rate (10(exp -7)mm(exp 3/N-m). Even in ultrahigh vacuum, the presence of the nondiamond carbon layer reduced the coefficient of friction of fine-grain diamond films to 0.1 or lower and the wear rate to 10(exp -6)mm(exp 3)/N-m. Thus, the carbon ion-implanted, fine-grain diamond films can be effectively used as wear-resistant, self-lubricating coatings not only in air and dry nitrogen, but also in ultrahigh vacuum. The wear mechanism of diamond films is that of small fragments chipping off the surface. The size of wear particles is related to the extent of wear rates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
2017-05-17
PelePhysics is a suite of physics packages that provides functionality of use to reacting hydrodynamics CFD codes. The initial release includes an interface to reaction rate mechanism evaluation, transport coefficient evaluation, and a generalized equation of state (EOS) facility. Both generic evaluators and interfaces to code from externally available tools (Fuego for chemical rates, EGLib for transport coefficients) are provided.
Rotationally inelastic scattering of PN by para-H2(j = 0) at low/moderate temperature
NASA Astrophysics Data System (ADS)
Najar, F.; Naouai, M.; Hanini, H. El; Jaidane, N.
2017-12-01
Calculation of the collisional rate coefficients with the most abundant species has been motivated by the desire to interpret observations of molecules in the interstellar medium. This paper will be concerned with rotational excitation of the phosphorus nitride (PN) molecule in its ground vibrational state by collisions with para-H2(j = 0). Ab intio potential energy surface for the PN-H2 van der Waals system, considering both molecules as rigid rotors, was computed via CCSD(T) method using the aug-cc-pVTZ basis sets, augmented by a bond functions placed at midway between the PN and H2 centres of mass. Cross-sections among the 40 first rotational levels of PN in collisions with para-H2(j = 0) were obtained using close coupling and coupled states calculations, for total energies up to 3000 cm- 1. Rate coefficients are presented for temperatures ranging from 5 to 300 K. A strong propensity favouring even Δj transitions is found. The comparison of the new PN-H2 rate coefficients with previously calculated PN-He rate coefficients shows that significant differences exist.
Lequin, Sonia; Chassagne, David; Karbowiak, Thomas; Simon, Jean-Marc; Paulin, Christian; Bellat, Jean-Pierre
2012-04-04
This work reports measurements of effective oxygen diffusion coefficient in raw cork. Kinetics of oxygen transfer through cork is studied at 298 K thanks to a homemade manometric device composed of two gas compartments separated by a cork wafer sample. The first compartment contains oxygen, whereas the second one is kept under dynamic vacuum. The pressure decrease in the first compartment is recorded as a function of time. The effective diffusion coefficient D(eff) is obtained by applying Fick's law to transient state using a numerical method based on finite differences. An analytical model derived from Fick's law applied to steady state is also proposed. Results given by these two methods are in close agreement with each other. The harmonic average of the effective diffusion coefficients obtained from the distribution of 15 cork wafers of 3 mm thickness is 1.1 × 10(-9) m(2) s(-1) with a large distribution over four decades. The statistical analysis of the Gaussian distribution obtained on a 3 mm cork wafer is extrapolated to a 48 mm cork wafer, which length corresponds to a full cork stopper. In this case, the probability density distribution gives a mean value of D(eff) equal to 1.6 × 10(-9) m(2) s(-1). This result shows that it is possible to obtain the effective diffusion coefficient of oxygen through cork from short time (few days) measurements performed on a thin cork wafer, whereas months are required to obtain the diffusion coefficient for a full cork stopper. Permeability and oxygen transfer rate are also calculated for comparison with data from other studies.
Effective Stress Law in Unconventional Reservoirs under Different Boundary Conditions
NASA Astrophysics Data System (ADS)
Saurabh, S.; Harpalani, S.
2017-12-01
Unconventional reservoirs have attracted a great deal of research interest worldwide during the past two decades. Low permeability and specialized techniques required to exploit these resources present opportunities for improvement in both production rates and ultimate recovery. Understanding subsurface stress modifications and permeability evolution are valuable when evaluating the prospects of unconventional reservoirs. These reservoir properties are functions of effective stress. As a part of this study, effective stress law, specifically the variation of anisotropic Biot's coefficient under various boundary conditions believed to exist in gas reservoirs by different researchers, has been established. Pressure-dependent-permeability (PdK) experiments were carried out on San Juan coal under different boundary conditions, that is, uniaxial strain condition and constant volume condition. Stress and strain in the vertical and horizontal directions were monitored throughout the experiment. Data collected during the experiments was used to determine the Biot's coefficient in vertical and horizontal directions under these two boundary conditions, treating coal as transversely isotropic. The variation of Biot's coefficient was found to be well correlated with the variation in coal permeability. Based on the estimated values of Biot's coefficients, a theory of variation in its value is presented for other boundary conditions. The findings of the study shed light on the inherent behavior of Biot's coefficient under different reservoir boundary conditions. This knowledge can improve the modeling work requiring estimation of effective stress in reservoirs, such as, pressure-/stress- dependent permeability. At the same time, if the effective stresses are known with more certainty by other methods, it enables assessment of the unknown reservoir boundary conditions.
Watermarking scheme for authentication of compressed image
NASA Astrophysics Data System (ADS)
Hsieh, Tsung-Han; Li, Chang-Tsun; Wang, Shuo
2003-11-01
As images are commonly transmitted or stored in compressed form such as JPEG, to extend the applicability of our previous work, a new scheme for embedding watermark in compressed domain without resorting to cryptography is proposed. In this work, a target image is first DCT transformed and quantised. Then, all the coefficients are implicitly watermarked in order to minimize the risk of being attacked on the unwatermarked coefficients. The watermarking is done through registering/blending the zero-valued coefficients with a binary sequence to create the watermark and involving the unembedded coefficients during the process of embedding the selected coefficients. The second-order neighbors and the block itself are considered in the process of the watermark embedding in order to thwart different attacks such as cover-up, vector quantisation, and transplantation. The experiments demonstrate the capability of the proposed scheme in thwarting local tampering, geometric transformation such as cropping, and common signal operations such as lowpass filtering.
Optimized atom position and coefficient coding for matching pursuit-based image compression.
Shoa, Alireza; Shirani, Shahram
2009-12-01
In this paper, we propose a new encoding algorithm for matching pursuit image coding. We show that coding performance is improved when correlations between atom positions and atom coefficients are both used in encoding. We find the optimum tradeoff between efficient atom position coding and efficient atom coefficient coding and optimize the encoder parameters. Our proposed algorithm outperforms the existing coding algorithms designed for matching pursuit image coding. Additionally, we show that our algorithm results in better rate distortion performance than JPEG 2000 at low bit rates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiens, Justin P.; Shuman, Nicholas S.; Miller, Thomas M.
2016-05-28
Mutual neutralization (MN) rate coefficients k{sub MN} for He{sup +} with the anions Cl{sup −}, Br{sup −}, I{sup −}, and SF{sub 6}{sup −} are reported from 300 to 500 K. The measured rate coefficients may contain a contribution from transfer ionization, i.e., double ionization of the anion. The large rate coefficient for He{sup +} + SF{sub 6}{sup −} (2.4 × 10{sup −7} cm{sup 3} s{sup −1} at 300 K) is consistent with earlier polyatomic MN results found to have a reduced mass dependence of μ{sup −1/2}. Neutralization of He{sup +} by the atomic halides follows the trend observed earlier for Ne{sup +},more » Ar{sup +}, Kr{sup +}, and Xe{sup +} neutralized by atomic halides, k{sub MN} (Cl{sup −}) < k{sub MN} (Br{sup −}) < k{sub MN} (I{sup −}). Only an upper limit could be measured for the neutralization of He{sup +} by Cl{sup −}. Predictions of the rate coefficients from a previously proposed simple model of atomic–atomic MN results are consistent with the present He{sup +}–halide rate coefficients. The temperature dependences are modestly negative for Br{sup −} and I{sup −}, while that for SF{sub 6}{sup −} is small or negligible.« less
Calculation of thermal expansion coefficient of glasses based on topological constraint theory
NASA Astrophysics Data System (ADS)
Zeng, Huidan; Ye, Feng; Li, Xiang; Wang, Ling; Yang, Bin; Chen, Jianding; Zhang, Xianghua; Sun, Luyi
2016-10-01
In this work, the thermal expansion behavior and the structure configuration evolution of glasses were studied. Degree of freedom based on the topological constraint theory is correlated with configuration evolution; considering the chemical composition and the configuration change, the analytical equation for calculating the thermal expansion coefficient of glasses from degree of freedom was derived. The thermal expansion of typical silicate and chalcogenide glasses was examined by calculating their thermal expansion coefficients (TEC) using the approach stated above. The results showed that this approach was energetically favorable for glass materials and revealed the corresponding underlying essence from viewpoint of configuration entropy. This work establishes a configuration-based methodology to calculate the thermal expansion coefficient of glasses that, lack periodic order.
de Jong, Lex D; van Meeteren, Annemiek; Emmelot, Cornelis H; Land, Nanne E; Dijkstra, Pieter U
2018-03-01
To determine reliability of the ABILHAND-Kids, explore sources of variation associated with these measurement results, and generate repeatability coefficients. A reliability study with a repeated measures design was performed in an ambulatory rehabilitation care department from a rehabilitation center, and a center for special education. A physician, an occupational therapist, and parents of 27 children with spastic cerebral palsy independently rated the children's manual capacity when performing 21 standardized tasks of the ABILHAND-Kids from video recordings twice with a three week time interval (27 first-, and 25 second video recordings available). Parents additionally rated their children's performance based on their own perception of their child's ability to perform manual activities in everyday life, resulting in eight ratings per child. ABILHAND-Kids ratings were systematically different between observers, sessions, and rating method. Participant × observer interaction (66%) and residual variance (20%) contributed the most to error variance (9%). Test-retest reliability was 0.92. Repeatability coefficients (between 0.81 and 1.82 logit points) were largest for the parents' performance-based ratings. ABILHAND-Kids scores can be reliably used as a performance- and capacity-based rating method across different raters. Parents' performance-based ratings are less reliable than their capacity-based ratings. Resulting repeatability coefficients can be used to interpret ABILHAND-Kids ratings with more confidence. Implications for Rehabilitation The ABILHAND-Kids is a valuable tool to assess a child's unimanual and bimanual upper limb activities. The reliability of the ABILHANDS-Kids is good across different observers as a performance- and capacity-based rating method. Parents' performance-based ratings are less reliable than their capacity-based ones. This study has generated repeatability coefficients for clinical decision making.
Self diffusion of interacting membrane proteins.
Abney, J R; Scalettar, B A; Owicki, J C
1989-01-01
A two-dimensional version of the generalized Smoluchowski equation is used to analyze the time (or distance) dependent self diffusion of interacting membrane proteins in concentrated membrane systems. This equation provides a well established starting point for descriptions of the diffusion of particles that interact through both direct and hydrodynamic forces; in this initial work only the effects of direct interactions are explicitly considered. Data describing diffusion in the presence of hard-core repulsions, soft repulsions, and soft repulsions with weak attractions are presented. The effect that interactions have on the self-diffusion coefficient of a real protein molecule from mouse liver gap junctions is also calculated. The results indicate that self diffusion is always inhibited by direct interactions; this observation is interpreted in terms of the caging that will exist at finite protein concentration. It is also noted that, over small distance scales, the diffusion coefficient is determined entirely by the very strong Brownian forces; therefore, as a function of displacement the self-diffusion coefficient decays (rapidly) from its value at infinite dilution to its steady-state interaction-averaged value. The steady-state self-diffusion coefficient describes motion over distance scales that range from approximately 10 nm to cellular dimensions and is the quantity measured in fluorescence recovery after photobleaching experiments. The short-ranged behavior of the diffusion coefficient is important on the interparticle-distance scale and may therefore influence the rate at which nearest-neighbor collisional processes take place. The hard-disk theoretical results presented here are in excellent agreement with lattice Monte-Carlo results obtained by other workers. The concentration dependence of experimentally measured diffusion coefficients of antibody-hapten complexes bound to the membrane surface is consistent with that predicted by the theory. The variation in experimental diffusion coefficients of integral membrane proteins is greater than that predicted by the theory, and may also reflect protein-induced perturbations in membrane viscosity. PMID:2720077
NASA Astrophysics Data System (ADS)
Dillon, Terry J.; Dulitz, Katrin; Groß, Christoph B. M.; Crowley, John N.
2017-12-01
Pulsed laser methods for OH generation and detection were used to study atmospheric degradation reactions for three important biogenic gases: OH + isoprene (Reaction R1), OH +α-pinene (Reaction R2) and OH + Δ-3-carene (Reaction R3). Gas-phase rate coefficients were characterized by non-Arrhenius kinetics for all three reactions. For (R1), k1 (241-356 K) = (1.93±0.08) × 10-11exp{(466±12)/T} cm3 molecule-1 s-1 was determined, with a room temperature value of k1 (297 K) = (9.3±0.4) × 10-11 cm3 molecule-1 s-1, independent of bath-gas pressure (5-200 Torr) and composition (M = N2 or air). Accuracy and precision were enhanced by online optical monitoring of isoprene, with absolute concentrations obtained via an absorption cross section, σisoprene = (1.28±0.06) × 10-17 cm2 molecule-1 at λ = 184.95 nm, determined in this work. These results indicate that significant discrepancies between previous absolute and relative-rate determinations of k1 result in part from σ values used to derive the isoprene concentration in high-precision absolute determinations.
Similar methods were used to determine rate coefficients (in 10-11 cm3 molecule-1 s-1) for (R2)-(R3): k2 (238-357 K) = (1.83±0.04) × exp{(330±6)/T} and k3 (235-357 K) = (2.48±0.14) × exp{(357±17)/T}. This is the first temperature-dependent dataset for (R3) and enables the calculation of reliable atmospheric lifetimes with respect to OH removal for e.g. boreal forest springtime conditions. Room temperature values of k2 (296 K) = (5.4±0.2) × 10-11 cm3 molecule-1 s-1 and k3 (297 K) = (8.1±0.3) × 10-11 cm3 molecule-1 s-1 were independent of bath-gas pressure (7-200 Torr, N2 or air) and in good agreement with previously reported values. In the course of this work, 184.95 nm absorption cross sections were determined: σ = (1.54±0.08) × 10-17 cm2 molecule-1 for α-pinene and (2.40±0.12) × 10-17 cm2 molecule-1 for Δ-3-carene.
Viscoelastic properties of the small intestinal and caecal contents of the chicken.
Takahashi, T; Goto, M; Sakata, T
2004-06-01
We measured the coefficients of viscosity, shear rates and shear stresses of chicken small intestinal and caecal contents, including solid particles, using a tube-flow viscometer. The coefficients of viscosity of chicken small intestinal and caecal contents were correlated negatively with their shear rates, a characteristic typical of non-Newtonian fluids. The coefficient of viscosity of the small intestinal contents was lower than that of the caecal contents at a shear rate of 1 s(-1). Chicken caecal contents were more viscous than pig caecal contents. The exponential relationship between shear stress and shear rate showed that chicken small intestinal and caecal contents had an apparent Herschel-Bulkley fluid nature. These results indicate that solid particles, including uric acid crystals, are mainly responsible for the viscosity of the digesta in the chicken.
Charge Transfer Between Ground-State Si(3+) and He at Electron-Volt Energies
NASA Technical Reports Server (NTRS)
Fang, Z.; Kwong, Victor H. S.
1997-01-01
The charge-transfer rate coefficient for the reaction Si(3+)(3s(sup 2)S) + He yields products is measured by means of a combined technique of laser ablation and ion storage. A cylindrical radio-frequency ion trap was used to store Si(3+) ions produced by laser ablation of solid silicon targets. The rate coefficient of the reaction was derived from the decay rate of the ion signal. The measured rate coefficient is 6.27(exp +0.68)(sub -0.52) x 10(exp -10)cu cm/s at T(sub equiv) = 3.9 x 10(exp 3)K. This value is about 30% higher than the Landau-Zener calculation of Butler and Dalgarno and is larger by about a factor of 3 than the recent full quantal calculation of Honvault et al.
Rate coefficients for the gas-phase reaction of the hydroxyl radical with CH2=CHF and CH2=CF2.
Baasandorj, Munkhbayar; Knight, Gary; Papadimitriou, Vassileios C; Talukdar, Ranajit K; Ravishankara, A R; Burkholder, James B
2010-04-08
Rate coefficients, k, for the gas-phase reaction of the OH radical with CH(2)=CHF (k(1)) and CH(2)=CF(2) (k(2)) were measured under pseudo-first-order conditions in OH using pulsed laser photolysis to produce OH and laser-induced fluorescence (PLP-LIF) to detect it. Rate coefficients were measured over a range of temperature (220-373 K) and bath gas pressure (20-600 Torr; He, N(2)). The rate coefficients were found to be independent of pressure. The measured rate coefficient for reaction 1 at room temperature was k(1)(296 K) = (5.18 +/- 0.50) x 10(-12) cm(3) molecule(-1) s(-1), independent of pressure, and the temperature dependence is given by the Arrhenius expression k(1)(T) = (1.75 +/- 0.20) x 10(-12) exp[(316 +/- 25)/T] cm(3) molecule(-1) s(-1); the rate coefficients for reaction 2 were k(2)(296 K) = (2.79 +/- 0.25) x 10(-12) cm(3) molecule(-1) s(-1) and k(2)(T) = (1.75 +/- 0.20) x 10(-12) exp[(140 +/- 20)/T] cm(3) molecule(-1) s(-1). The quoted uncertainties are 2sigma (95% confidence level) and include estimated systematic errors. The fall-off parameters for reaction 2 of k(infinity) = 3 x 10(-12) cm(3) molecule(-1) s(-1) and k(0)(296 K) = 1.8 x 10(-28) cm(6) molecule(-2) s(-1) with F(c) = 0.6 reproduce the room temperature data obtained in this study combined with the low pressure rate coefficient data from Howard (J. Chem. Phys. 1976, 65, 4771). OH radical formation was observed for reactions 1 and 2 in the presence of O(2), and the mechanism was investigated using (18)OH and OD rate coefficient measurements with CH(2)=CHF and CH(2)=CF(2) over a range of temperature (260-373 K) and pressure (20-100 Torr, He). Quantum chemical calculations using density functional theory (DFT) were used to determine the geometries and energies of the reactants and adducts formed in reactions 1 and 2 and the peroxy radicals formed following the addition of O(2). The atmospheric lifetimes of CH(2)=CHF and CH(2)=CF(2) due to loss by reaction with OH are approximately 2 and 4 days, respectively. Infrared absorption spectra of CH(2)=CHF and CH(2)=CF(2) were measured, and global warming potentials (GWP) values of 0.7 for CH(2)=CHF and 0.9 for CH(2)=CF(2) were obtained for the 100 year time horizon.
Julin, Jan; Shiraiwa, Manabu; Miles, Rachael E H; Reid, Jonathan P; Pöschl, Ulrich; Riipinen, Ilona
2013-01-17
The condensational growth of submicrometer aerosol particles to climate relevant sizes is sensitive to their ability to accommodate vapor molecules, which is described by the mass accommodation coefficient. However, the underlying processes are not yet fully understood. We have simulated the mass accommodation and evaporation processes of water using molecular dynamics, and the results are compared to the condensation equations derived from the kinetic gas theory to shed light on the compatibility of the two. Molecular dynamics simulations were performed for a planar TIP4P-Ew water surface at four temperatures in the range 268-300 K as well as two droplets, with radii of 1.92 and 4.14 nm at T = 273.15 K. The evaporation flux from molecular dynamics was found to be in good qualitative agreement with that predicted by the simple kinetic condensation equations. Water droplet growth was also modeled with the kinetic multilayer model KM-GAP of Shiraiwa et al. [Atmos. Chem. Phys. 2012, 12, 2777]. It was found that, due to the fast transport across the interface, the growth of a pure water droplet is controlled by gas phase diffusion. These facts indicate that the simple kinetic treatment is sufficient in describing pure water condensation and evaporation. The droplet size was found to have minimal effect on the value of the mass accommodation coefficient. The mass accommodation coefficient was found to be unity (within 0.004) for all studied surfaces, which is in agreement with previous simulation work. Additionally, the simulated evaporation fluxes imply that the evaporation coefficient is also unity. Comparing the evaporation rates of the mass accommodation and evaporation simulations indicated that the high collision flux, corresponding to high supersaturation, present in typical molecular dynamics mass accommodation simulations can under certain conditions lead to an increase in the evaporation rate. Consequently, in such situations the mass accommodation coefficient can be overestimated, but in the present cases the corrected values were still close to unity with the lowest value at ≈0.99.
2012-01-01
The condensational growth of submicrometer aerosol particles to climate relevant sizes is sensitive to their ability to accommodate vapor molecules, which is described by the mass accommodation coefficient. However, the underlying processes are not yet fully understood. We have simulated the mass accommodation and evaporation processes of water using molecular dynamics, and the results are compared to the condensation equations derived from the kinetic gas theory to shed light on the compatibility of the two. Molecular dynamics simulations were performed for a planar TIP4P-Ew water surface at four temperatures in the range 268–300 K as well as two droplets, with radii of 1.92 and 4.14 nm at T = 273.15 K. The evaporation flux from molecular dynamics was found to be in good qualitative agreement with that predicted by the simple kinetic condensation equations. Water droplet growth was also modeled with the kinetic multilayer model KM-GAP of Shiraiwa et al. [Atmos. Chem. Phys.2012, 117, 2777]. It was found that, due to the fast transport across the interface, the growth of a pure water droplet is controlled by gas phase diffusion. These facts indicate that the simple kinetic treatment is sufficient in describing pure water condensation and evaporation. The droplet size was found to have minimal effect on the value of the mass accommodation coefficient. The mass accommodation coefficient was found to be unity (within 0.004) for all studied surfaces, which is in agreement with previous simulation work. Additionally, the simulated evaporation fluxes imply that the evaporation coefficient is also unity. Comparing the evaporation rates of the mass accommodation and evaporation simulations indicated that the high collision flux, corresponding to high supersaturation, present in typical molecular dynamics mass accommodation simulations can under certain conditions lead to an increase in the evaporation rate. Consequently, in such situations the mass accommodation coefficient can be overestimated, but in the present cases the corrected values were still close to unity with the lowest value at ≈0.99. PMID:23253100
Reliability, validity, and significance of assessment of sense of contribution in the workplace.
Takaki, Jiro; Taniguchi, Toshiyo; Fujii, Yasuhito
2014-01-29
The purpose of this study was to assess the validity and reliability of the Sense of Contribution Scale (SCS), a newly developed, 7-item questionnaire used to measure sense of contribution in the workplace. Workers at 272 organizations answered questionnaires that included the SCS. Because of non-participation or missing data, the number of subjects included in the analyses for internal consistency and validity varied from 1,675 to 2,462 (response rates 54.6%-80.2%). Fifty-four workers were included in the analysis of test-retest reliability (response rate, 77.1%). The SCS showed high internal consistency (Cronbach's α coefficients in men and women were 0.85 and 0.86, respectively) and test-retest reliability (intraclass correlation coefficient = 0.91). Significant (p < 0.001), positive, moderate correlations were found between the SCS score and scores for organization-based self-esteem and work engagement in both genders, which support the SCS's convergent and discriminant validity. The criterion validity of the SCS was supported by the finding that in both genders, the SCS scores were significantly (p < 0.05) and inversely associated with psychological distress and sleep disturbance in crude and in multivariable analyses that adjusted for demographics, organization-based self-esteem, work engagement, effort-reward ratio, workplace bullying, and procedural and interactional justice. The SCS is a psychometrically satisfactory measure of sense of contribution in the workplace. The SCS provides a new and useful instrument to measure sense of contribution, which is independently associated with mental health in workers, for studies in organizational science, occupational health psychology and occupational medicine.
Use of fly-ash slurry in backfill grouting in coal mines.
Jiang, Ning; Zhao, Jinhai; Sun, Xizhen; Bai, Liyang; Wang, Changxiang
2017-11-01
Cave backfill grouting implies grouting of the caving rock mass prior to it being compacted. The filling materials strengthen the caving rock and support the overlying strata to achieve the purpose of slowing down the surface subsidence. The broken roof will fail and collapse during mining operations performed without appropriate supporting measures being taken. It is difficult to perform continuous backfill mining on the working face of such roofs using the existing mining technology. In order to solve the above problems, fly ash and mine water are considered as filling materials, and flow characteristics of fly-ash slurry are investigated through laboratory experiments and theoretical analyses. Laws governing the diffusion of fly-ash slurry in the void of caving rock masses and in the void between a caving rock mass and a basic roof are obtained and verified. Based on the results obtained from the above analyses and actual conditions at the Zhaoguan coal mine, Shandong Province, China, a cave backfill grouting system of the hauling pipeline is developed and successfully tested at the 1703 working face in the Zhaoguan coal mine. The results demonstrate that a filling rate of 43.46% is achieved, and the surface subsidence coefficient of the grouting process is found to be 0.475. Compared to the total caving method, the proposed system is found to achieve a reduction rate of 40.63%. This effectively helps in lowering the value of the surface subsidence coefficient. Fly ash and mine water, considered as primary materials in this study, also play a significant role in improving the air quality and water environment.
Reliability, Validity, and Significance of Assessment of Sense of Contribution in the Workplace
Takaki, Jiro; Taniguchi, Toshiyo; Fujii, Yasuhito
2014-01-01
The purpose of this study was to assess the validity and reliability of the Sense of Contribution Scale (SCS), a newly developed, 7-item questionnaire used to measure sense of contribution in the workplace. Workers at 272 organizations answered questionnaires that included the SCS. Because of non-participation or missing data, the number of subjects included in the analyses for internal consistency and validity varied from 1,675 to 2,462 (response rates 54.6%–80.2%). Fifty-four workers were included in the analysis of test–retest reliability (response rate, 77.1%). The SCS showed high internal consistency (Cronbach’s α coefficients in men and women were 0.85 and 0.86, respectively) and test–retest reliability (intraclass correlation coefficient = 0.91). Significant (p < 0.001), positive, moderate correlations were found between the SCS score and scores for organization-based self-esteem and work engagement in both genders, which support the SCS’s convergent and discriminant validity. The criterion validity of the SCS was supported by the finding that in both genders, the SCS scores were significantly (p < 0.05) and inversely associated with psychological distress and sleep disturbance in crude and in multivariable analyses that adjusted for demographics, organization-based self-esteem, work engagement, effort–reward ratio, workplace bullying, and procedural and interactional justice. The SCS is a psychometrically satisfactory measure of sense of contribution in the workplace. The SCS provides a new and useful instrument to measure sense of contribution, which is independently associated with mental health in workers, for studies in organizational science, occupational health psychology and occupational medicine. PMID:24481035
Informal Peer-Assisted Learning Groups Did Not Lead to Better Performance of Saudi Dental Students.
AbdelSalam, Maha; El Tantawi, Maha; Al-Ansari, Asim; AlAgl, Adel; Al-Harbi, Fahad
2017-01-01
To describe peer-assisted learning (PAL) groups formed by dental undergraduate students in a biomedical course and to investigate the association of individual and group characteristics with academic performance. In 2015, 92 fourth-year students (43 males and 49 females) in the College of Dentistry, University of Dammam, Saudi Arabia, were invited to form PAL groups to study a unit of a biomedical course. An examination was used to assess their knowledge after 2 weeks. In addition, a questionnaire and social network analysis were used to investigate (1) individual student attributes: gender, role, subject matter knowledge, grade in previous year, teaming with friends, previous communication with teammates, and content discussion, and (2) group attributes: group teacher's previous grade, number of colleagues with whom a student connected, teaming with friends, similarity of teammates' previous grades, and teacher having higher previous grades than other teammates. Regression analysis was used to assess the association of examination scores with individual and group attributes. The response rate was 80.4% (74 students: 36 males and 38 females). Students who previously scored grades A and B had higher examination scores than students with grades C/less (regression coefficient = 18.50 and 13.39) within the groups. Higher scores were not associated with working in groups including friends only (regression coefficient = 1.17) or when all students had similar previous grades (regression coefficient = 0.85). Students with previous high grades benefited to a greater extent from working in PAL groups. Similarity of teammates in PAL groups was not associated with better scores. © 2017 S. Karger AG, Basel.
Adhesive Wear Performance of CFRP Multilayered Polyester Composites Under Dry/wet Contact Conditions
NASA Astrophysics Data System (ADS)
Danaelan, D.; Yousif, B. F.
The tribo-performance of a new engineering composite material based on coconut fibers was investigated. In this work, coconut fibers reinforced polyester (CFRP) composites were developed. The tribo-experiments were conducted by using pin-on-disc machine under dry and wet sliding contact condition against smooth stainless steel counterface. Worn surfaces were observed using optical microscope. Friction coefficient and specific wear rate were presented as a function of sliding distance (0-0.6 km) at different sliding velocities (0.1-0.28 m/s). The effect of applied load and sliding velocity was evaluated. The results showed that all test parameters have significant influence on friction and wear characteristics of the composites. Moreover, friction coefficient increased as the normal load and speed increased, the values were about 0.7-0.9 under dry contact condition. Meanwhile, under wet contact condition, there was a great reduction in the friction coefficient, i.e. the values were about 0.1-0.2. Furthermore, the specific wear rates were found to be around 2-4 (10-3) mm3/Nm under dry contact condition and highly reduced under wet condition. In other words, the presence of water as cleaner and polisher assisted to enhance the adhesive wear performance of CFRP by about 10%. The images from optical microscope showed evidence of adhesive wear mode with transition to abrasive wear mode at higher sliding velocities due to third body abrasion. On the other hand, optical images for wet condition showed less adhesive wear and smooth surfaces.
Mass transfer effects in a gasification riser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Breault, Ronald W.; Li, Tingwen; Nicoletti, Phillip
2013-07-01
In the development of multiphase reacting computational fluid dynamics (CFD) codes, a number of simplifications were incorporated into the codes and models. One of these simplifications was the use of a simplistic mass transfer correlation for the faster reactions and omission of mass transfer effects completely on the moderate speed and slow speed reactions such as those in a fluidized bed gasifier. Another problem that has propagated is that the mass transfer correlation used in the codes is not universal and is being used far from its developed bubbling fluidized bed regime when applied to circulating fluidized bed (CFB) risermore » reactors. These problems are true for the major CFD codes. To alleviate this problem, a mechanistic based mass transfer coefficient algorithm has been developed based upon an earlier work by Breault et al. This fundamental approach uses the local hydrodynamics to predict a local, time varying mass transfer coefficient. The predicted mass transfer coefficients and the corresponding Sherwood numbers agree well with literature data and are typically about an order of magnitude lower than the correlation noted above. The incorporation of the new mass transfer model gives the expected behavior for all the gasification reactions evaluated in the paper. At the expected and typical design values for the solid flow rate in a CFB riser gasifier an ANOVA analysis has shown the predictions from the new code to be significantly different from the original code predictions. The new algorithm should be used such that the conversions are not over predicted. Additionally, its behaviors with changes in solid flow rate are consistent with the changes in the hydrodynamics.« less
Greene, Sally W; Wolfe, Edward W; Olson, Beth H
2008-09-01
Breastfeeding rates among working mothers are lower than among mothers who are not employed. An ecological framework suggests that health behaviors, such as breastfeeding, are influenced by intrapersonal and environmental factors. There is no existing instrument to measure women's perception of the workplace environment in providing breastfeeding support. The objective of this study was to pilot an instrument measuring perceptions of the work climate for breastfeeding support among working women. Data were collected from self-administered mailed questionnaires filled out by 104 pregnant women or women who had recently given birth and were employed and breastfeeding. Dimensionally analyses supported the two-dimensional model suggested by the literature. Internal consistency reliability coefficients were high (near 0.90), and the correlation between the subscales was moderately strong (0.68). Only a single item exhibited misfit to the scaling model, and that item was revised after review.
Li, Jun; Guo, Hua
2018-03-15
Thermal rate coefficients for the title reaction and its various isotopologues are computed using a tunneling-corrected transition-state theory on a global potential energy surface recently developed by fitting a large number of high-level ab initio points. The calculated rate coefficients are found to agree well with the measured ones in a wide temperature range, validating the accuracy of the potential energy surface. Strong non-Arrhenius effects are found at low temperatures. In addition, the calculations reproduced the primary and secondary kinetic isotope effects. These results confirm the strong influence of tunneling to this heavy-light-heavy hydrogen abstraction reaction.
Modeling turbulent/chemistry interactions using assumed pdf methods
NASA Technical Reports Server (NTRS)
Gaffney, R. L, Jr.; White, J. A.; Girimaji, S. S.; Drummond, J. P.
1992-01-01
Two assumed probability density functions (pdfs) are employed for computing the effect of temperature fluctuations on chemical reaction. The pdfs assumed for this purpose are the Gaussian and the beta densities of the first kind. The pdfs are first used in a parametric study to determine the influence of temperature fluctuations on the mean reaction-rate coefficients. Results indicate that temperature fluctuations significantly affect the magnitude of the mean reaction-rate coefficients of some reactions depending on the mean temperature and the intensity of the fluctuations. The pdfs are then tested on a high-speed turbulent reacting mixing layer. Results clearly show a decrease in the ignition delay time due to increases in the magnitude of most of the mean reaction rate coefficients.
Note: Design and investigation of a multichannel plasma-jet triggered gas switch.
Tie, Weihao; Liu, Xuandong; Zhang, Qiaogen; Liu, Shanhong
2014-07-01
We described the fabrication and testing of a multichannel plasma-jet triggered gas switch (MPJTGS). A novel six-channel annular micro-plasma-gun was embedded in the trigger electrode to generate multichannel plasma jets as a nanosecond trigger pulse arrived. The gas breakdown in multiple sites of the spark gap was induced and fixed around jet orifices by the plasma jets. We tested the multichannel discharge characteristics of the MPJTGS in two working modes with charge voltage of 50 kV, trigger voltage of +40 kV (25 ns rise time), and trigger energy of 240 J, 32 J, and 2 J, respectively, at different working coefficients. Results show that the average number of discharge channels increased as the trigger energy increased, and decreased as the working coefficient decreased. At a working coefficient of 87.1% and trigger energy of 240 J, the average number of discharge channels in Mode II could reach 4.1.
Thin film thermocouples for thermoelectric characterization of nanostructured materials
NASA Astrophysics Data System (ADS)
Grayson, Matthew; Zhou, Chuanle; Varrenti, Andrew; Chyung, Seung Hye; Long, Jieyi; Memik, Seda
2011-03-01
The increased use of nanostructured materials as thermoelectrics requires reliable and accurate characterization of the anisotropic thermal coefficients of small structures, such as superlattices and quantum wire networks. Thin evaporated metal films can be used to create thermocouples with a very small thermal mass and low thermal conductivity, in order to measure thermal gradients on nanostructures and thereby measure the thermal conductivity and the Seebeck coefficient of the nanostructure. In this work we confirm the known result that thin metal films have lower Seebeck coefficients than bulk metals, and we also calibrate the Seebeck coefficient of a thin-film Ni/Cr thermocouple with 50 nm thickness, showing it to have about 1/4 the bulk value. We demonstrate reproducibility of this thin-filmSeebeck coefficient on multiple substrates, and we show that this coefficient does, in fact, change as a function of film thickness. We will discuss prototype measurement designs and preliminary work as to how these thin films can be used to study both Seebeck coefficients and thermal conductivities of superlattices in various geometries. The same technology can in principle be used on integrated circuits for thermal mapping, under the name ``Integrated On-Chip Thermocouple Array'' (IOTA).
Wang, Xing-Guang; Grillot, Frédéric; Wang, Cheng
2018-02-05
This work theoretically investigates the frequency noise (FN) characteristics of quantum cascade lasers (QCLs) through a three-level rate equation model, which takes into account both the carrier noise and the spontaneous emission noise through the Langevin approach. It is found that the power spectral density of the FN exhibits a broad peak due to the carrier noise induced carrier variation in the upper laser level, which is enhanced by the stimulated emission process. The peak amplitude is strongly dependent on the gain stage number and the linewidth broadening factor. In addition, an analytical formula of the intrinsic spectral linewidth of QCLs is derived based on the FN analysis. It is demonstrated that the laser linewidth can be narrowed by reducing the gain coefficient and/or accelerating the carrier scattering rates of the upper and the lower laser levels.
Sansinena, M; Santos, M V; Zaritzky, N; Chirife, J
2012-05-01
Slush nitrogen (SN(2)) is a mixture of solid nitrogen and liquid nitrogen, with an average temperature of -207 °C. To investigate whether plunging a French plastic straw (commonly used for sperm cryopreservation) in SN(2) substantially increases cooling rates with respect to liquid nitrogen (LN(2)), a numerical simulation of the heat conduction equation with convective boundary condition was used to predict cooling rates. Calculations performed using heat transfer coefficients in the range of film boiling confirmed the main benefit of plunging a straw in slush over LN(2) did not arise from their temperature difference (-207 vs. -196 °C), but rather from an increase in the external heat transfer coefficient. Numerical simulations using high heat transfer (h) coefficients (assumed to prevail in SN(2)) suggested that plunging in SN(2) would increase cooling rates of French straw. This increase of cooling rates was attributed to a less or null film boiling responsible for low heat transfer coefficients in liquid nitrogen when the straw is placed in the solid-liquid mixture or slush. In addition, predicted cooling rates of French straws in SN(2) tended to level-off for high h values, suggesting heat transfer was dictated by heat conduction within the liquid filled plastic straw. Copyright © 2012 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Rossinskyi, Volodymyr
2018-02-01
The biological wastewater treatment technologies in anoxic and aerobic bioreactors with recycle of sludge mixture are used for the effective removal of organic compounds from wastewater. The change rate of sludge mixture recirculation between bioreactors leads to a change and redistribution of concentrations of organic compounds in sludge mixture in bioreactors and change hydrodynamic regimes in bioreactors. Determination of the coefficient of internal recirculation of sludge mixture between bioreactors is important for the choice of technological parameters of biological treatment (wastewater treatment duration in anoxic and aerobic bioreactors, flow capacity of recirculation pumps). Determination of the coefficient of internal recirculation of sludge mixture requires integrated consideration of hydrodynamic parameter (flow rate), kinetic parameter (rate of oxidation of organic compounds) and physical-chemical parameter of wastewater (concentration of organic compounds). The conducted numerical experiment from the proposed mathematical equations allowed to obtain analytical dependences of the coefficient of internal recirculation sludge mixture between bioreactors on the concentration of organic compounds in wastewater, the duration of wastewater treatment in bioreactors.
Venus' superrotation, mixing length theory and eddy diffusion - A parametric study
NASA Technical Reports Server (NTRS)
Mayr, H. G.; Harris, I.; Schatten, K. H.; Stevens-Rayburn, D. R.; Chan, K. L.
1988-01-01
The concept of the Hadley mechanism is adopted to describe the axisymmetric circulation of the Venus atmosphere. It is shown that, for the atmosphere of a slowly rotating planet such as Venus, a form of the nonliner 'closure' (self-consistent solution) of the fluid dynamics system which constrains the magnitude of the eddy diffusion coefficients can be postulated. A nonlinear one-layer spectral model of the zonally symmetric circulation was then used to establish the relationship between the heat source, the meridional circulation, and the eddy diffusion coefficients, yielding large zonal velocities. Computer experiments indicated that proportional changes in the heat source and eddy diffusion coefficients do not significantly change the zonal velocities. It was also found that, for large eddy diffusion coefficients, the meridional velocity is virtually constant; below a threshold in the diffusion rate, the meridional velocity decreases; and, for large eddy diffusion and small heating rates, the zonal velocities decrease with decreasing planetary rotation rates.
Zhao, Lei; Yu, Yiqun; Delzanno, Gian Luca; ...
2015-04-01
Local acceleration via whistler wave and particle interaction plays a significant role in particle dynamics in the radiation belt. In this work we explore gyro-resonant wave-particle interaction and quasi-linear diffusion in different magnetic field configurations related to the March 17 2013 storm. We consider the Earth's magnetic dipole field as a reference and compare the results against non-dipole field configurations corresponding to quiet and stormy conditions. The latter are obtained with the ring current-atmosphere interactions model with a self-consistent magnetic field RAM-SCB, a code that models the Earth's ring current and provides a realistic modeling of the Earth's magnetic field.more » By applying quasi-linear theory, the bounce- and MLT-averaged electron pitch angle, mixed term, and energy diffusion coefficients are calculated for each magnetic field configuration. For radiation belt (~1 MeV) and ring current (~100 keV) electrons, it is shown that at some MLTs the bounce-averaged diffusion coefficients become rather insensitive to the details of the magnetic field configuration, while at other MLTs storm conditions can expand the range of equatorial pitch angles where gyro-resonant diffusion occurs and significantly enhance the diffusion rates. When MLT average is performed at drift shell L = 4.25 (a good approximation to drift average), the diffusion coefficients become quite independent of the magnetic field configuration for relativistic electrons, while the opposite is true for lower energy electrons. These results suggest that, at least for the March 17 2013 storm and for L ≲ 4.25, the commonly adopted dipole approximation of the Earth's magnetic field can be safely used for radiation belt electrons, while a realistic modeling of the magnetic field configuration is necessary to describe adequately the diffusion rates of ring current electrons.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Lei; Yu, Yiqun; Delzanno, Gian Luca
Local acceleration via whistler wave and particle interaction plays a significant role in particle dynamics in the radiation belt. In this work we explore gyro-resonant wave-particle interaction and quasi-linear diffusion in different magnetic field configurations related to the March 17 2013 storm. We consider the Earth's magnetic dipole field as a reference and compare the results against non-dipole field configurations corresponding to quiet and stormy conditions. The latter are obtained with the ring current-atmosphere interactions model with a self-consistent magnetic field RAM-SCB, a code that models the Earth's ring current and provides a realistic modeling of the Earth's magnetic field.more » By applying quasi-linear theory, the bounce- and MLT-averaged electron pitch angle, mixed term, and energy diffusion coefficients are calculated for each magnetic field configuration. For radiation belt (~1 MeV) and ring current (~100 keV) electrons, it is shown that at some MLTs the bounce-averaged diffusion coefficients become rather insensitive to the details of the magnetic field configuration, while at other MLTs storm conditions can expand the range of equatorial pitch angles where gyro-resonant diffusion occurs and significantly enhance the diffusion rates. When MLT average is performed at drift shell L = 4.25 (a good approximation to drift average), the diffusion coefficients become quite independent of the magnetic field configuration for relativistic electrons, while the opposite is true for lower energy electrons. These results suggest that, at least for the March 17 2013 storm and for L ≲ 4.25, the commonly adopted dipole approximation of the Earth's magnetic field can be safely used for radiation belt electrons, while a realistic modeling of the magnetic field configuration is necessary to describe adequately the diffusion rates of ring current electrons.« less
NASA Astrophysics Data System (ADS)
Fonseca, E. S. R.; de Jesus, M. E. P.
2007-07-01
The estimation of optical properties of highly turbid and opaque biological tissue is a difficult task since conventional purely optical methods rapidly loose sensitivity as the mean photon path length decreases. Photothermal methods, such as pulsed or frequency domain photothermal radiometry (FD-PTR), on the other hand, show remarkable sensitivity in experimental conditions that produce very feeble optical signals. Photothermal Radiometry is primarily sensitive to absorption coefficient yielding considerably higher estimation errors on scattering coefficients. Conversely, purely optical methods such as Local Diffuse Reflectance (LDR) depend mainly on the scattering coefficient and yield much better estimates of this parameter. Therefore, at moderate transport albedos, the combination of photothermal and reflectance methods can improve considerably the sensitivity of detection of tissue optical properties. The authors have recently proposed a novel method that combines FD-PTR with LDR, aimed at improving sensitivity on the determination of both optical properties. Signal analysis was performed by global fitting the experimental data to forward models based on Monte-Carlo simulations. Although this approach is accurate, the associated computational burden often limits its use as a forward model. Therefore, the application of analytical models based on the diffusion approximation offers a faster alternative. In this work, we propose the calculation of the diffuse reflectance and the fluence rate profiles under the δ-P I approximation. This approach is known to approximate fluence rate expressions better close to collimated sources and boundaries than the standard diffusion approximation (SDA). We extend this study to the calculation of the diffuse reflectance profiles. The ability of the δ-P I based model to provide good estimates of the absorption, scattering and anisotropy coefficients is tested against Monte-Carlo simulations over a wide range of scattering to absorption ratios. Experimental validation of the proposed method is accomplished by a set of measurements on solid absorbing and scattering phantoms.
Agius, Rudi; Torchala, Mieczyslaw; Moal, Iain H.; Fernández-Recio, Juan; Bates, Paul A.
2013-01-01
Predicting the effects of mutations on the kinetic rate constants of protein-protein interactions is central to both the modeling of complex diseases and the design of effective peptide drug inhibitors. However, while most studies have concentrated on the determination of association rate constants, dissociation rates have received less attention. In this work we take a novel approach by relating the changes in dissociation rates upon mutation to the energetics and architecture of hotspots and hotregions, by performing alanine scans pre- and post-mutation. From these scans, we design a set of descriptors that capture the change in hotspot energy and distribution. The method is benchmarked on 713 kinetically characterized mutations from the SKEMPI database. Our investigations show that, with the use of hotspot descriptors, energies from single-point alanine mutations may be used for the estimation of off-rate mutations to any residue type and also multi-point mutations. A number of machine learning models are built from a combination of molecular and hotspot descriptors, with the best models achieving a Pearson's Correlation Coefficient of 0.79 with experimental off-rates and a Matthew's Correlation Coefficient of 0.6 in the detection of rare stabilizing mutations. Using specialized feature selection models we identify descriptors that are highly specific and, conversely, broadly important to predicting the effects of different classes of mutations, interface regions and complexes. Our results also indicate that the distribution of the critical stability regions across protein-protein interfaces is a function of complex size more strongly than interface area. In addition, mutations at the rim are critical for the stability of small complexes, but consistently harder to characterize. The relationship between hotregion size and the dissociation rate is also investigated and, using hotspot descriptors which model cooperative effects within hotregions, we show how the contribution of hotregions of different sizes, changes under different cooperative effects. PMID:24039569
"Spin-dependent" \\varvec{μ → e} conversion on light nuclei
NASA Astrophysics Data System (ADS)
Davidson, Sacha; Kuno, Yoshitaka; Saporta, Albert
2018-02-01
The experimental sensitivity to μ → e conversion will improve by four or more orders of magnitude in coming years, making it interesting to consider the "spin-dependent" (SD) contribution to the rate. This process does not benefit from the atomic-number-squared enhancement of the spin-independent (SI) contribution, but probes different operators. We give details of our recent estimate of the spin-dependent rate, expressed as a function of operator coefficients at the experimental scale. Then we explore the prospects for distinguishing coefficients or models by using different targets, both in an EFT perspective, where a geometric representation of different targets as vectors in coefficient space is introduced, and also in three leptoquark models. It is found that comparing the rate on isotopes with and without spin could allow one to detect spin-dependent coefficients that are at least a factor of few larger than the spin-independent ones. Distinguishing among the axial, tensor and pseudoscalar operators that induce the SD rate would require calculating the nuclear matrix elements for the second two. Comparing the SD rate on nuclei with an odd proton vs. odd neutron could allow one to distinguish operators involving u quarks from those involving d quarks; this is interesting because the distinction is difficult to make for SI operators.
Tajima, Satomi; Hayashi, Toshio; Hori, Masaru
2015-02-26
The rate coefficient of F2 + NO → F + FNO is 2 to 5 orders of magnitude higher than that of F2 + NO2 → F + FNO2 even though bond energies of FNO and FNO2 only differ by ∼0.2 eV. To understand the cause of having different rate coefficients of these two reactions, the change in total energies was calculated by varying the stereochemical arrangement of F2 with respect to NOx (x = 1 or 2) by the density functional theory (DFT), using CAM-B3LYP/6-311 G+(d) in the Gaussian program. The permitted approaching angle between the x-axis and the plane consisting of O, N, F, and ϕ plays a key role to restrict the reaction of NO2 and F2 compared to the reaction of NO and F2. This restriction in the reaction space is considered to be the main cause of different rate coefficients depending on the selection of x = 1 or 2 of the reaction of F2 + NOx → F + FNOx, which was also confirmed by the difference in Si etch rate using the F formed by those reactions.
Hämmig, Oliver; Brauchli, Rebecca; Bauer, Georg F
2012-05-31
Effort-reward imbalance (ERI) and work-life imbalance (WLI) are recognised risk factors for work stress and burnout but have not been investigated conjointly so far and compared with each other in this regard. The present cross-sectional study provides initial evidence by studying associations of ERI and WLI with general stress and burnout simultaneously. The study was based on survey data collected in 2007 among the personnel of a large public hospital in the canton of Zurich covering a random sample of 502 employees of all professions and positions. Prevalence rates, correlation coefficients, standardised regression coefficients and odds ratios were calculated as measures of association. Concerning the main research question and relating to the entire study sample, WLI was found to be more strongly associated with general stress and burnout than ERI. As stratified analyses with regard to burnout have shown, this applied especially to nursing, technical care and emergency staffs who account for more than three fifths of the study population. But for other professional categories like physicians, therapists and medical-technical personnel the opposite of a stronger association of ERI with burnout was found. Results also suggested that general stress plays a (rather minor) mediating role in the relationships between ERI and burnout and particularly between WLI and burnout. For the prevention of chronic stress and burnout one should consider both high efforts put into work as well as all job demands that are competing and interfering with family responsibilities or other private activities should be considered.
Leypoldt, John K; Kamerath, Craig D; Gilson, Janice F; Friederichs, Goetz
2006-01-01
New daily hemodialysis therapies operate at low dialysate flow rates to minimize dialysate volume requirements; however, the dependence of dialyzer clearances and mass transfer-area coefficients for small solutes on dialysate flow rate under these conditions have not been studied extensively. We evaluated in vitro dialyzer clearances for urea and creatinine at dialysate flow rates of 40, 80, 120, 160, and 200 ml/min and ultrafiltration flow rates of 0, 1, and 2 l/h, using a dialyzer containing PUREMA membranes (NxStage Medical, Lawrence, MA). Clearances were measured directly across the dialyzer by perfusing bovine blood with added urea and creatinine single pass through the dialyzer at a nominal blood flow rate of 400 ml/min. Limited, additional studies were performed with the use of dialyzers containing PUREMA membranes at a blood flow rate of 200 ml/min and also with the use of other dialyzers containing polysulfone membranes (Optiflux 160NR, FMC-NA, Ogden, UT) and dialyzers containing Synphan membranes (NxStage Medical). For dialyzers containing PUREMA membranes, urea and creatinine clearances increased (p < 0.001) with increasing dialysate and ultrafiltration flow rates but were not different at blood flow rates of 200 and 400 ml/min. Dialysate saturation, defined as dialysate outlet concentration divided by blood water inlet concentration, for urea and creatinine was independent of blood and ultrafiltration flow rate but varied inversely (p < 0.001) with dialysate flow rate. Mass transfer-area coefficients for urea and creatinine were independent of blood and ultrafiltration flow rate but decreased (p < 0.001) with decreasing dialysate flow rate. Calculated mass transfer-area coefficients at low dialysate flow rates for all dialyzers tested were substantially lower than those reported by the manufacturers under conventional conditions. We conclude that dialyzers require specific characterization under relevant conditions if they are used in novel daily hemodialysis therapies at low dialysate flow rate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dang, Liem X.; Vo, Quynh N.; Nilsson, Mikael
We report one of the first simulations using a classical rate theory approach to predict the mechanism of the exchange process between water and aqueous uranyl ions. Using our water and ion-water polarizable force fields and molecular dynamics techniques, we computed the potentials of mean force for the uranyl ion-water pair as the function of pressures at ambient temperature. Subsequently, these simulated potentials of mean force were used to calculate rate constants using the transition rate theory; the time dependent transmission coefficients were also examined using the reactive flux method and Grote-Hynes treatments of the dynamic response of the solvent.more » The computed activation volumes using transition rate theory and the corrected rate constants are positive, thus the mechanism of this particular water-exchange is a dissociative process. We discuss our rate theory results and compare them with previously studies in which non-polarizable force fields were used. This work was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. The calculations were carried out using computer resources provided by the Office of Basic Energy Sciences.« less
Speaking rate effects on locus equation slope.
Berry, Jeff; Weismer, Gary
2013-11-01
A locus equation describes a 1st order regression fit to a scatter of vowel steady-state frequency values predicting vowel onset frequency values. Locus equation coefficients are often interpreted as indices of coarticulation. Speaking rate variations with a constant consonant-vowel form are thought to induce changes in the degree of coarticulation. In the current work, the hypothesis that locus slope is a transparent index of coarticulation is examined through the analysis of acoustic samples of large-scale, nearly continuous variations in speaking rate. Following the methodological conventions for locus equation derivation, data pooled across ten vowels yield locus equation slopes that are mostly consistent with the hypothesis that locus equations vary systematically with coarticulation. Comparable analyses between different four-vowel pools reveal variations in the locus slope range and changes in locus slope sensitivity to rate change. Analyses across rate but within vowels are substantially less consistent with the locus hypothesis. Taken together, these findings suggest that the practice of vowel pooling exerts a non-negligible influence on locus outcomes. Results are discussed within the context of articulatory accounts of locus equations and the effects of speaking rate change.
Development of a Detailed Surface Chemistry Framework in DSMC
NASA Technical Reports Server (NTRS)
Swaminathan-Gopalan, K.; Borner, A.; Stephani, K. A.
2017-01-01
Many of the current direct simulation Monte Carlo (DSMC) codes still employ only simple surface catalysis models. These include only basic mechanisms such as dissociation, recombination, and exchange reactions, without any provision for adsorption and finite rate kinetics. Incorporating finite rate chemistry at the surface is increasingly becoming a necessity for various applications such as high speed re-entry flows over thermal protection systems (TPS), micro-electro-mechanical systems (MEMS), surface catalysis, etc. In the recent years, relatively few works have examined finite-rate surface reaction modeling using the DSMC method.In this work, a generalized finite-rate surface chemistry framework incorporating a comprehensive list of reaction mechanisms is developed and implemented into the DSMC solver SPARTA. The various mechanisms include adsorption, desorption, Langmuir-Hinshelwood (LH), Eley-Rideal (ER), Collision Induced (CI), condensation, sublimation, etc. The approach is to stochastically model the various competing reactions occurring on a set of active sites. Both gas-surface (e.g., ER, CI) and pure-surface (e.g., LH, desorption) reaction mechanisms are incorporated. The reaction mechanisms could also be catalytic or surface altering based on the participation of the bulk-phase species (e.g., bulk carbon atoms). Marschall and MacLean developed a general formulation in which multiple phases and surface sites are used and we adopt a similar convention in the current work. Microscopic parameters of reaction probabilities (for gas-surface reactions) and frequencies (for pure-surface reactions) that are require for DSMC are computed from the surface properties and macroscopic parameters such as rate constants, sticking coefficients, etc. The energy and angular distributions of the products are decided based on the reaction type and input parameters. Thus, the user has the capability to model various surface reactions via user-specified reaction rate constants, surface properties and parameters.
NASA Astrophysics Data System (ADS)
DSouza, Alisha V.; Marra, Kayla; Gunn, Jason R.; Samkoe, Kimberley S.; Pogue, Brian W.
2016-10-01
Lymphatic uptake of interstitially administered agents occurs by passive convective-diffusive inflow driven by interstitial concentration and pressure, while the downstream lymphatic transport is facilitated by active propulsive contractions of lymphatic vessel walls. Near-infrared fluorescence imaging in mice was used to measure these central components of lymphatic transport for the first time, using two different-sized molecules-methylene blue (MB) and fluorescence-labeled antibody immunoglobulin G (IgG)-IRDye 680RD. This work confirms the hypothesis that lymphatic passive inflow and active propulsion rates can be separated based upon the relative differences in Stokes-Einstein diffusion coefficient. This coefficient specifically affects the passive-diffusive uptake when the interstitial volume and pressure are constant. Parameters such as mean time-to-peak signal, overall fluorescence signal intensities, and number of active peristaltic pulses, were estimated from temporal imaging data. While the mean time to attain peak signal representative of diffusion-dominated flow in the lymph vessels was 0.6±0.2 min for MB and 8±6 min for IgG, showing a size dependence, the active propulsion rates were 3.4±0.8 pulses/min and 3.3±0.5 pulses/min, respectively, appearing size independent. The propulsion rates for both dyes decreased with clearance from the interstitial injection-site, indicating intrinsic control of the smooth muscles in response to interstitial pressure. This approach to size-comparative agent flow imaging of lymphatic function can enable noninvasive characterization of diseases related to uptake and flow in lymph networks.
Optimisation and characterisation of tungsten thick coatings on copper based alloy substrates
NASA Astrophysics Data System (ADS)
Riccardi, B.; Montanari, R.; Casadei, M.; Costanza, G.; Filacchioni, G.; Moriani, A.
2006-06-01
Tungsten is a promising armour material for plasma facing components of nuclear fusion reactors because of its low sputter rate and favourable thermo-mechanical properties. Among all the techniques able to realise W armours, plasma spray looks particularly attractive owing to its simplicity and low cost. The present work concerns the optimisation of spraying parameters aimed at 4-5 mm thick W coating on copper-chromium-zirconium (Cu,Cr,Zr) alloy substrates. Characterisation of coatings was performed in order to assess microstructure, impurity content, density, tensile strength, adhesion strength, thermal conductivity and thermal expansion coefficient. The work performed has demonstrated the feasibility of thick W coatings on flat and curved geometries. These coatings appear as a reliable armour for medium heat flux plasma facing component.
Sola, Daniel; Conde, Ana; García, Iñaki; Gracia-Escosa, Elena; de Damborenea, Juan J.; Peña, Jose I.
2013-01-01
In this work, wear behavior and microstructural characterization of porous layers produced in glass-ceramic substrates by pulsed laser irradiation in the nanosecond range are studied under unidirectional sliding conditions against AISI316 and corundum counterbodies. Depending on the optical configuration of the laser beam and on the working parameters, the local temperature and pressure applied over the interaction zone can generate a porous glass-ceramic layer. Material transference from the ball to the porous glass-ceramic layer was observed in the wear tests carried out against the AISI316 ball counterface whereas, in the case of the corundum ball, the wear volume loss was concentrated in the porous layer. Wear rate and friction coefficient presented higher values than expected for dense glass-ceramics. PMID:28788311
Atomic Processes and Diagnostics of Low Pressure Krypton Plasma
NASA Astrophysics Data System (ADS)
Srivastava, Rajesh; Goyal, Dipti; Gangwar, Reetesh; Stafford, Luc
2015-03-01
Optical emission spectroscopy along with suitable collisional-radiative (CR) model is used in plasma diagnostics. Importance of reliable cross-sections for various atomic processes is shown for low pressure argon plasma. In the present work, radially-averaged Kr emission lines from the 2pi --> 1sj were recorded as a function of pressure from 1 to 50mTorr. We have developed a CR model using our fine-structure relativistic-distorted wave cross sections. The various processes considered are electron-impact excitation, ionization and their reverse processes. The required rate coefficients have been calculated from these cross-sections assuming Maxwellian energy distribution. Electron temperature obtained from the CR model is found to be in good agreement with the probe measurements. Work is supported by IAEA Vienna, DAE-BRNS Mumbai and CSIR, New Delhi.
Imai, Masamichi; Ambale Venkatesh, Bharath; Samiei, Sanaz; Donekal, Sirisha; Habibi, Mohammadali; Armstrong, Anderson C.; Heckbert, Susan R.; Wu, Colin O.; Bluemke, David A.
2014-01-01
Purpose To investigate the association between left atrial (LAleft atrium) function and left ventricular myocardial fibrosis using cardiac magnetic resonance (MR) imaging in a multi-ethnic population. Materials and Methods For this HIPAA-compliant study, the institutional review board at each participating center approved the study protocol, and all participants provided informed consent. Of 2839 participants who had undergone cardiac MR in 2010–2012, 143 participants with myocardial scar determined with late gadolinium enhancement and 286 age-, sex-, and ethnicity-matched control participants were identified. LAleft atrium volume, strain, and strain rate were analyzed by using multimodality tissue tracking from cine MR imaging. T1 mapping was applied to assess diffuse myocardial fibrosis. The association between LAleft atrium parameters and myocardial fibrosis was evaluated with the Student t test and multivariable regression analysis. Results The scar group had significantly higher minimum LAleft atrium volume than the control group (mean, 22.0 ± 10.5 [standard deviation] vs 19.0 ± 7.8, P = .002) and lower LAleft atrium ejection fraction (45.9 ± 10.7 vs 51.3 ± 8.7, P < .001), maximal LAleft atrium strain (Smaxmaximum LA strain) (25.4 ± 10.7 vs 30.6 ± 10.6, P < .001) and maximum LAleft atrium strain rate (SRmaxmaximum LA strain rate) (1.08 ± 0.45 vs 1.29 ± 0.51, P < .001), and lower absolute LAleft atrium strain rate at early diastolic peak (SRELA strain rate at early diastolic peak) (−0.77 ± 0.42 vs −1.01 ± 0.48, P < .001) and LAleft atrium strain rate at atrial contraction peak (SRALA strain rate at atrial contraction peak) (−1.50 ± 0.62 vs −1.78 ± 0.69, P < .001) than the control group. T1 time 12 minutes after contrast material injection was significantly associated with Smaxmaximum LA strain (β coefficient = 0.043, P = .013), SRmaxmaximum LA strain rate (β coefficient = 0.0025, P = .001), SRELA strain rate at early diastolic peak (β coefficient = −0.0016, P = .027), and SRALA strain rate at atrial contraction peakLA strain rate at atrial contraction peak (β coefficient −0.0028, P = .01) in the regression model. T1 time 25 minutes after contrast material injection was significantly associated with SRmaxmaximum LA strain rate (β coefficient = 0.0019, P = .016) and SRALA strain rate at atrial contraction peak (β coefficient = −0.0022, P = .034). Conclusion Reduced LAleft atrium regional and global function are related to both replacement and diffuse myocardial fibrosis processes. Clinical trial registration no. NCT00005487 © RSNA, 2014 Online supplemental material is available for this article. PMID:25019562
Consideration of Wear Rates at High Velocities
2010-03-01
Strain vs. Three-dimensional Model . . . . . . . . . . . . 57 3.11 Example Single Asperity Wear Rate Integral . . . . . . . . . . 58 4.1 Third Stage...Slipper Accumulated Frictional Heating . . . . . . 67 4.2 Surface Temperature Third Stage Slipper, ave=0.5 . . . . . . . 67 4.3 Melt Depth Example...64 A3S Coefficient for Frictional Heat Curve Fit, Third Stage Slipper 66 B3S Coefficient for Frictional Heat Curve Fit, Third
Samartsev, V N; Kozhina, O V; Polishchuk, L S
2005-01-01
It is known that mitochondrial respiration in state 3 is due to three simultaneous and independent processes: synthesis of ATP (1), endogenous passive proton leakage (2), and proton leakage by protonophoric uncoupler (3). The total rate of processes (2) and (3) is equal to the product of respiration rate in state 4 and coefficient KR, which is defined as the ratio of the deltamuH+ value in state 3 to that in state 4. It is shown that it is possible to calculate both the rates of processes (1), (2) and (3) separately and the protonophoric activity of uncoupler using the coefficient KR and other coefficients, which are determined as the ratio of deltamuH+ values in state 3 or in state 4 to its maximal value. Simple methods of determination of these coefficients were developed, which are based on the study of the dependence of respiration rate in states 3 and 4 on the concentration of protonophoric uncoupler. It was found that the uncoupling action of palmitate, a natural uncoupler of oxidative phosphorylation, unlike classic uncoupler-protonophores DNP and FCCP, depends not only on its protonophoric activity but also on the inhibition of the process (1).
Low energy range dielectronic recombination of Fluorine-like Fe17+ at the CSRm
NASA Astrophysics Data System (ADS)
Khan, Nadir; Huang, Zhong-Kui; Wen, Wei-Qiang; Mahmood, Sultan; Dou, Li-Jun; Wang, Shu-Xing; Xu, Xin; Wang, Han-Bing; Chen, Chong-Yang; Chuai, Xiao-Ya; Zhu, Xiao-Long; Zhao, Dong-Mei; Mao, Li-Jun; Li, Jie; Yin, Da-Yu; Yang, Jian-Cheng; Yuan, You-Jin; Zhu, Lin-Fan; Ma, Xin-Wen
2018-05-01
The accuracy of dielectronic recombination (DR) data for astrophysics related ions plays a key role in astrophysical plasma modeling. The absolute DR rate coefficient of Fe17+ ions was measured at the main cooler storage ring at the Institute of Modern Physics, Lanzhou, China. The experimental electron-ion collision energy range covers the first Rydberg series up to n = 24 for the DR resonances associated with the {}2P1/2\\to {}2P3/2{{Δ }}n=0 core excitations. A theoretical calculation was performed by using FAC code and compared with the measured DR rate coefficient. Overall reasonable agreement was found between the experimental results and calculations. Moreover, the plasma rate coefficient was deduced from the experimental DR rate coefficient and compared with the available results from the literature. At the low energy range, significant discrepancies were found, and the measured resonances challenge state-of-the-art theory at low collision energies. Supported by the National Key R&D Program of China (2017YFA0402300), the National Natural Science Foundation of China through (11320101003, U1732133, 11611530684) and Key Research Program of Frontier Sciences, CAS (QYZDY-SSW-SLH006)
An Efficient Statistical Method to Compute Molecular Collisional Rate Coefficients
NASA Astrophysics Data System (ADS)
Loreau, Jérôme; Lique, François; Faure, Alexandre
2018-01-01
Our knowledge about the “cold” universe often relies on molecular spectra. A general property of such spectra is that the energy level populations are rarely at local thermodynamic equilibrium. Solving the radiative transfer thus requires the availability of collisional rate coefficients with the main colliding partners over the temperature range ∼10–1000 K. These rate coefficients are notoriously difficult to measure and expensive to compute. In particular, very few reliable collisional data exist for inelastic collisions involving reactive radicals or ions. In this Letter, we explore the use of a fast quantum statistical method to determine molecular collisional excitation rate coefficients. The method is benchmarked against accurate (but costly) rigid-rotor close-coupling calculations. For collisions proceeding through the formation of a strongly bound complex, the method is found to be highly satisfactory up to room temperature. Its accuracy decreases with decreasing potential well depth and with increasing temperature, as expected. This new method opens the way to the determination of accurate inelastic collisional data involving key reactive species such as {{{H}}}3+, H2O+, and H3O+ for which exact quantum calculations are currently not feasible.
Dielectronic recombination of lowly charged tungsten ions Wq+(q = 5 - 10)
NASA Astrophysics Data System (ADS)
Kwon, Duck-Hee
2018-03-01
Dielectronic recombination (DR) rate coefficients for the ground levels of low ionization state Wq+ (q = 5 - 10) ions have been obtained by an ab-inito level-by-level calculation using the flexible atomic code (FAC) based on relativistic jj coupling scheme and independent process, isolated resonance, distorted wave approximation. The radiative transition calculation in the original FAC has been adapted into parallel programming for time effective dealing with so many resonance levels of the complex open 4f, 5p, or 5d-shell structure ion. Core excitations Δnc = 0 , 1 of 4f, 5p, and 5d (W5+), Δnc = 2 of 4f, and Δnc = 0 of 4d (W7+), and 5s (W8+) are included to the total DR rate coefficient. The core excitations Δnc = 0 , 5p → 5l and Δnc = 1 , 4f → 5l mainly contribute to the total DR rate coefficients. The strong resonances involved in the DR are analyzed and the total DR rate coefficients are compared with available previous ab-initio predictions and with ADAS data by a simple semiempirical formula.
Sensitivity analysis of water consumption in an office building
NASA Astrophysics Data System (ADS)
Suchacek, Tomas; Tuhovcak, Ladislav; Rucka, Jan
2018-02-01
This article deals with sensitivity analysis of real water consumption in an office building. During a long-term real study, reducing of pressure in its water connection was simulated. A sensitivity analysis of uneven water demand was conducted during working time at various provided pressures and at various time step duration. Correlations between maximal coefficients of water demand variation during working time and provided pressure were suggested. The influence of provided pressure in the water connection on mean coefficients of water demand variation was pointed out, altogether for working hours of all days and separately for days with identical working hours.
NASA Astrophysics Data System (ADS)
Krsjak, Vladimir; Kuriplach, Jan; Vieh, Christiane; Peng, Lei; Dai, Yong
2018-06-01
In the present work, the specific positron trapping rate of small helium bubbles was empirically derived from positron annihilation lifetime spectroscopy (PALS) and transmission electron microscopy (TEM) studies of Fe9Cr martensitic steels. Both techniques are well known to be sensitive to nanometer-sized helium-filled cavities induced during irradiation in a mixed proton-neutron spectrum of spallation target. Complementary TEM and PALS studies show that positrons are being trapped to these defects at a rate of 1.2 ± 0.8 × 10-14 m3s-1. This suggests that helium bubbles in ferritic/martensitic steels are attractive traps for positrons comparable to mono-vacancies and quantitative analysis of the bubbles by PALS technique is plausible.
Quantum thermodynamics for driven dissipative bosonic systems
NASA Astrophysics Data System (ADS)
Ochoa, Maicol A.; Zimbovskaya, Natalya; Nitzan, Abraham
2018-02-01
We investigate two prototypical dissipative bosonic systems under slow driving and arbitrary system-bath coupling strength, recovering their dynamic evolution as well as the heat and work rates, and we verify that thermodynamic laws are respected. Specifically, we look at the damped harmonic oscillator and the damped two-level system. For the former, we study independently the slow time-dependent perturbation in the oscillator frequency and in the coupling strength. For the latter, we concentrate on the slow modulation of the energy gap between the two levels. Importantly, we are able to find the entropy production rates for each case without explicitly defining nonequilibrium extensions for the entropy functional. This analysis also permits the definition of phenomenological friction coefficients in terms of structural properties of the system-bath composite.
A Study of Pioneer Venus Nightglow Spectra
NASA Technical Reports Server (NTRS)
Slanger, Tom G.
1993-01-01
The work performed during the 12-month period of this contract involved: (1) further analysis of latitudinal variations in the Venusian NO nightglow intensity from PVOUVS data; (2) corrections made to the input data for the VTGCM model, relating specifically to a factor of three increase in the three-body recombination rate coefficient of N + O; (3) consideration of limits on the rate of reaction of N-atoms with CO2; (4) consideration of the Venusian equivalent of the terrestrial hot N-atom reaction for NO production; and (5) successful location of video images of meteor trails from space, for the purpose of making a comparison with the meteor trail that we have hypothesized as an explanation of intense UV spectra observed on a particular Pioneer Venus (PV) orbit.
A model of early formation of uranium molecular oxides in laser-ablated plasmas
NASA Astrophysics Data System (ADS)
Finko, Mikhail S.; Curreli, Davide; Weisz, David G.; Crowhurst, Jonathan C.; Rose, Timothy P.; Koroglu, Batikan; Radousky, Harry B.; Armstrong, Michael R.
2017-12-01
In this work, we present a newly constructed U x O y reaction mechanism that consists of 30 reaction channels (21 of which are reversible channels) for 11 uranium molecular species (including ions). Both the selection of reaction channels and calculation of corresponding rate coefficients is accomplished via a comprehensive literature review and application of basic reaction rate theory. The reaction mechanism is supplemented by a detailed description of oxygen plasma chemistry (19 species and 142 reaction channels) and is used to model an atmospheric laser ablated uranium plume via a 0D (global) model. The global model is used to analyze the evolution of key uranium molecular species predicted by the reaction mechanism, and the initial stage of formation of uranium oxide species.
NASA Technical Reports Server (NTRS)
French, K. W., Jr.
1986-01-01
This work traces the response of a granular material via the Ten Coefficient Truesdell rate-type constituitive model into the simplest meaningful loading: the triaxial test configuration. A functional relation has been posed for computing the rather peculiar relation between average applied stress and average porosity. Using that relation an attack has been mounted on the dilemma that exists between dynamic and constitutive use of the pressure variable; that is relating dynamic pressure, thermodynamic pressure, stress deviator and higher stress invariants. The resolution was as a linear superposition with a one-way feedback, in that while the dynamic component could not effect the constituitive component, the converse was not true since density appears in the momentum transport relation.
Establishment of analysis method for methane detection by gas chromatography
NASA Astrophysics Data System (ADS)
Liu, Xinyuan; Yang, Jie; Ye, Tianyi; Han, Zeyu
2018-02-01
The study focused on the establishment of analysis method for methane determination by gas chromatography. Methane was detected by hydrogen flame ionization detector, and the quantitative relationship was determined by working curve of y=2041.2x+2187 with correlation coefficient of 0.9979. The relative standard deviation of 2.60-6.33% and the recovery rate of 96.36%∼105.89% were obtained during the parallel determination of standard gas. This method was not quite suitable for biogas content analysis because methane content in biogas would be over the measurement range in this method.
Heart Sound Biometric System Based on Marginal Spectrum Analysis
Zhao, Zhidong; Shen, Qinqin; Ren, Fangqin
2013-01-01
This work presents a heart sound biometric system based on marginal spectrum analysis, which is a new feature extraction technique for identification purposes. This heart sound identification system is comprised of signal acquisition, pre-processing, feature extraction, training, and identification. Experiments on the selection of the optimal values for the system parameters are conducted. The results indicate that the new spectrum coefficients result in a significant increase in the recognition rate of 94.40% compared with that of the traditional Fourier spectrum (84.32%) based on a database of 280 heart sounds from 40 participants. PMID:23429515
A Metric to Quantify Shared Visual Attention in Two-Person Teams
NASA Technical Reports Server (NTRS)
Gontar, Patrick; Mulligan, Jeffrey B.
2015-01-01
Introduction: Critical tasks in high-risk environments are often performed by teams, the members of which must work together efficiently. In some situations, the team members may have to work together to solve a particular problem, while in others it may be better for them to divide the work into separate tasks that can be completed in parallel. We hypothesize that these two team strategies can be differentiated on the basis of shared visual attention, measured by gaze tracking. 2) Methods: Gaze recordings were obtained for two-person flight crews flying a high-fidelity simulator (Gontar, Hoermann, 2014). Gaze was categorized with respect to 12 areas of interest (AOIs). We used these data to construct time series of 12 dimensional vectors, with each vector component representing one of the AOIs. At each time step, each vector component was set to 0, except for the one corresponding to the currently fixated AOI, which was set to 1. This time series could then be averaged in time, with the averaging window time (t) as a variable parameter. For example, when we average with a t of one minute, each vector component represents the proportion of time that the corresponding AOI was fixated within the corresponding one minute interval. We then computed the Pearson product-moment correlation coefficient between the gaze proportion vectors for each of the two crew members, at each point in time, resulting in a signal representing the time-varying correlation between gaze behaviors. We determined criteria for concluding correlated gaze behavior using two methods: first, a permutation test was applied to the subjects' data. When one crew member's gaze proportion vector is correlated with a random time sample from the other crewmember's data, a distribution of correlation values is obtained that differs markedly from the distribution obtained from temporally aligned samples. In addition to validating that the gaze tracker was functioning reasonably well, this also allows us to compute probabilities of coordinated behavior for each value of the correlation. As an alternative, we also tabulated distributions of correlation coefficients for synthetic data sets, in which the behavior was modeled as a first-order Markov process, and compared correlation distributions for identical processes with those for disparate processes, allowing us to choose criteria and estimate error rates. 3) Discussion: Our method of gaze correlation is able to measure shared visual attention, and can distinguish between activities involving different instruments. We plan to analyze whether pilots strategies of sharing visual attention can predict performance. Possible measurements of performance include expert ratings from instructors, fuel consumption, total task time, and failure rate. While developed for two-person crews, our approach can be applied to larger groups, using intra-class correlation coefficients instead of the Pearson product-moment correlation.
Wireless Interconnects for Intra-chip & Inter-chip Transmission
NASA Astrophysics Data System (ADS)
Narde, Rounak Singh
With the emergence of Internet of Things and information revolution, the demand of high performance computing systems is increasing. The copper interconnects inside the computing chips have evolved into a sophisticated network of interconnects known as Network on Chip (NoC) comprising of routers, switches, repeaters, just like computer networks. When network on chip is implemented on a large scale like in Multicore Multichip (MCMC) systems for High Performance Computing (HPC) systems, length of interconnects increases and so are the problems like power dissipation, interconnect delays, clock synchronization and electrical noise. In this thesis, wireless interconnects are chosen as the substitute for wired copper interconnects. Wireless interconnects offer easy integration with CMOS fabrication and chip packaging. Using wireless interconnects working at unlicensed mm-wave band (57-64GHz), high data rate of Gbps can be achieved. This thesis presents study of transmission between zigzag antennas as wireless interconnects for Multichip multicores (MCMC) systems and 3D IC. For MCMC systems, a four-chips 16-cores model is analyzed with only four wireless interconnects in three configurations with different antenna orientations and locations. Return loss and transmission coefficients are simulated in ANSYS HFSS. Moreover, wireless interconnects are designed, fabricated and tested on a 6'' silicon wafer with resistivity of 55O-cm using a basic standard CMOS process. Wireless interconnect are designed to work at 30GHz using ANSYS HFSS. The fabricated antennas are resonating around 20GHz with a return loss of less than -10dB. The transmission coefficients between antenna pair within a 20mm x 20mm silicon die is found to be varying between -45dB to -55dB. Furthermore, wireless interconnect approach is extended for 3D IC. Wireless interconnects are implemented as zigzag antenna. This thesis extends the work of analyzing the wireless interconnects in 3D IC with different configurations of antenna orientations and coolants. The return loss and transmission coefficients are simulated using ANSYS HFSS.
Influence of menopausal symptoms on perceived work ability among women in a Nigerian University.
Olajubu, A O; Olowokere, A E; Amujo, D O; Olajubu, T O
2017-12-01
This study investigated the menopausal symptoms experienced by women of menopausal age in Ekiti State, Nigeria and the influence on their perceived work ability. A descriptive cross-sectional research design was employed and the study was conducted among 200 working-class women aged 45 years and above who had experienced at least 12 continuous months of amenorrhea in Ekiti State University, Ado Ekiti. A semi-structured questionnaire adapted from the Greene Climacteric Scale and the work ability index was used to assess menopausal symptoms and work ability, respectively. The prevalence of menopausal symptoms in this study was 96.5%. The commonest menopausal symptom experienced by the respondents was muscle pain (81.5%), followed by sweating at night (80%), while spells of crying were the least (27.5%). Out of the symptoms, hot flushes were rated most severe followed by sweating at night, while crying spells were also the least severe symptom. Only 27% expressed excellent work ability. The Pearson correlation coefficient showed a negative significant relationship (r = -0.311, p < 0.001) between menopausal symptoms and perceived work ability. The study concluded that menopausal symptoms had a negative influence on work ability of the respondents.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Hong; Lin, Hua-Tay; Stafford, Mr Randy
2016-01-01
Testing and characterization of large prototype lead zirconate titanate (PZT) stacks present substantial technical challenges to electronic systems. The work in this study shows that an alternative approach can be pursued by using subunits extracted from prototype stacks. Piezoelectric and dielectric integrity was maintained even though the PZT plate specimens experienced an additional loading process involved with the extraction after factory poling. Extracted 10-layer plate specimens were studied by an electric cycle test under an electric field of 3.0/0.0 kV/mm, 100 Hz to 108 cycles, both at room temperature (22 C) and at 50 C. The elevated temperature had amore » defined impact on the fatigue of PZT stacks. About 48 and 28% reductions were observed in the piezoelectric and dielectric coefficients, respectively, after 108 cycles at 50 C, compared with reductions of 25 and 15% in the respective coefficients at 22 C. At the same time, the loss tangent varied to a limited extent. The evolution of PZT electrode interfacial layers or nearby dielectric layers should account for the difference in the fatigue rates of piezoelectric and dielectric coefficients. But the basic contribution to observed fatigue may result from the buildup of a bias field that finally suppressed the motion of the domain walls. Finally, monitoring of dielectric coefficients can be an effective tool for on-line lifetime prediction of PZT stacks in service if a failure criterion is defined properly.« less
Determination of the Navier slip coefficient of microchannels exploiting the streaming potential.
Park, Hung Mok
2012-03-01
For most microchannels made of hydrophobic materials such as polymers, velocity slip occurs at the wall, affecting volumetric flow rate of electroosmotic flow Q(eof) and streaming potential (∂ϕ(str)/∂z). Since most techniques exploit Q(eof) or (∂ϕ(str)/∂z) to determine the zeta potential, ζ, it is very difficult to measure ζ of hydrophobic walls, if the slip coefficient b is not found a priori. Until now, Q(eof) and (∂ϕ(str)/∂z) are known to depend on ζ and b in a same functional form, which makes it impossible to estimate ζ or b separately using measurements of Q(eof) and (∂ϕ(str)/∂z). However, exploiting the analytic formula for Q(eof) and (∂ϕ(str)/∂z) derived in the present work, it is found that the effect of ζ and that of b on Q(eof) and (∂ϕ(str)/∂z) can be separated from each other by varying the bulk ionic concentration. Thus, the slip coefficient as well as the zeta potential of hydrophobic microchannels can be found with reasonable accuracy by means of a nonlinear curve fitting method using measured data of Q(eof) and (∂ϕ(str)/∂z) at various bulk ionic concentrations. The present method allows an accurate estimation of slip coefficient of hydrophobic microchannels, which is quite simple and cheap compared with methods employing microparticle velocimetry. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Wang, Hong; Lee, Sung-Min; Lin, Hua-Tay; Stafford, Randy
2016-04-01
Testing and characterization of large prototype lead zirconate titanate (PZT) stacks present substantial technical challenges to electronic systems. The work in this study shows that an alternative approach can be pursued by using subunits extracted from prototype stacks. Piezoelectric and dielectric integrity was maintained even though the PZT plate specimens experienced an additional loading process involved with the extraction after factory poling. Extracted 10-layer plate specimens were studied by an electric cycle test under an electric field of 3.0/0.0 kV/mm, 100 Hz to 108 cycles, both at room temperature (22°C) and at 50°C. The elevated temperature had a defined impact on the fatigue of PZT stacks. About 48 and 28% reductions were observed in the piezoelectric and dielectric coefficients, respectively, after 108 cycles at 50°C, compared with reductions of 25 and 15% in the respective coefficients at 22°C. At the same time, the loss tangent varied to a limited extent. The evolution of PZT-electrode interfacial layers or nearby dielectric layers should account for the difference in the fatigue rates of piezoelectric and dielectric coefficients. But the basic contribution to observed fatigue may result from the buildup of a bias field that finally suppressed the motion of the domain walls. Finally, monitoring of dielectric coefficients can be an effective tool for on-line lifetime prediction of PZT stacks in service if a failure criterion is defined properly.
Kinetics of styrene biodegradation by Pseudomonas sp. E-93486.
Gąszczak, Agnieszka; Bartelmus, Grażyna; Greń, Izabela
2012-01-01
The research into kinetics of styrene biodegradation by bacterial strain Pseudomonas sp. E-93486 coming from VTT Culture Collection (Finland) was presented in this work. Microbial growth tests in the presence of styrene as the sole carbon and energy source were performed both in batch and continuous cultures. Batch experiments were conducted for initial concentration of styrene in the liquid phase changed in the range of 5-90 g m(-3). The Haldane model was found to be the best to fit the kinetic data, and the estimated constants of the equation were: μ (m) = 0.1188 h(-1), K(S) = 5.984 mg l(-1), and K (i) = 156.6 mg l(-1). The yield coefficient mean value [Formula in text] for the batch culture was 0.72 g(dry cells weight) (g(substrate))(-1). The experiments conducted in a chemostat at various dilution rates (D = 0.035-0.1 h(-1)) made it possible to determine the value of the coefficient for maintenance metabolism m (d) = 0.0165 h(-1) and the maximum yield coefficient value [Formula in text]. Chemostat experiments confirmed the high value of yield coefficient [Formula in text] observed in the batch culture. The conducted experiments showed high activity of the examined strain in the styrene biodegradation process and a relatively low sensitivity to inhibition of its growth at higher concentrations of styrene in the solution. Such exceptional features of Pseudomonas sp. E-93486 make this bacterial strain the perfect candidate for technical applications.
NASA Astrophysics Data System (ADS)
Moorthy, Chellapilla V. K. N. S. N.; Srinivas, Vadapalli
2016-10-01
This paper summarizes a recent work on anti-corrosive properties and enhanced heat transfer properties of carboxylated water based nanofluids. Water mixed with sebacic acid as carboxylate additive found to be resistant to corrosion and suitable for automotive environment. The carboxylated water is dispersed with very low mass concentration of carbon nano tubes at 0.025, 0.05 and 0.1 %. The stability of nanofluids in terms of zeta potential is found to be good with carboxylated water compared to normal water. The heat transfer performance of nanofluids is carried out on an air cooled heat exchanger similar to an automotive radiator with incoming air velocities across radiator at 5, 10 and 15 m/s. The flow Reynolds number of water is in the range of 2500-6000 indicating developing flow regime. The corrosion resistance of nanofluids is found to be good indicating its suitability to automotive environment. There is a slight increase in viscosity and marginal decrease in the specific heat of nanofluids with addition of carboxylate as well as CNTs. Significant improvement is observed in the thermal conductivity of nanofluids dispersed with CNTs. During heat transfer experimentation, the inside heat transfer coefficient and overall heat transfer coefficient has also improved markedly. It is also found that the velocity of air and flow rate of coolant plays an important role in enhancement of the heat transfer coefficient and overall heat transfer coefficient.
NASA Astrophysics Data System (ADS)
Matsuura, H.; Nakao, Y.
2007-05-01
An effect of nuclear elastic scattering on the rate coefficient of fusion reaction between field deuteron and triton in the presence of neutral beam injection heating is studied. Without assuming a Maxwellian for bulk-ion distribution function, the Boltzmann-Fokker-Planck (BFP) equations for field (bulk) deuteron, field (bulk) triton, α-particle, and beam deuteron are simultaneously solved in an ITER-like deuterium-tritium thermonuclear plasma [R. Aymar, Fusion Eng. Des. 55, 107 (2001)]. The BFP calculation shows that enhancement of the reaction rate coefficient due to knock-on tail formation in fuel-ion distribution functions becomes appreciable, especially in the case of low-density operations.
Electron-impact excitation of diatomic hydride cations II: OH+ and SH+
NASA Astrophysics Data System (ADS)
Hamilton, James R.; Faure, Alexandre; Tennyson, Jonathan
2018-05-01
R-matrix calculations combined with the adiabatic-nuclei-rotation and Coulomb-Born approximations are used to compute electron-impact rotational rate coefficients for two open-shell diatomic cations of astrophysical interest: the hydoxyl and sulphanyl ions, OH+ and SH+. Hyperfine resolved rate coefficients are deduced using the infinite-order-sudden approximation. The propensity rule ΔF = Δj = ΔN = ±1 is observed, as is expected for cations with a large dipole moment. A model for OH+ excitation in the Orion Bar photon-dominated region is presented which nicely reproduces Herschel observations for an electron fraction xe = 10-4 and an OH+ column density of 3 × 1013 cm-2. Electron-impact electronic excitation cross-sections and rate coefficients for the ions are also presented.
On the validity of the Arrhenius equation for electron attachment rate coefficients.
Fabrikant, Ilya I; Hotop, Hartmut
2008-03-28
The validity of the Arrhenius equation for dissociative electron attachment rate coefficients is investigated. A general analysis allows us to obtain estimates of the upper temperature bound for the range of validity of the Arrhenius equation in the endothermic case and both lower and upper bounds in the exothermic case with a reaction barrier. The results of the general discussion are illustrated by numerical examples whereby the rate coefficient, as a function of temperature for dissociative electron attachment, is calculated using the resonance R-matrix theory. In the endothermic case, the activation energy in the Arrhenius equation is close to the threshold energy, whereas in the case of exothermic reactions with an intermediate barrier, the activation energy is found to be substantially lower than the barrier height.
Collisional excitation of HC3N by para- and ortho-H2
NASA Astrophysics Data System (ADS)
Faure, Alexandre; Lique, François; Wiesenfeld, Laurent
2016-08-01
New calculations for rotational excitation of cyanoacetylene by collisions with hydrogen molecules are performed to include the lowest 38 rotational levels of HC3N and kinetic temperatures to 300 K. Calculations are based on the interaction potential of Wernli et al. whose accuracy is checked against spectroscopic measurements of the HC3N-H2 complex. The quantum coupled-channel approach is employed and complemented by quasi-classical trajectory calculations. Rate coefficients for ortho-H2 are provided for the first time. Hyperfine resolved rate coefficients are also deduced. Collisional propensity rules are discussed and comparisons between quantum and classical rate coefficients are presented. This collisional data should prove useful in interpreting HC3N observations in the cold and warm ISM, as well as in protoplanetary discs.
NASA Technical Reports Server (NTRS)
Ryu, J. Y.; Wada, M.
1985-01-01
In order to examine the stability of neutron monitor observation, each of the monthly average counting rates of a neutron monitors is correlated to those of Kiel neutron monitor. The regression coefficients thus obtained are compared with the coupling coefficients of isotropic intensity radiation. The results of the comparisons for five year periods during 1963 to 1982, and for whole period are given. The variation spectrum with a single power law with an exponent of -0.75 up to 50 GV is not so unsatisfactory one. More than one half of the stations show correlations with the coefficient greater than 0.9. Some stations have shifted the level of mean counting rates by changing the instrumental characteristics which can be adjusted.
Bejaoui, Imen; Mouelhi, Meral; Hamrouni, Béchir
2017-01-01
Nanofiltration and reverse osmosis are investigated as a possible alternative to the conventional methods of Cr(VI) removal from model water and industrial effluent. The influences of feed concentration, water recovery, pH, and the coexisting anions were studied. The results have shown that retention rates of hexavalent chromium can reach 99.7% using nanofiltration membrane (NF-HL) and vary from 85 to 99.9% using reverse osmosis membrane (RO-SG) depending upon the composition of the solution and operating conditions. This work was also extended to investigate the separation of Cr(VI) from car shock absorber factory effluent. The use of these membranes is very promising for Cr(VI) water treatment and desalting industry effluent. Spiegler-Kedem model was applied to experimental results in the aim to determine phenomenological parameters, the reflection coefficient of the membrane (σ), and the solute permeability coefficient (Ps). The convective and diffusive parts of the mass transfer were quantified with predominance of the diffusive contribution. PMID:28819360
Serag, Maged F.; Abadi, Maram; Habuchi, Satoshi
2014-01-01
Single-molecule localization and tracking has been used to translate spatiotemporal information of individual molecules to map their diffusion behaviours. However, accurate analysis of diffusion behaviours and including other parameters, such as the conformation and size of molecules, remain as limitations to the method. Here, we report a method that addresses the limitations of existing single-molecular localization methods. The method is based on temporal tracking of the cumulative area occupied by molecules. These temporal fluctuations are tied to molecular size, rates of diffusion and conformational changes. By analysing fluorescent nanospheres and double-stranded DNA molecules of different lengths and topological forms, we demonstrate that our cumulative-area method surpasses the conventional single-molecule localization method in terms of the accuracy of determined diffusion coefficients. Furthermore, the cumulative-area method provides conformational relaxation times of structurally flexible chains along with diffusion coefficients, which together are relevant to work in a wide spectrum of scientific fields. PMID:25283876
Search for selective ion diffusion through membranes
NASA Technical Reports Server (NTRS)
May, C. E.; Philipp, W. H.
1983-01-01
The diffusion rates of several ions through some membranes developed as battery separators were measured. The ions investigated were Li(+), Rb(+), Cl(-), and So4. The members were crosslinked polyvinyl alcohol, crosslinked polyacrylic acid, a copolymer of the two, crosslinked calcium polyacrylate, cellulose, and several microporous polyphenylene oxide based films. No true specificity for diffusion of any of these ions was found for any of the membranes. But the calcium polyacrylate membrane was found to exhibit ion exchange with the diffusing ions giving rise to the leaching of the calcium ion and low reproducibility. These findings contrast earlier work where the calcium polyacrylate membrane did show specificity to the diffusion of the copper ion. In general, Fick's law appeared to be obeyed. Except for the microporous membranes, the coefficients for ion diffusion through the membranes were comparable with their values in water. For the microporous membranes, the values found for the coefficients were much less, due to the tortuosity of the micropores.
Pluto's Solar Occultation from New Horizons
NASA Astrophysics Data System (ADS)
Young, Leslie; Kammer, Joshua; Steffl, Andrew J.; Gladstone, Randy; Summers, Michael; Strobel, Darrell F.; Hinson, David P.; Stern, S. Alan; Weaver, Harold A.; Olkin, Catherine; Ennico, Kimberly; McComas, Dave; New Horizons Atmospheres Science Theme Team
2017-10-01
The Alice instrument on NASA’s New Horizons spacecraft observed an ultraviolet solar occultation by Pluto's atmosphere on 2015 July 14. We derived line-of-sight abundances and local number densities for the major species (N2 and CH4) and minor hydrocarbons (C2H2, C2H4, C2H6), and line-of-sight optical depth and extinction coefficients for the haze. Our major conclusions are that (1) we confirmed temperatures in Pluto’s upper atmosphere that were colder than expected before the New Horizons flyby, with upper atmospheric temperatures near 65-68 K, and subsequently lower escape rates, (2) the lower atmosphere was very stable, placing the homopause within 12 km of the surface, (3) the abundance profiles of the “C2Hx hydrocarbons” had non-exponential density profiles that compare favorably with models for hydrocarbon production near 300-400 km and haze condensation near 200 km, and (4) haze had an extinction coefficient approximately proportional to N2 density.This work was supported by NASA’s New Horizons project.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Y.; Yi, H. T.; Wu, X.
Impressive performance of hybrid perovskite solar cells reported in recent years still awaits a comprehensive understanding of its microscopic origins. In this work, the intrinsic Hall mobility and photocarrier recombination coefficient are directly measured in these materials in steady-state transport studies. The results show that electron-hole recombination and carrier trapping rates in hybrid perovskites are very low. The bimolecular recombination coefficient (10 –11 to 10 –10 cm 3 s –1) is found to be on par with that in the best direct-band inorganic semiconductors, even though the intrinsic Hall mobility in hybrid perovskites is considerably lower (up to 60 cmmore » 2 V –1 s –1). Measured here, steady-state carrier lifetimes (of up to 3 ms) and diffusion lengths (as long as 650 μm) are significantly longer than those in high-purity crystalline inorganic semiconductors. As a result, we suggest that these experimental findings are consistent with the polaronic nature of charge carriers, resulting from an interaction of charges with methylammonium dipoles.« less
Vives, Alejandra; González, Francisca; Moncada, Salvador; Llorens, Clara; Benach, Joan
2015-01-01
This study examines the psychometric properties of the revised Employment Precariousness Scale (EPRES-2010) in a context of economic crisis and growing unemployment. Data correspond to salaried workers with a contract (n=4,750) from the second Psychosocial Work Environment Survey (Spain, 2010). Analyses included acceptability, scale score distributions, Cronbach's alpha coefficient and exploratory factor analysis. Response rates were 80% or above, scores were widely distributed with reductions in floor effects for temporariness among permanent workers and for vulnerability. Cronbach's alpha coefficients were 0.70 or above; exploratory factor analysis confirmed the theoretical allocation of 21 out of 22 items. The revised version of the EPRES demonstrated good metric properties and improved sensitivity to worker vulnerability and employment instability among permanent workers. Furthermore, it was sensitive to increased levels of precariousness in some dimensions despite decreases in others, demonstrating responsiveness to the context of the economic crisis affecting the Spanish labour market. Copyright © 2015 SESPAS. Published by Elsevier Espana. All rights reserved.
Theoretical determination of chemical rate constants using novel time-dependent methods
NASA Technical Reports Server (NTRS)
Dateo, Christopher E.
1994-01-01
The work completed within the grant period 10/1/91 through 12/31/93 falls primarily in the area of reaction dynamics using both quantum and classical mechanical methodologies. Essentially four projects have been completed and have been or are in preparation of being published. The majority of time was spent in the determination of reaction rate coefficients in the area of hydrocarbon fuel combustion reactions which are relevant to NASA's High Speed Research Program (HSRP). These reaction coefficients are important in the design of novel jet engines with low NOx emissions, which through a series of catalytic reactions contribute to the deterioration of the earth's ozone layer. A second area of research studied concerned the control of chemical reactivity using ultrashort (femtosecond) laser pulses. Recent advances in pulsed-laser technologies have opened up a vast new field to be investigated both experimentally and theoretically. The photodissociation of molecules adsorbed on surfaces using novel time-independent quantum mechanical methods was a third project. And finally, using state-of-the-art, high level ab initio electronic structure methods in conjunction with accurate quantum dynamical methods, the rovibrational energy levels of a triatomic molecule with two nonhydrogen atoms (HCN) were calculated to unprecedented levels of agreement between theory and experiment.
Fluoride-induced enhancement of diffusion in streptococcal model plaque biofilms.
Rose, R K; Turner, S J
1998-01-01
It has been demonstrated that fluoride decreases the calcium-binding affinity of Streptococcus mutans and approximately doubles the calcium-binding capacity. To investigate the effect of this mechanism on calcium mobility in plaque, 45Ca flux was measured from a condensed films of S. mutans into tracer-free solution. Bacteria were suspended in pH 7.0 or 5.0 buffer including 0, 5, 10, 15 or 20 mmol/l Ca2+ carrier, with or without 5 mmol/l F- and with 45Ca and 3H-inulin. The appearance of 45Ca and 3H-inulin in carrier-containing but initially tracer-free buffer was measured and extracellular fraction (Ve) and bound calcium were calculated. As the ratio (R) of bound to free Ca2+ approached zero at high [Ca2+], the measured diffusion coefficient (rDe) approached the effective diffusion coefficient (De), such that: rDe = De/(1+R). Fluoride increased the rate of calcium diffusion by a reduction in the binding affinity. This work demonstrates that fluoride significantly increases mobility in plaque; this may increase the rate at which calcium is transported between plaque and an underlying lesion and so promote remineralization. This mechanism could also increase the penetration of bacteriocides and suggests a novel method for biofilm treatment.
Normal force and drag force in magnetorheological finishing
NASA Astrophysics Data System (ADS)
Miao, Chunlin; Shafrir, Shai N.; Lambropoulos, John C.; Jacobs, Stephen D.
2009-08-01
The material removal in magnetorheological finishing (MRF) is known to be controlled by shear stress, λ, which equals drag force, Fd, divided by spot area, As. However, it is unclear how the normal force, Fn, affects the material removal in MRF and how the measured ratio of drag force to normal force Fd/Fn, equivalent to coefficient of friction, is related to material removal. This work studies, for the first time for MRF, the normal force and the measured ratio Fd/Fn as a function of material mechanical properties. Experimental data were obtained by taking spots on a variety of materials including optical glasses and hard ceramics with a spot-taking machine (STM). Drag force and normal force were measured with a dual load cell. Drag force decreases linearly with increasing material hardness. In contrast, normal force increases with hardness for glasses, saturating at high hardness values for ceramics. Volumetric removal rate decreases with normal force across all materials. The measured ratio Fd/Fn shows a strong negative linear correlation with material hardness. Hard materials exhibit a low "coefficient of friction". The volumetric removal rate increases with the measured ratio Fd/Fn which is also correlated with shear stress, indicating that the measured ratio Fd/Fn is a useful measure of material removal in MRF.
Normal Force and Drag Force in Magnetorheological Finishing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miao, C.; Shafrir, S.N.; Lambropoulos, J.C.
2010-01-13
The material removal in magnetorheological finishing (MRF) is known to be controlled by shear stress, tau, which equals drag force, Fd, divided by spot area, As. However, it is unclear how the normal force, Fn, affects the material removal in MRF and how the measured ratio of drag force to normal force Fd/Fn, equivalent to coefficient of friction, is related to material removal. This work studies, for the first time for MRF, the normal force and the measured ratio Fd/Fn as a function of material mechanical properties. Experimental data were obtained by taking spots on a variety of materials includingmore » optical glasses and hard ceramics with a spot-taking machine (STM). Drag force and normal force were measured with a dual load cell. Drag force decreases linearly with increasing material hardness. In contrast, normal force increases with hardness for glasses, saturating at high hardness values for ceramics. Volumetric removal rate decreases with normal force across all materials. The measured ratio Fd/Fn shows a strong negative linear correlation with material hardness. Hard materials exhibit a low “coefficient of friction”. The volumetric removal rate increases with the measured ratio Fd/Fn which is also correlated with shear stress, indicating that the measured ratio Fd/Fn is a useful measure of material removal in MRF.« less
Hu, Yinhuan; Zhang, Zixia; Xie, Jinzhu; Wang, Guanping
2017-02-01
The objective of this study is to describe the development of the Outpatient Experience Questionnaire (OPEQ) and to assess the validity and reliability of the scale. Literature review, patient interviews, Delphi method and Cross-sectional validation survey. Six comprehensive public hospitals in China. The survey was carried out on a sample of 600 outpatients. Acceptability of the questionnaire was assessed according to the overall response rate, item non-response rate and the average completion time. Correlation coefficients and confirmatory factor analysis were used to test construct validity. Delphi method was used to assess the content validity of the questionnaire. Cronbach's coefficient alpha and split-half reliability coefficient were used to estimate the internal reliability of the questionnaire. The overall response rate was 97.2% and the item non-response rate ranged from 0% to 0.3%. The mean completion time was 6 min. The Spearman correlations of item-total score ranged from 0.466 to 0.765. The results of confirmatory factor analysis showed that all items had factor loadings above 0.40 and the dimension intercorrelation ranged from 0.449 to 0.773, the goodness of fit of the questionnaire was reasonable. The overall authority grade of expert consultation was 0.80 and Kendall's coefficient of concordance W was 0.186. The Cronbach's coefficients alpha of six dimensions ranged from 0.708 to 0.895, the split-half reliability coefficient (Spearman-Brown coefficient) was 0.969. The OPEQ is a promising instrument covering the most important aspects which influence outpatient experiences of comprehensive public hospital in China. It has good evidence for acceptability, validity and reliability. © The Author 2016. Published by Oxford University Press in association with the International Society for Quality in Health Care. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com
Silva, D F C; Azevedo, A M; Fernandes, P; Chu, V; Conde, J P; Aires-Barros, M R
2017-03-03
Aqueous two phase systems (ATPS) offer great potential for selective separation of a wide range of biomolecules by exploring differences in molecular solubility in each of the two immiscible phases. However, ATPS use has been limited due to the difficulty in predicting the behavior of a given biomolecule in the partition environment together with the empirical and time-consuming techniques that are used for the determination of partition and extraction parameters. In this work, a fast and novel technique based on a microfluidic platform and using fluorescence microscopy was developed to determine the partition coefficients of biomolecules in different ATPS. This method consists of using a microfluidic device with a single microchannel and three inlets. In two of the inlets, solutions containing the ATPS forming components were loaded while the third inlet was fed with the FITC tagged biomolecule of interest prepared in milli-Q water. Using fluorescence microscopy, it was possible to follow the location of the FITC-tagged biomolecule and, by simply varying the pumping rates of the solutions, to quickly test a wide variety of ATPS compositions. The ATPS system is allowed 4min for stabilization and fluorescence micrographs are used to determine the partition coefficient.The partition coefficients obtained were shown to be consistent with results from macroscale ATPS partition. This process allows for faster screening of partition coefficients using only a few microliters of material for each ATPS composition and is amenable to automation. The partitioning behavior of several biomolecules with molecular weights (MW) ranging from 5.8 to 150kDa, and isoelectric points (pI) ranging from 4.7 to 6.4 was investigated, as well as the effect of the molecular weight of the polymer ATPS component. Copyright © 2016 Elsevier B.V. All rights reserved.
Wang, Han-Chun; Ernst, Siegfried; Baltruschat, Helmut
2010-03-07
The apparent transfer coefficient, which gives the magnitude of the potential dependence of the electrochemical reaction rates, is the key quantity for the elucidation of electrochemical reaction mechanisms. We introduce the application of an ac method to determine the apparent transfer coefficient alpha' for the oxidation of pre-adsorbed CO at polycrystalline and single-crystalline Pt electrodes in sulfuric acid. The method allows to record alpha' quasi continuously as a function of potential (and time) in cyclic voltammetry or at a fixed potential, with the reaction rate varying with time. At all surfaces (Pt(poly), Pt(111), Pt(665), and Pt(332)) we clearly observed a transition of the apparent transfer coefficient from values around 1.5 at low potentials to values around 0.5 at higher potentials. Changes of the apparent transfer coefficients for the CO oxidation with potential were observed previously, but only from around 0.7 to values as low as 0.2. In contrast, our experimental findings completely agree with the simulation by Koper et al., J. Chem. Phys., 1998, 109, 6051-6062. They can be understood in the framework of a Langmuir-Hinshelwood mechanism. The transition occurs when the sum of the rate constants for the forward reaction (first step: potential dependent OH adsorption, second step: potential dependent oxidation of CO(ad) with OH(ad)) exceeds the rate constant for the back-reaction of the first step. We expect that the ac method for the determination of the apparent transfer coefficient, which we used here, will be of great help also in many other cases, especially under steady conditions, where the major limitations of the method are avoided.
Escape rate for nonequilibrium processes dominated by strong non-detailed balance force
NASA Astrophysics Data System (ADS)
Tang, Ying; Xu, Song; Ao, Ping
2018-02-01
Quantifying the escape rate from a meta-stable state is essential to understand a wide range of dynamical processes. Kramers' classical rate formula is the product of an exponential function of the potential barrier height and a pre-factor related to the friction coefficient. Although many applications of the rate formula focused on the exponential term, the prefactor can have a significant effect on the escape rate in certain parameter regions, such as the overdamped limit and the underdamped limit. There have been continuous interests to understand the effect of non-detailed balance on the escape rate; however, how the prefactor behaves under strong non-detailed balance force remains elusive. In this work, we find that the escape rate formula has a vanishing prefactor with decreasing friction strength under the strong non-detailed balance limit. We both obtain analytical solutions in specific examples and provide a derivation for more general cases. We further verify the result by simulations and propose a testable experimental system of a charged Brownian particle in electromagnetic field. Our study demonstrates that a special care is required to estimate the effect of prefactor on the escape rate when non-detailed balance force dominates.
NASA Astrophysics Data System (ADS)
Pejaković, Dušan A.; Campbell, Zachary; Kalogerakis, Konstantinos S.; Copeland, Richard A.; Slanger, Tom G.
2011-09-01
Laboratory measurements are reported of the rate coefficient for collisional removal of O2(X^3Σ _g^ -, υ = 1) by O(3P), and the rate coefficients for removal of O2(a1Δg, υ = 1) by O2, CO2, and O(3P). A two-laser method is employed, in which the pulsed output of the first laser at 285 nm photolyzes ozone to produce oxygen atoms and O2(a1Δg, υ = 1), and the output of the second laser detects O2(a1Δg, υ = 1) via resonance-enhanced multiphoton ionization. The kinetics of O2(X^3Σ _g^ -, υ = 1) + O(3P) relaxation is inferred from the temporal evolution of O2(a1Δg, υ = 1), an approach enabled by the rapid collision-induced equilibration of the O2(X^3Σ _g^ -, υ = 1) and O2(a1Δg, υ = 1) populations in the system. The measured O2(X^3Σ _g^ -, υ = 1) + O(3P) rate coefficient is (2.9 ± 0.6) × 10-12 cm3 s-1 at 295 K and (3.4 ± 0.6) × 10-12 cm3 s-1 at 240 K. These values are consistent with the previously reported result of (3.2 ± 1.0) × 10-12 cm3 s-1, which was obtained at 315 K using a different experimental approach [K. S. Kalogerakis, R. A. Copeland, and T. G. Slanger, J. Chem. Phys. 123, 194303 (2005)]. For removal of O2(a1Δg, υ = 1) by O(3P), the upper limits for the rate coefficient are 4 × 10-13 cm3 s-1 at 295 K and 6 × 10-13 cm3 s-1 at 240 K. The rate coefficient for removal of O2(a1Δg, υ = 1) by O2 is (5.6 ± 0.6) × 10-11 cm3 s-1 at 295 K and (5.9 ± 0.5) × 10-11 cm3 s-1 at 240 K. The O2(a1Δg, υ = 1) + CO2 rate coefficient is (1.5 ± 0.2) × 10-14 cm3 s-1 at 295 K and (1.2 ± 0.1) × 10-14 cm3 s-1 at 240 K. The implications of the measured rate coefficients for modeling of atmospheric emissions are discussed.
Gaass, Thomas; Schneider, Moritz Jörg; Dietrich, Olaf; Ingrisch, Michael; Dinkel, Julien
2017-04-01
Variability across devices, patients, and time still hinders widespread recognition of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) as quantitative biomarker. The purpose of this work was to introduce and characterize a dedicated microchannel phantom as a model for quantitative DCE-MRI measurements. A perfusable, MR-compatible microchannel network was constructed on the basis of sacrificial melt-spun sugar fibers embedded in a block of epoxy resin. Structural analysis was performed on the basis of light microscopy images before DCE-MRI experiments. During dynamic acquisition the capillary network was perfused with a standard contrast agent injection system. Flow-dependency, as well as inter- and intrascanner reproducibility of the computed DCE parameters were evaluated using a 3.0 T whole-body MRI. Semi-quantitative and quantitative flow-related parameters exhibited the expected proportionality to the set flow rate (mean Pearson correlation coefficient: 0.991, P < 2.5e-5). The volume fraction was approximately independent from changes of the applied flow rate through the phantom. Repeatability and reproducibility experiments yielded maximum intrascanner coefficients of variation (CV) of 4.6% for quantitative parameters. All evaluated parameters were well in the range of known in vivo results for the applied flow rates. The constructed phantom enables reproducible, flow-dependent, contrast-enhanced MR measurements with the potential to facilitate standardization and comparability of DCE-MRI examinations. © 2017 American Association of Physicists in Medicine.
Boiling of multicomponent working fluids used in refrigeration and cryogenic systems
NASA Astrophysics Data System (ADS)
Mogorychny, V. I.; Dolzhikov, A. S.
2017-11-01
Working fluids based on mixtures are widely used in cryogenic and refrigeration engineering. One of the main elements of low-temperature units is a recuperative heat exchanger where the return flow cools the direct (cold regeneration is carrying out) resulting in continuous boiling and condensation of the multicomponent working fluid in the channels. The temperature difference between the inlet and outlet of the heat exchanger can be more than 100K, which leads to a strong change in thermophysical properties along its length. In addition, the fraction of the liquid and vapor phases in the flow varies very much, which affects the observed flow regimes in the heat exchanger channels. At the moment there are not so many experimental data and analytical correlations that would allow to estimate the heat transfer coefficient during the flow of a two-phase mixture flow at low temperatures. The work is devoted to the study of the boiling process of multicomponent working fluids used in refrigeration and cryogenic engineering. The description of the method of determination of heat transfer coefficient during boiling of mixtures in horizontal heated channel is given as well as the design of the experimental stand allowing to make such measurements. This stand is designed on the basis of a refrigeration unit operating on the Joule-Thomson throttle cycle and makes it possible to measure the heat transfer coefficient with a good accuracy. Also, the calculated values of the heat transfer coefficient, obtained with the use of various correlations, are compared with the existing experimental data. Knowing of the heat transfer coefficient will be very useful in the design of heat exchangers for low-temperature units operating on a mixture refrigerant.
CFD Based Prediction of Discharge Coefficient of Sonic Nozzle with Surface Roughness
NASA Astrophysics Data System (ADS)
Bagaskara, Agastya; Agoes Moelyadi, Mochammad
2018-04-01
Due to its simplicity and accuracy, sonic nozzle is widely used in gas flow measurement, gas flow meter calibration standard, and flow control. The nozzle obtains mass flow rate by measuring temperature and pressure in the inlet during choked flow condition and calculate the flow rate using the one-dimensional isentropic flow equation multiplied by a discharge coefficient, which takes into account multiple non-isentropic effects, which causes the reduction in mass flow. Proper determination of discharge coefficient is crucial to ensure the accuracy of mass flow measurement by the nozzle. Available analytical solution for the prediction of discharge coefficient assumes that the nozzle wall is hydraulically smooth which causes disagreement with experimental results. In this paper, the discharge coefficient of sonic nozzle is determined using computational fluid dynamics method by taking into account the roughness of the wall. It is found that the result shows better agreement with the experiment data compared to the analytical result.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lundqvist, A.; Lindbergh, G.
1998-11-01
A potential-step method for determining the diffusion coefficient and phase-transfer parameter in metal hydrides by using microelectrodes was investigated. It was shown that a large potential step is not enough to ensure a completely diffusion-limited mass transfer if a surface-phase transfer reaction takes place at a finite rate. It was shown, using a kinetic expression for the surface phase-transfer reaction, that the slope of the logarithm of the current vs. time curve will be constant both in the case of the mass-transfer limited by diffusion or by diffusion and a surface-phase transfer. The diffusion coefficient and phase-transfer rate parameter weremore » accurately determined for MmNi{sub 3.6}Co{sub 0.8}Mn{sub 0.4}Al{sub 0.3} using a fit to the whole transient. The diffusion coefficient was found to be (1.3 {+-} 0.3) {times} 10{sup {minus}13} m{sup 2}/s. The fit was good and showed that a pure diffusion model was not enough to explain the observed transient. The diffusion coefficient and phase-transfer rate parameter were also estimated for pure LaNi{sub 5}. A fit of the whole curve showed that neither a pure diffusion model nor a model including phase transfer could explain the whole transient.« less
Thermal coefficients of technology assimilation by natural systems
NASA Technical Reports Server (NTRS)
Mueller, R. F.
1971-01-01
Estimates of thermal coefficients of the rates of technology assimilation processes was made. Consideration of such processes as vegetation and soil recovery and pollution assimilation indicates that these processes proceed ten to several hundred times more slowly in earth's cold regions than in temperate regions. It was suggested that these differential assimilation rates are important data in planning for technological expansion in Arctic regions.
ERIC Educational Resources Information Center
Halsall, H. B.; Wermeling, J. R.
1982-01-01
Describes an experiment using a high-speed preparative centrifuge and calculator to demonstrate effects of the frictional coefficient of a macromolecule on its rate of transport in a force field and to estimate molecular weight of the macromolecule using an empirical relationship. Background information, procedures, and discussion of results are…
NASA Technical Reports Server (NTRS)
Yang, H. Q.; West, Jeff
2015-01-01
Current reduced-order thermal model for cryogenic propellant tanks is based on correlations built for flat plates collected in the 1950's. The use of these correlations suffers from: inaccurate geometry representation; inaccurate gravity orientation; ambiguous length scale; and lack of detailed validation. The work presented under this task uses the first-principles based Computational Fluid Dynamics (CFD) technique to compute heat transfer from tank wall to the cryogenic fluids, and extracts and correlates the equivalent heat transfer coefficient to support reduced-order thermal model. The CFD tool was first validated against available experimental data and commonly used correlations for natural convection along a vertically heated wall. Good agreements between the present prediction and experimental data have been found for flows in laminar as well turbulent regimes. The convective heat transfer between tank wall and cryogenic propellant, and that between tank wall and ullage gas were then simulated. The results showed that commonly used heat transfer correlations for either vertical or horizontal plate over predict heat transfer rate for the cryogenic tank, in some cases by as much as one order of magnitude. A characteristic length scale has been defined that can correlate all heat transfer coefficients for different fill levels into a single curve. This curve can be used for the reduced-order heat transfer model analysis.
Ye, Zhi-Min; Dai, Shu-Jun; Yan, Feng-Qin; Wang, Lei; Fang, Jun; Fu, Zhen-Fu; Wang, Yue-Zhen
2018-01-01
This study aimed to evaluate both the short- and long-term efficacies of chemoradiotherapy in relation to the treatment of esophageal cancer . This was achieved through the use of dynamic contrast-enhanced magnetic resonance imaging-derived volume transfer constant and diffusion weighted imaging-derived apparent diffusion coefficient . Patients with esophageal cancer were assigned into the sensitive and resistant groups based on respective efficacies in chemoradiotherapy. Dynamic contrast-enhanced magnetic resonance imaging and diffusion weighted imaging were used to measure volume transfer constant and apparent diffusion coefficient, while computed tomography was used to calculate tumor size reduction rate. Pearson correlation analyses were conducted to analyze correlation between volume transfer constant, apparent diffusion coefficient, and the tumor size reduction rate. Receiver operating characteristic curve was constructed to analyze the short-term efficacy of volume transfer constant and apparent diffusion coefficient, while Kaplan-Meier curve was employed for survival rate analysis. Cox proportional hazard model was used for the risk factors for prognosis of patients with esophageal cancer. Our results indicated reduced levels of volume transfer constant, while increased levels were observed in ADC min , ADC mean , and ADC max following chemoradiotherapy. A negative correlation was determined between ADC min , ADC mean , and ADC max , as well as in the tumor size reduction rate prior to chemoradiotherapy, whereas a positive correlation was uncovered postchemoradiotherapy. Volume transfer constant was positively correlated with tumor size reduction rate both before and after chemoradiotherapy. The 5-year survival rate of patients with esophageal cancer having high ADC min , ADC mean , and ADC max and volume transfer constant before chemoradiotherapy was greater than those with respectively lower values. According to the Cox proportional hazard model, ADC mean , clinical stage, degree of differentiation, and tumor stage were all confirmed as being independent risk factors in regard to the prognosis of patients with EC. The findings of this study provide evidence suggesting that volume transfer constant and apparent diffusion coefficient as being tools allowing for the evaluation of both the short- and long-term efficacies of chemoradiotherapy esophageal cancer treatment.
Nanofluid heat transfer under mixed convection flow in a tube for solar thermal energy applications.
Sekhar, Y Raja; Sharma, K V; Kamal, Subhash
2016-05-01
The solar flat plate collector operating under different convective modes has low efficiency for energy conversion. The energy absorbed by the working fluid in the collector system and its heat transfer characteristics vary with solar insolation and mass flow rate. The performance of the system is improved by reducing the losses from the collector. Various passive methods have been devised to aid energy absorption by the working fluid. Also, working fluids are modified using nanoparticles to improve the thermal properties of the fluid. In the present work, simulation and experimental studies are undertaken for pipe flow at constant heat flux boundary condition in the mixed convection mode. The working fluid at low Reynolds number in the mixed laminar flow range is undertaken with water in thermosyphon mode for different inclination angles of the tube. Local and average coefficients are determined experimentally and compared with theoretical values for water-based Al2O3 nanofluids. The results show an enhancement in heat transfer in the experimental range with Rayleigh number at higher inclinations of the collector tube for water and nanofluids.
A classification system for characterization of physical and non-physical work factors.
Genaidy, A; Karwowski, W; Succop, P; Kwon, Y G; Alhemoud, A; Goyal, D
2000-01-01
A comprehensive evaluation of work-related performance factors is a prerequisite to developing integrated and long-term solutions to workplace performance improvement. This paper describes a work-factor classification system that categorizes the entire domain of workplace factors impacting performance. A questionnaire-based instrument was developed to implement this classification system in industry. Fifty jobs were evaluated in 4 different service and manufacturing companies using the proposed questionnaire-based instrument. The reliability coefficients obtained from the analyzed jobs were considered good (0.589 to 0.862). In general, the physical work factors resulted in higher reliability coefficients (0.847 to 0.862) than non-physical work factors (0.589 to 0.768).
2009-01-01
BN2 − CN3 + (1− ηe)BN2 (9) Here α(ν,N) is the interband absorption coefficient that in- cludes many-body and blocking factors. The recombination...the reso- nant absorption coefficient and αb is the unwanted parasitic (background) absorption coefficient . As will be derived in sections II and IV... coefficient of αb. It is straightforward to evaluate the steady-state solution to the above rate equations by setting the time derivatives to zero
Adam, L; Hack, W; McBane, G C; Zhu, H; Qu, Z-W; Schinke, R
2007-01-21
Experimental rate coefficients for the removal of NH(a (1)Delta) and ND(a (1)Delta) in collisions with H and D atoms are presented; all four isotope combinations are considered: NH+H, NH+D, ND+H, and ND+D. The experiments were performed in a quasistatic laser-flash photolysis/laser-induced fluorescence system at low pressures. NH(a (1)Delta) and ND(a (1)Delta) were generated by photolysis of HN(3) and DN(3), respectively. The total removal rate coefficients at room temperature are in the range of (3-5)x10(13) cm(3) mol(-1) s(-1). For two isotope combinations, NH+H and NH+D, quenching rate coefficients for the production of NH(X (3)Sigma(-)) or ND(X (3)Sigma(-)) were also determined; they are in the range of 1 x 10(13) cm(3) mol(-1) s(-1). The quenching rate coefficients directly reflect the strength of the Renner-Teller coupling between the (2)A(") and (2)A(') electronic states near linearity and so can be used to test theoretical models for describing this nonadiabatic process. The title reaction was modeled with a simple surface-hopping approach including a single parameter, which was adjusted to reproduce the quenching rate for NH+H; the same parameter value was used for all isotope combinations. The agreement with the measured total removal rate is good for all but one isotope combination. However, the quenching rates for the NH+D combination are only in fair (factor of 2) agreement with the corresponding measured data.
Truong, Ha H; Chrystal, Peter V; Moss, Amy F; Selle, Peter H; Liu, Sonia Yun
2017-12-01
A foundation diet, an intermediate blend and a summit diet were formulated with different levels of soyabean meal, casein and crystalline amino acids to compare 'slow' and 'rapid' protein diets. The diets were offered to male Ross 308 chicks from 7 to 28 d post-hatch and assessed parameters included growth performance, nutrient utilisation, apparent digestibility coefficients and disappearance rates of starch and protein (N) in four small intestinal segments. Digestibility coefficients and disappearance rates of sixteen amino acids in three small intestinal segments and amino acid concentrations in plasma from portal and systemic circulations from the foundation and summit diets were determined. The dietary transition significantly accelerated protein (N) disappearance rates in the distal jejunum and ileum. The transition from foundation to summit diets significantly increased starch digestibility coefficients in the ileum and disappearance rates in all four small intestinal segments. These starch responses were associated with significant enhancements in nutrient utilisation. The dietary transition linearly increased digestibility coefficients and disappearance rates of amino acids in the majority of cases. The summit diet increased plasma concentrations of five amino acids but decreased those of four amino acids relative to the foundation diet to significant extents. Plasma concentrations of free amino acids were higher in the portal than systemic circulations. Rapid protein disappearance rates advantaged poultry performance and influenced post-enteral availability of amino acids. If the underlying mechanisms are to be identified, further research into the impact of protein digestive dynamics on broiler performance is required but appears justified.
Estimation of methane emission rate changes using age-defined waste in a landfill site.
Ishii, Kazuei; Furuichi, Toru
2013-09-01
Long term methane emissions from landfill sites are often predicted by first-order decay (FOD) models, in which the default coefficients of the methane generation potential and the methane generation rate given by the Intergovernmental Panel on Climate Change (IPCC) are usually used. However, previous studies have demonstrated the large uncertainty in these coefficients because they are derived from a calibration procedure under ideal steady-state conditions, not actual landfill site conditions. In this study, the coefficients in the FOD model were estimated by a new approach to predict more precise long term methane generation by considering region-specific conditions. In the new approach, age-defined waste samples, which had been under the actual landfill site conditions, were collected in Hokkaido, Japan (in cold region), and the time series data on the age-defined waste sample's methane generation potential was used to estimate the coefficients in the FOD model. The degradation coefficients were 0.0501/y and 0.0621/y for paper and food waste, and the methane generation potentials were 214.4 mL/g-wet waste and 126.7 mL/g-wet waste for paper and food waste, respectively. These coefficients were compared with the default coefficients given by the IPCC. Although the degradation coefficient for food waste was smaller than the default value, the other coefficients were within the range of the default coefficients. With these new coefficients to calculate methane generation, the long term methane emissions from the landfill site was estimated at 1.35×10(4)m(3)-CH(4), which corresponds to approximately 2.53% of the total carbon dioxide emissions in the city (5.34×10(5)t-CO(2)/y). Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Chenyakin, Yuri; Ullmann, Dagny A.; Evoy, Erin; Renbaum-Wolff, Lindsay; Kamal, Saeid; Bertram, Allan K.
2017-02-01
The diffusion coefficients of organic species in secondary organic aerosol (SOA) particles are needed to predict the growth and reactivity of these particles in the atmosphere. Previously, viscosity measurements, along with the Stokes-Einstein relation, have been used to estimate the diffusion rates of organics within SOA particles or proxies of SOA particles. To test the Stokes-Einstein relation, we have measured the diffusion coefficients of three fluorescent organic dyes (fluorescein, rhodamine 6G and calcein) within sucrose-water solutions with varying water activity. Sucrose-water solutions were used as a proxy for SOA material found in the atmosphere. Diffusion coefficients were measured using fluorescence recovery after photobleaching. For the three dyes studied, the diffusion coefficients vary by 4-5 orders of magnitude as the water activity varied from 0.38 to 0.80, illustrating the sensitivity of the diffusion coefficients to the water content in the matrix. At the lowest water activity studied (0.38), the average diffusion coefficients were 1.9 × 10-13, 1.5 × 10-14 and 7.7 × 10-14 cm2 s-1 for fluorescein, rhodamine 6G and calcein, respectively. The measured diffusion coefficients were compared with predictions made using literature viscosities and the Stokes-Einstein relation. We found that at water activity ≥ 0.6 (which corresponds to a viscosity of ≤ 360 Pa s and Tg/T ≤ 0.81), predicted diffusion rates agreed with measured diffusion rates within the experimental uncertainty (Tg represents the glass transition temperature and T is the temperature of the measurements). When the water activity was 0.38 (which corresponds to a viscosity of 3.3 × 106 Pa s and a Tg/T of 0.94), the Stokes-Einstein relation underpredicted the diffusion coefficients of fluorescein, rhodamine 6G and calcein by a factor of 118 (minimum of 10 and maximum of 977), a factor of 17 (minimum of 3 and maximum of 104) and a factor of 70 (minimum of 8 and maximum of 494), respectively. This disagreement is significantly smaller than the disagreement observed when comparing measured and predicted diffusion coefficients of water in sucrose-water mixtures.
NASA Astrophysics Data System (ADS)
Tarasov, V. N.; Boyarkina, I. V.
2017-06-01
Analytical calculation methods of dynamic processes of the self-propelled boom hydraulic machines working equipment are more preferable in comparison with numerical methods. The analytical research method of dynamic processes of the boom hydraulic machines working equipment by means of differential equations of acceleration and braking of the working equipment is proposed. The real control law of a hydraulic distributor electric spool is considered containing the linear law of the electric spool activation and stepped law of the electric spool deactivation. Dependences of dynamic processes of the working equipment on reduced mass, stiffness of hydraulic power cylinder, viscous drag coefficient, piston acceleration, pressure in hydraulic cylinders, inertia force are obtained. Definite recommendations relative to the reduction of dynamic loads, appearing during the working equipment control are considered as the research result. The nature and rate of parameter variations of the speed and piston acceleration dynamic process depend on the law of the ports opening and closure of the hydraulic distributor electric spool. Dynamic loads in the working equipment are decreased during a smooth linear activation of the hydraulic distributor electric spool.
Mixing Efficiency in the Ocean.
Gregg, M C; D'Asaro, E A; Riley, J J; Kunze, E
2018-01-03
Mixing efficiency is the ratio of the net change in potential energy to the energy expended in producing the mixing. Parameterizations of efficiency and of related mixing coefficients are needed to estimate diapycnal diffusivity from measurements of the turbulent dissipation rate. Comparing diffusivities from microstructure profiling with those inferred from the thickening rate of four simultaneous tracer releases has verified, within observational accuracy, 0.2 as the mixing coefficient over a 30-fold range of diapycnal diffusivities. Although some mixing coefficients can be estimated from pycnocline measurements, at present mixing efficiency must be obtained from channel flows, laboratory experiments, and numerical simulations. Reviewing the different approaches demonstrates that estimates and parameterizations for mixing efficiency and coefficients are not converging beyond the at-sea comparisons with tracer releases, leading to recommendations for a community approach to address this important issue.
Mixing Efficiency in the Ocean
NASA Astrophysics Data System (ADS)
Gregg, M. C.; D'Asaro, E. A.; Riley, J. J.; Kunze, E.
2018-01-01
Mixing efficiency is the ratio of the net change in potential energy to the energy expended in producing the mixing. Parameterizations of efficiency and of related mixing coefficients are needed to estimate diapycnal diffusivity from measurements of the turbulent dissipation rate. Comparing diffusivities from microstructure profiling with those inferred from the thickening rate of four simultaneous tracer releases has verified, within observational accuracy, 0.2 as the mixing coefficient over a 30-fold range of diapycnal diffusivities. Although some mixing coefficients can be estimated from pycnocline measurements, at present mixing efficiency must be obtained from channel flows, laboratory experiments, and numerical simulations. Reviewing the different approaches demonstrates that estimates and parameterizations for mixing efficiency and coefficients are not converging beyond the at-sea comparisons with tracer releases, leading to recommendations for a community approach to address this important issue.
Effect of nanofluid concentration on two-phase thermosyphon heat exchanger performance
NASA Astrophysics Data System (ADS)
Cieśliński, Janusz T.
2016-06-01
An approach - relaying on application of nanofluid as a working fluid, to improve performance of the two-phase thermosyphon heat exchanger (TPTHEx) has been proposed. The prototype heat exchanger consists of two horizontal cylindrical vessels connected by two risers and a downcomer. Tube bundles placed in the lower and upper cylinders work as an evaporator and a condenser, respectively. Distilled water and nanofluid water-Al2O3 solution were used as working fluids. Nanoparticles were tested at the concentration of 0.01% and 0.1% by weight. A modified Peclet equation and Wilson method were used to estimate the overall heat transfer coefficient of the tested TPTHEx. The obtained results indicate better performance of the TPTHEx with nanofluids as working fluid compared to distilled water, independent of nanoparticle concentration tested. However, increase in nanoparticle concentration results in overall heat transfer coefficient decrease of the TPTHEx examined. It has been observed that, independent of nanoparticle concentration tested, decrease in operating pressure results in evaporation heat transfer coefficient increase.
NASA Astrophysics Data System (ADS)
Saha, Dipendu
2009-02-01
The feasibility of drastically reducing the contactor size in mass transfer processes utilizing centrifugal field has generated a lot of interest in rotating packed bed (Higee). Various investigators have proposed correlations to predict mass transfer coefficients in Higee, but, none of the correlations was more than 20-30% accurate. In this work, artificial neural network (ANN) is employed for predicting mass transfer coefficient data. Results show that ANN provides better estimation of mass transfer coefficient with accuracy 5-15%.
NASA Astrophysics Data System (ADS)
Shaikhova, G.; Ozat, N.; Yesmakhanova, K.; Bekova, G.
2018-02-01
In this work, we present Lax pair for two-dimensional complex modified Korteweg-de Vries and Maxwell-Bloch (cmKdV-MB) system with the time-dependent coefficient. Dark and bright soliton solutions for the cmKdV-MB system with variable coefficient are received by Darboux transformation. Moreover, the determinant representation of the one-fold and two-fold Darboux transformation for the cmKdV-MB system with time-dependent coefficient is presented.
Weak hamiltonian Wilson Coefficients from Lattice QCD
NASA Astrophysics Data System (ADS)
Bruno, Mattia
2018-03-01
n this work we present a calculation of the Wilson Coefficients C1 and C2 of the Effective Weak Hamiltonian to all-orders in αs, using lattice simulations. Given the current availability of lattice spacings we restrict our calculation to unphysically light W bosons around 2 GeV and we study the systematic uncertainties of the two Wilson Coefficients.
An energy-dependent electron backscattering coefficient
NASA Astrophysics Data System (ADS)
Williamson, W., Jr.; Antolak, A. J.; Meredith, R. J.
1987-05-01
An energy-dependent electron backscattering coefficient is derived based on the continuous slowing down approximation and the Bethe stopping power. Backscattering coefficients are given for 10-50-keV electrons incident on bulk and thin-film aluminum, silver, and gold targets. The results are compared with the Everhart theory and empirical fits to experimental data. The energy-dependent theory agrees better with experimental work.
NASA Astrophysics Data System (ADS)
Doke, Atul M.; Sadana, Ajit
2006-05-01
A fractal analysis is presented for the binding and dissociation of different heart-related compounds in solution to receptors immobilized on biosensor surfaces. The data analyzed include LCAT (lecithin cholesterol acyl transferase) concentrations in solution to egg-white apoA-I rHDL immobilized on a biosensor chip surface.1 Single- and dual- fractal models were employed to fit the data. Values of the binding and the dissociation rate coefficient(s), affinity values, and the fractal dimensions were obtained from the regression analysis provided by Corel Quattro Pro 8.0 (Corel Corporation Limited).2 The binding rate coefficients are quite sensitive to the degree of heterogeneity on the sensor chip surface. Predictive equations are developed for the binding rate coefficient as a function of the degree of heterogeneity present on the sensor chip surface and on the LCAT concentration in solution, and for the affinity as a function of the ratio of fractal dimensions present in the binding and the dissociation phases. The analysis presented provided physical insights into these analyte-receptor reactions occurring on different biosensor surfaces.
A one dimensional moving bed biofilm reactor model for nitrification of municipal wastewaters.
Barry, Ugo; Choubert, Jean-Marc; Canler, Jean-Pierre; Pétrimaux, Olivier; Héduit, Alain; Lessard, Paul
2017-08-01
This work presents a one-dimensional model of a moving bed bioreactor (MBBR) process designed for the removal of nitrogen from raw wastewaters. A comprehensive experimental strategy was deployed at a semi-industrial pilot-scale plant fed with a municipal wastewater operated at 10-12 °C, and surface loading rates of 1-2 g filtered COD/m 2 d and 0.4-0.55 g NH 4 -N/m 2 d. Data were collected on influent/effluent composition, and on measurement of key variables or parameters (biofilm mass and maximal thickness, thickness of the limit liquid layer, maximal nitrification rate, oxygen mass transfer coefficient). Based on time-course variations in these variables, the MBBR model was calibrated at two time-scales and magnitudes of dynamic conditions, i.e., short-term (4 days) calibration under dynamic conditions and long-term (33 days) calibration, and for three types of carriers. A set of parameters suitable for the conditions was proposed, and the calibrated parameter set is able to simulate the time-course change of nitrogen forms in the effluent of the MBBR tanks, under the tested operated conditions. Parameters linked to diffusion had a strong influence on how robustly the model is able to accurately reproduce time-course changes in effluent quality. Then the model was used to optimize the operations of MBBR layout. It was shown that the main optimization track consists of the limitation of the aeration supply without changing the overall performance of the process. Further work would investigate the influence of the hydrodynamic conditions onto the thickness of the limit liquid layer and the "apparent" diffusion coefficient in the biofilm parameters.
On the Ice Nucleation Spectrum
NASA Technical Reports Server (NTRS)
Barahona, D.
2012-01-01
This work presents a novel formulation of the ice nucleation spectrum, i.e. the function relating the ice crystal concentration to cloud formation conditions and aerosol properties. The new formulation is physically-based and explicitly accounts for the dependency of the ice crystal concentration on temperature, supersaturation, cooling rate, and particle size, surface area and composition. This is achieved by introducing the concepts of ice nucleation coefficient (the number of ice germs present in a particle) and nucleation probability dispersion function (the distribution of ice nucleation coefficients within the aerosol population). The new formulation is used to generate ice nucleation parameterizations for the homogeneous freezing of cloud droplets and the heterogeneous deposition ice nucleation on dust and soot ice nuclei. For homogeneous freezing, it was found that by increasing the dispersion in the droplet volume distribution the fraction of supercooled droplets in the population increases. For heterogeneous ice nucleation the new formulation consistently describes singular and stochastic behavior within a single framework. Using a fundamentally stochastic approach, both cooling rate independence and constancy of the ice nucleation fraction over time, features typically associated with singular behavior, were reproduced. Analysis of the temporal dependency of the ice nucleation spectrum suggested that experimental methods that measure the ice nucleation fraction over few seconds would tend to underestimate the ice nuclei concentration. It is shown that inferring the aerosol heterogeneous ice nucleation properties from measurements of the onset supersaturation and temperature may carry significant error as the variability in ice nucleation properties within the aerosol population is not accounted for. This work provides a simple and rigorous ice nucleation framework where theoretical predictions, laboratory measurements and field campaign data can be reconciled, and that is suitable for application in atmospheric modeling studies.
Prediction of change in protein unfolding rates upon point mutations in two state proteins.
Chaudhary, Priyashree; Naganathan, Athi N; Gromiha, M Michael
2016-09-01
Studies on protein unfolding rates are limited and challenging due to the complexity of unfolding mechanism and the larger dynamic range of the experimental data. Though attempts have been made to predict unfolding rates using protein sequence-structure information there is no available method for predicting the unfolding rates of proteins upon specific point mutations. In this work, we have systematically analyzed a set of 790 single mutants and developed a robust method for predicting protein unfolding rates upon mutations (Δlnku) in two-state proteins by combining amino acid properties and knowledge-based classification of mutants with multiple linear regression technique. We obtain a mean absolute error (MAE) of 0.79/s and a Pearson correlation coefficient (PCC) of 0.71 between predicted unfolding rates and experimental observations using jack-knife test. We have developed a web server for predicting protein unfolding rates upon mutation and it is freely available at https://www.iitm.ac.in/bioinfo/proteinunfolding/unfoldingrace.html. Prominent features that determine unfolding kinetics as well as plausible reasons for the observed outliers are also discussed. Copyright © 2016 Elsevier B.V. All rights reserved.
Driver drowsiness detection using multimodal sensor fusion
NASA Astrophysics Data System (ADS)
Andreeva, Elena O.; Aarabi, Parham; Philiastides, Marios G.; Mohajer, Keyvan; Emami, Majid
2004-04-01
This paper proposes a multi-modal sensor fusion algorithm for the estimation of driver drowsiness. Driver sleepiness is believed to be responsible for more than 30% of passenger car accidents and for 4% of all accident fatalities. In commercial vehicles, drowsiness is blamed for 58% of single truck accidents and 31% of commercial truck driver fatalities. This work proposes an innovative automatic sleep-onset detection system. Using multiple sensors, the driver"s body is studied as a mechanical structure of springs and dampeners. The sleep-detection system consists of highly sensitive triple-axial accelerometers to monitor the driver"s upper body in 3-D. The subject is modeled as a linear time-variant (LTV) system. An LMS adaptive filter estimation algorithm generates the transfer function (i.e. weight coefficients) for this LTV system. Separate coefficients are generated for the awake and asleep states of the subject. These coefficients are then used to train a neural network. Once trained, the neural network classifies the condition of the driver as either awake or asleep. The system has been tested on a total of 8 subjects. The tests were conducted on sleep-deprived individuals for the sleep state and on fully awake individuals for the awake state. When trained and tested on the same subject, the system detected sleep and awake states of the driver with a success rate of 95%. When the system was trained on three subjects and then retested on a fourth "unseen" subject, the classification rate dropped to 90%. Furthermore, it was attempted to correlate driver posture and sleepiness by observing how car vibrations propagate through a person"s body. Eight additional subjects were studied for this purpose. The results obtained in this experiment proved inconclusive which was attributed to significant differences in the individual habitual postures.
Rotational relaxation of AlO+(1Σ+) in collision with He
NASA Astrophysics Data System (ADS)
Denis-Alpizar, O.; Trabelsi, T.; Hochlaf, M.; Stoecklin, T.
2018-03-01
The rate coefficients for the rotational de-excitation of AlO+ by collisions with He are determined. The possible production mechanisms of the AlO+ ion in both diffuse and dense molecular clouds are first discussed. A set of ab initio interaction energies is computed at the CCSD(T)-F12 level of theory, and a three-dimensional analytical model of the potential energy surface is obtained using a linear combination of reproducing kernel Hilbert space polynomials together with an analytical long range potential. The nuclear spin free close-coupling equations are solved and the de-excitation rotational rate coefficients for the lower 15 rotational states of AlO+ are reported. A propensity rule to favour Δj = -1 transitions is obtained while the hyperfine resolved state-to-state rate coefficients are also discussed.