Sample records for work smart standards

  1. Development of a standardized, citywide process for managing smart-pump drug libraries.

    PubMed

    Walroth, Todd A; Smallwood, Shannon; Arthur, Karen; Vance, Betsy; Washington, Alana; Staublin, Therese; Haslar, Tammy; Reddan, Jennifer G; Fuller, James

    2018-06-15

    Development and implementation of an interprofessional consensus-driven process for review and optimization of smart-pump drug libraries and dosing limits are described. The Indianapolis Coalition for Patient Safety (ICPS), which represents 6 Indianapolis-area health systems, identified an opportunity to reduce clinically insignificant alerts that smart infusion pumps present to end users. Through a consensus-driven process, ICPS aimed to identify best practices to implement at individual hospitals in order to establish specific action items for smart-pump drug library optimization. A work group of pharmacists, nurses, and industrial engineers met to evaluate variability within and lack of scrutiny of smart-pump drug libraries. The work group used Lean Six Sigma methodologies to generate a list of key needs and barriers to be addressed in process standardization. The group reviewed targets for smart-pump drug library optimization, including dosing limits, types of alerts reviewed, policies, and safety best practices. The work group also analyzed existing processes at each site to develop a final consensus statement outlining a model process for reviewing alerts and managing smart-pump data. Analysis of the total number of alerts per device across ICPS-affiliated health systems over a 4-year period indicated a 50% decrease (from 7.2 to 3.6 alerts per device per month) after implementation of the model by ICPS member organizations. Through implementation of a standardized, consensus-driven process for smart-pump drug library optimization, ICPS member health systems reduced clinically insignificant smart-pump alerts. Copyright © 2018 by the American Society of Health-System Pharmacists, Inc. All rights reserved.

  2. 78 FR 63964 - Request for Comments on Draft NIST Interagency Report (NISTIR) 7628 Rev. 1, Guidelines for Smart...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-25

    ... Grid Cyber Security AGENCY: National Institute of Standards and Technology (NIST), Department of... and Technology (NIST) seeks comments on draft NISTIR 7628 Rev. 1, Guidelines for Smart Grid Cyber... (formerly the Cyber Security Working Group) of the Smart Grid Interoperability Panel. The document has been...

  3. Smart Grid Information Clearinghouse (SGIC)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rahman, Saifur

    Since the Energy Independence and Security Act of 2007 was enacted, there has been a large number of websites that discusses smart grid and relevant information, including those from government, academia, industry, private sector and regulatory. These websites collect information independently. Therefore, smart grid information was quite scattered and dispersed. The objective of this work was to develop, populate, manage and maintain the public Smart Grid Information Clearinghouse (SGIC) web portal. The information in the SGIC website is comprehensive that includes smart grid information, research & development, demonstration projects, technical standards, costs & benefit analyses, business cases, legislation, policy &more » regulation, and other information on lesson learned and best practices. The content in the SGIC website is logically grouped to allow easily browse, search and sort. In addition to providing the browse and search feature, the SGIC web portal also allow users to share their smart grid information with others though our online content submission platform. The Clearinghouse web portal, therefore, serves as the first stop shop for smart grid information that collects smart grid information in a non-bias, non-promotional manner and can provide a missing link from information sources to end users and better serve users’ needs. The web portal is available at www.sgiclearinghouse.org. This report summarizes the work performed during the course of the project (September 2009 – August 2014). Section 2.0 lists SGIC Advisory Committee and User Group members. Section 3.0 discusses SGIC information architecture and web-based database application functionalities. Section 4.0 summarizes SGIC features and functionalities, including its search, browse and sort capabilities, web portal social networking, online content submission platform and security measures implemented. Section 5.0 discusses SGIC web portal contents, including smart grid 101, smart grid projects, deployment experience (i.e., use cases, lessons learned, cost-benefit analyses and business cases), in-depth information (i.e., standards, technology, cyber security, legislation, education and training and demand response), as well as international information. Section 6.0 summarizes SGIC statistics from the launch of the portal on July 07, 2010 to August 31, 2014. Section 7.0 summarizes publicly available information as a result of this work.« less

  4. A universal data access and protocol integration mechanism for smart home

    NASA Astrophysics Data System (ADS)

    Shao, Pengfei; Yang, Qi; Zhang, Xuan

    2013-03-01

    With the lack of standardized or completely missing communication interfaces in home electronics, there is no perfect solution to address every aspect in smart homes based on existing protocols and technologies. In addition, the central control unit (CCU) of smart home system working point-to-point between the multiple application interfaces and the underlying hardware interfaces leads to its complicated architecture and unpleasant performance. A flexible data access and protocol integration mechanism is required. The current paper offers a universal, comprehensive data access and protocol integration mechanism for a smart home. The universal mechanism works as a middleware adapter with unified agreements of the communication interfaces and protocols, offers an abstraction of the application level from the hardware specific and decoupling the hardware interface modules from the application level. Further abstraction for the application interfaces and the underlying hardware interfaces are executed based on adaption layer to provide unified interfaces for more flexible user applications and hardware protocol integration. This new universal mechanism fundamentally changes the architecture of the smart home and in some way meets the practical requirement of smart homes more flexible and desirable.

  5. Smart Power Infrastructure Demonstration for Energy Reliability and Security (SPIDERS)

    DTIC Science & Technology

    2012-05-01

    protect, and secure the United States and its interests. • AOF is the United States, Alaska, Canada, Mexico, Bahamas, Puerto Rico , and the U.S. Virgin...Criteria (UFC) for Smart Microgrid Cyber design guides for Industrial Control Systems (ICS) Residual systems Operations and Maintenance Operator...Training Sustainment Commercial Transition Cooperation with NIST for microgrid security standards Working with industry associations and

  6. Implementation Cryptography Data Encryption Standard (DES) and Triple Data Encryption Standard (3DES) Method in Communication System Based Near Field Communication (NFC)

    NASA Astrophysics Data System (ADS)

    Ratnadewi; Pramono Adhie, Roy; Hutama, Yonatan; Saleh Ahmar, A.; Setiawan, M. I.

    2018-01-01

    Cryptography is a method used to create secure communication by manipulating sent messages during the communication occurred so only intended party that can know the content of that messages. Some of the most commonly used cryptography methods to protect sent messages, especially in the form of text, are DES and 3DES cryptography method. This research will explain the DES and 3DES cryptography method and its use for stored data security in smart cards that working in the NFC-based communication system. Several things that will be explained in this research is the ways of working of DES and 3DES cryptography method in doing the protection process of a data and software engineering through the creation of application using C++ programming language to realize and test the performance of DES and 3DES cryptography method in encrypted data writing process to smart cards and decrypted data reading process from smart cards. The execution time of the entering and the reading process data using a smart card DES cryptography method is faster than using 3DES cryptography.

  7. 75 FR 63462 - Smart Grid Interoperability Standards; Notice of Docket Designation for Smart Grid...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-15

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. RM11-2-000] Smart Grid Interoperability Standards; Notice of Docket Designation for Smart Grid Interoperability Standards October 7, 2010... directs the development of a framework to achieve interoperability of smart grid devices and systems...

  8. Smart Floor with Integrated Triboelectric Nanogenerator As Energy Harvester and Motion Sensor.

    PubMed

    He, Chuan; Zhu, Weijun; Chen, Baodong; Xu, Liang; Jiang, Tao; Han, Chang Bao; Gu, Guang Qin; Li, Dichen; Wang, Zhong Lin

    2017-08-09

    A smart floor is demonstrated by integrating a square-frame triboelectric nanogenerator (SF-TENG) into a standard wood floor. The smart floor has two working modes based on two pairs of triboelectric materials: one is purposely chosen polytetrafluoroethylene films and aluminum (Al) balls, and the other is the floor itself and the objects that can be triboelectrically charged, such as basketball, shoe soles, and Scotch tape, etc. Utilizing the Al balls enclosed inside shallow boxes, the smart floor is capable of harvesting vibrational energy and, hence, provides a nonintrusive way to detect sudden falls in elderly people. In addition, when the basketball is bounced repeatedly on the floor, the average output voltage and current are 364 ± 43 V and 9 ± 1 μA, respectively, and 87 serially connected light-emitting diodes can be lit up simultaneously. Furthermore, the friction between the triboelectrically chargeable objects and the floor can also induce an alternating current output in the external circuit without the vibration of the Al balls. Normal human footsteps on the floor produce a voltage of 238 ± 17 V and a current of 2.4 ± 0.3 μA. Therefore, this work presents a smart floor with built-in SF-TENG without compromising the flexibility and stability of the standard wood floor and also demonstrates a way to harvest ambient energy solely by using conventional triboelectric materials in our daily life.

  9. 76 FR 66040 - NIST Framework and Roadmap for Smart Grid Interoperability Standards, Release 2.0 (Draft...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-25

    ...-01] NIST Framework and Roadmap for Smart Grid Interoperability Standards, Release 2.0 (Draft... draft version of the NIST Framework and Roadmap for Smart Grid Interoperability Standards, Release 2.0... Roadmap for Smart Grid Interoperability Standards, Release 2.0 (Release 2.0) (Draft) for public review and...

  10. Security in Intelligent Transport Systems for Smart Cities: From Theory to Practice.

    PubMed

    Javed, Muhammad Awais; Ben Hamida, Elyes; Znaidi, Wassim

    2016-06-15

    Connecting vehicles securely and reliably is pivotal to the implementation of next generation ITS applications of smart cities. With continuously growing security threats, vehicles could be exposed to a number of service attacks that could put their safety at stake. To address this concern, both US and European ITS standards have selected Elliptic Curve Cryptography (ECC) algorithms to secure vehicular communications. However, there is still a lack of benchmarking studies on existing security standards in real-world settings. In this paper, we first analyze the security architecture of the ETSI ITS standard. We then implement the ECC based digital signature and encryption procedures using an experimental test-bed and conduct an extensive benchmark study to assess their performance which depends on factors such as payload size, processor speed and security levels. Using network simulation models, we further evaluate the impact of standard compliant security procedures in dense and realistic smart cities scenarios. Obtained results suggest that existing security solutions directly impact the achieved quality of service (QoS) and safety awareness of vehicular applications, in terms of increased packet inter-arrival delays, packet and cryptographic losses, and reduced safety awareness in safety applications. Finally, we summarize the insights gained from the simulation results and discuss open research challenges for efficient working of security in ITS applications of smart cities.

  11. 75 FR 66752 - Smart Grid Interoperability Standards; Notice of Technical Conference

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-29

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. RM11-2-000] Smart Grid... adoption of Smart Grid Interoperability Standards (Standards) in their States. On October 6, 2010, the....m. Eastern time in conjunction with the NARUC/FERC Collaborative on Smart Response (Collaborative...

  12. Sensor Transmission Power Schedule for Smart Grids

    NASA Astrophysics Data System (ADS)

    Gao, C.; Huang, Y. H.; Li, J.; Liu, X. D.

    2017-11-01

    Smart grid has attracted much attention by the requirement of new generation renewable energy. Nowadays, the real-time state estimation, with the help of phasor measurement unit, plays an important role to keep smart grid stable and efficient. However, the limitation of the communication channel is not considered by related work. Considering the familiar limited on-board batteries wireless sensor in smart grid, transmission power schedule is designed in this paper, which minimizes energy consumption with proper EKF filtering performance requirement constrain. Based on the event-triggered estimation theory, the filtering algorithm is also provided to utilize the information contained in the power schedule. Finally, its feasibility and performance is demonstrated using the standard IEEE 39-bus system with phasor measurement units (PMUs).

  13. Smart fabric sensors and e-textile technologies: a review

    NASA Astrophysics Data System (ADS)

    Castano, Lina M.; Flatau, Alison B.

    2014-05-01

    This paper provides a review of recent developments in the rapidly changing and advancing field of smart fabric sensor and electronic textile technologies. It summarizes the basic principles and approaches employed when building fabric sensors as well as the most commonly used materials and techniques used in electronic textiles. This paper shows that sensing functionality can be created by intrinsic and extrinsic modifications to textile substrates depending on the level of integration into the fabric platform. The current work demonstrates that fabric sensors can be tailored to measure force, pressure, chemicals, humidity and temperature variations. Materials, connectors, fabric circuits, interconnects, encapsulation and fabrication methods associated with fabric technologies prove to be customizable and versatile but less robust than their conventional electronics counterparts. The findings of this survey suggest that a complete smart fabric system is possible through the integration of the different types of textile based functional elements. This work intends to be a starting point for standardization of smart fabric sensing techniques and e-textile fabrication methods.

  14. Security in Intelligent Transport Systems for Smart Cities: From Theory to Practice

    PubMed Central

    Javed, Muhammad Awais; Ben Hamida, Elyes; Znaidi, Wassim

    2016-01-01

    Connecting vehicles securely and reliably is pivotal to the implementation of next generation ITS applications of smart cities. With continuously growing security threats, vehicles could be exposed to a number of service attacks that could put their safety at stake. To address this concern, both US and European ITS standards have selected Elliptic Curve Cryptography (ECC) algorithms to secure vehicular communications. However, there is still a lack of benchmarking studies on existing security standards in real-world settings. In this paper, we first analyze the security architecture of the ETSI ITS standard. We then implement the ECC based digital signature and encryption procedures using an experimental test-bed and conduct an extensive benchmark study to assess their performance which depends on factors such as payload size, processor speed and security levels. Using network simulation models, we further evaluate the impact of standard compliant security procedures in dense and realistic smart cities scenarios. Obtained results suggest that existing security solutions directly impact the achieved quality of service (QoS) and safety awareness of vehicular applications, in terms of increased packet inter-arrival delays, packet and cryptographic losses, and reduced safety awareness in safety applications. Finally, we summarize the insights gained from the simulation results and discuss open research challenges for efficient working of security in ITS applications of smart cities. PMID:27314358

  15. 77 FR 38768 - Smart Grid Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-29

    ... DEPARTMENT OF COMMERCE National Institute of Standards and Technology Smart Grid Advisory... Smart Grid Interoperability, National Institute of Standards and Technology, 100 Bureau Drive, Mail Stop... open meeting. SUMMARY: The Smart Grid Advisory Committee (SGAC or Committee) will hold a meeting via...

  16. IEEE Smart Grid Series of Standards IEEE 2030 (Interoperability) and IEEE 1547 (Interconnection) Status: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Basso, T.; DeBlasio, R.

    The IEEE American National Standards smart grid publications and standards development projects IEEE 2030, which addresses smart grid interoperability, and IEEE 1547TM, which addresses distributed resources interconnection with the grid, have made substantial progress since 2009. The IEEE 2030TM and 1547 standards series focus on systems-level aspects and cover many of the technical integration issues involved in a mature smart grid. The status and highlights of these two IEEE series of standards, which are sponsored by IEEE Standards Coordinating Committee 21 (SCC21), are provided in this paper.

  17. Intelligent Mortality Reporting with FHIR

    PubMed Central

    Hoffman, Ryan A.; Wu, Hang; Venugopalan, Janani; Braun, Paula; Wang, May D.

    2017-01-01

    One pressing need in the area of public health is timely, accurate, and complete reporting of deaths and the conditions leading up to them. Fast Healthcare Interoperability Resources (FHIR) is a new HL7 interoperability standard for electronic health record (EHR), while Sustainable Medical Applications and Reusable Technologies (SMART)-on-FHIR enables third-party app development that can work “out of the box”. This research demonstrates the feasibility of developing SMART-on-FHIR applications to enable medical professionals to perform timely and accurate death reporting within multiple different jurisdictions of US. We explored how the information on a standard certificate of death can be mapped to resources defined in the FHIR standard (DSTU2). We also demonstrated analytics for potentially improving the accuracy and completeness of mortality reporting data. PMID:28804791

  18. 75 FR 1595 - Establishment of NIST Smart Grid Advisory Committee and Solicitation of Nominations for Members

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-12

    ... DEPARTMENT OF COMMERCE National Institute of Standards and Technology Establishment of NIST Smart... Standards and Technology, Commerce. ACTION: Notice of establishment of the NIST Smart Grid Advisory... Act, the National Institute of Standards and Technology (NIST) announces the establishment of the NIST...

  19. E-SMART system for in-situ detection of environmental contaminants. Quarterly technical progress report, July--September 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-10-01

    General Atomics (GA) leads a team of industrial, academic, and government organizations to develop the Environmental Systems Management, Analysis and Reporting neTwork (E-SMART) for the Defense Advanced Research Project Agency (DARPA), by way of this Technology Reinvestment Project (TRP). E-SMART defines a standard by which networks of smart sensing, sampling, and control devices can interoperate. E-SMART is intended to be an open standard, available to any equipment manufacturer. The user will be provided a standard platform on which a site-specific monitoring plan can be implemented using sensors and actuators from various manufacturers and upgraded as new monitoring devices become commerciallymore » available. This project will further develop and advance the E-SMART standardized network protocol to include new sensors, sampling systems, and graphical user interfaces.« less

  20. Registration system of cloud campus by using android smart tablet.

    PubMed

    Kamada, Shin; Ichimura, Takumi; Shigeyasu, Tetsuya; Takemoto, Yasuhiko

    2014-01-01

    Near Field Communication (NFC) standard covers communication protocols and data exchange formats. NFC technology is one of radio-frequency identification (RFID) standards. In Japan, Felica card is a popular way to identify the unique ID. We developed the attendance management system (AMS) as the Android application which works in the smart tablet with NFC. Generally, the AMS in the university is fixed to the wall and each student touches or slides his/her own card to the dedicated equipment. Because a teacher can use his/her own smart tablet and/or smartphone, the attendance records are viewed anytime and anywhere. Moreover, we developed the collecting system between PC and some tablets by using Android beam. Any personal data are encrypted and the file can be transferred over the NFC Bluetooth Handover between PC Linux and smart tablet. By the mining of the collected records, early discovery for chronic non-attenders are extracted in educational affairs section. In this paper, a registration system on the cloud campus system by using the personal smartphone with NFC is developed. The system enables to introduce the university courses that are open to the general public.

  1. E-SMART system for in-situ detection of environmental contaminants. Quarterly technical progress report, April--June 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-08-01

    General Atomics (GA) leads a team of industrial, academic, and government organizations in the development of the Environmental Systems Management, Analysis and Reporting neTwork (E-SMART) for the Defense Advanced Research Project Agency (DARPA), by way of this Technology Reinvestment Project (TRP). E-SMART defines a standard by which networks of smart sensing, sampling, and control devices can interoperate. E-SMART is intended to be an open standard, available to any equipment manufacturer. The user will be provided a standard platform on which a site-specific monitoring plan can be implemented using sensors and actuators from various manufacturers and upgraded as new monitoring devicesmore » become commercially available. This project will further develop and advance the E-SMART standardized network protocol to include new sensors, sampling systems, and graphical user interfaces.« less

  2. Imaging standards for smart cards

    NASA Astrophysics Data System (ADS)

    Ellson, Richard N.; Ray, Lawrence A.

    1996-02-01

    "Smart cards" are plastic cards the size of credit cards which contain integrated circuits for the storage of digital information. The applications of these cards for image storage has been growing as card data capacities have moved from tens of bytes to thousands of bytes. This has prompted the recommendation of standards by the X3B10 committee of ANSI for inclusion in ISO standards for card image storage of a variety of image data types including digitized signatures and color portrait images. This paper will review imaging requirements of the smart card industry, challenges of image storage for small memory devices, card image communications, and the present status of standards. The paper will conclude with recommendations for the evolution of smart card image standards towards image formats customized to the image content and more optimized for smart card memory constraints.

  3. Imaging standards for smart cards

    NASA Astrophysics Data System (ADS)

    Ellson, Richard N.; Ray, Lawrence A.

    1996-01-01

    'Smart cards' are plastic cards the size of credit cards which contain integrated circuits for the storage of digital information. The applications of these cards for image storage has been growing as card data capacities have moved from tens of bytes to thousands of bytes. This has prompted the recommendation of standards by the X3B10 committee of ANSI for inclusion in ISO standards for card image storage of a variety of image data types including digitized signatures and color portrait images. This paper reviews imaging requirements of the smart card industry, challenges of image storage for small memory devices, card image communications, and the present status of standards. The paper concludes with recommendations for the evolution of smart card image standards towards image formats customized to the image content and more optimized for smart card memory constraints.

  4. SmartWay Mark Signature Page: Tractors & Trailers

    EPA Pesticide Factsheets

    This SmartWay agreement is for companies and organizations who wish to comply with the SmartWay Graphic Standards and Usage Guide guidelines and requirements for using the SmartWay logos on SmartWay designated Tractors and Trailers.

  5. Smart Markets for Water Resources

    NASA Astrophysics Data System (ADS)

    Raffensperger, John

    2017-04-01

    Commercial water users often want to trade water, but their trades can hurt other users and the environment. So government has to check every transaction. This checking process is slow and expensive. That's why "free market" water trading doesn't work, especially with trading between a single buyer and a single seller. This talk will describe a water trading mechanism designed to solve these problems. The trading mechanism is called a "smart market". A smart market allows simultaneous many-to-many trades. It can reduce the transaction costs of water trading, while improving environmental outcomes. The smart market depends on a combination of recent technologies: hydrology simulation, computer power, and the Internet. Our smart market design uses standard hydrological models, user bids from a web page, and computer optimization to maximize the economic value of water while meeting all environmental constraints. Before the smart market can be implemented, however, users and the water agency must meet six critical prerequisites. These prerequisites may be viewed as simply good water management that should be done anyway. I will describe these prerequisites, and I will briefly discuss common arguments against water markets. This talk will be an abstract of a forthcoming book, "Smart Markets for Water Resources: A Manual for Implementation," by John F. Raffensperger and Mark W. Milke, from Springer Publishing.

  6. A telemedicine wound care model using 4G with smart phones or smart glasses

    PubMed Central

    Ye, Junna; Zuo, Yanhai; Xie, Ting; Wu, Minjie; Ni, Pengwen; Kang, Yutian; Yu, Xiaoping; Sun, Xiaofang; Huang, Yao; Lu, Shuliang

    2016-01-01

    Abstract To assess the feasibility of a wound care model using 4th-generation mobile communication technology standards (4G) with smart phones or smart glasses for wound management. This wound care model is an interactive, real-time platform for implementing telemedicine changing wound dressings, or doing operations. It was set up in March 2015 between Jinhua in Zhejiang province and Shanghai, China, which are 328 km apart. It comprised of a video application (APP), 4G net, smart phones or smart glasses, and a central server. This model service has been used in 30 patients with wounds on their lower extremities for 109 times in 1 month. Following a short learning curve, the service worked well and was deemed to be user-friendly. Two (6.7%) patients had wounds healed, while others still required wound dressing changes after the study finished. Both local surgeons and patients showed good acceptance of this model (100% and 83.33%, respectively). This telemedicine model is feasible and valuable because it provides an opportunity of medical service about wound healing in remote areas where specialists are scarce. PMID:27495023

  7. Organizational, Cultural, and Psychological Determinants of Smart Infusion Pump Work Arounds: A Study of 3 U.S. Health Systems.

    PubMed

    Dunford, Benjamin B; Perrigino, Matthew; Tucker, Sharon J; Gaston, Cynthia L; Young, Jim; Vermace, Beverly J; Walroth, Todd A; Buening, Natalie R; Skillman, Katherine L; Berndt, Dawn

    2017-09-01

    We investigated nurse perceptions of smart infusion medication pumps to provide evidence-based insights on how to help reduce work around and improve compliance with patient safety policies. Specifically, we investigated the following 3 research questions: (1) What are nurses' current attitudes about smart infusion pumps? (2) What do nurses think are the causes of smart infusion pump work arounds? and (3) To whom do nurses turn for smart infusion pump training and troubleshooting? We surveyed a large number of nurses (N = 818) in 3 U.S.-based health care systems to address the research questions above. We assessed nurses' opinions about smart infusion pumps, organizational perceptions, and the reasons for work arounds using a voluntary and anonymous Web-based survey. Using qualitative research methods, we coded open-ended responses to questions about the reasons for work arounds to organize responses into useful categories. The nurses reported widespread satisfaction with smart infusion pumps. However, they reported numerous organizational, cultural, and psychological causes of smart pump work arounds. Of 1029 open-ended responses to the question "why do smart pump work arounds occur?" approximately 44% of the causes were technology related, 47% were organization related, and 9% were related to individual factors. Finally, an overwhelming majority of nurses reported seeking solutions to smart pump problems from coworkers and being trained primarily on the job. Hospitals may significantly improve adherence to smart pump safety features by addressing the nontechnical causes of work arounds and by providing more leadership and formalized training for resolving smart pump-related problems.

  8. 76 FR 4102 - Smart Grid Interoperability Standards; Supplemental Notice of Technical Conference

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-24

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. RM11-2-000] Smart Grid... Federal Energy Regulatory Commission announced that a Technical Conference on Smart Grid Interoperability... National Institute of Standards and Technology are ready for Commission consideration in a rulemaking...

  9. Smart Grid Development Issues for Terrestrial and Space Applications

    NASA Technical Reports Server (NTRS)

    Soeder, James F.

    2011-01-01

    The development of the so called Smart Grid has as many definitions as individuals working in the area. Based on the technology or technologies that are of interest, be it high speed communication, renewable generation, smart meters, energy storage, advanced sensors, etc. they can become the individual defining characteristic of the Smart Grid. In reality the smart grid encompasses all of these items and quite at bit more. This discussion attempts to look at what the needs are for the grid of the future, such as the issues of increased power flow capability, use of renewable energy, increased security and efficiency and common power and data standards. It also shows how many of these issues are common with the needs of NASA for future exploration programs. A common theme to address both terrestrial and space exploration issues is to develop micro-grids that advertise the ability to enable the load leveling of large power generation facilities. However, for microgrids to realize their promise there needs to a holistic systems approach to their development and integration. The overall system integration issues are presented along with potential solution methodologies.

  10. Smart Grid Development Issues for Terrestrial and Space Applications

    NASA Technical Reports Server (NTRS)

    Soeder, James F.

    2014-01-01

    The development of the so called Smart Grid has as many definitions as individuals working in the area. Based on the technology or technologies that are of interest, be it high speed communication, renewable generation, smart meters, energy storage, advanced sensors, etc. they can become the individual defining characteristic of the Smart Grid. In reality the smart grid encompasses all of these items and quite at bit more. This discussion attempts to look at what the needs are for the grid of the future, such as the issues of increased power flow capability, use of renewable energy, increased security and efficiency and common power and data standards. It also shows how many of these issues are common with the needs of NASA for future exploration programs. A common theme to address both terrestrial and space exploration issues is to develop micro-grids that advertise the ability to enable the load leveling of large power generation facilities. However, for microgrids to realize their promise there needs to a holistic systems approach to their development and integration. The overall system integration issues are presented along with potential solution methodologies.

  11. SMART on FHIR: a standards-based, interoperable apps platform for electronic health records

    PubMed Central

    Kreda, David A; Mandl, Kenneth D; Kohane, Isaac S; Ramoni, Rachel B

    2016-01-01

    Objective In early 2010, Harvard Medical School and Boston Children’s Hospital began an interoperability project with the distinctive goal of developing a platform to enable medical applications to be written once and run unmodified across different healthcare IT systems. The project was called Substitutable Medical Applications and Reusable Technologies (SMART). Methods We adopted contemporary web standards for application programming interface transport, authorization, and user interface, and standard medical terminologies for coded data. In our initial design, we created our own openly licensed clinical data models to enforce consistency and simplicity. During the second half of 2013, we updated SMART to take advantage of the clinical data models and the application-programming interface described in a new, openly licensed Health Level Seven draft standard called Fast Health Interoperability Resources (FHIR). Signaling our adoption of the emerging FHIR standard, we called the new platform SMART on FHIR. Results We introduced the SMART on FHIR platform with a demonstration that included several commercial healthcare IT vendors and app developers showcasing prototypes at the Health Information Management Systems Society conference in February 2014. This established the feasibility of SMART on FHIR, while highlighting the need for commonly accepted pragmatic constraints on the base FHIR specification. Conclusion In this paper, we describe the creation of SMART on FHIR, relate the experience of the vendors and developers who built SMART on FHIR prototypes, and discuss some challenges in going from early industry prototyping to industry-wide production use. PMID:26911829

  12. Smart Grid, Smart Inverters for a Smart Energy Future | State, Local, and

    Science.gov Websites

    , legislation which defines the state's interconnection standards and permits the interconnection of smart the cost and benefits of advanced inverter enabling legislation. Expect conversations concerning

  13. Choosing front-of-package food labelling nutritional criteria: how smart were 'Smart Choices'?

    PubMed

    Roberto, Christina A; Bragg, Marie A; Livingston, Kara A; Harris, Jennifer L; Thompson, Jackie M; Seamans, Marissa J; Brownell, Kelly D

    2012-02-01

    The 'Smart Choices' programme was an industry-driven, front-of-package (FOP) nutritional labelling system introduced in the USA in August 2009, ostensibly to help consumers select healthier options during food shopping. Its nutritional criteria were developed by members of the food industry in collaboration with nutrition and public health experts and government officials. The aim of the present study was to test the extent to which products labelled as 'Smart Choices' could be classified as healthy choices on the basis of the Nutrient Profile Model (NPM), a non-industry-developed, validated nutritional standard. A total of 100 packaged products that qualified for a 'Smart Choices' designation were sampled from eight food and beverage categories. All products were evaluated using the NPM method. In all, 64 % of the products deemed 'Smart Choices' did not meet the NPM standard for a healthy product. Within each 'Smart Choices' category, 0 % of condiments, 8·70 % of fats and oils, 15·63 % of cereals and 31·58 % of snacks and sweets met NPM thresholds. All sampled soups, beverages, desserts and grains deemed 'Smart Choices' were considered healthy according to the NPM standard. The 'Smart Choices' programme is an example of industries' attempts at self-regulation. More than 60 % of foods that received the 'Smart Choices' label did not meet standard nutritional criteria for a 'healthy' food choice, suggesting that industries' involvement in designing labelling systems should be scrutinized. The NPM system may be a good option as the basis for establishing FOP labelling criteria, although more comparisons with other systems are needed.

  14. Smart Materials Based on DNA Aptamers: Taking Aptasensing to the Next Level

    PubMed Central

    Mastronardi, Emily; Foster, Amanda; Zhang, Xueru; DeRosa, Maria C.

    2014-01-01

    “Smart” materials are an emerging category of multifunctional materials with physical or chemical properties that can be controllably altered in response to an external stimulus. By combining the standard properties of the advanced material with the unique ability to recognize and adapt in response to a change in their environment, these materials are finding applications in areas such as sensing and drug delivery. While the majority of these materials are responsive to physical or chemical changes, a particularly exciting area of research seeks to develop smart materials that are sensitive to specific molecular or biomolecular stimuli. These systems require the integration of a molecular recognition probe specific to the target molecule of interest. The ease of synthesis and labeling, low cost, and stability of DNA aptamers make them uniquely suited to effectively serve as molecular recognition probes in novel smart material systems. This review will highlight current work in the area of aptamer-based smart materials and prospects for their future applications. PMID:24553083

  15. 78 FR 22846 - Smart Grid Advisory Committee Meeting Cancellation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-17

    ... DEPARTMENT OF COMMERCE National Institute of Standards and Technology Smart Grid Advisory... Commerce. ACTION: Notice of meeting cancellation. SUMMARY: The meeting of the Smart Grid Advisory Committee... INFORMATION CONTACT: Mr. Cuong Nguyen, Smart Grid and Cyber-Physical Systems Program Office, National...

  16. A School-Based Brand Marketing Program's Adherence to Federal Nutrition Criteria.

    PubMed

    Moran, Alyssa J; Rimm, Eric B; Taveras, Elsie M

    2017-11-01

    The Healthy, Hunger-Free Kids Act of 2010 gave the U.S. Department of Agriculture authority to regulate school wellness policies, which include nutritional standards for foods advertised in schools. Brand marketing programs, which encourage students to purchase a company's products in exchange for money or rewards, were not explicitly prohibited. This study assesses the nutritional quality of products participating in "Box Tops for Education" ("Box Tops"), one of the largest national brand marketing programs in schools. Participating foods and beverages were obtained from the Box Tops product list and matched to nutrient information and ingredients from manufacturer websites in 2016 (N=949). Products were categorized as beverages (n=13); entrees (n=171); snacks (n=677); or fruits and vegetables exempt from the Smart Snacks in School Standards ("Smart Snacks" standards) (n=88) to assess the percentage that met the Smart Snacks standards. Of the foods participating in the Box Tops program, 69% of beverages, 26% of entrees, and 23% of snacks met the Smart Snacks standards. Most foods met the standards for trans fats (98%); calories (90%); and sugar (89%); but fewer met the requirements for sodium (60%). Noncompliant snacks contained more than twice the recommended sodium (mean=420 mg, SD=191 mg) and percent calories from saturated fat (mean=22%, SD=13%). Fewer than one third of Box Tops foods met the Smart Snacks standards. Schools should consider whether the benefit of participation outweighs the harm of exposing kids to unhealthful marketing. Alternatively, schools could opt not to participate unless companies limit redeemable products to household items or healthful options meeting the Smart Snacks standards. Copyright © 2017 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.

  17. High dynamic range adaptive real-time smart camera: an overview of the HDR-ARTiST project

    NASA Astrophysics Data System (ADS)

    Lapray, Pierre-Jean; Heyrman, Barthélémy; Ginhac, Dominique

    2015-04-01

    Standard cameras capture only a fraction of the information that is visible to the human visual system. This is specifically true for natural scenes including areas of low and high illumination due to transitions between sunlit and shaded areas. When capturing such a scene, many cameras are unable to store the full Dynamic Range (DR) resulting in low quality video where details are concealed in shadows or washed out by sunlight. The imaging technique that can overcome this problem is called HDR (High Dynamic Range) imaging. This paper describes a complete smart camera built around a standard off-the-shelf LDR (Low Dynamic Range) sensor and a Virtex-6 FPGA board. This smart camera called HDR-ARtiSt (High Dynamic Range Adaptive Real-time Smart camera) is able to produce a real-time HDR live video color stream by recording and combining multiple acquisitions of the same scene while varying the exposure time. This technique appears as one of the most appropriate and cheapest solution to enhance the dynamic range of real-life environments. HDR-ARtiSt embeds real-time multiple captures, HDR processing, data display and transfer of a HDR color video for a full sensor resolution (1280 1024 pixels) at 60 frames per second. The main contributions of this work are: (1) Multiple Exposure Control (MEC) dedicated to the smart image capture with alternating three exposure times that are dynamically evaluated from frame to frame, (2) Multi-streaming Memory Management Unit (MMMU) dedicated to the memory read/write operations of the three parallel video streams, corresponding to the different exposure times, (3) HRD creating by combining the video streams using a specific hardware version of the Devebecs technique, and (4) Global Tone Mapping (GTM) of the HDR scene for display on a standard LCD monitor.

  18. 75 FR 81605 - Smart Grid Interoperability Standards; Notice of Technical Conference

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-28

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. RM11-2-000] Smart Grid Interoperability Standards; Notice of Technical Conference December 21, 2010. Take notice that the Federal Energy... National Institute of Standards and Technology and included in this proceeding are ready for Commission...

  19. Spatial service delivery system for smart licensing & enforcement management

    NASA Astrophysics Data System (ADS)

    Wahap, N. A.; Ismail, N. M.; Nor, N. M.; Ahmad, N.; Omar, M. F.; Termizi, A. A. A.; Zainal, D.; Noordin, N. M.; Mansor, S.

    2016-06-01

    Spatial information has introduced a new sense of urgency for a better understanding of the public needs in term of what, when and where they need services and through which devices, platform or physical locations they need them. The objective of this project is to value- add existing license management process for business premises which comes under the responsibility of Local Authority (PBT). Manipulation of geospatial and tracing technology via mobile platform allows enforcement officers to work in real-time, use a standardized system, improve service delivery, and optimize operation management. This paper will augment the scope and capabilities of proposed concept namely, Smart Licensing/Enforcement Management (SLEm). It will review the current licensing and enforcement practice of selected PBT in comparison to the enhanced method. As a result, the new enhanced system is expected to offer a total solution for licensing/enforcement management whilst increasing efficiency and transparency for smart city management and governance.

  20. Low Cost Inkjet Printed Smart Bandage for Wireless Monitoring of Chronic Wounds

    PubMed Central

    Farooqui, Muhammad Fahad; Shamim, Atif

    2016-01-01

    Chronic wounds affect millions of patients around the world and their treatment is challenging as the early signs indicating their development are subtle. In addition, a type of chronic wound, known as pressure ulcer, develops in patients with limited mobility. Infection and frequent bleeding are indicators of chronic wound development. In this article, we present an unprecedented low cost continuous wireless monitoring system, realized through inkjet printing on a standard bandage, which can send early warnings for the parameters like irregular bleeding, variations in pH levels and external pressure at wound site. In addition to the early warnings, this smart bandage concept can provide long term wound progression data to the health care providers. The smart bandage comprises a disposable part which has the inkjet printed sensors and a reusable part constituting the wireless electronics. This work is an important step towards futuristic wearable sensors for remote health care applications. PMID:27353200

  1. Low Cost Inkjet Printed Smart Bandage for Wireless Monitoring of Chronic Wounds

    NASA Astrophysics Data System (ADS)

    Farooqui, Muhammad Fahad; Shamim, Atif

    2016-06-01

    Chronic wounds affect millions of patients around the world and their treatment is challenging as the early signs indicating their development are subtle. In addition, a type of chronic wound, known as pressure ulcer, develops in patients with limited mobility. Infection and frequent bleeding are indicators of chronic wound development. In this article, we present an unprecedented low cost continuous wireless monitoring system, realized through inkjet printing on a standard bandage, which can send early warnings for the parameters like irregular bleeding, variations in pH levels and external pressure at wound site. In addition to the early warnings, this smart bandage concept can provide long term wound progression data to the health care providers. The smart bandage comprises a disposable part which has the inkjet printed sensors and a reusable part constituting the wireless electronics. This work is an important step towards futuristic wearable sensors for remote health care applications.

  2. Low Cost Inkjet Printed Smart Bandage for Wireless Monitoring of Chronic Wounds.

    PubMed

    Farooqui, Muhammad Fahad; Shamim, Atif

    2016-06-29

    Chronic wounds affect millions of patients around the world and their treatment is challenging as the early signs indicating their development are subtle. In addition, a type of chronic wound, known as pressure ulcer, develops in patients with limited mobility. Infection and frequent bleeding are indicators of chronic wound development. In this article, we present an unprecedented low cost continuous wireless monitoring system, realized through inkjet printing on a standard bandage, which can send early warnings for the parameters like irregular bleeding, variations in pH levels and external pressure at wound site. In addition to the early warnings, this smart bandage concept can provide long term wound progression data to the health care providers. The smart bandage comprises a disposable part which has the inkjet printed sensors and a reusable part constituting the wireless electronics. This work is an important step towards futuristic wearable sensors for remote health care applications.

  3. Novel Oversampling Technique for Improving Signal-to-Quantization Noise Ratio on Accelerometer-Based Smart Jerk Sensors in CNC Applications.

    PubMed

    Rangel-Magdaleno, Jose J; Romero-Troncoso, Rene J; Osornio-Rios, Roque A; Cabal-Yepez, Eduardo

    2009-01-01

    Jerk monitoring, defined as the first derivative of acceleration, has become a major issue in computerized numeric controlled (CNC) machines. Several works highlight the necessity of measuring jerk in a reliable way for improving production processes. Nowadays, the computation of jerk is done by finite differences of the acceleration signal, computed at the Nyquist rate, which leads to low signal-to-quantization noise ratio (SQNR) during the estimation. The novelty of this work is the development of a smart sensor for jerk monitoring from a standard accelerometer, which has improved SQNR. The proposal is based on oversampling techniques that give a better estimation of jerk than that produced by a Nyquist-rate differentiator. Simulations and experimental results are presented to show the overall methodology performance.

  4. Evaluation of the Geotech SMART24BH 20Vpp/5Vpp data acquisition system with active fortezza crypto card data signing and authentication.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rembold, Randy Kai; Hart, Darren M.

    Sandia National Laboratories has tested and evaluated Geotech SMART24BH borehole data acquisition system with active Fortezza crypto card data signing and authentication. The test results included in this report were in response to static and tonal-dynamic input signals. Most test methodologies used were based on IEEE Standards 1057 for Digitizing Waveform Recorders and 1241 for Analog to Digital Converters; others were designed by Sandia specifically for infrasound application evaluation and for supplementary criteria not addressed in the IEEE standards. The objective of this work was to evaluate the overall technical performance of two Geotech SMART24BH digitizers with a Fortezza PCMCIAmore » crypto card actively implementing the signing of data packets. The results of this evaluation were compared to relevant specifications provided within manufacturer's documentation notes. The tests performed were chosen to demonstrate different performance aspects of the digitizer under test. The performance aspects tested include determining noise floor, least significant bit (LSB), dynamic range, cross-talk, relative channel-to-channel timing, time-tag accuracy/statistics/drift, analog bandwidth.« less

  5. NREL: SMARTS - About SMARTS

    Science.gov Websites

    its references list. To use SMARTS, users construct text files of 20-30 lines of simple text and ' output consists of spreadsheet-compatible American Standard Code for Information Interchange (ASCII) text

  6. How the SmartWay Partnership Works

    EPA Pesticide Factsheets

    This page describes how the SmartWay program and the SmartWay Transport Partnership work for carriers, shippers, and logistics companies to track air quality, reduce fuel consumption, improve freight supply chain sustainability.

  7. SEnviro: a sensorized platform proposal using open hardware and open standards.

    PubMed

    Trilles, Sergio; Luján, Alejandro; Belmonte, Óscar; Montoliu, Raúl; Torres-Sospedra, Joaquín; Huerta, Joaquín

    2015-03-06

    The need for constant monitoring of environmental conditions has produced an increase in the development of wireless sensor networks (WSN). The drive towards smart cities has produced the need for smart sensors to be able to monitor what is happening in our cities. This, combined with the decrease in hardware component prices and the increase in the popularity of open hardware, has favored the deployment of sensor networks based on open hardware. The new trends in Internet Protocol (IP) communication between sensor nodes allow sensor access via the Internet, turning them into smart objects (Internet of Things and Web of Things). Currently, WSNs provide data in different formats. There is a lack of communication protocol standardization, which turns into interoperability issues when connecting different sensor networks or even when connecting different sensor nodes within the same network. This work presents a sensorized platform proposal that adheres to the principles of the Internet of Things and theWeb of Things. Wireless sensor nodes were built using open hardware solutions, and communications rely on the HTTP/IP Internet protocols. The Open Geospatial Consortium (OGC) SensorThings API candidate standard was used as a neutral format to avoid interoperability issues. An environmental WSN developed following the proposed architecture was built as a proof of concept. Details on how to build each node and a study regarding energy concerns are presented.

  8. SEnviro: A Sensorized Platform Proposal Using Open Hardware and Open Standards

    PubMed Central

    Trilles, Sergio; Luján, Alejandro; Belmonte, Óscar; Montoliu, Raúl; Torres-Sospedra, Joaquín; Huerta, Joaquín

    2015-01-01

    The need for constant monitoring of environmental conditions has produced an increase in the development of wireless sensor networks (WSN). The drive towards smart cities has produced the need for smart sensors to be able to monitor what is happening in our cities. This, combined with the decrease in hardware component prices and the increase in the popularity of open hardware, has favored the deployment of sensor networks based on open hardware. The new trends in Internet Protocol (IP) communication between sensor nodes allow sensor access via the Internet, turning them into smart objects (Internet of Things and Web of Things). Currently, WSNs provide data in different formats. There is a lack of communication protocol standardization, which turns into interoperability issues when connecting different sensor networks or even when connecting different sensor nodes within the same network. This work presents a sensorized platform proposal that adheres to the principles of the Internet of Things and the Web of Things. Wireless sensor nodes were built using open hardware solutions, and communications rely on the HTTP/IP Internet protocols. The Open Geospatial Consortium (OGC) SensorThings API candidate standard was used as a neutral format to avoid interoperability issues. An environmental WSN developed following the proposed architecture was built as a proof of concept. Details on how to build each node and a study regarding energy concerns are presented. PMID:25756864

  9. Learn about SmartWay Tractors and Trailers

    EPA Pesticide Factsheets

    Companies that lease or purchase tractors or trailers that meet EPA's designated SmartWay standards are using more efficient equipment and may be eligible to put the SmartWay logo on the exterior of their equipment.

  10. Automated Clinical Assessment from Smart home-based Behavior Data

    PubMed Central

    Dawadi, Prafulla Nath; Cook, Diane Joyce; Schmitter-Edgecombe, Maureen

    2016-01-01

    Smart home technologies offer potential benefits for assisting clinicians by automating health monitoring and well-being assessment. In this paper, we examine the actual benefits of smart home-based analysis by monitoring daily behaviour in the home and predicting standard clinical assessment scores of the residents. To accomplish this goal, we propose a Clinical Assessment using Activity Behavior (CAAB) approach to model a smart home resident’s daily behavior and predict the corresponding standard clinical assessment scores. CAAB uses statistical features that describe characteristics of a resident’s daily activity performance to train machine learning algorithms that predict the clinical assessment scores. We evaluate the performance of CAAB utilizing smart home sensor data collected from 18 smart homes over two years using prediction and classification-based experiments. In the prediction-based experiments, we obtain a statistically significant correlation (r = 0.72) between CAAB-predicted and clinician-provided cognitive assessment scores and a statistically significant correlation (r = 0.45) between CAAB-predicted and clinician-provided mobility scores. Similarly, for the classification-based experiments, we find CAAB has a classification accuracy of 72% while classifying cognitive assessment scores and 76% while classifying mobility scores. These prediction and classification results suggest that it is feasible to predict standard clinical scores using smart home sensor data and learning-based data analysis. PMID:26292348

  11. New CPSC Standards Require Replacing All Cribs in Child Care Programs

    ERIC Educational Resources Information Center

    Karolak, Eric

    2011-01-01

    Consumer Product Safety Commission (CPSC) is charged with protecting the public from unreasonable risks of injury or death from some 15,000 products, including cribs, toys, and a host of other products used in early childhood and school-age programs. Smart early childhood professionals act on those recalls promptly, working in partnership with the…

  12. Smart Aging Platform for Evaluating Cognitive Functions in Aging: A Comparison with the MoCA in a Normal Population

    PubMed Central

    Bottiroli, Sara; Tassorelli, Cristina; Lamonica, Marialisa; Zucchella, Chiara; Cavallini, Elena; Bernini, Sara; Sinforiani, Elena; Pazzi, Stefania; Cristiani, Paolo; Vecchi, Tomaso; Tost, Daniela; Sandrini, Giorgio

    2017-01-01

    Background: Smart Aging is a Serious games (SGs) platform in a 3D virtual environment in which users perform a set of screening tests that address various cognitive skills. The tests are structured as 5 tasks of activities of daily life in a familiar environment. The main goal of the present study is to compare a cognitive evaluation made with Smart Aging with those of a classic standardized screening test, the Montreal Cognitive Assessment (MoCA). Methods: One thousand one-hundred thirty-one healthy adults aged between 50 and 80 (M = 64.3 ± 8.3) were enrolled in the study. They received a cognitive evaluation with the MoCA and the Smart Aging platform. Participants were grouped according to their MoCA global and specific cognitive domain (i.e., memory, executive functions, working memory, visual spatial elaboration, language, and orientation) scores and we explored differences among these groups in the Smart Aging indices. Results: One thousand eighty-six older adults (M = 64.0 ± 8.0) successfully completed the study and were stratified according to their MoCA score: Group 1 with MoCA < 27 (n = 360); Group 2 with 27 ≥ MoCA < 29 (n = 453); and Group 3 with MoCA ≥ 29 (n = 273). MoCA groups significantly differed in most of the Smart Aging indices considered, in particular as concerns accuracy (ps < 0.001) and time (ps < 0.001) for completing most of the platform tasks. Group 1 was outperformed by the other two Groups and was slower than them in these tasks, which were those supposed to assess memory and executive functions. In addition, significant differences across groups also emerged when considering the single cognitive domains of the MoCA and the corresponding performances in each Smart Aging task. In particular, this platform seems to be a good proxy for assessing memory, executive functions, working memory, and visual spatial processes. Conclusion: These findings demonstrate the validity of Smart Aging for assessing cognitive functions in normal aging. Future studies will validate this platform also in the clinical aging populations. PMID:29209200

  13. Assessing the Influence of Smart Mobile Devices on How Employees Work

    ERIC Educational Resources Information Center

    Gorski, Adam L.

    2017-01-01

    The smart mobile device market penetration reached 50% and has been increasing an average of 39% per year in the United States. More than 70% of the smart mobile device owners use such devices for personal and work activities. The problem was the lack of management's understanding of the effect smart mobile device use has on how employees work…

  14. IEEE 1451.2 based Smart sensor system using ADuc847

    NASA Astrophysics Data System (ADS)

    Sreejithlal, A.; Ajith, Jose

    IEEE 1451 standard defines a standard interface for connecting transducers to microprocessor based data acquisition systems, instrumentation systems, control and field networks. Smart transducer interface module (STIM) acts as a unit which provides signal conditioning, digitization and data packet generation functions to the transducers connected to it. This paper describes the implementation of a microcontroller based smart transducer interface module based on IEEE 1451.2 standard. The module, implemented using ADuc847 microcontroller has 2 transducer channels and is programmed using Embedded C language. The Sensor system consists of a Network Controlled Application Processor (NCAP) module which controls the Smart transducer interface module (STIM) over an IEEE1451.2-RS232 bus. The NCAP module is implemented as a software module in C# language. The hardware details, control principles involved and the software implementation for the STIM are described in detail.

  15. Shuttle Repair Tools Automate Vehicle Maintenance

    NASA Technical Reports Server (NTRS)

    2013-01-01

    Successfully building, flying, and maintaining the space shuttles was an immensely complex job that required a high level of detailed, precise engineering. After each shuttle landed, it entered a maintenance, repair, and overhaul (MRO) phase. Each system was thoroughly checked and tested, and worn or damaged parts replaced, before the shuttle was rolled out for its next mission. During the MRO period, workers needed to record exactly what needed replacing and why, as well as follow precise guidelines and procedures in making their repairs. That meant traceability, and with it lots of paperwork. In 2007, the number of reports generated during electrical system repairs was getting out of hand-placing among the top three systems in terms of paperwork volume. Repair specialists at Kennedy Space Center were unhappy spending so much time at a desk and so little time actually working on the shuttle. "Engineers weren't spending their time doing technical work," says Joseph Schuh, an electrical engineer at Kennedy. "Instead, they were busy with repetitive, time-consuming processes that, while important in their own right, provided a low return on time invested." The strain of such inefficiency was bad enough that slow electrical repairs jeopardized rollout on several occasions. Knowing there had to be a way to streamline operations, Kennedy asked Martin Belson, a project manager with 30 years experience as an aerospace contractor, to co-lead a team in developing software that would reduce the effort required to document shuttle repairs. The result was System Maintenance Automated Repair Tasks (SMART) software. SMART is a tool for aggregating and applying information on every aspect of repairs, from procedures and instructions to a vehicle s troubleshooting history. Drawing on that data, SMART largely automates the processes of generating repair instructions and post-repair paperwork. In the case of the space shuttle, this meant that SMART had 30 years worth of operations that it could apply to ongoing maintenance work. According to Schuh, "SMART standardized and streamlined many shuttle repair processes, saving time and money while increasing safety and the quality of repairs." Maintenance technicians and engineers now had a tool that kept them in the field, and because SMART is capable of continually evolving, each time an engineer put it to use, it would enrich the Agency-wide knowledge base. "If an engineer sees something in the work environment that they could improve, a repair process or a procedure, SMART can incorporate that data for use in future operations," says Belson.

  16. SMARTE: IMPROVING REVITALIZATION DECISIONS (BERLIN, GERMANY)

    EPA Science Inventory

    The U.S.-German Bilateral Working Group is developing Site-specific Management Approaches and Redevelopment Tools (SMART). In the U.S., the SMART compilation is housed in a web-based, decision support tool called SMARTe. All tools within SMARTe that are developed specifically for...

  17. Opportunity to Plug Your Car Into the Electric Grid is Arriving

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Griego, G.

    2010-06-01

    Plug-in hybrid electric vehicles are hitting the U.S. market for the first time this year. Similar to hybrid electric vehicles, they feature a larger battery and plug-in charger that allows consumers to replace a portion of their fossil fuel by simply plugging their cars into standard 110-volt outlets at home or wherever outlets are available. If these vehicles become widely accepted, consumers and the environment will benefit, according to a computer modeling study by Xcel Energy and the Department of Energy's National Renewable Energy Laboratory. Researchers found that each PHEV would cut carbon dioxide emissions in half and save ownersmore » up to $450 in annual fuel costs and up to 240 gallons of gasoline. The study also looked at the impact of PHEVs on the electric grid in Colorado if used on a large scale. Integrating large numbers of these vehicles will depend on the adoption of smart-grid technology - adding digital elements to the electric power system to improve efficiency and enable more dynamic communication between consumers and producers of electricity. Using an intelligent monitoring system that keeps track of all electricity flowing in the system, a smart grid could enable optimal PHEV battery-charging much the same way it would enable users to manage their energy use in household appliances and factory processes to reduce energy costs. When a smart grid is implemented, consumers will have many low-cost opportunities to charge PHEVs at different times of the day. Plug-in vehicles could contribute electricity at peak times, such as summer evenings, while taking electricity from the grid at low-use times such as the middle of the night. Electricity rates could offer incentives for drivers to 'give back' electricity when it is most needed and to 'take' it when it is plentiful. The integration of PHEVs, solar arrays and wind turbines into the grid at larger scales will require a more modern electricity system. Technology already exists to allow customers to feed excess power from their own renewable energy systems back to the grid. As more homes and businesses find opportunities to plan power flows to and from the grid for economic gain using their renewable energy systems and PHEVs, more sophisticated systems will be needed. A smart grid will improve the efficiency of energy consumption, manage real-time power flows and provide two-way metering needed to compensate small power producers. Many states are working toward the smart-grid concept, particularly to incorporate renewable sources into their utility grids. According to the Department of Energy, 30 states have developed and adopted renewable portfolio standards, which require up to 20 percent of a state's energy portfolio to come exclusively from renewable sources by this year, and up to 30 percent in the future. NREL has been laying the foundation for both PHEVs and the smart grid for many years with work including modifying hybrid electric cars with plug-in technology; studying fuel economy, batteries and power electronics; exploring options for recharging batteries with solar and wind technologies; and measuring reductions in greenhouse gas emissions. The laboratory participated in development of smart-grid implementation standards with industry, utilities, government and others to guide the integration of renewable and other small electricity generation and storage sources. Dick DeBlasio, principal program manager for electricity programs, is now leading the Institute of Electrical and Electronics Engineers Standards efforts to connect the dots regarding power generation, communication and information technologies.« less

  18. SMART on FHIR Genomics: facilitating standardized clinico-genomic apps.

    PubMed

    Alterovitz, Gil; Warner, Jeremy; Zhang, Peijin; Chen, Yishen; Ullman-Cullere, Mollie; Kreda, David; Kohane, Isaac S

    2015-11-01

    Supporting clinical decision support for personalized medicine will require linking genome and phenome variants to a patient's electronic health record (EHR), at times on a vast scale. Clinico-genomic data standards will be needed to unify how genomic variant data are accessed from different sequencing systems. A specification for the basis of a clinic-genomic standard, building upon the current Health Level Seven International Fast Healthcare Interoperability Resources (FHIR®) standard, was developed. An FHIR application protocol interface (API) layer was attached to proprietary sequencing platforms and EHRs in order to expose gene variant data for presentation to the end-user. Three representative apps based on the SMART platform were built to test end-to-end feasibility, including integration of genomic and clinical data. Successful design, deployment, and use of the API was demonstrated and adopted by HL7 Clinical Genomics Workgroup. Feasibility was shown through development of three apps by various types of users with background levels and locations. This prototyping work suggests that an entirely data (and web) standards-based approach could prove both effective and efficient for advancing personalized medicine. © The Author 2015. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Wide-area situation awareness in electric power grid

    NASA Astrophysics Data System (ADS)

    Greitzer, Frank L.

    2010-04-01

    Two primary elements of the US energy policy are demand management and efficiency and renewable sources. Major objectives are clean energy transmission and integration, reliable energy transmission, and grid cyber security. Development of the Smart Grid seeks to achieve these goals by lowering energy costs for consumers, achieving energy independence and reducing greenhouse gas emissions. The Smart Grid is expected to enable real time wide-area situation awareness (SA) for operators. Requirements for wide-area SA have been identified among interoperability standards proposed by the Federal Energy Regulatory Commission and the National Institute of Standards and Technology to ensure smart-grid functionality. Wide-area SA and enhanced decision support and visualization tools are key elements in the transformation to the Smart Grid. This paper discusses human factors research to promote SA in the electric power grid and the Smart Grid. Topics that will be discussed include the role of human factors in meeting US energy policy goals, the impact and challenges for Smart Grid development, and cyber security challenges.

  20. SMARTE: SUSTAINABLE MANAGEMENT APPROACHES AND REVITALIZATION TOOLS-ELECTRONIC (BELFAST, IRELAND)

    EPA Science Inventory

    The U.S.-German Bilateral Working Group is developing Site-specific Management Approaches and Redevelopment Tools (SMART). In the U.S., the SMART compilation is housed in a web-based, decision support tool called SMARTe. All tools within SMARTe that are developed specifically for...

  1. Design of an Open Smart Energy Gateway for Smart Meter Data Management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Page, Janie; McParland, Chuck; Piette, Mary Ann

    With the widespread deployment of electronic interval meters, commonly known as smart meters, came the promise of real-time data on electric energy consumption. Recognizing an opportunity to provide consumers access to their near real-time energy consumption data directly from their installed smart meter, we designed a mechanism for capturing those data for consumer use via an open smart energy gateway (OpenSEG). By design, OpenSEG provides a clearly defined boundary for equipment and data ownership. OpenSEG is an open-source data management platform to enable better data management of smart meter data. Effectively, it is an information architecture designed to work withmore » the ZigBee Smart Energy Profile 1.x (SEP 1.x). It was specifically designed to reduce cyber-security risks and provide secure information directly from smart meters to consumers in near real time, using display devices already owned by the consumers. OpenSEG stores 48 hours of recent consumption data in a circular cache using a format consistent with commonly available archived (not real-time) consumption data such as Green Button, which is based on the Energy Services Provider Interface (ESPI) data standard. It consists of a common XML format for energy usage information and a data exchange protocol to facilitate automated data transfer upon utility customer authorization. Included in the design is an application program interface by which users can acquire data from OpenSEG for further post processing. A sample data display application is included in the initial software product. The data display application demonstrates that OpenSEG can help electricity use data to be retrieved from a smart meter and ported to a wide variety of user-owned devices such as cell phones or a user-selected database. This system can be used for homes, multi-family buildings, or small commercial buildings in California.« less

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hart, Darren M.

    Sandia National Laboratories has tested and evaluated Geotech Smart24 data acquisition system with active Fortezza crypto card data signing and authentication. The test results included in this report were in response to static and tonal-dynamic input signals. Most test methodologies used were based on IEEE Standards 1057 for Digitizing Waveform Recorders and 1241 for Analog to Digital Converters; others were designed by Sandia specifically for infrasound application evaluation and for supplementary criteria not addressed in the IEEE standards. The objective of this work was to evaluate the overall technical performance of the Geotech Smart24 digitizer with a Fortezza PCMCIA cryptomore » card actively implementing the signing of data packets. The results of this evaluation were compared to relevant specifications provided within manufacturer's documentation notes. The tests performed were chosen to demonstrate different performance aspects of the digitizer under test. The performance aspects tested include determining noise floor, least significant bit (LSB), dynamic range, cross-talk, relative channel-to-channel timing, time-tag accuracy, analog bandwidth and calibrator performance.« less

  3. Hybrid data acquisition and processing strategies with increased throughput and selectivity: pSMART analysis for global qualitative and quantitative analysis.

    PubMed

    Prakash, Amol; Peterman, Scott; Ahmad, Shadab; Sarracino, David; Frewen, Barbara; Vogelsang, Maryann; Byram, Gregory; Krastins, Bryan; Vadali, Gouri; Lopez, Mary

    2014-12-05

    Data-dependent acquisition (DDA) and data-independent acquisition strategies (DIA) have both resulted in improved understanding of proteomics samples. Both strategies have advantages and disadvantages that are well-published, where DDA is typically applied for deep discovery and DIA may be used to create sample records. In this paper, we present a hybrid data acquisition and processing strategy (pSMART) that combines the strengths of both techniques and provides significant benefits for qualitative and quantitative peptide analysis. The performance of pSMART is compared to published DIA strategies in an experiment that allows the objective assessment of DIA performance with respect to interrogation of previously acquired MS data. The results of this experiment demonstrate that pSMART creates fewer decoy hits than a standard DIA strategy. Moreover, we show that pSMART is more selective, sensitive, and reproducible than either standard DIA or DDA strategies alone.

  4. QuickSmart: a basic academic skills intervention for middle school students with learning difficulties.

    PubMed

    Graham, Lorraine; Bellert, Anne; Thomas, Jenny; Pegg, John

    2007-01-01

    QuickSmart is a basic academic skills intervention designed for persistently low-achieving students in the middle years of schooling that aims to improve the automaticity of basic skills to improve higher-order processes, such as problem solving and comprehension, as measured on standardized tests. The QuickSmart instructional program consists of three structured, teacher- or teacher aide-directed, 30-minute, small-group lessons each week for approximately 26 weeks. In this study, 42 middle school students experiencing learning difficulties (LD) completed the QuickSmart reading program, and a further 42 students with LD took part in the QuickSmart mathematics program. To investigate the effects of the intervention, comparisons were made between the reading and mathematics progress of the intervention group and a group of 10 high-achieving and 10 average-achieving peers. The results indicated that although the standardized reading comprehension and mathematics scores of QuickSmart students remained below those of comparison students, they improved significantly from pretest to posttest. In contrast, the standardized scores of comparison students were not significantly different from pretest to posttest. On measures of response speed and accuracy gathered using the Cognitive Aptitude Assessment System (CAAS), QuickSmart students were able to narrow the gap between their performance and that of their high- and average-achieving peers. Implications are drawn regarding the importance of interventions that emphasize the automaticity of basic academic skills for students with learning difficulties.

  5. 78 FR 45565 - Notice Pursuant to the National Cooperative Research and Production Act of 1993 -- tranSMART...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-29

    ... activities are to enable effective sharing, integration, standardization, and analysis of heterogeneous data from collaborative translational research by mobilizing the tranSMART open- source and open-data...: (a) Establish and sustain tranSMART as the preferred data sharing and analytics platform for...

  6. 78 FR 18322 - Smart Grid Advisory Committee Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-26

    ... meeting is to discuss the NIST Smart Grid Program Plan. The agenda may change to accommodate Committee business. The final agenda will be posted on the Smart Grid Web site at http://www.nist.gov/smartgrid..., Administration Building, National Institute of Standards and Technology (NIST), 100 Bureau Drive, Gaithersburg...

  7. The Availability of Competitive Foods and Beverages to Middle School Students in Appalachian Virginia Before Implementation of the 2014 Smart Snacks in School Standards.

    PubMed

    Mann, Georgianna; Kraak, Vivica; Serrano, Elena

    2015-09-17

    The study objective was to examine the nutritional quality of competitive foods and beverages (foods and beverages from vending machines and à la carte foods) available to rural middle school students, before implementation of the US Department of Agriculture's Smart Snacks in School standards in July 2014. In spring 2014, we audited vending machines and à la carte cafeteria foods and beverages in 8 rural Appalachian middle schools in Virginia. Few schools had vending machines. Few à la carte and vending machine foods met Smart Snacks in School standards (36.5%); however, most beverages did (78.2%). The major challenges to meeting standards were fat and sodium content of foods. Most competitive foods (62.2%) did not meet new standards, and rural schools with limited resources will likely require assistance to fully comply.

  8. Innovative Mobile Smart Photonic Dimensional, Color and Spectral Measurement Engineering

    NASA Astrophysics Data System (ADS)

    Hofmann, Dr Dietrich, Prof; Dittrich (B. Eng. , Paul-Gerald; Höfner (B. Eng. , Dieter; Kraus, Daniel

    2015-02-01

    Aim of the paper is the demonstration of a paradigm shift in dimensional, color and spectral measurements in industry, biology/medicine, farming/environmental protection and security, as well as in education and training: Measurement engineering and quality assurance become mobile, modular and smart. Smartpads, smartphones and smartwatches (smartcomps) in combination with innovative hardware apps (hwapps) and conventional software apps (swapps) are fundamental enablers for the transformation from conventional stationary working places towards innovative mobile working places with in-field measurements and point-of-care (POC) diagnostics. Furthermore mobile open online courses (MOOCs) are transforming the study habits. Practical examples for the application of innovative photonic micro dimensiometers, colorimeters and spectrometers will be given. The innovative approach opens so far untapped enormous markets for measurement science, engineering, applications, education and training. These innovative working conditions will be fast accepted due to their convenience, reliability and affordability. A highly visible advantage of smartcomps is the huge number of their real distribution, their worldwide connectivity via Internet and cloud services, the standardized interfaces like USB and HDMI and the experienced capabilities of their users for practical operations, obtained with their private smartcomps.

  9. Design of the smart scenic spot service platform

    NASA Astrophysics Data System (ADS)

    Yin, Min; Wang, Shi-tai

    2015-12-01

    With the deepening of the smart city construction, the model "smart+" is rapidly developing. Guilin, the international tourism metropolis fast constructing need smart tourism technology support. This paper studied the smart scenic spot service object and its requirements. And then constructed the smart service platform of the scenic spot application of 3S technology (Geographic Information System (GIS), Remote Sensing (RS) and Global Navigation Satellite System (GNSS)) and the Internet of things, cloud computing. Based on Guilin Seven-star Park scenic area as an object, this paper designed the Seven-star smart scenic spot service platform framework. The application of this platform will improve the tourists' visiting experience, make the tourism management more scientifically and standardly, increase tourism enterprises operating earnings.

  10. Smart Grid Communications Security Project, U.S. Department of Energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnes, Frank

    There were four groups that worked on this project in different areas related to Smart Girds and Security. They included faculty and students from electric computer and energy engineering, law, business and sociology. The results of the work are summarized in a verity of reports, papers and thesis. A major report to the Governor of Colorado’s energy office with contributions from all the groups working on this project is given bellow. Smart Grid Deployment in Colorado: Challenges and Opportunities, Report to Colorado Governor’s Energy Office and Colorado Smart Grid Task Force(2010) (Kevin Doran, Frank Barnes, and Puneet Pasrich, eds.) Thismore » report includes information on the state of the grid cyber security, privacy, energy storage and grid stability, workforce development, consumer behavior with respect to the smart grid and safety issues.« less

  11. Effects of Offering Look-Alike Products as Smart Snacks in Schools.

    PubMed

    Harris, Jennifer L; Hyary, Maia; Schwartz, Marlene B

    2016-12-01

    In 2014, USDA established nutrition standards for snack foods sold in schools. Many manufacturers reformulated products to meet these Smart Snacks standards, but continue to advertise unhealthy versions of the same brands. Furthermore, Smart Snack packaging often looks similar to less nutritious versions sold outside of schools (look-alike products). This practice may confuse consumers about the nutritional quality of Smart Snacks and raise concerns about schools selling them. An online experiment with 659 students (13-17 years) and 859 parents (children ages 10-13) was performed. Participants randomly viewed information about snacks sold at a hypothetical school, including (1) look-alike Smart Snacks; (2) existing store versions of the same brands; (3) repackaged Smart Snacks (highlighting differences versus unhealthy versions); or (4) consistent brands (i.e., Smart Snack versions also sold in stores). They then rated the individual snacks offered and the school selling them. As hypothesized, students and parents rated look-alike and store versions similarly in taste, healthfulness, and purchase intent, while considering repackaged Smart Snacks as healthier, but less tasty. Most participants also inaccurately believed they had seen look-alike products for sale in stores. Furthermore, they rated schools offering look-alike Smart Snacks and store versions as less concerned about students' health and well-being than schools in the other two conditions. The nutritional quality of snacks sold in schools has improved, but many Smart Snacks are virtually indistinguishable from less nutritious versions widely sold outside of schools. This practice likely benefits the brands, but may not improve children's overall diet and undermines schools' ability to teach good nutrition.

  12. Prioritizing vaccines for developing world diseases.

    PubMed

    Saul, Allan; O'Brien, Katherine L

    2017-01-20

    A major disparity in the burden of health will need to be addressed to achieve the "Grand Convergence" by 2035. In particular people living in low and middle income countries have a much higher burden of infectious diseases. Although vaccines have been very effective in reducing the global burden of infectious disease, there are no registered vaccines to address 60% of the current burden of infectious disease, especially in developing countries. Thus there is a pressing need for new vaccines and for prioritizing vaccine development given that resources for developing new vaccines are strictly limited. As part of the GLOBAL HEALTH 2035: Mission Grand Convergence meeting one working group assessed the SMART vaccine algorithm as a mechanism for prioritizing vaccine development for diseases of priority in the developing world. In particular, the working group considered which criteria in the standard SMART set were considered "key" criteria and whether other criteria should be considered, when prioritizing vaccines for this important set of countries. Copyright © 2016. Published by Elsevier Ltd.

  13. Codes That Support Smart Growth Development

    EPA Pesticide Factsheets

    Provides examples of local zoning codes that support smart growth development, categorized by: unified development code, form-based code, transit-oriented development, design guidelines, street design standards, and zoning overlay.

  14. Investigating Integration Capabilities Between Ifc and Citygml LOD3 for 3d City Modelling

    NASA Astrophysics Data System (ADS)

    Floros, G.; Pispidikis, I.; Dimopoulou, E.

    2017-10-01

    Smart cities are applied to an increasing number of application fields. This evolution though urges data collection and integration, hence major issues arise that need to be tackled. One of the most important challenges is the heterogeneity of collected data, especially if those data derive from different standards and vary in terms of geometry, topology and semantics. Another key challenge is the efficient analysis and visualization of spatial data, which due to the complexity of the physical reality in modern world, 2D GIS struggles to cope with. So, in order to facilitate data analysis and enhance the role of smart cities, the 3rd dimension needs to be implemented. Standards such as CityGML and IFC fulfill that necessity but they present major differences in their schemas that render their integration a challenging task. This paper focuses on addressing those differences, examining the up to date research work and investigates an alternative methodology in order to bridge the gap between those Standards. Within this framework, a generic IFC model is generated and converted to a CityGML Model, which is validated and evaluated on its geometrical correctness and semantical coherence. General results as well as future research considerations are presented.

  15. Enhanced Cognitive Rehabilitation to Treat Comorbid TBI and PTSD

    DTIC Science & Technology

    2017-12-01

    S) Amy Jak 5d. PROJECT NUMBER 5e. TASK NUMBER E-Mail: ajak@ucsd.edu 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES...symptoms resulting from mild to moderate TBI. These practice standards have been organized into a manualized treatment, Cognitive Symptom Management ...Processing Therapy; SMART-CPT=Cognitive Symptom Management and Rehabilitation Therapy combined with CPT; TBI=traumatic brain injury; PTSD=posttraumatic

  16. My Project. In: SMARTe20ll, EPA/600/C-10/007

    EPA Science Inventory

    SMARTe's "My Project" is intended to allow stakeholders to work together in a project "team room" and evaluate different reuse options for their specific situation. "My Project" is a password protected version of SMARTe. This personal SMARTe site has pull down menus for access ...

  17. "We Did All the Work": Seeing Smartness in a Poarch Creek Way

    ERIC Educational Resources Information Center

    Martin, Karla

    2016-01-01

    In the Poarch Creek community, being "smart" individually is not something that we learn until we go to school. Instead, in our community, to be considered "smart" you must learn how to work with and in the tribal community in a way that contributes to the needs of all of the people in the community. Through this article, I…

  18. Precise GNSS Positioning Using Smart Devices

    PubMed Central

    Caldera, Stefano; Pertusini, Lisa

    2017-01-01

    The recent access to GNSS (Global Navigation Satellite System) phase observations on smart devices, enabled by Google through its Android operating system, opens the possibility to apply precise positioning techniques using off-the-shelf, mass-market devices. The target of this work is to evaluate whether this is feasible, and which positioning accuracy can be achieved by relative positioning of the smart device with respect to a base station. Positioning of a Google/HTC Nexus 9 tablet was performed by means of batch least-squares adjustment of L1 phase double-differenced observations, using the open source goGPS software, over baselines ranging from approximately 10 m to 8 km, with respect to both physical (geodetic or low-cost) and virtual base stations. The same positioning procedure was applied also to a co-located u-blox low-cost receiver, to compare the performance between the receiver and antenna embedded in the Nexus 9 and a standard low-cost single-frequency receiver with external patch antenna. The results demonstrate that with a smart device providing raw GNSS phase observations, like the Nexus 9, it is possible to reach decimeter-level accuracy through rapid-static surveys, without phase ambiguity resolution. It is expected that sub-centimeter accuracy could be achieved, as demonstrated for the u-blox case, if integer phase ambiguities were correctly resolved. PMID:29064417

  19. Wireless Smart Sensor Network System Using SmartBridge Sensor Nodes for Structural Health Monitoring of Existing Concrete Bridges

    NASA Astrophysics Data System (ADS)

    Gaviña, J. R.; Uy, F. A.; Carreon, J. D.

    2017-06-01

    There are over 8000 bridges in the Philippines today according to the Department of Public Works and Highways (DPWH). Currently, visual inspection is the most common practice in monitoring the structural integrity of bridges. However, visual inspections have proven to be insufficient in determining the actual health or condition of a bridge. Structural Health Monitoring (SHM) aims to give, in real-time, a diagnosis of the actual condition of the bridge. In this study, SmartBridge Sensor Nodes were installed on an existing concrete bridge with American Association of State Highway and Transportation Officials (AASHTO) Type IV Girders to gather vibration of the elements of the bridge. Also, standards on the effective installation of SmartBridge Sensor Nodes, such as location and orientation was determined. Acceleration readings from the sensor were then uploaded to a server, wherein they are monitored against certain thresholds, from which, the health of the bridge will be derived. Final output will be a portal or webpage wherein the information, health, and acceleration readings of the bridge will be available for viewing. With levels of access set for different types of users, the main users will have access to download data and reports. Data transmission and webpage access are available online, making the SHM system wireless.

  20. Precise GNSS Positioning Using Smart Devices.

    PubMed

    Realini, Eugenio; Caldera, Stefano; Pertusini, Lisa; Sampietro, Daniele

    2017-10-24

    The recent access to GNSS (Global Navigation Satellite System) phase observations on smart devices, enabled by Google through its Android operating system, opens the possibility to apply precise positioning techniques using off-the-shelf, mass-market devices. The target of this work is to evaluate whether this is feasible, and which positioning accuracy can be achieved by relative positioning of the smart device with respect to a base station. Positioning of a Google/HTC Nexus 9 tablet was performed by means of batch least-squares adjustment of L1 phase double-differenced observations, using the open source goGPS software, over baselines ranging from approximately 10 m to 8 km, with respect to both physical (geodetic or low-cost) and virtual base stations. The same positioning procedure was applied also to a co-located u-blox low-cost receiver, to compare the performance between the receiver and antenna embedded in the Nexus 9 and a standard low-cost single-frequency receiver with external patch antenna. The results demonstrate that with a smart device providing raw GNSS phase observations, like the Nexus 9, it is possible to reach decimeter-level accuracy through rapid-static surveys, without phase ambiguity resolution. It is expected that sub-centimeter accuracy could be achieved, as demonstrated for the u-blox case, if integer phase ambiguities were correctly resolved.

  1. Home care decision support using an Arden engine--merging smart home and vital signs data.

    PubMed

    Marschollek, Michael; Bott, Oliver J; Wolf, Klaus-H; Gietzelt, Matthias; Plischke, Maik; Madiesh, Moaaz; Song, Bianying; Haux, Reinhold

    2009-01-01

    The demographic change with a rising proportion of very old people and diminishing resources leads to an intensification of the use of telemedicine and home care concepts. To provide individualized decision support, data from different sources, e.g. vital signs sensors and home environmental sensors, need to be combined and analyzed together. Furthermore, a standardized decision support approach is necessary. The aim of our research work is to present a laboratory prototype home care architecture that integrates data from different sources and uses a decision support system based on the HL7 standard Arden Syntax for Medical Logical Modules. Data from environmental sensors connected to a home bus system are stored in a data base along with data from wireless medical sensors. All data are analyzed using an Arden engine with the medical knowledge represented in Medical Logic Modules. Multi-modal data from four different sensors in the home environment are stored in a single data base and are analyzed using an HL7 standard conformant decision support system. Individualized home care decision support must be based on all data available, including context data from smart home systems and medical data from electronic health records. Our prototype implementation shows the feasibility of using an Arden engine for decision support in a home setting. Our future work will include the utilization of medical background knowledge for individualized decision support, as there is no one-size-fits-all knowledge base in medicine.

  2. FireSmart®-ForestWise: Managing Wildlife and Wildfire Risk in the Wildland/Urban Interface-a Canadian Case Study

    Treesearch

    Alan Westhaver; Richard D. Revel; Brad C. Hawkes

    2007-01-01

    Reducing the risk of losses from wildfires that threaten homes and communities is a growing priority in Canada. To reduce risk, “FireSmart®” standards have been adopted nationwide for managing forest fuel. However, these standards largely disregard interests of wildlife and conservation of wildlife habitat – thus raising concerns...

  3. Working Smart Workbook. An Interactive Learning Experience.

    ERIC Educational Resources Information Center

    Los Angeles Unified School District, CA. Div. of Adult and Occupational Education.

    This workbook accompanies an interactive videodisc used in the Working Smart workplace literacy project prepared for the hotel and food services industry in the Los Angeles, California area. The first instructional unit addresses preparing the work area, including stocking supplies and cleaning the work area. The second instructional unit covers…

  4. Risk Assessment Methodology Based on the NISTIR 7628 Guidelines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abercrombie, Robert K; Sheldon, Frederick T; Hauser, Katie R

    2013-01-01

    Earlier work describes computational models of critical infrastructure that allow an analyst to estimate the security of a system in terms of the impact of loss per stakeholder resulting from security breakdowns. Here, we consider how to identify, monitor and estimate risk impact and probability for different smart grid stakeholders. Our constructive method leverages currently available standards and defined failure scenarios. We utilize the National Institute of Standards and Technology (NIST) Interagency or Internal Reports (NISTIR) 7628 as a basis to apply Cyberspace Security Econometrics system (CSES) for comparing design principles and courses of action in making security-related decisions.

  5. Web servicing the biological office.

    PubMed

    Szugat, Martin; Güttler, Daniel; Fundel, Katrin; Sohler, Florian; Zimmer, Ralf

    2005-09-01

    Biologists routinely use Microsoft Office applications for standard analysis tasks. Despite ubiquitous internet resources, information needed for everyday work is often not directly and seamlessly available. Here we describe a very simple and easily extendable mechanism using Web Services to enrich standard MS Office applications with internet resources. We demonstrate its capabilities by providing a Web-based thesaurus for biological objects, which maps names to database identifiers and vice versa via an appropriate synonym list. The client application ProTag makes these features available in MS Office applications using Smart Tags and Add-Ins. http://services.bio.ifi.lmu.de/prothesaurus/

  6. Smart Home Test Bed: Examining How Smart Homes Interact with the Power Grid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    This fact sheet highlights the Smart Home Test Bed capability at the Energy Systems Integration Facility. The National Renewable Energy Laboratory (NREL) is working on one of the new frontiers of smart home research: finding ways for smart home technologies and systems to enhance grid operations in the presence of distributed, clean energy technologies such as photovoltaics (PV). To help advance this research, NREL has developed a controllable, flexible, and fully integrated Smart Home Test Bed.

  7. Mobile Language Study

    DTIC Science & Technology

    2003-08-18

    Language Study 5c. PROGRAM ELEMENT NUMBER 5d. PROJECT NUMBER 5d. TASK NUMBER 6. AUTHOR(S) Professor Mads Dam, Pablo Giambiagi 5e...Standard Form 298 (Rev. 8/98) Prescribed by ANSI Std. Z39-18 SPC 01-4025 Mobile Language Study Final...smart card applications. Smart cards can be programmed using general-purpose languages ; but because of their limited resources, smart card programs

  8. Cognitive Symptom Management and Rehabilitation Therapy (CogSMART) for veterans with traumatic brain injury: pilot randomized controlled trial.

    PubMed

    Twamley, Elizabeth W; Jak, Amy J; Delis, Dean C; Bondi, Mark W; Lohr, James B

    2014-01-01

    Traumatic brain injury (TBI) can result in cognitive impairments and persistent postconcussive symptoms that limit functional recovery, including return to work. We evaluated a 12 wk compensatory cognitive training intervention (Cognitive Symptom Management and Rehabilitation Therapy [CogSMART]) in the context of supported employment for Veterans with mild to moderate TBI. Participants were randomly assigned to receive 12 wk of supported employment plus CogSMART or enhanced supported employment that controlled for therapist attention (control). CogSMART sessions were delivered by the employment specialist and included psychoeducation regarding TBI; strategies to improve sleep, fatigue, headaches, and tension; and compensatory cognitive strategies in the domains of prospective memory, attention, learning and memory, and executive functioning. Compared with controls, those assigned to supported employment plus CogSMART demonstrated significant reductions in postconcussive symptoms (Cohen d = 0.97) and improvements in prospective memory functioning (Cohen d = 0.72). Effect sizes favoring CogSMART for posttraumatic stress disorder symptom severity, depressive symptom severity, and attainment of competitive work within 14 wk were in the small to medium range (Cohen d = 0.35-0.49). Those who received CogSMART rated the intervention highly. Results suggest that adding CogSMART to supported employment may improve postconcussive symptoms and prospective memory. These effects, as well as smaller effects on psychiatric symptoms and ability to return to work, warrant replication in a larger trial.

  9. SMART INIT GRAPHICS

    Science.gov Websites

    NAM Smart Init Graphics This page displays 5km NAM forecast output made from the "smartinit DISCLAIMER: The Smart Init tool is in its developmental stage, and there is much work to be done. Feedback is

  10. A forty-year history of fiber optic smart structures

    NASA Astrophysics Data System (ADS)

    Udd, Eric; Scheel, Ingrid U.

    2017-04-01

    In 1977 McDonnell Douglas Astronautics Company began a project on using fiber optic sensors to support the Delta Rocket program. This resulted in a series of fiber sensors to support the measurement of rotation, acoustics, vibration, strain, and temperature for a variety of applications and early work on fiber optic smart structures. The work on fiber optic smart structures transitioned in part to Blue Road Research in 1993 and continued in 2006 to the present at Columbia Gorge Research. This paper summarizes some of the efforts made by these companies to implement fiber optic smart structures over this forty year period.

  11. Novel dielectric elastomer structure of soft robot

    NASA Astrophysics Data System (ADS)

    Li, Chi; Xie, Yuhan; Huang, Xiaoqiang; Liu, Junjie; Jin, Yongbin; Li, Tiefeng

    2015-04-01

    Inspired from the natural invertebrates like worms and starfish, we propose a novel elastomeric smart structure. The smart structure can function as a soft robot. The soft robot is made from a flexible elastomer as the body and driven by dielectric elastomer as the muscle. Finite element simulations based on nonlinear field theory are conducted to investigate the working condition of the structure, and guide the design of the smart structure. The effects of the prestretch, structural stiffness and voltage on the performance of the smart structure are investigated. This work can guide the design of soft robot.

  12. The Use of Smart phones in Ophthalmology.

    PubMed

    Zvornicanin, Edita; Zvornicanin, Jasmin; Hadziefendic, Bahrudin

    2014-06-01

    Smart phones are being increasingly used among health professionals. Ophthalmological applications are widely available and can turn smart phones into sophisticated medical devices. Smart phones can be useful instruments for the practice of evidence-based medicine, professional education, mobile clinical communication, patient education, disease self-management, remote patient monitoring or as powerful administrative tools. Several applications are available for different ophthalmological examinations that can assess visual acuity, color vision, astigmatism, pupil size, Amsler grid test and more. Smart phones can be useful ophthalmic devices for taking images of anterior and posterior eye segment. Professional literature and educational material for patients are easily available with use of smart phones. Smart phones can store great amount of informations and are useful for long term monitoring with caution for patient confidentiality. The use of smart phones especially as diagnostic tools is not standardized and results should be carefully considered. Innovative role of smartphone technology and its use in research, education and information sharing makes smart phones a future of ophthalmology and medicine.

  13. Design and Implementation of a Smart LED Lighting System Using a Self Adaptive Weighted Data Fusion Algorithm

    PubMed Central

    Sung, Wen-Tsai; Lin, Jia-Syun

    2013-01-01

    This work aims to develop a smart LED lighting system, which is remotely controlled by Android apps via handheld devices, e.g., smartphones, tablets, and so forth. The status of energy use is reflected by readings displayed on a handheld device, and it is treated as a criterion in the lighting mode design of a system. A multimeter, a wireless light dimmer, an IR learning remote module, etc. are connected to a server by means of RS 232/485 and a human computer interface on a touch screen. The wireless data communication is designed to operate in compliance with the ZigBee standard, and signal processing on sensed data is made through a self adaptive weighted data fusion algorithm. A low variation in data fusion together with a high stability is experimentally demonstrated in this work. The wireless light dimmer as well as the IR learning remote module can be instructed directly by command given on the human computer interface, and the reading on a multimeter can be displayed thereon via the server. This proposed smart LED lighting system can be remotely controlled and self learning mode can be enabled by a single handheld device via WiFi transmission. Hence, this proposal is validated as an approach to power monitoring for home appliances, and is demonstrated as a digital home network in consideration of energy efficiency.

  14. Smart rules: six ways to get people to solve problems without you.

    PubMed

    Morieux, Yves

    2011-09-01

    As the world has become more complex, companies have steadily increased their performance requirements: Now they strive to offer low prices and high quality; to customize products for local markets and standardize them for greater returns; to innovate and be efficient. The typical corporate response to such conflicting goals complicates things further: Firms restructure and try to align their organizations with extra coordinating functions, processes, and incentives. This approach does more harm than good. Managers' time gets sucked up by reports and meetings, leaving little time to work with employees. But there is a better way, says BCG senior partner Yves Morieux: Instead of strangling employees with new rules and procedures, create an environment in which they're compelled to work with one another to develop solutions to complex challenges. Managers can create this environment by applying six "smart rules": (1) improve understanding of what coworkers do and the real constraints they face, (2) determine which people are the firm's natural integrators and strengthen their roles, (3) expand the amount of power available to everyone, (4) increase the need for reciprocity in the system, (5) make employees feel the "shadow of the future," and (6) hold uncooperative people accountable. By tapping employees' ingenuity through the use of smart rules, firms can manage complexity quickly and creatively-and streamline their organizations.

  15. GET SMART: EPA'S SMARTE INITIATIVE

    EPA Science Inventory

    The EPA's Office of Research and Development with the assistance of the U.S.-German Bilateral Working Group and the Interstate Technology Regulatory Council (ITRC), is developing Site-specific Management Approaches and Revitalization Tools (SMART) that will help stakeholders over...

  16. Healthcare professionals' views of smart glasses in intensive care: A qualitative study.

    PubMed

    Romare, Charlotte; Hass, Ursula; Skär, Lisa

    2018-04-01

    The aim of this study was to describe healthcare professionals' views of smart glasses before their implementation in an intensive care unit, both regarding quality of use of the glasses and to identify possible intensive care situations where the glasses could be used to increase patient safety. Data were generated through focus group interviews and analysed using thematic content analysis. The findings describe participants' views of smart glasses divided into three categories; Smart glasses to facilitate work at intensive care unit; Quality of use and Utilisation. Participants assumed smart glasses to cause both effect and affect in intensive care. Participants' concern for patients arose recurrently and through their concern intention to work to promote patient safety. Smart glasses are suggested as a complement to existing monitoring and routines and cannot replace human presence in intensive care. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. NREL: SMARTS - SMARTS References

    Science.gov Websites

    Improve Concentrating Photovoltaic System Design & Performance Evaluation." Proceedings of the 29th Institute of Electrical and Electronics Engineers Photovoltaic Specialists Conference. New Orleans Irradiance Reference Standards for Photovoltaic Performance." Journal of Solar Energy Engineering (126

  18. ENABLING SMART MANUFACTURING TECHNOLOGIES FOR DECISION-MAKING SUPPORT

    PubMed Central

    Helu, Moneer; Libes, Don; Lubell, Joshua; Lyons, Kevin; Morris, KC

    2017-01-01

    Smart manufacturing combines advanced manufacturing capabilities and digital technologies throughout the product lifecycle. These technologies can provide decision-making support to manufacturers through improved monitoring, analysis, modeling, and simulation that generate more and better intelligence about manufacturing systems. However, challenges and barriers have impeded the adoption of smart manufacturing technologies. To begin to address this need, this paper defines requirements for data-driven decision making in manufacturing based on a generalized description of decision making. Using these requirements, we then focus on identifying key barriers that prevent the development and use of data-driven decision making in industry as well as examples of technologies and standards that have the potential to overcome these barriers. The goal of this research is to promote a common understanding among the manufacturing community that can enable standardization efforts and innovation needed to continue adoption and use of smart manufacturing technologies. PMID:28649678

  19. SMART: The Future of Spaceflight Avionics

    NASA Technical Reports Server (NTRS)

    Alhorn, Dean C.; Howard, David E.

    2010-01-01

    A novel avionics approach is necessary to meet the future needs of low cost space and lunar missions that require low mass and low power electronics. The current state of the art for avionics systems are centralized electronic units that perform the required spacecraft functions. These electronic units are usually custom-designed for each application and the approach compels avionics designers to have in-depth system knowledge before design can commence. The overall design, development, test and evaluation (DDT&E) cycle for this conventional approach requires long delivery times for space flight electronics and is very expensive. The Small Multi-purpose Advanced Reconfigurable Technology (SMART) concept is currently being developed to overcome the limitations of traditional avionics design. The SMART concept is based upon two multi-functional modules that can be reconfigured to drive and sense a variety of mechanical and electrical components. The SMART units are key to a distributed avionics architecture whereby the modules are located close to or right at the desired application point. The drive module, SMART-D, receives commands from the main computer and controls the spacecraft mechanisms and devices with localized feedback. The sensor module, SMART-S, is used to sense the environmental sensors and offload local limit checking from the main computer. There are numerous benefits that are realized by implementing the SMART system. Localized sensor signal conditioning electronics reduces signal loss and overall wiring mass. Localized drive electronics increase control bandwidth and minimize time lags for critical functions. These benefits in-turn reduce the main processor overhead functions. Since SMART units are standard flight qualified units, DDT&E is reduced and system design can commence much earlier in the design cycle. Increased production scale lowers individual piece part cost and using standard modules also reduces non-recurring costs. The benefit list continues, but the overall message is already evident: the SMART concept is an evolution in spacecraft avionics. SMART devices have the potential to change the design paradigm for future satellites, spacecraft and even commercial applications.

  20. Smart thermal networks for smart cities - Introduction of concepts and measures

    NASA Astrophysics Data System (ADS)

    Schmidt, R. R.; Pol, O.; Basciotti, D.; Page, J.

    2012-10-01

    In order to contribute to high living standards, climate mitigation and energy supply security, future urban energy systems require a holistic approach. In particular an intelligent integration of thermal networks is necessary. This paper will briefly present the "smart city" concept and introduce an associated definition for smart thermal networks defined on three levels: 1. the interaction with urban planning processes and the interface to the overall urban energy system, 2. the adaptation of the temperature level and 3. supply and demand-side management strategies.

  1. SMART Tubing Presents an Increased Risk of Disconnection During Extracorporeal Circulation

    PubMed Central

    Newling, Ross; Morris, Richard

    2005-01-01

    Abstract: A number of products exhibiting biocompatible features have been developed for use in extracorporeal blood circuits during cardiopulmonary bypass procedures. While attention has been focused on biocompatibility features of the blood-circuit interface, a number of issues applicable in clinical use of these circuits have arisen. Surface Modifying Additive Technology (SMART; Cobe Cardiovascular, Arvarda, CO) is one such technology. In this product, the structure of normal polyvinylchloride (PVC) tubing is altered through the blending of two copolymers to give a more biocompatible blood to plastic interface. In this study, we examined the in vitro mechanical ability of random samples (n = 10) of SMART and standard PVC tubing to withstand axial tension when the tubing was placed over a single barb of a connector. The tension required to remove the SMART tubing from the connector (83.3 ± 7.3 [SD] N), was significantly less than standard PVC tubing (115.6 ± 15.9 N; p < .0001, unpaired t test). The SMART tubing exhibited a 28% reduction in tubing to connector adhesion, which may have a significant effect on extracorporeal circuit disconnection and overall patient safety. PMID:16524161

  2. JPEG2000 vs. full frame wavelet packet compression for smart card medical records.

    PubMed

    Leehan, Joaquín Azpirox; Lerallut, Jean-Francois

    2006-01-01

    This paper describes a comparison among different compression methods to be used in the context of electronic health records in the newer version of "smart cards". The JPEG2000 standard is compared to a full-frame wavelet packet compression method at high (33:1 and 50:1) compression rates. Results show that the full-frame method outperforms the JPEG2K standard qualitatively and quantitatively.

  3. Towards a conceptual framework of OSH risk management in smart working environments based on smart PPE, ambient intelligence and the Internet of Things technologies.

    PubMed

    Podgórski, Daniel; Majchrzycka, Katarzyna; Dąbrowska, Anna; Gralewicz, Grzegorz; Okrasa, Małgorzata

    2017-03-01

    Recent developments in domains of ambient intelligence (AmI), Internet of Things, cyber-physical systems (CPS), ubiquitous/pervasive computing, etc., have led to numerous attempts to apply ICT solutions in the occupational safety and health (OSH) area. A literature review reveals a wide range of examples of smart materials, smart personal protective equipment and other AmI applications that have been developed to improve workers' safety and health. Because the use of these solutions modifies work methods, increases complexity of production processes and introduces high dynamism into thus created smart working environments (SWE), a new conceptual framework for dynamic OSH management in SWE is called for. A proposed framework is based on a new paradigm of OSH risk management consisting of real-time risk assessment and the capacity to monitor the risk level of each worker individually. A rationale for context-based reasoning in SWE and a respective model of the SWE-dedicated CPS are also proposed.

  4. Stress Management and Relaxation Techniques use among underserved inpatients in an inner city hospital.

    PubMed

    Gardiner, Paula; Sadikova, Ekaterina; Filippelli, Amanda C; Mitchell, Suzanne; White, Laura F; Saper, Robert; Kaptchuk, Ted J; Jack, Brian W; Fredman, Lisa

    2015-06-01

    Little is known about the use of Stress Management and Relaxation Techniques (SMART) in racially diverse inpatients. We hope to identify socioeconomic status (SES) factors, health behavior factors, and clinical factors associated with the use of SMART. We conducted a secondary analysis of baseline data from 623 hospitalized patients enrolled in the Re-Engineered Discharge (RED) clinical trial. We assessed socio-demographic characteristics and use of SMART. We used bivariate and multivariate logistic regression to test the association of SMART with socio-demographic characteristics, health behaviors, and clinical factors. A total of 26.6% of participants reported using SMART and 23.6% used mind body techniques. Thirty six percent of work disabled patients, 39% of illicit drug users, and 38% of participants with depressive symptoms used SMART. Patients who both reported illicit drug use and screened positive for depression had significantly increased odds of using SMART [OR=4.94, 95% CI (1.59, 15.13)]. Compared to non-Hispanic whites, non-Hispanic blacks [0.55 (0.34-0.87)] and Hispanic/other race individuals [0.40 (0.20-0.76)] were less likely to use SMART. We found greater utilization of SMART among all racial groups compared to previous national studies. In the inner city inpatient setting, patients with depression, illicit drug use, and work disability reported higher rates of using SMART. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. IEC 61850: Technology Standards and Cyber-Security Threats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Youssef, Tarek A; El Hariri, mohamed; Bugay, Nicole

    Substations constitute a fundamental part in providing reliable electricity to consumers. For a substation to maintain electricity reliability and its own real-time operability, communication between its components is inevitable. Before the emergence of IEC 61850, inter-substation communication was established via expensive copper wires with limited capabilities. IEC 61850 is the standard set by the International Electrotechnical Commission (IEC) Technical Committee Number 57 Working Group 10 and IEEE for Ethernet (IEEE 802.3)-based communication in electrical substations. Like many power grid systems standards, IEC 61850 was set without extensive consideration for critical security measures. This paper discusses IEC 61850 technology standards andmore » applications thoroughly and points out major security vulnerabilities it introduces in the context of current cyber-physical smart grid systems.« less

  6. Formative Research and Teen SMART: Try, Try Again. Reports and Papers in Progress. Report No. 90-3.

    ERIC Educational Resources Information Center

    Ellis, Jan

    "Teen SMART" is the working title of the high school age component of Operation SMART, a larger curriculum development project initiated by Girls Clubs of America, Inc. (GCA) to promote the participation of girls and young women in science, mathematics, and technology. Operation SMART seeks not only to attract and involve those girls who…

  7. EPA SmartWay’s Vision 2020 for Supply Chain Sustainability

    EPA Pesticide Factsheets

    EPA outlines its vision of SmartWays’ future detailing the development of carbon and emission tracking tools covering all modes of freight transport, global efforts to harmonize carbon accounting standards for sustainability, and leveraging the SW brand.

  8. Services Oriented Smart City Platform Based On 3d City Model Visualization

    NASA Astrophysics Data System (ADS)

    Prandi, F.; Soave, M.; Devigili, F.; Andreolli, M.; De Amicis, R.

    2014-04-01

    The rapid technological evolution, which is characterizing all the disciplines involved within the wide concept of smart cities, is becoming a key factor to trigger true user-driven innovation. However to fully develop the Smart City concept to a wide geographical target, it is required an infrastructure that allows the integration of heterogeneous geographical information and sensor networks into a common technological ground. In this context 3D city models will play an increasingly important role in our daily lives and become an essential part of the modern city information infrastructure (Spatial Data Infrastructure). The work presented in this paper describes an innovative Services Oriented Architecture software platform aimed at providing smartcities services on top of 3D urban models. 3D city models are the basis of many applications and can became the platform for integrating city information within the Smart-Cites context. In particular the paper will investigate how the efficient visualisation of 3D city models using different levels of detail (LODs) is one of the pivotal technological challenge to support Smart-Cities applications. The goal is to provide to the final user realistic and abstract 3D representations of the urban environment and the possibility to interact with a massive amounts of semantic information contained into the geospatial 3D city model. The proposed solution, using OCG standards and a custom service to provide 3D city models, lets the users to consume the services and interact with the 3D model via Web in a more effective way.

  9. Automatic assessment of functional health decline in older adults based on smart home data.

    PubMed

    Alberdi Aramendi, Ane; Weakley, Alyssa; Aztiria Goenaga, Asier; Schmitter-Edgecombe, Maureen; Cook, Diane J

    2018-05-01

    In the context of an aging population, tools to help elderly to live independently must be developed. The goal of this paper is to evaluate the possibility of using unobtrusively collected activity-aware smart home behavioral data to automatically detect one of the most common consequences of aging: functional health decline. After gathering the longitudinal smart home data of 29 older adults for an average of >2 years, we automatically labeled the data with corresponding activity classes and extracted time-series statistics containing 10 behavioral features. Using this data, we created regression models to predict absolute and standardized functional health scores, as well as classification models to detect reliable absolute change and positive and negative fluctuations in everyday functioning. Functional health was assessed every six months by means of the Instrumental Activities of Daily Living-Compensation (IADL-C) scale. Results show that total IADL-C score and subscores can be predicted by means of activity-aware smart home data, as well as a reliable change in these scores. Positive and negative fluctuations in everyday functioning are harder to detect using in-home behavioral data, yet changes in social skills have shown to be predictable. Future work must focus on improving the sensitivity of the presented models and performing an in-depth feature selection to improve overall accuracy. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. NREL, Duke Energy Explore Smart Inverters for Grid Stability | Energy

    Science.gov Websites

    Stability NREL, Duke Energy Explore Smart Inverters for Grid Stability NREL is working with Duke Energy and Alstom Grid to explore ways that smart inverters can increase grid stability. Using data from Duke Energy

  11. Smart Grid Cybersecurity: Job Performance Model Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Neil, Lori Ross; Assante, Michael; Tobey, David

    2012-08-01

    This is the project report to DOE OE-30 for the completion of Phase 1 of a 3 phase report. This report outlines the work done to develop a smart grid cybersecurity certification. This work is being done with the subcontractor NBISE.

  12. Organizational and technological correlates of nurses’ trust in a smart IV pump

    PubMed Central

    Montague, Enid; Asan, Onur; Chiou, Erin

    2013-01-01

    The aim of this study was to understand technology and system characteristics that contribute to nurses’ ratings of trust in a smart IV pump. Nurse’s trust in new technologies can influence how technologies are used. Trust in technology is defined as a person’s belief that a technology will not fail them. Potential outcomes of trust in technology are appropriate trust, over trust, distrust, and mistrust. Trust in technology is also related to several use specific outcomes, including appropriate use and inappropriate use such as over reliance, disuse or rejection, or misuse. Understanding trust in relation to outcomes can contribute to designs that facilitate appropriate trust in new technologies. A survey was completed by 391 nurses a year after the implementation of a new smart IV pump. The survey assessed trust in the IV pump and other elements of the sociotechnical system, individual characteristics, technology characteristics and organizational characteristics. Results show perceptions of usefulness, safety, ease of use and usability are related to ratings of trust in smart IV pumps. Other work system factors such as perception of work environment, age, experience, quality of work, and perception of work performance are also related to ratings of trust. Nurses’ trust in smart IV pumps is influenced by both characteristics of the technology and the sociotechnical system. Findings from this research have implications for the design of future smart IV pumps and health systems. Recommendations for appropriately trustworthy smart IV pumps are discussed. Findings also have implications for how trust in health technologies can be measured and conceptualized in complex sociotechnical systems. PMID:23321482

  13. Organizational and technological correlates of nurses' trust in a smart intravenous pump.

    PubMed

    Montague, Enid; Asan, Onur; Chiou, Erin

    2013-03-01

    The aim of this study was to understand technology and system characteristics that contribute to nurses' ratings of trust in a smart intravenous pump. Nurses' trust in new technologies can influence how technologies are used. Trust in technology is defined as a person's belief that a technology will not fail them. Potential outcomes of trust in technology are appropriate trust, overtrust, distrust, and mistrust. Trust in technology is also related to several use-specific outcomes, including appropriate use and inappropriate use such as overreliance, disuse or rejection, or misuse. Understanding trust in relation to outcomes can contribute to designs that facilitate appropriate trust in new technologies. A survey was completed by 391 nurses a year after the implementation of a new smart intravenous pump. The survey assessed trust in the intravenous pump and other elements of the sociotechnical system, individual characteristics, technology characteristics, and organizational characteristics. Results show that perceptions of usefulness, safety, ease of use, and usability are related to ratings of trust in smart intravenous pumps. Other work systemfactors such as perception of work environment, age, experience, quality of work, and perception of work performance are also related to ratings of trust. Nurses' trust in smart intravenous pumps is influenced by both characteristics of the technology and the sociotechnical system. Findings from this research have implications for the design of future smart intravenous pumps and health systems. Recommendations for appropriately trustworthy smart intravenous pumps are discussed. Findings also have implications for how trust in health technologies can be measured and conceptualized in complex sociotechnical systems.

  14. Interoperability Is Key to Smart Grid Success - Continuum Magazine | NREL

    Science.gov Websites

    standards. Ever wonder what makes it possible to withdraw money securely from another bank's ATM, or call a communication allows access to money and phone calls nationwide, the Smart Grid-an automated electric power

  15. Smart Snacks in School Legislation Does Not Change Self-Reported Snack Food and Beverage Intake of Middle School Students in Rural Appalachian Region.

    PubMed

    Mann, Georgianna; Hosig, Kathy; Zhang, Angang; Shen, Sumin; Serrano, Elena

    To assess the effects of the national Smart Snacks in School standards, which include nutrient and ingredient limitations for school competitive foods and beverages effective July, 2014, on student intake in low-income rural Appalachian middle schools. Food-frequency questionnaires were administered to students before and after implementation. Multiple ordinal logistic regression models were conducted to examine effects from year of data collection, grade, and free or reduced price lunch participation rates. No significant changes were observed after implementation except a decrease in consumption of 1% or nonfat flavored milk at school. Smart Snacks in School standards did not result in significant dietary changes in this study. Longitudinal studies could evaluate long-term impacts of nutrition standards. Copyright © 2017 Society for Nutrition Education and Behavior. Published by Elsevier Inc. All rights reserved.

  16. Detection of Social Interaction in Smart Spaces.

    PubMed

    Cook, Diane J; Crandall, Aaron; Singla, Geetika; Thomas, Brian

    2010-02-01

    The pervasive sensing technologies found in smart environments offer unprecedented opportunities for monitoring and assisting the individuals who live and work in these spaces. An aspect of daily life that is important for one's emotional and physical health is social interaction. In this paper we investigate the use of smart environment technologies to detect and analyze interactions in smart spaces. We introduce techniques for collect and analyzing sensor information in smart environments to help in interpreting resident behavior patterns and determining when multiple residents are interacting. The effectiveness of our techniques is evaluated using two physical smart environment testbeds.

  17. Detection of Social Interaction in Smart Spaces

    PubMed Central

    Cook, Diane J.; Crandall, Aaron; Singla, Geetika; Thomas, Brian

    2010-01-01

    The pervasive sensing technologies found in smart environments offer unprecedented opportunities for monitoring and assisting the individuals who live and work in these spaces. An aspect of daily life that is important for one's emotional and physical health is social interaction. In this paper we investigate the use of smart environment technologies to detect and analyze interactions in smart spaces. We introduce techniques for collect and analyzing sensor information in smart environments to help in interpreting resident behavior patterns and determining when multiple residents are interacting. The effectiveness of our techniques is evaluated using two physical smart environment testbeds. PMID:20953347

  18. The SMART Platform: early experience enabling substitutable applications for electronic health records.

    PubMed

    Mandl, Kenneth D; Mandel, Joshua C; Murphy, Shawn N; Bernstam, Elmer Victor; Ramoni, Rachel L; Kreda, David A; McCoy, J Michael; Adida, Ben; Kohane, Isaac S

    2012-01-01

    The Substitutable Medical Applications, Reusable Technologies (SMART) Platforms project seeks to develop a health information technology platform with substitutable applications (apps) constructed around core services. The authors believe this is a promising approach to driving down healthcare costs, supporting standards evolution, accommodating differences in care workflow, fostering competition in the market, and accelerating innovation. The Office of the National Coordinator for Health Information Technology, through the Strategic Health IT Advanced Research Projects (SHARP) Program, funds the project. The SMART team has focused on enabling the property of substitutability through an app programming interface leveraging web standards, presenting predictable data payloads, and abstracting away many details of enterprise health information technology systems. Containers--health information technology systems, such as electronic health records (EHR), personally controlled health records, and health information exchanges that use the SMART app programming interface or a portion of it--marshal data sources and present data simply, reliably, and consistently to apps. The SMART team has completed the first phase of the project (a) defining an app programming interface, (b) developing containers, and (c) producing a set of charter apps that showcase the system capabilities. A focal point of this phase was the SMART Apps Challenge, publicized by the White House, using http://www.challenge.gov website, and generating 15 app submissions with diverse functionality. Key strategic decisions must be made about the most effective market for further disseminating SMART: existing market-leading EHR vendors, new entrants into the EHR market, or other stakeholders such as health information exchanges.

  19. A solution for measuring accurate reaction time to visual stimuli realized with a programmable microcontroller.

    PubMed

    Ohyanagi, Toshio; Sengoku, Yasuhito

    2010-02-01

    This article presents a new solution for measuring accurate reaction time (SMART) to visual stimuli. The SMART is a USB device realized with a Cypress Programmable System-on-Chip (PSoC) mixed-signal array programmable microcontroller. A brief overview of the hardware and firmware of the PSoC is provided, together with the results of three experiments. In Experiment 1, we investigated the timing accuracy of the SMART in measuring reaction time (RT) under different conditions of operating systems (OSs; Windows XP or Vista) and monitor displays (a CRT or an LCD). The results indicated that the timing error in measuring RT by the SMART was less than 2 msec, on average, under all combinations of OS and display and that the SMART was tolerant to jitter and noise. In Experiment 2, we tested the SMART with 8 participants. The results indicated that there was no significant difference among RTs obtained with the SMART under the different conditions of OS and display. In Experiment 3, we used Microsoft (MS) PowerPoint to present visual stimuli on the display. We found no significant difference in RTs obtained using MS DirectX technology versus using the PowerPoint file with the SMART. We are certain that the SMART is a simple and practical solution for measuring RTs accurately. Although there are some restrictions in using the SMART with RT paradigms, the SMART is capable of providing both researchers and health professionals working in clinical settings with new ways of using RT paradigms in their work.

  20. Stress Management and Relaxation Techniques Use among Underserved Inpatients in an Inner City Hospital

    PubMed Central

    Gardiner, Paula; Sadikova, Ekaterina; Filippelli, Amanda C.; Mitchell, Suzanne; White, Laura F.; Saper, Robert; Kaptchuk, Ted J.; Jack, Brian W.; Fredman, Lisa

    2015-01-01

    Objective Little is known about the use of Stress Management and Relaxation Techniques (SMART) in racially diverse inpatients. We hope to identify socioeconomic status (SES) factors, health behavior factors, and clinical factors associated with the use of SMART. Design and Main Outcome Measures We conducted a secondary analysis of baseline data from 623 hospitalized patients enrolled in the Re-Engineered Discharge (RED) clinical trial. We assessed socio-demographic characteristics and use of SMART. We used bivariate and multivariate logistic regression to test the association of SMART with socio-demographic characteristics, health behaviors, and clinical factors. Results A total of 26.6% of participants reported using SMART and 23.6% used mind body techniques. Thirty six percent of work disabled patients, 39% of illicit drug users, and 38% of participants with depressive symptoms used SMART. Patients who both reported illicit drug use and screened positive for depression had significantly increased odds of using SMART [OR=4.94, 95% CI (1.59, 15.13)]. Compared to non-Hispanic whites, non-Hispanic blacks [0.55, (0.34 to 0.87)] and Hispanic/other race individuals [0.40, (0.20 to 0.76)] were less likely to use SMART. Conclusions We found greater utilization of SMART among all racial groups compared to previous national studies. In the inner city inpatient setting, patients with depression, illicit drug use, and work disability reported higher rates of using SMART. PMID:26051576

  1. Seeing-Is-Believing: Using Camera Phones for Human-Verifiable Authentication

    DTIC Science & Technology

    2004-11-01

    the context of, e.g., a smart home (Section 7). Our implementation is detailed in Section 8, with a security analysis is Section 9. Section 10...establishment of security parame- ters [17]. This work considers a smart home , where a user may want to establish a security context for controlling...appliances or other devices in a smart - home . We refer to the security property discussed in this work as presence, where it is desirable that only users or

  2. The research of the malfunction diagnosis and predictions system in the smart electric grid

    NASA Astrophysics Data System (ADS)

    Wang, Yaqing; Zhang, Guoxing; Xu, Hongbing

    2017-03-01

    The Chinese smart electric grid constriction has been increasing with the technology development. However, the monitoring equipment and background system which should play important roles did not work as intended and restrict to the efficacy of the smart grid. In this essay, it has researched an intelligentized malfunction diagnosis and predictions system which could work with the existed monitoring equipment to function as whole energy monitoring, common malfunction diagnosis, faulted proactive judgment and automatically elimination.

  3. Swift and Smart Decision Making: Heuristics that Work

    ERIC Educational Resources Information Center

    Hoy, Wayne K.; Tarter, C. J.

    2010-01-01

    Purpose: The aim of this paper is to examine the research literature on decision making and identify and develop a set of heuristics that work for school decision makers. Design/methodology/approach: This analysis is a synthesis of the research on decision-making heuristics that work. Findings: A set of nine rules for swift and smart decision…

  4. A scoping review on smart mobile devices and physical strain.

    PubMed

    Tegtmeier, Patricia

    2018-01-01

    Smart mobile devices gain increasing importance at work. Integrating these smart mobile devices into the workplace creates new opportunities and challenges for occupational health and safety. Therefore the aim of the following scoping review was to identify ergonomic challenges with the use of smart mobile devices at work with respect to physical problems. A review of 36 papers based on literature including January 2016 was conducted. Biomechanical measures in the reviewed studies demonstrated i.e., head flexion angles exceeding 20° in 20 out of 26 different conditions described. Furthermore, laterally deviated wrists were frequently noted and thumb and finger flexor muscle activities generally greater than 5% MVC were reported. The reviewed literature indicated an elevated biomechanical risk, especially for the neck, the wrists and thumb. This was due to poor posture, ongoing and intermitted muscle tension, and/or repetitive movements. Papers addressing specific risks for smartphone and tablet use in different work environments are scarce. As the technology, as well as the use of smart mobile devices is rapidly changing, further research, especially for prolonged periods in the workplace is needed.

  5. Remote sensing of atmospheric optical depth using a smartphone sun photometer.

    PubMed

    Cao, Tingting; Thompson, Jonathan E

    2014-01-01

    In recent years, smart phones have been explored for making a variety of mobile measurements. Smart phones feature many advanced sensors such as cameras, GPS capability, and accelerometers within a handheld device that is portable, inexpensive, and consistently located with an end user. In this work, a smartphone was used as a sun photometer for the remote sensing of atmospheric optical depth. The top-of-the-atmosphere (TOA) irradiance was estimated through the construction of Langley plots on days when the sky was cloudless and clear. Changes in optical depth were monitored on a different day when clouds intermittently blocked the sun. The device demonstrated a measurement precision of 1.2% relative standard deviation for replicate photograph measurements (38 trials, 134 datum). However, when the accuracy of the method was assessed through using optical filters of known transmittance, a more substantial uncertainty was apparent in the data. Roughly 95% of replicate smart phone measured transmittances are expected to lie within ±11.6% of the true transmittance value. This uncertainty in transmission corresponds to an optical depth of approx. ±0.12-0.13 suggesting the smartphone sun photometer would be useful only in polluted areas that experience significant optical depths. The device can be used as a tool in the classroom to present how aerosols and gases effect atmospheric transmission. If improvements in measurement precision can be achieved, future work may allow monitoring networks to be developed in which citizen scientists submit acquired data from a variety of locations.

  6. Smart Kids: SMART Connections.

    ERIC Educational Resources Information Center

    Martin, Jennifer; And Others

    1991-01-01

    SMART (Science, Math, and Relevant Technology) Connections, an afterschool offshoot of a program addressing the scarcity of women in science, provides low-income children and children of color, both boys and girls, with hands-on science experience. Efforts continue to be made to ensure that the program works equally for boys as for girls. (CJS)

  7. SUSTAINABLE MANAGEMENT APPROACHES AND REVITALIZATION TOOLS-ELECTRONIC (SMARTE): OVERVIEW AND DEMONSTRATION FOR FINAL PHASE 3 CONFERENCE

    EPA Science Inventory

    The U.S. contingent of the U.S.-German Bilateral Working Group is developing Sustainable Management Approaches and Revitalization Tools-electronic (SMARTe). SMARTe is a web-based, decision support system designed to assist stakeholders in developing and evaluating alternative reu...

  8. SMART Boards Rock

    ERIC Educational Resources Information Center

    Giles, Rebecca M.; Shaw, Edward L.

    2011-01-01

    SMART Board is a technology that combines the functionality of a whiteboard, computer, and projector into a single system. The interactive nature of the SMART Board offers many practical uses for providing an introduction to or review of material, while the large work area invites collaboration through social interaction and communication. As a…

  9. Smart grid as a service: a discussion on design issues.

    PubMed

    Chao, Hung-Lin; Tsai, Chen-Chou; Hsiung, Pao-Ann; Chou, I-Hsin

    2014-01-01

    Smart grid allows the integration of distributed renewable energy resources into the conventional electricity distribution power grid such that the goals of reduction in power cost and in environment pollution can be met through an intelligent and efficient matching between power generators and power loads. Currently, this rapidly developing infrastructure is not as "smart" as it should be because of the lack of a flexible, scalable, and adaptive structure. As a solution, this work proposes smart grid as a service (SGaaS), which not only allows a smart grid to be composed out of basic services, but also allows power users to choose between different services based on their own requirements. The two important issues of service-level agreements and composition of services are also addressed in this work. Finally, we give the details of how SGaaS can be implemented using a FIPA-compliant JADE multiagent system.

  10. An IEEE 1451.1 Architecture for ISHM Applications

    NASA Technical Reports Server (NTRS)

    Morris, Jon A.; Turowski, Mark; Schmalzel, John L.; Figueroa, Jorge F.

    2007-01-01

    The IEEE 1451.1 Standard for a Smart Transducer Interface defines a common network information model for connecting and managing smart elements in control and data acquisition networks using network-capable application processors (NCAPs). The Standard is a network-neutral design model that is easily ported across operating systems and physical networks for implementing complex acquisition and control applications by simply plugging in the appropriate network level drivers. To simplify configuration and tracking of transducer and actuator details, the family of 1451 standards defines a Transducer Electronic Data Sheet (TEDS) that is associated with each physical element. The TEDS contains all of the pertinent information about the physical operations of a transducer (such as operating regions, calibration tables, and manufacturer information), which the NCAP uses to configure the system to support a specific transducer. The Integrated Systems Health Management (ISHM) group at NASA's John C. Stennis Space Center (SSC) has been developing an ISHM architecture that utilizes IEEE 1451.1 as the primary configuration and data acquisition mechanism for managing and collecting information from a network of distributed intelligent sensing elements. This work has involved collaboration with other NASA centers, universities and aerospace industries to develop IEEE 1451.1 compliant sensors and interfaces tailored to support health assessment of complex systems. This paper and presentation describe the development and implementation of an interface for the configuration, management and communication of data, information and knowledge generated by a distributed system of IEEE 1451.1 intelligent elements monitoring a rocket engine test system. In this context, an intelligent element is defined as one incorporating support for the IEEE 1451.x standards and additional ISHM functions. Our implementation supports real-time collection of both measurement data (raw ADC counts and converted engineering units) and health statistics produced by each intelligent element. The handling of configuration, calibration and health information is automated by using the TEDS in combination with other electronic data sheets extensions to convey health parameters. By integrating the IEEE 1451.1 Standard for a Smart Transducer Interface with ISHM technologies, each element within a complex system becomes a highly flexible computation engine capable of self-validation and performing other measures of the quality of information it is producing.

  11. Assessing Smart Phones for Generating Life-space Indicators.

    PubMed

    Wan, Neng; Qu, Wenyu; Whittington, Jackie; Witbrodt, Bradley C; Henderson, Mary Pearl; Goulding, Evan H; Schenk, A Katrin; Bonasera, Stephen J; Lin, Ge

    2013-04-01

    Life-space is a promising method for estimating older adults' functional status. However, traditional life-space measures are costly and time consuming because they often rely on active subject participation. This study assesses the feasibility of using the global positioning system (GPS) function of smart phones to generate life-space indicators. We first evaluated the location accuracy of smart phone collected GPS points versus those acquired by a commercial GPS unit. We then assessed the specificity of the smart phone processed life-space information against the traditional diary method. Our results suggested comparable location accuracy between the smart phone and the standard GPS unit in most outdoor situations. In addition, the smart phone method revealed more comprehensive life-space information than the diary method, which leads to higher and more consistent life-space scores. We conclude that the smart phone method is more reliable than traditional methods for measuring life-space. Further improvements will be required to develop a robust application of this method that is suitable for health-related practices.

  12. Enlightened Choices

    ERIC Educational Resources Information Center

    Craig, Will

    2006-01-01

    In this article, the author has taken a little excursion back in time to illustrate the importance of two vital concepts in the minds of smart IT project managers, when they begin to consider smart-classroom installations and implementations, and the technologies they will choose. Those watchwords are: "standardization" and "boring." Certainly,…

  13. HomeADL for adaptive ADL monitoring within smart homes.

    PubMed

    Hong, Xin; Nugent, Chris D; Finlay, Dewar D; Mulvenna, Maurice

    2008-01-01

    In this paper we present homeADL: a representation standard for an inference hierarchy of activities of daily living which may be monitored in a sensor equipped smart home. The approach allows a free exchange of ADL monitoring structures between different communities who share the same concern of providing high quality healthcare to the elderly. Its ability of matching different ADL protocols enables a mapping between an ADL protocol to a suitable smart home which makes an effective management of smart homes within a community hence, not only being able to satisfy an individual's healthcare requirements but also efficiently using monitoring resources at hand.

  14. The SMART Platform: early experience enabling substitutable applications for electronic health records

    PubMed Central

    Mandel, Joshua C; Murphy, Shawn N; Bernstam, Elmer Victor; Ramoni, Rachel L; Kreda, David A; McCoy, J Michael; Adida, Ben; Kohane, Isaac S

    2012-01-01

    Objective The Substitutable Medical Applications, Reusable Technologies (SMART) Platforms project seeks to develop a health information technology platform with substitutable applications (apps) constructed around core services. The authors believe this is a promising approach to driving down healthcare costs, supporting standards evolution, accommodating differences in care workflow, fostering competition in the market, and accelerating innovation. Materials and methods The Office of the National Coordinator for Health Information Technology, through the Strategic Health IT Advanced Research Projects (SHARP) Program, funds the project. The SMART team has focused on enabling the property of substitutability through an app programming interface leveraging web standards, presenting predictable data payloads, and abstracting away many details of enterprise health information technology systems. Containers—health information technology systems, such as electronic health records (EHR), personally controlled health records, and health information exchanges that use the SMART app programming interface or a portion of it—marshal data sources and present data simply, reliably, and consistently to apps. Results The SMART team has completed the first phase of the project (a) defining an app programming interface, (b) developing containers, and (c) producing a set of charter apps that showcase the system capabilities. A focal point of this phase was the SMART Apps Challenge, publicized by the White House, using http://www.challenge.gov website, and generating 15 app submissions with diverse functionality. Conclusion Key strategic decisions must be made about the most effective market for further disseminating SMART: existing market-leading EHR vendors, new entrants into the EHR market, or other stakeholders such as health information exchanges. PMID:22427539

  15. The concept of value stream mapping to reduce of work-time waste as applied the smart construction management

    NASA Astrophysics Data System (ADS)

    Elizar, Suripin, Wibowo, Mochamad Agung

    2017-11-01

    Delays in construction sites occur due to systematic additions of time waste in various activities that are part of the construction process. Work-time waste is non-adding value activity which used to differentiate between physical construction waste found on site and other waste which occurs during the construction process. The aim of this study is identification using the concept of Value Stream Mapping (VSM) to reduce of work-time waste as applied the smart construction management.VSM analysis is a method of business process improvement. The application of VSM began in the manufacturing community. The research method base on theoretically informed case study and literature review. The data have collected using questionnaire through personal interviews from 383 respondents on construction project in Indonesia. The results show that concept of VSM can identify causes of work-time waste. Base on result of questioners and quantitative approach analysis was obtained 29 variables that influence of work-time waste or non-value-adding activities. Base on three cases of construction project founded that average 14.88% of working time was classified as waste. Finally, the concept of VSM can recommend to identification of systematic for reveal current practices and opportunities for improvement towards global challenges. The concept of value stream mapping can help optimize to reduce work-time waste and improve quality standard of construction management. The concept is also can help manager to make a decision to reduce work-time waste so as to obtain of result in more efficient for performance and sustainable construction project.

  16. Change in quality of malnutrition surveys between 1986 and 2015.

    PubMed

    Grellety, Emmanuel; Golden, Michael H

    2018-01-01

    Representative surveys collecting weight, height and MUAC are used to estimate the prevalence of acute malnutrition. The results are then used to assess the scale of malnutrition in a population and type of nutritional intervention required. There have been changes in methodology over recent decades; the objective of this study was to determine if these have resulted in higher quality surveys. In order to examine the change in reliability of such surveys we have analysed the statistical distributions of the derived anthropometric parameters from 1843 surveys conducted by 19 agencies between 1986 and 2015. With the introduction of standardised guidelines and software by 2003 and their more general application from 2007 the mean standard deviation, kurtosis and skewness of the parameters used to assess nutritional status have each moved to now approximate the distribution of the WHO standards when the exclusion of outliers from analysis is based upon SMART flagging procedure. Where WHO flags, that only exclude data incompatible with life, are used the quality of anthropometric surveys has improved and the results now approach those seen with SMART flags and the WHO standards distribution. Agencies vary in their uptake and adherence to standard guidelines. Those agencies that fully implement the guidelines achieve the most consistently reliable results. Standard methods should be universally used to produce reliable data and tests of data quality and SMART type flagging procedures should be applied and reported to ensure that the data are credible and therefore inform appropriate intervention. Use of SMART guidelines has coincided with reliable anthropometric data since 2007.

  17. Smart Device-Supported BDS/GNSS Real-Time Kinematic Positioning for Sub-Meter-Level Accuracy in Urban Location-Based Services.

    PubMed

    Wang, Liang; Li, Zishen; Zhao, Jiaojiao; Zhou, Kai; Wang, Zhiyu; Yuan, Hong

    2016-12-21

    Using mobile smart devices to provide urban location-based services (LBS) with sub-meter-level accuracy (around 0.5 m) is a major application field for future global navigation satellite system (GNSS) development. Real-time kinematic (RTK) positioning, which is a widely used GNSS-based positioning approach, can improve the accuracy from about 10-20 m (achieved by the standard positioning services) to about 3-5 cm based on the geodetic receivers. In using the smart devices to achieve positioning with sub-meter-level accuracy, a feasible solution of combining the low-cost GNSS module and the smart device is proposed in this work and a user-side GNSS RTK positioning software was developed from scratch based on the Android platform. Its real-time positioning performance was validated by BeiDou Navigation Satellite System/Global Positioning System (BDS/GPS) combined RTK positioning under the conditions of a static and kinematic (the velocity of the rover was 50-80 km/h) mode in a real urban environment with a SAMSUNG Galaxy A7 smartphone. The results show that the fixed-rates of ambiguity resolution (the proportion of epochs of ambiguities fixed) for BDS/GPS combined RTK in the static and kinematic tests were about 97% and 90%, respectively, and the average positioning accuracies (RMS) were better than 0.15 m (horizontal) and 0.25 m (vertical) for the static test, and 0.30 m (horizontal) and 0.45 m (vertical) for the kinematic test.

  18. Manufacturing Cell Therapies Using Engineered Biomaterials.

    PubMed

    Abdeen, Amr A; Saha, Krishanu

    2017-10-01

    Emerging manufacturing processes to generate regenerative advanced therapies can involve extensive genomic and/or epigenomic manipulation of autologous or allogeneic cells. These cell engineering processes need to be carefully controlled and standardized to maximize safety and efficacy in clinical trials. Engineered biomaterials with smart and tunable properties offer an intriguing tool to provide or deliver cues to retain stemness, direct differentiation, promote reprogramming, manipulate the genome, or select functional phenotypes. This review discusses the use of engineered biomaterials to control human cell manufacturing. Future work exploiting engineered biomaterials has the potential to generate manufacturing processes that produce standardized cells with well-defined critical quality attributes appropriate for clinical testing. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. The need to know caregiver perspectives toward using smart home technology.

    PubMed

    Giger, Jarod T; Markward, Martha

    2011-01-01

    This article reviews the literature on adults with serious mental illness, their caregivers, and smart home technology. The article provides compelling evidence for social workers to undertake research aimed at investigating caregivers' perceptions toward using smart home technology for care of adult family members or friends with a serious mental illness. Empirical support for using smart home technologies with adults with serious mental illness is provided, and recommendations for future social work research are offered.

  20. Research on data collection key technology of smart electric energy meters

    NASA Astrophysics Data System (ADS)

    Chen, Xiangqun; Huang, Rui; Shen, Liman; Chen, Hao; Xiong, Dezhi; Xiao, Xiangqi; Mouhailiu; Renheng, Xu

    2018-02-01

    In recent years, smart electric energy meters are demand at 70 million to 90 million with the strong smart grid construction every year in China. However, there are some issues in smart electric energy meters data collection such as the interference of environment, low collection efficiency and inability to work when the power is off. In order to solve these issues above, it uses the RFID communication technology to collect the numbers and electric energy information of smart electric energy meters on the basis of the existing smart electric energy meters, and the related data collection communication experiments were made. The experimental result shows that the electric information and other data batch collection of RFID smart electric energy meters are realized in power and power off. It improves the efficiency and the overall success rate is 99.2% within 2 meters. It provides a new method for smart electric energy meters data collection.

  1. Smart Growth Streets and Emergency Response

    EPA Pesticide Factsheets

    This page describes how street networks and street design affect emergency response and links to resources for designing streets that work for emergency responders and communities' smart growth goals.

  2. Working Smart: The Los Angeles Workplace Literacy Project. Final Report.

    ERIC Educational Resources Information Center

    Los Angeles Unified School District, CA. Div. of Adult and Occupational Education.

    The Working Smart workplace literacy project was sponsored by a public school district and several profit and nonprofit companies and conducted for the hotel and food industry in the Los Angeles area. Literacy instruction was merged with job requirements of the customer service job classifications. Videodisc courseware was developed, as were…

  3. a New Ubiquitous-Based Indoor Positioning System with Minimum Extra Hardware Using Smart Phones

    NASA Astrophysics Data System (ADS)

    Hassany Pazoky, S.; Chehreghan, A.; Sadeghi Niaraki, A.; Abbaspour, R. Ali

    2014-10-01

    Knowing the position has been an ambition in many areas such as science, military, business, etc. GPS was the realization of this wish in 1970s. Technological advances such as ubiquitous computing, as a conquering perspective, requires any service to work for any user, any place, anytime, and via any network. As GPS cannot provide services in indoor environments, many scientists began to develop indoor positioning systems (IPS). Smart phones penetrating our everyday lives were a great platform to host IPS applications. Sensors in smart phones were another big motive to develop IPS applications. Many researchers have been working on the topic developing various applications. However, the applications introduced lack simplicity. In other words, they need to install a step counter or smart phone on the ankle, which makes it awkward and inapplicable in many situations. In the current study, a new IPS methodology is introduced using only the usual embedded sensors in the smart phones. The robustness of this methodology cannot compete with those of the aforementioned approaches. The price paid for simplicity was decreasing robustness and complicating the methods and formulations. However, methods or tricks to harness the errors to an acceptable range are introduced as the future works.

  4. Ambient Intelligence in a Smart Home for Energy Efficiency and Eldercare

    NASA Astrophysics Data System (ADS)

    de Silva, Liyanage C.; Petra, M. Iskandar; Punchihewa, G. Amal

    In this paper we present our research results related to smart monitoring, control and communication with the main objective of energy efficiency and eldercare in mind. One of the main objectives of this research work is to use multitude of different sensors to monitor activities in a smart home and use the results to control the home environment to meet the objectives of energy efficiency and eldercare. Here we present the application of the smart monitoring to a prototype system.

  5. New Technology Sparks Smoother Engines and Cleaner Air

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Automotive Resources, Inc. (ARI) has developed a new device for igniting fuel in engines-the SmartPlug.TM SmartPlug is a self-contained ignition system that may be retrofitted to existing spark-ignition and compression-ignition engines. The SmartPlug needs as little as six watts of power for warm-up, and requires no electricity at all when the engine is running. Unlike traditional spark plugs, once the SmartPlug ignites the engine, and the engine heats up, the power supply for the plug is no longer necessary. In the utility industry, SmartPlugs can be used in tractors, portable generators, compressors, and pumps. In addition to general-purpose applications, such as lawn mowers and chainsaws, SmartPlugs can also be used in the recreational, marine, aviation, and automotive industries. Unlike traditional ignition systems, the SmartPlug system requires no distributor, coil points, or moving parts. SmartPlugs are non-fouling, with a faster and cleaner burn than traditional spark plugs. They prevent detonation and are not sensitive to moisture, allowing them to be used on a variety of engines. Other advantages include no electrical noise, no high voltage, exceptionally high altitude capabilities, and better cold-start statistics than those of standard spark ignition systems. Future applications for the SmartPlug are being evaluated by manufacturers in the snowmobile industry.

  6. SMART SKINS - A Development Roadmap

    NASA Astrophysics Data System (ADS)

    Lochocki, Joseph M.

    1990-02-01

    The Air Force Project Forecast II identified a number of key technology initiatives for development. This paper addresses one such initiative, PT-16, Smart Skins. The concept of the Smart Skin is introduced by briefly highlighting its attributes and potential advantages over standard avionics packaging and maintenance, and then goes on to describe some of the key ingredients necessary for its development. Problem areas are brought out along with some of the required trades that must be made. Finally, a time phased development roadmap is introduced which shows Calspan's proposed sequence of technology development programs that can, in combination, lead to first functional Smart Skins implementations in narrowband form in the late 1990's and in wideband form in first decade of the twenty - first century. A Smart Skins implementation in integral aircraft skin structure form will take at least until 2010.

  7. Development and Application of a Structural Health Monitoring System Based on Wireless Smart Aggregates

    PubMed Central

    Ma, Haoyan; Li, Peng; Song, Gangbing; Wu, Jianxin

    2017-01-01

    Structural health monitoring (SHM) systems can improve the safety and reliability of structures, reduce maintenance costs, and extend service life. Research on concrete SHMs using piezoelectric-based smart aggregates have reached great achievements. However, the newly developed techniques have not been widely applied in practical engineering, largely due to the wiring problems associated with large-scale structural health monitoring. The cumbersome wiring requires much material and labor work, and more importantly, the associated maintenance work is also very heavy. Targeting a practical large scale concrete crack detection (CCD) application, a smart aggregates-based wireless sensor network system is proposed for the CCD application. The developed CCD system uses Zigbee 802.15.4 protocols, and is able to perform dynamic stress monitoring, structural impact capturing, and internal crack detection. The system has been experimentally validated, and the experimental results demonstrated the effectiveness of the proposed system. This work provides important support for practical CCD applications using wireless smart aggregates. PMID:28714927

  8. Development and Application of a Structural Health Monitoring System Based on Wireless Smart Aggregates.

    PubMed

    Yan, Shi; Ma, Haoyan; Li, Peng; Song, Gangbing; Wu, Jianxin

    2017-07-17

    Structural health monitoring (SHM) systems can improve the safety and reliability of structures, reduce maintenance costs, and extend service life. Research on concrete SHMs using piezoelectric-based smart aggregates have reached great achievements. However, the newly developed techniques have not been widely applied in practical engineering, largely due to the wiring problems associated with large-scale structural health monitoring. The cumbersome wiring requires much material and labor work, and more importantly, the associated maintenance work is also very heavy. Targeting a practical large scale concrete crack detection (CCD) application, a smart aggregates-based wireless sensor network system is proposed for the CCD application. The developed CCD system uses Zigbee 802.15.4 protocols, and is able to perform dynamic stress monitoring, structural impact capturing, and internal crack detection. The system has been experimentally validated, and the experimental results demonstrated the effectiveness of the proposed system. This work provides important support for practical CCD applications using wireless smart aggregates.

  9. The Smart Health Initiative in China: The Case of Wuhan, Hubei Province.

    PubMed

    Fan, Meiyu; Sun, Jian; Zhou, Bin; Chen, Min

    2016-03-01

    To introduce smart health in Wuhan, and provide some references for other cities. As the largest mega-city in central China, Wuhan is investing large amounts of resources to push forward the development of Smart Wuhan and Health Wuhan, and it has unique features. It is one of the centerpieces of China's New Healthcare Reform, and great hope is put on it to help solve the conflict between limited healthcare resources and the large population of patients. How to plan and design smart health is important. The construction of Wuhan Smart Health includes some aspects as follows, like requirement analysis, the establishment of objectives and blueprint, the architecture design of regional health information platform, evaluation and implementation, problems and solutions, and so on. Wuhan Smart Health has obtained some achievements in health network, information systems, resident's health records, information standard, and the first phase of municipal health information platform. The focus of this article is the whole construction process of smart health in Wuhan. Although there are some difficulties during this period, some smart health services and management have been reflected. Compared with other cities or countries, Wuhan Smart Health has its own advantages and disadvantages. This study aims to provide a reference for other cities. Because smart health of Wuhan is characteristic in construction mode. Though still in the initial stage, it has great potentials in the future.

  10. Change and Progress Start with Education.

    ERIC Educational Resources Information Center

    Kansas State Dept. of Education, Topeka.

    In our global information society, citizens of most nations, states, and communities have the opportunity to compete for jobs to produce standardized products of about the same quality. It is smart people--not smart machines--that separate one competitor from another. The foundation of a healthy economy for Kansas is people, the human capital,…

  11. Smart Desktops for Teachers. ECS Issue Paper: Technology.

    ERIC Educational Resources Information Center

    Palaich, Robert M.; Good, Dixie Griffin; Stout, Connie; Vickery, Emily

    This report presents the results of a study of how emerging technologies can help educators deliver standards-based education to K-12 students. The first section of the report provides background on the new technology offerings and defines smart desktop systems. The second section lists critical questions for decisionmakers related to general…

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knirsch, Fabian; Engel, Dominik; Neureiter, Christian

    In a smart grid, data and information are transported, transmitted, stored, and processed with various stakeholders having to cooperate effectively. Furthermore, personal data is the key to many smart grid applications and therefore privacy impacts have to be taken into account. For an effective smart grid, well integrated solutions are crucial and for achieving a high degree of customer acceptance, privacy should already be considered at design time of the system. To assist system engineers in early design phase, frameworks for the automated privacy evaluation of use cases are important. For evaluation, use cases for services and software architectures needmore » to be formally captured in a standardized and commonly understood manner. In order to ensure this common understanding for all kinds of stakeholders, reference models have recently been developed. In this paper we present a model-driven approach for the automated assessment of such services and software architectures in the smart grid that builds on the standardized reference models. The focus of qualitative and quantitative evaluation is on privacy. For evaluation, the framework draws on use cases from the University of Southern California microgrid.« less

  13. Stepped MS(All) Relied Transition (SMART): An approach to rapidly determine optimal multiple reaction monitoring mass spectrometry parameters for small molecules.

    PubMed

    Ye, Hui; Zhu, Lin; Wang, Lin; Liu, Huiying; Zhang, Jun; Wu, Mengqiu; Wang, Guangji; Hao, Haiping

    2016-02-11

    Multiple reaction monitoring (MRM) is a universal approach for quantitative analysis because of its high specificity and sensitivity. Nevertheless, optimization of MRM parameters remains as a time and labor-intensive task particularly in multiplexed quantitative analysis of small molecules in complex mixtures. In this study, we have developed an approach named Stepped MS(All) Relied Transition (SMART) to predict the optimal MRM parameters of small molecules. SMART requires firstly a rapid and high-throughput analysis of samples using a Stepped MS(All) technique (sMS(All)) on a Q-TOF, which consists of serial MS(All) events acquired from low CE to gradually stepped-up CE values in a cycle. The optimal CE values can then be determined by comparing the extracted ion chromatograms for the ion pairs of interest among serial scans. The SMART-predicted parameters were found to agree well with the parameters optimized on a triple quadrupole from the same vendor using a mixture of standards. The parameters optimized on a triple quadrupole from a different vendor was also employed for comparison, and found to be linearly correlated with the SMART-predicted parameters, suggesting the potential applications of the SMART approach among different instrumental platforms. This approach was further validated by applying to simultaneous quantification of 31 herbal components in the plasma of rats treated with a herbal prescription. Because the sMS(All) acquisition can be accomplished in a single run for multiple components independent of standards, the SMART approach are expected to find its wide application in the multiplexed quantitative analysis of complex mixtures. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Predicting Air Quality in Smart Environments

    PubMed Central

    Deleawe, Seun; Kusznir, Jim; Lamb, Brian; Cook, Diane J.

    2011-01-01

    The pervasive sensing technologies found in smart environments offer unprecedented opportunities for monitoring and assisting the individuals who live and work in these spaces. As aspect of daily life that is often overlooked in maintaining a healthy lifestyle is the air quality of the environment. In this paper we investigate the use of machine learning technologies to predict CO2 levels as an indicator of air quality in smart environments. We introduce techniques for collecting and analyzing sensor information in smart environments and analyze the correlation between resident activities and air quality levels. The effectiveness of our techniques is evaluated using three physical smart environment testbeds. PMID:21617739

  15. Physical Intelligent Sensors

    NASA Technical Reports Server (NTRS)

    Bandhil, Pavan; Chitikeshi, Sanjeevi; Mahajan, Ajay; Figueroa, Fernando

    2005-01-01

    This paper proposes the development of intelligent sensors as part of an integrated systems approach, i.e. one treats the sensors as a complete system with its own sensing hardware (the traditional sensor), A/D converters, processing and storage capabilities, software drivers, self-assessment algorithms, communication protocols and evolutionary methodologies that allow them to get better with time. Under a project being undertaken at the NASA s Stennis Space Center, an integrated framework is being developed for the intelligent monitoring of smart elements. These smart elements can be sensors, actuators or other devices. The immediate application is the monitoring of the rocket test stands, but the technology should be generally applicable to the Integrated Systems Health Monitoring (ISHM) vision. This paper outlines progress made in the development of intelligent sensors by describing the work done till date on Physical Intelligent Sensors (PIS). The PIS discussed here consists of a thermocouple used to read temperature in an analog form which is then converted into digital values. A microprocessor collects the sensor readings and runs numerous embedded event detection routines on the collected data and if any event is detected, it is reported, stored and sent to a remote system through an Ethernet connection. Hence the output of the PIS is data coupled with confidence factor in the reliability of the data which leads to information on the health of the sensor at all times. All protocols are consistent with IEEE 1451.X standards. This work lays the foundation for the next generation of smart devices that have embedded intelligence for distributed decision making capabilities.

  16. Integration of design and manufacturing in a virtual enterprise using enterprise rules, intelligent agents, STEP, and work flow

    NASA Astrophysics Data System (ADS)

    Gilman, Charles R.; Aparicio, Manuel; Barry, J.; Durniak, Timothy; Lam, Herman; Ramnath, Rajiv

    1997-12-01

    An enterprise's ability to deliver new products quickly and efficiently to market is critical for competitive success. While manufactureres recognize the need for speed and flexibility to compete in this market place, companies do not have the time or capital to move to new automation technologies. The National Industrial Information Infrastructure Protocols Consortium's Solutions for MES Adaptable Replicable Technology (NIIIP SMART) subgroup is developing an information infrastructure to enable the integration and interoperation among Manufacturing Execution Systems (MES) and Enterprise Information Systems within an enterprise or among enterprises. The goal of these developments is an adaptable, affordable, reconfigurable, integratable manufacturing system. Key innovative aspects of NIIIP SMART are: (1) Design of an industry standard object model that represents the diverse aspects of MES. (2) Design of a distributed object network to support real-time information sharing. (3) Product data exchange based on STEP and EXPRESS (ISO 10303). (4) Application of workflow and knowledge management technologies to enact manufacturing and business procedures and policy. (5) Application of intelligent agents to support emergent factories. This paper illustrates how these technologies have been incorporated into the NIIIP SMART system architecture to enable the integration and interoperation of existing tools and future MES applications in a 'plug and play' environment.

  17. The Effect of Plug-in Electric Vehicles on Harmonic Analysis of Smart Grid

    NASA Astrophysics Data System (ADS)

    Heidarian, T.; Joorabian, M.; Reza, A.

    2015-12-01

    In this paper, the effect of plug-in electric vehicles is studied on the smart distribution system with a standard IEEE 30-bus network. At first, harmonic power flow analysis is performed by Newton-Raphson method and by considering distorted substation voltage. Afterward, proper sizes of capacitors is selected by cuckoo optimization algorithm to reduce the power losses and cost and by imposing acceptable limit for total harmonic distortion and RMS voltages. It is proposed that the impact of generated current harmonics by electric vehicle battery chargers should be factored into overall load control strategies of smart appliances. This study is generalized to the different hours of a day by using daily load curve, and then optimum time for charging of electric vehicles batteries in the parking lots are determined by cuckoo optimization algorithm. The results show that injecting harmonic currents of plug-in electric vehicles causes a drop in the voltage profile and increases power loss. Moreover, charging the vehicle batteries has more impact on increasing the power losses rather than the harmonic currents effect. Also, the findings showed that the current harmonics has a great influence on increasing of THD. Finally, optimum working times of all parking lots was obtained for the utilization cost reduction.

  18. tranSMART: An Open Source and Community-Driven Informatics and Data Sharing Platform for Clinical and Translational Research.

    PubMed

    Athey, Brian D; Braxenthaler, Michael; Haas, Magali; Guo, Yike

    2013-01-01

    tranSMART is an emerging global open source public private partnership community developing a comprehensive informatics-based analysis and data-sharing cloud platform for clinical and translational research. The tranSMART consortium includes pharmaceutical and other companies, not-for-profits, academic entities, patient advocacy groups, and government stakeholders. The tranSMART value proposition relies on the concept that the global community of users, developers, and stakeholders are the best source of innovation for applications and for useful data. Continued development and use of the tranSMART platform will create a means to enable "pre-competitive" data sharing broadly, saving money and, potentially accelerating research translation to cures. Significant transformative effects of tranSMART includes 1) allowing for all its user community to benefit from experts globally, 2) capturing the best of innovation in analytic tools, 3) a growing 'big data' resource, 4) convergent standards, and 5) new informatics-enabled translational science in the pharma, academic, and not-for-profit sectors.

  19. A Bridge to a Smart Start: A Case Study of Northampton Community College's Summer Bridge Program

    ERIC Educational Resources Information Center

    Sparrow, Michael J.

    2017-01-01

    This study sought to understand how and why Northampton Community College's Summer Bridge program--The Smart Start program--is highly successful at helping "at-risk" students transition to college-level work. For ten years, the Smart Start program has helped more than 150 incoming students acclimate to college, persist, and graduate…

  20. Smart Schools, Smart Growth: Investing in Education Facilities and Stronger Communities. California Builds Better Schools. Working Paper 09-1

    ERIC Educational Resources Information Center

    Fuller, Bruce; Vincent, Jeff; Bierbaum, Ariel H.; Kirschenbaum, Greta; McCoy, Deborah; Rigby, Jessica

    2009-01-01

    This report examines how California's massive and ongoing investment in school construction could better advance the shared goals of school improvement, sustainable urban growth, and equal opportunity. This brief is organized in five parts. First, the authors sketch a "framework" for how smart growth principles could help guide school…

  1. Time-varying SMART design and data analysis methods for evaluating adaptive intervention effects.

    PubMed

    Dai, Tianjiao; Shete, Sanjay

    2016-08-30

    In a standard two-stage SMART design, the intermediate response to the first-stage intervention is measured at a fixed time point for all participants. Subsequently, responders and non-responders are re-randomized and the final outcome of interest is measured at the end of the study. To reduce the side effects and costs associated with first-stage interventions in a SMART design, we proposed a novel time-varying SMART design in which individuals are re-randomized to the second-stage interventions as soon as a pre-fixed intermediate response is observed. With this strategy, the duration of the first-stage intervention will vary. We developed a time-varying mixed effects model and a joint model that allows for modeling the outcomes of interest (intermediate and final) and the random durations of the first-stage interventions simultaneously. The joint model borrows strength from the survival sub-model in which the duration of the first-stage intervention (i.e., time to response to the first-stage intervention) is modeled. We performed a simulation study to evaluate the statistical properties of these models. Our simulation results showed that the two modeling approaches were both able to provide good estimations of the means of the final outcomes of all the embedded interventions in a SMART. However, the joint modeling approach was more accurate for estimating the coefficients of first-stage interventions and time of the intervention. We conclude that the joint modeling approach provides more accurate parameter estimates and a higher estimated coverage probability than the single time-varying mixed effects model, and we recommend the joint model for analyzing data generated from time-varying SMART designs. In addition, we showed that the proposed time-varying SMART design is cost-efficient and equally effective in selecting the optimal embedded adaptive intervention as the standard SMART design.

  2. Microgrid and Plug in Electric Vehicle (PEV) with Vehicle to Grid (V2G) Power Services Capability (Briefing Charts)

    DTIC Science & Technology

    2015-09-01

    unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 AGENDA 1. Non-Tactical Vehicle-to-Grid (V2G) Projects • Smart Power...Vehicle Technology Expo and the Battery Show Conference Novi, MI, 15-17 Sep 2015 2 For the Nation • Help stabilize smart grid and can generate revenue...demonstration of a smart , aggregated, ad-hoc capable, vehicle to grid (V2G) and Vehicle to Vehicle (V2V) capable fleet power system to support

  3. One size fits all electronics for insole-based activity monitoring.

    PubMed

    Hegde, Nagaraj; Bries, Matthew; Melanson, Edward; Sazonov, Edward

    2017-07-01

    Footwear based wearable sensors are becoming prominent in many areas of monitoring health and wellness, such as gait and activity monitoring. In our previous research we introduced an insole based wearable system SmartStep, which is completely integrated in a socially acceptable package. From a manufacturing perspective, SmartStep's electronics had to be custom made for each shoe size, greatly complicating the manufacturing process. In this work we explore the possibility of making a universal electronics platform for SmartStep - SmartStep 3.0, which can be used in the most common insole sizes without modifications. A pilot human subject experiments were run to compare the accuracy between the one-size fits all (SmartStep 3.0) and custom size SmartStep 2.0. A total of ~10 hours of data was collected in the pilot study involving three participants performing different activities of daily living while wearing SmartStep 2.0 and SmartStep 3.0. Leave one out cross validation resulted in a 98.5% average accuracy from SmartStep 2.0, while SmartStep 3.0 resulted in 98.3% accuracy, suggesting that the SmartStep 3.0 can be as accurate as SmartStep 2.0, while fitting most common shoe sizes.

  4. Assistive Awareness in Smart Grids

    NASA Astrophysics Data System (ADS)

    Bourazeri, Aikaterini; Almajano, Pablo; Rodriguez, Inmaculada; Lopez-Sanchez, Maite

    The following sections are included: * Introduction * Background * The User-Infrastructure Interface * User Engagement through Assistive Awareness * Research Impact * Serious Games for Smart Grids * Serious Game Technology * Game scenario * Game mechanics * Related Work * Summary and Conclusions

  5. Smart storage technologies applied to fresh foods: A review.

    PubMed

    Wang, Jingyu; Zhang, Min; Gao, Zhongxue; Adhikari, Benu

    2017-06-30

    Fresh foods are perishable, seasonal and regional in nature and their storage, transportation, and preservation of freshness are quite challenging. Smart storage technologies can online detection and monitor the changes of quality parameters and storage environment of fresh foods during storage, so that operators can make timely adjustments to reduce the loss. This article reviews the smart storage technologies from two aspects: online detection technologies and smartly monitoring technologies for fresh foods. Online detection technologies include electronic nose, nuclear magnetic resonance (NMR), near infrared spectroscopy (NIRS), hyperspectral imaging and computer vision. Smartly monitoring technologies mainly include some intelligent indicators for monitoring the change of storage environment. Smart storage technologies applied to fresh foods need to be highly efficient and nondestructive and need to be competitively priced. In this work, we have critically reviewed the principles, applications, and development trends of smart storage technologies.

  6. OnCampus: a mobile platform towards a smart campus.

    PubMed

    Dong, Xin; Kong, Xiangjie; Zhang, Fulin; Chen, Zhen; Kang, Jialiang

    2016-01-01

    An increasing number of researchers and practitioners are working to develop smart cities. Considerable attention has been paid to the college campus as it is an important component of smart cities. Consequently, the question of how to construct a smart campus has become a topical one. Here, we propose a scheme that can facilitate the construction of a smart and friendly campus. We primarily focus on three aspects of smart campuses. These are: the formation of social circles based on interests mining, the provision of educational guidance based on emotion analysis of information posted on a platform, and development of a secondary trading platform aimed at optimizing the allocation of campus resources. Based on these objectives, we designed and implemented a mobile platform called OnCampus as the first step towards the development of a smart campus that has been introduced in some colleges. We found that OnCampus could successfully accomplish the three above mentioned functions of a smart campus.

  7. A dynamic vulnerability evaluation model to smart grid for the emergency response

    NASA Astrophysics Data System (ADS)

    Yu, Zhen; Wu, Xiaowei; Fang, Diange

    2018-01-01

    Smart grid shows more significant vulnerability to natural disasters and external destroy. According to the influence characteristics of important facilities suffered from typical kinds of natural disaster and external destroy, this paper built a vulnerability evaluation index system of important facilities in smart grid based on eight typical natural disasters, including three levels of static and dynamic indicators, totally forty indicators. Then a smart grid vulnerability evaluation method was proposed based on the index system, including determining the value range of each index, classifying the evaluation grade standard and giving the evaluation process and integrated index calculation rules. Using the proposed evaluation model, it can identify the most vulnerable parts of smart grid, and then help adopting targeted emergency response measures, developing emergency plans and increasing its capacity of disaster prevention and mitigation, which guarantee its safe and stable operation.

  8. A Genetic Algorithm Approach to Motion Sensor Placement in Smart Environments.

    PubMed

    Thomas, Brian L; Crandall, Aaron S; Cook, Diane J

    2016-04-01

    Smart environments and ubiquitous computing technologies hold great promise for a wide range of real world applications. The medical community is particularly interested in high quality measurement of activities of daily living. With accurate computer modeling of older adults, decision support tools may be built to assist care providers. One aspect of effectively deploying these technologies is determining where the sensors should be placed in the home to effectively support these end goals. This work introduces and evaluates a set of approaches for generating sensor layouts in the home. These approaches range from the gold standard of human intuition-based placement to more advanced search algorithms, including Hill Climbing and Genetic Algorithms. The generated layouts are evaluated based on their ability to detect activities while minimizing the number of needed sensors. Sensor-rich environments can provide valuable insights about adults as they go about their lives. These sensors, once in place, provide information on daily behavior that can facilitate an aging-in-place approach to health care.

  9. A Genetic Algorithm Approach to Motion Sensor Placement in Smart Environments

    PubMed Central

    Thomas, Brian L.; Crandall, Aaron S.; Cook, Diane J.

    2016-01-01

    Smart environments and ubiquitous computing technologies hold great promise for a wide range of real world applications. The medical community is particularly interested in high quality measurement of activities of daily living. With accurate computer modeling of older adults, decision support tools may be built to assist care providers. One aspect of effectively deploying these technologies is determining where the sensors should be placed in the home to effectively support these end goals. This work introduces and evaluates a set of approaches for generating sensor layouts in the home. These approaches range from the gold standard of human intuition-based placement to more advanced search algorithms, including Hill Climbing and Genetic Algorithms. The generated layouts are evaluated based on their ability to detect activities while minimizing the number of needed sensors. Sensor-rich environments can provide valuable insights about adults as they go about their lives. These sensors, once in place, provide information on daily behavior that can facilitate an aging-in-place approach to health care. PMID:27453810

  10. Generic Module for Collecting Data in Smart Cities

    NASA Astrophysics Data System (ADS)

    Martinez, A.; Ramirez, F.; Estrada, H.; Torres, L. A.

    2017-09-01

    The Future Internet brings new technologies to the common life of people, such as Internet of Things, Cloud Computing or Big Data. All this technologies have change the way people communicate and also the way the devices interact with the context, giving rise to new paradigms, as the case of smart cities. Currently, the mobile devices represent one of main sources of information for new applications that take into account the user context, such as apps for mobility, health, of security. Several platforms have been proposed that consider the development of Future Internet applications, however, no generic modules can be found that implement the collection of context data from smartphones. In this research work we present a generic module to collect data from different sensors of the mobile devices and also to send, in a standard manner, this data to the Open FIWARE Cloud to be stored or analyzed by software tools. The proposed module enables the human-as-a-sensor approach for FIWARE Platform.

  11. Living in a Smart World with Smart Technology

    ERIC Educational Resources Information Center

    Tech Directions, 2006

    2006-01-01

    Baltimore is an American success story. Since the redevelopment of the Inner Harbor in the late 1970s, Baltimore has set the standard for urban renewal and is now rated as one of the top 10 summer destinations in the world. This year, the city will host the 68th Annual International Technology Education Association (ITEA) Conference. The…

  12. Smart Inverter Control and Operation for Distributed Energy Resources

    NASA Astrophysics Data System (ADS)

    Tazay, Ahmad F.

    The motivation of this research is to carry out the control and operation of smart inverters and voltage source converters (VSC) for distributed energy resources (DERs) such as photovoltaic (PV), battery, and plug-in hybrid electric vehicles (PHEV). The main contribution of the research includes solving a couple of issues for smart grids by controlling and implementing multifunctions of VSC and smart inverter as well as improving the operational scheme of the microgrid. The work is mainly focused on controlling and operating of smart inverter since it promises a new technology for the future microgrid. Two major applications of the smart inverter will be investigated in this work based on the connection modes: microgrid at grid-tied mode and autonomous mode. In grid-tied connection, the smart inverter and VSC are used to integrate DER such as Photovoltaic (PV) and battery to provide suitable power to the system by controlling the supplied real and reactive power. The role of a smart inverter at autonomous mode includes supplying a sufficient voltage and frequency, mitigate abnormal condition of the load as well as equally sharing the total load's power. However, the operational control of the microgrid still has a major issue on the operation of the microgrid. The dissertation is divided into two main sections which are: 1. Low-level control of a single smart Inverter. 2. High-level control of the microgrid. The first part investigates a comprehensive research for a smart inverter and VSC technology at the two major connections of the microgrid. This involves controlling and modeling single smart inverter and VSC to solve specific issues of microgrid as well as improve the operation of the system. The research provides developed features for smart inverter comparing with a conventional voltage sourced converter (VSC). The two main connections for a microgrid have been deeply investigated to analyze a better way to develop and improve the operational procedure of the microgrid as well as solve specific issues of connecting the microgrid to the system. A detailed procedure for controlling VSC and designing an optimal operation of the controller is also covered in the first part of the dissertation. This section provides an optimal operation for controlling motor drive and demonstrates issues when motor load exists at an autonomous microgrid. It also provides a solution for specific issues at operating a microgrid at autonomous mode as well as improving the structural design for the grid-tied microgrid. The solution for autonomous microgrid includes changing the operational state of the switching pattern of the smart inverter to solve the issue of a common mode voltage (CMV) that appears across the motor load. It also solves the issue of power supplying to large loads, such as induction motors. The last section of the low-level section involves an improvement of the performance and operation of the PV charging station for a plug-in hybrid electric vehicle (PHEV) at grid-tied mode. This section provides a novel structure and smart controller for PV charging station using three-phase hybrid boost converter topology. It also provides a form of applications of a multifunction smart inverter using PV charging station. The second part of the research is focusing on improving the performance of the microgrid by integrating several smart inverters to form a microgrid. It investigates the issue of connecting DER units with the microgrid at real applications. One of the common issues of the microgrid is the circulating current which is caused by poor reactive power sharing accuracy. When more than two DER units are connected in parallel, a microgrid is forming be generating required power for the load. When the microgrid is operated at autonomous mode, all DER units participate in generating voltage and frequency as well as share the load's power. This section provides a smart and novel controlling technique to solve the issue of unequal power sharing. The feature of the smart inverter is realized by the communication link between smart inverters and the main operator. The analysis and derivation of the problem are presented in this section. The dissertation has led to two accepted conference papers, one accepted transaction IEEE manuscript, and one submitted IET transaction manuscript. The future work aims to improve the current work by investigating the performance of the smart inverter at real applications.

  13. Smart Device-Supported BDS/GNSS Real-Time Kinematic Positioning for Sub-Meter-Level Accuracy in Urban Location-Based Services

    PubMed Central

    Wang, Liang; Li, Zishen; Zhao, Jiaojiao; Zhou, Kai; Wang, Zhiyu; Yuan, Hong

    2016-01-01

    Using mobile smart devices to provide urban location-based services (LBS) with sub-meter-level accuracy (around 0.5 m) is a major application field for future global navigation satellite system (GNSS) development. Real-time kinematic (RTK) positioning, which is a widely used GNSS-based positioning approach, can improve the accuracy from about 10–20 m (achieved by the standard positioning services) to about 3–5 cm based on the geodetic receivers. In using the smart devices to achieve positioning with sub-meter-level accuracy, a feasible solution of combining the low-cost GNSS module and the smart device is proposed in this work and a user-side GNSS RTK positioning software was developed from scratch based on the Android platform. Its real-time positioning performance was validated by BeiDou Navigation Satellite System/Global Positioning System (BDS/GPS) combined RTK positioning under the conditions of a static and kinematic (the velocity of the rover was 50–80 km/h) mode in a real urban environment with a SAMSUNG Galaxy A7 smartphone. The results show that the fixed-rates of ambiguity resolution (the proportion of epochs of ambiguities fixed) for BDS/GPS combined RTK in the static and kinematic tests were about 97% and 90%, respectively, and the average positioning accuracies (RMS) were better than 0.15 m (horizontal) and 0.25 m (vertical) for the static test, and 0.30 m (horizontal) and 0.45 m (vertical) for the kinematic test. PMID:28009835

  14. Microencapsulation of Corrosion Indicators for Smart Coatings

    NASA Technical Reports Server (NTRS)

    Li, Wenyan; Buhrow, Jerry W.; Jolley, Scott T.; Calle, Luz M.; Hanna,Joshua S.; Rawlins, James W.

    2011-01-01

    A multifunctional smart coating for the autonomous detection, indication, and control of corrosion is been developed based on microencapsulation technology. This paper summarizes the development, optimization, and testing of microcapsules specifically designed for early detection and indication of corrosion when incorporated into a smart coating. Results from experiments designed to test the ability of the microcapsules to detect and indicate corrosion, when blended into several paint systems, show that these experimental coatings generate a color change, indicative of spot specific corrosion events, that can be observed with the naked eye within hours rather than the hundreds of hours or months typical of the standard accelerated corrosion test protocols.. Key words: smart coating, corrosion detection, microencapsulation, microcapsule, pH-sensitive microcapsule, corrosion indicator, corrosion sensing paint

  15. SepticSmart Homeowners

    EPA Pesticide Factsheets

    EPA’s SepticSmart initiative is a nation-wide public education effort with resources for homeowners with septic systems, local organizations and government leaders to learn how septic systems work and simple, everyday tips on how to properly maintain them.

  16. Systematic review of SMART Recovery: Outcomes, process variables, and implications for research.

    PubMed

    Beck, Alison K; Forbes, Erin; Baker, Amanda L; Kelly, Peter J; Deane, Frank P; Shakeshaft, Anthony; Hunt, David; Kelly, John F

    2017-02-01

    Clinical guidelines recommend Self-Management and Recovery Training (SMART Recovery) and 12-step models of mutual aid as important sources of long-term support for addiction recovery. Methodologically rigorous reviews of the efficacy and potential mechanisms of change are available for the predominant 12-step approach. A similarly rigorous exploration of SMART Recovery has yet to be undertaken. We aim to address this gap by providing a systematic overview of the evidence for SMART Recovery in adults with problematic alcohol, substance, and/or behavioral addiction, including (i) a commentary on outcomes assessed, process variables, feasibility, current understanding of mental health outcomes, and (ii) a critical evaluation of the methodology. We searched six electronic peer-reviewed and four gray literature databases for English-language SMART Recovery literature. Articles were classified, assessed against standardized criteria, and checked by an independent assessor. Twelve studies (including three evaluations of effectiveness) were identified. Alcohol-related outcomes were the primary focus. Standardized assessment of nonalcohol substance use was infrequent. Information about behavioral addiction was restricted to limited prevalence data. Functional outcomes were rarely reported. Feasibility was largely indexed by attendance. Economic analysis has not been undertaken. Little is known about the variables that may influence treatment outcome, but attendance represents a potential candidate. Assessment and reporting of mental health status was poor. Although positive effects were found, the modest sample and diversity of methods prevent us from making conclusive remarks about efficacy. Further research is needed to understand the clinical and public health utility of SMART as a viable recovery support option. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  17. Developing Ubiquitous Sensor Network Platform Using Internet of Things: Application in Precision Agriculture.

    PubMed

    Ferrández-Pastor, Francisco Javier; García-Chamizo, Juan Manuel; Nieto-Hidalgo, Mario; Mora-Pascual, Jerónimo; Mora-Martínez, José

    2016-07-22

    The application of Information Technologies into Precision Agriculture methods has clear benefits. Precision Agriculture optimises production efficiency, increases quality, minimises environmental impact and reduces the use of resources (energy, water); however, there are different barriers that have delayed its wide development. Some of these main barriers are expensive equipment, the difficulty to operate and maintain and the standard for sensor networks are still under development. Nowadays, new technological development in embedded devices (hardware and communication protocols), the evolution of Internet technologies (Internet of Things) and ubiquitous computing (Ubiquitous Sensor Networks) allow developing less expensive systems, easier to control, install and maintain, using standard protocols with low-power consumption. This work develops and test a low-cost sensor/actuator network platform, based in Internet of Things, integrating machine-to-machine and human-machine-interface protocols. Edge computing uses this multi-protocol approach to develop control processes on Precision Agriculture scenarios. A greenhouse with hydroponic crop production was developed and tested using Ubiquitous Sensor Network monitoring and edge control on Internet of Things paradigm. The experimental results showed that the Internet technologies and Smart Object Communication Patterns can be combined to encourage development of Precision Agriculture. They demonstrated added benefits (cost, energy, smart developing, acceptance by agricultural specialists) when a project is launched.

  18. Stochastic and Statistical Analysis of Utility Revenues and Weather Data Analysis for Consumer Demand Estimation in Smart Grids

    PubMed Central

    Ali, S. M.; Mehmood, C. A; Khan, B.; Jawad, M.; Farid, U; Jadoon, J. K.; Ali, M.; Tareen, N. K.; Usman, S.; Majid, M.; Anwar, S. M.

    2016-01-01

    In smart grid paradigm, the consumer demands are random and time-dependent, owning towards stochastic probabilities. The stochastically varying consumer demands have put the policy makers and supplying agencies in a demanding position for optimal generation management. The utility revenue functions are highly dependent on the consumer deterministic stochastic demand models. The sudden drifts in weather parameters effects the living standards of the consumers that in turn influence the power demands. Considering above, we analyzed stochastically and statistically the effect of random consumer demands on the fixed and variable revenues of the electrical utilities. Our work presented the Multi-Variate Gaussian Distribution Function (MVGDF) probabilistic model of the utility revenues with time-dependent consumer random demands. Moreover, the Gaussian probabilities outcome of the utility revenues is based on the varying consumer n demands data-pattern. Furthermore, Standard Monte Carlo (SMC) simulations are performed that validated the factor of accuracy in the aforesaid probabilistic demand-revenue model. We critically analyzed the effect of weather data parameters on consumer demands using correlation and multi-linear regression schemes. The statistical analysis of consumer demands provided a relationship between dependent (demand) and independent variables (weather data) for utility load management, generation control, and network expansion. PMID:27314229

  19. Stochastic and Statistical Analysis of Utility Revenues and Weather Data Analysis for Consumer Demand Estimation in Smart Grids.

    PubMed

    Ali, S M; Mehmood, C A; Khan, B; Jawad, M; Farid, U; Jadoon, J K; Ali, M; Tareen, N K; Usman, S; Majid, M; Anwar, S M

    2016-01-01

    In smart grid paradigm, the consumer demands are random and time-dependent, owning towards stochastic probabilities. The stochastically varying consumer demands have put the policy makers and supplying agencies in a demanding position for optimal generation management. The utility revenue functions are highly dependent on the consumer deterministic stochastic demand models. The sudden drifts in weather parameters effects the living standards of the consumers that in turn influence the power demands. Considering above, we analyzed stochastically and statistically the effect of random consumer demands on the fixed and variable revenues of the electrical utilities. Our work presented the Multi-Variate Gaussian Distribution Function (MVGDF) probabilistic model of the utility revenues with time-dependent consumer random demands. Moreover, the Gaussian probabilities outcome of the utility revenues is based on the varying consumer n demands data-pattern. Furthermore, Standard Monte Carlo (SMC) simulations are performed that validated the factor of accuracy in the aforesaid probabilistic demand-revenue model. We critically analyzed the effect of weather data parameters on consumer demands using correlation and multi-linear regression schemes. The statistical analysis of consumer demands provided a relationship between dependent (demand) and independent variables (weather data) for utility load management, generation control, and network expansion.

  20. Developing Ubiquitous Sensor Network Platform Using Internet of Things: Application in Precision Agriculture

    PubMed Central

    Ferrández-Pastor, Francisco Javier; García-Chamizo, Juan Manuel; Nieto-Hidalgo, Mario; Mora-Pascual, Jerónimo; Mora-Martínez, José

    2016-01-01

    The application of Information Technologies into Precision Agriculture methods has clear benefits. Precision Agriculture optimises production efficiency, increases quality, minimises environmental impact and reduces the use of resources (energy, water); however, there are different barriers that have delayed its wide development. Some of these main barriers are expensive equipment, the difficulty to operate and maintain and the standard for sensor networks are still under development. Nowadays, new technological development in embedded devices (hardware and communication protocols), the evolution of Internet technologies (Internet of Things) and ubiquitous computing (Ubiquitous Sensor Networks) allow developing less expensive systems, easier to control, install and maintain, using standard protocols with low-power consumption. This work develops and test a low-cost sensor/actuator network platform, based in Internet of Things, integrating machine-to-machine and human-machine-interface protocols. Edge computing uses this multi-protocol approach to develop control processes on Precision Agriculture scenarios. A greenhouse with hydroponic crop production was developed and tested using Ubiquitous Sensor Network monitoring and edge control on Internet of Things paradigm. The experimental results showed that the Internet technologies and Smart Object Communication Patterns can be combined to encourage development of Precision Agriculture. They demonstrated added benefits (cost, energy, smart developing, acceptance by agricultural specialists) when a project is launched. PMID:27455265

  1. Smart Sensors for Launch Vehicles

    NASA Astrophysics Data System (ADS)

    Ray, Sabooj; Mathews, Sheeja; Abraham, Sheena; Pradeep, N.; Vinod, P.

    2017-12-01

    Smart Sensors bring a paradigm shift in the data acquisition mechanism adopted for launch vehicle telemetry system. The sensors integrate signal conditioners, digitizers and communication systems to give digital output from the measurement location. Multiple sensors communicate with a centralized node over a common digital data bus. An in-built microcontroller gives the sensor embedded intelligence to carry out corrective action for sensor inaccuracies. A smart pressure sensor has been realized and flight-proven to increase the reliability as well as simplicity in integration so as to obtain improved data output. Miniaturization is achieved by innovative packaging. This work discusses the construction, working and flight performance of such a sensor.

  2. Smart SPHERES: A Telerobotic Free-Flyer for Intravehicular Activities in Space

    NASA Technical Reports Server (NTRS)

    Fong, Terrence; Micire, Mark J.; Morse, Ted; Park, Eric; Provencher, Chris; To, Vinh; Wheeler, D. W.; Mittman, David; Torres, R. Jay; Smith, Ernest

    2013-01-01

    Smart SPHERES is a prototype free-flying space robot based on the SPHERES platform. Smart SPHERES can be remotely operated by astronauts inside a spacecraft, or by mission controllers on the ground. We developed Smart SPHERES to perform a variety of intravehicular activities (IVA), such as operations inside the International Space Station (ISS). These IVA tasks include environmental monitoring surveys (radiation, sound levels, etc.), inventory, and mobile camera work. In this paper, we first discuss the motivation for free-flying space robots. We then describe the development of the Smart SPHERES prototype, including avionics, software, and data communications. Finally, we present results of initial flight tests on-board the ISS.

  3. A state-of-the-art assessment of active structures

    NASA Technical Reports Server (NTRS)

    1992-01-01

    A state-of-the-art assessment of active structures with emphasis towards the applications in aeronautics and space is presented. It is felt that since this technology area is growing at such a rapid pace in many different disciplines, it is not feasible to cover all of the current research but only the relevant work as relates to aeronautics and space. Research in smart actuation materials, smart sensors, and control of smart/intelligent structures is covered. In smart actuation materials, piezoelectric, magnetostrictive, shape memory, electrorheological, and electrostrictive materials are covered. For sensory materials, fiber optics, dielectric loss, and piezoelectric sensors are examined. Applications of embedded sensors and smart sensors are discussed.

  4. Smart SPHERES: A Telerobotic Free-Flyer for Intravehicular Activities in Space

    NASA Technical Reports Server (NTRS)

    Fong, Terrence; Micire, Mark J.; Morse, Ted; Park, Eric; Provencher, Chris

    2013-01-01

    Smart SPHERES is a prototype free-flying space robot based on the SPHERES platform. Smart SPHERES can be remotely operated by astronauts inside a spacecraft, or by mission controllers on the ground. We developed Smart SPHERES to perform a variety of intravehicular activities (IVA), such as operations inside the International Space Station (ISS). These IVA tasks include environmental monitoring surveys (radiation, sound levels, etc.), inventory, and mobile camera work. In this paper, we first discuss the motivation for free- flying space robots. We then describe the development of the Smart SPHERES prototype, including avionics, software, and data communications. Finally, we present results of initial flight tests on-board the ISS.

  5. The Nurse Watch: Design and Evaluation of a Smart Watch Application with Vital Sign Monitoring and Checklist Reminders

    PubMed Central

    Bang, Magnus; Solnevik, Katarina; Eriksson, Henrik

    2015-01-01

    Computerized wearable devices such as smart watches will become valuable nursing tools. This paper describes a smart-watch system developed in close collaboration with a team of nurses working in a Swedish ICU. The smart-watch system provides real-time vital-sign monitoring, threshold alarms, and to-do reminders. Additionally, a Kanban board, visualized on a multitouch screen provides an overview of completed and upcoming tasks. We describe an approach to implement automated checklist systems with smart watches and discuss aspects of importance when implementing such memory and attention support. The paper is finalized with an in-development formative evaluation of the system. PMID:26958162

  6. The Nurse Watch: Design and Evaluation of a Smart Watch Application with Vital Sign Monitoring and Checklist Reminders.

    PubMed

    Bang, Magnus; Solnevik, Katarina; Eriksson, Henrik

    Computerized wearable devices such as smart watches will become valuable nursing tools. This paper describes a smart-watch system developed in close collaboration with a team of nurses working in a Swedish ICU. The smart-watch system provides real-time vital-sign monitoring, threshold alarms, and to-do reminders. Additionally, a Kanban board, visualized on a multitouch screen provides an overview of completed and upcoming tasks. We describe an approach to implement automated checklist systems with smart watches and discuss aspects of importance when implementing such memory and attention support. The paper is finalized with an in-development formative evaluation of the system.

  7. The Early Diffusion of Smart Meters in the US Electric Power Industry

    NASA Astrophysics Data System (ADS)

    Strong, Derek Ryan

    The impact of new technologies within and across industries is only felt through their widespread diffusion, yet studies of technology diffusion are scarce compared to other aspects of the innovation process. The electric power industry is one industry that is currently undergoing substantial change as a result of both technological and institutional innovations. In this dissertation I examine the economic rationale for the adoption of smart meters by electric power utilities and the relationship between smart meters and the evolving electric power industry. I contribute to empirical research on technology diffusion by studying the early diffusion of smart meters in the US electric power industry. Using a panel dataset and econometric models, I analyze the determinants of both the interfirm and intrafirm diffusion of smart meters in the United States. The empirical findings suggest multiple drivers of smart meter diffusion. Policy and regulatory support have had a significant, positive impact on adoption but have not been the only relevant determinants. The findings also suggest that utility characteristics and some combination of learning, cost reductions, and technology standards have been important determinants affecting smart meter diffusion. I also explore the policy implications resulting from this analysis for enhancing the diffusion of smart meters. The costs and benefits of adopting smart meters have been more uncertain than initially thought, suggesting that some policy support for adoption was premature. The coordination of policies is also necessary to achieve the full benefits of using smart meters.

  8. SMART Platforms: Building the App Store for Biosurveillance

    PubMed Central

    Mandl, Kenneth D.

    2013-01-01

    Objective To enable public health departments to develop “apps” to run on electronic health records (EHRs) for (1) biosurveillance and case reporting and (2) delivering alerts to the point of care. We describe a novel health information technology platform with substitutable apps constructed around core services enabling EHRs to function as iPhone-like platforms. Introduction Health care information is a fundamental source of data for biosurveillance, yet configuring EHRs to report relevant data to health departments is technically challenging, labor intensive, and often requires custom solutions for each installation. Public health agencies wishing to deliver alerts to clinicians also must engage in an endless array of one-off systems integrations. Despite a $48B investment in HIT, and meaningful use criteria requiring reporting to biosurveillance systems, most vendor electronic health records are architected monolithically, making modification difficult for hospitals and physician practices. An alternative approach is to reimagine EHRs as iPhone-like platforms supporting substitutable apps-based functionality. Substitutability is the capability inherent in a system of replacing one application with another of similar functionality. Methods Substitutability requires that the purchaser of an app can replace one application with another without being technically expert, without requiring re-engineering other applications that they are using, and without having to consult or require assistance of any of the vendors of previously installed or currently installed applications. Apps necessarily compete with each other promoting progress and adaptability. The Substitutable Medical Applications, Reusable Technologies (SMART) Platforms project is funded by a $15M grant from Office of the National Coordinator of Health Information Technology’s Strategic Health IT Advanced Research Projects (SHARP) Program. All SMART standards are open and the core software is open source. The SMART project promotes substitutability through an application programming interface (API) that can be adopted as part of a “container” built around by a wide variety of HIT, providing readonly access to the underlying data model and a software development toolkit to readily create apps. SMART containers are HIT systems, that have implemented the SMART API or a portion of it. Containers marshal data sources and present them consistently across the SMART API. SMART applications consume the API and are substitutable. Results SMART provides a common platform supporting an “app store for biosurveillance” as an approach to enabling one stop shopping for public health departments—to create an app once, and distribute it everywhere. Further, such apps can be readily updated or created—for example, in the case of an emerging infection, an app may be designed to collect additional data at emergency department triage. Or a public health department may widely distribute an app, interoperable with any SMART-enabled EMR, that delivers contextualized alerts when patient electronic records are opened, or through background processes. SMART has sparked an ecosystem of apps developers and attracted existing health information technology platforms to adopt the SMART API—including, traditional, open source, and next generation EHRs, patient-facing platforms and health information exchanges. SMART-enabled platforms to date include the Cerner EMR, the WorldVista EHR, the OpenMRS EHR, the i2b2 analytic platform, and the Indivo X personal health record. The SMART team is working with the Mirth Corporation, to SMART-enable the HealthBridge and Redwood MedNet Health Information Exchanges. We have demonstrated that a single SMART app can run, unmodified, in all of these environments, as long as the underlying platform collects the required data types. Major EHR vendors are currently adapting the SMART API for their products. Conclusions The SMART system enables nimble customization of any electronic health record system to create either a reporting function (outgoing communication) or an alerting function (incoming communication) establishing a technology for a robust linkage between public health and clinical environments.

  9. Educating next-generation civil engineers about smart structures technology

    NASA Astrophysics Data System (ADS)

    Zhang, Yunfeng

    2005-05-01

    The implementation of smart structures technology in the design, construction and maintenance of civil and mechanical systems have been shown beneficial to the performance enhancement, operating efficiency and reliability of structural systems. However, most of today's engineering students are unaware of the remarkable properties of smart sensors and many applications of smart structures technology. It is thus desirable to prepare the future engineers of the society for the cutting-edge technologies in smart structures, for which they may see broad application in their generation. Pioneering work in incorporating smart structures technologies into civil engineering curriculum has been done by the writer at Lehigh University and is described in this paper. In particular, a graduate-level course entitled "Smart Structural Systems" has been taught in the Spring Semester of Year 2004 at Lehigh University. To better convey the course material to students, a smart structures test-bed, which is used not only to showcase various technological aspects of a smart structural system but also offer students an opportunity to gain hands-on experience by doing experiments has been under development at Lehigh University. The hands-on experience that could be developed with the smart structures test-bed is believed being essential for students to have a good understanding and mastering of the smart structures technologies.

  10. Proposed Reference Spectral Irradiance Standards to Improve Photovoltaic Concentrating System Design and Performance Evaluation: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myers, D. R.; Emery, K. E.; Gueymard, C.

    2002-05-01

    This conference paper describes the American Society for Testing and Materials (ASTM), the International Electrotechnical Commission (IEC), and the International Standards Organization (ISO) standard solar terrestrial spectra (ASTM G-159, IEC-904-3, ISO 9845-1) provide standard spectra for photovoltaic performance applications. Modern terrestrial spectral radiation models and knowledge of atmospheric physics are applied to develop suggested revisions to update the reference spectra. We use a moderately complex radiative transfer model (SMARTS2) to produce the revised spectra. SMARTS2 has been validated against the complex MODTRAN radiative transfer code and spectral measurements. The model is proposed as an adjunct standard to reproduce the referencemore » spectra. The proposed spectra represent typical clear sky spectral conditions associated with sites representing reasonable photovoltaic energy production and weathering and durability climates. The proposed spectra are under consideration by ASTM.« less

  11. 76 FR 47518 - Energy Conservation Program: Treatment of “Smart” Appliances in Energy Conservation Standards and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-05

    ... Conservation Program: Treatment of ``Smart'' Appliances in Energy Conservation Standards and Test Procedures... well as in test procedures used to demonstrate compliance with DOE's standards and qualification as an... development of energy conservation standards and test procedures for DOE's Appliance Standards Program and the...

  12. USDA Snack Policy Implementation: Best Practices From the Front Lines, United States, 2013-2014.

    PubMed

    Asada, Yuka; Chriqui, Jamie; Chavez, Noel; Odoms-Young, Angela; Handler, Arden

    2016-06-16

    The Smart Snacks in Schools interim final rule was promulgated by the US Department of Agriculture (USDA) as authorized by the Healthy, Hunger-Free Kids Act of 2010 (PL 111-296) and implementation commenced beginning July 1, 2014; however, in the years leading up to this deadline, national studies suggested that most schools were far from meeting the USDA standards. Evidence to guide successful implementation of the standards is needed. This study examined snack policy implementation in exemplary high schools to learn best practices for implementation. Guided by a multiple case study approach, school professionals (n = 37) from 9 high schools across 8 states were recruited to be interviewed about perceptions of school snack implementation; schools were selected using criterion sampling on the basis of the HealthierUS Schools Challenge: Smarter Lunchrooms (HUSSC: SL) database. Interview transcripts and internal documents were organized and coded in ATLAS.Ti v7; 2 researchers coded and analyzed data using a constant comparative analysis method to identify best practice themes. Best practices for snack policy implementation included incorporating the HUSSC: SL award's comprehensive wellness approach; leveraging state laws or district policies to reinforce snack reform initiatives; creating strong internal and external partnerships; and crafting positive and strategic communications. Implementation of snack policies requires evidence of successful experiences from those on the front lines. As federal, state, and local technical assistance entities work to ensure implementation of the Smart Snacks standards, these best practices provide strategies to facilitate the process.

  13. The Business Case for Becoming a SmartWay Carrier

    EPA Pesticide Factsheets

    This EPA presentation provides information on the SmartWay Partnership Program; what it is, how it works, benefits of becoming a SW registered carrier, why freight sustainability matters, and achieving sustainability goals throughout the supply chain.

  14. The Business Case for Becoming a SmartWay Shipper

    EPA Pesticide Factsheets

    This EPA presentation provides information on the SmartWay Partnership Program; what it is, how it works, benefits of becoming a SW registered shipper, why freight sustainability matters, and achieving sustainability goals throughout the supply chain.

  15. An acceptance model for smart glasses based tourism augmented reality

    NASA Astrophysics Data System (ADS)

    Obeidy, Waqas Khalid; Arshad, Haslina; Huang, Jiung Yao

    2017-10-01

    Recent mobile technologies have revolutionized the way people experience their environment. Although, there is only limited research on users' acceptance of AR in the cultural tourism context, previous researchers have explored the opportunities of using augmented reality (AR) in order to enhance user experience. Recent AR research lack works that integrates dimensions which are specific to cultural tourism and smart glass specific context. Hence, this work proposes an AR acceptance model in the context of cultural heritage tourism and smart glasses capable of performing augmented reality. Therefore, in this paper we aim to present an AR acceptance model to understand the AR usage behavior and visiting intention for tourists who use Smart Glass based AR at UNESCO cultural heritage destinations in Malaysia. Furthermore, this paper identifies information quality, technology readiness, visual appeal, and facilitating conditions as external variables and key factors influencing visitors' beliefs, attitudes and usage intention.

  16. Smart Grid as a Service: A Discussion on Design Issues

    PubMed Central

    Tsai, Chen-Chou; Chou, I-Hsin

    2014-01-01

    Smart grid allows the integration of distributed renewable energy resources into the conventional electricity distribution power grid such that the goals of reduction in power cost and in environment pollution can be met through an intelligent and efficient matching between power generators and power loads. Currently, this rapidly developing infrastructure is not as “smart” as it should be because of the lack of a flexible, scalable, and adaptive structure. As a solution, this work proposes smart grid as a service (SGaaS), which not only allows a smart grid to be composed out of basic services, but also allows power users to choose between different services based on their own requirements. The two important issues of service-level agreements and composition of services are also addressed in this work. Finally, we give the details of how SGaaS can be implemented using a FIPA-compliant JADE multiagent system. PMID:25243214

  17. Working Smart. The Los Angeles Unified School District Workplace Literacy Project. Performance Modules. Communication Modules, Manual/Workbook. Computational Modules, Manual/Workbook.

    ERIC Educational Resources Information Center

    Los Angeles Unified School District, CA. Div. of Adult and Occupational Education.

    This document consists of performance, computational, and communication modules used by the Working Smart workplace literacy project, a project conducted for the hotel and food industry in the Los Angeles area by a public school district and several profit and nonprofit companies. Literacy instruction was merged with job requirements of the…

  18. Design of Smart-Meter data acquisition device based on Cloud Platform

    NASA Astrophysics Data System (ADS)

    Chen, Xiangqun; Huang, Rui; Shen, Liman; chen, Hao; Xiong, Dezhi; Xiao, Xiangqi; Liu, Mouhai; Xu, Renheng

    2018-05-01

    In recent years, the government has attached great importance to ‘Four-Meter Unified’ Project. Under the call of national policy, State Grid is participate in building ‘Four-Meter Unified’ Project actively by making use of electricity information acquisition system. In this paper, a new type Smart-Meter data acquisition device based on Cloud Platform is designed according to the newest series of standards Energy Measure and Management System for Electric, Water, Gas and Heat Meter, and this paper introduces the general scheme, main hardware design and main software design for the Smart-Meter data acquisition device.

  19. IDENTIFYING PERFORMANCE ASSURANCE CHALLENGES FOR SMART MANUFACTURING.

    PubMed

    Helu, Moneer; Morris, Katherine; Jung, Kiwook; Lyons, Kevin; Leong, Swee

    2015-10-01

    Smart manufacturing has the potential to address many of the challenges faced by industry. However, the manufacturing community often needs assistance to leverage available technologies to improve their systems. To assure the performance of these technologies, this paper proposes a shared knowledge base that collects problem areas, solutions, and best practices for manufacturing technology. An Implementation Risk Assessment Framework (IRAF) is also described to identify the primary weaknesses of technologies in specific manufacturing contexts. Such approaches have the potential to stimulate new ideas and drive standardization activities critical to scale up and deploy smart manufacturing technologies successfully and quickly.

  20. IDENTIFYING PERFORMANCE ASSURANCE CHALLENGES FOR SMART MANUFACTURING

    PubMed Central

    Helu, Moneer; Morris, Katherine; Jung, Kiwook; Lyons, Kevin; Leong, Swee

    2015-01-01

    Smart manufacturing has the potential to address many of the challenges faced by industry. However, the manufacturing community often needs assistance to leverage available technologies to improve their systems. To assure the performance of these technologies, this paper proposes a shared knowledge base that collects problem areas, solutions, and best practices for manufacturing technology. An Implementation Risk Assessment Framework (IRAF) is also described to identify the primary weaknesses of technologies in specific manufacturing contexts. Such approaches have the potential to stimulate new ideas and drive standardization activities critical to scale up and deploy smart manufacturing technologies successfully and quickly. PMID:26783512

  1. Smart governance for smart city

    NASA Astrophysics Data System (ADS)

    Mutiara, Dewi; Yuniarti, Siti; Pratama, Bambang

    2018-03-01

    Some of the local government in Indonesia claimed they already created a smart city. Mostly the claim based of IT utilization for their governance. In general, a smart city definition is to describe a developed urban area that creates sustainable economic development and high quality of life by excelling in multiple key; economy, mobility, environment, people, living, and government. For public services, the law guarantees good governance by setting the standard for e-government implicitly including for local government or a city. Based on the arguments, this research tries to test the condition of e-government of the Indonesian city in 34 provinces. The purpose is to map e-government condition by measuring indicators of smart government, which are: transparent governance and open data for the public. This research is departing from public information disclosure law and to correspond with the existence law. By examining government transparency, the output of the research can be used to measure the effectiveness of public information disclosure law and to determine the condition of e-government in local government in which as part of a smart city.

  2. An experimental approach to free vibration analysis of smart composite beam

    NASA Astrophysics Data System (ADS)

    Yashavantha Kumar, G. A.; Sathish Kumar, K. M.

    2018-02-01

    Experimental vibration analysis is a main concern of this study. In designing any structural component the important parameter that has to be considered is vibration. The present work involves the experimental investigation of free vibration analysis of a smart beam. Smart beam consists of glass/epoxy composite as a main substrate and two PZT patches. The PZT patches are glued above and below the main beam. By experimentation the natural frequencies and mode shapes are obtained for both with and without PZT patches of a beam. Finally through experimentation the response of the smart beam is recorded.

  3. Role of Smart Grids in Integrating Renewable Energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Speer, B.; Miller, M.; Schaffer, W.

    2015-05-27

    This report was prepared for the International Smart Grid Action Network (ISGAN), which periodically publishes briefs and discussion papers on key topics of smart grid development globally. The topic of this report was selected by a multilateral group of national experts participating in ISGAN Annex 4, a working group that aims to produce synthesis insights for decision makers. This report is an update of a 2012 ISGAN Annex 4 report entitled “Smart Grid Contributions to Variable Renewable Resource Integration.” That report and other past publications of ISGAN Annexes can be found at www.iea-isgan.org and at www.cleanenergysolutions.org.

  4. Smarter Grid Solutions Works with NREL to Enhance Grid-Hosting Capacity |

    Science.gov Websites

    autonomously manages, coordinates, and controls distributed energy resources in real time to maintain the coordination and real-time management of an entire distribution grid, subsuming the smart home and smart campus

  5. Real-Time Implementation of Intelligent Actuator Control with a Transducer Health Monitoring Capability

    NASA Technical Reports Server (NTRS)

    Jethwa, Dipan; Selmic, Rastko R.; Figueroa, Fernando

    2008-01-01

    This paper presents a concept of feedback control for smart actuators that are compatible with smart sensors, communication protocols, and a hierarchical Integrated System Health Management (ISHM) architecture developed by NASA s Stennis Space Center. Smart sensors and actuators typically provide functionalities such as automatic configuration, system condition awareness and self-diagnosis. Spacecraft and rocket test facilities are in the early stages of adopting these concepts. The paper presents a concept combining the IEEE 1451-based ISHM architecture with a transducer health monitoring capability to enhance the control process. A control system testbed for intelligent actuator control, with on-board ISHM capabilities, has been developed and implemented. Overviews of the IEEE 1451 standard, the smart actuator architecture, and control based on this architecture are presented.

  6. Vehicle Fault Diagnose Based on Smart Sensor

    NASA Astrophysics Data System (ADS)

    Zhining, Li; Peng, Wang; Jianmin, Mei; Jianwei, Li; Fei, Teng

    In the vehicle's traditional fault diagnose system, we usually use a computer system with a A/D card and with many sensors connected to it. The disadvantage of this system is that these sensor can hardly be shared with control system and other systems, there are too many connect lines and the electro magnetic compatibility(EMC) will be affected. In this paper, smart speed sensor, smart acoustic press sensor, smart oil press sensor, smart acceleration sensor and smart order tracking sensor were designed to solve this problem. With the CAN BUS these smart sensors, fault diagnose computer and other computer could be connected together to establish a network system which can monitor and control the vehicle's diesel and other system without any duplicate sensor. The hard and soft ware of the smart sensor system was introduced, the oil press, vibration and acoustic signal are resampled by constant angle increment to eliminate the influence of the rotate speed. After the resample, the signal in every working cycle could be averaged in angle domain and do other analysis like order spectrum.

  7. Bio-inspired device: a novel smart MR spring featuring tendril structure

    NASA Astrophysics Data System (ADS)

    Kaluvan, Suresh; Park, Chun-Yong; Choi, Seung-Bok

    2016-01-01

    Smart materials such as piezoelectric patches, shape memory alloy, electro and magneto rheological fluid, magnetostrictive materials, etc are involved by far to design intelligent and high performance smart devices like injectors, dental braces, dampers, actuators and sensors. In this paper, an interesting smart device is proposed by inspiring on the structure of the bio climber plant. The key enabling concept of this proposed work is to design the smart spring damper as a helical shaped tendril structure using magneto-rheological (MR) fluid. The proposed smart spring consists of a hollow helical structure filled with MR fluid. The viscosity of the MR fluid decides the damping force of helical shaped smart spring, while the fluid intensity in the vine decides the strength of the tendril in the climber plant. Thus, the proposed smart spring can provide a new concept design of the damper which can be applicable to various damping system industries with tuneable damping force. The proposed smart spring damper has several advantageous such as cost effective, easy implementation compared with the conventional damper. In addition, the proposed spring damper can be easily designed to adapt different damping force levels without any alteration.

  8. Field of smart structures as seen by those working in it: survey results

    NASA Astrophysics Data System (ADS)

    Spillman, William B., Jr.; Sirkis, James S.; Gardiner, Peter T.

    1995-04-01

    There has been considerable discussion in the technical community on a number of questions concerned with smart materials and structures, such as what they are, whether smart materials can be considered a subset of smart structures, whether a smart structure and an intelligent structure are the same thing, etc. This discussion is both fueled and confused by the technical community due to the truly multidisciplinary nature of this new field. Smart materials and structures research involves so many technically diverse fields that it is quite common for one field to completely misunderstand the terminology and state-of-the-art in other fields. In order to ascertain whether a consensus is emerging on a number of these questions, the technical community was surveyed in a number of ways including via the Internet and by direct contact. The purpose of this survey in the final analysis was to better define the smart materials and structures field, its current status and its potential benefits. Results of the survey are presented and discussed.

  9. Benefits Analysis of Smart Grid Projects. White paper, 2014-2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marnay, Chris; Liu, Liping; Yu, JianCheng

    Smart grids are rolling out internationally, with the United States (U.S.) nearing completion of a significant USD4-plus-billion federal program funded under the American Recovery and Reinvestment Act (ARRA-2009). The emergence of smart grids is widespread across developed countries. Multiple approaches to analyzing the benefits of smart grids have emerged. The goals of this white paper are to review these approaches and analyze examples of each to highlight their differences, advantages, and disadvantages. This work was conducted under the auspices of a joint U.S.-China research effort, the Climate Change Working Group (CCWG) Implementation Plan, Smart Grid. We present comparative benefits assessmentsmore » (BAs) of smart grid demonstrations in the U.S. and China along with a BA of a pilot project in Europe. In the U.S., we assess projects at two sites: (1) the University of California, Irvine campus (UCI), which consists of two distinct demonstrations: Southern California Edison’s (SCE) Irvine Smart Grid Demonstration Project (ISGD) and the UCI campus itself; and (2) the Navy Yard (TNY) area in Philadelphia, which has been repurposed as a mixed commercial-industrial, and possibly residential, development. In China, we cover several smart-grid aspects of the Sino-Singapore Tianjin Eco-city (TEC) and the Shenzhen Bay Technology and Ecology City (B-TEC). In Europe, we look at a BA of a pilot smart grid project in the Malagrotta area west of Rome, Italy, contributed by the Joint Research Centre (JRC) of the European Commission. The Irvine sub-project BAs use the U.S. Department of Energy (U.S. DOE) Smart Grid Computational Tool (SGCT), which is built on methods developed by the Electric Power Research Institute (EPRI). The TEC sub-project BAs apply Smart Grid Multi-Criteria Analysis (SG-MCA) developed by the State Grid Corporation of China (SGCC) based on the analytic hierarchy process (AHP) with fuzzy logic. The B-TEC and TNY sub-project BAs are evaluated using new approaches developed by those project teams. JRC has adopted an approach similar to EPRI’s but tailored to the Malagrotta distribution grid.« less

  10. SLAE–CPS: Smart Lean Automation Engine Enabled by Cyber-Physical Systems Technologies

    PubMed Central

    Ma, Jing; Wang, Qiang; Zhao, Zhibiao

    2017-01-01

    In the context of Industry 4.0, the demand for the mass production of highly customized products will lead to complex products and an increasing demand for production system flexibility. Simply implementing lean production-based human-centered production or high automation to improve system flexibility is insufficient. Currently, lean automation (Jidoka) that utilizes cyber-physical systems (CPS) is considered a cost-efficient and effective approach for improving system flexibility under shrinking global economic conditions. Therefore, a smart lean automation engine enabled by CPS technologies (SLAE–CPS), which is based on an analysis of Jidoka functions and the smart capacity of CPS technologies, is proposed in this study to provide an integrated and standardized approach to design and implement a CPS-based smart Jidoka system. A set of comprehensive architecture and standardized key technologies should be presented to achieve the above-mentioned goal. Therefore, a distributed architecture that joins service-oriented architecture, agent, function block (FB), cloud, and Internet of things is proposed to support the flexible configuration, deployment, and performance of SLAE–CPS. Then, several standardized key techniques are proposed under this architecture. The first one is for converting heterogeneous physical data into uniform services for subsequent abnormality analysis and detection. The second one is a set of Jidoka scene rules, which is abstracted based on the analysis of the operator, machine, material, quality, and other factors in different time dimensions. These Jidoka rules can support executive FBs in performing different Jidoka functions. Finally, supported by the integrated and standardized approach of our proposed engine, a case study is conducted to verify the current research results. The proposed SLAE–CPS can serve as an important reference value for combining the benefits of innovative technology and proper methodology. PMID:28657577

  11. SLAE-CPS: Smart Lean Automation Engine Enabled by Cyber-Physical Systems Technologies.

    PubMed

    Ma, Jing; Wang, Qiang; Zhao, Zhibiao

    2017-06-28

    In the context of Industry 4.0, the demand for the mass production of highly customized products will lead to complex products and an increasing demand for production system flexibility. Simply implementing lean production-based human-centered production or high automation to improve system flexibility is insufficient. Currently, lean automation (Jidoka) that utilizes cyber-physical systems (CPS) is considered a cost-efficient and effective approach for improving system flexibility under shrinking global economic conditions. Therefore, a smart lean automation engine enabled by CPS technologies (SLAE-CPS), which is based on an analysis of Jidoka functions and the smart capacity of CPS technologies, is proposed in this study to provide an integrated and standardized approach to design and implement a CPS-based smart Jidoka system. A set of comprehensive architecture and standardized key technologies should be presented to achieve the above-mentioned goal. Therefore, a distributed architecture that joins service-oriented architecture, agent, function block (FB), cloud, and Internet of things is proposed to support the flexible configuration, deployment, and performance of SLAE-CPS. Then, several standardized key techniques are proposed under this architecture. The first one is for converting heterogeneous physical data into uniform services for subsequent abnormality analysis and detection. The second one is a set of Jidoka scene rules, which is abstracted based on the analysis of the operator, machine, material, quality, and other factors in different time dimensions. These Jidoka rules can support executive FBs in performing different Jidoka functions. Finally, supported by the integrated and standardized approach of our proposed engine, a case study is conducted to verify the current research results. The proposed SLAE-CPS can serve as an important reference value for combining the benefits of innovative technology and proper methodology.

  12. Justification of the Utility of Introducing Smart Meters in Latvia

    NASA Astrophysics Data System (ADS)

    Kunickis, M.; Dandens, A.; Bariss, U.

    2015-12-01

    Automatic data reading from smart meters is being developed in many parts of the world, including Latvia. The key drivers for that are developments of smart technologies and economic benefits for consumers. Deployment of smart meters could be launched in a massive scale. Several pilot projects were implemented to verify the feasibility of smart meters for individual consumer groups. Preliminary calculations indicate that installation of smart meters for approximately 23 % of electricity consumers would be economically viable. Currently, the data for the last two years is available for an in-depth mathematical analysis. The continuous analysis of consumption data would be established, when more measurements from smart meters are available. The extent of introduction of smart meters should be specified during this process in order to gain the maximum benefit for the whole society (consumers, grid companies, state authorities), because there are still many uncertain and variable factors. For example, it is necessary to consider statistical load variations by hour, dependence of electricity consumption on temperature fluctuations, consumer behaviour and demand response to market signals to reduce electricity consumption in the short and long term, consumer's ambitions and capability to install home automation for regulation of electricity consumption. To develop the demand response, it is necessary to analyse the whole array of additional factors, such as expected cost reduction of smart meters, possible extension of their functionality, further development of information exchange systems, as well as standard requirements and different political and regulatory decisions regarding the reduction of electricity consumption and energy efficiency.

  13. On the Use of Piezoelectric Sensors in Structural Mechanics: Some Novel Strategies

    PubMed Central

    Irschik, Hans; Krommer, Michael; Vetyukov, Yury

    2010-01-01

    In the present paper, a review on piezoelectric sensing of mechanical deformations and vibrations of so-called smart or intelligent structures is given. After a short introduction into piezoelectric sensing and actuation of such controlled structures, we pay special emphasis on the description of some own work, which has been performed at the Institute of Technical Mechanics of the Johannes Kepler University of Linz (JKU) in the last years. Among other aspects, this work has been motivated by the fact that collocated control of smart structures requires a sensor output that is work-conjugated to the input by the actuator. This fact in turn brings into the play the more general question of how to measure mechanically meaningful structural quantities, such as displacements, slopes, or other quantities, which form the work-conjugated quantities of the actuation, by means piezoelectric sensors. At least in the range of small strains, there is confidence that distributed piezoelectric sensors or sensor patches in smart structures do measure weighted integrals over their domain. Therefore, there is a need of distributing or shaping the sensor activity in order to be able to re-interpret the sensor signals in the desired mechanical sense. We sketch a general strategy that is based on a special application of work principles, more generally on displacement virials. We also review our work in the past on bringing this concept to application in smart structures, such as beams, rods and plates. PMID:22219679

  14. On the use of piezoelectric sensors in structural mechanics: some novel strategies.

    PubMed

    Irschik, Hans; Krommer, Michael; Vetyukov, Yury

    2010-01-01

    In the present paper, a review on piezoelectric sensing of mechanical deformations and vibrations of so-called smart or intelligent structures is given. After a short introduction into piezoelectric sensing and actuation of such controlled structures, we pay special emphasis on the description of some own work, which has been performed at the Institute of Technical Mechanics of the Johannes Kepler University of Linz (JKU) in the last years. Among other aspects, this work has been motivated by the fact that collocated control of smart structures requires a sensor output that is work-conjugated to the input by the actuator. This fact in turn brings into the play the more general question of how to measure mechanically meaningful structural quantities, such as displacements, slopes, or other quantities, which form the work-conjugated quantities of the actuation, by means piezoelectric sensors. At least in the range of small strains, there is confidence that distributed piezoelectric sensors or sensor patches in smart structures do measure weighted integrals over their domain. Therefore, there is a need of distributing or shaping the sensor activity in order to be able to re-interpret the sensor signals in the desired mechanical sense. We sketch a general strategy that is based on a special application of work principles, more generally on displacement virials. We also review our work in the past on bringing this concept to application in smart structures, such as beams, rods and plates.

  15. 76 FR 56126 - Energy Conservation Program: Treatment of “Smart” Appliances in Energy Conservation Standards and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-12

    ...'s energy conservation standards, as well as in test procedures used to demonstrate compliance with...'' appliances in the development of DOE's energy conservation standards, as well as in test procedures used to... Conservation Program: Treatment of ``Smart'' Appliances in Energy Conservation Standards and Test Procedures...

  16. Strategic Mobility 21: Smart and Secure E Corridor Stakeholder Evaluation - Savannah

    DTIC Science & Technology

    2009-12-07

    validated to meet Customs-Trade Partnership Against Terrorism ( CTPAT ) level 3 Customs standards and combined with multiple overlain foreign trade zones... CTPAT level 3 benefits of technology validated supply chains insulating shippers against random inspections as the core elements of smart secure...their carrier partners, Customs-Trade Partnership Against Terrorism ( CTPAT ) level 3 technologically verified supply chain security for all shippers

  17. The Future of Geospatial Standards

    NASA Astrophysics Data System (ADS)

    Bermudez, L. E.; Simonis, I.

    2016-12-01

    The OGC is an international not-for-profit standards development organization (SDO) committed to making quality standards for the geospatial community. A community of more than 500 member organizations with more than 6,000 people registered at the OGC communication platform drives the development of standards that are freely available for anyone to use and to improve sharing of the world's geospatial data. OGC standards are applied in a variety of application domains including Environment, Defense and Intelligence, Smart Cities, Aviation, Disaster Management, Agriculture, Business Development and Decision Support, and Meteorology. Profiles help to apply information models to different communities, thus adapting to particular needs of that community while ensuring interoperability by using common base models and appropriate support services. Other standards address orthogonal aspects such as handling of Big Data, Crowd-sourced information, Geosemantics, or container for offline data usage. Like most SDOs, the OGC develops and maintains standards through a formal consensus process under the OGC Standards Program (OGC-SP) wherein requirements and use cases are discussed in forums generally open to the public (Domain Working Groups, or DWGs), and Standards Working Groups (SWGs) are established to create standards. However, OGC is unique among SDOs in that it also operates the OGC Interoperability Program (OGC-IP) to provide real-world testing of existing and proposed standards. The OGC-IP is considered the experimental playground, where new technologies are researched and developed in a user-driven process. Its goal is to prototype, test, demonstrate, and promote OGC Standards in a structured environment. Results from the OGC-IP often become requirements for new OGC standards or identify deficiencies in existing OGC standards that can be addressed. This presentation will provide an analysis of the work advanced in the OGC consortium including standards and testbeds, where we can extract a trend for the future of geospatial standards. We see a number of key elements in focus, but simultaneously a broadening of standards to address particular communities' needs.

  18. Hearing results using the SMart piston prosthesis.

    PubMed

    Fayad, Jose N; Semaan, Maroun T; Meier, Josh C; House, John W

    2009-12-01

    SMart, a newly introduced piston prosthesis for stapedotomy, is a nitinol-based, heat-activated, self-crimping prosthesis. We review our hearing results and postoperative complications using this self-crimped piston prosthesis and compare them with those obtained using stainless steel or platinum piston prostheses. Audiometric results using the SMart piston are identical to those obtained using a conventional piston prosthesis. Retrospective chart review. Private neurotologic tertiary referral center. The 416 ears reviewed included 306 with a SMart prosthesis and 110 conventional prostheses. 61% were women. Mean follow-up time was 5.6 (standard deviation [SD], 6.3 mo) and 6.9 months (SD, 7.0 mo) for the 2 groups, respectively. Stapedotomy using the SMart or a conventional (non-SMart) prosthesis. Audiometric hearing results, including pure-tone average (PTA) and air-bone gap (ABG), and prevalence of postoperative complications. Mean postoperative PTA was 32.6 (SD, 16.8) dB for the SMart group and 29.4 (SD, 13.5) dB for the non-SMart group, with ABGs of 7.6 (SD, 8.9) and 6.0 (SD, 5.2) dB, respectively. Mean change (decrease) in ABG was 18.7 (SD, 13.1) dB for the SMart group and 19.9 (SD, 10.3) dB for the non-SMart group. High-frequency bone PTAs showed overclosure of 2.0 (SD, 7.9) dB for the SMart group and 3.6 (SD, 8.6) dB for the non-SMart group. Postoperative vertigo and tinnitus were infrequent. No significant differences in these audiometric outcomes or complication rates were noted between groups. There was no significant difference in rate of gap closure to within 10 dB (78.3 versus 84.2%, SMart and non-SMart, respectively) or 20 dB (94.2 and 98.0%). Compared with conventional stapes prostheses, the nitinol-based SMart is a safe and reliable stapes prosthesis that eliminates manual crimping without significantly altering the audiometric outcome. Complications are rare, but longer follow-up is needed before establishing long-term stability.

  19. Nutrition Quality of US School Snack Foods: A First Look at 2011-2014 Bid Records in 8 School Districts.

    PubMed

    Wang, Y Claire; Hsiao, Amber; Chamberlin, Peter; Largay, McKenzie; Archibald, Abbie; Malone, Andrew; Stevelos, JoAnn

    2017-01-01

    As part of the Healthy, Hunger-Free Kids Act, snacks, and desserts sold in K-12 schools as of the 2014-2015 school year are required to meet the "Smart Snacks" nutritional guidelines. Although studies exist in tracking progress in local and national efforts, the proportion of snack food procured by school districts compliant with the Smart Snacks standard prior to its full implementation is unknown. We repurposed a previously untapped database, Interflex, of public bid records to examine the nutritional quality of snacks and desserts procured by school districts. We selected 8 school districts with at least 90% complete data each year during 2011-2012, 2012-2013, and 2013-2014 school years and at locations across different regions of the United States. We quantified the amount of calories and sugar of each product contained in the won bids based on available online sources and determined whether the produce complied with Smart Snack guidelines. In all 8 districts (snack expenditure analyzed ranging from $152,000 to $4.4 million), at least 50% of snack bids were compliant with the US Department of Agriculture Smart Snacks standard during the 2013-2014 school year. Across sampled districts, we observed a general trend in lower caloric density (kcal per product) and sugar density (grams of sugar per product) over a 3-year period. Many districts across the country have made headway in complying with the Smart Snack guidelines, though gaps remain. © 2016, American School Health Association.

  20. Design and implementation of a prototype with a standardized interface for transducers in ambient assisted living.

    PubMed

    Dorronzoro, Enrique; Gómez, Isabel; Medina, Ana Verónica; Gómez, José Antonio

    2015-01-29

    Solutions in the field of Ambient Assisted Living (AAL) do not generally use standards to implement a communication interface between sensors and actuators. This makes these applications isolated solutions because it is so difficult to integrate them into new or existing systems. The objective of this research was to design and implement a prototype with a standardized interface for sensors and actuators to facilitate the integration of different solutions in the field of AAL. Our work is based on the roadmap defined by AALIANCE, using motes with TinyOS telosb, 6LoWPAN, sensors, and the IEEE 21451 standard protocol. This prototype allows one to upgrade sensors to a smart status for easy integration with new applications and already existing ones. The prototype has been evaluated for autonomy and performance. As a use case, the prototype has been tested in a serious game previously designed for people with mobility problems, and its advantages and disadvantages have been analysed.

  1. Design and Implementation of a Prototype with a Standardized Interface for Transducers in Ambient Assisted Living

    PubMed Central

    Dorronzoro, Enrique; Gómez, Isabel; Medina, Ana Verónica; Gómez, José Antonio

    2015-01-01

    Solutions in the field of Ambient Assisted Living (AAL) do not generally use standards to implement a communication interface between sensors and actuators. This makes these applications isolated solutions because it is so difficult to integrate them into new or existing systems. The objective of this research was to design and implement a prototype with a standardized interface for sensors and actuators to facilitate the integration of different solutions in the field of AAL. Our work is based on the roadmap defined by AALIANCE, using motes with TinyOS telosb, 6LoWPAN, sensors, and the IEEE 21451 standard protocol. This prototype allows one to upgrade sensors to a smart status for easy integration with new applications and already existing ones. The prototype has been evaluated for autonomy and performance. As a use case, the prototype has been tested in a serious game previously designed for people with mobility problems, and its advantages and disadvantages have been analysed. PMID:25643057

  2. Strategies for Managing Smart Pump Alarm and Alert Fatigue: A Narrative Review.

    PubMed

    Shah, Parth K; Irizarry, Jamie; O'Neill, Sean

    2018-06-08

    Although smart infusion pumps are intended to prevent medication errors by alerting users about doses that exceed set thresholds, a large number of clinically insignificant alarms and alerts create the potential for alert and alarm fatigue. We searched the PubMed, Scopus, and Cumulative Index to Nursing and Allied Health Literature (CINAHL) databases for peer-reviewed literature (January 1, 2004-August 31, 2017) on managing smart pump alerts, alarms, and related fatigue. Twenty-nine articles that met the inclusion criteria were reviewed and organized into themes. Smart pumps give users two types of signals: alarms that indicate mechanical issues such as occlusion, air in the line, or low battery; and clinical alerts that indicate that a programmed dose exceeds a predefined safety limit. Mechanical alarms occur with greater frequency than clinical alerts, but alarms and alerts vary widely by pump model, patient population, time of day, month, and type of drug. Several causes of clinically insignificant alerts and alarms may be actionable, and strategies proposed in the literature include development of a multidisciplinary team to oversee the quality improvement effort with involvement of end users, standardization of medication administration practices, widening of drug limit library thresholds when clinically appropriate, maintaining up-to-date drug limit libraries, and interoperability. Whereas many strategies have been proposed, and case studies have been reported, none have been rigorously evaluated. In addition, more research is needed related to managing occlusion and air-in-line alarms, especially for complicated infusions. Future work should focus on the evaluation of specific and replicable alert and alarm reduction strategies with a greater emphasis on quantitative metrics. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  3. Carbon Smackdown: Smart Windows (LBNL Summer Lecture Series)

    ScienceCinema

    Milliron, Delia; Selkowitz, Stephen

    2017-12-09

    August 3, 2010 Berkeley Lab talk: In the fourth of five Carbon Smackdown matches, Berkeley Lab researchers Delia Milliron of the Materials Sciences Division and Stephen Selkowitz of the Environmental Energy Technologies Division talk about their work on energy-saving smart windows.

  4. Integrating Dynamic Data and Sensors with Semantic 3D City Models in the Context of Smart Cities

    NASA Astrophysics Data System (ADS)

    Chaturvedi, K.; Kolbe, T. H.

    2016-10-01

    Smart cities provide effective integration of human, physical and digital systems operating in the built environment. The advancements in city and landscape models, sensor web technologies, and simulation methods play a significant role in city analyses and improving quality of life of citizens and governance of cities. Semantic 3D city models can provide substantial benefits and can become a central information backbone for smart city infrastructures. However, current generation semantic 3D city models are static in nature and do not support dynamic properties and sensor observations. In this paper, we propose a new concept called Dynamizer allowing to represent highly dynamic data and providing a method for injecting dynamic variations of city object properties into the static representation. The approach also provides direct capability to model complex patterns based on statistics and general rules and also, real-time sensor observations. The concept is implemented as an Application Domain Extension for the CityGML standard. However, it could also be applied to other GML-based application schemas including the European INSPIRE data themes and national standards for topography and cadasters like the British Ordnance Survey Mastermap or the German cadaster standard ALKIS.

  5. Self-Powered Wireless Smart Sensor Node Enabled by an Ultrastable, Highly Efficient, and Superhydrophobic-Surface-Based Triboelectric Nanogenerator.

    PubMed

    Zhao, Kun; Wang, Zhong Lin; Yang, Ya

    2016-09-27

    Wireless sensor networks will be responsible for a majority of the fast growth in intelligent systems in the next decade. However, most of the wireless smart sensor nodes require an external power source such as a Li-ion battery, where the labor cost and environmental waste issues of replacing batteries have largely limited the practical applications. Instead of using a Li-ion battery, we report an ultrastable, highly efficient, and superhydrophobic-surface-based triboelectric nanogenerator (TENG) to scavenge wind energy for sustainably powering a wireless smart temperature sensor node. There is no decrease in the output voltage and current of the TENG after continuous working for about 14 h at a wind speed of 12 m/s. Through a power management circuit, the TENG can deliver a constant output voltage of 3.3 V and a pulsed output current of about 100 mA to achieve highly efficient energy storage in a capacitor. A wireless smart temperature sensor node can be sustainably powered by the TENG for sending the real-time temperature data to an iPhone under a working distance of 26 m, demonstrating the feasibility of the self-powered wireless smart sensor networks.

  6. Development of a real time activity monitoring Android application utilizing SmartStep.

    PubMed

    Hegde, Nagaraj; Melanson, Edward; Sazonov, Edward

    2016-08-01

    Footwear based activity monitoring systems are becoming popular in academic research as well as consumer industry segments. In our previous work, we had presented developmental aspects of an insole based activity and gait monitoring system-SmartStep, which is a socially acceptable, fully wireless and versatile insole. The present work describes the development of an Android application that captures the SmartStep data wirelessly over Bluetooth Low energy (BLE), computes features on the received data, runs activity classification algorithms and provides real time feedback. The development of activity classification methods was based on the the data from a human study involving 4 participants. Participants were asked to perform activities of sitting, standing, walking, and cycling while they wore SmartStep insole system. Multinomial Logistic Discrimination (MLD) was utilized in the development of machine learning model for activity prediction. The resulting classification model was implemented in an Android Smartphone. The Android application was benchmarked for power consumption and CPU loading. Leave one out cross validation resulted in average accuracy of 96.9% during model training phase. The Android application for real time activity classification was tested on a human subject wearing SmartStep resulting in testing accuracy of 95.4%.

  7. Electronics for Piezoelectric Smart Structures

    NASA Technical Reports Server (NTRS)

    Warkentin, D. J.; Tani, J.

    1997-01-01

    This paper briefly presents work addressing some of the basic considerations for the electronic components used in smart structures incorporating piezoelectric elements. After general remarks on the application of piezoelectric elements to the problem of structural vibration control, three main topics are described. Work to date on the development of techniques for embedding electronic components within structural parts is presented, followed by a description of the power flow and dissipation requirements of those components. Finally current work on the development of electronic circuits for use in an 'active wall' for acoustic noise is introduced.

  8. Cost benefit analysis for smart grid projects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karali, Nihan; He, Gang; Mauzey, J

    The U.S. is unusual in that a definition of the term “smart grid” was written into legislation, appearing in the Energy Independence and Security Act (2007). When the recession called for stimulus spending and the American Recovery and Reinvestment Act (ARRA, 2009) was passed, a framework already existed for identification of smart grid projects. About $4.5B of the U.S. Department of Energy’s (U.S. DOE’s) $37B allocation from ARRA was directed to smart grid projects of two types, investment grants and demonstrations. Matching funds from other sources more than doubled the total value of ARRA-funded smart grid projects. The Smart Gridmore » Investment Grant Program (SGIG) consumed all but $620M of the ARRA funds, which was available for the 32 projects in the Smart Grid Demonstration Program (SGDP, or demonstrations). Given the economic potential of these projects and the substantial investments required, there was keen interest in estimating the benefits of the projects (i.e., quantifying and monetizing the performance of smart grid technologies). Common method development and application, data collection, and analysis to calculate and publicize the benefits were central objectives of the program. For this purpose standard methods and a software tool, the Smart Grid Computational Tool (SGCT), were developed by U.S. DOE and a spreadsheet model was made freely available to grantees and other analysts. The methodology was intended to define smart grid technologies or assets, the mechanisms by which they generate functions, their impacts and, ultimately, their benefits. The SGCT and its application to the Demonstration Projects are described, and actual projects in Southern California and in China are selected to test and illustrate the tool. The usefulness of the methodology and tool for international analyses is then assessed.« less

  9. A Review of Rock Bolt Monitoring Using Smart Sensors.

    PubMed

    Song, Gangbing; Li, Weijie; Wang, Bo; Ho, Siu Chun Michael

    2017-04-05

    Rock bolts have been widely used as rock reinforcing members in underground coal mine roadways and tunnels. Failures of rock bolts occur as a result of overloading, corrosion, seismic burst and bad grouting, leading to catastrophic economic and personnel losses. Monitoring the health condition of the rock bolts plays an important role in ensuring the safe operation of underground mines. This work presents a brief introduction on the types of rock bolts followed by a comprehensive review of rock bolt monitoring using smart sensors. Smart sensors that are used to assess rock bolt integrity are reviewed to provide a firm perception of the application of smart sensors for enhanced performance and reliability of rock bolts. The most widely used smart sensors for rock bolt monitoring are the piezoelectric sensors and the fiber optic sensors. The methodologies and principles of these smart sensors are reviewed from the point of view of rock bolt integrity monitoring. The applications of smart sensors in monitoring the critical status of rock bolts, such as the axial force, corrosion occurrence, grout quality and resin delamination, are highlighted. In addition, several prototypes or commercially available smart rock bolt devices are also introduced.

  10. A Review of Rock Bolt Monitoring Using Smart Sensors

    PubMed Central

    Song, Gangbing; Li, Weijie; Wang, Bo; Ho, Siu Chun Michael

    2017-01-01

    Rock bolts have been widely used as rock reinforcing members in underground coal mine roadways and tunnels. Failures of rock bolts occur as a result of overloading, corrosion, seismic burst and bad grouting, leading to catastrophic economic and personnel losses. Monitoring the health condition of the rock bolts plays an important role in ensuring the safe operation of underground mines. This work presents a brief introduction on the types of rock bolts followed by a comprehensive review of rock bolt monitoring using smart sensors. Smart sensors that are used to assess rock bolt integrity are reviewed to provide a firm perception of the application of smart sensors for enhanced performance and reliability of rock bolts. The most widely used smart sensors for rock bolt monitoring are the piezoelectric sensors and the fiber optic sensors. The methodologies and principles of these smart sensors are reviewed from the point of view of rock bolt integrity monitoring. The applications of smart sensors in monitoring the critical status of rock bolts, such as the axial force, corrosion occurrence, grout quality and resin delamination, are highlighted. In addition, several prototypes or commercially available smart rock bolt devices are also introduced. PMID:28379167

  11. HyRA: A Hybrid Recommendation Algorithm Focused on Smart POI. Ceutí as a Study Scenario.

    PubMed

    Alvarado-Uribe, Joanna; Gómez-Oliva, Andrea; Barrera-Animas, Ari Yair; Molina, Germán; Gonzalez-Mendoza, Miguel; Parra-Meroño, María Concepción; Jara, Antonio J

    2018-03-17

    Nowadays, Physical Web together with the increase in the use of mobile devices, Global Positioning System (GPS), and Social Networking Sites (SNS) have caused users to share enriched information on the Web such as their tourist experiences. Therefore, an area that has been significantly improved by using the contextual information provided by these technologies is tourism. In this way, the main goals of this work are to propose and develop an algorithm focused on the recommendation of Smart Point of Interaction (Smart POI) for a specific user according to his/her preferences and the Smart POIs' context. Hence, a novel Hybrid Recommendation Algorithm (HyRA) is presented by incorporating an aggregation operator into the user-based Collaborative Filtering (CF) algorithm as well as including the Smart POIs' categories and geographical information. For the experimental phase, two real-world datasets have been collected and preprocessed. In addition, one Smart POIs' categories dataset was built. As a result, a dataset composed of 16 Smart POIs, another constituted by the explicit preferences of 200 respondents, and the last dataset integrated by 13 Smart POIs' categories are provided. The experimental results show that the recommendations suggested by HyRA are promising.

  12. HyRA: A Hybrid Recommendation Algorithm Focused on Smart POI. Ceutí as a Study Scenario

    PubMed Central

    Gómez-Oliva, Andrea; Molina, Germán

    2018-01-01

    Nowadays, Physical Web together with the increase in the use of mobile devices, Global Positioning System (GPS), and Social Networking Sites (SNS) have caused users to share enriched information on the Web such as their tourist experiences. Therefore, an area that has been significantly improved by using the contextual information provided by these technologies is tourism. In this way, the main goals of this work are to propose and develop an algorithm focused on the recommendation of Smart Point of Interaction (Smart POI) for a specific user according to his/her preferences and the Smart POIs’ context. Hence, a novel Hybrid Recommendation Algorithm (HyRA) is presented by incorporating an aggregation operator into the user-based Collaborative Filtering (CF) algorithm as well as including the Smart POIs’ categories and geographical information. For the experimental phase, two real-world datasets have been collected and preprocessed. In addition, one Smart POIs’ categories dataset was built. As a result, a dataset composed of 16 Smart POIs, another constituted by the explicit preferences of 200 respondents, and the last dataset integrated by 13 Smart POIs’ categories are provided. The experimental results show that the recommendations suggested by HyRA are promising. PMID:29562590

  13. Power systems and requirements for the integration of smart structures into aircraft

    NASA Astrophysics Data System (ADS)

    Lockyer, Allen J.; Martin, Christopher A.; Lindner, Douglas K.; Walia, Paramjit S.

    2002-07-01

    Electrical power distribution for recently developed smart actuators becomes an important air-vehicle challenge if projected smart actuation benefits are to be met. Among the items under development are variable shape inlets and control surfaces that utilize shape memory alloys (SMA); full span, chord-wise and span-wise contouring trailing control surfaces that use SMA or piezoelectric materials for actuation; and other strain-based actuators for buffet load alleviation, flutter suppression and flow control. At first glance, such technologies afford overall vehicle performance improvement, however, integration system impacts have yet to be determined or quantified. Power systems to support smart structures initiatives are the focus of the current paper. The paper has been organized into five main topics for further discussion: (1) air-vehicle power system architectures - standard and advanced distribution concepts for actuators, (2) smart wing actuator power requirements and results - highlighting wind tunnel power measurements from shape memory alloy and piezoelectric ultrasonic motor actuated control surfaces and different dynamic pressure and angle of attack; (3) vehicle electromagnetic effects (EME) issues, (4) power supply design considerations for smart actuators - featuring the aircraft power and actuator interface, and (5) summary and conclusions.

  14. USDA Snack Policy Implementation: Best Practices From the Front Lines, United States, 2013–2014

    PubMed Central

    Chriqui, Jamie; Chavez, Noel; Odoms-Young, Angela; Handler, Arden

    2016-01-01

    Introduction The Smart Snacks in Schools interim final rule was promulgated by the US Department of Agriculture (USDA) as authorized by the Healthy, Hunger-Free Kids Act of 2010 (PL 111–296) and implementation commenced beginning July 1, 2014; however, in the years leading up to this deadline, national studies suggested that most schools were far from meeting the USDA standards. Evidence to guide successful implementation of the standards is needed. This study examined snack policy implementation in exemplary high schools to learn best practices for implementation. Methods Guided by a multiple case study approach, school professionals (n = 37) from 9 high schools across 8 states were recruited to be interviewed about perceptions of school snack implementation; schools were selected using criterion sampling on the basis of the HealthierUS Schools Challenge: Smarter Lunchrooms (HUSSC: SL) database. Interview transcripts and internal documents were organized and coded in ATLAS.Ti v7; 2 researchers coded and analyzed data using a constant comparative analysis method to identify best practice themes. Results Best practices for snack policy implementation included incorporating the HUSSC: SL award’s comprehensive wellness approach; leveraging state laws or district policies to reinforce snack reform initiatives; creating strong internal and external partnerships; and crafting positive and strategic communications. Conclusion Implementation of snack policies requires evidence of successful experiences from those on the front lines. As federal, state, and local technical assistance entities work to ensure implementation of the Smart Snacks standards, these best practices provide strategies to facilitate the process. PMID:27309416

  15. A Privacy-Protecting Authentication Scheme for Roaming Services with Smart Cards

    NASA Astrophysics Data System (ADS)

    Son, Kyungho; Han, Dong-Guk; Won, Dongho

    In this work we propose a novel smart card based privacy-protecting authentication scheme for roaming services. Our proposal achieves so-called Class 2 privacy protection, i.e., no information identifying a roaming user and also linking the user's behaviors is not revealed in a visited network. It can be used to overcome the inherent structural flaws of smart card based anonymous authentication schemes issued recently. As shown in our analysis, our scheme is computationally efficient for a mobile user.

  16. Health care transformation through collaboration on open-source informatics projects: integrating a medical applications platform, research data repository, and patient summarization.

    PubMed

    Klann, Jeffrey G; McCoy, Allison B; Wright, Adam; Wattanasin, Nich; Sittig, Dean F; Murphy, Shawn N

    2013-05-30

    The Strategic Health IT Advanced Research Projects (SHARP) program seeks to conquer well-understood challenges in medical informatics through breakthrough research. Two SHARP centers have found alignment in their methodological needs: (1) members of the National Center for Cognitive Informatics and Decision-making (NCCD) have developed knowledge bases to support problem-oriented summarizations of patient data, and (2) Substitutable Medical Apps, Reusable Technologies (SMART), which is a platform for reusable medical apps that can run on participating platforms connected to various electronic health records (EHR). Combining the work of these two centers will ensure wide dissemination of new methods for synthesized views of patient data. Informatics for Integrating Biology and the Bedside (i2b2) is an NIH-funded clinical research data repository platform in use at over 100 sites worldwide. By also working with a co-occurring initiative to SMART-enabling i2b2, we can confidently write one app that can be used extremely broadly. Our goal was to facilitate development of intuitive, problem-oriented views of the patient record using NCCD knowledge bases that would run in any EHR. To do this, we developed a collaboration between the two SHARPs and an NIH center, i2b2. First, we implemented collaborative tools to connect researchers at three institutions. Next, we developed a patient summarization app using the SMART platform and a previously validated NCCD problem-medication linkage knowledge base derived from the National Drug File-Reference Terminology (NDF-RT). Finally, to SMART-enable i2b2, we implemented two new Web service "cells" that expose the SMART application programming interface (API), and we made changes to the Web interface of i2b2 to host a "carousel" of SMART apps. We deployed our SMART-based, NDF-RT-derived patient summarization app in this SMART-i2b2 container. It displays a problem-oriented view of medications and presents a line-graph display of laboratory results. This summarization app can be run in any EHR environment that either supports SMART or runs SMART-enabled i2b2. This i2b2 "clinical bridge" demonstrates a pathway for reusable app development that does not require EHR vendors to immediately adopt the SMART API. Apps can be developed in SMART and run by clinicians in the i2b2 repository, reusing clinical data extracted from EHRs. This may encourage the adoption of SMART by supporting SMART app development until EHRs adopt the platform. It also allows a new variety of clinical SMART apps, fueled by the broad aggregation of data types available in research repositories. The app (including its knowledge base) and SMART-i2b2 are open-source and freely available for download.

  17. Ultra-Low-Power Smart Electronic Nose System Based on Three-Dimensional Tin Oxide Nanotube Arrays.

    PubMed

    Chen, Jiaqi; Chen, Zhuo; Boussaid, Farid; Zhang, Daquan; Pan, Xiaofang; Zhao, Huijuan; Bermak, Amine; Tsui, Chi-Ying; Wang, Xinran; Fan, Zhiyong

    2018-06-04

    In this work, we present a high-performance smart electronic nose (E-nose) system consisting of a multiplexed tin oxide (SnO 2 ) nanotube sensor array, read-out circuit, wireless data transmission unit, mobile phone receiver, and data processing application (App). Using the designed nanotube sensor device structure in conjunction with multiple electrode materials, high-sensitivity gas detection and discrimination have been achieved at room temperature, enabling a 1000 times reduction of the sensor's power consumption as compared to a conventional device using thin film SnO 2 . The experimental results demonstrate that the developed E-nose can identify indoor target gases using a simple vector-matching gas recognition algorithm. In addition, the fabricated E-nose has achieved state-of-the-art sensitivity for H 2 and benzene detection at room temperature with metal oxide sensors. Such a smart E-nose system can address the imperative needs for distributed environmental monitoring in smart homes, smart buildings, and smart cities.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    SmartImport.py is a Python source-code file that implements a replacement for the standard Python module importer. The code is derived from knee.py, a file in the standard Python diestribution , and adds functionality to improve the performance of Python module imports in massively parallel contexts.

  19. FPGA-based fused smart sensor for dynamic and vibration parameter extraction in industrial robot links.

    PubMed

    Rodriguez-Donate, Carlos; Morales-Velazquez, Luis; Osornio-Rios, Roque Alfredo; Herrera-Ruiz, Gilberto; de Jesus Romero-Troncoso, Rene

    2010-01-01

    Intelligent robotics demands the integration of smart sensors that allow the controller to efficiently measure physical quantities. Industrial manipulator robots require a constant monitoring of several parameters such as motion dynamics, inclination, and vibration. This work presents a novel smart sensor to estimate motion dynamics, inclination, and vibration parameters on industrial manipulator robot links based on two primary sensors: an encoder and a triaxial accelerometer. The proposed smart sensor implements a new methodology based on an oversampling technique, averaging decimation filters, FIR filters, finite differences and linear interpolation to estimate the interest parameters, which are computed online utilizing digital hardware signal processing based on field programmable gate arrays (FPGA).

  20. FPGA-Based Fused Smart Sensor for Dynamic and Vibration Parameter Extraction in Industrial Robot Links

    PubMed Central

    Rodriguez-Donate, Carlos; Morales-Velazquez, Luis; Osornio-Rios, Roque Alfredo; Herrera-Ruiz, Gilberto; de Jesus Romero-Troncoso, Rene

    2010-01-01

    Intelligent robotics demands the integration of smart sensors that allow the controller to efficiently measure physical quantities. Industrial manipulator robots require a constant monitoring of several parameters such as motion dynamics, inclination, and vibration. This work presents a novel smart sensor to estimate motion dynamics, inclination, and vibration parameters on industrial manipulator robot links based on two primary sensors: an encoder and a triaxial accelerometer. The proposed smart sensor implements a new methodology based on an oversampling technique, averaging decimation filters, FIR filters, finite differences and linear interpolation to estimate the interest parameters, which are computed online utilizing digital hardware signal processing based on field programmable gate arrays (FPGA). PMID:22319345

  1. Implementation of spatial smart waste management system in malaysia

    NASA Astrophysics Data System (ADS)

    Omar, M. F.; Termizi, A. A. A.; Zainal, D.; Wahap, N. A.; Ismail, N. M.; Ahmad, N.

    2016-06-01

    One of the challenges to innovate and create an IoT -enabled solution is in monitoring and management of the environment. Waste collection utilizing the Internet of Things (IoT) with the technology of smart wireless sensors will able to gather fill-level data from waste containers hence providing a waste monitoring solution that brings up savings in waste collection costs. One of the challenges to the local authority is how to monitor the works of contractor effective and efficiently in waste management. This paper will propose to the local authority the implementation of smart waste management in Malaysia to improve the city management and to provide better services to the public towards smart city applications.

  2. Securing Sensitive Flight and Engine Simulation Data Using Smart Card Technology

    NASA Technical Reports Server (NTRS)

    Blaser, Tammy M.

    2003-01-01

    NASA Glenn Research Center has developed a smart card prototype capable of encrypting and decrypting disk files required to run a distributed aerospace propulsion simulation. Triple Data Encryption Standard (3DES) encryption is used to secure the sensitive intellectual property on disk pre, during, and post simulation execution. The prototype operates as a secure system and maintains its authorized state by safely storing and permanently retaining the encryption keys only on the smart card. The prototype is capable of authenticating a single smart card user and includes pre simulation and post simulation tools for analysis and training purposes. The prototype's design is highly generic and can be used to protect any sensitive disk files with growth capability to urn multiple simulations. The NASA computer engineer developed the prototype on an interoperable programming environment to enable porting to other Numerical Propulsion System Simulation (NPSS) capable operating system environments.

  3. SMART trial: A randomized clinical trial of self-monitoring in behavioral weight management-design and baseline findings

    PubMed Central

    Burke, Lora E.; Styn, Mindi A.; Glanz, Karen; Ewing, Linda J.; Elci, Okan U.; Conroy, Margaret B.; Sereika, Susan M.; Acharya, Sushama D.; Music, Edvin; Keating, Alison L.; Sevick, Mary Ann

    2009-01-01

    Background The primary form of treatment for obesity today is behavioral therapy. Self-monitoring diet and physical activity plays an important role in interventions targeting behavior and weight change. The SMART weight loss trial examined the impact of replacing the standard paper record used for self-monitoring with a personal digital assistant (PDA). This paper describes the design, methods, intervention, and baseline sample characteristics of the SMART trial. Methods The SMART trial used a 3-group design to determine the effects of different modes of self-monitoring on short- and long-term weight loss and on adherence to self-monitoring in a 24-month intervention. Participants were randomized to one of three conditions (1) use of a standard paper record (PR); (2) use of a PDA with dietary and physical activity software (PDA); or (3), use of a PDA with the same software plus a customized feedback program (PDA + FB). Results We screened 704 individuals and randomized 210. There were statistically but not clinically significant differences among the three cohorts in age, education, HDL cholesterol, blood glucose and systolic blood pressure. At 24 months, retention rate for the first of three cohorts was 90%. Conclusions To the best of our knowledge, the SMART trial is the first large study to compare different methods of self-monitoring in a behavioral weight loss intervention and to compare the use of PDAs to conventional paper records. This study has the potential to reveal significant details about self-monitoring patterns and whether technology can improve adherence to this vital intervention component. PMID:19665588

  4. Smart Start II: Why Standards Matter.

    ERIC Educational Resources Information Center

    Barth, Patte; Mitchell, Ruth

    This book explores how standards are bringing about changes in elementary schools and conveys what standards-based education in elementary schools looks and feels like. Chapter 1 tells the story of Andrew as an emblem of the common fate of children in an educational system that did not know its purpose. Chapter 2 sketches the history and…

  5. Research on Service Platform of Internet of Things for Smart City

    NASA Astrophysics Data System (ADS)

    Wang, W.; He, Z.; Huang, D.; Zhang, X.

    2014-04-01

    The application of Internet of Things in surveying and mapping industry basically is at the exploration stage, has not formed a unified standard. Chongqing Institute of Surveying and Mapping (CQISM) launched the research p roject "Research on the Technology of Internet of Things for Smart City". The project focuses on the key technologies of information transmission and exchange on the Internet of Things platform. The data standards of Internet of Things are designed. The real-time acquisition, mass storage and distributed data service of mass sensors are realized. On this basis, CQISM deploys the prototype platform of Internet of Things. The simulation application in Connected Car proves that the platform design is scientific and practical.

  6. SERENITY in e-Business and Smart Item Scenarios

    NASA Astrophysics Data System (ADS)

    Benameur, Azzedine; Khoury, Paul El; Seguran, Magali; Sinha, Smriti Kumar

    SERENITY Artefacts, like Class, Patterns, Implementations and Executable Components for Security & Dependability (S&D) in addition to Serenity Runtime Framework (SRF) are discussed in previous chapters. How to integrate these artefacts with applications in Serenity approach is discussed here with two scenarios. The e-Business scenario is a standard loan origination process in a bank. The Smart Item scenario is an Ambient intelligence case study where we take advantage of Smart Items to provide an electronic healthcare infrastructure for remote healthcare assistance. In both cases, we detail how the prototype implementations of the scenarios select proper executable components through Serenity Runtime Framework and then demonstrate how these executable components of the S&D Patterns are deployed.

  7. Prototyping a Web-of-Energy Architecture for Smart Integration of Sensor Networks in Smart Grids Domain.

    PubMed

    Caballero, Víctor; Vernet, David; Zaballos, Agustín; Corral, Guiomar

    2018-01-30

    Sensor networks and the Internet of Things have driven the evolution of traditional electric power distribution networks towards a new paradigm referred to as Smart Grid. However, the different elements that compose the Information and Communication Technologies (ICTs) layer of a Smart Grid are usually conceived as isolated systems that typically result in rigid hardware architectures which are hard to interoperate, manage, and to adapt to new situations. If the Smart Grid paradigm has to be presented as a solution to the demand for distributed and intelligent energy management system, it is necessary to deploy innovative IT infrastructures to support these smart functions. One of the main issues of Smart Grids is the heterogeneity of communication protocols used by the smart sensor devices that integrate them. The use of the concept of the Web of Things is proposed in this work to tackle this problem. More specifically, the implementation of a Smart Grid's Web of Things, coined as the Web of Energy is introduced. The purpose of this paper is to propose the usage of Web of Energy by means of the Actor Model paradigm to address the latent deployment and management limitations of Smart Grids. Smart Grid designers can use the Actor Model as a design model for an infrastructure that supports the intelligent functions demanded and is capable of grouping and converting the heterogeneity of traditional infrastructures into the homogeneity feature of the Web of Things. Conducted experimentations endorse the feasibility of this solution and encourage practitioners to point their efforts in this direction.

  8. Prototyping a Web-of-Energy Architecture for Smart Integration of Sensor Networks in Smart Grids Domain

    PubMed Central

    Vernet, David; Corral, Guiomar

    2018-01-01

    Sensor networks and the Internet of Things have driven the evolution of traditional electric power distribution networks towards a new paradigm referred to as Smart Grid. However, the different elements that compose the Information and Communication Technologies (ICTs) layer of a Smart Grid are usually conceived as isolated systems that typically result in rigid hardware architectures which are hard to interoperate, manage, and to adapt to new situations. If the Smart Grid paradigm has to be presented as a solution to the demand for distributed and intelligent energy management system, it is necessary to deploy innovative IT infrastructures to support these smart functions. One of the main issues of Smart Grids is the heterogeneity of communication protocols used by the smart sensor devices that integrate them. The use of the concept of the Web of Things is proposed in this work to tackle this problem. More specifically, the implementation of a Smart Grid’s Web of Things, coined as the Web of Energy is introduced. The purpose of this paper is to propose the usage of Web of Energy by means of the Actor Model paradigm to address the latent deployment and management limitations of Smart Grids. Smart Grid designers can use the Actor Model as a design model for an infrastructure that supports the intelligent functions demanded and is capable of grouping and converting the heterogeneity of traditional infrastructures into the homogeneity feature of the Web of Things. Conducted experimentations endorse the feasibility of this solution and encourage practitioners to point their efforts in this direction. PMID:29385748

  9. TOPICAL REVIEW: Smart aggregates: multi-functional sensors for concrete structures—a tutorial and a review

    NASA Astrophysics Data System (ADS)

    Song, Gangbing; Gu, Haichang; Mo, Yi-Lung

    2008-06-01

    This paper summarizes the authors' recent pioneering research work in piezoceramic-based smart aggregates and their innovative applications in concrete civil structures. The basic operating principle of smart aggregates is first introduced. The proposed smart aggregate is formed by embedding a waterproof piezoelectric patch with lead wires into a small concrete block. The proposed smart aggregates are multi-functional and can perform three major tasks: early-age concrete strength monitoring, impact detection and structural health monitoring. The proposed smart aggregates are embedded into the desired location before the casting of the concrete structure. The concrete strength development is monitored by observing the high frequency harmonic wave response of the smart aggregate. Impact on the concrete structure is detected by observing the open-circuit voltage of the piezoceramic patch in the smart aggregate. For structural health monitoring purposes, a smart aggregate-based active sensing system is designed for the concrete structure. Wavelet packet analysis is used as a signal-processing tool to analyze the sensor signal. A damage index based on the wavelet packet analysis is used to determine the structural health status. To better describe the time-history and location information of damage, two types of damage index matrices are proposed: a sensor-history damage index matrix and an actuator-sensor damage index matrix. To demonstrate the multi-functionality of the proposed smart aggregates, different types of concrete structures have been used as test objects, including concrete bridge bent-caps, concrete cylinders and a concrete frame. Experimental results have verified the effectiveness and the multi-functionality of the proposed smart aggregates. The multi-functional smart aggregates have the potential to be applied to the comprehensive monitoring of concrete structures from their earliest stages and throughout their lifetime.

  10. The Smart Drug Delivery System and Its Clinical Potential

    PubMed Central

    Liu, Dong; Yang, Fang; Xiong, Fei; Gu, Ning

    2016-01-01

    With the unprecedented progresses of biomedical nanotechnology during the past few decades, conventional drug delivery systems (DDSs) have been involved into smart DDSs with stimuli-responsive characteristics. Benefiting from the response to specific internal or external triggers, those well-defined nanoplatforms can increase the drug targeting efficacy, in the meantime, reduce side effects/toxicities of payloads, which are key factors for improving patient compliance. In academic field, variety of smart DDSs have been abundantly demonstrated for various intriguing systems, such as stimuli-responsive polymeric nanoparticles, liposomes, metals/metal oxides, and exosomes. However, these nanoplatforms are lack of standardized manufacturing method, toxicity assessment experience, and clear relevance between the pre-clinical and clinical studies, resulting in the huge difficulties to obtain regulatory and ethics approval. Therefore, such relatively complex stimulus-sensitive nano-DDSs are not currently approved for clinical use. In this review, we highlight the recent advances of smart nanoplatforms for targeting drug delivery. Furthermore, the clinical translation obstacles faced by these smart nanoplatforms have been reviewed and discussed. We also present the future directions and perspectives of stimuli-sensitive DDS in clinical applications. PMID:27375781

  11. Smart sensor systems for human health breath monitoring applications.

    PubMed

    Hunter, G W; Xu, J C; Biaggi-Labiosa, A M; Laskowski, D; Dutta, P K; Mondal, S P; Ward, B J; Makel, D B; Liu, C C; Chang, C W; Dweik, R A

    2011-09-01

    Breath analysis techniques offer a potential revolution in health care diagnostics, especially if these techniques can be brought into standard use in the clinic and at home. The advent of microsensors combined with smart sensor system technology enables a new generation of sensor systems with significantly enhanced capabilities and minimal size, weight and power consumption. This paper discusses the microsensor/smart sensor system approach and provides a summary of efforts to migrate this technology into human health breath monitoring applications. First, the basic capability of this approach to measure exhaled breath associated with exercise physiology is demonstrated. Building from this foundation, the development of a system for a portable asthma home health care system is described. A solid-state nitric oxide (NO) sensor for asthma monitoring has been identified, and efforts are underway to miniaturize this NO sensor technology and integrate it into a smart sensor system. It is concluded that base platform microsensor technology combined with smart sensor systems can address the needs of a range of breath monitoring applications and enable new capabilities for healthcare.

  12. Equalizing Si photodetectors fabricated in standard CMOS processes

    NASA Astrophysics Data System (ADS)

    Guerrero, E.; Aguirre, J.; Sánchez-Azqueta, C.; Royo, G.; Gimeno, C.; Celma, S.

    2017-05-01

    This work presents a new continuous-time equalization approach to overcome the limited bandwidth of integrated CMOS photodetectors. It is based on a split-path topology that features completely decoupled controls for boosting and gain; this capability allows a better tuning of the equalizer in comparison with other architectures based on the degenerated differential pair, which is particularly helpful to achieve a proper calibration of the system. The equalizer is intended to enhance the bandwidth of CMOS standard n-well/p-bulk differential photodiodes (DPDs), which falls below 10MHz representing a bottleneck in fully integrated optoelectronic interfaces to fulfill the low-cost requirements of modern smart sensors. The proposed equalizer has been simulated in a 65nm CMOS process and biased with a single supply voltage of 1V, where the bandwidth of the DPD has been increased up to 3 GHz.

  13. Does feedback on daily activity level from a Smart watch during inpatient stroke rehabilitation increase physical activity levels? Study protocol for a randomized controlled trial.

    PubMed

    Dong, Yun; Steins, Dax; Sun, Shanbin; Li, Fei; Amor, James D; James, Christopher J; Xia, Zhidao; Dawes, Helen; Izadi, Hooshang; Cao, Yi; Wade, Derick T

    2018-03-09

    Practicing activities improves recovery after stroke, but many people in hospital do little activity. Feedback on activity using an accelerometer is a potential method to increase activity in hospital inpatients. This study's goal is to investigate the effect of feedback, enabled by a Smart watch, on daily physical activity levels during inpatient stroke rehabilitation and the short-term effects on simple functional activities, primarily mobility. A randomized controlled trial will be undertaken within the stroke rehabilitation wards of the Second Affiliated hospital of Anhui University of Traditional Chinese Medicine, Hefei, China. The study participants will be stroke survivors who meet inclusion criteria for the study, primarily: able to participate, no more than 4 months after stroke and walking independently before stroke. Participants will all receive standard local rehabilitation and will be randomly assigned either to receive regular feedback about activity levels, relative to a daily goal tailored by the smart watch over five time periods throughout a working day, or to no feedback, but still wearing the Smart watch. The intervention will last up to 3 weeks, ending sooner if discharged. The data to be collected in all participants include measures of daily activity (Smart watch measure); mobility (Rivermead Mobility Index and 10-metre walking time); independence in personal care (Barthel Activities of Daily Living (ADL) Index); overall activities (the World Health Organization (WHO) Disability Assessment Scale, 12-item version); and quality of life (the Euro-Qol 5L5D). Data will be collected by assessors blinded to allocation of the intervention at baseline, 3 weeks or at discharge (whichever is the sooner); and a reduced data set will be collected at 12 weeks by telephone interview. The primary outcome will be change in daily accelerometer activity scores. Secondary outcomes are compliance and adherence to wearing the watch, and changes in mobility, independence in personal care activities, and health-related quality of life. This project is being implemented in a large city hospital with limited resources and limited research experience. There has been a pilot feasibility study using the Smart watch, which highlighted some areas needing change and these are incorporated in this protocol. ClinicalTrials.gov, NCT02587585 . Registered on 30 September 2015. Chinese Clinical Trial Registry, ChiCTR-IOR-15007179 . Registered on 8 August 2015.

  14. The eSMART study protocol: a randomised controlled trial to evaluate electronic symptom management using the advanced symptom management system (ASyMS) remote technology for patients with cancer

    PubMed Central

    Maguire, Roma; Fox, Patricia A; McCann, Lisa; Miaskowski, Christine; Kotronoulas, Grigorios; Miller, Morven; Furlong, Eileen; Ream, Emma; Armes, Jo; Patiraki, Elisabeth; Gaiger, Alexander; Berg, Geir V; Flowerday, Adrian; Donnan, Peter; McCrone, Paul; Apostolidis, Kathi; Harris, Jenny; Katsaragakis, Stylianos; Buick, Alison R; Kearney, Nora

    2017-01-01

    Introduction While some evidence exists that real-time remote symptom monitoring devices can decrease morbidity and prevent unplanned admissions in oncology patients, overall, these studies have significant methodological weaknesses. The electronic Symptom Management using the Advanced Symptom Management System (ASyMS) Remote Technology (eSMART) study is designed to specifically address these weaknesses with an appropriately powered, repeated-measures, parallel-group stratified randomised controlled trial of oncology patients. Methods and analysis A total of 1108 patients scheduled to commence first-line chemotherapy (CTX) for breast, colorectal or haematological cancer will be recruited from multiple sites across five European countries. Patients will be randomised (1:1) to the ASyMS intervention (intervention group) or to standard care currently available at each site (control group). Patients in the control and intervention groups will complete a demographic and clinical questionnaire, as well as a set of valid and reliable electronic patient-reported outcome measures at enrolment, after each of their CTX cycles (up to a maximum of six cycles) and at 3, 6, 9 and 12 months after completion of their sixth cycle of CTX. Outcomes that will be assessed include symptom burden (primary outcome), quality of life, supportive care needs, anxiety, self-care self-efficacy, work limitations and cost effectiveness and, from a health professional perspective, changes in clinical practice (secondary outcomes). Ethics and dissemination Ethical approval will be obtained prior to the implementation of all major study amendments. Applications will be submitted to all of the ethics committees that granted initial approval. eSMART received approval from the relevant ethics committees at all of the clinical sites across the five participating countries. In collaboration with the European Cancer Patient Coalition (ECPC), the trial results will be disseminated through publications in scientific journals, presentations at international conferences, and postings on the eSMART website and other relevant clinician and consumer websites; establishment of an eSMART website (www.esmartproject.eu) with publicly accessible general information; creation of an eSMART Twitter Handle, and production of a toolkit for implementing/utilising the ASyMS technology in a variety of clinical practices and other transferable health care contexts. Trial registration number NCT02356081. PMID:28592577

  15. A Standard-Based and Context-Aware Architecture for Personal Healthcare Smart Gateways.

    PubMed

    Santos, Danilo F S; Gorgônio, Kyller C; Perkusich, Angelo; Almeida, Hyggo O

    2016-10-01

    The rising availability of Personal Health Devices (PHDs) capable of Personal Network Area (PAN) communication and the desire of keeping a high quality of life are the ingredients of the Connected Health vision. In parallel, a growing number of personal and portable devices, like smartphones and tablet computers, are becoming capable of taking the role of health gateway, that is, a data collector for the sensor PHDs. However, as the number of PHDs increase, the number of other peripherals connected in PAN also increases. Therefore, PHDs are now competing for medium access with other devices, decreasing the Quality of Service (QoS) of health applications in the PAN. In this article we present a reference architecture to prioritize PHD connections based on their state and requirements, creating a healthcare Smart Gateway. Healthcare context information is extracted by observing the traffic through the gateway. A standard-based approach was used to identify health traffic based on ISO/IEEE 11073 family of standards. A reference implementation was developed showing the relevance of the problem and how the proposed architecture can assist in the prioritization. The reference Smart Gateway solution was integrated with a Connected Health System for the Internet of Things, validating its use in a real case scenario.

  16. Graphene-based smart materials

    NASA Astrophysics Data System (ADS)

    Yu, Xiaowen; Cheng, Huhu; Zhang, Miao; Zhao, Yang; Qu, Liangti; Shi, Gaoquan

    2017-09-01

    The high specific surface area and the excellent mechanical, electrical, optical and thermal properties of graphene make it an attractive component for high-performance stimuli-responsive or 'smart' materials. Complementary to these inherent properties, functionalization or hybridization can substantially improve the performance of these materials. Typical graphene-based smart materials include mechanically exfoliated perfect graphene, chemical vapour deposited high-quality graphene, chemically modified graphene (for example, graphene oxide and reduced graphene oxide) and their macroscopic assemblies or composites. These materials are sensitive to a range of stimuli, including gas molecules or biomolecules, pH value, mechanical strain, electrical field, and thermal or optical excitation. In this Review, we outline different graphene-based smart materials and their potential applications in actuators, chemical or strain sensors, self-healing materials, photothermal therapy and controlled drug delivery. We also introduce the working mechanisms of graphene-based smart materials and discuss the challenges facing the realization of their practical applications.

  17. A Taxonomy on Accountability and Privacy Issues in Smart Grids

    NASA Astrophysics Data System (ADS)

    Naik, Ameya; Shahnasser, Hamid

    2017-07-01

    Cyber-Physical Systems (CPS) are combinations of computation, networking, and physical processes. Embedded computers and networks monitor control the physical processes, which affect computations and vice versa. Two applications of cyber physical systems include health-care and smart grid. In this paper, we have considered privacy aspects of cyber-physical system applicable to smart grid. Smart grid in collaboration with different stockholders can help in the improvement of power generation, communication, circulation and consumption. The proper management with monitoring feature by customers and utility of energy usage can be done through proper transmission and electricity flow; however cyber vulnerability could be increased due to an increased assimilation and linkage. This paper discusses various frameworks and architectures proposed for achieving accountability in smart grids by addressing privacy issues in Advance Metering Infrastructure (AMI). This paper also highlights additional work needed for accountability in more precise specifications such as uncertainty or ambiguity, indistinct, unmanageability, and undetectably.

  18. Nanofibrous Smart Fabrics from Twisted Yarns of Electrospun Piezopolymer.

    PubMed

    Yang, Enlong; Xu, Zhe; Chur, Lucas K; Behroozfar, Ali; Baniasadi, Mahmoud; Moreno, Salvador; Huang, Jiacheng; Gilligan, Jules; Minary-Jolandan, Majid

    2017-07-19

    Smart textiles are envisioned to make a paradigm shift in wearable technologies to directly impart functionality into the fibers rather than integrating sensors and electronics onto conformal substrates or skin in wearable devices. Among smart materials, piezoelectric fabrics have not been widely reported, yet. Piezoelectric smart fabrics can be used for mechanical energy harvesting, for thermal energy harvesting through the pyroelectric effect, for ferroelectric applications, as pressure and force sensors, for motion detection, and for ultrasonic sensing. We report on mechanical and material properties of the plied nanofibrous piezoelectric yarns as a function of postprocessing conditions including thermal annealing and drawing (stretching). In addition, we used a continuous electrospinning setup to directly produce P(VDF-TrFE) nanofibers and convert them into twisted plied yarns, and demonstrated application of these plied yarns in woven piezoelectric fabrics. The results of this work can be an early step toward realization of piezoelectric smart fabrics.

  19. Adaptive smart wing design for military aircraft: requirements, concepts, and payoffs

    NASA Astrophysics Data System (ADS)

    Kudva, Jayanth N.; Appa, Kari; Van Way, Craig B.; Lockyer, Allen J.

    1995-05-01

    New developments in smart structures and materials have made it possible to revisit earlier work in adaptive and flexible wing technology, and remove some of the limitations for technology transition to next-generation aircraft. Research performed by Northrop Grumman, under internal funding, has led to a new program sponsored by ARPA to investigate the application of smart structures and materials technologies to twist and adapt and aircraft wing. Conceptual designs are presented based on state-of-the-art materials, including shape memory alloys, piezoelectrics, and fiber optic sensors for incorporation in a proposed smart wing design. Plans are described to demonstrate proof-of-concept on a prototype 1/10 scale -18 model that will be tested in a wind tunnel for final validation. Highlights of the proposed program are summarized with respect to program objectives, requirements, key concept design features, demonstration testing, and smart wing technology payoffs and risks.

  20. Application of smart materials for improved flight performance of military aircraft

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kudva, J.; Appa, K.; Martin, C.

    1995-12-31

    This paper discusses on-going work under an ARPA/WL contract to Northrop Grumman entitled {open_quotes}Smart Structures and Materials Development - Smart Wing.{close_quotes} The contract addresses the application of smart materials and smart Structures concepts to enhance the aerodynamic and maneuver performance of military aircraft. Various concepts for adaptive wing and control surfaces are being studied. Specifically, (a) wing span-wise twist control using built-in shape- memory alloy torquing mechanism and (b) cambered leading edge and trailing edge control surfaces using hybrid piezoelectric and SMA actuation, are being evaluated for a 20% model of a modem day fighter aircraft. The potential benefits ofmore » the designs include increased lift for short take-offs, improved high-speed maneuverability, and enhanced control surface effectiveness. These benefits will be quantified by testing the sub-scale model in a transonic wind tunnel next year.« less

  1. Usability evaluation of the SMART application for youth with mTBI.

    PubMed

    Dexheimer, Judith W; Kurowski, Brad G; Anders, Shilo H; McClanahan, Nicole; Wade, Shari L; Babcock, Lynn

    2017-01-01

    There is a dearth of evidence-based treatments available to address the significant morbidity associated with mild traumatic brain injury (mTBI). To address this gap, we designed a novel user-friendly, web-based application. We describe the preliminary evaluation of feasibility and usability of the application to promote recovery following mTBI in youth, the Self-Monitoring Activity-Restriction and Relaxation Treatment (SMART). SMART incorporates real-time recommendations for individualized symptom management and activity restriction along with training in cognitive-behavioral coping strategies. We conducted a usability evaluation to assess and modify the SMART system prior to further study and deployment. Children ages 11-18 years presenting to the emergency department were recruited after symptoms resolved. Usability was assessed using a 60-min think-aloud protocol of teens and parents describing their interaction with the application. Upon completion of the tasks, each participant also completed the system usability scale (SUS). We performed tests with 4 parent/child dyads. The average age of the children was 13 years (standard deviation=1.8). The parents were an average of 41.5 years old (standard deviation=6.2). Research revealed that the participants were enthusiastic about the interactive portions of the tool particularly the video based sessions. Parents were concerned about the speed at which their child might move through the program and the children thought that the system required large amounts of reading. Based on user feedback, researchers modified SMART to include an audio file in every module and improved the system's aesthetic properties. The mean SUS score was 85, with high SUS scores (>68) indicating satisfactory usability. High initial usability and favorable user feedback provide a foundation for further iterative development and testing of the SMART application as a tool for managing recovery from concussion. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Results of thermal modeling of Smart Energy Coating with phase-transition material for independent electricity generation

    NASA Astrophysics Data System (ADS)

    Pospelova, I. Y.; Pospelova, M. Y.; Bondarenko, A. S.; Kornilov, D. A.

    2018-05-01

    The modeling for Smart Energy Coating is presented. The coating is able to produce electricity on the surface of pipelines and structural elements. Along with electric output, Smart Energy Coating ensures the stable temperature conditions of work for structures, pipelines and regulating elements. The energy production scheme is based on the Peltier principle and the insulating layer with a phase transition. Thermally conductive inclusions of the inside layer with a phase transition material ensure the stable operation of the Peltier element.

  3. SmartR: an open-source platform for interactive visual analytics for translational research data

    PubMed Central

    Herzinger, Sascha; Gu, Wei; Satagopam, Venkata; Eifes, Serge; Rege, Kavita; Barbosa-Silva, Adriano; Schneider, Reinhard

    2017-01-01

    Abstract Summary: In translational research, efficient knowledge exchange between the different fields of expertise is crucial. An open platform that is capable of storing a multitude of data types such as clinical, pre-clinical or OMICS data combined with strong visual analytical capabilities will significantly accelerate the scientific progress by making data more accessible and hypothesis generation easier. The open data warehouse tranSMART is capable of storing a variety of data types and has a growing user community including both academic institutions and pharmaceutical companies. tranSMART, however, currently lacks interactive and dynamic visual analytics and does not permit any post-processing interaction or exploration. For this reason, we developed SmartR, a plugin for tranSMART, that equips the platform not only with several dynamic visual analytical workflows, but also provides its own framework for the addition of new custom workflows. Modern web technologies such as D3.js or AngularJS were used to build a set of standard visualizations that were heavily improved with dynamic elements. Availability and Implementation: The source code is licensed under the Apache 2.0 License and is freely available on GitHub: https://github.com/transmart/SmartR. Contact: reinhard.schneider@uni.lu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:28334291

  4. SmartR: an open-source platform for interactive visual analytics for translational research data.

    PubMed

    Herzinger, Sascha; Gu, Wei; Satagopam, Venkata; Eifes, Serge; Rege, Kavita; Barbosa-Silva, Adriano; Schneider, Reinhard

    2017-07-15

    In translational research, efficient knowledge exchange between the different fields of expertise is crucial. An open platform that is capable of storing a multitude of data types such as clinical, pre-clinical or OMICS data combined with strong visual analytical capabilities will significantly accelerate the scientific progress by making data more accessible and hypothesis generation easier. The open data warehouse tranSMART is capable of storing a variety of data types and has a growing user community including both academic institutions and pharmaceutical companies. tranSMART, however, currently lacks interactive and dynamic visual analytics and does not permit any post-processing interaction or exploration. For this reason, we developed SmartR , a plugin for tranSMART, that equips the platform not only with several dynamic visual analytical workflows, but also provides its own framework for the addition of new custom workflows. Modern web technologies such as D3.js or AngularJS were used to build a set of standard visualizations that were heavily improved with dynamic elements. The source code is licensed under the Apache 2.0 License and is freely available on GitHub: https://github.com/transmart/SmartR . reinhard.schneider@uni.lu. Supplementary data are available at Bioinformatics online. © The Author(s) 2017. Published by Oxford University Press.

  5. Determining the feasibility of objective adherence measurement with blister packaging smart technology.

    PubMed

    van Onzenoort, Hein A; Neef, Cees; Verberk, Willem W; van Iperen, H Peter; de Leeuw, Peter W; van der Kuy, Paul-Hugo M

    2012-05-15

    The results of a feasibility study of blister-pack smart technology for monitoring medication adherence are reported. Research in the area of objective therapy compliance measurement has led to the development of microprocessor-driven systems that record the time a unit dose is removed from blister packaging. One device under development is the Smart Blister-a label imprinted with event-detection circuitry that can be affixed to standard commercial blister cards. In the first trial of the device in actual clinical practice, 115 community-dwelling Dutch patients receiving valsartan maintenance therapy (160 mg once daily) were given 14-day blister packages equipped with the Smart Blister. On the return of empty blister cards to the 20 participating community pharmacies, the stored information was scanned and downloaded for data analysis and patient counseling purposes. A total of 245 Smart Blister-equipped packages were used by valsartan recipients during the eight-month study. The device was largely effective in recording patient and blister-card identification data and other desired information. However, in 17% of cases, the Smart Blister system registered multiple tablet-removal events at the same time, presumably indicating unintentional breakage of nearby conductive circuits and the need for design refinements. The Smart Blister-equipped medication cards were generally well received by patients and pharmacies. An evaluation of the functionality and robustness of the Smart Blister in a real-world clinical practice situation yielded some promising results, but the findings also indicated a need for design refinements and additional performance testing of the device.

  6. Textbook-Bundled Metacognitive Tools: A Study of LearnSmart's Efficacy in General Chemistry

    ERIC Educational Resources Information Center

    Thadani, Vandana; Bouvier-Brown, Nicole C.

    2016-01-01

    College textbook publishers increasingly bundle sophisticated technology-based study tools with their texts. These tools appear promising, but empirical work on their efficacy is needed. We examined whether LearnSmart, a study tool bundled with McGraw-Hill's textbook "Chemistry" (Chang & Goldsby, 2013), improved learning in an…

  7. Smart Schools an Innovation in Education: Malaysian's Experience

    ERIC Educational Resources Information Center

    Mirzajani, Hassan; Bayekolaei, Mehraneh Delaviz; Kookandeh, Meysam Rajaby; Rezaee, Seyede Safoora Razzaghpoor; Kamalifar, Ali Akbar; Shani, Hassan Razaghi

    2016-01-01

    According to the new environment created by the information period, training and learning new skills are being inevitable. Retraining the skills of group working to coordinate the information age has created special conditions for education. Smart schools are one of the strategies adopted by schools in response to today's modern needs. Smart…

  8. User Activity Recognition in Smart Homes Using Pattern Clustering Applied to Temporal ANN Algorithm.

    PubMed

    Bourobou, Serge Thomas Mickala; Yoo, Younghwan

    2015-05-21

    This paper discusses the possibility of recognizing and predicting user activities in the IoT (Internet of Things) based smart environment. The activity recognition is usually done through two steps: activity pattern clustering and activity type decision. Although many related works have been suggested, they had some limited performance because they focused only on one part between the two steps. This paper tries to find the best combination of a pattern clustering method and an activity decision algorithm among various existing works. For the first step, in order to classify so varied and complex user activities, we use a relevant and efficient unsupervised learning method called the K-pattern clustering algorithm. In the second step, the training of smart environment for recognizing and predicting user activities inside his/her personal space is done by utilizing the artificial neural network based on the Allen's temporal relations. The experimental results show that our combined method provides the higher recognition accuracy for various activities, as compared with other data mining classification algorithms. Furthermore, it is more appropriate for a dynamic environment like an IoT based smart home.

  9. Self-Guided Multimedia Stress Management and Resilience Training for Flight Controllers

    NASA Technical Reports Server (NTRS)

    Rose, R. D.; Zbozinek, T. D.; Hentschel, P. G.; Smith, S, M.; O'Brien J.; Oftedal, A.; Craske, M. G.

    2016-01-01

    Stress and anxiety-related problems are among the most common and costly behavioral health problems in society, and for those working in operational environments (i.e. astronauts, flight controllers, military) this can seriously impact crew performance, safety, and wellbeing. Technology-based interventions are effective for treating behavioral health problems, and can significantly improve the delivery of evidence-based health care. This study is evaluating the effectiveness, usefulness, and usability of a self-guided multimedia stress management and resilience training program in a randomized controlled trial (RCT) with a sample of flight controllers at Johnson Space Center. The intervention, SMART-OP (Stress Management and Resilience Training for Optimal Performance), is a six-session, cognitive behavioral-based computer program that uses self-guided, interactive activities to teach skills that can help individuals build resilience and manage stress. In a prior RCT with a sample of stressed but otherwise healthy individuals, SMART-OP reduced perceived stress and increased perceived control over stress in comparison to an Attention Control (AC) group. SMART-OP was rated as "highly useful" and "excellent" in usability and acceptability. Based on a-amylase data, individuals in SMART-OP recovered quicker and more completely from a social stress test as compared to the AC group [1]. In the current study, flight controllers are randomized either to receive SMART-OP training, or to a 6-week waitlist control period (WLC) before beginning SMART-OP. Eligible participants include JSC flight controllers and instructors without any medical or psychiatric disorder, but who are stressed based on self-report. Flight controllers provide a valid analog sample to astronauts in that they work in an operational setting, use similar terminology to astronauts, are mission-focused, and work under the same broader work culture. The study began in December 2014, and to date 79 flight controllers and instructors have expressed interest in the study, 49 of those were cleared for participation, we have screened 44 for eligibility, and 23 have met inclusion criteria. Recruitment is ongoing and the study will continue until December 2016. Outcome measures include perceived stress, perceived control over stress, resilience, mood, personality, emotion regulation, sleep, health behaviors, and psychophysiological data such as 24-hour heart rate, alpha amylase, and urinary and salivary cortisol. We are also collecting user feedback such as usability, working alliance, usefulness, and treatment credibility.

  10. A Field Programmable Gate Array-Based Reconfigurable Smart-Sensor Network for Wireless Monitoring of New Generation Computer Numerically Controlled Machines

    PubMed Central

    Moreno-Tapia, Sandra Veronica; Vera-Salas, Luis Alberto; Osornio-Rios, Roque Alfredo; Dominguez-Gonzalez, Aurelio; Stiharu, Ion; de Jesus Romero-Troncoso, Rene

    2010-01-01

    Computer numerically controlled (CNC) machines have evolved to adapt to increasing technological and industrial requirements. To cover these needs, new generation machines have to perform monitoring strategies by incorporating multiple sensors. Since in most of applications the online Processing of the variables is essential, the use of smart sensors is necessary. The contribution of this work is the development of a wireless network platform of reconfigurable smart sensors for CNC machine applications complying with the measurement requirements of new generation CNC machines. Four different smart sensors are put under test in the network and their corresponding signal processing techniques are implemented in a Field Programmable Gate Array (FPGA)-based sensor node. PMID:22163602

  11. A field programmable gate array-based reconfigurable smart-sensor network for wireless monitoring of new generation computer numerically controlled machines.

    PubMed

    Moreno-Tapia, Sandra Veronica; Vera-Salas, Luis Alberto; Osornio-Rios, Roque Alfredo; Dominguez-Gonzalez, Aurelio; Stiharu, Ion; Romero-Troncoso, Rene de Jesus

    2010-01-01

    Computer numerically controlled (CNC) machines have evolved to adapt to increasing technological and industrial requirements. To cover these needs, new generation machines have to perform monitoring strategies by incorporating multiple sensors. Since in most of applications the online Processing of the variables is essential, the use of smart sensors is necessary. The contribution of this work is the development of a wireless network platform of reconfigurable smart sensors for CNC machine applications complying with the measurement requirements of new generation CNC machines. Four different smart sensors are put under test in the network and their corresponding signal processing techniques are implemented in a Field Programmable Gate Array (FPGA)-based sensor node.

  12. Lighting Control System for Premises with Display Screen Equipment

    NASA Astrophysics Data System (ADS)

    Kudryashov, A. V.

    2017-11-01

    The use of Display Screen Equipment (DSE) at enterprises allows one to increase the productivity and safety of production, minimize the number of personnel and leads to the simplification of the work of specialists, but on the other side, changes usual working conditions. If the personnel works with displays, visual fatigue develops more quickly which contributes to the emergence of nervous tension, stress and possible erroneous actions. Low interest of the lighting control system developers towards the rooms with displays is dictated by special requirements for coverage by sanitary and hygienic standards (limiting excess workplace illumination). We decided to create a combined lighting system which works considering daylight illumination and artificial light sources. The brightness adjustment of the LED lamps is carried out according to the DALI protocol, adjustment of the natural illumination by means of smart glasses. The technical requirements for a lighting control system, the structural-functional scheme and the algorithm for controlling the operation of the system have been developed. The elements of control units, sensors and actuators have been selected.

  13. Robust optimization based energy dispatch in smart grids considering demand uncertainty

    NASA Astrophysics Data System (ADS)

    Nassourou, M.; Puig, V.; Blesa, J.

    2017-01-01

    In this study we discuss the application of robust optimization to the problem of economic energy dispatch in smart grids. Robust optimization based MPC strategies for tackling uncertain load demands are developed. Unexpected additive disturbances are modelled by defining an affine dependence between the control inputs and the uncertain load demands. The developed strategies were applied to a hybrid power system connected to an electrical power grid. Furthermore, to demonstrate the superiority of the standard Economic MPC over the MPC tracking, a comparison (e.g average daily cost) between the standard MPC tracking, the standard Economic MPC, and the integration of both in one-layer and two-layer approaches was carried out. The goal of this research is to design a controller based on Economic MPC strategies, that tackles uncertainties, in order to minimise economic costs and guarantee service reliability of the system.

  14. Smart Grid Demonstration Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Craig; Carroll, Paul; Bell, Abigail

    The National Rural Electric Cooperative Association (NRECA) organized the NRECA-U.S. Department of Energy (DOE) Smart Grid Demonstration Project (DE-OE0000222) to install and study a broad range of advanced smart grid technologies in a demonstration that spanned 23 electric cooperatives in 12 states. More than 205,444 pieces of electronic equipment and more than 100,000 minor items (bracket, labels, mounting hardware, fiber optic cable, etc.) were installed to upgrade and enhance the efficiency, reliability, and resiliency of the power networks at the participating co-ops. The objective of this project was to build a path for other electric utilities, and particularly electrical cooperatives,more » to adopt emerging smart grid technology when it can improve utility operations, thus advancing the co-ops’ familiarity and comfort with such technology. Specifically, the project executed multiple subprojects employing a range of emerging smart grid technologies to test their cost-effectiveness and, where the technology demonstrated value, provided case studies that will enable other electric utilities—particularly electric cooperatives— to use these technologies. NRECA structured the project according to the following three areas: Demonstration of smart grid technology; Advancement of standards to enable the interoperability of components; and Improvement of grid cyber security. We termed these three areas Technology Deployment Study, Interoperability, and Cyber Security. Although the deployment of technology and studying the demonstration projects at coops accounted for the largest portion of the project budget by far, we see our accomplishments in each of the areas as critical to advancing the smart grid. All project deliverables have been published. Technology Deployment Study: The deliverable was a set of 11 single-topic technical reports in areas related to the listed technologies. Each of these reports has already been submitted to DOE, distributed to co-ops, and posted for universal access at www.nreca.coop/smartgrid. This research is available for widespread distribution to both cooperative members and non-members. These reports are listed in Table 1.2. Interoperability: The deliverable in this area was the advancement of the MultiSpeak™ interoperability standard from version 4.0 to version 5.0, and improvement in the MultiSpeak™ documentation to include more than 100 use cases. This deliverable substantially expanded the scope and usability of MultiSpeak, ™ the most widely deployed utility interoperability standard, now in use by more than 900 utilities. MultiSpeak™ documentation can be accessed only at www.multispeak.org. Cyber Security: NRECA’s starting point was to develop cyber security tools that incorporated succinct guidance on best practices. The deliverables were: cyber security extensions to MultiSpeak,™ which allow more security message exchanges; a Guide to Developing a Cyber Security and Risk Mitigation Plan; a Cyber Security Risk Mitigation Checklist; a Cyber Security Plan Template that co-ops can use to create their own cyber security plans; and Security Questions for Smart Grid Vendors.« less

  15. Calibration of asynchronous smart phone cameras from moving objects

    NASA Astrophysics Data System (ADS)

    Hagen, Oksana; Istenič, Klemen; Bharti, Vibhav; Dhali, Maruf Ahmed; Barmaimon, Daniel; Houssineau, Jérémie; Clark, Daniel

    2015-04-01

    Calibrating multiple cameras is a fundamental prerequisite for many Computer Vision applications. Typically this involves using a pair of identical synchronized industrial or high-end consumer cameras. This paper considers an application on a pair of low-cost portable cameras with different parameters that are found in smart phones. This paper addresses the issues of acquisition, detection of moving objects, dynamic camera registration and tracking of arbitrary number of targets. The acquisition of data is performed using two standard smart phone cameras and later processed using detections of moving objects in the scene. The registration of cameras onto the same world reference frame is performed using a recently developed method for camera calibration using a disparity space parameterisation and the single-cluster PHD filter.

  16. Energy monitoring and managing for electromobility purposes

    NASA Astrophysics Data System (ADS)

    Slanina, Zdenek; Docekal, Tomas

    2016-09-01

    This paper describes smart energy meter design and implementation focused on using in charging stations (stands) for electric vehicle (follows as EV) charging support and possible embedding into current smart building technology. In this article there are included results of research of commercial devices available in Czech republic for energy measuring for buildings as well as analysis of energy meter for given purposes. For example in described module there was required measurement of voltage, electric current and frequency of power network. Finally there was designed a communication module with common interface to energy meter for standard communication support between charging station and electric car. After integration into smart buildings (home automation, parking houses) there are pros and cons of such solution mentioned1,2.

  17. From Secure Memories to Smart Card Security

    NASA Astrophysics Data System (ADS)

    Handschuh, Helena; Trichina, Elena

    Non-volatile memory is essential in most embedded security applications. It will store the key and other sensitive materials for cryptographic and security applications. In this chapter, first an overview is given of current flash memory architectures. Next the standard security features which form the basis of so-called secure memories are described in more detail. Smart cards are a typical embedded application that is very vulnerable to attacks and that at the same time has a high need for secure non-volatile memory. In the next part of this chapter, the secure memories of so-called flash-based high-density smart cards are described. It is followed by a detailed analysis of what the new security challenges for such objects are.

  18. ABS-SmartComAgri: An Agent-Based Simulator of Smart Communication Protocols in Wireless Sensor Networks for Debugging in Precision Agriculture.

    PubMed

    García-Magariño, Iván; Lacuesta, Raquel; Lloret, Jaime

    2018-03-27

    Smart communication protocols are becoming a key mechanism for improving communication performance in networks such as wireless sensor networks. However, the literature lacks mechanisms for simulating smart communication protocols in precision agriculture for decreasing production costs. In this context, the current work presents an agent-based simulator of smart communication protocols for efficiently managing pesticides. The simulator considers the needs of electric power, crop health, percentage of alive bugs and pesticide consumption. The current approach is illustrated with three different communication protocols respectively called (a) broadcast, (b) neighbor and (c) low-cost neighbor. The low-cost neighbor protocol obtained a statistically-significant reduction in the need of electric power over the neighbor protocol, with a very large difference according to the common interpretations about the Cohen's d effect size. The presented simulator is called ABS-SmartComAgri and is freely distributed as open-source from a public research data repository. It ensures the reproducibility of experiments and allows other researchers to extend the current approach.

  19. ABS-SmartComAgri: An Agent-Based Simulator of Smart Communication Protocols in Wireless Sensor Networks for Debugging in Precision Agriculture

    PubMed Central

    2018-01-01

    Smart communication protocols are becoming a key mechanism for improving communication performance in networks such as wireless sensor networks. However, the literature lacks mechanisms for simulating smart communication protocols in precision agriculture for decreasing production costs. In this context, the current work presents an agent-based simulator of smart communication protocols for efficiently managing pesticides. The simulator considers the needs of electric power, crop health, percentage of alive bugs and pesticide consumption. The current approach is illustrated with three different communication protocols respectively called (a) broadcast, (b) neighbor and (c) low-cost neighbor. The low-cost neighbor protocol obtained a statistically-significant reduction in the need of electric power over the neighbor protocol, with a very large difference according to the common interpretations about the Cohen’s d effect size. The presented simulator is called ABS-SmartComAgri and is freely distributed as open-source from a public research data repository. It ensures the reproducibility of experiments and allows other researchers to extend the current approach. PMID:29584703

  20. Fast and robust online adaptive planning in stereotactic MR-guided adaptive radiation therapy (SMART) for pancreatic cancer.

    PubMed

    Bohoudi, O; Bruynzeel, A M E; Senan, S; Cuijpers, J P; Slotman, B J; Lagerwaard, F J; Palacios, M A

    2017-12-01

    To implement a robust and fast stereotactic MR-guided adaptive radiation therapy (SMART) online strategy in locally advanced pancreatic cancer (LAPC). SMART strategy for plan adaptation was implemented with the MRIdian system (ViewRay Inc.). At each fraction, OAR (re-)contouring is done within a distance of 3cm from the PTV surface. Online plan re-optimization is based on robust prediction of OAR dose and optimization objectives, obtained by building an artificial neural network (ANN). Proposed limited re-contouring strategy for plan adaptation (SMART 3CM ) is evaluated by comparing 50 previously delivered fractions against a standard (re-)planning method using full-scale OAR (re-)contouring (FULLOAR). Plan quality was assessed using PTV coverage (V 95% , D mean , D 1cc ) and institutional OAR constraints (e.g. V 33Gy ). SMART 3CM required a significant lower number of optimizations than FULLOAR (4 vs 18 on average) to generate a plan meeting all objectives and institutional OAR constraints. PTV coverage with both strategies was identical (mean V 95% =89%). Adaptive plans with SMART 3CM exhibited significant lower intermediate and high doses to all OARs than FULLOAR, which also failed in 36% of the cases to adhere to the V 33Gy dose constraint. SMART 3CM approach for LAPC allows good OAR sparing and adequate target coverage while requiring only limited online (re-)contouring from clinicians. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Systems Maintenance Automated Repair Tasks (SMART)

    NASA Technical Reports Server (NTRS)

    Schuh, Joseph; Mitchell, Brent; Locklear, Louis; Belson, Martin A.; Al-Shihabi, Mary Jo Y.; King, Nadean; Norena, Elkin; Hardin, Derek

    2010-01-01

    SMART is a uniform automated discrepancy analysis and repair-authoring platform that improves technical accuracy and timely delivery of repair procedures for a given discrepancy (see figure a). SMART will minimize data errors, create uniform repair processes, and enhance the existing knowledge base of engineering repair processes. This innovation is the first tool developed that links the hardware specification requirements with the actual repair methods, sequences, and required equipment. SMART is flexibly designed to be useable by multiple engineering groups requiring decision analysis, and by any work authorization and disposition platform (see figure b). The organizational logic creates the link between specification requirements of the hardware, and specific procedures required to repair discrepancies. The first segment in the SMART process uses a decision analysis tree to define all the permutations between component/ subcomponent/discrepancy/repair on the hardware. The second segment uses a repair matrix to define what the steps and sequences are for any repair defined in the decision tree. This segment also allows for the selection of specific steps from multivariable steps. SMART will also be able to interface with outside databases and to store information from them to be inserted into the repair-procedure document. Some of the steps will be identified as optional, and would only be used based on the location and the current configuration of the hardware. The output from this analysis would be sent to a work authoring system in the form of a predefined sequence of steps containing required actions, tools, parts, materials, certifications, and specific requirements controlling quality, functional requirements, and limitations.

  2. Streetlight Control System Based on Wireless Communication over DALI Protocol

    PubMed Central

    Bellido-Outeiriño, Francisco José; Quiles-Latorre, Francisco Javier; Moreno-Moreno, Carlos Diego; Flores-Arias, José María; Moreno-García, Isabel; Ortiz-López, Manuel

    2016-01-01

    Public lighting represents a large part of the energy consumption of towns and cities. Efficient management of public lighting can entail significant energy savings. This work presents a smart system for managing public lighting networks based on wireless communication and the DALI protocol. Wireless communication entails significant economic savings, as there is no need to install new wiring and visual impacts and damage to the facades of historical buildings in city centers are avoided. The DALI protocol uses bidirectional communication with the ballast, which allows its status to be controlled and monitored at all times. The novelty of this work is that it tackles all aspects related to the management of public lighting: a standard protocol, DALI, was selected to control the ballast, a wireless node based on the IEEE 802.15.4 standard with a DALI interface was designed, a network layer that considers the topology of the lighting network has been developed, and lastly, some user-friendly applications for the control and maintenance of the system by the technical crews of the different towns and cities have been developed. PMID:27128923

  3. Smart maintenance of riverbanks using a standard data layer and Augmented Reality

    NASA Astrophysics Data System (ADS)

    Pierdicca, Roberto; Frontoni, Emanuele; Zingaretti, Primo; Mancini, Adriano; Malinverni, Eva Savina; Tassetti, Anna Nora; Marcheggiani, Ernesto; Galli, Andrea

    2016-10-01

    Linear buffer strips (BS) along watercourses are commonly adopted to reduce run-off, accumulation of bank-top sediments and the leaking of pesticides into fresh-waters, which strongly increase water pollution. However, the monitoring of their conditions is a difficult task because they are scattered over wide rural areas. This work demonstrates the benefits of using a standard data layer and Augmented Reality (AR) in watershed control and outlines the guideline of a novel approach for the health-check of linear BS. We designed a mobile environmental monitoring system for smart maintenance of riverbanks by embedding the AR technology within a Geographical Information System (GIS). From the technological point of view, the system's architecture consists of a cloud-based service for data sharing, using a standard data layer, and of a mobile device provided with a GPS based AR engine for augmented data visualization. The proposed solution aims to ease the overall inspection process by reducing the time required to run a survey. Indeed, ordinary operational survey conditions are usually performed basing the fieldwork on just classical digitized maps. Our application proposes to enrich inspections by superimposing information on the device screen with the same point of view of the camera, providing an intuitive visualization of buffer strip location. This way, the inspection officer can quickly and dynamically access relevant information overlaying geographic features, comments and other contents in real time. The solution has been tested in fieldwork to prove at what extent this cutting-edge technology contributes to an effective monitoring over large territorial settings. The aim is to encourage officers, land managers and practitioners toward more effective monitoring and management practices.

  4. Hiring for smarts.

    PubMed

    Menkes, Justin

    2005-11-01

    Yes, it's nice when a leader is charismatic and confident. And a great resume can tell you a lot about a person's knowledge and experience. But such assets are no substitute for sheer business intelligence, and they reveal very little about a leader's ability to consistently reach the "right" answer. How can hiring managers flag individuals with such smarts? Historically, the only reliable measure of brainpower has been the standard IQ test, which is rarely used in business settings because of the specific subjects it tests for-math, reading, and spatial reasoning-and because of its multiple-choice format. Despite its shortcomings, the standard IQ test is still a better predictor of managerial success than any other assessment tool companies currently use, Justin Menkes argues. It's true that there isn't a version of IQ testing that applies to the corporate world, but in rejecting IQ tests altogether, hiring managers have thwarted their own attempts to identify true business stars. The author defines the specific subjects that make up "executive intelligence"-namely, accomplishing tasks, working with people, and judging oneself. He describes how to formulate questions to test job candidates for their mastery of these subjects, offering several examples based on real situations. Knowledge questions, such as those used in standard behavioral interviews, require people to recite what they have learned or experienced; intelligence questions call for individuals to demonstrate their abilities. Therefore, the questions in an executive intelligence test shouldn't require specific industry expertise or experience; any knowledge they call for must be rudimentary and common to all executives. And the questions should not be designed to ask whether the candidate has a particular skill; they should be configured so that the candidate will have to demonstrate that skill in the course of answering them.

  5. Improving the effectiveness of smart work zone technologies.

    DOT National Transportation Integrated Search

    2016-11-01

    This project evaluates the effectiveness of sensor network systems for work zone traffic estimation. The comparative analysis is : performed on a work zone modeled in microsimulation and calibrated with field data from two Illinois work zones. Realis...

  6. Smart and intelligent sensor payload project

    NASA Image and Video Library

    2009-04-01

    Engineers working on the smart and intelligent sensor payload project include (l to r): Ed Conley (NASA), Mark Mitchell (Jacobs Technology), Luke Richards (NASA), Robert Drackett (Jacobs Technology), Mark Turowski (Jacobs Technology) , Richard Franzl (seated, Jacobs Technology), Greg McVay (Jacobs Technology), Brianne Guillot (Jacobs Technology), Jon Morris (Jacobs Technology), Stephen Rawls (NASA), John Schmalzel (NASA) and Andrew Bracey (NASA).

  7. Information Storage and Retrieval. Reports on Analysis, Search, and Iterative Retrieval.

    ERIC Educational Resources Information Center

    Salton, Gerard

    As the fourteenth report in a series describing research in automatic information storage and retrieval, this document covers work carried out on the SMART project for approximately one year (summer 1967 to summer 1968). The document is divided into four main parts: (1) SMART systems design, (2) analysis and search experiments, (3) user feedback…

  8. ABCs of Being Smart: T Is for Tips for Working with Teachers

    ERIC Educational Resources Information Center

    Foster, Joanne

    2015-01-01

    As part of her series, "ABCs of Being Smart," Joanne Foster presents time-tested tips for parents of toddlers to teens. Categories include: traits to tap when meeting with teachers to strengthen home and school connections or resolve any issues; strategies for parents to add to their "toolbox"; and tactical measures to consider…

  9. 75 FR 28785 - Visiting Committee on Advanced Technology

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-24

    ... business, research, new product development, engineering, labor, education, management consulting... include an update on NIST; presentations on NIST progress in documentary standards for Smart Grid...

  10. Magnetically engineered smart thin films: toward lab-on-chip ultra-sensitive molecular imaging.

    PubMed

    Hassan, Muhammad A; Saqib, Mudassara; Shaikh, Haseeb; Ahmad, Nasir M; Elaissari, Abdelhamid

    2013-03-01

    Magnetically responsive engineered smart thin films of nanoferrites as contrast agent are employed to develop surface based magnetic resonance imaging to acquire simple yet fast molecular imaging. The work presented here can be of significant potential for future lab-on-chip point-of-care diagnostics from the whole blood pool on almost any substrates to reduce or even prevent clinical studies involve a living organism to enhance the non-invasive imaging to advance the '3Rs' of work in animals-replacement, refinement and reduction.

  11. Development of Smart Ventilation Control Algorithms for Humidity Control in High-Performance Homes in Humid U.S. Climates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Less, Brennan; Walker, Iain; Ticci, Sara

    Past field research and simulation studies have shown that high performance homes experience elevated indoor humidity levels for substantial portions of the year in humid climates. This is largely the result of lower sensible cooling loads, which reduces the moisture removed by the cooling system. These elevated humidity levels lead to concerns about occupant comfort, health and building durability. Use of mechanical ventilation at rates specified in ASHRAE Standard 62.2-2013 are often cited as an additional contributor to humidity problems in these homes. Past research has explored solutions, including supplemental dehumidification, cooling system operational enhancements and ventilation system design (e.g.,more » ERV, supply, exhaust, etc.). This project’s goal is to develop and demonstrate (through simulations) smart ventilation strategies that can contribute to humidity control in high performance homes. These strategies must maintain IAQ via equivalence with ASHRAE Standard 62.2-2013. To be acceptable they must not result in excessive energy use. Smart controls will be compared with dehumidifier energy and moisture performance. This work explores the development and performance of smart algorithms for control of mechanical ventilation systems, with the objective of reducing high humidity in modern high performance residences. Simulations of DOE Zero-Energy Ready homes were performed using the REGCAP simulation tool. Control strategies were developed and tested using the Residential Integrated Ventilation (RIVEC) controller, which tracks pollutant exposure in real-time and controls ventilation to provide an equivalent exposure on an annual basis to homes meeting ASHRAE 62.2-2013. RIVEC is used to increase or decrease the real-time ventilation rate to reduce moisture transport into the home or increase moisture removal. This approach was implemented for no-, one- and two-sensor strategies, paired with a variety of control approaches in six humid climates (Miami, Orlando, Houston, Charleston, Memphis and Baltimore). The control options were compared to a baseline system that supplies outdoor air to a central forced air cooling (and heating) system (CFIS) that is often used in hot humid climates. Simulations were performed with CFIS ventilation systems operating on a 33% duty-cycle, consistent with 62.2-2013. The CFIS outside airflow rates were set to 0%, 50% and 100% of 62.2-2013 requirements to explore effects of ventilation rate on indoor high humidity. These simulations were performed with and without a dehumidifier in the model. Ten control algorithms were developed and tested. Analysis of outdoor humidity patterns facilitated smart control development. It was found that outdoor humidity varies most strongly seasonally—by month of the year—and that all locations follow the similar pattern of much higher humidity during summer. Daily and hourly variations in outdoor humidity were found to be progressively smaller than the monthly seasonal variation. Patterns in hourly humidity are driven by diurnal daily patterns, so they were predictable but small, and were unlikely to provide much control benefit. Variation in outdoor humidity between days was larger, but unpredictable, except by much more complex climate models. We determined that no-sensor strategies might be able to take advantage of seasonal patterns in humidity, but that real-time smart controls were required to capture variation between days. Sensor-based approaches are also required to respond dynamically to indoor conditions and variations not considered in our analysis. All smart controls face trade-offs between sensor accuracy, cost, complexity and robustness.« less

  12. 2008 Year in Review

    NASA Technical Reports Server (NTRS)

    Figueroa, Jorge Fernando

    2008-01-01

    In February of 2008; NASA Stennis Space Center (SSC), NASA Kennedy Space Center (KSC), and The Applied Research Laboratory at Penn State University demonstrated a pilot implementation of an Integrated System Health Management (ISHM) capability at the Launch Complex 20 of KSC. The following significant accomplishments are associated with this development: (1) implementation of an architecture for ground operations ISHM, based on networked intelligent elements; (2) Use of standards for management of data, information, and knowledge (DIaK) leading to modular ISHM implementation with interoperable elements communicating according to standards (three standards were used: IEEE 1451 family of standards for smart sensors and actuators, Open Systems Architecture for Condition Based Maintenance (OSA-CBM) standard for communicating DIaK describing the condition of elements of a system, and the OPC standard for communicating data); (3) ISHM implementation using interoperable modules addressing health management of subsystems; and (4) use of a physical intelligent sensor node (smart network element or SNE capable of providing data and health) along with classic sensors originally installed in the facility. An operational demonstration included detection of anomalies (sensor failures, leaks, etc.), determination of causes and effects, communication among health nodes, and user interfaces.

  13. Enabling Smart Manufacturing Research and Development using a Product Lifecycle Test Bed.

    PubMed

    Helu, Moneer; Hedberg, Thomas

    2015-01-01

    Smart manufacturing technologies require a cyber-physical infrastructure to collect and analyze data and information across the manufacturing enterprise. This paper describes a concept for a product lifecycle test bed built on a cyber-physical infrastructure that enables smart manufacturing research and development. The test bed consists of a Computer-Aided Technologies (CAx) Lab and a Manufacturing Lab that interface through the product model creating a "digital thread" of information across the product lifecycle. The proposed structure and architecture of the test bed is presented, which highlights the challenges and requirements of implementing a cyber-physical infrastructure for manufacturing. The novel integration of systems across the product lifecycle also helps identify the technologies and standards needed to enable interoperability between design, fabrication, and inspection. Potential research opportunities enabled by the test bed are also discussed, such as providing publicly accessible CAx and manufacturing reference data, virtual factory data, and a representative industrial environment for creating, prototyping, and validating smart manufacturing technologies.

  14. Enabling Smart Manufacturing Research and Development using a Product Lifecycle Test Bed

    PubMed Central

    Helu, Moneer; Hedberg, Thomas

    2017-01-01

    Smart manufacturing technologies require a cyber-physical infrastructure to collect and analyze data and information across the manufacturing enterprise. This paper describes a concept for a product lifecycle test bed built on a cyber-physical infrastructure that enables smart manufacturing research and development. The test bed consists of a Computer-Aided Technologies (CAx) Lab and a Manufacturing Lab that interface through the product model creating a “digital thread” of information across the product lifecycle. The proposed structure and architecture of the test bed is presented, which highlights the challenges and requirements of implementing a cyber-physical infrastructure for manufacturing. The novel integration of systems across the product lifecycle also helps identify the technologies and standards needed to enable interoperability between design, fabrication, and inspection. Potential research opportunities enabled by the test bed are also discussed, such as providing publicly accessible CAx and manufacturing reference data, virtual factory data, and a representative industrial environment for creating, prototyping, and validating smart manufacturing technologies. PMID:28664167

  15. Using Citygml to Deploy Smart-City Services for Urban Ecosystems

    NASA Astrophysics Data System (ADS)

    Prandi, F.; De Amicis, R.; Piffer, S.; Soave, M.; Cadzow, S.; Gonzalez Boix, E.; D'Hont, E.

    2013-05-01

    The rapid technological evolution, which is characterizing all the disciplines involved within the wide concept of smart cities, becomes a key factor to trigger true user-driven innovation. In this context 3D city models will play an increasingly important role in our daily lives and become an essential part of the modern city information infrastructure (Spatial Data Infrastructure). The goal of this paper is to introduce the i-SCOPE (interoperable Smart City services through an Open Platform for urban Ecosystems) project methodology and implementations together with key technologies and open standards. Based on interoperable 3D CityGML UIMs, the aim of i-Scope is to deliver an open platform on top of which it possible to develop, within different domains, various "smart city" services. Moreover, in i-SCOPE different issues, transcending the mere technological domain, are being tackled, including aspects dealing with social and environmental issues. Indeed several tasks including citizen awareness, crowd source and voluntary based data collection as well as privacy issue concerning involved people should be considered.

  16. How to be smart and energy efficient: A general discussion on thermochromic windows

    PubMed Central

    Long, Linshuang; Ye, Hong

    2014-01-01

    A window is a unique element in a building because of its simultaneous properties of being “opaque” to inclement weather yet transparent to the observer. However, these unique features make the window an element that can reduce the energy efficiency of buildings. A thermochromic window is a type of smart window whose solar radiation properties vary with temperature. It is thought that the solar radiation gain of a room can be intelligently regulated through the use of thermochromic windows, resulting in lower energy consumption than with standard windows. Materials scientists have made many efforts to improve the performance of thermochromic materials. Despite these efforts, fundamental problems continue to confront us. How should a “smart” window behave? Is a “smart” window really the best candidate for energy-efficient applications? What is the relationship between smartness and energy performance? To answer these questions, a general discussion of smartness and energy performance is provided. PMID:25233891

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agalgaonkar, Yashodhan P.; Hammerstrom, Donald J.

    The Pacific Northwest Smart Grid Demonstration (PNWSGD) was a smart grid technology performance evaluation project that included multiple U.S. states and cooperation from multiple electric utilities in the northwest region. One of the local objectives for the project was to achieve improved distribution system reliability. Toward this end, some PNWSGD utilities automated their distribution systems, including the application of fault detection, isolation, and restoration and advanced metering infrastructure. In light of this investment, a major challenge was to establish a correlation between implementation of these smart grid technologies and actual improvements of distribution system reliability. This paper proposes using Welch’smore » t-test to objectively determine and quantify whether distribution system reliability is improving over time. The proposed methodology is generic, and it can be implemented by any utility after calculation of the standard reliability indices. The effectiveness of the proposed hypothesis testing approach is demonstrated through comprehensive practical results. It is believed that wider adoption of the proposed approach can help utilities to evaluate a realistic long-term performance of smart grid technologies.« less

  18. Smart ventilation energy and indoor air quality performance in residential buildings: A review

    DOE PAGES

    Guyot, Gaelle; Sherman, Max H.; Walker, Iain S.

    2017-12-30

    To better address energy and indoor air quality issues, ventilation needs to become smarter. A key smart ventilation concept is to use controls to ventilate more at times it provides either an energy or indoor air quality (IAQ) advantage (or both) and less when it provides a disadvantage. A favorable context exists in many countries to include some of the existing smart ventilation strategies in codes and standards. As a result, demand-controlled ventilation (DCV) systems are widely and easily available on the market, with more than 20 DCV systems approved and available in countries such as Belgium, France and themore » Netherlands. This paper provides a literature review on smart ventilation used in residential buildings, based on energy and indoor air quality performance. This meta-analysis includes 38 studies of various smart ventilation systems with control based on CO 2, humidity, combined CO 2 and total volatile organic compounds (TVOC), occupancy, or outdoor temperature. In conclusion, these studies show that ventilation energy savings up to 60% can be obtained without compromising IAQ, even sometimes improving it. However, the meta-analysis included some less than favorable results, with 26% energy overconsumption in some cases.« less

  19. Smart ventilation energy and indoor air quality performance in residential buildings: A review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guyot, Gaelle; Sherman, Max H.; Walker, Iain S.

    To better address energy and indoor air quality issues, ventilation needs to become smarter. A key smart ventilation concept is to use controls to ventilate more at times it provides either an energy or indoor air quality (IAQ) advantage (or both) and less when it provides a disadvantage. A favorable context exists in many countries to include some of the existing smart ventilation strategies in codes and standards. As a result, demand-controlled ventilation (DCV) systems are widely and easily available on the market, with more than 20 DCV systems approved and available in countries such as Belgium, France and themore » Netherlands. This paper provides a literature review on smart ventilation used in residential buildings, based on energy and indoor air quality performance. This meta-analysis includes 38 studies of various smart ventilation systems with control based on CO 2, humidity, combined CO 2 and total volatile organic compounds (TVOC), occupancy, or outdoor temperature. In conclusion, these studies show that ventilation energy savings up to 60% can be obtained without compromising IAQ, even sometimes improving it. However, the meta-analysis included some less than favorable results, with 26% energy overconsumption in some cases.« less

  20. Opening the Black Box: Understanding the Science Behind Big Data and Predictive Analytics.

    PubMed

    Hofer, Ira S; Halperin, Eran; Cannesson, Maxime

    2018-05-25

    Big data, smart data, predictive analytics, and other similar terms are ubiquitous in the lay and scientific literature. However, despite the frequency of usage, these terms are often poorly understood, and evidence of their disruption to clinical care is hard to find. This article aims to address these issues by first defining and elucidating the term big data, exploring the ways in which modern medical data, both inside and outside the electronic medical record, meet the established definitions of big data. We then define the term smart data and discuss the transformations necessary to make big data into smart data. Finally, we examine the ways in which this transition from big to smart data will affect what we do in research, retrospective work, and ultimately patient care.

  1. Smart-Home Architecture Based on Bluetooth mesh Technology

    NASA Astrophysics Data System (ADS)

    Wan, Qing; Liu, Jianghua

    2018-03-01

    This paper describes the smart home network system based on Nordic nrf52832 device. Nrf52832 is new generation RF SOC device focus on sensor monitor and low power Bluetooth connection applications. In this smart home system, we set up a self-organizing network system which consists of one control node and a lot of monitor nodes. The control node manages the whole network works; the monitor nodes collect the sensor information such as light intensity, temperature, humidity, PM2.5, etc. Then update to the control node by Bluetooth mesh network. The design results show that the Bluetooth mesh wireless network system is flexible and construction cost is low, which is suitable for the communication characteristics of a smart home network. We believe it will be wildly used in the future.

  2. What Guides PreK Programs?

    ERIC Educational Resources Information Center

    Graue, Elizabeth; Ryan, Sharon; Wilinski, Bethany; Northey, Kaitlin; Nocera, Amato

    2018-01-01

    Background/Context: Early childhood education joined the standards movement in 2002 with the Good Start, Grow Smart initiative (Brown, 2007), with advocates arguing that standards were a tool for creating more continuity and coherence in PreK systems (Bowman, 2006; Kagan 2012). Critics posed concerns about a perceived poor fit between…

  3. Smart Moves: Powering up the Brain with Physical Activity

    ERIC Educational Resources Information Center

    Conyers, Marcus; Wilson, Donna

    2015-01-01

    The Common Core State Standards emphasize higher-order thinking, problem solving, and the creation, retention, and application of knowledge. Achieving these standards creates greater cognitive demands on students. Recent research suggests that active play and regular exercise have a positive effect on brain regions associated with executive…

  4. A contact-free respiration monitor for smart bed and ambulatory monitoring applications.

    PubMed

    Hart, Adam; Tallevi, Kevin; Wickland, David; Kearney, Robert E; Cafazzo, Joseph A

    2010-01-01

    The development of a contact-free respiration monitor has a broad range of clinical applications in the home and hospital setting. Current approaches suffer from a variety of problems including unreliability, low sensitivity, and high cost. This work describes a novel approach to contact-free respiration monitoring that addresses these shortcomings by employing a highly sensitive capacitance sensor to detect variations in capacitive coupling caused by breathing. A prototype system consisting of a synthetic-metallic pad, sensor electronics, and iPhone interface was built and its performance compared experimentally to the gold standard technique (Respiratory Inductance Plethysmography) on both a healthy volunteer and SimMan robotic mannequin. The prototype sensor effectively captured respiratory movements over breathing rates of 5-55 bpm; achieving an average spectral correlation of 0.88 (CI: 0.86-0.90) and 0.95 (CI: 0.95-0.96) to the gold standard using the SimMan and healthy volunteer respectively.

  5. An Optical-Fiber-Based Smart Textile (Smart Socks) to Manage Biomechanical Risk Factors Associated With Diabetic Foot Amputation.

    PubMed

    Najafi, Bijan; Mohseni, Hooman; Grewal, Gurtej S; Talal, Talal K; Menzies, Robert A; Armstrong, David G

    2017-07-01

    This study aimed to validate a smart-textile based on fiber-optics for simultaneous measurement of plantar temperature, pressure, and joint angles in patients with diabetic peripheral neuropathy (DPN). After in-vitro validation in the laboratory, 33 eligible subjects with DPN were recruited (age: 58 ± 8 years, BMI: 31.5 ± 8 kg/m 2 ) for assessing plantar pressure and temperature during habitual gait-speed in a clinical-setting. All participants were asked to walk at their habitual speed while wearing a pair of sensorized socks made from highly flexible fiber optics (SmartSox). An algorithm was designed to estimate temperature, pressure, and toe range of motion from optical wavelength generated from SmartSox. To validate the device, results from thermal stress response (TSR) using thermography and peak pressure measured by computerized pressure insoles (F-Scan) were used as gold standards. In laboratory and under controlled conditions, the agreements for parameters of interest were excellent ( r > .98, P = .000), and no noticeable cross-talks between measurements of temperature, angle, and pressure were observed. During clinical data acquisition, a significant correlation was found for pressure profile under different anatomical regions of interest between SmartSox and F-Scan ( r = .67, P < .050) as well as between thermography and SmartSox ( r = .55, P < .050). This study demonstrates the validity of an innovative smart textile for assessing simultaneously the key parameters associated with risk of foot ulcers in patients with DPN. It may empower clinicians to objectively stratify foot risk and provide timely care. Another study is warranted to validate its clinical application in preventing limb threating problems in patients with DPN.

  6. An Optical-Fiber-Based Smart Textile (Smart Socks) to Manage Biomechanical Risk Factors Associated With Diabetic Foot Amputation

    PubMed Central

    Najafi, Bijan; Mohseni, Hooman; Grewal, Gurtej S.; Talal, Talal K.; Menzies, Robert A.; Armstrong, David G.

    2017-01-01

    Objective: This study aimed to validate a smart-textile based on fiber-optics for simultaneous measurement of plantar temperature, pressure, and joint angles in patients with diabetic peripheral neuropathy (DPN). Methods: After in-vitro validation in the laboratory, 33 eligible subjects with DPN were recruited (age: 58 ± 8 years, BMI: 31.5 ± 8 kg/m2) for assessing plantar pressure and temperature during habitual gait-speed in a clinical-setting. All participants were asked to walk at their habitual speed while wearing a pair of sensorized socks made from highly flexible fiber optics (SmartSox). An algorithm was designed to estimate temperature, pressure, and toe range of motion from optical wavelength generated from SmartSox. To validate the device, results from thermal stress response (TSR) using thermography and peak pressure measured by computerized pressure insoles (F-Scan) were used as gold standards. Results: In laboratory and under controlled conditions, the agreements for parameters of interest were excellent (r > .98, P = .000), and no noticeable cross-talks between measurements of temperature, angle, and pressure were observed. During clinical data acquisition, a significant correlation was found for pressure profile under different anatomical regions of interest between SmartSox and F-Scan (r = .67, P < .050) as well as between thermography and SmartSox (r = .55, P < .050). Conclusion: This study demonstrates the validity of an innovative smart textile for assessing simultaneously the key parameters associated with risk of foot ulcers in patients with DPN. It may empower clinicians to objectively stratify foot risk and provide timely care. Another study is warranted to validate its clinical application in preventing limb threating problems in patients with DPN. PMID:28513212

  7. Development of Smart Precision Forest in Conifer Plantation in Japan Using Laser Scanning Data

    NASA Astrophysics Data System (ADS)

    Katoh, M.; Deng, S.; Takenaka, Y.; Cheung, K.; Oono, K.; Horisawa, M.; Hyyppä, J.; Yu, X.; Liang, X.; Wang, Y.

    2017-10-01

    Currently, the authors are planning to launch a consortium effort toward Japan's first smart precision forestry project using laser data and to develop this technology throughout the country. Smart precision forestry information gathered using the Nagano model (laser scanning from aircraft, drone, and backpack) is being developed to improve the sophistication of forest information, reduce labor-intensive work, maintain sustainable timber productivity, and facilitate supply chain management by laser sensing information in collaboration with industry, academia, and government. In this paper, we outline the research project and the technical development situation of unmanned aerial vehicle laser scanning.

  8. Size matters: smart copolymeric nanohydrogels: synthesis and applications.

    PubMed

    Katime, Issa; Guerrero, Luis Guillermo; Mendizabal, Eduardo

    2012-01-01

    In this work the synthesis of smart nanoparticles capable of respond to external stimulus (pH and temperature variations) is reported. To avoid post-polymerization modification, functionalized monomers able to respond to pH and temperature changes were and then polymerized. The synthesized monomers have the capability for coupling with folic acid which is the target molecule. For this reason their polymers can be used as targeted drug delivery systems. Smart polymeric nanoparticles were prepared by direct and inverse microemulsion polymerization of the synthesized monomers. The nanoparticles were charged with drugs and their release kinetic was studied.

  9. Synchronized moving aperture radiation therapy (SMART): superimposing tumor motion on IMRT MLC leaf sequences under realistic delivery conditions

    NASA Astrophysics Data System (ADS)

    Xu, Jun; Papanikolaou, Nikos; Shi, Chengyu; Jiang, Steve B.

    2009-08-01

    Synchronized moving aperture radiation therapy (SMART) has been proposed to account for tumor motions during radiotherapy in prior work. The basic idea of SMART is to synchronize the moving radiation beam aperture formed by a dynamic multileaf collimator (DMLC) with the tumor motion induced by respiration. In this paper, a two-dimensional (2D) superimposing leaf sequencing method is presented for SMART. A leaf sequence optimization strategy was generated to assure the SMART delivery under realistic delivery conditions. The study of delivery performance using the Varian LINAC and the Millennium DMLC showed that clinical factors such as collimator angle, dose rate, initial phase and machine tolerance affect the delivery accuracy and efficiency. An in-house leaf sequencing software was developed to implement the 2D superimposing leaf sequencing method and optimize the motion-corrected leaf sequence under realistic clinical conditions. The analysis of dynamic log (Dynalog) files showed that optimization of the leaf sequence for various clinical factors can avoid beam hold-offs which break the synchronization of SMART and fail the SMART dose delivery. Through comparison between the simulated delivered fluence map and the planed fluence map, it was shown that the motion-corrected leaf sequence can greatly reduce the dose error.

  10. Synchronized moving aperture radiation therapy (SMART): superimposing tumor motion on IMRT MLC leaf sequences under realistic delivery conditions.

    PubMed

    Xu, Jun; Papanikolaou, Nikos; Shi, Chengyu; Jiang, Steve B

    2009-08-21

    Synchronized moving aperture radiation therapy (SMART) has been proposed to account for tumor motions during radiotherapy in prior work. The basic idea of SMART is to synchronize the moving radiation beam aperture formed by a dynamic multileaf collimator (DMLC) with the tumor motion induced by respiration. In this paper, a two-dimensional (2D) superimposing leaf sequencing method is presented for SMART. A leaf sequence optimization strategy was generated to assure the SMART delivery under realistic delivery conditions. The study of delivery performance using the Varian LINAC and the Millennium DMLC showed that clinical factors such as collimator angle, dose rate, initial phase and machine tolerance affect the delivery accuracy and efficiency. An in-house leaf sequencing software was developed to implement the 2D superimposing leaf sequencing method and optimize the motion-corrected leaf sequence under realistic clinical conditions. The analysis of dynamic log (Dynalog) files showed that optimization of the leaf sequence for various clinical factors can avoid beam hold-offs which break the synchronization of SMART and fail the SMART dose delivery. Through comparison between the simulated delivered fluence map and the planed fluence map, it was shown that the motion-corrected leaf sequence can greatly reduce the dose error.

  11. Analysis of cancer-related fatigue based on smart bracelet devices.

    PubMed

    Shen, Hong; Hou, Honglun; Tian, Wei; Wu, MingHui; Chen, Tianzhou; Zhong, Xian

    2016-01-01

    Fatigue is the most common symptom associated with cancer and its treatment, and profoundly affects all aspects of quality of life for cancer patients. It is very important to measure and manage cancer-related fatigue. Usually, the cancer-related fatigue scores, which estimate the degree of fatigue, are self-reported by cancer patients using standardized assessment tools. But most of the classical methods used for measurement of fatigue are subjective and inconvenient. In this study, we try to establish a new method to assess cancer-related fatigue objectively and accurately by using smart bracelet. All patients with metastatic pancreatic cancer wore smart bracelet for recording the physical activity including step count and sleep time before and after chemotherapy. Meantime, their psychological state was assessed by completing questionnaire tables as cancer-related fatigue scores. Step count record by smart bracelet reflecting the physical performance dramatically decreased in the initial days of chemotherapy and recovered in the next few days. Statistical analysis showed a strong and significant correlation between self-reported cancer-related fatigue and physical performance (P= 0.000, r=-0.929). Sleep time was also significantly correlated with fatigue (P= 0.000, r= 0.723). Multiple regression analysis showed that physical performance and sleep time are significant predictors of fatigue. Measuring activity using smart bracelets may be an appropriate method for quantitative and objective measurement of cancer-related fatigue by using smart bracelet devices.

  12. Learning under uncertainty in smart home environments.

    PubMed

    Zhang, Shuai; McClean, Sally; Scotney, Bryan; Nugent, Chris

    2008-01-01

    Technologies and services for the home environment can provide levels of independence for elderly people to support 'ageing in place'. Learning inhabitants' patterns of carrying out daily activities is a crucial component of these technological solutions with sensor technologies being at the core of such smart environments. Nevertheless, identifying high-level activities from low-level sensor events can be a challenge, as information may be unreliable resulting in incomplete data. Our work addresses the issues of learning in the presence of incomplete data along with the identification and the prediction of inhabitants and their activities under such uncertainty. We show via the evaluation results that our approach also offers the ability to assess the impact of various sensors in the activity recognition process. The benefit of this work is that future predictions can be utilised in a proposed intervention mechanism in a real smart home environment.

  13. Uncertainty in benefit cost analysis of smart grid demonstration-projects in the U.S., China, and Italy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karali, Nihan; Flego, Gianluca; Yu, Jiancheng

    Given the substantial investments required, there has been keen interest in conducting benefits analysis, i.e., quantifying, and often monetizing, the performance of smart grid technologies. In this study, we compare two different approaches; (1) Electric Power Research Institute (EPRI)’s benefits analysis method and its adaptation to the European contexts by the European Commission, Joint Research Centre (JRC), and (2) the Analytic Hierarchy Process (AHP) and fuzzy logic decision making method. These are applied to three case demonstration projects executed in three different countries; the U.S., China, and Italy, considering uncertainty in each case. This work is conducted under the U.S.more » (United States)-China Climate Change Working Group, smart grid, with an additional major contribution by the European Commission. The following is a brief description of the three demonstration projects.« less

  14. SMART precision cancer medicine: a FHIR-based app to provide genomic information at the point of care.

    PubMed

    Warner, Jeremy L; Rioth, Matthew J; Mandl, Kenneth D; Mandel, Joshua C; Kreda, David A; Kohane, Isaac S; Carbone, Daniel; Oreto, Ross; Wang, Lucy; Zhu, Shilin; Yao, Heming; Alterovitz, Gil

    2016-07-01

    Precision cancer medicine (PCM) will require ready access to genomic data within the clinical workflow and tools to assist clinical interpretation and enable decisions. Since most electronic health record (EHR) systems do not yet provide such functionality, we developed an EHR-agnostic, clinico-genomic mobile app to demonstrate several features that will be needed for point-of-care conversations. Our prototype, called Substitutable Medical Applications and Reusable Technology (SMART)® PCM, visualizes genomic information in real time, comparing a patient's diagnosis-specific somatic gene mutations detected by PCR-based hotspot testing to a population-level set of comparable data. The initial prototype works for patient specimens with 0 or 1 detected mutation. Genomics extensions were created for the Health Level Seven® Fast Healthcare Interoperability Resources (FHIR)® standard; otherwise, the prototype is a normal SMART on FHIR app. The PCM prototype can rapidly present a visualization that compares a patient's somatic genomic alterations against a distribution built from more than 3000 patients, along with context-specific links to external knowledge bases. Initial evaluation by oncologists provided important feedback about the prototype's strengths and weaknesses. We added several requested enhancements and successfully demonstrated the app at the inaugural American Society of Clinical Oncology Interoperability Demonstration; we have also begun to expand visualization capabilities to include cancer specimens with multiple mutations. PCM is open-source software for clinicians to present the individual patient within the population-level spectrum of cancer somatic mutations. The app can be implemented on any SMART on FHIR-enabled EHRs, and future versions of PCM should be able to evolve in parallel with external knowledge bases. © The Author 2016. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Lightweight UDP Pervasive Protocol in Smart Home Environment Based on Labview

    NASA Astrophysics Data System (ADS)

    Kurniawan, Wijaya; Hannats Hanafi Ichsan, Mochammad; Rizqika Akbar, Sabriansyah; Arwani, Issa

    2017-04-01

    TCP (Transmission Control Protocol) technology in a reliable environment was not a problem, but not in an environment where the entire Smart Home network connected locally. Currently employing pervasive protocols using TCP technology, when data transmission is sent, it would be slower because they have to perform handshaking process in advance and could not broadcast the data. On smart home environment, it does not need large size and complex data transmission between monitoring site and monitoring center required in Smart home strain monitoring system. UDP (User Datagram Protocol) technology is quick and simple on data transmission process. UDP can broadcast messages because the UDP did not require handshaking and with more efficient memory usage. LabVIEW is a programming language software for processing and visualization of data in the field of data acquisition. This paper proposes to examine Pervasive UDP protocol implementations in smart home environment based on LabVIEW. UDP coded in LabVIEW and experiments were performed on a PC and can work properly.

  16. SmartSIM - a virtual reality simulator for laparoscopy training using a generic physics engine.

    PubMed

    Khan, Zohaib Amjad; Kamal, Nabeel; Hameed, Asad; Mahmood, Amama; Zainab, Rida; Sadia, Bushra; Mansoor, Shamyl Bin; Hasan, Osman

    2017-09-01

    Virtual reality (VR) training simulators have started playing a vital role in enhancing surgical skills, such as hand-eye coordination in laparoscopy, and practicing surgical scenarios that cannot be easily created using physical models. We describe a new VR simulator for basic training in laparoscopy, i.e. SmartSIM, which has been developed using a generic open-source physics engine called the simulation open framework architecture (SOFA). This paper describes the systems perspective of SmartSIM including design details of both hardware and software components, while highlighting the critical design decisions. Some of the distinguishing features of SmartSIM include: (i) an easy-to-fabricate custom-built hardware interface; (ii) use of a generic physics engine to facilitate wider accessibility of our work and flexibility in terms of using various graphical modelling algorithms and their implementations; and (iii) an intelligent and smart evaluation mechanism that facilitates unsupervised and independent learning. Copyright © 2016 John Wiley & Sons, Ltd.

  17. Maturity Model for Advancing Smart Grid Interoperability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knight, Mark; Widergren, Steven E.; Mater, J.

    2013-10-28

    Abstract—Interoperability is about the properties of devices and systems to connect and work properly. Advancing interoperability eases integration and maintenance of the resulting interconnection. This leads to faster integration, lower labor and component costs, predictability of projects and the resulting performance, and evolutionary paths for upgrade. When specifications are shared and standardized, competition and novel solutions can bring new value streams to the community of stakeholders involved. Advancing interoperability involves reaching agreement for how things join at their interfaces. The quality of the agreements and the alignment of parties involved in the agreement present challenges that are best met withmore » process improvement techniques. The GridWise® Architecture Council (GWAC) sponsored by the United States Department of Energy is supporting an effort to use concepts from capability maturity models used in the software industry to advance interoperability of smart grid technology. An interoperability maturity model has been drafted and experience is being gained through trials on various types of projects and community efforts. This paper describes the value and objectives of maturity models, the nature of the interoperability maturity model and how it compares with other maturity models, and experiences gained with its use.« less

  18. USE OF INTEGRATED PLANNING TOOLS FOR REVITALIZATION: SMARTE (U.S.) AND START-UP PLAN (GERMANY)

    EPA Science Inventory

    The U.S.-German Bilateral Working Group produced two primary products during Phase 3 (2000-2005). SMARTe (Sustainable Management Approaches and Revitalization Tools-electronic) is being developed in the U.S. and the START-UP Plan is being...

  19. User Activity Recognition in Smart Homes Using Pattern Clustering Applied to Temporal ANN Algorithm

    PubMed Central

    Bourobou, Serge Thomas Mickala; Yoo, Younghwan

    2015-01-01

    This paper discusses the possibility of recognizing and predicting user activities in the IoT (Internet of Things) based smart environment. The activity recognition is usually done through two steps: activity pattern clustering and activity type decision. Although many related works have been suggested, they had some limited performance because they focused only on one part between the two steps. This paper tries to find the best combination of a pattern clustering method and an activity decision algorithm among various existing works. For the first step, in order to classify so varied and complex user activities, we use a relevant and efficient unsupervised learning method called the K-pattern clustering algorithm. In the second step, the training of smart environment for recognizing and predicting user activities inside his/her personal space is done by utilizing the artificial neural network based on the Allen’s temporal relations. The experimental results show that our combined method provides the higher recognition accuracy for various activities, as compared with other data mining classification algorithms. Furthermore, it is more appropriate for a dynamic environment like an IoT based smart home. PMID:26007738

  20. Fabrication of TiNi/CFRP smart composite using cold drawn TiNi wires

    NASA Astrophysics Data System (ADS)

    Xu, Ya; Otsuka, Kazuhiro; Toyama, Nobuyuki; Yoshida, Hitoshi; Jang, Byung-Koog; Nagai, Hideki; Oishi, Ryutaro; Kishi, Teruo

    2002-07-01

    In recent years, pre-strained TiNi shape memory alloys (SMA) have been used for fabricating smart structure with carbon fibers reinforced plastics (CFRP) in order to suppress microscopic mechanical damages. However, since the cure temperature of CFRP is higher than the reverse transformation temperatures of TiNi SMA, special fixture jigs have to be used for keeping the pre-strain during fabrication, which restricted its practical application. In order to overcome this difficulty, we developed a new method to fabricate SMA/CFRP smart composites without using special fixture jigs by controlling the transformation temperatures of SMA during fabrication. This method consists of using heavily cold-worked wires to increase the reverse transformation temperatures, and of using flash electrical heating of the wires after fabrication in order to decrease the reverse transformation temperatures to a lower temperature range again without damaging the epoxy resin around SMA wires. By choosing proper cold-working rate and composition of TiNi alloys, the reverse transformation temperatures were well controlled, and the TiNi/CFRP hybrid smart composite was fabricated without using special fixture jigs. The damage suppressing effect of cold drawn wires embedded in CFRP was confirmed.

  1. Open data models for smart health interconnected applications: the example of openEHR.

    PubMed

    Demski, Hans; Garde, Sebastian; Hildebrand, Claudia

    2016-10-22

    Smart Health is known as a concept that enhances networking, intelligent data processing and combining patient data with other parameters. Open data models can play an important role in creating a framework for providing interoperable data services that support the development of innovative Smart Health applications profiting from data fusion and sharing. This article describes a model-driven engineering approach based on standardized clinical information models and explores its application for the development of interoperable electronic health record systems. The following possible model-driven procedures were considered: provision of data schemes for data exchange, automated generation of artefacts for application development and native platforms that directly execute the models. The applicability of the approach in practice was examined using the openEHR framework as an example. A comprehensive infrastructure for model-driven engineering of electronic health records is presented using the example of the openEHR framework. It is shown that data schema definitions to be used in common practice software development processes can be derived from domain models. The capabilities for automatic creation of implementation artefacts (e.g., data entry forms) are demonstrated. Complementary programming libraries and frameworks that foster the use of open data models are introduced. Several compatible health data platforms are listed. They provide standard based interfaces for interconnecting with further applications. Open data models help build a framework for interoperable data services that support the development of innovative Smart Health applications. Related tools for model-driven application development foster semantic interoperability and interconnected innovative applications.

  2. Age-related changes in children's understanding of effort and ability: implications for attribution theory and motivation.

    PubMed

    Folmer, Amy S; Cole, David A; Sigal, Amanda B; Benbow, Lovisa D; Satterwhite, Lindsay F; Swygert, Katherine E; Ciesla, Jeffrey A

    2008-02-01

    Building on Nicholls's earlier work, we examined developmental changes in children's understanding of effort and ability when faced with a negative outcome. In a sample of 166 children and adolescents (ages 5-15 years), younger children conflated the meaning of effort and ability, explaining that smart students work hard, whereas older children understood effort and ability to be reciprocally related constructs, explaining that smart students do not need to work as hard. Understanding the reciprocal relation between effort and ability was correlated with age. Age-related changes in the meaning and correlates of effort and ability were also examined. Developmental implications for attribution theory and achievement motivation are discussed.

  3. Age-related Changes in Children's Understanding Effort and Ability: Implications for Attribution Theory and Motivation

    PubMed Central

    Folmer, Amy S.; Cole, David A.; Sigal, Amanda B.; Benbow, Lovisa D.; Satterwhite, Lindsay F.; Swygert, Katherine E.; Ciesla, Jeffrey A.

    2008-01-01

    Building upon Nicholls' (1978) work, we examined developmental changes in children's understanding of effort and ability when faced with a negative outcome. In a sample of 166 children and adolescents (ages 5 to 15), younger children conflated the meaning of effort and ability, explaining that smart students work hard; whereas older children understood effort and ability to be reciprocally related constructs, explaining that smart students do not have to work as hard. Understanding the reciprocal relation between effort and ability was correlated with age. Age-related changes in the meaning and correlates of effort and ability were also examined. Developmental implications for attribution theory and achievement motivation are discussed. PMID:18067917

  4. Cyber security challenges in Smart Cities: Safety, security and privacy.

    PubMed

    Elmaghraby, Adel S; Losavio, Michael M

    2014-07-01

    The world is experiencing an evolution of Smart Cities. These emerge from innovations in information technology that, while they create new economic and social opportunities, pose challenges to our security and expectations of privacy. Humans are already interconnected via smart phones and gadgets. Smart energy meters, security devices and smart appliances are being used in many cities. Homes, cars, public venues and other social systems are now on their path to the full connectivity known as the "Internet of Things." Standards are evolving for all of these potentially connected systems. They will lead to unprecedented improvements in the quality of life. To benefit from them, city infrastructures and services are changing with new interconnected systems for monitoring, control and automation. Intelligent transportation, public and private, will access a web of interconnected data from GPS location to weather and traffic updates. Integrated systems will aid public safety, emergency responders and in disaster recovery. We examine two important and entangled challenges: security and privacy. Security includes illegal access to information and attacks causing physical disruptions in service availability. As digital citizens are more and more instrumented with data available about their location and activities, privacy seems to disappear. Privacy protecting systems that gather data and trigger emergency response when needed are technological challenges that go hand-in-hand with the continuous security challenges. Their implementation is essential for a Smart City in which we would wish to live. We also present a model representing the interactions between person, servers and things. Those are the major element in the Smart City and their interactions are what we need to protect.

  5. Split Bregman multicoil accelerated reconstruction technique: A new framework for rapid reconstruction of cardiac perfusion MRI

    PubMed Central

    Kamesh Iyer, Srikant; Tasdizen, Tolga; Likhite, Devavrat; DiBella, Edward

    2016-01-01

    Purpose: Rapid reconstruction of undersampled multicoil MRI data with iterative constrained reconstruction method is a challenge. The authors sought to develop a new substitution based variable splitting algorithm for faster reconstruction of multicoil cardiac perfusion MRI data. Methods: The new method, split Bregman multicoil accelerated reconstruction technique (SMART), uses a combination of split Bregman based variable splitting and iterative reweighting techniques to achieve fast convergence. Total variation constraints are used along the spatial and temporal dimensions. The method is tested on nine ECG-gated dog perfusion datasets, acquired with a 30-ray golden ratio radial sampling pattern and ten ungated human perfusion datasets, acquired with a 24-ray golden ratio radial sampling pattern. Image quality and reconstruction speed are evaluated and compared to a gradient descent (GD) implementation and to multicoil k-t SLR, a reconstruction technique that uses a combination of sparsity and low rank constraints. Results: Comparisons based on blur metric and visual inspection showed that SMART images had lower blur and better texture as compared to the GD implementation. On average, the GD based images had an ∼18% higher blur metric as compared to SMART images. Reconstruction of dynamic contrast enhanced (DCE) cardiac perfusion images using the SMART method was ∼6 times faster than standard gradient descent methods. k-t SLR and SMART produced images with comparable image quality, though SMART was ∼6.8 times faster than k-t SLR. Conclusions: The SMART method is a promising approach to reconstruct good quality multicoil images from undersampled DCE cardiac perfusion data rapidly. PMID:27036592

  6. Operational load estimation of a smart wind turbine rotor blade

    NASA Astrophysics Data System (ADS)

    White, Jonathan R.; Adams, Douglas E.; Rumsey, Mark A.

    2009-03-01

    Rising energy prices and carbon emission standards are driving a fundamental shift from fossil fuels to alternative sources of energy such as biofuel, solar, wind, clean coal and nuclear. In 2008, the U.S. installed 8,358 MW of new wind capacity increasing the total installed wind power by 50% to 25,170 MW. A key technology to improve the efficiency of wind turbines is smart rotor blades that can monitor the physical loads being applied by the wind and then adapt the airfoil for increased energy capture. For extreme wind and gust events, the airfoil could be changed to reduce the loads to prevent excessive fatigue or catastrophic failure. Knowledge of the actual loading to the turbine is also useful for maintenance planning and design improvements. In this work, an array of uniaxial and triaxial accelerometers was integrally manufactured into a 9m smart rotor blade. DC type accelerometers were utilized in order to estimate the loading and deflection from both quasi-steady-state and dynamic events. A method is presented that designs an estimator of the rotor blade static deflection and loading and then optimizes the placement of the sensor(s). Example results show that the method can identify the optimal location for the sensor for both simple example cases and realistic complex loading. The optimal location of a single sensor shifts towards the tip as the curvature of the blade deflection increases with increasingly complex wind loading. The framework developed is practical for the expansion of sensor optimization in more complex blade models and for higher numbers of sensors.

  7. Exploiting IoT Technologies and Open Source Components for Smart Seismic Network Instrumentation

    NASA Astrophysics Data System (ADS)

    Germenis, N. G.; Koulamas, C. A.; Foundas, P. N.

    2017-12-01

    The data collection infrastructure of any seismic network poses a number of requirements and trade-offs related to accuracy, reliability, power autonomy and installation & operational costs. Having the right hardware design at the edge of this infrastructure, embedded software running inside the instruments is the heart of pre-processing and communication services implementation and their integration with the central storage and processing facilities of the seismic network. This work demonstrates the feasibility and benefits of exploiting software components from heterogeneous sources in order to realize a smart seismic data logger, achieving higher reliability, faster integration and less development and testing costs of critical functionality that is in turn responsible for the cost and power efficient operation of the device. The instrument's software builds on top of widely used open source components around the Linux kernel with real-time extensions, the core Debian Linux distribution, the earthworm and seiscomp tooling frameworks, as well as components from the Internet of Things (IoT) world, such as the CoAP and MQTT protocols for the signaling planes, besides the widely used de-facto standards of the application domain at the data plane, such as the SeedLink protocol. By using an innovative integration of features based on lower level GPL components of the seiscomp suite with higher level processing earthworm components, coupled with IoT protocol extensions to the latter, the instrument can implement smart functionality such as network controlled, event triggered data transmission in parallel with edge archiving and on demand, short term historical data retrieval.

  8. "If I'm so Smart..": Memories of Assessment and the Role of Standardized Testing in Forming an Intellectual Identity

    ERIC Educational Resources Information Center

    McNutt, Stephen Bishop

    2014-01-01

    Written at a time when the number of students taking standardized tests in U.S. public schools is at an all-time high, this dissertation presents and analyzes the contribution of standardized testing to intellectual identity formation as portrayed within the oral histories of four adults from the post-"A Nation at Risk" (1983) and…

  9. AOI [3]: Smart Refractory Sensor Systems for Wireless Monitoring of Temperature, Health, and Degradation of Slagging Gasifiers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sabolsky, Edward M.; Bhattacharyya, Debangsu; Graham, David

    The objective of the work was to develop refractory “smart bricks”, which would contain embedded temperature, strain/stress, and spallation sensors throughout the volume of high-chromia (-Cr2O3) refractory brick. The proposed work included work to interconnect the sensors to the reactor exterior, where the sensor signals may be processed by low-power electronics and transmitted wirelessly to a central processing hub. The data processing and wireless transmitter hardware was specifically designed to be isolated (with low power consumption) and to be adaptable to future implementation of energy-harvesting strategies for extended life. Finally, the collected data was incorporated into a model to estimatemore » refractory degradation, a technique that could help monitor the health of the refractory in real-time. The long-term goal of this program was to demonstrate high-temperature, wireless sensor arrays for in situ three-dimensional (3-D) refractory monitoring or mapping for slagging gasification systems. The research was in collaboration with HarbisonWalker International (HWI) Technology Center in West Mifflin, PA. HWI is a leading developer and manufacturer of ceramic refractory products for high-temperature applications. The work completed focused on the following areas: 1) Investigation of the chemical stability, microstructural evolution, grain growth kinetics, degree of homogeneity (quantitative image analysis), and electrical properties of refractory oxide-silicide composites at temperatures between 750-1450ºC; 2) Fabrication of silicide-alumina composite and oxide thermocouples and thermistor preforms and the development of techniques to embed them into high-chromia refractory bricks to form “smart bricks”; 3) Utilization of commercial off-the-shelf discrete components to prototype circuits for interfacing between smart brick sensors and the wireless sensor network. The prototypes were then used to design an integrated circuit for thermistor, thermocouple, and capacitive-based smart brick sensor interfacing; 4) Interfacing of the smart bricks with embedded sensors with wireless motes thus yielding a complete signal chain. This end-to-end data collection system was tested on a furnace heated to 1350 °C; 5) Development of a slag penetration model and a nonlinear unknown input filter for the data from the embedded sensors for estimating temperature and extent of slag penetration.« less

  10. Product reformulation and nutritional improvements after new competitive food standards in schools.

    PubMed

    Jahn, Jaquelyn L; Cohen, Juliana Fw; Gorski-Findling, Mary T; Hoffman, Jessica A; Rosenfeld, Lindsay; Chaffee, Ruth; Smith, Lauren; Rimm, Eric B

    2018-04-01

    In 2012, Massachusetts enacted school competitive food and beverage standards similar to national Smart Snacks. These standards aim to improve the nutritional quality of competitive snacks. It was previously demonstrated that a majority of foods and beverages were compliant with the standards, but it was unknown whether food manufacturers reformulated products in response to the standards. The present study assessed whether products were reformulated after standards were implemented; the availability of reformulated products outside schools; and whether compliance with the standards improved the nutrient composition of competitive snacks. An observational cohort study documenting all competitive snacks sold before (2012) and after (2013 and 2014) the standards were implemented. The sample included thirty-six school districts with both a middle and high school. After 2012, energy, saturated fat, Na and sugar decreased and fibre increased among all competitive foods. By 2013, 8 % of foods were reformulated, as were an additional 9 % by 2014. Nearly 15 % of reformulated foods were look-alike products that could not be purchased at supermarkets. Energy and Na in beverages decreased after 2012, in part facilitated by smaller package sizes. Massachusetts' law was effective in improving the nutritional content of snacks and product reformulation helped schools adhere to the law. This suggests fully implementing Smart Snacks standards may similarly improve the foods available in schools nationally. However, only some healthier reformulated foods were available outside schools.

  11. The role of smart systems in rendezvous, close proximity operations and docking maneuvers

    NASA Astrophysics Data System (ADS)

    Szatkowski, Gerard P.

    Various missions scenarios (Space Station logistics, LEO and GEO services, and SEI operation) will involve flexibility in mission management. This means operations will be one or a combination of the following: autonomous, supervised autonomous, and machine aided manual control. Smart Systems will likely play a significant role in making these missions successful from a safety/reliability perspective and less costly from an operations perspective. This does not imply that Smart Systems need to be super sophisticated. On the contrary, Smart Systems have been described as automated intelligence that if a person had done it wrong, it would be considered stupid. The first part of this paper will describe the types of Smart System techniques involved in AR and CC, their specifications, duties, and interactions. Next will be a discussion of the work performed under the auspice of the ALS Program to further Expert Systems applications imbedded in the control process, NASA/JSC CRAD, and other related IRAD projects. This will include issues pertaining to the following: integration, speed, knowledge encapsulation, and cooperative systems. Finally, a brief description will be offered to outline the major obstacles for the acceptance of Smart Systems in critical applications.

  12. Smart Radiation Therapy Biomaterials.

    PubMed

    Ngwa, Wilfred; Boateng, Francis; Kumar, Rajiv; Irvine, Darrell J; Formenti, Silvia; Ngoma, Twalib; Herskind, Carsten; Veldwijk, Marlon R; Hildenbrand, Georg Lars; Hausmann, Michael; Wenz, Frederik; Hesser, Juergen

    2017-03-01

    Radiation therapy (RT) is a crucial component of cancer care, used in the treatment of over 50% of cancer patients. Patients undergoing image guided RT or brachytherapy routinely have inert RT biomaterials implanted into their tumors. The single function of these RT biomaterials is to ensure geometric accuracy during treatment. Recent studies have proposed that the inert biomaterials could be upgraded to "smart" RT biomaterials, designed to do more than 1 function. Such smart biomaterials include next-generation fiducial markers, brachytherapy spacers, and balloon applicators, designed to respond to stimuli and perform additional desirable functions like controlled delivery of therapy-enhancing payloads directly into the tumor subvolume while minimizing normal tissue toxicities. More broadly, smart RT biomaterials may include functionalized nanoparticles that can be activated to boost RT efficacy. This work reviews the rationale for smart RT biomaterials, the state of the art in this emerging cross-disciplinary research area, challenges and opportunities for further research and development, and a purview of potential clinical applications. Applications covered include using smart RT biomaterials for boosting cancer therapy with minimal side effects, combining RT with immunotherapy or chemotherapy, reducing treatment time or health care costs, and other incipient applications. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Trends and Challenges in Smart Healthcare Research: A Journey from Data to Wisdom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solanas, Agusti; Fran, Casino; Batista, Edgar

    Smart Healthcare is a relatively new context-aware healthcare paradigm influenced by several fields of knowledge, namely medical informatics, communications and electronics, bioengineering, ethics and so on. Thus, many challenging problems are related to smart healthcare but in many cases they are explored individually in their respective fields and, as a result, they are not always known by the smart healthcare research community working in more specific domains. The aim of this article is to identify some of the most relevant trends and research lines that are going to affect the smart healthcare field in the years to come. To domore » so, the article considers a systematic approach that classifies the identified research trends and problems according to their appearance within the data life cycle, this is, from the data gathering in the physical layer (lowest level) until their final use in the application layer (highest level). By identifying and classifying those research trends and challenges, we help to pose questions that the smart healthcare community will need to address. Consequently, we set a common ground to explore important problems in the field, which will have significant impact in the years to come.« less

  14. Application of visualization and simulation program to improve work zone safety and mobility.

    DOT National Transportation Integrated Search

    2010-01-01

    A previous study sponsored by the Smart Work Zone Deployment Initiative, Feasibility of Visualization and Simulation Applications to Improve Work Zone Safety and Mobility, demonstrated the feasibility of combining readily available, inexpensive...

  15. Application of visualization and simulation program to improve work zone safety and mobility.

    DOT National Transportation Integrated Search

    2010-01-01

    "A previous study sponsored by the Smart Work Zone Deployment Initiative, Feasibility of Visualization and Simulation Applications to Improve Work Zone Safety and Mobility, demonstrated the feasibility of combining readily available, inexpensiv...

  16. Effectiveness of work zone intelligent transportation systems.

    DOT National Transportation Integrated Search

    2013-12-01

    In the last decade, Intelligent Transportation Systems (ITS) have increasingly been deployed in work zones by state departments of transportation. Also known as smart work zone systems they improve traffic operations and safety by providing real-time...

  17. Enabling affordable and efficiently deployed location based smart home systems.

    PubMed

    Kelly, Damian; McLoone, Sean; Dishongh, Terry

    2009-01-01

    With the obvious eldercare capabilities of smart environments it is a question of "when", rather than "if", these technologies will be routinely integrated into the design of future houses. In the meantime, health monitoring applications must be integrated into already complete home environments. However, there is significant effort involved in installing the hardware necessary to monitor the movements of an elder throughout an environment. Our work seeks to address the high infrastructure requirements of traditional location-based smart home systems by developing an extremely low infrastructure localisation technique. A study of the most efficient method of obtaining calibration data for an environment is conducted and different mobile devices are compared for localisation accuracy and cost trade-off. It is believed that these developments will contribute towards more efficiently deployed location-based smart home systems.

  18. Design and construction of smart cane using infrared laser-based tracking system

    NASA Astrophysics Data System (ADS)

    Wong, Chi Fung; Phitagragsakul, Narikorn; Jornsamer, Patcharaporn; Kaewmeesri, Pimsin; Jantakot, Pimsunan; Locharoenrat, Kitsakorn

    2018-06-01

    Our work is aimed to design and construct the smart cane. The infrared laser-based sensor was used as a distance detector and Arduino board was used as a microcontroller. On the other hand, Bluetooth was used as a wireless communicator and MP3 module together with the headset were used as a voice alert player. Our smart cane is a very effective device for the users under the indoor guidance. That is, the obstacle was detectable 3,000 cm away from the blind people. The white cane was assembled with the laser distance sensor and distance alert sensor served as the compact and light-weight device. Distance detection was very fast and precise when the smart cane was tested for the different obstacles, such as human, wall and wooden table under the indoor area.

  19. Nevada Pre-Kindergarten Content Standards.

    ERIC Educational Resources Information Center

    Nevada State Department of Education, 2004

    2004-01-01

    The No Child Left Behind legislation focuses on the need for accountability in supporting student achievement for all children. The standards movement in the U.S. has articulated key benchmarks for student achievement at each grade level K-12 in academic content areas. Through the "No Child Left Behind" legislation and the "Good Start, Grow Smart"…

  20. New secure communication-layer standard for medical image management (ISCL)

    NASA Astrophysics Data System (ADS)

    Kita, Kouichi; Nohara, Takashi; Hosoba, Minoru; Yachida, Masuyoshi; Yamaguchi, Masahiro; Ohyama, Nagaaki

    1999-07-01

    This paper introduces a summary of the standard draft of ISCL 1.00 which will be published by MEDIS-DC officially. ISCL is abbreviation of Integrated Secure Communication Layer Protocols for Secure Medical Image Management Systems. ISCL is a security layer which manages security function between presentation layer and TCP/IP layer. ISCL mechanism depends on basic function of a smart IC card and symmetric secret key mechanism. A symmetry key for each session is made by internal authentication function of a smart IC card with a random number. ISCL has three functions which assure authentication, confidently and integrity. Entity authentication process is done through 3 path 4 way method using functions of internal authentication and external authentication of a smart iC card. Confidentially algorithm and MAC algorithm for integrity are able to be selected. ISCL protocols are communicating through Message Block which consists of Message Header and Message Data. ISCL protocols are evaluating by applying to regional collaboration system for image diagnosis, and On-line Secure Electronic Storage system for medical images. These projects are supported by Medical Information System Development Center. These project shows ISCL is useful to keep security.

  1. Multilevel and Hybrid Architecture for Device Abstraction and Context Information Management in Smart Home Environments

    NASA Astrophysics Data System (ADS)

    Peláez, Víctor; González, Roberto; San Martín, Luis Ángel; Campos, Antonio; Lobato, Vanesa

    Hardware device management, and context information acquisition and abstraction are key factors to develop the ambient intelligent paradigm in smart homes. This work presents an architecture that addresses these two problems and provides a usable framework to develop applications easily. In contrast to other proposals, this work addresses performance issues specifically. Results show that the execution performance of the developed prototype is suitable for deployment in a real environment. In addition, the modular design of the system allows the user to develop applications using different techniques and different levels of abstraction.

  2. SMART empirical approaches for predicting field performance of PV modules from results of reliability tests

    NASA Astrophysics Data System (ADS)

    Hardikar, Kedar Y.; Liu, Bill J. J.; Bheemreddy, Venkata

    2016-09-01

    Gaining an understanding of degradation mechanisms and their characterization are critical in developing relevant accelerated tests to ensure PV module performance warranty over a typical lifetime of 25 years. As newer technologies are adapted for PV, including new PV cell technologies, new packaging materials, and newer product designs, the availability of field data over extended periods of time for product performance assessment cannot be expected within the typical timeframe for business decisions. In this work, to enable product design decisions and product performance assessment for PV modules utilizing newer technologies, Simulation and Mechanism based Accelerated Reliability Testing (SMART) methodology and empirical approaches to predict field performance from accelerated test results are presented. The method is demonstrated for field life assessment of flexible PV modules based on degradation mechanisms observed in two accelerated tests, namely, Damp Heat and Thermal Cycling. The method is based on design of accelerated testing scheme with the intent to develop relevant acceleration factor models. The acceleration factor model is validated by extensive reliability testing under different conditions going beyond the established certification standards. Once the acceleration factor model is validated for the test matrix a modeling scheme is developed to predict field performance from results of accelerated testing for particular failure modes of interest. Further refinement of the model can continue as more field data becomes available. While the demonstration of the method in this work is for thin film flexible PV modules, the framework and methodology can be adapted to other PV products.

  3. A web based tool for storing and visualising data generated within a smart home.

    PubMed

    McDonald, H A; Nugent, C D; Moore, G; Finlay, D D; Hallberg, J

    2011-01-01

    There is a growing need to re-assess the current approaches available to researchers for storing and managing heterogeneous data generated within a smart home environment. In our current work we have developed the homeML Application; a web based tool to support researchers engaged in the area of smart home research as they perform experiments. Within this paper the homeML Application is presented which includes the fundamental components of the homeML Repository and the homeML Toolkit. Results from a usability study conducted by 10 computer science researchers are presented; the initial results of which have been positive.

  4. Energy storage at the threshold: Smart mobility and the grid of the future

    NASA Astrophysics Data System (ADS)

    Crabtree, George

    2018-01-01

    Energy storage is poised to drive transformations in transportation and the electricity grid that personalize access to mobility and energy services, not unlike the transformation of smart phones that personalized access to people and information. Storage will work with other emerging technologies such as electric vehicles, ride-sharing, self-driving and connected cars in transportation and with renewable generation, distributed energy resources and smart energy management on the grid to create mobility and electricity as services matched to customer needs replacing the conventional one-size-fits-all approach. This survey outlines the prospects, challenges and impacts of the coming mobility and electricity transformations.

  5. iss047e066248

    NASA Image and Video Library

    2016-04-19

    ISS047e066248 (04/19/2016) --- NASA astronaut and Expedition 47 Flight Engineer Jeff Williams works with the Wet Lab RNA SmartCycler on-board the International Space Station. Wetlab RNA SmartCycler is a research platform for conducting real-time quantitative gene expression analysis aboard the ISS. The system enables spaceflight genomic studies involving a wide variety of biospecimen types in the unique microgravity environment of space.

  6. Connected vehicle standards.

    DOT National Transportation Integrated Search

    2016-01-01

    Connected vehicles have the potential to transform the way Americans travel by : allowing cars, buses, trucks, trains, traffic signals, smart phones, and other devices to : communicate through a safe, interoperable wireless network. A connected vehic...

  7. Modeling users, context and devices for ambient assisted living environments.

    PubMed

    Castillejo, Eduardo; Almeida, Aitor; López-de-Ipiña, Diego; Chen, Liming

    2014-03-17

    The participation of users within AAL environments is increasing thanks to the capabilities of the current wearable devices. Furthermore, the significance of considering user's preferences, context conditions and device's capabilities help smart environments to personalize services and resources for them. Being aware of different characteristics of the entities participating in these situations is vital for reaching the main goals of the corresponding systems efficiently. To collect different information from these entities, it is necessary to design several formal models which help designers to organize and give some meaning to the gathered data. In this paper, we analyze several literature solutions for modeling users, context and devices considering different approaches in the Ambient Assisted Living domain. Besides, we remark different ongoing standardization works in this area. We also discuss the used techniques, modeled characteristics and the advantages and drawbacks of each approach to finally draw several conclusions about the reviewed works.

  8. Modeling Users, Context and Devices for Ambient Assisted Living Environments

    PubMed Central

    Castillejo, Eduardo; Almeida, Aitor; López-de-Ipiña, Diego; Chen, Liming

    2014-01-01

    The participation of users within AAL environments is increasing thanks to the capabilities of the current wearable devices. Furthermore, the significance of considering user's preferences, context conditions and device's capabilities help smart environments to personalize services and resources for them. Being aware of different characteristics of the entities participating in these situations is vital for reaching the main goals of the corresponding systems efficiently. To collect different information from these entities, it is necessary to design several formal models which help designers to organize and give some meaning to the gathered data. In this paper, we analyze several literature solutions for modeling users, context and devices considering different approaches in the Ambient Assisted Living domain. Besides, we remark different ongoing standardization works in this area. We also discuss the used techniques, modeled characteristics and the advantages and drawbacks of each approach to finally draw several conclusions about the reviewed works. PMID:24643006

  9. Urban Automation Networks: Current and Emerging Solutions for Sensed Data Collection and Actuation in Smart Cities.

    PubMed

    Gomez, Carles; Paradells, Josep

    2015-09-10

    Urban Automation Networks (UANs) are being deployed worldwide in order to enable Smart City applications. Given the crucial role of UANs, as well as their diversity, it is critically important to assess their properties and trade-offs. This article introduces the requirements and challenges for UANs, characterizes the main current and emerging UAN paradigms, provides guidelines for their design and/or choice, and comparatively examines their performance in terms of a variety of parameters including coverage, power consumption, latency, standardization status and economic cost.

  10. Smart laser hole drilling for gas turbine combustors

    NASA Astrophysics Data System (ADS)

    Laraque, Edy

    1991-04-01

    A smart laser drilling system, which incorporates air flow inspection-in-process of the holes and intelligent real-time process parameter corrections, is described. The system along with good laser parameter developments is proved to be efficient for producing cooling holes which meet the highest aeronautical standards. To date, the system is used for percussion drilling of combustion chamber cooling holes. The system is considered to be very economical due to the drilling-on-the-fly capability that is capable of drilling up to 3 holes of 0.025-in. dia. per second.

  11. Urban Automation Networks: Current and Emerging Solutions for Sensed Data Collection and Actuation in Smart Cities

    PubMed Central

    Gomez, Carles; Paradells, Josep

    2015-01-01

    Urban Automation Networks (UANs) are being deployed worldwide in order to enable Smart City applications. Given the crucial role of UANs, as well as their diversity, it is critically important to assess their properties and trade-offs. This article introduces the requirements and challenges for UANs, characterizes the main current and emerging UAN paradigms, provides guidelines for their design and/or choice, and comparatively examines their performance in terms of a variety of parameters including coverage, power consumption, latency, standardization status and economic cost. PMID:26378534

  12. Comprehensive approach to smart urban development based on Big Data application

    NASA Astrophysics Data System (ADS)

    Kurcheeva, G. I.; Klochkov, G. A.

    2018-05-01

    Despite a certain technological backwardness of the Russian economy, the authors believe that the transition to the «smart city» is possible if one can solve such problems: providing large-scale investment, training and retraining specialists in the field of ICT, increasing innovation managers and consumers, increasing ICT participation in the work of governments, organizations and people, creating the appropriate conditions for the development of the information society. Accordingly, when developing models, it is planned to consider the relationship between quality of life and the existing system of indicators on trends of «smart cities». Monitoring of indicators of quality of life, mutually related indicators of technological development can help us develop the process model. When selecting directions for the main components of the «smart city», let us introduce the evaluation criteria that significantly affect the quality of the values of life. The development of «smart cities» should consider the international experience of the use of breakthrough innovative technology. Research scientists of various countries show a variety of approaches to identifying the main business processes in models of the «smart city». Having the international experience, it is necessary to improve business processes in the construction of a process model «smart city», adapting the model to the characteristics of the national environment.

  13. Finite element analyses of a dual actuated prototype of a smart needle

    NASA Astrophysics Data System (ADS)

    Konh, Bardia; Podder, Tarun K.

    2017-04-01

    Brachytherapy is one of the most effective modalities for treating early stage prostate cancer. In this procedure, radioactive seeds are being placed in the prostate to kill the tumorous cells. Inaccurate placement of seeds can underdose the tumor and dangerously overdose the critical structures (urethra, rectum, bladder) and adjacent healthy tissues. It is very difficult, if not impossible, for the surgeons to compensate the needle misplacement errors while using the conventional passive straight needles. The smart needles actuated by shape memory alloy (SMA) wires are being developed to provide more actuation and control for the surgeons to achieve more geometric conformity. In our recent work, a prototype of a smart needle was developed where not only the actuation of SMA wires were incorporated, but also shape memory polymers (SMPs) were included in the design introducing a soft joint element to further assist the flexibility of the active surgical needles. The additional actuation of shape memory polymers provided the capability of reaching much high flexibility that was not achievable before. However, there are some disadvantages using this active SMP component compared to a passive Nylon joint component that are discussed in this work. The utilization of a heated SMP as a soft joint showed about 20% improvement in the final needle tip deflection. This work presents the finite element studies of the developed prototype. A finite element model that could accurately predict the behavior of the smart needle could be very valuable in analyzing and optimizing the future novel designs.

  14. Single-inhaler combination therapy for maintenance and relief of asthma: a new strategy in disease management.

    PubMed

    Peters, Matthew

    2009-01-01

    When an adequate standard of asthma control is not achieved with maintenance treatment of inhaled corticosteroids, the addition of a long-acting beta(2)-adrenergic receptor agonist (LABA) bronchodilator is recommended. Using a combination product, salmeterol/fluticasone propionate (Seretide or Advair) or budesonide/formoterol (Symbicort) is preferred for convenience and avoids any risk that LABA might be used as monotherapy. As formoterol has a rapid onset of bronchodilator effect, the budesonide/formoterol combination can be used for both the maintenance and reliever components of asthma treatment (Symbicort SMART) and this is endorsed as an effective treatment by the Global Initiative for Asthma. The efficacy of this approach has been evaluated in a series of well conducted, controlled studies. Current control of asthma symptoms is improved or achieved with reduced total dose administration with Symbicort SMART compared with any reasonable alternate option. In every study, the risk of severe exacerbations was lower with Symbicort SMART than comparator treatment. Patients who benefit to the greatest extent are those with evidence of more severe asthma and greater exacerbation risk. When initiated in suitable patients in conjunction with appropriate education, Symbicort SMART is dominant in pharmacoeconomic terms. Symbicort SMART delivers improved asthma outcomes with lower treatment and social costs than any alternative.

  15. Smart patch piezoceramic actuator issues

    NASA Technical Reports Server (NTRS)

    Griffin, Steven F.; Denoyer, Keith K.; Yost, Brad

    1993-01-01

    The Phillips Laboratory is undertaking the challenge of finding new and innovative ways to integrate sensing, actuation, and the supporting control and power electronics into a compact self-contained unit to provide vibration suppression for a host structure. This self-contained unit is commonly referred to as a smart patch. The interfaces to the smart patch will be limited to standard spacecraft power and possibly a communications line. The effort to develop a smart patch involves both contractual and inhouse programs which are currently focused on miniaturization of the electronics associated with vibrational control using piezoceramic sensors and actuators. This paper is comprised of two distinct parts. The first part examines issues associated with bonding piezoceramic actuators to a host structure. Experimental data from several specimens with varying flexural stiffness are compared to predictions from two piezoelectric/substructure coupling models, the Blocked Force Model and the Uniform Strain Model with Perfect Bonding. The second part of the paper highlights a demonstration article smart patch created using the insights gained from inhouse efforts at the Phillips Laboratory. This demonstration article has self contained electronics on the same order of size as the actuator powered by a voltage differential of approximately 32 volts. This voltage is provided by four rechargeable 8 volt batteries.

  16. Connected vehicle standards.

    DOT National Transportation Integrated Search

    2016-01-01

    Connected vehicles have the potential to transform the way Americans travel by allowing cars, buses, trucks, trains, traffic signals, smart phones, and other devices to communicate through a safe, interoperable wireless network. A connected vehicle s...

  17. 76 FR 3089 - Roundtable on Federal Government Engagement in Standards

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-19

    ... of a Smart Grid, secure and interoperable electronic health records, cybersecurity, cloud computing... government engage in sectors where there is a compelling national interest? How are existing public- private...

  18. A decision modeling for phasor measurement unit location selection in smart grid systems

    NASA Astrophysics Data System (ADS)

    Lee, Seung Yup

    As a key technology for enhancing the smart grid system, Phasor Measurement Unit (PMU) provides synchronized phasor measurements of voltages and currents of wide-area electric power grid. With various benefits from its application, one of the critical issues in utilizing PMUs is the optimal site selection of units. The main aim of this research is to develop a decision support system, which can be used in resource allocation task for smart grid system analysis. As an effort to suggest a robust decision model and standardize the decision modeling process, a harmonized modeling framework, which considers operational circumstances of component, is proposed in connection with a deterministic approach utilizing integer programming. With the results obtained from the optimal PMU placement problem, the advantages and potential that the harmonized modeling process possesses are assessed and discussed.

  19. NSF/ESF Workshop on Smart Structures and Advanced Sensors, Santorini Island, Greece, June 26-28, 2005: Structural Actuation and Adaptation Working Group

    NASA Technical Reports Server (NTRS)

    Figueroa, Fernando; Tomizuka, Masayoshi; Bergman, Lawrence; Carpenter, Bernie; Salzano, Carmine; Bairrao, rogerio; Deraemaker, Arnaud; Magonette, Georges; Rodellar, Jose; Kadirkamanathan, Visaken

    2005-01-01

    This document is a result of discussions that took place during the workshop. It describes current state of research and development (R&D) in the areas of structural actuation and adaptation in the context of smart structures and advanced sensors (SS&AS), and provides an outlook to guide future R&D efforts to develop technologies needed to build SS&AS. The discussions took place among the members of the Structural Actuation and Adaptation Working Group, as well as in general sessions including all four working groups. Participants included members of academia, industry, and government from the US and Europe, and representatives from China, Japan, and Korea.

  20. Virtual Sensor Test Instrumentation

    NASA Technical Reports Server (NTRS)

    Wang, Roy

    2011-01-01

    Virtual Sensor Test Instrumentation is based on the concept of smart sensor technology for testing with intelligence needed to perform sell-diagnosis of health, and to participate in a hierarchy of health determination at sensor, process, and system levels. A virtual sensor test instrumentation consists of five elements: (1) a common sensor interface, (2) microprocessor, (3) wireless interface, (4) signal conditioning and ADC/DAC (analog-to-digital conversion/ digital-to-analog conversion), and (5) onboard EEPROM (electrically erasable programmable read-only memory) for metadata storage and executable software to create powerful, scalable, reconfigurable, and reliable embedded and distributed test instruments. In order to maximize the efficient data conversion through the smart sensor node, plug-and-play functionality is required to interface with traditional sensors to enhance their identity and capabilities for data processing and communications. Virtual sensor test instrumentation can be accessible wirelessly via a Network Capable Application Processor (NCAP) or a Smart Transducer Interlace Module (STIM) that may be managed under real-time rule engines for mission-critical applications. The transducer senses the physical quantity being measured and converts it into an electrical signal. The signal is fed to an A/D converter, and is ready for use by the processor to execute functional transformation based on the sensor characteristics stored in a Transducer Electronic Data Sheet (TEDS). Virtual sensor test instrumentation is built upon an open-system architecture with standardized protocol modules/stacks to interface with industry standards and commonly used software. One major benefit for deploying the virtual sensor test instrumentation is the ability, through a plug-and-play common interface, to convert raw sensor data in either analog or digital form, to an IEEE 1451 standard-based smart sensor, which has instructions to program sensors for a wide variety of functions. The sensor data is processed in a distributed fashion across the network, providing a large pool of resources in real time to meet stringent latency requirements.

  1. Surface 12 lead electrocardiogram recordings using smart phone technology.

    PubMed

    Baquero, Giselle A; Banchs, Javier E; Ahmed, Shameer; Naccarelli, Gerald V; Luck, Jerry C

    2015-01-01

    AliveCor ECG is an FDA approved ambulatory cardiac rhythm monitor that records a single channel (lead I) ECG rhythm strip using an iPhone. In the past few years, the use of smartphones and tablets with health related applications has significantly proliferated. In this initial feasibility trial, we attempted to reproduce the 12 lead ECG using the bipolar arrangement of the AliveCor monitor coupled to smart phone technology. We used the AliveCor heart monitor coupled with an iPhone cellular phone and the AliveECG application (APP) in 5 individuals. In our 5 individuals, recordings from both a standard 12 lead ECG and the AliveCor generated 12 lead ECG had the same interpretation. This study demonstrates the feasibility of creating a 12 lead ECG with a smart phone. The validity of the recordings would seem to suggest that this technology could become an important useful tool for clinical use. This new hand held smart phone 12 lead ECG recorder needs further development and validation. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Cyber security challenges in Smart Cities: Safety, security and privacy

    PubMed Central

    Elmaghraby, Adel S.; Losavio, Michael M.

    2014-01-01

    The world is experiencing an evolution of Smart Cities. These emerge from innovations in information technology that, while they create new economic and social opportunities, pose challenges to our security and expectations of privacy. Humans are already interconnected via smart phones and gadgets. Smart energy meters, security devices and smart appliances are being used in many cities. Homes, cars, public venues and other social systems are now on their path to the full connectivity known as the “Internet of Things.” Standards are evolving for all of these potentially connected systems. They will lead to unprecedented improvements in the quality of life. To benefit from them, city infrastructures and services are changing with new interconnected systems for monitoring, control and automation. Intelligent transportation, public and private, will access a web of interconnected data from GPS location to weather and traffic updates. Integrated systems will aid public safety, emergency responders and in disaster recovery. We examine two important and entangled challenges: security and privacy. Security includes illegal access to information and attacks causing physical disruptions in service availability. As digital citizens are more and more instrumented with data available about their location and activities, privacy seems to disappear. Privacy protecting systems that gather data and trigger emergency response when needed are technological challenges that go hand-in-hand with the continuous security challenges. Their implementation is essential for a Smart City in which we would wish to live. We also present a model representing the interactions between person, servers and things. Those are the major element in the Smart City and their interactions are what we need to protect. PMID:25685517

  3. Smart release of doxorubicin loaded on polyetheretherketone (PEEK) surface with 3D porous structure.

    PubMed

    Ouyang, Liping; Sun, Zhenjie; Wang, Donghui; Qiao, Yuqin; Zhu, Hongqin; Ma, Xiaohan; Liu, Xuanyong

    2018-03-01

    It is important to fabricate an implant possessing environment sensitive drug delivery. In this work, the construction of 3D porous structure on polyetheretherketone (PEEK) surface and pH sensitive polymer, chitosan, was introduced. The smart release of doxorubicin can be realized on the 3D porous surface of PEEK loading chitosan. We give a feasible explanation for the effect of chitosan on smart drug release according to Henderson-Hasselbalch equation. Furthermore, the intracellular drug content of the cell cultured on the samples with highest chitosan is significantly higher at pH 4.0, whereas lower at pH 7.4 than other samples. The smart release of doxorubicin via modification with chitosan onto 3D porous PEEK surface paves the way for the application of PEEK in drug loading platform for recovering bone defect caused by malignant bone tumor. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Smart Health Caring Home: A Systematic Review of Smart Home Care for Elders and Chronic Disease Patients.

    PubMed

    Moraitou, Marina; Pateli, Adamantia; Fotiou, Sotiris

    2017-01-01

    As access to health care is important to people's health especially for vulnerable groups that need nursing for a long period of time, new studies in the human sciences argue that the health of the population depend less on the quality of the health care, or on the amount of spending that goes into health care, and more heavily on the quality of everyday life. Smart home applications are designed to "sense" and monitor the health conditions of its residents through the use of a wide range of technological components (motion sensors, video cameras, wearable devices etc.), and web-based services that support their wish to stay at home. In this work, we provide a review of the main technological, psychosocial/ethical and economic challenges that the implementation of a Smart Health Caring Home raises.

  5. Facilitating interdisciplinary design specification of "smart" homes for aging in place.

    PubMed

    Demiris, George; Skubic, Marjorie; Rantz, Marilyn J; Courtney, Karen L; Aud, Myra A; Tyrer, Harry W; He, Zhihai; Lee, Jia

    2006-01-01

    "Smart homes" are defined as residences equipped with sensors and other advanced technology applications that enhance residents' independence and can be used for aging in place. The objective of this study is to determine design specifications for smart residences as defined by professional groups involved both in care delivery to senior citizens and development of devices and technologies to support aging. We assessed the importance of specific devices and sensors and their advantages and disadvantages as perceived by the interdisciplinary expert team. This work lays the ground for the implementation of smart home residencies and confirms that only an interdisciplinary design approach can address all the technical, clinical and human factors related challenges associated with home-based technologies that support aging. Our findings indicate that the use of adaptive technology that can be installed in the home environment has the potential to not only support but also empower individual senior users.

  6. Embedded systems engineering for products and services design.

    PubMed

    Ahram, Tareq Z; Karwowski, Waldemar; Soares, Marcelo M

    2012-01-01

    Systems engineering (SE) professionals strive to develop new techniques to enhance the value of contributions to multidisciplinary smart product design teams. Products and services designers challenge themselves to search beyond the traditional design concept of addressing the physical, social, and cognitive factors. This paper covers the application of embedded user-centered systems engineering design practices into work processes based on the ISO 13407 framework [20] to support smart systems and services design and development. As practitioners collaborate to investigate alternative smart product designs, they concentrate on creating valuable products which will enhance positive interaction. This paper capitalizes on the need to follow a user-centered SE approach to smart products design [4, 22]. Products and systems intelligence should embrace a positive approach to user-centered design while improving our understanding of usable value-adding, experience and extending our knowledge of what inspires others to design enjoyable services and products.

  7. Automated assessment of cognitive health using smart home technologies.

    PubMed

    Dawadi, Prafulla N; Cook, Diane J; Schmitter-Edgecombe, Maureen; Parsey, Carolyn

    2013-01-01

    The goal of this work is to develop intelligent systems to monitor the wellbeing of individuals in their home environments. This paper introduces a machine learning-based method to automatically predict activity quality in smart homes and automatically assess cognitive health based on activity quality. This paper describes an automated framework to extract set of features from smart home sensors data that reflects the activity performance or ability of an individual to complete an activity which can be input to machine learning algorithms. Output from learning algorithms including principal component analysis, support vector machine, and logistic regression algorithms are used to quantify activity quality for a complex set of smart home activities and predict cognitive health of participants. Smart home activity data was gathered from volunteer participants (n=263) who performed a complex set of activities in our smart home testbed. We compare our automated activity quality prediction and cognitive health prediction with direct observation scores and health assessment obtained from neuropsychologists. With all samples included, we obtained statistically significant correlation (r=0.54) between direct observation scores and predicted activity quality. Similarly, using a support vector machine classifier, we obtained reasonable classification accuracy (area under the ROC curve=0.80, g-mean=0.73) in classifying participants into two different cognitive classes, dementia and cognitive healthy. The results suggest that it is possible to automatically quantify the task quality of smart home activities and perform limited assessment of the cognitive health of individual if smart home activities are properly chosen and learning algorithms are appropriately trained.

  8. Automated Assessment of Cognitive Health Using Smart Home Technologies

    PubMed Central

    Dawadi, Prafulla N.; Cook, Diane J.; Schmitter-Edgecombe, Maureen; Parsey, Carolyn

    2014-01-01

    BACKGROUND The goal of this work is to develop intelligent systems to monitor the well being of individuals in their home environments. OBJECTIVE This paper introduces a machine learning-based method to automatically predict activity quality in smart homes and automatically assess cognitive health based on activity quality. METHODS This paper describes an automated framework to extract set of features from smart home sensors data that reflects the activity performance or ability of an individual to complete an activity which can be input to machine learning algorithms. Output from learning algorithms including principal component analysis, support vector machine, and logistic regression algorithms are used to quantify activity quality for a complex set of smart home activities and predict cognitive health of participants. RESULTS Smart home activity data was gathered from volunteer participants (n=263) who performed a complex set of activities in our smart home testbed. We compare our automated activity quality prediction and cognitive health prediction with direct observation scores and health assessment obtained from neuropsychologists. With all samples included, we obtained statistically significant correlation (r=0.54) between direct observation scores and predicted activity quality. Similarly, using a support vector machine classifier, we obtained reasonable classification accuracy (area under the ROC curve = 0.80, g-mean = 0.73) in classifying participants into two different cognitive classes, dementia and cognitive healthy. CONCLUSIONS The results suggest that it is possible to automatically quantify the task quality of smart home activities and perform limited assessment of the cognitive health of individual if smart home activities are properly chosen and learning algorithms are appropriately trained. PMID:23949177

  9. Ethical Considerations Regarding the Use of Smart Home Technologies for Older Adults: An Integrative Review.

    PubMed

    Chung, Jane; Demiris, George; Thompson, Hilaire J

    2016-01-01

    With the wide adoption and use of smart home applications, there is a need for examining ethical issues regarding smart home use at the intersection of aging, technology, and home environment. The purpose of this review is to provide an overview of ethical considerations and the evidence on these ethical issues based on an integrative literature review with regard to the utilization of smart home technologies by older adults and their family members. REVIEW DESIGN AND METHODS: We conducted an integrative literature review of the scientific literature from indexed databases (e. g., MEDLINE, CINAHL, and PsycINFO). The framework guiding this review is derived from previous work on ethical considerations related to telehealth use for older adults and smart homes for palliative care. Key ethical issues of the framework include privacy, informed consent, autonomy, obtrusiveness, equal access, reduction in human touch, and usability. Six hundred and thirty-five candidate articles were identified between the years 1990 and 2014. Sixteen articles were included in the review. Privacy and obtrusiveness issues appear to be the most important factors that can affect smart home technology adoption. In addition, this article recommends that stigmatization and reliability and maintenance of the system are additional factors to consider. When smart home technology is used appropriately, it has the potential to improve quality of life and maintain safety among older adults, ultimately supporting the desire of older adults for aging in place. The ability to respond to potential ethical concerns will be critical to the future development and application of smart home technologies that aim to enhance safety and independence.

  10. Integrating Apps with the Core Arts Standards in the 21st-Century Elementary Music Classroom

    ERIC Educational Resources Information Center

    Heath-Reynolds, Julia; VanWeelden, Kimberly

    2015-01-01

    The implementation of the National Core Arts Standards has amplified the need for multiple approaches and opportunities for student responses and may compel music educators to use new tools. There are currently over one million available apps, and with the popularity of smart devices, student access to technology is increasing exponentially. Music…

  11. Microfluidic cartridges for DNA purification and genotyping processed in standard laboratory instruments

    NASA Astrophysics Data System (ADS)

    Focke, Maximilian; Mark, Daniel; Stumpf, Fabian; Müller, Martina; Roth, Günter; Zengerle, Roland; von Stetten, Felix

    2011-06-01

    Two microfluidic cartridges intended for upgrading standard laboratory instruments with automated liquid handling capability by use of centrifugal forces are presented. The first microfluidic cartridge enables purification of DNA from human whole blood and is operated in a standard laboratory centrifuge. The second microfluidic catridge enables genotyping of pathogens by geometrically multiplexed real-time PCR. It is operated in a slightly modified off-the-shelf thermal cycler. Both solutions aim at smart and cost-efficient ways to automate work flows in laboratories. The DNA purification cartridge automates all liquid handling steps starting from a lysed blood sample to PCR ready DNA. The cartridge contains two manually crushable glass ampoules with liquid reagents. The DNA yield extracted from a 32 μl blood sample is 192 +/- 30 ng which corresponds to 53 +/- 8% of a reference extraction. The genotyping cartridge is applied to analyse isolates of the multi-resistant Staphyloccus aureus (MRSA) by real-time PCR. The wells contain pre-stored dry reagents such as primers and probes. Evaluation of the system with 44 genotyping assays showed a 100% specificity and agreement with the reference assays in standard tubes. The lower limit of detection was well below 10 copies of DNA per reaction.

  12. Recent enhancements to and applications of the SmartBrick structural health monitoring platform

    NASA Astrophysics Data System (ADS)

    Gunasekaran, A.; Cross, S.; Patel, N.; Sedigh, S.

    2012-04-01

    The SmartBrick network is an autonomous and wireless solution for structural health monitoring of civil infrastructures. The base station is currently in its third generation and has been laboratory- and field-tested in the United States and Italy. The second generation of the sensor nodes has been laboratory-tested as of publication. In this paper, we present recent enhancements made to hardware and software of the SmartBrick platform. Salient improvements described include the development of a new base station with fully-integrated long-range GSM (cellular) and short-range ZigBee communication. The major software improvement described in this paper is migration to the ZigBee PRO stack, which was carried out in the interest of interoperability. To broaden the application of the platform to critical environments that require survivability and fault tolerance, we have striven to achieve compliance with military standards in the areas of hardware, software, and communication. We describe these efforts and present a survey of the military standards investigated. Also described is instrumentation of a three-span experimental bridge in Washington County, Missouri; with the SmartBrick platform. The sensors, whose output is conditioned and multiplexed; include strain gauges, thermocouples, push potentiometers, and three-axis inclinometers. Data collected is stored on site and reported over the cellular network. Real-time alerts are generated if any monitored parameter falls outside its acceptable range. Redundant sensing and communication provide reliability and facilitate corroboration of the data collected. A web interface is used to issue remote configuration commands and to facilitate access to and visualization of the data collected.

  13. Activity Level Assessment Using a Smart Cushion for People with a Sedentary Lifestyle.

    PubMed

    Ma, Congcong; Li, Wenfeng; Gravina, Raffaele; Cao, Jingjing; Li, Qimeng; Fortino, Giancarlo

    2017-10-03

    As a sedentary lifestyle leads to numerous health problems, it is important to keep constant motivation for a more active lifestyle. A large majority of the worldwide population, such as office workers, long journey vehicle drivers and wheelchair users, spends several hours every day in sedentary activities. The postures that sedentary lifestyle users assume during daily activities hide valuable information that can reveal their wellness and general health condition. Aiming at mining such underlying information, we developed a cushion-based system to assess their activity levels and recognize the activity from the information hidden in sitting postures. By placing the smart cushion on the chair, we can monitor users' postures and body swings, using the sensors deployed in the cushion. Specifically, we construct a body posture analysis model to recognize sitting behaviors. In addition, we provided a smart cushion that effectively combine pressure and inertial sensors. Finally, we propose a method to assess the activity levels based on the evaluation of the activity assessment index (AAI) in time sliding windows. Activity level assessment can be used to provide statistical results in a defined period and deliver recommendation exercise to the users. For practical implications and actual significance of results, we selected wheelchair users among the participants to our experiments. Features in terms of standard deviation and approximate entropy were compared to recognize the activities and activity levels. The results showed that, using the novel designed smart cushion and the standard deviation features, we are able to achieve an accuracy of (>89%) for activity recognition and (>98%) for activity level recognition.

  14. Activity Level Assessment Using a Smart Cushion for People with a Sedentary Lifestyle

    PubMed Central

    Li, Wenfeng; Gravina, Raffaele; Cao, Jingjing; Li, Qimeng

    2017-01-01

    As a sedentary lifestyle leads to numerous health problems, it is important to keep constant motivation for a more active lifestyle. A large majority of the worldwide population, such as office workers, long journey vehicle drivers and wheelchair users, spends several hours every day in sedentary activities. The postures that sedentary lifestyle users assume during daily activities hide valuable information that can reveal their wellness and general health condition. Aiming at mining such underlying information, we developed a cushion-based system to assess their activity levels and recognize the activity from the information hidden in sitting postures. By placing the smart cushion on the chair, we can monitor users’ postures and body swings, using the sensors deployed in the cushion. Specifically, we construct a body posture analysis model to recognize sitting behaviors. In addition, we provided a smart cushion that effectively combine pressure and inertial sensors. Finally, we propose a method to assess the activity levels based on the evaluation of the activity assessment index (AAI) in time sliding windows. Activity level assessment can be used to provide statistical results in a defined period and deliver recommendation exercise to the users. For practical implications and actual significance of results, we selected wheelchair users among the participants to our experiments. Features in terms of standard deviation and approximate entropy were compared to recognize the activities and activity levels. The results showed that, using the novel designed smart cushion and the standard deviation features, we are able to achieve an accuracy of (>89%) for activity recognition and (>98%) for activity level recognition. PMID:28972556

  15. Smart sensors and virtual physiology human approach as a basis of personalized therapies in diabetes mellitus.

    PubMed

    Fernández Peruchena, Carlos M; Prado-Velasco, Manuel

    2010-01-01

    Diabetes mellitus (DM) has a growing incidence and prevalence in modern societies, pushed by the aging and change of life styles. Despite the huge resources dedicated to improve their quality of life, mortality and morbidity rates, these are still very poor. In this work, DM pathology is revised from clinical and metabolic points of view, as well as mathematical models related to DM, with the aim of justifying an evolution of DM therapies towards the correction of the physiological metabolic loops involved. We analyze the reliability of mathematical models, under the perspective of virtual physiological human (VPH) initiatives, for generating and integrating customized knowledge about patients, which is needed for that evolution. Wearable smart sensors play a key role in this frame, as they provide patient's information to the models.A telehealthcare computational architecture based on distributed smart sensors (first processing layer) and personalized physiological mathematical models integrated in Human Physiological Images (HPI) computational components (second processing layer), is presented. This technology was designed for a renal disease telehealthcare in earlier works and promotes crossroads between smart sensors and the VPH initiative. We suggest that it is able to support a truly personalized, preventive, and predictive healthcare model for the delivery of evolved DM therapies.

  16. Smart Sensors and Virtual Physiology Human Approach as a Basis of Personalized Therapies in Diabetes Mellitus

    PubMed Central

    Fernández Peruchena, Carlos M; Prado-Velasco, Manuel

    2010-01-01

    Diabetes mellitus (DM) has a growing incidence and prevalence in modern societies, pushed by the aging and change of life styles. Despite the huge resources dedicated to improve their quality of life, mortality and morbidity rates, these are still very poor. In this work, DM pathology is revised from clinical and metabolic points of view, as well as mathematical models related to DM, with the aim of justifying an evolution of DM therapies towards the correction of the physiological metabolic loops involved. We analyze the reliability of mathematical models, under the perspective of virtual physiological human (VPH) initiatives, for generating and integrating customized knowledge about patients, which is needed for that evolution. Wearable smart sensors play a key role in this frame, as they provide patient’s information to the models. A telehealthcare computational architecture based on distributed smart sensors (first processing layer) and personalized physiological mathematical models integrated in Human Physiological Images (HPI) computational components (second processing layer), is presented. This technology was designed for a renal disease telehealthcare in earlier works and promotes crossroads between smart sensors and the VPH initiative. We suggest that it is able to support a truly personalized, preventive, and predictive healthcare model for the delivery of evolved DM therapies. PMID:21625646

  17. Smart Power: New power integrated circuit technologies and their applications

    NASA Astrophysics Data System (ADS)

    Kuivalainen, Pekka; Pohjonen, Helena; Yli-Pietilae, Timo; Lenkkeri, Jaakko

    1992-05-01

    Power Integrated Circuits (PIC) is one of the most rapidly growing branches of the semiconductor technology. The PIC markets has been forecast to grow from 660 million dollars in 1990 to 1658 million dollars in 1994. It has even been forecast that at the end of the 1990's the PIC markets would correspond to the value of the whole semiconductor production in 1990. Automotive electronics will play the leading role in the development of the standard PIC's. Integrated motor drivers (36 V/4 A), smart integrated switches (60 V/30 A), solenoid drivers, integrated switch-mode power supplies and regulators are the latest standard devices of the PIC manufactures. ASIC (Application Specific Integrated Circuits) PIC solutions are needed for the same reasons as other ASIC devices: there are no proper standard devices, a company has a lot of application knowhow, which should be kept inside the company, the size of the product must be reduced, and assembly costs are wished to be reduced by decreasing the number of discrete devices. During the next few years the most probable ASIC PIC applications in Finland will be integrated solenoid and motor drivers, an integrated electronic lamp ballast circuit and various sensor interface circuits. Application of the PIC technologies to machines and actuators will strongly be increased all over the world. This means that various PIC's, either standard PIC's or full custom ASIC circuits, will appear in many products which compete with the corresponding Finnish products. Therefore the development of the PIC technologies must be followed carefully in order to immediately be able to apply the latest development in the smart power technologies and their design methods.

  18. Enhancing the radiology learning experience with electronic whiteboard technology.

    PubMed

    Lipton, Michael L; Lipton, Leah G

    2010-06-01

    The purpose of this study is to quantitatively evaluate the use of an interactive whiteboard for use in teaching diagnostic radiology and MRI physics. An interactive whiteboard (SMART Board model 3000i) was used during an MRI physics course and diagnostic radiology teaching conferences. A multiquestion instrument was used to quantify responses. Responses are reported as simple percentages of response number and, for ordinal scale questions, the two-tailed Student's t test was used to assess deviation from the neutral response. All of the subjects attended all sessions and completed the assessment questionnaire; 89% of respondents said that image quality of the SMART Board was superior to that of a projector-screen combination, 11% said that the image quality was similar, and none said that it was inferior. Sixty-seven percent of respondents said that the SMART Board's display of diagrams was superior to that of a conventional whiteboard, 33% said it was similar, and none said it was inferior. Participants thought that the smaller SMART Board display compared with the projector screen was an unimportant limitation (p = 0.03). Room lighting did not degrade image quality (p = 0.007), and a trend toward preference for the lighted room (while using the SMART Board) was detected (p = 0.15) but was not significant. The impact of the SMART Board on the visual material and flow of teaching sessions was favorable (p = 0.005). All of the subjects preferred the SMART Board over a traditional projector and screen combination. Learners endorsed that the SMART Board significantly enhanced learning, universally preferring it to the standard projector and screen approach. Major advantages include enhanced engagement of learners; enhanced integration of images and annotations or diagrams, including display of both images and diagrams simultaneously on a single screen; and the ability to review, revise, save, and distribute diagrams and annotated images. Disadvantages include cost and potentially complicated setup in very large auditoriums.

  19. Application of smart BFRP bars with distributed fiber optic sensors into concrete structures

    NASA Astrophysics Data System (ADS)

    Tang, Yongsheng; Wu, Zhishen; Yang, Caiqian; Wu, Gang; Zhao, Lihua; Song, Shiwei

    2010-04-01

    In this paper, the self-sensing and mechanical properties of concrete structures strengthened with a novel type of smart basalt fiber reinforced polymer (BFRP) bars were experimentally studied, wherein the sensing element is Brillouin scattering-based distributed optical fiber sensing technique. First, one of the smart bars was applied to strengthen a 2m concrete beam under a 4-points static loading manner in the laboratory. During the experiment, the bar can measure the inner strain changes and monitor the randomly distributed cracks well. With the distributed strain information along the bar, the distributed deformation of the beam can be calculated, and the structural health can be monitored and evaluated as well. Then, two smart bars with a length of about 70m were embedded into a concrete airfield pavement reinforced by long BFRP bars. In the field test, all the optical fiber sensors in the smart bars survived the whole concrete casting process and worked well. From the measured data, the concrete cracks along the pavement length can be easily monitored. The experimental results also confirmed that the bars can strengthen the structures especially after the yielding of steel bars. All the results confirm that this new type of smart BFRP bars show not only good sensing performance but also mechanical performance in the concrete structures.

  20. Comparative advantage between traditional and smart navigation systems

    NASA Astrophysics Data System (ADS)

    Shin, Jeongkyu; Kim, Pan-Jun; Kim, Seunghwan

    2013-03-01

    The smart navigation system that refers to real-time traffic data is believed to be superior to traditional navigation systems. To verify this belief, we created an agent-based traffic model and examined the effect of changing market share of the traditional shortest-travel-time algorithm based navigation and the smart navigation system. We tested our model on the grid and actual metropolitan road network structures. The result reveals that the traditional navigation system have better performance than the smart one as the market share of the smart navigation system exceeds a critical value, which is contrary to conventional expectation. We suggest that the superiority inversion between agent groups is strongly related to the traffic weight function form, and is general. We also found that the relationship of market share, traffic flow density and travel time is determined by the combination of congestion avoidance behavior of the smartly navigated agents and the inefficiency of shortest-travel-time based navigated agents. Our results can be interpreted with the minority game and extended to the diverse topics of opinion dynamics. This work was supported by the Original Technology Research Program for Brain Science through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology(No. 2010-0018847).

  1. Smart Test Machines

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Vern Wedeven, president of Wedeven Associates, developed the WAM4, a computer-aided "smart" test machine for simulating stress on equipment, based on his bearing lubrication expertise gained while working for Lewis Research Center. During his NASA years from the 1970s into the early 1980s, Wedeven initiated an "Interdisciplinary Collaboration in Tribology," an effort that involved NASA, six universities, and several university professors. The NASA-sponsored work provided foundation for Wedeven in 1983 to form his own company. Several versions of the smart test machine, the WAM1, WAM2, and WAM3, have proceeded the current version, WAM4. This computer-controlled device can provide detailed glimpses at gear and bearing points of contact. WAM4 can yield a three-dimensional view of machinery as an operator adds "what-if" thermal and lubrication conditions, contact stress, and surface motion. Along with NASA, a number of firms, including Pratt & Whitney, Caterpillar Tractor, Exxon, and Chevron have approached Wedeven for help on resolving lubrication problems.

  2. Sensor Fusion and Smart Sensor in Sports and Biomedical Applications.

    PubMed

    Mendes, José Jair Alves; Vieira, Mário Elias Marinho; Pires, Marcelo Bissi; Stevan, Sergio Luiz

    2016-09-23

    The following work presents an overview of smart sensors and sensor fusion targeted at biomedical applications and sports areas. In this work, the integration of these areas is demonstrated, promoting a reflection about techniques and applications to collect, quantify and qualify some physical variables associated with the human body. These techniques are presented in various biomedical and sports applications, which cover areas related to diagnostics, rehabilitation, physical monitoring, and the development of performance in athletes, among others. Although some applications are described in only one of two fields of study (biomedicine and sports), it is very likely that the same application fits in both, with small peculiarities or adaptations. To illustrate the contemporaneity of applications, an analysis of specialized papers published in the last six years has been made. In this context, the main characteristic of this review is to present the largest quantity of relevant examples of sensor fusion and smart sensors focusing on their utilization and proposals, without deeply addressing one specific system or technique, to the detriment of the others.

  3. Analysis and design of energy monitoring platform for smart city

    NASA Astrophysics Data System (ADS)

    Wang, Hong-xia

    2016-09-01

    The development and utilization of energy has greatly promoted the development and progress of human society. It is the basic material foundation for human survival. City running is bound to consume energy inevitably, but it also brings a lot of waste discharge. In order to speed up the process of smart city, improve the efficiency of energy saving and emission reduction work, maintain the green and livable environment, a comprehensive management platform of energy monitoring for government departments is constructed based on cloud computing technology and 3-tier architecture in this paper. It is assumed that the system will provide scientific guidance for the environment management and decision making in smart city.

  4. A Smart and Balanced Energy-Efficient Multihop Clustering Algorithm (Smart-BEEM) for MIMO IoT Systems in Future Networks.

    PubMed

    Xu, Lina; O'Hare, Gregory M P; Collier, Rem

    2017-07-05

    Wireless Sensor Networks (WSNs) are typically composed of thousands of sensors powered by limited energy resources. Clustering techniques were introduced to prolong network longevity offering the promise of green computing. However, most existing work fails to consider the network coverage when evaluating the lifetime of a network. We believe that balancing the energy consumption in per unit area rather than on each single sensor can provide better-balanced power usage throughout the network. Our former work-Balanced Energy-Efficiency (BEE) and its Multihop version BEEM can not only extend the network longevity, but also maintain the network coverage. Following WSNs, Internet of Things (IoT) technology has been proposed with higher degree of diversities in terms of communication abilities and user scenarios, supporting a large range of real world applications. The IoT devices are embedded with multiple communication interfaces, normally referred as Multiple-In and Multiple-Out (MIMO) in 5G networks. The applications running on those devices can generate various types of data. Every interface has its own characteristics, which may be preferred and beneficial in some specific user scenarios. With MIMO becoming more available on the IoT devices, an advanced clustering solution for highly dynamic IoT systems is missing and also pressingly demanded in order to cater for differing user applications. In this paper, we present a smart clustering algorithm (Smart-BEEM) based on our former work BEE(M) to accomplish energy efficient and Quality of user Experience (QoE) supported communication in cluster based IoT networks. It is a user behaviour and context aware approach, aiming to facilitate IoT devices to choose beneficial communication interfaces and cluster headers for data transmission. Experimental results have proved that Smart-BEEM can further improve the performance of BEE and BEEM for coverage sensitive longevity.

  5. High sensitive reflection type long period fiber grating biosensor for real time detection of thyroglobulin, a differentiated thyroid cancer biomarker: the Smart Health project

    NASA Astrophysics Data System (ADS)

    Quero, G.; Severino, R.; Vaiano, P.; Consales, M.; Ruvo, M.; Sandomenico, A.; Borriello, A.; Giordano, M.; Zuppolini, S.; Diodato, L.; Cutolo, A.; Cusano, A.

    2015-09-01

    We report the development of a reflection-type long period fiber grating (LPG) biosensor able to perform the real time detection of thyroid cancer markers in the needle washout of fine-needle aspiration biopsy. A standard LPG is first transformed in a practical probe working in reflection mode, then it is coated by an atactic-polystyrene overlay in order to increase its surrounding refractive index sensitivity and to provide, at the same time, the desired interfacial properties for a stable bioreceptor immobilization. The results provide a clear demonstration of the effectiveness and sensitivity of the developed biosensing platform, allowing the in vitro detection of human Thyroglobulin at sub-nanomolar concentrations.

  6. SmartHome: a domotic framework based on smart sensing and actuator network to reduce energy wastes

    NASA Astrophysics Data System (ADS)

    Santamaria, Amilcare Francesco; De Rango, Floriano; Falbo, Domenico; Barletta, Domenico

    2014-05-01

    Domestic environment and human interaction with services supplied by domotic devices is going to be a very interesting application field. With a domotic system is possible to achieve great interaction between human beings, environments and smart devices. The enhancing of these interactions is the main goal of this work whose intent is to improve the classic concept of domotics. The framework we developed can be used for several application fields such as lighting, heating, conditioning or water management and energy consumption. In particular, the proposed system can optimize energy consumptions by rising awareness to users that have full control of their house and the possibility to save money and reduce the impact of the energetic consumes to the earth, matching the new "green" motto requirements. In this way, the overall system wants to match the central concept of Internet Of Things (IoT) as well. From this point of view a complex automation system with smart devices make possible a more efficient way to produce, follow and manage domotic policies. Following the spread of IoT, for this work we designed and implemented new plug-and-play and ready-to-use smart devices that are part of a complex automation system that offers a user-friendly web application and allows users to control and interact with different plans of their house in order to make life more comfortable and be aware of their energy consumptions. Control and awareness arc the two key points that led us to develop the proposed system.

  7. Ballistics Modeling for Non-Axisymmetric Hypervelocity Smart Bullets

    DTIC Science & Technology

    2014-06-03

    can in principle come from experiments or computational fluid dynamics ( CFD ) calculations. CFD calculations are carried out for a standard bullet...come from experiments or com- putational fluid dynamics ( CFD ) calculations. CFD calculations are carried out for a standard bullet (0.308” 168 grain...11 2. Spin and Pitch Damping 11 3. Magnus Moment 12 IV. CFD Simulations and Ballistic Trajectories 12 A. CFD Modeling of a Standard Bullet 12 B

  8. Smart blood pressure holter.

    PubMed

    İlhan, İlhan

    2018-03-01

    In this study, a wireless blood pressure holter that can be used with smart mobile devices was developed. The developed blood pressure holter consists of two parts, which are a smart mobile device and a cuff. The smart mobile device is used as a recording, control and display device through a developed interface, while the cuff was designed to take measurements from the arm. Resistor-Capacitor (RC) and digital filters were used on the cuff that communicates with the smart mobile device via Bluetooth. The blood pressure was estimated using the Simple Hill Climbing Algorithm (HCA). It is possible to measure instantaneous or programmable blood pressure and heart rate values at certain intervals using this holter. The test was conducted with 30 individuals at different ages with the guidance of a specialist health personnel. The results showed that an accuracy at 93.89% and 91.95% rates could be obtained for systolic and diastolic pressure values, respectively, when compared with those obtained using a traditional sphygmomanometer. The accuracy level for the heart rate was measured as 97.66%. Furthermore, this device was tested day and night in the holter mode in terms of working time, the continuity of the Bluetooth connection and the reliability of the measurement results. The test results were evaluated separately in terms of measurement accuracy, working time, the continuity of the Bluetooth connection and the reliability of the measurement results. The measurement accuracy for systolic, diastolic blood pressure and heart rate values was obtained as 93.89%, 91.95% and 97.66%, respectively. The maximum number of measurements which can be conducted with four 1000 mA alkaline batteries at 20 min intervals was found approximately 79 (little more than 24 h). In addition, it was determined that the continuity of the Bluetooth connection and the reliability of the measurement results were automatically achieved through the features in the interface developed for the smart mobile device. These different evaluations showed that the smart blood pressure holter can meet the requirements of a classical holter device. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  9. Mobilizing Older Adults: Harnessing the Potential of Smart Home Technologies. Contribution of the IMIA Working Group on Smart Homes and Ambient Assisted Living.

    PubMed

    Demiris, G; Thompson, H J

    2012-01-01

    This paper highlights the potential of smart home applications to not only assess mobility determinants for older adults in the home environment but also provide the opportunity for tailored interventions. We present a theoretical framework for assessing mobility parameters and utilizing this information to enable behavior change based on the Health Belief Model. We discuss examples that showcase the potential of smart home systems to not only measure but also improve mobility for community dwelling older adults. Mobility is a complex construct that cannot be addressed with a single monitoring approach or a single intervention. Instead, tailored interventions that address specific needs and behaviors of individuals and take into consideration preferences of older adults and potentially their social network are needed to effectively enforce positive behavior change. Smart home systems have the ability to capture details of one's daily living that could otherwise not be easily obtained; however, such data repositories alone are not sufficient to improve clinical outcomes if appropriate mechanisms for data mining and analysis, as well as tailored response systems are not in place. Unleashing the potential of smart home applications to measure and improve mobility has the potential of transforming elder care and providing potentially cost-effective tools to support independence for older adults. A technologically driven smart home application can maximize its clinical relevance by pursuing interactive features that can lead to behavior change.

  10. GIS Data Collection for Oil Palm (DaCOP) Mobile Application for Smart Phone

    NASA Astrophysics Data System (ADS)

    Abdullah, A. F.; Muhadi, N. A.

    2015-10-01

    Nowadays, smart phone has become a necessity as it offers more than just making a phone call. Smart phone combines the features of cell phone with other mobile devices such as personal digital assistant (PDA) and GPS navigation unit that propel the popularity of smart phones. In recent years, the interest in mobile communication has been increased. Previous research using mobile application has been successfully done in varies areas of study. Areas of study that have been done are health care, education, and traffic monitoring. Besides, mobile application has also been applied in agricultural sector for various purposes such as plant pest risk management. In this study, mobile application for data collection on Ganoderma disease of oil palm has been successfully developed. The application uses several devices in a smart phone such as GPS, Wifi/ GPRS connection and accelerometer devices. The application can be installed in the smart phone and users can use the application while working on-site. The data can be updated immediately through their smart phones to the service. Besides, the application provides offline map so the user can be productive even though their network connectivity is poor or nonexistent. The data can be synced when the users online again. This paper presents an application that allows users to download features from a sync-enabled ArcGIS Feature Service, view and edit the features even when the devices fail to connect with any network connectivity while collecting data on-site.

  11. The Salient Map Analysis for Research and Teaching (SMART) method: Powerful potential as a formative assessment in the biomedical sciences

    NASA Astrophysics Data System (ADS)

    Cathcart, Laura Anne

    This dissertation consists of two studies: 1) development and characterization of the Salient Map Analysis for Research and Teaching (SMART) method as a formative assessment tool and 2) a case study exploring how a paramedic instructor's beliefs about learners affect her utilization of the SMART method and vice versa. The first study explored: How can a novel concept map analysis method be designed as an effective formative assessment tool? The SMART method improves upon existing concept map analysis methods because it does not require hierarchically structured concept maps and it preserves the rich content of the maps instead of reducing each map down to a numerical score. The SMART method is performed by comparing a set of students' maps to each other and to an instructor's map. The resulting composite map depicts, in percentages and highlighted colors, the similarities and differences between all of the maps. Some advantages of the SMART method as a formative assessment tool include its ability to highlight changes across time, problematic or alternative conceptions, and patterns of student responses at a glance. Study two explored: How do a paramedic instructor's beliefs about students and learning affect---and become affected by---her use of the SMART method as a formative assessment tool? This case study of Angel, an expert paramedic instructor, begins to address a gap in the emergency medical services (EMS) education literature, which contains almost no research on teachers or pedagogy. Angel and I worked together as participant co-researchers (Heron & Reason, 1997) exploring the affordances of the SMART method. This study, based on those interactions with Angel, involved using open coding to identify themes (Strauss & Corbin, 1998) from Angel's views of students and use of the SMART method. Angel views learning as a sense-making process. She has a multi-faceted view of her students as novices and invests substantial time trying to understand their concept maps. Not only do these beliefs affect her use of the SMART method; in addition, her beliefs are refined through the use of the SMART method.

  12. Field and Laboratory Testing of Approaches to Smart Whole-House Mechanical Ventilation Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, Eric; Fenaughty, Karen; Parker, Danny

    Whole-house mechanical ventilation is a critical component to a comprehensive strategy for good indoor air quality (IAQ). However, due to lack of integration with standard heating and cooling systems, and perceptions from a portion of the homebuilding industry about risks related to increased energy use, increased cost, and decreased comfort, voluntary and code-required adoption varies among regions. Smart ventilation controls (SVC) balance energy consumption, comfort, and IAQ by optimizing mechanical ventilation operation to reduce the heating and/or cooling loads, improve management of indoor moisture, and maintain IAQ equivalence according to ASHRAE 62.2.

  13. Field and Laboratory Testing of Approaches to Smart Whole-House Mechanical Ventilation Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, Eric; Fenaughty, Karen; Parker, Danny

    Whole-house mechanical ventilation is a critical component to a comprehensive strategy for good indoor air quality (IAQ). However, due to lack of integration with standard heating and cooling systems, and perceptions from a portion of the homebuilding industry about risks related to increased energy use, increased cost, and decreased comfort, voluntary and code-required adoption varies amongst regions. Smart ventilation controls (SVC) balance energy consumption, comfort, and IAQ by optimizing mechanical ventilation operation to reduce the heating and/or cooling loads, improve management of indoor moisture, and maintain IAQ equivalence according to ASHRAE 62.2.

  14. Smart electronics and microengineering: the Australian focus

    NASA Astrophysics Data System (ADS)

    Hariz, Alex

    1998-04-01

    Integrated MEMS together with signal-conditioning electronics on the same chip appears to be the ultimate solution to realizing smart computer devices integratable into larger systems. This in principle will lead to systems with decentralized intelligence leading to applications in numerous fields. It is conceived that such devices would be the product of merging two mature technologies, that of microsensors and that of IC manufacture which is enjoying a well established success. Using common and suitable materials it is reasonable to expect a high degree of compatibility with little modification to standard processes. The various aspects of this co-integration will be analyzed and factors critical to the viability of the process, that go beyond mere technical feasibility will be highlighted. Australian research in this area is strong and continues to grow. We will pinpoint opportunities and constraints to the promising prospect of smart electronics and MEMS.

  15. UHF wearable battery free sensor module for activity and falling detection.

    PubMed

    Nam Trung Dang; Thang Viet Tran; Wan-Young Chung

    2016-08-01

    Falling is one of the most serious medical and social problems in aging population. Therefore taking care of the elderly by detecting activity and falling for preventing and mitigating the injuries caused by falls needs to be concerned. This study proposes a wearable, wireless, battery free ultra-high frequency (UHF) smart sensor tag module for falling and activity detection. The proposed tag is powered by UHF RF wave from reader and read by a standard UHF Electronic Product Code (EPC) Class-1 Generation-2 reader. The battery free sensor module could improve the wearability of the wireless device. The combination of accelerometer signal and received signal strength indication (RSSI) from a reader in the passive smart sensor tag detect the activity and falling of the elderly very successfully. The fabricated smart sensor tag module has an operating range of up to 2.5m and conducting in real-time activity and falling detection.

  16. "...But What Should I Study? And How Will that Help Me and My Company?" Looking at the Use of Educational Advising for Employer-Funded Tuition Programs. Learning Smart, Working Smart. Forum & News, Winter 2007

    ERIC Educational Resources Information Center

    Wax, Dorothy; Chodorow, Adele

    2007-01-01

    During the spring of 2006, CAEL (Council for Adult and Experiential Learning) conducted a national Career Advising Survey (CAS) to better understand the current state of employer-provided education and career advising or coaching benefits. The CAS research gleaned detailed information about the design, administration, use and effectiveness of…

  17. Stereovision Imaging in Smart Mobile Phone Using Add on Prisms

    NASA Astrophysics Data System (ADS)

    Bar-Magen Numhauser, Jonathan; Zalevsky, Zeev

    2014-03-01

    In this work we present the use of a prism-based add on component installed on top of a smart phone to achieve stereovision capabilities using iPhone mobile operating system. Through these components and the combination of the appropriate application programming interface and mathematical algorithms the obtained results will permit the analysis of possible enhancements for new uses to such system, in a variety of areas including medicine and communications.

  18. Measurement Science for Prognostics and Health Management for Smart Manufacturing Systems: Key Findings from a Roadmapping Workshop

    PubMed Central

    Weiss, Brian A.; Vogl, Gregory; Helu, Moneer; Qiao, Guixiu; Pellegrino, Joan; Justiniano, Mauricio; Raghunathan, Anand

    2017-01-01

    The National Institute of Standards and Technology (NIST) hosted the Roadmapping Workshop – Measurement Science for Prognostics and Health Management for Smart Manufacturing Systems (PHM4SMS) in Fall 2014 to discuss the needs and priorities of stakeholders in the PHM4SMS technology area. The workshop brought together over 70 members of the PHM community. The attendees included representatives from small, medium, and large manufacturers; technology developers and integrators; academic researchers; government organizations; trade associations; and standards bodies. The attendees discussed the current and anticipated measurement science challenges to advance PHM methods and techniques for smart manufacturing systems; the associated research and development needed to implement condition monitoring, diagnostic, and prognostic technologies within manufacturing environments; and the priorities to meet the needs of PHM in manufacturing. This paper will summarize the key findings of this workshop, and present some of the critical measurement science challenges and corresponding roadmaps, i.e., suggested courses of action, to advance PHM for manufacturing. Milestones and targeted capabilities will be presented for each roadmap across three areas: PHM Manufacturing Process Techniques; PHM Performance Assessment; and PHM Infrastructure – Hardware, Software, and Integration. An analysis of these roadmaps and crosscutting themes seen across the breakout sessions is also discussed. PMID:28664163

  19. Design of smart prosthetic knee utilizing magnetorheological damper

    NASA Astrophysics Data System (ADS)

    Gao, F.; Liu, Y. N.; Liao, W. H.

    2017-04-01

    In this study, based on human knee's kinetics, a smart prosthetic knee employing springs, DC motor and magnetorheological (MR) damper is designed. The MR damper is coupled in series with the springs that are mounted in parallel with the DC motor. The working principle of the prosthesis during level-ground walking is presented. During stance phase, the MR damper is powered on. The springs will store and release the negative mechanical energy for restoring the function of human knee joint. In swing phase, the MR damper is powered off for disengaging the springs. In this phase, the work of knee joint is negative. For improving the system energy efficiency, the DC motor will work as a power generator to supply required damping torque and harvest electrical energy. Finally, the design of MR damper is introduced.

  20. Miniature housing with standard addressable interface for smart sensors and drive electronics

    NASA Technical Reports Server (NTRS)

    Howard, David E. (Inventor); Smith, Dennis A. (Inventor); Alhorn, Dean C. (Inventor)

    2006-01-01

    A miniature assembly is disclosed which includes a housing assembly with a cover configured to be sealably secured to a box-like receptacle. The receptacle comprises openings on opposing sides for the seating therein of communications connectors. Enclosed within housing is custom-sized circuit board for supporting, at least, a standard communications interface and at least one electronic device.

  1. Putting a Price Tag on the Common Core: How Much Will Smart Implementation Cost?

    ERIC Educational Resources Information Center

    Murphy, Patrick; Regenstein, Elliot

    2012-01-01

    The Common Core State Standards (CCSS) for English language arts and mathematics represent a sea change in standards-based reform and their implementation is the movement's next--and greatest--challenge. Yet, while most states have now set forth implementation plans, these tomes seldom address the crucial matter of cost. Putting a Price Tag on the…

  2. Development of Personalized Urination Recognition Technology Using Smart Bands.

    PubMed

    Eun, Sung-Jong; Whangbo, Taeg-Keun; Park, Dong Kyun; Kim, Khae-Hawn

    2017-04-01

    This study collected and analyzed activity data sensed through smart bands worn by patients in order to resolve the clinical issues posed by using voiding charts. By developing a smart band-based algorithm for recognizing urination activity in patients, this study aimed to explore the feasibility of urination monitoring systems. This study aimed to develop an algorithm that recognizes urination based on a patient's posture and changes in posture. Motion data was obtained from a smart band on the arm. An algorithm that recognizes the 3 stages of urination (forward movement, urination, backward movement) was developed based on data collected from a 3-axis accelerometer and from tilt angle data. Real-time data were acquired from the smart band, and for data corresponding to a certain duration, the absolute value of the signals was calculated and then compared with the set threshold value to determine the occurrence of vibration signals. In feature extraction, the most essential information describing each pattern was identified after analyzing the characteristics of the data. The results of the feature extraction process were sorted using a classifier to detect urination. An experiment was carried out to assess the performance of the recognition technology proposed in this study. The final accuracy of the algorithm was calculated based on clinical guidelines for urologists. The experiment showed a high average accuracy of 90.4%, proving the robustness of the proposed algorithm. The proposed urination recognition technology draws on acceleration data and tilt angle data collected via a smart band; these data were then analyzed using a classifier after comparative analyses with standardized feature patterns.

  3. Estimation of Prestress Force Distribution in Multi-Strand System of Prestressed Concrete Structures Using Field Data Measured by Electromagnetic Sensor

    PubMed Central

    Cho, Keunhee; Cho, Jeong-Rae; Kim, Sung Tae; Park, Sung Yong; Kim, Young-Jin; Park, Young-Hwan

    2016-01-01

    The recently developed smart strand can be used to measure the prestress force in the prestressed concrete (PSC) structure from the construction stage to the in-service stage. The higher cost of the smart strand compared to the conventional strand renders it unaffordable to replace all the strands by smart strands, and results in the application of only a limited number of smart strands in the PSC structure. However, the prestress forces developed in the strands of the multi-strand system frequently adopted in PSC structures differ from each other, which means that the prestress force in the multi-strand system cannot be obtained by simple proportional scaling using the measurement of the smart strand. Therefore, this study examines the prestress force distribution in the multi-strand system to find the correlation between the prestress force measured by the smart strand and the prestress force distribution in the multi-strand system. To that goal, the prestress force distribution was measured using electromagnetic sensors for various factors of the multi-strand system adopted on site in the fabrication of actual PSC girders. The results verified the possibility to assume normal distribution for the prestress force distribution per anchor head, and a method computing the mean and standard deviation defining the normal distribution is proposed. This paper presents a meaningful finding by proposing an estimation method of the prestress force based upon field-measured data of the prestress force distribution in the multi-strand system of actual PSC structures. PMID:27548172

  4. Medical smart textiles based on fiber optic technology: an overview.

    PubMed

    Massaroni, Carlo; Saccomandi, Paola; Schena, Emiliano

    2015-04-13

    The growing interest in the development of smart textiles for medical applications is driven by the aim to increase the mobility of patients who need a continuous monitoring of such physiological parameters. At the same time, the use of fiber optic sensors (FOSs) is gaining large acceptance as an alternative to traditional electrical and mechanical sensors for the monitoring of thermal and mechanical parameters. The potential impact of FOSs is related to their good metrological properties, their small size and their flexibility, as well as to their immunity from electromagnetic field. Their main advantage is the possibility to use textile based on fiber optic in a magnetic resonance imaging environment, where standard electronic sensors cannot be employed. This last feature makes FOSs suitable for monitoring biological parameters (e.g., respiratory and heartbeat monitoring) during magnetic resonance procedures. Research interest in combining FOSs and textiles into a single structure to develop wearable sensors is rapidly growing. In this review we provide an overview of the state-of-the-art of textiles, which use FOSs for monitoring of mechanical parameters of physiological interest. In particular we briefly describe the working principle of FOSs employed in this field and their relevant advantages and disadvantages. Also reviewed are their applications for the monitoring of mechanical parameters of physiological interest.

  5. Medical Smart Textiles Based on Fiber Optic Technology: An Overview

    PubMed Central

    Massaroni, Carlo; Saccomandi, Paola; Schena, Emiliano

    2015-01-01

    The growing interest in the development of smart textiles for medical applications is driven by the aim to increase the mobility of patients who need a continuous monitoring of such physiological parameters. At the same time, the use of fiber optic sensors (FOSs) is gaining large acceptance as an alternative to traditional electrical and mechanical sensors for the monitoring of thermal and mechanical parameters. The potential impact of FOSs is related to their good metrological properties, their small size and their flexibility, as well as to their immunity from electromagnetic field. Their main advantage is the possibility to use textile based on fiber optic in a magnetic resonance imaging environment, where standard electronic sensors cannot be employed. This last feature makes FOSs suitable for monitoring biological parameters (e.g., respiratory and heartbeat monitoring) during magnetic resonance procedures. Research interest in combining FOSs and textiles into a single structure to develop wearable sensors is rapidly growing. In this review we provide an overview of the state-of-the-art of textiles, which use FOSs for monitoring of mechanical parameters of physiological interest. In particular we briefly describe the working principle of FOSs employed in this field and their relevant advantages and disadvantages. Also reviewed are their applications for the monitoring of mechanical parameters of physiological interest. PMID:25871010

  6. Health at hand: A systematic review of smart watch uses for health and wellness.

    PubMed

    Reeder, Blaine; David, Alexandria

    2016-10-01

    Smart watches have the potential to support health in everyday living by: enabling self-monitoring of personal activity; obtaining feedback based on activity measures; allowing for in-situ surveys to identify patterns of behavior; and supporting bi-directional communication with health care providers and family members. However, smart watches are an emerging technology and research with these devices is at a nascent stage. We conducted a systematic review of smart watch studies that engaged people in their use by searching PubMed, Embase, IEEE XPlore and ACM Digital libraries. Participant demographics, device features, watch applications and methods, and technical challenges were abstracted from included studies. Seventy-three studies were returned in the search. Seventeen studies published were included. Included studies were published from 2014 to 2016, with the exception of one published in 2011. Most studies employed the use of consumer-grade smart watches (14/17, 82%). Patient-related studies focused on activity monitoring, heart rate monitoring, speech therapy adherence, diabetes self-management, and detection of seizures, tremors, scratching, eating, and medication-taking behaviors. Most patient-related studies enrolled participants with few exclusion criteria to validate smart watch function (10/17, 58%). Only studies that focused on Parkinson's disease, epilepsy, and diabetes management enrolled persons living with targeted conditions. One study focused on nursing work in the ICU and one focused on CPR training for laypeople. Consumer-grade smart watches have penetrated the health research space rapidly since 2014. Smart watch technical function, acceptability, and effectiveness in supporting health must be validated in larger field studies that enroll actual participants living with the conditions these devices target. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Numerical compliance testing of human exposure to electromagnetic radiation from smart-watches.

    PubMed

    Hong, Seon-Eui; Lee, Ae-Kyoung; Kwon, Jong-Hwa; Pack, Jeong-Ki

    2016-10-07

    In this study, we investigated the electromagnetic dosimetry for smart-watches. At present, the standard for compliance testing of body-mounted and handheld devices specifies the use of a flat phantom to provide conservative estimates of the peak spatial-averaged specific absorption rate (SAR). This means that the estimated SAR using a flat phantom should be higher than the SAR in the exposure part of an anatomical human-body model. To verify this, we numerically calculated the SAR for a flat phantom and compared it with the numerical calculation of the SAR for four anatomical human-body models of different ages. The numerical analysis was performed using the finite difference time domain method (FDTD). The smart-watch models were used in the three antennas: the shorted planar inverted-F antenna (PIFA), loop antenna, and monopole antenna. Numerical smart-watch models were implemented for cellular commutation and wireless local-area network operation at 835, 1850, and 2450 MHz. The peak spatial-averaged SARs of the smart-watch models are calculated for the flat phantom and anatomical human-body model for the wrist-worn and next to mouth positions. The results show that the flat phantom does not provide a consistent conservative SAR estimate. We concluded that the difference in the SAR results between an anatomical human-body model and a flat phantom can be attributed to the different phantom shapes and tissue structures.

  8. Numerical compliance testing of human exposure to electromagnetic radiation from smart-watches

    NASA Astrophysics Data System (ADS)

    Hong, Seon-Eui; Lee, Ae-Kyoung; Kwon, Jong-Hwa; Pack, Jeong-Ki

    2016-10-01

    In this study, we investigated the electromagnetic dosimetry for smart-watches. At present, the standard for compliance testing of body-mounted and handheld devices specifies the use of a flat phantom to provide conservative estimates of the peak spatial-averaged specific absorption rate (SAR). This means that the estimated SAR using a flat phantom should be higher than the SAR in the exposure part of an anatomical human-body model. To verify this, we numerically calculated the SAR for a flat phantom and compared it with the numerical calculation of the SAR for four anatomical human-body models of different ages. The numerical analysis was performed using the finite difference time domain method (FDTD). The smart-watch models were used in the three antennas: the shorted planar inverted-F antenna (PIFA), loop antenna, and monopole antenna. Numerical smart-watch models were implemented for cellular commutation and wireless local-area network operation at 835, 1850, and 2450 MHz. The peak spatial-averaged SARs of the smart-watch models are calculated for the flat phantom and anatomical human-body model for the wrist-worn and next to mouth positions. The results show that the flat phantom does not provide a consistent conservative SAR estimate. We concluded that the difference in the SAR results between an anatomical human-body model and a flat phantom can be attributed to the different phantom shapes and tissue structures.

  9. Efficient Management of Certificate Revocation Lists in Smart Grid Advanced Metering Infrastructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cebe, Mumin; Akkaya, Kemal

    Advanced Metering Infrastructure (AMI) forms a communication network for the collection of power data from smart meters in Smart Grid. As the communication within an AMI needs to be secure, key management becomes an issue due to overhead and limited resources. While using public-keys eliminate some of the overhead of key management, there is still challenges regarding certificates that store and certify the publickeys. In particular, distribution and storage of certificate revocation list (CRL) is major a challenge due to cost of distribution and storage in AMI networks which typically consist of wireless multi-hop networks. Motivated by the need ofmore » keeping the CRL distribution and storage cost effective and scalable, in this paper, we present a distributed CRL management model utilizing the idea of distributed hash trees (DHTs) from peer-to-peer (P2P) networks. The basic idea is to share the burden of storage of CRLs among all the smart meters by exploiting the meshing capability of the smart meters among each other. Thus, using DHTs not only reduces the space requirements for CRLs but also makes the CRL updates more convenient. We implemented this structure on ns-3 using IEEE 802.11s mesh standard as a model for AMI and demonstrated its superior performance with respect to traditional methods of CRL management through extensive simulations.« less

  10. Numerical integration of discontinuous functions: moment fitting and smart octree

    NASA Astrophysics Data System (ADS)

    Hubrich, Simeon; Di Stolfo, Paolo; Kudela, László; Kollmannsberger, Stefan; Rank, Ernst; Schröder, Andreas; Düster, Alexander

    2017-11-01

    A fast and simple grid generation can be achieved by non-standard discretization methods where the mesh does not conform to the boundary or the internal interfaces of the problem. However, this simplification leads to discontinuous integrands for intersected elements and, therefore, standard quadrature rules do not perform well anymore. Consequently, special methods are required for the numerical integration. To this end, we present two approaches to obtain quadrature rules for arbitrary domains. The first approach is based on an extension of the moment fitting method combined with an optimization strategy for the position and weights of the quadrature points. In the second approach, we apply the smart octree, which generates curved sub-cells for the integration mesh. To demonstrate the performance of the proposed methods, we consider several numerical examples, showing that the methods lead to efficient quadrature rules, resulting in less integration points and in high accuracy.

  11. Design of portable rumble strips.

    DOT National Transportation Integrated Search

    2006-12-01

    "In 2003, the states involved in the Midwest Smart Work Zone Deployment Initiative identified : portable rumble strips (i.e., rumble strips that require no adhesive or fasteners, making them : applicable for very short term work zones) as a high prio...

  12. Smart homes, private homes? An empirical study of technology researchers' perceptions of ethical issues in developing smart-home health technologies.

    PubMed

    Birchley, Giles; Huxtable, Richard; Murtagh, Madeleine; Ter Meulen, Ruud; Flach, Peter; Gooberman-Hill, Rachael

    2017-04-04

    Smart-home technologies, comprising environmental sensors, wearables and video are attracting interest in home healthcare delivery. Development of such technology is usually justified on the basis of the technology's potential to increase the autonomy of people living with long-term conditions. Studies of the ethics of smart-homes raise concerns about privacy, consent, social isolation and equity of access. Few studies have investigated the ethical perspectives of smart-home engineers themselves. By exploring the views of engineering researchers in a large smart-home project, we sought to contribute to dialogue between ethics and the engineering community. Either face-to-face or using Skype, we conducted in-depth qualitative interviews with 20 early- and mid-career smart-home researchers from a multi-centre smart-home project, who were asked to describe their own experience and to reflect more broadly about ethical considerations that relate to smart-home design. With participants' consent, interviews were audio-recorded, transcribed and analysed using a thematic approach. Two overarching themes emerged: in 'Privacy', researchers indicated that they paid close attention to negative consequences of potential unauthorised information sharing in their current work. However, when discussing broader issues in smart-home design beyond the confines of their immediate project, researchers considered physical privacy to a lesser extent, even though physical privacy may manifest in emotive concerns about being watched or monitored. In 'Choice', researchers indicated they often saw provision of choice to end-users as a solution to ethical dilemmas. While researchers indicated that choices of end-users may need to be restricted for technological reasons, ethical standpoints that restrict choice were usually assumed and embedded in design. The tractability of informational privacy may explain the greater attention that is paid to it. However, concerns about physical privacy may reduce acceptability of smart-home technologies to future end-users. While attention to choice suggests links with privacy, this may misidentify the sources of privacy and risk unjustly burdening end-users with problems that they cannot resolve. Separating considerations of choice and privacy may result in more satisfactory treatment of both. Finally, through our engagement with researchers as participants this study demonstrates the relevance of (bio)ethics as a critical partner to smart-home engineering.

  13. A Survey on Energy Conserving Mechanisms for the Internet of Things: Wireless Networking Aspects.

    PubMed

    Abbas, Zeeshan; Yoon, Wonyong

    2015-09-25

    The Internet of Things (IoT) is an emerging key technology for future industries and everyday lives of people, where a myriad of battery operated sensors, actuators, and smart objects are connected to the Internet to provide services such as mobile healthcare, intelligent transport system, environmental monitoring, etc. Since energy efficiency is of utmost importance to these battery constrained IoT devices, IoT-related standards and research works have focused on the device energy conserving issues. This paper presents a comprehensive survey on energy conserving issues and solutions in using diverse wireless radio access technologies for IoT connectivity, e.g., the 3rd Generation Partnership Project (3GPP) machine type communications, IEEE 802.11ah, Bluetooth Low Energy (BLE), and Z-Wave. We look into the literature in broad areas of standardization, academic research, and industry development, and structurally summarize the energy conserving solutions based on several technical criteria. We also propose future research directions regarding energy conserving issues in wireless networking-based IoT.

  14. Standardization of a Hierarchical Transactive Control System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hammerstrom, Donald J.; Oliver, Terry V.; Melton, Ronald B.

    2010-12-03

    The authors describe work they have conducted toward the generalization and standardization of the transactive control approach that was first demonstrated in the Olympic Peninsula Project for the management of a transmission constraint. The newly generalized approach addresses several potential shortfalls of the prior approach: First, the authors have formalized a hierarchical node structure which defines the nodes and the functional signal pathways between these nodes. Second, by fully generalizing the inputs, outputs, and functional responsibilities of each node, the authors make the approach available to a much wider set of responsive assets and operational objectives. Third, the new, generalizedmore » approach defines transactive signals that include the predicted day-ahead future. This predictive feature allows the market-like bids and offers to become resolved iteratively over time, thus allowing the behaviors of responsive assets to be called upon both for the present and as future dispatch decisions are being made. The hierarchical transactive control approach is a key feature of a proposed Pacific Northwest smart grid demonstration.« less

  15. A Survey on Energy Conserving Mechanisms for the Internet of Things: Wireless Networking Aspects

    PubMed Central

    Abbas, Zeeshan; Yoon, Wonyong

    2015-01-01

    The Internet of Things (IoT) is an emerging key technology for future industries and everyday lives of people, where a myriad of battery operated sensors, actuators, and smart objects are connected to the Internet to provide services such as mobile healthcare, intelligent transport system, environmental monitoring, etc. Since energy efficiency is of utmost importance to these battery constrained IoT devices, IoT-related standards and research works have focused on the device energy conserving issues. This paper presents a comprehensive survey on energy conserving issues and solutions in using diverse wireless radio access technologies for IoT connectivity, e.g., the 3rd Generation Partnership Project (3GPP) machine type communications, IEEE 802.11ah, Bluetooth Low Energy (BLE), and Z-Wave. We look into the literature in broad areas of standardization, academic research, and industry development, and structurally summarize the energy conserving solutions based on several technical criteria. We also propose future research directions regarding energy conserving issues in wireless networking-based IoT. PMID:26404275

  16. Short-term forecasting of individual household electricity loads with investigating impact of data resolution and forecast horizon

    NASA Astrophysics Data System (ADS)

    Yildiz, Baran; Bilbao, Jose I.; Dore, Jonathon; Sproul, Alistair B.

    2018-05-01

    Smart grid components such as smart home and battery energy management systems, high penetration of renewable energy systems, and demand response activities, require accurate electricity demand forecasts for the successful operation of the electricity distribution networks. For example, in order to optimize residential PV generation and electricity consumption and plan battery charge-discharge regimes by scheduling household appliances, forecasts need to target and be tailored to individual household electricity loads. The recent uptake of smart meters allows easier access to electricity readings at very fine resolutions; hence, it is possible to utilize this source of available data to create forecast models. In this paper, models which predominantly use smart meter data alongside with weather variables, or smart meter based models (SMBM), are implemented to forecast individual household loads. Well-known machine learning models such as artificial neural networks (ANN), support vector machines (SVM) and Least-Square SVM are implemented within the SMBM framework and their performance is compared. The analysed household stock consists of 14 households from the state of New South Wales, Australia, with at least a year worth of 5 min. resolution data. In order for the results to be comparable between different households, our study first investigates household load profiles according to their volatility and reveals the relationship between load standard deviation and forecast performance. The analysis extends previous research by evaluating forecasts over four different data resolution; 5, 15, 30 and 60 min, each resolution analysed for four different horizons; 1, 6, 12 and 24 h ahead. Both, data resolution and forecast horizon, proved to have significant impact on the forecast performance and the obtained results provide important insights for the operation of various smart grid applications. Finally, it is shown that the load profile of some households vary significantly across different days; as a result, providing a single model for the entire period may result in limited performance. By the use of a pre-clustering step, similar daily load profiles are grouped together according to their standard deviation, and instead of applying one SMBM for the entire data-set of a particular household, separate SMBMs are applied to each one of the clusters. This preliminary clustering step increases the complexity of the analysis however it results in significant improvements in forecast performance.

  17. Modeling and distributed gain scheduling strategy for load frequency control in smart grids with communication topology changes.

    PubMed

    Liu, Shichao; Liu, Xiaoping P; El Saddik, Abdulmotaleb

    2014-03-01

    In this paper, we investigate the modeling and distributed control problems for the load frequency control (LFC) in a smart grid. In contrast with existing works, we consider more practical and real scenarios, where the communication topology of the smart grid changes because of either link failures or packet losses. These topology changes are modeled as a time-varying communication topology matrix. By using this matrix, a new closed-loop power system model is proposed to integrate the communication topology changes into the dynamics of a physical power system. The globally asymptotical stability of this closed-loop power system is analyzed. A distributed gain scheduling LFC strategy is proposed to compensate for the potential degradation of dynamic performance (mean square errors of state vectors) of the power system under communication topology changes. In comparison to conventional centralized control approaches, the proposed method can improve the robustness of the smart grid to the variation of the communication network as well as to reduce computation load. Simulation results show that the proposed distributed gain scheduling approach is capable to improve the robustness of the smart grid to communication topology changes. © 2013 ISA. Published by ISA. All rights reserved.

  18. Modeling activity recognition of multi resident using label combination of multi label classification in smart home

    NASA Astrophysics Data System (ADS)

    Mohamed, Raihani; Perumal, Thinagaran; Sulaiman, Md Nasir; Mustapha, Norwati; Zainudin, M. N. Shah

    2017-10-01

    Pertaining to the human centric concern and non-obtrusive way, the ambient sensor type technology has been selected, accepted and embedded in the environment in resilient style. Human activities, everyday are gradually becoming complex and thus complicate the inferences of activities when it involving the multi resident in the same smart environment. Current works solutions focus on separate model between the resident, activities and interactions. Some study use data association and extra auxiliary of graphical nodes to model human tracking information in an environment and some produce separate framework to incorporate the auxiliary for interaction feature model. Thus, recognizing the activities and which resident perform the activity at the same time in the smart home are vital for the smart home development and future applications. This paper will cater the above issue by considering the simplification and efficient method using the multi label classification framework. This effort eliminates time consuming and simplifies a lot of pre-processing tasks comparing with previous approach. Applications to the multi resident multi label learning in smart home problems shows the LC (Label Combination) using Decision Tree (DT) as base classifier can tackle the above problems.

  19. A Current Sensor Based on the Giant Magnetoresistance Effect: Design and Potential Smart Grid Applications

    PubMed Central

    Ouyang, Yong; He, Jinliang; Hu, Jun; Wang, Shan X.

    2012-01-01

    Advanced sensing and measurement techniques are key technologies to realize a smart grid. The giant magnetoresistance (GMR) effect has revolutionized the fields of data storage and magnetic measurement. In this work, a design of a GMR current sensor based on a commercial analog GMR chip for applications in a smart grid is presented and discussed. Static, dynamic and thermal properties of the sensor were characterized. The characterizations showed that in the operation range from 0 to ±5 A, the sensor had a sensitivity of 28 mV·A−1, linearity of 99.97%, maximum deviation of 2.717%, frequency response of −1.5 dB at 10 kHz current measurement, and maximum change of the amplitude response of 0.0335%·°C−1 with thermal compensation. In the distributed real-time measurement and monitoring of a smart grid system, the GMR current sensor shows excellent performance and is cost effective, making it suitable for applications such as steady-state and transient-state monitoring. With the advantages of having a high sensitivity, high linearity, small volume, low cost, and simple structure, the GMR current sensor is promising for the measurement and monitoring of smart grids. PMID:23202221

  20. A current sensor based on the giant magnetoresistance effect: design and potential smart grid applications.

    PubMed

    Ouyang, Yong; He, Jinliang; Hu, Jun; Wang, Shan X

    2012-11-09

    Advanced sensing and measurement techniques are key technologies to realize a smart grid. The giant magnetoresistance (GMR) effect has revolutionized the fields of data storage and magnetic measurement. In this work, a design of a GMR current sensor based on a commercial analog GMR chip for applications in a smart grid is presented and discussed. Static, dynamic and thermal properties of the sensor were characterized. The characterizations showed that in the operation range from 0 to ±5 A, the sensor had a sensitivity of 28 mV·A(-1), linearity of 99.97%, maximum deviation of 2.717%, frequency response of −1.5 dB at 10 kHz current measurement, and maximum change of the amplitude response of 0.0335%·°C(-1) with thermal compensation. In the distributed real-time measurement and monitoring of a smart grid system, the GMR current sensor shows excellent performance and is cost effective, making it suitable for applications such as steady-state and transient-state monitoring. With the advantages of having a high sensitivity, high linearity, small volume, low cost, and simple structure, the GMR current sensor is promising for the measurement and monitoring of smart grids.

  1. Improving Smart Home Concept with the Internet of Things Concept Using RaspberryPi and NodeMCU

    NASA Astrophysics Data System (ADS)

    Amri, Yasirli; Andri Setiawan, Mukhammad

    2018-03-01

    The Internet of things (IoT) is getting more tractions in recent years. One of the usage scenario of IoT is smart home. Smart home basically provides home automation for installed devices at home such as thermostat, lighting, air conditioning, etc and allows devices connected to the Internet to be monitored and controlled remotely by user. However many studies on smart home concept focusing only on few main features. They still lack of important usage of IoT i.e. providing energy efficiency, energy monitoring, dealing with security, and managing privacy. This paper proposes a smart home system with RaspberryPi and NodeMCU as the backend that not only serves as home automation and merely a switch replacement, but to also record and report important things to the owner of the house e.g. when someone trespasses the house (security perimeter), or to report the calculation of how much money has been spent in consuming the electrical appliances. We successfully examine our proposed system in a real life working scenario. The communication between user and the system is done using Telegram Bot.

  2. Providing NHS staff with height-adjustable workstations and behaviour change strategies to reduce workplace sitting time: protocol for the Stand More AT (SMArT) Work cluster randomised controlled trial.

    PubMed

    O'Connell, S E; Jackson, B R; Edwardson, C L; Yates, T; Biddle, S J H; Davies, M J; Dunstan, D; Esliger, D; Gray, L; Miller, P; Munir, F

    2015-12-09

    High levels of sedentary behaviour (i.e., sitting) are a risk factor for poor health. With high levels of sitting widespread in desk-based office workers, office workplaces are an appropriate setting for interventions aimed at reducing sedentary behaviour. This paper describes the development processes and proposed intervention procedures of Stand More AT (SMArT) Work, a multi-component randomised control (RCT) trial which aims to reduce occupational sitting time in desk-based office workers within the National Health Service (NHS). SMArT Work consists of 2 phases: 1) intervention development: The development of the SMArT Work intervention takes a community-based participatory research approach using the Behaviour Change Wheel. Focus groups will collect detailed information to gain a better understanding of the most appropriate strategies, to sit alongside the provision of height-adjustable workstations, at the environmental, organisational and individual level that support less occupational sitting. 2) intervention delivery and evaluation: The 12 month cluster RCT aims to reduce workplace sitting in the University Hospitals of Leicester NHS Trust. Desk-based office workers (n = 238) will be randomised to control or intervention clusters, with the intervention group receiving height-adjustable workstations and supporting techniques based on the feedback received from the development phase. Data will be collected at four time points; baseline, 3, 6 and 12 months. The primary outcome is a reduction in sitting time, measured by the activPAL(TM) micro at 12 months. Secondary outcomes include objectively measured physical activity and a variety of work-related health and psycho-social measures. A process evaluation will also take place. This study will be the first long-term, evidence-based, multi-component cluster RCT aimed at reducing occupational sitting within the NHS. This study will help form a better understanding and knowledge base of facilitators and barriers to creating a healthier work environment and contribute to health and wellbeing policy. ISRCTN10967042 . Registered 2 February 2015.

  3. Long Island Smart Energy Corridor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mui, Ming

    The Long Island Power Authority (LIPA) has teamed with Stony Brook University (Stony Brook or SBU) and Farmingdale State College (Farmingdale or FSC), two branches of the State University of New York (SUNY), to create a “Smart Energy Corridor.” The project, located along the Route 110 business corridor on Long Island, New York, demonstrated the integration of a suite of Smart Grid technologies from substations to end-use loads. The Smart Energy Corridor Project included the following key features: -TECHNOLOGY: Demonstrated a full range of smart energy technologies, including substations and distribution feeder automation, fiber and radio communications backbone, advanced meteringmore » infrastructure (AM”), meter data management (MDM) system (which LIPA implemented outside of this project), field tools automation, customer-level energy management including automated energy management systems, and integration with distributed generation and plug-in hybrid electric vehicles. -MARKETING: A rigorous market test that identified customer response to an alternative time-of-use pricing plan and varying levels of information and analytical support. -CYBER SECURITY: Tested cyber security vulnerabilities in Smart Grid hardware, network, and application layers. Developed recommendations for policies, procedures, and technical controls to prevent or foil cyber-attacks and to harden the Smart Grid infrastructure. -RELIABILITY: Leveraged new Smart Grid-enabled data to increase system efficiency and reliability. Developed enhanced load forecasting, phase balancing, and voltage control techniques designed to work hand-in-hand with the Smart Grid technologies. -OUTREACH: Implemented public outreach and educational initiatives that were linked directly to the demonstration of Smart Grid technologies, tools, techniques, and system configurations. This included creation of full-scale operating models demonstrating application of Smart Grid technologies in business and residential settings. Farmingdale State College held three international conferences on energy and sustainability and Smart Grid related technologies and policies. These conferences, in addition to public seminars increased understanding and acceptance of Smart Grid transformation by the general public, business, industry, and municipalities in the Long Island and greater New York region. - JOB CREATION: Provided training for the Smart Grid and clean energy jobs of the future at both Farmingdale and Stony Brook. Stony Brook focused its “Cradle to Fortune 500” suite of economic development resources on the opportunities emerging from the project, helping to create new technologies, new businesses, and new jobs. To achieve these features, LIPA and its sub-recipients, FSC and SBU, each have separate but complementary objectives. At LIPA, the Smart Energy Corridor (1) meant validating Smart Grid technologies; (2) quantifying Smart Grid costs and benefits; and (3) providing insights into how Smart Grid applications can be better implemented, readily adapted, and replicated in individual homes and businesses. LIPA installed 2,550 AMI meters (exceeding the 500 AMI meters in the original plan), created three “smart” substations serving the Corridor, and installed additional distribution automation elements including two-way communications and digital controls over various feeders and capacitor banks. It gathered and analyzed customer behavior information on how they responded to a new “smart” TOU rate and to various levels of information and analytical tools.« less

  4. An Architecture for Intelligent Systems Based on Smart Sensors

    NASA Technical Reports Server (NTRS)

    Schmalzel, John; Figueroa, Fernando; Morris, Jon; Mandayam, Shreekanth; Polikar, Robi

    2004-01-01

    Based on requirements for a next-generation rocket test facility, elements of a prototype Intelligent Rocket Test Facility (IRTF) have been implemented. A key component is distributed smart sensor elements integrated using a knowledgeware environment. One of the specific goals is to imbue sensors with the intelligence needed to perform self diagnosis of health and to participate in a hierarchy of health determination at sensor, process, and system levels. The preliminary results provide the basis for future advanced development and validation using rocket test stand facilities at Stennis Space Center (SSC). We have identified issues important to further development of health-enabled networks, which should be of interest to others working with smart sensors and intelligent health management systems.

  5. SMART lunch box intervention to improve the food and nutrient content of children's packed lunches: UK wide cluster randomised controlled trial.

    PubMed

    Evans, C E L; Greenwood, D C; Thomas, J D; Cleghorn, C L; Kitchen, M S; Cade, J E

    2010-11-01

    Government standards are now in place for children's school meals but not for lunches prepared at home. The aim of this trial is to improve the content of children's packed lunches. A cluster randomised controlled trial in 89 primary schools across the UK involving 1291 children, age 8-9 years at baseline. Follow-up was 12 months after baseline. A "SMART" lunch box intervention programme consisted of food boxes, bag and supporting materials. The main outcome measures were weights of foods and proportion of children provided with sandwiches, fruit, vegetables, dairy food, savoury snacks and confectionery in each packed lunch. Levels of nutrients provided including energy, total fat, saturated fat, protein, non-milk extrinsic sugar, sodium, calcium, iron, folate, zinc, vitamin A and vitamin C. Moderately higher weights of fruit, vegetables, dairy and starchy food and lower weights of savoury snacks were provided to children in the intervention group. Children in the intervention group were provided with slightly higher levels of vitamin A and folate. 11% more children were provided with vegetables/salad in their packed lunch, and 13% fewer children were provided with savoury snacks (crisps). Children in the intervention group were more likely to be provided with packed lunches meeting the government school meal standards. The SMART lunch box intervention, targeting parents and children, led to small improvements in the food and nutrient content of children's packed lunches. Further interventions are required to bring packed lunches in line with the new government standards for school meals. Current controlled trials ISRCTN77710993.

  6. Smart Biointerface with Photoswitched Functions between Bactericidal Activity and Bacteria-Releasing Ability.

    PubMed

    Wei, Ting; Zhan, Wenjun; Yu, Qian; Chen, Hong

    2017-08-09

    Smart biointerfaces with capability to regulate cell-surface interactions in response to external stimuli are of great interest for both fundamental research and practical applications. Smart surfaces with "ON/OFF" switchability for a single function such as cell attachment/detachment are well-known and useful, but the ability to switch between two different functions may be seen as the next level of "smart". In this work reported, a smart supramolecular surface capable of switching functions reversibly between bactericidal activity and bacteria-releasing ability in response to UV-visible light is developed. This platform is composed of surface-containing azobenzene (Azo) groups and a biocidal β-cyclodextrin derivative conjugated with seven quaternary ammonium salt groups (CD-QAS). The surface-immobilized Azo groups in trans form can specially incorporate CD-QAS to achieve a strongly bactericidal surface that kill more than 90% attached bacteria. On irradiation with UV light, the Azo groups switch to cis form, resulting in the dissociation of the Azo/CD-QAS inclusion complex and release of dead bacteria from the surface. After the kill-and-release cycle, the surface can be easily regenerated for reuse by irradiation with visible light and reincorporation of fresh CD-QAS. The use of supramolecular chemistry represents a promising approach to the realization of smart, multifunctional surfaces, and has the potential to be applied to diverse materials and devices in the biomedical field.

  7. How to improve healthcare? Identify, nurture and embed individuals and teams with "deep smarts".

    PubMed

    Eljiz, Kathy; Greenfield, David; Molineux, John; Sloan, Terry

    2018-03-19

    Purpose Unlocking and transferring skills and capabilities in individuals to the teams they work within, and across, is the key to positive organisational development and improved patient care. Using the "deep smarts" model, the purpose of this paper is to examine these issues. Design/methodology/approach The "deep smarts" model is described, reviewed and proposed as a way of transferring knowledge and capabilities within healthcare organisations. Findings Effective healthcare delivery is achieved through, and continues to require, integrative care involving numerous, dispersed service providers. In the space of overlapping organisational boundaries, there is a need for "deep smarts" people who act as "boundary spanners". These are critical integrative, networking roles employing clinical, organisational and people skills across multiple settings. Research limitations/implications Studies evaluating the barriers and enablers to the application of the deep smarts model and 13 knowledge development strategies proposed are required. Such future research will empirically and contemporary ground our understanding of organisational development in modern complex healthcare settings. Practical implications An organisation with "deep smarts" people - in managerial, auxiliary and clinical positions - has a greater capacity for integration and achieving improved patient-centred care. Originality/value In total, 13 developmental strategies, to transfer individual capabilities into organisational capability, are proposed. These strategies are applicable to different contexts and challenges faced by individuals and teams in complex healthcare organisations.

  8. Overview of the ARPA/WL Smart Structures and Materials Development-Smart Wing contract

    NASA Astrophysics Data System (ADS)

    Kudva, Jayanth N.; Jardine, A. Peter; Martin, Christopher A.; Appa, Kari

    1996-05-01

    While the concept of an adaptive aircraft wing, i.e., a wing whose shape parameters such as camber, wing twist, and thickness can be varied to optimize the wing shape for various flight conditions, has been extensively studied, the complexity and weight penalty of the actuation mechanisms have precluded their practical implementation. Recent development of sensors and actuators using smart materials could potentially alleviate the shortcomings of prior designs, paving the way for a practical, `smart' adaptive wing which responds to changes in flight and environmental conditions by modifying its shape to provide optimal performance. This paper presents a summary of recent work done on adaptive wing designs under an on-going ARPA/WL contract entitled `Smart Structures and Materials Development--Smart Wing.' Specifically, the design, development and planned wind tunnel testing of a 16% model representative of a fighter aircraft wing and incorporating the following features, are discussed: (1) a composite wing torque box whose span-wise twist can be varied by activating built-in shape memory alloy (SMA) torque tubes to provide increased lift and enhanced maneuverability at multiple flight conditions, (2) trailing edge control surfaces deployed using composite SMA actuators to provide smooth, hingeless aerodynamic surfaces, and (3) a suite of fiber optic sensors integrated into the wing skin which provide real-time strain and pressure data to a feedback control system.

  9. Screen printing of a capacitive cantilever-based motion sensor on fabric using a novel sacrificial layer process for smart fabric applications

    NASA Astrophysics Data System (ADS)

    Wei, Yang; Torah, Russel; Yang, Kai; Beeby, Steve; Tudor, John

    2013-07-01

    Free-standing cantilevers have been fabricated by screen printing sacrificial and structural layers onto a standard polyester cotton fabric. By printing additional conductive layers, a complete capacitive motion sensor on fabric using only screen printing has been fabricated. This type of free-standing structure cannot currently be fabricated using conventional fabric manufacturing processes. In addition, compared to conventional smart fabric fabrication processes (e.g. weaving and knitting), screen printing offers the advantages of geometric design flexibility and the ability to simultaneously print multiple devices of the same or different designs. Furthermore, a range of active inks exists from the printed electronics industry which can potentially be applied to create many types of smart fabric. Four cantilevers with different lengths have been printed on fabric using a five-layer structure with a sacrificial material underneath the cantilever. The sacrificial layer is subsequently removed at 160 °C for 30 min to achieve a freestanding cantilever above the fabric. Two silver electrodes, one on top of the cantilever and the other on top of the fabric, are used to capacitively detect the movement of the cantilever. In this way, an entirely printed motion sensor is produced on a standard fabric. The motion sensor was initially tested on an electromechanical shaker rig at a low frequency range to examine the linearity and the sensitivity of each design. Then, these sensors were individually attached to a moving human forearm to evaluate more representative results. A commercial accelerometer (Microstrain G-link) was mounted alongside for comparison. The printed sensors have a similar motion response to the commercial accelerometer, demonstrating the potential of a printed smart fabric motion sensor for use in intelligent clothing applications.

  10. A Review of Ten Years of the Study for Monitoring Antimicrobial Resistance Trends (SMART) from 2002 to 2011.

    PubMed

    Morrissey, Ian; Hackel, Meredith; Badal, Robert; Bouchillon, Sam; Hawser, Stephen; Biedenbach, Douglas

    2013-11-01

    Surveillance of antimicrobial agent resistance provides important information to guide microbiologists and infectious disease specialists understanding of the control and the spread of resistance mechanisms within the local environment. Continued monitoring of antimicrobial resistance patterns in the community and in local hospital environments is essential to guide effective empiric therapy. The Study for Monitoring Antimicrobial Resistance Trends (SMART) has monitored the in vitro susceptibility patterns of clinical Gram-negative bacilli to antimicrobial agents collected worldwide from intra-abdominal infections since 2002 and urinary tract infections since 2009. Resistance trends, with a particular focus on carbapenem resistance and the rate of extended-spectrum β-lactamases (ESBLs), were analyzed. Isolates from intra-abdominal infections (n = 92,086) and urinary-tract infections (n = 24,705) were collected and tested using Clinical and Laboratory Standards Institute methods. This review presents carbapenem susceptibility and ESBL rates over ten years of SMART study analysis, including key publications during this period. The SMART study has proved to be a valuable resource in determining pathogen prevalence and antibiotic susceptibility over the last ten years and continues to provide evidence for regulatory susceptibility breakpoints and clinical decision making.

  11. NREL Smart Grid Projects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hambrick, J.

    2012-01-01

    Although implementing Smart Grid projects at the distribution level provides many advantages and opportunities for advanced operation and control, a number of significant challenges must be overcome to maintain the high level of safety and reliability that the modern grid must provide. For example, while distributed generation (DG) promises to provide opportunities to increase reliability and efficiency and may provide grid support services such as volt/var control, the presence of DG can impact distribution operation and protection schemes. Additionally, the intermittent nature of many DG energy sources such as photovoltaics (PV) can present a number of challenges to voltage regulation,more » etc. This presentation provides an overview a number of Smart Grid projects being performed by the National Renewable Energy Laboratory (NREL) along with utility, industry, and academic partners. These projects include modeling and analysis of high penetration PV scenarios (with and without energy storage), development and testing of interconnection and microgrid equipment, as well as the development and implementation of advanced instrumentation and data acquisition used to analyze the impacts of intermittent renewable resources. Additionally, standards development associated with DG interconnection and analysis as well as Smart Grid interoperability will be discussed.« less

  12. SSIART: Opening the Way to Wireless Sensor Networks On-Board Spacecraft with an Inter-Agency Research Environment

    NASA Astrophysics Data System (ADS)

    Gunes-Lasnet, Sev; Dufour, Jean-Francois

    2012-08-01

    The potential uses and benefits of wireless technologies in space are very broad. Since many years the CCSDS SOIS wireless working group has worked at the identification of key applications for which wireless would bring benefits, and at supporting the deployment of wireless in space thanks to documents, in particular a Green informative book and magenta books presenting recommended practices.The Smart Sensor Inter-Agency Research Test bench (SSIART) is being designed to provide the space Agencies and the Industry with a reference smart sensor platform to test wireless sensor technologies in reference representative applications and RF propagation environments, while promoting these technologies at the same time.

  13. Regolith Advanced Surface Systems Operations Robot (RASSOR) Phase 2 and Smart Autonomous Sand-Swimming Excavator

    NASA Technical Reports Server (NTRS)

    Sandy, Michael

    2015-01-01

    The Regolith Advanced Surface Systems Operations Robot (RASSOR) Phase 2 is an excavation robot for mining regolith on a planet like Mars. The robot is programmed using the Robotic Operating System (ROS) and it also uses a physical simulation program called Gazebo. This internship focused on various functions of the program in order to make it a more professional and efficient robot. During the internship another project called the Smart Autonomous Sand-Swimming Excavator was worked on. This is a robot that is designed to dig through sand and extract sample material. The intern worked on programming the Sand-Swimming robot, and designing the electrical system to power and control the robot.

  14. Smart vision chips: An overview

    NASA Technical Reports Server (NTRS)

    Koch, Christof

    1994-01-01

    This viewgraph presentation presents four working analog VLSI vision chips: (1) time-derivative retina, (2) zero-crossing chip, (3) resistive fuse, and (4) figure-ground chip; work in progress on computing motion and neuromorphic systems; and conceptual and practical lessons learned.

  15. Smart sign ordering system : research implementation plan.

    DOT National Transportation Integrated Search

    2004-05-01

    STATEMENT OF NEED: ODOT operates a Sign Shop to fabricate traffic and information signs. The Districts prepare and submit orders for : signs to the Central Office, where each order is checked against design specifications and standards. The Sign Shop...

  16. Smart built-in test

    NASA Technical Reports Server (NTRS)

    Richards, Dale W.

    1990-01-01

    The work which built-in test (BIT) is asked to perform in today's electronic systems increases with every insertion of new technology or introduction of tighter performance criteria. Yet the basic purpose remains unchanged -- to determine with high confidence the operational capability of that equipment. Achievement of this level of BIT performance requires the management and assimilation of a large amount of data, both realtime and historical. Smart BIT has taken advantage of advanced techniques from the field of artificial intelligence (AI) in order to meet these demands. The Smart BIT approach enhances traditional functional BIT by utilizing AI techniques to incorporate environmental stress data, temporal BIT information and maintenance data, and realtime BIT reports into an integrated test methodology for increased BIT effectiveness and confidence levels. Future research in this area will incorporate onboard fault-logging of BIT output, stress data and Smart BIT decision criteria in support of a singular, integrated and complete test and maintenance capability. The state of this research is described along with a discussion of directions for future development.

  17. Workforce mobility: Contributing towards smart city

    NASA Astrophysics Data System (ADS)

    Nor, N. M.; Wahap, N. A.

    2014-02-01

    Smart cities gained importance as a means of making ICT enabled services and applications available to the citizens, companies and authorities that form part of a city's system. It aims at increasing citizen's quality of life, and improving the efficiency and quality of the services provided by governing entities and businesses. This perspective requires an integrated vision of a city and of its infrastructures in all components. One of the characteristics of a smart city is mobility. The concept of mobility, especially for the workforce, is studied through a research carried out on a daily work undertaken as a prototype in the administrative town of Putrajaya, Malaysia. Utilizing the location track from GNSS integrated with mobile devices platform, information on movement and mobility was analysed for quality and efficiency of services rendered. This paper will highlight the research and outcomes that were successfully carried out and will suggest that workforce mobility management can benefit the authorities towards implementing a smart city concept.

  18. Smart built-in test

    NASA Astrophysics Data System (ADS)

    Richards, Dale W.

    1990-03-01

    The work which built-in test (BIT) is asked to perform in today's electronic systems increases with every insertion of new technology or introduction of tighter performance criteria. Yet the basic purpose remains unchanged -- to determine with high confidence the operational capability of that equipment. Achievement of this level of BIT performance requires the management and assimilation of a large amount of data, both realtime and historical. Smart BIT has taken advantage of advanced techniques from the field of artificial intelligence (AI) in order to meet these demands. The Smart BIT approach enhances traditional functional BIT by utilizing AI techniques to incorporate environmental stress data, temporal BIT information and maintenance data, and realtime BIT reports into an integrated test methodology for increased BIT effectiveness and confidence levels. Future research in this area will incorporate onboard fault-logging of BIT output, stress data and Smart BIT decision criteria in support of a singular, integrated and complete test and maintenance capability. The state of this research is described along with a discussion of directions for future development.

  19. System Security And Monitoring On Smart Home Using Android

    NASA Astrophysics Data System (ADS)

    Romadhon, A. S.

    2018-01-01

    Home security system is needed for homeowners who have a lot of activities, as a result, they often leave the house without locking the door and even leave the house in a state of lights that are not lit. In order to overcome this case, a system that can control and can monitor the state of the various devices contained in the house or smart home system is urgently required. The working principle of this smart home using android is when the homeowner sends a certain command using android, the command will be forwarded to the microcontroller and then it will be executed based on the parameters that have been determined. For example, it can turn off and on the light using android app. In this study, testing was conducted to a smart home prototype which is equipped with light bulbs, odour sensors, heat sensors, ultrasonic sensors, LDR, buzzer and camera. The test results indicate that the application has been able to control all the sensors of home appliances well.

  20. New Results and Synthesis from SMART-1

    NASA Astrophysics Data System (ADS)

    Foing, Bernard H.

    2012-07-01

    We present new SMART-1 results recently published and give a synthesis of mission highlights and legacy. SMART-1 demonstrated the use of Solar Electric Propulsion that will be useful for Bepi-Colombo and future deep-space missions, tested new technologies for spacecraft and instruments miniaturisation, and provided an opportunity for science [1-12]. The SMART-1 spacecraft operated on a science orbit for 18 months until impact on 3 September 2006. To date, 72 refereed papers and more than 325 conference or technical papers have been published based on SMART-1 (see ADS on SMART-1 scitech website). The SMART-1 data are accessible on the ESA Planetary Science Archive PSA [13]. Recent SMART-1 published results using these archives include: Multi-angular photometry of Mare and specific regions to diagnose the regolith roughness and to constrain models of light re ection and scattering [14] that can be extended to understand the surface of other moons and asteroids; the SMART-1 impact observed from Earth was modelled using laboratory experiments predicting the size of asymmetric crater and ejecta [15]; the lunar North and South polar illumination was mapped and monitored over the entire year, permitting to identify SMART-1 peaks of quasi-eternal light" and to derive their topography [16, 17]; SMART-1 was also used for radio occultation experiments [18], and the X-Ray Solar Monitor data were used for activity and are studies of the Sun as a star in conjunction with GOES AND RHESSI [19] or to design future coronal X-ray instruments [20]. The SMART-1 archive observations have been used to support Kaguya, Chandrayaan-1, Chang'E 1, the US Lunar Reconnaissance Orbiter, the LCROSS impact, and to characterise potential sites relevant for lunar science and future exploration. Credits and links: we acknowledge members of SMART-1 Science and Technology Working Team and collaborators. SMART-1 Scitech or public websites: sci.esa.int/smart-1 or www.esa.int/smart-1 References [1] Foing etal (2001) EMP 85-523; [2] Racca et al (2002) EMP 85-379; [3] Racca et al. (2002) PSS 50-1323; [4] Grande et al. (2003) PSS51-427; [5] Dunkin et al. (2003) PSS 51-435; [6] Huovelin et al. (2002) PSS50-1345; [7] Shkuratov et al (2003) JGRE 108-E4-1; [8] Foing et al (2003) ASR 31-2323; [9] Grande et al (2007) PSS 55-494; [10] Pinet et al (2005) PSS 53-1309; [11] Josset etal (2006) ASR 37-14; [12] Foing et al (2006) ASR 37-6; [13] http://www.rssd.esa.int/psa [14] Muinonen et al (2011) AA 531-150; [15] Burchell et al (2010) Icarus 207-28; 16] Grieger (2010) cosp 38-417; [17] Bussey et al (2011) LPI CO-1621-5; [18] Pluchino et al MSAItS 16-152; [19] Vaananen et al (2009) SolarPhys 260-479; [20] Alha et al (2012)NIMPA 664, 358

  1. Automatic generation of smart earthquake-resistant building system: Hybrid system of base-isolation and building-connection.

    PubMed

    Kasagi, M; Fujita, K; Tsuji, M; Takewaki, I

    2016-02-01

    A base-isolated building may sometimes exhibit an undesirable large response to a long-duration, long-period earthquake ground motion and a connected building system without base-isolation may show a large response to a near-fault (rather high-frequency) earthquake ground motion. To overcome both deficiencies, a new hybrid control system of base-isolation and building-connection is proposed and investigated. In this new hybrid building system, a base-isolated building is connected to a stiffer free wall with oil dampers. It has been demonstrated in a preliminary research that the proposed hybrid system is effective both for near-fault (rather high-frequency) and long-duration, long-period earthquake ground motions and has sufficient redundancy and robustness for a broad range of earthquake ground motions.An automatic generation algorithm of this kind of smart structures of base-isolation and building-connection hybrid systems is presented in this paper. It is shown that, while the proposed algorithm does not work well in a building without the connecting-damper system, it works well in the proposed smart hybrid system with the connecting damper system.

  2. Optimal design of a magnetorheological damper used in smart prosthetic knees

    NASA Astrophysics Data System (ADS)

    Gao, Fei; Liu, Yan-Nan; Liao, Wei-Hsin

    2017-03-01

    In this paper, a magnetorheological (MR) damper is optimally designed for use in smart prosthetic knees. The objective of optimization is to minimize the total energy consumption during one gait cycle and weight of the MR damper. Firstly, a smart prosthetic knee employing a DC motor, MR damper and springs is developed based on the kinetics characteristics of human knee during walking. Then the function of the MR damper is analyzed. In the initial stance phase and swing phase, the MR damper is powered off (off-state). While during the late stance phase, the MR damper is powered on to work as a clutch (on-state). Based on the MR damper model as well as the prosthetic knee model, the instantaneous energy consumption of the MR damper is derived in the two working states. Then by integrating in one gait cycle, the total energy consumption is obtained. Particle swarm optimization algorithm is used to optimize the geometric dimensions of MR damper. Finally, a prototype of the optimized MR damper is fabricated and tested with comparison to simulation.

  3. Sensor Fusion and Smart Sensor in Sports and Biomedical Applications

    PubMed Central

    Mendes, José Jair Alves; Vieira, Mário Elias Marinho; Pires, Marcelo Bissi; Stevan, Sergio Luiz

    2016-01-01

    The following work presents an overview of smart sensors and sensor fusion targeted at biomedical applications and sports areas. In this work, the integration of these areas is demonstrated, promoting a reflection about techniques and applications to collect, quantify and qualify some physical variables associated with the human body. These techniques are presented in various biomedical and sports applications, which cover areas related to diagnostics, rehabilitation, physical monitoring, and the development of performance in athletes, among others. Although some applications are described in only one of two fields of study (biomedicine and sports), it is very likely that the same application fits in both, with small peculiarities or adaptations. To illustrate the contemporaneity of applications, an analysis of specialized papers published in the last six years has been made. In this context, the main characteristic of this review is to present the largest quantity of relevant examples of sensor fusion and smart sensors focusing on their utilization and proposals, without deeply addressing one specific system or technique, to the detriment of the others. PMID:27669260

  4. Using Smart Devices to Measure Intermittent Noise in the Workplace

    PubMed Central

    Roberts, Benjamin; Neitzel, Richard Lee

    2017-01-01

    Purpose: To determine the accuracy of smart devices (iPods) to measure intermittent noise and integrate a noise dose in the workplace. Materials and Methods: In experiment 1, four iPods were each paired with a Larson Davis Spark dosimeter and exposed to randomly fluctuating pink noise in a reverberant sound chamber. Descriptive statistics and the mean difference between the iPod and its paired dosimeter were calculated for the 1-s data logged measurements. The calculated time weighted average (TWA) was also compared between the devices. In experiment 2, 15 maintenance workers and 14 office workers wore an iPod and dosimeter during their work-shift for a maximum of five workdays. A mixed effects linear regression model was used to control for repeated measures and to determine the effect of the device type on the projected 8-h TWA. Results: In experiment 1, a total of 315,306 1-s data logged measurements were made. The interquartile range of the mean difference fell within ±2.0 A-weighted decibels (dBA), which is the standard used by the American National Standards Institute to classify a type 2 sound level meter. The mean difference of the calculated TWA was within ±0.5 dBA except for one outlier. In experiment 2, the results of the mixed effects model found that, on average, iPods measured an 8-h TWA 1.7 dBA higher than their paired dosimeters. Conclusion: This study shows that iPods have the ability to make reasonably accurate noise measurements in the workplace, but they are not as accurate as traditional noise dosimeters. PMID:29192614

  5. Portable traffic management system smart work zone application : operational test evaluation report

    DOT National Transportation Integrated Search

    1997-05-01

    As part of its statewide Intelligent Transportation System (ITS), The Minnesota Department of Transportation (Mn/DOT) sponsored an operational test of the Portable Traffic Management System (PTMS) in a work zone application in cooperation with its pr...

  6. Student Work Safety Guidelines in Roadside Applications and Work Zones : Safety Guidelines for Transportation Researchers

    DOT National Transportation Integrated Search

    2018-01-01

    The Smart City Demonstration Program is intended to improve access through expanded mobility options in major job centers, enhance visitor experience by better connecting visitors to transportation options, stimulate regional economic prosperity and ...

  7. SMART - Recognising the value of existing practice and introducing recent developments: leaving no stone unturned in the assessment and treatment of the PDOC patient.

    PubMed

    Gill-Thwaites, H; Elliott, K E; Munday, R

    2017-04-18

    Over the last 25 years there have been a number of papers highlighting the issues of high rates of misdiagnosis in prolonged disorders of consciousness (PDOC) (Andrews, K., Murphy, L., Munday, R., & Littlewood, C. (1996). Misdiagnosis of the vegetative state: Retrospective study in a rehabilitation unit. BMJ, 313(7048), 13-16; Childs, N. L., Mercer, W. N., & Childs, H. W. (1993). Accuracy of diagnosis of persistent vegetative state. Neurology, 43(8), 1465-1467). Surprisingly, these rates still remain at the same level despite defined criteria for diagnosis (Schnakers, C., Vanhaudenhuyse, A., Giacino, J., Ventura, M., Boly, M., Majerus, S.,…Laureys, S. (2009). Diagnostic accuracy of the vegetative and minimally conscious state: Clinical consensus versus standardized neurobehavioral assessment. BMC Neurology, 9(35), 1-5; Van Erp, W., Larvrijsen, J., Vos, P., Bor, H., Laureys, S., & Koopmans, R. (2015). The vegetative state: Prevalence, misdiagnosis and treatment limitations. JAMDA, 85, e9-85.e14. doi: 10.1016/j.jamda.2014.10.014 ). This indicates the continued need for careful standardised assessment by skilled assessors to identify all potential meaningful responses and to establish a correct and incontrovertible diagnosis. The Sensory Modality Assessment and Rehabilitation Technique (SMART) is one of three assessments identified for the assessment of PDOC in the Royal College of Physician guidelines (Royal College of Physicians, 2013 ). The RCP guidelines and recent publications have highlighted and substantiated the value of some of the existing practices and unique features of the SMART. In recognition of the need to keep SMART current, SMART Version 3 is being developed and will be launched shortly. The interim SMART developments will be introduced in this paper and applied to practice through the illustration of a case study. Evidence suggests that SMART is a current and invaluable tool for the clinical and medico-legal assessment and treatment of the PDOC patient.

  8. Smartphone versus knee ligament arthrometer when size does not matter.

    PubMed

    Ferretti, Andrea; Andrea, Ferretti; Valeo, Luigi; Luigi, Valeo; Mazza, Daniele; Daniele, Mazza; Muliere, Luca; Luca, Muliere; Iorio, Paolo; Paolo, Iorio; Giovannetti, Giovanni; Giovanni, Giovannetti; Conteduca, Fabio; Fabio, Conteduca; Iorio, Raffaele; Raffaele, Iorio

    2014-10-01

    The use of available mechanical methods to measure anterior tibial translation (ATT) in anterior cruciate ligament (ACL)-deficient knees are limited by size and costs. This study evaluated the performance of a portable device based on a downloadable electronic smartphone application to measure ATT in ACL-deficient knees. A specific smartphone application (SmartJoint) was developed for this purpose. Two independent observers nonsequentially measured the amount of ATT during execution of a maximum manual Lachman test in 35 patients with an ACL-deficient knee using KT 1000 and SmartJoint on both involved and uninvolved knees. As each examiner performed the test three times on each knee, a total of 840 measurements were collected. Statistical analysis compared intertest, interobserver and intra-observer reliability using the interclass correlation coefficient (ICC). An ICC > 0.75 indicates excellent reproducibility among measurements. Mean amount of ATT on uninvolved knees was 6.1 mm [standard deviation (SD = 2)] with the KT 1000 and 6.4 mm (SD = 2) with SmartJoint. Mean side-to-side difference was 8.1 mm. (SD = 4) with KT 1000 and 8.3 mm (SD = 3) with SmartJoint. Intertest reliability between the two methods yielded an ICC 0.797 [95 % confidence interval (CI) 0.717-0.857] for the uninvolved knee and of 0.987 (CI 0.981-0.991) for the involved knee. Interobserver ICC for SmartJoint and KT 1000 was 0.957 (CI 0.927-0.976) for the uninvolved knee and 0.992 (CI 0.986-0.996) for the involved knee and 0.973 (CI 0.954-0.985) for the uninvolved knee and 0.989 (CI 0.981-0.994) for involved knee, respectively. The performance of SmartJoint is comparable and highly correlated with measurements obtained from KT 1000. SmartJoint may provide a truly portable, noninvasive, accurate, reliable, inexpensive and widely accessible method to characterize ATT in ACL-deficient knee.

  9. Smart material-based radiation sources

    NASA Astrophysics Data System (ADS)

    Kovaleski, Scott

    2014-10-01

    From sensors to power harvesters, the unique properties of smart materials have been exploited in numerous ways to enable new applications and reduce the size of many useful devices. Smart materials are defined as materials whose properties can be changed in a controlled and often reversible fashion by use of external stimuli, such as electric and magnetic fields, temperature, or humidity. Smart materials have been used to make acceleration sensors that are ubiquitous in mobile phones, to make highly accurate frequency standards, to make unprecedentedly small actuators and motors, to seal and reduce friction of rotating shafts, and to generate power by conversion of either kinetic or thermal energy to electrical energy. The number of useful devices enabled by smart materials is large and continues to grow. Smart materials can also be used to generate plasmas and accelerate particles at small scales. The materials discussed in this talk are from non-centrosymmetric crystalline classes including piezoelectric, pyroelectric, and ferroelectric materials, which produce large electric fields in response to external stimuli such as applied electric fields or thermal energy. First, the use of ferroelectric, pyroelectric and piezoelectric materials for plasma generation and particle acceleration will be reviewed. The talk will then focus on the use of piezoelectric materials at the University of Missouri to construct plasma sources and electrostatic accelerators for applications including space propulsion, x-ray imaging, and neutron production. The basic concepts of piezoelectric transformers, which are analogous to conventional magnetic transformers, will be discussed, along with results from experiments over the last decade to produce micro-thrusters for space propulsion and particle accelerators for x-ray and neutron production. Support from ONR, AFOSR, and LANL.

  10. Digital Signature Management.

    ERIC Educational Resources Information Center

    Hassler, Vesna; Biely, Helmut

    1999-01-01

    Describes the Digital Signature Project that was developed in Austria to establish an infrastructure for applying smart card-based digital signatures in banking and electronic-commerce applications. Discusses the need to conform to international standards, an international certification infrastructure, and security features for a public directory…

  11. 78 FR 4192 - Petition for Exemption From the Vehicle Theft Prevention Standard; Ford Motor Company

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-18

    ... Smart Power Distribution Junction Box (SPDJB), the PEPS/RFA module, the power train control module and a... listed in Sec. 543.6(a)(3): promoting activation; attracting attention to the efforts of unauthorized...

  12. Lunar and Planetary Science XXXV: Future Missions to the Moon

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This document contained the following topics: A Miniature Mass Spectrometer Module; SELENE Gamma Ray Spectrometer Using Ge Detector Cooled by Stirling Cryocooler; Lunar Elemental Composition and Investigations with D-CIXS X-Ray Mapping Spectrometer on SMART-1; X-Ray Fluorescence Spectrometer Onboard the SELENE Lunar Orbiter: Its Science and Instrument; Detectability of Degradation of Lunar Impact Craters by SELENE Terrain Camera; Study of the Apollo 16 Landing Site: As a Standard Site for the SELENE Multiband Imager; Selection of Targets for the SMART-1 Infrared Spectrometer (SIR); Development of a Telescopic Imaging Spectrometer for the Moon; The Lunar Seismic Network: Mission Update.

  13. Genetic algorithms applied to the scheduling of the Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    Sponsler, Jeffrey L.

    1989-01-01

    A prototype system employing a genetic algorithm (GA) has been developed to support the scheduling of the Hubble Space Telescope. A non-standard knowledge structure is used and appropriate genetic operators have been created. Several different crossover styles (random point selection, evolving points, and smart point selection) are tested and the best GA is compared with a neural network (NN) based optimizer. The smart crossover operator produces the best results and the GA system is able to evolve complete schedules using it. The GA is not as time-efficient as the NN system and the NN solutions tend to be better.

  14. Automated systems for the analysis of meteor spectra: The SMART Project

    NASA Astrophysics Data System (ADS)

    Madiedo, José M.

    2017-09-01

    This work analyzes a meteor spectroscopy survey called SMART (Spectroscopy of Meteoroids in the Atmosphere by means of Robotic Technologies), which is being conducted since 2006. In total, 55 spectrographs have been deployed at 10 different locations in Spain with the aim to obtain information about the chemical nature of meteoroids ablating in the atmosphere. The main improvements in the hardware and the software developed in the framework of this project are described, and some results obtained by these automatic devices are also discussed.

  15. Leading Through Civilian Power: The First Quadrennial Diplomacy and Development Review

    DTIC Science & Technology

    2010-01-01

    military power as equal pillars of U.S. for- eign policy. She called for an integrated “ smart power” approach to solving global problems—a concept that is...ing the latest tools and technologies, as well as the innovators and entrepreneurs behind them, and integrating them into our diplomacy and...and planning that will allow us to work smarter to advance our nation’s interests and values. i. buiLding a 21St cEntury workforcE Smart power

  16. A Multi-Mode Blade Damping Control using Shunted Piezoelectric Transducers with Active Feedback Structure

    NASA Technical Reports Server (NTRS)

    Choi, Benjamin; Morrison, Carlos; Min, James

    2009-01-01

    The Structural Dynamics and. Mechanics branch (RXS) is developing smart adaptive structures to improve fan blade damping at resonances using piezoelectric (PE) transducers. In this presentation, only one shunted PE transducer was used to demonstrate active control of multi-mode blade resonance damping on a titanium alloy (Ti-6A1-4V) flat plate model, regardless of bending, torsion, and 2-stripe modes. This work would have a significant impact on the conventional passive shunt damping world because the standard feedback control design tools can now be used to design and implement electric shunt for vibration control. In other words, the passive shunt circuit components using massive inductors and. resistors for multi-mode resonance control can be replaced with digital codes. Furthermore, this active approach with multi patches can simultaneously control several modes in the engine operating range. Dr. Benjamin Choi presented the analytical and experimental results from this work at the Propulsion-Safety and. Affordable Readiness (P-SAR) Conference in March, 2009.

  17. Navigator® and SmartPilot® View are helpful in guiding anesthesia and reducing anesthetic drug dosing.

    PubMed

    Cirillo, V; Zito Marinosci, G; De Robertis, E; Iacono, C; Romano, G M; Desantis, O; Piazza, O; Servillo, G; Tufano, R

    2015-11-01

    The recently introduced Navigator® (GE Healthcare, Helsinki, Finland) and SmartPilot® View (Dräger Medical, Lübeck, Germany) show the concentrations and predicted effects of combined anesthetic drugs, and should facilitate more precisely their titration. Our aim was to evaluate if Navigator® or SmartPilot® View guided anesthesia was associated with a good quality of analgesia, depth of hypnosis and may reduce anesthetic requirements. We performed a prospective non-randomized study. Sixty ASA I-II patients undergoing balanced general anesthesia for abdominal and plastic surgery were enrolled. Patients were divided in 4 groups. Group 1 (N. 15) and group 3 (N. 15) were cases in whom anesthesia was performed with standard monitoring plus the aid of Navigator® (Nav) or SmartPilot® View (SPV) display. Group 2 (N. 15) and group 4 (N. 15) were controls in whom anesthesia was performed with standard monitoring (heart rate, NIBP, SpO2, end-tidal CO2, end-expired sevoflurane concentration, train of four, Bispectral Index [Aspect Medical Systems, Natick, MA, USA] or Entropy [GE Healthcare]). Patients' vital parameters and end-expired sevoflurane concentration were recorded during anesthesia. All patients recovered uneventfully and showed hemodynamic stability. End-tidal sevoflurane concentrations values [median (min-max)], during maintenance of anesthesia, were significantly (P<0.05) lower in SPV [1.1% (0.8-1.5)] and Nav [1%(0.8-1.8)] groups compared to SPV-control group [1.5%(1-2.5)] and Nav-control group [1.5%(0.8-2)]. BIS and entropy values were respectively higher in the SPV group [53 (46-57)] compared to the control group [43 (37-51)] (P<0.05) and Nav group [53 (43-60)] compared to the control group [41 (35-51)] (P<0.05). No significant differences in Remifentanil dosing were observed in the four groups. Navigator® and SmartPilot® View may be of clinical use in monitoring adequacy of anesthesia. Both displays can optimize the administration and monitoring of anesthetic drugs during general anesthesia and may reduce the consumption of volatile anesthetic agents.

  18. Electricity Markets, Smart Grids and Smart Buildings

    NASA Astrophysics Data System (ADS)

    Falcey, Jonathan M.

    A smart grid is an electricity network that accommodates two-way power flows, and utilizes two-way communications and increased measurement, in order to provide more information to customers and aid in the development of a more efficient electricity market. The current electrical network is outdated and has many shortcomings relating to power flows, inefficient electricity markets, generation/supply balance, a lack of information for the consumer and insufficient consumer interaction with electricity markets. Many of these challenges can be addressed with a smart grid, but there remain significant barriers to the implementation of a smart grid. This paper proposes a novel method for the development of a smart grid utilizing a bottom up approach (starting with smart buildings/campuses) with the goal of providing the framework and infrastructure necessary for a smart grid instead of the more traditional approach (installing many smart meters and hoping a smart grid emerges). This novel approach involves combining deterministic and statistical methods in order to accurately estimate building electricity use down to the device level. It provides model users with a cheaper alternative to energy audits and extensive sensor networks (the current methods of quantifying electrical use at this level) which increases their ability to modify energy consumption and respond to price signals The results of this method are promising, but they are still preliminary. As a result, there is still room for improvement. On days when there were no missing or inaccurate data, this approach has R2 of about 0.84, sometimes as high as 0.94 when compared to measured results. However, there were many days where missing data brought overall accuracy down significantly. In addition, the development and implementation of the calibration process is still underway and some functional additions must be made in order to maximize accuracy. The calibration process must be completed before a reliable accuracy can be determined. While this work shows that a combination of a deterministic and statistical methods can accurately forecast building energy usage, the ability to produce accurate results is heavily dependent upon software availability, accurate data and the proper calibration of the model. Creating the software required for a smart building model is time consuming and expensive. Bad or missing data have significant negative impacts on the accuracy of the results and can be caused by a hodgepodge of equipment and communication protocols. Proper calibration of the model is essential to ensure that the device level estimations are sufficiently accurate. Any building model which is to be successful at creating a smart building must be able to overcome these challenges.

  19. Structural and robustness properties of smart-city transportation networks

    NASA Astrophysics Data System (ADS)

    Zhang, Zhen-Gang; Ding, Zhuo; Fan, Jing-Fang; Meng, Jun; Ding, Yi-Min; Ye, Fang-Fu; Chen, Xiao-Song

    2015-09-01

    The concept of smart city gives an excellent resolution to construct and develop modern cities, and also demands infrastructure construction. How to build a safe, stable, and highly efficient public transportation system becomes an important topic in the process of city construction. In this work, we study the structural and robustness properties of transportation networks and their sub-networks. We introduce a complementary network model to study the relevance and complementarity between bus network and subway network. Our numerical results show that the mutual supplement of networks can improve the network robustness. This conclusion provides a theoretical basis for the construction of public traffic networks, and it also supports reasonable operation of managing smart cities. Project supported by the Major Projects of the China National Social Science Fund (Grant No. 11 & ZD154).

  20. Utilization of remote traffic monitoring devices for urban freeway work zone assessment.

    DOT National Transportation Integrated Search

    2012-01-01

    The objective of this project was to promote and facilitate analysis and evaluation of the impacts of road construction activities in Smart : Work Zone Deployment Initiative (SWZDI) states. : The two primary objectives of this project were to assess ...

  1. SMART-1: the first spacecraft of the future

    NASA Astrophysics Data System (ADS)

    2003-09-01

    This is the first of a series of missions designed to test key technologies for future spacecraft —SMART stands for 'Small Missions for Advanced Research and Technology'. In the case of SMART-1, the two main new technologies to be tested are a new 'solar-electric propulsion' system and miniaturised spacecraft and instrumentation. Together, these technologies make up a spacecraft with revolutionary qualities: smaller, lighter, capable of carrying more scientific instruments, greater fuel efficiency. All of which also considerably reduces the cost of the mission. So, the idea behind SMART-1 is to pioneer a futuristic philosophy, the motto of which could be: 'more science for less money'. Even though it is the first of a kind, SMART-1 has been developed in less than four years, and at about a fifth of the cost of a major science mission for ESA: only 110 million euros. That includes the launch, the operations and a dozen scientific experiments. This was achieved partly by using new management methods — such as working with smaller teams both within ESA and in the industry — and partly because of some of the new features inherent in SMART-1, such as the miniaturisation and novel design. Giuseppe Racca, SMART-1 Project Manager, explains: "What has been our trick? First, a short development period in itself means less money. But also, with its small size — which was a requirement of the mission because we are testing miniaturised hardware — the spacecraft is able to 'share' a commercial Ariane flight with two other passengers. Besides, since we were not constrained by any existing design or heritage, we could be more innovative and elegant in our architecture. For example, the new SMART-1 electrical architecture has enabled us to simplify the system tests considerably." SMART-1 could almost be a toy spacecraft — it weighs only 367 kilograms and fits into a cube just one metre across (the solar panel wings extend about 14 metres) — although one able to gather high-value scientific and technological data. Another innovation lies in the industrial policy applied to this mission. SMART-1 is a good example of an ESA mission in which a comparatively small company such as the Swedish Space Corporation (SSC) has been selected as prime contractor. “The experience of SSC in highly successful projects at national level was a key factor in the decision, as was ESA's goal of fostering a balanced industrial landscape in Europe,” says Niels Jensen of ESA’s Directorate of Industrial Matters and Technology Programmes. The magic of ion engines Solar-electric propulsion, one of the main technologies to be tested by SMART-1, is a new technique that uses 'ion engines'. These work by expelling a continuous beam of charged particles --ions-- at the back of the engine, which produces a thrust in the opposite direction and therefore pushes the spacecraft forward. The energy to feed the engine comes from the solar panels, hence the name 'solar-electric propulsion'. Engineers have been working on ion engines for decades, but only recently have obstacles such as the lack of power availability from a spacecraft’s solar panels been overcome. Recent missions have been using ion thrusters mainly for attitude control and orbit station keeping. In the recent case of ESA’s telecommunication satellite Artemis, the onboard availability of ion thrusters was actually what allowed the mission to be rescued. Having been left by the launcher on an unplanned orbit, Artemis was slowly - but safely - brought up to its final working orbit by the power of its ion engines, initially designed for orbit maintenance only. Starting with SMART-1, the first European spacecraft to use an ion engine as its main propulsion system, the amazing advantages of this method can now be fully exploited. Ion engines are very efficient: they deliver about ten times as much impulse per kilogram of propellant used. This gives a substantial reduction in the mass of the fuel carried on the spacecraft, which in turn leaves more room — more weight — for scientific instrumentation. Also, ion engines allow scope for designing trajectories to travel very long distances in less time, thereby opening the door to deeper space exploration. Another advantage is that these engines make for very accurate spacecraft control, which is essential for missions that require highly precise target pointing. Such qualities stem from the fact that ion engines generate a very gentle thrust. SMART-1 will be accelerated just 0.2 millimetres per second per second, with a push equivalent to the weight of a postcard. This is why solar-electric propulsion cannot be used for taking off from Earth, for example; it only works in the vacuum of space. For very distant destinations, this is not a problem. Compared to conventional chemical rockets, which burn for a few minutes, ion engines work for years, or for as long as the solar panels keep providing electricity. So the ion ‘tortoise’ will eventually overtake the chemical ‘hare’. Long, energy-demanding interplanetary missions will benefit most from solar-electric primary propulsion. In such cases, spacecraft need an enormous amount of chemical fuel on board, leaving very little capacity for scientific instruments. Moreover, to make the most economical use of this fuel, they need to take maximum advantage of gravity-assist manoeuvres, making space journeys longer and more complex. With solar-electric propulsion, in contrast, much less fuel is needed on board, with the advantages of more room for instruments and the ability to avoid complex gravity-assist manoeuvres. But these advantages do not come into play on short distances, such as from the Earth to the Moon. So why is SMART-1 testing its ion engine on a trip to the Moon? The answer is threefold. First, the Moon is a very interesting scientific target. Secondly, SMART-1 has the opportunity to share the cost of an Ariane-5 launch with other passengers heading for the geostationary transfer orbit (GTO), from which the Moon can be reached. Last but not least, the spiral orbit which SMART-1 has to take to reach the Moon from GTO is a long and complex trajectory, so that the ion engine will be fully tested in conditions representative of a deep-space mission. Good news for the whole space sector The technology to be tested on SMART-1 is a strategic investment for ESA. In particular, development of the solar-electric propulsion technology was followed by ESA directly. The experience gained with SMART-1 will be useful to many aspects of space technology, providing thorough groundwork for future ESA programmes. As ESA engineer Denis Estublier explains, "SMART-1 will provide answers to technological questions that affect the whole sector. It will demonstrate the use and the lifetime in space of electric thrusters; the ground control of a quasi-continuously thrusting satellite, the performance of the solar panels in the radiation belts; the interactions of the ion beam with the spacecraft surface and instruments." Many kinds of spacecraft, including commercial telecommunication satellites, will benefit from such technology. Ion engines will find an immediate application in future ESA scientific missions to distant destinations that could not be reached otherwise, as conventional chemical-propulsion spacecraft could not carry the required payload mass. Other scientific missions will have to rely completely on the accurate spacecraft control provided by the very gentle thrust of the ion engines. SMART-1’s journey starts on Saturday 27 September at 08.02 p.m. local time in Kourou (Sunday 28 September at 01:02 a.m. CEST) with a launch an Ariane 5 rocket from the European launch base in Kourou, French Guiana. The trip itself will be part of the adventure, with the engineers checking on the performance of the new technology. But for the scientifically curious the real thrill will begin in December 2004, when SMART-1 reaches the Moon. Then it will be the turn of the scientific instruments, which will help to solve such questions as the origin of the Moon, the existence of water on the Moon, and the possibility of building a permanent human base on the lunar surface. Note to editors SMART-1 was developed for ESA by the Swedish Space Corporation, as prime contractor, with contributions from almost 30 contractors from 11 European countries and the United States. The spacecraft carries 19 kilograms of science payload consisting of experiments led by Principal Investigators from Finland, Germany, Italy, Switzerland and the United Kingdom.

  2. Automated Demand Response for Energy Sustainability Cost and Performance Report

    DTIC Science & Technology

    2015-09-01

    Install solar thermal system for pool heating in fitness Bldg 325 2022 $ 21,359 $ 7,199 3.6 yrs Renewable energy project p. 124- 126 Note: All data...and R. Bienert, 2011. Smart Grid Standards and Systems Interoperability: A Precedent with OpenADR, Lawrence Berkeley National Laboratory, LBNL...response (DR) system at Fort Irwin, CA. This demonstration employed industry-standard OpenADR (Open Automated Demand Response) technology to perform

  3. Smart home-based health platform for behavioral monitoring and alteration of diabetes patients.

    PubMed

    Helal, Abdelsalam; Cook, Diane J; Schmalz, Mark

    2009-01-01

    Researchers and medical practitioners have long sought the ability to continuously and automatically monitor patients beyond the confines of a doctor's office. We describe a smart home monitoring and analysis platform that facilitates the automatic gathering of rich databases of behavioral information in a manner that is transparent to the patient. Collected information will be automatically or manually analyzed and reported to the caregivers and may be interpreted for behavioral modification in the patient. Our health platform consists of five technology layers. The architecture is designed to be flexible, extensible, and transparent, to support plug-and-play operation of new devices and components, and to provide remote monitoring and programming opportunities. The smart home-based health platform technologies have been tested in two physical smart environments. Data that are collected in these implemented physical layers are processed and analyzed by our activity recognition and chewing classification algorithms. All of these components have yielded accurate analyses for subjects in the smart environment test beds. This work represents an important first step in the field of smart environment-based health monitoring and assistance. The architecture can be used to monitor the activity, diet, and exercise compliance of diabetes patients and evaluate the effects of alternative medicine and behavior regimens. We believe these technologies are essential for providing accessible, low-cost health assistance in an individual's own home and for providing the best possible quality of life for individuals with diabetes. © Diabetes Technology Society

  4. Distribution Locational Real-Time Pricing Based Smart Building Control and Management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hao, Jun; Dai, Xiaoxiao; Zhang, Yingchen

    This paper proposes an real-virtual parallel computing scheme for smart building operations aiming at augmenting overall social welfare. The University of Denver's campus power grid and Ritchie fitness center is used for demonstrating the proposed approach. An artificial virtual system is built in parallel to the real physical system to evaluate the overall social cost of the building operation based on the social science based working productivity model, numerical experiment based building energy consumption model and the power system based real-time pricing mechanism. Through interactive feedback exchanged between the real and virtual system, enlarged social welfare, including monetary cost reductionmore » and energy saving, as well as working productivity improvements, can be achieved.« less

  5. Component Cell-Based Restriction of Spectral Conditions and the Impact on CPV Module Power Rating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muller, Matthew T; Steiner, Marc; Siefer, Gerald

    One approach to consider the prevailing spectral conditions when performing CPV module power ratings according to the standard IEC 62670-3 is based on spectral matching ratios (SMRs) determined by the means of component cell sensors. In this work, an uncertainty analysis of the SMR approach is performed based on a dataset of spectral irradiances created with SMARTS2. Using these illumination spectra, the respective efficiencies of multijunction solar cells with different cell architectures are calculated. These efficiencies were used to analyze the influence of different component cell sensors and SMR filtering methods. The 3 main findings of this work are asmore » follows. First, component cells based on the lattice-matched triple-junction (LM3J) cell are suitable for restricting spectral conditions and are qualified for the standardized power rating of CPV modules - even if the CPV module is using multijunction cells other than LM3J. Second, a filtering of all 3 SMRs with +/-3.0% of unity results in the worst case scenario in an underestimation of -1.7% and overestimation of +2.4% compared to AM1.5d efficiency. Third, there is no benefit in matching the component cells to the module cell in respect to the measurement uncertainty.« less

  6. Four-Dimensional Printing Hierarchy Scaffolds with Highly Biocompatible Smart Polymers for Tissue Engineering Applications.

    PubMed

    Miao, Shida; Zhu, Wei; Castro, Nathan J; Leng, Jinsong; Zhang, Lijie Grace

    2016-10-01

    The objective of this study was to four-dimensional (4D) print novel biomimetic gradient tissue scaffolds with highly biocompatible naturally derived smart polymers. The term "4D printing" refers to the inherent smart shape transformation of fabricated constructs when implanted minimally invasively for seamless and dynamic integration. For this purpose, a series of novel shape memory polymers with excellent biocompatibility and tunable shape changing effects were synthesized and cured in the presence of three-dimensional printed sacrificial molds, which were subsequently dissolved to create controllable and graded porosity within the scaffold. Surface morphology, thermal, mechanical, and biocompatible properties as well as shape memory effects of the synthesized smart polymers and resultant porous scaffolds were characterized. Fourier transform infrared spectroscopy and gel content analysis confirmed the formation of chemical crosslinking by reacting polycaprolactone triol and castor oil with multi-isocyanate groups. Differential scanning calorimetry revealed an adjustable glass transition temperature in a range from -8°C to 35°C. Uniaxial compression testing indicated that the obtained polymers, possessing a highly crosslinked interpenetrating polymeric networks, have similar compressive modulus to polycaprolactone. Shape memory tests revealed that the smart polymers display finely tunable recovery speed and exhibit greater than 92% shape fixing at -18°C or 0°C and full shape recovery at physiological temperature. Scanning electron microscopy analysis of fabricated scaffolds revealed a graded microporous structure, which mimics the nonuniform distribution of porosity found within natural tissues. With polycaprolactone serving as a control, human bone marrow-derived mesenchymal stem cell adhesion, proliferation, and differentiation greatly increased on our novel smart polymers. The current work will significantly advance the future design and development of novel and functional biomedical scaffolds with advanced 4D printing technology and highly biocompatible smart biomaterials.

  7. Four-Dimensional Printing Hierarchy Scaffolds with Highly Biocompatible Smart Polymers for Tissue Engineering Applications

    PubMed Central

    Miao, Shida; Zhu, Wei; Castro, Nathan J.; Leng, Jinsong

    2016-01-01

    The objective of this study was to four-dimensional (4D) print novel biomimetic gradient tissue scaffolds with highly biocompatible naturally derived smart polymers. The term “4D printing” refers to the inherent smart shape transformation of fabricated constructs when implanted minimally invasively for seamless and dynamic integration. For this purpose, a series of novel shape memory polymers with excellent biocompatibility and tunable shape changing effects were synthesized and cured in the presence of three-dimensional printed sacrificial molds, which were subsequently dissolved to create controllable and graded porosity within the scaffold. Surface morphology, thermal, mechanical, and biocompatible properties as well as shape memory effects of the synthesized smart polymers and resultant porous scaffolds were characterized. Fourier transform infrared spectroscopy and gel content analysis confirmed the formation of chemical crosslinking by reacting polycaprolactone triol and castor oil with multi-isocyanate groups. Differential scanning calorimetry revealed an adjustable glass transition temperature in a range from −8°C to 35°C. Uniaxial compression testing indicated that the obtained polymers, possessing a highly crosslinked interpenetrating polymeric networks, have similar compressive modulus to polycaprolactone. Shape memory tests revealed that the smart polymers display finely tunable recovery speed and exhibit greater than 92% shape fixing at −18°C or 0°C and full shape recovery at physiological temperature. Scanning electron microscopy analysis of fabricated scaffolds revealed a graded microporous structure, which mimics the nonuniform distribution of porosity found within natural tissues. With polycaprolactone serving as a control, human bone marrow-derived mesenchymal stem cell adhesion, proliferation, and differentiation greatly increased on our novel smart polymers. The current work will significantly advance the future design and development of novel and functional biomedical scaffolds with advanced 4D printing technology and highly biocompatible smart biomaterials. PMID:28195832

  8. Communication Simulations for Power System Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fuller, Jason C.; Ciraci, Selim; Daily, Jeffrey A.

    2013-05-29

    New smart grid technologies and concepts, such as dynamic pricing, demand response, dynamic state estimation, and wide area monitoring, protection, and control, are expected to require considerable communication resources. As the cost of retrofit can be high, future power grids will require the integration of high-speed, secure connections with legacy communication systems, while still providing adequate system control and security. While considerable work has been performed to create co-simulators for the power domain with load models and market operations, limited work has been performed in integrating communications directly into a power domain solver. The simulation of communication and power systemsmore » will become more important as the two systems become more inter-related. This paper will discuss ongoing work at Pacific Northwest National Laboratory to create a flexible, high-speed power and communication system co-simulator for smart grid applications. The framework for the software will be described, including architecture considerations for modular, high performance computing and large-scale scalability (serialization, load balancing, partitioning, cross-platform support, etc.). The current simulator supports the ns-3 (telecommunications) and GridLAB-D (distribution systems) simulators. Ongoing and future work will be described, including planned future expansions for a traditional transmission solver. A test case using the co-simulator, utilizing a transactive demand response system created for the Olympic Peninsula and AEP gridSMART demonstrations, requiring two-way communication between distributed and centralized market devices, will be used to demonstrate the value and intended purpose of the co-simulation environment.« less

  9. Light on! Real world evaluation of a P300-based brain-computer interface (BCI) for environment control in a smart home.

    PubMed

    Carabalona, Roberta; Grossi, Ferdinando; Tessadri, Adam; Castiglioni, Paolo; Caracciolo, Antonio; de Munari, Ilaria

    2012-01-01

    Brain-computer interface (BCI) systems aim to enable interaction with other people and the environment without muscular activation by the exploitation of changes in brain signals due to the execution of cognitive tasks. In this context, the visual P300 potential appears suited to control smart homes through BCI spellers. The aim of this work is to evaluate whether the widely used character-speller is more sustainable than an icon-based one, designed to operate smart home environment or to communicate moods and needs. Nine subjects with neurodegenerative diseases and no BCI experience used both speller types in a real smart home environment. User experience during BCI tasks was evaluated recording concurrent physiological signals. Usability was assessed for each speller type immediately after use. Classification accuracy was lower for the icon-speller, which was also more attention demanding. However, in subjective evaluations, the effect of a real feedback partially counterbalanced the difficulty in BCI use. Since inclusive BCIs require to consider interface sustainability, we evaluated different ergonomic aspects of the interaction of disabled users with a character-speller (goal: word spelling) and an icon-speller (goal: operating a real smart home). We found the first one as more sustainable in terms of accuracy and cognitive effort.

  10. SmartFABER: Recognizing fine-grained abnormal behaviors for early detection of mild cognitive impairment.

    PubMed

    Riboni, Daniele; Bettini, Claudio; Civitarese, Gabriele; Janjua, Zaffar Haider; Helaoui, Rim

    2016-02-01

    In an ageing world population more citizens are at risk of cognitive impairment, with negative consequences on their ability of independent living, quality of life and sustainability of healthcare systems. Cognitive neuroscience researchers have identified behavioral anomalies that are significant indicators of cognitive decline. A general goal is the design of innovative methods and tools for continuously monitoring the functional abilities of the seniors at risk and reporting the behavioral anomalies to the clinicians. SmartFABER is a pervasive system targeting this objective. A non-intrusive sensor network continuously acquires data about the interaction of the senior with the home environment during daily activities. A novel hybrid statistical and knowledge-based technique is used to analyses this data and detect the behavioral anomalies, whose history is presented through a dashboard to the clinicians. Differently from related works, SmartFABER can detect abnormal behaviors at a fine-grained level. We have fully implemented the system and evaluated it using real datasets, partly generated by performing activities in a smart home laboratory, and partly acquired during several months of monitoring of the instrumented home of a senior diagnosed with MCI. Experimental results, including comparisons with other activity recognition techniques, show the effectiveness of SmartFABER in terms of recognition rates. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Addressing Data Veracity in Big Data Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aman, Saima; Chelmis, Charalampos; Prasanna, Viktor

    Big data applications such as in smart electric grids, transportation, and remote environment monitoring involve geographically dispersed sensors that periodically send back information to central nodes. In many cases, data from sensors is not available at central nodes at a frequency that is required for real-time modeling and decision-making. This may be due to physical limitations of the transmission networks, or due to consumers limiting frequent transmission of data from sensors located at their premises for security and privacy concerns. Such scenarios lead to partial data problem and raise the issue of data veracity in big data applications. We describemore » a novel solution to the problem of making short term predictions (up to a few hours ahead) in absence of real-time data from sensors in Smart Grid. A key implication of our work is that by using real-time data from only a small subset of influential sensors, we are able to make predictions for all sensors. We thus reduce the communication complexity involved in transmitting sensory data in Smart Grids. We use real-world electricity consumption data from smart meters to empirically demonstrate the usefulness of our method. Our dataset consists of data collected at 15-min intervals from 170 smart meters in the USC Microgrid for 7 years, totaling 41,697,600 data points.« less

  12. Intelligent Membranes: Dream or Reality?

    PubMed

    Gugliuzza, Annarosa

    2013-07-15

    Intelligent materials are claimed to overcome current drawbacks associated with the attainment of high standards of life, health, security and defense. Membrane-based sensors represent a category of smart systems capable of providing a large number of benefits to different markets of textiles, biomedicine, environment, chemistry, agriculture, architecture, transport and energy. Intelligent membranes can be characterized by superior sensitivity, broader dynamic range and highly sophisticated mechanisms of autorecovery. These prerogatives are regarded as the result of multi-compartment arrays, where complementary functions can be accommodated and well-integrated. Based on the mechanism of "sense to act", stimuli-responsive membranes adapt themselves to surrounding environments, producing desired effects such as smart regulation of transport, wetting, transcription, hydrodynamics, separation, and chemical or energy conversion. Hopefully, the design of new smart devices easier to manufacture and assemble can be realized through the integration of sensing membranes with wireless networks, looking at the ambitious challenge to establish long-distance communications. Thus, the transfer of signals to collecting systems could allow continuous and real-time monitoring of data, events and/or processes.

  13. Smart 3D Building Infrastructures: Linking GIs with Other Domains

    NASA Astrophysics Data System (ADS)

    Knoth, L.; Mittlböck, M.; Vockner, B.

    2016-10-01

    While digitization as well as new technologies and paradigms such as the Internet of Things (IoT) help solving issues within smart factories, they simultaneously trigger new challenges. The creation of smart factories, whose components communicate in an intelligent manner, is located at the frontier of the virtual and the real world. To connect both worlds, spatio-temporal information can be used to structure and integrate data streams, models and other content such as documents in Enterprise Spatial Data Infrastructures (SDIs). One part of Enterprise SDIs is building information, to support and enhance contextualization of indoor environments and its corresponding information in form of sensor measurements and other digital resources. We identified five major requirements: (1) Three-dimensionality, (2) (Re-)use of available data, (3) Use of GIS-principles and standards, (4) Adaptivity, and (5) Completeness. Our novel approach "OLS3D" addresses these requirements through the use of SDI-principles and linked-data strategies. A prototypical implementation was developed in order to show the potential of our approach.

  14. A Cs(x)WO3/ZnO nanocomposite as a smart coating for photocatalytic environmental cleanup and heat insulation.

    PubMed

    Wu, Xiaoyong; Yin, Shu; Xue, Dongfeng; Komarneni, Sridhar; Sato, Tsugio

    2015-10-28

    A novel CsxWO3/ZnO smart coating was proposed to achieve multiple functions, such as heat insulation, photodecomposition of toxic NO gas, blocking of harmful UV light, etc. In this composite coating, CsxWO3 nanorods were used as a NIR and UV light shielding material while ZnO nanoparticles were utilized as a photocatalyst and a material to enhance visible light transmittance and block UV light. When the mass ratio of CsxWO3/ZnO was 1, the composite coating possessed a very good visible light transmittance of over 80% and an excellent UV-shielding ability. This novel coating showed heat insulation that is superior to the ITO coating and photocatalytic decontamination of NO gas that is superior to the standard TiO2 (P25). The proposed CsxWO3/ZnO smart coating is a promising material not only for energy saving but also for environmental cleanup.

  15. Perceptions of seniors with heart failure regarding autonomous zero-effort monitoring of physiological parameters in the smart-home environment.

    PubMed

    Grace, Sherry L; Taherzadeh, Golnoush; Jae Chang, Isaac Sung; Boger, Jennifer; Arcelus, Amaya; Mak, Susanna; Chessex, Caroline; Mihailidis, Alex

    Technological advances are leading to the ability to autonomously monitor patient's health status in their own homes, to enable aging-in-place. To understand the perceptions of seniors with heart failure (HF) regarding smart-home systems to monitor their physiological parameters. In this qualitative study, HF outpatients were invited to a smart-home lab, where they completed a sequence of activities, during which the capacity of 5 autonomous sensing modalities was compared to gold standard measures. Afterwards, a semi-structured interview was undertaken. These were transcribed and analyzed using an interpretive-descriptive approach. Five themes emerged from the 26 interviews: (1) perceptions of technology, (2) perceived benefits of autonomous health monitoring, (3) disadvantages of autonomous monitoring, (4) lack of perceived need for continuous health monitoring, and (5) preferences for autonomous monitoring. Patient perception towards autonomous monitoring devices was positive, lending credence to zero-effort technology as a viable and promising approach. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. a Novel Approach to Camera Calibration Method for Smart Phones Under Road Environment

    NASA Astrophysics Data System (ADS)

    Lee, Bijun; Zhou, Jian; Ye, Maosheng; Guo, Yuan

    2016-06-01

    Monocular vision-based lane departure warning system has been increasingly used in advanced driver assistance systems (ADAS). By the use of the lane mark detection and identification, we proposed an automatic and efficient camera calibration method for smart phones. At first, we can detect the lane marker feature in a perspective space and calculate edges of lane markers in image sequences. Second, because of the width of lane marker and road lane is fixed under the standard structural road environment, we can automatically build a transformation matrix between perspective space and 3D space and get a local map in vehicle coordinate system. In order to verify the validity of this method, we installed a smart phone in the `Tuzhi' self-driving car of Wuhan University and recorded more than 100km image data on the road in Wuhan. According to the result, we can calculate the positions of lane markers which are accurate enough for the self-driving car to run smoothly on the road.

  17. Providing IoT Services in Smart Cities through Dynamic Augmented Reality Markers.

    PubMed

    Chaves-Diéguez, David; Pellitero-Rivero, Alexandre; García-Coego, Daniel; González-Castaño, Francisco Javier; Rodríguez-Hernández, Pedro Salvador; Piñeiro-Gómez, Óscar; Gil-Castiñeira, Felipe; Costa-Montenegro, Enrique

    2015-07-03

    Smart cities are expected to improve the quality of life of citizens by relying on new paradigms, such as the Internet of Things (IoT) and its capacity to manage and interconnect thousands of sensors and actuators scattered across the city. At the same time, mobile devices widely assist professional and personal everyday activities. A very good example of the potential of these devices for smart cities is their powerful support for intuitive service interfaces (such as those based on augmented reality (AR)) for non-expert users. In our work, we consider a scenario that combines IoT and AR within a smart city maintenance service to improve the accessibility of sensor and actuator devices in the field, where responsiveness is crucial. In it, depending on the location and needs of each service, data and commands will be transported by an urban communications network or consulted on the spot. Direct AR interaction with urban objects has already been described; it usually relies on 2D visual codes to deliver object identifiers (IDs) to the rendering device to identify object resources. These IDs allow information about the objects to be retrieved from a remote server. In this work, we present a novel solution that replaces static AR markers with dynamic markers based on LED communication, which can be decoded through cameras embedded in smartphones. These dynamic markers can directly deliver sensor information to the rendering device, on top of the object ID, without further network interaction.

  18. Providing IoT Services in Smart Cities through Dynamic Augmented Reality Markers

    PubMed Central

    Chaves-Diéguez, David; Pellitero-Rivero, Alexandre; García-Coego, Daniel; González-Castaño, Francisco Javier; Rodríguez-Hernández, Pedro Salvador; Piñeiro-Gómez, Óscar; Gil-Castiñeira, Felipe; Costa-Montenegro, Enrique

    2015-01-01

    Smart cities are expected to improve the quality of life of citizens by relying on new paradigms, such as the Internet of Things (IoT) and its capacity to manage and interconnect thousands of sensors and actuators scattered across the city. At the same time, mobile devices widely assist professional and personal everyday activities. A very good example of the potential of these devices for smart cities is their powerful support for intuitive service interfaces (such as those based on augmented reality (AR)) for non-expert users. In our work, we consider a scenario that combines IoT and AR within a smart city maintenance service to improve the accessibility of sensor and actuator devices in the field, where responsiveness is crucial. In it, depending on the location and needs of each service, data and commands will be transported by an urban communications network or consulted on the spot. Direct AR interaction with urban objects has already been described; it usually relies on 2D visual codes to deliver object identifiers (IDs) to the rendering device to identify object resources. These IDs allow information about the objects to be retrieved from a remote server. In this work, we present a novel solution that replaces static AR markers with dynamic markers based on LED communication, which can be decoded through cameras embedded in smartphones. These dynamic markers can directly deliver sensor information to the rendering device, on top of the object ID, without further network interaction. PMID:26151215

  19. Design of smart composite platforms for adaptive trust vector control and adaptive laser telescope for satellite applications

    NASA Astrophysics Data System (ADS)

    Ghasemi-Nejhad, Mehrdad N.

    2013-04-01

    This paper presents design of smart composite platforms for adaptive trust vector control (TVC) and adaptive laser telescope for satellite applications. To eliminate disturbances, the proposed adaptive TVC and telescope systems will be mounted on two analogous smart composite platform with simultaneous precision positioning (pointing) and vibration suppression (stabilizing), SPPVS, with micro-radian pointing resolution, and then mounted on a satellite in two different locations. The adaptive TVC system provides SPPVS with large tip-tilt to potentially eliminate the gimbals systems. The smart composite telescope will be mounted on a smart composite platform with SPPVS and then mounted on a satellite. The laser communication is intended for the Geosynchronous orbit. The high degree of directionality increases the security of the laser communication signal (as opposed to a diffused RF signal), but also requires sophisticated subsystems for transmission and acquisition. The shorter wavelength of the optical spectrum increases the data transmission rates, but laser systems require large amounts of power, which increases the mass and complexity of the supporting systems. In addition, the laser communication on the Geosynchronous orbit requires an accurate platform with SPPVS capabilities. Therefore, this work also addresses the design of an active composite platform to be used to simultaneously point and stabilize an intersatellite laser communication telescope with micro-radian pointing resolution. The telescope is a Cassegrain receiver that employs two mirrors, one convex (primary) and the other concave (secondary). The distance, as well as the horizontal and axial alignment of the mirrors, must be precisely maintained or else the optical properties of the system will be severely degraded. The alignment will also have to be maintained during thruster firings, which will require vibration suppression capabilities of the system as well. The innovative platform has been designed to have tip-tilt pointing and simultaneous multi-degree-of-freedom vibration isolation capability for pointing stabilization. Analytical approaches have been employed for determining the loads in the components as well as optimizing the design of the system. The different critical components such as telescope tube struts, flexure joints, and the secondary mirror mount have been designed and analyzed using finite element technique. The Simultaneous Precision Positioning and Vibration Suppression (SPPVS) smart composites platforms for the adaptive TVC and adaptive composite telescope are analogous (e.g., see work by Ghasemi-Nejhad and co-workers [1, 2]), where innovative concepts and control strategies are introduced, and experimental verifications of simultaneous thrust vector control and vibration isolation of satellites were performed. The smart composite platforms function as an active structural interface between the main thruster of a satellite and the satellite structure for the adaptive TVC application and as an active structural interface between the main smart composite telescope and the satellite structure for the adaptive laser communication application. The cascaded multiple feedback loops compensate the hysteresis (for piezoelectric stacks inside the three linear actuators that individually have simultaneous precision positioning and vibration suppression), dead-zone, back-lash, and friction nonlinearities very well, and provide precision and quick smart platform control and satisfactory thrust vector control capability. In addition, for example for the adaptive TVC, the experimental results show that the smart composite platform satisfactorily provided precision and fast smart platform control as well as the satisfactory thrust vector control capability. The vibration controller isolated 97% of the vibration energy due to the thruster firing.

  20. Occupancy-driven smart register for building energy saving (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Chen, Zhangjie; Wang, Ya S.

    2017-04-01

    The new era in energy-efficiency building is to integrate automatic occupancy detection with automated heating, ventilation and cooling (HVAC), the largest source of building energy consumption. By closing off some air vents, during certain hours of the day, up to 7.5% building energy consumption could be saved. In the past, smart vent has received increasing attention and several products have been developed and introduced to the market for building energy saving. For instance, Ecovent Systems Inc. and Keen Home Inc. have both developed smart vent registers capable of turning the vent on and off through smart phone apps. However, their products do not have on-board occupancy sensors and are therefore open-loop. Their vent control was achieved by simply positioning the vent blade through a motor and a controller without involving any smart actuation. This paper presents an innovative approach for automated vent control and automatic occupancy (human subjects) detection. We devise this approach in a smart register that has polydimethylsiloxane (PDMS) frame with embedded Shape memory alloy (SMA) actuators. SMAs belong to a class of shape memory materials (SMMs), which have the ability to `memorise' or retain their previous form when subjected to certain stimulus such as thermomechanical or magnetic variations. And it can work as actuators and be applied to vent control. Specifically, a Ni-Ti SMA strip will be pre-trained to a circular shape, wrapped with a Ni-Cr resistive wire that is coated with thermally conductive and electrically isolating material. Then, the SMA strip along with an antagonistic SMA strip will be bonded with PZT sensor and thermal sensors, to be inserted into a 3D printed mould which will be filled with silicone rubber materials. In the end, a demoulding process yields a fully integrated blade of the smart register. Several blades are installed together to form the smart register. The PZT sensors can feedback the shape of the actuator for precise shape and air flow control. The performance and the specification of the smart registers will be characterized experimentally. Its capacity of regulating airflow, forming air curtain will be demonstrated.

  1. Magnetic Lateral Flow Strip for the Detection of Cocaine in Urine by Naked Eyes and Smart Phone Camera.

    PubMed

    Wu, Jing; Dong, Mingling; Zhang, Cheng; Wang, Yu; Xie, Mengxia; Chen, Yiping

    2017-06-05

    Magnetic lateral flow strip (MLFS) based on magnetic bead (MB) and smart phone camera has been developed for quantitative detection of cocaine (CC) in urine samples. CC and CC-bovine serum albumin (CC-BSA) could competitively react with MB-antibody (MB-Ab) of CC on the surface of test line of MLFS. The color of MB-Ab conjugate on the test line relates to the concentration of target in the competition immunoassay format, which can be used as a visual signal. Furthermore, the color density of the MB-Ab conjugate can be transferred into digital signal (gray value) by a smart phone, which can be used as a quantitative signal. The linear detection range for CC is 5-500 ng/mL and the relative standard deviations are under 10%. The visual limit of detection was 5 ng/mL and the whole analysis time was within 10 min. The MLFS has been successfully employed for the detection of CC in urine samples without sample pre-treatment and the result is also agreed to that of enzyme-linked immunosorbent assay (ELISA). With the popularization of smart phone cameras, the MLFS has large potential in the detection of drug residues in virtue of its stability, speediness, and low-cost.

  2. Smart Networking Decisions: A Kase Study.

    ERIC Educational Resources Information Center

    Sturgeon, Julie

    1999-01-01

    Describes one decision-making approach for quickly implementing a communications network into a school district. The use of volunteer labor for wiring installation, computer selection focusing on standardization to aid in troubleshooting, and an intranet system to achieve efficiency and learning opportunities for teachers and administrative…

  3. From generic pathways to ICT-supported horizontally integrated care: the SmartCare approach and convergence with future Internet assembly.

    PubMed

    Urošević, Vladimir; Mitić, Marko

    2014-01-01

    Successful service integration in policy and practice requires both technology innovation and service process innovation being pursued and implemented at the same time. The SmartCare project (partially EC-funded under CIP ICT PSP Program) aims to achieve this through development, piloting and evaluation of ICT-based services, horizontally integrating health and social care in ten pilot regions, including Kraljevo region in Serbia. The project has identified and adopted two generic highest-level common thematic pathways in joint consolidation phase - integrated support for long-term care and integrated support after hospital discharge. A common set of standard functional specifications for an open ICT platform enabling the delivery of integrated care is being defined, around the challenges of data sharing, coordination and communication in these two formalized pathways. Implementation and system integration on technology and architecture level are to be based on open standards, multivendor interoperability, and leveraging on the current evolving open specification technology foundations developed in relevant projects across the European Research Area.

  4. Eat Smart! Ontario's Healthy Restaurant Program: focus groups with non-participating restaurant operators.

    PubMed

    Dwyer, John J M; Macaskill, Lesley A; Uetrecht, Connie L; Dombrow, Carol

    2004-01-01

    Eat Smart! Ontario's Healthy Restaurant Program is a standard provincial health promotion program. Public health units give an award of excellence to restaurants that meet nutrition, food safety, and non-smoking seating standards. The purpose of this study was to determine why some restaurant operators have not applied to participate in the program, and how to get them to apply. Four focus group interviews were conducted with 35 operators who didn't apply to participate. The analysis of responses yielded various themes. The participants' perceived barriers to participation were misunderstandings about how to qualify for the program, lack of time, concern about different non-smoking bylaw requirements, and potential loss of revenue. Their perceived facilitators to participation were convenience of applying to participate, franchise executives' approval to participate, a 100% non-smoking bylaw, flexibility in the assessment of restaurants, the opportunity for positive advertising, alternative payment for food handler training, and customer demand. Program staff can use the findings to develop and use strategies to encourage participation.

  5. A National Conversation with SmartWay Affiliates Webinar

    EPA Pesticide Factsheets

    This EPA presentation provides information on successful strategies that EPA regional representatives and state trucking associations work together to improve efficiency in supply chain freight logistics.

  6. Cooperative Strategy for Optimal Management of Smart Grids by Wavelet RNNs and Cloud Computing.

    PubMed

    Napoli, Christian; Pappalardo, Giuseppe; Tina, Giuseppe Marco; Tramontana, Emiliano

    2016-08-01

    Advanced smart grids have several power sources that contribute with their own irregular dynamic to the power production, while load nodes have another dynamic. Several factors have to be considered when using the owned power sources for satisfying the demand, i.e., production rate, battery charge and status, variable cost of externally bought energy, and so on. The objective of this paper is to develop appropriate neural network architectures that automatically and continuously govern power production and dispatch, in order to maximize the overall benefit over a long time. Such a control will improve the fundamental work of a smart grid. For this, status data of several components have to be gathered, and then an estimate of future power production and demand is needed. Hence, the neural network-driven forecasts are apt in this paper for renewable nonprogrammable energy sources. Then, the produced energy as well as the stored one can be supplied to consumers inside a smart grid, by means of digital technology. Among the sought benefits, reduced costs and increasing reliability and transparency are paramount.

  7. Smart Sensor for Online Detection of Multiple-Combined Faults in VSD-Fed Induction Motors

    PubMed Central

    Garcia-Ramirez, Armando G.; Osornio-Rios, Roque A.; Granados-Lieberman, David; Garcia-Perez, Arturo; Romero-Troncoso, Rene J.

    2012-01-01

    Induction motors fed through variable speed drives (VSD) are widely used in different industrial processes. Nowadays, the industry demands the integration of smart sensors to improve the fault detection in order to reduce cost, maintenance and power consumption. Induction motors can develop one or more faults at the same time that can be produce severe damages. The combined fault identification in induction motors is a demanding task, but it has been rarely considered in spite of being a common situation, because it is difficult to identify two or more faults simultaneously. This work presents a smart sensor for online detection of simple and multiple-combined faults in induction motors fed through a VSD in a wide frequency range covering low frequencies from 3 Hz and high frequencies up to 60 Hz based on a primary sensor being a commercially available current clamp or a hall-effect sensor. The proposed smart sensor implements a methodology based on the fast Fourier transform (FFT), RMS calculation and artificial neural networks (ANN), which are processed online using digital hardware signal processing based on field programmable gate array (FPGA).

  8. Park Smart

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The Parking Garage Automation System (PGAS) is based on a technology developed by a NASA-sponsored project called Robot sensorSkin(TM). Merritt Systems, Inc., of Orlando, Florida, teamed up with NASA to improve robots working with critical flight hardware at Kennedy Space Center in Florida. The system, containing smart sensor modules and flexible printed circuit board skin, help robots to steer clear of obstacles using a proximity sensing system. Advancements in the sensor designs are being applied to various commercial applications, including the PGAS. The system includes a smartSensor(TM) network installed around and within public parking garages to autonomously guide motorists to open facilities, and once within, to free parking spaces. The sensors use non-invasive reflective-ultrasonic technology for high accuracy, high reliability, and low maintenance. The system is remotely programmable: it can be tuned to site-specific requirements, has variable range capability, and allows remote configuration, monitoring, and diagnostics. The sensors are immune to interference from metallic construction materials, such as rebar and steel beams. Inside the garage, smart routing signs mounted overhead or on poles in front of each row of parking spots guide the motorist precisely to free spaces.

  9. Smart Health - Potential and Pathways: A Survey

    NASA Astrophysics Data System (ADS)

    Arulananthan, C.; Hanifa, Sabibullah Mohamed

    2017-08-01

    Healthcare is an imperative key field of research, where individuals or groups can be engaged in the self-tracking of any kind of biological, physical, behavioral, or environmental information. In a massive health care data, the valuable information is hidden. The quantity of the available unstructured data has been expanding on an exponential scale. The newly developing Disruptive Technologies can handle many challenges that face data analysis and ability to extract valuable information via data analytics. Connected Wellness in Healthcare would retrieve patient’s physiological, pathological and behavioral parameters through sensors to perform inner workings of human body analysis. Disruptive technologies can take us from a reactive illness-driven to a proactive wellness-driven system in health care. It is need to be strive and create a smart health system towards wellness-driven instead of being illness-driven, today’s biggest problem in health care. Wellness-driven-analytics application help to promote healthiest living environment called “Smart Health”, deliver empower based quality of living. The contributions of this survey reveals and opens (touches uncovered areas) the possible doors in the line of research on smart health and its computing technologies.

  10. M&S Smart System Contrast Sensitivity Measurements Compared With Standard Visual Function Measurements in Primary Open-Angle Glaucoma Patients.

    PubMed

    Liu, Jessica L; McAnany, J Jason; Wilensky, Jacob T; Aref, Ahmad A; Vajaranant, Thasarat S

    2017-06-01

    To evaluate the nature and extent of letter contrast sensitivity (CS) deficits in glaucoma patients using a commercially available computer-based system (M&S Smart System II) and to compare the letter CS measurements to standard clinical measures of visual function. Ninety-four subjects with primary open-angle glaucoma participated. Each subject underwent visual acuity, letter CS, and standard automated perimetry testing (Humphrey SITA 24-2). All subjects had a best-corrected visual acuity (BCVA) of 0.3 log MAR (20/40 Snellen equivalent) or better and reliable standard automated perimetry (fixation losses, false positives, and false negatives <33%). CS functions were estimated from the letter CS and BCVA measurements. The area under the CS function (AUCSF), which is a combined index of CS and BCVA, was derived and analyzed. The mean (± SD) BCVA was 0.08±0.10 log MAR (∼20/25 Snellen equivalent), the mean CS was 1.38±0.17, and the mean Humphrey Visual Field mean deviation (HVF MD) was -7.22±8.10 dB. Letter CS and HVF MD correlated significantly (r=0.51, P<0.001). BCVA correlated significantly with letter CS (r=-0.22, P=0.03), but not with HVF MD (r=-0.12, P=0.26). A subset of the subject sample (∼20%) had moderate to no field loss (≤-6 dB MD) and minimal to no BCVA loss (≤0.3 log MAR), but had poor letter CS. AUCSF was correlated significantly with HVF MD (r=0.46, P<0.001). The present study is the first to evaluate letter CS in glaucoma using the digital M&S Smart System II display. Letter CS correlated significantly with standard HVF MD measurements, suggesting that letter CS may provide a useful adjunct test of visual function for glaucoma patients. In addition, the significant correlation between HVF MD and the combined index of CS and BCVA (AUCSF) suggests that this measure may also be useful for quantifying visual dysfunction in glaucoma patients.

  11. Evaluating Vocational Educators' Training Programs: A Kirkpatrick-Inspired Evaluation Model

    ERIC Educational Resources Information Center

    Ravicchio, Fabrizio; Trentin, Guglielmo

    2015-01-01

    The aim of the article is to describe the assessment model adopted by the SCINTILLA Project, a project in Italy aimed at the online vocational training of young, seriously-disabled subjects and their subsequent work inclusion in smart-work mode. It will thus describe the model worked out for evaluation of the training program conceived for the…

  12. Eat Smart! Ontario's Healthy Restaurant Program: a survey of participating restaurant operators.

    PubMed

    Macaskill, Lesley A; Dwyer, John J M; Uetrecht, Connie L; Dombrow, Carol

    2003-01-01

    Eat Smart! Ontario's Healthy Restaurant Program is a standard provincial health promotion program. Public health units grant an award of excellence to restaurants that meet designated standards in nutrition, food safety, and non-smoking seating. The purpose of this study was to assess whether program objectives for participating restaurant operators were achieved during the first year of program implementation, and to obtain operators' recommendations for improving the program. Dillman's tailored design method was used to design a mail survey and implement it among participating operators (n = 434). The design method, which consisted of four mail-outs, yielded a 74% response rate. Fifty percent of respondents operated family-style or quick-service restaurants, and 82% of respondents learned about the program from public health inspectors. Almost all respondents (98%) participated in the program mainly to have their establishments known as clean and healthy restaurants, 65% received and used either point-of-purchase table stands or postcards to promote the program, and 98% planned to continue participating. The respondents' suggestions for improving the program were related to the award ceremony and program materials, media promotion, communication, education, and program standards. Program staff can use the findings to enhance the program.

  13. The impact of environmental factors on the performance of millimeter wave seekers in smart munitions

    NASA Astrophysics Data System (ADS)

    Hager, R.

    1987-08-01

    An assessment has been made of the degradation in performance of horizontal-glide smart munitions incorporating millimeter wave seekers operating in three types of environments. Atmospheric effects are shown to degrade performance appreciably only in very severe weather conditions. Electromagnetic line-of-sight masking due to foliage (forest canopy and tree-lined roads) will limit submunition usage and may be a potential problem. The most serious problem involves the confident detection of military vehicles in the presence of land clutter. Standard signal processing techniques involving signal amplitude and signal averaging are not likely to be adequate for detection. Observations regarding more sophisticated techniques and the current state of research are included.

  14. Flow Navigation by Smart Microswimmers via Reinforcement Learning

    NASA Astrophysics Data System (ADS)

    Colabrese, Simona; Biferale, Luca; Celani, Antonio; Gustavsson, Kristian

    2017-11-01

    We have numerically modeled active particles which are able to acquire some limited knowledge of the fluid environment from simple mechanical cues and exert a control on their preferred steering direction. We show that those swimmers can learn effective strategies just by experience, using a reinforcement learning algorithm. As an example, we focus on smart gravitactic swimmers. These are active particles whose task is to reach the highest altitude within some time horizon, exploiting the underlying flow whenever possible. The reinforcement learning algorithm allows particles to learn effective strategies even in difficult situations when, in the absence of control, they would end up being trapped by flow structures. These strategies are highly nontrivial and cannot be easily guessed in advance. This work paves the way towards the engineering of smart microswimmers that solve difficult navigation problems. ERC AdG NewTURB 339032.

  15. Enabling Smart Workflows over Heterogeneous ID-Sensing Technologies

    PubMed Central

    Giner, Pau; Cetina, Carlos; Lacuesta, Raquel; Palacios, Guillermo

    2012-01-01

    Sensing technologies in mobile devices play a key role in reducing the gap between the physical and the digital world. The use of automatic identification capabilities can improve user participation in business processes where physical elements are involved (Smart Workflows). However, identifying all objects in the user surroundings does not automatically translate into meaningful services to the user. This work introduces Parkour, an architecture that allows the development of services that match the goals of each of the participants in a smart workflow. Parkour is based on a pluggable architecture that can be extended to provide support for new tasks and technologies. In order to facilitate the development of these plug-ins, tools that automate the development process are also provided. Several Parkour-based systems have been developed in order to validate the applicability of the proposal. PMID:23202193

  16. Modular telerobot control system for accident response

    NASA Astrophysics Data System (ADS)

    Anderson, Richard J. M.; Shirey, David L.

    1999-08-01

    The Accident Response Mobile Manipulator System (ARMMS) is a teleoperated emergency response vehicle that deploys two hydraulic manipulators, five cameras, and an array of sensors to the scene of an incident. It is operated from a remote base station that can be situated up to four kilometers away from the site. Recently, a modular telerobot control architecture called SMART was applied to ARMMS to improve the precision, safety, and operability of the manipulators on board. Using SMART, a prototype manipulator control system was developed in a couple of days, and an integrated working system was demonstrated within a couple of months. New capabilities such as camera-frame teleoperation, autonomous tool changeout and dual manipulator control have been incorporated. The final system incorporates twenty-two separate modules and implements seven different behavior modes. This paper describes the integration of SMART into the ARMMS system.

  17. Grid-Scale Energy Storage Demonstration of Ancillary Services Using the UltraBattery Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seasholtz, Jeff

    2015-08-20

    The collaboration described in this document is being done as part of a cooperative research agreement under the Department of Energy’s Smart Grid Demonstration Program. This document represents the Final Technical Performance Report, from July 2012 through April 2015, for the East Penn Manufacturing Smart Grid Program demonstration project. This Smart Grid Demonstration project demonstrates Distributed Energy Storage for Grid Support, in particular the economic and technical viability of a grid-scale, advanced energy storage system using UltraBattery ® technology for frequency regulation ancillary services and demand management services. This project entailed the construction of a dedicated facility on the Eastmore » Penn campus in Lyon Station, PA that is being used as a working demonstration to provide regulation ancillary services to PJM and demand management services to Metropolitan Edison (Met-Ed).« less

  18. Design of Smart Multi-Functional Integrated Aviation Photoelectric Payload

    NASA Astrophysics Data System (ADS)

    Zhang, X.

    2018-04-01

    To coordinate with the small UAV at reconnaissance mission, we've developed a smart multi-functional integrated aviation photoelectric payload. The payload weighs only 1kg, and has a two-axis stabilized platform with visible task payload, infrared task payload, laser pointers and video tracker. The photoelectric payload could complete the reconnaissance tasks above the target area (including visible and infrared). Because of its light weight, small size, full-featured, high integrated, the constraints of the UAV platform carrying the payload will be reduced a lot, which helps the payload suit for more extensive using occasions. So all users of this type of smart multi-functional integrated aviation photoelectric payload will do better works on completion of the ground to better pinpoint targets, artillery calibration, assessment of observe strike damage, customs officials and other tasks.

  19. Design, experiments and simulation of voltage transformers on the basis of a differential input D-dot sensor.

    PubMed

    Wang, Jingang; Gao, Can; Yang, Jie

    2014-07-17

    Currently available traditional electromagnetic voltage sensors fail to meet the measurement requirements of the smart grid, because of low accuracy in the static and dynamic ranges and the occurrence of ferromagnetic resonance attributed to overvoltage and output short circuit. This work develops a new non-contact high-bandwidth voltage measurement system for power equipment. This system aims at the miniaturization and non-contact measurement of the smart grid. After traditional D-dot voltage probe analysis, an improved method is proposed. For the sensor to work in a self-integrating pattern, the differential input pattern is adopted for circuit design, and grounding is removed. To prove the structure design, circuit component parameters, and insulation characteristics, Ansoft Maxwell software is used for the simulation. Moreover, the new probe was tested on a 10 kV high-voltage test platform for steady-state error and transient behavior. Experimental results ascertain that the root mean square values of measured voltage are precise and that the phase error is small. The D-dot voltage sensor not only meets the requirement of high accuracy but also exhibits satisfactory transient response. This sensor can meet the intelligence, miniaturization, and convenience requirements of the smart grid.

  20. An integrated approach to Smart House technology for people with disabilities.

    PubMed

    Allen, B

    1996-04-01

    It is now commonly accepted that 'Smart House' technology can play a significant part in helping both elderly and disabled people enjoy a greater degree of independence in the near future. In order to realize this aspiration, it is necessary to examine a number of factors: the development of the appropriate Home Bus technologies and supported devices; the development of the appropriate user interfaces that will allow people with a range of special needs use the system; the incorporation of the requirements of the 'Smart House' controller with the other technological needs of the user; and the development of mainstream technologies that will affect the cost and availability of devices to the user. This paper will examine the above points and suggest appropriate actions and trends. It will draw upon the work of a four-member consortium currently finalizing a technical development project under the EC TIDE program, the experience of research and commercial organizations engaged in development work in associated areas and the experiences of the Dublin-based, Central Remedial Clinic and in particular, its Client Technical Services Unit. The CTSU have been actively engaged in the development of systems for clients and direct clinical assessments for the last 12 years.

Top